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Preface 
 
As part of its on-going activities to foster research in undergraduate mathematics education and 
the dissemination of such research, the Special Interest Group of the Mathematics Association of 
America on Research in Undergraduate Mathematics Education (SIGMAA on RUME) held its 
twenty-fifth annual Conference on Research in Undergraduate Mathematics Education in 
Omaha, Nebraska from February 23 - February 25, 2023.  
 
The 25th RUME Conference enabled presenters and attendees the option to participate fully 
online such that travel was not a requirement, approximately 25% of participants were online. 
 
The program included plenary addresses by Dr. Warren Christensen, Dr. Natasha Speer, and Dr. 
Hortensia Soto and the presentation of 151 contributed, preliminary, and theoretical research 
reports and 69 posters. The conference was organized around the following themes: results of 
current research, contemporary theoretical perspectives and research paradigms, and innovative 
methodologies and analytic approaches as they pertain to the study of undergraduate 
mathematics education. 
 
The proceedings include several types of papers that represent current work in undergraduate 
mathematics education, each underwent a rigorous review by three or more reviewers: 
 

- Contributed Research Reports describe completed research studies 
- Preliminary Research Reports describe ongoing research in early stages of analysis 
- Theoretical Research Reports describe new theoretical perspectives for research 
- Posters may fall into any of Contributed, Preliminary, or Theoretical and were presented 

in poster format. Authors contributed the poster itself, a summary of the work, or both. 
 
The conference was hosted by the University of Nebraska – Omaha’s Department of 
Mathematical and Statistical Sciences. Many members of the RUME community volunteered for 
the Program Committee where they reviewed many submissions such that every submission was 
reviewed by at least one member of the Program Committee. The Program Committee aided us 
in putting together this program and their hard work is greatly appreciated. The Local Organizing 
Committee were responsible for the smooth running of the presentations and on-site activities, 
which would not have been possible without the help of many volunteers, and we thank them for 
their tireless efforts to host a conference that runs smoothly. 
 
Thank you to all of the researchers who submitted such strong proposals and ultimately made the 
conference a fun and joyous event. 
 
 
Sam Cook, RUME Organizational Director and Conference Chair 
Nikki Infante, RUME Conference Local Organizing Chair 
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Applying Proof Frameworks Is Harder for Students than We Think  

Iris Gaber Amir Kirsh Romina Zigdon 
 School of Computer Science School of Computer Science School of Computer Science 
 Academic College of  Academic College of Academic College of 

Tel-Aviv Yaffo Tel-Aviv Yaffo Tel-Aviv Yaffo 

In order to overcome difficulties many students in mathematics and computer science face with 
rigorous proofs, some higher education institutes present a “Mathematical Reasoning” or 
“Transition-to-Proof” course. In this paper, we analyzed data from the exams of 310 students in 
such a course, focusing on the way they approach a proof regarding set inclusion, and whether 
they use a particular “proof framework” that we taught them when doing so. We found that the 
students are able to use the proof framework, and that using it is beneficial to them, but that a 
surprisingly large percentage of them fail to use it consistently. 

Keywords: Transition-to-proof courses, Proof frameworks, Operable interpretations of 
definitions 

Introduction 
One of the challenges mathematics instructors face is teaching their students to write correct 

rigorous proofs and to use the definitions properly. Between 1990 and 1999, more than 100 
papers have been published on this subject (Hanna, 2000). The question of how students engage 
with proof and proving is continuously being studied (Reid and Knipping, 2011). These studies 
have suggested various explanations for the root of the problem, and proposed a variety of 
methods for addressing it, which have been tested with varying degrees of success. One common 
conclusion is that the transition from an intuitive answer to the rigorous formulation is one of the 
students’ main sources of difficulty. Vinner (1991), for instance, claims that students tend to 
ignore the definitions necessary for a rigorous proof, preferring an intuitive “general 
explanation” answer. Moore (1994) supports this assertion, noting that, while attempting to write 
formal proofs, students do not necessarily understand the content of relevant definitions or how 
to use them.  

One of the ways institutes deal with this issue is by having students take an “introduction to 
proof” course. Most such courses emphasize helping students learn the proof construction 
process (see in particular, Selden, Benkhalti and Selden, 2014 and Moore, 1994). This paper 
presents data collected in the context of the course “Mathematical Reasoning” - a mandatory 
course for first year computer science undergraduates. Specifically, our study focuses on the 
manner and extent to which undergraduate students employ - or fail to employ - a “proof 
framework” while proving a theorem. The concept of the proof framework was first introduced 
by Selden and Selden, 1995, and later expanded upon (2014). Similar ideas were presented by 
Scheinerman, 2013, who refers to it as a “proof template,” and Hammack, 2013. In this paper we 
focus on one specific framework, used for proving set inclusion according to the definition. We 
analyzed 310 students’ answers to questions that require this proof and discovered that a large 
percentage did not consistently use the proof framework, even when they had presented the 
ability to apply a very similar proof framework in an earlier part of the question, and despite the 
fact that this was the only technique they had learned for dealing with a question of that sort. 
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Proof Framework 
Selden, Selden and Bankhalti (2018) define proof frameworks as “a way of structuring a 

proof, in which the student begins by writing the first and last lines of a proof and works towards 
the middle. It often consists of a first level, in which a student unpacks the logical structure of the 
theorem statement to write the first and last lines of the proof, and a second level, in which a 
student unpacks the definitions involved in the conclusion to write the second and second-to-last 
lines of the proof” (Selden, Selden and Bankhalti , 2018 p.4). To illustrate this point, they 
provide a sample proof framework for an elementary set theory theorem, which we have copied 
in its entirety here: 

 
Fig. 1. Proof framework of set inclusion 

Clearly, a theorem regarding set inclusion should start with an element that belongs to the 
included set, and by a sequence of steps ends with the result that the element belongs to the 
including set. In their study, Selden, McKee, and Selden, 2010 discuss the habits of mind that 
appear to drive many mental actions in the proving process, and discuss the way feelings can 
help cause mental actions and also arise from them. They offer the following example of a wrong 
“proof,” in the form of Sofia’s answer to the following theorem.  
 

Theorem: For any sets 𝐴𝐴,𝐵𝐵,𝐶𝐶 if 𝐴𝐴 ⊆ 𝐵𝐵 then (𝐴𝐴 ∩ 𝐶𝐶) ⊆ (𝐵𝐵 ∩ 𝐶𝐶).  
Sofia’s Proof: (Selden et al., 2010, p.13) Let 𝐴𝐴,𝐵𝐵,𝐶𝐶 be sets 

Suppose 𝑥𝑥 ∉ 𝐴𝐴, 𝑥𝑥 ∈ 𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 ∈ 𝐶𝐶 
Then 𝑥𝑥 ∉ (𝐴𝐴 ∩ 𝐶𝐶), but 𝑥𝑥 ∈ (𝐵𝐵 ∩ 𝐶𝐶) 
Therefore (𝐴𝐴 ∩ 𝐶𝐶) ⊆ (𝐵𝐵 ∩ 𝐶𝐶) 
 

We were curious how common the approach presented by Sofia might be - namely starting 
wrong, such that it is impossible to produce a proof from that starting point. These authors’ study 
presented insightful qualitative findings, based on a deep analysis of a small sample. Our study is 
based on an analysis of hundreds of students’ exams, which allowed us to produce, in addition to 
qualitative findings, some interesting quantitative results. Our primary goal was to understand 
whether students who fail to present a rigorous proof do so because they do not use the proof 
framework that we teach them, or because they use it incorrectly. 

This information is important in order to improve teaching: Should we be placing more 
emphasis on the use of the proof framework (i.e. encouraging the students to use it), or putting 
more effort into the details of the framework itself (making sure that the students use the 
framework correctly)? It is also interesting to check whether students who do not use the 
framework (i.e. students who use other proof techniques) are doing well. If we see that using the 
proof framework does not result in better proofs, compared to other techniques, this might 
indicate that the effort invested in sticking to a proof framework is redundant, or even harmful. 
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Our Course 
Much like other Transition-to-Proof courses elsewhere (e.g. Selden, Selden and Bankhalti , 

2018), our reasoning course is based on students practicing the act of proving. We cover basic 
classical mathematical concepts and proving methods: The role of definitions, quantifiers, proof 
by contradiction, dealing with cases, and induction. We rehearse these concepts and methods 
throughout the course. The course contains only elementary mathematical concepts: arithmetic, 
basic set operations, and basic linear algebra. It consists of 3 hours of weekly lectures, with an 
emphasis on independent practice and homework. In every lesson, we solve the homework given 
in the previous lesson. The students are encouraged to present their proofs in class, and get 
feedback from the teacher. This usually takes the first half of the lesson, and the second half is 
dedicated to a method of proving, explained and followed by many examples. The students are 
first year, first semester, computer science undergraduate students, and the course is designed to 
help them develop the skill of proving, which is needed in later courses such as Linear Algebra, 
Calculus, Data Structures and Algorithms. In each genre of proof, we introduce the students to a 
proof framework (see Section II for details) as a way of getting started writing proofs. 

The Study 
We teach in one of the largest colleges in the country, and our students have high grades in the 
acceptance exam and in the matriculation exam in mathematics (significantly higher than the 
average). 

Around 300 students are enrolled in the “Mathematical Reasoning” course every year. When 
dealing with basic set theory we stress that: 

1. When proving 𝐴𝐴 ⊆ 𝐵𝐵 one should start with ’Let 𝑥𝑥 ∈ 𝐴𝐴’ and end with ’then 𝑥𝑥 ∈ 𝐵𝐵’. 
2. When proving 𝐴𝐴 = 𝐵𝐵 the technique is to prove that 𝐴𝐴 ⊆ 𝐵𝐵 and that 𝐵𝐵 ⊆ 𝐴𝐴, using the 

framework of set inclusion. 
We chose a non-covid cohort, where all lectures and the exams were frontal (i.e. not via 

zoom). The class took place between October 2019 and January 2020 and was divided into 5 
groups of around 60 students. We analyzed the students’ responses to a multi-part question on 
basic set theory given in the course’s final exam. Our goal was to analyze the use of the proof 
framework in students’ answers, specifically: did students use the proof framework that we 
taught them? If so - did they use it correctly or did they merely write something that looks like 
the framework but is actually totally wrong? If not - were they able to present a rigorous and 
correct proof without depending on the proof framework? 

The exam question that we analyzed began with a “definitions” section requiring the students 
to present definitions that were taught during the semester. Specifically, we were interested in the 
correct definitions of inclusion and equality of sets. The “definitions” section was followed by 
two “proof” sections, in which the students were asked to prove or disprove certain claims (that 
were actually both true). We will later refer to the two proof sections as the “first” and “second” 
proofs. Here is the question (summarized, for brevity): 

1. (10 pts) For 𝐴𝐴,𝐵𝐵 sets define 𝐴𝐴\𝐵𝐵, 𝐴𝐴 ∩ 𝐵𝐵, 𝐴𝐴 ∪ 𝐵𝐵, 𝐴𝐴 ⊆ 𝐵𝐵, 𝐴𝐴 = 𝐵𝐵 
2. (12 pts) Prove or disprove according to the definitions:  

For sets 𝐴𝐴,𝐵𝐵,𝐶𝐶, (𝐴𝐴\𝐵𝐵)\𝐶𝐶 = (𝐴𝐴\𝐶𝐶)\(𝐵𝐵 ∪ 𝐶𝐶) 
3. (12 pts) Prove or disprove according to the definitions:  

For sets 𝐴𝐴,𝐵𝐵,𝐶𝐶, 𝐶𝐶 ⊆ 𝐴𝐴 if and only if (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) 
The “definitions” section is important as it requires the students to recall the correct 

definitions needed in the proof sections. In the analysis, we set aside the exams of those who did 
not write the definitions correctly, based on the assumption that we cannot expect students who 
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are not able to present the definition of inclusion correctly to prove inclusion correctly (only a 
handful of students failed to correctly answer the definitions section, likely because this section 
is repeated every year).  

The first proof is a set equality. This requires, by definition, a bi-directional inclusion. We 
expected the students to use the proof framework twice, once for each inclusion. The first starts 
with 𝑥𝑥 ∈ (𝐴𝐴\𝐵𝐵)\𝐶𝐶 and ends with the conclusion that 𝑥𝑥 ∈ (𝐴𝐴\𝐶𝐶)\(𝐵𝐵 ∪ 𝐶𝐶), and the second does 
the same, but in the opposite direction. Since the question required the students to prove by 
definition, using set identities was not allowed. However, the students could also legitimately 
prove each of the directions by contradiction.   

The second proof is an “if and only if” claim. One direction of the proof required students to 
prove an inclusion, and the other required them to prove a set equality. We expected the students 
to use the proof framework three times. Here, as well, proof by contradiction is considered 
“according to definitions”, and was accepted as a correct answer, although it is not based on the 
proof framework. Note that there are altogether five inclusions to be proved: two of them for 
proving the first proof, and three for proving the second. The students saw at least four examples 
of very similar questions in class and solved five more similar questions in their homework 
assignments, which were solved in class after submission. In addition, every exam in the course 
from past years contained a question of that sort. When analyzing students’ answers for the first 
and second proofs, we first focused on whether the student implemented the proof framework in 
the answer, to determine the extent of the phenomenon of students not applying the framework. 
We categorized the students’ answers according to the following taxonomy: 

1. Correct use: The student followed the proof framework correctly. 
2. Misuse: Presenting incorrect use of the proof framework, (i.e., starting the proof of 

inclusion by inspecting an element which does not belong to the included set). 
3. No use - right: Not following the framework and using another technique, however 

the solution was correct (e.g., proof by contradiction). 
4. No use - wrong: The student did not follow the framework and used another 

technique, and the solution was incorrect. 
If the student skipped the proof sections of the question or tried to disprove it (for both proof 

sections, the correct answer was proving), we marked this as well. 

Findings 
We analyzed 310 exams. We focused on the students who wrote the definitions correctly, 

meaning they knew that the definition of inclusion 𝐴𝐴 ⊆ 𝐵𝐵 is that every 𝑥𝑥 ∈ 𝐴𝐴 holds that 𝑥𝑥 ∈ 𝐵𝐵, 
and that the definition of 𝐴𝐴 = 𝐵𝐵 is that 𝐴𝐴 ⊆ 𝐵𝐵 and 𝐵𝐵 ⊆ 𝐴𝐴. 10 students failed to write the 
definitions correctly and were filtered out of the study. A perfect usage of the proof framework 
consisted of 5 uses, as the first proof required two inclusions to prove an equality and the second 
proof was an iff proof that required proving three inclusions. Therefore, within a single exam, it 
was possible for each student to sometimes use the framework right, sometimes use it wrong, 
and sometimes not use it at all. We started our analysis of the proof sections by inspecting the 
first proof, which asked the students to prove or disprove an equality (see Table I). 

The results seemed promising. A large percentage of the students indeed used the framework 
we had taught them, and a very large percentage out of those received all the points for that part. 
It is interesting to note that only two students tried to prove by contradiction, which is allowed (it 
is considered as proving “according to the definitions”). However, their overall answer was not 
perfect and they did not receive all the points. 

25th Annual Conference on Research in Undergraduate Mathematics Education 4



 
TABLE I 
SUCCESS RATE FIRST PROOF 
 Num percentage 
Failed on the definition part (out of) 10 (310) 3.2% 

Disproved or wrote nothing 2 (310) 0.6% 

Correct definition and attempted to prove 298 (310) 96.1% 

Two correct uses 274 (298) 91.9% 

Received all points (two correct uses) 224 (274) 81.7% 
 
There were two conclusions we could draw right away: 

1. Almost all students are familiar with the framework for set inclusion. 
2. Almost all students know how to prove an equality between sets. 

Having established that, and encouraged by the students’ success in the first proof, we 
continued to check the second proof, where we found a drastic drop in framework use. Recall 
that the second proof is an iff claim with one side being an equality and the other side a single 
inclusion. Hence, we expected the proof to contain three inclusions. However, fewer than half of 
the students met this expectation by using the framework three times, as shown in Table II. 
 
TABLE II 
SUCCESS RATE SECOND PROOF 
 Num Percentage 
Failed on the definition part (out of) 10 (310) 3.2% 

Disproved or wrote nothing 26 (310) 8.3% 

Correct definition and attempted to prove 274 (310) 88.3% 

Three correct uses 125 (274) 45.6% 

Received all points (three correct uses) 72 (125) 57.6% 

At least one by-contradiction (no-use-right) 34 (274) 12.4% 

Received all points 12 (34) 35.3% 
 

The results were surprising. We expected that students who were able to use the proof 
framework correctly in the first proof could do that again in the second proof as well. It is 
important to note that the numbers clearly show that using the proof framework is potentially 
beneficial, with a success rate of 81.7% for part one for those who used the framework 
(compared to 0% for those who did not use it), and a success rate of 57.6% for those who used 
the framework in part two (compared to 35.3% for those who did not use the proof framework in 
the second proof). Having noticed the difference in the percentage of framework use between the 
two proofs, we proceeded to count the number of students who had shown familiarity with the 
framework (i.e., used it at least once), but who did not use it all the way through the exam. This 
finding is presented in the first row of Table III. Then we counted the number of students who 
used the framework perfectly on the first proof (two “correct use”), but made at least one misuse 
in the second proof, starting with an element belonging to the set in the hypothesis rather than an 
element in the included set. This finding appears in the second row of Table III. Both numbers 
(33.5% and 28.5% respectively) seem to be very high, and point to a difficulty in assimilating 
and implementing the proof framework, even when you have shown that you know how to use it. 
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TABLE III 
CORRECT AND INCORRECT USES 
 Num percentage 
At least one correct use and at least one mistake (out of) 100 (298) 33.5% 
Two correct uses in first part and at least one misuse in second 78 (274) 28.5% 

 
TABLE IV 
MISTAKES IN BOTH PROOFS 
 Num percentage 
First proof 
At least one misuse (out of) 3 (298) 1% 

At least one no-use-wrong (out of) 20 (298) 6.7% 
Second proof 
At least one misuse (out of) 85 (274) 31% 

At least one no-use-wrong (out of) 39 (274) 14.2% 
 
The large difference in the number of correct usages of the framework between the first proof 

and the second is especially striking, as can be seen in the differences between Table I and Table 
II. This overwhelming difference drove us to look deeper into the answers to the second proof. 
Two findings arose from that inspection: 

1. We first ruled out the effect of the “iff”. It turned out that all the students who attempted to 
prove the second part but did not follow the framework wrote that there are two directions to 
be proved. This means that they correctly addressed the iff part of this proof. 

2. The second proof, as opposed to the first one, had a hypothesis. Many students began their 
answer with an element belonging to the set in the hypothesis rather than to an element in 
the included set. This was found to be the most common “misuse” of the framework. 

 

In order to conjecture about the reasons for the difference between the two proof sections, we 
asked ourselves how many students made the mistake of using the framework wrong (“misuse”) 
or not using it at all (“no-use-wrong”). The results are presented in Table IV. The type of 
“misuse” employed by many students in the second part, which included a hypothesis, reflects a 
problem described in Selden et al., 2010 as “Students who focus too soon on the hypothesis.” 
There can be several explanations for this common phenomenon. Our conjecture is that the 
students have not yet acquired the habit of relying on the proof framework, and it does not come 
naturally to them, so they were distracted by the existence of a hypothesis. Another possibility is 
that the effort of being strict while solving the first proof was followed by a “loosening” later in 
the exam. The evident conclusion, however, is that whatever the reasons, applying the 
framework is harder for many students than we may think. 

Examples 
In this section, we present snippets from actual exams, focusing on the approach taken. 

A. Adam 
Adam’s answer demonstrates a correct use of the framework, 5 times as expected: 
 

1. Prove / disprove according to the definitions: For sets 𝐴𝐴,𝐵𝐵,𝐶𝐶, (𝐴𝐴\𝐵𝐵)\𝐶𝐶 = (𝐴𝐴\𝐶𝐶)\(𝐵𝐵 ∪ 𝐶𝐶). 
We will show a bi-directional inclusion. Let 𝑥𝑥 ∈ (𝐴𝐴\𝐵𝐵)\𝐶𝐶 [...] then 𝑥𝑥 ∈ (𝐴𝐴\𝐶𝐶)\(𝐵𝐵 ∪ 𝐶𝐶). 
Now let 𝑥𝑥 ∈ (𝐴𝐴\𝐶𝐶)\(𝐵𝐵 ∪ 𝐶𝐶) [...] so 𝑥𝑥 ∈ (𝐴𝐴\𝐵𝐵)\𝐶𝐶. 

2. Prove / disprove according to the definitions: For sets 𝐴𝐴,𝐵𝐵,𝐶𝐶, 𝐶𝐶 ⊆ 𝐴𝐴 if and only if (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) 
We will prove the two claims. 
• First, assume that (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) and we will prove that 𝐶𝐶 ⊆ 𝐴𝐴.  Let 𝑥𝑥 ∈ 𝐶𝐶 [...] and also 𝑥𝑥 ∈ 𝐴𝐴. 
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• Second, assume that 𝐶𝐶 ⊆ 𝐴𝐴. To prove (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) we will prove bi-directional inclusion [...] 
– First, let 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) [...] it holds that 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶. 
– Second, assume that 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶) [...] so 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶). 

We proved bi-directional inclusion so by the definition of set equality it holds that (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶). 
We proved both iff directions so this completed the proof. 

B. Liam 
Liam’s proof for the first part was perfect, but in the second part, trying to prove equality 

between sets, he focuses too soon on the hypothesis. This is an example of a misuse. 
 

[...] Let us prove that if 𝐶𝐶 ⊆ 𝐴𝐴 then (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶). 
According to the definition of equality we will show a bi-directional inclusions. 
1. We prove that (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 ⊆ 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶)  --  Let 𝑥𝑥 ∈ 𝐶𝐶 [...]  
2. We prove that 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) ⊆ (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶  --  Let 𝑥𝑥 ∈ 𝐶𝐶 [...] 

C. Sean 
Sean, like many others, knew that to prove inclusion he should start with an element that 

belongs to the included set (he did this perfectly in the first part). However, instead of starting 
with x ∈ C he started with an x that belongs to one of the sets in the hypothesis: 

 

[...] Assume (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) and prove that 𝐶𝐶 ⊆ 𝐴𝐴. Let 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 [...] 

D. Rita 
Rita’s proof of the first part was also perfect. However, in the second part she omitted the 

framework altogether. Her answer is an example of no use - wrong: 
 

Let 𝐴𝐴,𝐵𝐵,𝐶𝐶 be sets. We want to prove that if 𝐶𝐶 ⊆ 𝐴𝐴 then (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶). By the hypothesis that 
𝐶𝐶 ⊆ 𝐴𝐴 it holds that every element that belongs to 𝐶𝐶 also belongs to 𝐴𝐴. Let us look at the set (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 the set of 
elements that belong to 𝐴𝐴 and also to 𝐵𝐵, or belong to 𝐶𝐶. Now let us look at the set 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) This set contains the 
elements that belong to 𝐴𝐴 and to 𝐵𝐵 or the elements that belong to 𝐴𝐴 and to 𝐶𝐶. Combining the two, and according to 
the hypothesis, it holds that (𝐴𝐴 ∩ 𝐵𝐵) ∪ 𝐶𝐶 = 𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶). 

Conclusions 
Our examination showed that most students are able to use a proof framework correctly and 

that using a proof framework is potentially beneficial (i.e., significantly raises the chances of 
presenting a correct answer). However, we also discovered that students who were able to 
present a correct use of the proof framework in one question suddenly failed to use the same 
framework in a subsequent question. Analyzing examples of answers, we saw that many students 
neglected the framework that they had been using in the previous question, while others 
continued to use it, but incorrectly (starting with an element that belongs to the wrong set). This 
can be attributed to several reasons. At first glance it may seem that the ’iff’ added a measure of 
difficulty to the question, but our analysis suggests that this was not the actual obstacle. Other 
possible explanations may be that the heavier “load” of the second proof caused students to lose 
their way, or perhaps they tired as they progressed through the test, thereby dropping the 
framework and going back to their bad “natural” habits. Finally, when a question contains a 
hypothesis, it may distract the students, who focus on it too soon. Making recommendations on 
how to better make use of proof frameworks may be premature at this preliminary stage. 
However, we can say that employing proof frameworks can indeed be beneficial for students, but 
that doing so consistently is harder than it may first appear. It appears that additional practice of 
the framework’s more complicated usage scenarios is required. It may also help to present 
students with actual mistakes to avoid. It is clear, however, that students are able to apply proof 
frameworks, and we should aim to help them do so in the more complicated proofs. 

25th Annual Conference on Research in Undergraduate Mathematics Education 7



References 
Hammack, R. (2013). Book of Proof. 
Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in 

Mathematics, 44, 5-23. 
Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in 

Mathematics, 27(3), 249-266. 
Reid, D. A., & Knipping, C. (2011). Proof in Mathematics Education: Research, Learning and 

Teaching. Sense Publishers. 
Scheinerman, E. A. (2013). Mathematics: A Discrete Introduction. Third Edition. Boston, MA; 

Brooks/Cole 
Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational 

Studies in Mathematics, 29(2), 123-151. 
Selden, J., Benkhalti, A., & Selden, A. (2014, September). An analysis of transition-to-proof 

course students’ proof constructions with a view towards course redesign. In T. Fukawa-
Connolly, G.Karakok, K. Keene, & M. Zandieh (Eds.), Proceedings of the 17th Annual 
Conference on Research in Undergraduate Mathematics Education (pp. 246-259). 
Denver, Colorado 

Selden, A., McKee, K., & Selden, J. (2010). Affect, behavioural schemas and the proving 
process. International Journal of Mathematical Education in Science and 
Technology, 41(2), 199-215. 

Selden, A., Selden, J., & Benkhalti, A. (2018). Proof frameworks: A way to get 
started. Primus, 28(1), 31-45. 

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. 
In Advanced mathematical thinking (pp. 65-81). Dordrecht: Springer Netherlands. 

 

25th Annual Conference on Research in Undergraduate Mathematics Education 8



 
 

Planting Seeds through Embodiment to Teach Formal Concepts of Abstract Algebra 

 

Jessi Lajos, Hortensia Soto, & Alissa Romero 

Colorado State University 

 

In this descriptive case study, we explored how a mathematics educator integrated 

embodiment into a first semester abstract algebra course. We found that, in addition to gesture, 

the instructor encouraged students to interact with physical materials and simulate mathematics 

using their bodies. Our results offer practical implications by illustrating examples of how 

embodiment can be incorporated in an abstract algebra classroom.  

 

Keywords: Cosets, Embodied Cognition; Equivalence relation, Factor Group, 

Homomorphism  

 

Introduction and Literature Review 

The purpose of this work is to contribute to the literature on how embodiment, beyond 

gesture, can be integrated in the teaching of collegiate mathematics. Nathan (2022) defines 

embodiments as the use of “body-based resources to make meaning and connect new ideas and 

representations to prior experiences” (p. 4). In this case study, we addressed the research 

question: In what ways does a mathematics educator, who is knowledgeable about embodiment, 

integrate embodiment to support students’ learning of abstract algebra concepts? We found that 

instructor-led embodied activities planted seeds for formal definitions, theorems, and proofs. 

Additionally, our results indicate that embodiment served as a tool to disambiguate referents of 

students’ speech, to position students’ contributions as legitimate, to strengthen the classroom 

community, and to include students who were not yet fluent in formal language. 

A majority of the research related to embodiment intersects gesture and K-12 mathematics 

teaching. Studies show that teachers use gestures to convey mathematical ideas (Alibali & 

Nathan, 2012; Font et al., 2010), scaffold material (Alibali & Nathan, 2007), or establish 

common ground (Alibali, et al., 2013). In some of their more recent work, Alibali et al. (2019) 

found that teachers sometimes repeated students’ verbal utterances and added gestures or made 

gestures, without speaking, in correspondence with students’ verbal utterances towards referents. 

Gestures appeared to highlight students’ verbal utterances, correct students’ verbiage, or develop 

shared understanding in the classroom. Research at the intersection of embodiment and 

collegiate mathematics teaching is sparce and primarily attends to gesture (Lee et al., 2009; 

Stewart et al., 2019; Weinberg et al., 2015; Wheeler & Champion, 2013). For example, Lee et al. 

described how a differential equations instructor used pointing gestures to connect a 

mathematical problem with inscriptions. Wheeler and Champion portrayed an instructor’s 

gesture to represent mapping of a function in abstract algebra. Weinberg et al. highlighted how 

an abstract algebra instructor’s speech, writing, and gestures took on meaning in relation to each 

other. Beyond gesture, Stewart et al. explored how a linear algebra instructor navigated between 

embodied, symbolic, and formal instruction. Stewart et al. found that the instructor often used 

embodied explanations before moving to symbolic or formal instruction. For example, after 

defining span, the instructor asked the students to “imagine beginning with a new empty set and 

including a new vector in the set, one at a time” (p. 1257) and then imagine the span of the set. 

This was an attempt to help students experience linear independence before formally defining it.  
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Theoretical Framework 

For this research study, we drew upon Nathan’s (2022) four types of embodiments that he 

claims are useful for educational settings as the framework. The first type, body form, movement, 

and perception, make up our primary experiences, as we exist in “a body that has form and 

movement as well as specific perceptual capacities” (Nathan, p. 87). The second type, gesture, 

entails “movements of our hands and arms, as well as other body parts, that we make 

spontaneously as we talk with others and think to ourselves, including pointing and tracing 

actions” (p. 89). Nathan defines simulations as mental events that “enable us to extend the 

cognitive processes we have for things that are present and familiar so that we can think about 

possible things and unfamiliar ideas” (p. 90). The last category, materials, refers to how “we use 

physical objects and material in the world to perform epistemic operations” (p. 93). Nathan also 

describes four ways that embodiment supports student learning. First, grounding connects 

abstract ideas to concrete experiences to facilitate making meaning. Offloading leverages 

“external resources to manage highly constrained cognitive and attentional resources” (p. 99). 

Cognitive-sensorimotor transduction occurs when intellectual processes and sensorimotor 

processes interact and support learning unconsciously. Finally, participation entails communities 

of practice where newcomers become old timers (Lave & Wenger, 1991). Nathan believes 

communities of practice support learning “because they develop effective and efficient ways to 

collaborate, use cultural tools, and application-specific discourse practices” (p. 106).  

 

Methods 

The second author served a dual role of instructor (participant) and researcher. She has 

almost 30 years of teaching experience, has taught abstract algebra numerous times, and her 

research area centers on undergraduate mathematics education where she adopts an embodied 

cognition lens (e.g. Soto & Oehrtman, 2022; Soto-Johnson & Hancock, 2019; Soto-Johnson & 

Troup, 2014). She tends to follow Tall’s (2013) three worlds to navigate between embodiment, 

symbolism, and formalism while teaching. She encourages students to use their bodies, tangible 

materials, and technology to learn mathematics (e.g. Dittman et al., 2016; Soto, 2021, 2022; 

Soto-Johnson & Troup, 2014). She values community and requires her students to work with 

their peers throughout the semester. For the course, the instructor adopted the text A Book of 

Abstract Algebra (Pinter, 1990) because as an undergraduate she used this text to learn abstract 

algebra and, as a mathematics educator, she appreciates its constructivist format. 

The first author attended each lecture, had weekly conversations with the instructor on the 

role of embodied cognition in her teaching, audio- and video- recorded six weeks of class, and 

kept field notes. To capture recorded data, the first author set up two cameras. One stationary 

camera framed the front of the room, and the second hand-held camera was used to focus on the 

instructor or students. After the course, the first author and the instructor met twice a week to 

review recorded classroom data, which was divided into seven- and ten-minute segments. The 

two authors time-stamped instances when the instructor integrated embodiment, took descriptive 

notes on those instances, and summarized major themes from each segment. Themes included: 

regesturing students’ gestures, delaying formal language until students understood relevant 

concrete examples, and transforming students’ contributions into inscriptions.  

After reviewing classroom data, the research team selected video segments that exemplified 

the instructor’s use of embodiment. We fully coded and analyzed four episodes, but for the sake 

of brevity, we only discuss the episode related to acting out conjugation, showing a subgroup is 

normal, and the Fundamental Homomorphism Theorem (FHT). The two non-instructor research 
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members re-watched the selected video segments and coded the types of embodiments as well as 

how each embodiment type appeared to support students’ learning per Nathan’s (2022) 

framework. They then used the codes to write descriptive results (using pseudo names for 

students) on how the instructor integrated embodiment. The instructor reviewed written results 

and the entire team engaged in round table discussions to ensure the accuracy and validity of the 

results, which served as member-checking (Merriam & Tisdell, 2015).  

 

Results 

In this section, we summarize how the instructor introduced conjugation, normal subgroups, 

and the FHT by leveraging all four types of embodiments, which appeared to support students’ 

learning in each of the four ways described by Nathan (2022). Table 1 is a summary of these 

findings. 

 

Table 1. Instances of embodiment in exploring conjugation, normal subgroups and the FHT 

Forms of 

learning→ 

Types of 

embodiments 

Grounding Offloading  Cognitive-

sensorimotor 

transduction 

Participation 

Body form, 

movement and 

perception 

Vocabulary “to 

the right of” and 

“to the left of”  

 Described 

conjugation in 

terms of 

direction 

 

Gesture Held imaginary 

group elements to 

gesture the action 

of conjugation 

  Gesture to 

establish 

common ground 

 

Orchestration 

of conjugation 

Simulation Students acted 

out conjugation on 

a normal subgroup 

to develop 

embodied meaning 

  Students 

searching for 

other students to 

help them 

conjugate 

Materialist 

epistemology 

 Paddy paper 

to represent of 

𝐷4  

  

 

The instructor created a simulation in which she assigned students to act as elements of 
〈ℤ8, +〉 and 〈ℤ4, +〉. She asked students to perform a homomorphism from 〈ℤ8, +〉 to 〈ℤ4, +〉; she 

assigned certain students from ℤ8 to map to specific elements of  ℤ4. Students chose to touch the 

shoulder of the appropriate student to represent mapping. Together, the class verified that the 

kernel (𝐾) of the homomorphism formed a subgroup. Then, without using the term conjugation, 

the instructor explained how to act out conjugation on the subgroup 𝐾  =  {𝑀𝑎𝑟𝑔𝑎𝑟𝑒𝑡,  𝐶𝑎𝑚} of 

ℤ8 by stating, “Margaret [or Cam] is going to be in the middle and is going to be operated on the 

left-hand side by the inverse and on the right-hand side by the element.” While describing 

conjugation in terms of the simulation, the instructor gestured to “hold” Margaret in the middle, 
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“hold” an element’s inverse on the left, and “hold” the element itself on the right, which 

encouraged her students to imagine conjugation (see Figure 1). The instructor’s gesture grounded 

her explanation of conjugation within the students’ performance. Additionally, gesture supported 

participation because it positioned students as central rather than peripheral participants. Students 

then created their own sign for conjugation in which Margaret (the identity) stood in the middle, 

Julie (5  ∈  𝑍8) stood on the right, and Jim (5−1  ∈  𝑍8) stood on the left (see Figure 2).  

 

 

 

 

 

Figure 1. Gesturing Conjugation of the Kernel  

 

 

 

Figure 2. Julie and Jim simulating the action of conjugation on Margaret 

 

The informal language “to the right of” and “to the left of” to describe conjugation is an 

example of the instructor using body form to support students’ learning because spatial 

relationships grounded conjugation in a primary aspect of the human experience – direction. 

Body form also supported student learning via cognitive-sensorimotor transduction because it 

reversed the complex notion of conjugation in terms of students’ physical position in space. 

Given Margaret was the identity element, the class noticed that the action of conjugation by an 

element (a student) and its inverse (another student) on Margaret always returned Margaret. 

Then, by acting out conjugation on Cam, students showed that every element-inverse pair in ℤ8 

returned Cam under conjugation (see Figure 3). 

Overall, simulation served as a tool that helped the instructor guide her students in showing 

that 𝐾  =  {𝑀𝑎𝑟𝑔𝑎𝑟𝑒𝑡,  𝐶𝑎𝑚} was a normal subgroup. The instructor’s use of simulation 

grounded conjugation and normal subgroup in a meaningful experience before she introduced 

formal definitions. Moreover, simulation supported student learning via participation. For 

example, when Patrick conjugated Cam, he looked for his needed classmate (element) to help 

him perform the operation and students at their desks helped their peers find their inverses, 

which strengthened the classroom community.  
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Figure 3. Conjugating Cam by elements of  𝑍8 

 

After the class (unknowingly) showed that 𝐾 formed a normal subgroup, the instructor 

intentionally gestured to recap the simulation. She reminded the class that they began with two 

groups and “plucked out” a subgroup which generated cosets. Then, via pointing gestures, she 

emphasized that the two elements in the subgroup they “plucked out” both mapped to the 

identity in ℤ4 (see Figure 4). She also emphasized that the map was a homomorphism and not an 

isomorphism, which was new to the class. Finally, she emphasized normality of the kernel by 

stating, “if I take these two elements right here [Margaret and Cam] and I operate them by an 

element from the group and its inverse I somehow end up getting Margaret or Cam.” The 

instructor used gesture to establish common ground because she made sure the class knew that 

the importance of the simulation was to see an example of a map that was a homomorphism, but 

not an isomorphism and that the kernel, 𝐾, satisfied interesting new properties, i.e., normality.  

 

 

 

 

 

 

 
 

Figure 4. Two groups, pluck out two elements, these elements map to the identity 

 

Following the FHT simulation involving conjugation, the instructor asked the class to 

complete a problem set related to the group 𝐷4. In conjunction with the problem set, the 

instructor employed materialist epistemology by holding up a paddy paper and helping the class 

recall that 𝐷4 represents the symmetries of a square. After distributing paddy paper to each 

student, she reminded students that all the rotational symmetries keep the square “on the same 

side.” When she noticed Karen flip her square over, the instructor said, “tell me what you just did 

Karen.” Karen replied that she performed a reflection of the square. It seemed that the geometric 

behavior of the square served to offload information because rather than write down each 

element of 𝐷4 symbolically, the students could visualize the group 𝐷4 in the material world. 

Following this, the instructor encouraged students to look at the Cayley table for 𝐷4 in Group 

Explorer (Carter, 2006), to find patterns in the table, and to reflect on the meaning of the 

simulation they had just completed. As the students worked in groups, David realized that,  
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looking at this [𝐷4 Cayley table] … you got your warm and your cool colors 

here. And earlier in class, … we were talking about, … the cool ones are almost 

subgroups, but they're not because they don’t contain the identity. … now we are 

realizing that if they have the same number of things like they are kind of subsets, 

but not subgroups [cosets]. Then that’s how you construct a homomorphism to 

your subgroups or subsets [cosets] … and the homomorphism [image] is 

isomorphic to 𝑆2 (see Figure 5a). 

 

It appeared that David visualized the FHT. Then, Cam also excitedly changed tabs in his 

browser to visually show a case of the FHT in a map from ℤ3  × ℤ3 to ℤ3 because “you can cut it 

[ℤ3  × ℤ3] into the nine squares and there is a homomorphism to this one [ℤ3]” (see Figure 5b). 

 

Figure 5a. 𝐷4 is homomorphic to 

𝑆2 

Figure 5b. 𝑍3 × 𝑍3 is homomorphic to 𝑍3

Discussion and Implications 

We situate our findings within existing approaches for the teaching of abstract algebra and 

discuss how gesture, along with other embodiment types, supported shared classroom 

understandings and helped strengthen the classroom community. 

Early instructional design research in abstract algebra was based on actions, processes, 

objects, and schemas theory (Dubinsky et al., 2001) and the activities, classroom-discussions, 

and exercises cycle (Asiala et al., 1997). More recently, an inquiry-oriented curriculum was 

developed by the Teaching of Abstract Algebra for Understanding research program, which 

adheres to the principles of guided reinvention and realistic mathematics education (Gravemeijer 

& Doorman, 1999; Larsen, et al, 2013; Larsen & Lockwood, 2013). Similar to existing 

approaches on the teaching of abstract algebra, the instructor in this research study facilitated 

informal activities before presenting formal definitions, theorems, and proofs. Her approach is 

novel because she integrated all four types of embodiments described by Nathan’s (2022) 

framework, which also appeared to support student learning in the four ways Nathan described.  

Alibali, et al. (2019) drew from a compilation of their research to describe three cases 

illustrating how teacher gestures can create common ground and support students’ contributions. 

In the first case, students sat at their desks so that they were “physically distant from the referents 

of their utterances,” while the middle school teacher was “proximal to those referents” (p. 350). 

The teacher regestured and revoiced the student’s verbal utterances by pointing at symbolic 

referents to ensure their interpretation was consistent with the student’s intentions before moving 

on. In the second case, Alibali et al. (2019) identified a variation of gesture by a high school 

geometry teacher who silently gestured over inscriptions located at the board as a student spoke 

from their desk to “amplify certain voices” (p. 356). In the third case, both the college teacher 
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and student were within arm’s reach of the referent (an electrical breadboard). Here, the teacher 

pointed to connect the students’ gestural actions on the electrical breadboard to symbols in a 

truth table. The instructor from our research study used gesture to establish common ground and 

support students’ contributions in ways that overlap with and extend Alibali et al.’s (2019) three 

cases. Specifically, the instructor used various types of gesture (besides pointing), she combined 

gesture with simulation, and her gestures supported student participation.   

The instructor’s gestures that described conjugation by “holding” group elements (students) 

to the left, right, and center in relation to each other differed from the three cases described in 

Alibali et al.’s (2019) work on establishing common ground. Compared to the teachers from 

Alibali et al., this instructor did not sole use pointing gestures; she also used representational 

gestures, while describing conjugation. Alibali and Nathan (2012) refer to the merging of iconic 

and metaphorical gestures as representational gestures. McNeill (2005) categorized metaphoric 

gestures as those which indicate images of an abstract concept such as holding a function in 

one’s hand and iconic gestures as those which “present images of concrete entities and/or 

actions” (p. 39). The instructors’ gestures along with simulation closed the distance between 

students and referents because students were the referents of the instructors’ gestures. Students 

responded to her gestural description of conjugation by creating a sign: physically standing to the 

sides of one another. The instructors’ representational gestures, thus, created common ground 

because students responded with the physical action of standing beside each other and the 

instructor could ensure that her students understood what she meant by checking that their 

embodied sign aligned with her knowledge of the conjugation operation.  

Nathan (2022) believes communities are helpful for learning because they leverage cultural 

tools and practices as a means of collaboration. The way that students followed the instructors’ 

descriptive gesture of conjugation by developing their own tool (the sign of standing beside each 

other to conjugate) is an example of how gesture can strengthen a classroom community and, 

thus, establish common ground. Through creating and implementing their own sign, students’ 

ideas were positioned as significant and actively used by each other to communicate and work as 

a team. The entanglement of gesture and simulation illustrates how gesture along with other 

embodiment types can help establish common ground because the entire class adopted a shared 

sign, which naturally prompted and reinforced shared understandings.  

After the simulation ended, the whole class sat at their desks and the instructor stated, “lets 

recap what we just did.” Unlike the cases described in Alibali et. al.’s (2019) findings on how 

gesture is implicitly used by teachers to create common ground, this instructor explicitly stated 

that establishing common ground was her purpose for regesturing. This made the instructors’ 

intentions clear to her class. The instructor used both pointing and representational gestures to 

review the significance of the simulation. During her recap, students asked why the order of the 

kernel divides the order of the group. Student questions suggest that when the instructor 

explicitly stated that her goal in gesturing was to review, she invited students to engage in 

reflective practices and students felt that they could ask for help establishing common ground.   

Our study provides examples of how embodiment could be integrated in abstract algebra 

classrooms. In response to Johnson et al. (2020), we believe incorporating embodiment can 

facilitate understanding and has the potential to lead to equitable outcomes where students’ 

contributions are supported. Future research may entail creating an embodied curriculum (Wang 

& Zheng, 2018) and developing embodied simulation activities for abstract algebra using 

unrefined human experiences, genuine relationships and collaborations, adjustments tailored to 

the students’ interests and instructors’ expertise, and scenarios that embody real-life experiences.  
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Students mathematical working styles and perception of immediate feedback in a digital
assessment system

Siri Ovedal-Hakestad
University of Agder, Norway

The use of digital formative assessment in higher education mathematics is increasing
throughout the world. Digital tools come with features such as endless ways of creating tasks and
assessing in different ways. However, there is a need of research that focuses on what students do
when working with digital tasks and how immediate feedback influence their learning process.
This study examines students working styles and immediate feedback in STACK (The System for
Teaching and Assessment using a Computer Algebra Kernel). The study reports on interviews
with five first-year pre-service teachers who had completed a STACK-test for the first time, in
order to get information regarding their working styles and perception of immediate feedback.
The results indicate that students have issues regarding mathematical representations in a digital
environment and a preference for line-by-line solutions in the feedback.

Keywords: Digital assessment, Feedback, Workings Styles, Syntax

Tools for digital teaching as well as digital assessment have become widespread and
accessible in mathematics education (Drijvers, 2018). This was accelerated by the Covid-19
pandemic, and now we have reached a point where computer aided assessment is, in some
countries, a part of university mathematics. In addition, previous studies (Faber et al., 2017
(Haelermans et al., 2015; Sung et al., 2016) have shown that using digital learning tools for
formative assessment may have positive impact on students’ achievement. Drijvers (2020) work
show that mathematics students’ use of digital tools, in addition to pen and paper, lead to new
opportunities and constraints. There can also be room for exploration that may lead to
explorative and productive activities, whereas the constraints such as syntactical ones, may lead
to frustration (Drijvers, 2020). Therefore, research on students’ working styles, where they have
opportunities to exploit the opportunities and deal with the constraints a digital tool provides, is
essential. The aim of this paper is to explore how students work a digital assessment system and
how they approach digital mathematical tasks.

In this paper, working styles is used in line with Weigand and Weller (2001) in their report on
changes in students’ working styles when they worked with mathematical tasks on computers.
Working styles were described in three ways, on tool level, representation level and object level.
Their research showed that students worked more experimentally and used more search
strategies than expected. However, their study also showed that students did not get a better
understanding, but a different understanding of the concept of functions. This study will contain
observations of how students use the computer and pen and paper, hence tool level. And how
students write mathematics using a keyboard, which is related to representation level.

In the study reported from here, the participants worked with tasks in STACK (the System
for Teaching and Assessment using a Computer Algebra Kernel). STACK is designed for
formative assessment in mathematics, it is internet-based, and the interactions are through a
web-browser (Sangwin, 2013). A distinguishing feature of STACK is the opportunity to create
detailed and appropriate feedback for each situation (Sangwin, 2015). In STACK, students enter
an algebraic expression into a computer using linear syntax. An option within STACK is
validating answers, which means invalid answers are rejected and that students confirm their
answer is interpreted correctly by the system before submitting.
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This is a qualitative study based on interviews with five pre-service teachers who, before the
interview, completed STACK-tests within the mathematical topic of algebra. Students were
asked about their working styles and perception of feedback in the interviews, and the aim was to
answer the following research questions:

1. What working styles do students in higher education use when working with digital tasks
in mathematics?

2. How do students perceive immediate feedback in a digital assessment system?

Conceptual framework
To analyse how students in higher education work with mathematical tasks in STACK and

get their view on immediate feedback, the concept of “working styles” was operationalised. The
concept of mathematical working styles used by Weigand and Weller (2001) is described in three
ways:

First, it has to be seen on the tool level, e.g., whether one works with tools like paper and
pencil, computers, or physical models; second, on the representation level, that describes
working with representations like symbols, graphs, tablets, diagrams or pictures, and
third, on a mathematical object level, where we see a working style as a sequence of
actions that operate on objects and transform these objects. (p. 88)

An object can be an equation, an action can be multiplying, and sometimes one step of this
sequence involves several sub-steps (Weigand & Weller, 2001). According to Thies and Weigand
(2001), the relationship between object and representation is that the mental objects and their real
representations are connected inseparably. In this way, operating with objects on the computer is
the same as operating with mathematical objects.

The tool in this study is a computer, which entails special mathematical notations for the
objects, and mouse-driven or key commands for different actions. This allows a person to work,
for some in new ways, with objects or the representations of objects on the screen (Thies &
Weigand, 2001). In this study, the concept of working styles will be used to explain how students
work with tasks in STACK, and because of the scope of this paper, only the tool and the
representation level are emphasised.

On tool level students had to make their answers using a keyboard. However, they had full
access to pencil and paper to write notes. Therefore, it is interesting to observe how they use the
tools. On representation level, students work with representations of mathematical symbols on a
computer and had to use a keyboard and therefore computational notation to give their answer.
Assessment and feedback

Black and Wiliam (2009) define digital formative assessment as a close view of the teacher,
technology, and student interaction within a learning process and their functions. Formative
assessment may positively impact learning, and teachers, peers, and students are all actors in
formative assessment (Dalby & Swan, 2019). Formative feedback is a key element of formative
assessment because it provides the learner with information about their current state of
knowledge and their learning goals (Narciss et al., 2014). This research conceptualises formative
feedback in line with the definition by Black and Wiliam (1998) which “refers to all those
activities undertaken by teachers- and by their students in assessing themselves- that provide
information to be used as feedback to modify teaching and learning activities” (p. 82).

Digital learning tools might be an essential aspect of formative assessment in higher
education. Technology can be used to improve the quality of the feedback received by students
during their formative assessment, especially when considering the following three factors
according to (Cosi et al., 2020). First, while using a technological tool, the time factor is
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immediate. Second, students can receive feedback in different formats such as text, video, audio
etc., which enrich the message. And third, facilitation of a range of complementary resources is
available on the internet.

According to Kulhavy and Stock (1989), the content of the feedback message should
comprise two separate components, verification and elaboration. Verification is a judgement of
whether the initial response is right or wrong, while the elaborated component consists of more
information than just right or wrong. In this study, there were two different STACK-tests. The
first one contained a verification component only, which indicated to the students if their
response was right or wrong. The second STACK-test contained both a verification and an
elaboration component, where the students also got information about the right response.

Methods
Data collection

The participants in this study were first-year student teachers for grades 5–10 at a university
in Norway. All participants had deliberately chosen mathematics as their future subject to teach
and the data were collected during their first mathematics course. The first lecture, I informed
about the project and offered all students to participate in a two-hour working session every
week, where they could choose to work with weekly tasks provided by their lecturer or digital
tests created in STACK. The students were reminded of this working session each week. The
STACK-tests were in addition to the students’ regular work and was created as a supplement to
their work towards the final exam. The topic of the STACK-test was algebra, which was part of
the course content.

In total, 30 students completed the STACK tests, 13 students agreed to participate in the
study, and 5 students participated in an in-depth interview. Early in the semester, three students
completed the first STACK test and volunteered for interviews. Later in the semester, two more
students volunteered after completing the second STACK test. The participants are, in this paper,
named Oliver, Roger, Daniel, Harry, and Jack. It is accidental that all participants are male,
because in class there was approximately fifty percent female and fifty percent male. Daniel,
Harry, and Jack conducted individual interviews and completed the first STACK test, while
Oliver and Roger participated in a group interview and completed the second STACK test.
The STACK-tests

STACK uses the computer algebra system Maxima to interpret students typed algebraic
expressions and assign outcomes such as feedback and marks (Sangwin, 2019). STACK is
equipped with algebraic equivalence, which makes multiple solutions, as long as they are
equivalent, correct. STACK has a built-in interpretation of the students’ answers; this means that
the students’ writing is shown interpreted mathematically before the students give their final
answers. Regarding students input in STACK, there are six different options for inserting stars
(*). In both tests the option of don’t insert starts automatically was selected. This means that if
there are any pattern identified the result will be an invalid expression.
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Figure 1. A picture of question 3 which show STACKs interpretations of an invalid expression.

The two tests had 9 similar tasks, and the second test consisted of 6 additional tasks. The first
task in both tests concerned acceptance of participation in this study, and students had to actively
decide whether to engage or not in this study. The difference between the two tests was primarily
the feedback, where the first test had feedback as verification, and the second test had feedback
including verification and elaboration. In addition to a difference in verification where the first
test a verification was given after each reply, but in the second test, the students didn’t get the
result until all tasks were answered. All tasks were in the mathematical field of algebra, which
was one of the students’ mathematical topics this semester.

Because of space limitations and the relevance of this study, not all tasks will be recalled.
The aim is to look at what working styles students had in this digital environment and how they
wrote the answers into STACK.
Data analysis

To be able to answer the research questions, the interviews were transcribed in their entirety.
Afterwards, the transcripts were coded in a process inspired by grounded theory. First, the
transcripts were broken into discrete parts, closely examined, and compared for similarities and
differences, which Saldaña (2021) refers to as the initial coding process. The transcripts were
read statement by statement, and notes were taken on the side. This process created a starting
point, which led to further exploration. Some of the notes after this initial process were:
improvements, more organized approach to tasks, learning outcome, mastery, multiplication sign,
step-by-step response, notation of tasks, and earlier experience.

After preliminary analysis codes that was overarching and related were created (Swanborn,
2018). This led me to two categories which will be elaborated on in this paper: working styles
and feedback.

Results
First, I present the findings related to the first research question, addressing working styles

students use when solving digital mathematical tasks. Second, findings related to feedback will
be presented. Both parts will mainly consist of reproduction of the five interviews with Oliver,
Roger, Harry, Daniel and Jack.
Working styles
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In this section, ways of working with mathematical tasks digitally are reported. Oliver says
that he always writes down each task on his tablet (similar to pen and paper) and calculates line
by line. He had a similar approach to the STACK tasks, where he wrote line-by-line what he did
in each task. This is a working style he always uses when approaching a mathematical task
involving algebra. Oliver says that this way of approaching tasks give him a good overview of
what needs to be done in order to solve the task. Roger explains that he tried to calculate in his
mind first because he saw some of the tasks to be straightforward. If there were tasks, he could
not calculate in his mind, he wrote down some notations to get back on the right track. These
notations contained steps he knew how to solve but could not calculate it in his head. He explains
that he enjoyed especially a task about quadratic identities, because he immediately saw that this
was the case. In that task he had to understand how to calculate with parentheses, which he knew
how to do, it became a practice on routine. Roger used STACK to check if his calculations were
correct. Harry perceives algebra as a topic he manages well and explains that he did most of the
calculations in his mind. He used STACK to guess and check his if the calculations done in his
head was correct. If he did not know the answer, he guessed something, in order to look at the
right answer after completing the task. He emphasized that since this was an assessment with no
impact on his grade, the guessing and checking approach worked fine. If the test had an impact
in his grade he would use a different approach, where he would have written down each task and
made line-by-line calculations. He had high expectations of his work, especially work that had an
impact on his grade. Daniel also explains that since this was a digital test with no impact on his
grade, and the level of the tasks was not that high, he did most of the calculations in his mind. He
used pen and paper to do small calculations he could not complete in his head. He reports that in
this test, and digital tests in general, he does more calculations in his mind and uses the
assessment system as a way to check if his answers are correct. Oliver used his tablet, Roger and
Daniel used pen and paper in addition to the computer as tools. Harry did use any tool in addition
to write notation in this test.

Using STACK for the first time requires writing mathematics with the use of a keyboard. All
five students made comments regarding the multiplication (*) sign. The tests were programmed
with an option where the program did not insert * characters automatically. Daniel said that
remembering to write this sign everywhere because I know it is there. And since we do not
usually write it, he forgot to write it in each task. In the interview with Oliver and Roger, a
discussion about the multiplication sign occurred because Roger emphasized the importance of
knowing that 4a actually is 4 times a. However, Oliver said that since he already knows that the
sign is there, it is a waste of time to write it every time. The had different views on the
importance of this * sign. Oliver was clearly frustrated about this sign, while Roger saw it as a
way of writing mathematics digitally. Harry faced a challenge when he was going to write the
power of a number. He did not know which symbol belonged to the right mathematical meaning.
After spending some time thinking about it, he remembered using GeoGebra in upper secondary
school and remembered what key it was. Jack also had some challenges with finding the power
of a number. His approach was to write the wrong answer and then look at the right answer in the
feedback. Then he could use this to remember which key it was if another similar task appeared.
Another challenge Harry reported was that in one task, he wrote the wrong mathematical symbol
and got the wrong answer. He said that he did not remember what this symbol was and that this
mistake would never happen if he had written these tasks on pen and paper. This shows that
students had different approach to finding the right symbol to a mathematical meaning. It is clear
that this challenge would not happen if this test was created on paper, and the students were
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required to write the answers on paper. They knew what the mathematical meaning was, and how
to write it on paper, but not the transition to a computer keyboard was difficult. If this test would
have had an impact on their grade, Jack would have gotten the wrong answer if he deliberately
answered wrong to look at the symbol. It is worth knowing that this can be challenging, because
students mark may not reflect their knowledge.
Feedback

Feedback was given differently in the two tests. The first test had a verification component,
and feedback was given immediately after each task. In the second test, feedback contained a
verification component and details about the correct answer and was given after all tasks were
answered. Jack, Roger, and Oliver explained that they would like a step-by-step solution after
completing each task. They all agreed that this would help them in the learning process. Oliver
and Roger emphasized that it will be easier to know if you are on the right path if you get a
response after each task. Oliver said that, in this case, if you have to go through 15 tasks without
any feedback, you had no way of knowing you were on the right track. However, if you got
feedback earlier, you would know that you were doing right. Jack explains that in some of the
tasks he was close to the correct solution, and if he got a line-by-line solution as feedback, he
would quickly understand his mistakes. If a similar task would appear, then he could use the
feedback in a different situation. He also explains that tasks he did not know how to approach,
just by viewing the right answer in the feedback, he would not know how to do it in a similar
situation. Daniel elaborated that a line-by-line solution given as feedback would help him figure
out exactly where his mistakes were. And that a right answer and a line-by-line solution would
help his mathematical understanding and development.

Discussion
This work sheds light on students' own report on working styles and how they perceive

immediate feedback in a digital environment. In the case of working styles, the students consider
writing mathematics on a computer to be challenging. The students had to use the computer as a
tool to communicate mathematics. They also had access to paper and pencil or tablet to write
notes during the tests. On tool level, Roger, Daniel, and Harry compared their work done in
STACK with mathematical work they usually do on paper. The three of them agreed that if this
test were on paper, they would write down more detailed line-by-line calculations on paper. As
Usiskin (2004) points out, we have turned to paper and pencil for the last 400 years regarding
transformational activities in algebra and arithmetic. Daniel, Harry, and Roger reported that they
did most of the calculations in their mind. There are some explanations why this might be the
case. First of all, this test had no impact on the students’ grades. There might be no incentive for
the students to complete all calculations as thorough as they would in a grading situation.
Second, there was an opportunity to guess the answers and look at the feedback to see if they
were on the right track.

There were some issues on the representation level because the notation used on a keyboard
is sometimes different compared to the notation using pencil and paper or a tablet. Some students
reported their frustration regarding finding right mathematical meaning, and some experience
frustration regarding the multiplication sign, however, using the computer as a tool seemed like
something the students are used to in different settings. Harry, Jack, and Daniel report that they
have trouble finding the right key on the keyboard that belongs to the right mathematical
meaning. The keyboard is the basic interaction with a computer, and according to Sangwin
(2013), assigning definite meanings to individual symbols is a problem that needs to be solved.
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Since this is the students first meeting with STACK in a test, and with no knowledge about the
student’s prior experience with writing mathematics digitally, these results were expected.

Students in this study also reported that they forgot to write the multiplication sign in places
in line with the regular syntax of mathematics. There is an option in STACK to remove this
function; however, as students become teachers, it is fundamentally important to know that the
multiplication sign is there. While this issue frustrated Oliver and Roger, Jack saw it as a
reminder of the difference between number and variable. This type of syntax error is not
interpreted as a wrong result in STACK, but purely a technical error (Sangwin & Ramsden,
2007). A question to be raised for further use of STACK is whether to have this function
switched on or off because it might lead to less frustrated students if you remove this function.
On the other hand, this function is important, especially for pre-service teachers.

Oliver and Roger completed the second STACK test, where feedback was given after
completing all tasks, while Jack, Daniel, and Harry completed the first STACK test where
feedback was given after each task. Jack, Daniel, and Roger reported that they would value a
step-by-step solution after each task. They all reported they would value more information than
just verification or justification and the right answer. Kluger and DeNisi (1996) found that
task-level feedback often emphasizes one solution, or strategy, and might therefore be a hinder
for the transition to more complex tasks. If a solution to a task is presented to the students, they
might lock their future work to only this way of solving a similar task and may therefore not help
the students to think about other ways of solving a task. This issue needs more research because
what the students want and what they will learn most from is debated.

A report from Shute (2008) says that step-by-step feedback is often more effective than
presenting all feedback together. Given a summary after completing the whole test might be
perceived as overwhelming, and as a result, students may reject all feedback given. This is in line
with what the students in this study report.

Conclusion
Typographical errors can easily be missed by students, resulting in wrong answers. This

might lead to frustrated students and should be avoided if possible. There are simple things
lecturers can do to avert this problem when introducing STACK to students. When STACK as an
assessment system is implemented, students should be taught the usual pitfalls, such as the
multiplication sign (if this function is on) and learn which key to push for the most common
mathematical operations and meanings. Spending time in class on mathematical representations
used in a mathematical digital environment may help the students from spending time on finding
the right key for the right mathematical symbol.

Students also report that they would appreciate a line-by-line solution as a part of their
feedback. However, previous research is not clear that this is the best for their learning outcome.
This study lacks data to conclude about students’ learning outcome regarding feedback.

In this study, several students report that they calculated without using written notation. This
also raises questions for further investigations. Is this a common case for students when they use
computer as a tool to write mathematics? Is this a representations level case? Is this a result only
in this study, or are the students working in a digital environment more into guessing and
checking? More work needs to be done in order to answer these questions.
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Variation in Students’ Thinking about Sameness and Comparisons to Mathematicians

Rachel Rupnow Rosaura Uscanga Annie Bergman
Northern Illinois University Mercy College Fort Lewis College

Sameness is a topic threaded throughout all levels of mathematics and yet it has not received
much focus from the mathematics education research community. Our work categorizes the
dimensions of variation that students highlighted when asked to describe sameness using a
recent framework on sameness in mathematics. We captured students’ ideas about sameness
through a pair of open response surveys at multiple doctoral-granting institutions across the
United States. In this presentation, we report on the variation found in the student surveys and
also compare our findings to a prior study of surveyed mathematicians.

Keywords: Sameness, Dimensions of Variation, Example Space, Advanced Mathematics

Introduction and Background
The concept of equivalence is fundamental in mathematics (Asghari, 2009; 2019). Students

are introduced early in their schooling to a specific type of equivalence, mathematical equality,
and continue to use equality throughout their mathematics courses (e.g., National Governors
Association Center for Best Practices, 2010). Despite their familiarity with the concept, students
do not always develop a robust conceptual understanding of equality, which can hinder their
ability to engage with middle school algebra topics like solving equations (e.g., Alibali et al.,
2007; Kieran, 1981). In undergraduate mathematics courses, students encounter more complex
ideas of equivalence like the notion of isomorphism in abstract algebra. Studies have shown that
students, professors, and researchers all associate isomorphism and sameness (e.g., Dubinsky et
al., 1994; Leron et al., 1995; Rupnow, 2019; 2021; Weber & Alcock, 2004).

Early work on students’ understanding of mathematical sameness focused on alternative
interpretations of operations and objects from those of the researchers (Melhuish & Czocher,
2020). Still, little is known about how undergraduate and graduate students understand sameness.
Recent studies focused on mathematicians’ understandings of sameness have categorized notions
of sameness according to salient features and examined norms while interpreting sameness
(Rupnow et al., 2022; Rupnow & Sassman, 2022). While mathematicians are able to recognize
and distinguish between types of sameness, it remains unknown whether students do so in
similar ways or what aspects they attend to.

Furthermore, math education research has benefited from comparing experts’ understandings
to those of students, such as in the context of example usage (Lockwood et al., 2016; Lynch &
Lockwood, 2019) and proof production (Weber & Alcock, 2004). These types of studies provide
opportunities to leverage mathematicians’ expertise to find potentially productive connections
and ways of thinking to teach students. In this paper we examine the ways in which mathematics
undergraduate and graduate students describe the notion of sameness and how these compare to
mathematicians.

Theoretical Perspective
In this study, we employed the notion of example space (e.g., Watson & Mason, 2005) to

characterize how undergraduate and graduate students view mathematical sameness. Example
spaces are the collections of examples that are associated with a particular concept and include
the ways of making such examples. The structure of an example space can be described in terms
of dimensions of possible variation, which refers to the aspects that are allowed to vary, and the
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range of variation of a particular topic, which involves the different options in the dimensions
(Watson & Mason, 2005). In particular, we drew on the community example space created from
a survey of mathematicians, largely algebraists (Rupnow et al., 2022), which characterized
dimensions of variation of sameness used and range within those dimensions. Rupnow and
colleagues (2022) highlighted five dimensions of variation: universes of discourse, concepts,
objects, properties, and qualities. We adopted this framework to analyze our student data. In so
doing, we provide a community example space for undergraduate and graduate students to
highlight dimensions and range of variation of mathematical sameness. We also explore the
differences and similarities between students’ descriptions of sameness and those of
mathematicians. In particular, we address the following research questions:

1. Which dimensions of variation did students highlight when describing mathematical
sameness?

2. In what ways were the examples and characterizations of sameness provided by our
students similar and different to those provided by algebraists?

Methods

Data Collection
We conducted a pair of open response surveys at doctoral-granting institutions across the

United States. Each survey consisted of fifteen questions aimed to capture students’ ideas about
sameness. The first survey, Survey-A, invited actively registered abstract algebra students at
three different institutions. A member of the research team visited each of the three courses to
personally invite students to participate. During data collection, each of the courses offered at the
selected institutions were cross-listed; that is, the courses were listed in the course catalogs as
available to both undergraduate and graduate students. Therefore, the 15 students who provided
responses to Survey-A were either undergraduate or master’s students currently enrolled in
abstract algebra. The follow up survey, Survey-G, was also conducted at three doctoral-granting
institutions across the United States and invited any current master’s or doctoral student in
mathematics. For Survey-G, students were emailed an invitation through departmental lists of
graduate students, there were 12 responses in total. Responses to both Survey-A and Survey-G
serve as the dataset, consisting of 27 total student responses.

While both surveys asked how students think about sameness in general and in specific
contexts, the wording of the questions was slightly different. The questions we chose as most
relevant for analysis are as follows:

● (Q2) What does it mean to be the same in a math context? (both)
● (Q4) How do you know two things are the same in abstract algebra? Is this the same or

different from other classes? (Survey A)
● (Q4a) How do you know two things are the same in abstract algebra? (Survey G)
● (Q4b) How is sameness in abstract algebra similar or different from sameness in other

branches of mathematics? (Survey G)

Data Analysis
The research team, consisting of abstract algebra education researchers, analyzed the student

responses. We used Rupnow and colleagues’ (2022) sameness framework describing the various
contexts, concepts, objects, properties, and qualities related to sameness. Each member
individually coded all student responses to the survey questions provided above. Together, the
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team compared coding, discussed any discrepancies, and came to group consensus, resulting in
total inter-coder agreement. To compare our findings to those of the mathematicians, we
considered the differences in prevalence of each dimension.

Results
The results that follow report the universes of discourse, concepts, objects, properties, and

qualities used by students when describing sameness. See Rupnow and colleagues (2022) for a
detailed definition for each code found in Tables 1-5. Within each table, the frequency ordering
of the mathematician paper is maintained to permit comparison of relative frequencies between
the mathematicians and students. Following each table, we also provide illustrative examples of
common student responses to better characterize the findings.

Table 1. Universe of discourse for sameness
Contexta Survey-A Survey-G % of total
Linear Algebra 0 4 15%
Topology 2 7 33%
Geometry 0 2 7%
Discrete Math 0 3 11%
Calculusb - - -
Arithmetic/pre-university algebrab - - -
Analysis 0 5 19%
Category Theory 0 3 11%
Other 0 2 7%
Set Theory 1 2 11%
aSome questions prompted consideration of or comparisons to abstract algebra so we do not
report frequencies for abstract algebra, but we do discuss ways that discussion of abstract
algebra was positioned below.
bNot present in graduate student responses

In Table 1, we focus on descriptions of each universe of discourse (context) for discussions
about sameness. Among our student participants, topology was the most common context. Some
responses broadly noted similarities and differences between abstract algebra and topology:
“Another branch of mathematics where I think about sameness is topology. I think sameness in
abstract algebra is both similar to and different from sameness in topology.” Others linked
contexts with particular concepts: “For instance, in topology, we have homeomorphisms that
establish the ‘sameness’ of topological spaces.”

Other responses made use of linear algebra and analysis contexts. For instance, a participant
focused on co-existence in the same vector space as characterized by the span: “A vector v in a
vector space identified with all of its nonzero scalar multiples. In other words, v is the ‘same’ as
w if v = a.w1 for some nonzero scalar a.” Analysis contexts included oblique references to
sameness of functions equal almost everywhere (a.e.): “In a more elaborate sense, one can argue
that usually in algebra the homomorphisms are bijections whereas in analysis (measure theory)
often time ignores sets that are very small.”

In general, we note that the prevalence of each universe of discourse roughly mirrors the
mathematicians, though our students did not allude to arithmetic or calculus to make points about

1 We interpret v = a.w as the product v = aw.
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sameness, nor did many use geometry examples. We further note that the preponderance of
instances are grounded in areas of math outside abstract algebra and the variety in contexts was
driven by the graduate students in the second survey.

Table 2. Concept conveying a type of sameness
Concept Survey-A Survey-G % of total
Isomorphism 9 11 74%
Equality 6 6 44%
Other (e.g., categorical equivalence) 1 4 19%
Equivalence Relation 5 1 22%
Congruence 1 1 7%
Homomorphism 1 4 19%
Homeomorphism 2 6 30%
Diffeomorphism/Homotopy equivalence 0 1 4%
Similar (geometry) 0 1 4%
Linear transformationa - - -
aNot present in graduate student responses

Table 2 highlights concepts conveying a type of sameness. Among our participants,
isomorphism was the most common concept conveying sameness, followed by equality and
homeomorphism. Discussions about isomorphism generally were positioned within abstract
algebra and emphasized sameness of underlying structures: “We know two things are the same in
abstract algebra when we can construct an isomorphism between the two structures. That is, the
two structures may not look the same, but they have the same properties.” While some references
to equality occurred in isolation, many references were used to contrast with isomorphism:

The meaning of “same” in a math context is a vague one. We can say two groups are the
same if there exists an isomorphism between them, but the elements of the respective groups
may be different. We may also say things are equal which is a different meaning than
isomorphism but also implies a form of sameness.

While this participant’s characterization of isomorphism is more specific than that of equality, we
believe it is noteworthy that they used multiple concepts to characterize sameness. Similarly, in
keeping with the large number of responses (especially in the second survey) positioning
discussion in topology, we observed a number of instances of homeomorphism, especially in
contrast with isomorphism. For instance:

They are the same if there is an isomorphism between them. It may be an isomorphism of
groups, rings or modules…The sameness in algebra means that the relationships between
elements in one structure is the same as the relationships between the elements of the other
structure with respect to the underlying operations. In other situations in math, this may not
hold true, but two things might be considered the same if they share some property in
common or if there is some special bijective function between them. For example,
topological equivalence means there is a homeomorphism between the two sets. They can be
considered the same in the sense that one can be molded into the other as opposed to
algebraic sameness where the underlying mechanics of two sets are the same but they are
labeled differently.

Specifically, while we recognize that questions asking about sameness in abstract algebra likely
drove the high number of references to isomorphism, we were encouraged by the number of
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responses that characterized sameness using more than one concept (6 of 15 in the first survey,
11 of 12 in the second survey). We also observe that while there was a higher percentage of
references to homeomorphism and fewer to congruence in this survey than the mathematicians,
isomorphism and equality were the most commonly discussed in both settings.

Table 3. Objects to which sameness is applied
Object Survey-A Survey-G % of total
Group 4 6 37%
Ring 2 5 26%
Other (e.g., categories, modules) 3 9 44%
Vector Space 0 4 15%
Set 2 8 37%
Number 1 2 11%
Function 0 2 7%
Field 0 1 4%
Quotients 1 0 4%
Elements 3 3 22%
Triangle 0 1 4%

Table 3 highlights objects that could be ‘the same’. In addition to references to groups and
rings (similar to the mathematicians), our student participants centered sets and elements as well
as a variety of Other objects (e.g., categories, graphs, modules, manifolds). Respondents often
listed multiple examples of structures and sometimes used these lists to contrast with sets:

Most areas of mathematics have a notion of isomorphism between the objects of interest.
Exact equality is almost always a much too strong condition to be of any significance when
studying mathematical objects. In topology, homeomorphic spaces are looked at as “the
same”; in graph theory there is a notion of isomorphic graphs; in analysis one usually studies
spaces up to an isometric isomorphism; and even in category theory there is a notion of
equivalent categories. This does contrast with set theory where in many cases one does care
about exact equality of sets and not just a bijection between them.

Others used lists to contrast whole objects with elements, such as:
In my experience in linear algebra, the “things” that you’d deal with are structures (groups,
rings, fields, modules, ...) and their elements. The elements of the same structure are the same
if and only if removing both of them is the same as removing one of them (sameness in the
sense of set elements). Two structures are equal if they are isomorphic. This guarantees that
they share the same algebraic properties. This will mean that sameness is [an] equivalen[ce]
relation with equivalence classes.

We again observe, most of the variety in objects, both in the Other category and generally, were
driven by responses to the second survey.

Table 4. Properties conveying sameness or a lack of sameness
Properties Survey-A Survey-G % of total
Cardinality / Bijection 3 8 41%
Representation 1 4 19%
Other (e.g., commutativity, generators) 2 5 26%
Dimension 0 1 4%
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Table 4 highlights properties of objects that should be shared for objects to be the same or
that could vary and still allow the objects to be the same. Similar choices of properties arose in
this survey as in the mathematicians’ survey. There were numerous references to bijections,
especially as they related to understanding concepts listed above, like isomorphism and
homeomorphism. Other properties that students noted included orders of elements within a
group, commutativity, and topological invariants. One participant highlighting multiple
properties wrote:

Two isomorphic groups that are essentially the same have similar properties (like the same
order of the group or the same orders of its elements) and behave in similar ways with
respect to how elements are operated together (e.g., there is a homomorphism between the
groups, and the generators of one group correspond to the generators of another group).

Note this participant commented on cardinality (orders of groups) as well as Other properties of
orders of elements and relationships between generators.

Table 5. Qualities of sameness
Qualities Survey-A Survey-G % of total
Levels of Sameness 5 5 37%
Computability / Construction 2 2 15%
Logical equivalence 1 2 11%

Table 5 highlights qualities of sameness, namely ways to compare the types of sameness
conveyed by specific concepts. For instance, the following response received a levels of
sameness code:

Two things are exactly the same if, and only if, all of their properties have the same value.
We often discuss sameness without meaning‚ “exactly the same”. Here, we reduce our scope
to specific properties and check to see if two things have these specific properties in
common. Then we call them the same in some sense. Other times, if two things have
exceptionally close property values we might call them (knowing that it is strictly untrue) the
same. So, in a math context, when one declares two things to be the same, one may mean
they are exactly the same. See above. Or, one may mean only some of their properties are the
same. This is almost always intuited, or explicitly given, in context.

This segment, which came at the end of an extended response in which five axioms and six
definitions were provided to carefully characterize sameness, highlights a distinction between
being “exactly the same” and having many properties be the same, which is often sufficient to be
called the same in a particular context.

The computability/construction code and logical equivalence code captured ways of
demonstrating sameness of object. Computability/construction focused on creating specific
mappings (e.g., “We know two things are the same in abstract algebra when we can construct an
isomorphism between the two structures.”), whereas logical equivalence focused on the use or
existence of theorems that can be used to draw the same conclusions, such as the following:

Often times in mathematics some results appear to be equivalent to some other result
although their proof might be completely different. For example, the axiom of choice is
equivalent to Zorn’s lemma, Tychonoff’s theorem, the Well ordering principle, and a whole
lot of results in different fields of mathematics.
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Unlike the other dimensions, we saw similar frequencies in the descriptions of qualities from
both surveys and these frequencies occurred in a similar ordering to that of the mathematicians.

Discussion
In this paper, we have observed many similarities between the students of our data set and

previous work with mathematicians (Rupnow et al., 2022). All dimensions of sameness
(contexts, concepts, objects, properties, and qualities) in the mathematician study arose in the
student data. Many of the particular examples of each dimension, that together comprise the
range of variation for each dimension, were also cited. When aggregating across our students, we
see similarities to the mathematicians in the ordering of examples cited, including emphasis on
isomorphism and equality as concepts conveying sameness, bijections/same cardinality being an
important property for sameness, and nuance in qualities of sameness such as the existence of
different levels of sameness. Some differences are explainable by the participants’ backgrounds,
such as frequent emphasis on abstract algebra and algebraic objects (groups, rings) among the
mathematicians, who were largely algebraists. Whereas students, some of whom did research in
applied math or analysis, gave more emphasis to analysis and other non-algebraic objects.

Examining the data in closer detail, however, it may not be fair to lump together our two
student samples. The respondents to Survey-A were students in an abstract algebra course, which
included both undergraduates and first-year graduate students in math education. The
respondents to Survey-G were exclusively graduate students and included students farther into
their programs. We also see some differences in the range of variation discussed. Much of the
range in each dimension of variation, which mirrored the mathematicians, was driven by the
Survey-G respondents. Except for the concept equivalence relation and object quotient, the same
or more participants in the second sample provided each example within each dimension of
variation, despite fewer participants. Thus in this sample, the Survey-G respondents discussed a
greater range of topics per person than students responding to Survey-A.

While we recognize this is a small data set, we believe the differences between our two
student samples spark questions warranting further research. In particular, it is possible that some
formative experiences happen in early graduate school that lead graduate students to write and
act more like mathematicians beyond simply taking more courses. Research might examine the
impact of studying for preliminary/comprehensive exams on graduate students’ perceptions of
mathematics and abilities to make connections across their coursework. It is also possible that
students who make stronger connections across courses are more likely to want to pursue
graduate work in mathematics; thus, some weeding process may occur before graduate school.
Other experiences or mechanisms may also be important to graduate students’ development of
nuanced views of sameness. While RUME is focused on undergraduates’ experiences, we
nevertheless encourage such work on the transition from undergraduate to graduate students to
be included in the RUME community because of the potential impact on understanding what
motivates undergraduates for higher study.
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How do instructors understand unequal representation in STEM?  
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While trends over the last few decades show increases in women and non-white scholars in 
STEM fields, there remains disparate attrition at different transition points within academia. The 
underrepresentation of certain demographic groups in STEM is broadly understood as rooted in 
systematic historical oppression and exclusion which continue their presence in various ways – 
but it is not clear how understood this is by faculty at large. To better understand faculty beliefs 
related to the (dis)advantagement of race-gender groups in STEM, we conducted a Latent Class 
Analysis on 945 responses from instructors of introductory chemistry, physics, and calculus 
courses at a variety of institutions across the United States. We then looked to see how those 
views relate to faculty support of policies and activities which might advance diversity and equity 
in postsecondary STEM education. Four clear patterns are discussed.  

Keywords: Equity, instructor beliefs, DEI, STEM instructors 

 One symptom of the systemic inequities plaguing our society is that the race-gender 
demographics of STEM fields in the United States are markedly dissimilar from those of the 
country and the undergraduate student population. Though representational diversity is not 
equivalent to equity or justice, the persistent discrepancies in representation are certainly 
indicators of a larger problem. Trends over the last few decades show increases in women and 
scholars of color1, with variation between different STEM fields (NCSES, 2021). However, there 
continue to be disparate attrition for women (Shaw & Stanton, 2012) and non-white (Shaw et al., 
2021) scholars at different transition points within academia.  

 The underrepresentation of certain demographic groups is broadly understood as rooted in 
systematic historical oppression and exclusion which, while now ostensibly outlawed, continue 
their presence in various ways – but it is not clear how understood this is by most faculty. 
Current faculty are key actors within the broader educational system: they interact regularly with 
students, make decisions about who to mentor (and how), and have some say in policy decisions 
within their academic units. How they engage in these activities has the potential to impact 
recruitment and retention. While instructors may occupy a role in which they can support 
diversification of the fields and a shift toward more equitable systems, they may not be aware of 
this potential (Gandhi-Lee et al., 2017) or even the need for change – and in some cases may 
push back against efforts to advance diversity, equity, and inclusion. In order to better recruit 
faculty to the cause of advancing equity in higher education, we must better understand their 
current views and the organizational culture(s) in which they exist – parallel to the work our field 
has done to recruit instructors to use research-based instructional practices (e.g., Apkarian et al., 

 
1 We note that gender is not a wo/man binary, that race is a fluid and complex social construct which should not be 
reduced to simplistic categorizations, and the intersectional nature of identity. However, we are limited in some 
respects by how these terms are used generally in society, federal databases, and prior research. 
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2021; Chowdhury et al., 2021; Johnson et al., 2018, 2019; Reinholz & Apkarian, 2018; Yik et 
al., 2022). This study takes a first step toward that end, reporting on a subset of:   

 
1. Classes (or patterns) of instructor beliefs related to the (dis)advantagement of race-

gender groups in STEM which exist among current instructors; and 
2. Relationships between class membership and support for activities in support of 

advancing DEI in postsecondary STEM contexts. 

Theoretical Background & Relevant Literature 
We take the position that equity is a moral imperative, and that STEM, education, and 

academia are currently inequitable systems which need to undergo systemic cultural change. 
Faced with institutional inertia as well as complex logistical, economic, and political 
considerations, we look in the short-term to the role of faculty to support students and shift 
disciplinary culture to be more inclusive and equitable. In essence, faculty act as the ultimate 
gatekeepers of the disciplines, and their actions – influenced by their beliefs – have great power 
to support or constrain efforts toward diversifying and making equitable the STEM fields.  

Among the indicators of inequity in STEM higher education is the race-gender imbalance in 
representation (Apkarian, in press; NCSES, 2021). Some of the immediate factors impacting 
students’ intention to pursue STEM (e.g., recruitment) include existing interest in STEM, 
positive math and/or science identity, and academic preparation (Cribbs et al., 2015; Gandhi-Lee 
et al., 2017; Graven & Heyd-Metzuyanim, 2019; Langer-Osuna & Esmonde, 2017); of course, 
these are not equally accessible to, nor cultivated in, all students. Beyond recruitment, there are 
disparate rates of retention at various junctions along the path to a STEM career (Ellis et al., 
2016; Hatfield et al., 2022; NCSES, 2021; Shaw et al., 2021; Shaw & Stanton, 2012; Wapman et 
al., 2022). Additionally, there are cultural systems, specific to mathematics and science. These 
include a racialized hierarchy of mathematical ability which generally manifests as an 
expectation that Asian (men) are ‘too good’ while those who are not White or Asian are ‘not 
good enough’ at mathematics (Martin, 2003; McGee & Martin, 2011; Shah, 2017, 2019). There 
are additional gendered norms and expectations, which often take the form of suggesting that 
women are not as capable of mathematical or scientific thought as men (Handley et al., 2015; 
Hottinger, 2016; Leyva et al., 2016). Of course, these are intersecting systems which produce 
intersectional experiences (Castro & Collins, 2021; Cech, 2022; Covarrubias, 2011; Gholson & 
Martin, 2019; Williams et al., 2014). These, and additional systems of inequity such as ableism 
(e.g., Annamma et al., 2013; Bettencourt et al., 2018; Taylor & Shallish, 2019) are often hidden 
behind a belief that STEM is insulated from racism and sexism, and is instead a true meritocracy 
(Au, 2013; Cislak et al., 2018; Handley et al., 2015; Liu, 2011; Sobuwa & McKenna, 2019).  

While there exist a number of strategies employed by higher education institutions to try to 
acknowledge, mitigate, and/or address aspects of system inequity (e.g., affirmative action, and 
similar, policies for student admissions and faculty hiring; diversity statements), these are not 
uniformly supported by faculty nor is there unanimous consensus among STEM faculty that they 
have a personal responsibility to address inequities in their disciplines (Johnson et al. 2022). We 
take support for, and engagement with, policies and efforts to diversify STEM fields as aspects 
of faculty professional practice and, just as with other aspects of professional practice (e.g., 
instructional practice) we see faculty beliefs as both a key influence and a necessity for change.    
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Participants & Data Collection 
Data come from a web-based survey of postsecondary instructors distributed in Fall 2020. 

Participants were instructors of introductory chemistry, physics, and calculus courses at a variety 
of institutions (including two-year colleges, four-year colleges, and universities). Each had 
completed a survey in 2019 regarding their instructional practices and factors impacting their 
pedagogical choices as part of a larger project; they were then invited to participate in this 
follow-up regarding their experiences with, and attitudes toward, DEI issues and initiatives in 
higher education. For the follow-up survey, we received 1064 responses from the 2229 invited to 
participate (47.7% response rate).  

We focus this analysis on a series of questions related to beliefs about different race-gender 
groups and STEM. These items were designed to gauge whether instructors recognize the 
systemic advantages and disadvantages related to race and gender in the sciences as well as to 
gauge instructors’ beliefs about various explanations for under-representation of demographic 
groups compared to white cisgender men. Previous analysis (Johnson et al., 2022) showed that, 
in the aggregate, many STEM instructors recognize relative systemic (dis)advantages based on 
racial and gender characteristics; few suggested variation in aptitude for STEM; responses were 
more mixed with regards to the distribution of opportunity and interest in the disciplines. It also 
revealed that instructors were more likely to support statements in support of DEI than 
affirmative action style policies. This analysis seeks to understand patterns within these 
responses in order to better understand clusters of attitudes and positions relevant for faculty 
support to advance equity and inclusion in STEM. 

Latent Class Analysis 
We employed latent class analysis (LCA) to identify potential groups or classes among our 

participants, which might drive patterns in their responses. LCA is a type of structural equation 
modeling used to identify groups (called latent classes) in multivariate categorical data. The data 
used for the LCA is the 22 items about (dis)advantage, opportunity, aptitude, and interest in 
STEM for different race-gender groups. In the survey items regarding (dis)advantage, 
respondents were presented with 8 race-gender pairs (Asian Women, Black Women, 
Hispanic/Latinx Women, White Women, Asian Men, Black Men, Hispanic/Latinx Men, White 
Men) and asked “From your perspective, do people from each of the following demographic 
groups receive a net systematic advantage or disadvantage due to their demographic 
characteristics in [your field]?” For the survey items regarding opportunity, aptitude, and interest 
in STEM, respondents were asked “More than half of the PhDs awarded in 2017 in mathematics 
and the physical sciences were received by white men. As compared to the majority group (white 
men), how much interest, aptitude, and opportunities do you think other groups have in [your 
field]?”. They were prompted to respond with regard to the seven other race-gender pairs. Each 
of these 22 items had three response options, more/equal/less. We reduced the 1064 responses to 
945 complete cases. 

Multiple LCA models were built and tested; model selection involved inspection of 
model fit parameters and diagnostic criteria (Nylund-Gibson & Choi, 2018; Weller et al., 2020). 
Analysis was performed in RStudio using the poLCA package (Linzer & Lewis, 2011; R Core 
Team, 2022; RStudio Team, 2022). For 5 ≤ k ≤ 10, 10 models of k-classes were generated using 
Monte Carlo Markov Chain methods. These models were then compared in terms of their model 
fit statistics, diagnostic criteria, as well as their interpretability considering existing theory and 
literature, as incongruent fit indices are common with such analyses (see Table 1 for model fit 
statistics.) This resulted in a choice of the eight-class model, which had the lowest BIC and 
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highest BF. For this eight-class model, the minimum average latent class posterior probability is 
0.940, well above the minimal threshold; entropy was 0.96, well above the .80 standard cut off; 
the smallest class is 2.8% of the sample population (Class 5); this is 26 individuals and may be 
admitted for analysis with caution.  

  
Table 1. Evaluating class solutions. 
Model LL AIC BIC G2 X2 BF 

5 -13247.61 27083.22 28509.47 15075.2 4.4e+18 0.000 
6 -12899.78 26505.57 28218.04 14379.54 1.6e+18 0.000 
7 -12661.73 26147.46 28146.15 13903.44 2.9e+16 0.000 
8 -12395.36 25732.71 28017.62 13370.69 3.6e+15 >>15.00 
9 -12281.36 25622.73 28193.85 13142.7 8.3e+17 0.000 
10 -12066.67 25311.35 28168.69 12713.32 1.16e+15 -- 

Note: LL – maximum log-likelihood; AIC – Akaike information criterion; BIC – Bayesian information criterion; 
G2 – likelihood ratio/deviance statistic; X2 – Pearson chi-square goodness of fit statistic for fitted vs. observed 
multiway tables; BF – Bayesian factor. 

 
Model Description  

Figure 1 shows the proportion of participants, in each latent class, who responded “more,” 
“equal,” or “less” to four key questions (divided by dashed lines) regarding each of the target 
race-gender groups; that is, the conditional probability of a participant selecting responses given 
that they are a member of a particular class. Note that the question at the bottom is the only one 
which includes White Men, because that’s the question about net advantage/disadvantage; the 
others are asked in reference to White Men (the dominant group). Moving upward, the second 
question related to interest to engage in the field; the third to aptitude for the field; the fourth 
(top) to opportunity in the field.  

 

 
Figure 1. Conditional probabilities of answer choice selection based on class membership. 
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Model Interpretation 
We anticipate that these profiles coincide with beliefs and actions which have direct impact 

on DEI issues and initiatives in higher education which is of great interest to our work. To that 
extent, we performed a series of Pearson’s Chi-squared tests (with Bonferroni correction). Table 
2 reports the results of these tests, as well as the cells in which standardized residuals (sr) had 
magnitude larger than 2, indicating that they are contributing to the statistical significance. This 
suggests that the model captures some variation in relation to faculty positions on DEI initiatives. 
 
Table 2. Chi-squared tests 
 χ2 df p adj Contrib. 
A Do you, or would you, support AA-style policies in… 

Student admissions 112.7 14 < 0.001 1, 3, 4, 7 
Faculty hiring 132.5 14 < 0.001 1, 4, 7, 8 

A Do you, or would you, support DEI statements by… 
Departments 134.3 14 < 0.001 1, 4, 7, 8 
Institutions 135.4 14 < 0.001 1, 4, 7, 8 
Professional societies 162.3 14 < 0.001 1, 4, 7 

B Efforts to increase diversity are […] for my field 187.1 14 < 0.001 1, 3, 4, 7, 8 
C I have personal responsibility to address DEI 73.01 7 < 0.001 1, 4, 6, 7, 8 
N varies across tests by question response rate. All p-values adjusted for repeated testing. A Response options 
were yes; no; no opinion; B Response options were beneficial; detrimental; neither. C Response options were 
condensed to Agree (Strongly Agree; Agree); Disagree (Strongly Disagree; Disagree). 

Discussion of Results 
Classes 1, 4, 7, and 8 contribute the most consistently to associations between latent classes 

and additional characteristics, account for about 2/3 of the participants, and are easily 
interpretable within the extant literature. Therefore, we focus on them and suggest that 
additional, clearer data is needed to understand other patterns of belief. We name these four 
based on their most distinctive analysis patterns: Class 1 becomes Advantage to 
Underrepresented Racial Groups; Class 4 becomes Race-Gender Equity in STEM; Class 7 
becomes Opportunity and Advantage for White and Asian Men; Class 8 becomes Opportunity, 
Interest, and Advantage for White and Asian Men. We discuss the belief patterns of each group, 
as well as the relationship between group membership and positions on DEI initiatives. 

Class 1: Advantage to Underrepresented Racial Groups 
This group of 73 represents 7.8% of the survey respondents. The group presents an inverted 

pattern of advantage compared to the other groups (see Figure 1); the majority of this group 
identify Black and Hispanic men and women as having a systemic advantage in STEM and 
Asian and White men and women as having neither an advantage nor disadvantage. More than a 
quarter of this group identify White men as disadvantaged. As compared to White men, this 
group suggested that Black men and Women have more opportunity to do science and 
mathematics, with other groups considered more equal. In terms of aptitude, the majority of this 
group (as with most groups) viewed everyone as having equal aptitude (though the distribution 
of the minority is interesting as well). In terms of interest, however, we see that this group 
believes that some of those least represented are also less interested in STEM than White men. 

Considering the other questions (Table 2), this group were less likely to support affirmative-
action style policies (admissions sr = -4.6; hiring sr = -5.0) and DEI statements (department sr = 
-7.3, institution sr = -7.9, society sr = -8.9); more likely to say that efforts to diversify STEM are 
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detrimental for the field (sr = 7.8); less likely to say that they have personal responsibility to 
address inequities (sr = -5.7). These responses may reflect some kind of ‘reverse discrimination’ 
mentality, in which those with privilege view any reduction in their status (or increase in others’ 
status) as an attack, rather than a leveling. 

Class 4: Race-Gender Equality in STEM 
This group includes 107 people, or 11.4% of the sample. The vast majority (93-100%) of the 

members of Class 4 responded that each race-gender group receives neither a systematic 
advantage nor disadvantage due to their demographic characteristics. They report similarly 
consistent and dominant views that all groups have equal opportunity (91-100%) and aptitude 
(93-99%). The majority (61-76%) of this group report that all race-gender groups have equal 
interest in STEM. (See Figure 1).  

Like Class 1, members of Class 4 were less likely to support affirmative-action style policies 
(admissions sr = -5.4; hiring sr = -6.7) and DEI statements (department sr = -5.1, institution sr = 
-4.7, society sr = -5.9) and more likely to disagree that they have personal responsibility to 
address inequities (sr = -5.3). They were also less likely to say that efforts to increase diversity 
are beneficial (sr = -7.6), but unlike Class 4 they are more likely to say that these efforts are 
neither beneficial nor detrimental (sr = 8.0) rather than to identify them as detrimental for their 
field (sr < 1).  

Class 7: Opportunity and Advantage for White and Asian Men 
Class 7 is the largest group of them all, including 283 (30%) of the survey participants. The 

vast majority (96-100%) of this group indicated that Black and Hispanic/Latinx men and women 
receive a systemic disadvantage in STEM; a substantial majority indicated that Asian women 
(71%) and white women (76%) receive a systemic disadvantage. For Asian men, the story was 
rather split between neutral and advantage. In contrast, 93% of this group indicated that white 
men receive a systemic advantage. (See Figure 1). 

Members of Class 7 were more likely to support affirmative-action style policies (admissions 
sr = 7.6; hiring sr = 6.9) and DEI statements by departments (sr = 6.9), universities (sr = 6.1), 
and professional societies (sr = 5.9); more likely to report that efforts to encourage diversity are 
beneficial for the field (sr = 6.5). In all these responses, members of this group were less likely to 
hold an opposition or neutral stance. This group was also more likely to agree that they have 
personal responsibility to address inequities (sr = 3.9). 

Class 8: Opportunity, Interest, and Advantage for White and Asian Men 
Class 8 included 158 participants (17% of sample). This group is very similar to Group 7 in 

their responses to the advantage, opportunity, and aptitude questions, but differs when it comes 
to the question about interest levels. While members of Group 7 unambiguously noted that all 
groups have equal interest in STEM, Group 8 is more complicated. Almost all of this group (93-
96%) reported that Black and Hispanic women are less interested in STEM than White men; 
roughly ¾ of the group suggested that Black and Hispanic men are less interested; the majority 
(57%) suggest that White women are less interested compared with White men. Regarding Asian 
men and women, we see that the majority (58-59%) report that Asian men and women have the 
same level of interest as White men – but the bulk of the others diverge. A little more than a third 
(35-37%) of the group thinks that Asian women are less interested, but Asian men are more 
interested than White men. (See Figure 1). This reveals nuance and complexity within 
instructors’ beliefs, evidencing the intersection of racialized and gendered hierarchies in STEM. 
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Chi-squared testing revealed a bit less about members of Class 8 than Classes 1, 4, and 7. 
They were less likely to oppose affirmative-action style policies in faculty hiring (sr = -2.1), but 
not more likely to support (sr <1); they did not contribute to the significance of responses to 
affirmative-action in student admissions. Similarly, they were less likely to oppose DEI 
statements by departments (sr = -2.3) and institutions (sr = -2.1) but not more likely to support – 
and they did not contribute to the significance regarding DEI statements by professional 
societies. They did not contribute to the significance of the personal responsibility question. 
However, they were strongly overrepresented in saying that efforts to encourage diversity are 
beneficial (sr = 4.1) and were less likely to say these efforts were detrimental (sr = -2.1) or not to 
have an opinion (sr = -3.4).  

Concluding Remarks 
This report is a very brief investigation of STEM instructors’ views related to race and 

gender in STEM, as well how those views relate to activities which might advance diversity and 
equity in postsecondary STEM education. We detected eight profiles within our sample of 945 
faculty. The four detailed here suggest that there are differing views on systemic advantages in 
relation to race and gender; there are also differing views of potential causes.  

The prevailing response pattern found in Class 1 appears to aligns with beliefs that reparative 
efforts are ‘unfair,’ which have manifested in court cases opposing affirmative action2 and may 
reflect how a loss of privilege can feel like oppression (Klein, 2020; Murrell & Jones, 1996; 
Yosso et al., 2004). The belief pattern reported by Class 4 is consistent with (inaccurate) beliefs 
about STEM and academia as race-gender-neutral spaces which function as meritocracies and do 
not perpetuate societal inequities. The response distributions in Classes 7 and 8 have similar 
response patterns with regards to systemic advantages and disadvantages; they also report similar 
patterns in terms of opportunity and lack thereof. However, while nearly all respondents in Class 
7 report that all race-gender groups have equal interest in STEM, respondents in Class 8 
indicated that they view the race-gender groups that have been systemically disadvantaged also 
have less interest in STEM.  

This kind of nuance, even among those who generally recognize the presence of systemic 
race-gender inequities in STEM, are indicative of the nuances needed to enact systemic change 
toward more equitable systems. Additional research is needed to ascertain nuances of belief and 
how to leverage and/or change those beliefs. For example, how do members of Class 8 come to 
believe that Black and Hispanic men and women have less interest in STEM than Asian and 
White men and women – and how might that impact their views on who has opportunities to do 
STEM and net systemic advantages and disadvantages? There are many limitations to this study, 
but none which suggest that there are not such beliefs among instructors – particularly given the 
extant literature. 
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Variations in Grading and Instructor Feedback

Anna Marie Bergman Andrew Kercher
Fort Lewis College Simon Fraser University

Although developing proof proficiency is an integral part of undergraduate mathematics, little is
known about instructor grading practices and feedback conventions in undergraduate courses in
which proof is taught. In recent years, small-scale studies have begun to shed light on how
individual instructors at single institutions assign points and provide feedback on proof-related
activities. Our study extends this work by describing the results of a large-scale online survey of
mathematics educators (n = 86) from multiple institutions. Participants were asked to score and
give feedback to hypothetical student submissions of a proof-adjacent assignment; we investigate
participants’ responses and provide a taxonomy of their feedback.

Keywords: Feedback, Grading, Proof-related activities, Teaching Practices of Mathematicians

Proof is widely agreed to be central to the activity of mathematicians, and therefore
argumentation and proof-related activities are an integral part of undergraduate mathematics
education. Developing proof proficiency “is often the primary goal of advanced mathematics
courses and typically the only means of assessing students’ performance,” (Weber, 2001, p. 101).
In light of this, mathematics educators spend significant time evaluating and responding to
students’ mathematical arguments—and yet, little is known about instructor grading practices
and conventions for feedback (Moore, 2016). In fact, until recently, little has been known about
the teaching practices of undergraduate mathematics educators in general (Speer, Smith, &
Horvath, 2010). Small scale exploratory investigations have begun to shed light on the criteria
professors use to grade proofs (Moore, 2016; ), assign points (Miller et al., 2018;

), and provide feedback (Kontorovich, 2021; ). Findings indicate that
proof grading is a complex teaching practice requiring difficult judgements that lead to
substantial variation in points assigned and a need for further research.

Our study aims to add to the growing body of literature on undergraduate mathematics
teaching practices by investigating the scores and feedback provided to a proof-adjacent activity
on a large scale. We conducted an online survey of mathematics educators in which we provided
5 different student submissions analyzing a single mathematical statement. Survey participants
were asked to score each submission and provide feedback to the student. Responses to the
survey were used to investigate the following research question: What kinds of feedback
accompany different numerical scores on an undergraduate, proof-adjacent mathematics task?

Background
In general, “feedback is conceptualized as information provided by an agent (e.g., teacher)

regarding aspects of one’s performance or understanding” (Hattie & Timperley, 2007, p.81).
There is an extensive body of research on feedback, including reviews of the literature and
meta-studies investigating the effectiveness feedback (Black & William, 1998; Shute 2008;
Hattie & Timperley, 2007). Many of these studies span disciplines and provide frameworks for
describing particular features and functions of feedback. For example, Shute (2008) compiles
several frameworks in her review differentiating directive feedback which tells the student what
to fix; from, facilitative feedback which provides comments or suggestions without explicit
direction (Black & Wiliam, 1998, as cited in Shute, 2008). Feedback can also contain elements
of both verification and elaboration. Verification acknowledges whether or not the work is
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correct, whereas elaboration is a description of the work designed to lead the student to a better
answer (Kulhavy & Stock, 1989, as cited in Shute, 2008). While many of these frameworks offer
general ideas about feedback, they are often drawn from studies based in secondary or primary
school settings and feature participants who are engaged in well-defined tasks or well-structured
problems. Literature on feedback in undergraduate settings that features ill-structured or
open-ended tasks with multiple solution strategies is needed.

Methods

Data Collection
We conducted an online survey of mathematics educators in which we provided 5 different

student submissions to the assignment pictured in Figure 1.

Figure 1. The assignment that engendered the student submissions featured in the online survey.

Survey participants were prompted to “Imagine that you were teaching a math class, and you
received the following five homework submissions as an argument or justification for whether
the statement [‘There exist four different prime numbers the sum of which is prime’] is true or
false.” For each submission, participants were asked to score it out of 10 possible points and to
also provide written feedback for the student. No scoring rubric was provided. The student
submissions in question are pictured in Table 1.

Table 1. The five student submissions assessed by participants in the study.
Participant Submission

Alpha True. In order to prove this exists we only have to show one valid example of the statement. a, b, c, d,
e in "primes"

a + b + c + d = e
Example: 2 + 5 + 7 + 17 = 31

2, 5, 7, 17, and 31 are all primes.
Therefore, there does exist a case where four distinct/ different primes sum to equal a prime number.

Beta True. For example, consider the sum of prime numbers 2 + 3 + 7 + 11 = 23 which proves that there
exists four different prime numbers the sum of which is prime.

But there also exists four different prime numbers the sum of which is not prime. For example, 2 + 5 +
7 + 11 = 25.

Gamma True. 2, 3, 5, and 7 are all different positive primes. Their sum, 2 + 3 + 5 + 7 = 17, is also a prime
number. This example proves the initial statement that there exists a (at least one) solution.

Note that 2 must be one of the primes in the sum: 2 is the only even prime number, so if none of the
four primes is 2, then we have
odd + odd + odd + odd = (2a + 1) + (2b +1) + (2c + 1) + (2d + 1) = 2(a + b + c + d + 2) = 2k
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where k is an integer, hence the result is even and cannot be prime (unless k = 2, except all odd primes
are greater than 2, so the sum will be greater than 2 making this not possible).

Delta True, 2 + 3 + 5 + 7 = 17, all primes.
Epsilon This statement is true.

Proving by contradiction, let us assume that this statement is false, then it becomes, "There don't exist
four different prime (positive) numbers the sum of which is prime."

We can disprove this with a single example, such as 2, 5, 7, and 17, which sum to 31, a prime number.

As the inverse statement is false, we can see that the original statement, that there exists at least one
group of prime numbers that sum to a prime, is true.

The student submissions in Table 1 were inspired by real student work and only slightly
re-worded for clarity. These particular submissions were chosen because they all correctly
identified the statement as true and provided the necessary example. However, they also
represented a variety of different, sometimes non-standard approaches to mathematical proving.

In total, 86 participants provided at least a numerical score to each of the 5 student
submissions. Of the 430 individual numerical scores, 69 had no accompanying written feedback.
Therefore, in total, we analyzed 361 individual complete responses in the sense that they
contained both a numerical score and accompanying written feedback. Delta received the fewest
complete responses (n = 69), whereas Gamma received the most (n = 74). The other student
submissions each received 72 complete responses.

Participant Demographics
Two populations of mathematics educators were invited to participate in the online survey

through email invitations distributed via listserv. The first population was comprised of
mathematics educators and mathematics education graduate students at an R1 institution in
Canada; the second population was an international group of professionals who were subscribed
to a listserv dedicated to promoting research in undergraduate mathematics education.
Participants were only asked demographic questions related to their education and teaching
experience. More specifically, participants described the highest levels at which they had taken
courses in mathematics and mathematics education. They also provided the highest levels at
which they had taught courses in mathematics and mathematics education (see Table 2).

Table 2. Participants’ experience as students and instructors of mathematics and mathematics education.
Graduate Undergrad. Secondary Primary None of these

Experience as a student:
Mathematics 71 15 - - -

Math Education 62 6 - - 18
Experience as an instructor:

Mathematics 25 46 15 - -
Math Education 43 14 - 1 30

Data Analysis
To analyze the content of the complete responses, they were subjected to two rounds of

coding. In the first round, each researcher used open-coding techniques to apply many
descriptive codes (Saldaña, 2016) to the data; these codes sought to comprehensively capture the
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variety and nuance within the data from multiple perspectives and along several axes. The
research team then came together to discuss the variety found in the content. Together, they
organized their independently generated codes into a unified set of codes that captured the types
of feedback given to the student characters. In a second round of coding, each researcher
independently recoded the entirety of the dataset, this time using the newly created codebook.
Discrepancies between these codes were discussed on a response-by-response basis until
consensus was obtained and complete intercoder reliability was achieved.

In this report, we present a subset of feedbacks that the research team recognized as
actionable feedbacks. We interpreted feedback as actionable if the student to whom it was
directed could interpret that feedback as suggesting a course of action that would bring the
submission closer to an implied mathematical standard for proof-writing.

Findings
We identified 62% of written feedback as containing an actionable element. At the broadest

level, we categorized actionable feedback as either prompting an addition, prompting a
reduction, or prompting a change. Note that these three types of feedback (and each of their
respective subcategories, described in the following sections) are not treated by the research team
as mutually exclusive categories. In this study, however, overlap was observed to be minimal.

Feedback Prompting an Addition
Feedback prompting an addition recommends, implicitly or explicitly, that something be

added to the student’s submission to improve its overall quality. Within this type of feedback,
four prominent subcategories arose. First, and most broadly, some feedback that prompted an
addition simply asked the student to add more without any specific direction about what type of
addition would be appropriate; this was a general prompt.

When the feedback prompting an addition made a specific recommendation to the student, it
fell into one of the three remaining subcategories. The addition could be an epistemological
justification; this was a common suggestion when the participant did not feel that the student
submission adequately demonstrated why the proposed statement was in fact true. The addition
might instead be a structural justification, which (in the eyes of the participant providing the
feedback) would lead to a submission that had clearer internal logical structure and purpose.
Finally, some participants directed the students to provide additional insight—that is, the
feedback suggested that the submission would be improved if the student added details of their
problem solving, examined related corollaries, or demonstrated a deeper understanding of the
mathematics than might be required to establish the truth of the statement. Examples of each type
of feedback prompting an addition are provided in Table 2.

Table 2. The types of feedback prompting an addition.
Feedback Type n Example

General 6 “You should explain a bit more.”
Epistemological
Justification 24 “Why is it sufficient for you to identify just a single example to establish the statement as

true?”
Structural
Justification 33 “The argumentation is correct but you should express it through a discourse, and make

logical relationships clearer.”
Additional
Insight 69 “You have answered the question correctly. Can you expand by giving another three

examples? What do all of your examples have in common?”
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Feedback Prompting a Reduction
Feedback prompting a reduction pinpointed a particular area in which the student’s

submission could be cut down in some way, rather than expanded. This type of feedback
manifested in two ways. First, the reduction might target excess information; this type of
feedback can be interpreted as the antithesis of feedback prompting the addition of additional
insight. That is, whereas some participants posed questions in their feedback that solicited
mathematical details that did not directly contribute to a proof of the statement at hand, other
participants specifically requested that students remove such details. Second, the reduction might
require removing excess machinery. In this type of feedback, the respondent typically felt that
the information presented in the student submission was relevant but that the proof structure or
level of mathematical formalism used to convey that information was unnecessary and could be
reduced. Examples of each type of feedback prompting a reduction are provided in Table 3.

Table 3. The types of feedback prompting a reduction.
Feedback Type n Example

Excess
Information 44 “It suffices to show that one case exists. It’s not necessary to show that there are sums of

primes for which the property does not hold.”

Excess
Machinery 51

“Your proof is correct, but it's unnecessarily cumbersome. The original statement is a
claim about a single case existing. The most direct proof then just gives an example. The
extra layer of disproving the negation is a bit confusing for a reader.”

Feedback Prompting a Change
Finally, feedback prompting a change suggested that some already existing aspect of the

work was relevant, and thus should not be removed, but instead should in some way be modified.
Feedback prompting a change typically targets one of two types of perceived shortcomings. On
one hand, the reviewer may have felt that the mathematical content of the student’s submission
needed to be changed. This type of feedback typically attended to a student’s misuse of
mathematical vocabulary or symbols; often, it pointed out what the respondent perceived to be a
“typo” on the part of the student. On the other hand, the reviewer may have called attention to a
way in which the organizational or grammatical formatting of the submission was inadequate.
Examples of each type of feedback prompting a change are provided in Table 4.

Table 4. The types of feedback prompting a change.
Feedback Type n Example

Mathematical
Content 34 “Terse and correct except for the error in mathematical grammar. The equation is a true

assertion about primes, but an equation is not a prime.”

Formatting 9 “Nice addition. In the future, please separate the proof from additional insight, and mark
the proof as such.”

Frequency of Actionable Feedback Types
In Table 5, we present the frequency with which of each type of actionable feedback was

provided to each student submission. In this table, we also coordinate the type of actionable
feedback with whether or not the participant awarded the student submission in question with a
full or partial score (FS and PS, respectively). For example, of the 19 feedbacks that prompted
Alpha to include additional insight, 9 of these still awarded his submission a full score; another
10 awarded him less than a full score.
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Table 5. The frequency of each type of actionable feedback given to each student submission.
Feedback Type Student

Alpha Beta Gamma Delta Epsilon
FS PS FS PS FS PS FS PS FS PS

Prompting an Addition
General - - - - - - - 6 - -

Epist. Justification 1 1 1 3 - - 2 15 - 1
Str. Justification 2 1 4 3 1 1 1 12 - 8

Additional Insight 9 10 6 9 7 3 6 9 4 6
Prompting a Reduction

Excess Information - - 16 16 8 4 - - - -
Excess Machinery 3 1 - - - - - - 25 22

Prompting a Change
Math Content 3 5 - 1 7 3 - 3 - 12

Formatting 1 1 2 - 2 - - 3 - -

Discussion
Miller (2018) observed that, when instructors allotted scores to student-submitted proofs,

“the points that they assigned was dependent upon their perceptions of participants’
understanding of the proof that they submitted” (p. 30). As seen in Table 5, certain types of
actionable feedback are more likely to be attached to partial numerical scores; prompts for
additional epistemological justification, for additional structural information, and for a change in
mathematical content. These types of actionable feedback appeared 83%, 76%, and 71% of the
time (respectively) with a partial numerical score. In light of Miller’s finding, the association of
these types of feedback with partial scores could indicate which types of errors instructors tend
to recognize as indicative of a fundamental misunderstandings on the part of the student author.

On the other hand, actionable feedback prompting a reduction of excess information or
machinery did not clearly correlate to either a full or partial score. Respondents in our study did
not clearly agree on whether or not “too much” of something demonstrated that the student
fundamentally misunderstood the underlying mathematical logic. Beta and Epsilon received
prompts for a reduction in information and machinery (respectively) more than any other student
submission received any other type of feedback. However, despite how frequently respondents
provided these types of feedback, they did not clearly correspond to a partial score.

We note that prompts for additional insight were also more common on partially scored
submissions, but only slightly (at 54%)—and this trend was reversed in the case of Gamma’s
feedback. In fact, because of Gamma’s overall high scores, this was not the only trend they
reversed. Gamma’s submission was the only student’s work to receive mostly full scores even in
the presence of a prompt for a change in mathematical content which, as discussed in the
previous paragraph, was often attached to partial scores. As described in Moore (2016), some
instructors, when grading proof-like student submissions, do not deduct points for each error;
instead, they attempt to assign a score “by judging the overall quality of the proof” (p. 263).
Thus, while Gamma’s mathematical typo generated a number of feedbacks prompting a change
in mathematical content, they still often received full credit because respondents perceived that
Gamma understood the underlying mathematics of the proof.
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Prompts for additional insight comprised a large and especially nuanced portion of feedback.
This type of actionable feedback occurred more often than any other, and in 30 of its 69
instantiations, it was the only type of actionable feedback offered to a student who received a
partial score. Of these 30 feedbacks, 6 are very open-ended prompts (e.g., “Can you dig
deeper?”). The rest are guiding questions that ask the hypothetical student to consider or provide
material that is beyond the scope of the original prompt (e.g., “What are the reasons of the choice
of your primes?”). Occasionally, the respondent instead presents their prompt for additional
feedback in the form of an observation; for example, one feedback explains that “this [Delta’s
submission] is correct but it offers very little in the way of showing where your numbers come
from or telling me how you understand this must be true.”

Miller (2018) found that, by some instructors’ standards, “correct proofs would not
necessarily receive full credit” (p. 29). Our study corroborates this finding. Student submissions
were chosen for this study on the basis that they each correctly attended to the task at hand. As
Miller observed, however, “correctness is not the only criterion that is used by mathematicians
for grading proofs” (ibid, p. 30); the student submissions in this study were also often scored
based on how well respondents felt they demonstrated the student authors’ understanding of why
their work was sufficient and correct. Sometimes, this is clear in the accompanying written
feedback—see the example of feedback requesting additional structural justification in Table 2.

Conclusion and Limitations
Our main contribution is a taxonomy of the feedback mathematics educators provided to

students in proof-adjacent activities. Beyond a more detailed description of the feedback
presented above, the presentation will also explore a type of feedback adjacent to the actionable
feedback described in this report: that is, when no actionable written feedback is provided and
yet the student submission is only awarded a partial score. We wonder, when instructors provide
such feedback, what socio-mathematical norms (if any) are they attempting to reinforce? A
future study could also explore what actions students take in response to actionable feedback.

We would like to recognize two limitations to our study. First, respondents were not allowed
to physically grade the student submissions—that is, they weren’t provided with submissions
that they could “mark up” with non-textual feedback. Spiro et al. (2019) found that annotations
such as checkmarks or arrows account for 50% or more of the recorded feedback when
professors grade assignments. Our survey required participants to type feedback in the form of
sentences, which might be different from their usual method of providing feedback to their
students. On the other hand, our study could contribute to a better understanding of how
instructors’ feedback practices change in an online environment.

Second, we agree with the sentiment expressed by Sommerhoff & Ufer, who argue that “the
generalizability of results in the context of proofs are always questionable, as they rely on local
socio-mathematical norms” (2019, p. 729). From that perspective, our study was limited by the
decontextualization of the student work from a greater classroom culture. In fact, some
respondents indicated that their treatment of student submissions would depend on the
socio-mathematical norms that had been established in the classroom. The feedback given by
these participants may not be representative of their actual feedback practices.
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Multivariable Calculus Instructors’ Reports of Resource Use:
Resources Used and Reasons for Their Use

Rafael Martínez-Planell Deborah Moore-Russo
University of Puerto Rico, Mayagüez University of Oklahoma

Given the challenge of visualizing the main constructs of two-variable functions and their
differential and integral calculus, it is important to consider the use and perceived potential of
resources to contribute to students’ understanding of multivariable calculus. This case study
considers how four instructors attempt to utilize resources in their multivariable calculus
teaching and their motivations to do so. We study how these instructors think about the digital
and non-digital resources that they use to foment students’ understanding. We also look at their
reporting of the ways that instructors, students, and resources interact in multivariable calculus
to determine if resource use is meant to facilitate visualization, reasoning, or communication.
With this, the study proposes to contribute to the discussion of resource use in multivariable
calculus.

Keywords: multivariable calculus, digital resources, visualization

Introduction
Multivariable calculus is an important tool for modeling phenomena in science, technology,

engineering, mathematics, and other fields of knowledge. There is a growing research base on
the teaching and learning of two-variable functions that includes the study of related definitions,
basic ideas, and geometric understanding (e.g., Martínez-Planell & Trigueros, 2021; Dorko &
Weber, 2014; Martínez-Planell & Trigueros, 2012, 2019; Trigueros & Martínez-Planell, 2010;
Weber & Thompson, 2014; Yerushalmy, 1997). There are also studies about the differential
calculus of two-variable functions (e.g., Harel, 2021; McGee & Moore-Russo, 2015;
Martínez-Planell et al., 2015, 2017; Tall, 1992; Trigueros et al., 2018; Weber, 2015) and their
integral calculus (e.g., Jones & Dorko, 2015; McGee & Martínez-Planell, 2014; Martínez-Planell
& Trigueros, 2020). All of this is discussed in a survey article on multivariable calculus
(Martínez-Planell & Trigueros, 2021). There are some studies on the use of non-digital resources
(e.g., McGee et al., 2012, 2015; Sherer et al., 2013; Wangberg et al., 2013, 2020). However, the
literature on the use of digital technologies is somewhat sparse (e.g., Alves, 2014; Habre, 2001;
Ingar & Silva, 2019; VanDieren et al., 2020).

To further study the use of digital resources, we seek to study how multivariable instructors
report that they use resources in their teaching of multivariable calculus. More specifically, we
consider how multivariable instructors report that digital, digitally generated, and other resources
are used to nurture students’ understanding and their reports of how students, instructors, and
resources interact in the construction of multivariable calculus understanding. This study
attempts to contribute to answering these questions by focusing on four instructors as they
discuss the resources they use and the reasons for using them to determine if they are focusing on
visualization, reasoning, or communication.

Theoretical Framing

Didactic Triangle and Didactic Tetrahedron
The didactic triangle is a model that can be used to organize and discuss instructional

phenomena by considering three key components, the teacher, the students, and the content, as

25th Annual Conference on Research in Undergraduate Mathematics Education 53



well as interpreting the links between the three components in the context being studied.
Observing that “artifacts are not passive resources that teachers and students draw on but
‘actively’ shape activities,” Rezat and Strasser (2012, p. 644) argue to extend the didactic
triangle to the model of the didactic tetrahedron (displayed in Figure 1). The idea of the didactic
tetrahedron was previously presented by Tall (1986). This seems particularly appropriate in our
study since we focus on artifacts used, including both digital and non-digital resources that
instructors leverage in their instruction.

Figure 1: Didactic tetrahedron model (Rezat & Strasser, 2012).

The Teaching Triad
Jaworski’s (1994) teaching triad (displayed in Figure 2) may be thought of as an expansion of

the “teacher” node in the didactic triangle. It consists of three interrelated elements: sensitivity to
students, mathematical challenge, and management of learning (Jaworski et al., 2017). Sensitivity
to students relates to the teacher-student link. It describes the teacher’s knowledge of students
and the teacher’s attention to affective, cognitive and social student needs. It includes the ways in
which the teacher interacts with individuals and how the teacher guides group interactions.
Mathematical challenge relates to the teacher-mathematics link. It describes the challenges that a
teacher offers to students to promote mathematical thinking and activity. It includes the assigned
tasks, the posed questions, and any teacher emphasis on metacognitive thinking. The
management of learning construct extends the didactic triangle to the wider context of the
classroom. It describes the teacher’s role in the constitution of the classroom learning
environment by the teacher and students. It includes, among other things, classroom groupings,
instructional planning of tasks and activities, selection and use of instructional resources, and
classroom norms that are set. The three components are interrelated.

Figure 2: The teaching triad (Jaworski, 1994).

Spatial Literacy
The broader sense of being literate refers to being competent and knowledgeable in a certain

area (Moore-Russo & Shanahan, 2014). Spatial literacy includes the abilities to visualize objects
in three-dimensional space, to reason about their properties and relations, and to communicate
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with others about these objects and relations. Moore-Russo and colleagues (2013) introduced a
framework that describes spatial literacy in terms of three domains (shown in Figure 3):
visualization, reasoning, and communication. Visualization is the process of generating cognitive
representations of spatial objects through visual images that may or may not be facilitated by
external representations or physical actions. For example, a student can internally visualize a
paraboloid when looking at a representation of a paraboloid on a computer screen, or when
listening to the word “paraboloid”, or when out of habit or by memorization the student imagines
the geometrical object given the symbolic representation without reasoning about𝑧 = 𝑥2 + 𝑦2

or justifying the relationship or communicating about it with others. Reasoning is defined as the
cognitive processes that individuals use to form conclusions or make judgments from a given set
of premises; it is the process of organizing, comparing, or analyzing spatial concepts. For
example, a student is reasoning when mentally using transversal sections to justify that the graph
of is a paraboloid. Reasoning may or may not involve geometric imagery, as when𝑧 = 𝑥2 + 𝑦2

using an entirely symbolic mental argument to conclude that is also a paraboloid.𝑧 − 𝑥2 = 𝑦2

Communication is the exchange of information with others using resources such as language,
written symbols, gestures, etc. to convey ideas that relate to spatial objects or relationships. For
example, a student explaining to another why the graph of is a paraboloid is𝑧 = 𝑥2 + 𝑦2

engaging in communication. At the same time, the student may or may not be engaged in
reasoning and/or visualization depending on the argument in the student’s mind. The different
domains overlap as suggested in Figure 3. Although we will not give examples of each
possibility, they may be imagined using variations of the above paraboloid examples.

Figure 3: Spatial literacy domains (Moore-Russo et al., 2013)

Research Questions
This case study considers how university instructors reflect on teaching multivariable

calculus specifically related to the resources they use. The specific research questions follow.
1. Which resources do university mathematics instructors report that they use or have

used in the past for teaching multivariable calculus? What reasons do they give for
their selections? How do they report that they use the resources?
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2. Which, if any, spatial literacy domains (i.e., visualization, reasoning,
communication) do instructors mention and focus on? Is this the same for all
instructors or does it vary by instructor? 

Methods
The data reported here are part of a case study that involved four university instructors from

four different U.S. universities. We studied written responses to a series of 24 survey questions
and present the results of the eight questions that directly address the resources used and the
reasons for their use below. The instructors were part of a convenience sample of multivariable
calculus professors from four different universities in four different states working on a project
whose main purpose was to help students develop a deeper understanding of multivariable
calculus concepts through hands-on, physical 3D explorations using guided learning activities
and innovative, pedagogically designed 3D-printed surfaces and solids. All four instructors were
currently using the digital CalcPlot3D platform (Seeburger, 2018). Since this paper focuses on
the instructional decisions that guide the work of teaching, specifically of teaching multivariable
calculus, we analyze data from the instructors in regard to their teaching rather than analyzing
student thinking, student engagement, or how students make meaning of the content at hand. 

An instructor’s response to a survey question was considered the unit of analysis. The
research team independently reviewed the survey responses multiple times. During their
independent review, they marked ideas that appeared frequently. The “bottom-up” analysis
yielded possible directions that the analysis could take. The team met to discuss this first pass
over the data, comparing their notes. They decided to revisit the data individually while
considering possible frameworks that could be used to frame the research. The team met twice to
determine the framing of the study and then decided on specific categories to use for the coding.
Each team member coded the data set independently before coming together to discuss the
coding until a consensus was reached. During this process, the team pulled out representative
quotations from the data set. The results were analyzed both in terms of each instructor as well as
in terms of general tendencies across the group of four instructors. 

Results
We begin by reporting our results for the first series of research questions: Which resources

do university mathematics instructors report that they use or have used in the past for teaching
multivariable calculus? What reasons do they give for their selections? How do they report that
they use the resources? In our discussion, we will refer to the four surveyed instructors as M, P,
S, and T, and we consider their use of digital resources then their use of other types of resources.

Instructor M has used CalcPlot3D since initially teaching multivariable calculus. For
out-of-class assignment, she tried Survey Monkey and a publisher’s online homework system
before settling on WeBWorK, since she could embed video lectures and CalcPlot3D labs in that
platform. She has also used Jamboard and Flipgrid for more student interaction. She has used
Matcha.io as an online, mathematics editor. Instructor P initially used Cabri Geometry and Excel
before writing his own Visual Basic, Java, and Java Script applets. CalcPlot3D followed from
this. This instructor also used other digital resources like Smartboards, which he used to record
lessons and an online custom OER textbook on the LibreTexts platform together with the
WeBWorK online homework system and student-produced videos. While some digital textbooks
might be what Viglietti and Moore-Russo (2018) call “static resources” (i.e., text-heavy resource
that relies on typed text and digital pictures), the custom OER textbook used by P leveraged
interactive figures. Instructor S initially used Mathematica and GeoGebra before she adopted
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CalcPlot3D. Instructor T initially relied on Mathematica with some incorporation of Desmos and
Tikz for two-dimensional plots before he moved to using CalcPlot3D. The reasons given by the
four instructors for using digital resources in multivariable calculus and for changing their initial
graphing software (which only applied to P, S, and T) are detailed in the next paragraphs.

Even though their initial choices of software varied, their reasons for using digital resources
were fairly consistent. The responses from all four instructors showed the importance of
mathematical challenge to them and the value they placed on students visualizing ideas of
multivariable calculus, convinced that doing so would improve student understanding. M
mentioned that digital resources “give students a deeper understanding of the material beyond
the computational and symbolic which they are used to” stating that digital resources “challenge
students to think and reason visually in 3D.” P reported that “students need to see the
relationships of calculus in motion to develop the kind of intuition for the definitions and
constructs involved.” S claimed to use digital resources every class “to create illuminating visual
demonstrations” and to show students the insights that could be gained through visualization. S
felt that digital resources help foster “a spatial awareness and understanding that connects to the
material they [students] are learning.” T felt digital resources helped students “attach geometric
meaning to various course concepts.”

The reasons that Instructors P, S and T gave for changing from their initial choices of
graphing resources to a different digital resource (in this case, CalcPlot3D) also show sensitivity
to students in their concern for students’ affective, cognitive, and social needs. The most cited
reasons were that not only is CalcPlot3D free (i.e., students do not incur any cost), but more
importantly it requires no specific syntax so that it is easier to use. Instructor P said that he “had
to change platforms a number of times to keep my visualizations usable and easier to get students
to play with themselves.” When explaining why she switched digital resources, S reported that
“CalcPlot3D requires no coding syntax, unlike Mathematica, which I have used before for this
course. It is more intuitive for users than GeoGebra, which makes it much more accessible to
students.” She stated, “my students could immediately jump into graphing with the program
without any training.” Instructor T adopted CalcPlot3D because “the syntax is simple enough
that I feel good about having students work with it, and the fact that it’s web-based is great.”

Issues related to the management of learning, that included providing formative feedback,
also figure among the reasons given by the instructors for using digital resources. Instructor
comments often dealt with software features that allow for the creation and use of in-class
instructor demonstrations or independent student work. Instructor M said, “I have embedded
video lectures into webwork with ‘exit ticket’ questions that students answer immediately
following watching a video. I also embed CalcPlot3D labs in webwork to give students
immediate feedback.” Instructor P stated that he would use a scenario presented with CalcPlot3D
as a common focus for student discussion board assignments, and he “encouraged students to
visually verify their results using CalcPlot3D” during student video presentations. Instructor S
reported that she liked “the self-explanatory nature of the [CalcPlot3D] program and the
powerful options that are built in to help instructors easily craft in-class demonstrations.”
Instructor T said, “there are a lot of visualizations I spent hours on creating in Mathematica, only
to later realize that CalcPlot3D had already built in…the software is robust enough that I can
usually render the objects that I want to render, and I’m calibrating my expectations of what I
can ask students to do with the software independently and with how much guidance.” T
reported using CalcPlot3D as “visuals I include in lectures, assignments, and worksheets.”
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As for non-digital resources, there was also a wide variety of resources that have been used
by three of the instructors including: 1x1x1 blocks (M), Play-Doh (M), paper cylinders to
demonstrate parametric curves lying on surfaces and finding tangent planes (M), a hill on
campus to explain partial derivatives (S), extendable pointers with arrows (S), a
machine-shop-produced tabletop 3D coordinate system (S), coffee stirrers and fishing line (T),
giant arrows made from wooden dowels for vectors (T), the K’nex toy pieces for xyz axes (T),
various foods that were sliced to represent integration (T), and cardboard sheets for planes (T).
The incorporation of such a wide variety of resources shows the instructors’ sensitivity to
students’ cognitive needs. These resources shed light on how instructors have changed their
management of learning for certain topics by bringing what they believed to be the most relevant
resources.

The use of 3D-printed surfaces, a non-digital yet digitally generated resource, were reported
by all four instructors. This is of particular interest since it is the focus of a project in which the
four instructors participate. All four instructors were aware and mentioned that CalcPlot3D has
the capability to produce STL files that can be used to print a 3D surface (or curve) model using
a 3D printer. The instructors report using 3D-printed surfaces either just a few times a semester
or some of the time. The most common reasons given for using 3D-printed surfaces related to
mathematical challenge; they included their beliefs that: 1) embodied learning is privileged by
the potential interactivity and manipulability of the physical object and 2) the 3D model had the
potential to bridge the gap between the 2D renderings of a screen and the 3D reality. Instructor M
mentioned student engagement when using 3D-printed surfaces, she claimed the engagement
came from students being “able to hold and point to them” and believed in the importance of
showing “an additional visual representation of the surface beside the 2D version on the screen.”
Instructor P shared that since a 3D-printed surfaces are “more concrete than the 3D renderings on
the 2D computer screen using CalcPlot3D, it can be quite helpful for students, making the
surfaces tactile” and “used it to help us confirm our various traces of the surface drawn on the
Smartboard.” Instructor S mentioned, “I wanted to provide students with a physical object to
touch, to hold at various angles, and to point to features as they discuss concepts with their
classmates. Having a tactile object removes any ambiguity that could arise from viewing a 3D
object on a 2D screen.” While Instructor T claimed that both 3D-rendered and 3D-printed objects
afford avenues for students to be able to attach geometric meaning, he believed, “3D models
have some advantages, like being able to draw on the models; they are easy to handle and view
from multiple angles, in a more natural way than computer images.” The reasons for using 3D
printed surfaces are indicative of the instructors’ sensitivity to students’ cognitive needs.
However, there were comments, especially from Instructor T about how they also affect the
management of learning since there are non-negligible constraints to their use in class (e.g.,
number of models needed, class time issues in passing out and collecting the models).

We now report our results for the second series of research questions: Which, if any, spatial
literacy domains (i.e., visualization, reasoning, communication) do instructors mention and focus
on? Is this the same for all instructors or does it vary by instructor? Concerning the spatial
literacy domains, the data from all four instructors were similar and provided evidence of a
seemingly balanced instructional focus on VR (visualization-reasoning) and VC
(visualization-communication), with some VRC (visualization-reasoning-communication)
instances.

In the VR overlap, instructor comments focused on issues related to students being able to
see the idea and relationships in multivariable calculus as they were trying to make meaning of
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the topics or trying to solve tasks that had been assigned to them. Instructor M mentioned how
“challeng[ing] students to think and reason visually in 3D… gives students a deeper
understanding of the material beyond the computational and symbolic which they are used to.”
Instructor P talked of benefits to student understanding when they are “rotating the surfaces in
their hands to gain perspective.” S claimed, “Visualization through CalcPlot3D gives students a
spatial awareness and understanding that connects to the material they are learning. Instead of
going through calculations blindly, students develop a spatial understanding of the concepts.”

In the VC overlap, Instructor M related that “Each group got a different model so some
students ‘connected’ with their model referring to it later in the class (e.g., ‘Remember in our
group's model there was that point that....’).” While some of the comments focused on
student-to-student communication, a number of comments related to instructor-to-student
communication where instructors used resources in their lectures to help visual clarify the items
being presented through demonstrations and examples. Instructor P stated, “I have brought in a
couple 3D printed surfaces for students to see and to point out certain features.”

The overlap of VRC was also noted, but not as often as comments that involved either VC or
VR. As shared earlier, Instructor P encouraged students to use CalcPlot3D as a common anchor
that allowed them to visually communicate their arguments in online discussion forum posts as
well as in student-produced video presentations. Instructor S observed, “during office hours,
students will reach for one of the 3D surfaces in order to ask their question. Likewise, they will
reach for a surface to explain the answer to a question that I have posed to them.” Instructor T
commented that the “models are easy to handle and view from multiple angles (in a more natural
way than computer images), and I find they work well for in-class group work” that would
naturally involve communication among the students and for “office hours” that would involve
communication between the instructor and a student.

Conclusions  
We found that concern for students’ learning and the conviction that geometrical

understanding is crucial in multivariable calculus, moved the four instructors to consider the use
of a variety of resources in their teaching. Three of the instructors started with a graphing
resource other than what they were using at the time of the interview (CalcPlot3D). Ease of use
for them and for students was the major factor influencing their change in digital technology. It
seems that over time (and with more instructor experience) the attention to the use of technology
for teaching shifted from being instructor-centered (demonstrations to present in class) to
student-centered (activities to engage students and group work). In the spatial literature domains,
there was about an equal number of visualization-reasoning and visualization-communication
comments and some which also suggested visualization-reasoning-communication activities. The
observations resulting from our study suggest that the interviewed instructors were from the start
sensitive to students’ needs and that future faculty adopting digital resources in their teaching
could benefit from support in issues dealing with the management of learning: the creation of
demonstrations and activities using their software of choice, being able to discuss constraints and
difficulties using particular software for graphing in multivariable calculus, coordinating the use
of graphing software and digital homework systems like WeBWorK, using digital technology in
evaluation, sharing materials, and so on. Similarly, the instructors seem to find great potential of
digitally generated resources, particularly 3D-printed models, in helping with student
visualization, reasoning, and communication. However, the creation and subsequent use of these
models in class seems to also require as much support as digital resources.
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Instrumental Genesis: For Loop and ‘len()’ as Artifacts

Antonio Estevan Martinez IV
California State University, Long Beach

In this contributed report I present results from a teaching experiment broadly focused on
students utilizing machine-based computing as a mediating tool to learn fundamental concepts
related to set theory and logic. Specifically, I highlight the mathematical activity of one student
and his unique approach to finding the intersection of three sets. To understand how this student
leveraged the computer programming environment, I used the analytical framework known as
instrumental genesis, which can be utilized to investigate the confluence of an artifact (often a
piece of technology) and the human mind to solve a mathematical problem. Results indicate that
the student was able to use computational tools such as For Loops and the len(), or “length,”
function as artifacts in his solution to finding the set intersection.

Keywords: Computing, Programming, Set Theory, Instrumental Genesis

Introduction
In this report I present the results of an investigation into student thinking in which students

were tasked with using Python, the text-based computer programming language, to learn
fundamental concepts related to set theory and logic. The call for research to investigate the ways
in which technology and, more specifically, computers can be used to facilitate the teaching and
learning of mathematics is not new (e.g., Fey, 1989; Papert, 1980; Perlis, 1962). However,
previous approaches to address this need have varied in the medium through which the
technology is used, such as video games (Levine et al., 2020), graphing calculators (Leng, 2011)
and virtual reality (Bogusevschi et al., 2020). Also, these areas of technology integration have
been a focus at multiple levels throughout the educational system (Ball et al., 2018; Oates, 2011).
Moreover, Lockwood and Mørken (2021) explicitly made a call for research in undergraduate
mathematics education with a focus on machine-based computing. They define machine-based
computing as “the practice of precisely articulating algorithms that may be run on a machine” (p.
2). An important aspect of machine-based computing is the development of an algorithm rather
than its performance or implementation alone. This is an important component of machine-based
computing that distinguishes it from other forms of computing such as the use of Desmos where
one may only be required to input parameters to create a visual representation of a function.
Thus, Lockwood and Mørken consider machine-based computing to be a separate construct that
includes the use of programmable calculators, writing packages in Geogebra, and using
text-based or block-based programming languages. As such, the focus of my study was to
introduce machine-based computing (Python) as a mediating tool to work with mathematical
ideas in the context of mathematical logic and set theory.

Additionally, I emphasize a need to focus on machine-based computing in the context of
mathematics for three main reasons. The first is that data science, and computer science more
broadly, are becoming increasingly valuable skills in an age where fields such as artificial
intelligence and machine learning are in position to be the most influential drivers of change for
our society (World Economic Forum, 2016). The second purpose draws on Lockwood et al.’s
(2019) commentary on the relationship between computing and students’ mathematical activity
in that computing will be a focus for mathematics educators soon to come. By encouraging the
use of computational software as a tool for students to learn and connect ideas in undergraduate
mathematics, I am encouraging a movement for where mathematics education will be going in
the coming decade. Lastly, many areas of mathematics lend themselves to machine-based
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computing environments, which suggests that the computational environments may serve as
useful tools for learning the mathematical content. For this study, I focus on a fine-grain analysis
of how programming may influence student reasoning and learning of mathematical set theory
and logic. The research question driving this study is the following: How does Python mediate
students’ reasoning of important concepts related to set theory and logic? In the next section I
describe a theoretical analysis framework which can be used to document students’ mathematical
activity while using a piece of technology.

Theoretical Framework
As alluded to in the introduction, programming is starting to become a fundamental aspect of

learning undergraduate mathematics. For example, Buteau et al. (2020) investigates how an
undergraduate student may use programming to learn both theoretical and applied mathematics.
Rather than investigating student work with a particular mathematical concept, the authors
articulated the use of a specific theoretical framework to study the use of programming as a tool
for learning mathematics. The framework is known as the instrumental approach (Artigue, 2002;
Guin & Trouche, 1998; Trouche, 2004). Importantly, Buteau et al. (2020) highlight that the
instrumental approach has been used in the past for various artifacts such as graphing calculators,
spreadsheets, applets, etc. but has not yet been used in the case where a programming language
was considered as the artifact. They do provide illustrative examples of the relationship between
mathematical inquiry and programming through the lens of an instrumental approach, but they
do not provide an in-depth analysis of one specific mathematical concept. Therefore, to
investigate how Python supports students’ learning and advancing mathematical activity related
to set theory and logic, I utilize the instrumental approach.

The description of the instrumental framework starts with the distinction between artifacts
and instruments. An artifact may be a physical object, such as a graphing calculator, but also may
be a formula, graph, or other objects that are central to a certain mathematical task (Roorda et al.,
2016). Once the artifact has been determined, the integration of the artifact into a learner’s
mathematical activity is known as the instrument. This includes the use of the artifact to problem
solve and as Trouche (2004) describes it, “an instrument can be considered as an extension of the
body, a functional organ made up of an artifact component...and a psychological component” (p.
285). In the context of this study, the artifact is the computer programming environment, Python.
As mentioned, programming environments have previously been utilized with this framework in
mathematics education, but never with a focus on students’ advancing mathematical activity in
relation to set theory and logic.

The development of the instrument is known as instrumental genesis (Artigue, 2002) and is
tied directly to the artifact and to the mental actions of the learner in their use of the artifact to
carry out a given task. This means that the learner may be afforded particular lines of reasoning
but also may be constrained in their mental activity given the particular features of the artifact
itself. This psychological component, the mental processes of the learner to carry out a particular
task, is referred to as an instrumented action scheme (Trouche, 2004). The idea of a student’s
scheme draws on the theory of constructivism and is described by Vergnaud (2009) as “the
invariant organization of activity for a certain class of situations” (p. 88). To clarify, this
definition encompasses the assimilation of familiar situations which learners respond to with
their learned rules or already-established ways of understanding as well as addresses the
adjustments necessary to address novel situations in which a learner is required to adapt, modify
or reorganize their psychological thought processes. In the literature regarding the instrumental
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approach, schemes are defined as consisting of four main features (Trouche, 2004; Vergnaud,
2009). These features are summarized well by Buteau et al. (2020) as:

1. The goal of the activity, with sub-goals and expectations.
2. Rules of action: stable behaviors of the subject.
3. Operational invariants, which can be theorems-in-action (propositions considered as

true) or concepts-in-action (concepts considered as relevant).
4. Possibilities of inferences. These possibilities are essential for the adaptation of the

scheme to the specific features of the situation. (p. 1026)
As Buteau et al. (2020) state, the rules of action and operational invariants may present

themselves through students’ mathematical activity in a situation where a student says “When I
want to do this [aim of the activity] … I always act like this [rule of action] … because I think
that [operational invariant]” (p. 1027). The rules of action are stable methods of activity that the
student will rely on to accomplish a task, based on the belief or conceptual understanding
(operational invariant) of how something works. The operational invariants are broken down into
two categories, theorems-in-action and concepts-in-action. The theorems-in-action are
constructed ways of understanding how something works. The concepts-in-action are the related
mathematical concepts that are pertinent to the goal of the activity. For example, if a student was
asked to use a graphing calculator to find the local max and min of a function given a certain
domain, an example of a rule of action would be ‘enter the function in the calculator’. A
concept-in-action might be ‘zero slope at local min and max,’ and a theorem-in-action might be
‘the window display of the graphing calculator must capture the specific domain that is asked in
the problem in order to be sure of the local max and min.’ Lastly, the possibilities of inference
would be situations in which the student encounters a problem that might result in new rules of
action and operational invariants. In accordance with constructivism, technically these schemes
are constructed within the learner’s mind and thus are not directly observable, however, they can
be inferred by an instructor or researcher based on the “regularities and patterns in students’
activities” (Drijvers et al., 2013, p. 27). That is, for the purposes of this study, a “scheme” is a
model that I construct based on the actions of the student.

As Roorda et al. (2016) highlight, at the core of the instrumental approach is the relationship
between one’s scheme and their technique, or actions in response to a given situation. In contrast
to a student’s scheme, the technique consists of the observable actions that are carried out by the
student. It is important to highlight that while the observable actions inform the researcher’s
interpretation of the learner’s scheme, their actions may also contradict the scheme that was
originally developed based on previous actions. So, the student’s techniques are in-the-moment
observable actions of the student that may or may not coincide with the student’s scheme. The
student’s techniques are linked with conceptual elements that help frame an understanding for
the student’s scheme. To capture the idea of instrumental genesis in more detail, it is broken into
two subcomponents, instrumentalization and instrumentation, each describing a distinct
directional relationship between the artifact and the learner (Artigue, 2002; Trouche, 2004).
Instrumentalization is the reshaping of the artifact in the learner’s mind as to what the artifact
can do to accomplish a certain task. Instrumentalization occurs through the use of the artifact and
develops over time as the learner understands the functionality of the artifact and its capabilities.
This includes the use of an artifact by the learner in unexpected or unintended ways. An example
of this could include a learner storing mathematical results and theorems in their graphing
calculator as a memory aid for future use. Instrumentation works in the opposite direction in
which the artifact itself, with its built-in constraints and potential uses, is shaping the ways in
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which the learner conducts their mathematical activity. In Table 1 I provide a hypothetical
example of what a student’s subset scheme might look like from an instrumental genesis
perspective using the framework provided by Roorda et al. (2016).

Table 1: Hypothetical Example of a Student’s Subset Scheme

Instrumentation
Scheme

Techniques Conceptual Elements Technical Elements

Subset Scheme Draw a Venn
Diagram

To determine if a set is a
subset, one must conclude
that every element of the set
is an element of the other set

Write a For Loop to
check that each
element is an
element of the larger
set

Roorda et al. (2016) provide examples of how an artifact may shape a learner’s mathematical
activity in their description of a student named Andy’s schemes regarding the concept of the
derivative. One specific example is Andy’s use of the dy/dx-option on the graphing calculator to
calculate the steepness of a graph at a particular point. Andy used this option in other examples
throughout the longitudinal study when they needed to find instantaneous rate of change and did
not coordinate between the dy/dx-option on the calculator and the symbolic representations that
were covered in class. The authors conclude that while Andy’s graphical and numerical
representations of the derivative were strong, these representations were being developed
independent of Andy’s symbolic representations, a negative consequence of Andy’s overreliance
and strong use of the graphing calculator. Trouche (2004) comments that both
instrumentalization and instrumentation work together in tandem as part of the instrumental
genesis process, and thus refers to a learner’s scheme as the instrumented action scheme as
opposed to other terms such as instrumentation scheme as used by Roorda et al. (2016). For the
purposes of this manuscript, I will adhere to Trouche’s approach to the development of a
learner’s scheme (as perceived by the researcher) and refer to it as an instrumented action
scheme or just scheme for short.

Methods
Participants were recruited from a four-year Hispanic-Serving Institution and were

purposefully selected (Patton, 1990) in that they had already taken, or are currently enrolled in
differential or integral calculus and not enrolled in an Introduction to Proofs course. Thus, the
students in this study were not familiar with mathematical logic or set theory. Additionally, the
students had little-to-no prior experience programming. The design of the study was a
conjecture-driven teaching experiment (Confrey & Lachance, 2000) in which the conjecture was
the following: programming can serve as an experientially real context in which students will be
able to connect mathematical logic and set theory. There were 10 students that participated in the
study divided into four groups with two to three students in each group. Due to the ongoing
COVID-19 pandemic, the teaching experiment sessions were conducted and recorded via Zoom.
For each session, I shared my screen which displayed two windows. The first window was a
Jamboard1 slide deck to present the tasks to the students, and to capture their ideas and diagrams.

1 Jamboard is a Google interface that serves as a collaborative and interactive canvas.
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In a window next to Jamboard, I had an Integrated Development Environment that was used to
run Python code.

For analysis, I utilized Roorda et al.’s (2016) framework for identifying the techniques,
conceptual elements, and technical elements as the basis for developing the students’
instrumented action schemes. Recording the conceptual elements was done through the
identification of the mathematical concepts that the students were learning. In analyzing the
techniques used by the students (e.g., the output students produced, diagrams they drew, logical
statements they considered), I watched the Zoom video recordings to document what exactly the
students were producing in relation to conceptual elements. To document the technical elements
(e.g., the code the students typed, the mathematics they wrote in Jamboard), I analyzed the Zoom
video recordings to document what the students typed and when they typed it. This analysis was
done by tagging the audio transcriptions using MAXQDA with Concepts, Techniques,
Tech-Elements as the main codes for analysis. If a student typed something without saying out
loud what they had typed, I used the ‘memo’ feature within MAXQDA to document what the
student typed. This way I was able to analyze all three aspects of the students’ instrumented
action schemes within MAXQDA. By coding the techniques, conceptual elements and technical
elements, I was then able to construct each students’ instrumented action schemes. Importantly,
the students’ schemes were constructed with the four features as described by Trouche (2004)
and Vergnaud (2009) which included the goals, rules, operational invariants and the possibilities
for inference. Due to the page length constraints, I highlight the results for only one of the
students on one problem within the larger teaching experiment. Additionally, the data presented
here came from the fourth session out of five total sessions with this group of students.

Results
In this section I present the work of Alonso (pseudonym), a participant in Group 4 as they

worked on a problem in which they were asked to “find the common elements across all three
sets.” The three sets, A, B, and C were given to the students in the study and contained both
strings and integers. The students were also asked to “draw a diagram of what this set
relationship might look like first before you write any code.” I highlight Alonso’s work due to
the unique nature of his approach to solving this task. No other student in my study attempted to
solve the task in the same way that Alonso did. First, I will briefly present some information that
will be pertinent to understanding Alonso’s solution method. First, repeated elements in a set, in
Python and in mathematics in general, are not counted multiple times for the total number of
elements that belong to the set. For example, if we define A = {1, 2, 3, 4, 5, 5}, the number of
elements that belong to A, otherwise known as the cardinality of A, is five. Second, the
cardinality of a set can be determined in Python using the 'len()' function. This function finds the
length, or the number of items in the iterable data object. Also, it is important to note that before
drawing the diagram, Alonso wanted to clarify what I meant by “diagram.” I told him that I
would “leave it up for interpretation.” Figure 1 is a screenshot of Alonso’s diagram, which he
used as an opportunity to write pseudocode, a step-by-step process outlining an algorithm that
would solve the problem. Of the ten students in the study, Alonso and his partner were the only
two to write pseudocode. The other students either drew Venn diagrams, circled certain elements
in the sets, or did some type of representation of what the intersection process might look like.

The first process in Alonso’s pseudocode was to iterate through all the values, or elements, in
A and add those elements to the set B and the set C. This step is fairly straightforward but
requires a little interpretation as to what is meant by ‘set B and C’ in the second line. One could
interpret this to mean the logical operator 'and,' because he refers to it as a ‘set’ instead of ‘sets,’
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and would thus possibly imply the intersection of the two sets B and C. However, in his
description of the pseudocode, Alonso clarified this line when he said, “So, if you had set A, you
would add it to both set B, and C. So that all the values from set A get cycled through the two
sets.” This confirms to me that Alonso was referring to two separate sets, set B and set C.

Figure 1. Alonso’s Pseudocode for Set Intersection

The next step in Alonso’s pseudocode was to check the cardinality of the two sets B and C. As
Alonso described it, “With each iteration you check to see if the length has increased. If the
length has not increased, then you know that there has been a repeat.” I am interpreting this
statement as a process of adding each element from A to both sets B and C. One then finds the
cardinality of the sets B and C. If there is a change in the cardinality from before the element in
A is added to the sets B and C, then one can determine that this element is not shared with the
set. For example, let A = {1, 2, 3} and B = {4, 5, 6}. If we add the element 2 to B, then the
cardinality of the set B would change from three to four since 2 is not an element of B. The next
step in Alonso’s pseudocode is to add the element to a new set, D, only if the cardinality does not
change when added to sets B and C. An overview of the whole computational process is
described by Alonso in the following way:

This would require three For Loops and at the end you would just print the length of D
and you would get the number of common elements. Or you could just print D to get
which elements are in common.

The three For Loops that Alonso mentioned represent three iterative processes to add all the
elements from each of the three sets to the other two remaining sets. Of course, three For Loops
are not required. We did not go through the process of writing out Alonso’s code as we were
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running close to the end of time during the session and we still needed to hear from Alonso’s
partner about his diagram, but given that Alonso’s method was so detailed, my hypothesis is that
having the actual code would not change anything about his scheme or his conception of finding
the intersection of multiple sets.

Due to Alonso’s solution method, I refer to his scheme as the Monitor Change in Cardinality
Scheme. As for his scheme, it is evident that the goal is to find the intersection of the three sets. I
see two rules-of-action for Alonso. First, ‘Construct an algorithm that would select each element
in all sets’ and second, ‘verify whether or not each element existed in each of the other sets.’ One
theorem-in-action would be, ‘Using a For Loop, one can iterate through every element of a
defined set in Python.’ A second theorem-of-action is, ‘One can determine the existence of
common elements by monitoring any change in the cardinality of a set once an element has been
added to the set.’ These theorems in action led Alonso to the solution method presented in his
pseudocode. Given that this is just one problem from the larger teaching experiment, there is no
identification of a possibility of inference for Alonso. A summary of Alonso’s scheme can be
found in Table 4.4.

Table 2: Alonso’s Monitor Change in Cardinality Scheme

Instrumentation
Scheme

Techniques Conceptual
Elements

Technical Elements

Determine Set
Intersection by
Monitoring
Change in the
Cardinality

Add an
element to a
set and
calculate the
cardinality of
the set

The cardinality
of a set
changes when
a new,
non-repeated
element is
added

By writing a For Loop, one can pass
through every element in a set. These
elements are added to the other sets and
the cardinalities of the other sets are
calculated. If there is no change in the
cardinality from before the element was
added to after, for all sets, then the
element is a repeated element and can
be added to a new set.

Conclusion
Without Python, it is unlikely that Alonso would have come to that solution method to

determining the set intersection of three sets, which is evidence on its own that Alonso
constructed an instrument. Moreover, one important realization from analyzing these results was
that Alonso used the For Loop and the 'len()' function as the artifacts in the construction of an
instrument to solve a problem. That is, For Loops and functions are computational tools that
were not originally designed to find the intersection of sets, but were co-opted by Alonso to
solve the mathematical task of finding the intersection of three sets. This is a nuanced elaboration
of how I initially interpreted the role of Python as the primary artifact when I designed this study.
Specifically, when I originally conceptualized this study, I considered Python itself as the
primary artifact in the students’ instrument development. I was thinking about text-based code in
general, not specific computational tools like For Loops and functions, which is what emerged
through Alonso’s work. The brief example presented in this manuscript illustrates that it is
possible to understand how machine-based computing can be used to develop and enhance one’s
understanding of a mathematical idea.
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Mathematics Learning Assistantships and Undergraduate Students’ Identity Development

Paula Jakopovic, Ph.D. Kelly Gomez Johnson, Ed.D.
University of Nebraska at Omaha University of Nebraska at Omaha

Increasing the participation and achievement of students in science, technology, engineering,
and mathematics (STEM) in PK-16 education continues to be a focal area of educational
transformation and research. Faculty members at Institutions of Higher Education (IHE) plan,
implement, and investigate how program structures can support the development, retention, and
overall success of undergraduate students in STEM. Active learning classrooms, especially in
mathematics, are one way IHE are reforming student learning experiences, and also provide a
unique opportunity to engage undergraduate learning assistants with faculty to support
near-peer students and deepen their own learning. This report examines the role of learning
assistantships in developing undergraduate preservice teachers' identity while participating in a
Noyce Scholarship program. Findings from this study show that preservice teacher participants
gained competence in a variety of forms and developed their identity as a teacher through their
experience as learning assistants in active learning classrooms.

Keywords: Teacher Preparation, Mathematics Education, Learning Assistants

Teacher attrition rates in the United States (U.S.) are approximately 8% annually. However,
the highest rate of teacher attrition takes place in high-needs schools and turnover rates for
mathematics and science teachers are nearly 70% greater in low socioeconomic schools
(Carver-Thomas & Darling-Hammond, 2019). In 2017, 47 states and Washington D.C. identified
shortages in qualified mathematics teachers (U.S. Department of Education Office of
Postsecondary Education). Additionally, enrollment in teacher preparation programs has declined
by more than one third since 2010 (Partelow, 2019). These factors not only contribute to the
teacher shortage, but also to a lack of highly qualified, experienced teachers in classrooms. Kini
and Podolsky (2016) found that teacher experience is associated with increased student
achievement, highlighting the importance of teacher retention. Conversely, recruitment and
retention challenges result in approximately 40% of new STEM (science, technology,
engineering, mathematics) teachers entering the profession underprepared, yet they are the most
likely to teach in high-needs schools, serving a majority of historically marginalized populations
of students (Carver-Thomas, 2018; Carver-Thomas & Darling-Hammond, 2019; Sutcher et al.,
2016). Teachers who receive less pedagogical training are more likely to leave
teaching—especially in mathematics and science (Ingersoll et al., 2012).

This report examines an effort made by a mid-sized, urban university to recruit, train, and
retain highly qualified secondary mathematics teachers. The project, supported by a National
Science Foundation Noyce Track 1 grant (# 1852908), engages undergraduate dual-major
mathematics and secondary education preservice teachers (PSTs). Within the program model,
students serve as learning assistants (LAs) in active learning mathematics courses with the
support of faculty mentors. In this research report, we utilize Chickering’s Seven Vectors of
Identity Development framework (Chickering, 1969; Chickering & Reisser, 1993) to answer the
following research question: How do learning assistantships in active-learning mathematics
courses develop undergraduate students’ identities as future mathematics teachers?
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Literature Review
The development of undergraduate student identity has been recognized as an essential factor

impacting students’ knowledge/competence, habits, attitudes, dispositions, and emotions (e.g.,
Allen & Schnell, 2016; Grootenboer & Zevenbergen, 2008). For example, identity development
in mathematics begins in early childhood education where dispositions and deeply held beliefs
about a student’s ability to participate and perform in areas such as mathematics is established
(Aguirre et al., 2013). Factors influencing STEM identity development include content
competence, the ability to showcase learning to others (performance), and recognition of
competence and ability in STEM by others (e.g., Carlone & Johnson, 2007; Herrera et al., 2012).
These factors reveal the multifaceted and complex nature of identity development (competence,
performance, and recognition) and the interwoven nature of interpersonal interactions involved
in developing individuals’ social and cultural identities (Herrera et al., 2012).

For undergraduate students interested in STEM education, an entirely new PST identity
formation is needed to build upon their background knowledge and experiences, dispositions,
roles, and responsibilities as future teachers (Beijaard et al., 2004; Slavit et al., 2016). For
example, Ball et al. (2008) posit that effective mathematics teaching requires knowledge within
six different domains that encompass both subject matter and pedagogical content knowledge.
Not only must teachers deeply understand mathematics content, they must also be familiar with
specialized mathematical content knowledge required for teaching and be able to employ
effective teaching practices, both content and non-content specific. The K-12 teacher identity
literature based across grade bands and contexts are well represented (e.g., Flores & Day, 2006;
Friesen & Besley, 2013; Obenchain et al., 2016); however, STEM teacher identity development
is still a growing area of educational research due to the increasing workforce demands and
changing instructional expectations of STEM teachers to more actively engage students.

Classroom-based practicum experiences have been shown to strengthen some aspects of
teacher preparation, yet many key qualities of effective teachers need to be addressed beyond
PSTs’ technical knowledge of content and for teaching (Banks et al., 2005). PSTs must have
“wider-professional experiences” (WPEs) that allow them to consciously grapple and engage
with their own attitudes and expectations on teaching and learning and to develop, enact, and
reflect on their own professional knowledge in new contexts (Darling-Hammond & Bransford,
2005; Sleeter, 2018). For example, 21st century STEM teachers are called to create active
learning environments where students engage deeply with content and collaborate with peers, as
instructors uplift student thinking in an equitable learning space (Laursen & Rasmussen, 2019).
Despite this aspiration, memorization and lecture-based instruction are still cited as the most
commonly used approaches in STEM classrooms (Eurydice, 2015). Preparing PSTs to
implement student-centered, active learning environments on their own requires them to
experience learning and reflect on these environments through college coursework, field
experiences, etc. (McDonnough & Matkins, 2010). Developing awareness through practicum and
WPEs helps PSTs see what active learning looks like and how student engagement and learning
can be impacted. Research has shown that undergraduates serving as learning assistants (LAs) in
active learning classrooms not only shifted their understanding from unawareness to awareness
of active teaching practices (Hall, 1974; Tunks & Weller, 2009), but also improved their own
development of content understanding and identity, as well as enhanced their communication
skills (Close et al., 2016; Goff & Lahme, 2003). Further, LAs recruited to K-12 teaching have
demonstrated greater use of reform-based practices than their peers (Gray et al., 2016). While
there is growing interest in exploring the processes and outcomes of embedding learning
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assistantships into undergraduate programs (e.g., Gomez Johnson et al., 2021; Vandergrift et al.,
2020), connecting these experiences to PST development is an area of investigation that is
needed to develop and retain future teachers.

Theoretical Framework
Undergraduate students undergo substantial changes in the way they think, act, and relate to

others and to self during this pivotal time in their lives. Beyond cognitive development through
academics, undergraduate education can be enriched by specific learning experiences and
interactions in and outside of the classroom (Quinlan, 2011). Seminal work by Chickering &
Reisser (1993) integrated undergraduate students’ cognitive and psychosocial development
theory into a model illustrating the fluid nature of student development along seven core areas,
called vectors. The vectors are: developing competence, managing emotion, moving through
autonomy toward interdependence, developing mature interpersonal relationships, establishing
identity, developing purpose, and developing integrity. These vectors aim to define identity
development as a cyclical continuation rather than a linear developmental path, later illustrated
by Leggette and Jarvis (2015) as spokes on a wagon wheel to illustrate the interconnectedness of
the developmental vectors. Chickering and Reisser’s call to higher education institutions is to
create environments that foster broad developmental practices and policies to support human
talent and potential. By advancing strengths and skills along each vector, students are better
equipped to overcome barriers and unexpected challenges through increased cognitive and
psychosocial versatility (Chickering 1969; Chickering & Reisser 1993; Evans et al., 2010).

Research Methodology
This study investigates the ways in which engaging secondary mathematics PSTs as LAs in

active learning undergraduate mathematics courses influences their development along
Chickering’s vectors of development. Understanding the lived experiences of the participants is
well suited to qualitative research design, as we are able to collect rich and descriptive data
(Charmaz, 2008; Yin, 2018) to glean how student participants “interpret their experiences
and…[assign] meaning they attribute to their experiences” (Merriam, 2009, p. 5).

Context and Participants
Faculty from the institution’s mathematics and teacher education departments developed a

program funded by a five-year National Science Foundation Robert Noyce Teacher Scholarship
Program aimed at recruiting and retaining high quality secondary mathematics teachers.
Undergraduate students participating in the project are paired with a faculty mentor with whom
they engage as LAs for active learning mathematics courses. Participants for this study include
nine undergraduate students who participated in the program in Fall 2021. Five of the nine
participants identify as female and four as male. Five out of the nine participants are
upperclassmen (juniors or seniors) who have had at least one practicum experience within their
traditional teacher preparation program. Fall 2021 piloted the LA experience in active learning
mathematics courses uniformly with all participants.

Data Collection and Analysis
Participants completed a total of ten reflective journal entries across a 16-week semester in

Fall 2021. The reflection prompts were open-ended in nature but asked the students to frame
their responses around potential implications for them as future teachers. Participants agree at the
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onset of their acceptance to the program to allow these journals as data collection to inform the
research and evaluation requirements of the program. In addition to the written reflections, the
participants also take part in a focus group at the end of the fall semester. The following
interview prompts were used to facilitate the semi-structured interview with the group:

1. Describe your learning assistant experience.
2. What, if anything, have you learned about mathematics? Did anything surprise you?
3. What, if anything, have you learned about teaching mathematics? Did anything surprise

you?
4. What, if anything, have you learned about learners? Did anything surprise you?
5. What, if anything, have you learned about yourself after serving as a learning

assistant/teaching assistant?
6. Is there anything you would change to improve your experience as a learning assistant?

What advice do you have?
We used Chickering’s Theory of Identity Development (Chickering, 1969; Chickering &

Reisser, 1993), which is framed around seven vectors, to create a codebook. We used the
codebook to engage in deductive, first round coding (Saldaña, 2021), and we added descriptive
examples to the codebook to ensure the stabilization of subsequent coding across the data
(MacQueen et al., 1998; Roberts, et al., 2019). We read through and coded excerpts from the
participants’ reflections and the focus group interview that identified moments where students
referred to vector-aligned experiences/opportunities, which are: 1) developing competence, 2)
managing emotions, 3) moving through autonomy toward interdependence, 4) developing mature
interpersonal relationships, 5) establishing identity, 6) developing purpose, and 7) developing
integrity. As we coded the data, we identified an additional, emergent code of “self-awareness,”
which we inductively added to our list of codes (Miles et al., 2020). In a second round of coding,
we parsed out sub-codes within the parent codes to help us better understand the aspects of each
vector that students self-reported experiencing. To increase the validity and reliability of our
results, we coded all data sources together, allowing us to reconcile in the moment any potential
differences in coding. The following section presents preliminary findings from our analysis.

Results
Identifying which vectors participants experienced in their role as LAs is an important first

step to developing a richer understanding of how wider professional learning experiences can
influence PST development. As such, we were interested in the codes that were most highly
saturated in the data. Moving through autonomy toward interdependence, developing mature
interpersonal relationships, developing purpose, managing emotions, and developing integrity
were each coded less than 25 times. Of the seven vectors, the remaining two codes, developing
competence (coded 85 times) and establishing identity (coded 41 times) surfaced as the most
highly saturated codes in our data, so we sought to further examine what it was about these codes
that participants identified surfacing within their LA experiences to better understand how we
might leverage such experiences to maximize identity development.

Developing Competence as Future Teachers: Mastering Content, Pedagogy, and
Relationships

Chickering sub-divides the vector “developing competence” into several components, two
of which surfaced regularly in our data: intellectual competence and interpersonal competence.
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Intellectual competence is defined as including the ability to master content, develop
sophistication related to intellect and aesthetic, and build a wide range of skills, whereas
interpersonal competence involves the acquisition of communication skills such as listening,
cooperating, and communicating and responding effectively (Chickering, 1969; Chickering &
Reisser, 1993). These sub-codes were the most frequent in our data, with 63 instances of
intellectual competence and 22 instances of interpersonal coded, thus we wanted to tease out the
aspects of participants’ experiences as LAs that resulted in their sense of gained competence.
Intellectual competence.We uncovered several common themes in our analysis of the sub-code
of intellectual competence. First, multiple participants described development of their ability to
recognize (and sometimes employ) effective strategies for engaging learners in the classroom.
One participant reflected on their experiences in an active learning classroom, stating,

As a LA I have an opportunity to, it's a very interactive class and so I'm having one on
one conversations with students or having group conversations with this group and
learning a lot about how to guide students' thinking without giving them the answer. I
think that's been a big takeaway from the LA experience (Focus Group Interview).

For several of the participants, this was their first-time experiencing mathematics instruction in
an active learning environment, as either a learner or a teacher, and it pushed them to rethink
their understanding of the structure of a mathematics lesson at the undergraduate level.

This led into our second observation that multiple participants discussed the ways in which
observing their mentor teachers’ teaching style influenced their thinking about mathematics
instruction. They identified specific teaching structures and strategies their mentors utilized, as
well as the impact it had on students in their classroom. Participant A explained it thus,

I have been trying to analyze and pick apart [my mentor’s] teaching style… because he is
a phenomenal teacher and I want to be the same for my students. One big thing I have
noticed is that he… tells the students to do something alone for a couple minutes, then
discuss with their partner for a minute, then their group for another minute. He does this
everyday… Everything he does is consistent, and it reflects on the students' engagement
and learning. (Learning Assistant A).

In addition to thinking about how content is delivered, participants also reflected on the depth
of mathematics content knowledge they would be required to have as future mathematics
teachers and how to make mathematical connections obvious for their students. A participant
described one instance of this he experienced while observing, saying,

I am going to reach out to my mentor that I am teaching with and ask if they would share
the lesson plan ahead of time. This way I can study up on the mathematics I know but
forget due to the length of time it has been since I learned or used it. Just because I
learned it before, does not mean that it is permanently retained. More practice and
re-learning can solidify the mathematics in my brain though (Learning Assistant B).

These recurring themes around intellectual competence illustrate the potential power of using
learning assistantships to help students develop mathematical content and pedagogical
knowledge for teaching (Ball et al., 2008). As participants continue in their preparation program
and future practicum experiences, having the opportunity to recall these WPEs as LAs can help
them be more conscious of their teacher actions and leverage their own experiences to help their
students learn (e.g., Darling-Hammond & Bransford, 2005; Sleeter, 2018).
Interpersonal competence. In addition to developing intellectual competence, participants also
reflected on how their experiences as LAs influenced growth in their interpersonal competence,
or their ability to communicate and collaborate effectively, in approximately one-fourth of
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segments coded for this vector. As participants engaged in conversations with their mentors and
with the students in the mathematics courses they assisted as LAs in, they reflected on how these
opportunities allowed them to develop their capabilities to engage with colleagues and students.

One aspect of this competence arose through comments that indicated the LAs’ learning
about the importance of fostering positive relationships with the students in their classes.
Receiving advice about how to do this in mathematics courses from veteran instructors can help
to develop this vector in preservice teachers. Providing additional and early access through LA
experiences can offer these novice teachers more chances to reflect on this. As one LA shared,

This past week I was able to get to know my mentor teacher…we discussed… her past
experiences as a teacher and what I had experienced so far as a future teacher… Her
biggest piece of advice was to try and build relationships and trust with the students I will
work with… I know that I will have to find my own way here, but hearing examples of
what has worked for others helps a bit (Learning Assistant C).

Recognizing the potential impact that the trust and rapport that comes of this relationship
building can have on student engagement in mathematics courses was uplifted by another
participant, who said, “I want to get to the point where the students become comfortable with
explaining their thought process through the work to me. My goal is to increase the student’s
ability to discuss ideas and their confidence in math” (Learning Assistant D).

Another aspect of interpersonal competence that arose in the data was the idea of
vulnerability in front of students as a way to build trust. One participant described this by saying,

I have gotten more confidence in myself ironically when I’m able to admit when I’m not
confident. We were learning about [a math strategy] ... I had never really seen before
and… just being real with the students and saying, hey listen, this is not how I learned it
when I took this class… and I think the students actually really appreciated that because a
lot of them found it really confusing as well. So, I think just, I learned about myself to be
more open and straightforward with the students (Learning Assistant E).

This notion of “humanizing” mathematics and the faculty who teach mathematics courses is
perhaps a novel revelation for PSTs, who may historically think of the teacher as being the
“expert” in all aspects of their field, especially STEM areas (Aguirre et al., 2013; Allen &
Schnell, 2016). Taken together, participants recognized that being a “good” mathematics teacher
involves more than knowing content, it also requires them to know their students and vice-versa.

Establishing Identity as Future Teachers: Developing a Professional Identity
Establishing Identity was the second most saturated code in our data, with this parent code

identified a total of 41 times across the data. Within the larger code of establishing identity, we
nested several sub-codes: professional/teaching identity, social or group identity, personal
identity, and identity threats. Of these, professional/teaching identity was overwhelmingly the
most often coded in the data with a total of 25 counts coded, or just over 60% of the segments
(social group and identity threats coded only six times each, personal identity coded only 4
times). A crucial part of helping undergraduate students make the shift from their identity as
“student” to their identity as “teacher” is providing them opportunities to gain knowledge of the
praxis of teaching and strategies, and also to gain authentic experiences to implement such skills
and strategies in real-time. Although most teacher preparation programs offer field experiences
where PSTs work in classrooms with students, there is no guarantee that all field placements are
with experienced mathematics teachers who incorporate research informed teaching practices,
such as active learning and teaching through inquiry. Supplementing these more traditional
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teaching apprenticeships with learning assistantships can offer PSTs in mathematics rich
opportunities to develop not only their praxis, but their self-image as a teacher practitioner.

Participants recognized the importance of this, as well as the impact of engaging as LAs on
their professional identities as future teachers. One LA summarized this by saying,

Additionally, it helps us grow our “teacher voices,” which has been my biggest growth.
When I presented my first proof to the class, I was nervous to talk in front of others.
Now, with my most recent presentation, I was much more confident, was able to face the
class and present from the board and engaged with my peers. I noticed my voice was
more confident… (my “teacher voice”!). I believe I am more confident now because I
have found my ‘place’ in the class and have gotten to know my peers and professor more,
which helps me understand what type of presentation and engagement I should do
(Participant F).

Our findings support previous research finding that learning assistantships develop both content
understanding and their identity as a future professional (Hall, 1974; Tunks & Weller, 2009). In
part, our data show that participants’ ability to find their voice, communicate their thinking, and
work with others helped them see themselves more as teachers and leaders in the classroom
(Close et al., 2016; Goff & Lahme, 2003).

Applications to/implications for teaching practice or further research
Findings from this study support that learning assistantships are advantageous WPE that

support the development of PSTs competence and professional identity as second mathematics
teachers. In particular, these early program and full semester LA experiences are unique factors
of this program design that have the potential to accelerate PSTs development. These LA
experiences also provide intentional mentor pairing that are often challenging to control in
traditional teacher preparation programs. The sample size and data set presented here are small
and lack diverse representation of student participants. However, this study indicates the need for
research on the impact of LA opportunities on PST development in mathematics and other
STEM areas. This work does add to the body of existing research in this area and presents
elements of this apprenticeship model that are important to focus on in future studies:

● leveraging learning assistantships to develop PSTs content and pedagogical knowledge of
teaching secondary mathematics using active learning strategies;

● utilizing learning assistantships as models for how to foster positive, trusting
relationships with students and allowing LAs to examine its impact on student
engagement and achievement; and

● providing additional structured, scaffolded experiences teaching mathematics to facilitate
PSTs’ sense of “teacher self.”

Future work has the potential to extend to other STEM education content areas, which can help
to generalize the benefits and challenges of using learning assistantships to develop
undergraduate PST identity and support the learning outcomes of mathematics students learning
side-by-side with their near-peers as guides.
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Goals, Orientations, and Social Support Offered by a Mathematics Graduate Teaching Assistant 
 

Brittany Johnson 
University of Nebraska-Lincoln 

Research suggests that support offered by an instructor can significantly impact student 
experiences and that there are different types of support that instructors can offer (e.g., 
emotional support, informational support, etc.). This case study examines the goals and beliefs of 
a first-year Mathematics Graduate Teaching Assistant (MGTA) in an attempt to explain their in-
the-moment classroom decisions about offering different kinds of support to their students. This 
study found that the MGTA’s beliefs about the nature of mathematics and how mathematics 
problems are solved were critical in understanding their tendency to offer a particular type of 
support. Understanding the ways that MGTAs support their students can initiate a valuable 
discussion surrounding novice mathematics instructors and their professional development. 

Keywords: Graduate Teaching Assistants, Social Support, Goals, Beliefs, Decision-Making 

In recent years, education researchers have become more concerned with teacher-student 
relationships and the impact these relationships can have on student experiences. Teachers are no 
longer considered couriers of knowledge as they have been in the past. Several studies from the 
past 20 years provide evidence that a positive teacher-student relationship correlates to increased 
engagement, motivation, effort, achievement, and overall well-being for students (Furrer & 
Skinner, 2003; Niehaus et al., 2012; Tennant et al., 2014). The present study is concerned with 
one specific facet of the teacher-student relationship: social support. Social support refers to any 
action intended to alleviate or prevent negative emotions that someone might experience (House, 
1981). Numerous studies have explored social support in the classroom, including the kinds of 
social support that students receive, student perceptions of social support, and the effects of 
social support on student experiences (Federici & Skaalvik, 2013; Tennant et al., 2014). 
However, little research has explored social support from the perspective of the teacher, 
including the decision-making process behind offering different kinds of support. Tardy (1985) 
claims that the direction of social support (i.e., the distinction between the giver and receiver) is 
one of the most important characteristics of social support but acknowledges that the receiver is 
usually the focus of research. 

Since research suggests that social support has the potential to positively benefit students and 
that different kinds of social support affect students in different ways, it is important to 
understand the elements that contribute to decisions to provide different kinds of support. While 
much of this decision process occurs subconsciously, research suggests that the decision-making 
process is determined by things that one can become aware of (Schoenfeld, 2011). An awareness 
of the decision-making process and the elements that it draws upon can better inform such a 
decision and lead to more intentional, productive support being offered. 

The purpose of this study is to explore how Mathematics Graduate Teaching Assistants 
(MGTAs) choose the types of support they offer their students in first-year math courses by 
exploring their goals and orientations about teaching (orientations refers to one’s beliefs and 
values) (Schoenfeld, 2011). MGTAs comprise a consequential portion of the teaching force 
behind undergraduate mathematics education, teaching 17% to 21% of mathematics courses at 
doctoral institutions (Blair et al., 2013). The long-term intent of this research is to better 
understand the decision-making process behind offering support, enabling MGTAs to become 
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more aware of the ways they offer support and in turn better serve their students. Such an 
understanding has the potential to contribute to professional development for all educators, not 
just graduate students, as making decisions about social support is a ubiquitous part of teaching 
(Schoenfeld, 2011). 

This paper is a part of a larger, semester-long study that explored the ways that six MGTAs 
conceptualize the types of social support that they offer, as well as the goals and orientations that 
influence their decisions to offer social support in particular ways. Due to space limitations, this 
paper focuses on one MGTA and the findings related to the following questions: 

RQ1: What goals and orientations are present when MGTAs offer social support to their 
students? 
RQ2: How can MGTAs’ goals and orientations be used to explain the types of social 
support that they offer their students?  

Literature Review 
This study was designed around two separate frameworks, the first being House’s 

categorizations of social support (1981). House asserts that all examples of social support can be 
categorized as emotional, informational, instrumental, and/or appraisal support. Emotional 
support is defined as support in which the negative emotion itself is being combatted, such as a 
teacher providing validation to a student experiencing self-doubt. Informational support is that in 
which resources are provided to combat a negative emotion indirectly. For instance, a teacher 
referring a student struggling with a homework problem to a helpful example in the textbook 
would be considered informational support. The other two categories are not discussed in this 
paper, and therefore will not be addressed due to space limitations. Despite being written more 
than four decades ago, House’s framework is still referenced today and more recent frameworks 
for categorizing social support are comparable to House’s (Wu et al., 2020; Feeney and Collins, 
2015; Federici & Skaalvik, 2014). 

The second framework around which this study was designed is Schoenfeld’s “resources-
orientations-goals” framework for in-the-moment decision-making (henceforth referred to as the 
ROG framework) (2011). Orientations include one’s beliefs, values, and other related concepts, 
while goals are “something that an individual wants to achieve, even if simply in the service of 
other goals” (Schoenfeld, 2011, p. 21). According to the framework, one’s in-the-moment 
decisions are shaped by these constructs, and if you know enough about one’s resources, 
orientations, and goals, you can understand and ultimately explain the decisions they make 
(Schoenfeld, 2011). The present study was conducted in a convened course in which lesson 
plans, student workbooks, and assessments were constant across all participants and were 
therefore excluded from consideration. 

Methods and Procedures 

Methodological Approach 
This study used a qualitative case study methodology, defined as “an empirical inquiry that 

investigates a contemporary phenomenon… in depth and within its real-world context” (Yin, 
2014, p.16). This methodology is appropriate for this study because the research questions are 
less focused on the general phenomenon (the decision-making process behind MGTAs offering 
social support) and more concerned with the individual cases. Each case is an individual MGTA 
teaching a calculus recitation during their first semester as a PhD student at a large Midwestern 
public university. A descriptive case study design gives each participant an opportunity to have 
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their story be told in order to “develop a complete, detailed portrayal of [the] phenomenon” 
(Schwandt & Gates, 2017, p. 346). 

Participants 
Only MGTAs teaching a recitation for either Calculus I or II were considered for this study. 

MGTAs were excluded if they were doing doctoral research in mathematics education or if they 
had significant teaching experience prior to matriculation, as they were not representative of a 
typical graduate student. This paper focuses on one first-year MGTA in the study, Blake 
(pseudonymized). 

Data Collection 
Data was collected in three stages. First, MGTAs were interviewed to explore their goals and 

orientations related to teaching. Secondly, each MGTA was observed teaching for four 75-
minute class meetings; these lessons were audio-recorded while the researcher took note of 
examples of social support that they noticed the instructor offer. The observations were followed 
by a second semi-structured interview to discuss a selection of the observed examples of social 
support. Here, MGTAs were asked to reflect on their motivations and decision-making behind 
each example and asked to categorize each example within the social support categorization 
framework (House, 1981). 

Data Analysis 
A pilot study indicated that multiple coding methods would be needed to analyze the data 

through the lenses of the different research questions. The purpose of the first phase of coding 
was to address RQ1 by focusing on the goals and orientations of each participant; this phase used 
both structural and provisional coding to develop parent and child codes, respectively. Structural 
coding refers to the use of codes relating data to specific research questions; this method allows 
one to categorize excerpts related to similar topics before moving on to further coding and 
analysis (MacQueen et al., 2008; Saldana, 2016). In this study, parent codes were used to 
categorize data related to goals, orientations, and social support, allowing for simultaneous 
coding. In provisional coding, a codebook is developed prior to data collection, but can be 
“revised, modified, deleted, or expanded to include new codes” (Saldana, 2016, p. 168). Child 
codes were developed based on the literature review and experiential data (both from the pilot 
study and the researcher’s familiarity with the data) to capture different types of goals and 
orientations that participants might express; child codes included things like “Goals – Student 
Performance” and “Orientations – Nature of Mathematics”. The flexibility of provisional coding 
allowed the researcher to continuously add codes as new goals and orientations arose. Each 
interview was coded multiple times to ensure that no codes or excerpts were missed. 

A second phase of coding utilized hypothesis coding. In hypothesis coding, codes are 
generated “specifically to assess a researcher-generated hypothesis” (Saldana, 2016, p. 171). The 
researcher developed specific theories for each participant based on the first cycle of coding, 
memos that were taken throughout the study thus far, and peer debriefing. An individualized 
codebook was then developed for each participant to assess the researcher’s hypotheses, and 
coding was repeated until no new themes emerged. 

Findings 
What follows is a discussion of Blake. Of the six participants in the larger study, Blake’s case 

exemplifies how the ROG framework (Schoenfeld, 2011) can be used to relate MGTAs’ goals, 
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orientations, and social support actions. Blake’s case ultimately forms the foundation that the rest 
of the cases expand upon.  

A Brief Introduction to Blake 
Blake is a first-year MGTA whose enthusiasm for teaching was immediately evident during 

data collection. When talking about their reasons for coming to a doctoral program, Blake said, 
I want to learn more about math, but then on top of that, I want to become the best math 
educator that I can be. So teaching for me is extremely important… I find joy in teaching 
these topics, leading students through problems, helping them understand, and just also in 
general just helping them enjoy mathematics. 

Prior to graduate school, Blake sought out various opportunities to teach in informal settings 
(such as tutoring) and continued to seek out opportunities to improve their teaching throughout 
their first semester of graduate school. Blake puts a great deal of energy into their teaching, 
including developing rapport with their students. Throughout this study, it was evident that Blake 
knew and cared about their students. 

During the observations, Blake gravitated towards offering informational support over the 
other categories of social support (House, 1981). During data analysis, two compelling themes 
emerged that could explain Blake’s tendency towards informational support: their perspectives 
on what mathematics is and how math problems should be solved. What follows is a description 
of Blake’s goals and orientations related to these themes and an explanation of how they are 
reflected in Blake’s social support actions. 

Goals and Orientations Related to the Nature of Mathematics 
When reflecting on what mathematics is and what it means to solve math problems, Blake 

regularly made comparisons to solving a puzzle. When asked about their goals, Blake said, “I 
always think of it [math] as a puzzle, so hopefully I can transfer that to them [my students]. Like 
this is like a fun puzzle, here are the rules that you can use”. They went on say that, like a puzzle, 
much of their enjoyment in math comes from the sense of accomplishment one gets after 
completing a problem: 

I [emphasized by speaker] enjoy doing math, like mathematics is fun to me. It’s 
frustrating, it’s annoying, sometimes it’s heartbreaking… But I’m here in a PhD program 
because I enjoy doing and teaching and just like, being a part of mathematics. And so if I 
can get my students to then feel some of that same enjoyment… If they did a thousand-
piece puzzle and like a really cool [math] problem, like if I can get the idea in their head 
that that is possible? Then I’ve already won. I’ve done most of what I want to do. 
These ideas—that math is like a puzzle and that it is more enjoyable if it is challenging—are 

personal beliefs of Blake’s that present as goals that they have for their students and are 
frequently reflected in their day-to-day teaching practices. For example, Blake often encouraged 
students to try problems that the students may find challenging. Blake suggested different 
problems for different groups depending on the capabilities of each group (e.g., Blake suggested 
challenging problems to groups who appeared to have mastered the content for that day while 
suggesting more standard or introductory problems to groups who seemed to need more practice 
before attempting the challenging problems). This suggests that Blake was not only aware of the 
capabilities of individual students and groups, but also that they had a sense of what degree of 
difficulty would be both challenging and rewarding for different students. 
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Goals and Orientations Related to Solving Mathematics Problems 
Blake frequently referenced a metaphorical “toolbox” full of “tools” that students possess to 

approach different kinds of mathematical problems. For example, Blake described the process of 
problem solving in a calculus class as, “You took this set of tools, you applied it to a problem, 
and then you got to a solution”. In the second interview, Blake said, 

We have our bag of tools and then a bunch of math is just figuring out in what ways we 
can use them, in what ways can we combine them, what are some of the limitations, but 
also [what] are some of the like further stuff that we can use with these tools? 

This belief is reflected in Blake’s teaching practices. For instance, during the observed classes, 
Blake wrote important theorems and definitions on the board before class started; when class 
began, they encouraged students to refer to these resources as they worked through problems. 
When asked why they chose to start class this way, Blake said, 

Few things suck and bring up as many negative feelings in math as when you don’t even 
know where the heck to start. So to have at least the definition… You can’t work with 
tools if you don’t know what’s in your toolbox. So I guess in my case, at the very least 
everyone has the same set of starting tools and so they can at least get started. 

In fact, when helping students one-on-one in class, Blake often explicitly asked students what 
“tools” they had in their “toolboxes” and asked them which tools they might be able to use. 

Blake’s Use of Informational Support 
Blake’s beliefs about mathematics being like a puzzle that can be solved using “tools” from 

one’s “toolbox” are not only present in their goals and orientations but in the social support 
actions that they offer in the classroom. Blake tends to use informational support more than any 
of the other categories proposed by House (1981). Table 1 outlines some of the examples of 
informational support offered by Blake during observations and offers a brief explanation of why 
informational support is the best categorization for them. 

Table 1. Examples of Informational Support Offered by Blake 

Example of Informational Support Justification for Categorization 

Before class (and as students started to work 
individually and in small groups), Blake 
wrote all the major theorems/rules/definitions 
that were needed for today’s lesson up on the 
board. 

Blake was providing a resource that was not 
inherently helpful to any particular problem 
that students were working on; students were 
responsible for identifying the tool that would 
be helpful and determine how to use that tool 
effectively. 

While Blake was helping a student, the 
student kept flipping through their notebook 
searching for a rule. Blake encouraged them 
to make a list with all the rules they’d learned 
recently so that they’d all be in one place. 

Advising the student to create a reference 
page is informational support because Blake 
is not providing them with something helpful 
but is suggesting something that would be 
helpful if the student were to follow through. 

Blake checked in with a student who had 
missed two weeks of class; during that 
conversation, Blake reminded the student of 
their office hours and of the tutoring center. 

Blake gave this student the tools to seek out 
help, but it was up to the student to get help if 
they needed it. 
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algebraic computations. When the students told Blake they’d decided to skip this problem, Blake 
made light of it, even going as far as to laugh along with the students when one of them jokingly 
crossed the entire problem out of their workbook. The researcher categorized this example as 
emotional support because Blake was empathizing with the students and validating their 
frustrations with the problem by implicitly giving them permission to skip the frustrating 
problem. However, Blake interpreted this action as informational support. Blake argued that by 
encouraging the students to skip the problem after struggling with it for a long time, they were 
indirectly giving the students information that they could benefit from (in particular, that this 
problem was not “standard” and that their frustration was probably coming from long 
computations and not the calculus itself). When categorizing this example, Blake said, 

I want to put it into informational support again because like… I’m not telling them to 
skip the problem… If you don’t think that this is going to be productive use of your time, 
I’m going to agree with that. And then you should move on to something else. So I’m not 
fixing the problem… I’m validating their… intuition on like “I could be doing something 
more productive”. Great. Yes… Maybe now think about why this question is maybe not 
as helpful as maybe some of the other ones are. 
Overall, informational support was the most frequent category of social support that was 

observed, both for the researcher’s initial categorizations and Blake’s categorizations during the 
interviews. Moreover, Blake explicitly identified informational support as the category that they 
believe they provide the most of. The use of informational support is a repeated in-the-moment 
decision that Blake makes, and therefore according to the ROG framework (Schoenfeld, 2011), 
any such decision should reflect their goals and orientations. 

Explaining Blake’s Use of Informational Support 
Many of Blake’s social support actions are related to their beliefs about the nature of 

mathematics and mathematical problem solving; in fact, all the examples of informational 
support discussed in this paper can be attributed to these beliefs. For example, Blake writing 
theorems and definitions on the board before class reflects their belief about how math problems 
should be solved. Blake believes that the best way to approach mathematics problems is to have 
a “toolbox” of “tools” at one’s disposal. As a result, Blake perceives it to be their job as an 
educator to ensure that students have the tools necessary to solve a particular problem. By 
writing the relevant definitions and theorems on the board at the start of each class, Blake 
guarantees that every student at least has the required tools to approach any problem that day. 

Even the example of informational support that the researcher and Blake disagreed on the 
categorization of makes sense when juxtaposed with Blake’s beliefs about the nature of 
mathematics. Blake believes that mathematics is like a puzzle and that enjoyment often comes 
from overcoming the challenge. In this example, the students were frustrated by the problem 
because it was mired with tedious computations, not with the calculus itself. Blake’s argument is 
that the students weren’t benefitting from doing those computations because that problem was 
not representative of the skill they were supposed to be practicing. In the context of Blake’s 
perception of mathematics being like a puzzle, this problem was like forcing the students to do 
the puzzle in the dark: it would be an impressive feat to complete the puzzle, but it would not 
have been representative of what solving a puzzle really is. This particular problem was in 
contention with Blake’s beliefs about what mathematics should be, so it is understandable that 
Blake would encourage the students to skip that problem with the hopes that the students would 
recognize what made the exercise futile. 
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On a larger scale, Blake’s general tendency towards informational support over the other 
categories is aligned with their beliefs about mathematics and mathematical problem solving as 
well. Many of Blake’s goals and orientations reflect their beliefs that mathematics problems are 
puzzles to be solved, that the puzzles are more satisfying if they are challenging, and that one 
needs tools to approach the puzzles in the first place. In terms of social support, these beliefs are 
reflected in the fact that Blake fosters an environment that values productive struggle and has a 
teaching philosophy in which students cultivate their own “toolbox” of theorems, rules, and 
definitions; such attributes are closely aligned with informational support. In fact, research has 
suggested that in mathematics classrooms, informational support is one of the most beneficial 
categories of social support for developing problem-solving skills (Cutrona & Russell, 1990). 
When reflecting on social support in general, Blake said, “I should be providing them hints, 
clues, telling them that they’re doing a great job, and giving them the tools to succeed. I should 
not be sitting down and doing the problems with them”, which is indicative of someone who 
values the use of informational support. 

Discussion 
Blake serves as an excellent starting point in understanding how Schoenfeld’s ROG 

framework (2011) can be used to understand MGTAs’ use of social support in the classroom, 
particularly in consideration of both the research questions. RQ1 asks, What goals and 
orientations are present when MGTAs offer social support to their students? While the goals and 
orientations discussed in this paper are certainly not comprehensive, they paint a vivid picture of 
who Blake is as an instructor. It cannot be said that every first-year MGTA will have the same 
goals and orientations as Blake, nor can it be said that a MGTA with the same goals and 
orientations as Blake would offer social support in the same ways. However, discussing Blake’s 
goals and orientations can serve as a starting point for understanding the ways that novice 
mathematics instructors conceptualize math and mathematics education. 

RQ2 asked, How can MGTAs’ goals and orientations be used to explain the types of social 
support that they offer their students? Analysis suggested that Blake’s beliefs about the nature of 
mathematics and how mathematics problems should be solved are not only present when they 
offer social support to their students, but that they are a driving factor in many of the in-the-
moment, day-to-day instructional decisions that Blake makes. All the observed social support 
actions discussed in this paper were considered informational support and could be traced back 
to these orientations. While Schoenfeld’s ROG framework (2011) cannot be used to predict how 
Blake would respond in certain situations, this does provide insight into how Blake prioritizes 
and ultimately makes in-the-moment instructional decisions on a day-to-day basis. 

The purpose of this study was not to develop a comprehensive understanding of how MGTAs 
provide social support in the classroom, but to instead begin a conversation about the goals and 
orientations that are relevant when making in-the-moment decisions. Since the ways that 
MGTAs offer social support is so heavily dependent on their personal goals and orientations, the 
results of this paper cannot and should not be generalized. Instead, the findings may inform 
professional development efforts as mathematics departments aim to understand how MGTAs 
support undergraduate students in classrooms. 
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Student Understanding of Eigenvalue Equations in Quantum Mechanics: Symbolic Forms 
Analysis 

 
 Anthony Pina Zeynep Topdemir John R. Thompson 
 University of Maine University of Maine University of Maine 

As part of an effort to examine students’ mathematical sensemaking (MSM) in a spins-first 
quantum mechanics (QM) course, students were asked to construct an eigenvalue equation (EE) 
for a one-dimensional position operator. Sherin’s symbolic forms were used in analysis. The data 
suggest three symbolic forms for an EE, all sharing a single symbol template but with unique 
conceptual schemata: a transformation which reproduces the original, an operation taking a 
measurement of state, and a statement about the potential results of measurement. These findings 
corroborate prior literature on a construction task rather than a comparison or deconstruction 
task, and with a continuous variable after instruction on discrete variables. 

Keywords: Quantum Mechanics, Student Thinking, Eigentheory 

Introduction 
Quantum mechanics is one of a handful of topics in which every undergraduate physics 

major will take at least one course due to its pervasiveness in modern research and applications 
in physics and beyond. Despite the ubiquity of quantum mechanics courses and the significant 
amount of work that has gone into improving them, the subject has still proven difficult for 
students. Learning quantum mechanics has been shown to be a non-trivial task across both 
traditional (functions-first) (Singh and Marshman, 2014a; Singh and Marshman, 2015a; Emigh et 
al., 2018) and the more novel (spins-first) (Passante et al., 2015a, 2015b) approaches.  

Eigentheory is central to the theory of quantum mechanics; it’s baked into the second and 
third postulates of quantum mechanics. McIntyre (2012) presents the first three as follows: 

1. The state of a quantum mechanical system, including all of the information you can 
know about it, is represented mathematically by a normalized ket |𝜓𝜓⟩. 

2. A physical observable is represented by an operator �̂�𝐴 that acts on kets.  
3. The only possible result of a measurement of an observable is one of the eigenvalues 

an of the corresponding operator �̂�𝐴.  

The first postulate gives the first exposure to Dirac notation. The ket |𝜓𝜓⟩ is referred to as the 
state vector and, when projected into a basis, is often represented as either a column vector or a 
sum of other basis vectors in Dirac notation with appropriate coefficients. In general, any 
expression in Dirac notation has a direct translation to more standard linear algebra. Dirac 
notation however explicitly shows what basis the vector is written in, whereas the basis vectors 
are only implied in linear algebra. In Dirac notation an operator is denoted with a hat (�̂�𝐴); the 
linear algebra representation of this operator would be a matrix. The eigenvalues of this matrix 
are the possible results of measurement referenced in the third postulate. Standard in linear 
algebra, but not written into the postulates, is that each of the eigenvalues, an, of the operator �̂�𝐴, 
has an associated eigenvector, labeled |𝑎𝑎𝑛𝑛⟩. Therefore, one could argue that an eigenvalue 
equation in quantum mechanics has a fundamentally different interpretation than that of an 
eigenvalue equation in a mathematics context, and while they could be interpreted the same way, 
there are more productive interpretations for quantum mechanics.  
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The majority of research on student understanding of eigenvalue equations has come from 
the research in undergraduate mathematics education (RUME) community. Henderson and 
colleagues (2010) found that prior to instruction student reasoning about eigenvalue equations 
fell into one of three categories: superficial algebraic cancellation, correct solutions but an 
inability to interpret appropriately, and a correct solution with a correct interpretation. The 
correct interpretation in this case relates to an operation of a matrix acting on a vector resulting 
in the scaling of that vector by its eigenvalue. Thomas and Stewart (2011) studied student 
understanding of eigentheory over a two-year span and found that students tended to continue to 
think about linear algebra as a set of procedures rather than focus on the concepts. They target 
specific goals for instruction such as shifting focus toward the ideas of sets of eigenvectors and 
reinforcing a view that students were lacking: a geometric interpretation.  

Physics education research (PER) has studied interpretations of the eigenvalue equation, 
often focusing on the Schrodinger equation or the eigenvalue equation for the Hamiltonian (total 
energy) operator, 𝐻𝐻�|𝜓𝜓𝑛𝑛⟩ = 𝐸𝐸𝑛𝑛|𝜓𝜓𝑛𝑛⟩, which is a major focus of QM courses, since time evolution 
of a system is associated with the Hamiltonian operator. In a study focused on resources students 
use to understand quantum mechanical operators, Gire and Manogue (2008) identified “quantum 
measurement as an agent,” the idea that taking a measurement changes the system. Students also 
know that operating on a vector generally transforms the vector, which the researchers labeled 
“operating as agent.” Accessing both of these resources in parallel can lead students to the idea 
that operating represents measuring. Gire and Manogue (2011) followed this up, noting that 
navigating unfamiliar language in addition to eigentheory presents additional challenges for 
students. Singh and Marshman (2013) reported student difficulties determining states for which 
the eigenvalue equation for the Hamiltonian would be true, some students going so far as to say 
that it is true for all states, including superposition states.  

More recently, researchers have looked at how physics students reason about eigenvalue 
equations in different formats. Wawro, Thompson, and Watson (2020) investigated how students 
in a quantum mechanics course were thinking about both traditional mathematical eigenvalue 
equations (�̂�𝐴 �⃗�𝑥 = 𝜆𝜆�⃗�𝑥) and a quantum mechanical eigenvalue equation (�̂�𝑆𝑥𝑥|+⟩x = ℏ

2
|+⟩𝑥𝑥). They 

found that the mathematical equation typically elicited a scaling model, which carried over to the 
QM equation in some cases. They also noted that some students thought of the quantum 
mechanical equation in terms of representing a physical measurement, similar to prior PER 
findings. A novel finding was that some students used conditional language describing the 
equation in terms of potential or possible measurements rather than directly linking operating to 
measurement; this more subtle interpretation is consistent with the expert interpretation of a QM 
EE. Notably, some students who seemingly initially equated operating with measuring expanded 
their interpretation to encompass potential measurement.  

The primary goal of this study is to identify cognitive resources students access when 
constructing and reasoning about eigenvalue equations in quantum mechanics (symbolic forms). 
This was done by analyzing written data from student responses to an eigenvalue equation 
construction task. We identified three different symbolic forms for an eigenvalue equation in the 
data. One is consistent with the mathematical interpretation. Another is reflective of a common 
misconception in quantum mechanics. The third is connected to the interpretation of eigentheory 
presented in the postulates of quantum mechanics. The primary delineating factor of the first, and 
other two are the connections the second and third make to the physical systems being modeled.  
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Symbolic Forms 
Symbolic forms (Sherin, 2001) can be seen as an extension of the knowledge in pieces 

framework for student understanding (diSessa, 1993), developed as a means of examining how 
students think about (physics) equations. Sherin intentionally modeled this framework after 
diSessa's phenomenological primitives (p-prims), which were another set of intuitive chunks of 
knowledge or ideas (diSessa, 1993). These p-prims were each self-contained and relatively 
simple; small knowledge structures originating from nearly superficial interpretations of reality. 
By comparison, symbolic forms are larger structures consisting of two pieces: a pattern of 
symbols in an expression, the symbol template, and the rough idea expressed therein, labeled the 
conceptual schema. A conceptual schema is intended to have a fairly simple structure and is not 
inherently connected to any physical system or reasoning. Given that the schema contains all the 
meaning, it is possible for a single symbol template to be a part of several different symbolic 
forms, depending on the interpretation and/or context. To make clear the difference between 
them, some examples can be quickly explored. A common expression for the total energy of a 
system in intermediate mechanics is 𝐻𝐻 =  𝑇𝑇 +  𝑈𝑈, where 𝑇𝑇 is the total kinetic energy in the 
system and 𝑈𝑈 is the total potential energy. The sum on the right side is an example of the parts-
of-a-whole symbolic form, as the individual pieces being summed compose the total energy of 
the system. In a senior-level quantum mechanics, class this expression would look quite 
different, 𝐻𝐻� = 𝑝𝑝�2

2𝑚𝑚
 +  𝑉𝑉(�̂�𝑟) but could be interpreted in much the same way. In both cases here the 

symbol template is □ + □ and the schema is “elements that combine to make a whole quantity.'”  
Given their intended nature as building blocks, it is possible and likely to find more than one 

symbolic form in a physics equation. In the examples discussed above the focus was on the 
meaning of the sum, but other symbolic forms could be used to determine the meaning of the 
different equal signs. Due to the nature of the framework, it has been used in several contexts to 
analyze the intersection of math and physics. An example of its more traditional implementation 
is seen in the work of Schermerhorn and Thompson, who used symbolic forms to investigate 
student construction of differential length elements (Schermerhorn, 2019a).  

Dreyfus and colleagues engaged in a theory-building effort meant to use data to illustrate 
their conjectures and to explore a method for analyzing student mathematical sensemaking in 
quantum mechanical problem solving (Dreyfus et al., 2017). They also argue the MSM tools 
learned in introductory physics are necessary but insufficient for MSM in quantum mechanics; 
this argument would be consistent with the findings of Kuo and colleagues (2013). The third and 
final claim of Dreyfus and colleagues’ paper is that when students do not succeed in MSM in 
QM it is not because they are not engaging in the process, but that they are not using particular 
cognitive machinery (i.e., symbolic forms) needed to engage in expert MSM in QM. They 
highlight episodes from a study (Bing and Redish, 2012) to illustrate problems students could 
have interpreting equations with unproductive symbolic. 

Dreyfus and colleagues observed two students (electrical engineering (EE) majors) recruited 
from an upper-level EE course that included a fair bit of quantum mechanics, working on a 
quantum mechanics tutorial. The researchers identified instances where the mathematics was 
consequential to the students' reasoning, labeling them as occurrences of potential MSM; they 
used these instances to conjecture what potential quantum mechanical symbolic forms could be. 
The primary segment of this interview entails the students reasoning about the time-independent 
Schrodinger equation or energy eigenvalue equation. The students struggled to determine 
whether the energy of the ground state of the infinite square well was constant due to the 
inclusion of the wave function on both sides of equation. The authors suggest that the students 
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were interpreting the energy eigenvalue equation through the dependence symbolic form ([...x...]; 
a whole dependent on a quantity associated with an individual symbol) rather than seeing it as an 
eigenvalue equation, leading to their conceptual difficulties.  

These observations were the starting point for the suggestion of new symbolic forms that 
would be productive for quantum mechanical MSM. The first symbolic form they posit is the 
transformation symbolic form, whose symbol template is □�|𝑖𝑖⟩ (an operator acting on a state) and 
whose conceptual schema is “reshaping” (the idea of stuff getting molded into a different shape). 
The only other posited symbolic form is the eigenvector-eigenvalue symbolic form, whose 
symbol template is □�|𝑖𝑖⟩ = C|𝑖𝑖⟩, and conceptual schema is “a transformation which reproduces 
the original”. This is a compound symbolic form, containing their transformation symbolic form, 
as well as a new interpretation of the equal sign, and Sherin’s coefficient symbolic form. In this 
case the equal sign denotes a relationship between the operator, scalar, and eigenvector, as 
opposed to other previously proposed meanings of the equal sign (Dreyfus et al., 2017). Expert-
level reasoning on quantum mechanical eigenvalue equations adds layers of physical 
interpretation on top of conceptual understanding, where the operator corresponds to a physical 
quantity and the solutions are physical states for which that quantity has a definite value, given 
by the eigenvalue.   

Methods 
Data were collected in a senior-level, spins-first quantum mechanics course that is required 

for the completion of physics and engineering physics B.S. degrees at the institution but is also 
taken by B.A. physics majors, physics minors, and non-physics majors. While not the students' 
first introduction to quantum mechanics in physics or engineering physics programs, this is the 
most in-depth study of the topic available to undergraduate students at this institution. 

Students were asked to construct an eigenvalue equation for an operator that represents the 
position of a particle constrained to a one-dimensional system (Fig. 1) as an ungraded quiz. This 
task falls more in line with the mathematization oriented tasks used to develop the framework, 
making it better suited to identification of forms than prior, interpretive tasks. An adequate 
answer to this prompt would use the same symbol template as the eigenvector-eigenvalue 
symbolic form proposed by Dreyfus and colleagues (2017) but specified to the position context.  

 
Figure 1. Eigenvalue equation construction task. 

The authors engaged in collaborative qualitative analysis to refine the codebook until a 
consensus was reached (Richards, 1981). Student responses to this task were coded with the 
symbolic forms framework in mind. Due to the nature of the task, most student responses did not 
fit into existing symbolic forms. As a result, student responses were first coded for a symbol 
template, and then an associated conceptual schema. The first pass was essentially a binary 

Consider a quantum mechanical system that is physically constrained to be located along a straight 
line, as shown below. 
 

 
Position of object/system constrained to a line 

a. Write down an eigenvalue equation for an operator that represents the position of this system.   
b. Briefly explain what each term in the equation represents.  

i. How do each of these relate to the physical system?  
ii. What, if any, connections exist between the terms in your equation?  
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coding identifying which students provided an expression utilizing the template □�|⋅⟩ = C|⋅⟩, 
where the dots inside the ket symbols indicate identical symbols inside the kets, and thus 
identical kets. This symbol template is the same as that of the eigenvector-eigenvalue symbolic 
form proposed by Dreyfus and colleagues with the exception that the “empty” kets have been 
given dots to denote that it must be the same ket on either side of the equal sign.  

For those students that used this template, a variety of conceptual schemata were identified, 
derived from the portions of student responses where they interpreted their expressions. Coding 
only for expressions that used an eigenvalue equation template proved inadequate however, as a 
variety of other expressions provided by students did not conform to this symbol template and 
therefore required additional categorization. Grouping similar student responses by the structure 
of their equation, and subsequently by ideas presented by the students, resulted in the 
identification of other potential symbolic forms in addition to those for eigenvalue equations. 

Results 
Student responses were indicative of three different ways of thinking about eigenvalue 

equations which are summarized in Table 1. Each of these different symbolic forms shares a 
single template but has a distinct conceptual schema.  
 

Table 1. Summary of identified symbolic forms for the eigenvalue equation in quantum mechanics. 

Symbol Template Conceptual Schema Symbolic Form 

□�|⋅⟩ = c|⋅⟩ 

A transformation which reproduces  
the original 

Reproductive 
transformation 

An operation taking a measurement of state Operating as measuring 
A statement about the potential results  
of measurement 

Potential measurement 
outcome 

Reproductive Transformation 
The first symbolic form discussed for an eigenvalue equation has the symbol template  

□�|⋅⟩ = c|⋅⟩, and the conceptual schema related to a geometric scaling but not rotation of the 
vector. This is consistent with the traditional mathematical interpretation of the eigenvalue 
equation (Henderson et al., 2010), and documented in a QM context by Dreyfus and colleagues 
as the conceptual schema “a transformation which reproduces the original” and labeled 
eigenvector-eigenvalue (Dreyfus et al., 2017). However, because we identify three distinct 
symbolic forms that all share the eigenvalue equation symbol template, we refer to this form as 
reproductive transformation as opposed to eigenvector-eigenvalue for clarity. 

These student responses all had the appropriate terms, and some even labeled the elements 
appropriately (e.g., Fig. 2) but did not provide any physical reasoning or explanation for their 
expressions. Responses in this group give us insight into the symbol template students are using 
for eigenvalue equations. These students are showing evidence of the proposed reproductive 
transformation symbol template. Given that this is all some students provided however, it is 
difficult to determine the exact nature of the schema associated with these students’ 
understanding of the eigenvalue equation. While they are not demonstrating any additional 

 
Figure 2. Example student response for reproductive transformation symbolic form. 
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quantum mechanical knowledge in their responses, these students are at least demonstrating that 
they know that the same ket needs to be on both sides of the equation, consistent with the form. 

Operating as Measuring 
Some student responses to the eigenvalue equation construction task are indicative of their 

conflating an operator acting on a state with the taking of a measurement of that state. These 
students seem to be thinking that the position operator acting on the eigenstate of position 
represents a measurement of position. While this and reproductive transformation share a 
symbol template, a more appropriate conceptual schema for these students may be “an operator 
taking a measurement of a state,” which would yield an operating as measuring symbolic form 
for eigenvalue equations.  

In one such response and explanation, shown in Figure 3, the student’s expression has all the 
correct elements, and they are able to appropriately identify the different elements of the 
expression. However, in addressing how each element of the expression relates to the physical 
system, the student says that the operator represents “the operation of measuring position,” 
indicative of operating as measuring, a distinct interpretation of an eigenvalue equation.  

 
Figure 2. Example of operating as measuring symbolic form. 

Potential Measurement Outcome 
The final interpretation of eigenvalue equations with this symbol template comes from one 

student. Their eigenvalue equation contained all the correct elements, written as one would 
expect from convention (Fig. 4a). Figure 4b shows their explanation of what each term 
represents. When the text alone is read this is a fairly sophisticated statement: “When you 
measure the position of [the eigenstate] 𝑥𝑥𝑖𝑖 you get 𝑥𝑥𝑖𝑖.” (The portion in brackets is an addition by 
the author for coherence, which is supported by the student’s response to the question, “How 
does each of these relate to the physical system?”, shown in Figure 4c.) This student’s 
interpretation of an eigenvalue equation goes beyond a geometric interpretation and does not 
include the notion that operating is the act of taking a measurement. This is indicated by the 
student’s use of the phrase, “can be measured,” which stands in contrast to the student in Figure 
3 who stated that the operator represented “the operation of measuring position.” This is a subtle 
but important distinction as it separates the idea of taking a measurement from the idea that the 
operator represents a quantity which can be measured. This student presents a more sophisticated 
interpretation of the eigenvalue equation than the previous ones shown: that it is a statement 
about the possible outcome of measurement of the position, or more generally, the quantity being 
represented by the operator. A more concise version for use as a conceptual schema would be “a 
statement about the potential results of measurement”. This schema is directly connected to the 
3rd postulate of quantum mechanics: “The only possible results of measurement of an observable 
�̂�𝐴 are one of the eigenvalues of the observable 𝑎𝑎𝑛𝑛” (e.g., McIntyre, 2012). While a single student 
is not indicative of the greater study population, the sophistication of this student’s response and 
its alignment with the meaning of a quantum mechanical eigenvalue equation warrant its 
inclusion as an example of a student-generated expert-level form for an eigenvalue equation. 
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Figure 3. Response related to potential measurement symbolic form. (a) Student constructed eigenvalue equation. 

(b) An explanation of individual terms. (c) Relation of terms back to physical system. 

Discussion and Conclusion 
Dreyfus and colleagues posited that there may be symbolic forms specific to quantum 

mechanics that had yet to be seen in student work. Their eigenvalue equation symbolic form, 
reproductive transformation, which is consistent with the desired outcome of mathematics 
instruction on eigenvalue equations (Henderson et al., 2010) and a productive conceptualization 
for students (Wawro, Watson, & Zandieh, 2019), is one of three forms identified that all use the 
same eigenvalue equation template, which follows the canonical structure.  

The other two forms, operating as measuring and potential measurement outcome, both 
illuminate the physical meaning of the QM eigenvalue equation rather than a mathematical 
interpretation. Operating as measuring instead focuses on the act of taking a measurement 
“operator as agent” (Gire and Manogue, 2008, 2011) as a lens for interpreting an eigenvalue 
equation. Wawro and colleagues observed this conceptualization and proposed an explanation 
for this form: that physics equations typically represent relationships between physical quantities, 
documenting covariation among the quantities; operating as measuring conceptually reflects this 
relationship and is consistent with physics students’ experience. 

The third symbolic form, potential measurement outcome, is significantly more relevant to 
and meaningful for the physical interpretation of a QM eigenvalue equation. One could argue it 
falls into the expert-like additional layered meaning discussed by Dreyfus and colleagues; 
however, the student response discussed in relation to this form seems completely void of the 
ideas that form the schema of reproductive transformation (Dreyfus et al., 2017). Students could 
hold these two forms simultaneously (Wawro et al., 2020), and invoke them as needed or 
convenient, consistent with evoked concept images or resource activation, but potential 
measurement outcome is a more expert-like interpretation of a QM eigenvalue equation.  
The way students mathematize a physics problem has been of interest to the PER community 
since the introduction of symbolic forms. Student construction of equations meant to describe 
physical systems, both in this and Sherin’s (2001) tasks, provides insight into resources accessed 
by students in mathematizing physics problems. This analysis also opens the door for 
mathematical sensemaking analysis (Kuo et al., 2013). Some students explicitly attempt to utilize 
mathematics from other quantum contexts to generalize to this novel system. It is also 
noteworthy that both interpreting and constructing eigenvalue equations was not a trivial task for 
students. Some explicitly wrote about the difficulty of the tasks in their responses, while others 
showed the non-triviality of the task through their failure to provide a classifiable expression in 
response to the construction task. These data can provide insight into the ways students are 
reasoning through the discrete-to-continuous transition in a spins-first quantum mechanics course 
and will be a topic of further exploration.  
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Modeling Mathematicians’ Playful Engagement in Task-Based Clinical Interviews

Dru Horne Anna Bloodworth Amy B. Ellis
University of Georgia University of Georgia University of Georgia

Theoretical accounts of mathematicians’ disciplinary practice draw similarities to mathematical
play, in that it can entail agency and autonomy, open exploration, creativity, imagination, and
enjoyment. We analyzed task-based clinical interviews of 13 mathematicians to determine
whether their problem-solving activity was playful and found evidence of three aspects of playful
math: agency in exploration or goal accomplishment, self-selection of mathematical goals, and a
state of immersion, investment, or enjoyment. We present these findings and introduce a form of
problem-solving activity, the Explore-Focus Cycle, as one characteristic of playful math.

Keywords: mathematical play, clinical interviews, mathematicians

One goal of undergraduate mathematics education is to support students’ development of
productive dispositions towards mathematics (Code et al., 2016; Watson, 2008) helping students
engage with mathematics in disciplinarily authentic ways (Lim & Selden, 2009). Work
examining mathematicians’ practices has highlighted activities such as detecting and formalizing
patterns, developing and refining definitions, thinking structurally and generally, selecting and
applying proof techniques, and refining earlier reasoning (Burton, 2001; Fernández-León et al.,
2021; Melhuish et al., 2021; Martín-Molina et al., 2018). Although it is important to not take an
overly narrow view of what it means to meaningfully engage in mathematics as an expert
(Stillman et al., 2020), researchers nevertheless argue for instruction that supports the habits of
mind believed to be similar to mathematicians’ practices, such as generating interesting
questions, experimenting, conjecturing, and generalizing (e.g., Bass, 2008; Cuoco et al., 1996).

Gresalfi and colleagues (2018) note that the above forms of disciplinary engagement involve
many of the same features as play including “exercising personal agency to set and reach goals,
exploration, imagination, and joy” (p. 1335). Others agree: For instance, Mason (2019) remarked
that “playfulness provides an accurate and apt description of what mathematicians do,” and Su,
in his MAA Presidential Address at the Joint Mathematics Meetings (2017), stated, “We play
with patterns, and within the structure of certain axioms, we exercise freedom in exploring their
consequences, joyful at any truths we find.” He went on to identify play as a key component of
mathematics for human flourishing (Su, 2020). Indeed, offering opportunities to develop a
mathematically playful disposition can center student voices, invite agency, and increase
equitable access to mathematics (Gresalfi et al., 2018; Widman et al., 2019).

These remarks reflect a robust belief that mathematicians are playful in their engagement,
and yet, we have found little empirical evidence demonstrating these claims. Consequently, the
motivation for this study is to investigate whether and how mathematicians’ disciplinary
engagement is playful. In particular, we consider the following research questions: Is
mathematicians’ problem-solving activity in task-based clinical interviews playful? If so, what
are the characteristics of mathematicians’ playful engagement?

Theoretical Framework and Background Literature: Defining and Characterizing
Mathematical Play and Playful Math

Definitions of play vary, but all entail a sense of agency in (a) choosing to engage in an
activity, (b) exploring, (c) selecting goals, and (d) accomplishing goals (Jasien & Horn, 2018).
Huizinga (1955), one of the early scholars to define play, remarked that play is voluntary, steps
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outside the ordinary, is bounded in time and space, is orderly, is governed by rules, and involves
tension; the player wants to achieve something but wants to succeed by their own expertise.
Dewey (1916/1966) similarly noted that people who play “are trying to do or effect something”
(p. 203). Thus, play is goal-driven, but as Featherstone (2000) noted, the goals of play, unlike the
goals of work, “are always in some sense ‘inside’ the play, they are real and shape the activity of
the players” (p. 15).

Mathematical play is a particular type of play. Holton et al. (2001) described mathematical
play as the playful exploration that emerges when learners find themselves in mathematical
contexts with open goals, and Williams-Pierce (2019) defined mathematical play as voluntary
engagement in cycles of mathematical hypotheses with occurrences of failure. Much of the work
on mathematical play investigates the mathematics that can arise from playful settings such as
preschool children’s block play (e.g., Brown, 2009), or players’ interactions with videogames
(Williams-Pierce, 2019). In contrast, our interest is in how to incorporate play into the school
mathematics that occurs in classrooms. We use the term “playful math” rather than
“mathematical play” to highlight the potential of “playifying” classroom mathematical activity.
Following the traditions of researchers who emphasize agency, we define playful math as a form
of mathematical engagement that entails (a) agency in exploration or goal accomplishment, (b)
self-selection of mathematical goals, and (c) a state of immersion, investment, and/or enjoyment.

Characteristics of Mathematical Play
Characterizations of mathematical play are typically either situated in studies of young

children’s activity or in studies of individuals in informal environments. When they concern the
mathematical play of undergraduates or experts, characterizations are often, but not always,
theoretical rather than empirical. This is likely due to the fact that when students enter high
school and college, discussions of learning seldom reference play (Gresalfi et al., 2018). Indeed,
play has increasingly been pushed out of school settings (Jerret, 2015), and undergraduate
education in particular has seen a separation of play and learning (James & Nerantzi, 2019).
Consequently, little is known about the nature of learners’ playful engagement in advanced
mathematics tasks (Gresalfi et al., 2018).

Many scholars have called for supporting and legitimizing play in adult lives (e.g., James &
Nerantzi, 2019; Sicart, 2014, Swank, 2012). Concerning playful mathematics in particular,
researchers argue for the importance of understanding and fostering students’ playful
dispositions as a way to encourage engagement that mirrors the activity of mathematicians. For
instance, Featherstone (2000) noted a number of similarities between play and the discipline of
mathematics itself in that both focus on theoretical entities, are set apart from daily life, create
order, and are rule bound. Mason (2019) explained that “mathematicians play with what is given
and with what is sought – extending, varying, simplifying, and complexifying” (p. 95), and other
mathematicians have described their own practice as playful (e.g., Lockhart, 2009; Su, 2017).

Descriptions of mathematicians’ playful engagement highlight the presence of two phases of
activity. Su (2020), for instance, distinguished between the inquiry phase and the deductive
reasoning phase. In the inquiry phase, one engages in pattern exploration and uses inductive
reasoning to build conjectures from specific examples. One shifts to the deductive reasoning
phase when a conjecture has been selected and must now be proved or disproved. Holton et al.’s
(2001) theoretical analysis of mathematicians’ play makes a similar distinction between two
phases. In the first, one produces tentative examples without a clear direction. In the second, one
becomes more systematic and intentional in generating particular types of cases. These phases
are reminiscent of Cai and Cifarelli’s (2005) examination of undergraduates’ mathematical
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exploration with open-ended problems. Although not specifically referencing play, they
distinguished two types of goal episodes, primitive and refined. Primitive goal episodes entail
trying out preliminary ideas without a specific goal other than to generate empirical results to
support further exploration. Refined goal episodes are ones in which the problem solver’s
activity occurs with a well-defined goal in mind.

Although each of these researchers use different terms, all emphasize two characteristics of
the first phase: It is empirical, gathering data to inform the development of a pattern, hypothesis,
or direction, and it is not goal oriented, in that one is exploring without pursuing a particular,
pre-determined direction. The second phase entails goal-directed activity towards a particular
outcome in which one’s actions are guided by anticipation. There is some disagreement about
whether mathematical play is still happening when one shifts into the goal-directed phase
(Holton et al., 2001), but there is broad agreement that mathematicians’ playful engagement
includes open exploration. We therefore attended to these two phases of activity and sought to
determine whether mathematicians demonstrated instances of them in their problem-solving
activity as a potential characteristic of playful engagement.

Methods
Our data set consisted of task-based clinical interviews from 13 mathematicians (see

Lockwood et al., 2016 for additional details). Twelve mathematicians held a PhD in
mathematics, and one held a PhD in computer science. During the interviews, the
mathematicians worked on the problems shown in Figure 1. Task 1 was taken from Andreescu et
al. (2007), and Task 2 was taken from a Putnam exam. All thirteen mathematicians worked on
Task 1, and seven also worked on Task 2. We gave the mathematicians time to work on the tasks
and asked them to think out loud as they worked. The interviewer generally only interrupted to
ask clarifying questions and to answer the mathematician’s questions. Each interview lasted
approximately 60 minutes and was audio recorded using Livescribe pens and transcribed.

Figure 1. The Interesting Numbers Task and the Selfish Sets Task.

In analyzing the data, we began with a priori codes based on our three-part definition of
playful math: (a) agency in exploration/goal accomplishment, (b) self-selection of mathematical
goals, and (c) immersion, investment and/or enjoyment. The first and second authors coded each
transcript separately and met weekly to reconcile discrepancies. All three authors then discussed
any remaining questions or discrepancies. In addition to coding for playful math, we also
analyzed the data for the two phases of activity identified in the literature, which we call
Explore-Focus Cycles (Ellis et al., 2022). For Mathematician 1, we did this analysis as a whole
group. For the remaining mathematicians, the first and second authors conducted their analyses

25th Annual Conference on Research in Undergraduate Mathematics Education 101



independently, kept notes, and met weekly to discuss and reconcile codes. The project team met
weekly to consider discrepancies and finalize codes until the codes had stabilized.

Findings

Playful Math Codes
We found evidence of two out of three playful math codes in all 13 mathematicians’

problem-solving activity, and evidence of all three codes in nine of the 13 mathematicians’
activity. The first code, Agency in exploration/goal accomplishment, occurs whenever a person
has the agency within a task to explore their chosen ideas or work towards accomplishing their
goals. The mathematicians almost always had agency to explore and accomplish their goals as a
result of the open nature of the tasks, the structure of the interviews, and their authority as
mathematicians. Even when the interviewer directed mathematicians’ actions by asking them, for
example, to prove a conjecture, the mathematicians typically retained agency to explore and
select their own proof strategies. For example, while working on the Selfish Sets Task,
Mathematician 5 (M5) discussed various strategies for answering the problem. She decided
between “doing some answers and then prove it inductively” or “try to think about [the task]
combinatorially in some way that would help the answer pop out.” The interviewer
acknowledged these different paths: “Yeah, so there are a lot of different ways that you could go
from here” but did not suggest a specific direction. M5 immediately decided to “think about how
I’m going to compute this sum”. This demonstrated both Agency in exploration, as M5 thought
through different approaches to solving the problem, as well as Agency in goal accomplishment,
as she narrowed in on a direction to accomplish the task goal of solving the Selfish Sets Task.

The second code, Self-selection of goals, occurs when a person chooses their own goals or
sub-goals for a task. These may include exploring the problem, making conjectures, deciding on
a strategy, etc. For example, while solving the Interesting Numbers Task, M2 created a
generalized algebraic expression for interesting numbers and wondered, “so now the question is
what numbers can't be written in that form”, which M2 began trying to answer using a parity
argument. Similarly, in trying to determine how to prove that the number of selfish sets of {1, 2,
…, n} is a Fibonacci number, M7 attempted to use a proof by induction on the size of the
subsets: “Obviously you've got all the ones before, okay, so the proof would be induction. And,
what does this new one add?” She tried to find a recursion but then switched to considering a
sum of binomial coefficients. Before stopping the interview, she noted that in order to prove that
the sum is a Fibonacci number using induction, she would need to “get a better sense” of the
sum. Thus, her self-selected goals included using proof by induction, determining the recursive
structure of the problem, and better understanding the sum of binomial coefficients.

The third code, Immersion, investment, and/or enjoyment, refers to when a person shows
evidence of immersion or investment in the task, or shows that they are enjoying the task. For
example, M1 demonstrated investment in the Selfish Sets Task by voluntarily returning to it. He
spent 15 minutes on first task, shifted to the Selfish Sets Task for 20 minutes, and then returned
to first task. After giving a proof for first task, he noted, “Wait, okay. So now I got a little time to
play around with the other one. (Interviewer: Mm-hmm) Might not get it. Sets are not my thing
particularly.” He expressed an interest in returning to the Selfish Sets Task and attempting to
solve it, which indicated investment. Additionally, during the interview, M1 expressed
enjoyment with the two tasks, remarking, “These are great problems, by the way.” Another
indication of immersion or investment is losing track of time, which is one aspect of flow
(Csíkszentmihályi, 1990; Liljedahl, 2018). We saw this when M4 was surprised at the time he
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had spent on the problem: “I've been working on this for 15 minutes, oh my god.” Other
mathematicians persisted in solving the problem even when they were given a chance to stop,
which indicated enjoyment and investment in the tasks. During M10’s interview, he continued
working to solve the problem even when the interviewer provided an opportunity to stop:

Interviewer: Great. And just so you know, so it's been about an hour. So, if you want to stop
now, that's fine. But if you want to try...

Mathematician 10: Oh, I'm just getting warmed up.
Interviewer: No please, please do. I just don't, I don't want to take up too much of your time.
Mathematician 10: Okay, no, no problem at all. Okay. Yeah, I should warn you, once I get

going, I don't quit.
Thus, M10’s desire to continue working even being provided an opportunity to stop is evidence
of investment in the task.

Recall that we found evidence of all three codes for only nine of the 13 mathematicians. For
the remaining four mathematicians (M2, M6, M7, and M11), we saw evidence of Agency in
exploration/goal accomplishment and Self-selection of goals, but we did not find evidence of
Immersion, investment, and/or enjoyment. We found three reasons for the lack of immersion,
investment, or enjoyment: (a) problem difficulty, (b) interruptions preventing sustained
engagement, and (c) lack of open exploration. M2 was already familiar with the ideas in both
problems, and so he was able to achieve solutions to both tasks in about 10 minutes. Thus, the
problems were exercises for him rather than problems (Kantowski, 1981). M6 and M7 both
experienced multiple interruptions during their interviews, which may have impeded their
engagement and the ability to enter a state of flow. Finally, both M6 and M11 had a truncated
exploration phase, as they found a viable solution path early on in their exploring. Without the
extended exploration, these mathematicians may not have had as many opportunities to become
immersed or experience enjoyment. In the next section, we report in more detail on the
exploration phase by elaborating the evidence of Explore-Focus cycles in the mathematicians’
problem-solving activity.

Explore/Focus Cycles
We found that Explore-Focus Cycles (Figure 2) occurred in the tasks where mathematicians

were playfully engaged. However, the amount of exploring actions versus focusing actions and
the amount of time spent on those types of actions varied greatly from mathematician to
mathematician. The two mathematicians for whom we found the most evidence of
immersion/investment spent a significant amount of time exploring. Additionally, as we noted
above, each of the four mathematicians who did not exhibit the immersion/investment code had
fewer exploring actions and spent less time in exploration compared to the mathematicians who
exhibited immersion, investment, and/or enjoyment. To exemplify the Explore-Focus Cycles, we
present one cycle from M1’s engagement with the Interesting Numbers Task (Figure 2).

Within the cycle, mathematicians shift between exploring actions and focusing actions.
Exploring actions occur when problem-solver(s) either (a) engage in an action with little or no
anticipation of an associated outcome, or (b) notice properties of outcomes and wonder about the
connection between those outcomes and the actions that led to them. For example, in the two
tasks, mathematicians might generate small examples to look for a pattern or notice a general
form to help them determine interesting numbers or minimal selfish sets. They may also explore
different solution strategies before deciding to try one. A focusing action occurs when the action
is tied to an anticipated outcome. For example, after generating small examples and noticing a
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pattern, a mathematician may make a conjecture, and then choose specific examples to test their
conjecture. Both conjecturing and choosing examples are focusing actions.

Figure 2. The Explore-Focus Cycle for M1’s solution of the Interesting Numbers Task.

In Figure 2, the exploring actions are green and the focusing actions are blue. With our data,
the problem space consisted of characterizing the objects specified by the tasks, namely,
interesting numbers and minimal selfish sets. Once the mathematicians had a characterization in
the form of a conjecture, they shifted to trying to prove their conjecture. The narrowing of the
problem space can be seen in Figure 2 as “Odds >1”, “integers not of the form kn + binomial
coefficient”, and “integers not powers of 2”. Once M1 had conjectured that interesting numbers
are powers of 2 (#7) and checked his conjecture with an example (#8), he shifted to trying to
prove his conjecture, which resulted in another narrowing of the problem space. This action is
denoted with an asterisk as this narrowing represents a shift from characterizing the interesting
numbers to proving his conjecture about interesting numbers.

M1 began the task by exploring the constraints of the problem and generating small numbers
(#1). His initial exploration only consisted of sums of two positive integers and led him to
conjecture that the non-interesting numbers are odd numbers greater than 1 (#2). During his
small example generation, he did not anticipate the form of non-interesting numbers; hence, his
engagement was exploratory. He then made a conjecture after generating four examples. At this
point, M1 shifted to trying to prove his conjecture, “non-interesting numbers are odd numbers
greater than 1.” He argued that if we consider two consecutive numbers, x and x + 1, then their
sum is an odd number of the form 2x+1 (#4).

At this point, the interviewer redirected M1 to the problem statement, pointing out that
non-interesting numbers can be the sum of more than two consecutive integers. This shifted M1
back into a narrower problem space in which he tried to determine which even numbers are
interesting (since he had already proved that odd numbers are non-interesting). To do this, he
tried small algebraic examples (#4), i.e., he considered numbers of the form 3n + 3, 4n + 6, and
5n + 1 which are the sums of three, four, and five consecutive integers, respectively. He noted,
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that all of these integers are of the form binomial coefficient (#5). While generating these𝑘𝑛 +  
small examples, M1 had not anticipated the general form, nor at this point did he anticipate how
it would be useful, thus he was still exploring. Deciding that he wanted to exclude all integers of
those forms led him to comment, “this looks a little like the Sieve of Erastothenes … you’re
trying to exclude numbers that have certain forms.” M1 then created a list of numbers and
systematically eliminated them (#6); in doing so, he realized that the surviving integers are
powers of 2 (#7). Although his decision to try a sieve focused his actions, he did not anticipate
the outcome of the sieving process, and so we classify it as an exploring action.

At this point, M1 had a conjecture that the interesting numbers were powers of 2. In order to
test his conjecture, he continued his sieving process to see if 32 survived the sieve (#8). This was
a focusing action because he anticipated that 32 would survive. Having checked that his
conjecture held for 32, M1 shifted to trying to prove his conjecture that a number is interesting if
and only if it is a power of 2. At first, M1 did not see how to proceed and decided to spend some
time with the other task. Once he returned to this task, he reviewed his work and noted that
non-interesting numbers can be written in the form kn + k(k-1)/2 (#9). M1 first showed that if a
number is a power of 2 then it doesn’t have the form kn + k(k-1)/2 since it would factor as
k/2(2n+k-1) which would be odd (#10). To prove the other direction, he showed that if a number
is not a power of 2, then it is not interesting by demonstrating that every odd number can be
written in the form 2n+k-1 where k is a power of 2 (#11). All of his actions in the proof were
focusing actions because he anticipated that they would allow him to reach a logical conclusion
and prove his conjecture.

Discussion
Researchers have argued that mathematicians’ disciplinary engagement is playful (e.g.,

Mason, 2019; Su, 2020). Our study supports these assertions with empirical findings. We found
evidence of all three aspects of playful math engagement (agency in exploration or goal
accomplishment, self-selection of mathematical goals, and a state of immersion, investment,
and/or enjoyment) for nine of our 13 mathematicians and evidence of the first two aspects for all
13 mathematicians. We also found evidence that the mathematicians shifted back and forth
between the two types of engagement depicted in theoretical studies (e.g., Holton et al., 2001;
Su, 2017), which we call exploring and focusing. Given the constraints present in analyzing
task-based interviews, more research is needed to better understand the playful nature of
mathematicians’ practice when engaged in their own research activities. Nevertheless, it is
encouraging that we were able to verify theoretical claims with our findings.

What is perhaps more interesting is why some of the mathematicians did not demonstrate
immersion, investment, or enjoyment. The first two aspects of playful math are ones that are
seldom present for students, but we would expect to see in mathematicians. The third aspect,
however, appears to be related to not only the ability to maintain engagement without
interruption, but also to the level of exploration the mathematicians engaged in. Those whose
exploration was truncated may not have found the tasks sufficiently challenging. This finding
suggests that an appropriate level of task challenge, one that is within reach but is also not too
easy, may be an important factor in fostering flow (e.g., Liljedahl, 2018), and, by extension,
playful math engagement.
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Students’ and Mathematicians’ Playful Math Engagement

Anna Bloodworth Dru Horne Amy B. Ellis
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Mathematical play is hypothesized to foster student dispositions that mirror authentic
disciplinary engagement, such as exploring, conjecturing, and strategizing. However, most
research on mathematical play investigates the mathematics that can emerge from children’s
natural play or play in informal spaces. We introduce the term “playful math” to highlight the
potential of playifying school mathematics tasks and investigate both students’ and
mathematicians’ problem-solving activity through this lens. Drawing on teaching experiments
and mathematician interviews, we found evidence of playful engagement in both populations and
identified similar activity structures across both groups, which we call Explore-Focus Cycles. We
present two such cycles and discuss implications of playful math for student activity.

Keywords: Playful math, cognition, mathematician interviews, teaching experiments

Motivation and engagement are critical factors in supporting students’ abilities to understand,
perform, and persist in mathematics (e.g., Durksen et al., 2017). Students’ experiences of
self-efficacy can foster motivation, which in turn predicts persistence in the STEM fields (Simon
et al., 2015). Despite the importance of these factors, however, studies show ongoing challenges
with students’ self-efficacy and positive engagement in mathematics (e.g., Martin & Marsh,
2006). Finding ways to help students experience mathematics as enjoyable and worthwhile is an
important part of addressing attrition rates (Wilson et al., 2012).

One way to foster enjoyment is to provide opportunities for students to engage in more
authentic disciplinary practice, such as exploring, conjecturing, defining, and proving (Jasien &
Horn, 2018). In contrast to school mathematics, which can be procedural and routinized, these
practices can be simultaneously challenging, creative, and playful. In fact, much of authentic
disciplinary engagement involves many of the same features as play (Gresalfi et al., 2018), and
professional mathematicians have been described as engaging in mathematical play as part of
their practice (Lockhart, 2009; Mason, 2019; Su, 2020). Mathematical play has the potential to
center student voices enabling them to create their own challenges, investigate novel ideas, and
develop a disposition for innovation (Barab et al., 2010; Gresalfi et al., 2018).

Mathematical play is, therefore, a promising avenue for fostering productive practices
(Mason, 2019). However, the bulk of existing research on mathematical play is situated either in
early childhood or in informal spaces such as video games. Less is understood about the potential
benefits of incorporating play into school mathematics, particularly for older students.
Furthermore, the degree to which “playifying” classroom mathematics fosters engagement that is
more similar to that of mathematicians is not well understood. Therefore, this study investigates
both mathematicians’ problem-solving activity and middle-school students’ activity in playful
math tasks to ask, how does students’ playful math engagement compare to mathematicians’
problem-solving engagement? We use the term “playful math”, rather than “mathematical play”,
to highlight the opportunities of “playifiying” classroom mathematics tasks.

Background Literature: The Benefits of Playful Math
Playful math offers both conceptual and affective benefits. Playifying mathematics can favor

social interaction and communication (Edo & Deulofeu, 2006) and has been shown to foster
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increased enjoyment (Plass et al., 2013; Sengupta-Irving & Enyedy, 2015), engagement (Barab et
al., 2010), and to engender positive attitudes towards mathematics (Holton et al., 2001). Su
(2017) noted that it can also foster connection and community: “It’s why the MAA supports
programs like the American Mathematics Competitions and the Putnam Competition. We help
kids flourish through building hopefulness, perseverance, and community” (p. 486).

Researchers have also identified a number of learning benefits of playful math for children,
including increased mathematical fluency (Plass et al., 2013), improved knowledge in geometry
(Levine et al., 2012; Sedig, 2008), improved spatial skills (Casey et al., 2008; Levine et al.,
2012), and improved number development (Siegler & Ramani, 2008; Wang & Hung, 2010). The
degree to which these learning benefits extends to older students is unclear, but researchers have
identified a number of ways in which playful math can foster forms of engagement that is
thought to more closely mirror mathematicians’ disciplinary practice. This includes activities
such as abstracting and generalizing (Featherstone, 2000; Melhuish et al., 2021), exploring
patterns within axiomatic structures (Fernández-León et al., 2021; Su, 2017), conjecturing
(Jasien & Horn, 2018), and “extending, varying, simplifying, and complexifying” (Mason, 2019,
p. 95), among others. However, the manner in which this actually occurs, particularly with
classroom tasks, is not well understood. Therefore, we sought to better understand both the
playful nature of mathematicians’ problem-solving activity, as well as the activity of students
when engaging in playified tasks.

Theoretical Framework: Defining Playful Math and Principles for Task Design
What makes mathematical engagement playful? Definitions of play vary, but all emphasize

the learner’s freedom and autonomy (Holton et al., 2001; Su, 2017). Jasien and Horn (2018)
described mathematical play as entailing agency in exploration, self-selection of goals, and
self-direction in how to accomplish them. Davis (1996) described play as an acceptance of
uncertainty and a willingness to move, which is similar to Mason’s (2019) depiction of play as
trying out actions and exploring consequences. Play is not aimless, but rather, it is goal driven
and occurs within a structure (Featherstone, 2000; Huizinga, 1955; Su, 2017). Following these
researchers, we define playful math as a particular form of engagement in mathematics, one that
entails (a) agency in exploration and goal accomplishment, (b) self-selection of mathematical
goals, and (c) a state of immersion, investment, and/or enjoyment.

One common feature of playified tasks is that they are typically goal-free (Kapur, 2015),
open-ended problems (Cai & Cifarelli, 2005). In goal-free problems, learners only have to attend
to the present state and consider how to make any possible move from that state. This is in
contrast to goal-specific problems, in which learners must consider a problem’s givens, the
pre-determined goal, and how to connect the givens to the goal. Open-ended problems are
similar, in that one could construct many different problems and solutions within the given
situation. In constructing goal-free and open-ended problems, we followed four design principles
for playifying our tasks (Plaxco et al., 2021): (1) allow for free exploration within constraints; (2)
allow the student to act as both designer and player; (3) engender anticipating within the task;
and (4) provide a method for authentic feedback.

Methods
Study 1: Middle-School Teaching Experiments

We conducted two teaching experiments (TEs) over the course of 5 weeks during the summer
of 2020 (Steffe & Thompson, 2000). Sessions for the TEs occurred weekly for approximately
one hour; the third author was the teacher-researcher. We video and audio recorded both TEs,
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with the exception of the second session, when a technical error prevented video collection. We
also collected student work at the end of each session. The first TE was with two rising 7th grade
students, Stewie and GJ, and the second TE was with three participants, Artemis, a rising 7th

grade student, and Apollo and Frances, rising 6th grade students (all students chose their own
pseudonyms). The students had limited graphing experience and had received no prior
instruction on linear functions.

To investigate students’ activity when exploring rates of change within playified tasks, we
drew on a set of established research-based linear and quadratic growth tasks (Ellis et al., 2020;
Matthews & Ellis, 2018). In these activities, students investigate shapes via dynamic geometry
software, determining the rate of change of a shape’s area compared to its changing length as it
sweeps out from left to right, and then graphing that relationship. In following the
above-described four design principles to playify the tasks, we developed a series of activities
called Guess My Shape, in which the students created secret shapes of their choice (design
principles #1, #2), constructed graphs comparing length and area (design principles #2, #3), and
then challenged one another or the teacher-researcher to determine the secret shape based on the
graph alone (design principles #2, #3, #4). Because playful math describes a form of engagement
rather than the task itself, we hypothesized that the playified tasks would encourage playful
engagement, but we did not assume that they would. For Session 1, we only used the extant
covariation tasks, which we call standard tasks. For Sessions 2 - 5, we used both the standard
tasks and the playified math tasks. For each of those sessions, we spent the first two-thirds of the
session working with the standard tasks and the last one-third implementing the playful math
tasks

Study 2: Mathematician Task-based Interviews
Additionally, we analyzed task-based interviews with 13 mathematicians (see Lockwood et

al., 2016 for details). We gave each mathematician one or two tasks and asked them to work on
the task(s) while sharing their thinking out loud. The interviewer only interrupted to ask
clarifying questions or to address participant questions. We audio recorded the interviews with
Livescribe pens, which also captured the mathematicians’ written work as they spoke. All
mathematicians worked on the Interesting Numbers task, and 7 of the mathematicians also
worked on the Selfish Sets task. The Interesting Numbers tasks asked, “Most positive integers
can be expressed as a sum of two or more consecutive integers. For example, 24 = 7 + 8 + 9 and
51 = 25 + 26. A positive integer that cannot be expressed as a sum of two or more consecutive
positive integers is therefore interesting. What are all the interesting numbers?” The Selfish Sets
task asked, “Define a selfish set to be a set which has its own cardinality as an element. Find,
with proof, the number of subsets of {1, 2, . . . , n} which are minimal selfish sets, that is, selfish
sets none of whose proper subsets is selfish.”

Analysis
We analyzed the TE data for aspects of playful mathematics using a combination of a priori

and emergent codes (Strauss & Corbin, 1990). We drew the a priori codes from our three-part
definition of playful math, and we developed emergent codes to address aspects of students’
playful engagement that were not captured by the initial set of codes. All three authors coded the
transcripts independently and met weekly to refine codes and to adjust and resolve discrepancies.
This process continued through ten rounds of adjustments until all codes had stabilized. This
analysis of the TEs also produced a cyclic model of exploring and focusing actions (Ellis et al.,
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2022), which we then used as an analytic tool for the mathematician data. We discuss this
Explore-Focus Cycle in more detail in following sections.

We then turned to the mathematician data and analyzed the interviews for playful
engagement using the codes we developed from the TE analysis. We also developed descriptive
notes and diagrams that described each mathematician’s actions in terms of the Explore-Focus
Cycles. The first and second author coded the interviews separately and met weekly to resolve
discrepancies until the coding scheme had stabilized.

Results
Explore-Focus Cycles

In the Explore-Focus Cycle, one shifts back and forth between exploring actions and
focusing actions in order to make sense of a problem and determine a solution path. Exploring
actions occur when the problem solver either (a) engages in an action with little or no
anticipation of an associated outcome or (b) notices properties of outcomes and wonders about
the connection between those outcomes and the actions that led to them. As such, exploring
actions are empirical; they entail gathering information without a pre-determined aim, in order to
develop an idea, direction, or conjecture. In contrast, focusing actions are ones that a problem
solver makes with a specific anticipated outcome in mind.

For example, in the Interesting Numbers task, many of the mathematicians engaged in
exploration by generating examples of interesting and non-interesting numbers in order to see if
any useful patterns would emerge. Others explored by generating the algebraic formula for the
non-interesting numbers and then seeing if they could identify a useful structure in the algebra.
These actions typically resulted in the development of a conjecture that the interesting numbers
are the powers of 2. At this point, the mathematicians shifted to focusing actions, pursuing
strategies with anticipated outcomes such as an algebraic proof that powers of 2 are interesting.

In examining the students’ activity, we also found evidence of Explore-Focus Cycles but only
in the playified tasks. In the standard tasks, the students engaged in focusing actions but not
exploring actions. In order to exemplify the Explore-Focus Cycles for both the students and the
mathematicians, we present a truncated version of one cycle for a trio of students, Apollo,
Frances, and Artemis, and for one mathematician, M10. The students’ cycle occurred during a
Create a Shape playified task, and M10’s cycle occurred during the Interesting Numbers task
(Figure 1). In the figure, the exploring actions are in the green cells and the focusing actions are
in the blue cells.

Let us first consider the mathematician’s engagement. M10 began with an exploration of
possible approaches in order to determine which approach might be most productive (A1). She
did not attempt any of the approaches but just listed and considered which ones might be
feasible, and so there was not yet an anticipated outcome. She then focused on one strategy that
allowed her to generate an algebraic formula for non-interesting numbers (A2). M10 then
switched away from the algebraic form and instead generated and explored examples of
non-interesting numbers to “see if it makes sense” (A3). After generating examples, she did not
notice any patterns, and so she returned to the algebraic formula (A4). Here, she explored the
formula to determine helpful structures that might indicate restriction on non-interesting
numbers. From here, she switched again to the generated examples to look for patterns and
structures and determines empirically that all odd numbers will not be interesting (A5).

For the Create a Shape challenge, the students began by exploring possible shapes to use in
making a challenge for the teacher-researcher (TR) (B1). Here, they generated options without
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considering the associated length/area graph. However, once the options were suggested, they
considered the reasonableness of the associated graph. They anticipated that some shapes were
beyond their ability to graph and returned to exploring other possible shapes (B2). Apollo
suggested a spiral and then a C-shape (B3, B4). Then, they applied a grid structure and a
“connect the dots” structure to the C (B5). They were not anticipating the outcome of the graph
or measurements but were looking for structures that might help them to do so. Artemis then
considered the connect the dots method and suggested the need to number them (B6). Artemis
was now anticipating how to use this structure for measurement and thus was engaged in a
focusing action. Not included in the diagram below, the girls continued exploring and narrowing
in on their chosen shape and ended with creating a “wave” shape and corresponding graph that
introduced shapes shifted off the horizontal axis (Figure 2).

Figure 1. (A)Mathematician Explore-Focus Cycle and (B) Middle-School Explore-Focus Cycle
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Figure 2. Artemis, Apollo, and Frances’s final shape and graph for the Create a Shape Challenge on Day 3

For both the mathematicians and the students, we saw similarity across the presence and the
function of exploring actions. Exploring actions can serve to help determine intial goals to begin
narrowing in on the problem. M10 began with an exploration of possible approaches in order to
determine which approach might be most productive to begin the problem, and then, she focused
on one strategy that allowed her to generate information about non-interesting numbers. The
exploration allowed her to select an initial strategy. Similarly, the students began by exploring
possible shapes to use in their challenge. The exploration of shapes allowed the students to
choose a goal for graphing and also helped them focus on the constraints of particular shapes. We
saw this when Frances mentioned that triangles were too difficult, and when Artemis suggested,
“Circles are never ending and that’s impossible to graph a circle.” Additionally, we saw that
sometimes exploration serves as a way to search for structures. M10 explored structures when
looking back at the algebraic formula of non-interesting numbers and when looking across her
generated list of non-interesting numbers. The students did this when trying to work with a shape
but were unsure of how to graph it. Wanting to graph the C-shape, Apollo tried overlaying a grid
and “connecting the dots” between predetermined points. Here, she was trying to make sense of
the structure of the C in a way that may be productive for graphing, as using points or grids may
be natural ways of creating measureable areas and lengths.

Although similarities exist across the cycles, the cycles only occurred for the students during
the playified tasks; whereas, they modeled the mathematicians’ engagement across all of the
tasks and interviews. One difference in the cycles is the novel, creative, and difficult
mathematics that the students created for themselves. In this example, Apollo, Artemis, and
Frances had only experienced linear and piecewise linear changes with shapes that were
rectangles. However, to make the problem sufficiently challenging for the TR, they worked hard
to create something different than what they had seen before, suggesting triangles and curved
shapes such as circles, spirals, and the C-shape. Even though they moved on from using curved
shapes, the desire to construct something novel and challenging persisted throughout the
sessions. The mathematicians did not demonstrate creativity or make the mathematics more
challenging, likely because the nature of the tasks did not call for designing or exploring their
own questions.

Playful Engagement Codes
Recall that our three-part definition of playful math is (a) agency in exploration and goal

accomplishment, (b) self-selection of mathematical goals, and (c) a state of immersion,
investment, and/or enjoyment. Three additional codes emerged during our analysis: (d) taking on
authority, (e) creative/unusual, and (f) harder math. Taking on authority refers to either a shift in
authority from the TR to the students, or to an instance of students taking on mathematical
authority with one another or with the TR. Creative/unusual applies when students have
developed an idea, representation, connection, or task that we perceived as creative, novel, or
atypical, and harder math occurred when students created a goal or task that introduced new
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challenges for them and represented mathematical ideas that surpassed the TR’s intended set of
topics or concepts.

Across the 10 sessions of the two TEs, we implemented 40 standard tasks and 9 playified
tasks. Students completed one to two playified tasks at the end of each session, beginning with
the second session. We coded any evidence of the six codes across both the playified and
standard tasks. We then examined the rate of occurrence of each of the codes with respect to task
type (Figure 3). For instance, self-selection of goals occurred on average 0.075 times per
standard task and 3.11 times per playified task. We found that all six codes occurred with greater
frequency on average within the playified tasks compared to the standard tasks. Furthermore,
two of our codes, creative/unusual and harder math, occurred only in the playified tasks.

Figure 3. The Average Number of Occurrences of each code per Standard and Playified Task

We also investigated the presence of the playful math codes (a – c) in the mathematician
interview data. We did not include the three emergent codes (d – f), as the nature of the interview
tasks, unlike more authentic research activity, did not necessitate creative, unusual, or harder
math (and the mathematicians already held mathematical authority). We found evidence of (a)
self-selection of goals and (b) agency in exploration/goal accomplishment for all 13
mathematicians, and evidence of (c) immersion, investment, and/or enjoyment for nine of the 13
mathematicians. The presence of these codes and the Explore-Focus Cycles in both data sets
suggests that playful math can be one way to support the development of productive practices.

Discussion
Playful math is a dispositional stance towards an activity, rather than a description of the

activity itself. Thus, we did not know whether our design principles for playifying tasks would
necessarily support more playful engagement. We found that they did, and they also supported
students’ development of novel, creative, and challenging ideas and strategies. It is possible that
other open tasks may do the same thing; more research is needed to understand the unique
affordances of a play-based approach. Nevertheless, this study offers a proof of concept that
playful math can be one fruitful avenue for necessitating (Harel, 2008) more spohisticated
concepts and connections.

We also found that mathematicians’ problem-solving activity is not only playful, it also
entails open exploration, with mathematicians shifting between phases of exploring and
focusing. Notably, the students demonstrated similar cycles, but only in the playified tasks.
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These findings provide evidence to support theoretical arguments that incorporating playful math
into classroom activities can foster forms of engagement similar to mathematicians’ activity
(e.g., Mason, 2019).
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Students Leverage Struggles with Proof  

to Script Fictional Dialogues about the Rules of Proving 
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Research has noted that some aspects of proof remain implicit in undergraduate instruction. 

Accordingly, we propose that direct interaction with the rules of proving (e.g., deductive 

reasoning, proof-writing conventions) is of didactical value to students transitioning to proof-

based mathematics. Using the commognitive framework, we aim to delineate the rules that 

newcomers to proof find challenging. These were solicited with a scriptwriting task that asked 

students to create a fictional dialogue about a proof-related mistake that they had experienced. 

The task was embedded in a homework assignment in an undergraduate course for academically 

motivated high-schoolers. Thematic analysis of 61 scripts resulted in a range of rules that 

concerned the use of examples, logical circularity, and proof layout. We discuss these findings in 

relation to students’ instruction and the existing literature on proof. 

Keywords: Commognitive framework, proof, rules of proving, scriptwriting, transition to proof 

Introduction 

Dreyfus (1999), Selden and Selden (2015), and other researchers have argued that many 

aspects of proof remain implicit in undergraduate teaching and learning. Consistently, the lion’s 

share of proof research can be reframed as students grappling with new mathematical rules that 

are not as explicit as they could be (e.g., Balacheff, 2008; Harel & Sowder, 2007; Moore, 1994; 

Selden & Selden, 1987; Weber, 2002). Overall, the shift to proof-based mathematics requires a 

fundamental change in the rules of argumentation and justification. Kjeldsen and Blomhøj 

(2011) maintain that developing appropriate rules for activities of this sort is indispensable for 

mathematics learning. In the context of proof, such rules can be associated with deductive 

reasoning, propositional calculus, logic, and generally accepted proof-writing conventions. 

Accordingly, we propose that a direct engagement with the rules of proving (RoP hereafter) is of 

didactical value to newcomers to proof-based mathematics. This study comes from a larger 

project that explores how newcomers articulate, apply, and make sense of RoP while making 

their first proving steps. 

Background 

A “solid finding” of mathematics education research is that “many students rely on validation 

by means of one or several examples to support general statements, [and] this phenomenon is 

persistent in the sense that many students continue to do so even after explicit instruction about 

the nature of mathematical proof” (ECEMS, 2011, p. 50). Another occasionally reported issue 

pertains to logical circularity. In abstract algebra, Selden and Selden (1987) found that some 

students use one version of the conclusion of the assigned statement to prove an equivalent 

version of the same conclusion. Additional findings of a similar type have been reported in the 

literature (e.g., Weber, 2002).  

Emerging from cognitive studies, these findings are often framed in terms of students’ errors 

and misconceptions since they have to do with proof validity. We adhere to the social 

perspective on proof (Stylianides et al., 2017). Within this perspective, the findings can be 

viewed as students’ deviations from the rules that are broadly accepted in professional 
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mathematics communities. And while it is not rare for mathematicians to disagree on proof-

related issues (e.g., Lew & Mejía-Ramos, 2020), abiding by such rules as modus ponens and 

propositional calculus is likely to be expected in all communities that practise proof. 

Generating proofs that abide by these rules requires additional rules that are less universal. 

For instance, Stylianides (2007) argues that in a classroom, a proof uses accepted statements and 

employs forms of reasoning and expression that are known to, or are within, the conceptual reach 

of the students. Accordingly, proofs can vary depending on what each classroom renders 

“accepted,” “known,” and “within students’ reach.” Furthermore, guidelines are needed to 

compile mathematical statements, forms of reasoning and expressions into a proof that the 

classroom community will endorse. In terms of Yackel and Cobb (1996), RoP of this kind are 

not very different from sociomathematical norms that determine “what counts as an acceptable 

mathematical explanation and justification” (p. 461). While using different terms, Dreyfus 

(1999) discusses instances where students grapple with such community-specific rules in the 

context of Calculus and Linear Algebra. The instances contain explanations and proofs that 

Dreyfus describes as insufficient: they present computations without accompanying 

explanations, draw on theorems without spelling them out, and, overall, do not “go back” enough 

and do not “go deep” enough. 

The findings overviewed in this section come from research where students did not follow 

RoP that the researchers viewed as conventional. This study endorses an anti-deficit approach 

that foregrounds productive resources that all students bring to mathematics learning. The 

approach acknowledges that “learning takes time and imperfect articulations of mathematical 

ideas and some inconsistencies in the student’s current conception are a natural part of the 

process of learning” (Adiredja, 2019, pp. 416–417). Specifically, we interpret students’ 

deviations from conventional rules as a marker of their ongoing transition to proof-based 

mathematics. We also see value in encouraging students to notice and reflect on such deviations 

as a stepping-stone towards the conventional RoP (e.g., CUPS, 2004). This study aims to 

delineate RoP that newcomers to proof-based mathematics find challenging.     

Commognitive Framework 

We follow in the footsteps of previous studies that mobilized the conceptual and analytical 

potential of commognition to study university students’ engagement with proof (e.g., Brown, 

2018 Kontorovich, 2021, Kontorovich & Greenwood, 2022; Kontorovich et al., 2023). 

Commognition construes mathematics as a discourse. Discourses are defined as, “different types 

of communication, set apart by their objects, the kinds of mediators used, and the rules followed 

by participants and thus defining different communities of communicating actors” (Sfard 2008, 

p. 93). Then, learning is a process through which one’s communication starts abiding by the 

rules of the target discourse.   

Proof and proving concern endorsable narratives—narratives that can be rendered as true 

“according to well-defined rules of the given mathematical discourse” (Sfard, 2008, p. 224). 

Sfard (2008) acknowledges that “being dependent on what participants find convincing, routines 

of substantiation are probably the least uniform aspect of mathematical discourses. The very term 

endorsement may be interpreted differently by different people” (pp. 231–232). Indeed, the 

mathematics community has been revising these interpretations of what constitutes endorsement 

throughout history (e.g., Kleiner, 1991). Notwithstanding, Sfard (2008) proposes that “for 

today’s mathematicians, the only admissible type of substantiation consists in manipulation on 

narratives, and it is thus purely intradiscursive” (p. 232). This manipulation unfolds as a 

sequence of utterances (or proof components), each either an “accepted fact,” or derived 
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according to some generally accepted rules (e.g., modus ponens). In this way, we associate RoP 

with intradiscursive principles for endorsing true mathematical statements and rejecting false 

ones. Colloquially speaking, these rules pertain to “when to do what and how to do it” 

(Bauersfeld, 1993, p. 4). 

Commognition distinguishes between object-level rules and meta-discursive rules (or 

metarules for short). The former rules attest to the properties of mathematical objects and take 

the form of narratives on these objects (e.g., “the product of rational numbers is rational”). 

Metarules focus on how discourse participants formulate and substantiate object-level rules. 

Thus, RoP are meta-discursive by definition. Metarules are often enacted tacitly. Once a rule has 

been captured in words (i.e. when a rule-narrative is generated), commognition refers to it as 

endorsed by the interlocutor (Sfard, 2008). In this study, we scrutinize RoP that newcomers to 

the discourse of proof-based mathematics endorse.  

The Study 

Our participants were students in a special program entitled “Mathematics extension and 

acceleration” in a large New Zealand university. The program is intended for mathematically 

motivated and academically inclined students (usually 17-year-olds) in their final year of high 

school. As part of this program, the students take a special semester-long mathematics course 

that gives them academic credit for a bachelor’s degree in mathematics or engineering. 

Proofs play a marginal role in New Zealand school mathematics (Knox & Kontorovich, 

2022). The first part of the course ushers students into proving, while leveraging their familiarity 

with different kinds of numbers. In the first two lectures of the course that we studied, the 

instructor introduced proof as “an argument that mathematicians use to show that something is 

true.” Then he presented three true mathematical statements and led a whole-class discussion 

about what he positioned as “broken proofs.” In the following three lectures, he introduced 

selected properties of real numbers (e.g., distributivity) and illustrated how these could be used 

to derive additional properties (e.g., −𝑎 = −1 ∙ 𝑎); the illustrations were discussed as instances 

of “good proofs.” In these lessons, the instructor shared many proof-related insights and 

guidelines, including: examples do not prove universal statements, avoid circularity, start with 

true things, delineate the statement to be proved before proving it, the scope of the introduced 

variables should be defined, use words to explain the proof (not just formulas), avoid proofs that 

prove without explaining. In the last section, we draw on these insights and guidelines to reflect 

on RoP that students endorsed. 

A scriptwriting task was designed to pursue the aim of this study. In tasks of this sort, 

students are provided with a thought-provoking prompt and asked to offer a resolution by 

scripting a fictional dialogue between made-up characters (Zazkis et al., 2013). Research has 

used scriptwriting to investigate students’ proving (e.g., Gholamazad, 2007). Brown (2018) 

argued that by making students’ envisioned interactions about a proof public, scriptwriting 

affords students a way to make their thinking visible and fosters reflection. In turn, researchers 

get access to proof-related aspects that students render important.  

The course instructor and the first author collaboratively developed a scriptwriting task to 

provide students with opportunities to engage with RoP and collect data (Kontorovich & Bartlett, 

2021). Figure 1 presents the task eventually developed. It was embedded in an individual 

homework assignment together with proof-requiring problems that are typical to transition-to-

proof courses. 

The second author conducted an initial analysis of students’ submissions (Liu, 2018). The 

analysis started with an overview of the 74 scripts that were collected to develop a general 
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impression of whether they pertain to RoP. This process converged into 61 submissions, which 

underwent a thematic analysis (e.g., Braun & Clarke, 2006). The initial themes were iteratively 

separated and merged to develop general categories and descriptions of rule-narratives that the 

students generated through the voices of characters that represented them in their scripts 

(Student-characters, hereafter). This process combined deductive and inductive techniques as the 

initial themes were informed by the literature as well as by the content of students’ scripts. When 

characterizing students’ rule-narratives, we distinguished between the restricting and the guiding 

version of a rule: the former posited that something should not be done, while the latter offered 

guidance for how proving should be pursued. 

 
Figure 1. A scriptwriting task1 

Findings 

This section presents six categories of the most common rules that emerged from analyzing 

students’ scripts. We use rule-like formulations for the first five kinds due to the high 

consistency of the rule-narratives that the students’ generated. Next, we elaborate on each kind 

and illustrate it with representative examples from students’ scripts. 

Examples are insufficient to prove a universal statement 

This type of rule featured in 16 scripts. There, the students’ rule-narratives stressed the 

insufficiency of drawing on specific examples to prove a universal statement that pertains to 

infinitely many cases. For example, one script revolved around the statement that the product of 

two rational numbers is rational. To prove it, “an imaginary friend” multiplied the rational 
3

4
 and 

4

2
 to obtain 

12

4
, which he identified as a rational number. The Student-character did not disagree 

with the rationality of the product, but he did not accept that this substantiation can be endorsed 

as a proof. Specifically, the Student-character generated a rule-narrative, stating that “Just 

because you gave an example where the claim is true, doesn’t mean it’s always true”. In other 

scripts, the Student-characters explicated the insufficiency of supporting examples by stressing 

that “a proof cannot be made of citing examples only”. Some rule-narratives highlighted that 

even a large number of supporting examples would not make a proof (e.g., “It doesn’t matter 

how many examples you give […] that would still not be satisfactory enough to say that the 

claim is true”). Guiding rule-narratives featured in 5 scripts and suggested considering “the full 

range” and “all possible values” that are relevant for the focal statement. 

 
1 The task refers to a famous tiling chessboard problem that was part of students’ homework assignment.  
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Failures to produce an example are insufficient to prove a non-existence statement 

Six scripts highlighted the insufficiency of failing attempts to exemplify a non-existence 

statement to be considered as a proof. Consider an excerpt: 

Friend- character: When I was attempting the chessboard problem, I tried to manually place 

rectangles onto the box and fit them in. Since I couldn’t solve it, it proves the problem is 

unsolvable. 

Student-character: When you tried to place rectangles on the board, it only proves the 

specific arrangement doesn’t work. But there are many different arrangements which can 

be attempted, and the result of one cannot be assumed to be the same as all the others.  

In this exchange, we see the Student-character generating a rule-narrative, positing that the 

friend’s unsuccess in covering the board does not account for all possible arrangements. Then, 

her attempts cannot be viewed as a valid proof that the board cannot be covered. In the first part 

of her submission, the same student wrote this explicitly, “[the specific arrangements] showed 

that they could not fit, but it did not prove the problem is unsolvable”. Another Student-character 

argued that “no matter how many examples you provide, it’s possible for a solution to exist”. In 

this way, other Student-characters also stressed that specific attempts to generate examples for a 

non-existence statement does not extrapolate to other possibilities. Contradiction-based guiding 

rules-narratives appeared in three scripts in this category. 

Deriving a true claim from a statement does not prove it 

This type of rule emerged from seven scripts where “imaginary friends” manipulated the 

assigned statement until the obtainment of a true claim. Then, it was interpreted as a warrant that 

the initial statement has been proved. For instance, one “imaginary friend” drew on her deriving 

that “0 = 0” to argue that some initial (and never explicated statement) was true. But the 

Student-character insisted that “Proofs don’t work like that […and ] you definitely cannot say 

0 = 0 so it must be true”. In what appears as an attempt to replicate this approach, the Student-

character wrote “1=2” and multiplied both sides by zero to end up with “0 = 0”. This move 

illustrated that a deviation from the focal rule opened the door to the endorsement of false 

statements. Similar rule-narratives featured in other scripts, arguing that “Assuming the truth of 

the claim and manipulating it to reach a true conclusion does not prove that it is true.” Instead, 

four scripts contained guiding rules, suggesting one should “start with what you know is truth.” 

A proof must contain no invalid moves nor false claims 

This type of rule grew from 12 scripts where “imaginary friends” conducted a 

mathematically invalid move to prove a statement. These moves included multiplying both parts 

of the equation by zero, manipulating with infinity and 0−1 like these were real numbers, and 

building on false assumptions that steered proving towards a problematic course. 

To diversify the scope of illustrations, we refer to a script where this rule was enacted silently 

without being endorsed. There, the ‘Imaginary friend’ proposed to prove the irrationality of 2
1

√2 

by first showing that the exponent is irrational, and then proving that a rational number raised to 

an irrational power is irrational. The Student-character rejected “that method” by counter-

exemplifying the second step. In this way, the scriptwriter implicitly suggested that building on a 

false assumption disqualifies the proof. Other students were more explicit regarding this rule. In 

one script, the Student-character posited that “Unfortunately, we can’t divide by 0, which kills 

the whole argument”. In another submission, a student shared “I made a false assumption that 
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made the proof false”, which tacitly foregrounds the focal rule. A guiding rule-narrative featured 

in a single script, and it suggested “always start with something that you know is true!” 

A proof should not include circularity 

This type of rules emerged from six scripts where an “imaginary friend” drew on the 

assigned mathematical statement or some variation of it within the proof itself. Then, the 

Student-character called out this circularity, arguing that it disqualified the proof. For instance, in 

one script, a “friend” attempted to prove that the sum of irrational numbers is irrational. As part 

of it, they defined the irrational 𝑥 and 𝑦, and sequentially relied on the irrationality of 𝑥 + 𝑦 +
(−𝑥) “as claimed” in the original statement. In turn, the Student-character responded with a rule-

narrative stating that “you cannot make assumptions based on the claim [since you] are proving 

the claim to be true”. Additional examples of rule-narratives that the students generated included 

“using what is required to be shown/proven in the proof (!), which is clearly invalid” and “Well 

you are trying to prove that the product of two rational numbers is also rational. So how can you 

say that 𝑎 ∙ 𝑚 is rational, since this is the fact you are trying to prove [𝑎 and 𝑚 were previously 

assumed to be rational]?” Only in one script, a Student-character proposed a guiding rule, calling 

their fictional peer to “stick to things that you 100% know are true: like our axioms”.  

The rules of proof layout 

This category emerged from 18 scripts. The rule-narratives that the students generated in 

these scripts were diverse, and we sub-divided them into four types: (i) the statement to be 

proved should be explicated, (ii) the numeric sets of the introduced variables should be specified, 

(iii) the proof moves need to be explained, and (iv) sub-narratives constituting a proof should be 

proved. Table 1 illustrates each rule with excepts from students’ scripts. Overall, these rules 

regard the layout of different proof components. Note that all these rules are guiding.   

Table 1. Rules of proof layout 

Sub-categories of the rules Excerpts from students’ scripts 

(i) The statement to be 

proved should be 

explicated 

“You must have a claim at the top of your proof so that other 

readers and markers can understand what you are trying to 

do. Plus your conclusion may not make much sense without 

any claim to measure it against” 

(ii) The numeric sets of the 

introduced variables 

should be specified 

“I forgot that when saying something is rational, you say it =
𝑚

𝑛
 where 𝑚, 𝑛 ∈ ℤ you say 𝑛 ≠ 0” 

(iii) The proof steps need 

to be explained 

“You need to write down your logic and reason step-by-step 

to backup your proof.” 

(iv) Sub-components of a 

proof should be proved 
“We cannot just assume that √8 is irrational. You must prove 

it first, otherwise the rest of the proof is invalid.” 

We notice the categorical tone of the rule-narratives in this category, implying that the rules 

are unambiguous and can be enacted straightforwardly. This appears to be the case for (i) and 

(ii). Regarding (iii), in some scripts, Student-characters insisted on introducing “math terms” and 

“explanations” to symbolic substantiations. This afforded students to maintain that a proof that 

“doesn’t use words” is problematic, without discussing how “wordy” a proof should be. 

The issue of ambiguity is also relevant to rule (iv): what mathematical claims can be used 

without any substantiation, and what claims need to be proved separately? Indeed, one script 

revolved around the rejection of “the sum of rational numbers is rational.” There, the Student-
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character criticized a counter-example where 1 − √2 was treated as an irrational number without 

explicit proof. Then, the same character suggested using −√2 instead, arguing that “it’s still an 

irrational number and √2 + −√2 = 0”. What makes this script interesting is that in the course, 

neither the irrationality of −√2 nor the rationality of 0 were proven, but the student still 

endorsed these numbers as such. 

Summary and Discussion 

Building on the literature and the commognitive framework, we argued that direct 

engagement with RoP is of didactical value to students in transition to proof-based mathematics. 

To trigger this engagement, we asked students to script a fictional dialogue about a proof-related 

mistake that they experienced. We used the students’ scripts to explore the metarules that 

newcomers to proof can find challenging.   

The analysis resulted in six kinds of rules, none of which are foreign to the mathematics 

education literature. The innovation is in their epistemological status: while in most studies, the 

rules emerged from students’ infelicitous proof attempts (e.g., Selden & Selden, 1987; Weber, 

2002), in our case, the students were the ones to position these rules as something that a 

mathematical proof must avoid or abide by. Many students went beyond the rule formulation to 

illustrate, elaborate, and substantiate these rules. Accordingly, a key contribution of our study is 

in showing that newcomers can not only struggle with proof, but also communicate about it on a 

meta-level after a relatively short acquaintance period. That said, we acknowledge that our 

findings come from a special cohort that is hardly representative of a broader student population. 

Thus, we call for further anti-deficit research into how students learn RoP.  

Sceptics may suggest that we should not “read too much” into students’ endorsed rules as 

they could “simply” be drawing on what the course instructor demonstrated. Indeed, the overlap 

between the instructor’s and students’ rules cannot be ignored. However, even if the sceptics are 

correct and this is how students’ rules came about, we argue that it is legitimate and even 

expected. Indeed, Sfard (2008) maintains that transitioning to a new discourse is impossible 

without a ritual phase, where learners imitate the discourse oldtimers. To do so, the students still 

needed to craft relevant proof attempts, generate their versions of rule-narratives, and apply them 

in a different context. Currently, we are developing an analytical framework to distinguish 

between cases of rigid imitation and agentive application of RoP. Overall, the identified overlap 

draws attention to the impact of proof instruction on students’ communication about proof.      

Each RoP can be captured in a guiding or in a restricting form. However, most of our 

participants adhered to the latter rather than the former. This result may be a side-effect of the 

assigned task: asking about a mistake may have nudged students to emphasize what is not 

supposed to happen in a proof. Alternatively, many guiding rules are based on deductive 

reasoning, communication about which requires a special vocabulary that the students may not 

yet possess. Accordingly, it could be interesting to explore whether students’ capabilities to 

generate guiding and restricting rules develop in parallel. 

We must be cautious when offering implications based on this exploratory study. Yet, we 

hope that its findings will encourage instructors to consider locating RoP at the center of their 

proof teaching. Furthermore, scriptwriting tasks may offer valuable information about students’ 

emerging RoP: a carefully designed task can mirror the rules that students find challenging or 

ambigous, and can also point at the rules that currently escape students’ attention.  
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Teaching Assistants’ Use of Students’ Work When Planning How to Address Misconceptions
Inferred from It

Jungeun Park Douglas Rizzolo
University of Delaware University of Delaware

Given the crucial role that the graduate teaching assistants (TAs) play in undergraduate
mathematics education, this study investigated how TAs interpret students’ work and plan to
address students’ work in teaching. We analyzed TAs’ interpretations and plans according to
approaches towards addressing students’ misconceptions discussed in the literature: viewing
them as simply incorrect regardless of students’ thinking behind them, viewing them as a
reflection of students’ flawed ideas to be confronted and replaced, and viewing them as resources
for future learning. Our analysis shows that while TAs’ interpretations were often sufficiently
rich to support using student misconceptions as resources for future learning, none of their plans
used them in this way. Rather, most TAs’ plans were aligned with the confront-and-replace
approach. Our results suggest that professional development could be designed to help TAs
convert their rich interpretations into plans for using student misconceptions as resources for
future learning.

Keywords: Graduate Teaching Assistants, Use of Student Work in Teaching, Interpretation of
Student Work

Introduction
There has been growing interest in the role that graduate teaching assistants (TAs) play in

undergraduate mathematics education (Kung & Speer, 2009; Speer et al., 2005). TAs have direct
impact on their current undergraduate students’ learning of mathematics by teaching classes,
holding office hours, and working in tutoring centers (Kim, 2014; Ellis, 2014) and also will have
long-term impact on mathematics education at the university level as the next generation of
instructors (Ellis, 2014; Kim, 2014; Musgrave & Carlson, 2017). Recently there have been calls
for more research especially about TAs’ teaching (American Association for the Advancement of
Science (AAAS), 2019). The current study addresses an important aspect of TAs’ teaching: how
TAs interpret and address their students’ work. How teachers interpret students’ work and plan to
address errors has been studied intensively in K-12 teacher education literature (see the review
by Stahnke et al., 2016). However, in comparison, we as a field still have limited understanding
of whether and how TAs’ interpretations of students’ work relate to their instructional decisions.
To understand how TAs make instructional decisions based on students’ work we conducted a
study where TAs analyzed students’ written work on non-routine problems and planned to
address the issues that they identified. The following research question guided our study:

How do TAs use students’ written work in planning how to address with the students any
misconceptions reflected in that work?

Our question focuses on misconceptions because we will consider TAs inference of student
understanding from written work and whether/how such inferences are related to their plans to
address errors. To address this question, we adopted three ways to view students’ misconceptions
that we identified in the existing literature on how to use student errors or misconceptions in
teaching, which we will detail in the following section.
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Theoretical Background

Views on Misconceptions
Three different views of students’ misconceptions that we identified in the literature (Smith

et al., 1993; Li & Schoenfeld, 2019; Rake & Ronau, 2018) guided our analysis of TAs’
interpretation of students’ work: viewing misconceptions as simply incorrect regardless of
students’ thinking behind them, viewing them as a reflection of students’ flawed ideas or
thinking that need to be replaced, and viewing them as resources for future learning. The
differences between these views of misconceptions are significant because they suggest different
instructional approaches for dealing with misconceptions, such as simply reteaching the content
that students showed the error for, confronting the error and replacing it with the expert
counterpart, and providing context to reorganize and refine students’ existing knowledge. We
analyzed TAs’ plans to address students’ misconceptions in terms of these three instructional
approaches. As summarized in Smith et al. (1993), studies that viewed students’ misconceptions
as “flawed ideas that are strongly held, that interfere with learning, and that instruction must
confront and replace” (p. 115) represented a “fundamental advance from previous approaches
that essentially divided student responses into two categories, correct and incorrect” by focusing
“attention on what students actually say and do in a wide variety of mathematical and scientific
domains” (p. 117). However, they also pointed out that “confront and replace” is problematic in
practice because “misconceptions continue to appear even after the correct approach has been
taught” (pp. 120-121). Smith et al. (1993) provided a constructivist view of “learning that
interprets students' prior conceptions as resources for cognitive growth within a complex system
of knowledge” (pp. 115-116) and suggested that refinement of students’ existing knowledge for
learning was more effective than replacement. Specifically, they argued that “instruction should
help students reflect on their present commitments, find new productive contexts for existing
knowledge, and refine parts of their knowledge for specific scientific and mathematical
purposes” (p. 150). This reconceived view of misconceptions has been advocated for in recent
approaches emphasizing sense-making in mathematics and understanding (Li & Schoenfeld,
2019) and in empirical studies investigating student reasoning behind incorrect responses (e.g.,
Makonye, 2012; Rake & Ronau, 2019). It should be noted that, from this view, errors or error
patterns are different from misconceptions. Smith et al. (1993) used misconception as “a student
conception that produces a systematic pattern of errors” and differentiated it from “simply
designat[ing] a pattern of errors” (p. 119).

Given that our TAs sometimes just noticed errors or error patterns from student work samples
(and/or connected it to error patterns that they noticed from their previous teaching experience)
and proceeded with their plan to address the errors without providing interpretations, in our
current study, we analyzed TAs’ interpretation of students’ errors or misconceptions in terms of
the three views described above, focusing on whether it was viewed as a flawed idea to be
replaced or a reflection of their knowledge to be used as a resource of learning, and whether and
how it was reflected in TAs’ planning of how to address the students’ errors or misconceptions,
i.e., reteaching, confronting-and-replacing, or reorganizing and refining.

Perceiving, interpreting, and responding to students’ thinking
Addressing students’ misconceptions starts with perceiving and understanding those

misconceptions. Given that TAs spend a lot of time trying to make sense of students’ written
work while they are grading or during small group work in class, our study design adopted a
setting where TAs would have opportunities to read written students’ work samples, interpret
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what is written, and devise plans for their next instructional moves. Several existing studies have
similarly adopted this setting; they involved student work samples, most of which included
errors, that were developed, based on, or adopted from, existing research (e.g., Son, 2013;
Cooper, 2010). As noted in the recent review by Stahnke et al. (2016), most such studies focus
on content at the elementary level, such as proportional reasoning (Hines & McMahon, 2005;
Son, 2013), geometry (Son & Sinclair, 2010), fractions (Jakobsen et al., 2013), algebraic or
numeric computations (Cooper, 2010; Magiera et al., 2013) and have involved preservice
teachers (PSTs). Stahnke et al. (2016) made common observations based on the results of these
studies: (a) “pre-service teachers had difficulties in perceiving and interpreting” among other
things “common misconceptions and student errors”, and (b) teachers’ own “difficulties with
mathematics tasks influenced their perception and interpretation” (p. 14). They also showed that
(c) teachers’ proposed approaches to addressing students’ misconceptions or errors were either
‘“reteaching’ (Cooper, 2009) or showing students’ how to do it correctly (Son, 2013)” (p. 14).
Moreover, a large number of PSTs did not use student work at all in their response to the
students, other than to say that the student’s method is wrong or they briefly mentioned it as “a
stepping-stone” to correct the student error (33 and 13 out of 75, respectively, Son, 2013, p. 62).
Although these studies did not explicitly adopt the views and approaches towards
misconceptions we discussed above, the approaches to student misconceptions that PSTs adopted
that are in the literature are aligned with “reteaching” or “confront-and-replace” approaches to
misconceptions, rather than with using student misconceptions as a resource for reorganizing and
refining students’ existing knowledge, and are connected to PSTs’ difficulties with interpreting
students’ errors in terms of the students’ thinking reflected in their written work.

Research Methods

Research Setting, Participants, and PD
We conducted our study in a single-variable calculus course, Calculus I for STEM majors, at

a mid-sized public U.S. university. At the institution, Calculus I is offered as large coordinated
lectures with 100-150 students taught by faculty instructors, and with discussion sections for
25-30 students taught by TAs. In the discussion sections, TAs mainly solved textbook problems
based on questions from students. At the time of the study, 16 TAs at the institution taught
discussion sections. We invited all 16 TAs to participate in our study. From these, five TAs
volunteered. Those TAs were considered overall “strong” PhD students in the department, four
were in their 3rd-4th year in the program with years of experience teaching calculus discussion
sections and one was in the second semester of their first year in the program and also with
experience teaching discussion sections. The TAs also participated in a bigger study that
included classroom observation, collection of students’ work, and interviews, as well as
professional development (PD). However, we will only focus on the PD in this proposal. The
authors (one mathematics educator, and one mathematician who has also conducted mathematics
education research) conducted four 75-minute PD sessions that were one or two-weeks apart.
Each session centered around one worksheet (with non-routine problems) and started with one of
the TAs presenting their solutions to the problems as a prompt for discussion about how to make
the solution better mathematically, or friendlier to students, or about their own difficulties when
they tried to solve the problems. Then, the PD analyzed 2-4 student written solutions to the
worksheet problems that we collected from the previous years. The student work samples we
chose were examples of common misconceptions based on what is reported in the existing
literature on students’ thinking about calculus, and included evidence of student’s reasoning
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(based on the researchers’ determinations). Based on their analysis, TAs wrote responses to the
following three prompts: “Please describe in detail what you think each student did in response
to this problem,” “Please explain what you learned about these students’ understandings”, and
“Pretend that you are the TA of the student. What questions/problems might you pose next?
Why?” There were also additional verbal prompts from the facilitators, such as “where may they
be coming from?” and “why do you think the student answered that way?”. Then, they discussed
their noticing, interpreting, and planning with other TAs. These prompts were adopted from the
noticing literature (Jacobs et al., 2010) to collect what TAs’ were attending to, how they were
interpreting student work, and their plan to address what they noticed and interpreted. In this
proposal, we will focus on the observations we made about the TAs interpretations and plans.

Analysis
The data we used was the TAs’ written responses to the three prompts and their discussions

during the PD. We first transcribed the TAs discussions during the PD and typed out their written
responses. Then, we classified chunks of written responses or verbal participation in the PD
(divided by who spoke and the misconceptions or errors that were addressed) into noticing,
interpreting, and planning. Then, the two authors categorized the chunks into several codes based
on open coding (Strauss & Corbin, 1998). Once we came up with all the codes that were
descriptive of the data, we again coded about 20% of the chunks, chosen randomly from each TA
and from each PD session, to check inter-coder reliability. Our results matched except for a few
chunks for which we discussed and revised the description of the codes until we reached
agreement. Note that we analyzed all of the interpretations and plans proposed during PD, not
only the ones that TAs eventually settled on by the end of the PD sessions.

Results

TAs’ interpretation of student work
We analyzed TAs’ interpretations in terms of the three views towards misconception

discussed earlier: incorrect regardless of student reasoning behind it, reflection of student’s
flawed ideas or thinking that needs to be replaced with the right one, or reflection of student’s
existing knowledge that can be refined and reorganized to accommodate new concepts/context to
learn. In our analysis, we first identified types of TAs’ interpretations that indicated they
considered students’ work as a reflection of students’ mathematical thinking. Our analysis
indicated that in most chunks of interpreting student work (83 among 107), TAs interpretations
indicate that they considered the students’ work as a reflection of the students’ mathematical
thinking. Among these 83 chunks, 35 interpretations regarded a student’s thinking about a
concept, relation, theorem, or procedure as being different from what is mathematically accepted,
35 interpretations regarded a student’s application of knowledge as in an inappropriate context,
and 13 regarded a student’s thinking as taking an approach deemed correct but with mistakes or
as not carrying the approach out to its conclusion. The remaining 24 chunks, where TAs
interpretations did not indicate that they considered the students’ work as a reflection of their
mathematical thinking, included interpretations such as that the student is just guessing, that they
are computing without thinking, and that students’ work is unclear, with no further interpretation.

The 35 interpretations regarding a student’s application of knowledge in an inappropriate
context are particularly important for promoting instruction that helps “students reflect on their
present commitments, find new productive contexts for existing knowledge, and refine parts of
their knowledge for specific scientific and mathematical purposes” (Smith et. al. 1993, p. 150)
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because of the straightforward way such interpretations can be translated into plans to help
students understand the appropriate context for their approaches and how the present context is
different. For example, three TAs interpreted the following student work (Figure 1) as an
example of applying limit laws in an inappropriate context.

1. Find if , and𝑓'(0) 𝑓(𝑥) = {𝑔 𝑥( )𝑠𝑖𝑛 1
𝑥( ),       𝑖𝑓 𝑥≠0 0,                            𝑖𝑓 𝑥 = 0 

.𝑔 0( ) = 𝑔' 0( ) = 0

Figure 1. Part of Student Work Sample that TAs Interpreted as Unwarranted Generalization

One TA said, “the student tried to distribute the limit symbol over products while the limit does
not exist for one of the factors. This also reflects reliance on memory rather than understanding,”
and another TA elaborated further by saying “they don't know limit when goes to 0, that ℎ

does not exist. So, they assume that it exists and 0 times something that is 0.” Here, the𝑠𝑖𝑛 ( 1
ℎ )

TA’s interpretations indicates that the student’s application of the limit law in this context was
incorrect, but also notes contexts where their method would have worked (i.e., when the limit of
each factors exists). Translating this interpretation into an instructional plan that uses the
student’s misconception as a resource for new learning to promote knowledge refinement could
happen if the TA planned to discuss types of limit problems where the student method of
distributing the limit worked, and specifying the difference between those problems and the
current problem as a rationale for why the method is not applicable any more. This way, the
student’s existing knowledge will be refined with boundaries of where that particular method is
“correct” and new ways of approaching a similar-looking but different context can be learned in
comparison to the old way. In next section, we will discuss whether and how TAs’ plans were in
line with such a view of considering students’ misconception as resource of new learning.

TAs’ plans to address students’ work
To understand what TAs planned to do to address student misconceptions, we first coded

each TA’s plan, and categorized them based on the conceptualization of how to use student work:
reteaching without using it, confront the misconception that the error is showing and replace it
with the correct counterpart, and using it as resource for learning. As we discussed, the most
productive use of students’ error in this regard would be using students’ misconceptions as
resource for student learning. Our analysis shows that most TAs’ plans involved confronting
students with their errors while none of the TAs plans used students’ misconceptions as a
resource for student learning. Three main instructional approaches were (a) giving students
opportunities to realize their error (52 plans), (b) pointing out the error and have them fix it or
teach them how to fix it without giving such opportunities (12 plans), and (c) solving the
problem without addressing students’ errors and starting with a simpler problem, giving hints, or
scaffolding them with small steps (7 plans). Plans included in (b) and (c) are clearly aligned with
“confront-and-replace” and “reteach” approaches. Plans included in (a) could potentially align
with using students’ misconceptions as resources for learning and knowledge refinement, but
further investigation of these plans showed that they did not.
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The plans included in (a) could be categorized into several further subcategories, the most
prominent of which were (i) asking students to explain the part of their answer that includes an
error (11 plans), (ii) providing students opportunities to check if their answer has the desired
properties, hypotheses that their answer is assuming when students applied a theorem, or
consistency within their answer (16 plans), and (iii) giving students counter examples to their
methods/responses or providing examples or tasks for students to realize the error (13 plans).
Seven plans involved a combination of these approaches, and the remaining plans combined
these with some additional guidance on a next step assuming that the error was fixed by students.

A common feature of most of these plans is that they stop with the student realizing their
error. Only a small number of plans included next steps after students realized their errors and
most of these next steps were about restarting the problem by scaffolding students with small
steps or having the student try a simpler problem than the originally given problems. Therefore,
these plans confront a student with their error and either leave the student to try again or give
steps to replace the student’s incorrect method with a correct one, but do not use the student’s
misconception as a resource for refining their mathematical thinking. An example of this can be
seen from the discussion in PD of the student work sample in Figure 2.

Suppose for some function , we know that and that . Drawℎ(𝑥) ℎ 0( ) = 2 ℎ' 𝑥( ) = 1 + 𝑥3( )
1
3

the graph of .ℎ(𝑥)

Figure 2. Student work sample TAs plan to address by asking the student to check if their answer has the desired
property.

The following excerpt shows one TA’s response to one of the researchers’ questions about next
steps, after the TA presented their plan of having the student differentiate their answer to show
that it would not result in the derivative originally included in the problem (Figure 2):

Researcher 1: Let's say you know they…took the derivative and they got the wrong answer
and they got confused, what would you do?

TA E: Both integration and differentiation to them is just a bunch of following. They don't
understand really why the nuts and bolts of why this exists. So I would just be like if you
have learned this, you have learned it the wrong way, this formula does not exist and one
way to clearly see that is the derivative is not the derivative that we want it to be. But if
you want to know why it’s actually wrong then take an analysis course or something.
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In this excerpt, the TA re-emphasized why the contradiction should tell them that what they did
was wrong, and this excerpt exemplifies that TAs often do not have explicit plans to use
students’ misconceptions as a resource for learning. In fact, all plans to the problem in Figure 2
involved starting over by asking what they know about the original function given the derivative
without attempting to “integrate”. An approach that uses the student’s misconception as a
resource for learning could use some of the TAs’ interpretations of the work in Figure 2 as an
“unwarranted” generalization of a differentiation rule (i.e., chain rule) to integration. The plan
could focus on how to properly implement the student’s idea of “going backwards” with a
differentiation rule (in this case, integration by u-substitution) and discuss the differences
between contexts where that works and the given problem. Then, one could start navigating the
different methods to accommodate the new, similar looking, but different context. However, we
did not see any plans that take this type of approach for any student work samples in our data.

Discussion and Conclusion
Our analysis of TAs’ plans to address students’ misconceptions showed that their plans

mainly focus on addressing what student did wrong in the solution by providing students
opportunities to realize their errors and potentially fix them, or by directly teaching how to fix
the errors. These results are more positive than just “reteaching” the concepts or procedures
without addressing students’ errors, which was one of the main approaches PSTs adopted in
some of the existing studies in K-12 literature (Cooper, 2010; Son, 2013). However, TAs’ plans
were mainly aligned with the “confront-and-replace” view of misconceptions, which has been
criticized in the existing literature. Moreover, in most of their plans, TAs did not include any
plans to provide alternatives after giving students opportunities to realize their error, other than
just starting over the problem in a mathematically correct way. With these approaches, students
will have opportunities to learn that what they did is wrong, but are not helped to understand
what problems in their thinking led to such a wrong answer. Thus, this way of addressing
student errors is not supporting learning as expanding students’ thinking (Smith et al., 1993).

In contrast to their planning, a significant number of TAs’ interpretations of students’
misconceptions were aligned with a desirable view of misconceptions based on the literature,
which is as a resource of new learning. In these interpretations, TAs identified the methods that
students may have adopted, and the contexts where their method might have worked in the past,
although it did not work for the problems that were given to them at the time. Although we did
not see any evidence from our data that this way of interpreting misconceptions was reflected in
TAs’ planning of addressing students’ errors, we found that there is potential to expand this view
to their planning. Since our TAs have ability to identify where the students’ methods would have
worked in the past, they could share that with their students to acknowledge that their attempt to
solve the problem had a rationale that was supported by their learning in the past, and then help
them realize the differences between the contexts where their methods worked and the current
problem context. This way, students’ previous knowledge about the concept or procedure would
be refined and reorganized in their learning of new way of addressing the problem. We anticipate
that this way of planning that is aligned with what is recommended by mathematics education
literature on how to address student misconceptions as resource of learning (Smith et al., 1993;
Li & Schoenfeld, 2019; Rake & Ronau, 2018) could be promoted in PD for TAs. The TAs in our
study were capable of and showed a tendency to attribute potential reasons for students’ “wrong”
choice of methods to the problem to their past “successful” experiences of using them. PD could
promote this way of interpreting when applicable and provide opportunities to think about how
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to incorporate such interpretations in their planning to address students’ misconceptions. This
type of PD has the benefit of helping TAs learn about an approach to teaching that is broadly
applicable and could be used in a variety of courses regardless of their content and focus.
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A Design-Based Research Approach to Addressing Epistemological Obstacles in Introductory 
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As has been well-documented, the epistemological obstacles associated with teaching and 
learning mathematical proofs persist despite research-based instruction. We describe the 
ongoing design process of our NSF-funded project aimed at understanding and addressing those 
obstacles in introductory proofs courses, using proof by mathematical induction as an anchor. 
Our process is framed by two cycles of designed-based research. The first cycle corresponds to 
designing and implementing research-based instruction on mathematical induction, whereas the 
second cycle broadens the scope of our research to other introductory proofs topics. This paper 
reports on the outcomes of the first cycle, the transition between the first and second cycles, and 
the project's end products. 

Keywords: designed-based research, epistemological obstacles, proofs, proof by mathematical 
induction, quantifiers. 

There is a wide recognition among researchers and practitioners that proofs and proving are 
of vital importance in students’ learning of mathematics at all levels of education (NCTM, 2000). 
At the same time, a growing body of research has identified numerous challenges associated with 
teaching and learning proofs (e.g., Brousseau, 1997; Brown, 2008; Dawkins & Weber, 2017; 
Hanna & de Villiers, 2012; Harel & Sowder, 2007; Shipman, 2016; Sierpińska, 1987; 
Stylianides, 2014, 2016). Sierpińska (1987) and Brousseau (1997) have conceptualized the 
necessary challenges in students’ mathematical development in terms of epistemological 
obstacles (EOs). EOs in teaching and learning mathematical proofs are the primary focus of this 
project. 

 Here, we frame EOs as cognitive challenges that persist even in response to research-based 
instruction. Thus, EOs can be experienced both by students and teachers during instructional 
interactions. When instructors experience EOs, there is a tension between the desire to 
circumvent them and the need to provide students with opportunities to develop logical 
structures that are fundamental for proving. However, as it has been pointed out by Brousseau 
(2002), addressing an obstacle head on is essential for overcoming it because “it will resist being 
rejected and, as it must, it will try to adapt itself locally, to modify itself at the least cost, to 
optimize itself in a reduced field, following a well-known process of accommodation” (p. 85). 
As such, because EOs are persistent, students must internalize an intellectual need for the 
underlying concepts to motivate, persevere, and successfully overcome the obstacles.  

Therefore, the overarching goals of our project are to 1) identify the EOs associated with 
teaching and learning mathematical proofs and 2) design instructional tools for evoking and 
addressing these obstacles. The research questions guiding our study are as follows: 

1. What are the EOs associated with teaching and learning mathematical proofs? 
2. What instructional tools are suitable for evoking and addressing these EOs? 
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In answering these questions, we employ a cyclic design-based research approach (Anderson 
& Shattuck, 2012; Bakker & Van Eerde, 2015; Cobb et al., 2003; Gravemeijer & Cobb, 2006). 
The first cycle was conducted in Spring 2018, when the third and fourth authors implemented 
research-based instruction on proof by mathematical induction (PMI) in their classrooms. The 
results are presented in Norton et al. (2022). We use PMI as an anchor for broadening the scope 
of our research. During the second cycle, the same teachers will use the designed instructional 
materials in their respective Introduction to Proofs classes – one in Fall 2022 and one in Spring 
2023. This paper reports on the outcomes of the first cycle, the transition between the first and 
second cycles, and the project’s end products (see Figure 1). 

 
Figure 1: Two cycles and the end products of the project. 

Literature Review and Theoretical Framework 
Prior research has documented EOs on a variety of concepts studied in proofs-based courses. 

The following challenges have been associated with students’ mastery of PMI: understanding the 
role of the base case (Baker, 1996; Ernst, 1984; Ron & Dreyfus, 2004; Stylianides et al., 2007), 
treating logical implication as an invariant relationship (Dubinsky, 1986, 1991; Norton & 
Arnold, 2017, 2019), discerning between the truth of the conjecture and the inductive hypothesis 
(Movshovirz-Hadar, 1993), attending to (hidden) quantifiers (Shipman, 2016) and the proper use 
of related language (Ernst, 1984; Movshovitz-Hadar, 1993; Stylianides et al., 2007), and having 
domain-specific knowledge particular to the conjecture (Dubinsky, 1991). Many of these 
challenges, especially quantification, extend well beyond PMI (Dawkins & Roh, 2020; Lew & 
Mejía-Ramos, 2019). 

Instructional Approaches for Addressing EOs 
Awareness of EOs should inform the design of instructional approaches to introductory 

proofs topics. Traditional instructional approaches may be insufficient in addressing these 
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obstacles, necessitating the development of alternative instructional techniques that support 
student learning.  

In the case of PMI, traditional instruction introduces the technique as a three-step procedure: 
(1) prove the base case, (2) assume the inductive hypothesis, and (3) prove the inductive step. 
However, this procedure can inadvertently cause learners to bypass the logic of PMI, ultimately 
circumventing experiencing necessary challenges (Harel, 2002). 

An alternative approach that combines procedure with logical structure was first suggested 
by Avital and Libeskind (1978) and then further elaborated by Harel (2002) as “quasi-induction.” 
A student who uses this method shows that 𝑃(1) is true and that 𝑃(1) → 𝑃(2), 𝑃(2) → 𝑃(3), 
and so on. This leads to the plausible conclusion that eventually 𝑃(𝑛	– 1) → 𝑃(𝑛). Although 
formal PMI may be considered to be a natural generalization of quasi-induction, there is a 
significant cognitive gap between the two (Harel, 2002). Norton et al. (2022) implemented 
research-based instruction to address and better understand this gap. 

Design-Based Research 
Design-based research (DBR) is an interventionist approach aimed at weaving together 

educational practice and theory (Bakker & Van Eerde, 2015). DBR is typically used to develop 
educational materials and accompanying theoretical insights into how these materials can be 
used in practice.  

Gravemeijer and Cobb (2006) framed DBR in terms of three interrelated phases: 1) preparing 
for the experiment, 2) experimenting in the classroom, and 3) conducting retrospective analysis. 
These phases occur in repeated cycles in which the last phase of the previous cycle informs the 
first phase of the following cycle, and so on. During the first phase, researchers scrutinize the 
problem of interest, synthesize the available research literature, curricula, and textbooks, and 
articulate the learning objectives and theoretical intents of the experiment. In the second phase, 
the experiment is conducted using the designed instructional materials as a guideline for teaching 
and observing. Data collection and preliminary data analysis also takes place during this phase. 
Once the experiment is complete and the data has been collected, the retrospective analysis 
begins in phase three. The comprehensive data sets must be analyzed systematically while 
simultaneously documenting the grounds for the subsequent cycle. As such, the retrospective 
analysis should examine the utility of the designed instructional materials and spark ideas for 
how they might be refined and complemented.  

Cycle 1 (Spring 2018) 
As aforementioned, prior research indicates a number of EOs experienced by introductory 

proofs students and suggests fruitful instructional approaches for supporting students in 
overcoming these obstacles. In particular, the method of quasi-induction (QI) has been validated 
as accessible to students and beneficial for their mastery of PMI (Cusi & Malara, 2008; Harel, 
2002). However, a cognitive gap remains in transitioning between QI and formal PMI. 
Therefore, Cycle 1 centered around understanding the factors contributing to this gap and 
designing instructional materials that help students address it. 

Preparing for the Experiment 
Informed by prior research, we designed a set of scenarios about an unspecified proposition 

𝑃(𝑛) (Table 1). For each scenario, students are tasked to decide whether the given information is 
sufficient to prove that 𝑃(𝑛) is true for all positive integers 𝑛. The tasks are independent of 
mathematical content. They are built from students’ conceptualizations of logical implication, 
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and they aim to bridge the gap between QI and PMI. We first validated these tasks in Arnold and 
Norton (2017) and Norton and Arnold (2017) via clinical interviews with students from an 
introductory proofs course, and we further refined them in a follow-up study (Norton & Arnold, 
2019). 

 
Table 1. Cycle 1 tasks.  

Suppose 𝑃(𝑛) is a statement about a positive integer 𝑛, and we want to prove the 
claim that 𝑃(𝑛) is true for all positive integers 𝑛. For each scenario, decide 
whether the given information is enough to prove 𝑃(𝑛) for all positive integers 𝑛. 

A 𝑃(1) is true; for all integers 𝑘 ≥ 1, 𝑃(𝑘) is true. 

B 𝑃(1) is true; there is an integer 𝑘 ≥ 1 such that 𝑃(𝑘) is true. 

C 𝑃(1) is true; there is an integer 𝑘 ≥ 1 such that 𝑃(𝑘) → 𝑃(𝑘 + 1). 

D 𝑃(1) is true; for all integers 𝑘 ≥ 1, 𝑃(𝑘) → 𝑃(𝑘 + 1). 

E For all integers 𝑘 ≥ 1, 𝑃(𝑘) → 𝑃(𝑘 + 1). 

F For all integers 𝑘 ≥ 1, 𝑃(𝑘) and 𝑃(𝑘 + 1) are true. 

G 𝑃(1) is true; for all integers 𝑘 ≥ 2, 𝑃(𝑘) → 𝑃(𝑘 + 1). 

Conducting the Experiment 
We implemented research-based instruction in two sections of Introduction to Proofs at a 

large public university in the southeastern United States. The third author used the tasks within 
an informal pre-assessment. The fourth author used them to generate class discussion. Following 
these approaches, both instructors sought to promote the inductive implication as an invariant 
relationship between the inductive assumption and the inductive step (rather than treating the 
inductive assumption and step as separate components), and to explicitly address the issues of 
quantification. All classes associated with instruction on PMI were recorded. The third author 
had three class meetings, 50 minutes each. The fourth author held three meetings, 75 minutes 
each. Recordings captured the instructors’ activity, the notes and PowerPoint slides displayed on 
the overhead projector, and students’ interactions. 

Retrospective Analysis 
We performed two rounds of retrospective analysis of classroom data. During the first round, 

we coded the data using a set of codes informed by existing literature on students’ struggles with 
PMI. They included base case (B), quantifiers (Q), inductive implication (I), domain knowledge 
(D), and conflation (C) between the inductive hypothesis, implication, or proposition. As new 
themes emerged for which we did not have an existing code, a new code was created. In this 
case, we reviewed and re-coded the prior data, using a constant comparative method (Glaser, 
1965). This iterative process repeated until the codebook stabilized. The new codes included 
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reducing the problem to computational setting (Rc), “why 𝑘, not	𝑛?” (K), effects of formal 
instruction (F), and the cognitive gap (G).1 

 We conducted the second round of analysis with an emphasis on the cognitive gap. 
Specifically, we reanalyzed the data to document how each code was related to the gap. As a 
byproduct of this analysis, two more codes emerged – intellectual need (N), and the use of 
language for communicating the intended logic (L). 

The analysis revealed five themes describing the relationships between the cognitive gap and 
other challenges, depicted in Figure 2. Students must develop an intellectual need to generalize 
the logic involved in building the quasi-inductive chain of inferences (Theme 1). However, even 
when students have an intellectual need for formal PMI, issues with quantification arise (Theme 
2). These challenges include careful quantification of the inductive implication and a shift in the 
language for quantifying the inductive assumption when proving the implication. As a 
consequence, students require new language to support the distinctions they make in quantifying 
the inductive assumption, the inductive implication, and the proposition they must prove (Theme 
3). Finally, we found that a shift in notation from 𝑛 to 𝑘 when denoting the inductive implication 
seemed unnecessary to students. Students did not demonstrate the intellectual need for it in either 
class (Theme 5), nor for the use of proper language for quantifying 𝑛 and 𝑘 (Theme 4). 

 
Figure 2. Five themes emerged from Cycle 1. 

Cycle 2 (Summer 2022-Spring 2023) 
Cycle 2 is ongoing. Its purpose is to broaden the scope of our study to the fundamental topics 

traditionally studied in introductory proofs courses, such as mathematical statements, logical 
implications and their transformations, quantifiers, and functions. 

Preparing for the Experiment 
Cycle 2 began with an advisory board meeting in June 2022. The advisory board members 

included three widely recognized experts in research on PMI, quantifiers, and logical reasoning. 
We relied on their expertise, on the previous research findings, and on the results from Cycle 1, 

 
1 A detailed description of the codes can be found in Norton et al. (2022).  
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to 1) identify the EOs associated with teaching and learning proofs, and 2) design instructional 
tasks aimed at evoking, addressing, and assessing the discussed EOs. 

In particular, as one of the outcomes of Cycle 1, we found that students’ apparent treatment 
of inductive implication is closely linked with a language issue inherent in quantifying an 
implication. On the one hand, the implication 𝑃(𝑘) → 𝑃(𝑘 + 1) must be proved for all values of 
𝑘. On the other hand, the proof of the implication requires one to assume 𝑃(𝑘) is true for some 
fixed but arbitrary value of 𝑘. Ignoring the former quantification leads to an incomplete 
argument. Ignoring the latter quantification leads to circular reasoning. Similar issues with 
language in quantifying mathematical objects have been documented in prior research (Dawkins 
& Roh, 2020; Lew & Mejía-Ramos, 2019). 

To evoke and address challenges related to teaching and learning quantifiers, we designed six 
multiply quantified statements about a linear equation 𝑚𝑥 + 𝑏 = 0 (see Table 2). The statements 
exhaust all combinations of ordering explicit quantifiers and their attached variables that make 
sense geometrically. Statement 2 is the only false statement. The variety of statements will allow 
students to compare and contrast the quantifiers in a different order, and, as a result, understand 
the role of quantifiers in mathematical statements. 

 
Table 2. A sample Cycle 2 task.  

Below are six statements about real numbers m, x, and b.  
TASK 1: give a geometric interpretation to each of these statements. One of them is not 
true. Which one? Explain why this statement is false. 
TASK 2: Match the true statements with the following proofs: 

Statement Proof 

The exist real numbers m,b, and x, such that 
𝑚𝑥 + 𝑏 = 0. 

Let 𝑏 = 0,𝑚 = 1, and 𝑥 = 0. Therefore, 
𝑚𝑥 + 𝑏 = 1 ∙ 0 + 0. 

For all real numbers m,b, and x, 𝑚𝑥 + 𝑏 = 0. N/A 

There exists a real number m, such that for all 
real numbers b, there exists a real number x, 
such that  𝑚𝑥 + 𝑏 = 0. 

Let 𝑚 = 1. Then, for any real number b, 
take 𝑥 = −𝑏.	Therefore,  
𝑚𝑥 + 𝑏 = 1 ∙ (−𝑏) + 𝑏 = −𝑏 + 𝑏 = 0.  

There exists a real number m, such that for all 
real numbers x, there exists a real number b, 
such that  𝑚𝑥 + 𝑏 = 0. 

Let 𝑚 = 1. Then, for any real number x, 
take 𝑏 = −𝑥.	Therefore,  
𝑚𝑥 + 𝑏 = 1 ∙ (−𝑥) + 𝑥 = −𝑥 + 𝑥 = 0. 

There exists a real number b, and there exists 
a real number m, such that for all real 
numbers x, 𝑚𝑥 + 𝑏 = 0. 

Fix an arbitrary x. Let 𝑏 = 0. Observe that, 
when 𝑚 = 0,  
𝑚𝑥 + 𝑏 = 0 ∙ (−𝑥) + 0 = 0 + 0 = 0. 

There exists a real number b, and there exists 
a real number x, such that for all real numbers 
m, 𝑚𝑥 + 𝑏 = 0. 

Let 𝑏 = 0. Observe that, when 𝑥 = 0,  
𝑚𝑥 + 𝑏 = 𝑚 ∙ 0 + 0 = 0 + 0 = 0	for any 
real number m. 
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Conducting the Experiment  
As in Cycle 1, the third and the fourth authors will implement research-based instruction in 

their respective Introduction to Proofs classes: one in Fall 2022 and one in Spring 2023. The 
classroom interactions pertaining to the aforementioned topics will be video and audio recorded.  

Retrospective Analysis  
We will qualitatively analyze the complex student-teacher and student-student interactions. 

The analysis will be reminiscent of the procedures we used in Cycle 1, involving the elements of 
constant comparative method (Glaser, 1965). To present the data in a comprehensive and 
feasible fashion, we will create a graph of connected codes, in which the nodes and edges will 
respectively represent the key codes that pertain to answering the research questions and the 
relationships between these codes, respectively.  

Implications and Products 
We will use the results of the first two cycles of our project to deepen our understanding of 

the EOs and disseminate research findings. Specifically, throughout the research-based 
instruction, we will collect data for a phenomenographic study to gain more nuanced insights 
into how students experience EOs during instructional interactions. In parallel with Cycle 2 data 
analysis, we will recruit instructors teaching Introduction to Proofs courses in Fall 2023 who are 
willing to participate in a week-long workshop preceding the fall semester and implement the 
proposed instruction. The workshop will be organized by the authors and will include selected 
videos of instructional interactions from Cycles 1 and 2. We will also conduct a 
phenomenographic study to see how the instructors experience the proposed EOs.  

On the basis of the data collected in Cycles 1 and 2, we will compile an online handbook 
documenting the instructional interactions surrounding the EOs. The handbook will include our 
modified instructional tasks designed for evoking these interactions, as well as video clips of 
classroom interactions from the Introduction to Proofs classes taught by the third and fourth 
authors. The handbook is intended to increase instructors’ pedagogical content knowledge on 
foundational topics of the course. In addition to serving as an instructional guide for bridging 
research and practice, the handbook will also provide instructional videos that can be shared 
directly with students.  

To bolster the broader impacts of our project, we will create a “Train-the-Trainers” style 
professional development website. This website will transform and extend the training activities 
of our workshop (organized in the summer of 2023) into professional development activities that 
can be hosted and facilitated by any university wishing to implement the instructional tools 
resulting from this project. Each activity will be accompanied by a facilitator’s guide for 
empowering and equipping members of other universities to conduct their own in-house training 
workshop for the instructors of their introductory proofs courses. 
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Exploring Geometric Reasoning with Function Composition 
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Students learn about function composition, (𝑔 ∘ 𝑓)(𝑥), in secondary school. From two given 

equations, one might identify the composite function algebraically via substitution, 𝑔(𝑓(𝑥)). But 

what about when functions are given as graphs? This study aims to explore how students were 

able to reason geometrically about composing functions. We identify common types of resultant 

graphs participants generated in trying to sketch the composition of various graphically-

depicted functions, and the common types of reasoning we infer those participants engaged in 

while doing so. The results generate both questions, and hypotheses, about how best to support 

students’ development of deep – and diverse – meanings for composing functions. 

Keywords: function composition; graphs; geometric reasoning 

Students are exposed to function composition in secondary school (cf., CCSSM, 2010). 

Primarily, they are taught that (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) – meaning, for two functions defined by 

equations, one can procedurally determine the composite function via algebraic substitution. 

Additionally, in the context of inverse functions, secondary school students are taught that 

(𝑓−1 ∘ 𝑓)(𝑥) = (𝑓 ∘ 𝑓−1)(𝑥) = 𝑥. Yet, such algebraic approaches are limited in their ability to 

develop sufficiently deep mathematical understandings of function composition. In this study, 

we try to explore the ways students’ reason geometrically about the composition of two 

functions. 

Background and Framework 

In this study, we seek to answer the following research question: In what ways do students 

graphically respond to function composition tasks? 

Function and Function Composition in Extant Literature 

Much literature in mathematics education has been devoted to the function concept. This has 

included characterizing its essential abstract features (e.g., Freudenthal, 1983) and debating them 

(Mirin et al., 2021), considering its place in the school curriculum (e.g., McCallum, 2019; 

Paoletti & Moore, 2018), the notation we use for it (e.g., Paoletti et al., 2018; Thompson & 

Milner, 2019; Zazkis & Kontorovich, 2016), and studying how students and teachers understand 

and conceptualize it – including inverse functions (e.g., Breidenbach et al., 1992; Even, 1990; 

1992). Scholars have also explored students’ conceptions about real-valued functions (from ℝ to 

ℝ) through the notion of covariational reasoning (e.g., Paoletti & Moore, 2017). In this context, a 

deep understanding of function demands students understand how quantities co-vary together – 

meaning, how changes in one quantity correspond to changes in the other quantity. However, 

studies have shown that students have difficulties in understanding the relationship between co-

varying quantities and their graphs (e.g., Carlson et al., 2002; Schoenfeld, 1985). It can be 

concluded that there is a rich literature base for functions – including inverse functions. 

Yet when it comes to function composition, very little exists. Much of the literature about 

composition of functions is in relation to calculating derivatives via the chain rule (e.g., Clark et 

al., 1997). In terms of covariational reasoning, function composition requires students understand 

how the quantity represented by the variable 𝑥 covaries with the doubly-transformed output 
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𝑔(𝑓(𝑥)), but this has been a minimal focus in terms of research (e.g., Moore & Bowling, 2008). 

Perhaps the study most closely related to function composition, on its own, was Ayers et al.’s 

(1988) exploration of using computer programming to help students develop the notion of 

function composition. In sum, there is a dearth of literature on function composition (especially 

in comparison to that about the function concept) – and none of it has considered it through a 

geometric lens. The study in this report aims to address this gap in the literature. 

Geometric and Algebraic reasoning 

A key premise underlying this research is that algebraic and geometric reasonings are 

different, where each provide distinct conceptions that are complementary for developing deep 

mathematical meanings. Broadly speaking, algebra is a mathematical field that examines 

particular structures, based on a set of objects (e.g., ℝ), and a binary operation(s) defined on 

them (e.g., +). Whereas geometry explores spaces that are related with distance, shape, and size 

(e.g., the Euclidean plane). To highlight this difference, a function, algebraically, is often 

characterized by its equation, e.g., 𝑓(𝑥) = 2𝑥 + 1 (i.e., the structure of the set of points included 

in the relation); whereas, geometrically, we depict a function as its graph (typically in the 

Euclidean plane), e.g., 𝑓(𝑥) is a line. Moreover, not only do these fields explore different things, 

but key ways of reasoning differ between them. Driscoll et al. (1999; 2007), for example, 

differentiated Algebraic from Geometric “habits of mind.” In our context, for simplistic 

purposes, we use geometric reasoning to mean reasoning that relies on figures and shapes in the 

plane and their properties; algebraic reasoning, by contrast, would rely on equations. 

Beyond just the ways we might think about functions from school algebra, abstract algebra 

provides yet another point of connection to function composition. A primary connection for 

prospective teachers between abstract algebra and school mathematics is recognizing how 

functions and inverse functions are situated within their group structure (Wasserman, 2016). 

Notably, this structure is related through an operation on functions – namely, function 

composition. That is to say, in order for teachers to genuinely understand this mathematical 

connection between their university studies and the mathematics they will teach, they need to 

view composition as an “operation” in the same way that they view, for example, multiplication 

as an operation. They need intuitions, tools, ways of reasoning, and so forth, in order to be able 

to consider what the “result” of that operation of composition would be for two particular 

functions – even if those functions are given as graphs. Dreyfus and Eisenberg (1983) pointed 

out that without a formula, the graphical representation of function has very little meaning for 

most students entering calculus. This can be challenging, even for the mathematically adept.  

Methodology and Data Sources 

As a way to explore how students reason geometrically about function composition, we had 

(n = 143) university students in two mathematics and mathematics education programs 

(primarily from precalculus classes) sketch what they thought the composite function (𝑔 ∘ 𝑓)(𝑥) 
would look like, primarily based on two given graphs of functions.  

Task Design 

On Desmos, participants were asked to sketch, using digital tools and within a limited 

timeframe (30 seconds, to capture their intuitions and reasonings), the composite function (𝑔 ∘
𝑓)(𝑥) for six pairs of functions. The majority of these pairs were represented only graphically 

(Figure 1 displays an example Desmos page; Figure 2 displays the other 5 tasks). The purpose in 

providing participants with somewhat unusual, and non-algebraic forms of the functions, was to 
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deter them from immediately converting to an algebraic equation to complete the composition. 

Doing so increased the likelihood that students would have to try to reason about function 

composition geometrically based on the shapes of the graphs. In the last two tasks, functions 

were given as an equation, and as a table, as a point of comparison. In the complete study, 

participants: i) give an initial sketch within 30 seconds; ii) provide a written explanation for how, 

and why, they sketched the composite function the way they did; and iii) had a final opportunity 

to go back and modify any of their original sketches. In this paper, we analyze just their initial 

sketches. We do not include the “correct” composition 𝑔(𝑓(𝑥)) for the tasks in this paper, in part 

because it was uncommon for participants to sketch the correct graph but also to point out the 

genuine challenges of reasoning geometrically about function composition to the reader.  

 
Figure 1. Task 2 in Desmos 

Task 1 

 

Task 3 

 

Task 4 

 

Task 5 

 

 

𝑓(𝑥) = 𝑥2 

 

𝑔(𝑥) = √𝑥 

 

   

Task 6 

(Presented in Table form) 

 

𝑓(𝑥)
= {(1,4), (2,3), (3,1), (4, −1)} 

𝑔(𝑥)
= {(1,−2), (2,0), (3,1), (4, −1)} 

Figure 2. Given functions for Tasks 1, 3, 4, 5, 6 

Analysis and Coding 

Our analysis identified normative types of graphs, and processes for sketching those graphs, 

that were shared across participants. Notably, we aimed to create categories that could be applied 

across the entire set of tasks, although a few categories were specific to particular tasks. We 

anticipated these to include both incorrect and correct resultant graphs of composite functions, 

and a diverse range of reasoning students may have used to approach this sketching. We 
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generated and refined all categories of coding as a group; when there were uncertainties in how 

to code a graph, we resolved such cases together and made refinements to categories as needed. 

As a rule of thumb, given that these were sketches, using a digital tool, we were reasonably 

lenient in trying to give students appropriate credit for their resultant graphs. 

Due to space constraints, we do not include all codes used in our analysis. However, Table 1 

provides codes and definitions for the majority of codes – and, in particular, those we report on 

in this paper. Clarifying examples are given in the results section. 

Table 1. Codes for analyzing data 

Code Description of the composite function 𝑔(𝑓(𝑥)) sketched 

BLANK No graph 

DOUBLE Both graphs on top of each other 

ONE One of the graphs 

ONE-T One of the graphs, but with some basic transformation 

MIXED HALF Half of one graph put together with half of other graph 

MIXED PROP One graph put together with property of other graph 

INVERTED Correct graph of 𝑓(𝑔(𝑥)) 
CORRECT Correct graph of 𝑔(𝑓(𝑥)) 
Y=X Graphed the line 𝑦 = 𝑥 

OTHER Some other graph 

Results 

Table 2 provides an overarching summary of students’ initial ways of reasoning about 

sketching the composite function on the six tasks. Notably, we only report on the codes given in 

Table 1, so most, but not all (n = 143), of students’ responses are present. Then, we look more 

carefully at results from the three types of tasks: (i) given graphs (Tasks 1-4), (ii) given equations 

(Task 5), and (iii) given tables (Task 6). 

Table 2. Summary of data on Tasks 1-6 

Code Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 

BLANK 20 24 26 25 24 33 

DOUBLE 26 22 31 34 19 26 

ONE 10 12 10 15 10 26 

ONE-T 31 16 17 19 5 0 

MIXED HALF 2 6 12 8 4 1 

MIXED PROP 9 26 12 12 0 0 

INVERTED 1 0 0 2 3 0 

CORRECT 7 5 1 4 27 3 

Y=X 0 0 0 0 25 0 

OTHER 27 27 30 20 24 48 

Given Graphs 

In Tasks 1-4, students were given graphs of 𝑓(𝑥) and 𝑔(𝑥) and asked to sketch the 

composite function. Although there are some differences between the four tasks, for the most 

part, we observed consistent themes in the different ways students approached these tasks. As a 

primary, overall result, students had very limited success in reasoning geometrically to produce a 
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correct composite function. Only 3% of the responses (17 of 572) were correct, whereas roughly 

35% were left “blank” or given some “other” unusual response. (All percentages given in this 

section are across all responses to Tasks 1-4.)  

More interesting are the results for the different ways students appeared to reason 

geometrically about the result of composing two given graphs. Although we saw both DOUBLE 

and ONE codes on the tasks with given equations and tables, these were prominent ways of 

reasoning geometrically as well; and the transformation of one (ONE-T), and the mixing of both 

graphs (MIXED HALF, and MIXED PROP) were almost entirely observed in the graphical 

context. 

The DOUBLE category was reasonably common (20% of responses) – meaning, participants 

frequently understood how function composition “combines” two graphs to be simply “put both 

functions on the same graph.” Participants also opted to just graph ONE of the graphs in about 

10% of responses. Figure 3 gives a characteristic image for both of these from Task 2.  

(a) DOUBLE 

 

(b) ONE 

 
Figure 3. Examples from Task 2 of (a) “double” reasoning, and (b) “one” reasoning 

Other common responses – and, in this case, ones there were mostly particular to the 

functions being given as graphs (Tasks 1-4) – had to do with modifying one or both functions in 

some way based on graphical features. This sort of geometric reasoning was how students 

interpreted “combining” two functions (via composition) given as graphs. For the ONE-T code 

(15% of responses), some students took one function as the base and then applied some 

transformation to it. Figure 4a shows one example, from Task 2, where a student took the initial 

𝑔(𝑥) function (approximately square root) and then translated it by a vector of approximately 
〈1,1〉, likely inspired by the step function going over one and up one. Although this is one 

example, there was quite a variety of different sorts of transformations included in this category 

– sometimes reflections, rotations, etc. For the MIXED HALF code (5% of responses), rather 

than graphing both functions at once, some students took half of one and combined it with half of 

the other to create a function – generally, a “left” and a “right” half. Figure 4b shows an example 

(also from Task 2). The MIXED PROP code (10% of responses) was one in which students 

applied a property of one function to the other function. As an example (from Task 2), Figure 4c 

shows one student who took the “disconnected dash” property of the step function 𝑓(𝑥), and 

applied it to the 𝑔(𝑥) function (approximately square root), to create a dashed square root graph. 

Again, there was a lot of diversity in the property being applied within this category – e.g., the 

domain of one was applied to the other, the pointiness of an absolute value function applied to 

the curves of the other, and so forth.  

  

25th Annual Conference on Research in Undergraduate Mathematics Education 149



(a) ONE-T 

 

(b) MIXED HALF 

 

(c) MIXED PROP 

 
Figure 4. Examples from Task 2 of (a) “one-t” reasoning, (b) “mixed half” reasoning, and (c) “mixed property” 

reasoning 

Given Equations 

For Task 5, with two given equations, we point out two major results. Participants had the 

most success correctly plotting the composition of two functions given their equations (19%), 

which was significantly more than on any other task. One of the unique aspects of Task 5 was 

that the two functions would also have been known to be inverse functions. This may have 

simplified the task somewhat, as the output should be the function 𝑖(𝑥) = 𝑥. But a particular 

nuance of this task is that the correct answer for the composite function is 𝑔(𝑓(𝑥)) = |𝑥| – it is 

𝑦 = 𝑥 only on a restricted domain (𝑥 ≥ 0), and then with the reflective symmetry of the squaring 

function applied to it. Hence, these participants likely did more than just algebraic substitution to 

come up with their sketch. Another 18% of responses just graphed the line 𝑦 = 𝑥, likely drawing 

on just their algebraic sensibilities. (This Y=X code was unique to this Task, as inverse functions 

were not given in any of the other tasks.) 

Given Tables 

We initially hypothesized that giving two functions in table form (Task 6) might facilitate 

students’ ability to compute the composition of two functions; starting with one value, and then 

doubly-transforming it through 𝑓 and then 𝑔 can be readily accomplished with tables of values. 

This did not bear out in the data. Students struggled to find the composition, with about 33% of 

responses being some “other” unusual graph–almost twice as many of this category as on each of 

the other five tasks. 

Conclusions and Implications 

In this section, we summarize some of the important conclusions and discussion points based 

on the data. We highlight three important takeaways for the reader. 

First, as an answer to the research question about the ways in which students reason 

geometrically about function composition, the data suggest students had significant difficulties 

sketching the correct composite function. We reiterate, on tasks where participants were given 

graphs (and tables), almost no students were able to give correct sketches. More were successful 

given equations, but even still, roughly the same number of participants gave correct responses 

as left it blank. This finding suggests that students are not being provided sufficient opportunities 

to learn about sketching composite functions overall, and especially from graphs and tables. 

Moreover, in the results, we described the five primary ways students tried to reason 

geometrically about what “combining” two functions (via composition) would look. These were: 

both graphs (DOUBLE), one graph (ONE), transforming one graph (ONE-T), half of one and 
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half of the other (MIXED HALF), and applying a property of one to the other (MIXED PROP). 

Combined, these forms of reasoning accounted for approximately 70% of non-blank responses 

(58% of total responses). 

Second, and perhaps unsurprisingly, students seem to be most familiar with composing 

functions in the context of two given equations – in particular, familiar functions, and whose 

composition they knew how to graph. This is the task in which students had the most success. 

Even still, we saw some of the challenges and limitations of algebraic reasoning in terms of 

producing a completely correct composite function – i.e., simplifying √𝑥2 to be 𝑥. This suggests 

the importance of having other ways to reason about function composition, specifically including 

geometric ways of reasoning from the graphs and their properties, which might be a useful way 

to avoid such oversimplifications. Although the input-output nature of functions may be on full 

display with tables, it was interesting to observe that students struggled with composing 

functions when given two tables. This generated some possible hypotheses as to why students 

struggled to make sense of the composite function being given tables: i) students experiences 

learning about composition were so strongly grounded in algebraic equations that they do not 

maintain ways of reasoning for composition in other contexts; ii) the discrete nature of the tables 

posed difficulties – because the collections of points, and their composition, would be 

disconnected (or possibly even undefined) on a graph; and iii) the quantified nature of the 

variable 𝑥 in functions, where, unlike substituting the expression 𝑓(𝑥) into 𝑔(𝑥) once, the table 

form requires that students complete multiple substitutions – for each 𝑎 in the domain of 𝑓, each 

of the 𝑓(𝑎) values needs to be substituted into 𝑔(𝑥) to obtain the composite collection of points.  

Third, as a final point, we elaborate on why we think these particular findings are important. 

One reason is that the study data collected here document the genuine challenges students face in 

sketching the composition of two functions – in almost any form they are given, but especially 

graphically and tabularly. This finding provides a basis upon which to build future work. It 

suggests students have not been provided opportunities to develop the intuitions, ways of 

reasoning, and tools needed to develop a robust concept of function composition; in particular, a 

way to understand function composition as an operation – something that, in some way, 

“combines” two given functions. A second reason these findings are important is because they 

document the various ways that students might try to reason geometrically about function 

composition. Although most of these are non-normative, and would not result in a graph of the 

actual composite function, they provide a launching point on which instructors can build more 

normative conceptions. Notably, composite functions often do resemble their initial parent 

functions – taking, in some form, some aspect of the shape or properties of those initial 

functions. Third, the findings here point to both the challenges, as well as the unexplored 

opportunities, to identify ways to advance and enrich students’ conceptions of function 

composition. More work is needed to identify productive intuitions and way of reasoning that 

might be helpful to build on, and to explore representations and digital tools that might afford 

learners an opportunity to develop a rich conception of function composition. In the same way 

that students develop meaningful ways to think about arithmetic operations like addition and 

multiplication, developing ways to recognize function composition as an “operation” in a similar 

manner is an important aim in mathematics education – in large part because of the universality 

of the function concept, and the utility of this operation of composing them. 
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Using Latent Profile Analysis to Assess Teaching Change 
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University of Colorado University of Colorado University of Colorado 

Teaching observations can be used in multiple ways to describe and assess instruction. We 

addressed the challenge of measuring instructional change with observational protocols, data 

that often do not lend themselves easily to statistical comparisons. We first grouped 790 

mathematics classes using Latent Profile Analysis and found four reliable categories of classes. 

Based on the grouping we proposed a proportional measure called Proportion Non-Didactic 

Lecture (PND). The measure is the proportion of interactive to lecture classes for each 

instructor. The PND worked in simple hypothesis tests but lacked some statistical power due to 

possible scaler ceiling effects. The measure correlated highly with a dependent measure derived 

from the Reformed Teaching Observation Protocol (RTOP), a holistic observational measure. 

The PND also provided effective descriptions and visualizations of instructional approaches and 

how these changed from pre to post.  

Keywords: Structured Observations, Undergraduate STEM Teaching,  

Introduction 

Numerous studies show that active, engaging, and collaborative classrooms help students 

learn and persist in college, but adoption of new teaching practices has been slow (American 

Association for the Advancement of Science, 2013; Laursen et al., 2019; Matz et al., 2018). In a 

recent study, observations of 2008 STEM classes at 24 institutions found that most courses were 

primarily lecture-based, with only a small proportion of classes incorporating significant 

amounts of student-centered learning (Stains et al., 2018). Professional development programs 

are one tool intended to help instructors implement new teaching methods and change the status 

quo in STEM undergraduate teaching (Laursen et al., 2019; Manduca et al., 2017). But learning 

whether or not these programs change teaching practices is challenging because typical means of 

measurement, such as surveys, student testing, and classroom observations, all have 

methodological shortcomings and may be difficult to implement (AAAS, 2013; Ebert-May et al., 

2011; Weston et al., 2021).  

While observation data are often perceived as more objective than self-report data from 

surveys or interviews (AAAS, 2013), data derived from observational studies pose particular 

challenges when used in statistical tests, thus complicating the ability to make claims about the 

efficacy of professional development and other interventions (Bell et al., 2012). Some 

observational systems also may lack clarity in their descriptions of teacher and student activities, 

making it difficult to learn how instruction has changed over time and what exactly changed in 

the teaching practices of participants (Lund et al., 2015). Because observation is resource-

intensive, investigators often observe only a small number of sessions, which may not provide a 

representative sample of teaching practices across an entire course (Weston et al., 2021).  

Shortcomings of Segmented Observational Protocols as Dependent Measures 

Segmented observational protocols such as the COPUS and TDOP are employed in 

comparative research designs but pose measurement challenges. Typically, these instruments 

code each 2-minute segment of class time for instructor and student behaviors such as lecture or 
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group work. Difficulties arise in using segmented observational protocols in research studies for 

several reasons. First, the use of single observation codes (such as the proportion of class time 

devoted to lecture) can result in poor and incomplete representation of the complex underlying 

instructional styles occurring in the classroom (Bell et al., 2012). In effect, this can oversimplify 

what is occurring the classroom. Data drawn from a segmented protocol may also have unwieldy 

distributional characteristics. The distributions of many relatively low-frequency codes are 

dramatically skewed, with high numbers of zero observations for any given classroom, and 

skewed distributions are also common when aggregated over multiple classrooms and instructors 

(Tomkin et al., 2019). The distributional properties of segmented observational data may 

necessitate the use of non-parametric tests, which in turn cause possible loss of statistical power 

(Dwivedi et al., 2017). Another concern is the high number of codes generated by segmented 

protocols compared to a holistic protocol’s single aggregate score or few sub-scale scores. When 

multiple hypothesis tests (e.g., multiple t-tests) are made in the same study, the true probability 

of making Type-I errors (saying there is a difference when one doesn’t exist) increases 

substantially (Abdi, 2007), which can lead to false claims about the efficacy of an intervention.   

 

Shortcomings of Holistic Observational Protocols as Dependent Measures 

Many studies that employ observational data to assess change use the Research Teaching 

Observation Protocol (RTOP), a holistic observational measure (Sawada et al., 2002). Holistic 

instruments ask observers to rate elements of a class such as “The lesson promoted strongly 

coherent conceptual understanding.” These types of instruments often ask for more expert 

judgments of teaching quality versus observations of behaviors (Hora& Ferrare, 2013). While the 

measures derived from the RTOP have high internal reliability and some criterion validity, the 

measure seemed to lack structural score validity in that its proposed sub-scales did not form 

separate factors in the original validity study (Piburn et al., 2000). Those using the measure also 

seem limited in their ability to extrapolate from scores to more concrete descriptions of teaching. 

This is partly caused by the somewhat vague wording of some score range categories that are 

presented in early RTOP validity documents (Sawada et al., 2003) and studies using the RTOP 

for outcome comparisons (Ebert-May et al., 2011). An example would be the score range 

category “46-60 Significant student engagement with some minds-on as well as hands-on 

involvement,” which provides little guidance on what instructors and students are doing in the 

classroom.  This lack of descriptive utility for the RTOP was discussed by Lund et al. (2015), 

who noted that the same score ranges can describe classes with very different instructional 

practices, and teaching descriptions varied even more widely from study to study.  

 

Rationale for Study & Research Questions 

In the current study, we consider two protocols, TAMI-OP and RTOP, evaluating their 

characteristics as measures on their own merits while also recognizing them as typical examples 

of segmented and holistic protocols. These protocols are also distinguished by their descriptive 

and evaluative approaches. In our current study, we worked from a large dataset that included 

observations scored with both the TAMI-OP and the RTOP. We asked if a simplified measure 

formed from a segmented observational protocol, TAMI-OP, could be used with common 

statistical tests and avoid multiple comparisons while maintaining score validity. Research 

questions include: 

1) What are the characteristics of profile groups for classes that can be derived from our 

TAMI-OP observational dataset of mathematics instructors? 
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2) What dependent measures can be derived from the TAMI-OP? 

3) How do the RTOP aggregate dependent measure and the segmented TAMI-OP dependent 

measure function with statistical tests? 

4) How can the segmented TAMI-OP dependent measure be extrapolated to provide 

descriptions of teaching and teaching change? 

 

Methods 

Instruments 

We developed segmented observational protocol called the Toolkit for Assessing 

Mathematics Instruction-Observation Protocol (TAMI-OP) (Hayward et al., 2018). At two-

minute intervals during the class, observers coded for the presence (yes/no) of 11 student 

behaviors and 9 instructor behaviors. We called these categories activity codes or more 

generally, observation items, including codes for Lecture, Student Questions, Group Work and 

Student Presentation among other activities. We also completed the RTOP for a subset of 484 of 

the same classes observed with the TAMI-OP. Both the TAMI-OP and RTOP had adequate 

interrater reliability, generalizability and internal reliability. 

Sample 

Our full dataset contained 790 observations of full classes by 74 teachers, gathered from 

three different research studies related to professional development in mathematics teaching. The 

observation sample from this study includes 15 instructors who taught 278 classes, some pre- 

and some post-intervention. The results for these instructors are used as an example of how these 

measures characterize teaching change but are not meant to offer a formal assessment of that 

program. All data were collected with human subjects approval. 

     The instructors in the combined data set taught a range of mathematics courses at different 

undergraduate levels. Classes included Calculus 1 and 2, Geometry, general education 

mathematics, statistics, and upper division courses for math majors (see Table 3 for full 

description). Class sizes ranged from 30 or less (65%), 31 to 75 (25%) to over 100 (10%). The 

instructors included women and men, experienced and early-career instructors; they taught at a 

variety of types of institutions distributed across the US and used a variety of teaching practices. 

Latent Profile Analysis 

Latent Profile Analysis (LPA) is a statistical classification technique that identifies 

subpopulations or groups within a population based on a set of continuous variables (Spurk et al., 

2020). LPA is similar but preferable to traditional cluster analysis because it offers the ability to 

assess the ideal number of groups in a solution and generate probabilities of group membership, 

which provide estimates of how close any given case is to a profile exemplar (Ferguson et al., 

2020).  

The software R-Studio 3.5.0 was used to conduct a Latent Profile Analysis of the 790 classes 

in our database. The component variables for analysis all used class-level proportions of activity 

codes. While these variables are continuous, most did not form normal univariate distributions. 

We used a Maximum Likelihood (ME) estimation, and tested models with different constraints 

on variance and covariance. Best fitting models used estimation with equal variances and 

covariance equal to zero. No outliers were found or removed from the data, and there were no 

missing data.  

 

 

 

25th Annual Conference on Research in Undergraduate Mathematics Education 156



Results 

We found four reliable profiles that characterized the 790 mathematics classes in our sample. 

We determined the ideal number of profiles through a balance of quantitative fit indexes and the 

logical coherence of the resulting groupings.  We named profiles for the variables that best 

differentiated between groups, resulting in profiles named Didactic Lecture, Student 

Presentation and Review, Interactive Lecture, and Group Work. Figure 1 presents the individual 

averages for each observation code for each profile. 

 

 
    

Figure 1. Individual averages for each observation code for each profile. 

 

We first attempted to derive outcome measures based on the TAMI-OP with factor analysis 

but found resulting dependent measures were not reliable enough to use in analyses. A viable 

outcome measure derived from the LPA was the simple proportion of non-didactic lecture 

classes used by each teacher: Proportion Non-Didactic Lecture (PND). This is a teacher level 

measure that is the number of Non-Didactic classes divided by total class observed for the each 

instructor. For example, the observation data set for a particular teacher may have six out of eight 

classes that fit the profile for the Didactic Lecture profile and two that do not, resulting in a 

proportion of non-didactic classes of PND = 0.25.  

We also examined some of the psychometric qualities of the RTOP-Sum, the dependent 

measure derived from a total of 25 RTOP numerical ratings. The resulting measure showed high 
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internal reliability ( = 0.97), and the RTOP-Sum and the PND had a very high correlation at 

r=0.81. Attempted Exploratory and Confirmatory Factor Analyses did not find that proposed 

RTOP subscales presented as item blocks in the instrument formed separate factors. 

The relationship between the four latent profiles found with LPA and RTOP-Sum scores can be 

seen in figure 2.  

 

 
Note: Numbers in parentheses correspond to RTOP categories: (1) straight lecture, (2) lecture with some 

demonstration and minor student participation, (3) significant student engagement with some minds-on as well as 

hands-on involvement, (4) active student participation in the critique as well as carrying out of experiments, (5) 

active student involvement in open-ended inquiry, resulting in alternative hypotheses and critical reflection.  

Boxplot lines mark the mean RTOP score for each profile.  

 

Figure 2. individual averages for each observation code for each profile. 

 

We applied these measures to a sample data set of 15 teachers and 278 classes that included 

both pre and post observations for the same group of teachers, each of whom provided data from 

the same or similar courses taught before and after a professional development intervention. To 

learn how the PND functioned with basic statistical tests, we conducted a parametric Paired 

Sample t-test and a non-parametric Marginal Homogeneity test comparing pre and post values 

for the PND and RTOP-Sum. We also calculated effect sizes for pre/post gains. The results 

presented in Table 1 show statistically significant results for change in both the RTOP and PND 

measures. While both measures detect significant differences in a pre/post comparison study, the 

RTOP-Sum has a bigger effect size and lower p-value than the PND, indicating that the RTOP-

Sum has greater statistical power in this study. 
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Table 1: Test statistics for the RTOP-Sum and PND measures for pre/post comparison 

Test RTOP-Sum 

(Scale 0 – 100) 

PND 

(Scale 0 – 1) 

Paired t-test (one-

sided) 

 

 

Mean difference = 17 

SD = 14.5 

Correlation pre/post = 0.63 

Standard error = 3.76 

t = 4.56, df = 14,  

p <0.001*** 

Mean difference = 0.22 

SD = 0.27 

Correlation pre/post = 0.58 

Standard error = 0.07 

t = 3.1, df = 14,  

p <0.004*** 

Related samples 

Wilcoxon Signed 

Rank Test (two-sided) 

Test statistic = 119 

N = 15 

Standard error = 17.6 

t-statistic = 3.35 

Asymptotic Sig < 0.001*** 

Test statistic = 82 

N = 15 

Standard error = 14.3 

t-statistic = 2.5 

Asymptotic Sig = 0.01* 

Effect size Cohen’s d = 1.17 Cohen’s d = 0.81 

Note: significance levels are indicated by p< 0.05*, p< 0.01 **, p< 0.001*** 

 

The descriptive utility of the PND is linked to its derivation from component Latent Profile 

Analysis groups. The separate activity codes and global variables used to form groups were also 

graphed to learn which activities changed from pre to post (not shown here due to space 

considerations). Most codes changed in ways consistent with the goals of the professional 

development in which they participated, with lecture and teacher writing decreasing, and group 

work and student presentation increasing. The average number of activities and balance among 

activities also increased. 

 

Discussion 

Profiles of classes created from Latent Profile Analysis provided four groups, which we 

labeled Didactic Lecture, Interactive Lecture and Review, Student Presentation and Group Work. 

The grouping method was reliable, and we believe these groups represent different underlying 

styles of teaching and learning present in our observations of 790 mathematics classrooms. In the 

Didactic Lecture group, instructors averaged 80% of their time lecturing, usually with little 

question and answer. This contrasted with the three non-lecture groups where students 

participated in more interactive activities such as group work (usually working though problem 

sets), presenting problems on the board, or participating in more back-and-forth dialogue with 

the instructor during lecture and review. Instructors for classes in the three non-didactic lecture 

groups also engaged in more activities in their classrooms and tended to have more balance in 

time devoted to each activity.   

      From the LPA results we created a measure called the Proportion of Non-Didactic Lecture 

(PND) that represented the proportion of more interactive classes, contrasted to didactic lecture 

classes, for each instructor. The value of a measure lies in its ability to summarize data from 

multiple activity codes and other variables into one measure while avoiding the pitfalls of poor 

construct representation, strict reliance on non-parametric tests, and multiple comparisons found 

in many studies that use segmented data (Tomkin et al., 2019). We found that the PND measure 

had some shortcomings caused by its reliance on proportional frequency data. In our wider 
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dataset the PND had a significant number of “1” values, which created the possibility of ceiling 

effects and lacked distributional normality. While most statistical tests are robust to non-

normality (Glass and Hopkins, 1996), comparisons made with small numbers like ours (i.e., the 

pre/post subset of 15 instructors) have less statistical power. In fact, the pre/post statistical 

comparison conducted with the measure showed less statistical power than did comparison with 

the RTOP-Sum, but in our case provided similar statistical inferences as the RTOP about pre-

post change.   

There are several other critical caveats to the use of a measure based on LPA or any other 

clustering technique. The final categorization of classes is dependent on both the sample used 

and the variables included in the model. The ultimate category where classes end up can vary 

given the characteristics of the initial pool of classes and the specification of the model 

(Williams and Kibowski, 2016). Any project also needs a relatively large pool of classes to make 

cluster or profile methods viable. In their overview of LPA studies, Spurk and coauthors (2020) 

found a median sample size near 500; in our study we were fortunate to have a collection of 

nearly 800 classes. It is possible to leverage the earlier work of others; those using the COPUS 

can take advantage of the COPUS Analyzer (Harshman and Stains, 2020) an online method for 

profiling observational data. We also can categorize new classes based on the original clustering 

algorithm. While it may seem obvious, pre and post or participant/comparison groupings (for any 

clustering technique) must be made at the same time and from the same model. Also, the creation 

of an LPA model should be done independently from, and before any type of statistical 

comparison is made. Shopping for the model that creates the largest effect for a comparison 

would constitute a breach of research ethics. 

     Deriving a proportional measure from segmented observational data is also limited by several 

important assumptions. First, there must be enough classes observed for each teacher to form a 

reliable measure, a number that is usually higher than is found in most research studies (Weston 

et al., 2021), and observing enough classes for a reliable measure is resource intensive. Related 

to this are possible interactions between the number of classes sampled for each instructor and 

the probability that rarer classes will show up in the classes sampled. If greater or fewer classes 

for each teacher are sampled from pre to post this can create bias in estimates of teaching change. 

Unequal sampling occurred in our small study because of logistical concerns, ideally pre and 

post samples should be balanced. Second, profiling or clustering solutions must conform to a 

continuum from didactic to interactive instruction. This seems to be a common finding for 

profile studies where a large proportion of classes are didactic lecture (Denaro et al., 2021; Lund 

et al., 2015; Stains et al., 2018). The main limiting factor for some studies may be the small 

number of truly interactive classes observed; in Stains et al. (2018) approximately 25% of classes 

were student-centered, although mathematics classes had the highest percentage of these courses 

(~35%). 
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Lessons Learned using FullProof, a Digital Proof Platform, in a Geometry for Teachers Course 
 

 Orly Buchbinder Sharon Vestal Tuyin An 
University of New Hampshire South Dakota State University Georgia Southern University 

Proof-writing is a core practice of mathematicians and a crucial skill every future teacher and 
mathematics major needs to acquire. A proof-based geometry course is a fruitful ground for 
developing proof-writing skills. Despite recent pedagogical and technological advances, proof 
remains challenging to learn and  teach. We conducted a pilot study to explore potential 
advantages of an innovative digital proof platform, FullProof, which aims to advance students’ 
proof-writing skills in Euclidean Geometry. We integrated FullProof in three Geometry for 
Teachers (GeT) courses at three universities. We report on the findings pertaining to students’ 
interactions with FullProof, their perceptions of the usefulness of this tool to their proof-writing 
skills, and the lessons learned from the FullProof integration from an instructor perspective. 

Keywords: Geometry, Proof, Prospective Secondary Teachers, Automated Proof Writing 

Introduction and Theoretical Perspectives 
Proof-writing is a core disciplinary practice of mathematicians, and a crucial skill all 

mathematics majors and future mathematics teachers need to acquire. Developing undergraduate 
students’ facility and comfort with proofs are among the main objectives of many mathematics 
courses, including geometry. While geometry courses may be either required or elected for 
mathematics and other STEM majors, they are usually required for mathematics education 
majors. Hereafter we refer to such courses as GeT- Geometry for Teachers (An et al., in press; 
Grover & Connor, 2000). GeT courses are essential for cultivating robust and flexible knowledge 
and skills such as writing, analyzing, and critiquing proofs that will allow prospective secondary 
teachers (PSTs) to support their students' learning of geometry (AMTE, 2017; González & 
Herbst, 2006; NCTM, 2000; NGA & CCSSO, 2010).  

Technology plays an important role in supporting PSTs’ engagement with proof. Dynamic 
Geometry Environments (DGE) like GeoGebra, Geometer’s Sketchpad and others have been 
essential in providing opportunities to explore geometrical properties, make and test conjectures 
(Jones, 2000; Mariotti & Baccaglini-Frank, 2018). These tools have also been beneficial for 
fostering PSTs’ attitudes towards proof and comfort with proof and teaching it to secondary 
students (Abdelfatah, 2011; Kardelen & Menekse, 2017). However, DGEs offer little support for 
the most critical component of mathematics exploration - the writing of a deductive proof of a 
conjecture or a theorem. Recent advancements in artificial intelligence and machine learning 
offer new tools that support automated and interactive proof writing and verification (e.g., 
Lodder et al., 2021; Matsuda & VanLehn, 2005; Wang & Su, 2017), and give new opportunities 
for innovative research in the educational applications of these tools (Hanna et al., 2019).  

FullProof is a digital platform that was developed to advance students’ proof-writing skills in 
Euclidean Geometry. In this tool, students write a complete step-by-step proof, using an 
interactive diagram, an equation editor, and a library of theorems and definitions. Students can 
choose their own proof paths. The software checks the proof and provides feedback and/or hints 
to improve their work. Our project aimed to explore the potential advantages of the FullProof 
digital tool for GeT students. Our overarching research question was: How and to what extent 
does engaging GeT students with the FullProof software affect their confidence with and 
attitudes toward geometry proofs?  
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Research Setting and Methods 
In Fall 2021, we conducted an exploratory study in which we integrated FullProof in three 

GeT courses in three US public universities in the Southeast, Northeast, and Midwest (See Table 
1 for course and participant info). In each course, a large portion of the curriculum was devoted 
to Euclidean Geometry from a synthetic perspective. All instructors had experience with 
teaching the GeT course. To familiarize students with the platform, the instructors introduced 
FullProof during class and worked together with students to solve several proofs.  

Table 1. Course and Participant Information  

University Type University A 
Southeast, large public 

University B 
Northeast, large public 

University C  
Midwest, medium public 

Student 
population 

~ 20 students: PSTs and 
STEM majors 

~15 students: PSTs and 
STEM majors 

~ 6-18 students: PSTs only  

Course focus 
and modality  

Content focused  
Hybrid 

Content focused  
Face-to-face 

Mixed content and 
pedagogy. Face-to-face 

No. of students 14  10 6 
 
The instructors integrated the FullProof platform into the courses as a support system for 

writing proofs, both in class and in homework. Each instructor used about 20 proof problems, 
from FullProof ’s vast collection of problems on various topics from Euclidean geometry, at 
three levels of difficulty: high, medium, and low. Figure 1 shows a screen capture of a sample 
problem (medium difficulty) about triangle midsegments. Given DE is a midsegment of the 
triangle ABC. F is a point of BC such that BF=(1/2)FC. The segment AF intersects DE at point 
G and the segment BE at point O. Prove that BO≅EO.  

 
Figure 1. Sample proof problem 

 
While the figure itself cannot be dynamically manipulated, each segment, point, and angle in 

the figure become highlighted when pointed to. Angles and segments can be marked, color-
coded, and named as shown in Fig. 2. The right side of the screen shows the givens and the 
statement to be proven. The students write the proof by typing statements in the numbered lines 
and justifying them. The justifications can be searched by keywords, as shown in Fig. 1, or by 
browsing through the FullProof justification library. Despite the two-column format, FullProof 
allows for variation in proof strategies and the order of steps. For example, the problem in Fig. 1 
can be solved with congruent triangles or properties of centroid. 
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The students may ask for a hint by clicking the hint button. The system will produce hints in 
order of increased specificity from a vague “try using triangle congruence,” to suggesting a 
certain theorem to use, or even proposing a particular step, like “try proving ∆BFO ≅ ∆EGO”. 
Once finished, the students click the “check” button, and in a few seconds, the algorithm checks 
the proof and provides feedback. Correct proof lines get a green check mark. Incorrect or 
partially correct lines are marked down with an explanation of the mistake. Fig. 2 shows a 
solution with two mistakes – a missing proof step and a missing justification for the last step. 
Clicking on these notifications will show a student what the missing step was (here ∆BFO ≅ 
∆EGO by angle-side-angle theorem). 

 

 
Figure 2: Sample solution in FullProof and the feedback provided by the software. 

 
Clicking the “try again” button allows a student to improve their work, submit a corrected 

solution and receive more feedback. The number of hints and submissions is unlimited, allowing 
the students to achieve a perfect score eventually. The information about the number of hints and 
submission attempts is stored in the system. The instructor’s interface contains information about 
all students in the class – which of the assigned problems they solved, how many hints and 
attempts they used, and can see the last submitted solution (Fig. 3).  

 
Figure 3: Excerpt of instructor interface in FullProof. 

Data Collection and Analysis 
To respond to our research question, we administered pre- and post-survey via Qualtrics. We 

focused on the results of two sets of Likert-type questions about attitudes toward proof, and 
comfort level with writing proofs (see Fig. 4 for sample items). The items were adapted from the 
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relevant instruments in the literature (e.g., Kaspersen & Ytterhaug, 2020; Stylianou et al., 2015). 
The Likert-scale for proof-related attitudes was: Never/Almost never (1), Sometimes (2), Often 
(3), Always/almost always (4); and for comfort-level was: Strongly Disagree (1), Disagree (2), 
Agree (3), Strongly Agree (4).  

 
Figure 4. Selected Likert Items from the FullProof Survey. 

Twenty-nine students responded to the pre-survey while only 20 responded to the post-
survey. To analyze Likert-scale data, we initially used the chi-squared test of independence, 
which is appropriate for categorical data, but since some of the categories had less than five data 
points, the chi-square test is unreliable. To address this challenge and to avoid discarding 
unpaired observations by using a paired sample t-test, we used a new statistical test–developed 
by Ben Derrick, University of the West of England, which allows analyzing observations taken 
at two points in time, where the population membership changes over time but retains some 
common members (Derrick, 2020). 

The post-survey also contained seven open-ended questions, developed by the researchers, 
about student perceptions of the FullProof platform (Fig. 5). We analyzed the data qualitatively, 
using open coding and thematic analysis (Patton, 2002) to reveal recurring themes in students’ 
responses, specifically the types of positive and negative appraisals of FullProof. Each appraisal 
is defined as a statement that has a relatively complete and independent meaning. To capture all 
themes, comments that included multiple ideas were coded multiple times.   

 
Figure 5. Open-ended Items from the FullProof Survey. 

In addition to the survey, we analyzed student solutions to a few problems assigned in all 
three GeT courses to examine the types of proof approaches utilized by the students, and the 
types of mistakes they made. Due to space constraints, we do not report on this analysis here.  

25th Annual Conference on Research in Undergraduate Mathematics Education 166



Results 

Survey Results 
Attitudes toward proof.  Fig. 6 shows the statistical test results for three of the survey 

questions related to proof attitudes. These questions were selected since their Derrick test p-
values were relatively close to 0.05, indicating that the results are statistically significant.  

 
Question When I learn a new proof, I try 

to think of situations when it 
wouldn’t work. 

When I face a proof problem, I 
consider different possible 
ways I can prove it. 

I can explain why my solutions 
are correct. 

Box plot 

   
Derrick test 0.0431 0.0713 0.0438 

Figure 6. Sample Survey Results about Mathematical Identity. 
 
While the pre-post changes for the questions in Fig. 6 are significant, the results are not 

necessarily in the intended direction. For example, the boxplots for the first two questions show a 
decrease in participants’ tendency to think about situations in which a proof wouldn’t work or 
consider different proof paths. With respect to the first question, the results may be reflective of 
the nature of geometry proof problems, like the one in Fig. 1, as opposed to proofs of theorems; 
and the static nature of the FullProof figures, as opposed to DGE. These features of FullProof are 
indeed less likely to invoke one’s thinking about situations where the proof is inapplicable. The 
decrease in considering various solution methods was surprising to us since FullProof allows for 
much flexibility in proof approaches that instructors always encouraged. However, the hints from 
the software may lead students to a certain approach. One explanation for this result is that 
students’ responses at the end of the semester reflect a pragmatic preference for one correct 
solution that guarantees a good grade, rather than exploring multiple solutions. It is also possible 
that students’ confidence at the beginning of the semester decreased due to the course being 
harder than they anticipated. The results for the third question are encouraging, with students’ 
increased confidence in their ability to explain their correct solutions at the end of the semester. 

Comfort-level with proof. Fig. 7 shows results related to using the FullProof platform.  
 

Question I feel confident in my ability to 
prove mathematical results 
using the FullProof platform. 

I am familiar with different 
proof techniques using the 
FullProof platform. 

I am confident in my ability to 
teach proof using the FullProof 
platform. 

Box plot 

   
Derrick test: 0.0009 0.000136 0.003014 

Figure 7. Sample Survey Results about Comfort Level with Proof. 
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These questions had the lowest p-values, indicating significant pre-to-post changes, which is 
not surprising since the students had never used FullProof prior to the course. Still, we are 
encouraged by the positive direction and amount of change. For example, in the first two 
questions in Fig. 7, 75% of the post-survey responses were higher than the pre-survey responses. 
These results indicate significant increases in students’ familiarity with various proof techniques 
and increased confidence in their ability to write proofs and even teach proofs with the FullProof 
platform. The increased familiarity with different proof techniques in FullProof (question 2, Fig. 
7) suggests that students’ lack of consideration of multiple proving approaches (question 2, Fig. 
6) occurred despite increased knowledge of these techniques. This may support our assumption 
about pragmatic reasons for not considering multiple ways of proving. The analysis of open-
ended questions sheds additional light on these results.  

Student Appraisals of the FullProof Platform  
Nineteen students responded to the six open questions about FullProof. There was a total of 

84 appraisals, 61 (73%) positive and 23 (27%) negative. “Appraisal” is a thematic unit, such that 
a single written comment may contain both positive and negative appraisals, or more than one 
appraisal of the same type. Six out of 19 students provided positive appraisals only, others shared 
a combination of both. One interesting pattern in the data was: when asked to describe some of 
the successes and challenges they had with FullProof (#3, Fig. 5), 65% of comments described 
challenges as opposed to 35% of successes. However, the overall impressions of FullProof (# 7, 
Fig. 5) were very positive with 73% of comments containing positive reviews.  

Three main themes emerged  among the positive appraisals. The largest category (41%) 
described the affordances of FullProof for supporting students’ writing and understanding of 
proofs. These included the searchability of reasons for proof steps, clear structure that supports 
communication and comprehension, interactive feedback, and the ability to pursue multiple 
solution paths. One student wrote, “FullProof has helped me a lot when writing proofs. I like 
how I can search for reasons if I am not completely sure about a reason/theorem.” Another 
student wrote: “FullProof made writing proofs easier not only to write, but also to understand.”   

The second theme (26%) described the advantageous technical features of FullProof, such as 
hints which help them move forward if one is stuck, interactive feedback pointing to errors, 
visual clarity, and color-coded elements of a diagram. The third theme (33%) described the 
affordances of FullProof as a pedagogical tool for teaching others. In this theme, the participants 
highlighted the elements of the software that would support them as teachers in a geometry 
classroom. Students wrote that FullProof presents “a good instructional strategy to implement in 
the classroom,” and the platform “Makes it easier for the students to see what their errors were.”  

The 23 negative appraisals were distributed rather uniformly across five themes. The main 
critique (7 out of 23 appraisals, 30%) concerned the discrepancy between the wording of the 
theorems in the FullProof platform and in GeT course. For example, FullProof does not have the 
angle-angle-side triangle congruence theorem, so students need to complete an extra proof step 
to use the angle-side-angle congruence theorem. Another category of critiques (22%) described 
the variation in standards of rigor employed by FullProof vs. GeT instructors. The students wrote 
that the software allowed them to skip steps and earn full points for their solution, while the 
students were aware that their instructor would have likely deducted points. One student wrote: 
“It allows some things to slide, that should be wrong.” Other types of critiques concerned some 
minor technical issues like the lack of an undo button (17%). Three students admitted having 
personal struggles with technology, in general (13%). Finally, some students wished to break out 
from the two-column structure altogether to write paragraph-style proofs (17%).  
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Additional patterns emerged from the analysis of specific questions. When asked “Has 
FullProof changed the way you write proofs?” the responses split almost evenly between yes and 
no. But 83% of the accompanying written comments for this question were positive regarding 
FullProof. A similar pattern was observed in a question: “How has FullProof changed your 
understanding of reasoning and proof?” Sixty-one percent of students wrote that FullProof 
positively influenced their understanding, but interestingly, 91% of their comments contained 
some specific description of the positive effect of FullProof. In response to the question “Would 
you use FullProof in your future classrooms,” 14 out of 17 students who answered this question 
responded positively, citing the advantages of the platform. 

Discussion 
Overall, the quantitative analysis shows little impact of the use of FullProof on student 

attitude towards proof and comfort level with proof writing, since pre-post changes on most 
survey questions were not statistically significant at the 0.05 level (as indicated by large p-values 
on Derrick’s test). Yet, there were some questions showing significant changes using the Derrick 
test. While there is still some risk of a Type I error when using the partially overlapping sample 
t-test, Derrick’s research indicates that this is “the recommended test for analyzing data recorded 
on an ordinal scale when partially overlapping samples are present and is particularly useful 
when sample sizes are small” (Derrick, p. 147).  

We are also aware of the limitation of our quasi-experimental research design. Due to the 
lack of randomization and a single experimental group in the research setting, potential 
confounding variables were not controlled (Johnson & Christensen, 2012).  Each course was 
taught by a different instructor, with no common curriculum or textbook across the institutions. 
There was also some variation in how instructors used FullProof in their courses. Finally, 
because of the Covid-19 pandemic, one institution required the instructor to accommodate hybrid 
teaching modality, which affected course pedagogy, including the use of the FullProof platform.  

Because of these variations, our study design emulates natural conditions of how instructors 
might use any technological tool within the unique constraints of their institutional 
environments. Against this backdrop, we find it encouraging that the qualitative analysis showed 
more positive appraisals than negative appraisals about using the platform, which indicates the 
overall positive impact of using FullProof in GeT courses. The significance of this result is due 
to our analyses not distinguishing between students of different majors - mathematics education 
or not - meaning that potential advantages of FullProof apply to all GeT students. 

As instructors, we note several advantages to using FullProof in our GeT courses. Due to the 
availability of multiple proof problems at various difficulty levels, and the feedback provided by 
the FullProof platform, we were able to assign a greater number of problems and more 
challenging problems, compared to the past. Since FullProof offers hints and multiple 
submissions, students were able to get assistance from the software itself. However, this also 
presented a challenge, when some students abused this functionality to get hints on every step of 
the proof. In the future, we plan to limit the number of hints and submission attempts. Another 
limitation of FullProof, also noted by the students, is that there are some discrepancies in the 
standards of rigor with the GeT courses. However, this can be leveraged to engage students in 
analyzing and critiquing proofs, which is an important learning objective of GeT courses (An, et 
al., in press). Based on the results of our exploratory study, we revised our research instruments 
and protocols, to use in the next round of the study. Future studies should expand the scope of 
research questions to include an examination of cognitive and meta-cognitive processes afforded 
by FullProof.    
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Graphical Resources: Different Types of Knowledge Elements Used in Graphical Reasoning 
 

 Steven R. Jones Jon-Marc G. Rodriguez 
 Brigham Young University University of Wisconsin - Madison 

In broad terms, much of the research on graphical reasoning can be characterized as focusing 
on misconceptions, covariational and quantitative reasoning, and graphing as a social practice. 
In contrast, other research has focused on graphing as a cognitive process, emphasizing the fine-
grained knowledge elements related to graphing, with a focus on characterizing ideas students 
associate with graphical patterns (i.e., graphical forms). This paper moves beyond graphical 
forms to characterize other categories of fine-grained knowledge – “graphical resources” – that 
are activated and used in concert when constructing and interpreting graphs. In this study, we 
identified six categories of graphical resources: graphical forms resources, framing resources, 
ontological resources, convention resources, quantitative resources, and function resources. We 
posit that holistically considering different categories of fine-grained graph-related knowledge 
resources can connect various bodies of research on graphing. 

Keywords: graphs and graphing, knowledge resources, student reasoning, graphical forms 

Graphical reasoning is a central and critical competency within mathematics and across many 
disciplinary fields (National Council of Teachers of Mathematics, 2006, 2009; National Research 
Council, 2012). Much of the education research work to date on graphing has focused on taking 
one large-scale item at a time and examining it, such as examining misconceptions (Aspinwall et 
al., 1997; Beichner, 1994; McDermott et al., 1987), covariational and quantitative reasoning 
(Carlson et al., 2002; Thompson & Carlson, 2017), and viewing graphing as a social practice 
(Roth & Bowen, 2001, 2003) with community-specific conventions (Moore & Silverman, 2015; 
Moore et al., 2019). More recently, some researchers have begun to take a finer-grained 
approach to student graphical reasoning, framing graphical activity as a cognitive process (Elby, 
2000; Eshach, 2013; Rodriguez et al., 2019a; Rodriguez et al., 2019b). Fine-grained approaches 
place emphasis on the productive, intuitive ideas students draw on to guide many aspects of their 
graphing activity (Rodriguez & Jones, in preparation). In fact, a fine-grained view of knowledge 
structure may provide a more predictive and explanatory account of students’ reasoning.  

Rodriguez et al. (2019a) examined one key type of intuitive knowledge, called “graphical 
forms,” which are simple ideas associated with a graphical pattern. As a basic example, a student 
might associate a graph’s steepness with the idea of rate, a graphical form aptly named steepness 
as rate. However, this work has focused only on a sub-category of graphical knowledge 
elements, namely intuitive associations with the graph (curve) itself. In our work, we began to 
realize there were other types of such knowledge, beyond only graphical forms, making up a 
significant portion of students’ graphing activity. These resources also seemed related to other 
phenomena identified in the literature, such as misconceptions, covariation, and conventions, 
suggesting that such fine-grained knowledge plays a significant role across all of students’ 
graphical reasoning. We consequently directed our attention to the research question: What are 
various types of knowledge resources students use when constructing or interpreting graphs? 

Theoretical Framing 
We align with the knowledge in pieces (KiP) paradigm (diSessa, 1988; diSessa & Sherin, 

1998), which moves away from viewing knowledge as consisting of large unitary objects toward 
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viewing knowledge as a complex system of individual elements (diSessa et al., 2016, p. 30). We 
call such individual knowledge elements “resources” (Hammer, 2000). Resources can be very 
simple and intuitive, such as diSessa’s examples from physics of force as mover or more effort 
begets more result (1988, p. 53). These resources can work together to direct thinking, and the 
context directly influences which resources are employed (diSessa, 2004). That is, not all 
resources associated with a given idea are activated in all situations (diSessa & Wagner, 2005). 
In fact, KiP would view an important part of gaining expertise as reorganizing resources and 
learning to appropriately apply them in the right contexts (diSessa, 2002). 

Sherin (2001) applied the KiP paradigm to students’ understanding of equations and 
mathematical expressions. He called resources that pair a conceptual idea with a specific symbol 
structure a “symbolic form.” Some examples are pairing the structure [] + [] with the idea of 
parts of a whole, or the structure [] – [] with the idea of competition. Rodriguez et al. (2019a) 
then took the idea of symbolic forms and extended it to graphs, called “graphical forms”, with a 
similar idea of pairing a conceptual idea with a specific aspect of a graph. Some graphical forms 
identified in the literature are steepness as rate, straight means constant rate, curve means 
changing rate, and intersection means same (Elby, 2000; Rodriguez et al., 2019a; Rodriguez et 
al., 2019b; Rodriguez et al., 2020). A longer library of 26 graphical forms can be found in 
(Rodriguez & Jones, 2021), and include forms related to points (e.g., point as instance), cardinal 
directions (e.g., horizontal as constant value), trends (e.g., plateau as leveling off), smoothness 
(e.g., curved means realistic), local features (e.g., jump discontinuity means sudden), position 
(e.g., displacement as difference), and pairs of graphs (e.g., transformation as same). 

Yet, graphical forms may not be the only type of fine-grained knowledge resource students 
use. In fact, we believe various types of small-scale resources may relate to many of the larger-
scale phenomena seen in prior research. In our work documenting graphical forms, we began to 
identify other types of resources that seemed important for how students constructed or 
interpreted graphs. This paper contributes by presenting these other types of resources (which we 
generally call “graphical resources”) and attending to how our graphical resources categories 
relate to other research on graphing, including misconceptions, covariation, and conventions. 

Methods 
To examine students as they constructed and interpreted graphs, we created two separate 

task-based interviews (Goldin, 1997). In the first interview, students were given four different 
contexts involving real-world quantities and were asked to construct a graph of one quantity as a 
function of another. In the second interview, students were shown various graphs representing 
mostly real-world contexts and were asked to discuss what the graphs indicated about the 
contexts. Figure 1 (top of the next page) contains very brief summaries of the tasks used in the 
two interviews. Some graphs were taken from or based on a common calculus textbook (Stewart 
et al., 2021), and others were taken from or based on graphs used in past research (Carlson et al., 
2002). Two of the “construction” tasks used time-based graphs, while two used non-time-based 
graphs because of the research showing students’ potential overreliance on time (Bowen et al., 
1999; Jones, 2017; Rodriguez et al., 2020). 

We interviewed students in pairs to permit discussion between them and to help make their 
thinking visible. We recruited 12 students from two different universities, resulting in six pairs. 
All pairs participated in both interviews, with the two interviews separated by a few days. We 
recruited students from first-semester calculus courses, to ensure they had familiarity with graphs 
and graphing (Patton, 2002). We gave the students pseudonyms that suggest their pairings: 
Anna/Aria, Berto/Blaine, Cindy/Caleb, Donato/Demyan, Ellie/Eric, and Fiona/Felicity. 
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Brief Summaries of Interview 1 Tasks (Construction) 
1. Graph temperature of 
a frozen pizza that is 
thawed and baked as a 
function of time. 

2. Graph the grass 
height of a lawn as a 
function of time over 
the summer. 

3. Graph the volume of 
soda in a bottle as a 
function of the soda 
height. 

4. Graph the distance 
a puck would travel 
as a function of the 
surface’s friction. 

Brief Summaries of Interview 2 Tasks (Interpretation) 
1. Graph of runners in a 
race over time. 

 

2. Graph of position of 
a remote controlled car 
over time. 

 

3. Graph 
representing  
temperature 
at different 
elevations. 
  

4. [Various 
mathematical graphs 
from a textbook were 
given. Students were 
asked to compare and 
contrast them.] 

Figure 1. Brief summaries of the tasks given to students in the two interviews 
 
We analyzed the data as follows. We first divided the interviews into “units of meaning” 

(Campbell et al., 2013) based on the focus of the students’ statements, writing, gestures. This is 
distinct from dividing interviews based on speaking turns or pauses because it retains the focus 
on keeping a student’s explanation intact. These units were bounded based on discussion turning 
to a different idea or moving in a different direction. Within each bounded episode, we identified 
candidate knowledge resources. We inferred these resources by what the student said, gestured, 
and wrote, while keeping the context of that bounded episode in mind. Our focus was on 
inductive thematic saturation (Saunders et al., 2018), which emphasizes the generation of new 
codes. Thus, we were initially very inclusive regarding the list of resources we created. Once we 
had generated this large list of potential resources, our next analytic action was to refine this list 
by identifying resources that were largely the same (and combining them) or occasionally 
recognizing that a candidate resource actually contained two separate ideas (and separating 
them). We then took our refined list and created larger-scale themes (Braun & Clarke, 2006) that 
categorized the final list of resources into different graphical resource types. Because the 
category graphical forms already existed, we used that category as an a priori category, but five 
other categories emerged inductively through our analysis, for a total of six categories. 

Results 
The six categories of graphical resources we identified were: (1) graphical forms resources, 

(2) framing resources, (3) convention resources, (4) ontological resources, (5) quantitative 
resources, and (6) function resources. Because graphical forms have been discussed in detail in 
the literature (see Theoretical Framing section), we do not focus on them in this paper. 

Framing Resources 
The first category, called framing resources, involved resources that paired a simple idea 

with any aspect of a visual graphical image that was not the graph curve itself, such as the axes, 
the origin, or blank sections. Framing resources are important because they reflect ideas related 
to aspects of the representation that cue the reader into the context of interest, while also 
physically encasing (or literally “framing”) the graphical curve. To illustrate a few resources in 
this category, consider Cindy and Caleb, who had started the pizza temperature context by 
drawing axes. Caleb at first labelled the major waypoints of being thawed, baked, cooled off, and 
placed back in the fridge (Figure 2). However, Cindy countered with the following: 
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Cindy: I don’t know if this is the best way to represent it, but I feel like you should have some way to 
represent that the intervals of time aren’t the same in between thawing [Th], baking [B], and other 
stuff like that [C and F]. 

 
Figure 2. Caleb’s uniform spacing that Cindy felt indicated equal times 

 
Here, Cindy expressed that the equal spacings on an axis indicated equal amounts of time. 

We call this resource spacing means duration. To illustrate another framing resources that, by 
contrast, dealt with the origin, consider Anna and Aria, working with the same pizza context, 
who were discussing where to start their graph. 

 
Aria: I just feel, I like starting at the corner [i.e., the origin] … When I start at zero [i.e., the origin], I 

know that I can like, just go from there. I see it as a starting point. 
 

Aria appeared to draw on a resource we call origin as starting point. Interestingly, she and Anna 
later decided they did not know enough about the Celsius scale (which has freezing point at 0oC), 
and chose to use a Fahrenheit scale instead. In this case, rather than starting at the origin, they 
started at a point on the y-axis, in a similar resource we call y-axis as starting point. 

Overall, we found many of these framing graphical resources, including some we called axes 
need labels, axes need scaling, squiggle means skip, y-axis maps to key moment, negative means 
backward, “+/–” as opposites, and axis arrows as continuation. 

Two Types of “Belief” Resources 
In our analysis looking for fine-grained resources students used, we identified two separate 

categories of intuitive “belief-based” resources, regarding implicit assumptions about graphs.  
Ontological Resources. The first category of belief-based graphical resources dealt with 

intuitive beliefs about the very nature of graphs themselves. Thus, we chose to call these 
ontological resources. In fact, one major item in the graphing literature, graphs as pictures 
(Beichner, 1994; Elby, 2000; McDermott et al., 1987), could be reinterpreted as a particularly 
common and oft-used ontological resource. Here, students believe a graphical image should 
reflect a picture of the situation. Relevant to our work, we assert that characterizing this as a 
stable misconception does not adequately capture nuances in students’ reasoning and the ways in 
which this could reflect productive decisions in certain contexts for constructing graphs. Figure 
6a below, which is the graph Anna and Aria initially produced for the friction-distance task, 
shows an example of this ontological resource in action. They claimed that each arrow was one 
sliding puck at a given friction level. For these students, this reflected an accessible graphing 
approach that visually resembles the physical scenario while illustrating the expected observation 
that higher friction (vertical axes) is associated with a shorter distance (horizontal axes). 

However, our analysis also revealed a softer version of this ontological resource, in which a 
graph preserves only a specific visual stimulus. For example, Figure 6b shows the placement of 
“distance” in the friction task on the horizontal axis and Figure 6c shows the placement of 
“height” in the bottle task on the vertical axis. While these are certainly fine, mathematically, it 
did conflict with other student beliefs (see next section) that the independent variable needs to be 
on the horizontal axis. This result suggests that maintaining visual similarity between the graph 
and the physical scenario may have a particularly high cueing priority (see diSessa, 1993). 
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     (a)     (b)   (c) 
Figure 6. (a) graph as picture; (b) and (c) preservation of key visual stimulus 

 
While graphs as pictures and the softer graphs preserve visual features were common, they 

were not the only ontological resources. For example, when Cindy was interpreting the graph in 
the atmosphere task, she explained, 

 
Cindy: You can kind of narrate the graph. So, you could be like, as you go up in the troposphere then 

the temperature… steadily decreases … And then once you get to the stratosphere, then it stays 
relatively the same for about 10 kilometers… 

 
Cindy drew on a ontological resource we call graph as a story. Students held other ontological 
resources, too, such as graphs as collections of points, graphs as connect-the-dots, or graph 
continuation (which dealt with the assumption that graphs persist outside the viewing window). 

Convention resources. The second type of “beliefs-based” resource were more about fine-
grained beliefs about what students considered appropriate graphical practice. That is, rather than 
being about the nature of a graph, these dealt with common social practices (i.e., conventions) 
(see Moore et al., 2019). Thus, we call these convention resources. In fact, based on our work, 
we believe that much of the convention literature could be reframed to fit within a KiP paradigm. 
In the following excerpt, Ellie and Eric were working on the bottle task and explained their 
choice to put volume on the vertical axis and height on the horizontal axis. 

 
Eric: From like the reading of it, ‘cause it says as a function of the height. That makes me assume that 

the height is your independent variable, which is on your x-axis [points to horizontal axis] and 
your volume is on your y-axis, because it’s the dependent variable. 

 
This excerpt contains evidence of three different convention resources. The first is a very 
common one already described in the literature, where it is believed the independent variable 
must be on the horizontal axis (Moore et al., 2014). A second related resource is that the other 
variable (ostensibly, the “dependent” variable) must be on the vertical axis. A third, and new, 
convention resource seen in this excerpt is that the horizontal axis is the “x-axis” and the vertical 
axis is the “y-axis.” That is, “x” and “y” are essentially the names of the two axes. 

Other convention resources dealt with axis direction and scaling. In the pizza task, Anna said, 
 
Anna: Time’s going to increase this way [slides hand rightward along horizontal axis]. Temperature, 

I’m assuming we’re going to say it increases [slides hand upward along vertical axis]. 
 

Here we can see the simple intuitive idea that right means increase along the horizontal axis and 
up means increase along the vertical axes. Note that this is not a graphical form, because the 
intuitive idea is not coupled with the graph itself, but is rather about the axes. Also, we call these 
convention resources, because it is not necessary for those directions to mean “increase.” In fact, 
during the friction task, Caleb decided to have the horizontal axis represent decreasing friction: 
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Caleb: ‘All’ friction to me is zero (i.e., at the origin) … It’s weird, I know. But regardless … ‘all’ 
friction to me is zero. To me, the x-axis is the amount of friction that is not present. 

 
The convention resource Caleb appeared to draw on was direction is relative, allowing him to 
decide that he could control which direction meant “increasing.” Thus, convention resources can 
at times involve a recognition of the malleability of conventions (Thompson, 1992).  

Overall, we identified many convention resources, including π implies trig, origin is relative, 
and graphs read left-to-right. Again, we propose that the convention literature might be 
considered a subset of graphical resources, in that these conventions are often simple, intuitive, 
and even implicit, ideas students associate with a graphical system. 

Quantitative Resources 
Another category of graphical resources related to quantities’ relationships with 

contextualized graphs, which we call quantitative resources. These resources may be specific to 
graphs that represent real-world situations. While there were fewer resources in this category, 
they seemed quite impactful to students’ thinking. To illustrate, students had particular ideas 
associated with what counted as “independent,” influencing how they set up their graphical axes. 
When explaining why time was the independent variable in the pizza context, Anna explained, 

 
Anna: Like, time is going to march on no matter what happens. 
 

We call this independent as marching on. The students’ work often suggested this resource’s use. 
For example, the bottle task stated height as the independent variable, leading both Eric and 
Caleb to inaccurately claim that height increase was consistent (or “constant” in their words). 
 

Eric: The height is the constant increase. 
 
Caleb: The height will always increase at the same pace. 

 
In this context, volume might actually be considered the more steadily increasing quantity. This 
resource actually led several students to want to put the volume on the horizontal axis, even 
though it conflicted with their resource of “function output” being on the vertical axis. 

This resource was strong enough that some students wanted certain graphs to be with respect 
to time, even when they were not. We call this time as natural independent. For example, In the 
bottle context, Anna and Aria were trying to make sense of height as an independent variable. 

 
Anna: It’s weird. ‘Cause it’s not over a function of time like we’ve had in the last two graphs … Time 

feels way easier to me, but that’s just me. 
Aria: …Time’s pretty good and constant, in a sense … time goes constant. 
 
Even when students did use non-time independent variables, they often spoke of it as 

“marching on” in real time, such as Blaine saying in the bottle context, “We’re pouring in a 
constant volume at each interval of time.” 

Function Resources 
Due to space constraints, we end our results by simply stating there was an additional 

category of graphical resources, function resources, though these figured into the students’ 
reasoning less significantly than the others. Function resources were evidenced when students 
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used explicitly function-based ideas to shape their graphical thinking. Some resources here were 
input-output pair, or recall of graph shape. 

Discussion 
Our contribution has been to expand the work on the fine-grained knowledge resources that 

students use when constructing or interpreting graphs. We identified six categories of resources 
students employed in their graphical thinking. This work is important, because these small-scale 
ideas tended to heavily influence how the students operated graphically, including where to start, 
how to put pieces of the graph together, how to put surrounding features together (e.g., axes), 
and what a graph is meant to convey. Collectively, an emergent combination of these graphical 
resources accounts for a lot of observed graphical activity. In fact, we claim these fine-grained 
graphical resources may underlie a much what has been discussed in the graphing literature. 

For example, consider the work on misconceptions (e.g., Beichner, 1994; McDermott et al., 
1987), in which the inferences students draw from graphs are often seen as larger, unitary mental 
objects. This perspective provides little explanatory and predictive power related to students’ 
reasoning and how instruction can support students (Elby, 2000). Suppose a student sees a 
straight-line graph with axes that use a logarithmic scale. If a student thinks that the quantities 
vary linearly, a misconception perspective might posit the student does not understand 
logarithmic scales. However, it is possible this student is simply invoking the intuitive notion of 
spacing means duration, an assumption that has “worked fine” in the students’ past experience 
(diSessa, 1988). There may be no stable misconception to replace; rather, the student may simply 
need to be redirected to the fact that spacing means something different in this context. 

Next, consider the work on covariation (e.g., Carlson et al., 2002; Johnson, 2015; Moore et 
al., 2013; Thompson & Carlson, 2017). We believe our fine-grained approach can add clarity on 
how students go from covariational reasoning to a produced graph. That is, much of what is 
described in the covariational literature is fundamentally quantitative. The ideas of one variable 
increasing as another variable increases, or of tracking the changes in their values, are not 
inherently graphical. We posit that it takes these fine-grained graphical resources to translate the 
quantitative nature of covariational reasoning into a graphical inscription. 

Finally, some important work has been done framing graphing as a situated social practice 
(Roth & Bowen, 2001, 2003) with community conventions (Moore & Silverman, 2015; Moore et 
al., 2019). We believe social practices are comprised of many small-scale beliefs that can be 
flexibly invoked, or not, given a certain context. For example, a student can hold ontological 
assumptions such as graph preserves visual stimulus and graph as a story simultaneously. Rather 
than one of these defining how a student operates for all graphs, they are both fine-grained 
beliefs that might be activated at different times, depending on the context. Furthermore, we note 
that some of the graphical resources related to features like the axes (e.g., axes need labels) 
reflect assumptions or beliefs about the nature of graphs or conventions related to graphical 
activity. This is important because of the way in which these simple ideas influence students’ 
choices about how to proceed with a graphing task (e.g., convention resources such as 
independent on horizontal or up means increase).  

Together with the previously described graphical forms, the various categories of graphical 
resources we have described in this paper can greatly enhance our ability to identify the 
knowledge and ideas students are using when creating or interpreting graphs. We assert this has 
the potential to serve as a foundation and a unifying perspective that incorporate the many 
different perspectives used in the graphing literature. 
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Intensive quantities result from quantitative operations on two or more extensive quantities. As 
such, their units of measure consist of “compound units.” Students regularly encounter 
symbolically-written compound unit structures that are directly given to them, rather than 
constructed or developed, such as m/s2, ft-lbs, or kg∙m/s. It is consequently important to 
understand how students might try to reason about such symbolically-presented compound unit 
structures, which is the focus of this study. We examined “ways of reasoning” students used to 
make sense of such units, and describe in this paper five themes that emerged during analysis: 
(1) decomposing into separate units, (2) treating units as variables, (3) using covariational/ 
multivariation reasoning, (4) posing a quantification, and (5) bringing in pure math concepts. 

Keywords: units, quantities, intensive quantities, compound units, ways of reasoning 

Introduction and Brief Literature Review 
In recent years, mathematics education has taken seriously the need to attend to students’ 

quantitative reasoning (Johnson, 2016; Smith & Thompson, 2007; Thompson, 2011). While 
quantities might at first seem to be outside the realm of pure mathematics, such reasoning can be 
important for mathematical sense-making, deeper understandings, and being able to productively 
use mathematics outside of the mathematics classroom (Ellis, 2011; Jones, 2015, 2022; Moore, 
2014; Moore et al., 2020; Thompson, 1994, 2011). Some quantities, called extensive quantities, 
have been defined as being directly measurable using a simple unit, such as length or volume. 
Other quantities, called intensive quantities, have been defined as not being directly measurable, 
such as speed or work (Kertil et al., 2019; Schwartz, 1988). In this definition, intensive 
quantities’ units of measure consist of relationships between other quantities (Lesh et al., 1988). 
The way we symbolically write unit structures for intensive quantities, called compound units, 
usually suggests the quantitative operations done to achieve the measure, such as m/s suggesting 
a proportion (and hence division) between distance and time quantities (Thompson, 1994). 

Much of the work on intensive quantities has focused on the construction of fairly simple 
intensive quantities and their units of measure (Bowers & Doerr, 2001; Johnson, 2012; Kertil et 
al., 2019; Thompson, 1994, 2011), or on how reasoning about rates and ratios is beneficial for 
mathematical learning (Ärlebäck et al., 2013; Boyce et al., 2020; Byerley, 2019). Yet, students 
regularly encounter more sophisticated intensive quantities and their symbolic compound unit 
structures, such as m/s2, ft-lbs, or (kg∙m)/s. Further, because context is often in the service of 
other mathematical learning goals, these compound units are typically given directly, rather than 
constructed. To use context and quantities effectively, it becomes critical to understand how 
students might think about these symbolically-presented compound unit structures. This paper 
contributes by explicitly examining how students might approach reasoning about these 
compound units. That is, we did not focus on the process of quantity construction, but rather on 
how students reason about given compound unit structures. Our research question was: What 
ways of reasoning do students use when presented with symbolic compound unit structures? 
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Theoretical Perspectives: Quantities, Reasoning, and Quantitative Reasoning 
Our examination of students’ ways of reasoning about compound unit structures is based on 

our theoretical perspectives on (a) quantities, (b) reasoning, and (c) quantitative reasoning. For 
quantities, we used Thompson’s (1990, 1994, 2011) definition: a quantity is a cognitive entity 
that consists of an object or system, some attribute of that object or system, and a conceivable 
way to measure that attribute. The last of these defines the “unit” of measure, and it is common 
practice, for intensive quantities, to symbolically represent that unit in a way that suggests the 
relationships and measurement process (e.g., m/s). In this way, the symbolic unit structure is not 
necessarily an intrinsic part of a quantity, but is a widespread way to refer to it. However, more 
complicated compound units might obscure those relationships, such as using a “square” in m/s2. 

We define a way of reasoning as the “activities that students engage in while solving, 
explaining, justifying, identifying, and so on” (Hohensee, 2014, p. 136; see also Gravemeijer, 
2004; McClain et al., 2000). Thompson (1990, 1994, 2011) defines quantitative reasoning as a 
special type of reasoning, specifically “the analysis of a situation into a quantitative structure” 
(1990, p. 12). Yet, this definition requires that the person start with some situation and then 
proceed toward a structure, and perhaps a symbolic representation of that structure (e.g., a 
formula, a unit, or an equation). We believe that students often might be in positions of needing 
to reason in the opposite direction, from a more complicated symbolic unit to an idea of what 
that compound unit means. It is this reverse act of quantitative reasoning we focused on in our 
study. Thus, we define a way of reasoning about a compound unit structure as the mental 
activities one employs when attempting to make sense of a given symbolic unit expression. 

Methods 
The data used for this paper comes from a 30-minute task-based interview (Goldin, 1997), in 

which students were shown symbolic compound unit structures and were asked to describe what 
they meant. This interview protocol thus mimics how we believe students often encounter unit 
structures in normal educational settings – without specific direction. Of course, the interview 
contained the artificial directive to make sense of that unit, meaning students’ responses were 
very likely in-the-moment rather than stable (Thompson et al., 2014). The tasks were chosen to 
include compound units for different types of intensive quantities: (a) a rate within a rate, (b) a 
double-proportion (Thompson & Saldanha, 2003), and (c) a double-proportion within a rate: 

• You have probably learned about acceleration, which can have this unit in the metric 
system [m/s2 written on paper]. What does this unit mean? 

• In science, “work” is defined as a product of force and distance, W = F∙d. If F is 
measured in pounds and d is measured in feet, what does this unit for work [ft-lbs] mean? 

• In metric, “momentum” has this unit [𝑘𝑘𝑘𝑘∙𝑚𝑚
𝑠𝑠

 written on paper]. What does that unit mean? 
10 students (5 female, 5 male) participated in the interview, recruited from four different 

first-semester calculus classes at a single large university. The recruitment cite was purposeful 
(Patton, 2002), so that the students would have had exposure to different types of units in math 
or non-math classes (confirmed by most students’ own statements). Our data analysis focused on 
identifying students’ ways of reasoning. Analysis began simply by having each of us 
independently summarize the students’ work on each task. We used these summaries to partition 
the interviews into bounded “reasoning” episodes, beginning when a student started to reason 
about the unit in a particular way and ending once that train of thought concluded. The students 
often had several “reasoning episodes” on a single task. Within each reasoning episode, we 
qualitatively described the actions the students seemed to be taking, based on what they said, 
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wrote, and gestured. We then grouped related ways of reasoning into distinct themes (Braun & 
Clarke, 2006), but also tracked variations within each theme. We were less concerned about 
normative correctness or robustness, and were mainly focused on identifying themes of how 
students approached reasoning about these symbolic unit structures, when asked to. 

Results 
We organize our results around the five different way of reasoning themes we identified. 

Way of Reasoning Theme #1: Decomposing into Separate Units 
The first theme involved ways of reasoning based on mental actions that split the compound 

unit structure into separate units, and imagining quantities associated with each part. 
Decomposing m/s2. For m/s2, the students employed this reasoning in several different ways: 
 
Student 1: I think of it more as meters per second [writes m/s], speed. And an increase in meters per 

second, per second. This [points to m/s] is a rate, and then this [points to m/s2] is a rate over time, 
so a change in rate. 

 

Student 6: Acceleration is a velocity over a given amount of time. And, I’m trying to think if that 
velocity, which is a distance over time, needs to be the same unit of time. [Later:] My natural 
thinking would put it [i.e., velocity] in meters over seconds… Then I would say it’s [i.e., 
acceleration] over this amount of seconds as well [i.e., the same time value as velocity]. 

 

Student 10: So the difference [i.e., between velocity and acceleration] would be the seconds being 
squared… Say your velocity is you’re traveling 1 meter in 2 seconds [writes “ 1 𝑚𝑚

2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
”]. Then, it 

[i.e., acceleration] would be 1 meter per every 2 seconds squared or 4 seconds [writes “ 1 𝑚𝑚
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

”]. 
 

Student 1 parsed the unit m/s2 into a well-defined rate (velocity, m/s) and a separate well-defined 
extensive quantity (time, s). While Student 6 parsed it similarly, his issue was wondering if the 
two s’s in m/s and s represented the same time value. The quantities associated with m, s, and s 
seemed to retain extensive features for him (as opposed to combining distance and time into a 
well-defined rate quantity), such that both s’s were seen as the same extensive quantity. Student 
10 broke up the unit quite differently, into two extensive quantities associated with m and s2. The 
s2 seemed to just signify “time,” where its value was simply squared. 

Decomposing ft-lbs. While ft-lbs can only be decomposed into ft and lbs, students still had 
different ways of reasoning about the decomposition, as seen in these two excerpts: 

 
Student 2: Maybe in units of, like, pounds-feet, like, you have this many pounds and you have to 

bring it 1 foot or 2 feet, or 1-foot or 2-foot or 3-foot increments. 
 

Student 9: It is quite literally the pounds of force times the amount of distance it is. So, if you’re 
pushing on something with 20 pounds of force over 10 feet, that’s 200 pound-feet. 

 
The main difference was the relationship imagined between the quantities force and distance. 
Student 2 fixed one quantity (force) at a certain amount, and thought of it being iterated over the 
other quantity (distance). By contrast, Student 9 seemed to reason about pounds and feet as, 
essentially, separate quantities that did not interact other than through a multiplication procedure. 

Decomposing 𝒌𝒌𝒌𝒌∙𝒎𝒎
𝒔𝒔

. There was even greater variety to how students decomposed (kg∙m)/s: 
 
Student 1: You could figure out, with an object’s mass and its speed, you would have its momentum. 

And that would be, you can compare objects of different sizes and different speeds to each other. 
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Student 8: So, a kilogram is the weight of something, I guess, right. And meters is how far it can 
travel, given an amount of time. So, like, if we have something that weighs 100 kilograms, and it 
goes 10 meters, and let’s say 10 seconds, then that would mean momentum is 100. 

 

Student 5: So, weight over time times distance over time [writes “𝑘𝑘𝑘𝑘
𝑠𝑠
∙ 𝑚𝑚
𝑠𝑠
”]. 

 

Student 10: So, this top part [circles “kg∙m”] is work. I know work equals, because that would be a 
weight times, or a force times a distance. So, we have work per second. 

 
Student 1 broke the unit into an extensive mass (kg) and an intensive velocity (m/s). Student 8 
broke up the unit into three separate extensive quantities (kg, m, s). Student 5 mistakenly broke it 
into two separate intensive quantities (kg/s and m/s). Student 10 grouped the unit by its 
numerator (kg∙m) and its denominator (s), incorrectly associating (as other students did, too) “kg” 
with weight or force. This led him to associate this unit with the rate of change of work in time. 

Way of Reasoning Theme #2: Treating Units as Variables 
The second theme involved ways of reasoning that essentially interpreted the symbols in the 

unit structure as though they were algebraic variables instead. 
Units as variables, m/s2. Several students justified for themselves the appearance of m/s2 

using reasoning that cast “m” and “s” as if they were mathematical variables, such as x or y. 
 
Student 8: If it’s the change in speed over time, then it’s change in m s over s [writes “𝑚𝑚/𝑠𝑠

𝑠𝑠
”]. So then 

it’s like s over 1 [writes “s/1” in denominator], and then if we flipped it up like that, then it would 
be, it’d just be meters divided by s times s. Or meters times 1 divided by s times s [writes “𝑚𝑚∙1

𝑠𝑠∙𝑠𝑠
”], 

so it would be meters divided by seconds squared [adds “= m/s2”]. That makes more sense. 
 

Student 8’s reasoning reflected algebra work. If we swapped the symbols m and s for x and y, the 
reasoning follows the operation of: 𝑥𝑥 𝑦𝑦⁄

𝑦𝑦
= 𝑥𝑥 𝑦𝑦⁄

𝑦𝑦/1
= 𝑥𝑥

𝑦𝑦2
. The units’ symbols, at this moment, were not 

being treated as units of measure for quantities, but rather as if they were variables. This result 
suggests that students may blur the line between symbolic units and quantities’ values. 

Units as variables, ft-lbs and 𝒌𝒌𝒌𝒌∙𝒎𝒎
𝒔𝒔

. The students also treated symbolic units as variables to 
justify to themselves why work had the unit of ft-lbs and momentum had the unit (kg∙m)/s. 

 
Student 10: Force is measured in pounds. And distance is measured in feet. Pounds times feet. 
 

Student 3: If you take away kilograms, it’s just meters per second [writes “m/s”]. And then you’re 
multiplying by kilograms. You multiply by kilograms over 1 [writes “𝑚𝑚

𝑠𝑠
∙ 𝑘𝑘𝑘𝑘
1

”], because that’s 
kilograms. And because of math, kilograms times meters over seconds [adds “= 𝑘𝑘𝑘𝑘∙𝑚𝑚

𝑠𝑠
”]. 

 
As before, these symbolic units are described as though being algebraically operated on. Student 
10’s use of pounds × feet is similar to the operation 𝑥𝑥 × 𝑦𝑦 = 𝑥𝑥𝑦𝑦, and Student 3’s reasoning about 
mass × speed follows the algebraic steps of (x/y)∙z = (x/y)∙(z/1) = xz/y. 

Way of Reasoning Theme #3: Using Covariational or Multivariational Reasoning 
The third way of reasoning theme appeared to be based on a student having already 

decomposed the units and treated them as variables. After doing so, some students employed 
covariational or multivariational reasoning on the unit structures themselves (see Carlson et al., 
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2002; Jones, 2022; Thompson & Carlson, 2017). In short, covariational reasoning is the 
coordination of (usually) two variables changing in relation to each other, and multivariational 
reasoning is the coordination of more than two variables changing in relation to each other. 

Covariational Reasoning, m/s2. In conjunction with how the students decomposed the unit 
m/s2, they used that decomposition to covary the quantities imagined as associated with the parts: 

 
Student 7: You have 1 second, 2 seconds, 3 seconds [draws a line and marks these on it]. And right 

here [points to interval prior to 1 second], the guy’s bookin’ it, he’s going 10 meters per second. 
And then right here [points between 1 and 2 seconds] he’s bookin’, he’s going 12 meters per 
second… Whenever you have meters per second squared, you’re changing every time. Like every 
second, this number [points to 10 m/s] is changing. 

 

Student 4: If you were doing s is equal to 2, that’s [i.e., s2] going to be 4, because 2 squared is 4. And 
meters was 6. And then if we say seconds was 3, so 3 squared is 9. But then it [meters] was 20. 

 
Student 7 had broken the unit up as m/s and s and described how the velocity value would 
change for different times. Student 4 had split up the unit as m and s2, and thus covaried between 
time and distance. As s2 changed from a value of 4 to 9, the value of m changed from 6 to 20. 

Covariational/Multivariational Reasoning, ft-lbs. For the ft-lbs task, the students struggled 
to coordinate force (lbs), distance (ft), and work (ft-lbs) all together. Instead, they usually ignored 
the work value while only coordinating force (lbs) and distance (ft): 

 
Student 1: I think of it as, if you use a certain amount of force, then it’s going to go a certain distance. 

And if you use less force, it going to go less distance. And if there’s a greater force that’s 
necessary to have it moved, then it’s going to move less. 

 
However, a couple students did attempt to coordinate all three quantities, as in this excerpt:  

 
Student 2: Because, like your work’s going to obviously be less if you have to carry it, like, or move it 

a shorter distance versus a longer distance. But also it’s going to increase with your pounds. 
 
A final important part of the students using covariational reasoning with the ft-lbs unit 

structure is that some of them had a strong tendency to want the unit to reflect a rate rather than a 
double proportion. For example, Student 6 began this task by explaining:  

 
Student 6: I was just thinking that it’d be like, pounds over a given amount of distance [i.e., lb/ft]. But 

that’s literally saying the opposite. Because this [W = F∙d] is multiply those two together, while 
putting it in that fashion of saying pounds over a certain amount of feet is in a sense a fraction. 

 
Covariational/Multivariational Reasoning, 𝒌𝒌𝒌𝒌∙𝒎𝒎

𝒔𝒔
. The momentum context has several 

potential quantities: mass, distance, time, momentum itself, and possibly velocity or even 
(nonnormatively) “work”, depending on the quantities the students envision. The students 
similarly used the mental action of fixing certain quantities in order to say how others varied. 

 
Student 1: If we’re talking about something that goes, let’s say 20 kilogram, going 1 meter per 

second. That’s kind of a heavier object going very slowly. And that’s going to have the same 
momentum as a 1 kilogram object going 20 meters per second. 

 

Student 3: Momentum is completely different for two different masses. Because of the difference in 
masses. The momentum of an entire planet is way different than the momentum of a marble. 
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Student 2: So, it’s in like units of, to move 1 kilogram moving 1 meter per 1 second. And then that’s 
your momentum. And your increments of momentum you’d be working with… So whatever your 
number means, that’s how many times the momentum, that 1 kilogram over 1 meter over 1 
second kind of a thing. 

 
Student 1 had broken the unit into kg and m/s, and then held momentum constant to see the 
covariational relationship between mass and speed for a fixed momentum. By contrast, Student 3 
held parts of the unit-quantities constant (distance and time) to imagine covariation between 
mass and momentum. Student 2 fixed each of the individual quantities (mass, distance, time) to 
“1”, and then imagined them being iterated in order to create more units of “momentum.” 

Way of Reasoning Theme #4: Posing a Measurable Attribute 
The fourth general way of reasoning involved imagining some attribute the unit might be 

associated with measuring. All of the students did so on their own, even though they had not 
been expressly asked to engage in a quantification process, indicating that imagining a quantity 
might be a common way for students to try to reason about a symbolic unit structure. Yet, they 
did not seem to think in terms of unit → quantity → attribute, but rather directly from unit → 
attribute, suggesting that students may blur the line between a quantity and its symbolic unit. 

Posing an Attribute, m/s2. The students knew that m/s2 was a unit for acceleration, but when 
asked what the unit meant, they associated several “attributes” with slight nuances. These 
included: (a) speed change, (b) going faster or slower, (c) a distance-time relationship, (d) speed 
at a specific moment, and (e) speed duration over time. We note that (c), (d), and (e) are 
normatively incorrect, and (b) is ambiguous, as moving fast does not guarantee acceleration. 

Posing an attribute, ft-lbs. When asked what “ft-lbs” meant, the students similarly 
associated several potential “attributes” with the unit. These included: (a) an acting force, (b) a 
sense of effort, (c) a torque (rotational), and (d) a change in kinetic energy. We note that (a) is 
normatively incorrect and that (b) is ambiguous, as effort and work are not necessarily 
equivalent. Also, while Student 9 was correct that ft-lb was a unit of measure for a change in 
kinetic energy, he was incorrect to also equate it to the change in velocity of the object. 

Posing an attribute, 𝒌𝒌𝒌𝒌∙𝒎𝒎
𝒔𝒔

. The students created an even wider variety of attributes that they 
associated with kg∙m/s. These included: (a) the strength of a collision, (b) the difficulty in 
stopping an object, (c) the damage or “hurt” done by an object, (d) the effort to move an object, 
(e) how far an object wants to move, (f) a mass in motion, and (g) an amount of time to cover a 
distance. Several of these attributes are well-connected to “momentum,” though others are 
problematic, including an amount of time, a distance, and an effort to move an object. 

Way of Reasoning Theme #5: Bringing in Related Mathematical Concepts 
The final way of reasoning theme involved the activation and usage of related “pure” math 

knowledge, by which we mean knowledge pertaining to the abstract world of mathematics. 
Using related mathematical knowledge, m/s2. Several students invoked the derivative 

concept when reasoning about m/s2. For example, Student 2 began this task by saying: 
 
Student 2: Acceleration is the derivative of your velocity, which is how fast you’re going. How many 

meters over a second. So, it’s how much you’re changing your velocity at any given point. 
 

Bringing in the derivative helped Student 2 think about “speed over seconds,” which then 
propelled her toward decomposing m/s2 into m/s and s (see Theme #1). 
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Another pure math concept students invoked for m/s2 was graphs. Student 9 used graphs to 
provide a reasonable justification for a velocity/time measure leading to the units (m/s)/s = m/s2 

 
Student 9: [Draws a position-time graph:] So, as the slope is the change in position over time, which 

is exactly what velocity is… By the same vein, if we were to graph a velocity function [draws 
another graph labelled v and t]… Finding the slope at any given point of the velocity function 
gives the change in velocity over time at that moment, which is our acceleration. 

 
Using related mathematical knowledge, ft-lbs and 𝒌𝒌𝒌𝒌∙𝒎𝒎

𝒔𝒔
. One pure math concept that the 

students used on occasion in reasoning about the ft-lbs  and kg∙m/s units was factoring: 
 
Student 4: Let’s say there’s 6 [ft-lbs]. There’s some options like 2 and 3, or 6 and 1. So, then, if I 

travelled 3 feet and for each foot I traveled I applied 2 pounds, then overall the amount of work 
that was put in, is 6 foot-pounds. 

Discussion 
This study contributes by examining student reasoning in the “opposite” direction of how it is 

usually studied in the quantitative reasoning literature. That is, rather than examining the 
construction of a quantity and its unit (Bowers & Doerr, 2001; Johnson, 2012; Kertil et al., 2019; 
Thompson, 1994, 2011), we examined students’ ways of reasoning when tasked with starting 
with the symbolically represented unit structure and reasoning from there. We posit that this is a 
common reasoning activity students need to do if we expect them to couple mathematical 
understanding with context and quantitative reasoning. 

One important implication of our study is to problematize the frequent use of symbolic units 
for intensive quantities as though they are self-evident. A quantity like acceleration is frequently 
used in mathematics education to enrich understanding of mathematical concepts (Hitier & 
González-Martín, 2022; Roschelle et al., 2000; Schwalbach & Dosemagen, 2000; Taşar, 2010), 
but our study shows we cannot assume students have certain ways of reasoning about the unit 
structure, m/s2. Our students exhibited many ways to reason, sometimes leading to normative 
interpretations and other times not. For example, while some students imagined m/s2 to suggest a 
rate within a rate, (m/s)/s, others imagined it as suggesting a comparison between distance and 
time, m and s2. Further, students struggled to make sense of ft-lbs, even though such double 
proportion units show up in algebra, trigonometry, and calculus (Stewart et al., 2021; Sullivan & 
Sullivan, 2009; Thompson & Saldanha, 2003), including “person-hour” tasks. Some students 
wanted ft-lbs to be a rate instead, lbs/ft, while others did not maintain a multivariational image 
between force, distance, and work simultaneously. Some students were also unsure of how to 
imagine (kg∙m)/s, either incorrectly associating kg with a force quantity, or treating all three as 
distinct extensive quantities (rather than a product of an extensive quantity and an intensive rate). 

Our study sheds other useful light on how students think of symbolic units, as well. Students 
likely blur the line between a quantity, its value, and the symbolic unit used to represent a unit of 
its measure. The students regularly treated unit symbols, such as m, s, or kg, as though they were 
algebraic variables, even performing algebraic operations on them. Students also imagined 
potential attributes that were directly associated with the unit. Thus, rather than an image of a 
quantity as consisting of separate-but-related object, attribute, unit of measure, and value, the 
students seemed to freely blend these all together (and unproblematically, from their standpoint). 
Understanding these ways that students reason can help instructors be more attentive to what 
students might think when encountering contextualized quantities and units in learning math. 
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“The runner jumped back?”: Developing Productive Understandings of Symbolization Through 

Animations and Applets 

 

Franklin Yu 

Arizona State University 

 

In this report, I discuss one potential role an applet plays in the context of a teaching experiment. 

Mathematics students are constantly tasked with understanding mathematical notation, which is 

often context-dependent or sometimes loosely defined. While the purpose of mathematical 

symbolization is to help mathematicians communicate concisely, researchers have indicated that 

students have difficulties understanding and utilizing mathematical notation to represent quantities. 

Therefore, examining the mechanisms by which students can refine their understandings into more 

conventional ones can be of value to the field of mathematics education. This study provides an 

example of using applets to help students engage in reflective discourse. The findings of this study 

indicate that giving students a medium to visualize their mathematics can support them in 

understanding what their mathematical symbolization actually represents. 

 

Keywords: Symbolization, Applets, Desmos, Teaching Experiment, Average Rate of Change 

 

Symbolization is an integral part in mathematics to represent quantities and operations. As 

mathematicians, we utilize numbers and symbols to encapsulate information (Pimm, 1991), such 

as 
𝑑𝑦

𝑑𝑥
 to mean “the (instantaneous) rate at which the value of the variable, 𝑦, changes with respect 

to changes in the value of the variable 𝑥.” Comprehending and utilizing numbers and symbols is 

an essential skill in learning mathematics. However, researchers have indicated that students 

have difficulties interpreting and using mathematical notation to represent quantities (Tall & 

Vinner, 1981; Torigoe & Gladding, 2007; Chin & Pierce, 2019; Begg & Pierce, 2021). 

Therefore, investigating how students develop understandings of mathematical notation is an 

important area of research in mathematics education. Fonger et al.’s (2016) study is an example 

of the benefits of examining student learning with a focus on students’ representational fluency. 

Their study found that leveraging students’ ways of thinking supported their ability to reason 

quantitatively and utilize appropriate symbolization. 

 

Theoretical Background 

When a student engages in symbolizing or interpreting mathematical notation, they have an 

expectation of the calculations they envision and that the parts that compose an expression or 

formula represent a process of quantifying or representing quantities within a situation. This is 

what O’Bryan (2018) terms emergent symbol meaning. This perspective is important because 

symbols do not inherently carry meaning; instead, an individual interprets the notation based on 

their conception of the mathematical problem. For example, consider a situation involving an 

arithmetic sum of adding up the numbers 1 through 10 (inclusive). One student might utilize the 

expression (1 + 10) ∗
10

2
 [This would be of the form 

𝑛

2
(𝑎1 + 𝑎10)] to represent the process of 

adding up the first and last numbers and repeating this process 
10

2
 times (i.e., 1 + 10, 2 + 9, 3 + 8, 

…). However, another student might write 
1+10

2
∗ 10, to represent their conception that the 

average of this set of numbers is 5.5 (this holds true due to it being an arithmetic sequence), and 
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they can imagine replacing all the numbers with 5.5 and adding those up 10 times (5.5 ∗ 10). 

Despite using the same numbers and symbols, these students had different ways of conceiving 

the situation. Another student might incorrectly write 
10

2
∗ 10 because 10 is the highest number of 

the sequence, and they want to find the middle number of the sequence (and thus write 
10

2
) and 

then add that up 10 times. In this last case, the student can check that their result is incorrect but 

might not have the means to determine why their symbolization of the situation was incorrect 

(and how they might make refinements). This last case highlights the importance of determining 

how we can support students in reflecting on their symbolization and how we might assist 

students in making adjustments when they have an incorrect response. 

One method of helping students reflect on their mathematics is the usage of animations and 

applets. According to researchers, animations can have an enabling function to help reduce the 

cognitive load (Mayer, 2001) and support reflective discourse by focusing the conversation on 

students’ understanding (Cobb et al., 1997). One way to enable reflective discourse involves 

having students anticipate what they will see before the animation plays and then explain what 

they see in the animation (Schnotz & Rasch, 2005; Thompson, 2019). 

In this study, I report on a teaching experiment that leveraged Desmos animations and 

applets. This report’s research question is “What role does an animation or applet play in the 

context of reflective discourse?” 

 

Methodology 

This study was conducted by engaging 2 students in individual teaching experiments on the 

idea of rate of change. The teaching experiment involved six sessions that focused on 

characterizing and advancing students’ ways of thinking about rate of change. In this paper, I 

discuss one of the sessions and how the students interacted with a Desmos applet. 

Teaching experiment methodology (Steffe & Thompson, 2000) involves a sequence of 

teaching sessions that include a student, a teacher, a witness, and a camera to record each 

episode. A teaching experiment’s purpose is to identify a start and ending point of student 

progress and how students construct knowledge as they progress through each teaching episode. 

The goal of a teaching experiment then is to hypothesize and test models of student thinking. 

The Desmos Activity (a summary of the activity can be seen here: Desmos Activity)  

In the teaching session, students were presented with a situation where a runner traveled 100 

meters in 32 seconds at a varying speed (a non-constant speed). Students were tasked with 

Figure 1: The Desmos Applet for the Runner Task 
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programming a function on Desmos to model the distance of a hypothetical runner that would 

run at the average speeds of the first runner in prespecified time intervals. On the Desmos applet 

(Figure 1) is a slider to vary the amount of time elapsed since the first runner started running 

(denoted by the variable, 𝑡). As students vary the value of 𝑡, the applet shows the value of 𝑑, the 

distance in meters that the first runner has traveled after traveling for 𝑡 seconds. 

Students are asked to program a second runner that runs at the average speed of the first 

runner over pre-defined time intervals. Initially, students are guided to split the 32-second 

interval (the total time the first runner took to travel 100 meters) into two equally sized time 

intervals and then utilize the first runner’s average speed in each time interval as their 

programmed runners’ constant speed. It is important to note that in the teaching session 

preceding this one, students developed a meaning for average rate of change as the constant rate 

of change that would achieve the same net change in the dependent quantity over the same 

change in the independent quantity. In this session, one goal was to support students in utilizing 

the value of a rate of change to determine how the related quantities of distance and time would 

covary. In this task, students were asked to define a function, 𝑏, where 𝑏(𝑥) represented the 

distance traveled by the programmed runner after traveling for 𝑥 seconds. Some of the syntax 

needed to define a piece-wise function in Desmos was pre-made for the students to allow them to 

focus on defining a distance function by reducing the cognitive load (Mayer, 2001). As students 

progress through the activity, they are asked to program the runner using smaller and smaller 

time intervals with the eventual goal of making their programmed runner run at the same speed 

as the original runner (the goal is to form a basis for the idea instantaneous rate of change). 

 

Results 

This section discusses how the 2 students in the teaching experiment interacted with building 

the two-interval portion of the task and the role the Desmos applet played in supporting their 

ability to represent quantities with appropriate mathematical notation. 

Scott 

Scott was a first-year computer science major and had no trouble determining the appropriate 

average speeds for each interval. He used the time slider to determine the distance the first 

runner traveled by 16 seconds (67.098) and used this in his average rate of change expression, 
67.098

16
𝑥. However, for the next time interval, he wrote 

100−67.098

32−16
(𝑥 − 16) (Figure 2). The 

interviewer then asked Scott what he attempted to represent with his expression. Scott replied 

that 
100−67.098

32−16
 was the first runner’s average speed in the second half of the race, and the 

expression (𝑥 − 16) represented an amount of time and together that would give you distance. 

He clarified that he wrote (𝑥 − 16) because “we have to worry about this interval and so total 

Figure 2: Scott's Initial Attempt at the Runner Task 
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time, 𝑥, that means we are taking away the first interval of time.” His explanation suggested that 

he was using 𝑥 to represent a number of seconds and that he conceptualized (𝑥 − 16) to 

represent a new quantity, the number of seconds elapsed after the first 16 seconds of the race. 

However, what was absent from Scott’s second expression was the amount of distance 

traveled by the runner during the first 16 seconds of the race. The interviewer decided to press 

play on the animation to demonstrate what Scott’s expression represented in this situation. When 

the time elapsed hit the 16-second mark, his runner jumped back to the starting position. Scott 

was surprised and stated “the runner jumped back?”, and he paused to look at his expression, 
100−67.098

32−16
 (𝑥 − 16). The interviewer then asked him what he attempted to represent and let the 

animation rerun. After watching the animation a second time, Scott remarked that he was 

missing the distance the runner had already traveled and proceeded to add 67.098 to his 

expression. He stated that he realized that his current expression only represented how his 

runner’s distance would change, instead of his total distance traveled as time elapsed. 

Throughout the rest of the teaching session, the Desmos applet played a pivotal role in 

supporting Scott in connecting his mathematical expressions with how he imagined distance 

accruing. The Desmos animation provided a visual representation of his mathematical 

expressions, and when the runner jumped back to the start of the race, Scott was perturbed by 

what he saw. Since Scott’s expectation of what would happen did not align with what he 

observed, this prompted Scott to reconsider what quantities his symbols represented and then 

refined his function definition to accurately represent the quantitative relationships he intended. 

Having the Desmos animation display the runner’s movement and distance from the starting line 

provided Scott with immediate feedback by displaying the quantities being represented by his 

expression. Seeing his programmed runner make an instantaneous jump back to the starting point 

prompted Scott to reconsider how to represent the distance he wanted to model (the distance of 

the programmed runner from the starting line as a function of time elapsed since the start of the 

race); in particular, he recognized that he needed both an expression to represent how that 

runner’s distance would vary as time varied, 
100−67.098

32−16
 (𝑥 − 16), and the initial distance already 

accrued (67.098 meters) after 16 seconds since the start of the race. 

Hans 

Hans was a first-year aerospace engineering major and in the previous teaching sessions, he 

struggled with associating quantities with a mathematical representation. Initially, during the 2-

interval portion of the task, Hans only wrote the average speed, 
67.098−0

16−0
, and then verbalized that 

he did not know what he needed to write to represent time passing. The interviewer used the time 

slider to show the first runner moving as time passed and asked Hans about how long the first 

runner had traveled for. Hans noted that it was whatever the value of the independent variable 

and then proceeded to “add time” to his previous expression by multiplying 𝑥 to his 
67.098−0

16−0
. He 

repeated this for the second interval by typing in 
100−67.098

32−16
𝑥, but he did not attend to 𝑥 as 

representing the total amount of time elapsed; he also failed to include the distance the runner 

had traveled during the first 16 seconds (Figure 3a). 

For the first issue, the interviewer hypothesized that Hans was thinking “rate multiplied with 

time equals distance” and was not yet distinguishing between total distance and distance varying 

within an interval (similar with total time and the amount of time elapsed in the interval). Before 

playing the animation, the interviewer asked Hans to explain what each portion of his expression 

represented. Hans identified the average speed for each interval and the amount of time elapsed 
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and then noted that all together, it “represented a change in distance” (Figure 3b). Afterwards, 

the interviewer asked what the value would represent for specific values of time. Hans then 

noticed that he needed to change his second expression because “we need (𝑥 − 16) to account 

for the first 16 seconds of our race” and that”(𝑥 − 16) is our change in time from 16 seconds.” 

Even though talking through what he was trying to represent helped Hans in making 

adjustments, he had not yet noticed his other error. 

To aid Hans in conceptualizing the distance traveled in the first 16 seconds, the interviewer 

played the animation, and the runner jumped back to the starting line after the runner had 

traveled for 16 seconds. Unlike Scott, Hans initial reaction was to add the expression 
67.098−0

16−0
 𝑥 

to 
100−67.098

32−16
𝑥. He appeared to conceptualize the expression 

67.098−0

16−0
 𝑥 as a completed distance 

traveled that could be determined by multiplying a rate times a time (Table 1). The interviewer 

then prompted Hans to talk about the quantities he conceptualized and attempted to represent 

[Lines 4-6] while probing the conception of the starting point for a quantity’s measurement 

[Lines 7-9]. Eventually, he noted that we still needed “the first distance” and proceeded to add 

67.098 to his expression [Line 11]. Hans’ statement that he needed “the first distance” suggested 

that he shifted to making a distinction between different distances in the situation since he chose 

to label the distance accrued in the first 16 seconds as the “first distance.” 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The Desmos animation supported Hans in developing fluency in applying an average rate of 

change in a context and connecting his mathematical expressions with the quantities he 

attempted to represent. Similar to Scott, Hans was perturbed when the runner instantly jumped 

Table 1: Hans working through the Runner Task 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Hans: 

Int: 

Hans: 

Int: 

 

 

Hans: 

Int: 

Hans: 

Int: 

Hans: 

So would I… add the top? 

So you want to add this? *Highlights 
67.098−0

16−0
 𝑥* 

Yeah 

Remember 𝑥 is going to vary (Hans: oh yeah) so what quantity do you want to add? 

So think about what you’re trying to represent. This over here *highlights 
100−67.098

32−16
 (𝑥 − 16)*, what is this again? 

Um that’s my change in distance. 

From what? 

From 𝑥 − 16… like change in distance from… from 16 seconds 

Okay so what part are we missing? 

The beginning part of the race… the first distance 

Figure 3a: Hans' mathematical expressions 

for the average speed runner Figure 3b: Hans explaining his 

symbolization for specific time 

values 
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back to the starting line, which prompted him to reflect on what quantities his symbols 

represented. Upon seeing the runner jump back to the starting point, Hans realized that he needed 

the distance traveled by the runner during the first 16 seconds of the race, and this led to a 

conversation (Table 1) that supported Hans in making adjustments to accurately represent the 

quantitative relationships he conceptualized. Additionally, the Desmos applet’s slider 

functionality aided Hans in understanding the role of a variable as representing the value of a 

varying quantity (Figure 3). 
 

Discussion 

Both students made similar errors in failing to distinguish between a change in distance 

versus total distance traveled. Additionally, before playing the animation, neither student 

indicated any uncertainty about what their mathematical expression would represent in the 

situation. In their mind, these students thought that what they symbolized would match what they 

expected (Figure 4a). However, when what they saw in the animation did not align with what 

they imagined, they experienced a perturbation that allowed the interviewer to facilitate a 

conversation to aid the students in reasoning about quantities and how they would represent 

them. This discussion led students to reconsider what they had symbolized and how to make 

refinements to represent the quantities they had in mind (Figure 4b).  

While the interviewer could have intervened and pointed out the errors in each student’s 

notation, the Desmos animation provided a visualization of what their mathematics would 

represent and created opportunities for the students to experience perturbations in order to 

engage in self-reflection. This result suggests that students should have opportunities to explore 

and engage with what their mathematical symbolization might represent in a particular context.  

 

Limitations and Future Directions 

While the results of this study can only be known to be true for these 2 students, the findings 

of this study provide insight into how we may address the issue of students’ difficulties with 

mathematical notation. Additionally, the tasks in this study utilized kinematic situations, but 

researchers have indicated that students often struggle to apply their understanding of 

mathematical ideas outside of kinematic situations (Rasmussen & King, 2000; Marrongelle, 

2004). 

Future research can further examine the role of applets and animations in a quantitative 

capacity through classroom studies. Further, more research on the usage of applets and 

animations should be conducted in non-kinematic situations. 

 

Figure 4a:A student anticipates what they might see Figure 4b:Students reflect on what they initially symbolized 
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Past research typically assumes that an instructor is a high school or college instructor, but not 

both. The mechanisms to obtain teaching credentials for each are also traditionally separate, but 

some instructors teach at both levels simultaneously or transition between them during their 

careers. To better understand them, we surveyed instructors with experience in both high school 

and college math teaching. For our qualitative study, we asked questions centered around the 

Pedagogical Content Knowledge domains within Mathematical Knowledge for Teaching (Ball et 

al., 2008; Shulman, 1986). In this paper, we discuss the survey, data collection, coding, and 

findings on teacher perceptions of their jobs that fall across institutional boundaries. 

Keywords: Pedagogical Content Knowledge, high school, college, teacher education, 

professional development 

The University of Tennessee’s Master of Mathematics program targets current U.S. high 

school math teachers interested in transitioning to postsecondary teaching. Some are interested in 

full-time employment as a lecturer/instructor. Others are interested in continuing their full-time 

high school careers with additional part-time teaching at a postsecondary institution, including 

dual-enrollment teaching. In both cases, we consider them as part of a pool of prospective 

VITAL faculty, which is the MAA’s acronym for Visitors, Instructors, Teaching assistants, 

Adjuncts, and Lecturers, a growing teaching force in the US (Blair et al., 2018; Levy, 2019). 

These prospective VITAL faculty are taking a nontraditional route to becoming 

postsecondary educators. Rather than enrolling in courses that form foundational knowledge for 

research, they enroll in courses emphasizing applications to teaching. Due to their current high 

school employment, these educators cannot also work as Graduate Teaching Assistants (GTAs) 

to gain college teaching experience. Even if they had the time, a traditional GTA role often caters 

to novice instructors (Speer, et al., 2005) and is arguably inappropriate for these educators who 

have more experience and knowledge of pedagogy. As a group, they are understudied in 

research. One reason is that many are associated with two-year colleges, and the literature on 

two-year math instruction is already sparse in comparison to K-12 or university education (Mesa 

et al., 2014; Mesa, 2017). A second reason is that dual-enrollment literature tends to focus on 

policy and students rather than on the instructors’ practices (An and Taylor, 2019; Barnett and 

Stamm, 2010; Gonzalez, 2018; Johnson, 2018; Karp et al., 2004; Mokher and McLendon, 2009). 

To better understand and eventually support these educators, our research team started by 

considering the views of similar faculty. In our qualitative study, we surveyed educators with 

experience in both high school and college math teaching. Because these educators work 

between institutional boundaries, they have a unique perspective and can directly compare high 

school versus college teaching in a way that other math educators cannot. For this first phase, we 

focus on the research question: What are the perceptions of math teaching for educators with 

experience in both high school and college? 
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Framework: Pedagogical Content Knowledge 

As identified by Shulman (1986), an instructor should be proficient both in the material they 

teach and in pedagogy. Although he identified these two types of knowledge for teaching in 

separation, Shulman claimed that instructors employ both types of knowledge in conjunction and 

that research should reflect this. Furthermore, he proposed the existence of PCK, the idea that 

instructors must possess knowledge of the subject they are teaching which other experts of that 

subject do not require. Stemming from interest sparked by Shulman’s work, Ball et al. (2008) 

formalized an empirically supported and practice-based framework of MKT. Two overarching 

domains compose the framework: Subject Matter Knowledge and PCK, the latter of which we 

focus on in our work because some subdomains of Subject Matter Knowledge aren’t as clearly 

defined for secondary and post-secondary teaching (Speer et al., 2015). In addition to Shulman’s 

Knowledge of Content and Curriculum (KCC), Ball et al. identified two empirically 

differentiable subdomains of PCK: Knowledge of Content and Students (KCS) and Knowledge 

of Content and Teaching (KCT). 

In more detail, KCC refers to instructors being familiar with the materials and resources 

available to them to teach their topic, as well as the contexts when they should be used, such as 

horizontal/lateral and vertical curriculum knowledge (Shulman, 1986). KCS refers to teachers 

anticipating students’ thoughts and misconceptions (Ball et al., 2008). Lastly, KCT refers to 

instructors knowing how best to teach their subject with illuminating examples and appropriate 

scaffolding. We used PCK as our framework to study teachers with experience in both high 

school and college math teaching; we describe implementation details in the next section. 

Methods 

Survey and Cognitive Interviews 

We developed open-ended survey questions relevant to each subdomain to explore various 

facets of teaching. We asked two versions of each question: the first being a version about high 

school math teaching, and the second being about college. We asked participants to describe 

their teaching practices, a strategy that aligns with Ball et al.’s (2008) practice-based approach. 

We first conducted semi-structured cognitive interviews (Karabenick et al., 2007) with five 

participants using video meetings (Zoom), and we made slight adjustments to our questions for 

clarity before we collected data from our target population. 

As an example of our questions aligning to KCT, we asked instructors how they choose class 

activities to help their high school students learn, and then we followed with a question about 

how they choose class activities to help their college students learn. We developed each question 

with one specific subdomain of PCK in mind (see Table 1), but during the cognitive interviews, 

we encountered a type of “boundary problem” like what was originally described by Ball et al. 

(2008) as some of our interviewees blurred the line between subdomains of PCK. As Ball et al. 

had originally admitted, “It is not always easy to discern where one of our categories divides 

from the next, and this affects the precision (or lack thereof) of our definitions” (p. 403). Thus, 

rather than attempting a perfect one-to-one mapping of our survey questions with subdomains of 

PCK, we take the stance that this boundary problem is inherent to the subject. 

We further recognize that we, ourselves, are components to our instruments in our research 

(Maxwell, 2012). We acknowledge that our research team consists of individuals who have been 

in or are currently in a traditional research-focused math graduate program and have thereby not 

taken the same career path as the individuals in our study. One of our research team members has 

completed a teacher education program and has taught in a secondary classroom in the UK 
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(instead of in the US). Four of us were GTAs for most of the first phase of this project. 

Currently, two of us are full-time lecturers at a large, public, and research-focused university.  

Table 1. A classification of survey questions according to the subdomains of pedagogical content knowledge. 

Question Pairs Intended PCK 

Subdomain 

  

Q4/5: Describe how you choose class activities to help your high 

school/college students learn. 

Q6/7: Describe how you make decisions about which topics to teach in 

a high school/college class session. 

Q8/9: Do you use technology to support high school/college student 

understanding of particular topics? If so, how? 

Q10/11: Describe how you scaffold content for a class of high 

school/college students with a range of backgrounds. 

Q12/13: Describe how you support high school/college students in 

communicating and justifying their mathematical thinking. 

Q14/15: What do you think is the relationship between high 

school/college math courses and the rest of a student’s education? 

KCT 

 

KCC 

 

KCT 

 

KCS 

 

KCS 

 

KCC 

  

Data Collection 

We sent the online qualitative survey instrument via relevant email and professional society 

message boards. The first question asked participants if they had taught both high school and 

college math courses in the U.S. Participants in the target population self-reported their 

experience in further detail with information about the types of institutions they worked at, 

courses they taught, and years of experience. In this first dataset, we have 26 responses. If we 

think of the “traditional” pathway to teaching college math as starting from graduate math 

coursework and ending in a tenured professor role, then our participants presented a range of 

nontraditional pathways to college teaching. For instance, Participant 5 started as a tutor and 

adjunct at a community college, moved to a full-time two-year college role, went back to math 

graduate school, and then ended up teaching at a private high school while continuing to adjunct 

at a college. Most of the participants started in high school and added on college teaching later, 

but we also have people like Participant 11 who started college teaching as a GTA in a math 

graduate program, taught full-time at a college, and then switched to full-time high school 

teaching. Most of our participants did not disclose their tenure-track or non-tenure-track status, 

but many discussed experiences in temporary (n = 11) or adjunct (n = 7) college teaching roles, 

and the average number of years of teaching is 17 (including part-time and full-time teaching). 

Coding and Analysis 

We analyzed our data with thematic analysis (Braun and Clarke, 2006). Our initial phase was 

familiarizing ourselves with the data by reviewing it in totality, which included typed responses 

and transcriptions from audio recordings—our survey was developed on the Phonic platform, 

which allowed participants to choose between typing written responses and recording audio 

responses (Phonic). We employed an inductive approach to search for potential patterns and to 

compile our initial codebook. Next, we organized an updated, condensed codebook with clearer 

definitions for a total of sixteen codes. We re-coded each question independently with two 
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researchers per question. Finally, we computed percent agreement for interrater reliability, 

discussed discrepancies, and re-coded one last time. 

Our codes emerged from our reading of the data, but we also find clear relationships between 

our codes and facets of PCK. For instance, we have three codes on the reasons behind an 

instructor’s usage of technology, which relates to both KCS and KCT. Participant answers were 

typically coded as using Technology for Scaffolding, using Technology for Understanding 

(including visualization of content), or thinking that Technology is Distracting. We primarily 

used these codes on our pair of questions about instructor use of technology. Interestingly, we 

also found that these codes emerged in other pairs of questions. For instance, when we asked 

participants about choosing class activities, Participant 19 reported that they “try to choose 

activities that have a strong visual representation and, when possible, a dynamic piece of 

technology that they can engage with to explore mathematical relationships” (coded as 

Technology for Understanding). On the other hand, some participants merely listed technologies 

that they use when we explicitly asked about technology usage. For example, Participant 12 

simply said, “Yes. Graphing calculators and Geogebra.” Their answer involves technology but 

does not present any information past that, so we left this response uncoded. 

As with the technology codes, we had other codes that we expected to see in certain pairs of 

questions. In one pair of questions, we asked participants to “describe how you support high 

school/college students in communicating and justifying their mathematical thinking.” Rather 

than focusing on the frequencies of our Justification code here, we considered the times that it 

showed up in other questions unprompted. We focus on the details of the unprompted codes in 

the next section. 

Findings 

Instructors Have Student-Centered Intentions 

Student Interests. One of our most common codes involves descriptions of practices that 

cater to Student Interests (including career goals, motivating examples, applications, other 

courses, and explicit mention of student engagement), and we saw this code across all questions 

in the survey. The Student Interests code emerged most frequently in Q14/15 when we asked, 

“What do you think is the relationship between high school/college math courses and the rest of 

a student’s education?” Participant 1 indicated that they adapt their college teaching practices 

based on student career goals. For non-STEM students, they said, “in the end what I want the 

student to remember 5 years down the road is not the properties of logarithms but rather how I 

might engage with critical thinking and reasoning to work my way through solving a problem 

that arises.” For STEM students, this instructor said, “I need my STEM students to understand 

how they are going to be using the math we are currently doing later in their studies and in their 

possible future careers. They still need those critical thinking and problem-solving skills, BUT 

they also need to [be] able to think more mathematically and quantitatively.” When asked about 

topics in specific college class sessions, Participant 1 consistently centered on Student Interests 

as they stated, “I generally pick topics that I know students will need for subsequent courses or 

that I feel apply the mathematics in creative ways.” Many other instructors were also attentive to 

student interests across questions, and we applied this code seventy-six times across all twelve 

content questions in our survey, which was one of the most frequent of the codes we used. 

Interestingly, when comparing pairs of questions, we saw more mention of Student Interests 

for high school students than for college students in Q4/5 and Q6/7. Participant 15 is one of the 

instructors who mentioned student interests in their response about high school but not in their 
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response about college. For high school teaching, they said that they must consider topics on the 

standardized exam “but that also help students connect math to the real world.” This differs from 

their practice when teaching college-level math, for which they said, “I look for activities that 

students can start in class but finish at home, since many students work at different speeds and 

college class time is quite limited. I favor online activities that can be automatically graded.” In 

college, the time pressure to cover content is so great that this instructor changed their teaching 

practice, and they opted for the ease of automatically graded problem sets. 

Social and Emotional Needs. Another relevant code is that of the instructor attention to 

students’ Social and Emotional Needs (including connections to peers, collaborative skills, 

attitudes, confidence, and comfort). We also saw this code emerge in every pair of questions that 

we asked, though it showed up more frequently in our questions about student justification and 

communication (Q12/13). When asked to “describe how you support high school students in 

communicating and justifying their mathematical thinking,” Participant 14 simply described 

what the peer-to-peer interaction is in their class: “Students explain to each other how they got 

their answers. Students think about other approaches to a problem and try to explain other’s 

methods.” Several other participants also utilized group work and discussion in “think-pair-share 

activities” (Participant 17) or by having students “explain their work to each other” (Participant 

18). For college teaching, multiple instructors said that their classroom choices were the “same” 

(Participant 17) or “identical to high school” (Participant 24). Furthermore, it was also important 

to some instructors to “build enough trust and rapport between [the teacher] and among the 

students to allow students to contribute imprecise or tentative ideas” (Participant 8). Participant 

11 also emphasized the creation of a “comfortable” classroom environment. Overall, we found 

that our survey respondents believed that students’ communication and justification skills were 

inextricably linked to their social and emotional needs. 

Instructors are Influenced by Test and Time Pressures 

Test Pressures. As expected, we saw our Test Pressures code appear in all questions, 

although it did not explicitly show up as frequently as other codes. In Q14, many teachers 

discussed foundational knowledge, but Participant 25 talked about the practical side of college 

applications by saying, “As long as math ability is tested on [the] SAT and a basis for college 

acceptances, it is probably the most critical course selection in a high school student’s transcript. 

It can affect science classes and the ability to schedule any other honors level courses.” 

Participant 22 also reported test pressures but in reference to Advanced Placement (AP) tests. In 

Q6, they reported, “For all but one year teaching high school, the school I taught at followed the 

AP curriculum (for better or worse). So the topics for the course were fairly well set in advance.” 

For college teaching, local expectations for exams also influence instructor choices. In the 

case of Participant 17, test pressure came up in the question about utilizing technology in the 

classroom, and they said, “I don’t use technology as much in my college classes because they 

won’t be allowed to use the technology during the exams, which make up most of their grade.” 

For their high school teaching, this instructor used graphing calculators and Desmos, but they 

change their teaching practice in college when it didn’t align with the expectations for the high-

stakes exams. Participant 8 had a similar sentiment and said their department also had a “no-

calculator policy”—since they couldn’t “assume or guarantee access to graphing technologies,” 

they would “rarely engage students in using technology to explore or understand ideas.” 

Time Pressure. For college teaching, our participants also felt that the lack of class time 

(when compared to high school) affected their classroom decisions. Notably, our code of Time 

came up more frequently in the question about choosing class activities for college classes when 
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compared to the parallel high school question. As we saw earlier, Participant 15 was attuned to 

Student Interests but was pressured by the lack of time and so they chose online activities with 

automated grading. Participant 20 also thought college class sessions were too short, and 

although they reported a mix of lecture and group activities in their high school classes, they 

said, “Due to the limit of a 55-minute [college] class, it is mostly a lecture style class,” a choice 

echoed by Participant 18. Additionally, Participant 22 described how they heavily utilized 

Inquiry-Based Learning (IBL) in their high school teaching and tried to incorporate it in college, 

but “this did not work out—the students were not used to this type of learning, and because I had 

to get students ready for the next calculus course, I felt I didn’t have the time to use IBL 

methods.” Even for instructors who used more active learning methods in their high school 

teaching, some felt so much time pressure in college teaching that they used lectures more or 

active learning methods less. 

Instructors Provide Commentary on Their Working Environment 

Predetermined Content. One of our codes is about Predetermined Content, meaning the 

content was determined by someone other than the instructor themselves. We expected to see 

this when asking teachers about high school course content decisions as we assumed that state 

standards would frequently be discussed. Unexpectedly, we saw that this code came up more in 

the college teaching answers than for the high school ones—in fact, 64% of the responses for Q7 

were coded as Predetermined compared to 30% of the responses for Q6. Perhaps Participant 7 

explained this by saying, “My understanding is there is a lot more leeway with the topics that are 

taught at the college level. However, I believe there should be a bit of a consensus if you are 

teaching a class that is a prerequisite for another class.” We also expected there to be more 

flexibility in college courses overall, but our participants reported that they primarily taught 

introductory non-major courses, and so they were more likely to be working with a course 

coordinator or a preset list of topics. For Q7, Participant 9 had a representative answer: “The 

topics to teach are again completely set by the [department] syllabus—I don’t really have a 

choice on this.” When reflecting on their lack of autonomy, many instructors maintained a 

matter-of-fact tone without a positive or negative connotation; those like Participant 20 simply 

stated, “I am told which topics will be covered in the course.” However, in both descriptions of 

high school and college teaching, some instructors had negative associations with their lack of 

choice. For example, Participant 21 said, “Unfortunately, the district curriculum prescribes my 

topics and associated pacing.” When talking about their college teaching, the same instructor 

said, “Again, topics are already decided. In general, I will avoid teaching content that I know is 

not on the test. For example, even though I may find some underlying concepts in the complex 

numbers rather interesting, I avoid teaching them because students generally only need to know 

the procedure.” Due to predetermined content that was procedurally focused and test-driven, this 

instructor actively avoided teaching concepts and topics that they find interesting.  

Commentary on the System. Another notable code is the one regarding Commentary on the 

System. This is a code that cuts across and outside multiple dimensions of PCK, but we saw it 

appear in every question of our survey. In most cases, teachers were providing commentary on 

barriers. Some of these barriers related to prerequisite student knowledge, such as when 

Participant 9 talked about how they must “spend a long time ‘undoing’ the unintended 

consequences of prior instruction. Students have typically automated all kinds of procedures 

without fully understanding when or why they should be used.” Other instructors, like 

Participant 4, commented on the lack of technological resources to support student learning: “It 

was a poor school district. The extent of technology in my classroom was a very old computer, 
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an overhead projector, and 5 TI-85 calculators,” a complaint that other instructors, such as 

Participants 25 and 26, mentioned as well. 

Finally, multiple instructors commented on math classes themselves being barriers to 

students. On Q14, Participant 4 said, “Unfortunately, I think high school math serves as a sort of 

gatekeeper for college. Students who come to the university with poor math understanding get 

stuck taking remedial courses - often more than once, which can lead to setting back graduation 

or even dropping out.” Participant 8 described the ideal role of math versus the perceived reality: 

Ideally, high school courses would help students construct foundational knowledge and 

develop skills in reasoning and problem solving that would support further study. In 

practice, high school math courses often lead to well-practiced but poorly understood 

procedures (and sometimes poorly recalled procedures) for technical tasks, and lead 

students not to trust their own reasoning and not to trust instructors to treat that reasoning 

as valuable or respected. 

For Q15, Participant 26 added that math courses were “just a hoop for [students] to get through.” 

Lastly, Participant 17 warned, “For students who struggle in these gateway courses, it changes 

the trajectory of their lives.”  

Conclusion 

As far as the research team knows, this dataset and analysis provide the first direct 

comparison between the teaching practices for high school and college math classes in the US by 

instructors with personal classroom experience in both. We primarily examined these with a lens 

focused on subdomains of PCK, and we began to answer the question: What are the perceptions 

of math teaching for educators with experience in both high school and college? 

Currently, we are implementing initial findings into our capstone course for the master’s 

program to provide relevant perspectives from teachers in a more similar career trajectory to 

those of our prospective VITAL faculty. Additionally, we will next consider the specific views 

of dual-enrollment instructors, such as full-time high school teachers with an adjunct 

appointment at a college, full-time college instructors who teach high school students, or other 

arrangements that complicate the traditional secondary and post-secondary divisions.  

Although readers of this article are more likely to be engaged in research and less likely to 

have taken the same career path as those in our study, we suggest that their responses provide a 

means of reflection for our own practices and policies as college educators, course coordinators, 

administrators, and leaders of professional development sessions. These educators who work 

between institutional boundaries have a unique means of direct comparison for high school and 

college math teaching. Thus, we end with a series of questions prompted by our engagement 

with our dataset: When faced with pressures and local policies, why do some instructors change 

their instructional practices from active learning to lecture while others maintain their course? 

How can we alleviate those pressures or modify policies to better leverage these instructors’ 

existing PCK? What are the reasons that instructors think their own math courses are merely 

gatekeepers, and how can we make changes to better align the reality that these instructors 

describe to the ideals of their student-centered practices? 
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Values, Methods, and Facts: How Do Math and Science Align and Differ from the Perspectives
of Mathematicians and Biologists?

Rachel Rupnow Margaret Remus
Northern Illinois University Northern Illinois University

Nicole Scheuermann Heather Bergan-Roller
Northern Illinois University Northern Illinois University

Despite the interrelated nature of math and science, limited work has characterized
mathematicians’ and scientists’ beliefs about each other’s disciplines or courses. In this study,
we use nine interviews with mathematicians and biologists to characterize the interrelationship
of community values, methods, and accepted facts in math and science and their relationship to
introductory courses. Results include similar descriptions of biology and of what scientists do by
all participants, but differing characterizations of what math is and what mathematicians do and
claims that math courses do not teach students what they need. Implications include a need for
the mathematical community to better align introductory course material with their values so
that people outside the community better understand what mathematicians value and do.

Keywords: Interdisciplinary Education Research, Nature of Math/Science, Disciplinary Norms

Cross-disciplinary research connecting math and science education is a relatively new but
burgeoning area of work. Much of this work has emphasized content connections, including how
specific math-based content is learned and used in biology (e.g., Robeva et al., 2010; Williams et
al., 2021), chemistry (e.g., Bergman & French, 2019; Jones, 2019), and physics (e.g., Jones,
2015; Schermerhorn et al., 2022; Serbin et al., 2020; Serbin & Wawro, 2022). Nevertheless,
much work remains to be done at the interface of math and science education, especially as it
relates to beliefs about teaching and the nature of math and science. In particular, we address the
following research questions: (1) How do mathematicians and biologists characterize the nature
of math, science, and biology? (2) What, if any, connection is there between how mathematicians
and biologists view and want students to take away from their own and each other’s disciplines?

Literature Review and Theoretical Perspective
Extensive work has characterized beliefs in math and science separately. Math educators

have studied teachers’ beliefs about math, teaching, and learning in K-12 and university contexts
(e.g., Melhuish et al., 2022; Philipp, 2007). Much of the university-level work has focused on
beliefs underpinning pedagogical approaches, such as influences on pedagogy (e.g., Johnson et
al., 2018) and pedagogy in active-learning and lecture-based classrooms (e.g., Fukawa-Connelly,
2012; Woods & Weber, 2020). Moreover, work has examined perceptions of the nature of math
(e.g., Ernest, 1989; Rupnow, 2021), including views of math as a disconnected set of tools,
something discovered, or something created by mathematicians. Characterizations of science
beliefs have focused on teaching influences (e.g., Al-Amoush et al., 2014; Rupnow et al., 2020);
certainty of knowledge in science (Urhahne et al., 2011; whether views of science disciplines
differ (Topcu, 2013); and descriptions of the nature of science (Southerland et al., 2003).

Studies attending to university math and science education simultaneously have been more
limited. Apkarian and colleagues (2021) characterized instructional practices in math, chemistry,
and physics, with special attention to active learning uptake. Reinholz and colleagues (2019)
examined disciplinary cultures in biology, math, chemistry, and physics based on data from
discipline-based education researchers at a cross-disciplinary education conference. From their
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work, they concluded that while STEM is often treated as one entity, meaningful differences
exist between disciplinary cultures. Moreover, to our knowledge, research has not examined
mathematicians’ and scientists’ beliefs about each other’s courses and views of their disciplines,
despite the impact understanding each other’s perspectives might have on determining programs
of study, who is best positioned to teach courses, and appropriate content in service courses.

Based on this background, we adopted Laudan’s (1984) Triadic Network of Justification to
frame our examination of faculty beliefs and their relation to introductory courses. The Triadic
Network of Justification is grounded in philosophy of science and examines the interrelationship
of axiology, methodology, and factual claims within a field’s decision-making. In particular, a
field’s axiology (espoused values and principles) influences what counts as an acceptable
methodology just as the feasibility of methods constrain what can be valued by the community.
Similarly, use of acceptable methods impacts whether an assertion can be stated as fact while
accepted facts within a community impact the methods that will be employed for exploring new
areas. Finally, what is accepted as fact impacts the values of the community just as the values of
the community impact what is acceptable as a fact. Laudan’s work has been employed in math
education research to examine the values (axiology) upheld through proof norms (methodology)
(Dawkins & Weber, 2017). Here we will examine the values, methods, and accepted facts as
taught in introductory courses in math and science and contrast their alignment in the two fields.

Methods
This research effort represents an interdisciplinary collaboration of math, statistics, and

biology education researchers, and we believe our respective positionalities inform and enrich
the research. Two members of the team are Assistant professors and two are graduate students.
One member has extensive experience doing qualitative coding of interviews, and the other three
have an intermediate level of experience. Our varied statuses and prior experiences impacted
how we interpreted the data, and we worked to value and incorporate everyone’s insights.

We audio-recorded interviews with five mathematicians and four biologists (nine total) at
two R2 universities in the same state. One researcher, with a math education background,
interviewed all participants for 60-90 minutes over Zoom or in-person. Interview questions
focused on the nature of math, science, and biology; how these disciplines are learned; and how
introductory courses in these disciplines are taught. Gender-neutral pseudonyms were assigned
such that math faculty were given names starting with M and biology faculty with B.

The interviews were iteratively analyzed in accordance with thematic analysis (Braun &
Clarke, 2006). First, two transcripts were open-coded by two authors who attended to prior work
characterizing math and science but did not enter analysis with particular codes in mind. Those
authors condensed and organized the open-codes into focused codes and applied them to the
same transcripts. After refining, all authors independently coded the remaining transcripts, with
at least two authors coding, discussing, and reaching consensus on each. This led to minor
coding additions and refinements, and revisions were applied to earlier transcripts. Finally, all
authors discussed clarity and themes, which led to adoption of the theoretical perspective. Final
codes were aligned with the theoretical perspective and applied throughout the transcripts.

Results

Axiology: Cultural Values in Math and Science
Math knowledge, once gained, is definite and science is continually evolving. Participants

noted many distinctions and similarities between math and science as fields. One distinction
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agreed on by mathematicians and biologists was that math knowledge, once gained, is definite
and science is continually evolving. For example, Max said, regarding math and biology:

It’s my impression that biology as a discipline evolves at a so much faster pace than
mathematics does. Mathematics absolutely expects that the calculus that you learn in
calculus...is valid, will be valid, is state of the art....In biology...what was thought to be
state of the art when you came in as a freshman might not be...by the time you leave.
Further, the idea that math is more certain than science, which thrives on constant evolution,

was presented by many participants. Blake claimed, “If you put 10 mathematicians looking at the
same data, all 10 should come up with the same answer, whereas in physics, chemistry, and
biology I suspect that you’d get a lot more variation.” Not only does this biologist see math
results as more definite than results in science, but math results are also more widely accepted.

Math and Science are siloed/are separated by jargon. Several participants suggested silos
or disconnections between disciplines might exist due to the need to specialize within one’s own
discipline. Brooks noted divisions even within disciplines: “even within biology, the medical
biologists and the environmental biologists are completely different, and they don’t communicate
with each other.” Further, several participants suggested differing cultures can create divisions
between disciplines. Max noted the impact of being part of a culture on how one sees the world:

It instills in one a discipline, whether it’s history or math, or physics, or accounting, or
whatever. Everybody who has been through a discipline has acquired a certain lens with
which they see the world, and that lens is not unique to that individual...you share with
others this way of thinking and seeing things that you, you can recognize as part of a
community of thought...Each individual may bring their own little nuance to it. But...we
recognize mathematics as a community of thought, and people in...a shared language.

Knowing the in-group approaches and language are part of becoming a member of a discipline,
whereas not knowing them could make it difficult to communicate across disciplines.

Math is what mathematicians do/anyone can do science. Participants suggested that math
is characterized by mathematicians’ actions, but anyone can do science. Max, Morgan, and
Marley claimed “math is what mathematicians do” when initially defining math. In contrast to
math’s community-membership focus, many participants reversed this in science, where anyone
who acts like a scientist is part of the scientific community. Brooks stated:

I think science is any investigation of something unknown. It could be anything we
typically think of as physical sciences...but I also think it can just be trying to figure out
something that you don’t know in any sense. I know Adam Savage from Mythbusters
says that everybody is a scientist, and I kind of agree with that mentality.

Similarly, Bailey noted “the scientist for me is someone that at least follow[s] scientific
reasoning.” These comments suggest that someone who engages in scientific processes is a
scientist, whereas who does the activity determines whether something is math.

Science is a cross-disciplinary search for knowledge. Both math and biology participants
emphasized the value and necessity of cross-disciplinary knowledge and interaction. Biologists
discussed how different disciplines within science can work together to make each stronger, such
as Blake’s comment on students seeing methods in one area of science applied elsewhere:

I think because of teaching and reiterating that scientific method and showing, for
example, a physics student that the same scientific method you use over in physics can be
applied in biology is really important for some of that connectivity....Anytime a biology
student can broaden their knowledge base in other STEM fields, the more well equipped
they are to ask less biased questions within biology.
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Math is a tool. Relatedly, there was consensus that math acts as a necessary tool within
science. All biology participants said math was an important tool within their discipline, many
specifically using the word “tool”. For instance, Blair said, “[Math is] providing some tools of
how you describe biological processes quantitatively, in terms of models.” Others, such as Blake,
went further and did not see any applications for math beyond use in other fields:

That sounds harsh, but I think that is how I think of [math]. So, it doesn’t really have
applicability on its own other than it’s a tool. But it’s like the tool all, all right to be used
in all of these other fields....[italics are participant’s emphasis]

Note this biologist sees applications of math in concert with other areas, just not on its own.
Mathematicians, such as Mo, also referred to math’s utility in problem-solving: “You use the
mathematics to understand different parts of the world, different sciences, and also a lot of things
that are not typically considered science, but you use it to analyze things.”

Biology is the study of life. All participants characterized biology as the study of life. Max
expanded that definition to include “the processes that make up life”. Marley further included
what biologists do, incorporating topics adjacent to life: “I mean, a biologist is not going to study
something that’s inanimate. It’s going to be studying life or things that are very close to life, like
viruses. They’re not really alive, but they have an impact on life.” Biologists described biology
as the study of living things or organisms. Three of the four biologists provided an expanded
definition of biology that incorporated biological systems, such as Bailey:

So biology is a study of living things. And it can be as an organismal... for example,
where the organism lives, their habitat. Then you zoom in animals by themselves, the
behavior, then up to how a cell work[s]. And there’s connection between all these.

While biologists were more precise and provided more nuance in their responses,
mathematicians and biologists largely agreed on what biology is about.

Math is about patterns or numbers. Biologists largely described math as the study of
numbers, such as Blake: “So thinking about how numbers may…relate to one another in new
ways...coming up with new sorts of theories or laws or rules as to how numerical relationships
correspond to one another or relate to one another.” In contrast, mathematicians mostly focused
on patterns and relationships with some references to numbers, such as Miller:

If we have to add restaurant bill or divide restaurant bill, [my friends] say, “Oh, you’re
the mathematician, you do it,” the joke is. And I say, “Guys, that’s not mathematics.
That’s arithmetic.” So, the definition of mathematics is not addition, subtraction. The
definition of mathematics is to study how mathematical objects relate to each other, the
rate of change, the tools and methods that are required.

While math includes numbers, Miller suggests math is about relationships among objects.

Methodology: Ways of Doing and Learning Math and Science
Science is done by the scientific method. All mathematicians and biologists described

science as being done and/or connected by a systematic approach, especially the scientific
method. For instance, Blake referred to the scientific method numerous times, including: “I guess
[science] is a way of studying, a way of understanding…. when I think of science, I think of the
scientific method.” Mathematicians also focused on the systematic approach to data collection
and analysis when defining science, such as Marley:

Sort of the study of nature, but it’s a little bit more than that. So if you allow me to give a
definition that’s as broad as my definition of mathematics, I think it’s just...It’s observation
and analysis....There has to be observation. There has to be analysis to search for patterns.

While particulars varied, references to the scientific method or aspects of it, including
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hypotheses, data collection, analysis, and repetition consistently appeared across participants.
Math is done via proof or unknown. Mathematicians often characterized doing

mathematics in terms of proof and logical deduction. For instance, Morgan observed:
What do mathematicians look at? Well, they look at things that interest them. And it’s
usually not just, “Hey, where can I get—starting with these assumptions, where can I get
just using rules of inference?” It’s not so interesting work. You can take Peano arithmetic
and say, “Okay. Well, what follows from that?” Well, no, look at things that interest us.

While mathematicians are expected to demonstrate results through a sequence of logical
deductions, interests are also expected to play a role in mathematicians’ approaches to research.
In contrast, biologists expressed uncertainty about what mathematicians do. For instance, Bailey
tentatively suggested mathematicians use the scientific method to focus on calculations:

Maybe, I’m wrong, but I think you have a question. You want to demonstrate something.
You have a hypothesis, so you will write down on top of your page what you—or, I don’t
know how you do it. And then you start to make equation and see if you can solve it.

Blake professed even broader uncertainty:
Any time I’ve talked to someone who does theoretical mathematics it is, it is at its intro
level of being explained to me so far over my head and so jargon filled that I can’t pull
from it the applicable aspects to my field. So I can’t really explain to you what theoretical
mathematics is other than it’s, you know, developing theory in math.

Of note, while everyone seemed reasonably confident in characterizing what scientists do,
biologists expressed uncertainty and/or differing characterizations of math than mathematicians.

How Learning is Approached. In addition to characterizations of how researchers do math
and science, we also note approaches to learning math and science, as they could be considered
ways to show appropriate methods for engagement in those fields. The most common description
of how people learn math was through exposure and repetition. For example, Mo said, “A little
bit like you acquire speaking skills. You see it used and mimic it and learn some things on your
own.” In contrast, the participants described how biology is learned through hands-on activity,
including experiencing the natural world and research experiences. Brooks claimed:

I think a lot of people learn biology growing up through experience...learning what
animals are…these sorts of things people often learn before they’ve ever taken a biology
course. And getting out into nature is often a way that many people get into
environmental fields because they always loved going out to nature, going on hikes,
watching birds...And then all of the human health pathways are a little bit more obvious
because if you experience your own healthcare, you see how that works.

Further, the participants described how learning biology is done through research experiences.
For example, Max noted students can do research even as undergraduates: “Biology, I think it’s
really possible for a undergraduate, you know, Junior, to be doing a real research project.”

Factual Claims: Key Facts within Math and Science Taught in Introductory Courses
While accepted facts in math would include proven theorems or formulas and in biology

might include widely accepted theories like cell theory (all organisms are made of cells), here we
emphasize instead content students are likely to take away from their introductory courses.

Content in biology introductory courses. All the biologists made a distinction between
what biology is taught at the introductory level for students majoring in biology (i.e., “majors”)
and those not (i.e., “non-majors” such as humanities majors, business majors). For example,
Blake described how both versions of the introductory courses cover similar topics but
emphasized forming a solid foundation of concepts and skills for majors to build on:

25th Annual Conference on Research in Undergraduate Mathematics Education 212



I think the goal for non-majors is to provide them with background content on what
biology is, so that it is the study of living organisms to provide some background content
on the breadth of organisms that exist…and then do some introductory lessons on the
scientific method, and some of those patterns and processes that we get into in later
biology..... For our majors...teaching the same stuff that we’re doing with non-majors but
doing it at, with the expectation that they are going to build on that knowledge. So really
driving home the scientific process, which they’re going to use throughout the rest of
their, their major, really driving home some of the core concepts in biology.

Of note, biologists claimed biology majors’ first courses in college are meant to provide
opportunities to engage with biology in the same manner as they would in subsequent courses,
and non-majors’ courses provide a similar experience, just with less detail.

Content in math introductory courses. In contrast, multiple math and biology participants
noted math introductory courses tend to teach separated procedures and content that mismatches
what is needed. For example, Brooks described the non-applicability of differential equations:

Differential Equations, the only thing I took out of that class was learning how to do the
math if I was filling up a bathtub that was emptying at the same time, right? That was all
I saw in Differential Equations, so I think I do inherently just think of things in that sense
and where is this coming from? Where’s it useful for?

They later noted they appreciate math is “something behind the scenes… it’s just a part of the
whole system” but math is not taught in such an integrated way, instead “taught as a separate
thing”. The mathematicians agreed math is taught in a way that does not highlight utility, stating
“for most people mathematics means algebra and algebra means meaningless symbol
manipulation” (Max) and “they just sort of memorize algorithms and that’s useless” (Morgan).

To remedy these issues with how math is taught, the participants suggested that introductory
math should teach particular content that aligns with other disciplines and mathematical thinking.
For example, when asked what biology majors should take away from introductory math
courses, Marley proposed a calculus/ordinary differential equations (ODE) series with biology
applications and gave an example about the rate of metabolizing tea:

Students should take sort of a Calculus I and a Calculus II in preparation for biology, but
it should be a biology-based Calculus I, Calculus II.…it’s about related rates, rates of
change.…I’ve got my cup of tea here, and I’ve learned how the body eliminates drugs
from the bloodstream.…It’s a very simple ODE. And now I kind of now understand why
is it I drink my tea, I drink tea in the morning, and then I need more tea later, next day,
why? Well, because it’s natural that there should be some sort of an exponential.

In addition to applications, the participants also said that introductory math courses should teach
connected mathematical thinking. For instance, Mo claimed:

We want to give them an idea of where those formulas come from because I think that
gives a better understanding of how everything fits together. So it’s not just covering the
topics that they need, but it is also making sure that it’s not just ‘formula is given’, but
increase their understanding of the mathematics behind the things.

Together, participants claimed math courses should be specific to the student audience and
focus on why content works.

Discussion
This study aimed to examine views of math, science, and biology by mathematicians and

biologists as well as consider how well aligned (or not) the values, approaches to research, and
material taught in introductory courses are in math and biology. To the first point, there was
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general agreement that biology is focused on the study of life, science uses the scientific method,
and math is a tool for solving problems. However, mathematicians characterized math in terms
of who does it (mathematicians) and in terms of studying patterns among (varied) objects as well
as treating proof as central to activity, whereas biologists largely focused on numbers or
expressed uncertainty. All participants also largely agreed that introductory math courses often
teach disconnected procedures and not what is needed for other disciplines. They also largely
agreed that the scientific method and content about living things were taught in introductory
biology courses, though biologists elaborated on depth differences for majors and non-majors.

To the second aim and returning to our theoretical perspective (Laudan, 1984), we see
relatively close alignment when we consider the axiology, methodology, and factual claims (as
represented in courses) in biology as portrayed by mathematicians and biologists. While some
values are in tension (i.e., science as a cross-disciplinary search for knowledge, science separated
by jargon/in silos), we can see that both values are attended to and incorporated in the scientific
method. In particular, hypotheses are free to change as science evolves and the questions asked
are free to be informed by broad research teams, though individuals may have expertise in only
portions of the question being asked. The emphasis on teaching the scientific method as well as
all participants’ certainty of what biology is seems to suggest relatively clear alignment between
methods taught and accepted facts in biology. Finally, the emphasis on methodology rather than
particular facts reveals connections between accepted facts and the value that science changes.

In contrast, math’s axiology, methodology, and factual claims represented through course
choices are harder to connect. If we attend only to mathematicians’ views, the values of math
being definite and of math being about relationships among objects harmonize with the
methodology of deductive reasoning in an axiomatic system. However, teaching disconnected
procedures does not create a foundation for proof-production. Instead, they at best relate to
math’s role as a (potentially not understood) tool for doing science. Biologists seemed to view
math as a tool focused on numbers but had limited ideas of what mathematicians do beyond
vague references to “math theory” and computation. Because math methodology is unknown to
them, they cannot connect it to values or facts. However, the focus on math as a tool related to
numbers potentially connects to the individual procedures or particular content taught in courses.
Thus, while some aspects are connected in each viewpoint on math, there are also reasons for
biologists to wonder what mathematicians do and for mathematicians to wonder why
introductory courses are taught as they are.

These disconnections in math’s values and introductory courses highlight problems for the
math and math education communities to address. It seems that math courses are trying to serve
populations that do not fully agree on what math is, thus serving no one well. If other members
of the STEM community do not incorporate mathematicians’ definition of math into their own
definition or know “what mathematicians do”, it is not reasonable to expect those in less contact
with math to know what math is about or what mathematicians do either. One way to address this
is to encourage mathematicians to clearly articulate what math is about to people outside the
mathematical community so that their definition becomes more accepted. Another route might be
for math departments to co-teach distinct courses with and for different STEM disciplines so that
“applications” are relevant to all STEM majors and align with their needs, while math majors
separately have opportunities to learn more about the mathematical community and know what
their final courses will be about before it is too late to change majors.
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 Understanding Instructors’ Beliefs and Obligations within Cultures of Exclusion 

 Nina White  Brian A. Smith 
 University of Michigan  University of Michigan 

 We present a study of how five early-career college math instructors using active learning 
 describe their role as instructors and situate these descriptions in two existing theoretical 
 frameworks: Herbst and Chazan’s theory of practical rationality and Louie’s culture of 
 exclusion. This overlayed theoretical perspective, grounded in our case studies, points to levers 
 for faculty professional development and instructional change. 

 Keywords:  Beliefs, Equity, Active Learning, Instructor  Development, Professional Obligations 

 While the general pedagogical category of “active learning’’ in college mathematics 
 classrooms is widely regarded to be better for student learning than traditional lecture 
 (Conference Board of the Mathematical Sciences, 2016; Freeman et al., 2014; Theobald et al., 
 2020)  , many questions remain in how to best support  college math instructors to adopt such 
 practices, and carry them out to most successfully and equitably support student learning. We 
 take it as given that instructor practices and beliefs have important and nuanced interactions in 
 their effects on student learning. Thus, learning environments are improved by attending to both 
 instructor beliefs and practices. The goal of this particular study is to better understand some of 
 the beliefs held by instructors using active learning (in this case, beliefs related to how they view 
 their role as an instructor), while recognizing that these beliefs are pieces of a more complex 
 instructor ecosystem. Our research questions are the following: 

 RQ1: How do early-career math instructors using active learning describe their role as 
 instructors? 
 RQ2: What professional obligations and aspects of the culture of exclusion are present in 
 these descriptions? 

 Literature Review 
 Numerous studies across STEM fields have investigated instructor beliefs  (Czajka & 

 McConnell, 2019; Luft & Roehrig, 2007; Moore et al., 2015)  . Scholars working with 
 post-secondary mathematics instructors have attempted to categorize instructor beliefs while 
 establishing connections to their teaching practice, particularly those related to active learning 
 (Päuler-Kuppinger & Jucks, 2017; Raychaudhuri & Hsu, 2012; Vishnubhotla et al., 2022)  . 
 Päuler-Kuppinger and Jucks (2017) found that scholars in “hard disciplines,” like mathematics, 
 are more likely to have a static understanding of knowledge that corresponds with content- or 
 teacher-centered teaching methods. The findings of Raychaudhuri and Hsu (2012) complicate 
 those of Päuler-Kuppinger and Jucks (2017) in that instructors held ontological views of 
 mathematics as a connected and deep discipline that conflicted with their teacher-centered, 
 behaviorist pedagogical views. Vishnubhotla and colleagues (2022) found that in investigating 
 instructors’ practices when utilizing inquiry-based learning (IBL) approaches, instructors who 
 believed that lecture positively contributed to learning were more likely to emphasize lecture in 
 their IBL instruction. These findings reflect earlier claims regarding the relationship between 
 beliefs and practice in mathematics teaching more broadly. 
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 Previous findings, such as Leatham  (2006)  , pushed for researchers to study beliefs in ways 
 that aim to build connections between beliefs and view them as sensible systems. Ernest’s earlier 
 work  (1989)  enhances this notion as he asserts that  connections or inconsistencies between 
 beliefs and practice can be explained not only by how the instructor relates their beliefs to one 
 another, but also the amount of awareness an instructor has of their beliefs and the institutional 
 systems that surround the instructor. These claims are consistent with Thompson  (1992)  , who 
 argued that the relationship between beliefs and practice is complex and influenced by factors 
 including instructors’ views regarding the nature of mathematics as well as instructors’ 
 interaction with social and political contexts. These claims complement those of Speer  (2005) 
 who summarizes these conceptualizations of beliefs well: “Beliefs appear to be, in essence, 
 factors shaping teachers' decisions about what knowledge is relevant, what teaching routines are 
 appropriate, what goals should be accomplished, and what the important features are of the social 
 context of the classroom” (p. 365). 

 While the previously referenced findings  (Päuler-Kuppinger  & Jucks, 2017; Raychaudhuri & 
 Hsu, 2012; Vishnubhotla et al., 2022)  focus on individual  factors that shape teachers’ decisions 
 without taking into account much of the surrounding context, several scholars have emphasized 
 the importance of  context  in understanding the relationship  between beliefs and practice  (Ernest, 
 1989; Speer, 2005; Thompson, 1992)  . Johnson and colleagues  (2019)  examined how individual 
 and situational factors influenced the instructional practices of mathematics instructors. They 
 found that individual factors, such as personal beliefs, were more likely to explain instructional 
 differences across instructors than situational factors. Interestingly, Johnson and collaborators 
 chose not to investigate how situational factors influenced the individual factors (beliefs, 
 knowledge, and goals) for instructors. Several other studies investigate this problem through 
 what Herbst and Chazan  (2012)  refer to as practical  rationality, who argue that the justifications 
 teachers use for their beliefs and practices can be understood by investigating their professional 
 obligations to their content discipline, individual students, interpersonal interactions in the 
 classroom, and institutions such as departments, schools, and districts. Scholars in 
 post-secondary mathematics education have taken up this work, particularly as it pertains to 
 active learning  (Mesa et al., 2020; Shultz, 2022)  . 

 In the context of mathematics education, Louie  (2017)  argues that the dominant culture of 
 exclusion is likely to influence the beliefs, knowledge, and skills of individual teachers. Across 
 several studies, Louie  (2017, 2018)  and colleagues  (2021)  have shown that the culture of 
 exclusion in mathematics, characterized by narrow definitions of mathematical activity and 
 ability, prevents teachers and instructors from enacting instructional practices in ways that 
 disrupt existing inequities. This applies to current efforts to understand instructor beliefs about 
 active learning in two ways. First, it further supports the notion that focusing on individual 
 beliefs without considering broader context is insufficient. Second, when examining contextual 
 factors such as professional obligations, it is crucial to view these obligations as being embedded 
 within the culture of exclusion. In doing so, professional obligations become potential 
 reproducers or disrupters of the culture of exclusion. We will argue later that understanding the 
 beliefs of instructors via their professional obligations within the culture of exclusion allows us 
 to identify potential levers through which we can influence instructors' active learning practices 
 in a direction that is inclusive and equitable. 

 Theoretical Framework 
 Our investigation assumes a complex interaction of instructor practices and beliefs, and also 

 situates these interactions in an ecosystem that includes contexts with obligations, as well as the 
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 pervasive culture of exclusion (see Figure 1). From the extant literature, we conceptualize beliefs 
 as factors influencing teachers’ decisions regarding teaching and learning, consistent with Speer 
 (2005). This conception of beliefs is in line with Leatham’s (2006) in which the emphasis is not 
 on the strength of the beliefs but rather their connections to the individuals’ other beliefs and 
 practices. 

 We also contend that an instructor’s beliefs are informed by the professional obligations 
 (Herbst & Chazan, 2012) with which they contend. Herbst and Chazan (2012) name four 
 obligations: disciplinary, individual, interpersonal, and institutional. We see these four 
 obligations as being situated within the culture of exclusion  (Louie, 2017)  , which is 
 characterized by narrow views of mathematical activity and ability. Each of the professional 
 obligations has the opportunity to resist or reinforce the culture of exclusion. Figure 2 adapted 
 from Louie  (2017, p. 496)  with obligation descriptions  from Herbst and Chazan (2012), 
 illustrates our proposal for how this might occur. 

25th Annual Conference on Research in Undergraduate Mathematics Education 219

https://www.zotero.org/google-docs/?Bo6DcA
https://www.zotero.org/google-docs/?9e0mda


 Data and Methods 

 Researcher Positionality 
 The first author is a white woman with a PhD in mathematics, who grew up in an 

 income-secure household. These identities affect her worldview, often implicitly. Her personal 
 goals as a college math instructor, faculty developer, and math education researcher are to create 
 rich, supportive, and affirming learning experiences in college mathematics classrooms, 
 especially for students who have been historically marginalized in mathematics; these goals 
 explicitly affect her research questions and analyses. The second author is a white man who is a 
 former secondary mathematics teacher and current PhD candidate in mathematics education. His 
 commitments to equity and justice in education ground his approach to research, albeit from the 
 limited perspective of a person with multiple privileged identities. 

 Participants 
 This study focuses on early career faculty (graduate students and postdoctoral fellows). The 

 reasons for this are (1) this is a population with more malleable beliefs  (Ellis, 2014)  ; (2) this 
 population is responsible for a meaningful percentage of college math courses taught  (Ellis, 
 2014)  ; (3) understanding beliefs of more novice instructors,  in particular, yields insights into an 
 important stage of belief development; (4) at the institution of this study, these instructors were 
 overwhelmingly the population teaching with active learning. We invited eight postdocs, 
 representing a wide range of pilot survey responses, to be interviewed; seven agreed to be 
 interviewed. In contrast, the eight graduate student participants were selected on a volunteer 
 basis via a departmental graduate student listserv. Out of those fifteen, we focus on the responses 
 of five in this paper. Those five include four graduate students (two white women and two white 
 men) and one post-doc (a white man), all of whom teach small sections (< 24 students) in 
 multi-section coordinated courses (18 - 100 sections). 

 Interviews and Analysis 
 The interviews (15-30 minutes) included three questions adapted from the TBI instrument 

 (Luft & Roehrig, 2007)  designed to elicit important  instructor beliefs: (Q1) How do you 
 maximize student learning? (Q2) How do you describe your role as an instructor? (Q3) How do 
 you know students are learning? Interview audio was transcribed using rev.ai, and cleaned for 
 accuracy and anonymity. Among responses to Q2 was a surprisingly common response of 
 “coach” (n=5) to describe their roles as an instructor. For the scope of this short paper, we restrict 
 our attention to that recurring metaphor. The first author identified various sub-meanings of 
 “coach” using open coding  (Corbin & Strauss, 1990)  ,  then refined those meanings through 
 discussions with the second author. The theoretical frameworks described above were not used to 
 create these categories of meanings, but to understand their implications (see next section). 

 Results 
 In this section we characterize four different meanings underlying participants’ use of the 

 metaphor of coach to describe their role as instructors. We illustrate how each meaning alludes to 
 particular obligations  (Herbst & Chazan, 2012)  , while exploring whether those obligations are 
 leveraged in a way that perpetuates or resists the culture of exclusion  (Louie, 2017)  . 

 Responsive Supporter (n=4).  …providing responsive  support to students; for example, by 
 giving hints when needed or meeting with students one-on-one.  Our examples of this role draw 
 primarily on the obligation to the individual because the interviewees described back and forth 
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 interactions with individual students, giving hints and asking questions; however, there is an 
 implicit obligation to the discipline because the descriptions are focused on getting students to a 
 mathematically correct answer. For example, one participant said: “When they are struggling on 
 something, I try to, you know, give tips in some sense….But…sometimes it's more of leading 
 questions, things like that.” Another said: “[I] really try to, you know, fill in gaps in knowledge, 
 that kind of thing.” That is, instructors describe responsively interacting with individual students 
 to correct misconceptions and fill in “gaps in knowledge”—disciplinary obligations. Although 
 these are certainly caring instructors, we view both obligations implicit in this role—individual 
 and disciplinary—as being leveraged in ways that perpetuate an exclusive (or dominant) framing 
 of mathematics teaching. The  lack  of attention to  the classroom community implies that 
 interactions between students are relatively inconsequential to the instructor. Further, the goals of 
 these interactions presuppose that the student is (mostly) an empty vessel, and the instructor is 
 the knowledge-giver. While Responsive Supporters do acknowledge students as having some 
 knowledge to be built upon, they do not describe their role as instructors as drawing out what 
 students know, or making connections to students’ prior knowledge; rather, these instructors 
 describe their role as to correct and redirect, highlighting students deficits rather than assets. 

 Skill Builder (n=3).  …helping students to build skills  beyond the content, such as studying 
 for exams, or approaching non-routine problems.  Our  examples of this role draw primarily on 
 two sources of obligations: individual and institutional. Descriptions refer to characteristics of 
 students and their needs, not fostering a community or supporting interpersonal interactions, as 
 seen in the following quotation: “I mean a lot of these students are freshmen … this is the first 
 math class they're taking. So a lot of what they encourage us to do…is really trying to instill 
 good, not just math study habits…but…taking exams in general.” We also see in the previous 
 quotation two distinct references to institutional obligations: (1) the instructor is enacting what 
 “they encourage us to do” and (2) what’s being encouraged is to help students succeed on the 
 institutional measure of exams. Some respondents mention “problem-solving” or “learning from 
 your mistakes”, which sound like a disciplinary obligation—how you  do  mathematics. However, 
 when they expand more on what this means in their setting, we saw responses such as the 
 following: “Cause you know, a lot of times, particularly in… that course when you're…solving 
 problems that are about, like, justifying your answer, a student could have a correct numerical 
 answer, but lose points because they didn't provide adequate justification for it. And so it's really 
 important to look at where you've lost points on the other stuff...” That is, the “learning from 
 mistakes” this instructor describes is less about actual mathematical learning, and more about 
 learning to meet institutional expectations. 

 Preparer (n=3).  …helping students face a challenge  on their own, that the instructor has no 
 control over, such as a common exam.  This is distinct  from the above role in that it is 
 exam-preparation specific, and less about general skills. However, like Skill Builder above, this 
 role leans heavily on both individual and institutional obligations. The institutional obligation is 
 the more overt obligation in this case, since this role is explicitly about conforming to 
 institutional expectations around exams. However, we also clearly see instructors’ obligations to 
 the individual, wanting their students to succeed, in quotations like this one, “You are kind of 
 like trying to get them to the point where they are prepared for this as much as possible...Like 
 they are…being prepared by you in order to [perform] in some situation and you have some 
 amount of, like, personal stakes in it and you really do want to see them succeed.” In the 
 previous quotation as well as the following, we also see that the instructor and students are 
 working as a team to overcome this hurdle: “There's going to be, there's going to be this 
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 exam...some adversary that we’re all gonna work hard and practice together to get through 
 together,” though the consequence of low scores for the instructor are certainly less grave than 
 for the students. Like the Skill Builder examples, it is caring and invested instructors who 
 describe their role in this way. Nevertheless, in the Preparer meaning of the “coach” metaphor 
 we see the iron grip of the institutional obligation to the common exam as supporting a narrow 
 definition of mathematical activity and performance; this exclusionary frame is then also 
 transferred to the individual obligation, by attending to the training and performance of 
 individual students. 

 Cheerleader (n=2).  … a role of encouragement and emotional  support.  Finally, our 
 examples of Cheerleader most explicitly draw on obligations to individuals. However, when this 
 instructor describes her role as “helping build people back up cause it's pretty common for 
 people to have the first exam tear them down and then to, you know, help them get back on their 
 feet and do well on the rest of the semester, which is totally possible,” we also see an important 
 underlying institutional obligation. This moral support is in the service of helping students 
 navigate institutional structures and expectations. Rather than affectively supporting student joy 
 around mathematics, we see her affective support as helping students recover from exam-induced 
 trauma. That is, both obligations here are serving the culture of exclusion, rather than resisting it. 

 Discussion 
 Our first observation from the roles and obligations above is the absence of the interpersonal 

 obligation. This is surprising given an obvious role of a “coach”: helping a team learn to play 
 together. While the role of helping students work together showed up in the larger dataset, it is 
 not part of what instructors meant when they referred to themselves as a kind of “coach”. Also 
 notable is that only the role of Responsive Supporter seems particularly specific to an active 
 learning environment, indicating that many components of how an instructor views their role in a 
 college mathematics classroom transcend specific modalities. 

 Grounded in our observations from our case study of “coach” meanings above, we 
 hypothesize that obligations to the individual, institution, and discipline may have a tendency to 
 perpetuate the culture of exclusion. And, though missing from our sample, we hypothesize that 
 beliefs derived from an interpersonal obligation may more naturally resist the culture of 
 exclusion, since a defining characteristic of an  inclusive  frame towards mathematics learning is 
 seeing “interactions and interpersonal relationships as integral to learning”  (Louie et al., 2021, p. 
 101)  . These hypothesized tendencies are depicted in Figure 3. It’s important to note that the 
 obligations leveraged in our sample straddle this inclusive/exclusionary divide. However, despite 
 some aspects of resisting the culture of exclusion—using groupwork at all, primarily using 
 conceptual tasks, acknowledging that students come with some mathematical resources—the 
 stronger forces (as described above) are in the exclusionary direction. 

25th Annual Conference on Research in Undergraduate Mathematics Education 222

https://www.zotero.org/google-docs/?Ol50Jw
https://www.zotero.org/google-docs/?Ol50Jw


 Suggestion 1: Reform the Obligation 
 Our suggestions refuse to view instructors as purely individual actors; rather they are 

 embedded in cultures and institutions that must be considered as central to any change efforts. 
 Our first suggestion follows from  Webel’s and Platt’s  (2015  ) strategy of leveraging existing 
 instructor obligations  (Herbst & Chazan, 2012)  to  effect positive change in practice. We layer 
 onto their suggestion a need to reflect on how such obligations may readily sustain (or resist) the 
 culture of exclusion  (Louie, 2017, 2018)  . Take, for  instance, Mesa and colleague’s finding (2020) 
 finding that coordinated courses may be an especially salient source of instructor obligations. 
 Layering upon this finding a focus on framing surfaces a new question: how can features and 
 structures of a coordinated course create obligations that  resist  the culture of exclusion, rather 
 than perpetuate it? A requirement or expectation to use groupwork is one example of an 
 institutional obligation that may help point instructors’ beliefs and frames in an inclusive 
 direction; but as we discuss in Suggestion 2, that expectation alone is not sufficient. Using 
 coordinated course structures to resist the culture of exclusion may include both breaking down 
 structures that perpetuate exclusive frames (e.g. curved grading schemes designed to rank 
 students, timed exams that valorize correctness and speed) and simultaneously building more 
 inclusive structures (e.g., course grade components that give credit for revising mistakes on 
 exams and homework) and inclusive messaging (e.g., “exit tickets” at instructor meetings that 
 ask instructors to reflect on the many different ways students were “good at math” in the last 
 week). 

 Suggestion 2: Magnify the Interpersonal obligation 
 Another implication of our hypotheses is that a source of resisting the culture of exclusion 

 may lie in magnifying instructors’ obligations to interpersonal sources. For example, in 
 coordinated courses using groupwork, instructors may settle on the sole purpose of groupwork as 
 being “students do” rather than “students do together,” unless course coordinators facilitate 
 explicit, reflective conversations to illuminate the intended benefits of groupwork. A belief that 
 groupwork is valuable simply for its hands-on nature (without respect to its collaborative nature) 
 values student-instructor interactions, but fails to value student-student interactions. 

 Study Scope and Limitations 
 The sample size of the overall study (n=15) and the sub-sample presented here (n=5) can in 

 no way characterize college math instructor beliefs across the United States; this is not our goal 
 or claim. A second important limitation of this study is that we have no connection between 
 these professed instructor beliefs and their classroom practices. Relatedly, we are applying an 
 interpretive lens to this instructor discourse, that is colored by our experience as researchers and 
 instructors. 

 Conclusion 
 By examining instructor beliefs through the frameworks of obligations and the culture of 

 exclusion, we have pointed to two foci for instructional change: (1) examining the frames 
 surrounding professional obligations with the ultimate goal of reforming obligations themselves 
 to better resist the culture of exclusion; (2) magnifying professional obligations, such as the 
 interpersonal obligation, that may more naturally and readily resist the culture of exclusion. We 
 do not take it for granted that active learning modalities support equity simply by being 
 hands-on; rather, in any pedagogical modality we must interrogate practices, beliefs, and 
 obligations to best support a culture of inclusion. 
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Exploring Fitness Trackers as a Research Method for
Developing Personas of Stress during Classroom Problem Solving

Melinda Lanius
Auburn University

In this report, I examine the capacity of fitness trackers to assist in differentiating students’ expe-
riences of stress during classroom problem solving. I cluster N = 26 students’ heart rate vari-
ability plots based on categories of description created using a phenomenographic analysis of
their reported emotional experiences during a scripted lesson on roots of polynomial functions.
My results reveal that fitness tracker data can be a valuable indicator of when a student will re-
port classroom distress. However, the tracker data can give both “false-positive” and “false-
negative” indications a student will report distress, reinforcing that biometric data cannot be
treated as a proxy for students reported experiences of stress. Nonetheless, my results do support
the use of fitness tracker data to guide deeper inquiry into student experiences. For example, fit-
ness tracker data can assist in identifying classroom moments to discuss in a video stimulated
recall interview.

Keywords: math anxiety, academic distress, problem solving, fitness trackers, heart rate

Although active learning may generally have a positive impact on students’ performances in
science and mathematics courses (Freeman et al., 2014), not all groups have equal access to these
benefits; for example, because student participation is essential to most styles of active learn-
ing, there is a higher frequency of peer-peer interaction, creating more opportunities for students
with minoritized social identities to experience a marginalizing event (Reinholz et al., 2022).
Classroom stressors can foster academic distress, or anxiety caused by university course envi-
ronments. Academic distress has other known correlates: coursework demands, assessment pres-
sures, instructor teaching style, and a student’s sense of belonging (Larcombe et al., 2022). Ad-
ditionally considering the high prevalence of math anxiety among undergraduate students in the
United States (Lanius et al., 2022; Lanius, 2022; Hopko et al., 2003; Hopko, Crittendon, Grant,
& Wilson, 2005; Hopko, Hunt, & Armento, 2005; Isiksal et al., 2009; Rancer et al., 2013), stud-
ies concerning psychological stress during classroom problem solving are particularly timely and
important. Wearable technologies capable of collecting heart rate data, more succinctly called
fitness trackers, provide an alluring prospective tool for in situ indication of student anxiety or
distress during classroom problem solving (Singh et al., 2018; Kim et al., 2018). To explore the
research potential and pitfalls of fitness trackers, this report compares clusters of student’s fitness-
tracker data plots to categories of description created using a phenomenographic analysis of their
reported emotional experiences during a lesson on roots of polynomial functions.

Heart Rate Fitness Trackers & Distress Indication
A meta-analysis of 37 studies concluded that current evidence supports the use of Heart rate

variability (HRV) for the indication of psychological stress in a particular situation (Kim et al.,
2018)—for example, job-strain (De Bacquer et al., 2011) or computer-work stress (Hjortskov
et al., 2004). Additionally, HRV has been shown to be a statistically significant indicator of ju-
nior high students reporting math anxiety while performing an arithmetic task such as 7 + 2
(Tang et al., 2021). Heart rate variability (HRV) is a summative measurement of the variation
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in length of time between heart beats during a window of time. Slight variations in length of time
between heart beats is normal in healthy individuals and is caused by the autonomic nervous sys-
tem receiving conflicting feedback from the parasympathetic nervous system (informally, the
rest-and-digest-system) and the sympathetic nervous system (or the fight-or-flight-system) (Singh
et al., 2018). When the sympathetic and parasympathetic nervous systems are in balance, there
is greater variation in the length of time between heart beats. On the other hand, when the body
needs to react to an external stimulus, such as stress, messages from the sympathetic nervous sys-
tem overpower messages from the parasympathetic nervous system, and there is less variation
in the length of time between heart beats. Ultra short term HRV, which uses heart rate data from
a couple of minutes, can be reliably computed for monitoring mental stress (Salahuddin et al.,
2007), thus allowing us to synchronize changes in a student’s HRV to tasks and stimuli they ex-
perience in their undergraduate math course.

Research Questions
What are the stress-related emotional experiences of undergraduate students during class-

room problem solving? How does an undergraduate student’s heart rate variability change if
they report experiencing math anxiety or academic distress during classroom problem solving?

Theoretical Perspectives
Concerning Methodology. I utilized phenomenography (Marton, 1986). To clarify how

phenomenography differs from the more familiar phenomenology, in a phenomenological study
the phenomenon itself is investigated; in a phenomenographic study the variation in how people
experience the phenomenon is investigated (Larsson & Holmström, 2007). Phenomenographic
research is an iterative process where the researcher familiarizes themselves with the descriptions
of experience, identifies distinctive or structurally significant characteristics, groups and classifies
similar answers, and builds named categories; see Table 1 of Han & Ellis (2019). The final prod-
uct of my analysis is categories of description that explain the variations of experience present
in the data. Phenomenography can then be used to build personas, lifelike characters to assist in
student-centered design in educational contexts (Huynh et al., 2021).

Concerning Fitness Tracker Data. I must avoid data-essentialism, or the position that stu-
dents can be reduced to their biometric data or that the data collected by fitness trackers is “objec-
tive” reality (Svensson & Poveda Guillen, 2020). Research data are produced through a laborious
and time-intensive process involving the decisions of a variety of people. Further, fitness tracker
data is limited by the capacity of our locations and technologies (Ribes & Jackson, 2013). Conse-
quently, I view biometric data as a human artifact that must be situated in its context.

Methods
Fitness Trackers & Heart Rate Variability

Photoplethysmography (PPG) uses light-emitting diodes (LED) and photodiodes to detect
blood volume changes directly under the surface of the skin, with each peak in blood volume
corresponding to a beat of the heart (Singh et al., 2018); see Figure 1. The PPG sensor records
the length of time between successive peaks of blood volume, providing an accurate approxi-
mation of the length of time between heart beats. To process the collected heart rate data, I par-
titioned each students PP interval data into 3 time windows and utilized the HRV variable root
mean square of successive differences (RMSSD) to compute an HRV value for each student in
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each time window of the lesson; see Figure 1 for the RMSSD formula. The most common cause
of inaccuracy with PPG measurement is motion artifacts (Fine et al., 2021), for example rapid
arm movement, which occurs during certain types of intense physical exercise, where the opti-
cal sensor loses contact with the skin. Although I used a procedure for detecting and cleaning
optical-coupling-based errors within the heart rate data, I sought to avoid the issue entirely and
encouraged research participants to secure the watch snugly to the forearm of their non-dominant
hand. Further, participants remained sitting during the experiment, which minimized the amount
of arm movement.

RMSSD =

√√√√√√
N−1∑
i=1

(PPi − PPi+1)
2

N − 1

Figure 1. Photoplethysmography (PPG) sensor data to compute heart rate variability (HRV)

Scripted Math Lesson & Reflection Survey
After securing institutional review board approval from Auburn University’s Office of Re-

search Compliance, I invited undergraduate students enrolled in a lower-level math course to par-
ticipate in my study. Students wore a fitness tracker during a 15 minute scripted math lesson. The
lesson has a purposefully placed stressor called Cardano’s formula (Harris & Stocker, 1998): Any
cubic polynomial of the form s(x) = x3 + ax+ b such that 4a3 + 27b2 > 0 has real root
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Lesson Window 0. The lesson began with an instructor introducing the topic Section 3.1
Roots of Polynomials on a chalkboard. After seeing a notation-heavy definition of polynomial
function, the instructor presented an example of a linear and a quadratic polynomial. The stu-
dents were then assigned Problem 1. True or False: The function s(x) = 4 is a polynomial to
complete on a provided handout. Window 0 will be treated as an acclimation period for the study
and will not be included within participant’s heart rate variability plots below.
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Lesson Window 1. After waiting for visual cues that all students had completed problem
1, the instructor provided the correct answer and reviewed the definition of root and provided an
example. Students were then instructed to complete Problem 2. Find the root of p(x) = 3x+ 1.

Lesson Window 2. Again, after the instructor received visual cues that it was time to con-
tinue the lesson, they provided the answer to problem 2 and presented the quadratic formula, us-
ing it to find the roots of an example.

Lesson Window 3. Following a presentation of Cardano’s formula, the instructor assigned
Problem 3. Use Cardano’s formula to find a root of p(x) = x3 − 1 stating “Don’t forget to check
that Cardano’s formula applies by verifying 4a3 + 27b2 > 0.” After waiting 2 - 3 minutes, the
instructor revealed that the correct answer was x = 1 and concluded the lesson.

Note that the partition of events into windows 0 - 4 is done to guarantee each window has
sufficient time for an accurate and reliable HRV computation and is not based on the composi-
tion of events. Immediately following the lesson, students completed a reflection survey to report
when they had experienced anxiety and to describe their experience in their own words. Many
students also chose to contemporaneously report their emotional experience by writing on the
provided lesson handout.

Results
The 29 participants included 18 women and 11 men. Five students were enrolled in College

Algebra, Finite Math, or Pre-Calculus. Twelve students were enrolled in Calculus I or Calculus
II. Eight were enrolled in Calculus III, Differential Equations, or Linear Algebra. One student
was enrolled in an elementary math content course for pre-service teachers and three participants
did not specify a current math course.

Clusters of Fitness-Tracker Data Plots
I clustered participants HRV plots together based on the categories of description created

from my phenomenographic analysis of students’ reflection data and lesson handouts. Note that
there is great individual variation in the typical ranges one might see for HRV-RMSSD values,
which can be as low as 21ms and as great as 103ms (Umetani et al., 1998). To make the HRV
plots comparable between individuals, I normalized every plot by dividing a student’s three RMSSD
values by their maximum RMSSD value. Within each normalized HRV plot, a dashed line is
given as a visual indicator of values that suggest the student will report feeling distressed while
attempting an assigned problem. The placement of this dashed line was determined using a logis-
tic regression model that estimates the probability a student will report distress given their HRV
value is below this line is greater than 50%, with the odds increasing the further the value moves
below the line. This statistical analysis is not the focus of this report and thus is omitted here, but
will appear in other work. I provide the line here as a visual aid to assist readers in interpreting
the plots. For each cluster of plots, I constructed an average normalized HRV plot by averaging
the normalized HRV values of students in that cluster. Of the N = 29 profiles to analyze, there
were 5 categories of description that were common to at least 3 students. Categories with fewer
than 3 participants will be excluded from this discussion because there were too few data points
to meaningfully cluster the normalized HRV plots and take an average.

Categories of Description
Labels. I utilize the word distressed in labeling the categories to signify disruptive unpleas-

ant feelings or emotions that interrupted or inhibited the student’s ability to adapt or cope with a
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lesson stressor. The other key label is abstaining, which indicates that these students chose not to
attempt an assigned problem.

Category 1: Distressed. These 5 students first reported distress in Lesson Window 3 where
Cardano’s formula was introduced and they were instructed to use the formula to find the root of
a cubic polynomial. One participant wrote that they felt overwhelmed “by the sudden barrage of
variables and unfamiliar terms” with another explaining, “Not having enough examples before
having to try by myself gave anxiety.” One participant experienced academic distress because
they were not able to finish the problem before the instructor moved on; they wanted to be sure
that they could get the right answer on their own. The normalized HRV plots of the five students
in this cluster can be found in Figure 2. All but one students normalized HRV values remained
above the distress indicator line until the third window, where all HRV values lie below.
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Figure 2. Clustered normalized HRV plots for Category 1 and Category 2

Category 2: More Distressed. For the 7 students in this cluster, the source of distress in
Lesson Window 1 was the instructor announcing that problem 1 was true. Six students expressed
that they felt bad or disappointed that they had gotten the answer wrong, with one student writing
“I felt like it was a trick question and felt badly that I didn’t know it”. Several students indicated
that they did not understand why their answer was wrong, with one student explaining that their
source of distress was that they thought the instructor lied or misspoke and that problem 1 was
in fact false. Note that the lesson script does provide a brief explanation as to why problem 1 is
true, but students were not given the opportunity to ask any questions of clarification during the
lesson. None of these students reported distress during Lesson Window 2, which started with
them receiving feedback that they answered problem 2 correctly. This group reported distress in
Lesson Window 3, conveying feelings similar to those reported by the Category 1 group: anxiety,
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panic, overload, and “blanking out”. The normalized HRV plots of the 7 students can be found in
Figure 2. Note although one students plot makes the same inverted V shape as the majority of the
other plots, their window 1 and window 2 values do not lie below the distress indicator line. Also
note one participant’s HRV lies well above the distress indicator line in window 3.

Category 3: Distressed & Abstaining. These 3 students first reported distress in Lesson
Window 3, however - unlike the participants in the previous two categories - they chose not to
attempt problem 3. One participant, rather than copying the problem from the board onto their
handout, wrote “I genuinely don’t know how to do this one at all” and another reflected after the
lesson “I simply did not know how to solve it.” Their 3 plots can be found in Figure 3.
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Figure 3. Clustered normalized HRV plots for Category 3 and Category 4

Category 4: More Distressed & Abstaining. For the 5 students in this cluster, Lesson Win-
dow 1 caused distress when the instructor provided the solution to Problem 1. One student wrote,
“I got it wrong, wasn’t sure about my answer in the first place.” This group felt less stressed dur-
ing Lesson Window 2, with one student explaining “during the second problem I regained my
confidence because I knew what to do”. In Lesson Window 3, these students reported distress and
chose not to attempt problem 3. One student wrote “I literally would not know where to start” in
the space provided to copy the problem and do scratch work. Their normalized HRV plots are in
Figure 3.

Category 5: Undistressed. The final category contains the 6 students who did not report
feeling distressed during the lesson. Their normalized HRV plots appear in Figure 4. Note that at
various times, participants normalized HRV values dropped below the distress indicator line.
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Category Averages. The cluster average for each category of description appears in Figure
4. Note that, on average, student’s normalized HRV values dropped below the distress indicator
line if and only if they reported feeling distressed while actively attempting an assigned problem.

Discussion & Implications
Within the normalized HRV plots, there are 4 instances of a “false-negative”, where the

HRV plot suggests the student will not report feeling distressed while attempting to solve a prob-
lem and the student did report distress. There are 6 instances of a “false positive”, or instance
where the HRV plot suggests the student will report feeling distressed while attempting to solve a
problem and the student did not report distress. Thus, the overall alignment rate across these 26
profiles was 87%. These results suggest that fitness tracker data can be valuable to guide deeper
inquiry into the student experience; however, low HRV does not guarantee a student is distressed
and high HRV does not guarantee a student is undistressed. Further, HRV cannot provide a direct
measure of the amount of distress or give an instantaneous indication a person is experiencing
distress.
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Figure 4. Clustered normalized HRV plots for Category 5 and Category Average plots

The role of HRV in Education Research
In Figure 4, we see that the plot average for Category 3: Distressed & Abstaining has the

same overall shape and structure as the plot average for Category 5: Undistressed. This suggests
that HRV can only discern when a student may report feeling distressed if the student is actively
problem solving. I recommend that fitness tracker data primarily be used for triangulation, as a
way to identify moments during classroom problem solving for video stimulated recall interview
with research participants. With deliberate and careful use, fitness trackers provide an innovative
research design tool that can integrate qualitative and quantitative measures in the study of psy-
chological stress during classroom problem solving.
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Star Polygons: Symbolizing as Advancing Mathematical Activity in a Scripting Task

Andrew Kercher Anna Marie Bergman Rina Zazkis
Simon Fraser University Fort Lewis College Simon Fraser University

Research indicates that investigating phenomena, rather than reproducing facts, should be a core
experience in mathematics education. But despite its centrality to quality teacher education, it is
still unclear how the effects of investigation tasks on teachers’ mathematical development can be
analyzed. In this study, we demonstrate the potential of scripting tasks as an avenue for
capturing mathematical activity during an investigation. Participants, comprised of prospective
and practicing teachers, explored the concept of a “star polygon” and recorded their
deliberations, ideas, and conclusions as a scripted dialogue. We analyzed their submissions
using the construct of advancing mathematical activity (Rasmussen et al., 2005; Rasmussen et
al., 2015), focusing on how participants’ interpretation and creation of symbols intersects other
types of activity.

Keywords: Star Polygons, Scripting Tasks, Teacher Education, Advancing Mathematical Activity,
Symbolizing

Introduction
Mathematics education research strongly advocates for learning environments centered on

investigation, as opposed to techniques and procedures (e.g., Da Ponte, 2007, Yerushalmy, 2009;
Leikin, 2014). Investigation tasks—also described as open problems or problem fields
(Pehkomen, 2019)—require students to consider a particular object or a set of objects, collect
data about them, identify their properties, and justify the discovered properties or relations. As
such, conjecturing and then refining, proving, or refuting conjectures are the heart of
investigation tasks.

There are multiple advantages for students engaged in mathematical investigations (e.g.,
Quinnell, 2010). For example, they develop a strong conceptual understanding, an awareness of
the nature of mathematics as a discipline, and the ability to think creatively about mathematical
ideas. Investigation-based learning environments also foster a supportive classroom atmosphere
while simultaneously recreating the actual practice of mathematicians.

Numerous professional development efforts intend to prepare teachers for including problem
solving and investigation tasks in their classroom and support them in this endeavor. However,
for teachers to guide students’ investigations, it is essential that teachers have experience in
engaging in such activities themselves (e.g., Perdomo-Díaz et al, 2019). While mathematics
educators agree on the importance of engaging teachers in mathematical investigations, there is
no explicit guidance on how teachers’ engagement in investigations can be studied.

Existing reports on teachers engaged in mathematical investigations employ close
observations of teachers’ work in class, video-recording of their work on a particular
mathematical problem (e.g., Rott et al, 2021), and problem solving journals (Liljedahl, 2007) or
portfolios (Gourdeau, 2019) in which research participants recorded their progress. In this study
we present an additional approach—script-writing—for recording and analyzing teachers’
engagement in a mathematical investigation. In doing so, we address the following research
questions: What aspects of participants’ symbolizing activity are captured by scripted dialogues
recreating their progress on an investigation task?
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Advancing Mathematical Activity
To answer this question, we turn to Rasmussen et al.’s (2005) alternative formulation of

Tall’s (1992) concept of advanced mathematical thinking that they call advancing mathematical
activity. By focusing on mathematics that is “advancing,” this construct allows researchers to
study student activity that improves their understanding of mathematics, even if their work
would not be considered “advanced” by some standard; by considering “activity” rather than
“thinking,” this construct attempts to capture a more holistic and diverse type of engagement
with mathematics. Throughout their work, Rasmussen and colleagues identify four types of
advancing mathematical activity that are socially or culturally situated practices: symbolizing,
algorithmatizing, defining, and theoremizing (2005; 2015). In this report we focus on
symbolizing.

Symbolizing “arises in part as a means to record reasoning” (Rasmussen et al., 2005; p. 57);
that is, a symbol is a “notational device that [is] consistent with [a student’s] mathematical
reasoning,” and symbolizing is the creation thereof (p. 58). The authors stress that they do not
interpret symbolizing as necessarily an act of dissociation from context; designating a symbol as
the representation of a quantity is not only a means of abstraction but also allows students to
create, take ownership of, and share mathematical objects that characterize their thinking.
Symbols, once refined, can act themselves as the input for future symbolizing activity. That is,
symbols can manifest as a synthesis of multiple previous symbols.

Although we focus primarily on the presentation of symbolizing activity throughout this
report, it is impossible to completely disentangle the types of advancing mathematical activity;
with this in mind, we introduce the other types of activity as well. Algorithmatizing is the
creation and discovery of (either local or global) algorithms. When engaged in defining, a student
might construct a definition in light of examples and counterexamples; alternatively, they might
leverage an existing definition in order to explore a related set of objects. Finally, theoremizing
encompasses “both conjecturing and steps toward justifying the assertions” (Rasmussen et al.,
2015; p. 264).

Methods

Participants and Setting
A total of 27 respondents participated in the study and, working in groups, produced 14

unique submissions; we refer to these as S-1 through S-14. The first seven submissions were
generated by prospective teachers during a course on mathematical problem solving. This course,
taken during the last term of the teacher certification program, leveraged problem solving
activities to connect a variety of secondary and advanced topics in mathematics. The latter seven
submissions were generated by practicing teachers who held at least a bachelor’s degree in
mathematics or science. The practicing teachers were enrolled in a professional development
course that provided an overview of important topics and ideas in mathematics through the lens
of pedagogy.

Participants’ scripts often featured themselves as characters. To preserve their anonymity,
throughout this report, named characters that appear in excerpts from submitted scripts have been
given pseudonyms.

The Star Polygons Task
As part of their respective courses, both prospective and practicing teachers regularly

engaged with scripting tasks; in such a task, participants are asked to write a script of a dialogue
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within a mathematical context. A scripting task might be used for lesson planning (where it is
referred to as a lesson play, for example in Zazkis et al., 2009; Zazkis, et al., 2013). At other
times, a scripting task is an activity that can be used to study how teachers respond to a student
error (e.g., Zazkis et al., 2013), a student question (e.g., Bergman et al., in press; Marmur &
Zazkis, 2018; Kontorovich & Zazkis, 2016), or an argument among the student characters (e.g.,
Marmur et al., 2020; Zazkis & Zazkis, 2014).

The star polygons task used in this study is a novel type of scripting task in that it prompted
participants to record, as a script, their journey in a mathematical investigation. Preliminary pilot
testing of a more open-ended version of the star polygons task showed that a certain amount of
guidance was needed to support participants’ initial engagement with the task. The revised task
deployed in this study (Figure 1) provided a symbol system for naming and describing star
polygons before asking participants to make sense of it. As we exhibit in the findings, this
allowance facilitated communication and conjecturing without supplanting meaningful
symbolizing activity.

Figure 1. The first part of the star polygons task.

The first part of the task introduced in Figure 1 engaged participants with investigating why
select examples are not considered star polygons. Having justified this distinction, participants
were instructed to explore whether a star polygon can be constructed on a given number of
vertices.

A second part of the task, not pictured in Figure 1, prompted participants to describe a
method for deciding if there exists a star polygon on N vertices and, if so, how many different
star polygons on N vertices there are. Finally, participants exemplified their described strategy on
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a large number of vertices. Each part of the task was recorded as part of the scripted dialogues
that comprised the collected submissions.

Data analysis
We initially analyzed participants’ submissions using reflexive thematic analysis (Clarke &

Braun, 2006, 2019; Nowell et al., 2017). That is, we hoped to allow the submissions themselves
to guide our understanding of participants’ mathematical activity as captured in their
investigations. We began this process of immersion and interpretation by first reading and
rereading the submitted scripts in order to thoroughly familiarize ourselves with the data. While
doing so, we recognized that the most compelling aspect of the scripted dialogues was the
description of the interaction between characters as they discussed and constructed a collective,
social understanding and monitored each other’s claims.

To emphasize the fundamentally communal nature of the activity reported by participants in
their submissions, we leveraged Rasmussen and colleagues’ (2005, 2015) four types of
advancing mathematical activity. This decision was given credibility by the authors’ emphasis
that these are “acts of participation in a variety of different socially or culturally situated
mathematical practices” (Rasmussen et al., 2005, p. 52). Furthermore, advancing mathematical
activity has already been used to describe collective mathematical progress as part of an
emergent framework (Rasmussen et al., 2015). We thus coded the data explicitly for instances of
symbolizing, algorithmatizing, defining, and theoremizing. This process was guided by the
definitions and examples of each practice presented in the advancing mathematical activity
framework (Rasmussen et al., 2005; Rasmussen et al., 2015).

In the following section, we present instances of symbolizing activity that emerged during
explorations of the star polygons task. Where appropriate, we point out where the symbolizing
activity overlaps with other types of advancing mathematical activity. Finally, we pay particular
attention to the ways in which participants’ symbolizing activity was affected by their adoption
of the prescribed notation within the task description.

Findings
Evidence from student submissions suggests that the notation provided in the

task description, despite providing a preconstructed symbol system to the participants, did not
supplant participants’ symbolizing activity. In fact, many submissions exhibited more robust
symbolizing activity in direct response to the provided notation. For example, this occurred when
participants used symbols to explain their intuitions about the notation to their groupmates. S-5
included the following exchange:

Martina: For the and stars, if you follow along and “draw” the
lines, you are skipping 1 vertex to draw the next one. Maybe the notates the number
of steps you take as you draw the star polygon?

Bridget: Hmm let me know if I interpreted this the wrong way but here is what I got. To go
from vertex Circle to vertex Triangle, I took the pink route then the green, so I counted
those as two steps.

Joyce: Hmm, I was thinking about it differently. Here is a diagram of what I thought.
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Figure 2. Symbolizing activity in S-3.

Martina, Bridget, and Joyce demonstrate that there are multiple possible explanations for what
constitutes a “skip” and use symbolizing activity to capture the underlying reasoning of each
interpretation. Their discussion illustrates that participants still engaged in symbolizing activity
in order to encapsulate and then compare their understanding of the notation within
the context of the provided star polygon diagrams.

Other groups used symbolizing to hypothesize or reject alternative explanations for the
provided notation. In S-13, a character proposes another interpretation of the in the

symbol:
Abeni: I thought the represented the number of vertices and the represented how

many times there are vertices. So this one being means that it has
sets of vertices. See in the picture below using the different colours. There are
blue vertices and red vertices. Two different sets of vertices all together.

Figure 3. Abeni’s suggestion for interpreting the notation in S-13.

Abeni and her partner go on to draw and label multiple examples of star polygons, eventually
concluding that both interpretations of the notation are valid. It is not until
considering the provided non-examples that the characters recognize that Abeni’s suggested
interpretation cannot be used to differentiate these objects from the earlier examples. As Abeni
observes, “My observation of 2 sets of 6 vertices holds true for this [the first non-example in Fig.
1]. So, I am not sure why it would not be a star polygon.” In exploring this perceived
contradiction, the characters of S-13 demonstrate how symbolizing can contribute to the act of
defining.

Providing a symbolic notation had another unexpected benefit with respect to defining and
theoremizing: many groups used the symbol as input for further symbolizing
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activity that facilitated the other types of advancing mathematical activity. For example, consider
the following excerpt from S-5:

Matt: I think that we can have two overlapping star polygons that generate irregular star
polygons if we can find a number which satisfies the equation

where (𝑎, 𝑏) is a star polygon. So, for example
, and (7,3) is a star polygon. So, (14,6) should look

like star polygons layered on top of each other.
Here, Matt manipulates and generalizes the symbol through further symbolizing
activity in order to apply that notation to a newly defined category of non-examples (“irregular
star polygons”). After defining this object, Matt generates a conjecture about particular
combinations of and and applies their symbol system to specific examples. In this way,
Matt’s symbolizing allowed him to better engage with defining and theoremizing activity.

Perhaps the most interesting symbolizing activity occurred when participants interpreted the
symbol as instructions for executing an algorithm for constructing additional star

polygons. The symbols that they generated as a result of this algorithm were simultaneously
products of their algorithmatizing activity and symbols used to explain the rationale for their
algorithms. Consider the following three symbols produced by S-14, S-9, and S-2 provided in
Figure 4.

Figure 4. Various applications of the symbol as an algorithm.

The characters in S-14 and S-2 used two different computer software systems to generate
their symbols (Figure 4(a) and 4(c), respectively), whereas characters in S-9 produced their
symbol (Figure 4(b)) by hand. Each final symbol is a composition of an essential symbolic
component (the equilateral triangle) and various secondary symbolic elements (e.g., “unused”
vertices, additional overlapping triangles, indications of a “starting vertex”). In total, each
symbol in Figure 4 encapsulates its respective group’s understanding of how the notational
symbol can be interpreted and applied as an algorithm. The differences in their
interpretations, manifested as the secondary symbolic elements, affected how each group would
go on to define when two star polygons should be fundamentally “different.”
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Discussion
Overall, our findings illustrate a variety of ways in which symbolizing activity manifested

while participants investigated the star polygons task. Participants’ efforts to interpret the
provided notation facilitated their future exploration of non-examples of star
polygons; in this way, symbolizing led to more robust defining. Participants also created new
definitions when they manipulated the notation and used these observations to
conjecture relationships between different star polygons. These conjectures and their justification
link symbolizing to theoremizing. Finally, most participants treated the notation as
an algorithm that described the construction of a star polygon. Clearly, when this was the case,
symbolizing and algorithmatizing were intimately connected.

These observations, in sum, contribute towards answering our research question: What
aspects of participants’ symbolizing activity are captured by scripted dialogues recreating their
progress on an investigation task? That is, scripting tasks effectively capture symbolizing
activity in a variety of modalities. Furthermore, these different manifestations of symbolizing
connected to and supported the other types of advancing mathematical activity. Existing research
often acknowledges this interconnection between advancing mathematical activities; this study
contributes to mathematics education by highlighting specific instances of these relationships.

The Effect of Technology
In our findings, we observed that the provision of a symbolic notation for naming and

describing star polygons did not detract from participants’ advancing mathematical activity in
general, or their symbolizing in particular; in fact, it often contributed to it. Interpreting,
manipulating, and extending this notation was a productive focus of the submissions.

Just as the introduction of this notation had a positive effect on participants’ engagement with
the task, some kind of technology for generating star polygons was equally invaluable—it
allowed participants to generate examples on a large number of vertices without constructing
them tediously (and sometimes incorrectly) by hand. However, we also draw attention to the
ways that technology removed opportunities to engage in advancing mathematical activity.

For example, Figure 4(c) is a star polygon that was generated by an online applet. We note
that the default functionality of this applet is to draw “compound” star polygons when the
number of vertices shares a common factor with the number of skips, rather than to leave some
vertices “empty” (cf. Figure 4(b)). By supplanting participants’ symbolizing with this particular
representation of the notation, technology had a perceptible effect on participants’ later
mathematical activities. For instance, the symbol was interpreted by every group
to be another non-example of overlapping polygons (in the vein of the provided non-examples in
Figure 1) rather than a star polygon with more “empty” vertices. When this was the
case, technology acted as a reorganizer (in the sense of Sherman, 2014) by shifting the focus of
participants’ thinking. Unfortunately, this reorganization appeared to remove an opportunity for
theoremizing and defining.

Looking Forward
Another avenue for future research could be to investigate the didactic potential of the star

polygons task itself for student guided reinvention of topics in either abstract algebra or number
theory using the instructional design theory of realistic mathematics education (Gravemeijer &
Doorman, 1999). Evidence in the star polygon submissions indicates that star polygons may act
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as an experientially real setting for recreating Euler’s totient function, finite cyclic groups, their
generators, and isomorphisms between finite cyclic groups of the same order.

Finally, we wonder what other ways this type of scripting task could be leveraged to observe
mathematical activity in investigation group work. Future research may not be directly related to
star polygons, but instead seek to apply scripting as a means of data collection for other
mathematical investigations.
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Authors of this proposal are members of an inter-institutional working group focused on the 
teaching and learning of transformations in college geometry courses taken by prospective 
secondary teachers. After exploring axioms and definitions for transformational geometry in our 
courses, we decided to shift to identifying not just what, but how students were learning about 
transformations in our courses. To explore this, we began a lesson study (Boyce et al., 2021). In 
this report, we discuss our engagement in the lesson study, its outcomes, and new directions.  

Keywords: Geometry, Lesson Study, Professional Development, Transformations 

The authors of this proposal are members of an inter-institutional working group focused on 
the teaching and learning of transformations in college geometry courses taken by prospective 
secondary teachers. As a newly formed group of educators with members representing a 
diversity of professional backgrounds in various higher education institutions from across the 
United States, it is not surprising that our preliminary work often focused on how different our 
courses and needs were. It was when we decided to move forward by focusing on our 
commonalities that the idea of conducting a lesson study took hold. We chose the goal of 
creating a lesson that could be used in all of our classrooms with a content focus on 
transformational geometry. As we refined that goal, we decided to craft a lesson that focused on 
definitions and axiomatic systems. We also wanted the lesson to engage students in learning 
from each other while comparing definitions in a way that was connected to secondary geometry 
objectives. Thus, we began our journey into a lesson study with a focus on transformational 
geometry. 

Theoretical Framework 
Lesson study, a teaching improvement and knowledge-building method with roots in 

Japanese elementary education, enables instructors to collaborate in small groups to prepare, 
teach, observe, and refine individual class lessons. It has been used extensively for professional 
development in K-12 mathematics settings; its use in tertiary settings is more limited but 
growing (Applegate et al., 2020; Kamen et al., 2011). The benefits of lesson study include 
building community and deepening mathematical and pedagogical knowledge (Fernandez, 
2020). A guiding framework for the lesson study project can be found in the work of Cerbin 
(2011, p. 11).  

25th Annual Conference on Research in Undergraduate Mathematics Education 244



The major phases of a lesson study cycle are: 
1. finding a focus for the lesson study; 
2. planning the research lesson; 
3. planning the study; 
4. teaching the lesson, observing, and gathering evidence; 
5. debriefing, analyzing, and revising the lesson; 
6. repeating the research cycle; and 
7. documenting and disseminating lesson study findings.  
In our case, the specific content focus for the lesson was the concept of isometry. In our 

planning, we chose to adapt a lesson successfully used by one of our group members, finding 
that it allowed us to embed all of our targeted goals for the lesson. As we focused on planning 
the study, we determined which of our group members would teach the lesson, whose classroom 
would be used, and how we would observe and record data related to student learning and their 
engagement with the lesson. Once the lesson was taught and the data and evidence were      
collected, we were able to debrief and organize the findings so that we could use what we 
learned to revise the lesson and begin again. It is important to point out that the data presented in 
this dissemination is from the debriefing sessions and represents the perceptions of the faculty 
involved. We used thematic coding (Gibbs, 2007) to categorize discussions in our debriefing 
sessions according to (1) our thoughts on the previous lesson and (2) what we planned to 
accomplish in future implementations of the lessons; and within each of these codes, we 
identified course content topics. In this report, we describe how engaging in lesson study has led 
us in new directions for attending to learning goals for our geometry students. We begin by 
providing some background on the lesson we created and implemented. 

Lesson Background 
At the onset we set some goals for the design of a lesson we could implement at our different 

institutions. We wanted students to learn from each other and talk about geometric concepts, 
definitions, and axiomatic systems in productive ways. We also wanted a lesson that would allow 
students to compare definitions and do so in a way that could be connected to secondary 
geometry from a transformation perspective. We explored several ideas for topics, such as 
symmetries and frieze patterns, and decided to design a lesson focused on Adinkra symbols. 
There are hundreds of Adinkra symbols, exhibiting a rich variety of symmetries and meanings 
(Adapo, 2010). Adinkra symbols originate in Ghana, and they have cultural significance, 
especially in Black urban communities within the United States (Oppong-Wadie, 2020). 
Introducing them to the prospective teachers in our geometry courses also had the potential to 
help them connect to this culture, which they could then build upon in their teaching.  

The lesson we created consists of seven components. In the first component, students 
individually sort twelve Adinkra symbols and label their groupings. The second component 
involved students comparing and contrasting the ways their classmates created and labeled their 
groupings of the symbols (cf. Larsen, 2009). Did they identify symmetries or do something else? 
What mathematical language did they use in their labels of groupings? Here, the goals were to 
(a) establish a common vocabulary about symmetries and (b) provide opportunities for diverse 
mathematical thinking about the Adinkra symbols. During the planning stage of the lesson study, 
each member of the working group sorted the symbols themselves. They then compared and 
contrasted their groupings with the goal of anticipating the variety of student responses. 

The third and fourth components of the lesson focused on a particular Adinkra symbol,      
Boa Me Na Me Mmoa Wo. Its name in English is, “Help me, and let me help you.” Boa Me Na 
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Me Mmoa Wo has reflectional symmetry (a vertical line of symmetry) and “nearly” has 
horizontal reflectional symmetry. For the third component, we asked students to identify the 
aesthetics of  Boa Me Na Me Mmoa Wo and create another figure exhibiting those qualities. The 
fourth component involved them sharing and attempting to reach a consensus on a description of 
the aesthetic exhibited by Boa Me Na Me Mmoa Wo.  

In the fifth component, the instructor provides additional foci for mutuality, which Eglash 
(2021) identified as the “near” symmetry aesthetic that Boa Me Na Me Mmoa Wo exhibits. 
Students read a one-page excerpt from Eglash’s website that explains the concept of mutuality 
and calls for its definition as a mathematical property. The sixth lesson component involves 
students attempting to create such a definition. Working group members created and shared their 
own definitions in the lesson planning stage to help anticipate student responses. The final lesson 
component involves students reflecting on their learning experiences throughout the lesson.  

The initial lesson was created with the intention of being repeated in a variety of settings. So 
far, it has been taught four times at three different universities. Due to differences in class time, 
some implementations moved initial or final lesson components to pre/post-class assignments. 
Each teaching session was delivered remotely, via Microsoft Teams or Zoom. Several (free-to-
use) technologies were used to allow students to share their work (Flipgrid, Google Jamboard, 
Google Slides, and Padlet).  

Research Questions 
When considering the goals and results of a lesson study, there are two types of learning 

outcomes to investigate: the students’ and the instructors’. Our purpose in this report is the latter; 
thus our analytical focus is on debriefing sessions of observers (including instructors) reflecting 
on lesson implementations. Our research questions are 1) to what did working group members 
attend in their debriefing sessions and 2) how did working group members' attentions shift over 
the course of the lesson study.      

Methods 

Data Sources 
We primarily used Google Docs to create, document, and share our ideas, beginning with the 

group’s initial lesson brainstorming and lesson planning. After the lesson was first taught, we 
incorporated (anonymized) versions of students’ work as references for the observations that 
were written in the same shared document. In addition to screenshots of “final” student creations, 
we included screenshots of intermediate products (such as when students were working in 
breakout rooms). We incorporated transcriptions for all Flipgrid-completed video responses. 
Following the teaching of a lesson, we met over Zoom (recorded and transcribed) for an hour of 
debriefing, with at least one working group member taking notes. In addition to inputting their 
own observations, working group members added comments to the Google Doc to highlight 
others’ ideas or to propose connections or questions for discussion. The initial lesson plan was 
modified between teaching sessions to accommodate differences in the class meeting duration as 
well as suggestions for modification from the working group participants. This updated copy of 
the lesson plan was used to enter copies of student work, observations and reflections, 
comments, and questions for the following teaching session.  

Members of the working group were present as observers in two of the four teaching 
instances, the first and fourth. We focus on data from these two teaching sessions in the current 
study. The first observed setting was a 210 minute class taught in April 2021. The second 

25th Annual Conference on Research in Undergraduate Mathematics Education 246



observed setting was a 75-minute class taught in April 2022. We focus on the analysis of the 
post-teaching debriefing sessions for these two teaching sessions. The comparison of the two 
debriefing sessions aims to clarify how the teaching of the lesson has evolved from the 
observers’ perspectives, how these outcomes inform lesson revisions, and how these changes 
reflect instructor learning. 

Methodology 
For the analysis of post-teaching debriefing sessions, the focus was on observers’ (including 

the instructors’) reflections on how the teaching went and what aspects could be continued or 
improved. The session transcriptions were open coded using qualitative data analysis software 
(NVivo 12). The second author (who was not involved in either debrief sessions or classroom 
observations) manually coded the data and compared it with the results of NVivo’s automated 
insights to capture elements within the data that may have been overlooked. Multiple iterations 
of inductive/deductive thematic analysis (Braun & Clarke, 2006; Gibbs, 2007) were conducted to 
identify and refine the themes emerging from the data. The fifth author (who was involved in 
both debrief sessions and one of the observations) reviewed these themes and re-coded the data 
from each of the two debriefing sessions into two categories (thoughts on the implementation of 
the session and thoughts on next steps). The analysis shown in the results section represents the 
themes from the debrief sessions in a Sankey diagram (Figure 1), where the numbers in the 
diagram represent the occurrences of the themes in the conversations (Riehmann et al., 2005). 

Results 
The Session 1 [S1] debriefing was attended by six observers and the Session 4 [S4] 

debriefing was attended by five observers (including the instructors). Figure 1 depicts the eight 
coding themes that emerged from analysis across the debriefing sessions and their relationships 
with the two categories of reflection thoughts. We elaborate on these results by first identifying 
themes that were exhibited in one debrief but not the other, and then identifying themes that were 
present across the two debriefing sessions. In this way, we identify shifts in instructors’ 
attentions over the course of the lesson study.  

Divergent Themes Across Debrief Sessions 
In the first debriefing session, technology use and its issues, student self-evaluating, and 

student-instructor dialogue, were three main points of discussion when talking about the 
effectiveness of the lesson. In one of these conversations about technology use, an observer 
mentioned, “....but they seem to get into precision and locked in on precision very quickly—they 
had to use GeoGebra. Because it wouldn't be precise, if they just sketched something.” Another 
noted, “I also think sometimes the technology might have limited their own drawings.” A co-
instructor spoke about a norm of students self-evaluating their work in her class (the ones in this 
observation): 

And I mean, when it's really off that I would rather me say you're off task, I would give 
them the framework and tell me evaluate yourself: where do you see there's issues with 
what's happening and what's in relation to how effective this should be? And they're like, 
okay, yeah, this is off. And they kind of would make a note, but they would self-
assess…because I hold them accountable. 

Finally, when discussing the dialogue between students and teachers, the discussions focused on 
the necessity for these whole-class discussions to be more effective toward the goals of the 
lesson, as well as brainstorming ways to keep the class engaged. For example, a participant 
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noted, “Because I think too often, we're always mesmerized by, you know, word choice. But is it 
mathematically sound? Is it accurate? What are they emphasizing? And if you're not careful, it’ll 
become non-productive.”   

The fourth debriefing session highlights a shift away from identifying local issues with the 
lesson and towards more global issues, such as ideas for how the lesson fits more broadly with 
meeting the goals of the course. When it came to meeting the goals of the course, the debriefing 
participants discussed where to place the lesson in the course’s topic sequence: “I feel like this 
for me, would be a an initial lesson, as I don't see it as a heavy content-oriented lesson and I was 
thinking like where would I go after this if I took the class time?” and “[G]ood idea, because at 
the moment we don't have that follow up lesson and, yes, students might be left to think, what is 
it that I gained from this?” 

Convergent Themes Across Debrief Sessions 
A number of themes emerged across both debrief sessions. One example was how instructors 

could work towards aligning with other important mathematics education topics, such as defining 
and precision. When speaking about the role of the lesson and its relationship to defining and 
precision, an observer in S1 offered,  

I was thinking for the part where we would be offering a definition of mutuality and then 
looking at everyone else's sorting or their creation of their new symbol to see if that those 
fit the definitions, we could ask, ‘[W]hat makes a good mathematical definition—what is 
a mathematical definition?’  

Another S1 observer commented that  
[I] thought that it was interesting that they were talking about precision, and in terms of 
like, being able to produce a very exact diagram. But, you know, you can be precise and 
have a very sketchy, inaccurate diagram. It's about like, how you're actually defining 
what's part of the diagram.   
The other themes that were present across debriefing sessions, student collaboration, 

technology and its issues, time management, and scaffolding, were often intertwined with the 
defining and precision theme. For instance, an observer in S1 suggested,  

At [component three of the lesson], they are just trying to make something that has the 
same aesthetic as that figure. So [right now] it's still very open. So yeah, the idea that … 
it has to have ovals and triangles, and it has to have squares is valid. I mean, there's 
nothing to say that shouldn't be…. How soon do we want to tell them that that's wrong? 
Or guide them? … I think that if we did early, we might have been more apt to get more 
discussion about the transformations or the actual definitions.  

Another S1 observer suggested,  
I’m wondering if we had gone into the groups, if we had been able to prompt them with a 
question. Like not, necessarily given it away, but had been able to ask them a question 
that could have, you know, prompted for their diagrams to get a little bit closer.  

In S4, a different observer commented that,  
We provide only one example given to them and say this shape exhibits something we 
call mutuality. I’m wondering if we found a second shape that could be used, and after a 
certain point within the lesson said, ‘Okay, here’s another shape that exhibits mutuality, 
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how would you change your definition?’ If it’s a well-chosen second shape, it might start 
pushing them in the direction of using more of a transformational definition. 

 
Figure 1: Sankey diagram of themes across debriefing sessions 

     Discussion  
In this report, we have described how the foci of debriefing sessions changed over a one-year 

span within a lesson study. We have illustrated how observers’ attention regarding 
implementations and ideas for modifications evolved during debriefing sessions. These shifts 
accompany new ideas for lesson modifications. Our next steps in our lesson study include 
enhancing opportunities for instructors to make connections between the mathematical content 
found in the lesson we created to topics included in individual courses. An important outcome of 
these discussions is consideration of the placement of the lesson within a particular course. One 
instructor is planning for a next version of the lesson to be used as a springboard into a lesson 
about definitions in mathematics. The instructor wants to embed this topic into the course to 
better align the course offering with student learning outcomes developed by a group of 
mathematicians and mathematics educators. Those outcomes include that students will 
understand the role of definitions in mathematical discourse (GeT: A Pencil, 2022a). As a result, 
the next time the lesson is taught in this particular course, it will be followed by a lesson that will 
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lead students to determine the need for precision in definitions by engaging them in an activity in 
which they will compare and contrast their constructed definitions during the lesson. In 
particular, they will examine if all constructed definitions of mutuality lead to the same symbols 
satisfying the definitions.  

Furthermore, the next version of the lesson is planned to be modified to include more or 
alternative Adinkra symbols in order to give students sufficient opportunities to notice features 
that relate to transformational geometry topics of translations, reflections, rotations, and 
dilations. This is also a topic aligned to a targeted learning outcome whereby students will use 
transformations to explore definitions and theorems about congruence, similarity, and symmetry 
(GeT: A Pencil 2022b). In previous versions of the lesson, none of the symbols presented to 
students exhibited connections specifically to translations and dilations. Also, given that the 
change in Adinkra symbols will include more than one example that exhibits the concept of 
mutuality, the instructor will include time for students to reflect upon and discuss how the 
meaning of an Adinkra symbol might influence the existence of, or make more apparent, 
mutuality in the symbol itself. 

As we continue to seek ways to make geometric concepts meaningful and engaging for our 
prospective teachers and their students, it behooves us to go beyond what has been done 
traditionally and venture into uncharted terrain. On the basis of his familiarity with Adinkra 
symbols, having conducted research on its uses in instruction and education by extension, the 
fourth author joined this project after the S4 debriefing to not only make meaningful 
contributions, but also emphasize that by designing and implementing a lesson study, students 
can be engaged in studying mathematics concepts from a non-western perspective. The task at 
hand includes working to provide a format for identification of geometric ideas and the 
development of working definitions in anticipation of student engagement with Adinkra symbols 
from the standpoint of its aesthetic qualities. The importance of the sorting activity to this lesson 
study will inform suggestions for the inclusion or deletion of specific Adinkra symbols when 
being revised. He will serve as a resource person for meanings, translations, and context of 
Adinkra symbols selected for use in this lesson study. By doing the aforementioned, we hope 
that prospective teachers will be exposed to different ways of teaching mathematics concepts and 
connecting to cultural knowledge for the benefit of learners. 

Cerbin claims that “[a] lesson is a place where our instructional goals come to life” (2011, p. 
3). Living that “life” with others serves to make the teaching experience deeper and more 
meaningful. A lesson study challenges us to not only individually decide what is important, but 
necessitates the communication of our beliefs to others. Through the process, we learn about 
ourselves and about others. We grow. Clearly, participating in this type of undertaking requires 
trust and respect. Without a doubt, the time spent on becoming a community and developing 
common goals and solutions has been time well spent for us. In the end, the work impacts our 
students. Focusing on a lesson as a shared experience allows us to nibble our way into broader 
changes with respect to what we teach and how we teach it. The experience also provides us a 
community where we can discuss student difficulties (in general) with others who care as much 
about the outcome as we do. 
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Centering Connections and Collaboration in the Evaluation of STEM Education Transformation

Carrie Diaz Eaton Yuhao Zhao Robin Taylor
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In this paper, we seek to understand the formation of a national network constructed for change
in STEM education. To center the role of making connections in community and collaborations
between network members, we use social network analysis (SNA) methods. We examine the
impact of an in-person conference with the goals to bring together disparate groups around a
common issue on network collaboration structure. We also examine the effect of post-conference
virtual community building activities on network collaboration structure. A major limitation of
SNA is response rate which, due to the pandemic, artificially drove a loss of collaboration.
However, this loss was mitigated by new collaborations, particularly by influencers and
boundary spanners. In addition, a sustained, year-long suite of virtual activities designed for
community building and collaboration increased the collaboration activity in the network by
12.5%.

Keywords: evaluation, professional development, STEM education, networks, collaboration

A common form of professional development in STEM is the development of a learning
community or community of practice. Originally designed to minimize professional development
time while maximizing impact (Vescio et al. 2008), involvement in learning communities has
been shown to impact postsecondary STEM classroom instructional practice (e.g. Manduca et al.
2017) and can also positively impacts persistence in STEM professional development activities
(e.g. McCourt et al. 2017). The kinds of collegial interactions and support fostered in
communities of practice have become recognized as a key factor in instructor adoption of cutting
edge STEM classroom practices and can outweigh other barriers to reform (McConnell et al.
2020). McCourt et al. noted that participation in networks of individuals outside of one’s
department or institution provided participants with much needed space for pedagogical
discussions and can transmit novel ideas across institutional boundaries (2017).

Educational innovation in postsecondary STEM education is both about infusing emerging
technologies into classroom content, such as data science and course-based undergraduate
research experiences, and about the broader human context, considering the social justice
implications and the need to broaden participation (Rodenbusch et al. 2016, Holm and Saxe,
2016, Ballen et al. 2017, Alexander et al. 2022). This reflects a broader national dialogue on
STEM education reform. In this context, an alternate target of intervention is the intentional
building of networks and connections to support reform in undergraduate STEM education (e.g.
Diaz Eaton et al. 2017). While the studies above focus on the efficacy of educator communities
of practice in affecting classroom practice, a different set of literature driven by Kezar and
colleagues strives to understand how these communities of practice can become communities of
transformation (Gehrke and Kezar 2015, Kezar et al. 2018, Akman et al. 2020). However,
researching programs that aim to act on a national reform level is challenging given the time
scale of such change. In this paper we use network analysis as a tool to explore the structure of
an emergent community of transformation. We ask:

● How does an in-person meeting affect collaboration network structure?
● Does participation in an in-person meeting affect engagement/persistence in the

network?
● How does the availability of virtual professional development impact network

collaboration structure and growth?
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● Is network structure influenced by boundary spanners and/or influencers?
For the purposes of this paper, we define boundary spanners as individuals which broker
knowledge between clusters of individuals and influencers as individuals who recruit a
disproportionately large number of professional collaborations during the time of the study.

Theoretical Background
The co-authors come from a variety of educational training backgrounds in STEM and

education including mathematics, education, biology, economics, and evaluation and include a
variety of racial and ethnic points of view as Latinx, White, and Asian. Author 1, who is Latinx,
draws their understanding of networks both from personal experience with support networks and
from research in mathematical ecology and sustainability. However, both perspectives intersect
in the writings of Rochelle Gutiérrez in “Living Mathematx: Towards a Vision for the Future”
(2017). Gutiérrez outlines three Indigenous epistemologies, In Lak’ech, reciprocity, and
Nepantla, which inform her framework for the teaching of mathematics, but which also deeply
resonate with our theoretical perspectives on developing communities of practice and
transformation. In Lak’ech describes a mutualistic community in which individuals can see the
commonalities between each other. Reciprocity describes how communities of practice help one
another achieve each other's goals through the sharing of experience and knowledge. Nepantla is
the work of knowledge brokers and boundary spanners. Boundary spanners weave the
community of transformation, moving across learning communities, negotiating tensions across
contexts and goals, and moving the network towards transformation (Gutiérrez 2017, Masuda et
al. 2018). We also draw from other frameworks which focus on the theory of change, or
functional aspects of designing such learning communities and broader networks, and how they
connect to change theory (Wenger 1998, LeMahieu et al. 2017, Gehrke and Kezar 2015). For
example, an often first step of bringing together a community around a common goal, may be
considered a way to foster In Lak’ech.

Social Network Analysis (SNA) is a mixed-methods approach that considers people (nodes)
and the connections between them (edges) as important to the research question at hand and is
often used in education research to examine learning effects due to peer interaction (Carolan
2013). In postsecondary STEM education, SNA research has focused on understanding
classroom interactions and scientific mentoring (Aikens et al. 2016, Grunspan et al. 2017) and
more recently has been used to examine adoption of evidence-based instructional practices in
communities of practice (Ma et al 2019). However, SNA research in organizational theory
examines community networks in the context of organizational change and the transformation of
a field. We draw from mathematical work rethinking the influencer as someone who is well
connected to someone which embodies reciprocity, making new active collaborations (Jun-Lan et
al 2019). Work by Masuda et al. (2018) highlights the importance of Nepantla, examining the
role of boundary spanning in innovation. Research by Frank et al. (2022) intervened in a network
to promote boundary spanning. Still, many STEM education projects are designing networks as
interventions, but lack techniques for evaluation of the network building aspects (Diaz Eaton et
al. 2017). SNA promises an avenue that helps us understand both community formation and
centers the connections and reciprocity important in a decolonized view of STEM education
transformation. In this paper, we use data from a National Science Foundation (NSF)-funded
research coordination network (RCN) in STEM education and use SNA techniques to explore
the emergent community structure and collaboration.
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Methods

Data Collection
The NSF RCN UBE program funds networks of individuals to advance undergraduate

biology education and “activities across disciplinary, organizational, geographic, and
international boundaries are encouraged” (NSF 2022, Diaz Eaton et al. 2016). The Sustainability
Strategies for Open Resources to promote and Equitable Undergraduate Biology Education
(SCORE-UBE) Summit was hosted by Bates College on October 17th through 19th, 2019. The
goal of SCORE was to create a network for participants with various open education (OE) and
STEM education affiliations to network, learn and address issues related to sustainability of open
education and centering values of social justice, equity, diversity, and inclusion within open
education. A total of 35 individuals representing more than 17 OE organizations participated in
the SCORE Summit. The growth of the SCORE Network continued to grow through additional
participation across new initiatives sponsored by additional funding grants and OE collaborations
and via virtual activities hosted on QUBES Hub (an online community of math and biology
educators who share education resources and methods to support instruction of undergraduate
students to use quantitative approaches to tackle real, complex, biological problems). Over the
22 months of the study, activities included two virtual peer mentoring networks on equity and
inclusion in open and STEM education and open educational practices, a virtual leadership
program in open STEM education, a collaborative grant program which resulted in a virtual
showcase of projects, and a working group on metadata justice for OER.

By June 2021, 72 individuals were current members of the SCORE group on QUBES Hub.
SCORE members represented at least 67 different organizations/institutions – including 65
academic/higher ed institutions, nonprofits focused on open education, funding
agencies/foundations, consulting firms, community of practice networks, professional societies,
museums, and research labs. Members were geographically located across 28 US states and
India. Disciplinary degrees of the steering committee included mathematics (2), biological
sciences (2), STEM education (1), and library science (1).

All participants for the SCORE-UBE Summit and members who joined the SCORE group on
QUBES Hub were asked to complete surveys using a multiple-criterion recognition question
approach (Singleton and Asher, 1977). Members indicated the nature of their relationship with
each participant in the network by selecting one of the following response options: (1) This is
me; (2) I am not familiar with this person; (3) I am familiar with this person’s work; (4) I have
met this person; or (4) I have professionally collaborated with this person. For the survey,
“professionally collaborated” was defined as actively engaging in cooperative work with another
person, and this level is the focus of the social network analysis to follow. Response rates across
survey administrations were 72.2% (26 of 36) of participants surveyed at pre, 30.5% (11 of 36) at
mid, and 29.5% (18 of 61) at post. Over the course of the survey administration names were
removed from the survey for those who did not participate in SCORE activities (i.e., registered
but no attendance) and names were added to include new members who joined the SCORE
QUBES Hub platform.

Network Analysis
Survey responses were de-identified by the evaluator in preparation for network analysis. For

the purposes of the analysis below, we defined an edge between participant 1 to participant 2 if
participant 1 reported that they had professionally collaborated with participant 2 (i.e. reported a
level 5 connection in the survey). Therefore, the graphs constructed are directed graphs. For each
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pairwise comparison, we limited the adjacency matrix describing this network graph to those
individuals who appeared in the both survey datasets, either as a respondent or as someone who
was named as a collaborator. Comparisons of networks are visualized in a way that shows the
transformation in collaboration during specific time intervals.

Connectance is calculated as the number of edges realized in the total network out of the
possible connections. An individual is considered as an influencer if they gained a meaningful
share of new edges during a particular time interval. An individual is considered a boundary
spanner if multiple new collaborations are with individuals who are not already collaborating
with each other.

Communities are detected using algorithm ‘cluster_edge_betweenness’ which calculates the
edge betweenness (number of shortest path through the edge), removes the edge with highest
value, and recalculates it, etc. Each color indicates a specific community in visualizations below.

All analyses and visualizations were conducted using the ‘igraph’ package in R (2022) and
all code can be found on GitHub (https://github.com/yzha0/RUME_SNA).

Results

Summit’s Effect on Collaborations
To gain a better understanding of how the Summit affected the network, we look at the

general transformation of the network in Figure 1 over a time internal in which the SCORE
Summit was held. Recall that connections in these graphs are those reported as “active
collaborations.” Connectance among individuals is somewhat low in pre-Summit survey (0.160),
which is to be expected as the goal of this program is to bring together individuals across
multiple contexts who may not have encountered each other before. From Figure 1, green links
represent the new edge growth after the Summit and dotted links represent the loss of active
collaboration in the network.

Figure 1. Change in collaboration network from prior to the SCORE Summit in October 2019 to after the
SCORE Summit in February 2020. No activities other than the Summit were planned during this time interval.

Connectance decreases over this Summit time period (to 0.112). A priori, given the “have
collaborated” language in the survey, we would not have expected any loss because historical
collaboration would have continued to be reported. Indeed, very little of this loss (4 edges) were
due to an individual reporting a lower collaborative status with another network member.
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Instead, the majority of collaborative loss seemed to be driven by the response rate differentials.
Individuals not attending the Summit (Figure 1, dark blue) suffered more collaborative loss than
those who attended (Figure 1, blue), though most of these individuals did not respond to the
February survey, which likely amplified this signal.

A few individuals were responsible for adding the majority of new connections, mitigating
collaborative loss. Individual 3 seemed to report many new active collaborations, though the
collaborators did not in all cases report them. It could be that Individual 3 was initiating
collaborative discussions, whereas others saw them as more exploratory in nature. A clear
influencer was Individual 27, who prior to the Summit, had weak connections to other SCORE
Network participants - no active collaborations, but in some cases a familiarity with the person’s
work, but had never met. As a PI of a math education project, this person was an “outsider” to
the “in-network” of a biology-heavy STEM education group, which brought new expertise and
experience from outside the usual connections.

Promoting Collaboration via Virtual Activities
Between February 2020 and June 2021, the SCORE Network received additional funding

from the Hewlett Foundation and launched multiple virtual activities. This included learning
communities, a collaborative webinar series on Inclusive STEM Education, a newsletter, and a
mini-grants program to foster collaborative projects within the network. While the network itself
increased in size, in Figure 2 we limit ourselves to examining the change among those who were
in the network in February 2020.

Figure 2. Change in collaboration network from just after the SCORE Summit in February 2020 to June 2021 at
the end of the NSF SCORE-UBE grant period. A number of virtual and community building activities were planned
during this time interval. Node size is scaled to the number of learning communities and mini-grants activities in

which the individual actively participated during this time.

Despite another significant response rate drop among initially surveyed members, which
should artificially drive connectance down, professional collaboration connectance in the
network among survey respondents increased from 0.235 to 0.265, an effect size increase of
12.5%. By cross referencing the collaborations list to activity participation list, we can attribute a
portion of this increase to a SCORE Network mini-grants program and joint authorship on an
article about the Summit themes. The mini-grants program supported intentional collaborations
across members to pursue and implement additional funding to support centering equity within
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STEM Open Education as well as collaborations of members across multiple open education
organizations to combine resources to support sustainability of their own initiatives.

At this point, SCORE Network members who were included in the initial survey, but
ultimately did not attend the Summit are now no longer connected - ultimately they did not
actively persist in this professional development network. However, we do see influencers and
boundary spanners acting in this network. Individual 37 is a new member introduced to the
network through virtual activities. They become an influencer in this network, gaining a
significant number of active collaborations. Individual 17, who attended the Summit, becomes
an influencer in the network and also a boundary spanner in the network, as their collaborations
span across individuals that do not already have connections between each other.

In Figure 2, individuals that took part in multiple SCORE activities are represented with a
larger node size. One can visually see that SCORE-sponsored activity participation does not
necessarily correlate with increased collaborations.

Building an Interdisciplinary Community
Prior to the Summit, among the invitees, there were distinct two clusters of active

collaboration in the network (see Figure 3, left), which together included approximately 43% of
all nodes. The green cluster was primarily related to life and environmental science education
and strongly tied to the QUBES community. The yellow cluster was related to the hosting
location, Bates College. All other individuals did not have a strong clustering to each other and
affiliation areas included Open Education, math, libraries, and non-profit foundations. By June
2021, the clustering has changed, so that approximately 82% of all nodes are now part of one
cluster (see Figure 3, right) with open education, mathematics, and biology clustered together.

Figure 3. (Left) Clustering of the collaboration network in 2019 before SCORE activities. Navy nodes are
included in the green-shaded cluster and yellow nodes are included in the yellow-shaded cluster. (Right) Clustering
of the collaboration network after Summit and Virtual activities in June 2021. Orange nodes are included in the

red-shaded cluster.

Discussion
The goals of the SCORE Summit were to help the community see commonalities, form

relationships, and spark conversations about new directions and collaboration. The Summit itself
did not provide a vehicle for active collaboration, yet individuals with new and boundary
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spanning interests provided an opportunity for new collaborations to launch. Attending the
in-person summit seemed to affect persistence in the network for those that were present in the
network early into the formation of SCORE. However, many more members joined during the
virtual activities period, indicating that virtual activities are important to continued network
growth. In addition, the vast majority of new collaborations were gained during virtual activities,
and many virtual activities were led or co-led by SUMMIT participants. These virtual programs
were designed to foster new and continued discussions on equity and inclusion and
collaborations and spur new collaborations among Network members. This supports prior work
pointing to the effectiveness of hybrid approaches (Brooks 2010, Hayward and Laursen, 2018).
A network participant reflects on influence of this network in mathematics education reform:

“The [redacted mathematics society committee] has expressed an interest making
considerations of diversity, equity, and inclusion more intentional and systematic in the
way we think about the mathematics curriculum…Thanks in good part to the SCORE
network and our summer study group, I feel more equipped to contribute to these
discussions than I did a year or two ago.”

SNA allows us to quantify the increased collaboration and visualize the way that the
structure of collaborations in the network has changed after a combination of in-person and
virtual programming. We see a more unified community, possible indications of In Lak’ech -
seeing commonalities. We can also see how particular boundary spanners and influencers aid in
Nepantla, modifying the weave of the network to achieve this change.

Joining this structural data with qualitative surveys of learning due to the activities would
help us better evaluate reciprocity - whether and how these structural bridges might reflect
collaborative learning across the network. This would build on and connect to other work in
STEM education studying communities of practice, such as Hayward and Laursen’s paper (2018)
which used SNA alongside qualitative techniques to understand the importance of receiving peer
support and encouragement in implementing new ideas.

The determination of actors and relationships included in the pre-survey study were bounded
by those who registered to attend the SCORE Summit, and while subsequent survey
administrations sought to capture the relational data of new members to the network at these
different time periods, this multiple-criterion recognition question approach (Singleton and
Asher, 1977) did not capture changes in relationships for these additional members over time
since new members were not included in previous survey administrations. Another limitation to
examining network growth was the low response rates at mid- and final-survey administration
resulting in an underrepresentation of network growth. While many factors are found to
contribute to low response rates, it is uncertain how the increased use of survey-based research
activities during the COVID-19 pandemic might have resulted in survey fatigue and decreased
response rates (de Koning et al. 2021, Grandstaff and Webber 2021). Future network analysis
which examines growth for communities of practice which evolve across time may consider
different wording for multiple recognition questions or utilize an alternative approach such as the
multiple name generator approach (Kogovsek et al., 2002). Despite these limitations with data
collection, SNA provided valuable insights into structural changes in the network which may
help support SCORE in a move towards a community of transformation.
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APOS Levels, Stages, and Coordinated Topics as Transitional Points
Case of Range of a Linear Transformation

Hamide Dogan Candelario Castaneda
UTEP UTEP

Gabriela A. Acuna Zachary R. Rosalez
UTEP UTEP

This paper discusses findings from an ongoing study investigating mental mechanisms involved
in the conceptualization of linear transformations from the perspective of APOS theory. Data
reported in this paper came from 44-first year linear algebra students’ responses on a task
regarding the range of a linear transformation. Our analysis revealed differences in APOS
Levels, Stages, and Coordinated topics. Moreover, our findings pointed to connections between
Levels/Stages of the range concept and mental mechanisms of representations of matrix
multiplications. That is, our findings revealed that the absence of these representations from ones
conceptualization process may result in irreversible misconceptions. More importantly, we
identified more transitions occurring among Levels/Stages when linear combination expressions
were considered as representations of matrix multiplications.

Keywords: Linear Transformations, APOS theory, Mental Mechanisms, and Transitional Points.

In linear algebra education, many topics, such as vector space and eigen-theory, have been
studied extensively. To this point, linear transformations received very little attention. In the
Literature, we found three studies that investigated connections between transformations and
function ideas (Andrews-Larson, et al. 2017; Zandieh et al. 2017; Turgut, 2019), and only one by
Oktac, et al. (2021) that investigated mental mechanisms of the null space of a linear
transformation from the perspective of APOS theory. Our ongoing work is too investigating
various features of linear transformations from the perspective of APOS theory. In this paper, we
discuss APOS Stages, Levels and Coordinated topics our participants displayed in their
responses to a question regarding the range concept. Our main goal was to examine potential
transitional points in the learning of the range concept.

Literature and Theoretical Perspective

The Literature on Linear Algebra Education
Two recent publications, the ICME-13 Monographs and Journal of ZDM 2019 special issue

on linear algebra, compiled most up-to-date research on linear algebra education. Between the
two, some studies investigated general topics such as instructional approaches (Trigueros, 2018)
and visualization (Harel, 2019) and others looked at specific topics such as vector spaces
(Caglayan, 2019), eigen-theory (Karakok, 2019), and linear independence (Dogan, et al., 2022;
Dogan, 2019). Many of them included, in their analysis, theoretical perspectives; for example
APOS (Oktac, 2021), Tall’s three worlds of mathematical thinking (Stewart et al, 2019), and
Harel’s DNR concepts (Harel, 2018).

Up to this point, we found only four studies concerning linear transformations. Three of
which are by Andrews-Larson, et. al. (2017), Zandieh, et. al. (2017), and Turgut (2019). The
forth is by Oktac, et. al. (2021). The first three studied the conceptualization of matrices as linear
transformations. These authors discussed how the knowledge of the function concept had
implications for one’s identification of linear transformations. The fourth study by Oktac et. al.
(2021), borrowing from APOS theory, discussed APOS Levels as displayed in their student
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responses to a question regarding the null space of a linear transformation, specifically, focusing
on the pre-image notion. Their findings pointed to the role of reversal of linear transformations in
the conceptualization of pre-image and null space ideas. Our work reported here, also borrowing
from APOS, studied our participant responses to a question concerning the range of a linear
transformation.

Theoretical Perspective-APOS
APOS theory describes features of mental mechanisms applied in the formation of the

knowledge of advanced mathematical topics. The theory describes the mental mechanisms
through Stages, namely, Action (A), Process (P), Object (O), and Schema (S). In our analysis, we
considered APOS Stages as mental mechanisms our participants were working with at the time
of the data collection. The theory considers the Stages (A, P, O, S), interchangeably, to stand for
conceptions, structures, mechanisms, and stages (Arnon et. al., 2014).

According to the theory, learners are functioning at an Action Stage if they are acting on
entities via external stimuli. For example, one may observe a learner functioning at an Action
Stage if the learner feels the need to solve the system Ax=0 before determining the linear
independence of a set of vectors. Here, solving the system Ax=0 provides an external stimulus
for the learner.

APOS considers a learner to be working at a Process Stage if the learner determines the
linear independence through a mental recognition (an internal stimulus) of certain features of
vectors such as the ones with the same or different component values. Here, the mental
recognition of the features provides an internal stimulus for the learner.

According to Oktac, et. al. (2021), “When Processes are encapsulated they become Objects
to which Actions or Processes related to other concepts can be applied.” (p. 3). Thus, a learner
identifying linear independence via the comparison of number of vectors and the dimension of a
space is considered to have encapsulated Processes. That is, the learner is considered to be acting
at an Object Stage, having already objectified vectors as objects of a space (set).

According to APOS, there are additional conceptual entities that can facilitate the
development of and transitions between Stages. The ones that are relevant to our work are named
as Coordination, Reversal and Levels. Coordination is described as involving mental
mechanisms where two or more mechanisms united to give rise to a new Stage. Reversal is
described as mental processes being reverted. Levels are defined as partial mental mechanisms
whose features fall in-between Stages. An example of a Level, between Process and Object
Stages, is when a learner considers the linear independence concept in the context of a set of
three vectors with only one having a zero component value. Here, the learner is clearly
functioning with an internal stimulus, mentally recognizing a pattern among component values
of vectors. That is, the learner is applying a mental mechanism acting at a Level between Process
and Object Stages.

APOS, furthermore, considers Stages as invariant constructs and asserts the necessity of
each Stage for the development of successive Stages (Arnon et. al. 2014).That is, Stages are
considered to be sequential. Levels, on the other hand, are considered non-invariant and may
vary. The theory further elaborates that “a subject may be able to move to the next Level or Stage
rapidly so that a Level is skipped, done very quickly, or is not observable in the already acquired
higher Level or Stage” (Arnon et. al. 2014, p. 139).

Methodology
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Our data came from 44 first-year matrix algebra students’ responses to a question on the
nullspace and range of a linear transformation (see fig.1) at a US institution from spring 2020
semester. Student came from a matrix algebra course met twice a week at noon via Blackboard,
an online course delivery platform, for an hour and 20 minutes. The question was administered
before the end of a class meeting through a problem solving session lasting about 20 minutes.
Groups of three to four were formed and sent to designated online rooms for groups to discuss
the question among themselves. Instructor was absent from the rooms and discussions. Before
leaving the main class meeting room to their designated rooms, students were instructed to,
individually, submit online, by 11:59 pm the same day, their own responses with explanations in
detail. The particular class meeting ended by groups finishing their discussions in the designated
rooms. The student population comprised of engineering, science, and mathematics majors.
Linear algebra was the first theory-oriented course with high abstract level that the students took.
The students came with very little or no maturity for the high abstraction required by this course.

We analyzed student responses to the question from the perspective of APOS theory.
Specifically, we, first, categorized the responses based on student descriptions of the range
concept (or its vectors) of the transformation given in Figure 1. Next, we identified APOS Stages
and Levels displayed in responses of each category. In this paper, we discuss only the findings
that came from part ii of the question seen in Figure 1.

Consider T:R2->R2 with . State at least three vectors that are:𝑇 𝑎 𝑏 [ ]( ) = 1 1 1 1 [ ] 𝑎 𝑏 [ ]
i) In Null space (T) ii) In Range (T). Explain your reasoning in detail.

Figure 1. Mathematical task considered during group discussions and individual responses submitted online.

Results
We identified five distinct categories. Table 1 summarizes categories, Levels, Stages, and

Coordinated topics. Overall, categories 1 and 2 had the highest tally of responses (12). The
highest variability among Levels/Stages came in category 3 with three different mental
mechanisms and the least variability came in category 5 with one Stage. Each of the categories
1-3 considered a representation of the matrix multiplication given in Figure 1. By means of these
representations, some responses in these categories applied external stimuli in determining range
vectors. One external stimulus was the evaluation of the matrix multiplication, A , mainly in𝑎 𝑏 [ ]
category 1; the general form, , in category 2; and the linear combination form,𝑎 + 𝑏 𝑎 + 𝑏 [ ]

, in category 3. Each of these evaluations were done for specific values of a and𝑎 1 1 [ ] + 𝑏 1 1 [ ]
b. The values of a and b took varying roles (for the participants) from (a, b) pairs being vectors
of the domain of the transformation to a, b values being scalars for the linear combination form,

. 𝑎 1 1 [ ] + 𝑏 1 1 [ ]
Mental mechanisms applying internal stimuli were also present, in these three categories, in

an increasing trend from category 1 to 3. That is, category 1 (discussed in detail below) included
about 8% of responses (1 out of 12 responses in the category) with the application of internal
stimuli. This presented itself when students considered a general structure, out of the matrix
multiplication given in Figure 1, for range vectors making statements similar to: “the
multiplication of the matrix and a, b values gives top and bottom the same.” Category 2 included
about 58% of responses (7 out of 12 responses in the category) where the expression

was interpreted as range vectors having the same component values without any𝑎 + 𝑏 𝑎 + 𝑏 [ ]
external calculations. Category 3 included about 70% of responses (7 of 10 responses in the
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category) mentally connecting the linear combination form, , to a spanning set𝑎 1 1 [ ] + 𝑏 1 1 [ ]
or a basis set of the range, and considering range vectors as the object of these sets.

In comparison to those in categories 1-3, category 4 (total 6) displayed drastically different
mental mechanisms. Responses in this category determined range vectors based upon the
structure of vectors of the null space. They did this, for the most part, acting on internal stimuli.
This category is discussed in detail later in the paper.

Responses (total 4) in category 5 were either incomplete or irrelevant to the task on hand.
One response, for instance, gave 2x2 matrices as range vectors. Three of them calculated
externally the reduce row echelon form (Johnson et. al. 2002) of amalgam of the matrix in Figure
1 with specific values of a and b. They, however, fell short in, correctly, identifying range vectors
by using the rref form. Two of these left their work at the rref form without any further
explanations. The third one made a statement along the lines of: “no range since the rref implies
no solution.” In class, the rref process was introduced to identify vectors of a basis/a spanning set
for the range of linear transformations. The three students appeared to have recognized the rref
process having something to do with linear transformations but fell short in displaying any
knowledge of connections between the rref forms and bases/spanning sets.

Let’s us now look at categories 1 and 4 with little more details in order to give readers
further insights into the nature of responses and mental mechanisms.

Table 1. Category, Level, Stage, Coordinated Topic, and Tally.

Range Tally #/Level/Stage Coordinated Topics

1.MM* 12 2/A-P* MM/Pi*/NS*

2. CV* 12 2/A-P MM/Pi.

3. LC* 10 3/A-O* LC/B*/S*

4. NS* 6 2/P-O NS

5. IR* 4 1/A* RREF/SS*

*A-Action Stage; P-Process Stage; O-Object Stage; *on prior-knowledge (not on Range); MM-Matrix
Multiplication; Pi-Pre-image; NS-Null Space; LC-Linear Combination; S-Spanning set; B-Basis; SS-Solution set;
CV-Component values; IR-irrelevant.

Category 1: Range as the Result of Matrix Multiplications
There are 12 responses in this category. In order to determine range vectors, majority of

participants evaluated matrix multiplications for specific values of (a, b) pairs, which represented
(for the participants) domain vectors of the transformation. Moreover, some considered any
values for a and b while others considered values with the condition, a=b. The response in
Figure 2 exemplifies the latter behavior. This response is carrying out the multiplication of the
matrix in fig 1 with a, b values where a=b i.e . Figure 3 gives a case for the former2 2 [ ]
behavior. This response is using different values for the pair (a, b). For example, the participant
is multiplying the pair . with the matrix in fig 1 and obtaining a range vector .10 7 [ ] 17 17 [ ]
Mental mechanisms displayed in both responses in Figures 2 and 3 needed external stimuli in
determining range vectors. Thus, the mental mechanisms were acting at Action Stages.
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Figure 2. Domain vectors with a=b -externally calculating matrix multiplication.

Figure 3. Domain vectors with any a, b values -externally calculating matrix multiplication.

In addition to the two behaviors described above, there were also a few responses revealing
mental mechanisms acting at Process Stages. That is, they revealed participants considering
matrix multiplication processes internally describing what would be obtained if a multiplication
was carried out without any external computations. Figure 4 portrays one such tendency. This
participant is considering generic pairs (a, b) and asserting that “all these vectors are the answer
of ” with no external calculations. The mental mechanism revealed in𝑇 𝑎 𝑏 [ ]( ) = 1 1 1 1 [ ] 𝑎 𝑏 [ ]
this response is clearly the one acting at a Level closer to a Process Stage.

Figure 4. Consideration of matrix multiplication processes internally (mentally).

Category 4: Range Compared to Null Space
Responses in category 4 differed noticeably from those of categories 1-3. As far as we know,

this category reveals mental mechanisms that have not yet been reported in the Literature. There
are 6 responses in the category. This category determined range vectors based upon the structure
of vectors of the null space of the transformation in Figure 1. We identified two distinct mental
mechanisms in this category. One considered range vectors as those (from the domain of the
transformation) with characteristics dissimilar to the ones in the null space of the transformation.
Response in Figure 5 is displaying this tendency. This participant is considering vectors with
same component values as vectors of the range. The participant’s comparison of range vectors to
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vectors of the null space is clear in the explanation, “product with will not give a1 1 1 1 [ ] 0 0 [ ]
matrix.” Mental mechanisms displayed in similar responses are classified as acting at Levels
closer to Process stages.

There were also responses considering the range and null spaces as complementary sets
making up the domain of the transformation. Figure 6 is revealing this behaviour clearly. This
participant is declaring that any vector that is not in the form (identified as the structure𝑥 − 𝑥 [ ]
of vectors of the null space) as the vectors of the range. In light of the following statement “any
vector of the form [x;-x] exists within the null space of T,” (Emphasis is on the term “exists”)
given for part i of the question, one can identify mental mechanisms, displayed in this response,
as the ones acting at Levels closer to Object Stages. That is, in this response, vectors are
considered as objects of the null space, subsequently objects of the range set.

Figure 5. Range vectors in comparison to the structure of vectors of the nullspace.

3i.) Three vectors in the Nullspace of T are [1;-1], [2;-2], and [-3;3]. In fact, any vector of
the form [x;-x] exists within the nullspace of T.
3ii.) Three vectors in the range of T are any vectors NOT of the form [x;-x], which creates
an infinite list. Some examples are [1;-4], [5;2], and [x; y] such that y is not equal to x.

Figure 6. Vectors other than those in the nulspace (Response was typed by the student).

Unfortunately, even though mental mechanisms applied in the responses of this category
were acting at higher Levels/Stages, inaccurate knowledge structures were displayed. This
seemed to have been the result of, somehow, participants’ attention being directed to the null
space concept, escaping any ideas from categories 1-3 (matrix multiplication representations).

Discussion and Conclusion
In this paper, we discussed findings from an ongoing study investigating mental mechanisms

involved in the conceptualization of linear transformations from the perspective of APOS theory,
specifically, findings from responses of 44-first year linear algebra students on a task concerning
the range of the linear transformation given Figure 1. Our main goal was to identify transitional
points in the learning of range ideas.

Overall, our findings show that responses employing various representations of the matrix
multiplication, A , in Figure 1, presented evolving Levels of mental mechanisms. That is,𝑎 𝑏 [ ]
from category 1 to category 3, we documented mental mechanisms acting at evolving Levels
from Action Stages to Object stages.
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The highest variability among Levels occurred in category 3 when participants considered
linear combination forms, , in place of matrix multiplications. In this category,𝑎 1 1 [ ] + 𝑏 1 1 [ ]
we documented mental mechanisms acting at all three APOS Stages, Action, Process and Object.
Object Stage mental constructs were absent from categories 1 and 2. Indeed, category 3 and
category 4 were the only categories whose responses revealed mental mechanisms considering
range vectors as objects of sets (thus, acting at Object Stages). This notion was conducted
accurately in category 3, but not so in category 4. Even though, in category 4, mental
mechanisms were considering vectors as objects of a range set, acting at Levels closer to Object
Stages, they were faulty mechanisms incorrectly recognizing range vectors as those of the
domain vectors not in the null space (or not similar to the structure of vectors of the null space).
In fact, participants, in this category, appeared to have skipped entirely the ideas included in
categories 1-3, specifically, the consideration of representations of matrix multiplications.

We also found that approaches employing the rref process (a very common approach in many
matrix algebra textbooks in the US) may not be very efficient in helping learners form an
accurate understanding of the range concept. In fact, responses (total 6) in category 5 are
testimonials to the inefficiency of these approaches.

In summary, our findings point to mental mechanisms reflected in categories 1-3 as being the
more effective ones toward the accurate formation and advancement of the knowledge of range
ideas. Our findings, furthermore, point to desired (in the context of accurate knowledge
structures displayed in participant responses) transitions between APOS Stages to be occurring
with the consideration of representations of matrix multiplications, especially, in the case of
linear combination representations of matrix multiplications. Even though the notion of evolving
representations is not specifically addressed in this paper (a topic of future studies), we
conjecture that changing characteristics of the representation of matrix multiplications may be a
sign of evolving mental mechanisms acting on the representations.
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“Looking Outside of my Bubble”: Whiteness-at-Work in Mathematics Faculty Sensemaking
about Serving Latin* Students
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Professional development (PD) is often recommended to equip faculty to serve racially
minoritized students through instruction. However, limited work has examined equity-oriented
PD for mathematics faculty, who often hold views of instruction as race-neutral. This contributed
report explores the influence of a two-year PD for faculty in a mathematics department engaged
in equity-oriented reform at a Hispanic-Serving Institution. We present two cases of white faculty
members who demonstrated a limited ability to interrogate their white racial identities in relation
to their instructional impact, despite their engagement in a sustained PD designed to promote
racial equity. Implications are provided for equity-oriented PD for mathematics faculty.

Keywords: whiteness, faculty, pedagogical reasoning, Hispanic-Serving Institutions

Study Purpose & Background
Faculty sensemaking about race directly influences instructional practices in postsecondary

environments. For example, white faculty with high levels of racial consciousness often disrupt
inequitable educational structures to expand educational opportunities for racially minoritized
students, while white faculty with low levels of racial consciousness may incorporate
instructional practices that uphold white supremacy (Haynes, 2021). Faculty’s critical reflection
about their own identity is a component of this sensemaking that is vital to enact anti-racist
pedagogy (Haynes & Bazner, 2019; Kishimoto, 2018). For example, white faculty who have
interrogated their own racial identity demonstrated less concern for protecting white interests and
assumed more risks to teach in racially equitable ways (Haynes, 2017). Similarly, faculty of
color often draw on their experiences of race and racism to inform inclusive and humanizing
teaching practices (e.g., Williams, 2016) despite the risks to their legitimacy that they assume
when adopting unconventional teaching practices as minoritized faculty (e.g., Sulé, 2011).

Within STEM fields, ideologies related to social neutrality impede recognition of inequities
(Gutiérrez, 2013; Leyva et al., 2022; McNeill, Leyva, White, & Mitchell, 2022). Colorblindness
is a dominant ideology among STEM faculty as a group (Russo-Tait, 2021), with some
documented race-consciousness especially among STEM faculty of color (Bensimon et al., 2019;
Ching, 2022). For example, Haynes and Patton (2017) report on a white computer science
instructor whose course content had racial relevance (e.g., a computer game using a migrant farm
worker avatar) but who did not address race due to his perception of computer science as
race-neutral. Mathematics reflects these trends with many instructors holding colorblind views of
mathematics instruction, with exceptions found largely among faculty of color (McNeill &
Jefferson, 2022; McNeill, Leyva, & Marshall, 2022).

Studies call for faculty professional development (PD) to improve instructional capacity to
serve racially minoritized students and alleviate pressures on faculty of color to carry out
institutional equity aims (e.g., Leyva et al., 2021; Casado Pérez, 2019). PD for mathematics
instructors is often integrated through collaboration, apprenticeship, and guidance from course
coordinators (Ellis, 2015; Rämö et al., 2019). However, such PD designs have not focused on
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equity. In a study of community college mathematics faculty in an isolated equity-oriented PD
workshop, Ching (2018) found that faculty demonstrated conceptual change initially, but failed
to sustain equitable instructional viewpoints over time. Such findings indicate a need for research
that explores the efficacy of integrated and long-term mathematics faculty PD in promoting
critical self-reflection about faculty identity and instructional practices.

To address this need, our report presents an analysis of racial sensemaking and identity
development among two white mathematics faculty at a Hispanic-Serving Institution (HSI). We
draw from a larger study of the department’s reform of instruction and organizational practices to
better serve Latin*1 students, which involved faculty participation in a two-year, integrated PD.
Our research questions explore how the PD influenced faculty’s critical self-reflection: (1) How
do faculty understand their white identities in relation to serving Latin* students through
mathematics instruction?; and (2) In what ways does this change over the course of the PD? We
raise implications for equity-oriented PD for mathematics faculty based on our findings.

Theoretical Perspectives
We engage two theories to guide our analysis of faculty sensemaking. To examine the ways

that participants understand their identity in relation to serving Latin* students, we adopt
emerging mathematical and racial identity constructions (EMRICs; Oppland-Cordell, 2014).
Originally used to explore Latin* mathematics students’ identity development, EMRICs
characterize the multifaceted ways in which participants make meaning of their own racialized
identities in mathematics spaces, individually, socially, and politically. For example, a Latin*
student changing peer groups to enable math collaboration in Spanish can signify a shift in their
EMRIC (Oppland-Cordell, 2014). Addressing inequity in mathematics requires white faculty to
reckon with the tensions inherent in fostering Latin* student success within a historically white
discipline (Hottinger, 2016) as white authority figures. Our uptake of EMRICs  thus, facilitates
exploration of faculty’s reconciliation of their mathematics and racial identities.

Previous work has depicted mathematics faculty shifting between colorblind and
race-conscious views of instruction (McNeill, Leyva, & Marshall, 2022). This reflects broader
societal patterns in which whiteness demonstrates elasticity to maintain dominance in a
continuously changing U.S. racial context (e.g. Bonilla-Silva, 2006). Whiteness flexibly adapts
to embody contradictions and paradoxes that maintain racial inequity while seeming race-neutral
or progressive at face value. To examine these contradictions in mathematics faculty
sensemaking, we engage Yoon’s (2012) construct of whiteness-at-work that explores how
paradoxes are enacted to reinscribe whiteness as neutral and invisible while reinforcing the
marginalization of people of color. For example, white teachers expressing a desire to call out
colleagues on racially problematic viewpoints while also avoiding workplace conflict
exemplifies whiteness-at-work (Yoon, 2012).

Methods

Study Context and Participants
Our present analysis comes from a larger study exploring the effectiveness of an ongoing,

equity-oriented PD in the mathematics department at Sonoma State University (SSU), conducted
by two SSU faculty involved in the PD, three SSU students, and educational researchers at

1 The asterisk in Latin* creates space for fluidity in gender identities among Latin American people. Latin*
responds to (mis)use of Latinx, a term reserved for Latin* gender-nonconforming peoples (Salinas & Lozano, 2019).
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Vanderbilt University. SSU is a medium-sized, public HSI in the western United States. In 2021,
undergraduate students at SSU were approximately 45% white, 35% Latin*, 7% two or more
races, 5% Asian, 2% Black or African American, and 6% some other race. The two-year PD
aims to develop culturally responsive instruction and student support practices to better serve
Latin* students. PD began in summer 2021 and data collection started in fall 2021. This report
presents an analysis of data collected over the first year of PD.

The SSU mathematics department holds a widespread commitment to advance equity, as
evidenced by nearly complete mathematics faculty participation in the PD, and by approximately
75% of the PD faculty participating in the study. Active and inquiry-based learning is the norm
in SSU mathematics instruction, and faculty regularly voice teaching philosophies related to
normalizing mistakes, encouraging multiple approaches, building students’ confidence with
mathematics, and fostering positive instructional and peer relationships.

Data Collection
Educational researchers at Vanderbilt (1 faculty, 2 Ph.D. students, 1 master’s student, and 1

undergraduate) assumed all data collection responsibilities to maintain participant privacy. Data
from faculty participants consisted of journaling and interviews. Faculty journaled about events
specific to instruction and support that they perceived as marginalizing or supportive for Latin*
students, including a description of the event and a reflection on their interpretation. Faculty
journaled throughout the 2021-2022 academic year without a required number of entries.

Near the end of each semester, participants completed a 90-minute, semi-structured
individual interview on Zoom. Interviews were audiotaped and transcribed. The first interview
explored how participants characterized serving Latin* students and solicited participants’
interpretations of two instructional events that reflected emergent themes from journaling. The
second interview explored participants’ experiences of the PD, and asked participants how
thinking about Latin* students as a group or as individuals supported their aims related to
serving Latin* students. Both interviews prompted faculty to reflect on how their own identities
shaped their perspectives, practices, and instructional efficacy in serving Latin* students.

Data Analysis & Positionality
Vanderbilt research team members de-identified data prior to sharing with SSU research team

members for analysis. Information that explicitly or implicitly revealed participants’ identities
(e.g., names, professional histories) was redacted. For the present research report, we completed
an analysis of data specific to two white participants, Tina and David, who regularly invoked
ideologies tied to whiteness (e.g. universalism2). Our focus on white faculty responds to the
reality that even at HSIs, most Latin* mathematics students will be taught by white faculty. Thus,
understanding how white faculty develop capacity to serve Latin* students is essential. Our
findings begin with profiles of the focal participants to provide context for interpreting their
narratives. We omit details about their professional roles to maintain confidentiality.

A research team member from each university coded David’s data. Two Vanderbilt team
members coded Tina’s data since de-identification was still in progress. Team members
independently and inductively coded data to flag instances when participants grappled with their
own identity in relation to professional practices. One coder from each pair synthesized codes for
each participant’s data to identify whiteness-at-work in their perspectives and described
instructional practices. Themes were exchanged and discussed during weekly team meetings.

2 In relation to whiteness, universalism describes the framing of white experiences as universal (Bonilla-Silva, 2006)
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Our research team approached the present analysis with critical reflexivity. The team consists
of a nonbinary Latinx person, a Latina cisgender woman, two Latino cisgender men, a Black
cisgender woman, a Black and white mixed cisgender woman, a white transmasculine person,
two white cisgender women, and a white cisgender man. We brought awareness of how our
varying forms of privilege and oppression influence our inquiry on whiteness in mathematics.
The team resisted deficit engagement with participants’ reflections and constantly recognized
how mathematics instruction is situated in broader systems of social power. Interviewers and
coders bracketed their lived experiences when engaging with participants’ reflections to avoid
analytically distorting their perspectives, all while approaching the study with a lens of criticality
to interrogate whiteness in mathematical contexts across HSIs.

Findings
David and Tina hold a combined 40 years of experience as mathematics faculty. They each

entered interviews with questions prepared and took notes throughout, showing a desire to learn
from the interviews. Of all faculty, David submitted the most journaled events and reported that
he “spent a couple hours on every one of those” each week in addition to his PD participation.
Tina discussed PD topics at home when struggling to integrate her learning about racism into her
professional practices. Both shared a deep concern for students’ comfort and wellbeing. As
examples, David shared a time in which his offer of instructional support to a Latina student
resulted in the student leaving the class crying for reasons he didn’t understand. David sent
multiple emails to the student afterwards in an effort to re-establish rapport and after the semester
passed was “still losing sleep over that student.” Tina shared an experience in which a Latino
student sought her support after experiencing sexual violence, which she characterized as “one of
the successes of [her] career… that a student in crisis felt comfortable coming to [her].” This
context importantly illustrates that their ideological engagement in whiteness cannot be
attributed to lack of effort or care.

In what follows we illustrate how David’s and Tina’s EMRICs depict whiteness-at-work,
maintaining the invisibility of whiteness to impeding their focus on Latin* students, addressing
our first research question about faculty’s perception of their racial identities. Tina cited gender
as an analog to support her (in)attention to race, using experiences of gender marginalization to
claim insider insight into Latin* marginalization and alternately appealing to math as
gender-neutral to justify her inattention to students’ race. David demonstrates awareness of
systemic racism, including inequity in education, but uses race-neutral frames to reason about
teaching and learning in mathematics. In both cases, the construction of mathematics as socially
neutral supports colorblindness in instruction. In each case, we discuss how their perspective
changed over the first year of the PD, addressing our second research question.

Tina
Tina described “foster[ing] females who are going through the program” (Interview 1) as

central to her professional role. This shaped her orientation to the PD, viewing her developing
support of Latin* students as analogous to her support of women: “I like this idea of broadening
my horizons of how to not just help females, but all students of all ethnicities” (Interview 1). Her
characterization of helping “students of all ethnicities,” however, illustrates incongruities in her
analogy of gender to race; when discussing women, she explicitly names this group, while her
reference to students of all ethnicities illustrates a discursive avoidance of Latin* identity. This
incongruity signals whiteness-at-work; although Tina sees the PD as an opportunity to develop
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advocacy for Latin* students as she had for women, she does not center Latin* students when
discussing issues of race as she does for females when discussing gender, as we further elaborate.

When asked how she saw herself serving Latin* students, Tina shared an experience of
coordinating sections of calculus with all-male colleagues as an example of how she leveraged
her own experiences of marginalization in mathematics to relate to Latin* underrepresentation.

I was… the only woman in the room… I remember one of the males looking at me and
saying – We're putting together a calculus final, you got to understand that – He looks at
me and goes, “As a woman, what questions do you think should be on the calculus
final?” And I thought, “As a woman?”... It wasn't an issue that should depend on gender
at all… I think I may be able to understand a little better than maybe some people about
how odd it is to be sitting in a room and to be, say, the only woman, or the only Hispanic
student, or the only African American student, or the only…Muslim student… I taught a
class once, I had a nun… She's obviously going to feel singled out. (Interview 1)

Although Tina cites her gendered experience as a way to relate to Latin* students, she doesn’t
discuss how Latin* students could experience marginalization in unique ways. Instead, Tina
de-centers Latin* servingness by universalizing the experience of being singled out. Her framing
of final exam questions as gender-neutral demonstrates how the construction of mathematics as
socially neutral supports her generalizations about underrepresentation in mathematics.

Tina saw her gender influencing the effect of her professional practices on students, but did
not identify her racial identity as playing a role. For example, when asked if there were any racial
trends among students who seek her support, Tina described establishing mentoring roles
specifically with female students, but characterized her student support as race-neutral.

Math… you picture the male professor. And I think…females really associate with me
just because they're seeing a female doing math… I really don't really have a perspective
on ethnicity. I'm not sitting in my office keeping track of ethnicity of students, and
anybody who comes to my office is always welcome in my office. (Interview 1)

Despite Tina’s previous assertions that her experiences of marginalization sensitized her to
Latin* underrepresentation in mathematics, she does not voice an understanding that Latin*
students, like female students, may experience mentorship differently from faculty of different
racial identities. Tina’s statement that anyone is welcome in her office suggests that her white
racial identity would play a role in student support only if she were to discriminate against Latin*
students. She further elaborated this view when asked if she perceived her white racial identity as
playing a role in Latin* students’ comfort with class participation.

The area we lived in [growing up] there was a lot of Hispanic students when I went to
high school…  maybe I'm a little different because I grew up constantly around them,
constantly seeing them doing as well in their classes as I did, so I never had any
stereotypes, any ideas of, they can't do this or they can't do that… My identity, maybe I
just was more colorblind because that was just who I was with all the time. (Interview 2)

Tina discusses colorblindness as a desirable personality trait that negates the role of her racial
identity in her teaching practices, rather than as one that reinforces systemic racism. Explaining
her racial identity as formed from adolescent experiences suggests a stagnant EMRIC.

Tina’s portrayal of her identity remained largely unchanged after a year of PD. However, at
the end of the second interview she reoriented to focus on Latin* students. She shared, “I've
spent a lot of time understanding what issues women deal with, I think it's important that I try to
understand better what Latin students…specifically face that may or may not be the same
challenges that other students face” (Interview 2). This pivot allowed her to mine her teaching
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experiences for insights on serving Latin* students. She shared, “From what I've seen with the
Latin culture, I think it's harder for them to ask for help” (Interview 2). Such remarks still evade
recognition of how her white identity influences serving Latin* students; she didn’t consider how
Latin* students’ may seek help differently from white faculty or Latin* faculty, for example.
However, this shift represents a disruption of her colorblindness that centers Latin* students.

David
David described himself as newly exploring issues of equity through the PD: “I've recently

learned the difference between equality and equity… over summer during my reading on
anti-racism, preparing for my workshop... My struggle is looking outside of my bubble to make
sure that I can embrace those ideas” (Interview 1). As part of this struggle, David had trouble
characterizing how race played into students’ experiences of mathematics instruction.

Interviewer: How do you see race or ethnicity playing a role in… students' concern about
[speaking in class]?

David: Just that, if a student's not comfortable. And so how would race or ethnicity play a
part of that? It's just, it would be common that they're not as comfortable as other students
possibly. And yeah, probably just a comfort level and maybe they're shy for a number of
reasons, but that's what I would think it is.

David’s response suggests race enters math instruction only to mediate students’ comfort. His
understanding of how inequity arises in everyday mathematics instruction lacked specificity. For
example, when asked what his goals were with respect to understanding and relating to Latin*
students, David responded, “Let's zoom out, big picture, there's inequities in education. And now,
understanding that's important, but when it comes down to in the classroom, helping students, I
can't think of doing something specific directed towards Latinx” (Interview 2). Such responses
demonstrate that David’s understanding of racial inequality was decontextualized from his
professional practice, reflecting ideologies of mathematics as a race-neutral discipline.

David held an oversimplified understanding of whiteness as structural advantage that left him
unclear about how to acknowledge his identity in classroom teaching, “I've yet to stand up… in
front of the class and tell them that I'm a white male and that I apologize… I haven't figured out
how to do that” (Interview 1). Similarly to his difficulty grasping the role of race in instructional
contexts, David struggled to articulate specifics related to his white identity. When asked how his
identity influenced his teaching practice, he initially characterized his identity as tasking him
with the responsibility to help those with less privilege “I have to recognize that I'm white and
that I do have white privilege, and I, just to be able to help other people and recognize that it's a
real thing” (Interview 1). He further characterized his goals related to serving Latin* students as
“trying to be educated on the subject and sympathetic” (Interview 2). Frequently, David
referenced  students’ “disadvantaged backgrounds” (Interview 1) as motivating his desire to
help. These motivators suggest that David may be subject to the common pitfall of using pity to
guide his attempts to serve Latin* students (Dowd & Bensimon, 2015). This orientation allowed
for an EMRIC as a helper, fostering Latin* students’ assimilation for success in white
disciplinary structures. Such orientations, combined with his limited ability to recognize inequity
occurring in his classroom, leave the influence of his white identity, as well as the hegemonic
role of whiteness in postsecondary mathematics, uninterrogated. Whiteness-at-work can be seen
in David’s helping attempts that reinforce whiteness in mathematics.

While David articulated the role of his white identity in reductive ways during the first
interview, he later characterized himself as not knowing the influence of his identity on his
professional practices.
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Interviewer: How you see your own identity… as a white person… as a man… shaping your
perspective on how effective your teaching practices are in serving Latinx students?

David: How is my identity? I don't know. I don't know. How is my own identity? It's a really
hard question. I'm not sure. One of the first things I was supposed to do in this [PD]
workshop before the semester started was to come up with my own racial identity… It
was the hardest thing. And how my identity relates to how I'm supporting Latinx
students? I don't know. I'm not sure that being a… white male, what that does…Am I not
as good because of my identity? I don't know. It's really challenging for me. (Interview 2)

Such recognition could be seen as progress in his developing white identity, as David shifted
from a position of “helper” that reflects paternalism (Jones & Okun, 2001), to a position that
reflects more openness to learn about his whiteness. His receptivity to learning was further
underscored by his verbalized commitments to growth, despite the emotional strain he felt when
discussing topics of race, “Just to be 100% honest, our last interview, it was really hard for me,
but I just believe that I can't walk away from the conversation. I have to try” (Interview 2).

Despite David’s expressed commitment, he reported reducing actions intended to develop
capacity to serve Latin* students. In the fall, David described being “focus[ed]... [on] really
paying attention to Latinx students” (Interview 1) despite feeling “uncomfortable” (Interview 1)
in doing so. However, by the second interview, David had lessened his practice of paying
particular attention to Latin* students, “This semester, when I tried to put myself in the
headspace of like, ‘Am I helping a Latinx student?’ That just felt awkward” (Interview 2).
David’s shift in attention demonstrates whiteness-at-work. Although David’s stated intention is
to engage in equity-related learning despite the discomfort that may cause, he relinquished his
practice of specifically attending to the needs of Latin* students because it “felt awkward.” In
this way, David’s commitments had limited efficacy in advancing his EMRIC.

Discussion & Implications
Although David’s and Tina’s cases differed in many respects, they shared a struggle to

recognize how their white identities influenced their capacity for serving Latin* students through
instruction. Relatedly, both faculty demonstrated limited awareness of how race influenced the
mathematics discipline or institutional structures. Tina’s claim that test questions are gender-
neutral, and her framing of race and gender as analogous, indicates that the construction of
mathematics as socially neutral shaped her inattention to racialized features of mathematics
practice. Although David made no explicit statements about mathematics as neutral, his appeal
solely to decontextualized social phenomena, like student comfort, when explaining classroom
inequities illustrates that he does not perceive mathematics itself as a racialized feature that
should be attended to when serving Latin* students. The invisibility of their own white identities
and of whiteness in mathematics served as mutually reinforcing to impede critical EMRICs.

Our findings indicate further need for PDs to integrate activities that scaffold examination of
the hegemonic role of whiteness. Although, as David’s reflection indicated, understanding one’s
own racial identity was an activity in the PD, this was not central to PD activities. We argue,
contrary to David’s articulation of his obstacle as “struggling to look outside of [his] bubble,”
that struggling to look inside their bubble was the primary obstacle in advancing equity.
Equity-oriented PDs can address this by extending reflections on racial identity to explore
characteristics of white culture (e.g., valuing white segregated environments; DiAngelo, 2016),
white ideologies (e.g., meritocracy; Bonilla-Silva, 2006), and whiteness embedded in
disciplinary epistemologies and values (e.g., proof; Hottinger, 2016; McNeill & Jefferson,
accepted). Future research can explore the efficacy of PDs that integrate such methods.
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Research-Informed Practice to Improve Inquiry-Based Calculus with Learning Assistants 
 

Kelly Bubp Kayla Heacock Allyson Hallman-Thrasher 
Frostburg State University     Ohio University Ohio University 

Despite the promise of inquiry approaches, student resistance can occur because active learning 
opposes their expectations of classroom norms and responsibilities. This study reports on 
students' experiences in inquiry-based learning (IBL) Calculus supported by learning assistants 
(LAs). We used an iterative process adapted from Hine (2013) to make changes to our study 
across three semesters to improve student experiences in IBL Calculus. Survey data of 285 
students across 7 sections of IBL Calculus was supported by our observations of IBL Calculus 
and weekly LA seminars with 12 LAs to determine changes needed each semester. Quantitative 
data were analyzed using descriptive statistics and z-tests, and qualitative data were open-coded 
to evaluate the effectiveness of changes. We report changes made to LA preparation and course 
structure to support LAs’ instructional practices and increase student buy-in to IBL Calculus. 
Over the three semesters, the overall student experience in IBL Calculus improved. 

Keywords: research informed practice, inquiry-based learning, learning assistants 

 As practitioners, we strive to improve the experience, learning, and understanding of 
students in our own courses. As researchers, we strive to push the bounds of our knowledge of 
student experience, student learning, and student understanding in all mathematics classrooms. 
Our research should inform our practice so that we systematically use our new knowledge to 
directly and positively impact our students. While researching the implementation of inquiry-
based learning (IBL) in Calculus supported by learning assistants (LAs), we determined aspects 
of LAs’ work preparation and Calculus students’ classroom experiences that were ineffective. 
We sough to answer the question, "How can an action research cycle be used to improve 
students' experiences in Calculus IBL classrooms with LAs?" Based on our data analysis, we 
made changes each semester to develop practices that support positive experiences for both 
students and LAs. In this paper, we describe the data-supported, iterative revision process we 
used over three semesters to redesign the Calculus course structure and LA preparation and 
report the results of these changes on student perceptions of the course. 

Literature Review 
One of the goals of research is to inform practice, but it can be challenging to translate 

research into practical strategies (Carlson & Rasmussen, 2008). Through action research, 
educators conduct research in their own classrooms with the practice-based goals of improving 
their instruction and the experiences of their students (Gibbs et al., 2017; Hine, 2013). Action 
research is commonly used in higher education to obtain “evidence of how practice can be 
improved and its impact on the learning of students” (Gibbs et al., 2017, p. 17). The cyclic nature 
of action research allows for refinement of current issues, a systematic approach to inquiry, and 
continuous learning for the educator (Hine, 2013). We used an iterative process adapted from 
Hine (2013) (Figure 1) to study our implementation of IBL in Calculus over three semesters. 
Whereas Hine’s model moves directly from reporting outcomes to taking action, we added a 
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critical intermediate step, “determining future changes” to capture the work of interpreting the 
results to hypothesize what changes to our IBL structure might improve student outcomes. 

 

  
Figure 1: Action Research Cycle (Hine, 2013) and Modified Action Research Cycle (adapted from Hine, 2013) 

Inquiry approaches to learning continue to grow in mathematics education (Laursen & 
Rasmussen, 2019). In IBL, students work through a “carefully scaffolded sequence of 
mathematical tasks” (Ernst et al., 2017, p. 570) under the guidance of an instructor to construct 
their own understanding of a given concept. Research has found that students in inquiry classes 
have reported improvements in learning specific content, developing affective skills, and 
communicating and collaborating with peers (Laursen et al., 2011). Despite the promise of IBL, 
students can be resistant because its structure contradicts their expectations of classroom norms 
and student/teacher responsibilities (Deslauriers et al., 2019). Students must develop autonomy 
in problem solving to be successful in an IBL setting, where instructors support student work 
instead of providing direct instruction on how to solve problems.  

Student resistance to the change in student/teacher responsibilities has been associated with 
poorer student course performance (Cavanagh et al., 2016), and successful implementation of 
any inquiry approach to teaching and learning must account for student resistance to changed 
norms. Some ways instructors might combat student resistance to IBL include discussing reasons 
for the course structure (Deslauriers et al., 2019; Yoshinobu, 2019), presenting students with 
videos outlining the importance of working in groups (Clinton & Kelly, 2020), and explaining 
the importance of having a growth mindset (Cavanagh et al., 2018). In our implementation of 
IBL Calculus, we used LAs to help alleviate student resistance, by providing students more 
available access to help. LAs act as apprentice instructors, facilitate group work alongside the 
instructor, and have been shown to improve student outcomes in STEM courses. Barrasso and 
Spilios’ (2021) meta-analysis indicates that students in LA-supported STEM courses have better 
attitudes, course satisfaction, and learning gains than students in STEM courses without LAs.  

 
Method of Inquiry 

Context 
This study was conducted within IBL sections of Calculus I courses in a large, public, 

midwestern university across three semesters. The IBL sections used the textbook Active 
Calculus: Single Variable (Boelkins et al., 2018) which was designed for use with an inquiry-
based approach to instruction. Students spend the majority of class time working in small groups 
facilitated by the instructor and LAs to solve problems that emphasize key concepts and 
relationships of calculus. While groups worked on tasks, the instructor and LAs circulated to 
troubleshoot student difficulties, pose questions, check student understanding, encourage group 
discussions, and generally encourage student thinking and autonomy in problem solving. Of 303 
students enrolled in IBL Calculus across three semesters of this study, 285 agreed to participate. 

Designing the 
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Collecting Data

Analyzing DataCommunicating 
Outcomes

Taking Action

Designing the 
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Collecting Data
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Communicating 
Outcomes

Determining 
Future Changes
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LAs attended IBL Calculus class three times per week and met with the course instructor 
once a week to discuss both their experiences as an LA in IBL Calculus and readings on active 
learning. This study incorporated 12 LAs in 7 sections of IBL Calculus. LAs were a mix of 
undergraduate and graduate students, males and females, international and domestic students, 
and all had an interest in active learning in mathematics. 
Data Collection and Analysis 

We collected LA weekly written reflections, field notes of LA seminar meetings, and 
observations of IBL Calculus. Two weeks prior to the end of the semester, we used a survey to 
gather student perceptions of the course. The surveys consisted of Likert scale questions and 
open-ended questions, all of which explored various aspects of students’ IBL Calculus 
experiences. To analyze qualitative data, we open-coded free response questions, which were 
answered by all respondents. To analyze quantitative survey data, we calculated descriptive 
statistics and performed independent samples z-tests to determine the significance of changes in 
student responses from semester to semester. Employing our modified action research cycle 
(adapted from Hine, 2013) we interpreted the results to determine future changes needed to our 
enactment of IBL Calculus, which we implemented in subsequent semesters to continue our 
cyclical process. Here, we report the changes we identified from our analysis each semester and 
the impact of those changes on students’ experiences in IBL Calculus (for additional details of 
the study see Bubp et al., 2020).  

                  
Results 

Semester 1 Key Findings 
After our first semester, we used student survey responses to determine students’ assessment 

of their interactions with LAs. In particular, students reported the LAs were less helpful in class 
than the instructor and their peers, with 36% of students responding that LAs were ‘little to no 
help’. Further, they identified the following LA actions to be ‘little to no help’: ask questions 
about your work (33%), ask you to explain your work (38%), give feedback on your work 
(24%), and help you but do not directly answer your question (50%). In the open-ended response 
questions, 20% of students indicated negative interactions with LAs. One student described their 
interactions as: “TA's coming over and staring over your shoulder, correcting your work only to 
give you a more confusing explanation.” Similarly, from observations we noticed LAs struggled 
to employ effective questioning strategies and facilitate discussions in small groups. 

Using student surveys, LA reflections, and LA seminar field notes we identified two 
problems with our LA preparation that contributed to their struggles interacting with students. 
First, by choosing LAs with strong content knowledge and some prior experience with active 
learning, we assumed that minimal preparation for facilitating student group work in advance of 
the semester start would be needed. However, LAs’ content backgrounds had some gaps, and 
since IBL Calculus relied on objects-in-motion and graphing approaches with which some LAs 
were unfamiliar, many had difficulty helping students understand these approaches. Second, our 
weekly LA seminar did not sufficiently support the LAs in developing practical aspects of 
implementing and supporting IBL in the classroom. Instead, we read and discussed research 
literature on IBL to support our graduate students in developing their understanding of the 
current state of IBL research and consider how they might analyze data of IBL classrooms. 
Semester 2 Revisions 

To address these issues, we made strategic changes for the second semester. First, to better 
prepare LAs for their role in the classroom, we provided pre-semester preparation and 
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communicated clear expectations for their role. A first-semester LA drafted an LA Manual, 
which we reviewed and required LAs to read prior to the start of the semester. We set the 
expectation that LAs had to complete for themselves all IBL Calculus classwork in advance of 
each class meeting where they would be assisting students on that work. The LA Manual also 
emphasized the importance of asking questions to move students forward in their work without 
giving them direct answers to problems. We shared ways to connect with students such as by 
learning names and ways to build trust by admitting mistakes and listening carefully to students. 

Second, we improved during-the-semester preparation by making LA weekly seminars less 
focused on theory and research and more focused on classroom activity and problems of 
practice: what concepts students struggled with or excelled at, how groups worked together, 
instances of inequitable participation, and instances of LAs not knowing how to respond to a 
student. We specifically discussed strategies to help LAs develop an awareness of student 
understanding and an ability to improve their interactions with students and students’ interactions 
with each other.  

Third, in addition to improving LA questioning techniques, we changed some structural 
elements of how LAs functioned in the class to improve students’ perceptions of their 
interactions with them. In the first semester we had three LAs to a section for a total of four 
teachers. This led to students being asked the same question repeatedly by different LAs and 
hearing too many different explanations from LAs. In the second semester we only used two LAs 
per section, assigned each LA to specific groups, and established a norm of LAs asking groups if 
they had already been questioned by someone about their work.  
Semester 2 Key Findings 

Second semester students found LAs to be more helpful than their instructor and peers, with 
67% of students saying LAs ‘helped a lot or the most’ and only 13% saying LAs ‘helped little or 
not at all’ as compared to 46% and 35%, respectively, from the previous semester. Students who 
reported specific types of interactions with LAs (Table 1) as ‘usually or very helpful’ statistically 
significantly increased from the first semester and those reporting the interactions as ‘little or not 
helpful’ statistically significantly decreased. 

 
Table 1. Percent of students reporting these interactions with LAs were or were not helpful. 
Interactions Semester 1 Semester 2 
 % little or 

not helpful 
% usually or 
very helpful 

% little or 
not helpful 

% usually or 
very helpful 

Question students’ work 32.50 38.75 13.10* 61.90* 
Ask students to explain work 37.50 36.25   8.33* 61.90* 
Give feedback on students’ work 23.75 51.25   6.02* 81.93* 
Help but no direct answers 50.00 29.48  24.39* 52.44* 
*Indicates statistically significant (𝛼 = .05) 

 
Although we saw important improvements in student-LA interactions in the second semester, 

we yet identified areas in need of improvement for the following semesters. Students indicated 
these interactions with the LAs occurred ‘every day or nearly every day’: waiting too long for 
help from LA (11%), LAs solving problems directly for students (32%), LAs providing an 
incorrect answer (6%), and LAs contradicting one another (6%). Students waiting too long for 
help indicated we needed to attend more carefully to how LAs monitored students. Though few 
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students stated that LAs provided an incorrect answer or contradicted one another, that this was 
happening at all was cause for concern. While students might have considered LAs directly 
solving problems for them as beneficial, this was a practice we wanted to discourage. 

Second semester findings showed that only 39% of students reported that the class structure 
'helped a lot or most’. Additionally, we noted issues in the effective functioning of groups as 
87% of students reported negative experiences working with groups. Specifically, 30% felt their 
group members were not knowledgeable, 11% believed their group members were on a different 
level, 14% indicated their group members did not regularly attend class, and 13% did not want to 
rely on group members over their instructor. We observed that student attendance issues 
impacted the groups through time lost to groups catching up absent students, inequitable 
contributions, and groups feeling responsible for carrying weak or non-contributing members. 
We hypothesized that students’ struggles with group work influenced their appreciation of the 
IBL structure. The 67% of students who made negative comments about IBL referenced a need 
for more direct help from the instructor and less reliance on their groups: 26% wanted more 
lecture, 21% did not want to figure things out on their own, 21% wanted lecture for new 
material, 13% wanted more examples, and 13% did not want to depend on their peers. 
Semester 3 Revisions 

We made additional changes to the weekly LA seminar, shifting the focus from how to 
research IBL to understanding student thinking and facilitating group interactions.  We 
hypothesized that students’ continued poor reviews of classroom interactions were due to LAs 
responding to student questions and difficulties on-the-fly. Therefore, we oriented the seminar to 
prepare for what was coming up in class each week and not only what had previously happened. 
In addition to completing course materials in advance, we asked LAs to consider possible student 
misconceptions and questions they could pose to students in the upcoming classes. To further 
improve their pedagogical skills, LAs also read articles about pedagogical techniques such as 
questioning techniques, ways of providing feedback, and cognitive demand. LAs reflected on 
their readings and identified ways to apply them to their classroom practice.  

Based on open-ended survey results, we hypothesized that student reaction to their and the 
instructors’ changed responsibilities contributed to their dissatisfaction with the course structure. 
To address this student resistance, we developed four “Learning about Learning” (LaL) 
assignments that students completed early in the semester and were intended to help them 
understand the value of IBL and feel more comfortable as independent problem solvers who 
collaborated with their peers and communicated their mathematical ideas. The LaL assignments 
included readings (Anderton, 2019; Dunlosky et al., 2013) and the online course ‘How to Learn 
Math for Students’ (Boaler, n.d.) which addressed ideas such as: common misconceptions about 
math, good study habits, growth mindset, productive struggle and mistakes, communicating 
mathematical ideas, and collaboration. Each LaL assignment required a written reflection in 
which students discussed what they learned and how that related to their success in Calculus.  

To address students’ dislike of group work we used more purposeful groupings with similar 
majors grouped together and balanced by gender. To minimize group difficulties due to 
attendance, we deducted points for missing more than 4 classes per semester. 
Semester 3 Key Findings 

 In the third semester, we observed further improvements in student interactions with LAs, a 
more positive response to the IBL structure, and more effective group work. Students had to wait 
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for help statistically significantly less often, and additionally, although not statistically 
significant, LAs were solving problems for students, giving incorrect answers, and contradicting 
other LAs less often (see Table 2). In the open-survey questions, a student described, “They 
[LAs] were able to guide you in the right direction without giving you the answer outright... 
[and] we never had to wait long if we had a question.” Another responded, “They provided help 
quickly when it was needed and helped us to understand concepts to solve a problem rather than 
telling us exactly how to solve the problem.” This supports the quantitative analysis that student 
wait time was shorter and that LAs were no longer directly solving problems for students.  

 
Table 2. Percent of students reporting the following frequencies of these actions occurring with LAs. 
Interactions Semester 2 Semester 3 
  % occur every or 

nearly every day 
% occur every or 
nearly every day 

Wait too long for help 10.71     1.33* 
Solve problem for students 32.14 21.33 
Give an incorrect answer   5.95   1.33 
Contradict each other   5.95   1.33 
*Indicates statistically significant (𝛼 = .05) 

 
The response to the IBL structure statistically significantly improved by the third semester, 

with the proportion of students reporting the course structure ‘helped a lot’ or ‘helped most’ 
increasing from 39% to 58%. In addition, statistically significantly fewer students responded that 
they needed lecture for new material and that they did not want to figure things out on their own. 
Although not statistically significant, fewer students responded that they needed more lecture in 
general and that they wanted more examples (Table 3). We note here that the percentage of 
students who reported needing more lecture remains high and we attribute this to the difficulty of 
overcoming students’ expectations of what teaching and learning mathematics should be. We 
expect this issue to be an on-going focus of future revisions.   

 
Table 3. Percent of students’ open-ended responses coded with the following codes. 
Code % Semester 2 % Semester 3 
Lecture needed for new material 20.24    5.93* 
Want more examples 13.10  7.63 
Need more lecture 26.19 22.88 
Had to figure out on own 21.43   10.17 * 

Didn’t want to depend on peers instead of professor 13.10     5.08*  
Group members not knowledgeable 29.76 27.97 
Group members move on without me/at a different level 10.71 14.41 
Group members not attending 14.29     5.93*  
*Indicates statistically significant (𝛼 = .05) 

 
With the changes to group structures, statistically significant more students valued their peers 

both in- and out-of-class (Table 4). Furthermore, statistically significantly fewer students 
responded that they did not want to depend on their peers instead of their instructor and that their 
group members were not attending class (Table 3). Qualitative data supported this finding; one 
student described, “My group is really amazing and we do a good job of collaborating and 
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helping each other when one of us is stuck in or out of the classroom. They are all pretty good at 
explaining why they got a certain answer.” We also note that some students still report group 
members are not knowledgeable, and hence not considered a good classroom resource, and that 
too much variability in groups made students feel left behind. This points to our need to continue 
addressing supporting students in working in groups.   
Changes Across All Semesters 

Across all three semesters of this iterative process, when we focused on understanding 
reasons behind our results, we were better positioned to determine changes for the future and 
take action. In determining changes from the first semester, we recognized the need to improve 
the LAs’ interactions with students by better preparing LAs for their role in an inquiry-based 
classroom. And, in the second semester, we observed statistically significant improvements in 
students' responses to the LAs; the percent of students who found them unhelpful decreased and 
the percent of students who found them helpful increased (Table 4). Results also pointed to a 
need to focus on IBL structure, students' perceptions of that structure, and group interactions. 
And in the third semester we saw statistically significant improvements in students finding their 
peers more helpful (Table 4). On the other hand, there was no significant change in the student 
responses to the LAs being helpful and available in class. We interpret this reduced perception of 
LA helpfulness as the result of students becoming more comfortable with productive struggle 
with their peers. One interpretation of this finding is that as students' value for their peers 
increased, they became more autonomous in solving problems and less dependent on the LAs. 
Reduced need for assistance from LAs could in turn explain the decrease in the proportion of 
students who responded that the LAs ‘helped a lot’ or ‘helped the most’ with their learning. 

 
 Table 4. Percent of students reporting the following class features as helpful or not helpful. 
Class Feature Semester 1 Semester 2 Semester 3 

 % little/ 
no help 

% helped  
lot/most 

% little/ 
no help 

% helped  
lot/most  

% little/ 
no help 

% helped 
lot/most 

IBL Structure 38.55 31.32 39.29 39.29    21.56**     57.76** 
LAs in Class 34.94 45.78   13.41*   67.07* 12.28 59.65 
Peers in Class 25.30 56.62 21.69 46.99      9.57**     66.96** 
Peers out of Class 30.16 39.10 46.99 27.12    25.00**     45.00** 
*Indicates statistically significant from Semester 1 to Semester 2 (𝛼 = .05) 
**Indicates statistically significant from Semester 2 to Semester 3 (𝛼 = .05) 

 
Implications for Practice 

In our work, we have again confirmed the power of using research to improve practice. We 
sought to use an iterative systematic process to improve the implementation of an innovative 
pedagogical structure and over three semesters were able to make that happen. Drilling down to 
identify specific difficulties students were having with our courses was essential for making 
appropriate revisions. The changes we made in our enactment of IBL Calculus were small, yet 
they often had a statistically significant positive impact on students’ experience in the classroom. 
Through two sets of revisions, we improved LA preparation, in-class group interactions, and 
student appreciation for IBL. From this study we have learned some critical aspects of 
introducing novel pedagogical approaches: the importance of instructor preparation, of fostering 
student buy-in and understanding of the rationale for the pedagogical approach, and a systematic 
approach to understanding and reacting to students’ experiences.  
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One Multilingual International Student’s Experience in Collegiate Mathematics Classrooms

Jihye Hwang
Michigan State University

Although the number of multilingual international students is increasing in undergraduate
mathematics classrooms, there is little research about this population at the collegiate level. To
better serve this growing population, it is important to understand their experiences using
multiple languages in their mathematics learning. In this study, I constructed a narrative of one
multilingual international student, Jia. I used narrative inquiry as a research method and
collected data from synchronous- and email interviews and observations. The narrative
demonstrates how Jia used her Chinese and English and how she dealt with her challenges. The
study found that engaging in groupwork was particularly challenging for her as a multilingual
student. I focus on not presenting her multilingualness as a deficit feature and discuss how to
mitigate challenges multilingual students can face in their mathematics learning.

Keywords: Multilingual, Active Learning, Groupwork, Linguistic Diversity, Narrative Inquiry

In the increasing globalizing world, the number of international students in collegiate
classrooms worldwide has likewise been increasing, especially in undergraduate mathematics
classrooms in the United States. When international students move from their home countries to
the U.S, they bring much diversity into the classroom: racial, cultural, and linguistic, to name a
few. I mainly focus on linguistic diversity in a mathematics classroom because having a different
first language than the language of instruction (LOI) is directly related to communication, which
can impact one’s access to learning opportunities and mathematics identity. Despite a substantial
portion of international students in undergraduate mathematics classrooms, such students’
experiences have not received enough attention in the field. Researchers have focused on
multilingual students’ experiences in K-12 mathematics education (e.g., Huitzilopochtli et al.,
2021; Moschkovich, 1999; Takeuchi, 2016; Turner et al., 2013), but there has not been much
research at the undergraduate level, especially in multilingual international students in the U.S.
Collegiate mathematics classrooms are likely to be more diverse in terms of students’ home
countries and languages that they bring compared to K-12 mathematics, where bilingual
classrooms–classrooms that have two main languages such as Spanish and English–are more
common for K-12 mathematics education study (e.g., de Araujo et al., 2018; Domínguez, 2011;
Moschkovich, 2007).

In this study, I present a narrative of Jia’s (pseudonym) experience answering the following
research questions: What is Jia’s experience as a multilingual international student in college
mathematics classrooms? How does she use her languages in college mathematics classrooms?
Jia’s narrative reveals what challenges some multilingual international students experience, how
they might feel or be positioned in mathematics classrooms, and how multilinguals use multiple
languages in their mathematics learning. From this study, I call for more attention to multilingual
international students in undergraduate mathematics classrooms from the mathematics education
field so that the field can better understand the population and serve them more equitably.

Relevant Literature and Theoretical Perspectives
In this study, by multilingual, I mean people who use one language in some situations and

another in other situations (Planas & Setati, 2009). This definition does not imply that
multilinguals need to speak both languages fluently as if both are their native language, which is
a common understanding of the term multilingual (Planas & Setati, 2009). According to this,
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international students who are traditionally described by terms such as “English as a Second
Language,” “English as Another Language,” or “non-native English speakers” are “multilingual”
as they use English during the official instruction of the course as well as some other contexts
and often use their first language in other settings.

When multilingual international students move to the U.S. from their home country, their
pattern of language use changes: the language that they use in their home country loses its
position as the LOI and English–which is usually not a significant portion of their language
use–takes the position as the LOI. The switch of the LOI is one of the challenges international
students report (Brenner, 1998; Macintyre et al., 1998). Although their language usage changes
regardless of various disciplines, mathematics becomes one of the contexts that require a specific
discourse (Sfard, 2008). One of the common myths about mathematics is that “mathematics is
language-free” because it uses its own symbols and equations (e.g., Schleppegrell, 2007;
Takeuchi, 2016). However, even though students share the same mathematical symbols, they
need to translate when they want to verbalize their interpretations because mathematical
sentences with symbols are dense. Sfard (2008) construed mathematics objects as discursive
constructs and hence argued that doing mathematics is having a discourse of (mathematical)
discourse, which requires intense language use. Therefore, mathematics needs significant
language use to perform, which means multilingual international students whose first language is
not the LOI can struggle with mathematical languages. Language is a primary and unavoidable
medium when people in classrooms communicate; hence, it can influence students’ learning
opportunities (Meyer et al., 2016).

Moschkovich (2002) reported that in the past, people had focused on multilingual students’
experiences from the perspectives of monolinguals who use the LOI, such as focusing on
acquiring vocabulary in LOI or building different meanings of words and grammar in the
mathematics. It was not difficult to find when researchers focused on what multilingual
international students do not do well, such as concentrating on not speaking English as fluently
as native English speaker students do. Some researchers have framed or assumed that
multilingual students have linguistic deficiency implicitly or explicitly and then studied how that
deficiency influences their learning and experiences (Campbell et al., 2007; Hwang et al., 2022;
Neville-Barton & Barton, 2005). I encourage mathematics educators to avoid using such deficit
perspectives to understand multilingual students’ experiences. Rather than focusing on what they
cannot do, researchers need to focus on how students use their multiple languages in their
learning and what their current experiences are in their mathematics education (Barwell, 2018;
Moschkovich, 2002). Therefore, in this study, I focus on the mathematics identity of one
multilingual international student, Jia, specifically focusing on how she used her repertoires of
Chinese and English in proof-based undergraduate mathematics classrooms.

Language as Sources of Meaning
In this study, I adapt the view of Barwell (2018), who viewed language as sources of

meaning. This perspective implies that language is fluid, agentive, and stratified. Barwell
claimed that meaning-making is situated locally through utterance, which can evolve depending
on the new utterance. Also, language is agentive as spoken language has the speaker’s intentions
connecting the past- and current speaker’s intentions. Lastly, language is stratified because there
were cases when people valued specific languages more than other languages, such as
mathematical language and daily language in mathematics classrooms or English and other
languages in U.S. classrooms. According to this perspective, language is social and political
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(Barwell et al., 2007). It provides a lens to study the role of languages in students’ interactions
and experiences and their learning of contents.

Method
Part of the data used in this paper was collected as a part of a larger project that investigates

students’ agency and autonomy in the Introduction-to-Proof (ITP) course and some subsequent
proof-based mathematics courses at a large public university in the Midwestern U.S. Jia
volunteered to participate in the study in Fall 2019 while she was taking the ITP course. During
the ITP course, two in-person interviews and seven activity logs about students’ experiences
related to the course were collected each week. I observed the course roughly once a week. The
two in-person interviews were transcribed from the audio recording, and then I open-coded the
data to find an initial list of the codes from her interviews and observations. After that, I found
the themes in the initial list and then wrote a profile for her experience. In Fall 2021, follow-up
questions specific about her experiences as a multilingual were asked via email interviews, given
her preference. I received 12 email responses to the interview questions from Jia in the semester
and the following semester. Each email response was analyzed to find initial codes of events
(e.g., her group work experience in one ITP class or her use of Chinese in mathematics learning)
and themes (e.g., her challenges related to languages) and to create the next set of questions. It
was a repetitive and cyclic process. Once the data collection with her was finished, I found the
themes (e.g., her challenges related to languages, or her experiences related to gendered bias)
across the first and second rounds of data collection and built a narrative of her experiences. To
deliver her story more vivid, I decided to use the first-person perspective for her narrative. After
I wrote a narrative, I did member checking with Jia twice to have her agree on our narrative of
her. Even with member checking, I acknowledge that there is no only “right” or “valid” way of
her narratives, and it can evolve over time.

In the following section, I provide only a part of Jia’s narrative that I wrote as our finding
because of the constraints of the space. The whole narrative consisted of four parts 1) introducing
herself, 2) challenges that she experienced in the ITP course and subsequent courses as a
multilingual, 3) her ways to utilize her languages in mathematics learning, and 4) her motivations
to pursue mathematics even with these challenges. For the sake of this paper, I wanted to
highlight and call for attention to the challenges one multilingual student was experiencing, and
hence first two parts were included.

Narrative of Jia
My name is Jia. I am a female Chinese, was born in China, and lived there until I came to the

U.S for my undergraduate education. So, Chinese, or Mandarin, is my first language and English
is my second language. As I am studying in the United States, the language "officially” used in
the classroom is English, which I had some concerns with. As my major is statistics and minors
are Computational Mathematics Science and Engineering (CMSE), data science, and
mathematics, I have taken a lot of mathematics courses. Of course, languages matter in other
disciplines as well, but today I am telling you about my experiences in mathematics courses.

Challenges in the Introduction-to-Proof Course
One of the mathematics courses that I remember is the Introductions-to-Proof course. I took

the course in the fall semester of my sophomore year, and, as its name indicates, it was a
transition course between Calculus courses and more proof-based mathematics courses. Actually,
before the course started, I did not have a lot of ideas about the course. I asked some of my
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Chinese friends and they said that the course is not difficult, but hard to do perfectly. They said
that sometimes it asks you to explain your thoughts, but it can be quite difficult for international
students, like us, to express thoughts clearly. And, I started to agree with them as the course was
going on. There were several points that I was worried about my English while taking the course
although I did well in this course. Sometimes I could not understand what the problem was
asking to me or had difficulties understanding the definition, and other times were difficult
because of the interactions with other people, like with the instructor or groupmates. I think these
challenges were both from my language and my education, which are different here content-wise
and teaching method-wise.

One of my biggest challenges was that the ITP course was based on groupwork. We had a lot
of groupwork in the course, about two-thirds of the class each week was set aside for us to solve
problems in groups, which I enjoyed and found helpful in general because groupwork helps me
come up with some ideas or understand the material that I could not understand from my
instructor’s explanation... as the ITP course changed groups somewhat regularly, my experiences
were diverse. The first week, we formed a group based on where we were sitting…. I wanted to
have some familiar people in the class, so when I stepped into the classroom, I went to a Chinese
female student. And then, there was another Chinese female student, so we became a group. We
added each other on WeChat (a SNS that mainly Chinese use) and became good friends, and we
sometimes asked questions about the class. (Actually, I became a good friend with one of them
and we still hang out sometimes.) As we sat close to each other, they became my groupmates for
the first two weeks in the class, which was a good experience for me. I liked it because I could
use Chinese with them, which I think is efficient.

After that, my instructor and TA switched groups roughly every two weeks during the first
half of the semester. The TA somehow generated the groups and wrote them on the board. And
then, I started realizing that who I am assigned to work with in a group influences my groupwork
experience. None of my second groupmates were Chinese and all of them looked like their first
language was English. I think communication between groupmates is important. But, in this
group, I felt isolated. No, let me rephrase that: I was not very engaged. The other people in the
group were discussing enthusiastically, but I was like in an, “Ahh, yeah- (indifferent)” kind of
mode. I felt my language was the biggest reason. I felt like I did not speak that good.

I always had ideas about how to solve the problems, but I could not explain my thinking
succinctly and effectively, or I was not sure whether the words that I wrote were expressing my
thinking in English. It happened several times in that semester. For example, something like this:
Once, we were asked to compare a variable, x, with a number. In those processes, our group
missed that x is a negative number and that led us to make a mistake by not changing the
direction of less than or greater than sign (e.g., > or <). I said, “x is negative, so we need to
change the signal” and they did not understand what I was telling them. I was expecting some
positive reactions from them, like “Oh, yes, that’s the point,” but they did not get it and so could
not give me such a reaction. Because I was not sure how to say it any other way, I just wrote it
down on my note and showed it to them. Then, one of the groupmates understood and he
explained that to the other people. It was a little bit frustrating, but this kind of experience was
common at that time. After some of those experiences, I started staying quiet because I knew
other people would usually say the same idea that I would have if I waited. Of course, if it took
too long, I spoke about my idea, but sometimes I felt I was wasting others’ time because other
people just could explain the idea in one sentence.
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I did not think my experience was challenging only because I did not know how to explain
mathematics in English. One other reason that I remember was that, sometimes, I could not be
sure which ways or methods they learned to approach the same type of questions in their
mathematics in their K-12 education. I thought we all would have learned similar mathematics,
but it seemed not. I think it made the situation harder because I think that it would have been
easier if we all had similar background knowledge about mathematics. Another part of my
experience that I think added more difficulty was that I could not easily jump in on their small
talk. This could also be related to my personality; I don’t think I am a very social person. But
sometimes they speak fast or say things about things from outside the classroom that I did not
understand, and then I felt excluded. But I still thought that it was better than doing all of the
work alone.

After another round of group rotations, I again was in a group with my friends from the first
week as well as another Chinese female student. About middle of the way through the semester,
our instructor sent us a survey asking if we had a preference on whom to work with and if so,
who we wanted to work with. I put the three Chinese female students on my list, and so did the
other three. So, we became a permanent group for the rest of the semester. I was very happy with
the group because I felt our communication was so efficient; being able to speak Chinese
reduced the time we needed to explain what we were not understanding in English. Compared to
when I was in groups where there was the pressure that I needed to explain things precisely,
which made me stutter and feel even more nervous, it was so easy to communicate. I became a
lot more talkative. We could do small talk as well, and I enjoyed talking with them about my life
outside the classroom.

Thinking back, I should have encouraged myself to step out of my comfort zone more. Now,
I just try to express my thoughts as clearly as I can. And I will encourage others, as well, if they
are in a similar situation. I thought about what I would have done if I were in China and some of
my classmates were international students who were not speaking Chinese perfectly. Actually, I
had an experience similar to this situation although it is not in school. I once went to a shopping
mall in China, and one international traveler came to me and asked a question. But, his Chinese
was not very good and so he expressed with some Chinese words with body languages. I
answered both in Chinese and English, but he did not understand. I was not mad but patiently
explained one more time with gestures. I did not think he bothered me, I knew he needed help,
and it was not a waste of my time. Then, I realized that I would have been patient and willing to
listen to those international students who do not speak perfect Chinese. I think that it should be
the same in the U.S. What do you think?

Jia’s Ways to Leverage Multiple Languages
When I was stuck, as I said just before, I search online or ask my Chinese friends. For

instance, I struggled a lot in my Abstract Algebra I course. As the course was so challenging, I
needed to re-learn the material from resources I found online. When I searched for the course
materials online, I could find some parts of some textbooks as well as lecture notes about the
course in Chinese. I read those and tried to learn the course material by myself. Although there
was no perfect substitute for the course textbook in Chinese, it was still helpful. Sometimes I
used videos on YouTube or Bilibili (video sharing platform like YouTube but in Chinese usually)
as additional resources. When I search online, I use both of my languages. I usually start with
English, but when it seems it will take a lot of time for me to understand, then I switch to
Chinese.
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In addition to searching the course material to help my understanding of the material, I
sometimes search for the terms that appear on the question. If I was stuck on some problem, then
the main problem was usually that I misunderstood what the question was asking. Although I
struggle sometimes because I need to communicate mainly with my second language in the
classroom, I see some benefits of being able to use both languages and have figured out how to
deal with the challenge. In addition to what I already told you, I know I can ask some friends
who speak English and other friends who speak Chinese when I have questions. Also, I use
Chinese in my note-taking as well. I use it as an index so that I can quickly check where I need to
look because I can notice Chinese easily and read Chinese a lot faster. Another time I use
Chinese is for the definitions. I write some definitions or some keywords in Chinese so that I can
remember them better. I switch between the two languages… I also write some memos or how I
feel in Chinese, such as “don’t fall asleep, you can do it!” “why is it so hard?” or “Confused,
review after the class,” so that I can focus more on the class and encourage myself.

Although I have been figuring out how to survive in mathematics classes, COVID-19 added
another challenge. Because of COVID, all of my mathematics courses were changed to online,
which led professors to explain mathematics lectures on zoom and write them on a sheet of
paper. Compared to when they are writing on the board and explaining in front of physical
students, they wrote a lot faster as they did not need to write it as big as they did on the board.
Also, for some reason, they spoke faster and somehow it felt to me that they were reading the
book rather than explaining things to us. I sometimes could not write everything in my notes and
could not completely understand what they were explaining. Also, the courses did not have a lot
of groupwork during the class time, so I could not even ask questions to peers during the
groupwork. So, I tended to review the videos instead of going to the synchronous class because I
could rewind and stop whenever I wanted to. …

So far, I told you a lot of the challenges that I experienced. But, all of these challenges
neither discouraged me from studying mathematics nor led me to lose my confidence. I think my
challenges in mathematics courses related to language mean that I just need more time than
native English speakers, but they do not mean that I am not good at mathematics. … I think I just
need to take more steps moving between the three languages, Mathematics, English, and
Chinese. I think mathematics would have been hard even if I studied it in Chinese, but
mathematics is charming so I would work hard anyway to understand the material. I am
confident that I will definitely learn well if I have enough time (although time just becomes an
issue).

Discussion
Jia’s experience is one possible shape of many different experiences that multilingual

international students have. This study documented how one multilingual student uses her
multiple languages in various mathematical contexts, such as doing homework, taking class, or
participating in groupwork. The narrative shows that it can be challenging for multilingual
international students to participate in groupwork because the situation is not easy to use multiple
languages to take advantage of multiple languages. Jia could use Chinese in various ways in
other contexts, such as listening to lectures, taking notes, or doing homework. However, it was
hard to use Chinese when working in groups, especially when she was with all native English
speakers who could not speak Chinese (Hwang et al., 2022).

Jia’s challenge in groupwork as a multilingual has significance, considering the emphasis on
active learning in collegiate mathematics education, which is often connected to equitable
learning for all (Freeman et al., 2014; Johnson et al., 2020; Prince, 2004). I am not suggesting
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that groupwork harms students but arguing that mathematics educators should be aware of
possible challenges students can face. Although Jia attributed her challenging experiences during
groupwork to herself, I claim we should focus on external reasons for her actions. Jia said that
when she was in a group with at least one other familiar student, usually Chinese, she felt more
comfortable sharing her thoughts, which has been found in existing research (Takeuchi, 2016).
While she felt connected to having a peer from the same culture, she mentioned that she felt
excluded when other groupmates were having conversations about their lives outside the
classroom. Given that sometimes conversations that are not relevant to course material create
changes in power dynamics between students (Esmonde & Langer-Osuna, 2013), not being able
to join small talk because of cultural and linguistic differences can influence the power dynamics
in the classroom, which connects to language as stratified and stratifying in mathematics
classrooms (Barwell, 2018).

Further, I suggest reflecting on whether people are indirectly implying the notion that
students should use English in the classroom and whether multilingual students are discouraged
from using their other languages. In her interview, Jia noted that she asked a question to a
Chinese teaching assistant, but he responded in English, which Jia thought might be his job.
However, I question why the teaching assistant felt he needed to answer in Chinese even though
both he and Jia probably knew that their conversation would be clearer and more efficient when
they spoke in Chinese. This decision again might have come from the notion that because
English is the LOI, it should be more valued than other languages (Barwell, 2018). English is the
most reliable common language in U.S. classrooms, making it a good resource to use, but it does
not mean other languages should be devalued. Instructors should be aware of and value different
ways of communication among students and between instructors and students. This is not to
develop “otherness” but for students to use all the assets that they have for their learning.

The current study calls for attention from mathematics educators on how instructors can help
multilingual international students utilize the multiple languages that they have. For example,
this finding implies that mathematics instructors need to think about how to form a group when
they compose a group. In addition, from Jia’s narrative, I also found that she used written
discourse as an important source of learning, either when she communicated with her
groupmates or when she was learning materials. Jia implied that writing on the board could serve
as a visual recording and also slow the pace of the instructor’s lecture, which provides room for
all students to think about the materials.

In this paper, I introduced Jia’s perspective as one of the numerous experiences of
multilingual international students in mathematics classrooms. However, mathematics educators
need to consider how multilingual international students are positioned or viewed in the
classroom. In the larger study for which this data was originally collected, our research team has
seen some participants describe “linguistic barriers” with international students, which might
indirectly imply how general students consider international students. As classrooms in the U.S.
are becoming more diverse, I believe how to deal with the perpetuated notion that multilingual
international students have “linguistic barriers” in society is an important aspect to consider
when mathematics educators teach students.

Acknowledgments
This paper is based upon work supported by the National Science Foundation under Grant No.
1835946. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the National Science
Foundation.

25th Annual Conference on Research in Undergraduate Mathematics Education 294



References

Barwell, R. (2018). From language as a resource to sources of meaning in multilingual
mathematics classrooms. Journal of Mathematical Behavior, 50(August 2017), 155–168.
https://doi.org/10.1016/j.jmathb.2018.02.007

Barwell, R., Barton, B., & Setati, M. (2007). Multilingual issues in mathematics education:
Introduction. Educational Studies in Mathematics, 64(2), 113–119.
https://doi.org/10.1007/s10649-006-9065-x

Brenner, M. E. (1998). Development of mathematical communication in problem solving groups
by language minority students. Bilingual Research Journal, 22(2–4), 149–174.
https://doi.org/10.1080/15235882.1998.10162720

Campbell, A. E., Davis, G. E., & Adams, V. M. (2007). Cognitive demands and second-language
learners: a framework for analyzing mathematics instructional contexts. Mathematical
Thinking and Learning, 9(1), 3–30. https://doi.org/10.1080/10986060709336603

Esmonde, I., & Langer-Osuna, J. M. (2013). Power in numbers: Student participation in
mathematical discussions in heterogeneous spaces. Journal for Research in Mathematics
Education, 44(1), 288–315. https://doi.org/10.5951/jresematheduc.44.1.0288

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth,
M. P. (2014). Active learning increases student performance in science, engineering, and
mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415.
https://doi.org/10.1073/pnas.1319030111

Hwang, J., Castle, S. D., & Karunakaran, S. S. (2022). One is the loneliest number: Groupwork
within linguistically diverse classrooms. PRIMUS.
https://doi.org/10.1080/10511970.2021.2019149

Johnson, E., Andrews-Larson, C., Keene, K., Melhuish, K., Keller, R., & Fortune, N. (2020).
Inquiry and gender inequity in the undergraduate mathematics classroom. Journal for
Research in Mathematics Education, 51(4), 504–516.
https://doi.org/10.5951/jresematheduc-2020-0043

Macintyre, P. D., Dornyei, Z., Clément, R., & Noels, K. A. (1998). Conceptualizing willingness
to communicate in a L2: A situational model of L2 confidence and affiliation. Modern
Language Journal, 82(4), 545–562. https://doi.org/10.1111/j.1540-4781.1998.tb05543.x

Meyer, M., Prediger, S., César, M., & Norén, E. (2016). Making use of multiple (non-shared)
first languages: State of and need for research and development in the European language
context. In Mathematics education and language diversity (pp. 47–66). Springer, Cham.

Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics
learners. Mathematical Thinking and Learning, 4(2–3), 189–212.
https://doi.org/10.1207/s15327833mtl04023_5

Neville-Barton, P., & Barton, B. (2005). The relationship between English language and
mathematics learning for non-native speakers. Teaching and Learning Research Initiative
Final Report).

Planas, Ń., & Setati, M. (2009). Bilingual students using their languages in the learning of
mathematics. Mathematics Education Research Journal, 21(3), 36–59.
https://doi.org/10.1007/BF03217552

Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering
Education, 93(3), 223–232. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A

25th Annual Conference on Research in Undergraduate Mathematics Education 295



research review. Reading & Writing Quarterly, 23(2), 139–259.
https://doi.org/10.1080/10573560601158461 To

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses,
and mathematizing. Cambridge university press.

Takeuchi, M. A. (2016). Friendships and group work in linguistically diverse mathematics
classrooms: Opportunities to learn for English language learners. Journal of the Learning
Sciences, 25(3), 411–437. https://doi.org/10.1080/10508406.2016.1169422

25th Annual Conference on Research in Undergraduate Mathematics Education 296



Quantitative Reasoning Augments Scaffolding for Mathematical Model Construction 
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In this report, we begin to explore the value of leveraging constructs from quantitative reasoning 
for informing scaffolding moves that would assist modelers in overcoming blockages to their 
mathematization of canonical real-world problems from a first course on differential equations. 
Our claims are based in qualitative retrospective analysis of a set of 7 design cycles used to 
develop a task trajectory and resulting learning environment responsive to STEM students’ 
mathematical reasoning during mathematical modeling. We present a set of four scaffolding 
moves contingent upon and responsive to participants’ in-the-moment quantitative reasoning that 
guided them towards a meaningful model for a predator-prey scenario. 

Keywords: mathematical modeling, differential equations, quantitative reasoning, scaffolding 

Mathematical modeling and quantitative reasoning are both key skills for successful 
interdisciplinary collaboration (National Research Council, 2012). In many undergraduate STEM 
programs, a course on differential equations serves the need for developing these skills. Doing so 
requires a consistent emphasis on how mathematical relationships are tied to conditions in and 
assumptions about the real world (Czocher, 2017). Thus, one of the most-studied research 
problems in the mathematical modeling (hereafter: modeling) genre regards mathematizing – the 
process of expressing important aspects of a real-world scenario in conventional mathematical 
notation. Mathematizing is critical, but it is difficult for learners to do and difficult for 
researchers to operationalize (Cevikbas et al., 2021; Stillman & Brown, 2014). These dual 
difficulties have challenged educators’ capacity to effectively scaffold students’ reasoning during 
modeling. Stender and Kaiser (2015) have called for educators to enact scaffolding based on a 
“student’s current thinking in terms of the problem and the student’s possible cognitive 
operations” (p. 1256). Meeting this challenge requires a cognitive account of mathematizing. 

Recently, scholars have characterized mathematization during modeling in terms of 
constructs from quantitative reasoning. Several scholars have taken the position that constructs 
from quantitative reasoning afford an explanation of how modelers imbue real-world meanings 
into their mathematical inscriptions, thereby ensuring their inscriptions are representations of the 
modeler’s conception of the real-world scenario (Czocher et al., 2022; Larson, 2013; Thompson, 
2011). The open question regards uncovering how familiarity with students’ quantitative 
operations during modeling may underpin effective scaffolding for extending students’ capacity 
to mathematize. In this paper, we begin to address the question of how constructs from 
quantitative reasoning could be leveraged for designing effective, contingent scaffolding. 

Theoretical Lenses 
We adopt a Vygotskian view of scaffolding as an interactive process between educator and 

learner that supports the learner in performing a task she might not otherwise be able to 
accomplish (van de Pol et al., 2010, p. 274). One of the key characteristics of effective 
scaffolding is contingency, or adapting to the learner’s current level of performance (van de Pol 
et al., 2010). Specifically relevant to mathematical modeling, Stender and Kaiser (2015) 
concluded that the moves constituting effective scaffolding may depend on which phase of the 
modeling process the learner is engaged in. 
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From a cognitive perspective, modeling is conceptualized as an iterative process 
transforming a phenomenon in the real world into a mathematical problem to solve. Within this 
perspective, it is common to accentuate the duality of a model as a person’s conceptual system 
and as a representation using graphs, tables, or equations (Lesh et al., 2003). A mathematical 
model as a conceptual system refers to the constellation of knowledge the modeler has about 
how the world works (e.g., cats breed very quickly) and ideas about mathematical concepts (e.g., 
a derivative is the slope of a line tangent to a curve at a given point). In the case of equations, an 
expression of a mathematical model refers to a written representation that uses conventional 
notation like symbols for variables and arithmetic operations. 

For an equation to carry meaning as a model of a scenario, it needs to hold mathematical 
meanings for the modeler and those mathematical meanings need to have counterparts in the 
real-world situation at hand. Theories of quantitative and covariational reasoning – how 
individuals conceive of quantities and relationships among them (Thompson & Carlson, 2017) – 
explain how meaning is given to the variables and arithmetic operations that constitute an 
equation (Czocher & Hardison, 2019).  Quantities are created in the mind of the modeler when 
she conceptualizes a specified object in the real world as having a specified attribute that can be 
measured. Quantities can vary independently or interdependently with other quantities. For 
example, a modeler could imagine that the number (measure of an attribute) of a population of 
birds (object) in a backyard habitat waxes and wanes. She could also imagine that the number of 
birds increases as the number of feral cats in the habitat declines. Quantitative operations 
produce new quantities from already-conceived ones, usually through combination or 
composition (Ellis, 2007; Thompson, 2011). For example, a modeler could conceive change in 
bird population between two points in time by subtracting the latter population from the former.  

Methods 
Our data are drawn from the Cats & Birds task, which appeared as part of a larger study of 

effective scaffolding for promoting modeling competencies.  
Cats, our most popular pet, are becoming our most embattled. A national debate has simmered 
since a 2013 study by the Smithsonian’s Migratory Bird Center and the U.S. Fish and Wildlife 
Service concluded that cats kill up to 3.7 billion birds and 20.7 billion small mammals annually 
in the United States. The study blamed feral “unowned” cats but noted that their domestic peers 
“still cause substantial wildlife mortality.” In this problem, we will build a model (step-by-step) 
that predicts the species’ population dynamics, considering the interaction of the two species. 

We intended for participants to arrive at the following model (using their own symbol 
choices), which are a version of the Lotka-Volterra equations: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑑𝑑(𝑑𝑑) − [𝜆𝜆𝑑𝑑(𝑑𝑑) + 𝛼𝛼𝛼𝛼𝑑𝑑(𝑑𝑑)𝐶𝐶(𝑑𝑑)] 
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝜅𝜅[𝛼𝛼𝛼𝛼𝑑𝑑(𝑑𝑑)𝐶𝐶(𝑑𝑑)] − 𝜌𝜌𝐶𝐶(𝑑𝑑) 
We worked with 19 undergraduate STEM majors who were enrolled in or had completed a 

course on differential equations. They participated in a series of 10 hour-long clinical task-based 
interviews. Cats & Birds featured structural scaffolding in the form of Subtasks to help 
participants learn to justify the quantities and relationships chosen for inclusion in a model. 
Seven iterative rounds of design research (beyond the scope of this report) aided in determining 
which conceptual steps needed to be addressed as subtasks and how big those steps needed to be. 
Relevant to this report, participants regularly exhibited difficulty handling the complexity 
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surrounding the facts that the number of cats and birds can vary, not all birds meet all cats, and 
cats are imperfect hunters. Thus, the first three Subtasks were developed to support participants’ 
thinking about how to mathematize the number of cat-bird interactions at time 𝑑𝑑 (𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)) 
and accounting for encounter rates (𝛼𝛼) and successful hunting rates (β). We then followed with 
Subtask #4: 

4. Consider the decrease in magnitude of bird population due only to cat predation during a 
short interval of time Δ𝑑𝑑. Write an expression modeling this decrease, in terms of the size 
of cat and bird populations present at time 𝑑𝑑. 

Goal: Produce �𝛼𝛼 × 𝛼𝛼 × �𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)�� × Δ𝑑𝑑 and interpret it as the change in bird 
population due only to cat predation during a small, fixed, but arbitrary duration of time 

The contingent interview protocol targeting mathematizing was designed to explicitly focus 
on aspects of quantities and quantitative reasoning. For example, follow-ups requested 
justification for choices of arithmetic operations (e.g., Can you say why you used × here?) or to 
explain how they were thinking of specific quantities (e.g., do you see ΔB as a change in bird 
population or as the number of surviving birds after some are killed? What units does B(t)×C(t) 
have?) in order to inform our interviewer-proffered scaffolding. We used cross fertilization 
(Brown, 1992) to adapt what we learned about student reasoning from one participant for use in 
another participant’s sessions. Our retrospective analysis of the design cycles focused on 
participants’ quantifications and quantitative reasoning that aided in mathematization. 

Results 
Among those who did not autonomously produce the target expression for Subtask #4, 

we found four scaffolding moves that effectively moved the participant towards the Lotka-
Volterra equations as a meaningful model for the interaction of species in the backyard habitat.  

Contingent scaffolding 1: attend to the object and/or attribute represented by the 
symbol for a variable. For example, some participants conceived decrease in population as time 
passes to mean a record of the population size at different points in time. Sensibly, they produced 
a model representing the remaining population, 𝑑𝑑�𝑑𝑑𝑓𝑓� = 𝑑𝑑(𝑑𝑑𝑖𝑖) − Birds Killed. We asked the 
participant to reason through what quantity each symbol represented and then followed up with 
clarifying questions like: Great! Do you see the computation on the right-hand side as yielding 
the number of birds remaining or the number of birds that died? We then asked the participant to 
identify (and then focus on) the “change-by” amount and used small numerical values such as 
𝑑𝑑(𝑑𝑑𝑖𝑖) = 10 and Birds Killed = 3 to solidify the distinction. When answering the former, we 
asked the participant to identify (and then focus on) the “change-by” amount. 

Guiding the participant to attend to object/attribute/symbol alignment also meant suggesting 
changes to their notation to better align their intended meanings with conventionally correct 
meanings. For example, some participants represented decrease in population as time passes 
using the symbols 𝑑𝑑(Δ𝑑𝑑) = 𝑑𝑑�𝑑𝑑𝑓𝑓� − 𝑑𝑑(𝑑𝑑𝑖𝑖). We found that participants conceived the value of the 
change in population as dependent upon the length of time interval and strongly desired their 
model to reflect that. Introducing the notation Δ𝑑𝑑(𝑑𝑑,Δ𝑑𝑑) to signify the fact that population 
change depends on duration of time as well as when the duration began resolved the conflict 
between student meaning and conventional meaning for the symbols. 

This scaffolding move was also supportive for participants who used 𝑑𝑑 to represent an 
arbitrary duration of time (rather than Δ𝑑𝑑). For these participants, we found that explicitly 
appealing to convention as a rationale for swapping the symbol 𝑑𝑑 for Δ𝑑𝑑 endorsed the 
participant’s reasoning while making a correction in a way that did not disrupt their thinking. 
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Contingent scaffolding 2: Use precise and detailed language to refer to referents. 
Returning to the example of participants conceiving decrease in population as time passes to 
mean a record of the population size at different points in time, we found that keeping careful 
distinction in language between change (for them, the result of a change) and change-by (the 
amount by which a quantity changes) was effective. Introducing the additional vocabulary was 
fruitful for these students who already associated a quantitative meaning with change as result. 
Another important area for precision of language was when discussing time, in particular, 
carefully and consistently using phrases like at time 𝑑𝑑 and during a fixed but arbitrary duration 
of time Δ𝑑𝑑. This precision aided participants who inconsistently used 𝑑𝑑(𝑑𝑑) to refer to population 
since time 0.  We purposefully avoided the phrase over time and instead used as time passes, to 
avoid signaling division in cases where it would be inappropriate. In all cases, we avoided 
referring to quantities by symbols, instead speaking what quantity the symbol represented. 

Contingent scaffolding 3: Support participant in quantification. Some participants 
conceived decrease in population as time passes to mean accumulation of dead birds since the 
beginning of time. These participants intentionally used 𝑑𝑑 to measure time lapsed from 0. We 
took care to acknowledge their model was correct under the assumption that intervals of time 
were always measured from time 0. Building on their own understanding, we asked: “Now what 
if we wanted to consider a duration of time that did not begin at 0?” We built on participants’ 
demonstrated knowledge that Δ𝑑𝑑 = 𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖 to develop a brief intervention using a numberline and 
concrete values for an initial time 𝑑𝑑𝑖𝑖 and a final time 𝑑𝑑𝑓𝑓. We emphasized that given Δ𝑑𝑑 as an 
unknown, but fixed value, it could correspond to infinitely many specific time intervals with 
different starting (𝑑𝑑𝑖𝑖) or ending �𝑑𝑑𝑓𝑓� points, illustrated in the exchange below: 

Int: Now what is the delta t between t equals 2 and t equals 5? 
Peet: It would be 3. 
Int: How did you get that? 
Peet: Because I just subtracted 5 minus 2. 
Int: So you found the distance between, in terms of time anyways. But you found the length 

of time, which is represented by a distance on the page, between 2 and 5. And you got 
delta t equals to 3. Can you find another pair of points corresponding to delta t equals 3? 

Peet: Ok, yeah. I would do something along the lines of 0 and 3. Or 1 and 4. 2 and 5. 3 and 6. 
In this excerpt, the interviewer aided Peet in quantification, the mental act of conceiving a 

measurement process for a specified attribute associated with a specific object (Thompson, 
2011). The exchange continued:  

Int: I'm going to say initial is 1.  
Peet: OK.  
Int: Delta t is 2.  
Peet: OK.  
Int: Where is t initial plus delta t?  
Peet: It would be t final, which is 3.  
Int: 3. Very good. And if t initial is 1 and delta t is 1.5, where is t initial plus delta t?  
Peet: It's going to be 2.5.  
Int: It would be at 2.5. So of independently we can set how long the duration of time is that 

we're looking at. And independently from that, we can set where does the duration of 
time begin.  

Peet: OK.  
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Int: So going back up to your equation, we can think about tau as being the place where delta 
tau begins-- the moment that delta tau begins.  

Peet: Right. OK. So in other words, you're saying the tau-- these two taus are the exact same.  
Int: They don't have the same value. They have the same role.  
Peet: Yes, yes. I understand.  
Int: So tau 0 minus tau-- so just subtracting those two times-- should give us the delta tau.  
Peet: OK.  
Int: Did that help?  
Peet: Right. Yes, it did. I'm trying to cement it into my mind 
As a result of the above exchanges, Peet conceived Δ𝑑𝑑 as a quantity that could vary 

independently of its composition from two values for the quantity time. 
Some participants needed help conceiving a quantity as agnostic to usual units. For example, 

some participants arrived at Subtask #4 with the idea that [𝛼𝛼 × 𝛼𝛼 × �𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)�] represented a 
count for bird deaths. For these participants, because the output units did not include a “per time” 
element, it did not make sense to them to multiply the expression by Δ𝑑𝑑. We found two 
approaches to support these students into developing a quantification of time that was agnostic to 
usual units like hours, months, years, etc.  

1. All these participants agreed that “for something to have happened, time must have 
passed.” We then noted that the birds must have been killed by cats during some finite 
block of time where the exact duration was unimportant. We asked them to consider 
[𝛼𝛼 × 𝛼𝛼 × �𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)�] as the number of successful hunts (or birds killed) during one 
Block of time.  

2. We leveraged participants’ natural inclination to justify multiplication through repeated 
addition. To do this, we asked participants to successively iterate the expression: if 
[𝛼𝛼 × 𝛼𝛼 × �𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)�] is the number of birds killed by cats during one Block of time, 
how many birds would be killed during two Blocks? During three Blocks? During five 
Blocks? During half a Block? During 2.7 Blocks? During a fixed, but arbitrary length of 
time Δ𝑑𝑑? 

This approach had two advantages. First, it allowed participants to generalize to  
× Δ𝑑𝑑 by building on a simple, observable pattern with concrete numbers. The exchange 

followed a pattern similar to development of units coordination among children learning 
proportional reasoning (e.g., Hackenberg, 2007). Second, it built for participants a conceptual 
object called a multiplicative object (Thompson & Carlson, 2017). A multiplicative object is the 
result of a mental act that couples quantities and their attributes, much like an ordered tuple, 
where each component of the tuple can vary independently and the resulting tuple is recognized 
as a quantity as well. Here, the participants formed a conception of “birds killed during an 
arbitrary time interval” by coupling [𝛼𝛼 × 𝛼𝛼 × �𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)�] with Δ𝑑𝑑. For these participants, the 
units of the coupling were more similar to “light-years” than to “kills per unit time times time”.   

Contingent scaffolding 4: Guiding participant to re-quantify a quantity. Some 
participants realized that the cat and bird populations would vary as time progresses. These 
participants interpreted α × β × (B(t) × C(t) as a per-unit-time rate that also varied as time 
progresses. They formulated an integral expression for the number of birds killed during Δ𝑑𝑑 =
𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖, ∫ �α × β × �B(t) × C(t)�� ⋅ 𝑑𝑑𝑑𝑑tf

ti
. While this is a correct model for the question asked, it is 

not useful for moving toward a differential equation to model the interaction of the species.  
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We found two ways to help participants conceive α × β × (B(t) × C(t) as (nearly) constant 
during a small Δ𝑑𝑑, a critical conceptual step for passing from Δ𝑑𝑑/Δ𝑑𝑑 to 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. The first way was 
to suggest that 𝑑𝑑(𝑑𝑑) was large enough such that the fluctuation of a few birds would not matter 
so much. Many participants were surprised that “it was okay” to make this kind of simplifying 
assumption, since students often have strong impulses to preserve precision in their models 
(Czocher, 2019). We then directed the participants to consider a small duration of time, on the 
order of a day or an hour, rather than a month or a season. With these conditions in place, the 
participants were able to write [𝛼𝛼 × 𝛼𝛼 × �𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)� × Δ𝑑𝑑] . The second way was to 
encourage participants to consider an average value for 𝑑𝑑(𝑑𝑑) and 𝐶𝐶(𝑑𝑑) during Δ𝑑𝑑. Some students 
naturally thought of an arithmetic mean using the time interval’s end points 𝑑𝑑(𝑑𝑑) and 𝑑𝑑(𝑑𝑑 + Δ𝑑𝑑), 
some took the value 𝑑𝑑 �𝑑𝑑 + Δ𝑡𝑡

2
�, and others introduced concrete numbers to communicate the 

idea of a weighted daily average. For example, Niali used the notation 𝑑𝑑�̅�𝑥(Δ𝑑𝑑) to signify the 
average valule of the bird population during the interval of time Δ𝑑𝑑 and obtained the following 
formula to represent the quantity “bird decline during Δ𝑑𝑑”: 𝑃𝑃𝑘𝑘 × �𝑃𝑃𝑒𝑒 × [𝑑𝑑�̅�𝑥(Δ𝑑𝑑) × 𝐶𝐶�̅�𝑥(Δ𝑑𝑑)]� × Δ𝑑𝑑, 
where 𝑃𝑃𝑘𝑘 and 𝑃𝑃𝑒𝑒 notated the percent of encounters that end in a bird’s death and the percent of 
encounters that happened per unit time, respectively. Through replication with other participants, 
we found that Niali’s method was viable for those who had completed a course in probability or 
statistics, and the first method was sensible to a broader range of participants.  

In Subtask #4, the same set of symbols can represent multiple aspects of the scenario. The 
expression [𝛼𝛼 × 𝛼𝛼 × �𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)� × Δ𝑑𝑑] represented “successful hunts,” “birds killed,” and 
“change in bird population.” Shifting interpretations for this expression is instrumental to making 
progress in the model’s development, because eventually the expression needs to be associated 
with Δ𝑑𝑑 as its output. These equivalences are interchangeable for instructors, and also to many 
students, but for some undergraduate STEM majors, shifting interpretations of this expression is 
nontrivial. For these participants, these three interpretations correspond to three distinct 
quantities (mental constructs) because their referents in the scenario (objects and attributes) are 
distinct, as shown in Table 1. To scaffold these participants, we appealed to the tripartite nature 
of quantities to guide participants’ attention towards the object attribute pairings forming the 
referent for each interpretation of the expression.  
Table 1 Three interpretations for the expression[𝛼𝛼 × 𝛼𝛼 × �𝑑𝑑(𝑑𝑑) × 𝐶𝐶(𝑑𝑑)� × 𝛥𝛥𝑑𝑑] with explicit reference to objects and 
their attributers in the scenario. 

Object Attribute Unit 
Set of encounters Successful hunts Count 
Bird population Dead birds Count 
Bird population Change during Δ𝑑𝑑 Count 

Discussion & Conclusions 
In this paper we reported four contingent scaffolding moves with quantities and quantitative 

reasoning at their foundation that supported undergraduate STEM majors to mathematize aspects 
of a canonical modeling problem from differential equations The interviewer questioning, which 
contemporaneously focused on students’ quantitative meanings for their equations 
simultaneously revealed participants’ conceptual difficulties and provided avenues for 
overcoming them. Contingent scaffolding move 1 targeted participants meanings for their 
notation. Guiding participants to attend to the object and/or attribute their notation represented 
helped them communicate their intended meaning with conventional notation, and in some cases, 
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helped them modify their notation to correspond with their intended meaning. For example, 
asking the participant what quantity each symbol in 𝑑𝑑�𝑑𝑑𝑓𝑓� = 𝑑𝑑(𝑑𝑑𝑖𝑖) − Birds Killed represented 
typically led to participants realizing 𝑑𝑑(𝑑𝑑𝑖𝑖) − Birds Killed represented “number of birds 
remaining” instead of the intended “decrease in the bird population.” An appreciable subset of 
these participants then modified their model to 𝑑𝑑�𝑑𝑑𝑓𝑓� − 𝑑𝑑(𝑑𝑑𝑖𝑖) = −Birds Killed. It was then a 
natural next step for participants to associate 𝑑𝑑�𝑑𝑑𝑓𝑓� − 𝑑𝑑(𝑑𝑑𝑖𝑖) with “change in bird population” via 
the expression Δ𝑑𝑑 = −Birds Killed. Contingent scaffolding move 2 targeted clear and concise 
communication between participant and interviewer. This aided in mathematization by clarifying 
which aspect of the real-world situation the modeler intended to model. For example, the 
language “change in birds over time” is imprecise. It is reasonably interpreted as either “absolute 
change in the bird population during an arbitrary duration of time” or “change in the bird 
population per change in time.” Contingent scaffolding move 3 aided in mathematization by 
helping participants quantify an important aspect of the real-world scenario that could reasonably 
(from their perspective) further operated upon. For example, Peet conceived Δ𝑑𝑑 as a quantity that 
could vary independently of two specific values of time. Only then could he combine it with the 
already-constructed quantity frequency of encounters that result in death to mathematize 
decrease in the bird population. Similarly, scaffolding move 4 aided in mathematization by 
helping a participant quantify an important aspect of the real-world scenario so that they could 
combine that quantity with other quantities. However, the goal of move 4 is not to help them 
construct a new quantity, but to guide them into re-quantifying an already constructed quantity. 
In both examples, we helped participants conceive α × β × �B(t) × C(𝑑𝑑)� in such a way that the 
modeler found it reasonable to combine α × β × �B(t) × C(t)� and Δ𝑑𝑑.  

Some of the moves we implemented may seem counterintuitive. For example, typically 
curricular materials across grade bands assume that learners need to comprehensively study one 
variable functions before encountering multi-variable functions. The evidence we considered 
here suggests that some cognitive conflicts encountered during modeling could be resolved if 
learners had access to notational conventions and increased capacity for analyzing multivariable 
relationships. Participants clearly recognized complex multivariable interdependences, an 
observation echoed in the covariational reasoning literature (Jones, 2020). One troublesome 
implication is that the standard curriculum may be depriving learners of important mathematical 
tools for use in modeling that would allow them to identify and represent mathematical aspects 
of real-world considerations.  

We wish to emphasize that at any moment during the interview sessions, we could have 
directly remediated errors or misconceptions, shown the correct equation, and explained why it 
was correct. However, our purpose was to understand how the participants were thinking and 
how educators could respond in student-centered ways that would build on or change their 
thinking. Hence, the nature of our claims take the form: “When a participant exhibited X under Y 
conditions, doing Z was supportive.” While the numbers in our sample were small and the 
number of participants ripe for each contingency even smaller, the examples we shared are 
emblematic of the ways that quantitative reasoning, quantification, and quantitative operations 
can be both a source of cognitive dissonance for students as well as the basis for effective 
scaffolding in modeling that still respects learners’ intuitive ways of reasoning.  

Acknowledgements 
This material is based upon work supported by the National Science Foundation under Grant No. 
1750813.  

25th Annual Conference on Research in Undergraduate Mathematics Education 303



References 
Brown, A. L. (1992). Design Experiments: Theoretical and Methodological Challenges in 

Creating Complex Interventions in Classroom Setting. The Journal of Learning Sciences, 
2(2), 141-178.  

Cevikbas, M., Kaiser, G., & Schukajlow, S. (2021). A systematic literature review of the current 
discussion on mathematical modelling competencies: state-of-the-art developments in 
conceptualizing, measuring, and fostering. Educational Studies in Mathematics, 109(2), 205-
236. https://doi.org/10.1007/s10649-021-10104-6  

Czocher, J. (2017). How Can Emphasizing Mathematical Modeling Principles Benefit Students 
in a Traditionally Taught Differential Equations Course? The Journal of Mathematical 
Behavior, 45, 78-94. https://doi.org/10.1016/j.jmathb.2016.10.006  

Czocher, J. A. (2019). Precision, Priority, and Proxies in Mathematical Modelling. In Lines of 
Inquiry in Mathematical Modelling Research in Education (pp. 105-123). 
https://doi.org/10.1007/978-3-030-14931-4_6  

Czocher, J. A., & Hardison, H. (2019). Characterizing Evolution of Mathematical Models 
Proceedings of the 41st annual meeting of the North American Chapter of the International 
Group for the Psychology of Mathematics Education, St Louis, MO.  

Czocher, J. A., Hardison, H. L., & Kularajan, S. S. (2022). A bridging study analyzing 
mathematical model construction through a quantities-oriented lens. Educational Studies in 
Mathematics, 1-23. https://doi.org/doi:10.1007/s10649-022-10163-3  

Ellis, A. B. (2007). The Influence of Reasoning with Emergent Quantities on Students' 
Generalizations. Cognition and Instruction, 25(4), 439-478. www.jstor.org/stable/27739866  

Galbraith, P., & Stillman, G. (2006). A Framework For Identifying Student Blockages During 
Transitions In The Modelling Process. ZDM, 38(2), 143-162.  

Hackenberg, A. J. (2007). Units Coordination and the Construction of Improper Fractions: A 
Revision of the Splitting Hypothesis. Journal of Mathematical Behavior, 26, 27-47. 
https://doi.org/10.1016/j.jmathb.2007.03.002  

Jones, S. (2020). Students' Reasoning about Multivariational Structures. Proceedings of the 42nd 
Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mazatlan, Mexico. 

Larson, C. (2013). Modeling and quantitative reasoning: the summer jobs problem. In R. Lesh, 
P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling Students' Mathematical 
Modeling Competencies (pp. 111-118). Springer. https://doi.org/10.1007/978-94-007-6271-
8_  

Lesh, R., Doerr, H. M., Carmona, G., & Hjalmarson, M. (2003). Beyond Constructivism. 
Mathematical Thinking and Learning, 5(2&3), 211-233. 
https://doi.org/https://doi.org/10.1080/10986065.2003.9680000  

National Research Council. (2012). Discipline-Based Education Research: Understanding and 
Improving Learning in Undergraduate Science and Engineering (S. R. Singer, N. R. Nielsen, 
& H. A. Schweingruber, Eds.). https://doi.org/10.17226/13362  

Stender, P., & Kaiser, G. (2015). Scaffolding in Complex Modelling Situations. ZDM 
Mathematics Education, 47, 1255-1267. https://doi.org/10.1007/s11858-015-0741-0  

Stillman, G., & Brown, J. P. (2014). Evidence of Implemented Anticipation in Mathematising by 
Beginning Modellers. Mathematics Education Research Journal, 26, 763-789. 
https://doi.org/10.1007/s13394-014-0119-6  

25th Annual Conference on Research in Undergraduate Mathematics Education 304

https://doi.org/10.1007/s10649-021-10104-6
https://doi.org/10.1016/j.jmathb.2016.10.006
https://doi.org/10.1007/978-3-030-14931-4_6
https://doi.org/doi:10.1007/s10649-022-10163-3
https://txst.sharepoint.com/sites/GRP-SUMMS/Shared%20Documents/General/Conference%20Proposals/RUME%202023/JCz/www.jstor.org/stable/27739866
https://doi.org/10.1016/j.jmathb.2007.03.002
https://doi.org/10.1007/978-94-007-6271-8_
https://doi.org/10.1007/978-94-007-6271-8_
https://doi.org/https:/doi.org/10.1080/10986065.2003.9680000
https://doi.org/10.17226/13362
https://doi.org/10.1007/s11858-015-0741-0
https://doi.org/10.1007/s13394-014-0119-6


Thompson, P., & Carlson, M. (2017). Variation, Covariation, and Functions: Foundational Ways 
of Thinking Mathematically. In I. J. Cai (Ed.), Compendium for research in mathematics 
education (pp. 421-456). National Council of Teachers of Mathematics.  

Thompson, P. W. (2011). Quantitative Reasoning and Mathematical Modeling. In L. L. Hatfield, 
S. Chamberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative 
research in mathematics education (Vol. 1, pp. 33-57). University of Wyoming.  

van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in Teacher–Student Interaction: 
A Decade of Research. Educational Psychology Review, 22, 271-296. 
https://doi.org/10.1007/s10648-010-9127-6  

 

25th Annual Conference on Research in Undergraduate Mathematics Education 305

https://doi.org/10.1007/s10648-010-9127-6


Interactive Tutorials in Undergraduate Mathematics: What Are They Good For?

Sang Hyun Kim Tanya Evans
University of Auckland University of Auckland

In-person tutorials present a prime opportunity for students to work with others to engage their
problem-solving and critical-thinking skills. We investigate the use of interactive tutorials in a
large, second-year service mathematics course as part of a quasi-experiment whereby students
could either attend in-person tutorials (for a participation mark) or complete the tutorials
individually without attending the live sessions and submit solutions for credit. Our analyses of
student data and self-efficacy measures suggest that consistent attendance at in-person tutorials
may maintain and improve students’ self-efficacy. Median changes to self-efficacy measures for
students who attended in-person tutorials were higher than those who completed tutorials
individually without attending the live sessions. The difference between the changes to the
Emotional Regulation aspect of tutorial self-efficacy was statistically significant (p = .031),
highlighting the role in-person tutorials play in supporting students’ mathematical learning
beyond academic outcomes.

Keywords: self-efficacy, tutorials, in-person learning, online learning

The integration of online learning and technology into higher education continues to induce a
paradigm shift in the way we view teaching and learning in mathematics. Recently, the Covid-19
pandemic has perturbed the norms of teaching and learning. Despite setbacks, it has been a
chance for institutions to realize the potential and necessity for online delivery methods, not only
as means to continue activities during a crisis but also to stay relevant in an increasingly
competitive tertiary market. It is difficult to compete with the low-cost and flexible nature of
online education. As a result, we can expect to see the number of online components within
traditional courses continue to grow. The use of lecture capture technology and learning
management systems have made it possible for lectures and resources to be readily accessible.
However, finding an online substitute that can deliver the same level of engagement and retain
the interactive components is an issue yet to be resolved. One component of undergraduate
mathematics that cannot be easily replaced is the opportunity for collaborative face-to-face
learning – in New Zealand, this usually happens during tutorials, which are weekly 1-hour
classes scheduled in addition to lectures.

Tutorials, like those conducted within our course of interest, have not received as much
attention from researchers, especially in comparison to lectures. Hence, we must gain a deeper
understanding of the contribution of in-person tutorials to one’s experience of learning
mathematics. This study aims to quantify the effects of in-person undergraduate mathematics
tutorials on self-efficacy and address the benefits that tutorials can provide that simply cannot be
matched through online means.

Theoretical framework

Self-efficacy
Theoretical framework Self-efficacy is a psychological construct that allows researchers to

understand how an individual’s action can shape an outcome. Used extensively within
educational psychology, Bandura (1997) defines perceived self-efficacy as “beliefs in one’s
capabilities to organize and execute the courses of action required to produce given attainments”
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(p.3). Self-efficacy may have a potentially greater initial impact on performance than other
related constructs, such as outcome expectations (Sexton & Tuckman, 1991).

Self-efficacy, first proposed by Bandura (1977), is influenced by four main sources: mastery
experience, vicarious experience, social persuasion, and psychological states (1997). Mastery
experience is considered the most significant source (Bandura, 1997; Usher & Pajares, 2008) as
it provides the most realistic indication that students can succeed in a given task. All four sources
have a significant contribution to self-efficacy beliefs.

Self-efficacy, the measure of one’s belief in their ability to successfully perform a given task,
has been well-established as a strong predictor of performance and intrinsic factors in
mathematics. Early research into mathematics self-efficacy showed it had a much stronger direct
effect on performance than variables such as prior experience, gender, or self-concept (Pajares &
Miller, 1994). Similar positive relationships between self-efficacy and performance have been
reported in schools (Pajares & Kranzler, 1995; Pantziara & Philippou, 2015) and at the
undergraduate level (Pajares & Miller, 1994; Peters, 2013). As a significant predictor of
achievement, analyzing measures of self-efficacy can help us to better understand their impact on
students and inform the way they are implemented into higher education courses.

Motivation
Using a quasi-experimental design, we sought to examine the potential impacts of tutorials in

two ways. First, we were interested to see if there was a significant difference in student
performance (final exam grades and overall grades) between students that primarily attended the
in-person tutorial sessions compared to those that submitted their work online. Previous studies
in similar settings report the use of live components to be associated with higher achievement
(Howard et al., 2018; Inglis et al., 2011). However, these studies focused on the difference
between attending live lectures versus watching lecture recordings. Students often justify their
use of asynchronous video resources by praising the control of pace it provides and the flexibility
it affords (Howard et al., 2018). However, the negative association between achievement and
higher use of lecture recordings has primarily been consistent across the undergraduate
mathematics education literature reported in a recent systematic review (Lindsay & Evans,
2021). It is thought that lecture recordings promote surface-level approaches, thus degrading the
quality of learning. However, considering the interactive nature of tutorials, we expect to see a
similar relationship between in-person tutorial attendance and performance.

Second, we set out to investigate tutorials’ impact on a significant intrinsic construct:
self-efficacy. As a significant predictor of success, among other variables, understanding this
impact would allow researchers and course designers to utilize this understudied aspect of
undergraduate courses best, whether it be to justify policies in favor of more fully online
mathematics education at undergraduate levels or as evidence to consolidate the use of in-person
tutorials for the near future in a delicate time of change in education.

Study setting
This study investigated the tutorials within a large, second-year service mathematics course

at the University of Auckland. The course, General Mathematics 2, is split into three main topics
that cover the content required across many disciplines: calculus, linear algebra, and differential
equations. Assessments in the course are divided into four sections: coursework (including
engagement with tutorials) – 15%, mid-semester test – 20%, quizzes – 15%, and a final exam –
50%.
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While the Covid-19 pandemic disrupted many on-campus activities throughout 2020 and led
to a shift to remote delivery methods, the first semester of 2021 presented itself as a relatively
unperturbed semester, with most university activities returning to campus. However, with the risk
of Covid-19 still looming over the community and international students being located outside of
the country, remote options to complete coursework were made available for students.

Tutorials
This format of interactive tutorials is standard at the undergraduate level at the University of

Auckland and is often met with positive feedback from students that note the usefulness of
learning from others in a supportive space (Oates et al., 2016). In the tutorials, students are given
opportunities to collaborate with their peers while problem-solving. Each tutorial session is one
hour long and occurs weekly. A tutor is available during the session to help address questions
and monitor each group’s progress. While attendance or completion of the tutorials in our course
was not mandatory, it was highly encouraged for all students and had a small contribution to
overall grades. Students could receive marks contributing to their coursework grade by attending
an in-person session or completing the questions and uploading their work to a learning
management system (Canvas).

The term ‘tutorial’ is often used in two contrasting ways in the literature. One refers to
learning opportunities where attendance is optional and is directed at supporting students, often
serving a remedial purpose. In many institutions, mathematics support centers subsume this role
(Cronin & Meehan, 2021; Mullen et al., 2022). The other, which we utilize in this work, refers to
a core component of undergraduate courses that, like lectures, aim to provide another medium to
engage learners with the content. This shares many aspects of a lab session in chemistry courses,
where students apply knowledge from lectures to engage their problem-solving and
critical-thinking skills.

Data

Student Data
Student data was collected during the first semester of 2021 via Canvas. In total, there were

354 students enrolled in the course. Student data included tutorial attendance/completion and
performance in the course, including final exams. Of the 354 students enrolled,186 students
attended or completed all 9 tutorials. Due to Covid-19 health restrictions, the first scheduled
tutorial session (in the second week of the semester) occurred online rather than in-person. To
best capture the potential impact of consistent engagement of tutorials, we have not included the
data of students that did not complete all the tutorials or were limited to one option in our
analyses (e.g., offshore students that could not attend the on-campus sessions). Data from these
129 students (36% of the course) will be analyzed further to capture the impact of consistent
tutorial engagement over the semester.

Self-efficacy Measures
Student self-efficacy was measured using the Measure of Assessment Self-Efficacy for

Mathematics Tutorials (MASE-T) (Evans & Jeong, 2023; Riegel et al., 2022). The instrument
measures assessment-related self-efficacy across two factors: Comprehension and Execution
(CE), and Emotional Regulation (ER). The instrument has been validated and shown to be
reliable at measuring student assessment self-efficacy across different contexts, including
tutorials. Of the students enrolled in the course, 219 students provided measures of their
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self-efficacy at the start and the end of the semester. In total, data from 100 students who
completed all tutorials and provided self-efficacy measures will be used for the analysis.

Attendance Groups
Students were classified into two groups by the number of tutorials they attended over the

course. Table 1 shows the distributions of the 129 students by the number of in-person tutorials
they attended. Students were grouped into two groups: those that attended less than half of the
total in-person tutorials (i.e., 0-4 in-person tutorials attended, n = 23) and those that attended
more than half of the total in-person tutorials (i.e., 5-9 in-person tutorials attended, n = 106).
Herein, the two groups will be referred to as online and in-person, respectively.

Table 1. Number of in-person tutorials attended across the semester.
In-person tutorials attended n %
0
1
2
3
4
5
6
7
8
9

11
3
5
2
2
1
6
15
25
59

8.5
2.3
3.9
1.6
1.6
0.8
4.7
11.6
19.4
45.7

The attendance behavior of students throughout the semester suggests that students showed a
strong preference for one of the learning environments over the other, as seen by the large
proportion of students that attended either 0-2 or 7-9 in-person tutorials. The number of students
opting for each method of tutorial completion (in-person/online) remained relatively consistent
across the semester (Table 2). One possible explanation for the slight decrease in the number of
in-person attendees for tutorials 4 and 5 could be that some students may have prioritized their
time to prepare for the mid-semester test and completed the tutorials individually for those
weeks.

Table 2. Tutorial attendance across the semester by attendance groups.
Tutorial 2 3 4 5 6 7 8 9 10

In-person107 106 92 90 101 102 102 104 100
Online 22 23 37 39 28 27 27 25 29

Results

Performance
An independent-sample t-test was run to determine if there were differences in the mean final

exam score and overall grade of online and in-person students. An initial assessment for outliers,
normality (as assessed by Shapiro-Wilk’s test (p > .05), and homogeneity of variances (Levene’s
test (p = .405, p = .325)) was conducted for both the final exam grade and overall grade data with
no violations being detected in either set of data.
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The mean final exam score was higher for online students (M = 73.8, SD = 13.3) than
in-person students (M = 61.3, SD = 16.8), a statistically significant difference with medium effect
size, M = 12.5, 95% CI [5.1, 19.9], t(127) = 3.349, p = .001, d = .77. The online group also had a
higher mean overall grade (M = 78.2, SD = 9.9) than the in-person group (M = 70.8, SD = 12.6).
This difference was also statistically significant with medium effect size , M = 7.4, 95% CI [1.8,
12.9], t(127) = 2.637, p = .009, d = .61.

Self-efficacy
Due to violations in the normality of the self-efficacy data, Mann-Whitney U tests were

undertaken to determine whether there were any significant differences between groups. First,
the median and mean ranks for all measures of initial self-efficacy were higher in the online
group than in the in-person group. By the end of the semester, this was not the case. In particular,
the median and mean rank for all tutorial self-efficacy measures were higher in the in-person
group than in the online group. The online group still had a higher median and mean rank for all
exam self-efficacy measures by the end of the semester. However, these results were not
statistically significant (p > .05).

Second, the analysis of the changes in participant self-efficacy between the start and the end
of the semester revealed the following. A significant difference was observed in the Emotional
Regulation factor of tutorial self-efficacy, which was statistically significantly higher at the end
of the semester for the in-person group (mean rank = 53.12) than for the online group (mean rank
= 35.63), U = 860.5, z = 2.153, p = .031 (Figure 1).

Similarly, change in the Comprehension and Execution factor of tutorial self-efficacy (U =
792, z = 1.491, p = .136) and overall change in tutorial self-efficacy (U = 835, z = 1.907, p =
.057) was higher for the in-person group with these differences almost reaching a level of
statistical significance.
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Figure 1: Histograms of the change in the Emotional Regulation (ER) factor of tutorial self-efficacy. The in-person
group saw a greater increase than the online group, p = .031.

Discussion

Performance
Our findings showed a statistically significant between-group difference in performance in

the final exam and overall grades in the course. A significant difference in performance between
groups of students that utilize different study methods is not a unique finding. Inglis et al. (2011)
reported that students that relied more on online recordings (lecture capture) were associated
with lower grades in the course, while live lecture attendance was met with improved grades.
Similar findings were reported by Howard et al. (2018).

While we report a correlation within our data pertaining to learning activities within a large
undergraduate course, our study differs from the existing literature in two ways. The first is that
our study investigated the use of tutorials, which, as an integral part of tertiary mathematics, has
not been fully explored using quantitative analyses. This study analyses the value of
undergraduate mathematics tutorials through the lens of self-efficacy. Secondly, our correlation
found that using a live study component, that is, in-person tutorials, was associated with lower
performance grades, unlike the studies mentioned previously. While we cannot say whether
students with a higher aptitude for mathematics chose to study a particular way or that the use of
tutorials may not foster mathematical learning, we speculate that there is more to this
phenomenon that warrants further investigation. With both forms of tutorial engagement
involving the same problem sets, it seems unlikely that this difference is due to differences in
content coverage.

One possible cause for this difference could lie in prior knowledge. In a recent study,
Zakariya et al. (2021) consider prior knowledge when examining students’ approaches to
learning and their performance. Their analysis suggests that low prior knowledge may be
conducive to surface-level approaches to learning which can have a significant, negative effect
on performance (Zakariya et al., 2021). Within our learning context, we can expect students
enrolling into a service mathematics course to have a wide range of mathematical abilities that
may have influenced how they choose to learn. Possibly, students with low prior knowledge
perceived in-person tutorials as an easier option to score 100% by simply showing up, whereas
the online option required a written submission for marking.

The presence of high- and low-achieving students in both groups could indicate that students
are making more conscious decisions about how they choose to study. This may be driven by a
heightened appreciation of the benefits of each study option. Research from the pandemic shows
that many students desired opportunities for social interaction, immediate feedback, and wanted
to return to campus, noting difficulties in staying focused and motivated at home (Mullen et al.,
2022; Radmehr & Goodchild, 2022). However, the oft-praised flexibility provided by remote
study options could very well be a priority for many individuals that prefer to study online
(Thompson & McDowell, 2019). Thus, we cannot make any concrete claims about students’
motivation behind their preferred study method without using qualitative data.

Self-efficacy
First, the median initial self-efficacy measures were higher for online students than the

in-person students. While this difference was not significant, it is worth noting as a potential
factor in student decision-making about how to study. This hypothesis is in line with the
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literature reporting that students find enrolling in online courses for subjects that are perceived to
be easier for them to be more favorable (Jaggars, 2014).

When comparing the changes to self-efficacy, the in-person students saw no negative changes
to the median exam and tutorial self-efficacy measures. For the online group, the change to
median self-efficacy measures remained unchanged for the Comprehension and Execution factor
of their exam self-efficacy, while it dropped for all others. The greatest median changes for
online students were seen in their tutorial self-efficacy, with significant changes in the Emotional
Regulation factor of tutorial self-efficacy. The localization of this significant change is consistent
with the domain-specific nature of self-efficacy (Pajares & Miller, 1995). Additionally, it
strongly suggests that the benefits of interactive tutorials at the undergraduate level can branch
into affective factors. It may help to maintain positive beliefs within individuals and foster a
greater sense of community between learners.

The in-person tutorials with a group-work component promote a high degree of social
engagement between peers and experienced tutors, seen in the form of immediate feedback and
words of encouragement and motivation. At the undergraduate level, these are conducive to
active learning and position tutorials as positively contributing to achievement (Freeman et al.,
2014). The negative correlation between achievement and in-person tutorial attendance, while
significant, cannot be used to make a claim for or against one form of tutorial engagement. In
order to do so, we need to control for factors that influence performance, such as prior
knowledge. We can also reflect on the differences offered by each delivery mode.

One key difference between the two groups in our study is the learning environment where
student active (cognitive) engagement occurs. In-person tutorials provide an opportunity for
collaborative learning through the presence of peers and tutors. From the perspective of cognitive
psychology, this could be beneficial, as evidenced by the collective working memory effect
(Kirschner et al., 2011; Kirschner et al., 2018). This effect suggests that learning as a group is
more effective than individual learning if the material is sufficiently complex, exceeding the
limits of each individual student’s working memory. “In this situation, the cognitive load of
processing this complex material is shared among the members of a collaborative learning team
enabling more effective processing and easier comprehension of the material.” (Kirschner et al.,
2018, p. 222). However, the researchers caution that bringing together a group of learners is no
guarantee that the learning would happen efficiently as many other factors are involved.

Our findings show that, on average, the trajectory of students’ Emotional Regulation
component of tutorial self-efficacy is improved through their participation in in-person tutorials.
Thus, shifting our perspective to what is uniquely offered by in-person tutorials could be
worthwhile to better understand their importance in undergraduate mathematics learning.

Limitations
It would be ill-considered to generalize the finding to different courses or contexts or to

completely refute the effects tutorials may have on other aspects of self-efficacy. Considering
many of the differences were borderline statistically significant, it would be worth investigating
different courses, including those specific to mathematics majors.

We recognize the importance of collecting more measures of learning, including qualitative
data, such as students’ perspectives on tutorials as a learning resource. This could improve our
understanding of students’ preferences, provide us with a different lens to analyze our findings,
and allow us to explore the more nuanced differences between the delivery modes.
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How Do We Disentangle Equality from Equivalence? Well, It Depends

Zackery Reed John Paul Cook
Embry Riddle Aeronautical University Oklahoma State University
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Oregon State University Oklahoma State University

In this paper, we report on interviews with mathematicians exploring the ways in which they
think about the relationship between equality and equivalence. Given sometimes unclear and
conflicting presentations of equality and equivalence in the literature, we are motivated to
understand subtleties about how these constructs interact; doing so can have pedagogical
implications, which we explore in this paper. We present three major themes that emerged from
our analysis of the mathematicians’ discussions of equality: 1) that equality represents a
well-specified equivalence relation, 2) that audience matters when specifying equivalence and
equality, and 3) that context is imperative when discussing equivalence and equality.

Keywords: equivalence, equality, equivalence relations, mathematicians

In this paper, we unpack the nuances of multiple mathematicians’ understandings and uses of
equivalence and equality, and the potential implications of these nuances for K-16 pedagogy.
Rather than bringing new mathematical insights to light (see Mazur (2008)), we seek to consider
pedagogical implications pertaining to relationships among and distinctions between equivalence
and equality as expressed by mathematicians. We suggest that such insights are valuable for
researchers who want to better understand the nature of equivalence, and for instructors who
seek general principles and guidelines for supporting students in productive ways of reasoning
about both equivalence and equality. We address the following research question: How do
mathematicians view the relationship between equivalence and equality?

Relevant Literature and Theoretical Perspectives
In this section, we introduce relevant literature and situate our work within theoretical

perspectives. This includes framing our working definitions of equivalence and some
mathematical discussion about equivalence and equivalence relations.

Equivalence and Equality
There has been a considerable amount of research exploring equivalence and equality; much

of this work has been conducted in K-12 settings (e.g., Knuth et al., 2006; McNeil & Alibali,
2005; Solares & Kieran, 2013), although some has explored these ideas with older students as
well (e.g., Chin & Tall, 2001; Godfrey & Thomas, 2008; Stephens, 2006). We focus here on
work that has explored the relationship between these two foundational mathematical notions,
which are broadly synonymous but subtly different: while the equivalence concept is
well-specified (via the definition of an equivalence relation), we observe that explicating its
relationship to and distinction from equality is important but not yet well articulated or
understood. Despite its ubiquity, for instance, equality has been referred to as “slippery” (Mazur,
2008, p. 222) and “precarious” (Saldanha & Kieran, 2005, p. 5). Hersch (1997) encapsulated this
idea well when he noted that equality “is used freely, from kindergarten to postgraduate. It’s
never defined or explained” (p. 50).
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The K-16 curriculum provides a multitude of examples that highlight the potential benefits of
being able to disentangle equality from equivalence. For example, Saldanha & Kieran (2005)
found that “many students’ emerging thinking about equivalence was rightly bound up – indeed,
arguably confounded – with notions of numerical equality” (p. 5). We infer that, here, equality
refers to the equivalence of numerical expressions, whereas equivalence refers to the equivalence
of algebraic expressions. Note that, in this situation, it would not be inappropriate to use equality
to refer to both the equivalence of numerical expressions and the equivalence of algebraic
expressions, as is in fact normative.

Also consider the notion of equation solving, which not only involves “a grasp of the notion
that [the] right and left sides of the equation are equivalent expressions, but also that each
equation can be replaced by an equivalent equation (i.e., one having the same solution set)”
(Kieran, 1981, p. 323). That is, two forms of equivalence are at play. We observe that, in such
instances, the algebraic expressions in question could be reasonably said to be equal (and thus
also equivalent). Though while the equations are equivalent because they share the same solution
set, they are not considered to be equal (we consider it normative to say, for example, that

is equivalent to , rather than to say that is equal to ).2𝑥 + 1 = 5 2𝑥 = 4 2𝑥 + 1 = 5 2𝑥 = 4
Thus, in contrast to the first example we discussed, equality applies to one instance (expressions)
but not the other (equations).

The topics featured in these examples – the equivalence of expressions and equations – are
foundational in the mathematics curriculum, yet equality does not uniformly apply in each
situation. Indeed, these peculiarities illustrate that “[m]ath lingo sometimes says ‘equal,’
sometimes ‘equivalent’” (Hersch, 1997, p. 50). We observe that the rules governing when one
might use one or the other are implicit and underspecified. This spurs us to ask: in what
situations might we use equality, and why?

The literature does contain some attempts to answer this question. Mazur (2008) conducted a
deep and mathematically rigorous exploration, using category theory to explicate the relationship
between equivalence and equality. However, we note that his argument – while undoubtedly
useful to a research mathematician and generalizable across many context – is far beyond the
scope of mathematics with which K-16 students (and most K-16 teachers) are familiar. What is
needed, we propose, is an explanation of the relationship between these ideas that, in addition to
being plausible and generalizable, is also accessible to K-16 students and instructors. In this vein,
McNeil and colleagues (2012), for example, explained that numerical equivalence is “formally
represented by the equal sign” (p. 1109). Similarly, Fyfe and Brown (2018) framed numerical
equivalence as “the relation indicating that two quantities are equal and interchangeable” (p.
158). The example of equivalent equations, for instance, illustrates that equivalence is not always
“formally represented by the equal sign” and certainly can – but need not always – indicate that
“two quantities are equal.” While these descriptions of the equivalence-equality relationship are
certainly appropriate for the contexts from which they were drawn, we note that they do not
frame the relationship in a way that generalizes to other contexts, and thus are of limited use for
our purposes here.

Others have highlighted equivalence as a more general and sophisticated version of equality,
but have pointed out that equality is nevertheless used differently (e.g., Rupnow & Sassman,
2022). Kieran’s (1981) seminal paper on equivalence begins with Gattegno’s (1974) observation
that, with respect to equality, “equivalence is concerned with a wider relationship” (p. 83).
Additionally, Fischbein (1999) argued that “the concept of equivalence is more general and much
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more subtle than the concept of equality. What seems to be trivial for equality, is not necessarily
trivial for equivalence” (p. 23). Our initial impression is that framing the well-specified notion of
equivalence as more general than the “slippery” and “precarious” notion of equality is both
useful as a starting point for our analysis and consistent across mathematical contexts. A
contribution of our work, therefore, is to further explore and elaborate these conceptual
statements regarding the specificity of equality and the generality of equivalence as a result of
analyzing the perspectives of multiple mathematicians.

Framing Equivalence
Here we define and characterize equivalence, which connects to our interview design and our

analysis. We broadly draw on Cook, Reed, and Lockwood’s (2022) framework, which employed
conceptual analysis to identify three interpretations of equivalence taken on by students across
mathematical domains and scholastic settings (these included common characteristic,
descriptive, and transformational interpretations). We note that each of these focus on the
features of students’ possible interpretations of the equivalence of specific objects; that is, these
interpretations involve what Hamdan (2006) calls a local, element-wise view of equivalence.

While we inferred the presence of these local interpretations when analyzing our interviews
with mathematicians, we determined that the mathematicians’ perspectives on the relationship
between equivalence and equality can be better characterized in terms of a global view of
equivalence, which “requires going beyond the element-wise conception of a relation” (Hamdan,
2006, pp. 130-131) in order to focus on the structure of a set in terms of the equivalence classes
based on the relation that partitions the set. One key global interpretation of equivalence taken on
by the mathematicians, which theoretically grounds our discussion of equivalence and equality
here, is that objects “are identified as ‘the same’ if they lie in the same equivalence class”
(Rupnow & Sassman, 2022, p. 119). A key aspect of this interpretation is that it is by nature a
stipulated attribution of equivalence. Indeed, given any set, an extreme use of this interpretation
might entail an arbitrary partitioning of the set and then attribution of equivalence to the
members of each individual partition. While employing this interpretation is usually much more
purposeful (and less arbitrary), we find that the key subtleties of attributing equality or
equivalence to mathematical objects are grounded in one’s ability to assign equivalence based on
membership in an equivalence class. In fact, our exploration of when to use equality largely
centers on the conditions by which the mathematicians might not just attribute equivalence to
members of each class, but instead might determine it appropriate to ignore differences amongst
elements in the same class altogether.

Methods

Data Collection
The data on which we report is taken from a larger study examining the ways that both

mathematicians and students view equivalence across undergraduate mathematical domains.
Early data collection targeted research mathematicians to, among other goals, generate
hypotheses about how students might productively understand equivalence at high levels of
mathematics. One outcome of these interviews was an early awareness that the relationship
between equality and equivalence was relevant to these mathematicians’ understandings and uses
of equivalence, and that there were many subtleties to the mathematicians’ views on equality that
have key implications for mathematics instruction in general.
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As part of the larger study, we interviewed research mathematicians specializing either in
abstract algebra or in combinatorics. Our primary objective was to build an initial theory that
accounted for the key ways in which algebraists and combinatorists might think about
equivalence. This report is based upon individual semi-structured interviews (Fylan, 2005) we
conducted with eight mathematicians, all of whom were tenured mathematics faculty at large
universities across the United States. The primary data for this report were the video records of
the 90-minute interviews conducted with the mathematicians (referred to here by the
pseudonyms Dr. A, Dr. B, etc.). Though we asked a variety of questions about equivalence and
how it manifests in their research and instruction, here we focus primarily on their responses to
the following question: “Do you think that there is a difference between equivalence and
equality? If so, please explain in what kinds of situations you would use equality and in what
kinds of situations you would use equivalence. If not, please explain why.”

Data Analysis
The video records were transcribed in full, and the transcripts were initially analyzed

according to Cook et al.’s (2022) framework for interpreting local, element-to-element instances
of equivalence. After inferring the various ways in which the mathematicians were interpreting
equivalence, and determining that a global, equivalence-class based perspective on equivalence
(Hamdan, 2006) would be more productive for analyzing the mathematicians’ conceptions of
equality, we isolated the segments of the interviews in which the mathematicians specifically
discussed the relationship between equivalence and equality. We then employed thematic
analysis (Braun & Clarke, 2012) on this subset of the data. Thematic analysis was useful for our
purposes because it provided a mechanism by which we could identify themes related to the
mathematicians’ views of the relationship between equivalence and equality and also make sense
of these themes with respect to our research question. Our analysis was primarily data-driven and
exploratory, though we did use Hamdan’s (2006) global perspective on equivalence and
equivalence classes to guide our identification and description of themes. We followed Braun
and Clarke’s (2012) stages of thematic analysis (familiarizing oneself with the data, developing
initial codes, searching for themes, reviewing themes, and characterizing and naming themes),
then met to compare and negotiate our interpretations. From this process we identified the three
themes that we discuss below.

Results
We now detail the overarching themes we identified regarding the nature of the relationship

between equality and equivalence. Generally, the mathematicians we interviewed framed
equality as a relationship between objects that results from declaring and imposing a
well-specified equivalence relation. Their criteria for when they would comfortably use equality
(instead of the more general notion of equivalence) to describe the relationship depended on our
two major themes of context and audience. Though we observed instances of each of these
themes across a multitude of excerpts and interviews in our data set, due to space constraints we
present each theme only with prototypical, illustrative responses from our data.

Equality Indicates a Well-Specified Equivalence Relation
Our first theme is that equality indicates a well-specified equivalence relation. That is,

equality is used to relate elements in the same equivalence class to each other once an
equivalence relation has been clearly defined and enacted on a given set. To illustrate this point,
we focus on responses from Dr. A, a combinatorist who explained the nuances of the
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equality-equivalence relationship by pointing out the differences in the role of equality before
and after a well-specified equivalence relation is imposed. For Dr. A, before an equivalence
relation is imposed, equality is “kind of the trivial case where every block of the partition is a
single element.” In such cases, he said, “there’s one element that’s equal, you know, the
equivalence classes have size one. There’s no variation.” In other words, prior to the
implementation of a well-specified equivalence relation, equality means identity. That is,
equality only applies to elements that are represented in exactly the same way with no variation
in representation (e.g., prior to establishing what it means for two numerical expressions to be
equivalent, 3 is only equal to 3 and is not, for example, equal to 1+2). Dr. A then explained
equality in the context of using modular congruence as an equivalence relation:

Dr. A: But if I’m willing to just say, “No, I’m not interested in all the integers anymore, I
now just want one element from these classes,” I feel, like, okay committing to that. Then
it’s okay. That's sort of my, that's what it means to me to now say, “Okay, when I say
equals … I'm not thinking of three as three, I’m thinking of three as a … representative of
this set [of integers congruent to 3 modulo 7],” or whatever. But it’s kind of like you’re
changing the idea of what [the equal sign] even means. And now the definition of
equality, I guess, is okay in my mind now […]. It’s just that that equality has to be
defined.

We highlight two key features of this theme that we infer from this comment. First, Dr. A
emphasizes that “equality has to be defined.” He made a similar comment at another point in the
interview, noting that “I’m okay with [equality] once you declare it and clean it up.” We
therefore infer that, for Dr. A, an essential element of declaring objects to be equal is that
equality is well-specified. First, notice that Dr. A’s language distinguishes the meaning of
equality before and after the introduction of modular congruence as an equivalence relation.
Before, equality meant only identity (e.g., 3 is only equal to 3). After, the introduction of the
equivalence relation and collapsing of the integers into equivalence class representatives
establishes a new form of equality (e.g., 3 can now be considered equal to 10, 17, etc.). Bringing
these two features together, we infer that equality indicates a relationship between elements that
results after one declares and imposes a well-specified equivalence relation.

Audience Matters When Specifying Equivalence and Equality
Our second theme is that one’s use of equality is also conditioned by one’s image of the

audience. For example, Dr. A noted that equality “has to be either explicitly there or at least
understood by all the people in the conversation as an okay use of equality.” Also consider the
following comment from Dr. B, who had previously indicated the importance of specifying what
equality means:

Dr. B: So, what’s probably going on in my head, the rule of thumb is if I, as the speaker,
I’m confident that everybody in the conversation really understands what’s going on, then
we can get careless. In [an introductory abstract algebra class], I don’t think it’s ever
appropriate to have that confidence. […] So yeah, if I’m doing modular arithmetic in
[class] instead of . And I'm gonna be very clear that I'm always using bars1 = 8 1 = 8
[…] because with that collection of students, I don’t know, there’s probably a significant
fraction where the notational abuse is fine and honestly helpful, but there's another bunch
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who are just gonna be so completely lost if you start to do it that I wouldn’t try it. On the
other hand, if I’m teaching […] the master’s level class, yeah, I'm not putting those bars
on after the first day that I introduced the quotient definition.

Dr. C offered a very similar explanation:

Dr. C: The students may not be comfortable with equivalence and equality being the
same, like, and this probably comes up […] in modular. You know, if I’m in and I’m𝑍

5
saying, “Oh, six is the same as one,” […] I think for mathematicians that’s, we’re very
casual with our language, you know? So, […] that could be okay. But maybe for an
undergrad that would be not so much okay to say 6=1.

Overall, the mathematicians we interviewed indicated that, with respect to a particular topic,
equality might be allowable when in discourse with some populations (e.g., graduate students
and mathematicians) but not advisable when in discourse about the same topic in other
populations (e.g., undergraduates in their first abstract algebra course).

The Mathematical Context Is Imperative When Discussing Equivalence And Equality
Our final theme is that nuances related to the mathematical contexts under discussion also

influence whether or not equality is used. For example, above we discussed a comment from Dr.
B in which he discussed how he would feel free to write statements like to connote the1 = 8
equivalence of elements in the quotient while amongst mathematicians or in a graduate𝑍

7
course. He went on to add, however, that this might not be the case if he has “got multiple
quotients interacting or something.” We infer here that, in such situations, the mathematical
context at hand might shape one’s use of equality. Also consider the following comment from Dr.
D:

Dr. D: So, equality is an equivalence relation, […] so if I’m looking at a quotient ring –
so I’m defining, you know, ring mod ideal – then mod . Then I can really say that𝑄 = 𝑅 𝑖

really equals [his emphasis] in because we have defined equality to be𝑎 + 𝑖 𝑏 + 𝑖 𝑄
that way. […] So, in terms of discrete math, I will define to equal .{𝑎, 𝑏, 𝑐, 𝑑} {𝑐,  𝑏,  𝑎,  𝑑}
I will define those to be equal if I put the curly brackets on and I understand that these
things are sets. But I will say is not equal to . […] equality(𝑎,  𝑏,  𝑐,  𝑑) (𝑐,  𝑏,  𝑎,  𝑑)
depends on the context that we’ve agreed upon.

Similarly, Dr. C explained that, to him, consideration of mathematical context also influences
when equality might be most appropriately used:

Dr. C: It’s very situational to the problem being asked. […] I might be going off on a
tangent now, but I’m just thinking when I say equals it depends on where I’m working,
you know? An integer, if I’m saying six and one are integers, then no, they can’t be
equal. They’re different. But if I’m working in , then yeah, they’re totally equal.𝑍

5

We view these considerations of the mathematical context as complementary (and not disjoint
from) considerations of the audience.
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Discussion
In response to our research question (How do mathematicians view the relationship between

equivalence and equality?), our analysis indicates that – in alignment with the literature –
equivalence is indeed the more general, comprehensive notion, and that mathematicians’ use of
equality is conditioned by (1) whether or not the form of equivalence in question has been
well-specified, (2) the mathematical context, and (3) their images of the intended audience for
the mathematical discourse in question.

A major goal of this report is to make a case that more care is needed when conceptualizing
equality in educational contexts, and that there are subtle aspects of how we use equality in both
research and teaching contexts that can have important implications for research and instruction.
Returning to the literature, when it is said that equivalence is “formally represented by the equal
sign” (McNeil et al., 2012, p. 1109), our findings suggest that there is more specificity needed to
situate when we use equality to formally represent equivalence relations. This functionally brings
clarity to the theme in the literature about how equivalence is more general than equality: for the
mathematicians, equality represented a well-specified equivalence relation that was appropriate
for the intended audience and mathematical context.

We believe our analysis builds upon other pieces of the discussion of equivalence and
equality in the literature as well. Particularly, we propose that a reason that equality has been
called “slippery” and “precarious” is perhaps because its use depends not solely on mathematical
rigor and precision, but on the user’s image of the audience and mathematical context. That is, to
a certain extent, this is an epistemological – and not solely a mathematical – distinction. These
themes support the idea that there is not just one definition of equality, underscoring the
importance of our first theme (as well as many calls by researchers and curriculum designers): it
is critical to specify exactly the scope of situations in a given context to which we apply notions
of equality. As a practical takeaway, then, our findings highlight that we should be much more
explicit about equivalence in our teaching of mathematics across the spectrum. Currently, there is
a danger that equivalence is being brushed under the rug, under the guise of equality, and there
are not opportunities for broader conversation about how and why we attribute equivalence.
Further, it may be useful to emphasize that our use of the equal sign expands in complexity and
layering as we progress throughout the K-12 curriculum (and then into the undergraduate
curriculum). Our findings may raise additional suggestions for certain populations; for example,
for pre-service secondary teachers this is an opportunity to draw potentially meaningful
connections between advanced mathematics (e.g., equivalence relations and equivalence classes)
and the secondary mathematics they will soon be teaching (e.g., equivalence in the context of
rational numbers, expressions, and equations).
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Exploring How Status Influences Relational and Participatory Equity in Inquiry-Oriented Small
Group Interactions

Brittney Ellis Tenchita Alzaga Elizondo
Texas State University Portland State University

While inquiry approaches have the potential to open up more equitable spaces in the classroom,
research has shown this is not guaranteed. In this study we focus on the role that status can play
in creating (in)equities during small group work. In particular, we compare one low-status
student’s interaction with two high-status students in two small group episodes. We found that
the two episodes differed in terms of participatory and relational equity and our results describe
how status and certain patterns of interaction may account for this difference.

Keywords: Status, equity, small group interactions, inquiry-oriented instruction

There is some consensus that research on inquiry approaches in undergraduate mathematics
classrooms needs to consider equity issues (Adiredja & Andrews-Larson, 2017; Laursen &
Rasmussen, 2019; Melhuish et al., 2022). Scholars have suggested that group work – a common
feature of inquiry instruction – may be a potential factor contributing to inequities in learning
mathematics at the undergraduate level, particularly along gender lines (Brown, 2018; Ernest et
al., 2019; Hicks et al., 2020; Johnson et al., 2020). Johnson et al. (2020) established that men
achieved higher scores than women on a conceptual assessment after taking inquiry-oriented
abstract algebra. The authors speculated that group work may open up opportunities for
microaggressions and implicit bias to occur, which could negatively impact women’s confidence
in their own mathematical ability, resulting in lower performance. Ernest et al. (2019)
characterized several student interactions during group work in an inquiry setting as overtly
sexist and implicitly exclusionary towards women. This small body of research points to a need
to better understand social processes during group work in inquiry classrooms that may be able
to explain such inequitable findings.

Scholars at the K-12 level have argued that status and positioning during group work may
amplify inequities in inquiry learning environments (Battey & McMichael, 2021; Shah & Lewis,
2019). Yet, how status influences (in)equitable interactions during group work has been
underexplored in research at the undergraduate level. Therefore, this study set out to explore the
role of status during group work in an inquiry setting from participatory equity and relational
equity perspectives.

Theoretical Framework
In this study, equity is defined as situations in which all students can access resources they

need for learning, and inequity as situations that limit access to resources needed for learning
(Shah & Lewis, 2019). Resources needed for learning mathematics in small groups can include
physical materials (e.g., notes, definitions, technology), skills to complete the task (e.g.,
problem-solving strategies, intuition behind a proof), and a safe learning environment (e.g., learn
from mistakes, space to make sense). Two interrelated concepts further indicate how situations
are more or less inequitable in small groups. First, participatory equity describes situations in
which “opportunities to participate―and participation itself―are fairly distributed among all
students involved in a learning interaction” (Shah & Lewis, 2019, p. 428). Second, relational
equity (Boaler, 2008) describes situations in which the quality of interactions provides each
student “access to opportunities to develop identities as capable learners” (p. 428). As human
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interactions naturally fluctuate, a situation will never be completely equitable or inequitable. For
instance, in one situation a student may have more opportunities to participate and influence
decision making at one moment, then limited access to such opportunities at another moment.

Unbalanced power dynamics due to differences in status characteristics may amplify
inequities in small group work (Esmonde, 2009a; Shah & Lewis, 2019). A status characteristic is
known as an “agreed-upon social ranking where everyone feels that it is better to have a high
rank than a low rank” (Cohen et al., 1999, p. 84). In the classroom, academic status
characteristics such as perceived ability are extremely powerful status markers (Cohen & Lotan,
2014), which can be impacted by diffuse status characteristics (Ridgeway, 2018) such as gender,
race, ethnicity, socioeconomic class, etc. (Cohen et al., 1999). For example, it is a widely held
belief that “Asian men are good at math” (Shah, 2017) which raises their perceived ability in
math, thus increasing their status. Students with higher perceived status typically contribute more
in class and small groups, gaining more opportunities to access resources needed for learning.
Status hierarchies form quickly when people regularly interact with one another (Berger &
Webster, 2018; Ridgeway, 2018) – a key characteristic of inquiry classrooms (Laursen &
Rasmussen, 2019). While status hierarchies may become stable over time, it is possible to disrupt
this process to promote more equal status positions between students (Cohen et al., 1999). We
argue that exploring status positions while students work in small groups can help us understand
the role status might play in shaping situations that are more or less (in)equitable.

To explore how status shapes group work interactions with respect to participatory and
relational equity, we leveraged research using status and positioning theories to analyze small
group interactions (e.g., Adams-Wiggins et al., 2020; Alexander et al., 2009; Chizhik, 2001;
Esmonde, 2009b; Shah & Lewis, 2019). Table 1 provides the analytic constructs used in our
analysis with low- and high-status indicators and examples from our data. The observable group
activities in interaction come from status construction theory (Berger & Webster, 2018; Wagner
& Berger, 1993), and the low- and high-status indicators were identified from several sources
drawing on status theory (e.g., Chizhik, 1999, 2001; Cohen et al., 1999; O’Donnell, 1999).

Table 1. Status Constructs Used to Analyze Small Group Interactions

Observable
Activities in
Interaction

Low-Status
Indicator

High-Status
Indicator

Example from Small
Group Data

Opportunities to
Contribute

Communicated
Evaluations of
Contributions

Influence Over
Group Decision
Making

Grants
opportunities to
act (seeks help
from others)

Negative
evaluations
(“That is wrong”)

Ideas rejected or
ignored by the
group (less ability

Receives
opportunities to
act (answers
questions)

Positive
evaluations
(“That is a good
idea”)

Ideas accepted by
the group
(influences the

Justin: So now that we
have this, how does this
relate? (granting
opportunities to act)

Alison: So, we have to
define Q and W. They’re
just symmetries.
Abigail: Yeah that’s smart.

Abigail asks if they should
start on part two. This idea
is not taken up as Justin
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to influence
disagreement
outcomes)

outcome of
disagreements)

suggests they are not done
with part one yet.

Methods

Data Collection and Episode Selection 
Data comes from a project developing inquiry-oriented introduction to proof curricular

materials designed to introduce students to various proof-related activities (e.g., proof
construction and comprehension, defining, conjecturing, etc.) using real analysis and group
theory concepts. We focused on a curriculum implementation in an Introduction to Proofs course
that was taught remotely over Zoom (due to COVID-19) at a large public university. Table 2
contains the 14 participating students’ ethnoracial background by gender (some students
self-identified as more than one race/ethnicity). Students engaged in group work at least once per
day with groups changing every day. The second author attended class each day, entering
breakout rooms during group work as a silent observer to capture the students’ activity. Screen
recordings captured activity over Zoom as well as activity on Google Docs which became a
virtual space for students to work together on tasks.

Table 2. Self-Reported Student Ethnoracial Backgrounds and Gender

Gender
Woman (n=6)
Non-Binary (n=1)
Man (n=7)
Total (n=14)

Whit
e
5
1
5
11

East Asian
0
0
3
3

Southeast Asian
0
0
2
2

Hispanic/Latin
x
2
0
1
3

Two group work episodes were selected as the main data source for this study. A group work
episode was defined as the time period in which students worked in groups on a specified task.
The two episodes were selected based on the second author’s extensive work studying the
students’ collective mathematical activity (see Alzaga Elizondo, 2022). First, in episode 1, Lee
(Southeast Asian male) and Alison (white female) were working to prove that group
isomorphisms preserve inverses. Lee took a clear lead in proposing and developing the
mathematical ideas while Alison followed along, regularly providing evaluations. From the
second author’s classroom and group observations, Lee had higher perceived status among the
classroom community. Contrastingly, in episode 2, Alison, Abigail (white female) and Justin
(white male) worked to prove that a group element can appear at most once in a row of the
group’s Cayley Table. Alison contributed several key ideas to her group’s proof such as the
overall structure of a contradiction argument and several line-by-line justifications. While Alison
was an active participant in both episodes, she appeared to contribute to the co-construction of
mathematics in qualitatively different ways. Given the more collaborative activity in episode 2,
we conjectured that empirically analyzing status in relation to participatory and relational equity
while focusing on Alison would show episode 2 as being more equitable compared to episode 1.

Analysis
Students in remote environments communicate using different modalities when working

together to solve a problem (Hoffman 2019). The first step in our analysis was to create
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multimodal transcripts that captured both verbal communication and any activity across different
modes (i.e., on Google Doc and Zoom). To map any nonlinear forms of communication, we used
descriptive text (i.e., “as she talks, she writes:” or “while everyone else works they edit the text”)
and/or time stamps. Together, the transcripts provided a complete image of the students’
multimodal discourse, which we used with the video data for subsequent analysis. 

We leveraged equity analytics (Reinholz & Shah, 2018) to quantify the number of talk turns,
the duration of talk, and proportion of talk in each episode. Specifically, we used the multimodal
transcripts to count the number of both verbal talk turns and non-verbal participation. Students
often used the Google Doc to communicate and illustrate ideas (Alzaga Elizondo, 2022), thus we
defined a non-verbal participation turn as any time a student added something to the shared
document. Then, we used the constructs in Table 1 to analyze status relations. Specifically, at
each talk turn in the multimodal transcripts, the first author attributed who granted/accepted
opportunities to contribute, evaluated specific contributions, and whose ideas were taken up,
ignored or rejected and how this impacted influence over group decision making. Additional
analytic notes were recorded to describe how the students treated and interacted with one another
as well as how status differences emerged. The second author went through all analytic notes and
transcripts to add anything new or challenge the first author’s interpretations. The two authors
then met to discuss and compare analytic notes and reconcile any differences. 

As we moved into an interpretive phase of analysis, we wrote analytic memos (Creswell &
Poth, 2016) that centered on interactions between low-status and high-status pairings: Alison and
Lee (Episode 1) and Alison and Justin (Episode 2). The purpose of creating the memos was to
systematically find evidence and any counter-evidence for emerging interpretations of the
interactions and compare across the two episodes. For example, in episode 2, we began to see an
interaction pattern emerge between Alison and Justin that was different from interactions
between Alison and Lee and seemed connected to Justin maintaining his high status position
(which he implicitly established throughout the episode). The first author wrote memos from
re-watching the video data with the transcripts and status analysis, and the second author served
to challenge interpretations in the memos. Any disagreements were resolved through discussion.

Results
In the following, we first demonstrate how participation was distributed differently among

the students in each episode, with Alison participating less overall in episode 2 compared to
episode 1. Then, from a relational equity perspective, we found that the quality of interactions
also differed between the episodes. We argue that the students’ status relations provides insight
into how the quality of interactions differed. Specifically, in episode 1, Alison was invited to
co-construct a proof with Lee (a high status student) by evaluating lines in the proof, while in
episode 2, Alison had to defend her mathematical contributions repeatedly to Justin, a higher
status student who established himself as an expert on what formal proofs should look like
throughout the episode.

Participatory Equity
Table 3 describes the verbal and non-verbal participation distributions across participants in

each episode, which provides insight into how fairly distributed their participation was (Reinholz
& Shah, 2018). Meaning, if participation is distributed equally across three people working in a
group, each person should have about one-third of the whole amount of talk-time allotted to
them. We caution that equitable or fair participation is not synonymous with equal participation
(see Reinholz & Shah, 2018). With that in mind, in episode 1, Alison and Lee each participated
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about a proportionate 50% of the time, with Alison talking for slightly longer durations and Lee
participating more non-verbally. In comparison, Alison participated less than her allotted
one-third and for shorter lengths of time in episode 2, and Alison and Justin contributed about
the same non-verbally (i.e., adding to the shared google doc). While Alison did not participate a
fair share amount in episode 2, we would not claim that this alone implies inequity occurred.
Therefore, to further compare the two episodes, we turn to our status analysis and interpretations
from a relational equity perspective.

Table 3. Verbal and Nonverbal Participation Distributions.

Episode 1

Participation
Alison
Lee
Total

Talk Turns
50
49
99

Duration
8.1 min
6.6 min
24 min

Percentage
49.49%
50.51%
100%

Proportion
0.99
1.01

Nonverbal
9
24

Episode 2

Participation
Alison
Abigail
Justin
Total

Talk Turns
51
51
76
178

Duration
5.6 min
7.0 min
9.7 min

24.5 min

Percentage
28.65%
28.65%
42.70%
100%

Proportion
0.86
0.86
1.28

Nonverbal
7
11
7

Status and Relational Equity: Episode 1 
The mathematical proof activity between Alison and Lee was characterized as less

collaborative compared to the group’s activity in episode 2 because Lee contributed most of the
mathematical ideas used to complete the task and how Alison responded to those ideas had little
impact on the mathematical direction of their work (Alzaga Elizondo, 2022). Our analysis
suggests that Lee’s higher status (relative to Alison) may have provided him with more
opportunities to contribute a substantial amount of the mathematical work. However, throughout
the episode, Lee regularly made moves to grant Alison opportunities to contribute to the task by
inviting her to evaluate the work. We argue that the ways Lee invited Alison to check and
evaluate lines of the proof and incorporated her suggestions provided evidence that Alison was
trusted and viewed as a peer with expertise, which may have equalized their status differences to
some degree. The following exchange exemplifies Alison and Lee’s interactions:

Lee: From here can I just jump to like, therefore e_2- therefore phi(e_1) is the identity by
definition or is that skipping some steps? (pause) 

Alison: Hold on I’m thinking (pause) yeah I think that’s good. (reads) “By definition of
identity.” So phi(e_1) must be the identity in-

Lee: Oh wait, but we’re not saying for all H, we have to prove that that’s all H.
Alison: the identity- What do you mean all h? Oh for the identity for all h? But we’ve already

proved that there is only one identity. Isn’t that in the definition of identity?
Lee: Yeah, but like this is showing the identity for all these, some elements of H until we

show- I guess we can use onto right?
Alison: Yeah. (nods affirmatively) Yeah, we probably have to use onto.
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Lee granted Alison an opportunity to contribute an evaluation by asking her if he could “just
jump” to the conclusion “therefore phi(e_1) is the identity by definition” or if there were missing
steps (which there were). Inviting Alison to check and evaluate their work in this way was a
typical interaction pattern between the pair. Alison responded by asking for time to think, then
accepted Lee’s invitation by saying she thinks the proof is “good” (positive evaluation). She
continued reading the proof until Lee realized they did not prove that phi(e_1) is the identity “for
all” elements in H. Alison offered the idea that the class had “already proved that there is only
one identity” and asked if that’s in the definition of identity (granting Lee an opportunity to
contribute). Lee accepted by first positively evaluating Alison’s contribution that there is only
one identity (“yeah”), then suggesting that their proof is showing the identity property for “all
these, some elements of H” (meaning all the elements in the image of phi, which may only be a
subset of H). Lee granted Alison another opportunity to contribute by asking “I guess we can use
onto right?” which she accepted and positively evaluated (“yeah”), further agreeing by
reiterating they “probably have to use onto.” 

While Lee (a high status student) contributed more substantial mathematical ideas than
Alison (a lower status student), the way he granted her opportunities to evaluate their work
before moving forward may have balanced out the potential status differences between them.
From a relational equity standpoint, their interactions showed mutual respect for each other’s
expertise and potentially provided opportunities to access a positive mathematical identity
(Esmonde, 2009b).

Status and Relational Equity: Episode 2
In a prior study, this group’s mathematical proof activity was characterized as highly

collaborative because all students contributed to the mathematical direction of their work
(Alzaga Elizondo, 2022). However, their interactions viewed through a status and relational
equity lens paints a slightly different picture. Specifically, one interaction pattern between Alison
and Justin that emerged was Alison contributing a (valid) direction to make progress on their
proof which Justin would positively evaluate only to then immediately question whether her idea
was formal enough. The following exchange exemplifies this interaction pattern. Prior to the
exchange, Abigail was defending her claim: by the nature of the (Cayley) tables, each entry in
the first row and first column are unique (referring to the row and column headers). Justin and
Abigail had a back and forth about whether she thought the identity symmetry was different than
three rotation symmetries (for an equilateral triangle). Alison entered the conversation by
contributing “it’s different actions” and suggesting an idea for their proof.

Alison: Yeah it's different actions but I think for the sake of our proof we need to somehow
say we're limited to you know (pause) just four, well in this case we don't have- however
many symmetries there are. (pause) I might be articulating that wrong. (pause)

Justin: I think the original route we’re going down is right, where we have this, I think this is
definitely the right way. I’m just trying to make sure that we have the proper way saying
that proper, like-

Alison: Yeah, I agree, we have to find the way to set it up before we can just say. (pause)
Justin: Well, (cross talk with Abigail) I just want to make sure there’s no holes, I guess-
Abigail: (cross talking) Q is identical to W then
Alison: (responding to Justin) I understand that.
Alison stated they need to argue there are a limited number of symmetries to choose from

“for the sake of our proof.” She then made a self-doubting comment (“I might be articulating that
wrong”), which we interpreted as a low-status indicator (see Adams-Wiggins et al., 2020). Justin
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positively evaluated Alison’s contribution and her original idea to prove by contradiction (“I
think the route we’re going down is right”) and countered by stating that he wanted to make sure
it was formal enough (the “proper way”). Alison agreed with him that they “have to find the way
to set it up.” After a brief pause, Justin reiterated that he had to “make sure there’s no holes”
implicitly suggesting that Alison’s logic may be faulty. Alison reasserted that she understood his
concern (“I understand that”).

We interpreted this repeated interaction pattern as potentially increasing rather than balancing
status differences between Alison and Justin. Alison (a lower status student) contributed more
substantial mathematical ideas than Justin (a high status student), which could have equalized
their status. While her contributions were regularly met with initial positive evaluations, they
were often immediately followed by repeated questioning from Justin who viewed himself as the
expert on the “proper way” of proving (meaning, what is acceptable as a formal proof by the
mathematical community). From a relational equity perspective, while their interactions were
mostly friendly, Alison was treated as a peer with less expertise in formal proof compared to
Justin, which could have potentially limited the opportunity to access a positive mathematical
identity.

Discussion
Our results show how small group interactions that were deemed highly collaborative in

terms of mathematical proving activity (episode 2) were potentially more inequitable compared
to small group interactions that were characterized as less collaborative (episode 1). First,
participation was distributed differently among the students in each episode, with the focal
student, Alison, participating less overall in episode 2 compared to episode 1. Then, from a status
and relational equity viewpoint, the quality of interactions also differed between the episodes. In
episode 1, while Alison (a lower status student) contributed less substantial mathematical ideas
than Lee (higher status), an interaction pattern between them may have balanced their status
differences, promoting mutual respect for each other’s expertise (attenuating inequity; Shah &
Lewis, 2019). Contrastingly, in episode 2, Alison contributed more substantial mathematical
ideas than Justin (higher status), yet an interaction pattern between them potentially increased
their status differences by maintaining Justin’s high status as an expert in formal proofs while
implicitly lowering Alison’s status (amplifying inequity).

We see two primary implications from this study. First, our work shows that studying small
group collaboration in inquiry classrooms solely from a mathematical perspective does not paint
a complete picture in terms of how (in)equities might occur. Second, if differences in status are
not intentionally disrupted (particularly regarding gender and perceived mathematical ability),
women’s opportunities to access positive mathematical identities may be limited, which could
lead to negative outcomes (e.g., Ernest et al., 2019; Johnson et al., 2020). Therefore, inquiry
instructors may need specific training on how to enact group work in ways that mitigate such
status differences (Melhuish et al., 2022). A direction for future work could be to adapt research
at the K-12 level that has developed and implemented group work principles to reduce status
hierarchies (i.e., Complex Instruction, Cohen et al., 1999) for undergraduate inquiry settings.
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The Mathematical Inquiry Project engages mathematics faculty from all Oklahoma’s public 
institutions of higher education in collaborative learning and resource development guided by 
three components of learning mathematics through inquiry: active learning, meaningful 
applications, and academic success skills. We report our analysis of participants’ interpretations 
of these components and the social and cognitive mechanisms they entail. Our results (1) provide 
a descriptive analysis of beliefs and priorities about learning mathematics through inquiry held 
by post-secondary mathematics faculty and (2) contribute to research and outreach on faculty 
change using a model incorporating implicit and explicit learning theories, within which the 
professional activity and collaboration develop a community that supports productive aspects of 
learning mathematics.

Keywords: inquiry-based learning, entry-level math, professional development

The Mathematical Inquiry Project (MIP) and its Definition of Inquiry-Based Learning
The MIP is a collaboration among mathematics faculty from all 27 of Oklahoma’s public 

higher education institutions. The project aims to improve learning in entry-level mathematics 
courses by engaging faculty in collaboration regarding inquiry-based learning, conceptualized to 
entail three components: active learning, meaningful applications, and academic success skills. 
The MIP defines these components through the lens of constructivist epistemology. The 
definitions were developed to guide project implementation and encourage participants to adopt 
a critical stance toward the nature of students’ conceptions in their design of curricular materials 
that seek to engage students in the precise mental actions required to construct targeted 
mathematical meanings. The MIP defines the three components as follows:

Students engage in active learning when they work to solve a problem whose resolution
requires them to select, perform, and evaluate actions whose structures are equivalent to the
structures of the concepts to be learned.

Applications are meaningfully incorporated in a mathematics class to the extent that they
support students in identifying mathematical relationships, making and justifying claims, and
generalizing across contexts to extract common mathematical structure.

Academic success skills foster students’ construction of their identity as learners in ways that
enable productive engagement in their education and the associated academic community.

In the summers of 2019-2021, the MIP leadership team (the authors) led five different
week-long workshops during which faculty discussed key conceptual threads of entry-level
mathematics courses and academic success skills in those courses. The leadership team aimed to
support the participants’ thinking about the social and cognitive mechanisms involved in
developing productive ways of understanding foundational concepts in entry-level undergraduate
mathematics, and how to design curricular materials that promote students’ construction of those
ways of understanding. For example, participants discussed the ideas of conceptual analysis
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(Thompson, 2008) and hypothetical learning trajectories (Simon & Tzur, 2012), and critically
examined curricular materials developed with these in mind. Participants also unpacked the
MIP’s definition of inquiry and its operationalizion in the design of sample curriculum materials.
In later stages of the MIP, currently ongoing, participants are creating their own course materials
and will share them via workshops and peer mentoring. The goal of engaging participants in
curriculum development and dissemination is to build capacity through broad professional
participation and leadership in an emerging community that values and supports reflective
practice in learning mathematics through inquiry.

Active learning, meaningful applications, and academic success skills are of interest to the
research in undergraduate mathematics education (RUME) community. In a review of the RUME
2022 proceedings (Karunakaran & Higgins, 2022), 12 of 82 contributed reports1 contained the
phrase ‘active learning’ in the abstract, keywords, or body. These reports tended to define or
discuss active learning terms of pedagogical strategies (e.g., “think-pair-share,” Cervello Rogers
et al., 2022), its characteristics (e.g., student engagement and collaboration, Johnson et al., 2022),
or affordances (e.g., equity; Rios, 2022). Two papers framed active learning with reference to
cognitive theories (e.g., Kerrigan et al., 2022; Rogers et al., 2022). Some definitions of active
learning in the proceedings mention engaging students in meaningful mathematical tasks or
projects (e.g., Broley et al., 2022; Chowdhury et al., 2022; Fukawa-Connelly et al., 2022;
Johnson et al., 2022). Moreover, the proceedings also indicate interest in academic success skills
such as students’ mathematical identity (e.g., Guglielmo et al., 2022; Voigt et al., 2022) and
problem-solving (e.g., Corey, Weinberg, & Tallman, 2022). We generally observe, however, that
much extant literature focuses on students’ activity when engaged in such tasks and less on
instructors’ views of what meaningful mathematics might entail and how it might be
productively realized in the classroom. We seek to address this gap.

Research on faculty change highlights that supporting strategies should seek to alter
individual’s beliefs as opposed to mandating “effective” curricular resources or enacting
top-down policy initiatives to impact teaching quality (Henderson et al., 2011). The literature
establishes a need to characterize faculty’s conceptions of mathematical learning through inquiry
and describe how particular professional development experiences contributed to their evolution
(Williams et al., 2022). The MIP is one such professional development project. This paper
contributes to research on faculty change by constructing models of participants’ explicit and
implicit learning theories in relation to their conceptions of the three components of learning
through mathematical inquiry. We focus on the following research question: Following
engagement in a professional development initiative centered on the components of
mathematical inquiry detailed above, what are participants’ images of (a) active learning, (b)
meaningful applications, and (c) academic success skills?

Theoretical Perspective
The MIP definitions of active learning and meaningful applications are based on Piaget’s

genetic epistemology. We find this a useful way to characterize mathematical inquiry because (1)
it focuses on an individual’s cognition, which provides a means for MIP participants to
conceptualize and think carefully about students’ thinking and learning, and (2) the field, as
noted in the section above, has typically not dealt with issues of active learning and inquiry from
an explicit epistemological perspective. In Piaget’s view, conceptual development is a process of
constructing and modifying cognitive structures to enable individuals to establish a fit, or

1 These numbers exclude our 2022 conference proceedings regarding the MIP.
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equilibrium, between their conceptual model of reality and the reality they experience (von
Glasersfeld, 1995). Piaget regarded cognitive development as a process that inclines toward a
balance, or equilibrium, via assimilation and accommodation. Assimilation is the process
whereby a subject incorporates experiences into existing cognitive structures, and
accommodation entails the modification of an individual’s cognitive structures to enable their
assimilation of novel experiences. Assimilation and accommodation, and thus equilibration, rely
heavily on the notion of abstraction, of which Piaget distinguished four varieties (empirical,
pseudo-empirical, reflecting, and reflected). Piaget (2001) explained that higher forms of
knowledge (such as logico-mathematical structures) derive from abstractions of the subject’s
actions and the results of applying them in specific contexts. The nature of mathematics
knowledge structures, or operative schemes, are organizations of internalized (mental) actions
constructed through the process of pseudo-empirical or reflecting abstraction. The action of the
subject is thus the basis from which mathematical knowledge structures are constructed.

Commensurate with this epistemological framing, the MIP definitions of active learning and
meaningful applications are established on the premise that supporting students’ construction of
mathematical knowledge is a process of engaging them in the specific actions—and engendering
abstraction of either the products of these actions (pseudo-empirical abstraction) or the actions
themselves (reflecting abstraction)—that reflect the structure of the internalized actions
organized within the schemes that an instructor expects students to construct. Notice that the MIP
definitions of active learning and meaningful applications specify the conceptual mechanisms
engendered. The relation of our definitions to an explicit learning process differs from
characterizations of learning mathematics through inquiry that specify the environmental,
pedagogical, or social conditions that must be established for students to be actively learning or
for a teacher to incorporate meaningful applications in their instruction.

The MIP definition of academic success skills is similarly informed by constructivist
epistemology, while being supplemented by theories of emotion (Ortony, Clore, and Collins,
1988), identity (Blumer, 1986), and goal structures (Middleton, Jansen, & Goldin, 2017). See
Tallman and Uscanga (2020) for a synthesis of these theories and their relation to students’
affective experiences.

The MIP afforded opportunities for faculty members to engage with the definitions of the
three components. Hence faculty experienced opportunities to engage in reflecting and reflected
abstractions (Piaget, 2001) regarding the characteristics and mechanisms entailed in active
learning, meaningful applications, and academic success skills. Our study was designed to
investigate their images of these three components following this professional development.

Methods
We conducted semi-structured interviews on Zoom with 15 MIP participants in spring 2020.

Interviewees had participated in at least one workshop. Interview questions included:
1. Please describe your image of active learning in entry-level college math courses.
a. Why is this important for entry-level math courses?
b. Can you describe a specific example of active learning in an entry-level math course, yours,

or someone else’s? What made this example effective? What could have been better?
c. Has your participation in the MIP activities changed your thinking about active learning?

How?
2. Here is the MIP’s definition of active learning. [Participants were shown the definition].

a. Are there parts of this that you think are important but haven’t discussed yet?
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b. Do you particularly agree or disagree with emphasizing any aspect of the MIP definition
for improving instruction in entry-level college mathematics?

The questions were repeated twice more with ‘active learning’ replaced by ‘meaningful
applications’ and ‘academic success skills.’ The interviews were audio recorded and transcribed
for analysis.

We employed the constant comparative method (Strauss & Corbin, 1994) to identify themes
in the data. For each of the three components of inquiry, one author read all the transcripts,
highlighting phrases that characterized participants’ images of that component. When a new
phrase was added to the list, the author reread previous transcripts seeking instances of it. The
author then grouped similar items into themes and described each theme using the list of phrases.
That author applied the themes to re-code all the data, adjusting the themes’ descriptions until
they adequately described the span of participants’ images. To ensure consistency amongst
coders, a different author independently coded the data, employing the first coder’s themes and
seeking excerpts that were not described by the themes. The two authors discussed differences
until they agreed on a final set of themes. The final themes for each component are described in
the results. The themes for active learning refine those presented in Ireland et al. (2022). Themes
for a component are not mutually exclusive; for instance, ‘motivating students with real-world
examples’ was coded as both ‘real world examples’ and ‘affective affordance.’

Results
We present the answers to our research question in terms of themes we identified in

participants’ interpretations of (a) active learning (b) meaningful applications and (c) academic
success skills. Participants focused primarily on characteristics, affordances, and requirements of
the three components with some attention to learning mechanisms. While each of the themes we
explore below emerged in our analysis from a multitude of supporting transcript excerpts, here
we illustrate a proper subset of the themes we identified and support them with one or two
illustrative, prototypical excerpts.

Active Learning
Student engagement. All participants described student engagement as part of active

learning. Jude, for example, defined active learning as “involvement of [students’] brains” in
contrast to instruction in which only the “instructor’s brain that is running.” Generally,
participants’ comments associating active learning to student engagement suggested that they
viewed engagement (and related ideas of interest and involvement) as the mechanism by which
mathematics learning occurs.

Format in which students engage with the content. All participants discussed active
learning in terms of the format in which students would engage with the content, such as
small-group work, projects, class discussions, guided or scaffolded problem sets, or using
manipulatives or calculators. For example, Jack said, “I incorporate a lot of collaborative project
learning so that they can see the math in action… the less I talk… the better.”

Participants’ descriptions within this theme focus on characteristics of active learning, that is,
what active learning might “look like” to a classroom observer. This contrasts with our view of
the MIP’s three components of inquiry, which all involve descriptions of cognitive activity that is
not observable in the same way. From our theoretical perspective, active learning might occur
when students work in small groups, but working in small groups is not a sufficient condition for
students’ construction of a desired mathematical meaning.
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Nature of the mathematical tasks. Some participants described characteristics of the
mathematical tasks they present to students, such as novel problems (not exercises) that would
support understanding over simple memorization. Participants believed active learning occurred
when problems required students to struggle productively and problem-solve. Some participants
believed real-world examples were useful for engaging students in active learning. The attention
to these characteristics is notable because it indicates attention to a key consideration for
curriculum design: what students are engaged in and how they are engaged in it is consequential
for the mathematical meanings they construct.

Participants expressed their belief that productive struggle is a mechanism of learning.
For example, Quinn described,

I have come to see [active learning] as asking students to truly problem-solve in a way
that, that they may or may not have seen before…. Instead of having me say “here are the
tools that we’re going to use, here is exactly how we’re going to use them and exactly the
order that I want you to use them… it’s set up more like “okay here are the tools, now
here’s a problem and maybe here are some guiding questions.”

Quinn was unique among participants in that she not only described productive struggle, but
hinted at the idea of students needing to engage in particular mental activity (selecting “tools”).

Reveals student thinking. Two participants valued active learning for revealing student
thinking, allowing the instructor to modify instruction and address individual or critical issues.
Reagan2 said:

active learning [makes it] easier for the instructor to know… where the students
struggle… the instructor can… feed additional example or deep explain certain concept
to help them better retain the information… my hope is through repetition they get the
structure.

We infer that Reagan thought repetition was a learning mechanism that helped students “retain”
information and “get” general structure.

Affective requirements and benefits of active learning. Participants’ images of active
learning included what they saw as affective requirements for it and affective benefits of it. Per
the former, participants described that active learning would only be successful if students were
interested in the problems, motivated to work on them, possessed perseverance, and if the
classroom community felt safe. Participants felt students’ having growth mindsets was
important, and that a positive classroom community could help minimize students’ math anxiety.
For example, Finn said, “you have to have an environment where everyone’s safe to throw out
answers and get responses back.” Participants also believed active learning could help students
develop all these characteristics, noting that active learning sometimes served to increase
students’ interest, motivation, and perseverance. Eden, for instance, described active learning as
“making them do the work, it’s [building] self-efficacy.”

Meaningful Applications
Format in which students engage with the content. Like their definition of academic

success skills, participants described their images of meaningful applications as problems
embedded in formats like small-group work or class discussions. One difference is that
participants felt presenting a real-world example in a lecture constituted a meaningful
application.

2 English is not Reagan’s first language.
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Nature of the mathematical tasks. While the MIP characterization of meaningful
applications hinges on applications that are mathematically meaningful, participants seemed to
think of a meaningful application as one that was relevant to students’ daily lives. Some
participants mentioned that an application would be meaningful if it were relevant to other
mathematics. For instance, Quinn said

I also think of meaningful applications as in what can, what can they do with a definition
within mathematics…And if it, and if it helps them with their problem-solving skill then
it is extremely meaningful.

In addition to real-world examples, participants described that meaningful tasks were
usually formed when students were given open-ended questions or novel problems. One
participant noted that a task that supported students in generalizing would be a meaningful task,
and several participants said tasks that connected to other mathematics were meaningful
applications.

Affective requirements and benefits of meaningful applications. Participants’ images of
meaningful applications included the affective requirement of managing students’ fear and
dislike of applications. Affective benefits included piquing students’ interest (which in turn
supported student engagement and motivation) and increasing their mathematics self-efficacy.

Academic Success Skills
Instructor agency. Several participants described academic success skills in terms of their

own agency as instructors in supporting students’ development of academic success skills. This
theme is notable because it indicates that some participants saw the intended connection between
the three definitions: that active engagement with meaningful applications will build students’
academic success skills. Participants mentioned that it was part of their duty as instructors to help
students develop academic success skills (e.g., Quinn gave an example of developing
time-management multiple times in the semester; Reagan described training students to include
detail in their solutions). Others described how they used content to support students in
developing affective academic success skills. For example, Ellison said,

we want to be presenting students with problems that are at the right level… an
interesting problem to the student but they still feel like they’ve got what it takes to be
able to solve it, then it’s going to keep them engaged.
Part of what participants saw as their agency as instructors was the necessity of their

developing classroom community. Anna saw this as important because it enabled students to
engage and participate productively:

I can provide them opportunities to fail until they feel safe… [know] that they’re not
going to be laughed at… it’s developing trust.
Characteristics of students. Participants’ images of academic success skills included many

skills they felt students needed to possess or develop. Participants’ images of academic success
skills included perseverance, knowing how to learn, knowing how to manage math anxiety,
having an identity as a learner, having basic math knowledge, and having behavioral skills. For
example, Ellison’s response discusses many of these characteristics:
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If you have [academic success skills] it means that you have some knowledge about how
to tackle different problems that you’re given. You also have some positive motivation
happening that’s contributing to your desire and ability to be able to complete
problems… Has an inherent sense that they can do it. And, and they also need to have
the, the content knowledge skills to be able to, to solve a problem as well.

Most participants also mentioned that academic success skills also entailed behavioral skills such
as time management, doing homework, taking notes, attending class, and doing homework.

Discussion
Participants’ characterizations of the components of inquiry primarily emphasized

environmental conditions or pedagogical strategies that would need to be in place for students to
be engaged in active learning. Others have noted these sorts of emphases as common in faculty
members' conceptions of active learning (e.g., Williams et al., 2022). The MIP participants
attended somewhat to mechanisms of learning, seeming to believe that student engagement,
repetition, generalizing, and productive struggle were learning mechanisms. These appeared to
be rational, stable beliefs that the participants had developed over the course of their teaching
careers. That faculty members hold these beliefs is not inherently problematic, but what students
are engaged in (or repeating, or struggling with) is consequential for the mathematical meanings
they develop. The participants’ images of meaningful applications centered primarily around
real-life relevance over mathematical meaning. Taking the images of active learning and
meaningful applications together, we see a need for perturbing participants’ images of these
components in ways which go beyond students engaging with problems with relevant contexts.
How to perturb participants such that they engage in the reflective abstraction that their current
images of the components may be inadequate for supporting the development of mathematical
meaning is an area for future research. We note work with provided definitions may perturb
participants somewhat, and our evidence for this is Gemma’s inclusion of generalizing as a
learning mechanism because generalizing was specifically mentioned in the definitions. More
broadly, we see participants’ mention of engagement, repetition productive struggle as learning
mechanisms as evidence of some attention to the idea of what a learning mechanism is, and both
offer inroads to discussing how what students engage or struggle with as consequential. Thinking
of the three pillars in terms of characteristics, rather than mechanisms, can be problematic
because focusing on characteristics makes it harder to design and implement resources to support
effective active learning. Without an understanding of why those characteristics may produce the
conditions for learning and what concepts may be supported, an instructor cannot make
instructional decisions to optimize the potential for students to construct desired concepts and
reasoning patterns.

Our results broadly reinforce the literature on instructional change, which emphasizes that
instructors’ initial conceptions and beliefs about teaching are resistant to change and require
continual, ongoing professional development. We propose that the themes we have identified
nevertheless paint a clear image of how undergraduate mathematics instructors conceive of
active learning, how they attempt to realize it in their classrooms, and what they value about it.
These findings therefore provide important information for other researchers and change agents.
More specifically, our results build on this prior research by describing the conceptions of
undergraduate instructors across several institutions and after professional development has
taken place.
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How a Graduate Mathematics for Teachers Course 
“Helped Me See Things from a Different Perspective” 
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Secondary teachers and college instructors are required to take several graduate-level 
mathematics courses to advance in their careers. However, there is a common disconnect 
between graduate mathematics courses and the teaching of secondary mathematics. We 
developed a graduate-level mathematics for teachers course that was designed to help teachers 
connect abstract algebra, real analysis, and statistics to the content and teaching of secondary/ 
early college mathematics. In this study, we examined changes in graduate students’ confidence 
and perceptions of the relevance of advanced mathematics to teaching secondary and college 
mathematics. Students attributed changes in their perceptions of the connections between 
advanced and secondary mathematics to the course’s implementation of pedagogical scenario 
tasks. We provide implications for the mathematical preparation of teachers. 

Keywords: Graduate Courses, Mathematic Knowledge for Teaching, Perceptions of Relevance of 
Advanced Mathematics, Confidence 

Mathematics teachers enroll in graduate-level mathematics courses for professional growth, 
graduate degrees, teaching certifications, and mobilities in a future career (e.g., academic 
specialist, college instructor). They are required to complete a significant number of credit hours, 
e.g., 18-credit hours to teach dual-enrollment courses. However, teachers are disconnected from
the studies of advanced mathematics in graduate courses not only because they took their
advanced mathematics courses several years ago, but also because the content and pedagogy of
such graduate-level mathematics are not connected to their profession in teaching (Zazkis &
Leikin, 2010). These graduate mathematics courses have acted as gatekeepers to professionals in
teaching careers, inhibiting them from pursuing graduate studies in mathematics or dual-
enrollment teaching certificates. The discontinuity between content courses and classroom
teaching has been a long-lasting challenge in teacher preparation. Researchers have been
addressing this challenge in their innovative approaches to improve curriculum and instruction
for undergraduate-level mathematics courses and in their collaborative efforts to connect content
and methods courses (e.g., Wasserman & McGuffey, 2021; Weber et. al., 2020). Graduate-level
courses, however, have not been highlighted in the literature as much as undergraduate courses.

One way to address those discontinuities in graduate mathematics courses for teachers is to 
implement innovative course design and instructional practices that employ and empower 
teachers’ mathematical and pedagogical practices in their learning. This will also provide a 
positive standpoint of mathematics for teaching within the discipline of mathematics by tackling 
the existing deficit view—inferior to and less rigorous or formal than real mathematics—and by 
embracing an alternative view—advanced mathematics for the teaching of mathematics. 

In Spring 2022, we developed a course for students in the Master’s program in mathematics 
with a teaching concentration at a large public university. The course design emphasized 
fundamental knowledge and skills in advanced mathematics and their applications to the 
teaching of secondary school mathematics and lower-level college mathematics including 
college algebra, calculus, and introductory statistics. The courses adopted student-centered 
activities in class to facilitate the mathematical development of secondary teachers and their 
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reflection on the pedagogical implications for their teaching practices. In this paper, we present 
how the participating preservice and in-service teachers in this course perceived (a) changes in 
their views on connections between advanced mathematics and secondary/college mathematics, 
(b) changes in their confidence in advanced mathematics and teaching secondary/college
mathematics, and (c) effects of the course design on those changes in their views and confidence.

Literature Review and Theoretical Background 
Knowledge of advanced mathematics is perceived as an essential component of teachers’ 

content knowledge (e.g., Conference Board of the Mathematical Sciences, 2012), especially 
when it connects to teachers’ understanding of school mathematics. Constructs related to 
teachers’ knowledge of advanced mathematics and its connections to school mathematics can 
ubiquitously be found in frameworks of mathematical knowledge for teaching (e.g., Ball et al., 
2008; Ball & Bass, 2009; McCrory et al., 2012; Wasserman, 2018; Zazkis & Mamolo, 2011). 
Developing knowledge of advanced mathematics can lead teachers to understand relations 
among mathematical content and structures, hone mathematical practices, and hold core 
mathematical values, which have been shown to support teachers in various teaching practices 
(e.g., Baldinger, 2018; Serbin, 2021; Zazkis & Kontorovich, 2016; Zazkis & Marmur, 2018; 
Zbiek & Heid, 2018). Taking undergraduate and graduate-level mathematics courses thus has the 
potential for fostering the development of prospective and in-service teachers’ mathematical 
knowledge, practices, and values. However, these potential outcomes might not come to fruition 
if the prospective or in-service teachers are not explicitly given opportunities to make 
connections among the content and practices used in both advanced and secondary mathematics.  

To address the commonly documented disconnect between teachers’ studies of advanced 
mathematics and teachers’ teaching practices, teacher educators have implemented mathematics 
for teachers courses with innovative course designs and instructional practices that leverage 
teachers’ mathematical and pedagogical practices in their learning (Goar & Lai, 2021; 
Wasserman et al., 2019). Researchers have argued for alternative curricula and instruction to 
explicitly address the mathematical pedagogical knowledge and practices for teachers. The 
design of innovative mathematics for teachers courses should include an emphasis on content 
connections and pedagogical mathematical practice connections. Teachers must be given 
opportunities to make connections among advanced and secondary mathematical content that 
help them better understand the content they teach. This is the premise of Wasserman’s (2018) 
theory of Knowledge of Nonlocal Mathematics for Teaching. Wasserman (2018) claimed, 
“knowledge of nonlocal [advanced] mathematics becomes potentially productive for teaching at 
the moment that such knowledge alters teachers’ perceptions of or ontological understandings 
about the local content they teach” (p. 121). Thus, advanced mathematics courses for teachers 
should be designed to guide teachers to make connections that change their understanding of the 
content they teach and thus have the potential to be useful in their teaching. These courses should 
also be designed to provide opportunities for teachers to develop Pedagogical Mathematical 
Practices (PMPs), which Wasserman and McGuffey (2021) defined by drawing on the extant 
literature on mathematical practices (e.g., Rasmussen et. al., 2005) and pedagogical practices 
(NCTM, 2014). PMPs lie in an intersection of two domains of mathematical practices and 
pedagogical practices and are the kinds of practices that are common across both mathematicians 
and mathematics teachers in terms of their actions, habits, and lines of reasoning. Examples of 
PMPs include attending to assumptions and mathematical constraints or limitations, using special 
cases to test and illustrate mathematical ideas, exposing logic as underpinning mathematical 
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interpretation, using simpler objects to study more complex objects, and not giving rules without 
accompanying mathematical explanation. The conceptual framework informing the design of the 
course under investigation in the current study draws on Wasserman’s (2018) theory of 
Knowledge of Nonlocal Mathematics for Teaching and Wasserman and McGuffey’s (2021) 
framework of PMPs. These theories provide the rationale for the graduate-level Mathematics for 
Teachers course design, which is described further below.  

Course Design 
This graduate-level Mathematics for Teachers course aimed to provide mathematics teachers 

and college instructors with an opportunity to study key topics in advanced mathematics 
and to apply the topics to their mathematical knowledge and practice for teaching secondary 
school mathematics and lower-level college mathematics, such as college algebra, pre-calculus, 
calculus, and introductory statistics. This course consisted of three modules based on subject 
areas in mathematics at the graduate level: Abstract Algebra, Analysis, and Probability/ 
Statistics. Each module included a survey of definitions and basic properties of fundamental 
mathematical concepts in the corresponding area. The classroom instruction emphasized the role 
of in-class activities and projects to build students’ conceptual understanding and develop their 
advanced mathematical reasoning and practices.  

The Abstract Algebra module was designed using Wasserman’s (2018) theory of Knowledge 
of Nonlocal Mathematics for Teaching, along with the design heuristics of guided reinvention 
from Realistic Mathematics Education (Gravemeijer, 1998) and pedagogical mathematical 
practices (Wasserman & McGuffey, 2021). The module was designed to guide students to 
develop an intuitive understanding of the structure of groups, rings, integral domains, fields, 
unique factorization domains, and isomorphisms. It implemented Larsen’s (2013) task sequence 
for the reinvention of groups and group isomorphism, as well as an adaptation of Cook’s (2012; 
2015) task sequence for reinventing rings. The curriculum then guided students to connect their 
understanding of the Abstract Algebra content to content covered in secondary and early college 
mathematics. The course curriculum led students to apply their understanding of the connections 
between the advanced and secondary content through the implementation of pedagogical 
scenario tasks. These tasks typically gave samples of hypothetical student work and asked the 
graduate students to interpret the hypothetical student’s understanding and decide how to 
respond if they were that student’s teacher. The pedagogical scenario tasks also were presented 
in the form of Lesson Play scripting tasks (Zazkis et al., 2013), in which the graduate students 
were given a script of classroom dialogue between a teacher and students and were prompted to 
finish a script of the conversation. These tasks were designed to elicit evidence of students’ use 
of mathematical knowledge and PMPs (Wasserman & McGuffey, 2021). 

The Analysis module of this course adopted an instructional model, ULTRA, for teaching in 
real analysis courses (Wasserman et al., 2017) that emphasizes explicit connections between 
secondary and advanced mathematics by introducing pedagogical situations in secondary 
classrooms, stepping up to studies on relevant topics in real analysis, and stepping down to the 
same situation. This module used selected chapters of Understanding Analysis and its 
Connections to Secondary Mathematics Teaching (Wasserman et al., 2022) written for 
implementing the ULTRA model. Students participated in group discussions on classroom 
scenarios given in the textbook and collectively worked on mathematical tasks to review relevant 
real analysis concepts including epsilon arguments, limits, continuity, and differentiability. 
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Methods 
In this study, we conducted a pre-survey, post-surveys, and semi-structured interviews 

designed to examine changes in their confidence in high school and advanced mathematics and 
their perceived content connections and relevance of advanced mathematics for teaching 
secondary or early college mathematics. Six graduate students enrolled in the course participated 
in this study and completed a pre-survey at the beginning of the semester and two post-surveys, 
one in the middle of the semester about the Abstract Algebra and Analysis modules, and the 
other after the semester about the Probability & Statistics module and the overall course 
experience. The surveys include 7-point Likert scale items about their confidence and views on 
connections between secondary and advanced level mathematics. We compared the average 
scores of students’ responses to each of the items to determine changes in their confidence and 
perceptions about advanced mathematics for teaching. The participants also participated in the 
interview about their course experiences and changes in their confidence and perceptions after 
completing the second post-survey. The interviews were audio recorded in Zoom and transcribed 
for analysis. We used an open coding process (Miles et al., 2013) to examine the participants’ 
perceived changes in their confidence and perceptions of connections between learning advanced 
mathematics and teaching secondary and early college mathematics. One author independently 
generated codes in the first round, and the other author confirmed the codes. Then both authors 
discussed codes, created axial codes, and identified themes explaining how the course 
experiences affected the ways in which students’ confidence and perceptions changed. 

Results 
 Table 1. Mean scores on pre-survey and post-survey items. 

Survey Item  Pre-survey 
Mean Score 

(N=5) 

Post-survey 
Mean Score 

(N=6) 

1. I am confident with explaining concepts in high school
mathematics.

2. I am confident with explaining concepts in undergraduate
level mathematics.  

3. I am confident with explaining concepts in graduate level
mathematics. 

4. Understanding advanced mathematics will help me better
understand secondary-school level mathematics. 

5. Understanding advanced mathematics will help me better
perform secondary-school level mathematics teaching. 

5.80 

4.40 

2.20 

6.60  

6.60 

6.00 

5.67 

4.50 

6.83 

6.67 

Changes in Confidence with Explaining Mathematical Concepts at Different Levels 
The comparison between students’ responses to the pre and post-surveys indicated that their 

confidence in explaining mathematical concepts at the high school, undergraduate, and graduate 
levels increased overall after taking this course. The average scores on the survey items related to 
their confidence increased from 5.80 to 6.00 at the high school level, 4.40 to 5.67 at the 
undergraduate level, and 2.20 to 4.50 at the graduate level (See Table 1). Their confidence 
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increased more at the higher levels. The students reported lower confidence in more advanced 
levels in the beginning but made greater increases at the end (e.g., +0.20 at the graduate level, 
+1.27 at the undergraduate level, +2.30 at the high school level). Their interview responses 
indicated that their course experience helped increase their confidence in advanced mathematics 
and prepared them to take further advanced mathematics courses in their graduate program. 
Student E said, “I definitely feel more competent in doing certain types of mathematics”. Student 
L said, “I think this class will be perfect for that, for future courses, and I do feel more prepared 
to go into those [further graduate] classes.” However, a student reported that their confidence in 
advanced mathematics had not changed a lot because the course emphasized less on writing 
mathematical proofs and a deep investigation of advanced topics in this course than what they 
had expected from a traditional graduate-level mathematics course. Student R said the course 
helped increase his confidence not as much as he expected because of less emphasis on proof. He 
said, “I want to say [my confidence increased] a little bit, not that much since it wasn’t really a 
class where I was taught how to do proofs again because I forgot it, it’s been a while. And then I 
was just expected to do the proofs, not like that. So just a little bit, but not as much as I wanted 
to.” Overall, this course helped students increase their confidence in all levels of mathematics, 
especially for higher levels in all three subjects in analysis, algebra, and probability & Statistics.  
 
Changes in Perceived Content Connections and Relevance of Advanced Mathematics for 
Teaching Secondary or Early College Mathematics 

This graduate-level Mathematics for Teachers course helped graduate students recognize 
content connections among advanced and secondary mathematics, and it helped change their 
perceptions regarding the relevance of advanced mathematics for the teaching of secondary 
mathematics. Some students reported that they did not have an opportunity to reflect on 
connections in other graduate mathematics courses. For example, Student S explained, “I don’t 
think I’ve thought before about how they related… now I think it would be very helpful in 
teaching secondary math.” This course gave students an opportunity to connect advanced and 
secondary mathematics, which they said they did not have in other graduate math courses. 

Some students reported that after taking this course, they could better understand advanced 
mathematical content and secondary mathematical content. In the survey data, we identified a 
slight increase in the mean score of the survey item 4 (see Table 1) from 6.60 to 6.83 (on a 7-
point scale).  The students’ responses to open-ended survey items and their interviews gave 
further insight into how they perceived a change in their understanding of mathematics. For 
example, one student wrote on a post-survey, “I had always had a bit of trouble understanding 
groups, rings, and fields, but seeing the connection of this topic with high school content and 
relating it to higher level thinking made me understand it more.” Thus, they acknowledged that 
relating the advanced mathematics with secondary mathematics during the course helped them 
better understand the advanced mathematical content. Several students reported a change in their 
understanding of secondary or early college mathematics. For example, Student L explained, 

“Before, I used to see advanced mathematics as something different from high 
school…advanced mathematics is really connected rather than just a continuation of one 
and another. So really seeing the theory behind it helps, like I think I can teach this in a 
better way, and explain to the students a better way, rather than just saying ‘that’s just the 
way it is,’ and giving them a little bit of theory behind it.” 

Student L previously perceived advanced and secondary mathematics as disparate. After the 
course, she perceived more connections among the content. She explained how understanding 

25th Annual Conference on Research in Undergraduate Mathematics Education 347



 

the theory from advanced mathematics helped her better understand the content and explain the 
content to students. Student A similarly acknowledged how studying advanced mathematics 
helped her make sense of often rote secondary mathematics procedures. She explained, 

“You can do, for example, exponents or logarithms very rotely just by following the 
procedure, but it doesn’t make sense, I think, until you’ve studied it from a more 
advanced math point of view, and you can see why it’s being done that way.” 

This illustrates how after taking this course, the students reported perceiving more connections 
among previously disparate content and better understanding both advanced and secondary math. 

The students also acknowledged a change in their perceptions of the relevance of advanced 
mathematics for teaching secondary mathematics. In the survey data, we identified a slight 
increase in the mean score of the survey item 5 (see table 1) from 6.60 to 6.67 (on a 7-point 
scale). The students’ responses to interview questions provided additional insight into how they 
perceived advanced mathematics as relevant to and helpful for their teaching. For example, 
Student E claimed, “It helped me see things from a different perspective. I didn’t really ever 
think that some of the things that we did in the module were relevant to high school teaching or 
students’ thinking at those levels.” Students expressed a wide variety of ways in which they 
thought advanced mathematics was relevant to and useful for their teaching. Some of these 
included using their knowledge of advanced mathematics in their teaching practices of 
facilitating class discourse, providing visualizations of concepts, attending to precision in the 
mathematical terms used in definitions, and making sense of students’ mathematical thinking. 
Furthermore, several students acknowledged that advanced mathematics would be helpful in 
their teaching practices of designing lessons, making content understandable to students, and 
giving explanations in response to questions. Particularly, Student R explained: 

“There are some kind of students, I call them to be scary… who ask you why…I never 
really asked myself why. So after having a student like that and taking this class where I 
see where things come, I can talk like, ‘this is a group, this is what is happening.’ Yes, 
this theory helped me out in the way I’m going to be now introducing lectures.” 

Student R recalled experiences in which he did not know how to respond to students who ask 
“why.” He explained that understanding the theory from advanced mathematics (abstract algebra 
in this context) helped him understand and explain why certain procedures work in equation 
solving. Student R illustrated a change in his perception of how advanced mathematics could be 
useful for him in his teaching practices of responding to students and explaining content. 

The students attributed these changes in their perceptions of the relevance of advanced 
mathematics for teaching to both the mathematical content covered in the course and the 
pedagogical scenario tasks used in the course. First, when asked if anything from the course 
might have affected a change in their views on the relevance of advanced mathematics for 
teaching, some acknowledged the mathematical content in the course. Furthermore, several 
students attributed this change to the course’s use of pedagogical scenarios. Student A explained: 

“The scenarios were helpful in that regard, like where we actually were asked to think 
about that very question of, in a classroom… how to explain something to a student who 
had some kind of misconception. So how to explain it in a way that would make sense to  
them… I think that that’s what helped, was to actually confront that in a scenario.” 

These students reported that the pedagogical tasks helped them relate secondary and early 
college mathematics to advanced mathematics, understand students’ mathematical thinking, and 
learn “how to handle those classroom discussions” (Student L). Student S explained how these 
tasks helped her become aware of different ways that students can think about mathematics:  
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“The scenarios…opened up the panorama about how our students could think outside the 
box. A lot of kids would think differently about just one topic…. Seeing how that relates 
to so much more than just basic math…helped me change my point of view.” 

Overall, these students self-reported changes in their perceptions about the connections 
between advanced and secondary mathematics and its utility in their teaching of secondary or 
early college mathematics. The students attributed these changes in perceptions to the 
mathematical content covered in the course and the pedagogical scenarios used in the course. 
 

Discussion and Conclusion 
In this study, we examined how a graduate-level Mathematics for Teachers course supported 

improving students’ confidence in secondary and advanced level mathematics and their 
perceptions of content connections and relevance of advanced mathematics for teaching 
secondary and early college mathematics. This course helped students increase their confidence 
in explaining mathematical concepts at high school, college, and graduate levels, and it was more 
helpful at the higher levels. More importantly, this course helped them recognize content 
connections between advanced and secondary mathematics which they had not experienced in 
the past. Students reported the pedagogical tasks using classroom scenarios helped them to 
connect the content in advanced mathematics to the teaching of secondary and college 
mathematics. Students perceived the relevance of learning advanced mathematics for the 
teaching of secondary mathematics in ways that are meaningful for them, e.g., understanding 
problematized secondary mathematics content in the given situations from advanced standpoints, 
and using advanced knowledge of mathematics for reflecting on their teaching practices. 

Our course design leveraged Wasserman’s (2018) theory of Knowledge of Nonlocal 
Mathematics for Teaching, which broadly suggests that for a teacher’s knowledge of advanced 
mathematics to impact their teaching, the advanced mathematics must first change the teacher’s 
ontological understanding of the content they teach. This theory informed our course design 
heuristics of both (a) guiding students to connect advanced and secondary mathematics to better 
understand the secondary content they might teach and (b) incorporating pedagogical scenario 
tasks to connect the advanced mathematics to the teaching of secondary mathematics via 
pedagogical mathematical practices (Wasserman & McGuffey, 2021). Several of the graduate 
students enrolled in the course attributed the changes in their perceptions of the relevance of 
advanced mathematics to their teaching to the course’s implementation of these pedagogical 
scenario tasks. Thus, these tasks helped the students recognize how their knowledge of advanced 
mathematics could be useful in their teaching of secondary or early college mathematics.  

The utility of these pedagogical scenario tasks presents fruitful avenues for future research 
and implications for the preparation of mathematics teachers. We plan to continue our course 
design efforts by designing curricula that can support prospective and in-service teachers in 
connecting advanced mathematics to the teaching of secondary mathematics through these 
pedagogical scenario tasks. We will also further investigate how graduate students use their 
knowledge of advanced mathematics and their pedagogical mathematical practices (Wasserman 
& McGuffey, 2021) as they perform these pedagogical scenario tasks. We suggest that both 
undergraduate and graduate mathematics courses for prospective or in-service teachers should be 
designed to implement pedagogical scenario tasks, because they provide opportunities for 
students to identify points of connection between advanced and secondary mathematics. 
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Prioritizing Mathematical Topics for General Education Requirements

Jim Gleason W. Gary Martin Mariya Rosenhammer
The University of Alabama Auburn University Columbus State University

With increased availability of technology and data, the mathematical and statistical needs for
many academic disciplines have likely changed over the past twenty years. In order to create
appropriate general education courses in the mathematical sciences to meet these needs, a
survey was conducted of individuals representing various academic programs in Alabama to
determine the mathematical needs of students in their programs. The survey results indicate that
traditional college algebra courses are not needed outside of the disciplines that require
calculus. The needs of the non-calculus-based programs include linear and exponential
functions; mathematical practices; statistical literacy; and the use of spreadsheets for data
analysis.

Keywords: general education, data analysis, mathematical practices

Nearly all colleges and universities in the United States include at least one course in the
mathematical sciences as part of the general education requirements for their bachelor’s degree.
Nearly half of the students enrolled in a post-secondary mathematics course in the United States
are in courses focusing on polynomial, rational, exponential, logarithmic, and/or trigonometric
functions (Blair et al., 2018, p. 213). While such topics are essential for students needing to
understand calculus for their academic program, they may not be the best choices of topics for
courses in the mathematical sciences for students who do not need an understanding of calculus.

A common alternative to the traditional algebra and function based undergraduate course is a
course focusing on quantitative literacy. Beginning in the 1980’s, the Consortium for
Mathematics and Its Applications (COMAP) created curriculum for such courses (Campbell,
2007) and in the 1990’s, the Committee on the Undergraduate Program in Mathematics of the
Mathematical Association of America (MAA) created a sub-committee to explore how
quantitative literacy could be included as part of undergraduate general studies programs (Sons,
1995).

To improve all lower-division mathematics courses the MAA Committee on Curriculum
Renewal Across the First Two Years (CRAFTY) started the Curriculum Foundations Project to
better understand the mathematics needed by students in partner disciplines. This involved a
series of workshops with faculty members from mathematics-intensive disciplines (1999-2001)
and less mathematics-intensive disciplines (2005-2007) (Ganter & Haver, 2020) resulting in two
documents (Ganter & Barker, 2004; Ganter & Haver, 2011) describing the mathematical needs of
students in partner disciplines. This interdisciplinary work continues with projects like the
Synergistic Undergraduate Mathematics via Multi-institutional Interdisciplinary Teaching
Partnerships (SUMMIT-P) consortium (Ellington, 2020; Ganter et al., 2019a, 2019b).

In order to more holistically determine the mathematical needs of students from various
non-STEM disciplines, the Arkansas Department of Higher Education partnered with the Dana
Center to form the Arkansas Math Pathways Task Force (AMPT) to create a survey for
departments to provide feedback about which topics in the mathematical sciences would be
beneficial for their students (Korth et al., 2018) in order to provide guidance on what general
education mathematics courses would be most useful for students in different majors. In
considering these results, a similar working group in Alabama felt less confident that the current
mathematics courses included in the general education program were appropriate. Thus, the
current study expands upon the work of AMPT by creating a survey of academic programs at
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public post-secondary institutions in Alabama at a finer grain size and for a larger number of
mathematical and statistical topics and practices than the AMPT survey in order to guide the
redesign of mathematics courses included in the general education requirements for different
majors.

Methods
A working group of faculty members from the mathematical sciences and institutional

assessment from multiple higher education institutions commissioned by the Alabama
Commission on Higher Education created a survey of mathematical and statistical topics and
practices based upon syllabi from introductory post-secondary mathematics and statistics
courses, standard secondary mathematics curriculum (National Governors Association Center for
Best Practices & Council of Chief State School Officers, 2010), and post-secondary professional
organization standards (American Association of Two-Year Colleges, 1995, 2006; GAISE
College Report ASA Revision Committee, 2016; Mathematical Association of America, 2004,
2015). After the creation of the survey items, they were reviewed for content accuracy by 10
mathematics faculty and readability by four non-mathematics faculty that work in assessment
divisions of their institutions.

Based on information provided by the chief academic officers from each of the public higher
education institutions in the state, the survey was sent to individuals who oversee each academic
program in the state. Calculus courses satisfy the general education courses for a range of
academic programs, including Mathematics, Engineering, Physics, Chemistry, and Computer
Science; these programs were not included in the study as they were outside its scope. Of the 548
eligible programs, 174 submitted complete responses for a 32% response rate.

Due to the sample size from our survey responses we are not able to draw conclusions at the
level of a single major. However, by combining majors into meta-majors based upon assumed
mathematical needs, we can attain more generalizable conclusions. Academic programs that
include a significant focus on using large data sets and/or computer programming as a key
component of their field are likely to have a significant need for mathematical and statistical
knowledge outside of calculus. For this reason, we group together majors such as geographic
information systems, computer forensics, econometrics, and computer and information sciences
into a meta-major that we will call Data Sciences. We group academic programs such as biology,
geography, environmental science, and nursing together into a meta-major that we will call
Natural Sciences, although this grouping does not include physics or chemistry since they
require calculus. Majors related to education, psychology, human development, political science,
and social work all incorporate the use of data and interpretation of statistical studies in their
fields, so we incorporate these disciplines into a meta-major that we will call Social Sciences.
Academic programs with a focus on business and/or management are grouped into a Business
meta-major. Although such programs often include “business calculus” for the general education
requirement, calculus is not inherent to the work of those fields and so we included this in this
study. Finally, the Humanities meta-major includes majors that focus on studying and/or
contributing to human cultures, including languages, arts, communication, philosophy, religion,
and anthropology. Number of academic programs and response rates in each of these
meta-majors is included in Table 1.

Table 1. Response rates by meta-major.
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Meta-major Eligible Programs Responses Response Rate

Data Sciences
Natural Sciences
Social Sciences
Business
Humanities

34
115
164
106
129

13
38
48
29
46

38%
33%
29%
27%
36%

Totals 548 174 32%

Mathematical topics were arranged into five major categories commonly included in general
education mathematics courses, while statistical topics were organized into eight general
categories. In order to facilitate the completion of the survey while still getting the desired level
of detail, the survey included items addressing broader topics of mathematics within each of
these categories, for which respondents denoted that their students “definitely needed”,
“somewhat needed”, or “not needed”. The “definitely needed” and “somewhat needed”
responses were compressed into a “needed” category and these respondents were asked one or
two follow-up questions to determine the need of students at a finer grain analysis. For example,
respondents were asked “What best describes the importance of the following statement about
students in your degree (or program)?” with the statement regarding functions being, “Students
will understand properties of functions (domain, range, compositions, inverses) and use
algebraic, symbolic, graphical, and numerical techniques to model related contexts and solve
related equations.” The respondents who denoted this statement as needed for their students
received follow-up questions about the types of functions needed and the properties of those
functions that their students would need to understand.

For each of the items in the survey, the need for that topic or practice for each meta-major
was determined by the proportion of programs denoting a need for the topic. If the proportion
was above half to a statistically significant level (p<0.05), we considered that topic as needed for
the meta-major. If the proportion was below 50% at a statistically significant level (p<0.05), we
considered the topic as not needed for the meta-major. If there was no significant difference from
50%, we did not draw a conclusion about that topic for that meta-major.

Results
The primary result of the study is that most of the meta-majors did not need most of the

mathematical content traditionally included in introductory college mathematics courses.
However, all the meta-majors, other than Humanities, reported a need for all the general
statistical topics and practices from introductory college statistics courses, although not all the
subtopics.

Mathematical Topics and Practices
Of the students enrolled in introductory mathematics courses in the fall of 2015, 20% were

enrolled in precollege level (courses not receiving college credit), 40% were enrolled in a course
focusing on functions and equations that involve polynomial, exponential, logarithmic, and/or
trigonometric functions, and 20% were enrolled in liberal arts or finite math courses focusing on
some logic, set theory, financial mathematics, and probability (Blaire et al., 2018, p. 213). The
respondents to our survey reported that these topics are not the ones that are most needed for
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students in their majors (Table 2). None of the meta-majors denoted a need for polynomial and
trigonometric functions, core components of the most common introductory courses, and instead
denoted a need for linear functions, a topic usually included in the precollege level course.
Furthermore, the topics related to functions denoted as needed by the largest number of programs
was the ability of students to find numerical approximations of solutions using technology, a
topic often not a major focus of college courses.

Table 2. Mathematical needs by meta-major.

Mathematical
Topics

Data
Sciences

Natural
Sciences

Social
Sciences

Business Humanities

Function Linear and
Exponentia

l

Linear and
Exponentia

l

Linear Not
Needed

Equations and
Inequalities

Linear Linear Not
Needed

Geometry and
Trigonometry

Not
Needed

Not
Needed

Not
Needed

Logic and Set
Theory

Not
Needed

Not
Needed

Not
Needed

Not
Needed

Financial
Mathematics

Not
Needed

Not
Needed

Not
Needed

The respondents did denote that their students need experience with the mathematical
practices that come from general education mathematics courses:

1. Interpreting quantitative information (needed by all but Humanities),
2. Strategically evaluating, inferring and reasoning (needed by all),
3. Manipulating mathematical expressions and computing quantities (needed by Data

Science; not needed by Social Sciences or Humanities),
4. Communicating mathematical ideas in various forms (needed by Business, not

needed by Humanities),
5. Make sense of quantitative problems and persevere in solving them (needed by Data

Science and Business; not needed by Humanities),
6. Apply the mathematics they know to solve problems arising in everyday life, society,

and the workplace (needed by all), and
7. Look for patterns and relationships and make generalizations (needed by all).

Combining the information of topics and practices, the survey communicates a need for
introductory mathematics in the general education curriculum with a course focusing on the
mathematical practices within the context of linear and exponential functions and equations.
Such content could easily be incorporated into a data analysis course that includes linear and
exponential regression.
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Statistical Topics and Practices
Using the goals for introductory statistics courses established by the American Statistical

Association (GAISE College Report ASA Revision Committee, 2016), the survey asked the
respondents about the following statistical topics and practices:

1. Students should become critical consumers of statistically-based results reported
(needed by all),

2. Students should be able to recognize statistical questions and design appropriate
statistical studies (needed by all but Humanities),

3. Students should be able to produce and interpret data visualizations, numerical
summaries, and statistical models (needed by all but Humanities),

4. Students should recognize and be able to explain the central role of variability and
randomness in the field of statistics (needed by all but Humanities),

5. Students should demonstrate an understanding of, and ability to use, basic ideas of
statistical inference, both hypothesis tests and interval estimation, in a variety of
settings (needed by all but Humanities),

6. Students should be able to interpret and draw conclusions from standard output from
mathematical and statistical software packages (needed by all but Humanities, not
needed by Humanities),

7. Students should demonstrate an awareness of ethical issues associated with sound
statistical practice (needed by all), and

8. Students can use tools and techniques involving the theory of probability to
understand the nature of chance and to quantify variation (needed by all but
Humanities, not needed by Humanities).

We note that outside of the Humanities meta-major, all these topics and practices were denoted
as necessary for students as part of their academic program. For the Natural Sciences, Social
Sciences, and Business meta-majors, the only topics denoted as not needed by there students are
creating and computing statistical representations by hand; using any technology other than
spreadsheets, SPSS, or R; and details of the theory of probability involving probability
distribution functions and the Central Limit Theorem. All the other sub-topics were either
denoted as needed or it was inconclusive about the need.

Conclusions and Implications
The primary conclusion from the survey results is that there is a much greater need among

undergraduate students for courses in statistics and data analysis than the traditional courses of
college algebra and precalculus. The results also corroborate the goals for students in
introductory statistics courses of the ASA GAISE Report (GAISE College Report ASA Revision
Committee, 2016, p. 8), and its recommendations of what to teach in such a course: “Teach
statistical thinking” and “Focus on conceptual understanding” (p. 6).

One implication is for colleges and universities to consider the role of the mathematical
sciences in the general studies curriculum at their institution. Mathematical ways of thinking
have always been a core component of a liberal arts education, and the current study confirms
that academic disciplines across the spectrum still value students having those ways of thinking.
What they do not seem to value is the current menu of topics that have been standard for
introductory mathematics courses. This should cause departments in the mathematical sciences
to reflect on the goals of their current course offerings and to perhaps create new courses for this
broad constituency of students. As a result of the survey, the Alabama Commission on Higher
Education that initiated the study changed the corresponding category from a Mathematics
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requirement to a Mathematical Sciences requirement and changed from not allowing statistics
courses to satisfy the requirement to encouraging such courses to be used to satisfy the new
requirement.

Many of the academic programs surveyed in this study have program requirements that
include mathematics courses based on topics that they denoted as not needed by their students,
either explicitly or implicitly as a prerequisite. The results of this study should motivate such
departments to collaborate with the mathematical sciences departments to determine the most
appropriate courses for their students: if such courses do not exist, they should work together to
develop new courses.
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Student Quantitative Understanding of Single Variable Calculus

Jason Samuels
City University of New York

Student understanding of key concepts from Single Variable Calculus and the role of infinitesimals was
investigated.  Analysis  was  done using  a  framework  which  highlights  quantitative  reasoning.  Data
showed  robust  understanding  of  instantaneous  rate  and  change across  multiple  representations.  I
examined the rich student connections between those concepts expressed discretely in Algebra and
expressed instantaneously in Calculus, and how conceptions of infinitesimal quantities were formed in
order to support those connections. Implications for instruction are considered.

Keywords: Calculus, quantitative reasoning, infinitesimals, derivative

Introduction & Literature Review
First  semester  Calculus  is  a  critical  course for  all  STEM majors,  a  required  course containing

foundational ideas for future study. Student success has been below desired levels for a long time, and
efforts toward improving student success are extensive and ongoing (Bressoud, Mesa & Rasmussen,
2015).  There  has  been  much  investigation  into  student  understanding  of  Single  Variable  Calculus
(SVC), exploring conceptions of limit (Oehrtman, 2009; Tall, 1992), derivative (Zandieh, 2000; Park,
2013), integral (Jones, 2015; Sealey, 2014), and the Fundamental Theorem of Calculus (Carlson, Smith
& Persson, 2003; Radmehr & Drake, 2017). Some work has been done to connect those conceptions to
a student’s related prior conceptions (Thompson, 1994; Pustejovsky, 1999; Samuels, 2011). However,
none of these studies investigated these questions for students learning Calculus using infinitesimals. 

Recently there has been a growing call to revise Calculus instruction away from the Analysis-based
approach using limits and toward a more quantitative approach (Augusto-Milner, Jimenez-Rodriguez,
2021). There have been a handful of documented attempts to do so with infinitesimals (Ely, 2021).
Some research has theorized the underlying student thinking in such an approach (Ely & Ellis, 2018).
None of these studies of infinitesimal-based Calculus instruction has examined how students conceive
of important Calculus ideas. These intersecting gaps in the literature suggest the following research
questions. (1) What is a characterization of student understanding of key Calculus concepts after one
semester of Calculus taught with infinitesimals? (2) How are understandings of Algebra concepts in
discrete form used to generate understandings of related Calculus concepts in instantaneous form?

Framework
To analyze student understanding of Calculus, an approach oriented towards quantitative reasoning

(Thompson & Carlson, 2017) was used. This mode of reasoning entails “conceptualizing a situation in
terms of quantities and relationships among quantities” (Thompson & Carlson, 2017, p425), where a
quantity is a measurable attribute combined with a way to measure that attribute. The quantities of SVC
and the relationships between them can be described using the ACRA Framework (Samuels, 2022). The
framework  is  summarized  here  briefly  with  a  delineation  of  the  quantities  and  some  of  their
relationships. An amount is a real value, a change is a difference between two amounts, a rate is a ratio
of two changes, and an accumulation is a sum of consecutive changes. One important relationship is
that the product of two rates is another rate. (The infinitesimal version is the chain rule, see Table 1.)
Changes and rates  over real  intervals are  encountered in a typical  Algebra course;  henceforth this
scenario is referred to as  standard (Keisler, 1976). Changes and rates over arbitrarily small intervals
first arise in SVC. A positive infinitesimal is a positive number which is smaller than all positive real
numbers; the usual rules of arithmetic apply. Instead of using limits, one can interpret differentials as
infinitesimals to describe the arbitrarily small quantities in Calculus. (For further details, see (Samuels,
2022).) This study was targeted specifically at student conceptions after taking Calculus I. Because 

25th Annual Conference on Research in Undergraduate Mathematics Education 359



Table 1. Part of the ACRA Framework for Quantities in Calculus

Real Infinitesimal

Change Δy = y2 – y1 = f(x2) – f(x1) dx, dy

Rate
m=

Δ y
Δ x

=
y2− y1

x2−x1

dy
dx

Rate Equation Δ y
Δ x

=
Δ y
Δu

⋅
Δu
Δ x

dy
dx

=
dy
du

⋅
du
dx

amount has no separate Calculus version, and because accumulation/integration is covered only briefly
in the course, those topics were not explored in this study. Thus the part of the framework used, and the
key Calculus concepts on which data was collected, included change and rate, and their relationships.

Methodology
In 2022 Spring the author taught a Calculus I course at a northeastern urban college designed to use

infinitesimals instead of limits.  Two months after  the end of  the course,  a  clinical  semi-structured
interview (Hunting, 1997) was conducted with one of the students, who had volunteered. A script was
prepared beforehand with questions on rate and change, and the relationship between them, in both
precalculus  and  calculus  contexts,  and  in  multiple  representations  (verbal,  numerical,  graphical,
symbolic). Flexibility was allowed for follow-up questions which might be suggested in-the-moment
by student responses. The interview was video recorded, transcribed, and coded using the framework. 

Results
Ari [a pseudonym] was first asked to “talk about rate in a way that does not involve calculus”. He

explained that rate is “rise over run… [it]  could be expressed as ratio” and that a linear graph has a
constant rate. Using numbers in an example he created, “the rate, the amount of inches after every 30
seconds is 0.5, it goes up by 0.5”. He then illustrated this with the graph in Figure 1, explaining that “it
shows the change for x, which is 30 seconds, and the change in y, which is 0.5”.

Figure 1. Ari’s inscriptions describing rate for a linear graph

In another example, Ari correctly explained how to calculate rate from two points. He used the
standard formula, referring to it both as “delta y over delta x” and as “rise over run”, and referred to the
result as both “rate” and “slope”. When asked for contextual examples of rates, Ari gave two: inches
per  second  for  snow falling,  and  miles  per  hour  for  a  runner.  Thus,  Ari  demonstrated  a  flexible
knowledge of  standard change and rate,  including how to calculate them and to connect  them, in
multiple notations and representations.

Next, Ari was asked “can you give me an example where you would need Calculus if you want to
talk about a rate?” From the example y=x2, Ari observed that “the rate is always changing...it's not a
constant rate. You would have to zoom in infinitely at a certain point on the graph to get, like, a slope.
And then it gets straighter... that would represent the instantaneous rate.”
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The interviewer gave Ari the graph of y=x2 on Desmos with a touch screen, so the graph could be
manipulated with fingers. He used a reverse pinch to zoom in at a particular point. He then observed
that “when you get really far, it looks like the rise is like – you see how the line is much straighter, so it
literally looks like a line – you would get like, the rate on y equals four.” Subsequently he explained
that this could also be depicted on the original (non-zoomed) graph as the tangent line at the point (2,4)
with a slope of 4.

During a  discussion of  the  slope  of  the magnified section of  the graph,  Ari  wrestled with the
magnitudes of the changes. He initially said that delta y was 4 and delta x was 1. After considering the
graph at several levels of zoom, he corrected himself and identified the measuring unit of the grid lines
of the graph (automatically drawn by the software) as the side of one square. He noted that the length,
“when you zoom in, it always changes… it gets smaller”. In the following excerpt, Ari starts by saying
that infinitely small values do not exist, and by the end, says they do exist and exhibits a multifaceted
conception of them. (His inscriptions during this exchange appear in Figure 2.)

Interviewer:  We're  going to imagine that  we did  what  you said,  which  is  imagine  that  we
zoomed in infinitely far. We're not going to compare it to anything.

Ari: Okay, so if you zoom in it infinitely far, then it's going to keep getting smaller. Okay, so it's
like to zero.

I:  So once you zoom in infinitely and you say, I've done it,  I've zoomed in infinitely,  let's
imagine that we accomplished that, then what would be the size of that?

Ari: You can’t conceive of it. Yeah. Because it's infinite. It's not defined by any value.
…
I: Is there a positive number which is smaller than all positive real numbers?
Ari: No. Well, I mean, zero point 0 0 0 infinite zeros 1… 
I: ... So if the length of this [horizontal] bit was point infinite zeroes 1, then what would be the

length of this bit, the vertical bit?
Ari: It would be four times that, but it would be infinite still, the zeros would be infinite still,

but it's like that same amount times 4. Which creates a change. Which causes a change
because it's like 4… 

I: Do we have any kind of name for these things? So, like, this horizontal bit of infinite zeros
one, or this horizontal bit, which is also infinite zeros, but four times bigger.

Ari: So this [horizontal] bit would be like dx… and then the vertical bit is dy…
I: And then if you wanted to talk about the rate, how could you write that out? The rate for this

specific example.
Ari: So dy is like the amount that it goes up an instantaneous rate. So at that point, when you do

that  a  bit,  that's  how much  it's  changing  at  that  point  in  the  graph.  So  that's  what  dy
represents. And then dx represents, dx represents when it changes by one to the right when
you zoom out of the original function. So it's like you're relating the linear rate, like, how it
would look linearly. This is like just one line, and that was like the rate then. Yeah, that's
how it is. Right. But then at a different point, it would be different.

  
Figure 2. Ari’s inscriptions when explaining that the instantaneous rate at a point is 4
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In the next excerpt, Ari compared “very small” and “infinitely small” quantities from finite and
infinite zooming, and their roles.

Interviewer: You started this by saying you have to zoom in infinitely in order to talk about the
[instantaneous] rate. So if you were to zoom in a lot, so you get just keep on going until you
get two point 100 zeros and then one, because you zoomed in a lot but not infinitely, is that
enough to talk about rate?

Ari: Well, not if it's not infinite.
I: Okay. Why is that not good enough? If I zoom in a lot, why is that not good?
Ari:  Because  it  is  an  exponential  function  and  at  every  different  point,  the  rate  is  always

changing because 1.5 to the second power is, say like, okay, two squared is like four, and
then three squared is nine, and then four squared is 16. So the difference between those is
different. It would be the same the smaller the numbers are. So that's why you can't do that.
So that's why it has to be infinite, because then you'll be able to figure out the instantaneous
rate.

Ari also described a differential  as an instantaneous change, and a derivative as a ratio of two
instantaneous changes.

Interviewer: On this graph [in Figure 3], can you indicate for me, can you indicate dy and can
you indicate dt on the graph?

Ari: So when you zoom in infinitely, vertically it would be dy [marking dy], this would be dt
[marking dt], and then together [drawing the tangent line], that line right there is dy/dt.

[In response to a question, Ari used an equation he created to calculate dy/dt and dy.]
I: [What is the difference between] writing dy as opposed to writing dy/dt. 
Ari: Oh, okay, yeah… dy/dt is like the ratio for the instantaneous change for both variables, for t

and y in relation to each other, like this one [pointing to his earlier calculation for  dy/dt].
And then when it's just  dy,  it's just the instantaneous change for  y,  which is how much
vertically or how much the y-value is changing instantaneously at a point.

  

Figure 3. Ari’s graph, used to indicate dy, dt, dy/dt, and the tangent line

Ari discussed derivative in context. When asked for other scenarios in which it would arise, he
suggested the context of  maximizing profit.  He proposed a  scenario relating profit  in dollars,  and
quantity in bicycles. When asked for the units of the derivative he noted that it is “dollars per bicycle…
Because the output, the value is represented by dollars.”

Ari calculated a derivative using the chain rule (with substitution). For y=ln (cos(ex2+1)) , he used

substitutions  g=x2+1, j=eg, h=cos(j),  y=ln(h), then used
dy
dx

=
dy
dh

⋅
dh
dj

⋅
dj
dg

⋅
dg
dx

before expressing the

final answer correctly in terms of x. He then described his reasoning about it.
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Interviewer: I noticed you made some cancel marks here. Can you talk about that?
Ari: Okay, so pretty much because when you take the derivative of g with respect to x and then j

with respect to g, for instance, like, cross out dg because (pause). Well, I just see it as when
there's a denominator and numerator, you cross it out because they, like, cancel each other…

I: Are you stating with confidence that's what you did or you stating with uncertainty that's what
you did?

Ari: Well, I'm stating with confidence, but I think the problem is that because it's in derivative
form. Because I remember when I  took Calculus before somewhere,  they said that  you
shouldn't see it as fractions. Like, you shouldn't see it as numbers. Like, it involves infinite
number. And it's just kind of like, conceptually, it's not something you should do or see it
that way. But it's just kind of like, in your class, I kind of just, like, memorized it this way
because I've always hated the chain rule. And I was like, this is a good way to just do it.

When discussing the chain rule, Ari commented on proving derivative properties with limits and
how unhelpful that was. “They showed the proof for the chain rule and for the product rule and all the
rules, and it was very complicated. It was unlike anything like the calculus class I took, AP Calculus, it
was just, like, very different, it was so much more complicated. I was like, what is this?”

Ari talked about which of his understandings improved from studying Calculus with infinitesimals.

Interviewer: Are there things feel that you understand better now after taking this class?
Ari: I guess the concept of the instantaneous rate of change, I think you showed me, like, there

was some Greek letter [epsilon for infinitesimals], and then you multiply it with the number,
and that would represent, like, the infinite value, the infinitesimal value, when you showed
it to me that way. And that kind of like it helped me…  Other classes introduce calculus with
limits and that's very complicated, but that's the first thing that they do. Whereas [in this
class there was] the delta  x delta  y thing first with the linear functions and then the rate
function or change equation, rate equation. So, yeah, I kind of was able to grasp the concept
of  instantaneous  change  better.  …  When  I  don't  understand  something  quick  enough,
sometimes it makes me learn it, because I want to understand it deeply. And then when I
don't feel like I can, I just resort to, like with this [chain rule], memorizing and just putting it
on the back burner. And other things were much easier.  So I was just,  like,  that's  what
happened [with limits]. And then that's what kind of just held me back when it came to
feeling confident in doing calculus. … I just think [previous Calculus instruction] was really
focused on limits… it was your class when I first heard the term infinitesimals.

Discussion
Ari exhibited a rich and connected understanding of key concepts of Calculus. He was able to

describe change and rate and the connection between them, both at a standard and infinitesimal level.
He exhibited these conceptions in multiple problems across the four mathematical  representations:
numerical, graphical, symbolic, and verbal. Within the graphical representation, he was able to explain,
for  both  change  and  rate,  the  connection  between  the  standard  presentation  and  the  infinitesimal
presentation. He did this using a verbal explanation, by drawing graphs and by manipulating a graph
rendered by a computer grapher. He was very clear about the distinction between “very small” and
“infinitesimal” magnitudes, and how the latter was necessary to describe an instantaneous rate, i.e. the
derivative.

A significant part of Ari’s concept image (Tall & Vinner, 1981) for instantaneous rate relied on the
graphical representation, using infinite zooming to generate a straight graph. This conception of local
linearity has been shown to be a productive cognitive root (Tall, 1991) in Calculus; several studies have
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shown that first introducing the derivative in this way leads to robust understanding and performance in
Calculus (Tall, 1992; Samuels, 2012), and this study aligns with those results.

Ari described both the connection and the distinction between standard rate and infinitesimal rate.
He utilized, first, a conception with finite real quantities, and second, a conscious introduction of the
concept of infinity (in this case, infinitely small) to form a new scenario – in this case, quantities on the
infinitesimal scale which are the context for infinitesimal change and rate. To characterize these two
notions  acting  in  concert,  I  introduce  the  term  transfinite  thinking.  Thus,  it  can  be  said  that  Ari
exhibited transfinite thinking in his conception of the derivative. Learner connections between finite
and infinite scenarios have been investigated previously, both in Calculus and non-Calculus contexts
(Ely & Samuels, 2019; Oehrtman, 2009; Mamolo & Zazkis, 2008). Here for the first time I provide a
rigorous definition of transfinite thinking.

His conception of infinitesimals was given, not immediately, but after a progressions of statements.
First,  he conceived only of  very small  real  values.  Next,  he said it  would “keep getting smaller”,
indicating he was considering the process rather than the result. Then he said that an infinitely small
quantity was something “you can’t conceive of...because its infinite, its not defined by any value”. Next
he gave a numerical representation of an infinitesimal as “point zero zero zero infinitely many zeroes,
one”.  Finally,  he was able to perform arithmetic operations and make quantitative statements  with
infinitesimals, as when he referred to one (dy) being four times as large as another (dx). For Ari, the
transfinite reasoning to extend his conception of rate between two points to rate at a single point was
very much a multistage process which arose organically during the interview. This could form the basis
for a hypothetical learning trajectory (Simon, 1995) for instantaneous rate with infinitesimals.

It is important to note that  the idea of representing an infinitesimal as 0.00...1, a decimal with
infinitely many zeroes, was never discussed in the Calculus class. This was a construction created by
Ari in the moment.  (Since he stated that  he had never heard of infinitesimals  before the Calculus
course, I assume he did not hear of this somewhere else.) Research has previously shown that students
have both spontaneous and intuitive notions of infinitesimals (Ely, 2010) which sometimes conflict
with their classroom instruction. For Ari, it conflicted with his previous Calculus instruction but agreed
with his experience in the current course. It is argued, both here and in the literature, that these intuitive
notions should be encouraged, since they can form the basis of correct intuitions about Calculus which
can be formalized into rigorous mathematics.

In  constructing  the  infinite  decimal,  Ari  gave  quantitative  meaning to  the  infinitesimal  in  the
numerical  representation.  He  was  able  to  extend  his  quantitative  reasoning  further,  making  a
quantitative relationship between two infinitesimals. He stated this relationship both multiplicatively
and as a quotient. He described dy saying “it would be 4 times that [dx], but it would be infinite[simal]
still…that same [infinitesimal] amount times 4”. Initially he thought that |dy|=4, but he realized that dy
= 4 units, where dx = 1 unit. He elaborated on the nature of that unit, describing it as infinitesimal and
only apparent on the graph after an infinite zoom. Through unitizing and coordinating infinitesimals, he
constructed a coherent quantitative conception of instantaneous rate.

Ari noted that his previous Calculus class began with limits and was “really focused on limits”. He
tried to understand them, but could not, calling them “complicated” and feeling limits “held me back”.
He  resorted  to  simply  memorizing  procedures.  Calculus  students  being  forced  to  abandon
understanding  for  memorization  is  unfortunate,  and  also  consistent  with previous results  (Carlson,
1998). Particular difficulty with limits in SVC is also a common finding (Liang, 2016; Cornu, 1991).

An interesting aspect of Ari’s situation was that he had previously taken a Calculus course. Students
taking Calculus more than once is  not only common,  it  is  the majority  experience among college
Calculus students (Bressoud, Mesa  & Rasmussen, 2015).  How students  negotiate this path is  thus
highly relevant. He was able to talk about the difference in his understandings in the two courses.
Regarding calculating with differentials as in the chain rule, in his first course differentials were not
thought  of  as  canceling  (i.e.  arithmetic  operations  were  not  valid)  even  though  those  operations
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resembled the solving procedure,  and he “hated the chain rule”.  In his last course,  arithmetic with
differentials was allowed, and in the interview he demonstrated the ability to calculate the derivative of
a multiply nested function, calling the chain rule “a good way to just do it”. Previously, proofs and
explanations  with  limits  created  confusion,  leaving  him  wondering  “what  is  this?”,  and  not
understanding instantaneous rate. The presentation with infinitesimals allowed him to create personal
understanding. After first discussing rate with the “delta x delta y … rate equation” in the standard case
and then extending it using infinitesimals to instantaneous rate, he developed the rich understanding as
previously  described.  This  is  evidence  in favor  of  the  calls  to  redesign  Calculus  to  focus  on  the
quantitative  reasoning  of  infinitesimals  and  eliminate  the  Analysis  of  limits  (Augusto-Milner  &
Jimenez-Rodriguez, 2021). The debate about relying on infinitesimals or limits for the foundation of
Calculus has raged for centuries (Ely, 2021), and is likely to continue.

Ari  exhibited  two  types  of  weakness  in  his  understanding.  One,  some  understandings  were
temporarily forgotten before being recalled. A likely factor was the researcher’s intentional choice to
conduct the interview two months after the course ended. Conceptions are likely only to be robust with
either  recency  or  reinforcement;  without  support  in  subsequent  Calculus  courses,  meaningful  and
productive Calculus conceptions involving differentials can go away quite quickly and be replaced by
unproductive and incorrect ones (Simmons et al., 2022). In the interview, Ari had space to (re)develop
his conceptions, and in multiple cases did so with success.

Two,  some  topics  were  simply  not  understood  at  all.  For  example,  while  Ari  was  able  to
successfully calculate a derivative using the chain rule, he felt as though he only knew how to complete
the procedure and he didn’t understand  why it worked. One possible explanation for his conceptual
difficulty with this rate relationship was indirectly suggested by Ari.  The conflicting instruction in
previous Calculus classes may have made him wonder whether or not the cancellation of differentials
in the fractions was actually legitimate. If students are taught explicitly that quantitative reasoning and
arithmetic manipulation with differentials are incorrect and not allowed (a common practice), it may be
challenging to get students subsequently to accept them. That is unfortunate, since those conceptions
are mathematically valid and pedagogically productive.

It is important to point out that data in this study was drawn from a single student. I cannot claim
that any observations generalize to the entire population. Rather, the analysis sheds light on how a
student  might  possibly  form  conceptions  about  Calculus  using  infinitesimals.  Due  to  the  relative
novelty of the context, this signifies a contribution to the literature.

Conclusion
In  this  report,  I  investigated  an  understudied  area  of  student  understanding of  Single  Variable

Calculus, conceptions of rate and change after a one semester course on Calculus with infinitesimals.
The  data  showed  robust  student  conceptions  of  instantaneous  rate  and  change  across  multiple
representations. Graphically, change was conceived as a displacement, and a rate was the slope of a
straight line, which could be presented as the ratio of two changes. There was an array of calculations
with formulas and descriptions of applications. This conception was applied in both the standard and
instantaneous contexts, demonstrating a strong link between prior and Calculus knowledge, connected
using transfinite thinking. The student was able to articulate the role of infinitesimals in generating a
locally constant rate to make meaning out of instantaneous rate. Graphically, this was described with an
infinite zoom.

Calculus  instruction  using  infinitesimals  is  not  typical  practice.  There  is  a  growing  body  of
evidence that it is a propitious approach for students to make quantitative meaning in Calculus, and this
study is a contribution in that direction. It also demonstrated how student knowledge of the quantities
and relationships within Calculus, and their growth from prior knowledge by transfinite thinking, can
be exhibited by students, and productively analyzed using the ACRA Framework.

25th Annual Conference on Research in Undergraduate Mathematics Education 365



References
Augusto-Milner, F. & Jimenez-Rodriguez, J. (2021). Didactic contrasts between Calculus and 

Analysis. Unpublished manuscript.
Bressoud, D., Mesa, V & Rasmussen, C. (Eds.) (2015). Insights and Recommendations from the MAA 

National Study of College Calculus. MAA Press: Washington DC.
Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. In E. 

Dubinsky, A. Schoenfeld & J. Kaput (Eds.), Research in Collegiate Mathematics Education III (pp. 
115-162). Providence, RI: American Mathematical Society.

Carlson, M., Smith, N. & Persson, J. (2003). Developing and connecting calculus students' notions of 
rate of change and accumulation: The Fundamental Theorem of Calculus. Proceedings of the 2003 
Joint Meeting of PME and PMENA, 2, 165-172. 

Cornu, B. (1991). Limits. In D. Tall (Ed.) Advanced Mathematical Thinking. Dordrecht: Springer.
Ely, R. (2010).  Nonstandard student conceptions about infinitesimal and infinite numbers. Journal for 

Research in Mathematics Education, 41, 117–146.
Ely, R. (2021). Teaching Calculus with infinitesimals and differentials. ZDM, 53, 591-604.
Ely, R. & Ellis, A. (2018). Scaling-continuous variation: A productive foundation for calculus 

reasoning. In S. Brown, G. Karakok, K. Roh & M. Oehrtman (Eds.), Proceedings of the 21st Annual 
Conference for Research in Undergraduate Mathematics Education (pp. 1180-1188), San Diego.

Hunting, R. (1997). Clinical interview methods in mathematics education research and practice. 
Journal of Mathematical Behavior, 16(2), 145-165.

Jones, S. (2015). Areas, anti-derivatives, and adding up pieces: Definite integrals in pure mathematics 
and applied science contexts. Journal of Mathematical Behavior, 38, 9-28.

Keisler, H. (1976) Elementary Calculus: An Infinitesimal Approach. 1st Edition. Prindle, Weber & 
Schmidt: Boston.

Liang, S. (2016). Teaching the concept of limit by using conceptual conflict strategy and Desmos 
graphing calculator. International Journal of Research in Education and Science, 2(1), 35-48.

Mamolo, A. & Zazkis, R. (2008). Paradoxes as a window to infinity. Research in Mathematics 
Education, 10(2), 167-182.

Oehrtman, M. (2009). Collapsing dimensions, physical limitation, and other student metaphors for limit
concepts. Journal for Research in Mathematics Education, 40(4), 396-426.

Park, J. (2013). Is the derivative a function? If so, how do students talk about it? International Journal 
of Mathematical Education in Science and Technology, 44(5), 624–640.

Pustejovsky, S. (1999). Beginning Calculus students understanding of the derivative: Three case 
studies. Unpublished PhD dissertation, Marquette University.

Radmehr, F. & Drake, M. (2017). Exploring students’ mathematical performance, metacognitive 
experiences and skills in relation to fundamental theorem of calculus. International Journal of 
Mathematical Education in Science and Technology, 48(7), 1043-1071.

Samuels, J. (2011). The relationship between learner characteristics and learning outcomes in a revised 
first-semester Calculus course. In L. Wiest & T. Lamberg (Eds.), Proceedings of the 33rd Annual 
Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education (pp. 666-674). Reno, NV: University of Nevada, Reno.

Samuels, J. (2012). The effectiveness of local linearity as a cognitive root for the derivative in a 
redesigned first-semester calculus course. In S. Brown, S. Larsen, K. Marrongelle, & M. Oehrtman 
(Eds.) Proceedings of the 15th Annual Conference on Research in Undergraduate Mathematics 
Education (pp. 155–161), Portland, OR.

Samuels (2022). Calculus reconceptualized through quantities. In S. Karunakaran & A. Higgins (Eds.), 
Proceedings of the 24th Annual Conference on Research in Undergraduate Mathematics Education 
(pp. 876-884). Boston, MA.

25th Annual Conference on Research in Undergraduate Mathematics Education 366



Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and definite 
integrals. Journal of Mathematical Behavior, 33, 230-245.

Simmons, C., Samuels, J., Reed, Z & Ely, R. (2022). A reemergence of a non-quantitative interpretation
of the differential for definite integrals. In S. Karunakaran & A. Higgins (Eds.), Proceedings of the 
24th Annual Conference on Research in Undergraduate Mathematics Education (pp. 589-596). 
Boston, MA.

Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal 
for Research in Mathematics Education, 26, 114–145.

Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity, and proof.
In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 495-511). 
New York: Macmillan.

Tall, D. (1991) Recent developments in the use of the computer to visualize and symbolize calculus 
concepts. In C. Leinbach, J. Hundhausen, A. Ostebee & L. Senchal (Eds.), The Laboratory 
Approach to Teaching Calculus: MAA Notes #20, (pp. 15-25). DC: MAA.

Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics with particular 
reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169.

Thompson, P. (1994). Images of rate and operational understanding of the Fundamental Theorem of 
Calculus. Educational Studies in Mathematics, 26(2), 229-274.

Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of 
derivative. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in collegiate mathematics 
education IV (pp. 103–127). Providence, RI: American Mathematical Society.

25th Annual Conference on Research in Undergraduate Mathematics Education 367



In Proving Attempts that Generate Stuck Points, What Characterizes Undergraduate Students’ 

Overall Proving Process? 

 

Yaomingxin Lu 

California State University, Fresno 

Learning to prove mathematical propositions is a cornerstone of mathematics as a discipline (de 

Villiers, 1990). While the field has generated research that has analyzed the final products of 

proof (Selden & Selden, 2009) and there are frameworks for analyzing problem-solving 

processes (e.g., Carlson & Bloom, 2005; Schoenfeld, 1992), much remains to be known about 

analyzing undergraduate students’ proving processes. With a focus on impasses in the proving 

processes, this study provides a more fine-grained account by characterizing students’ overall 

proving process and navigating actions. The analysis lays the foundation for discussing the 

relative productivity processes students may take as they are engaging in proving. 

Keywords: Proving Processes, Stuck Points, Navigating Actions, Productive Struggles 

Since proving is a different mathematical activity as compared to students’ prior experience, 

research has also shown that many undergraduate students struggle to learn to prove, including 

those who major in mathematics (Moore, 1994; Selden, 2012). Within the proof literature that 

focuses on undergraduate students, much work has concerned students’ final proof products 

(such as written work or exams). However, such products cannot reveal the sequence of mental 

and/or physical actions that resulted in the final proof that students present in their written work 

(Selden & Selden, 2009). In particular, the proving process might entail several places where 

students get stuck, only some of which ultimately contribute to the final proof.  

While the idea of struggle has been examined in problem solving in the middle grades (e.g., 

Warshauer, 2011), there has been sparse research on this idea in proving at the collegiate level. 

With a focus on impasses in the proving processes and the research questions “In proving 

attempts that generate stuck points, what characterizes undergraduate students’ overall proving 

process?”, this study provides a more fine-grained account by characterizing both undergraduate 

students’ overall proving process and their navigating actions. Given the difficulty undergraduate 

students face in higher-level math courses, understanding the ways in which they struggle is 

important for building more inclusive classroom environments.  

Literature Review and Theoretical Framework 

View Proving as Problem Solving 

A number of authors have remarked on the close relationship between problem solving and 

proving (e.g., Furinghetti & Morselli, 2009; Moore, 1994). In fact, Weber (2005) suggested 

focusing on problem-solving aspects of proof because this “allows insight into some important 

themes that other perspectives on proving do not address, including the heuristics that 

mathematicians use to construct proofs” (p. 352). Thus, in this study, I regard proving as 

problem solving and used Carlson and Bloom’s (2005) Multidimensional Problem-Solving 

Framework to inform my research design. Expanding from Schoenfeld’s (1985) framework, 

Carlson and Bloom (2005) developed four phases for problem-solving processes (Orienting, 

Planning, Executing, and Checking), each phase with the same four associated problem-solving 

attributes from Schoenfeld (resources, heuristics, affect, and monitoring). However, the original 

context of the work of Carlson and Bloom (2005) considered only how experts (like 

mathematicians) behave to successfully solve problems. Thus, their Multidimensional Problem-
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Solving Framework does not characterize where a novice prover may seem to get stuck and how 

they may behave if they get stuck.  

Immersion, Stuck Point and Productive Struggles 

Wallas (1926) argued that creative problem-solving begins by first, immersing oneself in the 

problem to better understand it and exhaust conventional ideas. After a period of immersion, one 

likely reaches an impasse, or a mental block. The immersion phase of creativity shares some 

commonalities with productive struggle (Hiebert & Grouws, 2007), productive failure (Kapur, 

2014) and other constructivist approaches to teaching in math education in which a student 

expends great effort during an initial period to explore and try to solve a math problem before 

receiving direct instruction. Involving in productive struggle in problem-solving is an invaluable 

mathematical practice which can help learners overcome uncertain obstacles to make sense of 

mathematics (Middleton et al., 2015). This is essential as students make meaning through 

productive struggle, or as they grapple with mathematical ideas that are within reach, but not yet 

well formed (Hiebert & Grouws, 2007; Kapur, 2008; Warshauer, 2014). From the student point 

of view, these stuck points have been described as perceived impasses, or moments when a 

student feels substantially stuck and unsure how to continue (VanLehn et al., 2003).  

To date, research on stuck point in proving in the mathematics education literature has been 

sparse. Identifying a “stuck point” can be hard since it requires finding observable behaviors to 

serve as indicators of a person’s internal mental state. Savic (2012) conducted a study of how 

mathematicians recover from proving impasses. In his study, all of the mathematicians were able 

to recover from the impasses, thus his focus was on their Incubation Period: where they 

temporarily shift their attention away from the problem and do something else. 

Methodologically, Savic used Livescribe pens that were given to the mathematicians for days to 

gather real-time data. Although a mathematician may have had a key insight while walking 

around (for example) that allowed them to get unstuck, from this study, we still know little about 

the actual cognitive process of getting unstuck. Thus, Savic (2016) had called for future study of 

proving processes involved several impasses (stuck points) with participants that are less skilled 

in math (different from mathematicians), since their incubation period might not help them to 

move forward. In this study, I thus began by characterizing the major actions that were evident in 

students’ proof construction through “stuck points” in their proving processes. 

 

Method 

My study of undergraduate students drew participants from the Introduction to Proof course 

at a large research university in the Midwest. The Introduction to Proof (ITP) course is required 

for undergraduates majoring in STEM and mathematics education. The course focuses on 

developing mathematical argumentation techniques and proof strategies. The data for this study 

consisted of semi-structured task-based interviews with 10 undergraduates enrolled in a 

transition-to-proof course. Each participant was asked to prove or disprove two mathematical 

statements. The majority of the interviews took around 70 minutes, which provided enough time 

for the participants to have at least 30 minutes to engage with each task. In order to capture 

students’ proving processes with their specific strategies and steps, a think-aloud protocol was 

used (Schoenfeld, 1985). Interviews were video-recorded, and students’ real-time proof work 

was captured using a Livescribe™ pen. 

As I have discussed in the literature review, in order to account for the proving processes of 

undergraduate students, the existing problem-solving frameworks need to be expanded. In 

particular, the role of students’ stuck points in their process is important, as is understanding 
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more about what students do when they get stuck. To do that, I utilize a combination of my own 

partition of students’ process around “stuck point” and a modification of Boero (1999)’s proving 

phases and Carlson and Bloom (2015)’s Problem Solving framework. My partition was 

developed from the flowing three steps: 

Step 1: Operationalizing and Identifying “Stuck Points”. Like I have pointed out, 

identifying a “stuck point” can be hard since it requires finding observable behaviors to serve as 

indicators of a person’s internal mental state. In this sense, body and facial language become 

more important in telling whether a person has gotten stuck. For my purposes, stuck meant a 

period of time during the proving process when a prover felt or recognized that their argument 

had not been progressing fruitfully and that they had no new ideas. Whether the participant 

discovered an error was not important; the prover’s awareness that the argument had not been 

progressing, but they were hesitant about what to do next was the key focus for me. For the 

purposes of my study, an impasse (an episode of “stuckness”) consisted of interruption in the 

proving processes that was initiated by a student struggle that was in some way visible, whether 

voiced, gestured, or written. An impasse ended when the student overcame a stuck point and 

continued attempting or finishing the task, or the student gave a sign of no resolution and 

indicated wanting to switch to a different task or end the interview. In total, there were 41 

episodes of such “stuck points” and majority of them are in the last four phases according to 

Boero (1999): Exploring of the Content (identify appropriate argumentations and envisage 

possible links), Selecting of arguments into deductive chain, Organizing the chain of argument 

into proof, and finally Write a Formal Proof.  

Step 2: Categorizing Major Actions Around Stuck Points. I used the existing Warshauer 

(2011)’s framework for the four categories of students’ stuck point (getting started, carrying out 

a process, uncertainty in explaining and sense-making, and expressing misconceptions and 

errors) to enhance my initial coding scheme by developing sub-categories to capture students’ 

actions. Different from Warshauer (2011)’s study that mainly aim to examine the categories of 

students’ struggles in K-12 problem-solving environment with teachers’ interaction, my study 

focuses more on undergraduate students’ proving processes and their own navigating actions.  

Through this process, several major categories were identified. Each student’s proving 

processes were captured in three major categories initially: their arguments, their stuck point, and 

their actions. After identifying those bigger categories, smaller categories were then identified 

inside of each major category. Since I was primarily interested in students’ arguments and 

actions around their stuck points, I refined categories related to proving activity to the following 

four: initial argument, stuck points, navigating actions, and related outcomes. Once the initial 

coding scheme with those themes was developed, I completed the first round of data analysis to 

test and refine those themes. Particularly, I reorganized my coding scheme to highlight students’ 

responses to “stuck points” or impasses. Besides different types of stuck points that were 

identified by the students, their actions for attempting to resolve those stuck points, monitoring, 

and persistent actions were also classified and captured.  

Step 3: Capturing Each Students’ Proving Process with Map. To capture each student’s 

stuck points for each individual task, I used a flow chart to map out each student’s proving 

processes with their major navigating actions. I split the proving process map into two 

dimensions. Vertically, the process map captured the four categories as described in Step 2. 

Horizontally, the map captured the order of each individual argument and action. The arrows in 

between indicate the directions of the movements and the relationship between the arguments 

and the actions. Instead of capturing only arguments, I also added a category that captures 
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students’ actions to help bridge the gap of the relationship between the argument and the actions, 

as described above. In Figure 1 below, I provide an example of one student’s proving process 

map for Task 2. From this process map, one can clearly see the student’s arguments, stuck 

points, navigating actions, and outcomes related to those actions, as well as how one moved from 

one to the other. This proving process map provides a bird’s-eye view of the proving process for 

each task for each individual student. 

 
Figure 1. Example of Student’s Proving Process Map for Task 2 

 

Result and Discussion 

In my subsequent work, the detail analysis of each student’s proving process will be provided 

with map. In this proposal, I turn to focusing on the qualities of navigating actions students used, 

situated in the context of their entire proving attempts. My analysis resulted in three major types 

of navigating actions that were generated based on each participant’s proving process map and 

the major categories of my analytical framework. For each task, each participant’s proving 

process was characterized by their process map based on shifts between (1) initial argumentation 

(Argument), (2) major stuck points (Stuck Points), (3) actions they took to try to navigate out of 

being stuck (Navigating Actions), and (4) related results (Related Outcome). If they are able to 

use the related outcomes (i.e., new insight, useful calculation, or new connection) that they 

generated in a given cycle, then the proving process progresses, either to completion or until they 

reach a new impasse. In the next sections, I will describe the three major types of proving 

process around stuck points based on these shifts in the order of increasing complexity. Because 

of the limited space for this proposal, I will only discuss one student for each type for Task 2 

(Prove or disprove: An integer is divisible by 9 if the sum of its digits is divisible by 9).  

Type 1: No Related Outcome Produced 

Trajectory: Arguments⟶ Stuck Points⟷Navigating Actions  

For this process type (as in all the types I consider), the student started with some sort of 

argument and got stuck when trying to construct a proof. The student then took several actions or 

attempts to try to navigate out of the stuck point but did not produce any related results, thus 

going back to their navigating actions. In summary, this type can be characterized as going back 

and forth between stuck points and navigating actions without any related outcome to help one 

move forward (see Figure 2). I will use Nikki’s process to explain this type. 

                            
Figure 2. Process Flow for Type 1 Process Around Stuck Point 

Argument Stuck Point
Navigating 

Actions
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As soon as Nikki saw the task, she remembered that she had done a similar problem before. 

She quickly wrote down the problem and figured out what were the “P” and “Q” in this 

statement to set up for a proof by contrapositive. She then rewrote the statement as “If the sum 

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘  equals 9, then the number n is divisible by 9” (Nikki, Task 2). But Nikki got 

stuck after she had decided that was the argument that she wanted to prove. “How are they 

related?” she questioned. At this point she went back to the beginning of the problem and 

double-checked which statement should be thought of as “P” and which statement as “Q,” then 

told me that she didn’t know where to go next. She then started trying some examples such as 27, 

then thought about what happened if the sum was 9 or the sum of a multiple of 9 (like 18). But 

these navigating actions didn’t help her to go forward. She asked aloud, “How can I represent 

this example in a more general form?” and she got stuck again with her attempts to try examples. 

Nikki then tried to look for the general equation for expressing the sum of the digits. She found 

the expression on the formula sheet and tried to understand the expression again by computing 

some examples and by rewriting 27 as 2 ∗ 101 + 7. But she was soon stuck again with the kth 

term: “What does k here mean in the expression of 10𝑘? Is k the number of digits or something 

else?” (Nikki, Task 2). She told me this general form she found (on the provided formula sheet) 

didn’t really help her, because she didn’t even understand the expression itself. After several 

attempts, Nikki didn’t produce any related outcome from her navigating actions, and she 

remained stuck in the end of the episode.  

As I have noticed from Nikki’s example, this type of process doesn’t involve the production 

of related outcomes from navigating actions. Students with this process tend to go back and forth 

between stuck points and navigating actions since no significant related outcome is produced to 

help them move forward. Thus, in the end of the process, students don’t overcome the stuck 

point and they are unable to make progress on their argument. 

Type 2: Related Outcome Produced but Not Link to the Argument 

Trajectory: Arguments⟶Stuck Point 1⟶Navigating Actions⟶Related Outcomes ⟶Stuck 

Point 2 (⟷Navigating Actions) 

The majority of the participants’ proving processes can be characterized as this type. For this 

process type, like before, a student starts with some sort of argument and gets stuck when trying 

to prove the argument. The student then takes several actions or attempts to try to navigate out of 

the stuck point (so far, as in Type 1). However, the student successfully overcomes one stuck 

point by producing a new idea or connection (a “related outcome”). But they soon run into 

another stuck point when they try to expand the related outcome into an argument. This process 

may also include some navigating actions to try to overcome the second stuck point, but the 

student is unsuccessful in doing so (see Figure 3).  

                                     
Figure 3. Process Flow for Type 2 Process Around Stuck Point 

In Task 2, Devin conjectured the statement works for all multiples of 9 after trying examples 

like 9, 18, 27. But he then got stuck with how to show the statement in general. He tried to 

represent a given number in terms of the sum of its digits in a general form and assumed 9/𝑁 

where 𝑁 is a number such that 𝑜𝑛𝑒𝑠 + 𝑡𝑒𝑛𝑠 + ⋯ = multiple of 9 and 𝑚1, 𝑚2, 𝑚3 are the place 
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values of each of the digits. Thus, any number can be represented as 𝑁 = 1 ∗ 𝑚1 + 10 ∗ 𝑚2 +
100 ∗ 𝑚3 + ⋯ But with this generalized formula in hand, how to use this to prove the statement 

became her new problem. He then thought about whether a number that is a multiple of 9 could 

be factored differently. Devin took the examples of 36 and 135 to try to factor them out and see 

whether he can have some insights. He rewrote them as 36 = 4 ∗ 9, 135 = 1 ∗ 100 + 3 ∗ 10 +
5 ∗ 1 = 100 + 30 + 5 = 2 ∗ 5 ∗ 5 + 6 ∗ 5 + 5 = 5 ∗ 27 = 5 ∗ 3 ∗ 9. But “What do these 

factorizations tell me?” became his new question, a question he still had in the end.  

The examples of Devin illustrate what Type 2 processes look like and how they differ from 

Type 1 processes in terms of the role of related outcomes. Devin had several related outcomes 

produced by overcoming some of their stuck points. This helped them to move forward, and, in 

fact, they were just a few steps away from fully overcoming all the stuck points and successfully 

proving the statement. Thus, at this point, it will be insightful to compare their processes with at 

least one related outcome linked with argument. 

Type 3: At Least One Related Outcome Linked with Argument 

Trajectory: Arguments⟶Stuck Points⟶Navigating Actions⟶Related Outcomes 

⟶Arguments  

Similar to the previous two types, for this type of process, a student also starts out with an 

initial argument, but they also get stuck. The student then takes several actions or attempts to try 

to navigate out of the stuck point (as in Types 1 and 2 process flows). However, the Type 3 

process advances to proving the statement using the related outcomes generated in the process 

and ultimately results in having at least one related outcome linked with the argument. Since 

there could be multiple stuck points resulting in multiple processes, the student will be 

categorized in this type as long as at least one productive cycle is complete. The cycle can repeat 

if a second or third stuck point is encountered. To summarize, this type of process always 

involves a related outcome each time and the participant is able to leverage these related 

outcomes to move forward with developing their argument (see Figure 4). Note here that 

students are considered as making productive progress (Type 3) as long as at least one 

productive cycle is complete, which means they don’t need to successfully prove the task in 

order to be considered as making productive progress.            

                
Figure 4. Process Flow for Type 3 Process Around a Stuck Point 

Soni successfully overcame several stuck points in both Task 1 and Task 2. For Task 2, Soni 

started with outlining some of his ideas for finding the differences between counting by 9s and 

counting by 10s and rewrote 10 as 9 + 1. Having this general goal in mind about what he would 

do, he felt the need for a generalized formula to represent any integer with its sum of the digits. 

Soni looked into the formula sheet and found the formula that any integer can be represented as 

𝑎𝑘(10)𝑘 + 𝑎𝑘−1(10)𝑘−1 + ⋯ + 𝑎0(10)0. But then how to use the general formula to prove the 

statement became his problem. Soni then thought about induction to help him achieve his goal. 

However, he soon realized that it didn’t work here. He decided to go back to his initial thinking 
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about representing 10 as 9 + 1 and substituting all 10s in the formula as 9 + 1. However, he got 

stuck again on how to expand 𝑎𝑘(9 + 1)𝑘 + 𝑎𝑘−1(9 + 1)𝑘−1 + ⋯ + 𝑎0(9 + 1)0. Soni then 

decided to try a specific example (Figure 5) to show it could be factor out by 9, then follow the 

same way to show the generalized cases. Following this way of thinking, he successfully 

navigated out of his stuck points and proved the statement in the end.  

 
Figure 5. Soni’s work of representing 945 using counting by 9s 

From Soni, we see what could be described as a more productive struggle engaged in their 

proving processes since they completed at least one cycle of link back to the argument. Looking 

at Soni’s case, we would see that he was clear about the goals for each of his navigating actions 

and had a clear understanding about where he got stuck. He also successfully produced several 

related outcomes from his navigating actions to help him move forward.  

 

Conclusions and Implication 

As I discussed in the literature review, although students’ and mathematicians’ proof 

practices have been examined in several ways, there are still important aspects that have not been 

examined in the existing literature. Previous proof construction research, building largely upon 

the work of Toulmin (1958), focused only on the structure of the argument but not the actual 

action and the actor (e.g., Pedemonte, 2007). To address those issues and characterize 

undergraduate students’ proving processes, through our analytical process (conceptualizing stuck 

point, characterizing actions, and capturing general processes using map), I classified three 

different types of overall processes when undergraduate students face several stuck points and 

try to navigate out. In general, we can see that even though some of the students’ navigating 

actions might look similar (e.g., look for a generalized formula to represent digits), students in 

Type 3 seems to make more productive progress compared to the other types. The reason could 

vary between students, but in general, students in Type 3 are able to clearly identify their stuck 

points, have a goal for each of their attempts, and able to produce related outcome from their 

attempt and then link that back to their initial goal/argument.  

To conclude, students need to engage in a way that they can make some progress in order to 

be productive. In general, most of the students interviewed in this study had their process maps 

and actions categorized as Type 2. If we know where students get stuck in their overall proving 

process when trying to navigate out stuck points, we will be able to better support their 

productive struggles and help them to move to Type 3. In the subsequent study, I will describe 

individual cases in detail to discuss the relative productivity of different possible navigating 

actions students may take as they are engaging in proving. The different proving processes and 

navigation actions characterized in this study can help instructors to have a better understanding 

of students’ proving processes when navigating out stuck points and to be more explicit in their 

own modeling of their own actions for their students.  
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Contextuality in Reasoning about the Exponential Function: A Microgenetic Learning Analysis 

 

Elahe Allahyari 

Western Michigan University 

This paper explores how two undergraduate students come to perceive exponential structure in a 

series of word problems. This study investigates whether features of task situations can create 

opportunities for supporting students in recognizing situations as appropriate for using 

exponential models. The analysis is guided by coordination classes theory (diSessa & Sherin, 

1998) and Transfer-in-Pieces perspective (Wagner, 2006; 2010), which emphasizes the role of 

multiple instantiations of a concept across multiple contexts as learners construct their 

understanding. The results suggest that contexts that embody the notion of recursive dependency 

may help students activate and use appropriate knowledge resources related to exponential 

models. 

 

Keywords: Exponential models, Context-dependence, Knowledge in Pieces  

  

Introduction and Purpose of the Study 

There is an essential need to explore students' understanding of different topics at the 

college level, especially those topics that students find difficult. Exponential functions are a 

difficult, yet essential, mathematical concept that plays an important role in the study of 

advanced mathematics (Ellis et al. 2016; Weber 2002). Several researchers illuminated the 

importance of deep understanding of exponential function as an important topic in the 

mathematics education field (Brendefur, Bunning, Secada, 2014).  Weber (2002) focused on 

students’ initial understandings of the exponential function. The main result from Weber's (2002) 

work was that although all students could compute exponents in simple questions, only few 

students could reason about the process of exponentiation. The result stimulates some essential 

questions regarding understanding the exponential function: What features of contextual tasks do 

students notice and how does this impact their reasoning patterns? In particular, what features of 

tasks meant to cue the use of exponential models are salient to students? How do students’ 

reasoning patterns shift as they engage with a sequence of tasks designed to help them link their 

prior experience with linear modeling to exponential modeling?  

  

Theoretical Framework 

This work requires a perspective that brings into focus on the role of contextuality of a 

task in students’ thinking and reasoning. To this end, I turned to Wagner (2006; 2010) who 

addressed the role of knowledge in transfer processes. Wagner (2006) demonstrated in “transfer-

in-pieces” that prioritizing context sensitivity of knowledge supports transfer. Wagner (2006) 

framed his analysis using the construct of coordination classes which is rooted in diSessa’s 

(1993) Knowledge-in-Pieces (KiP) heuristic epistemological framework. Coordination classes 

give a model for conceptual understanding that involves how individuals extract concept relevant 

information from a context. These constructs can help to explain how learners initially interact 

with mathematics content in a wide range of contextual tasks. In describing the knowledge that 

emerged in this study, the coordination class theory construct of concept projection proved to be 
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useful. A concept projection is, “the particular set of strategies and cognitive operations that are 

used by an individual in applying his or her concept (coordination class) in a particular 

situation…” (diSessa & Wagner, 2005, p. 128).  

Wagner (2010) provided an extension of transfer- in-pieces in which the alignment with 

the Piagetian frame is explicitly pointed out to create a framework for transfer either in similar 

situations or accommodation of a new concept. “Concept projections are thus collections of 

assimilatory and interpretive knowledge elements associated with some concept, and the 

construction of new concept projections reflects a process of conceptual accommodation to new 

contextual situations” (Wagner, 2010, p.451). Building on Wagner’s (2006, 2010) perspective, I 

explored how learners can build new knowledge elements —exponential understanding—which 

is the result of passing through multiple disequilibrium and accommodating particular context. In 

this work, another goal is to investigate the affordance of context for such accommodations. In 

other words, I seek to explore from the novice’s perspective what is the feature of contexts that 

exponential understanding can be accommodated to? The affordances of a context are a 

fundamental aspect of investigation of coordination classes and transfer. “Transfer requires that 

the structure perceived in a new situation be matched or closely matched to the structure 

perceived in a previously encountered situation” (Wagner, 2006, p. 5). A major difficulty is the 

explanation of contextual situation which can be matched to the ultimate, desired abstraction 

(Wagner, 2006).  

In this work, I investigate the affordances of recursive dependency implicit in very 

common exponential contexts for instigating productive conceptual conflict. I define recursive 

dependency as a feature of a context task in which reasoning about each step depends on the 

previous step. As an example, the molding process of the population of a city, increasing by a 

particular rate every year, needs learners to realize that the number of people of the city in each 

year depend on the previous year, rather than the initial year. I argue that the recursive 

dependency is the heart of, specifically, identification of exponential function as it is shown in 

two undergraduate students’ reasoning in this study. 

 

Data Collection 

Data for this study were taken from semi-structured task-based interviews of four 

undergraduate students who enrolled in a developmental math course—Algebra II—at a large, 

public, Midwestern university. The interviews were conducted in an online format consisting of 

60-100 minutes of problem solving. The interview involved screen sharing a specially designed 

set of slides I created through Desmos Activity Builder (DAB). Participants agreed to meet with 

me for 60-90 minutes one-on-one in an online private session. They worked in DAB and their 

thoughts as he described as they worked on a contextual problem involving exponential function 

was audio and video recorded. Screenshots of all written work in DAB were saved and some are 

represented in appendix A. All 60-100 minutes of the interviews were transcribed for detailed 

analysis.  

The main interest to this research was moments in which participants’ patterns of 

reasoning appeared to be in transition or if it appeared that they came to notice a conceptual 

conflict. Among four participants there was one student, Leia, who understood the context 

qualitatively in City A problem and calculated the population after 10 days and 20 days, 

however, introduced a linear model and stuck with a linear model. Another student, Nick, who 

already knew exponentiation in different contexts and models exponentially. Two students, Tom, 

and Andrew, who underwent conceptual change and came to discern exponential function in 
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different contexts. This study focuses on how Tom and Andrew underwent some conceptual 

change to understand exponential function. 

Among the problems presented to students were sets of common contexts for exponential 

situations, like population growth and the amount of a drug remaining in a patient's body. 

However, there is a special effort for raising the possibility of more engagement from each 

student. For example, city A and City B problems, presented in Table 1, is an explanation of the 

population of people who are infected by Covid 19. This study happened during the peak of the 

pandemic, when checking the number of Covid 19 outbreaks was a concern.  the set of problems 

that students attempted to solve in the 60-100 minutes interview. I sometimes asked probing 

questions, however, I avoided taking an evaluative role and emphasized my appreciation for 

valuable sharing of their thinking with me. An analysis of explanatory language that Tom and 

Andrew used during the interviews enabled me to recognize the importance of well-matched 

recursive dependency in the exponential context to generate productive disequilibrium and 

support transfer. 

 
Table 1. Exponential problems that participants worked on in the 60-100 minutes interviews. 

Exponential problems 

Baseline problem 

What does the function 𝑓(𝑥) = 𝑏𝑥mean to you? What do you think of when you see this 

function? 

 

People Diagnosed with Covid-19 in City A 

In City A the number of people who have Covid-19 increases by 11% every 10 days. The initial 

population of people who are diagnosed with Covid-19 in City A is 1500. Create an equation 

that models this situation. 

 

People Diagnosed with Covid-19 in City B 

In City B the number of people who have Covid-19 decreases by 11% every 10 days. The initial 

population of people who are diagnosed with Covid-19 in City B is 1500. Create an equation 

that models this situation. 

 

Drug Remaining in the Body 

Imagine that a patient is taking 100 milligrams of a drug. Suppose only 27% of the drug remains 

in the patient's body after an hour. How long does it take before only 10% remains? 

 

Analysis 

        Microgenetic Learning Analysis (MLA) is an analytic methodology for progressing from 

observations in video data of moment-by-moment reasoning processes to systematically 

describing the nature and form of knowledge growth and change. (Parnafes & diSessa, 2013). 

My study also can be summarized as MLA of two undergraduate students’ (Tom and Andrew) 

reasoning, coming to understand and discern the appropriateness of contexts for modeling 

exponentially. In this work, the MLA process includes transcribing the episodes, enriching them 

with details about what was written and pointed to in Desmos by participants, and then 

summarizing the work on each task and the discussion around it. Describing learners’ first 

reaction for a modeling system and how they both modeled linearly; then playing genuinely just 

with context helped them to go through an assimilatory activation and, ultimately, accommodate 
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a new reality which was concept projection of exponential function. I defined this process of, 

first, reacting proportionally to, eventually, accommodating exponentiation as the process of 

“changing”. As I observed, both learners could experience this “changing” process either in City 

A problem (Tom’s experience) or in City B problem (Andrew’s experience) with assistance of 

productive conceptual conflicts in which a well-imbedded recursive dependency appeared as a 

highly influential factor for change. 

 

Analysis of Tom’s reasoning 

        City A problem: Facing conceptual conflicts (disequilibrium). Coming to solve the 

problem of city A is the heart of this study, in which we can see the prominent pattern of logical 

readout of the situation, coordinating the context and his pattern of reasoning, experiencing a 

productive disequilibrium, accommodating new understanding of the situation, and finally, 

generalizing the problem to make an abstract model. To me, the key observation across the 

session was the moment that Tom in the middle of making sense of the structure leaves all his 

findings (including the population of Covid 19 after 20 days: getting 11% of 1665 and adding to 

1665, not 1500, which had the result of 1848) and faces a huge disequilibrium with satisfying a 

systematic and already established proportional perspective.  

 

Interviewer: How did you find that number? 

Tom: I divided 1848 by 1500 and found 1.321 which does not make any sense 

Interviewer: what about first 10 days 

Tom: That works really well. 1665/1500 is 1.11 which makes a lot of sense. I thought

 1848.15/1500 should be 1.22 because it increases 11% every 10 days  

 

The recursive dependency, well-imbedded in the context task, appeared to help Tom to 

prefer working with his understanding of context rather than sticking with his proportional 

expectation. He eventually could coordinate his perception of the situation with his strategy for 

calculating an increasing Covid19 population in each step and to resolve an apparent 

contradiction in his thinking. 

 

Tom: Ok! So, oh! Wow! That’s a lot! Hah! Ok! So, in the first step we are taking 11% of 1500

 and then plus 1500 which is 1.11 × 1500 and then in the second step we

 do  1.112 × 1500 and in the third step it should be 1.112 × 1500  right? Is that it? 

Tom: SO! f (x) = 1.11𝑥 × 1500  would be: Right? Cool. 

Interviewer: Do you want to calculate what you find in the second step? I guess it would be

 interesting for you 

Tom: Sure! It is 1.321! What? What is that? Is it magic?  

 

City B Problem: Testing Near Transfer. In Tom’s work on the City B problem, he 

showed transfer more explicitly in a similar context. I asked him to calculate the population of 

people who have covid 19 after 10 days. While he was calculating it seemed that he already had 

the exponential model in his mind. 

 

Tom: Ok! I found it! If I take this (1.11 from the previous model), because it is one point eleven!

 If I want to decrease (Looking ups and down)! hundred mines 11… like 89 percent? If
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 I do 0.89 (More confidently and surely say the last words) that gives me the model

 here, the 11 percent decrease (laughing happily!) 

Interviewer: Do you want to write the model? 

Tom: Yes, sure! I think it should be f (x) = 0.89𝑥 × 1500 , right? 

 

Remaining Drug Problem: Fidelity to Proportional Modeling when Context Lacking 

Recursive Dependency. After 73 minutes of productive challenge to understand exponential 

function, Tom confidently initiates reasoning proportionally. In the end, he modeled this problem 

with a linear and solved a linear equation to figure out how long it would take for 10% of the 

drug to remain. Figure 3 in appendix is a screenshot of Tom’s work when he was sharing his 

problem solving on the WebEx. I tried to have a conversation to see why the first reaction to this 

question involves linear thinking. I asked him why he thinks that a linear model can work in this 

problem, and he answered that “I am not an expert, but our body must work linearly. It cannot 

work first slowly and then [become] hardworking!” At this moment in Tom’s interview, I could 

have asked “why?” (Why can the body not work with different rates of the drug?) However, it 

did come to my mind as I was experiencing the first observation of how learning is highly 

contextual. In the interviews with Andrew which were conducted after Tom’s, I was able to get 

more insight.  

  

Analysis of Andrew’s reasoning 

City A Problem: Appropriate Use of Exponential Model. Andrew found a strategy to 

calculate the population of Covid19 immediately, however, just like Tom, after seeing some 

steps in the exponential model, he checked himself with a proportional model. Facing a 

contradiction between understanding of the problem and the linear model, I asked him what his 

decision is. 

 

Interviewer: If I want you to calculate after 30 days, how do you go, are you plugging 3 in your

 linear model or you are calculating from the first strategy and why? 

Andrew: I would probably do the first one, because the way that I understand the increases, it is

 not that taking the old percentage and taking 330, it is taking the 11% from the new

 number.  

 

I observed that a well-matched recursive dependency emerged to help Andrew to decide 

his strategy and confidently leave proportional thinking. Like Tom, Andrew eventually modeled 

exponentially this problem. 

City B Problem:  Facing a Multi-dimensional Disequilibrium. Andrew recognized 

what decreased means as he could see 0.89 × 1500 for the first set of 10 days and 

0.89 × 0.89 × 1500 for the second set of 10 days. I thought he was ready to make the model, 

just easily in a similar context; however, he was still in disrepair with the linear model. 

 

Andrew: I think I could! it would be 1500 times (X-0.11)? so for the second step it would be

 1500 times 2-0.11, but no! that would be an increase! No?! It cannot be correct, because

 it is two thousand and something which is not even a decrease.  

Interviewer: Ok let’s talk about your strategy, not the model… so far you found 0.89 … how

 about after 20 days? 
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There was an implicit point here in Andrew’s reaction, in this episode. Although the 

similarity of City A and City B problem should have resulted in the transfer for abstraction more 

immediately, there was a tacit avoidance in Andrew’s reaction in which, I believe, he was 

hesitating to connect a decreasing process to an exponential model. I think there was an intuition 

that if a number comes to the power of something, it should be an increasing process. Andrew 

was facing multiple conflicts simultaneously; that is why I made up the “multi-dimensional 

disequilibrium” for his reasoning pattern in the City B problem. Eventually, he could see the 

model after working on the population after 30 days.  

Remaining drug problem: Fidelity to Proportional Modeling when Context Lacking 

Recursive Dependency. Like Tom, after 63 minutes of productive struggle for understanding 

the exponential model, Andrew returned to proportional thinking very confidently. He made the 

proportion for finding the slope and then a linear model. This time I had that crucial “why” to 

ask, moreover, involving more of learner’s voice in the study: 

 

Andrew: I was assuming a consistent rate 

Interviewer: Why do you think it has a consistent rate? 

Andrew: Based on kind of information that I get 

Interviewer: So, imagine in the question we have this assumption that the drug is working

 exponentially in the body, how would your answer change? 

Andrew: Exponentially cannot work here, because it just says this much left, or this much

 remains after the one hour. 

Interviewer: What do you expect from a problem for model exponentially 

Andrew: I think, special kind of increase or decrease 

 

It turns out that “special kind of increase and decrease” is related to dependency to the 

previous step that I defined as recursive dependency.  

 

Discussion 

The analysis of Tom and Andrew revealed prominent patterns of logical readouts in the 

situation, coordinating context to reasoning, experiencing productive disequilibrium, 

accommodating new understanding of the situation, and finally, generalizing problems to make 

abstract models. During their reasoning about the contextual problems, both learners attempted 

to create a coordination between the context he perceived and a strategic pattern of thinking to 

solve the problem.  

In the city A problem, there was a moment, in the first interview, when Tom could have 

made a generalization, but instead he faced a huge conceptual conflict (disequilibrium) with a 

previous normative and settled way of thinking:  proportional reasoning. Andrew, however, 

experienced this productive disequilibrium majorly in the city B problem. Eventually, playing 

genuinely just with context helped Andrew to face a multiple disequilibrium to go through an 

assimilatory activation and, ultimately, accommodate a new reality which was concept 

projection of exponential function. Here, the strength of the context can be illuminated as the 

most important key, which can shadow the importance of similarity.   

I conjecture based on the results of both interviews that if the context could have 

provided enough support for exponential thinking, perhaps students also could have moved 

through a possible conceptual conflict and accommodate the desired model to the context. 
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However, when the context was weak in establishing a recursive dependency, learners strongly 

coordinated the proportional reasoning and modeled the situation linearly. 

To elaborate, the learners’ mathematical behavior demonstrated a natural product of 

amplified understanding in the analysis, which is the core of transfer. Understanding a concept 

is, indeed, inseparable from developing logical readout strategies and coordination of 

knowledge resources. The analysis of Tom’s and Andrew’s exponential understanding is thus 

consistent with Wagner’s (2006; 2010) Transfer-in-Pieces, where readout strategies and 

coordination of knowledge resources were matched with affordances of the contexts. After 

analyzing the interviews, I argue that the Remaining-Drug problem failed to afford recursive 

thinking. That is, the focus of the situation on the quantity “remaining,” “staying,” or even “half-

life” could not create understanding of the amount of the remaining drug in each hour depending 

on the amount of the remaining drug in the previous hour. However, in contrast, the growing 

population of City A demonstrated a well-imbedded recursive dependency and afforded a 

dependence of the increased population to the previous increased population. 

 

Implications 

Such revelations about the interplay between contexts and the knowledge resources 

participants activate and use, is an important line of work that has practical relevance with 

respect to teaching and learning. Such analyses underscore the need for more epistemological 

investigations across disciplinary topics that can lend insight into the organization of learners’ 

perceptions and inferences.  
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Students’ Enumerations of Tiles within a Rotation-Based Tiling of the Plane: Juxtaposing Units 
Coordination and Spatial Structuring Perspectives 

 
 Joseph Antonides Michael T. Battista 
 Virginia Tech The Ohio State University 

This report contributes novel insights into how undergraduate students think and reason about 
the number of tiles within a given tiling of the plane. We juxtapose two theoretical perspectives—
units coordination and spatial-temporal-enactive (or S*-) structuring—to provide an analytic 
account of how two undergraduate students reasoned about the tiling. In particular, this work 
suggests potential qualitative differences in how undergraduate students might engage in 
multiplicative reasoning in an unfamiliar spatial context.  

A tiling (or tessellation) is a collection of spatial structures that have been arranged in such a 
way that (a) there are no gaps or overlaps between adjacent structures, and (b) if the collection 
were repeated indefinitely, it would cover the entire plane. This report focuses on the tiling 
shown in Figure 1c. Few empirical studies have examined how students make sense of and 
reason about numerical and spatial units within tilings of the plane. Prior research has examined 
elementary school students’ constructions of spatial tiling units in relation to their constructions 
of numerical units (e.g., Reynolds & Wheatley, 1996; Wheatley & Reynolds, 1996). Other 
research has focused on tilings from the perspective of mathematical aesthetics (e.g., Eberle, 
2014, 2015). However, to date, the research literature has not yet captured how students, 
particularly those operating at higher levels of units coordination, form spatial and numerical 
units to enumerate tiles within tilings of the plane. In this report, we contribute initial insights 
toward this direction. Specifically, using the perspectives of units coordination and S*-
structuring, we aimed to understand what multiplicative reasoning undergraduate students might 
use to enumerate the tiling shown in Figure 1c. 

   
(a) (b) (c) 

Figure 1. (a) Six-tile structure (6TS), (b) 42-tile structure (42TS), and (c) 294-tile structure (294TS) 

Conceptual Framework 

Reasoning about Numerical Units 
The theory of units coordination constitutes the first component of our conceptual 

framework. Grounded in Steffe’s work (e.g., Steffe, 1992, 1994), and subsequently developed by 
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Hackenberg, Norton, and colleagues into a three-stage1 theory of students’ multiplicative 
concepts (Hackenberg, 2010; Hackenberg & Tillema, 2009; Norton et al., 2016) and related 
forms of additive reasoning (Ulrich, 2015, 2016), units coordination posits that students 
gradually develop increasingly sophisticated ways of approaching (i.e., assimilating) additive 
and multiplicative situations. Stage 1 students can assimilate problem situations using units of 
one, and they can use units of one to actively build a unit of units (i.e., a level 2 unit) out of 
perceptual or imagined material. Stage 2 students can assimilate problem situations using both 
units of one and level 2 units; they can use these unit structures to actively build a unit of units of 
units (i.e., a level 3 unit) out of perceptual or imagined material. One indicator of Stage 2 
reasoning is a tenuous or fleeting awareness of a three-levels-of-units structure. Stage 3 students 
can assimilate problem situations using three levels of units. That is, they can anticipate, at 
assimilation, the multiplicative structure of a situation, and they can reliably and flexibly use 
three levels of units in reasoning. 

To illustrate how students at each stage might reason within a multiplicative context, 
consider the Bars Task (adapted from Norton et al., 2015). This task was presented to the 
students discussed in this report. Each student was shown a large bar, a medium bar, and a small 
bar. Placed end-to-end, three medium bars were of the same length as one long bar, and four 
small bars were of the same length as one medium bar (all bars had equal width). Stage 1 
students can characteristically iterate the small bar (using number word utterances or motor-
kinesthetic pulses) to determine how many small bars make up one large bar (12). Stage 2 
students can iterate the medium bar, with each iteration representing a unit of four units (small 
bars). Stage 3 students can immediately determine that 12 small bars make up one large bar, with 
the understanding that the large bar consists of four medium bars, and each medium bar is 
equivalent to three small bars.  

Reasoning about Spatial and Combinatorial Units 
To date, little research has examined students’ units coordinating structures within 

spatial/geometric contexts, with some notable exceptions. Wheatley and Reynolds (1996), for 
instance, found strong parallels between elementary school students’ constructions and 
coordinations of numerical and spatial units. While prior research identified the unitization 
action as fundamental to the construction of numerical concepts (Steffe, 1992; Steffe et al., 1983; 
von Glasersfeld, 1982), Wheatley and Reynolds also found this action, in addition to mental 
imagery, to be critical within spatial contexts. 

Outside of but related to the literature on units coordination, substantial research has aimed at 
understanding the mental operations and strategies that students use when engaged in tasks for 
enumerating spatial structures in contexts of geometric measurement (e.g., Barrett et al., 2017; 
Battista, 2004, 2007; Battista & Clements, 1996; Battista et al., 1998; Clements, 2004; Cullen et 
al., 2018; Smith & Barrett, 2018). We define the term spatial unit to mean a perceived or 
conceived object in space that is conceptualized as a singular entity (through an act of 
unitization). How one reasons about spatial units depends on how the individual mentally 
organizes, or structures, those units. Battista and Clements (1996) defined spatial structuring as 
“the mental act of constructing an organization or form for an object or set of objects” (p. 282). 
Without a viable spatial structuring to guide their enumerations of spatial units, students may 
experience difficulty keeping track of spatial units, which can lead to double-counting, or 
missing, some spatial units. Battista et al. (2018) defined spatial-numerical linked structuring 

 
1 Hackenberg’s usage of the term “stage” is consistent with von Glasersfeld and Kelley’s (1982) definition. 
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(SNLS) as a form of numerical reasoning that is linked to one’s spatial structuring. From the 
perspective of units coordination, Zwanch et al. (in press) found that students with the second 
multiplicative concept (comparable to Stage 2; see Ulrich, 2015) may experience difficulty 
maintaining an awareness of a three-levels-of-units structure in geometric contexts, such as 
conceptualizing a strip of paper as a unit, each containing 7 units (7 inches), which each contain 
2.5 units (roughly 2.5 cm per inch). Thus, enumerating spatial units depends on one’s spatial 
structuring of the relevant spatial information and on one’s available units coordinating 
structures. We hypothesize that the former may depend on the latter—that is, how one spatially 
organizes units depends on their current additive and multiplicative concepts. 

In our research on students’ combinatorial reasoning (Antonides & Battista, 2022), we 
elaborated Battista and Clements’ (1996) construct of spatial structuring, defining a new 
construct called spatial-temporal-enactive structuring (or S*-structuring). We also defined 
S*NLS as the analog to SNLS, using S*-structuring in place of spatial structuring. S*-structuring 
focuses on how students construct, organize, and operate on composite units (level 2 units) and 
composites of composite units (level 3 units). Antonides and Battista (2022) identified and 
illustrated two specific forms of S*-structuring. Intra-composite structuring entails organizing 
units into individual composite units (such as combinatorial outcomes)—that is, actively 
constructing level 2 units out of level 1 units. For instance, within our framework, students 
engage in intra-composite structuring when they apply a pairing operation (Tillema, 2013) to 
append objects together to form a combinatorial outcome (e.g., a shirt-pant “outfit,” a two-card 
hand, or a three-cube tower). Inter-composite structuring entails organizing composite units into 
composites of composite units—that is, actively structuring level 3 units out of level 2 units. For 
instance, students might construct all six 3-object permutations without repetition, organized into 
three groups with two permutations (i.e., two level 2 composites) in each group.  

Methodology 
The data discussed in this report come from a larger study (Antonides, 2022) that examined 

five undergraduate students’ reasoning about enumeration. Each student participated in one-on-
one clinical interviews and teaching episodes. Pre- and post-assessments took the form of semi-
structured interviews (Clement, 2000), and the remaining sessions with students took the form of 
teaching episodes. During teaching episodes, direct instruction was not the general pedagogical 
approach; rather, each student was posed with tasks, questions, and scenarios (e.g., digital 
environments) that we hypothesized, based on our current models of their mathematical 
understandings, would provoke an accommodation to their current ways of operating. Two tasks 
are relevant to the current report. 

Rotational Tiling Task: Write an expression for the number of tiles in the tiling shown 
here [students were shown the image in Figure 1c]. One tile is a shape like this [they were 
shown an example of one tile]. 
Extension Task: If this tiling pattern were to continue, how many tiles would be in the 
next step of the tiling? 

Data were collected remotely, via Zoom, in the Spring 2020 semester. Students used a laptop and 
an iPad in all video conference calls: the former to capture facial expressions and gestures, and 
the latter to capture students’ inscriptions. Sessions were recorded to capture audio/video data. 

This report focuses on the cases of Claire and Kira (pseudonyms). Both students were in their 
first year, were 18 years of age, and used she/her pronouns. Claire was an elementary education 
major enrolled in a first-semester content course for future teachers (focusing on number and 
operation), and Kira was a psychology major enrolled in an intermediate algebra course (a 
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prerequisite for college algebra). All data pertaining to students’ solutions to the Bars Task (see 
the Conceptual Framework) and to the Rotational Tiling Task were transcribed. Analytic memos 
and codes (Maxwell, 2013) were used to make inferences about the data. Particular attention was 
given to the types of numerical units that students seemed to construct, and on which they 
seemed to operate in order to build higher-level unit structures. We further identified moments in 
our data where students seemed to engage in S*-structuring, and we made inferences about the 
nature of students’ S*-structuring. 

Findings 
 Our analyses of the Bars Task suggested that all students were operating at units 
coordination Stage 3. Knowing that three medium bars make one large bar, and that four small 
bars make one medium bar, each student quickly reasoned that 12 small bars would make up one 
large bar, with the understanding that the large bar could be seen as three groups with four small 
bars in each group. It should be noted, however, that the Bars Tasks have been validated as a 
written instrument for assessing the units coordinating structures of middle school students 
(Norton et al., 2015), but not undergraduate students (including preservice teachers). To date, no 
such written instrument has been validated for the latter population. 

In describing our results and inferences, we use the terms 6TS to refer to a tiling structure 
consisting of six tiles (e.g., Figure 1a), 42TS to refer to a tiling structure consisting of 42 tiles 
(e.g., Figure 1b), and 294TS to refer to a tiling structure consisting of 294 tiles (e.g., Figure 1c), 
all with six-fold rotational symmetry. 

The Case of Claire 
Excerpt 1: Rotational Tiling Task. The interviewer read the Rotational Tiling Task to 

Claire, who immediately identified several embedded multiplicative group structures. 
C: So, one of these. [She outlined a tile in the center 6TS; see Figure 2a.] The first time I 

would group those would be in this shape. [She outlined the entire 6TS.] And it looks like 
there’s six of them. And then, the next grouping, I would say, is probably this shape. [She 
outlined the center 42TS.] And, in this one, it looks like there’s one, two, three, four, five, 
six, seven [6TS structures]. So I’d probably say six times seven. … And then, I would do 
the same thing, but with this. [She outlined the entire 294TS.] And, um, I would define 
groups by the different colors. So this one [the center 42TS], in general, looks pretty 
pink. This one green, blue, and they all appear to be the same shape. And this also has 
seven [copies of 42TS in 294TS; see Figure 2a]. 

Claire’s final answer to the Rotational Tiling Task was the written expression 6 × 7 × 7.  

25th Annual Conference on Research in Undergraduate Mathematics Education 388



 
 

(a) (b) 
Figure 2. (a) Claire’s illustration of four levels of units, and (b) her extension of the tiling pattern 

Excerpt 2: Extension. The interviewer then read the Extension Task to Claire. 
C: So, it would expand outward, I think. … I think there would be another ring, like this. So 

since this has, like, a seam, almost, with each, like, circle here [she drew a line segment 
separating two exterior 42TS in the original figure; see Figure 2b], I would probably say 
the same thing. It’d be like that… and another seam on each sort of thing. 

Claire drew six large round figures along the exterior of the original tiling figure. 
C: And then, I guess within each one, it would be all the levels before it. So, let’s see. They 

would all start with an individual, and then a circle [6TS], and then this [42TS]. And 
then, like, this part [294TS]. … I guess I could probably copy it. 

She then modified her multiplicative expression to (6 × 7 × 7) × 7. 
Analysis. In Excerpt 1, Claire established a multiplicative relationship between single tiles 

and one 6TS, constructing a level 2 unit (an instance of intra-composite structuring). She realized 
one 42TS could be made by iterating 6TS seven times, meaning she constructed 42TS as a level 
3 unit. We interpret this as an instance of intra- and inter-composite structuring since she 
established a new unit as an organization of composite units. She expressed the number of tiles 
within one 42TS as 6 × 7. Finally, she established the entire image (one 294TS) as a level 4 unit 
structure (another instance of intra-/inter-composite structuring). To count the total number of 
tiles, she operated on her prior multiplicative expression, producing (6 × 7) × 7. 

Claire’s robust spatial/multiplicative reasoning becomes especially salient in the Extension 
Task. In this, she introduced the notion of a “seam” and used this concept to spatially structure 
units of 42TS within the 294TS. She then imagined, in mental activity, iterating units of 294TS 
along each seam, producing a new (level 5) unit structure—an instance of intra-/inter-composite 
structuring. Further, made clear in her verbal explanation and drawing in Figure 2b, she 
maintained the unit structures nested within each iteration of the 294TS. 

The Case of Kira 
Excerpt 3: Rotational Tiling Task. Kira approached the Rotational Tiling Task by first 

focusing on and counting the number of larger groups (42TS) in the figure. 
 K: So, I’m thinking I could count the number of tiles in each group. And then, um, multiply 

that by seven. And it would tell you the total number of tiles altogether. 
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To count the number of tiles in a larger grouping, she focused on the center 42TS. She counted 
six tiles in one smaller grouping (6TS), and she counted seven 6TS in the central 42TS. 

K: So, six times seven, is 42. So, it looks like there’s 42 tiles in one group. So… seven times 
42, I feel like… would tell the number of tiles… tiles altogether? But just to be sure, I’m 
going to count the number of tiles in one of them, on the outside, because I don’t want to 
just make that assumption about all of them. 

To count the number of tiles in another 42TS, Kira shifted her focus to a 42TS on the right side 
of the tiling figure. She counted six tiles within one 6TS, and she counted seven 6TS within the 
grouping. She said 6 × 7 = 42, which she said was the same number of tiles that she found 
before. Feeling more confident that there are 42 tiles in each larger grouping, she concluded 
there are 42 × 7 tiles in the entire tiling. Using a calculator, she found the product to be 294.  

Excerpt 4: Extension. Kira was then posed with the Extension Task.  
K: So, like, would there be six more on the outside? 
Int: Six more what? 
K: Of the groups I’ve created, like the one, two—it looks like there’s a group of 42. So, 

would there be six more of those groups on the outside, kind of? 
Kira drew a picture, showing six 42TS structures added along the outside of the tiling figure, 
wedged between pairs of green and blue 42TS structures (see Figure 3). 
 

 

Figure 3. Kira’s illustration of how the tiling pattern would continue 

K: Now that I’m looking at the image again, I notice that it’s like, odd, which is bothering 
me. So I don’t know if there would be another circle somewhere else. But, I’m guessing 
since it’s the same… number? Like the pattern of seven would continue. 

Kira seemed to notice that there were seven 42TS in the original tiling, with seven 6TS in one 
42TS, and from this she seemed to expect the “pattern of seven would continue.” However, 
unlike Claire who conceptualized the original tiling image as a unit, and who iterated that unit so 
that seven copies were represented on the screen, Kira anticipated a seventh additional 42TS 
would need to be drawn, though she was unsure of where to draw it. 

K: So I don’t know where that one would go when it would continue after that. But, not 
looking at the image, I would just, um, take my original problem, 42 times 7, and make it 
42 times 14? And I feel like that would give the number of tiles in total. 

Int: Okay. Where’s the 14? 
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K: Um. So the 14 came from seven plus seven, the number of tiles, if it would be—like this 
is me not looking at the image. Just, in my head. Since there were seven, I guess it would 
be, um, another seven. So 14. And there’s 42 tiles in each group … 588. 

Analysis. In Excerpt 3, Kira conceptualized the entire tiling as a level 3 unit structure. This 
was indicated by her strategy: count all tiles in one larger grouping (42TS), then multiply by the 
number of larger groupings (7). In counting the tiles in 42TS, Kira realized it consisted of seven 
smaller groupings (6TS), and so she multiplied 6 × 7, and thus she established 42TS as a level 3 
unit. Unlike Claire who seemed to immediately anticipate a level 3 unit structure, Kira seemed to 
establish this unit structure in activity. She planned to operate on this level 3 unit by multiplying 
it by seven, but she expressed uncertainty. She became more confident only after performing 
6 × 7  to count tiles in another 42TS. Even after she multiplied 42 × 7 = 294, finding the 
number of tiles in the original tiling image, she felt the need to check her answer by applying the 
inverse operation, 294 ÷ 7 = 42, shown in Figure 3. 

In Excerpt 4, Kira first extended the tiling pattern by constructing a spatial structuring with 
six additional 42TS. However—presumably noticing that there were seven 42TS in the original 
image—Kira anticipated that seven, rather than six, additional 42TS should be added in the 
extension, though she could not determine where to place the seventh structure. From this, she 
suggested there would be 42 × 14 tiles in the extended pattern. Kira, unlike Claire, did not seem 
to imagine a level 4 or level 5 unit structure. Rather, she created additional level 2 units (42TS) 
to create a larger level 3 unit. 

Discussion and Conclusions 
In this report, we set out to examine two undergraduate students’ reasoning about the 

enumeration of tiles within a tiling of the plane using two analytical perspectives: units 
coordination and S*-structuring. While much work still needs to be done toward elaborating the 
relationship between these two perspectives (an avenue for future research), we believe this 
report offers initial steps toward this goal.  

Claire established the tiling image in Figure 1c as a level 4 unit, clearly articulating and 
illustrating the multiple levels of units that she abstracted. She made several acts of intra-
composite structuring and linked intra-/inter-composite structuring along the way, establishing 
6TS as a level 2 unit, 42TS as a level 3 unit, and ultimately 294TS as a level 4 unit. Note that 
each level of unit is described as such because Claire could think about the four levels of 
multiplicative relationships that she built up to establish 294TS. She extended the tiling pattern 
by taking the 294TS as an object that she could iterate, guided by her spatial structuring of the 
original figure that was mediated by her notion of a “seam.” Overall, Claire demonstrated 
S*NLS reasoning of a student who could establish, interrelate, and iterate four levels of units to 
construct a level 5 unit structure. 

Kira enumerated tiles in the original tiling by establishing it as a level 3 unit—a unit of seven 
units, each containing 42 units. She separately counted each 42TS as a unit of six units, but she 
did not maintain this relationship, and it was not used in her enumeration of tiles in the tiling. In 
the Extension Task, Kira’s S*NLS was distinguished from Claire’s since her S*-structuring of 
the extended tiling was a level 3 unit—a unit of 13 (or 14) level 2 units—rather than an iterated 
level 4 unit. 
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“Just Get Rid of It:” Students’ Symbolic Forms for Cancellation 
 

 Kaitlyn Stephens Serbin Rosaura Uscanga 
 The University of Texas Rio Grande Valley Mercy College 

Students use symbolic manipulations when performing cancellation as they solve equations. 
Rather than performing rote manipulation of symbols, we want students to understand the 
meanings that these symbols convey. In this paper, we examine three pre-service mathematics 
teachers’ symbolic forms for additive, multiplicative, and compositional cancellation. Students 
used symbol templates where they either wrote both the identity and inverses, one but not the 
other, or neither. We further explore students’ varied conceptual schemas associated with these 
templates, as well as the relationships that exist among these symbolic forms. 

Keywords: Abstract Algebra, Cancellation, Symbolic Forms, Prospective Teachers 

Symbols are ubiquitous throughout all mathematics. Instructors typically want their students 
to use symbols with an understanding of the meanings conveyed by the symbols (e.g., Sherin, 
2001). Students’ reasoning about symbols can be analyzed using Sherin’s (2001) symbolic form 
construct, which is the association of the symbols one writes and their understanding of the 
meanings those symbols convey. Students’ symbolic forms are present in a variety of contexts, 
particularly when they reason with symbols while performing cancellation in secondary algebra 
and abstract algebra contexts. When students cancel terms, they might conceptualize this 
procedure as “getting rid of terms” or “moving terms to the other side.” This process of 
cancellation is much more complex than this, as it involves the use of the inverse group axiom, 
defined as for all elements 𝑎 ∈ 𝐺 where (𝐺,∗) is a group, there exists an inverse element 𝑏 ∈ 𝐺, 
such that 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒, where 𝑒 is the identity element in 𝐺. For example, when solving the 
equation 𝑥 + 3 = 1, one adds the additive inverse of 3 to both sides of the equation to obtain 𝑥 +
(3 + −3) = 1 + (−3), which implies that 𝑥 + 0 = −2. This point of connection that 
prospective secondary mathematics teachers (PSMTs) can make between abstract algebra and 
secondary algebra has been the focus of several research studies (e.g., Murray & Baldinger, 
2018; Serbin, 2021; Serbin, 2022; Wasserman, 2014). Wasserman (2014) suggested that 
teachers’ understanding of algebraic structures could support them in “unpacking the 
interconnected role of inverse and identity elements in the ‘cancellation’ or ‘simplification’ 
process” (p. 204). We refer to the process of adding an element’s additive inverse to that element 
to yield the additive identity 0 (e.g., 3 + −3 = 0) as additive cancellation. We similarly refer to 
the process of multiplying an element by its multiplicative inverse to yield the multiplicative 
identity 1 (e.g., 3 ⋅ 1/3 = 1) as multiplicative cancellation. We also refer to the process of 
composing a function with its inverse to yield the identity function (e.g., 𝑒!"($) = 𝑖(𝑥) = 𝑥) as 
compositional cancellation. We hypothesized that students might have similar symbolic forms 
for these different types of cancellation, as they all involve the explicit or implicit use of inverse 
and identity elements. We explore the following research question: What symbolic forms do 
students have for cancellation involving additive cancellation, multiplicative cancellation, and 
compositional cancellation, and what relationships exist between these symbolic forms?  

Literature Review and Theoretical Background 
Symbols are used for a variety of purposes in mathematics, some of which include 

communicating meaning, notating concepts and processes, and illustrating relationships between 
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mathematical objects (Zandieh et al., 2017). Researchers have focused on students’ symbol sense 
(Arcavi, 1994) and their practice of symbolizing, which is broadly defined as reasoning with 
inscriptions (Zandieh & Andrews-Larson, 2019). Some of this work has addressed students’ 
symbolization in calculus (e.g., Jones, 2013) and linear algebra contexts (e.g., Henderson et al., 
2010; Smith et al., 2022; Zandieh & Andrews-Larson, 2019). Reasoning with symbols involves 
both creating symbols to convey meaning and interpreting the meaning in inscriptions. Sherin 
(2001) suggested, “The particular arrangement of symbols in an equation expresses a meaning 
that can be understood” (p. 480). Sherin claimed that students should understand the meanings 
that the symbols and manipulations convey: “We do not want meaningless symbol manipulation; 
if students use symbolic expressions, we want them to use the symbols with understanding” 
(Sherin, 2001, p. 479). However, this is a nontrivial task for students. Furthermore, students 
often have different interpretations of symbols’ meanings (e.g., Jones, 2013). Reasoning with 
symbols is a central activity in mathematics, so students should have productive understandings 
of the meanings symbols convey and draw on them as they perform symbolic manipulations.  

Students use symbolic manipulations while performing algebraic cancellation as they 
simplify expressions and solve equations. Instead of performing rote cancellation without 
attending to the meaning of the symbols or manipulations, students should understand the 
properties used to manipulate symbols in equations. The properties that allow one to cancel 
terms while solving equations are the inverse and identity axioms of groups and rings. 
Wasserman (2014) suggested that understanding these algebraic structures could support 
teachers in “unpacking the interconnected role of inverse and identity elements in the 
‘cancellation’ or ‘simplification’ process” (p. 204). Serbin (2021; 2022) found that reasoning 
about group and ring axioms helped PSMTs understand the shared structure of additive, 
multiplicative, and compositional identities and inverses. Interpreting the symbols and symbolic 
manipulations used while canceling terms may involve making sense of how the inverse 
elements are operated together to yield the identity. In this study, we focus on students’ 
understandings associated with their symbols used in additive, multiplicative, and compositional 
cancellation. To do so, we leverage Sherin’s (2001) construct of symbolic forms. 

Symbolic forms (Sherin, 2001) are cognitive resources (Hammer, 2000) that students can 
activate as they do mathematics. A symbolic form is an association of a conceptual schema with 
a symbol template. A conceptual schema is the meaning that symbols convey, and the symbol 
template is the structure or arrangement of written symbols that expresses that meaning. Sherin 
asserted students develop symbolic forms by associating meaning with the structures symbolized 
in equations. This association can occur as students write symbolic expressions or interpret them. 
One symbol template can be associated with several conceptual schemas, and one conceptual 
schema may be associated with multiple symbol templates (e.g., Jones, 2013). The template-
schema pair that students choose to activate while solving a problem depends on the framing or 
context of the situation (Hammer et al., 2005). We investigate the relationships between the 
symbolic forms that students activate for the three different types of cancellation. 

Methods 
Three PSMTs, Amelia, Christina, and Derek, who majored in Mathematics, participated in 

this study. Each was enrolled in a senior-level Mathematics for Secondary Teachers course at a 
large university in the US. During the course, the students learned how the properties of groups 
and rings were used to justify the procedures used to solve equations. Two individual 60-minute 
task-based clinical interviews (Clement, 2000) were conducted with each of the PSMTs. These 
two interviews were designed to elicit evidence of the PSMTs’ understanding of the content 
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covered in the two course instructional units. The first interview was conducted after the unit on 
ring properties and equation solving. The second was conducted after the unit on functions and 
inverses. Some of the interview tasks prompted students to solve equations and describe the 
properties used and show that two functions are inverses. Given the semi-structured nature of 
these interviews, the PSMTs were all given the same tasks but were asked different unplanned 
follow-up questions based on their responses. Both interviews were conducted virtually and 
transcribed. Copies of the PSMTs’ written work from their task responses were also collected.  

We analyzed the transcripts and task responses to identify the symbolic forms the PSMTs 
used to perform cancellation while solving equations. We first classified the type of cancellation 
according to the operation involved: additive, multiplicative, or compositional. We then 
inductively coded (Miles et al., 2013) the transcripts by assigning each instance of cancellation 
present a code that captured the essence of the symbol template and a code that captured the 
essence of the conceptual schema evident in the data. Each task response contained multiple 
codes. Furthermore, there were cases in which multiple conceptual schemas were associated with 
one symbol template, so each of those symbol template-conceptual schema pairs was coded 
separately. We coded the symbol templates and conceptual schemas together to reach an 
agreement on the assignment of each code. After, we performed axial coding to group the 
symbolic forms into broader categories. We identified four axial codes that captured the essence 
of every symbol template used in these PSMTs’ written work of canceling terms: the participant 
wrote (a) both the identity and inverses, (b) the inverses but not the identity, (c) the identity but 
not the inverses, and (d) neither the identity nor the inverses. We lastly examined which 
relationships exist between these symbolic forms. For each participant, we identified the 
different conceptual schemas that were associated with each of the four symbol template 
categories. We wrote analytic memos (Maxwell, 2013) to describe patterns and inconsistencies 
that were present in each participant’s use of symbolic forms representing the different types of 
cancellation and used these to compare the symbolic forms used by each student.  

 
Results 

As follows, we describe the four types of symbol templates for cancellation. The symbolic 
forms for each type of template are presented in Figures 1-4. In the symbol templates, {	} refers 
to an expression with multiple terms, [	] refers to a monomial, 𝑐& refers to constants, 𝑎, 𝑏, 𝑐 refer 
to set elements, 𝑓, 𝑓'(, 𝑔 refer to functions, and ⟹ refers to an implication. 

No Attention to Inverses or Identity 
All students used symbol templates for multiplicative and additive cancellations that did not 

contain symbols for the inverses and identity (see Figure 1). Amelia’s conceptual schemas were 
focused on algebraic operations rather than on the structure of operating inverses together to get 
an identity. She used her conceptual schemas to justify “getting rid of terms” but did not focus on 
the inverse-identity structure. Christina also seemed to have a computational focus. An exception 
was when she referred to using multiplicative inverses, however, she only used the terminology 
to justify removing or “getting rid of” a coefficient. She was the only student who did not write 
the inverse or identity elements when performing compositional cancellation. Her conceptual 
schema in this case was still focused on the procedure of doing something to both sides of the 
equation. Derek demonstrated an understanding of the structure of operating inverse elements 
together to obtain the identity, even when he did not write out inverse or identity elements. 
Overall, students tended to ignore inverses and identity when getting the answer or simplifying 
expressions, moving terms over, getting rid of terms, or operating on both sides of the equation.  
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Attention to Inverses but Not Identity 
Symbol templates containing inverses but not the identity occurred in all cancellations. 

Students attended to inverses but ignored the identity when doing something to both sides of the 
equation or getting rid of terms (see Figure 2). Amelia’s conceptual schemas focused primarily 
on the operations that needed to be performed, rather than on the structure of operating inverses 
together to get an identity. However, when performing compositional cancellation, she used the 
“operate inverse elements together to get identity” conceptual schema to explain why 𝑒 and 𝑙𝑛 
cancel. Christina’s conceptual schemas were focused on doing something to both sides of the 
equation to get rid of terms. Derek’s conceptual schemas focused on the inverse-identity 
structure even when his symbol template did not contain the identity. This was how he justified 
simplifying, getting rid of terms, or doing something to both sides of the equation. 

Attention to Identity but Not Inverses 
Students used symbol templates that contained the identity but not inverses while performing 

additive cancellation (see Figure 3) when the additive identity was the only term left on one side 
of the equation. Amelia used this template when doing something to both sides of the equation. 

 

 
Figure 1. Symbol Templates Containing No Inverses and No Identity 
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Figure 2. Symbol Templates Containing Inverses but Not Identity 

25th Annual Conference on Research in Undergraduate Mathematics Education 398



However, her conceptual schema did not involve any attention to the identity. Christina and 
Derek did not attend to the identity when canceling except when they wrote 0 on one side of the 
equation to not leave it blank. However, even when Derek did not write out inverses, his 
conceptual schemas referenced the structure of operating inverses together to get the identity. 

 
Figure 3. Symbol Templates Containing Identity but Not Inverses 

 
Figure 4. Symbol Templates Containing Both Inverses and Identity 

Attention to Both Inverses and Identity 
When the students used cancellation symbol templates that included symbolizations of both  

inverses and the identity, their associated conceptual schemas focused on the structure of 
operating inverse elements together to yield the identity element (see Figure 4). Amelia exhibited 
the “operate inverse elements together to get identity” conceptual schema for 
multiplicative cancellation only when she was working on abstract algebra tasks. She did not 
attend to the inverses and identity while solving equations. Furthermore, her symbol template for 
compositional cancellation contained symbols for the inverses and identity only when verifying 
that two given functions are inverses of each other. On the other hand, when Christina’s symbol 
templates for additive and multiplicative cancellation contained symbols for the inverses and 
identity, her conceptual schemas were focused on the inverse-identity structure, i.e., that 
operating inverse elements together yields the identity. In regard to Derek, when his symbol 
templates for multiplicative and compositional cancellation included both the inverses and 
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identity, his conceptual schema also referred to the inverse-identity structure of operating 
inverses together to get the identity. When Derek’s symbol template for additive cancellation 
contained symbols for the inverses and identity, his demonstrated conceptual schema only 
focused on using inverses, without explicit attention to the identity. 

Discussion and Conclusion 
We examined three students’ symbolic forms for additive, multiplicative, and compositional 

cancellation. We found that the students used four general types of symbol templates, in which 
they wrote (a) both the identity and inverses, (b) the inverses but not the identity, (c) the identity 
but not the inverses, and (d) neither the identity nor the inverses. We then examined the varied 
conceptual schemas associated with these templates. Amelia only explicitly attended to both 
multiplicative inverse and identity in the context of abstract algebra tasks and functional inverse 
and identity only in tasks that required her to determine if two given functions are inverse pairs. 
However, she did not attend to the structure of both inverse and identity as she performed 
cancellation while equation-solving. Amelia’s evoked conceptual schema seemed to depend on 
her framing of the task. Ticknor (2012) had a similar finding that teachers’ understandings of 
commutativity, associativity, and inverses were only situated in abstract algebra settings. 
Christina’s symbolic forms were mainly procedural in nature. She attended to the structure of 
both inverse and identity only for multiplicative and additive cancellation. Her conceptual 
schemas focused on the equation solving process, as evident in her explanations of moving terms 
over, doing something to both sides, or getting rid of a term. She did not use any symbol 
templates that contained symbols for both inverse functions and the identity function when she 
performed compositional cancellation. She thus did not focus on the structure of the composition 
of inverse functions yielding the identity function while performing that cancellation. Finally, 
Derek’s symbolic forms always demonstrated an understanding of the structure of operating 
inverses together to get the identity. Even in cases where he did not write out the identity or 
inverses, it was clear that he was aware of the inverse-identity structure in the cancellation. 

As Amelia’s and Christina’s conceptual schemas demonstrate, having an understanding of 
abstract algebra concepts does not necessarily imply students can automatically use it to make 
sense of secondary mathematics content like equation solving. In Amelia’s case, she only 
attended to both multiplicative inverses and identity in the context of abstract algebra where she 
is more likely used to that terminology and reverted back to procedural equation-solving, without 
attention to the inverse or identity, in most other situations. Ideally, teacher educators want 
PSMTs to understand that operating an element with its inverse yields the identity and be able to 
use that in other situations. We hypothesize that solving equations while attending to the 
structure of the inverse, identity, and binary operation will allow students and PSMTs to develop 
meaningful understandings of the symbolic manipulations involved in equation solving.  

Our findings have some implications for teaching and future research. Mathematics 
instructors who prepare PSMTs should prompt PSMTs to explicitly write out the symbols used 
to represent inverses and identities while solving equations. Instructors should also guide 
students to identify which group or ring properties are used while solving equations. This has 
been found to be a fruitful way for undergraduate students and PSMTs to connect abstract 
algebra and secondary algebra (e.g., Cook, 2012; Cook, 2015; Murray & Baldinger, 2018; 
Wasserman, 2014). We intend to extend this analysis of the relationships that exist among 
students’ symbolic forms for different types of cancellation. Future research can explore how 
mathematics teacher educators can guide PSMTs to make connections across abstract and 
secondary algebra that are not only situated in abstract algebra contexts. 
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We discuss two Dynamic Geometry Software applets designed as part of an Inquiry-Oriented 

instructional unit on determinants and share students' generalizations based on using the applet. 

Using the instructional design theory of Realistic Mathematics Education, our team developed a 

task sequence supporting students' guided reinvention of determinants. This unit leverages 

students' understanding of matrix transformations as distortion of space to meaningfully connect 

determinants to the transformation as the signed multiplicative change in area that objects in the 

domain undergo from the linear transformation. The applets are intended to provide students 

with feedback to help connect changes in the matrix to changes in the visualization of the linear 

transformation and, so, to changes in the determinant. Critically, the materials ask students to 

make generalizations while reflecting on their experiences using the applets. We discuss patterns 

among these generalizations and implications they have on the applets' design.     

 

Keywords: Determinants, dynamic geometry software, inquiry, student reasoning 

 

Matrix determinants are often taught formulaically, obscuring geometric connections 

between determinants and linear transformations. The Inquiry-Oriented Linear Algebra (IOLA) 

curricular materials (Wawro et al., 2013) build from experientially real task settings that allow 

for active student engagement in the guided reinvention of mathematics through student and 

instructor inquiry (Gravemeijer, 1999). The IOLA determinants task sequence uses distortion of 

space as an experientially real starting point to support students’ development of determinant as a 

measure of (signed) multiplicative change in the area. The sequence uses GeoGebra applets that 

allow students to actively explore the geometric effects of changing 2x2 and 3x3 matrix 

transformations and note their effect on the determinant. Through exploration of the applet, 

students observe links between the determinant and concepts such as linear (in)dependence, 

span, and invertibility, as well as how changes in matrix entries impact the determinant. In this 

study, we investigate the research question: Based on interacting with our curriculum's dynamic 

geometry applets, what relationships do students observe between matrices, determinants, and 

geometric objects transformed by the associated linear transformation?  

 

Theoretical Background and Literature Review 

According to Axler (1995), “determinants are difficult, non-intuitive, and often defined 

without motivation” (p. 139). Aygor and Ozdag (2012) found that students have difficulty 

identifying what happens to the determinant when switching rows, multiplying a column by k, 

row-reducing a matrix, and performing column operations. This might be because of difficulties 

relating the numeric, algebraic, and geometric aspects of the determinant (Durkaya et al., 2011) 

or the reliance of the determinant on bilinearity (Donevska-Todorova, 2016). These difficulties 

would be mitigated by connecting to students’ existing reasoning and understanding, as is 

consistent with the curriculum design theory of Realistic Mathematics Education (RME; 

Freudenthal, 1991). Adopting this theoretical framing for our curriculum design, we identified 

students’ understanding of matrix transformations as distortions of space as an experientially real 
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starting point for developing notions of determinant. We sought to design an activity that could 

support students in establishing an understanding of determinants as a measure of how matrix 

transformations distort space and then leverage these connections toward more general properties 

of determinants. We situate this work within our research group’s design research (NSF DUE 

1915156, 1914841, 1914793), referred to as a Design Research Spiral, in which the design team 

iteratively drafts, implements, reflects, and refines the task sequence as guided by multiple 

design research theories at each cycle of refinement (Wawro et al., 2022). This paper presents 

materials and results from the penultimate cycle of refinement for this unit.  

In order to support students’ generalizing from their situated activity, we turned to Dynamic 

Geometric Software (DGS), which synchronously display dynamic representations of numeric, 

geometric, and algebraic aspects of the determinant. This makes DGS a suitable tool for 

supporting students' exploration of determinants and connecting this to geometric and algebraic 

knowledge. research has shown that DGS applets allow students to investigate, visualize, make 

predictions, calculate, simulate, and generalize certain situations, all of which are critical 

practices for inquiry (Gol Tabaghi & Sinclair, 2013; Gol Tabaghi, 2014; Greefrath et al., 2018; 

Hollenbrands, 2007; Paoletti et al., 2020; Zandieh et al., 2018). In linear algebra, applets, games, 

and simulations have been used to explore key topics such as linear combinations (Mauntel et al., 

2021), eigentheory (Gol Tabaghi & Sinclair, 2013; Gol Tabaghi, 2014), and determinants 

(Donevska-Todorova, 2012, 2016; Donevska-Todorova & Turgut, 2022). 

Donevska-Todorova (2012) used DGS to support students' exploration of determinants in a 

teaching experiment setting and found that DGS can help build meaningful connections between 

the determinant and conceptions of area in 2D. The author attributes the DGS's ability to 

simultaneously display numeric and geometric feedback as important for connecting to students’ 

prior geometric understanding. However, Donevska-Todorova's setting is more focused on direct 

instruction and approaches the determinant as a way to calculate the area of a parallelogram at 

the origin whose sides correspond to the column vectors of the matrix, rather than connecting the 

geometry to the linear transformation defined by the matrix. In our materials, and consistent with 

the above cited literature, we designed the materials so that students contextualize the DGS 

relative to their existing notions of linear transformations. The goal is that this additional context 

will provide students with a foundation for the connections they make while using our applet. 

 

The Determinants Task Sequence 

The main goal of this unit is to build from students' knowledge of matrices as representations 

of linear transformations towards a conceptualization of the determinant of a 2x2 or 3x3 matrix 

as a measure of (signed) multiplicative change in area or volume, respectively. Task 1 is 

designed to support students toward suggesting change in area as a way of quantifying distortion 

that objects undergo from specific matrix transformations. In Task 2, students reinvent the 2x2 

determinant formula so that by the end of Task 2, when the term determinant is introduced, the 

class has developed the notion of the determinant of a 2x2 matrix 𝐴 as: (1) the signed area 

scaling factor of the linear transformation defined by 𝐴 [i.e., the multiplicative change in area]; 

(2) the signed area of the unit square’s image under 𝐴; (3) the signed area of the parallelogram 

created by the columns of  𝐴; and (4) 𝑑𝑒𝑡(𝐴) = 𝑎𝑑 − 𝑏𝑐, for 𝐴 = [𝑎 𝑏
𝑐 𝑑

]. The main goal of Task 

3 is for students to reinvent 𝑑𝑒𝑡(𝐴−1) = 1/𝑑𝑒𝑡(𝐴) for invertible matrices by coordinating their 

knowledge of invertible linear transformations with their developing understanding of 

determinants as a measure of change in area. Tasks 1 and 3 provide space for students to use 

their understanding of composition of functions to reinvent 𝑑𝑒𝑡(𝐴𝐵) = 𝑑𝑒𝑡(𝐴)𝑑𝑒𝑡(𝐵) for 
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matrices 𝐴 and 𝐵 and justify them via change in area lines of reasoning. 

In Task 4, students further explore the geometric interpretation of matrix transformations and 

their determinants via GeoGebra applets for 2x2 and 3x3 matrices, which can be found at 

https://www.geogebra.org/u/iolalinearalgebra. Each applet consists of a matrix, sliders to control 

each entry in the matrix, a real-time calculation of the matrix determinant, and a real-time 

dynamic parallelogram or parallelepiped showing the image of the unit square or cube under the 

matrix transformation. As shown in Figure 1, both applets have sliders (a) & (h) that students use 

to change the matrix entries. The applets also calculate the determinant of the matrix in real-time 

as the user changes the entries of the matrix (b) & (i). In the 2x2 applet, users can see (and alter) 

a geometric representation of a preimage object (c) composed of a yellow vector, blue vector, the 

parallelogram they form, and the inscribed ellipse (defaulted to the standard basis vectors, unit 

square, and its inscribed circle). Users can change this shape by moving the terminal endpoints 

of the yellow and blue vectors (d). These color-coded vectors correspond with their images under 

the transformation (e). In the 3x3 applet, the preimage is fixed as the unit cube (defined by the 

standard basis vectors) and is not shown or alterable because of the complexity of programming 

such an object in GeoGebra. In both applets, the image of the respective image is shown on the 

right side of the screen (f) & (j) and changes color from green to red when the matrix 

determinant is negative. Users can reset the applet (g) & (k), which will revert the matrix back to 

the identity matrix and, in the 2x2 applet, will reset the preimage to the unit square.  

 

  
Figure 1. Screenshots of the two determinant applets, with markers (a) - (k) to help explain the applet components. 

 

With the applet components, students are able to create any matrix within the constraints of the 

parameters (between -4 and 4, in increments of 0.1) and see how the changes affect the distortion 

of the image of the unit square or cube. Consistent with Rumack and Huinker (2019), Task 4 

explicitly champions the role of mathematical curiosity as students explore, observe, conjecture, 

and justify; this allows students' mathematics to be what is leveraged and furthered. Adopting the 

RME design heuristic of guided reinvention, the instructor’s role includes facilitating students' 

open-ended activity toward more organized and focused statements or generalizations connecting 

changes in matrices to changes in the distortion of the space and how they relate to determinants.  

 

Methods  

The data for this study come from in an in-person introductory linear algebra class at a large, 

public, research university in the Mid-Atlantic region of the US. There were 27 students in the 

course, 13 of whom gave consent and completed the assignment analyzed here. In the university 

system, eight of these students chose he/him/his pronouns (pseudonyms begin with “M”), four 

chose she/her/hers pronouns (pseudonyms begin with “W”), and one did not choose pronouns 

(pseudonym P1). Most were second-year students by credit hours and were general engineering 

majors. The prerequisite was a B or higher in Calculus I or a passing grade in Calculus II. 
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The data analyzed and present herein are student responses to a written reflection. After most 

class sessions, students were asked to complete a reflection by the end of the day and submit 

their work via an online learning management system. Students were asked to spend 5-10 

minutes on a reflection, for which full credit was awarded based on effort rather than correctness. 

The following is the reflection prompt analyzed in this paper: “We covered a lot of ground in 

class today! Let's focus on the applets and what they helped you understand. Give at least two 

observations you made from using either/both applet(s). State it in words / mathematical symbols 

and illustrate with a snapshot from the applet(s) to help convey it. If you have started to think 

about “why” for the observation, go ahead and include that, too.” The prompt also included the 

URLs for the applets and a reminder that the class slides were on the course cloud-based folder.  

To analyze the data in service of our research question, we aimed to understand what 

observations students made from their interactions with the determinant applets. Extending our 

previous preliminary analysis with a similar data set (Kerrigan et al., 2012), we first focused on 

three aspects of students' responses that align with features of the applets that users attend to: a 

user can notice (changes in) the entries of the matrix, (changes in) the value of the determinant of 

the matrix, or (changes in) the graphical appearance of the transformed object. For brevity, we 

label these as pertaining to the matrix [M], the determinant value [D], or the graphical imagery 

[G]. For each student response, we coded phrases as M, D, G, or “other.” Distinctions between 

phrases were indicated by transition words such as “if,” “then,” “and,” and “because,” as well as 

by punctuation use. To establish viability of the coding scheme, two of the authors independently 

analyzed about half of the data according to these codes, and obtained a high level of agreement. 

These authors explained their codes and rationales to the third author and then all authors coded 

the remainder of the data set, again reaching near-total agreement. We expected and thought it 

natural that an observation from the applet would likely involve at least two phrases (e.g., “when 

I change this entry in the matrix” [M], “the determinant stays the same” [D]). Thus, we examined 

the data for relationships between phrases, looking for any causality or logical structure in the 

relationships (e.g., the aforementioned example has an implied if-then structure, so it would be 

coded as [M⇒D]). We referred to the phrases paired with their logical structure and additional 

supportive justifications (if they existed), as observations. Such an analysis is important to us as 

instructors and curriculum designers because the structure in these initial student observations is 

foundational in setting the stage for the co-development of key theorems (such as “Suppose 𝐴 is 

a nxn matrix; 𝐴 is not invertible ⇔ 𝑑𝑒𝑡(𝐴) = 0”), and they grow out of students inquiring into 

the mathematics and the instructor inquiring into student reasoning (Rasmussen & Kwon, 2007).  

 

Results  

From the phrases within the 13 student responses, we found 43 phrases pertaining to the 

matrix [M], 41 phrases pertaining to the determinant [D], and 24 phrases pertaining to the 

graphical appearance of the transformed object [G]. Overall, we found there to be 42 

observations. We organize the remainder of this section according to summaries of each of the 

three main phrase categories and then a summary of the various student applet observations. 
 

Summary of results at the individual phrase level 

First, 43 of the phrases pertained to aspects that students noticed regarding the matrix [M] in 

the 2x2 or 3x3 applet. 16 of these phrases related to the columns of the matrix forming a linearly 

dependent set. Although only 5 of the phrases say linear dependence explicitly, the other phrases 

give specific examples of linear dependence: the matrix entries being the same number (2), at 

least two columns being scalar multiples (2), and the matrix containing a column of zeros (7). As 
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researchers, we grouped the latter three as types of linear dependence, but we cannot know if the 

students who wrote them were considering that concept as they wrote their phrases. The bulk of 

the remaining phrases coded with [M] had the common trait of focusing on changes in the matrix 

entry. Students wrote phrases about individual matrix entries or multiple entries (e.g., the values 

of the diagonal components), as well as about interchanging two columns, and multiplying 

row(s) or column(s) by a constant. As previously mentioned, the identity matrix is what first 

appears when opening or refreshing the applet, and the students are able to manipulate each 

individual matrix component. To reason about the ideas related to linear dependence and the 

ones related to multiplying a row, column, or the whole matrix by a constant, students had to set 

the entries to be the values they desired. On the other hand, for phrases that focus on “as an entry 

changes,” the phrase has a more dynamic character. These are further detailed in the next section. 

Second, 41 of the phrases pertained to observations the students made regarding the value of 

the determinant [D] that appeared in either the 2x2 or 3x3 applet or its computation. 15 of the 

phrases focused on a zero determinant value, 6 phrases focused on noticing a negative 

determinant value or a change in its sign, and 2 phrases highlighted an unchanging determinant 

value. Third, 24 phrases pertained to the graphical appearance of the transformed object [G] in 

either applet. Of these, 8 mention the resulting parallelepiped's volume (one also mentioned the 

resulting parallelogram's area in the 2x2 applet); more specifically, all but one mention a volume 

(or area) of zero. We group another 7 of the phrases together because they relate to the object 

losing dimension (e.g., the vectors are on the same line), and 5 phrases were other observations 

about the resulting image (such as flipping orientation). Finally, 2 students included snapshots of 

the 2x2 applet, 7 included snapshots of the 3x3 applet, and 4 did not include any snapshots. We 

did not code the images with [M], [D], or [G] unless a student explicitly referenced them in their 

written explanation. This occurred 4 times (twice for two students), all of which were coded [G].  

 

Summary of results at the observation level 

The prompt that students responded to stated “Give at least two observations you made from 

using either/both applet(s).” We referred to the phrases paired with their logical structure and any 

supportive justifications as observations. Consider student M1's response as an exemplar:  

"If a column has all zeros, the determinant is 0, and if the determinant is zero, the shape 

has no volume in the third dimension. Thinking about the determinant as (new 

volume)/(old volume), we can algebraically see that the numerator must be zero for the 

quotient to be zero. Also, if one of the column vectors is the zero vector, the shape does 

not span all three dimensions so it cannot possibly contain a volume"  

We coded “If a column has all zeros” as [M], “the determinant is zero” as [D], and “the shape 

has no volume in the third dimension” as [G]. In the first part of M1’s response, we coded two 

observations with these three phrases: [M⇒D] and [D⇒G]. The middle portion of his response, 

in which he brings in knowledge about the determinant as “(new volume)/(old volume)” and “the 

numerator must be zero for the quotient to be zero” was coded as “other” because it is something 

that the student could not directly observe in the applet itself. We coded “one of the column 

vectors is the zero vector” as [M], “the shape does not span all three dimensions” as [G], “it 

cannot possibly contain a volume” as [G], and paired those as observations [M⇒G] and [G⇒G].  

Overall, our analysis shows that a vast majority of the observations that the students made 

began with a matrix statement [M]. In fact, only 5 of the 42 observations started with a statement 

about the graph [G] or the determinant [D] (see Figure 2). Relating back to the previous section, 

the [G] phrases mentioned were about the shape or the volume of the resulting parallelepiped. 
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Figure 2. The 5 observations that started with a graphical statement [G] or determinant statement [D]. 

 

The most common type of observation was what we refer to as [MDG], by which we mean 

the student observation was of the form “[M] implies [D], which makes sense because of [G].” 

For example, M8 wrote, “If any of the columns in the 3x3 are LD with another, the det(M) will 

be zero due to there being no volume, only area or a line.” He noticed when a certain matrix 

characteristic [M] occurred that a certain determinant value occurred [D], which he explained as 

sensible because of the corresponding graphical imagery [G]. We posit this likely corresponds to 

the nature of student activity while interacting with the applet: first manipulate the matrix, notice 

things about the determinant, and explain that in terms of what you see geometrically. Another 

example of an [MDG] is W4’s observation (coding in the data): “One observation I made was 

that if the set is linearly dependent [M] or has two or more vectors that are scalar multiples [M], 

the determinant will be zero [D]. I found out after our discussion that this is because the vectors 

will be all on the same line [G] and therefore the shape will have no volume [G].” 

As stated above, some observations conveyed a dynamic character, meaning that the student 

was most likely actively changing something in the applet while noticing the associated impact 

of that dynamic action. For example, M3 stated, "When observing the 3x3 applet in class today, I 

noticed that entries a11, a22, and a33, as well as sometimes a13 and a31 were the only entries that 

changes the volume of the image,” and M9 stated, “when moving the last column the ‘footprint’ 

didn't move, it just wobbled around like jelly.” Both these observations are of the type [M⇒G]. 

We hypothesize that, for instance, M3 was dragging the slide for entry a11 and noticing the 

simultaneous change in the parallelepiped's volume. Or that M9 was, for instance, dragging the 

slider for entry a13 (called “c” in the applet) and noticing the simultaneous movement in the 

“top” of the parallelepiped. We note that the applet allows only one slider to be dragged at a 

time. As previously mentioned, 7 phrases were about a matrix with a column of zeros; each of 

these were part of an observation about the resulting determinant being zero. Because the default 

matrix in the applet is the identity matrix, it is likely that the observation was able to be made by 

only dragging one slider because each column of the identity matrix only has one nonzero entry.  

In comparison to the dynamically oriented observations, some required multiple changes in 

the matrix entries and thus may have required many separate actions within the applet before an 

observation was made. For example, M6 wrote, “When I change two columns in the 3x3 applet, 

the determinant flips sign. It works the same on the 2x2 applet. I think it's because it flips the 

shape,” which we coded as [MDG]. W6 wrote, “Another observation from the applet is that if 

you multiply one row by a constant the determine [sic] increases by that constant, and if you 

multiply the entire matrix by a constant, the determinant is multiplied by k to the power of n. For 

example, in a 2x2 matrix the determinant would be multiplied by k^2” which we coded as three 

instances of [M⇒D]. The actions needed to carry out both M6’s and W6’s second observation – 

switching one column with another and multiplying a matrix by a constant – require dragging 

multiple applet sliders and comparing an existing determinant with a resulting determinant. W6's 

first observation – multiplying a row by a constant increases the determinant by a factor of that 

constant – may have been made from only changing a row of the identity matrix or other 

diagonal matrix, in which only dragging one slider would have been needed for the observation.  
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Discussion 

As design researchers, part of our work involves reflecting on student observations with 

respect to our curriculum design goals. Within the design research spiral (Wawro et al., 2022), 

considering student reasoning during tasks in light of the overall learning goals informs revisions 

that we make to the task sequence and supplementary materials, such as the applets. The first 

overarching learning goal include of this task sequence is (1) having students deepen their 

understanding of the geometric interpretation of linear transformations in ℝ2 and in ℝ3 through 

observing the impact that varying the matrix entries has on the determinant and on the 

transformed image. The second overarching learning goal is (2) for students to actively engage in 

the guided reinvention of key properties of nxn matrices 𝐴 and 𝐵, such as: (2a) 𝑑𝑒𝑡(𝐴) = 0 ⇔ 

columns of 𝐴 are linearly dependent, (2b) 𝑑𝑒𝑡(𝐴) is positive or negative according to whether 

the linear transformation defined by 𝐴 preserves or reverses the orientation of the transformed 

objects ⇔If 𝐵 is obtained by interchanging two rows (or two columns) of 𝐴, then 𝑑𝑒𝑡(𝐵) =
− 𝑑𝑒𝑡(𝐴), (2c) If 𝐵 is obtained by multiplying a row (column) of 𝐴 by scalar 𝑘, then 𝑑𝑒𝑡(𝐵) =
𝑘𝑑𝑒𝑡(𝐴), and (2d) If 𝐵 = 𝑘𝐴 for a scalar 𝑘, then 𝑑𝑒𝑡(𝐵) = 𝑘𝑛𝑑𝑒𝑡(𝐴). Through reflection on 

data collected through various parts of the design research cycle, including the data analyzed in 

this paper, we feel confident that the applets have strong potential in helping an instructor 

achieve (1) and (2a) with their students. In particular, the results here show (2a) as a strong 

connection students make while working with the applet. These results also indicate that, when 

students are provided specific ideas to explore in the applet (namely, switching two columns or 

rows, multiplying a row by a constant 𝑘, or multiplying the whole matrix by a constant 𝑘), they 

can use the applet to make conjectures equivalent to (2b) - (2d). We would, however, like to 

consider ways that refining the applet might facilitate students’ exploration of (2b) - (2d). For 

example, including features that can swap columns, swap rows, scale columns, or scale rows 

(rather than requiring individual entries to change one at a time), might help students develop 

(2b) - (2d) entirely on their own, rather than requiring targeted exploration prompts. 

Our results showed that most student observations began with statements about the matrix 

[M] in either the 2x2 or 3x3 applet. We believe this is sensible, given the current design of the 

applets. The current aspect that is the most interactive is adjusting the matrix component values. 

For instance, students can rotate or zoom in on the transformed parallelepiped in the 3x3 applet 

but cannot manipulate, for instance, the image of the basis vectors that define the parallelepiped; 

if they could, we posit there may be more instances of students making [G⇒M] or [G⇒D] 

observations. One reason this is important to us as curriculum designers is the biconditionality of 

determinant-related properties and theorems. This informs applet revisions to better facilitate 

student understanding of and role in reinventing the biconditionality of the generalizations. 

One limitation of the analysis presented here is that we analyzed post-hoc data of students’ 

generalizations after interacting with the applet in class. We did not collect data of the students 

exploring the applet and conjecturing in real time. Analyzing real-time interactions would allow 

us to make stronger inferences about students’ generalizations and the examples they explored to 

support them. We also had limited access to student thinking about why their observations were 

true because it was not required that they share justifications. Finally, students were informed all 

semester to spend 5-10 min on reflections and that they were graded on effort. Thus, we cannot 

know if students would have answered differently in a different setting. We look forward to our 

future work revising the applets, such as designing aspects to further facilitate specific learning 

goals. This work will also allow us to explore and theorize the alignment between specific 

aspects of RME, such as emergent models, and student exploration and engagement in DGS. 
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Structuring and Connecting 2D and 3D Space Using Linear Combinations 

 
Matthew Mauntel 

University of New Hampshire 

Developing a rich understanding of linear combinations is key to understanding linear algebra. 
In this paper, I explore the rich connections students make between the geometric and numeric 
representations of linear combinations through playing and analyzing a video game. I look at 
population of students who have never taken linear algebra before and analyze how they 
structure space using the video game, Vector Unknown, as a realistic starting point. I detail and 
analyze this activity including the activities that transition them from 2D to 3D space.  

Keywords: Linear Algebra, Linear Combinations, Game-based Learning 

Linear combinations are the heart of linear algebra and involve understanding variety of 
different representations and connections between those representations (Hillel, 2000; 
Sierpinska, 2000; Larson & Zandieh, 2013). Video games that are well-designed can help 
students engage with a variety of representations (Ke & Clark, 2019) and build connections 
between these representations resulting learning complex systems. (Gee, 2003). The game Vector 
Unknown (Author, 2021; Author, 2019; Zandieh et al., 2018) is a well- designed game created to 
connect different representations of linear combinations by combining the ideas of Realistic 
Mathematics Education (RME), Inquiry-Oriented Instruction (IOI), and Game-Based Learning 
(GBL). In this paper, I will look at how the game can be used as a realistic basis for establishing 
a student structuring of space built upon taking linear combinations and explore how students 
connect 2D and 3D space. 

Literature Review  
The Magic Carpet Ride task (Wawro et al., 2013) was the basis for the game Vector 

Unknown. The task begins with a sequence that initially introduces linear combinations and then 
develops the ideas of span and linear independence. The task leverages the idea of the travel 
metaphor, which is one of the keyways students understand linear combinations (Plaxco & 
Wawro, 2015). Dogan-Dunlap (2010) explored linear combinations using Sierpinska’s modes of 
reasoning (2000) to analyze student reasoning about linear independence and found that 
students’ geometric reasoning could provide a gateway to analytic thinking about linear 
independence indicating the importance of developing geometric reasoning about linear 
combinations. Paraguez and Oktac (2010) found that a lack of geometric representation resulted 
in the students having difficulty forming a schema of vector spaces, a keyway of organizing 
space. Zandieh et al. (2019) analyzed student metaphors of basis and found that when students 
changed their metaphors when describing basis in 2D and 3D space indicating a shift in 
understanding. This indicates a need to explore both how students connect geometric 
representations of space with more analytic elements and how they transition from 2D to 3D. 

The Game Vector Unknown and Prior Game Research 
Vector Unknown (https://tinyurl.com/linearbunny) is a game developed by capstone students 

at Arizona State University (Author, 2022; Author, 2021, Author, 2019). Participants are 
presented with four vectors in 2D, which they can drag into a vector equation and scale. The goal 
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of the game is to reach the goal location, which is represented by a basket on a geometric grid. 
The game has three levels that were used for this interview. During the first level, the game 
provides the player with a geometric representation of the linear combination of two selected 
scaled vectors. The second level removes the geometric representation to force them to reflect 
more deeply upon the vector equation. Finally, the third level requires the player to visit several 
keys before reaching the goal. This forces the player to look at the geometric aspects of the game 
as the coordinates of the lock are not provided to the students.   

Author (2021) found four core strategies that players used to play the game. The first 
strategy, quadrant-based reasoning, focuses on matching the quadrant of the vectors in the linear 
combination with the quadrant of the goal. The second strategy focuses on one vector involved 
and the player selects a vector and scales it to be as close to the goal as possible and then uses 
another vector to reach the goal. Thus, the player focuses on one coordinate involved, chooses 
either the x- or y-coordinate of the goal vector, and adjusts the scalars to match that one 
coordinate. The final strategy, button-pushing, involves players choosing vectors and rapidly 
adjusting the scalars to find a path to the goal. Each of these four strategies had a more geometric 
version in which players focused on the graphical display and a more numeric version where the 
focus was more on the vector equation.  

Theoretical Framing  
In this study, mathematical learning has been theorized as student’s mathematical activity 

(Freudenthal, 1971, as cited by Gravemeijer & Terwell, 2000) that relates to the topic of linear 
combinations. The goal of this study is to describe the emergent mathematical activity relevant to 
topics in linear algebra such as linear combinations, span, and linear dependence developed from 
playing Vector Unknown, analyzing the gameplay, and designing a new 3D game based on the 
core choices made in Vector Unknown. I call this emerging activity structuring space. The 
sequence was designed to have students engage in at least three levels of activity from Realistic 
Mathematics Education (RME) (Gravemeijer, 1999). First, students engage in the situation of the 
game, which involves taking linear combinations. Next, they have to consider how other players 
might play the game referring to their own experiences. Finally, they have to develop design 
ideas for the 3D game which is intended to move them towards making generalizations about the 
linear combinations that are relevant beyond the 2D game. This paper presents an overview of 
the student’s structuring of space from as situated in the dissertation work (Author, 2022) while 
providing examples to the core research questions: 

1. How did students who have never taken linear algebra structure two-dimensional space 
with respect to linear combinations in relation to the game Vector Unknown? 

2. How did students adapt their structure of two-dimensional space to a three-dimensional 
setting when designing a three-dimensional game based upon Vector Unknown? 

Structure of the Interview 
The interview was conducted over the course of four days. During the first day, the 

participants played the game individually. For the second day, I paired the participants into three 
groups according to their gaming experience (Gamer/Gamer (GG), Gamer/Non-Gamer (GNG), 
Non-Gamer/Non-Gamer(NGNG)). This was done because, at the time, it was thought that 
gaming experience might impact their activity with the game. First, each pair was asked to 
describe all possible goal locations that could be obtained from a set of vectors. Second, they 
were asked to create a set of easy, medium, and hard vectors (since the game had an easy, 
medium, and hard level) to reach a fixed goal of <-3,5>. Each group was shown how to use 
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GeoGebra during the second day for geometric exploration of all possible goals. On the third 
day, each pair was asked to design a 3D game by either creating easy, medium, and hard vectors 
and illustrating all the available vectors or creating easy, medium, or hard vectors to reach the 
goal <3,-4,5>. During the third day, students were again provided access to GeoGebra 3D to 
explore the geometric aspects of the linear combinations in 3D. During the final day, each 
participant played the game individually. This was done to explore if the participants’ strategies 
for playing the game changed from the initial playthrough. This paper focuses on days 2 and 3 of 
the interview to analyze how they structure space. 

Participants, Data Sources, and Methods of Analysis 
For this paper, I looked at six students recruited from Calculus 1 and Calculus 2 classes from 

a large Southern University. None of the students had taken linear algebra before participating in 
the interview. The groups consisted of Alex(G)/Angel(G), Marti(G)/Betty(NG), and 
Gabby(NG)/Dee(NG) (demographic information provided in Table 1). The gaming experience 
was determined by the number of hours students spent per week gaming, with gamers being 
those who played 5 or more hours per week. 
  

Table 1. Participant Demographic Information 

Pseudonym Year Major Gaming 
Experience 

Gender 
Identity 

Hispanic 
or Latino Race 

English 
Primary 

Language 

Marti Soph Environment
al science G 

Gender 
Variant/Non-
conforming 

Yes White No 

Betty Soph Biology and 
Education NG Woman Yes White Yes 

Alex Fresh Civil 
Engineering G Man No White Yes 

Angel Fresh Mechanical 
Engineering G Man Yes White Yes 

Gabby Fresh Mechanical 
Engineering NG Woman No White Yes 

Dee Junior 
Mathematics 

and 
Education  

NG Woman No Other Yes 

 
I conducted the interviews over Zoom. They were recorded on a secure server and auto-

transcribed using the Zoom software. The videos and transcripts were reviewed for instances of 
structuring space for each group and open coded (Strauss & Corbin, 1990). These codes were 
then condensed across all three groups to produce categories of structuring space. Finally, a 
round of axial coding was conducted to find themes of structuring space across the categories: 
structuring by design, structuring by generating, and structuring across dimensions. 

Findings 
In this section, I present four different types of structuring that are meant to capture the 

student’s activity with examples of each from the student’s work. Emergent categories are 
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bolded throughout this section, and the emerging themes are the types of structuring. Structuring 
by design contains different design choices that were made by participants as they created 
different elements of the game that were based upon the participant’s assumptions about the 
game and/or its difficulty. Structuring by generating captures process by which students 
generated example vectors which they utilized to generalize. Structuring all possible goals 
presents how students describe their structuring of all possible goal locations (or linear 
combinations). Structuring across dimensions describes how students made transitions and 
connections between 2D and 3D space. Together these four themes are meant to capture how 
students structure space in the context of analyzing the 2D game and designing a 3D game about 
linear combinations of vectors. 

Structuring by Generating 
This section presents different methods the participants utilized to create new vectors either 

to reach a provided goal or to list all possible goals given a set of vectors. Pairing vectors refers 
to selecting two vectors from a set and adding them together to generate new vectors. Scaling 
refers to scaling one or more vectors in pairs to generate a new goal location. Pairing and scaling 
[Figure 1] were used systematically for all three groups to generate goal locations spanned by a 
set of vectors. Here Betty pairs <-3,2> with each of the vectors <-2,4>, <1,2>, <-6,4>. She then 
pairs <-2,-4> with the remaining vectors <1,2> and <-6,4>, and finally <1,2> and <-6,4>. She 
then begins to scale the first vector in the first pair she generated. This progression of scaling was 
also seen in GeoGebra when students scaled according to difficulty. Gabby describes the activity 
of generating vectors to reach the goal of <-3,5> by adding up/subtracting down as looking 
“for two numbers that would add up to –3, –2, and –1. Fairly simple numbers, because it’s 
medium difficulty, and then two other numbers that would add up to 5.” Here she focused on the 
x-coordinates first and found two numbers that add up to −3, and then looking at the y-
coordinate and she found two numbers that add up to 5. Adding up/subtracting down is the 
process of finding pairs that add up or subtract to goal x- or y-coordinate.  

 

 
Figure 1. Example of pairing and scaling by Betty to generate possible goal locations 

Structuring Across Dimensions 
In this section, I investigate activities that students engaged in both 2D and 3D or activities 

that allowed them to connect the 2D and 3D worlds. Betty illustrates several of these strategies 
while looking at the linear combination of v(−2, −4, −3) + o(3,0,0) and trying to determine all 
the possible goal locations [linear combinations] of these two vectors. Betty stated that she 
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looked at where each of the combinations fell in the different planes. First of all, the 2D 
plane and then the 3D plane. This combination here [points to v(−2, −4, −3) + o(3,0,0)] 
has at least the capacity to go through all four 2D planes. Oh I mean quadrants [she 
manipulates the sliders to illustrate how it can go into all four planes from a top down 
view in Figure 2a]…and it can go into the upper level of the z-plane [she adjusts her 
view, Figure 2b, and adjusts the scalars to illustrate the point moving up and down along 
the blue axis].  
 

First, Betty adjusted the camera to obtain a top-down viewpoint [Figure 2a]. From this 
viewpoint, she adjusted the scalars in the linear combinations to illustrate that the linear 
combination v(−2, −4, −3) + o(3,0,0) visited all four quadrants in xy-plane, indicating that 
reasoning about quadrants, describing vectors using the signs or quadrants that they are 
located. After this, she rotated the camera and adjusted the scalars to illustrate that the point also 
went to the “upper level of the z-plane.” I call this traveling along an axis, which is using 
checking to see if a point travels outside a particular. Essential to Betty’s reasoning is here 
adjusting the viewpoint, which consists of rotating the camera to obtain an optimal view for 
checking a particular property or technique.  
 

(a)     (b)  
Figure 2. Betty’s analysis of the linear v(−2, −4, −3) + o(3,0,0)] 

Marti, Betty’s partner, also employed adjusting the viewpoint to see connections between the 
2D and 3D worlds. In 2D, Marti was looking at the linear combination f <−2,-4> + g<1,2> and 
noticed that it does “not matter how you multiply it seems to be moving along the same line. You 
can move it along both of the sliders, and it still moves in the same direction.” This was in 
contrast to the linear combination a<−3,2> + b<1,2> which “seems to cover the entire 360 
[degrees] of the graph depending on what you multiply them by.” Marti then began to classify 
other linear combinations according to whether or not they were in the same line or rotated 
around 360 degrees. This became an important design consideration when Marti started to 
design her 3D game. When creating vectors to reach a goal she wanted vectors that “had as much 
of a reach around the graph as possible.” Marti tested linear combinations by rotating the camera 
to viewpoint that projected onto a plane and adjusted the scalars to ensure they traveled around 
360 degrees [Figure 3a]. When two linear combinations aligned she changed the vectors in one 
of the linear combinations [Figure 3b]. This indicates that Marti was reflecting upon Marti’s 2D 
work when creating vectors in the 3D game, in particular the delineation between linear 
combinations that traveled in the same line or rotated 360 degrees.  
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(a)     (b)  
Figure 3. Marti looking for linear combinations that are in the same line or rotate 360 degrees 

Structuring across dimensions is important because it captures activities that participants 
thought worked in both 2D and 3D dimensions, such as quadrants and same line/rotations. Also, 
adjusting the camera view was an important activity that allowed participants to build 
connections between 2D and 3D. Betty was  able to see the connections using different 
viewpoints,  and coordinate these viewpoints which occurred. She coordinated a planar 
projection viewpoint with an isometric viewpoint to deduce that the goal locations traveled off 
the projected plane. This category answers the research question 2, how students structure space 
across dimensions. 

Structuring by Design 
This section presents design choices students made while creating their own vectors for 

different difficulties in the 2D and 3D game. First, students would attend to coordinate 
properties which encompasses designing vectors by selecting coordinates with specific 
numerical properties such as being big numbers (such as 6 through 9), small numbers (such as 1 
through 3), or zeroes for individual x-, y-, and z-coordinates. Since the game only allowed x- and 
y-coordinates that were between -20 and 20, several groups only considered possible goals 
locations that Marti described as “within the grid.” This category was important because it 
provided an activity for students like Betty to generate goal locations and noting that <−3,2> + 
3<−6,4> = <−21, 14> and “found it would be going off the 20 and it would be going off the 
mark so it wouldn’t count” as a possible goal location. While designing vectors to reach the goal 
of <-3,5>, Alex and Angel decided that they wanted to design a “bluff vector” which was 
intentionally designed to not help the player reach the goal. For example, they used the vector 
<5,-3> as a bluff vector. Finally, scaling vectors according to difficulty refers to the design 
decision to have more vectors to be scaled with the difficulty of the game. For example, Gabby 
and Dee present easy goal locations as (2,0,1) + (-1,2,3), medium difficulty as b(2,0,1) + (-1,2,3) 
or (2,0,1) + b(-1,2,3), and hard difficulty as b(2,0,1) + c(-1,2,3). Structuring by design was 
important because it presented goals created by students in the design of the game that generated 
activity allowing them to notice patterns.   

Discussion and Limitations 
I initially set out to categorize the different types of activities that students engage in after 

playing, reflecting, and designing a 3D version of the game Vector Unknown in regards to 
structuring space and linear combinations. Now that I have presented these results, I want to 
reflect on the ways in which my findings can inform a more general definition of structuring 
space. Examining my data, I found that students engaged in the following activities:  

1. Worked with a variety of objects, including coordinate vector representations 
such as �12�; points and arrows on a 2D or 3D plane; symbolic representations of 
vectors; representations of paths in 3D space. 
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2. Took actions such as pairing and scaling vectors both on paper and in GeoGebra 
(through adjusting the sliders), changing the viewpoint, and creating vectors 
using adding up/subtracting down. 

3. Set design goals that shaped their structuring activity such as structuring by 
design with fitting the grid, having bluff vectors, or wanting vectors with 
specific coordinate properties. 

4. Made observations such as recognizing if vectors span all quadrants or lie along 
the same line in structuring across dimensions and observing coordinate 
properties about individual vectors. 

Taking actions, setting goals, creating objects, and making observations form the skeleton of 
structuring as its key components. The act of structuring involves doing one or more of these 
activities and re-evaluating the connections between the remaining elements. In this way, 
introducing an action like changing the viewpoint might have the students set new goals such as 
finding the best viewpoint, work with different objects such as projections down to 2D space, 
and make new observations such as being able to classify 3D vectors as in the same line or a 
rotation. Now the foundation of a particular structuring is the starting activity that sets these parts 
in motion with example actions, goals, objects, and observations. Playing the game Vector 
Unknown provides the initial set of actions, goals, objects, and observations for structuring space 
under linear combinations for this study. Here the actions are the moves by the player (scaling 
and choosing vectors), the goal is to reach the basket, the initial objects are the vectors and their 
geometric representation, and the observations are highlighted by feedback provided to the 
player from the game. Playing the game and asking questions about the game introduce or 
modify each of these components resulting in a student structuring of space.  

I observed that the idea of linear independence was observed through the idea of same 
line/visiting all quadrants/rotating 360 degrees. Quadrants appearing in both this analysis and the 
video game strategies (Author, 2020) indicate that they might be a fruitful starting point for 
understanding linear dependence. Additionally, I found that understanding viewpoint and, in 
particular, coordinating viewpoints was crucial to the participants transitioning between 2D and 
3D space. This is important because looking at viewpoints is a paradigm that is often relegated to 
dynamic geometry software (such as GeoGebra) and video games and may not be covered in 
classes without these tools. Future work will investigate this data more thoroughly doing an in-
depth analysis of the different viewpoints utilized and linking them to the mathematical activity 
for each viewpoint. I see view this as important to developing the geometric intuition that is 
considered valuable by Dogan-Dunlap (2010) and Paraguez and Oktac (2010). Finally, I want to 
stress the importance of the game in the student’s structuring by contributing elements such as 
fitting the grid and designing bluff vectors. These design ideas from the game provided students 
with goals and a reason to generate vectors which they then used to make generalizations and 
explore advanced mathematical concepts creating a complex network of ideas (Gee, 2003).  

The project was conducted with only three groups of students and thus does not capture the 
entirety of structuring space. Additionally, the students were introduced to GeoGebra at different 
times during the interview and in different versions. Some students utilized a GeoGebra applet in 
3D, while others chose to use the default program. Because of this, their structuring when 
working in GeoGebra was likely impacted by the tool and when it was introduced.   
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Those who lead the preparation and assessment of novice college mathematics instructors for 
teaching (Providers) do their work in many ways (e.g., course coordination, seminars, 
workshops). Using data from a large national survey, this study examined reporting among 95 
Providers about the structures of their departments, their goals for the professional development 
work they do, and their relative valuation among goals. Respondents completed a sorting and 
ranking activity about professional development goals and answered an open-ended question 
describing their sorting decisions. Qualitative coding identified six main themes for the 
respondents’ 285 descriptions. Quantitative analysis used the rankings of goals within 
respondents’ sorting categories to examine how Providers describe and value professional 
development goals related to professional community, classroom and department culture, and 
instructor response to students within their classrooms. 
 
Keywords: Mathematics Graduate Student Instructors, Teaching Assistants, Professional 
Development, Pedagogy, Community, Q-Sort Methodology 

 
Introduction 

A significant and continuing challenge to undergraduate student success is the nature of 
instruction in college mathematics courses (Freeman et al., 2014; Laursen & Rasmussen, 2019). 
The last decade has seen several national efforts aimed at addressing this well-known problem, 
including online repositories of activities for use in the preparation of graduate students for 
teaching (i.e., CoMInDS), online professional learning opportunities for faculty to focus on 
student learning, and the release of student-centered policy documents like the Mathematical 
Association of America's (MAA) Instructional Practices Guide (IPG). Higher education leaders 
are now looking to departments to improve the preparation of college mathematics instructors 
(CMIs); particularly novice CMIs who are graduate students beginning their teaching journey as 
mathematics graduate teaching assistants (teaching in sessions adjacent to a primary course) and 
graduate teaching associates (teaching as instructor-of-record). Here, we use GTA to refer to 
both groups collectively and, as needed, distinguish between them with Lab-TA for teaching 
assistant and GSI-TA for teaching associate. These new CMIs are a critical subgroup because: 
(1) they teach thousands of undergraduates (Belnap & Allred, 2009), (2) many start as LabTAs, 
and (3) most have little or no preparation for teaching. In addition, there are many variations in 
type of institution (e.g., master’s granting, doctoral granting) and structure within departments 
around professional development (PD). Depending on location, GTAs will be offered learning 
opportunities that may include short orientation workshops, teaching seminars, pedagogy 
courses, mentoring, or course coordination. Thus, mathematics departments have reached the 
point where they are asking which resources they should use, and how, to help their graduate 
students’ learn to teach. They know the ingredients exist and are looking for the recipe for their 
local departmental use.  
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Context of the Study 

This study is part of the CMI Preparation Project. The overarching goal for the project is to 
document and extend the use of effective professional learning about teaching for a variety of 
institutional and instructional contexts by generating a CMI Design Tool for use by departments. 
This study focuses on the findings from a national Needs and Uses Survey with the aim to 
understand how communities are described and discussed by providers. Analyses from the 
survey are informing the development of the tool.  

Within this survey, respondents were Providers: those who work with novice CMIs to 
support learning about teaching undergraduate mathematics. In the survey, Providers answered 
questions about their department structure and the design of the professional development  
available locally to novice CMIs. The survey used a variant of the Q-sort methodology (Willig  
& Stanton-Rogers, 2017) where Goals for professional development were sorted and ranked into 
up to three buckets which were then titled. The Goals offered in each activity were developed in 
the project’s earlier work by eight expert Providers from diverse backgrounds (e.g., from private 
and public, masters and doctoral granting institutions) who merged and distilled critical topics of 
CMI PD from their experience and research.  

Each of the 15 Goals (Table 1) had an associated exemplar (when a respondent hovered over 
the Goal). Each respondent was asked to sort the 15 Goals into three buckets, rank each Goal 
within that bucket, and then provide a title and justification for that bucket’s title. 

 
Table 1. Goals Sorted by Providers 
A: learn how to notice and manage challenges to equity, access, and success among 

undergraduates 
B: learn how to initiate and sustain a productive classroom culture 
C: learn about ways for students to build their math learner identities 
D: learn strategies to promote and facilitate collaborative learning 
E: get feedback on their teaching from peers  
F: learn about students thinking and analyze how it reflects instructional decision-making  
G: learn how to foster student in-class engagement 
H: create a community of instructors and are supported in its creation 
I: build knowledge on how students learn 
J: learn methods for promoting whole-class discussion  
K: learn how to recognize teaching practices that create a sense of belonging among students 
L: learn how to implement self-assessment in teaching 
M: plan and prepare lessons 
N: learn how to develop teaching portfolios  
O: learn about and promote student use of outside-of-class learning resources 

 
This qualitative sorting methodology was chosen because prior research in ranking of such PD 
goals had illustrated that it was difficult to disassociate the judgment of value of teaching method 
from the logistical expectations of a department (Yee et al., 2018). To address this, for this 
survey, respondents had choice in how to assign goals to buckets, could freely rank within 
buckets, and were asked to give and explain bucket titles. There were three of these bucket 
activities (each having the participant sort Goals into three buckets) in the survey, each on its 
own page. This report is focused on the bucket activity that emphasized community and how PD 
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Providers view communities within teaching (Gobstein, 2016; CoMInDS, 2020; Yee et al., 
2022). This sub-study addressed the questions  

RQ1: How do Providers describe Goals that focus on community? 
RQ2: How do Providers value Goals focusing on community? 
 

Background and Theoretical Perspectives  
Multiple calls for action to include inquiry-based mathematics education (Laursen & 

Rasmussen, 2019) and active-learning methods (Braun et al., 2017) have been on the forefront of 
suggestions for the professional development of CMIs. Recent research and development in 
collegiate mathematics education has attended to professional communities in several ways. The 
Student Engagement in Mathematics through an Institutional Network for Active Learning 
(SEMINAL) project (Gobstein, 2016) is expanding use of collaborative learning methods 
through active-learning. Additionally, the Promoting Success in Undergraduate Mathematics 
through Graduate Teaching Assistant Training (PSUM-GTT) project (Haddock et al., 2018) is 
diversifying multiple uses of peer-mentoring, training, and seminar courses for CMI professional 
development.  With all of these resources and suggestions, it is easy for a mathematics 
department to be overwhelmed (Pengelley & Sinha, 2019).  

In fact, although 70% of departments in a recent national study indicated they provide some 
kind of instructional development for novice CMIs, the nature of it varies widely (Ellis et al., 
2016; Speer et al., 2017). Novice CMIs today are the very instructors who will play key roles in 
addressing the nation’s need to improve student enrollment, retention and persistence in science, 
technology, engineering, and mathematics (STEM) courses and majors (Holdren & Lander, 
2012; Laursen & Rasmussen, 2019). The opportunity and need coalesce in the first two years – 
where undergraduates first encounter college mathematics and novice CMIs are most likely to be 
teaching (Belnap & Allred, 2009). Clear from the proposers’ and colleagues’ work in 
developing, offering, researching, and disseminating ideas about professional learning in college 
mathematics instruction, central to success is strengthening novice CMIs’ understanding of 
student thinking (Roach et al., 2013; Speer & Wagner, 2009; Wagner et al., 2007). Specifically, 
GTAs are a critical focus of novice CMI professional development. 

Bragdon and colleagues (2017) categorized approaches in 120 different master’s and 
doctoral-granting departments into nine models for PD focusing on GTAs. However, a challenge 
still remains: how to leverage and communicate about these characteristics with and in 
mathematics departments. To be able to do this we need to understand (1) how department 
members, including Providers, describe their Goals and (2) how they value their Goals. Research 
into CMI preparation has demonstrated how Providers’ goals for novice CMIs significantly 
overlap with topics of secondary and primary mathematics methods courses (Yee et al., 2022). 
Yee et al., (2018) analyzed touchstones in methods courses from two perspectives: those of 
teacher educators and those of in-service teachers. The focus of this national study was phrased 
in terms of perceived importance: “Please tell us how important you feel it is for each of the 
following content items to be valued and addressed by secondary mathematics methods courses 
for preservice teachers.” Although a very valuable study, what respondents valued was conflated 
with departmental expectations. To get around that, this project used a Q-sort methodology that 
more clearly isolated respondents’ values from their departmental expectations by not only 
having respondents sort and rank the Goals, but also create and justify a title for each bucket, so 
that we can see the respondents’ language and values directly.  
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Methods 
This study used embedded mixed methods where qualitative thematic coding of bucket titles 

was embedded within the quantitative analysis of the ranking and frequency of Goals within 
bucket descriptive themes (Creswell, 2017). Respondents for the survey were recruited because 
they provided professional development about teaching to novices in their departments. The 
survey was sent to 242 people, 95 of whom completed the sorting activity. These 95 responses, 
with three descriptive bucket titles each, formed the data pool of 285 bucket titles used for the 
analysis shared here. Respondents came from a variety of academic positions (see Table 2). 

Descriptive analysis along with central tendencies provided a context for interpreting the 
Community bucket activity data (Table 2). To answer RQ1, thematic coding was used on the 
descriptive titles created by respondents for their buckets. The goal for the thematic coding was 
to examine and characterize the language that was used by the respondents (see Table 3). For 
example, respondents’ language suggested one theme be described as “learn how to foster 
student in-class engagement” – this in vivo title represents Provider language (alternatively, the 
researchers could have abbreviated this as “active learning”). However, we purposefully capture 
respondent language so that we can make sure the content is accessible by people who are not 
educational researchers, such as those in mathematics departments who will (one day) use the 
CMI Design Tool for which the survey is a first step.  

Researchers went through four stages of thematic coding of the 285 bucket titles by (1) 
generating a modified word cloud of all titles to generate a preliminary set of themes, (2) 
collaboratively coding 30 bucket titles into themes and revising themes together, (3) choosing 30 
new bucket titles of the 255 uncoded buckets and coding them individually then comparing the 
codes and revising themes and coding, (4) each researcher then coded each of the remaining 225 
bucket titles, then met to discuss revisions until consensus was reached (100% agreement) 
amongst the bucket titles being coded and the wording used for the themes. It is important to 
note that for this study the Goals within each bucket were not considered when identifying the 
themes of the titles, only the titles. 

To answer RQ2, we embedded the themes into the quantitative analysis of Goals’ within-
bucket and weighted rank (see Table 4). Thus, with each theme, we could see what value 
(weighted rank) was given to that Goal within that theme. Because few buckets had more than 
six ranked Goals, we wanted to weight the Goals accordingly. We chose to use harmonic 
progression (reciprocal progression) so that rank 1 of a Goal within a theme was weighted as 1, 
rank 2 was weighted as ½, rank 3 was weighted at 1/3, and so on. These weighted rankings were 
then added together for each Goal within each theme to generate a “heat map” (Table 4).  

 
Findings 

We first describe the contexts for Providers who did the survey, then how the bucket titles 
were themed, and finally how the Goals were valued within each theme. Providers identified, on 
average, 38 novice CMIs out of an average of 84 mathematics instructors for each of the 
departments. Those novice CMIs accounted for (on average) 45% of the teaching done within a 
department (median 49%). Additionally, Providers stated, on average, that graduate students 
were 30 of the 38 novice CMIs, suggesting 78% of novice CMIs within their departments were 
graduate students (median 74%). We also asked about a Provider’s position and the target group 
for their PD. Among respondents, 40 were teaching faculty, 33 tenure-track research faculty, 3 
tenure-track teaching faculty, and 16 “other” (described as former/current department chair, 
directors in Math department, non-tenure track teaching/research faculty, lecturer, and postdoc). 
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This suggests the largest group taking the survey were teaching faculty, followed by research 
faculty. Together these two groups constituted 80% of all respondents. The novice CMIs target 
groups were graduate students who were either LabTAs (e.g., recitation instructors, N=36) or 
GSI-TAs (i.e., instructors of record, N=35). Together graduate students made up 76% of the 
target groups for the respondents. Table 2 illustrates the respondents’ departmental information 
relative to the teaching workforce. 

 
Table 2. Structure of Departmental Teaching Workforce and CMI PD (out of 95 responses) 

   Median Mean SD   
# of people teaching mathematics for the department  70 84 55   

# of above group who are novice CMIs  34 38 31   
# of novice CMIs who are graduate students  25 30 26   

 Role within the CMI Professional Development Teaching 
Faculty 

Research 
Faculty 

Adjunct 
Faculty Other 

  43 33 2 16 
Target group for CMI Professional Development LabTA GSI-TA NFI* ULA** Other 

  36 35 7 1 14 
*NFI=non-faculty instructor and **ULA=undergraduate learning assistant. 
 
Bucket Title Themes 

To answer RQ1, themes were refined three more times as two researchers expanded, revised, 
and refined the initial themes to cover the most bucket titles and to best reflect respondents’ 
choice of language. For example, the word “Knowledge” in Th3: (Teaching and Classroom 
Skills, Strategies, and Knowledge) had similar uses within the respondents’ title justifications as 
use of the word “skills” when referencing teaching. This is important to note: “knowledge” and 
“skills” for teaching were not distinguished by Provider respondents. The six themes reported 
here covered 92% of all Goals that were sorted into buckets. Altogether, buckets with titles that 
fell under Th1, Teaching Community and Culture, contained 106 Goals, 9% of all Goals sorted 
by all Providers while Th2 bucket titles contained 240 (19%) of all sorted Goals (see Table 3). 

 
Table 3. Bucket Title Themes, Frequencies, and Relative Frequencies 
Theme 
Code 

 
Theme Title 

Goal 
Count 

% Sorted 
Goals 

Th1 Teaching Community and Culture 106 9% 

Th2 Individual Teacher Development such as Assessment, 
Feedback, and Reflection on Teaching 240 19% 

Th3 Teaching and Classroom Skills, Strategies, and Knowledge 263 21% 
Th4 Student Learning, Support, Engagement, and Identity 256 21% 
Th5 Classroom Identity, Community, Environment, and Culture 168 14% 

Th6 Pedagogical Diversity, Equity, and Inclusion/Belonging 
Especially in the Classroom 100 8% 

 
The survey asked respondents to briefly justify their bucket titles. Bucket justifications were only 
used when struggling to thematically code a bucket title. Overall, only 23 of the 285 bucket titles 
had more than one identified theme.   
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Goals Valued within Themes 
With respect to RQ2, weighted rankings were assigned relative to the Provider's chosen rank 

for each Goal within each bucket. Table 4 provides a heat map coloring the Goals within each 
theme (row) – the highest weighted value in green and the lowest rated value in red. For 
example, for all respondents who had a bucket title that was coded under Th3, the most highly 
weighted value was 19 on Goal M: plan and prepare lessons. Goals (column headings) were 
ordered across the top to group greens and reds (see Yee, 2022 for more on the method). 

 
Table 4. Heat Map of Goals within Each Theme According to Weighted Ranking 

   Goal: 
Theme E N L H A B K M I F O G D J C Total  

Th1 11 8.6 7.6 18 0.3 1 1.2 2.4 0.5 0.6 1 0 0 0 0 52 
Th2 25 16 20 20 2.1 1.3 3.1 7.8 8.3 7.6 2 1.3 0.5 0.5 1 117 
Th3 4.4 3.4 2.9 5.5 11 8.6 3.1 19 7.7 4.7 5.1 15 8.8 7.5 3.9 110 
Th4 1.3 0.4 0.8 0.8 7.8 7.5 5.9 9.9 17 11 8.5 13 12 7.7 9.9 113 
Th5 0 0 0.1 1.1 13 13 7.9 3.5 1.7 2.2 2 6.7 5.9 7.7 4.1 69 
Th6 0 0.2 0.2 0.4 12 9.4 6.3 1 1.6 1.4 1.4 1.5 1.6 1 6.4 44 

Total  41 29 32 46 45 41 27 43 36 28 20 38 29 24 25 505 
 
In the Total Row, adding up all weighted rankings of single columns, we see Goals H (46), 

A(45), M(43), B(41), and E(41) were the highest valued across all six themes. Goals A and B 
focused on classroom community among students while H and E focused on community around 
instructors. We also see that Goal O: learn about and promote student use of outside-of-class 
learning resources, had the lowest weighted ranking total (20). When looking across all rows, we 
see that every Goal but one, O, was in some themes’ top five highest valued Goals. This suggests 
that Goal O was not highly valued for the participating Providers.  

 When looking at the Goals within each theme, we see some have higher values than 
others. Goal A “learn how to notice and manage challenges to equity, access, and success among 
undergraduates” was the highest weighted rank in Th5: Classroom Identity, Community, 
Environment, and Culture. This is interesting because Providers used the words that define Th5 
and then associated this with Goal A. Specifically, equity, access, and success were encapsulated 
by Providers using the words Identity, Community, Environment, and Culture. These latter 
words may illustrate Providers seeing the outcomes of managing challenges around equity, 
access, and success as focusing on classroom environment and culture rather than the individual 
student. Goal H is a focus on the community of instructors and was the second highest valued in 
Th2 which focused on feedback and reflection. This may suggest Providers see a strong 
connection between teacher community, personal reflection, and assessment of teaching by 
others. 

When comparing Th1 and Th2 in Table 4, we see Th2 had higher weighted ranks with Goal I 
and F, where the focus is on knowledge of how students learn, student thinking and how it 
affects instructional decisions. Th1 focused on community and culture while Th2 focused on 
individual development. Thus, Providers seemed to view Goals around student learning and 
thinking as less impactful to community development than to individual teacher growth.  

When comparing and contrasting Th5 and Th6, we see these themes did not highly value 
Goals E, N, L, and H yet did value Goals A, B, and K highly. This aligns with the focus of Th5 
and Th6 around the classroom. Goals D, G, and J had higher valued weighted ranking in Th5 
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over Th6. This suggests Providers who title buckets with Diversity, Equity, and Inclusion did not 
value engagement, collaboration, and whole-class conversation as much as those who titled their 
buckets with Identity, Community, Culture and Environment. More work is needed to 
understand this finding given that research in active learning has suggested that collaboration and 
engagement seem to encourage diversity, equity, and especially inclusion (Laursen et al., 2014).  

 
Discussion 

Overall, we found that Providers responding to the survey were primarily teaching faculty, 
followed closely by research faculty within mathematics departments. The Providers’ 
departments had a workforce where on average 45% of all instructors were novice CMIs. These 
Providers focused primarily on the 75% of novice CMIs that were GTAs. In answering RQ1, we 
found that there were six dominant themes that captured the 285 bucket titles. Language chosen 
by the Providers was preserved within these themes illustrating important differences between 
how educational researchers use terms (such as knowledge and skills) and how Providers use 
these terms. These differences are important as we move forward in creating a Design Tool with 
language that is meaningful to its users. When looking across the themes, at how the Goals were 
sorted and ranked, certain distinctions about how themes and values varied illuminated 
additional challenges and opportunities for offering mathematics departments’ guidance on 
Provider resources. 

When comparing and contrasting weighted ranking of Goals within Th5 and Th6, Goals D, 
G, and J were all slightly higher with Th5 suggesting responding Providers associated student 
engagement, collaboration, and whole class discussion (Goals D, G, & J) within classroom 
identity, community, environment and culture (Th5), rather than within what Providers identified 
as “diversity, equity, and inclusion” (Th6). More investigation is needed on this. For example, it 
could be an artifact of assumptions about the nature of CMI influence on classroom culture, 
environment, and community as different or easier than that what Providers associate with 
diversity, equity, and inclusion (i.e., Providers were less inclined to connect engagement, 
collaboration, and whole-class discussion goals with Th6: Diversity, Equity, and Inclusion).  

One of the largest implications is the need for clear distinction in the Design Tool between 
departmental values related to communities of undergraduates (e.g., a classroom community) and 
community among novice instructors (e.g., in a comparison of Th1 and Th2 versus Th5 and Th6 
in Table 4). We see those Goals valued in Th1 and Th2 are not valued in Th5 and Th6. 
Moreover, the highest valued Goals overall (Table 4) were Goals H (46), A(45), M(43), B(41), 
and E (41). Goals H and E focus on the teacher community while Goals A and B focus on 
classroom culture and equity, access, and success with students (classroom community). Goal M, 
plan and prepare lessons, seemed to be the only Goal that was moderately valued across nearly 
all themes (Table 4) and had a high overall value. This may suggest that Providers can leverage 
planning and preparing lessons to bridge discussions among these communities. For example, 
when planning a lesson, the discussion can revolve around the student community, while 
discussion on how the lesson plan is used, by whom, and how, could connecte conversation back 
to instructors’ community.  
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A Measurement Hat Trick: Evidence from a Survey and Two Observation Protocols  
about Instructional Change after Intensive Professional Development 
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Professional development about teaching is an important lever for change toward evidence-
based instructional practices. Yet few studies in higher education offer robust evidence about 
whether and how instructors’ teaching practices actually change as a result of professional 
development. We studied instructors who attended a four-day intensive workshop on inquiry-
based learning (IBL) in college mathematics and who provided data about their teaching before 
and after. Of 293 instructors who attended, 136 provided complete survey data and 15 video-
recorded their teaching, which we coded using two observation protocols. Comparing pre-
workshop and follow-up teaching data, we find significant and well-corroborated changes 
toward IBL methods across all three methods, with effect sizes near 1, generally viewed as large 
in education research. The findings demonstrate that well-designed professional development 
can have a substantial impact on instruction even within the first year of implementation. 

Keywords: IBL, professional development, TAMI, RTOP, measurement of teaching 

Teaching-related professional development (TPD) is widely seen as important to encourage 
the uptake of evidence-based instructional practices (EBIPs) by college STEM instructors. TPD 
is attractive as a lever for change because research has demonstrated that EBIPs can make a big 
difference in students’ experiences and success, and tested classroom resources are widely 
available to instructors in all STEM disciplines. Proponents argue that TPD is impactful because 
most college instructors have ample room to improve: while deeply grounded in their discipline, 
most have little formal knowledge of learning and teaching. Moreover, the effects of TPD will be 
amplified as each instructor teaches many courses and thousands of students across a career.  

However, these arguments are not currently well backed by research showing that TPD does 
have the desired effect on instructor practice. At present, professional developers and funders can 
point to examples of impactful TPD as proof of concept (e.g., Khatri et al., 2013; Laursen et al., 
2019), but the formal literature relies much on case studies of small programs: large, high-quality 
studies are scarce. Exceptions include recent work on TPD in mathematics (Archie et al., 2022) 
and studies in several science fields (Bathgate et al., 2019; Borda et al., 2020; Chasteen & 
Chattergoon, 2020; Ebert-May et al., 2011, 2015; Manduca et al., 2017) that measure instructors’ 
implementation of active approaches after TPD, and the barriers and supports that shape this. 

Building knowledge about TPD in higher education has been slow and challenging. Simply 
measuring teaching and change in teaching is difficult (AAAS, 2013); common tools such as 
surveys and observations both offer pitfalls. Moreover, studies of TPD outcomes cannot be done 
as experiments: researchers must find large, well-designed, and stable TPD programs to serve as 
study sites to provide adequate sample sizes and a consistent, high-quality intervention. TPD is 
neither required nor routinely offered by institutions of higher education, unlike K-12 settings. 
Finally, teachers need time to learn and enact new ideas and practices, then more time to become 
proficient enough to improve student learning, a reality that further extends the research timeline. 
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Thus, it is no surprise that rigorous studies examining the outcomes of TPD are needed. Our 
study of workshops on inquiry-based learning (IBL) in college mathematics addresses many of 
these challenges. The workshops reached nearly 300 instructors, yielding samples large enough 
for quantitative analyses. Built on a decade of prior work, the workshop model was informed by 
learning from K12 and college TPD experience, evaluation feedback, and education research on 
professional development. Workshops were led by teams of skillful IBL educators who worked 
from a common general structure and schedule, drew from and contributed to a shared set of 
workshop and course materials, and engaged in TPD leadership training. Together these features 
ensured sound program design and consistent, high-quality TPD delivery.  

To address the measurement challenges, we used three instruments—a survey and two 
observation protocols—and compared the results. Funding constraints meant we had to measure 
implementation just one year after workshop participation, likely before teachers had mastered 
new approaches. We thus chose two descriptive, behavior-focused measures (one survey, one 
observation protocol), positing that new IBL users would first adjust how they use class time—
e.g., using less lecture and more of the student-centered activities that are common in established 
IBL classrooms (Laursen et al., 2014; Hayward et al., 2016). Even if instructors were not yet 
skilled in facilitating these activities, we could detect initial changes in their choices about the 
use of class time. To address quality of instruction, we chose a second observation protocol that 
offers an evaluative perspective via holistic ratings of each lesson. With thorough video sampling 
we could reliably characterize instruction for the course as a whole, not just in selected episodes 
(Weston et al., 2021). In this analysis, we consider: What do three independent measures of 
teaching tell us about whether and how instruction changed after professional development? 

Context for the Study 
To situate the study, we provide brief descriptions of inquiry-based learning in mathematics, 

in the general form that was practiced by workshop leaders and taught in workshops, and of the 
IBL workshop design. For more detail, we refer readers to the references cited below.  

Inquiry-based learning (IBL) is a form of instruction that has become increasingly common 
as an approach to active and collaborative learning in college mathematics. Laursen and 
Rasmussen (2019) identified four pillars, or core principles that IBL shares with other forms of 
inquiry-based mathematics education (IBME). In effective IBL classrooms, students engage 
deeply with meaningful mathematics and make sense of these ideas in collaborative work with 
their peers, which may take a variety of forms. Instructors support these student experiences by 
inquiring into student thinking—drawing out student ideas and helping them toward further 
sense-making—and by making design and facilitation choices that involve all in rigorous 
mathematical learning and identity-building. The “big tent” philosophy of IBL recognizes that 
instructors will implement these principles in different ways, depending on their setting, 
adjusting to suit their course material, class size, student audience, and personal preferences. 

Consistent with other research on EBIPs (Freeman et al., 2014), IBL offers cognitive and 
affective benefits and supports student persistence and success in later courses (Kogan & 
Laursen, 2014; Laursen et al., 2014; Laursen & Rasmussen, 2019, & references cited therein). 
On average, IBL approaches were found to close equity gaps in student experience compared to 
lecture-heavy approaches (Laursen et al., 2014), again consistent with general findings in the 
literature (Theobald et al., 2020). Of course, IBME is no silver bullet (Ernest, Reinholz & Shah, 
2019; Johnson et al., 2020; Reinholz et al., 2022): instructors must take proactive steps to 
develop self-awareness and empathy and to select pedagogical approaches that foster 
mathematical identity and enhance classroom climate (Dewsbury & Brame, 2019). 
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The design of the IBL workshops was purposeful, research-aligned, and iteratively refined 
(Yoshinobu et al., 2022). Briefly, four interwoven strands of workshop activity sought to foster 
IBL-supportive knowledge, skills, and beliefs and prepare instructors to implement IBL in their 
own teaching contexts. Video lesson study sessions helped instructors develop a mental model 
for an IBL classroom, while literature-to-practice sessions used provocative readings and 
discussion to help instructors internalize the four pillars and reflect on their own beliefs. “Nuts 
and bolts” sessions shared facilitation and task-design tactics to build instructor skills, and course 
planning sessions provided planning exercises and personal work time to help instructors 
consider how to prepare their own IBL course. Through an active e-mail mentoring program, 
peers and facilitators provided follow-up support—resources, ideas, trouble-shooting, 
encouragement—as instructors implemented their IBL course after the workshop (Hayward & 
Laursen, 2018). Deliberate attention to equitable instruction and assessment practices was 
increasingly incorporated into the workshops across the 2016-2019 period that we studied. 

Study Methods 
The study design was approved by the university’s IRB and all instructors gave informed 

consent. Students in video-recorded classes were given information explaining that the focus of 
the study was their instructor, not them. They could move out of camera view if they wished.  

Study Population and Survey Sample 
The study examined participants in 11 IBL workshops conducted in 2016-2019 (Archie, 

Hayward & Laursen, 2021). Online workshops in 2020 were omitted from outcomes analysis. 
They were surveyed at two times: All 293 answered the pre-workshop survey, and 199 (68%) the 
follow-up survey about 17 months post-workshop. Of these, 136 (68%) identified a target course 
before the workshop and then described implementing IBL (or not) in their target course on the 
follow-up survey; they form our sample to study instructional change.  

Overall, the implementing respondents were very similar to the workshop attendees. Half 
were women. Most (87%) were US citizens, nationals or residents; of these, 80% were white and 
5% were Asian. About 3% described themselves as Hispanic or Latino/a/X. Participation was 
well balanced among people in tenured (30%), untenured (30%), and non-tenurable (30%) 
positions, from departments granting four-year (42%), masters (23%), and PhD (21%) degrees, 
and some from two-year (13%) colleges. About 23% taught at a minority-serving institution. 
Overall, they were modestly more diverse than the U.S. mathematics professoriate as a whole, 
and they came from institutions that broadly represent teaching settings in U.S. higher education. 

Survey Methods 
Survey instrument. The survey included closed- and open-ended items previously described 

(Hayward & Laursen, 2014; Archie, Hayward & Laursen, 2021; Archie et al., 2022; Hayward et 
al., 2016). Some items were used to provide formative feedback to workshop leaders, to 
characterize workshop features, and to measure participants’ knowledge, skills and attitudes. 
Participants self-reported personal and professional demographic information. Responses across 
time points were matched via unique identifiers. Here we focus on items used to describe 
teaching strategies at both times, from the TAMI-IS (Toolkit for Assessing Mathematics 
Instruction-Instructor Survey; Hayward, Weston & Laursen, 2018). These descriptive, behavior-
focused items ask “what did you do?” rather than “how well did you do it? Taking the course as a 
whole, instructors estimated the frequency of use for each of 11 teaching practices often seen in 
college math courses (e.g., group work, whole class discussion, formal lecture, short 
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explanations, student presentations), coded using the scale: 0 = never, 1 = once or twice during 
the term, 2 = about once a month, 3 = about twice a month, 4 = weekly, 5 = more than once a 
week, or 6 = every class. Open-ended items probed patterns in practices and special events and 
elicited text descriptions of ‘lecture,’ ‘presentations,’ and ‘group work’ as practiced in courses.  

Survey analysis.  We created a composite variable to measure instructors’ overall use of IBL 
methods. This variable, IBL frequency score, includes five of the 11 practices classified as ‘core 
IBL’ practices because they measure all variations of IBL that were emphasized or de-
emphasized in workshops and was calculated as follows: IBL frequency = student group work + 
student presentation + class discussion - lecture - instructor problem-solving. IBL frequency 
scores were calculated for pre-workshop and follow-up time points; scores could range from -12 
to +18. Lower scores indicate less frequent use of IBL teaching practices and more frequent use 
of lecture and instructor problem-solving, while higher scores indicate more frequent use of IBL 
methods and less frequent use of lecture and instructor problem-solving. We conducted paired 
samples t-tests to measure change in IBL frequency between pre-workshop and follow-up times 
for instructors who did (n=15) and did not (n=136) participate in classroom observation.  

Observation Methods 
Observation sample. The observation sample was a subset of the survey sample: 15 

workshop participants who registered early and volunteered to collect video data in their target 
course in the term before their summer workshop, and for the same or similar course the next 
academic year. Their personal and institutional characteristics are broadly similar to the survey 
sample. Instructors placed a video camera in their classroom several times a term and completed 
the survey at the end of the same term. We asked them to record about 1/3 of class time. In all, 
we coded 278 class sessions, averaging 9 classes per course and totaling over 300 hr class time. 

Observation instruments. We applied two observation protocols that emphasize different 
dimensions (Hora & Ferrare, 2013a). The TAMI-OP (TAMI Observation Protocol) is a 
segmented, descriptive (behavior-focused) protocol that aligns with the TAMI-IS (Hayward, 
Weston & Laursen, 2018). It is adapted from the TDOP (Hora & Ferrare, 2013b) and COPUS 
protocols (Smith, Jones, Gilbert, & Wieman, 2013) to reflect practices we saw in college 
mathematics. Twenty activity codes for instructor and student behaviors were coded within each 
2-minute segment. Fourteen end-of-class holistic items, designed by our team, query features of 
classroom atmosphere and student-teacher interaction (Laursen et al., 2011; Appendix 2). 

The RTOP (Reformed Teaching Observation Protocol) is a holistic, evaluative protocol 
developed for K12 science instruction and increasingly used in higher education (Sawada et al., 
2002). Raters score the lesson on 25 items in 5 categories: lesson design, teaching of content and 
procedural knowledge, communication, and student-teacher relationship. For each lesson, items 
are scored 0-4 to describe how often each feature is seen: “never occurred” to “very descriptive” 
of the lesson. Summed RTOP scores of 0-100 indicate the degree to which a course is 
“reformed” toward student-centered, evidence-based instruction emphasizing inquiry. 

Observation analysis.  Using data from the TAMI-OP and RTOP instruments, two global 
measures were used to assess change in teaching: 

1. the RTOP-Sum (RTOP), a composite of 25 observational survey questions. Here 
ratings are summed over all questions and averaged over observed classes in a course. 

2. the Proportion of Non-Didactic lecture classes (PND) across a term of observation 
using the TAMI-OP. PND provides an estimate of the proportion of classes, for one 
instructor, that use non-lecture teaching methods. 
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The analytical method for TAMI-OP is based on Latent Profile Analysis (LPA), a statistical 
clustering method applied to a large observation data set (790 observations of 74 teachers) from 
this and other projects (Weston, Hayward & Laursen, 2023). The LPA yielded four reliable class 
types (Didactic Lecture, DL; Interactive Lecture and Review, IL; Student Presentation, SP; 
Group Work, GW) based on the proportions of various teaching activities present in an 
individual class session. From the LPA results, we created a simple dependent measure to 
characterize a teacher’s course  based on the proportion of all observed classes for each 
instructor (over an academic term) that were not classified as didactic lecture (PND, proportion 
non-didactic). A paired-sample t-test was used to assess pre-post change in the observational 
indicator. We used the Cohen’s D effect size for the analyses, which is the difference in pre/post 
means divided by the standard deviation of the difference. 

Results 
We analyzed the data sets for pre- to post-workshop changes for all three measures and 

summarize the results in Table 1. 
Table 1: Pre- to post-workshop changes in instruction using three measures from survey (S) & observation (O) 

S/O Measure N Mean, 
pre 

Mean, 
follow-up 

Effect 
size t df p 

S 
S 
 

O 
O 

IBL frequency from TAMI-IS 
IBL frequency from TAMI-IS,  
   observation subset only 
PND from TAMI-OP 
RTOP-Sum 

136 
15 
 

15 
15 

0.03 
2.27 

 
0.58 
37.89 

6.34 
8.80 

 
0.81 
55.06 

0.88 
0.96 

 
0.80 
1.17 

10.31 
3.71 

 
3.13 
4.58 

135 
14 
 

14 
14 

< 0.001 
0.002 

 
0.004 

<0.001 

The range for each measure is IBL frequency -12 to +18; PND 0-1; RTOP-Sum 0-100. 

Instructional Change Based on Surveys 
Figure 1 shows the distribution of IBL frequency scores at pre-workshop and follow-up, for 

both the full survey sample and the observation subgroup. A paired samples t-test showed a 
statistically significant increase in IBL frequency from pre-workshop to follow-up (Table 1). 

 

Figure 1. IBL frequency score from surveys, for full sample and observation subgroup at two times. 
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For video study participants, the change in IBL frequency score from pre-workshop to 
follow-up was also statistically significant, and comparable in magnitude to the average shift 
among all survey respondents (see Table 1). Video study participants used slightly more IBL 
core practices both before the workshop and subsequent to it, but these differences between the 
main group and video subgroup were not significant. 

Half the main sample, and all 15 video participants, self-described as implementing at least 
“some IBL methods;” one third of the main sample and half of video participants described their 
implementation as a “full” IBL course. These are lower limits to the overall implementation rate, 
as 32% of all workshop attendees did not report on implementation. Their target courses served 
first-years to seniors; math majors (28%), mixed STEM majors (42%), non-STEM majors (13%) 
and pre-service teachers (4%). About 90% implemented IBL in a class of 35 students or fewer. 

Instructional Change Based on Observations.  
In general we saw gains in the average scores for both observation measures from pre to 

follow-up. Comparing these using paired samples t-tests, the changes in both the RTOP-Sum and 
the PND were statistically significant. For both measures, negative or no change was observed 
only for small numbers of instructors who had initial high scores. Figure 2 illustrates pre-post 
changes in PND for the 15 instructors. Each observed class session fits a latent profile (one 
colored cell) and PND for each course is based on the set of such profiles (one row of cells).   

We also used LPA to examine changes in teaching approach. In post-TPD classes, instructors 
used less continuous lecture and more interactive lecture and group work, but also made less use 
of student presentations. Participants also adjusted the sequencing of activities. For example, 
changes in the timing of lecture and group work suggest a more structured and strategic approach 
to group work, with more consistent use of short lectures to summarize or signpost. 

 

 
Figure 2. Latent profiles and PND for 15 observed courses for the same instructors (IDs 1-15) at pre-workshop and 
follow-up (“post”) times. Cells represent 1 observed class fitting a profile from LPA. DL (green) = didactic lecture; 

SP (black) = student presentation; IL (orange) = interactive lecture & review; GW (blue) = group work. 

Discussion 
This study identifies significant changes in the teaching practices of instructors after PD, 

using a rigorous approach to measurement. We found significant changes using three distinct 
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measures. The effect sizes are impressively large (0.8 to 1.2) for an educational intervention. We 
used well characterized tools and large samples, and drew on different methods (survey vs. 
observation) with different foci (behavioral vs. evaluative). The TAMI-IS and TAMI-OP offer 
evidence that instructors’ classroom practice shifted toward inquiry-based methods after TPD, 
and the RTOP-Sum offers evidence that post-TPD classes offered more student-centered, 
engaging and encouraging environments that were better aligned with evidence-based practice. 

Survey responses from the subset of 15 instructors who were observed reflect a significant 
pre/post change similar to that seen in the larger survey sample. This indicates that such changes 
in teaching are not outliers, due to self-selection for video observation, but typical of the 
workshop’s impact on instructors’ teaching. Robust time sampling ensured that the coded 
observations were not “dog and pony shows” showing only the most active teaching days. 

Other survey data enable us to attribute these changes to the workshop. Following the 
workshop, we observed robust and sustained growth in participants’ knowledge and skills to use 
IBL; their motivation to use IBL and belief in its effectiveness remained strong and stable over 
time. In this sample and a larger group of IBL workshop participants, such growth in knowledge 
and skills, or “IBL capacity,” was a good predictor of participants’ later implementation of IBL 
(Archie et al., 2022). That is, changes in teaching behaviors are linked to the nature and strength 
of the gains that participants reported and sustained. Thus, the observed changes can be ascribed 
to participants learning and applying ideas they gained at the workshop.  

Other studies of substantial TPD interventions for college instructors offer context for 
interpreting these results. Two studies, like ours, compared individuals to themselves before and 
after a TPD intervention. Chasteen and Chattergoon (2020) used the PIPS survey (Walter et al., 
2016) to measure pre/post change in teaching practices of early-career physics faculty after a 
multi-day workshop, with an effect size of 0.8. In contrast, Ebert-May et al. (2011) reported no 
significant changes in RTOP scores after their TPD program for early-career biologists. 

Two more studies compared teaching practices of TPD participants to samples of people who 
did not undergo TPD, and provided the data needed to compute effect sizes for mean differences 
between treated and untreated groups. After refining their biology TPD workshop, Ebert-May et 
al. (2015) measured differences in RTOP scores for participants vs. non-participants with an 
effect size of 0.68. Manduca et al. (2017) also used RTOP scores to compare treated (TPD) and 
untreated groups of Earth science instructors, with an effect size of 1.06. Both types of studies 
suggest that the changes seen here are impressive but not implausible—in line with what others 
have measured for STEM instructors who have taken part in thoughtfully designed, well 
supported, multi-day programs offered by skilled faculty developers in their discipline. 

Conclusions 
We report a “hat trick” of TPD measurement: three independent measurements of instructional 
change after a well-designed TPD intervention. The changes are large, statistically significant 
and well corroborated, and can be ascribed to the workshop. We propose that the workshop has 
this substantial impact due to its strategic approach (Kennedy, 2016), providing instructors with 
a set of principles and tools to achieve a desired teaching goal, thus empowering them to adapt 
their practices in ways sensitive to their own context and preferences (Yoshinobu et al., 2022).  
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Modifying symbolic forms to study probability expressions in quantum mechanics

William Riihiluoma Zeynep Topdemir John R. Thompson
University of Maine University of Maine University of Maine

As part of an effort to examine student understanding of expressions for probability in an
upper-division spins-first quantum mechanics (QM) context, clinical think-aloud interviews were
conducted with students following relevant instruction. Students were given various tasks to
showcase their conceptual understanding of the mathematics and physics underpinning these
expressions. The symbolic forms framework was used as an analytical lens. Various symbol
templates and conceptual schemata were identified, in Dirac and function notations, with
multiple schemata paired with different templates. The overlapping linking suggests that defining
strict template-schema pairs may not be feasible or productive for studying student
interpretations of expressions for probability in upper-division QM courses.

Keywords: Quantum mechanics, probability, notation, representation

Introduction and Background
Mathematics is used in physics for far more than simple computation. Physicists make use of

mathematical expressions and relationships to help them understand and reason about the world
(Uhden et al., 2012). This is more true than ever in quantum mechanics (QM), where physical
intuition developed in everyday life has little application and one must rely on mathematical
reasoning to help intuit, understand, and predict systems on the quantum scale. The level of
abstraction and mathematical sophistication required in upper-division QM courses has been
extensively shown to be difficult for students in many ways (Singh, 2001; Singh, 2008; Singh &
Marshman, 2015; Emigh et al., 2015; Passante et al., 2020). Some of the reasons for this
difficulty are the number of different notations on offer, the vast differences in how they each
appear, and the variety of mathematics they each require (Gire & Price 2015).

In QM, particles and systems of particles are described as existing in “quantum states.” These
states are defined as having some set associated, measurable quantity or quantities, such as
specific energy values, positions, or momenta. Often, these quantities are incapable of being
simultaneously determined together, and the most we can know about a particle with one definite
quantity is the likelihood of measuring the various possible values of a separate quantity.
Physicists primarily use linear algebra to express these probabilistic relationships, and use Dirac

notation to express these states as vectors: . Here, is a vector representation|ψ⟩ =
𝑛
∑ 𝑐

𝑛
|𝑛⟩ |ψ⟩

(called a “ket”) of the state our particle is in, and the various ’s are representative of the|𝑛⟩
various states the particle could be measured in – an eigenbasis – each corresponding to a
different value of whichever quantity we are measuring. The probability of measuring each of
those states is given by , or by taking the complex square of the inner product of the|𝑛⟩ 𝑐

𝑛| |2

initial state (vector) with the particular possible state (vector) that we’re interested in. In Dirac
notation, this is written as: . This type of analysis is only applicable when the𝑃

𝑛
= ⟨ψ⟩| |2

quantities in question are discretized, but is extended to include defining states with wave

functions: . This can then be used to find probabilities for measuring that|ψ⟩ =
−∞

∞

∫ ψ 𝑥( )|𝑥⟩𝑑𝑥
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quantity within a range of values: . The discrete probability written before𝑃
𝑎→𝑏

=
𝑎

𝑏

∫ ψ 𝑥( )| |2𝑑𝑥

can also be written with these wave functions: , where⟨ψ⟩| |2 =
−∞

∞

∫ φ
𝑛
* 𝑥( )ψ 𝑥( )𝑑𝑥

. The difference in appearance and the type of mathematics required for theseψ 𝑥( ) =
𝑛
∑ 𝑐

𝑛
φ

𝑛
𝑥( )

different probabilities is one of the reasons for the aforementioned difficulties for students
learning and using the requisite mathematics in QM.

One framework that has been used to explain student reasoning with mathematical
expressions is that of symbolic forms (Sherin, 2001), which was proposed by Sherin to explain
how students could generate symbolic expressions for different physical scenarios. Largely based
on the knowledge-in-pieces model (diSessa, 1993), symbolic forms is predicated on the notion
that students learn to develop a sort of grammar and syntax for different mathematical operations
in physics, and subsequently apply that logic to make sense of physical relationships. Sherin
found that there were some universal forms that expressions take that students grow to recognize,
which he called symbol templates, and that students learn to associate these templates with a
conceptual understanding known as a conceptual schema. Symbol templates, when combined
with their associated conceptual schemata, become symbolic forms, which Sherin argues form
the building blocks for student interpretations of mathematical expressions used in physics. For
example, the parts-of-a-whole symbolic form has “ ” as its symbol template,□ + □ + □ + …[ ]
and its conceptual schema contains the idea of multiple parts of a larger entity being summed
together. This framework has since been extended to study the structure of expressions in more
advanced topics in physics (Dreyfus et al., 2017; Schermerhorn & Thompson, 2019; Ryan &
Schermerhorn, 2020) and has been looked at as a means to describe students' blending of
conceptual and formal mathematical reasoning (Kuo et al., 2013).

Previous work has also looked at the affordances and limitations of the different notations
used in QM (Gire & Price, 2015; Schermerhorn et al., 2019; Wawro et al., 2020). Dreyfus et al.
(2017) posited a number of potential symbolic forms within Dirac notation that they suspect
students likely develop through the course of an upper-division QM course, though little work
has been done to address how students interpret and work with expressions across and within the
different representations that are commonly used in upper-division QM.

As part of a study on how students reason about expressions in the various notations used in
QM and the ways in which they translate between them, we conducted clinical think-aloud
interviews with a number of students following a one-semester, spins-first, upper-division QM
course. In a spins-first course, students begin working with Dirac notation immediately in the
context of spin-1/2 systems, before eventually including wave function notation when position is
introduced as a continuous observable. The mathematical connections between Dirac state
vectors and wave functions are shown in an effort to help deepen students' understanding of
Dirac notation, as well as to make the transition to wave functions as smooth as possible. We
asked the students to both generate and relate different expressions in both Dirac notation and
wave function notation. Due to our focus on student understanding and interpretation of
symbolic expressions, Sherin’s symbolic forms framework (Sherin, 2001) was used as a starting
point for analysis. Our analysis suggests a modest expansion of the symbolic forms framework to
address multiple overlapping sets of templates and schemata. This paper describes our analysis
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of student interpretations of expressions for probability in both Dirac and wave function
notations, as well as the ways in which students translate between the two.

Study Design and Methodology
In order to elicit students’ understanding of expressions commonly used to represent

probability in QM, both in-person (paired, N=2) and virtual (individual, N=2) clinical
think-aloud interviews were conducted following a one-semester upper-division QM course in
two separate academic years. Students in both interview formats were asked to generate
expressions for probabilities and to reason about both the expressions they generated as well as
the processes by which they were generated. The virtual interviewees were provided with a
number of symbolic building blocks with which to construct their expressions (see Figure 1),
while the in-person interviewees were given a whiteboard and markers. In both cases, subjects
were asked to generate expressions for probabilities based on scenarios similar to those studied
in class. Some in-person interview questions gave the participants an expression describing a
state and asked them to use it to find specific probabilities. The virtual interviewees were also
given a card-sorting task where they were asked to sort a variety of expressions commonly seen
in QM coursework, as well as generic vector expressions such as , , and .𝑣

→
𝑗
^

𝑢
→

• 𝑣
→

The students’ responses were transcribed and analyzed to determine which expressions they
either grouped or generated, any intermediary expressions they used, and the language they used
to explain their expressions. Excerpts of interest contained episodes of students interpreting
specific expressions, explicitly connecting templates and schemata.

Figure 1. The symbolic building blocks of expressions that virtual participants had to work with when constructing
their expressions.

Results and Discussion
Our analysis has revealed several different conceptual schemata, as well as a number of

symbol templates with which students tended to associate them (Table 1). Despite differences in
the tasks given between the two interview formats, our analysis did not suggest any
modality-based distinctions. We propose that the focus on template-schema pairs common to
symbolic form analysis is limiting when multiple symbol templates share the same conceptual
schema.

Table 1. Identified conceptual schemata with their associated symbol templates. Some schemata are associated with
multiple templates and vice versa.
Conceptual Schema Symbol Templates
Vector in a space , ,|⟩ ⟨| 𝑐

1
|1⟩ + 𝑐

2
|2⟩ + …

Function in a space 𝑐
1
𝑓

1
𝑎( ) + 𝑐

2
𝑓

2
𝑎( ) + …

Quantum state , , , , ,|⟩ ⟨| 𝑓 𝑎( ) 𝑓* 𝑎( ) 𝑓
𝑛

𝑎( ) 𝑓
𝑛
* 𝑎( )

Projection/dot product ,⟨⟩ ∫𝑓 𝑎( )𝑔 𝑎( )𝑑𝑎
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Probability density ,⟨⟩ 𝑓 𝑎( )| |2

Probability , , , ,𝑐
𝑛| |2 ⟨⟩ ⟨⟩| |2 ∫𝑓 𝑎( )𝑔 𝑎( )𝑑𝑎 ∫ 𝑓 𝑎( )| |2

Dirac notation paired with vector ideas
Students across all three interviews in this study (Aliyah and Bilbo in the virtual interviews

and Castor and Delilah in-person) explicitly referred to both kets and bras as representing
vector-like quantities, and Dirac brackets as being akin to dot products between them:

Bilbo (discussing sorted category containing , , , and ): to me, all vectors. Unit𝑣
→

𝑗
^

|ψ⟩ |𝐸
𝑛
⟩

vector [ ], generic vector [ ], state- ... wave vector [ ], eigenstate vector [ ]𝑗
^

𝑣
→

|ψ⟩ |𝐸
𝑛
⟩

Bilbo (discussing operating on ): certainly changes the state ... if the state is purely in Z𝑆
^

𝑧
|ψ⟩

[meaning expressed as a superposition state in the spin-1/2 basis], I believe it’ll still𝑆
^

𝑧
change it, but I think by only lengthwise stretching ... rather than rotating.

Aliyah (discussing ): why would I do of ? Because physically like I’m thinking in⟨ψ⟩ ψ ψ
terms of vectors it represents alongψ ψ

Aliyah (explaining what they mean by “__ along __”): it’s a traditional way to think about
vectors like because our dot product represents- like represents, basically, the𝑎

→
• 𝑏

→

projection of along or projection of along𝑎
→

𝑏
→

𝑏
→

𝑎
→

Castor (explaining why for ): Because of like orthonormality, the𝑛≠𝑚,   ⟨𝐸
𝑚

⟩ = 0
eigenstates are perpendicular in a space

Castor (explaining why ): Because, like 100% of E2 [gestures at the bra] is in the⟨𝐸
2
⟩ = 1

direction of E2 [gestures at the ket]
These responses largely match up with what one would expect, as a large focus of a spins-first
QM course is to help students reason geometrically with Dirac notation.

Through the lens of symbolic forms, two conceptual schemata appear to be expressed here: a
“vector in a space” and the “projection” idea that often arises with dot products. The former
conceptual schema is linked to “ ” and “ ”, while the latter is linked to “ ”.|⟩ ⟨| ⟨⟩

Dirac bras and kets paired with “quantum state”
While interesting in its own right, a vector-like understanding is not the only way that

students worked with and thought about these Dirac expressions. All four students described bras
and kets as stand-ins for quantum states as well:

Aliyah: This [ ] represents a ket energy eigenstate, and this [ ] represents a bra energy|𝐸
𝑛
⟩ ⟨𝐸

𝑛
|

eigenstate. So these [ and ] are general ones, these [ and ] are specific|ψ⟩ ⟨ψ| |𝐸
𝑛
⟩ ⟨𝐸

𝑛
|

energy eigenstates
Bilbo (discussing ): You could make an eigenstate, you could make it a spin state ... put|𝑥⟩ 𝑥

anything in there ... I just need it to be a ket
Castor: So typically when I write [ ] in terms of the energy eigenstates [points to ]...|ψ⟩ |𝐸

2
⟩
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Delilah (discussing a superposition state written ):We|ψ⟩ = 1
2 2

3|𝐸
1
⟩ + |𝐸

2
⟩ + 2|𝐸

3
⟩( )

just represent it as the probab- the square root of the probability times the first state
[points to ] plus the square root of probability times the second state [points to ]|𝐸

1
⟩ |𝐸

2
⟩

plus the square root of the probability times the third state [points to ]|𝐸
3
⟩

These students appear to be using some of the same symbol templates as in the previous
section (“ ” and “ ”), but with a “quantum state” conceptual schema. This is unsurprising, as|⟩ ⟨|
the first half of a spins-first course uses bras and kets as representations for a quantum state.

Other Dirac pairings
An additional common use of Dirac brackets was as a means of describing and calculating

probabilities or probability amplitudes:
Aliyah: This [ ] will also represent the probability of finding - sorry, the probability of⟨ψ⟩ 𝑥

finding the general state in the eigenstateψ 𝑥
Bilbo: That [ ] is just an inner product, though, I had been saying the inner product⟨ψ⟩

squared is a probability and that this [ ] is... just a density⟨ψ⟩
Again we see a symbol template from before (“ ”) being associated with a different⟨⟩

conceptual schema: in this case, that of a probability-like concept. We note that “probability,”
“probability amplitude,” and “probability density” are used somewhat interchangeably by the
students throughout these interviews. Every student also eventually squares many of these Dirac
brackets, which suggests yet another symbol template, “ ” also with an associated⟨⟩| |2

“probability” conceptual schema.
While Castor and Delilah also related Dirac brackets to probability concepts, they almost

exclusively did so by first claiming that the Dirac bracket gives “the coefficient,” and that “the
coefficient squared” then gives the probability:

Castor (explaining why a number they found was a probability): Because it’s the coefficient
for the first energy state. ... because we do, we do the same thing as... [writes ]⟨ψ 𝑥( )⟩

Delilah: Our probability for energy is the coefficient squared. And the coefficient is, E sub
one times psi [writes ] (see Figure 2a).𝑐

1| |2,  𝑐
1

= ⟨ψ 𝑥( )⟩
Castor and Delilah’s focus on “the coefficient” as a sort of requisite step to allow a Dirac

bracket to describe a probability was not seen in Aliyah or Bilbo’s virtual interviews. This may
be a case of Aliyah and Bilbo glossing over a step that they have since automated, or it could be
evidence of Castor and Delilah using the Dirac bracket’s “dot product” conceptual schema to
reason about a larger process of “pulling out a coefficient” from an expression for a
superposition state. This process was shown explicitly by Castor and Delilah, as can be seen in
Figure 2b. This suggests that these students developed another symbol template during this
course: “ ”. The associated conceptual schema appears to be that of a vector𝑐

1
|1⟩ + 𝑐

2
|2⟩ + …

being described with components along various basis vectors, in which case it is likely a
compound form as discussed by Dreyfus et al. (2017), potentially of the "parts-of-a-whole" and
"magnitude direction" symbolic forms, the former from Sherin (2001) and the latter from
Schermerhorn and Thompson (2019). It also seems clear that Castor and Delilah make use of
another symbol template, that of one of these coefficients squared, “ ”, and that they𝑐

𝑛| |2

associate with it the conceptual schema for a “probability” as well.
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Figure 2. (a) Delilah expressing how the Dirac bracket gives the coefficient, which can then be squared to find a
probability, and (b) Castor's (right) and Delilah's (left) work explaining how yields the coefficient, which is then⟨ψ⟩
squared to find the probability. Delilah's work supplements Castor's by explicitly distributing the bra throughout the

sum.

Functions paired with state ideas
Moving away from Dirac notation, students in all interviews also worked with functions,

often describing them as representing quantum states:
Aliyah: Those [ , , , and ] represent states ... some of them representψ 𝑥( ) ψ* 𝑥( ) φ

𝑛
𝑥( ) φ

𝑛
* 𝑥( )

general states [ and ], some of them represent specific energy states [ ,ψ 𝑥( ) ψ* 𝑥( ) φ
𝑛

𝑥( )

and ], but they represent statesφ
𝑛
* 𝑥( )

Bilbo: This [ ] is just another function, so what I’m thinking of is like an eigenstate [ψ 𝑥( )
] and just a generic state [ ]φ

𝑛
𝑥( ) ψ 𝑥( )

Castor: These [ and in ] are the position eigenstatesφ
1

φ
2

|ψ 𝑥( )⟩ = 𝑐
1
φ

1
+ 𝑐

2
φ

2
+

Delilah: ... is, like times [writes ] ... I think these [points toψ 𝑥( ) 𝑐
1

φ 𝑥( ) ψ 𝑥( ) = 𝑐
1
φ

1
𝑥( ) +

] are the energy eigens- the energy eigenstates written in the position basisφ
1

𝑥( )
Castor is being somewhat loose with their notation, mixing Dirac notation together with

wave function notation in the same expression, but seems to have “translated” the kets they
wrote previously into functions directly below them (see Figure 3). At this point the “quantum
state” conceptual schema is being used to describe a very different-looking symbol template (that
of a function, perhaps “ ” or “ ”). These excerpts potentially suggest a distinction𝑓 𝑎( ) 𝑓

𝑛
𝑎( )

between “ ” and “ ” as representing specifically “generic states” and “eigenstates,”𝑓 𝑎( ) 𝑓
𝑛

𝑎( )
respectively. Figure 3 also suggests another symbol template analogous to that discussed in the
previous section, but in this case in wave function notation: “ ”. The𝑐

1
𝑓

1
𝑎( ) + 𝑐

2
𝑓

2
𝑎( ) + …

paired schema is that of a “function in a space,” described as a sum of component
functions—analogous to the compound form discussed above.

This shared schema is a reasonable instructional outcome as, once students begin working
with wave function notation, they are often told that kets can be translated to functions and use

and to describe generic states and energy eigenstates, respectively.ψ 𝑥( ) φ
𝑛

𝑥( )
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Figure 3. Castor's expressions for a superposition state. They wrote the top line first, then the bottom beneath it.

Other function pairings
Students would also often write integrals of these functions when asked to generate

expressions for probabilities. Below is an example of Bilbo’s response after being asked how
they would find the probability of measuring a given energy:

Bilbo: in this case [ ] here ... I’m thinking okay, you have this state [points to∫φ
𝑛
* 𝑥( )ψ 𝑥( )𝑑𝑥

] ... and you want to ask the question of, you know, “what about that state [ ]ψ 𝑥( ) ψ 𝑥( )
being in this [ ] eigenstate.” And, or what is- to me I’m looking at this thing I’mφ

𝑛
* 𝑥( )

thinking, “what is the projection of this eigenstate onto this wave function,” or maybe
vice versa, but I don’t think it should matter- dot products are ... commutative

Bilbo generated an integral when asked for a probability, and discussed it with very similar
language as was used for Dirac brackets above—that of a “projection” of one state onto another,
both being represented as different functions within the integral. This supports a potential symbol
template of “ ” being paired with a conceptual schema encapsulating ideas of∫𝑓 𝑎( )𝑔 𝑎( )𝑑𝑎
“projection” or “dot product,” providing the functional analog to the Dirac inner product
expression.

Castor and Delilah were asked to find the probability of measuring a particle to be in the left
half of an infinite square well, and used very different language to discuss their work:

Delilah: [writes ] So we’re- at every position we’re
0

𝐿
2

∫ 1
8 3φ

𝐸
1

+ φ
𝐸

2

+ 2φ
𝐸

3
( )2

𝑑𝑥

computing [points to integrand]- like every infinitesimally small position we’re
computing the probability [again points to integrand]-

Castor: You’re taking the probability, kind of at like an instant, and taking that like, infinitely
small sum to get your, like, probability distribution.

Delilah: [writes “ ”] So yeah, so it just yeah, every- everyψ 𝑥( )| |2 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
infinitesimally- ... , yeah, essentially. We’re finding the probability of it being there ...𝑑𝑥
[it’s] just the summation of all the values in the left half of the well.

It is worth pointing out that Castor and Delilah are, on the surface, doing a very different
problem than Bilbo was above. Bilbo was finding a probability for an energy value, while Castor
and Delilah were finding the probability of a range of position measurements. While a
mathematical equivalence can be shown between these two problems, they appear to be different
problems to the students, as they reasoned about the two integrals very differently. First, even
though Castor and Delilah generated an integral, the symbol template is very different. Rather
than two different functions (representing two separate quantum states) as the integrand, they
instead used (which may perhaps be thought of as , or the complex𝑓 𝑎( )| |2 𝑓* 𝑎( )𝑓 𝑎( )
conjugation of the same function with itself). Second, Bilbo used very similar “projection”
reasoning as was paired with the Dirac brackets in all three interviews, even explicitly bringing
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up dot products. Castor and Delilah instead reasoned with probability distributions and Riemann
sums, invoking an “adding up pieces” model for integration (Hu & Rebello, 2013; Jones, 2015).

The difference in how these integrals are written and interpreted suggests Castor and Delilah
are utilizing a different symbol template here: “ ” or perhaps “ ”. It also∫ 𝑓 𝑎( )| |2𝑑𝑎 ∫𝑓* 𝑎( )𝑓 𝑎( )
seems evident that there may be a further symbol template here: “ ”, which Castor and𝑓 𝑎( )| |2

Delilah associate with a schema of “probability density.”

Conclusions
The symbolic forms framework gives us a language with which to discuss student

interpretations of symbolic mathematical expressions. In our study we have seen that, in a
spins-first context, students develop a multitude of conceptual schemata and numerous symbol
templates, each often associated with multiple of the other. While we could take each identified
template/schema pair and declare them all as separate symbolic forms, the level of overlap
between many of them suggests it may be more productive to instead treat them as laid out in
Table 1: as conceptual schemata that can be expressed in various ways by using various symbol
templates, depending on context. This could be seen as a complication of an otherwise simple
framework, but we believe that it is a more accurate description of the reasoning needed in
upper-division QM coursework. Students need to be able to start from either a Dirac state vector
expressed as a ket or a wave function and work their way to an expression for a probability,
sometimes expressed in Dirac notation and sometimes in wave function notation. We posit that it
is these shared conceptual schemata among different symbol templates that allow for students to
understand how and where to make mathematical decisions to arrive at an answer—and that they
may even partially explain how students reason and translate across notations. Developing this
interwoven mathematical vocabulary is one challenging aspect of learning quantum mechanics.
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With an increased call to attend to diversity, more postsecondary mathematics instructors are 

interested in using equitable and inclusive teaching (EIT) practices. Yet, ambiguity persists on 

what EIT practices look like in mathematics classrooms. Our study investigates the 

characterizations of EIT from 13 participants, each involved in a year-long equity focused 

workshop, with the purpose of describing what topics arose in their characterizations. Our 

analysis shows characterizations of EIT included both the student and teacher role in EIT, and 

focused heavily on awareness of students’ experiences and backgrounds, student engagement, 

and teacher self-reflection. We provide specific details from participants’ characterizations for 

each category and connect them to established EIT literature. These findings can help 

researchers and department leaders engaged in change for EIT see what topics in EIT are being 

consumed and what topics might need emphasis or introduction.  

Keywords: Equitable and inclusive teaching, instructor beliefs, postsecondary mathematics 

The past two decades have seen enhanced calls to promote diversity, equity, and inclusion 

(DEI) in postsecondary education broadly and mathematics specifically (e.g., Inniss et al., 2021.; 

MAA, n.d.; U.S. Department of Education, 2016). Such efforts are often tied to the increasing 

gaps in Bachelor’s degree attainment between white students and members of some racial 

minorities (National Academy of Science, 2010; Riegle-Crumb, 2019; U.S. Department of 

Education, 2016). In particular, Black and Latina/o students who enter college as a STEM major 

are more likely than white students to switch to a non-STEM major or leave college altogether 

(Riegle-Crumb, 2019). Participation in the “mathematics pipeline” plays a particularly 

significant role in shaping the opportunities for economic and social advancement afforded to 

students (Gutiérrez, 2012a, p.19), yet school mathematics traditionally excludes people of color, 

women, and individuals who have disabilities. Many educators agree students need opportunities 

to engage in mathematics that valorizes their own cultural experiences, and gives them a tool for 

challenging the status quo in mathematics and Western society broadly (Gutiérrez, 2012a). 

However, research has shown instructors may struggle to provide such opportunities for their 

students (Rubel, 2017), and more work is needed to better understand how instructors 

conceptualize equitable and inclusive practices. 

Postsecondary mathematics instructors play a key role in both determining the mathematics 

students are exposed to, as well as in shaping cultural norms around teaching within mathematics 

departments (Reinholz & Apkarian, 2018; Smith et al., 2021). Their beliefs and attitudes toward 

equitable and inclusive teaching (EIT) determine their decisions in the classroom, and further 

their ability to advance change in their departments (Johnson et al., 2022). There has been a shift 

in the field toward the use of active learning teaching methods as a way to address inequities in 

mathematics participation, but these methods do not automatically create an equitable classroom 
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(Brown, 2018; Johnson et al., 2020, Reinholz et al., 2022). Williams et. al (2022) analyzed 

participants’ conceptualizations of active learning and found that equity was rarely connected. 

Given the close tie between beliefs and practices (e.g., Speer, 2008), it is important to understand 

how mathematics instructors conceptualize equity.  An analysis of how “inclusion” has been 

used in research articles from 2010 to 2016 shows this term is used as a single ideology and as a 

way of teaching (Roos, 2018). Thus, the phrase “equitable teaching and inclusion” has the 

potential to be used and understood in many different ways, possibly diluting its intention and 

power. Therefore, it is necessary to monitor how postsecondary instructors are interpreting and 

influenced by these concepts. To this end, we studied how postsecondary mathematics 

instructors committed to active learning and teaching more equitably conceptualize EIT. Our 

overarching research question is:  What characteristics arise when mathematics instructors are 

asked to define EIT? We intentionally left our research question broad to capture the varied and 

rich responses shared by our participants; in our discussion we draw connections between our 

findings and the research literature.  

 

Theoretical Background 

Learning is a sociocultural experience involving a complex interaction among instructor, 

students, content, and the underlying social and cultural systems in which these components 

operate (Hawkins, 1974; Lampert, 2001). Mathematical knowledge is co-constructed in the 

classroom with students through a focus on establishing sociomathematical norms and the 

development of a mathematical identity (Brown, Collins, & Duguid, 1989; Cobb & Bowers, 

1999; Cobb, Yackel, & Wood, 1992; Lave & Wenger, 1991). Yet, Gutiérrez (2012b) argues even 

those who acknowledge a sociocultural perspective on learning and see knowledge as 

constructed in negotiation with others in a community of practice (Wenger, 1998; Cobb & 

Yackel, 1998) often fail to take into consideration students’ identities or issues of power in a 

class community’s construction of mathematical knowledge (Gutiérrez, 2010).  

Gutiérrez (2002) defines equity as “the inability to predict mathematics achievement and 

participation based solely on student characteristics such as race, class, ethnicity, sex, beliefs, 

and proficiency in the dominant language” (p. 153). In later work, she expands this definition to 

include four dimensions: access, achievement, identity, and power (Gutiérrez, 2012a). Briefly, 

access refers to the resources students have access to for learning, and achievement references 

educational student outcomes. Both dimensions make up the dominant axis of equity, as they 

focus on helping students succeed according to the dominant culture’s values. Identity and power 

make up the critical axis. Gutiérrez uses a mirrors and windows metaphor to describe identity, 

which focuses on opportunities for students to see mathematics as meaningful in their everyday 

lives: there should be places in the mathematics curriculum both for students to see their identity 

reflected back at them (mirrors) as well as be given access to the broader world of mathematics 

(windows). Power refers to issues of social transformation, including which voices are 

highlighted in education, using mathematics for social justice, etc.  

There are several pedagogical traditions which prioritize inclusivity (e.g., culturally relevant 

pedagogy, critical pedagogy, humanizing pedagogy, reality pedagogy). While each tradition has 

different foci, collectively, inclusive pedagogies highlight the importance of empowering 

students by using students’ rich cultural backgrounds and identities to design curriculum, 

providing students the tools to enact social and political change, positioning students as experts 

in the learning process, fostering caring and trusting relationships between instructors and 

students, and embracing students’ voice and lived experiences (including their social, political, 
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psychological, and emotional selves) in the classroom (Carter, Andrews, & Castillo, 2016; 

Emdin, 2016; Howard, 2003; Macrine, 2009; Tuitt, Haines, & Stewert, 2018). 

 

Methods and Participants  

This qualitative study investigates how 13 undergraduate mathematics educators from eight 

institutions involved in SEMINAL’s (see Smith et al., 2021 for more information) equity-

focused professional learning community (PLC) conceptualize EIT. Each participant was paid a 

$1,000 stipend to participate, which met every two weeks from September 2020 to May 2021. 

Participants were interviewed for approximately 60 minutes at the beginning, middle, and end of 

this timespan. They shared their racial and gender identities in the interview and names were 

pseudonymized to support participants’ confidentiality. Participants include three women of 

color (Aadaya, Camila, and Cassandra), one man of color (Robert), five white women (Crystal, 

Emma, Kathleen, Lacy, and Shea), and four white men (Bill, Collin, Mark, and Thomas). 

For this study we focused on responses to the question “How would you define or 

characterize equitable and inclusive teaching (EIT)?” from their first and last interviews. We 

analyzed responses using rounds of first and second cycle coding (Miles et al., 2014). For the 

first cycle of analysis, we developed 13 participant summaries to identify key ideas within the 

participants’ responses. These key ideas were highlighted within the transcript, summarized 

below, then agreed upon by at least three of us. In pairs we then engaged in a second cycle of 

coding to sort the summarized key ideas for one-third of the 13 participants into different 

categories. Each pair looked at a different third of the participants. We then met to compare 

categories. The commonalities across groups led to a condensed structure that focused on 

awareness of students, student engagement, teacher reflection, and specific actions for EIT. The 

first three authors drafted a codebook (see Table 1) of these overall categories with defined 

subcategories, independently coded three participant responses (by coding each of the 

highlighted key ideas within the response) and met to reconcile and subsequently refined the 

codebook. Afterwards, they independently coded and reconciled the remaining 10 participants. 

 

Findings 

We generated three major codes of how participants characterize EIT: Awareness and 

Consideration of Students, Student Engagement, and Reflective Practice with relevant subcodes 

(see Table 1). All participant’s conceptualizations of EIT included each of these three codes. 

Table 1 includes counts for each subcode. Below we describe each of these codes in detail using 

examples from participants’ responses. 

 

Table 1. Characterization of EIT and Number of Responses  

Code Description # of responses 

(n=13) 

Awareness and Consideration of Students: Awareness and consideration of how students’ 

environments and lived experiences impacts their identity and capacity; this one is about the 

more general classroom environment 
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Background 

and Learning 

Experiences 

Mention of the student’s broader background or 

environment: prior academic/learning experiences, 

“meeting them where they are," etc. 

E.g., “They bring different experiences to the 

classroom” 

11 

Access to 

Material 

Resources  

Mention of student access to materials, finances, 

resources  

E.g., “Some students can’t attend office hours” 

6 

Emotions 

Mention of students’ feelings, emotional health, “social 

belonging” (which includes a nod to gender, identity, 

disabilities, bringing whole self to the classroom) 

E.g., “Students should feel safe” 

11 

Student Engagement: Emphasizes the student experiences and academic culture of the 

classroom; ensuring each student possesses a sense of academic belonging 

Participation 
Focus on student participation in the classroom 

E.g., “Students should engage with peers and content” 

13 

Ownership/ 

Investment 

Focus on student investment and ownership of 

participation (ownership of their learning), usually more 

specific than general participation 

E.g., “Students should feel like the material is for them” 

3 

Reflective Practice: Acknowledges influence of pedagogical or personal views on the 

classroom environment as well as specific actions for EIT 

Self- 

reflection 

Acknowledging and/or reflecting on personal biases and 

teaching practices; may include broad statements of 

what an instructor should believe or do 

E.g., “I had all these preconceived notions” 

12 

Actions 

Specific actions or teaching practices teachers ascribe to 

themselves as beneficial for the individual student 

experience as well as the classroom as a whole 

E.g., “Bring in examples that bring up topics of racism” 

9 

Awareness and Consideration of Students 

All thirteen participants discussed being aware of students’ experiences and considering how 

these experiences connect with issues of equity and inclusivity in the classroom. Three subcodes 

emerged: Background and Learning Experiences, Access to Material Resources, and Emotions. 

The Background and Learning Experiences subcode refers to a broad consideration of 

students’ individual backgrounds and characteristics (e.g., race, culture, socioeconomic status, 

first generation status, marginalization, prior academic experiences, etc.). For example, 

Cassandra asserted no one should have an “advantage or disadvantage based on something they 

have no control over” referring to students’ background. Emma also discussed this idea, saying 
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part of EIT is “accepting that your students are coming into class with different lived experiences 

and that affects how they interact in the classroom.” Mark’s definition of equity in the classroom 

included his recognition of  “different levels of preparation, [...]comfort, or different prior 

experiences.” Some participants went further, suggesting consideration of students' backgrounds 

is necessary but not sufficient for EIT. Crystal explicitly noted it is not enough to “recognize” 

students – EIT involves being “proactive” although she did not elaborate on what this means. 

Access to Material Resources captured explicit references to financial restraints or situations 

possibly impacting student access to the resources necessary to succeed in class. Responses 

ranged from minimizing financial strain on students (Thomas) to acknowledging the impact 

priorities outside the classroom (e.g., having to take care of siblings) have on student capacity to 

learn in and outside the classroom (Cassandra and Shea). There was significant overlap between 

the Access to Material Resources subcode and other subcodes under Awareness and 

Consideration of Students; five of the six participants whose excerpts were coded the former 

were double-coded with another subcode in this code. For example, Cassandra described how 

“you shouldn't be made to feel that your questions or answers or situation is somehow your fault 

or an indicator that you do not belong because of your financial background, because of what 

you look like, because of any physical or emotional issues that you may be dealing with," which 

involves both students’ backgrounds and their access to material resources. Participants in this 

category are making connections between a student’s background experiences and how they 

affect student access to materials.  

Eleven out of 13 participants considered students’ emotional health and comfort level in 

class. The following excerpts describe the major ideas of this subcode: that students “shouldn’t 

be made to feel like [their] questions or answers or situation is somehow [their] fault or an 

indicator that [they] do not belong because … of any physical or emotional issues” (Cassandra) 

and that when in the classroom, students “feel like they can be their whole selves” (Shea). Seven 

participants explicitly used the keywords “safe”, “welcoming”, and “belonging” when describing 

their ideal classroom environment. In addition, several participants also made the distinction 

between “for all” and “for each” instruction, implicitly linking their responses to equity. Thomas 

observed that students with certain characteristics connect with teachers and peers “if they’re 

lucky”, while Crystal wanted “everyone in [her] classroom to feel valued and feel heard.”  

Student Engagement 

All participants mentioned providing student opportunities to engage and participate in the 

classroom as part of EIT, with a common theme of making sure certain groups of students were 

not “overlooked” in the classroom. The Participation subcode focuses on response excerpts 

focused on student participation and additions to the classroom; as Aadaya stated, “equitable and 

inclusive means that I'm not, you know, overlooking some students or kind of leaving them out 

of a discussion. So this is the participation aspect.” Thomas related student participation to his 

own experiences: “So I would want to involve students like me who, you know, who don't mind 

working on their own. I want to make sure that the quiet ones, which is, I guess, how I 

characterize myself, are not overlooked." In addition, Camila described inclusive teaching as 

“reaching out to the students in class, making sure that they participate in the class and again that 

it's not dominated by one group versus another." Crystal also discussed giving students who are 

“marginalized” opportunities to participate: 

One aspect is like recognizing everybody that's in the room, like the people who are 

marginalized. I want to be able to recognize and give them a chance to participate and have 
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them feel valued and seen as well as the more confident students who sit in the front of the 

room and participate all the time. 

Some participants addressed wanting students to feel safe in the classroom, but Crystal’s excerpt 

goes beyond this, illustrating she also wanted students to feel safe to “participate all the time”.  

The Engagement subcode shifts perspective to excerpts where participants described wanting 

to ensure student access to the mathematical content and students’ sense of ownership in the 

classroom. Robert discussed creating a classroom where “each student has not only access to 

whatever we're talking about through whichever entry point, but then also them feeling 

empowered and safe to speak up in class.” Similarly, Mark described wanting students to “feel 

like the mathematics is there meeting some need or meeting some interest, or like it’s something 

that is presented for them … that they have some sense of ownership.” Mark then elaborated: “I 

would say that they're not kind of feeling alienated from [the mathematical content], or that 

they're like trespassing somehow on a domain that the property belongs to someone else. That 

[the material], it's for them.” 

Reflective Practice 

All 13 participants mentioned something about the role of the teacher, specifically a self-

reflection and/or a specific teacher action for EIT. We use this section to discuss categories. 

Twelve out of 13 of participants’ responses were coded with Self-reflection. This subcode 

captured responses that indicated the importance of self-reflection to teach equitably and 

inclusively, as well as responses in which participants engaged in self-reflection about their own 

teaching practices. For example, Shea shared that as an instructor, she needs to “sit with the 

discomfort of knowing” that even if she thinks an activity is going well “that doesn't necessarily 

mean that it is inclusive or equitable,” suggesting that EIT requires reflection on how students 

and teachers may experience the classroom differently. Other participants further discussed how 

reflections about student experiences should inform practice. Ryan shared the importance of 

“meeting students where they are and not having students meet you where you are” in EIT. In 

this example, Ryan acknowledged that his practice of teaching should change even if he did not 

include a specific way to enact that change. Of note is the specificity of some reflections. Aadaya 

discussed her realization that despite self-characterizing as “approachable”, she possesses many 

“preconceived notions” regarding “this is how all students are.” She concluded by linking a 

specific focus on being “vulnerable to understanding” students and their backgrounds as part of 

her definition of EIT. 

We used the subcode Actions when participants described something specific that a teacher 

did or could do in connection with EIT. If the action was general, like “be more open,” then it 

was not included. Nine out of the 13 participants’ responses included a specific task or practice 

including pointing students (especially students with less access) to specific resources, 

purposefully including topics of racism or environmental change into the classroom, 

coordinating sections to be more comparable to one another, making sure that “everyday life 

problems” are inclusive, making an effort to pronounce names correctly, intentionally asking 

identity-related questions (e.g., “What pronouns do you use?”), making sure that the grading 

system aligns with letting students grow and be their whole selves, not reacting negatively to 

students who do not follow academic social norms because they might not have access to them 

(e.g., “not being insulted when students communicate with me in a way that is not academic”), 

and learning and changing teaching practices to help with student needs and disabilities (e.g., try 

to not talk while facing the board for students who read lips). Most of these specific actions were 

described as EIT practices instructors should do.  
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Discussion & Implications 

Each of the participants’ responses is categorized by at least one subcode from the 

overarching codes: Awareness and Consideration of Students, Student Engagement, and 

Reflective Practice. This suggests participants view EIT in terms of who students are, how that 

impacts their engagement in the classroom, and what the instructor can do to affect that 

engagement. Connecting to Gutiérrez’s (2002) definition of equity, several participants 

expressed the belief that students should not be disadvantaged based on their backgrounds, 

including characteristics such as race, as well as students’ academic experiences and access to 

material resources. This includes a belief that it is the instructor’s responsibility to make sure 

students are not disadvantaged, or feeling alienated, by the dominant, sociomathematical norms 

of postsecondary mathematics classrooms. This reflects Gutiérrez’s (2012a) notion of the 

importance of addressing students’ access to resources for learning. 

Many participants also reflected on their actions as teachers, specifically on their personal 

biases and practices. In particular, responses indicate that identifying areas of growth, 

maintaining flexibility, and leaning into the discomfort of change are necessary to create 

equitable classrooms. As Tuitt et al’s (2018) state, instructors engaging in EIT practices must be 

resilient, as EIT involves a significant amount of discomfort and emotional labor. Additionally, 

this reflective practice (Schön, 1983) is central in all teaching, but in EIT this reflection involves 

thinking about how students experience the classroom differently than oneself and acting 

accordingly. Some participants mentioned efforts in their teaching to consider how students 

experienced their classrooms and recognize that experience differs from their own. 

While some discussed the importance of including what Gutiérrez’s (2012a) calls mirrors in 

the curriculum, or, as Tuitt et al. (2018) describe, opportunities for students to personalize 

content by seeing examples from their cultural or lived experiences, as well as the importance of 

including topics such as racism, most participants did not stress EIT as a tool for social and 

political change. This is unsurprising given how difficult instructors find it to create mirrors for 

their students in the classroom (e.g., Rubel, 2017). Yet, most participants view EIT as important 

in addressing students’ emotional wellbeing, aligning with more humanizing pedagogies which 

encourage students to embrace their whole selves in the classroom, as well as desire to have 

students take ownership over their learning. 

Our findings can help researchers and department leaders engaged in change for EIT see 

what topics in EIT are being consumed and what topics might need emphasis or introduction. 

The participants were connecting EIT with being aware of a variety of aspects about students, 

but we did not see many responses explicitly mentioning how these aspects relate to power. Yet 

power is an integral part of EIT and needs to be better understood. Who has the power in EIT? 

How do you distribute power in EIT? What role do departments have in distributing power 

within and outside classrooms? Additionally, participants often connected student participation 

with EIT, but there is an opportunity for emphasizing how students are feeling when they are 

participating. How are teachers supposed to learn how to attend to student learning, student 

feelings, and their own learning about EIT? How can departments help support their teachers 

learning this level of attention?  
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Adapting the Argumentative Knowledge Construction Framework to Asynchronous
Mathematical Discussions

Darryl Chamberlain Zackery Reed Karen Keene
Embry-Riddle Aeronautical University

Weinberger and Fischer (2006) designed a framework for analyzing learning the context of
asynchronous discussion activities. Operationalizing this framework, we analyzed the social and
cognitive aspects of a discussion activity in an asynchronous calculus course. From this analysis,
we identified aspects of Weinberger and Fischer’s (2006) framework lacking in explanatory
power for mathematics-specific discourse and developed an amended framework. We propose
that this amended framework may enable in-depth analysis of major dimensions of students’
mathematics knowledge construction as they engage in activities in an online asynchronous
modality. This framework may also support the curriculum development for online asynchronous
mathematics coursework.

Keywords: Calculus, Knowledge Co-Construction, Asynchronous Instruction, Design Research

Introduction
Classroom discourse can provide a powerful opportunity for students to gain

mathematical knowledge. Though many students learn mathematics in asynchronous formats, the
kinds of learning taking place in asynchronous formats remains severely underexamined. We are
motivated to explore in more detail the learning within asynchronous discussions; specifically,
we study discussion activities as we contend they are a primary point of contact in asynchronous
formats among students, their peers, and their instructor.

In prior work (Keene, et al., 2016), we proposed use of Weinberger and Fischer’s (2006)
Argumentative Knowledge Construction framework for design research. We now present the
results of a study operationalizing and extending Weinberger and Fischer’s framework to
examine the knowledge construction taking place in asynchronous calculus discussions. Our
analysis of multiple discussion boards revealed that aspects of Weinberger and Fischer’s
framework required alteration to increase the explanatory power of the framework and enable an
accounting of students’ contributions to the discussion from an anti-deficit perspective. In this
report, we present key aspects of our updated framework, highlighting its ability to gain insights
into the learning taking place in discussions across social and cognitive dimensions. Accordingly,
we propose to answer the following research questions:

1. How do the social, epistemic, and argumentative dimensions of knowledge construction
interact with each other in the context of a mathematics classroom?

2. How does the Argumentative Knowledge Construction (AKC) Framework change when
contextualized in a mathematics class?

3. What alterations to the AKC Framework increase our understanding of student learning
in online calculus courses with discussions?
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Theoretical Framework – Argumentative Knowledge Construction
Weinberger and Fischer proposed that computer-supported collaborative learning could be

analyzed according to four dimensions: participation, epistemic, argument, and social modes of
co-construction (Weinberger and Fischer, 2006).

The participation dimension examines the quantity and heterogeneity of students’
contributions to the discussion board for each discussion activity. The epistemic dimension
focuses on the content of students’ contributions, attending particularly to the degree to which
students’ contributions adequately relate the particulars of a problem with the intended concepts
that the problem engages. The argument dimension derives from Toulmin’s (1964) model of
arguments to qualify the types of micro- (single line) and macro- (multi-line) argumentative
moves put forth by students in pursuit of a solution. Finally, the dimensions of social modes of
co-construction “describe to what extent learners refer to contributions of their learning partners”
(Weinberger & Fischer, 2006, p. 77). In an asynchronous modality, participants’ textual,
imagistic, and video submissions can be retroactively analyzed to build group-by-group
comprehensive accounts of the knowledge construction associated with a particularly designed
prompt. We consider the dimensions to productively account for knowledge construction in the
online setting and so our work attempts to refine these dimensions in the mathematics context.

Table 1: Summary of Argumentative Knowledge Construction framework (Weinberger and Fischer, 2006).

Social Modes
● Externalization
● Elicitation
● Quick Consensus Building
● Integration-oriented Consensus Building
● Conflict-oriented Consensus Building

Epistemic
Construction of…
● Problem Space
● Conceptual Space
● Problem Conceptual Space↔
● Problem Prior Knowledge↔
● Non-Epistemic Activities

Argument
● Single Arguments (micro-)

o Simple, Qualified, Grounded, Grounded &
Qualified, Non-Argumentative

● Line of Argumentation (macro-)
o Argument, Counterargument, Integration,

Non-Argumentative

Participation
● Quantity
● Heterogeneity

Literature Review
Despite the prevalence of online mathematics courses, we still know very little about the

ways that students make mathematical meaning in these formats (Trenholm et al., 2019). From
what has been explored thus far, some have considered mathematics courses among the more
difficult to teach in an online format (Engelbrecht & Harding, 2005).

While discussion activities are common in face-to-face mathematics courses, discussions are
not widely used in asynchronous formats. For instance, in a survey targeting the format and
content of asynchronous courses, 39% of instructors surveyed used at least 1 discussion
(Trenholm et al., 2015). Thus far, research on discussion activities focusing on Weinberger and
Fischer’s (2016) AKC framework have studied face-to-face mathematics learning (Keene, et al.,
2016) and asynchronous learning in nonmathematical courses (Schrire, 2006; Clark & Sampson,
2008; Dubovi & Tabak, 2020). We contribute to this literature by examining the learning taking
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place within an asynchronous mathematics discussion activity, exploring how the AKC
framework can be operationalized specifically in a mathematics setting.

As noted in the framework above, one part of the AKC framework is supported by the work
of Toulmin (1958). In Toulmin’s model, he provides a structure and function for argumentation
in learning. This work involves the identification and connections between data used in
argumentation, claims that participants make, and warrants they provide. Toulmin’s model has
been used in the analysis of in person mathematical discussions in active learning classrooms
(Giannakoulias et al., 2010; Groth & Follmer, 2021; Mariotti & Pedemonte, 2019) but not in
asynchronous learning. Nevertheless, this work supports our modifications of the AKC
framework to contribute to our understanding and support design of new asynchronous learning
activities.

Methodology
The data analyzed for this study were comprised of the textual records of two small-group

discussion activities assigned to a fully asynchronous calculus course. Participants for this study
were Calculus 1 students at an online, primarily undergraduate university during a 9-week term
in spring 2022. The student population at this university is non-traditional: the average age is 31,
13.7% of the population is female, 60.3% of students are active military, and 19.5% of students
are veterans. The data consisted of five discussions activities given to four assigned groups and
moderated by one of the authors.

One researcher (the instructor of the course) initially reviewed each group’s work according
to the participation dimension. For our initial theory-building purposes, we sought to analyze
groups for which there was potential to inform the interactions of the argumentative, social, and
epistemic dimensions. As such, for the first analysis, we selected one group that we determined
to have high participation, both in quantity and in heterogeneity. This group contained 3 male
students that we refer to as BK, LG, and DG.

We began by examining this group’s work on two discussion activities. For the first
discussion activity, we individually coded each line of the discussion according to a single
dimension of the AKC framework. We then met to compare and negotiate the codes for the
selected dimension. After the discussion was coded for each dimension in the AKC framework,
we discussed whether any lines in the discussion were not captured by the AKC framework or
would benefit from a modification to the AKC framework. From this analysis, we proposed
changes to that framework so that the epistemic, argumentative, and social dimensions yielded
more robust insights for math-specific knowledge construction. We then analyzed the same
group’s discussion on a second discussion task according to this new framework in a similar
iterative manner: individual coding for a single dimension, meeting to compare and negotiate
codes, repeating these two steps until all dimensions were analyzed, and ending with a discussion
of what was not captured by the modified AKC framework.

Due to space limitations, we will present results of the analysis on the second discussion
prompt:

Your overall goal is to draw a random curve representing a function defined on the𝑓
interval , and then construct the graph of a second function such that the[2,  12] 𝑔
following requirement is satisfied: For the composite function (meaningℎ 𝑥( ) = 𝑔 𝑓 𝑥( )( )
composed with ), at each -value on .𝑔 𝑓 ℎ' 𝑥( ) = 2 𝑥 [0,  10]
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Data Analysis
Posts and replies to the discussion prompt were collected and manually entered to an Excel

sheet. Posts were split by sentence and any equations/graphs were linked to a separate page. The
researchers then individually coded each sentence by dimension according to the altered AKC
framework. After each dimension was individually coded, the researchers negotiated the final
coding for that dimension and discussed how effective the coding captured knowledge
construction. Once all posts/replies were coded by each dimension, the researchers met to
analyze the codes to gain cross-dimensional insights into the knowledge construction occurring
during the discussion. This cross-dimensional analysis originally included tallies of the various
codes and attention to the density or sparsity of certain interactions considering the progress
made by each student in the epistemic dimension. While this provided general insights into how
the students’ interactions contributed to their epistemic progression, we determined that a more
refined account of the social interactions would yield more robust insights. We present the results
of our analysis considering this refined account of the social dimension.

Results
Due to space limitations for this proposal, we present one noteworthy result to appear from

our initial analysis: conceptualizing the social dimension as a network of argumentative
interactions. This alteration of the social and argumentative dimensions allowed us to analyze the
interaction between macro- and micro-argumentative codes and provided insights that allowed
for more readily seen inter-dimensional insights. What follows are two examples from the
three-person group discussion of BK, LG, and DG. These examples will highlight what we
learned by using the revised AKC framework. We will then present our revised framework in the
discussion.

Interactions within the Argumentative Dimension
Figure 1 presents the visualization of 4 different chains of posts for the chosen discussion and

group. The codes are chronological as they move down the page. Each column represents the
analysis of one post and its replies. The three student participants were assigned different shades
of grey: black (BK), light grey (LG), and dark grey (DG). Arrows represent replies to either the
original post or another reply in the post chain. Visualizing these chains of arguments allowed us
to identify patterns that were not easily identifiable in our original coarse analysis.
Macro-argumentative codes are visualized by the shape of the post/reply as described in the
legend.

We found that including Toulmin’s model allowed for a more robust depiction of the social
contributions of the students throughout the discussion than the original depiction of the social
dimension. In these discussions, and more generally in mathematics discussions, social
interactions largely (or most productively) entail argumentation. As such, including Toulmin’s
scheme in conjunction with the macro-argumentative codes allowed our new Argumentative
dimension to account both for the argumentation taking place and for the social interactions
contributing to knowledge construction. Moreover, the inclusion of Toulmin’s Scheme for
Argumentation allowed us to identify the type of data being used to make mathematical claims.

The visualization of the argumentative dimension also allowed for identifying social moves
students made. For example, consider chain 1. We coded the first reply as a
macro-counterargument and yet as a non-argumentative move. This captured a social
counterargument that was not grounded in mathematics and was coded as conflict-oriented
consensus building in the social dimension in the original AKC framework. We see another
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example in chain 2 with a circle X pairing, which suggests an integration-oriented consensus
building in the social dimension in the original AKC framework. These results suggest that
interactions within the argumentative dimension can account for codes in the original AKC
social dimension, as we hypothesized by our alteration of the original framework.

Legend

Macro-Argumentative

Cloud Argument

Star Counterargument

Circle Integration

Square Instructor

Triangle Non-Argumentative
Move

Micro-Argumentative

C Claim

D-S
D-G
D-T

Data represented as
Symbols, Graph, or Table

W Warrant

Q Modal Qualifier

R Rebuttal

X Non-Argumentative Move
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Interactions between the Argumentative and Epistemic Dimensions
Figure 2 presents the visualization of the same 4 chains of posts with the epistemic codes

placed within the macro-argument codes. The major result from our using our modified
framework for the analysis is greater insight into the interactions between the epistemic and
argumentative dimensions. Specifically, our original analysis flagged the original discussion as
largely argument-driven (rather than incorporating counterarguments and integrations heavily),
and that much of the epistemic change was independent of the social interactions in the
discussion. With this altered framework, we drew clearer links between epistemic progression
and counterarguments or integrations. For example, in chain 1 we see LG integrate BK’s
argument including composition as both a product (as BK did) and as inputs/outputs. We then
see BK integrate LG’s integration and include composition as inputs/outputs. Another example
occurs in chain 2 where the instructor introduces the idea that derivatives describe where a
function is increasing/decreasing and then BK uses this idea to integrate three different
arguments. These examples illustrate that the inclusion of a new epistemic code can cause
students to either counter this new idea or integrate it into their own argument. Moreover,
tracking epistemic codes allows us to see that interactions are not restricted to explicit replies.
For example, the conceptualization of derivative as increasing/decreasing, as presented by the
instructor in chain 2, was present by BK in chain 4. This is important to note given the
asynchronous nature of the discussion and the ability of students to read over what others have
said without directly interacting.

Legend

Macro-Argumentative

Cloud Argument

Star Counterargument

Circle Integration

Square Instructor

Triangle Non-Argumentative
Move

Epistemic

C-P
C-IO
C-INV

Composition as
Product,
Input/Output, or
Inverses

D-INC
D-S
D-RoC
D-C
D-T

Derivative as
Increasing, Slope of
Tangent, Rate of
Change,
Computation, or
Tangent Line
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Inattention, Progress,
or Coordination

Discussion
After analyzing and discussing two sets of discussion posts, we arrived at three major revisions
to Weinberger and Fischer’s (2006) Argumentative Knowledge Construction framework:

● Inclusion of Toulmin’s Scheme for micro-argumentative codes;
● Removal of the original social dimension; and
● Switch from deficit to asset-based view of epistemic dimension.

Toulmin’s Scheme is included in the micro-argumentative codes as it provides a way to track the
types of data students use in their arguments and the ways students justified their arguments. The
original social dimension was removed as we found the macro- and micro-arguments sufficient
for describing social moves students made when constructing knowledge. Moreover, the
mathematical nature of the discussions tended toward non-social arguments. The switch from a
deficit-based view of understanding as a connection between the problem and conceptual space
to ways students understand concepts allows us to apply current mathematics education research
to evaluate how students’ understanding evolves over time. An overview of our current
Argumentative Knowledge Construction framework specific to mathematics is presented in
Table 2.
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Table 2: Current Argumentative Knowledge Construction framework specific to mathematics.

Argumentation
Macro-Arguments

● Argument
● Counterargument
● Integration
● Non-Argumentative Moves

Micro-Arguments
● Claim
● Data (Graphical, Symbolic, Tabular)
● Modal Qualifier
● Warrant, Backing, Rebuttal
● Non-Argumentative Statements

Epistemic
● Prompt-Specific Understandings
● Progress Towards Coordination of Relevant

Understandings
● Broader Ways of Thinking Mathematically (When

Applicable)

Participation
● Quantity
● Heterogeneity

Conclusion and Next Steps
As is seen by looking at research published in undergraduate mathematics education, as well

as the huge addition of online asynchronous mathematics teaching in the last 20 years, we
believe that understanding how asynchronous learning may happen is a significant contribution
to RUME. Our goal was to adapt Weinberger and Fischer’s Argumentative Knowledge
Construction Framework to asynchronous mathematics discussions and identify ways to
systematically analyze student posts between dimensions. While more work is needed to refine
the AKC framework specifically to mathematics, we feel that the use of macro-argumentative
codes as a basis for visualizing student posts as a web of interactions will play an important role
in analyzing knowledge development as it progresses through a discussion post.

We will continue to analyze further asynchronous discussions in Calculus using the modified
framework. One particular type of response we would like to incorporate into the framework is
non-content, non-social knowledge construction. For example, the instructor explaining how to
use Desmos would not constitute mathematical knowledge in the epistemic dimension, nor
would it constitute a social or non-social argument that would be captured in the argumentation
dimension. Additionally, we anticipate expanding our work to other mathematics courses, and
possibly sciences courses as well, which would require either generalizing what is contained in
the epistemic dimension or creating subdimensions that work in unison.

This work is part of a larger design project to engage students and faculty in online
mathematical learning. We will use our results and altered framework to support revisions and
development of STEM courses in asynchronous environment. We also believe the new
framework will be applicable to face-to-face student discussions in mathematics. Understanding
how student communication is mathematics learning can be seen as an important area that can
change mathematics instruction both online and in-person.
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Modeling South Korean Citizens’ Quantification of COVID-19 Vaccination and Infection Risks 
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During the COVID-19 pandemic, citizens have had to make new decisions about vaccination and 

social contact based on their personal risk estimates and the risk estimates of experts and 

governments. We analyzed survey data with 50 participants and interview data with three 

participants to model how South Korean citizens quantify risks associated with COVID-19 

vaccination and infection and the severity and level of concern they associated with these 

percentages. We found participants’ quantifications for COVID-19 risks and their meanings for 

their estimated risks are substantially different than experts. Participants used benchmarks such 

as 10% risk and 50% risk to estimate and reason about their COVID-19 risks. 

Keywords: Probability, Understanding Percent Risk 

Since the start of the COVID-19 pandemic, mathematics educators have been interested in 

contributing to the collective effort to reduce risk from COVID-19 using prior mathematics 

education research (Krause et al., 2021). Citizens’ perceptions of risk play an important part in 

their choices, and their choices impact personal and societal risk (Raiffa, 1982). Doctors and 

epidemiologists often communicate risks with percentages, and mathematics educators are well 

positioned to study how citizens’ make sense of this mathematical information. We know the 

concept of percentages (and the related concept of fractions) is difficult for many people, 

including those with undergraduate degrees and students taking advanced mathematics such as 

calculus (Byerley, 2019; Mullis et al., 1991; Wright, 2006). Specifically, the RUME community 

has an interest in preparing undergraduates to make sense of real-world mathematics as well as 

an interest in informal adult education about mathematics (SIGMAA on RUME, 2022). To 

contribute to this mission, we studied South Korean citizens’ mathematical understanding of 

risks associated with COVID-19 vaccination and infection. 

We focused on risk estimates related to both vaccination and infection because vaccine 

hesitancy is a top ten global health issue (World Health Organization, 2019; 2020). There is a 

statistically significant association between COVID-19 vaccination status and US citizens’ 

perception of the relative risk of vaccination and infection (Yoon et al., 2022). The study found 

that US citizens who thought COVID-19 infection was less risky or equally risky than 

vaccination were less likely to be vaccinated than those who thought COVID-19 infection was 

more risky than vaccination. Even though the risks due to COVID-19 infection are orders of 

magnitude higher than the risks due to COVID-19 vaccination (CDC COVID-19 Response Team 

& Food and Drug Administration, 2021), only 48% of a random sample of US citizens thought 

COVID-19 infection was more risky than vaccination (Yoon et al., 2022). 

In contrast to the previous study by Yoon and colleagues (2022), we used South Korean 

participants in this study. It is important to study real-world mathematical thinking in a variety of 

cultural contexts because much can be learned by investigating similar questions in contrasting 
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cultures (Stigler & Hiebert, 2009). The pandemic response, vaccination campaign, and 

mathematics education in South Korea are notably different from that in the United States. By 

early August 2022, more than 87% of the population in South Korea had been fully vaccinated 

and more than 65% had received booster shots (Korea Disease Control and Prevention Agency, 

2022). Many South Korean citizens complain about social pressures to get a COVID-19 vaccine 

and believe the vaccination mandate is not reasonable despite the high vaccination rates (Han, 

2022). 

In order to better understand the South Korean public’s vaccine hesitancy through a 

mathematics education lens, it is necessary to understand how citizens perceive the risks 

associated with COVID-19 infection and vaccination which are often expressed in percentages. 

Thus, this study investigates two research question: (1) How do South Korean citizens quantify 

their risk associated with COVID-19 infection and vaccination? and (2) What meanings do 

participants hold for their percentage estimates? 

Literature Review and Theoretical Framework 

Risk Perception 

Risk has been defined as “a probability of an event combined with the magnitude of the 

losses and gain that it will entail” (Douglas, 2013) or a “probability-based forecast of the future” 

(Bernstein, 1996). Experts define risk based on relative frequency of occurrence, and while 

laypeople can assess frequency if asked, they tend to include other factors in their risk 

judgements (Covello et al., 1986, 1987; Slovic, 1987). These differences in the way the public 

and experts perceive risk can lead to miscommunication in which laypeople understand risk 

differently than experts or government agencies (Botterill & Mazur, 2004; Covello et al., 1986). 

For example, in the August, 2021 Gallup Poll, US citizens’ mean estimate of the risk of dying 

from COVID-19 if infected and unvaccinated was higher than 50% (Rothwell & Witters, 2021), 

which differs dramatically from estimates by epidemiologists. Because, on average, citizens are 

giving such different estimates of risk than epidemiologists, it follows that their meaning for 

these percentages is likely different than that of epidemiologists. For example, citizens who 

estimated the mean risk of dying from COVID-19 if infected is 50% might disagree with the 

mathematically similar statement “half of the people who had COVID-19 died.”  

Risks in Frequency Formats and Percentage Formats 

Prior research has shown that risks described in frequency formats (e.g., 10 of 100) are 

perceived as more serious than those in percentage formats (e.g., 10%) (Gigerenzer, 2011; 

Hoffrage et al., 2000; Slovic et al., 2000). Slovic et al. (2000) found that when assessing whether 

a hospitalized patient with mental disorder would harm others, people perceived a risk described 

with the frequency format, “20 out of 100 patients”, as more serious than the same risk described 

in the percentage format, “20% of patients”. Another study suggests expressing a small risk 

using a frequency format can frighten people because it is psychologically different from the 

same risk expressed as a percentage format (Purchase & Slovic, 1999). Another important aspect 

of understanding COVID-19 risk is numeracy which is defined as an individual’s number sense 

and ability to understand and use numbers with concept of proportion, fractions, percentages, and 

probability (Dieckmann et al., 2009; Peters, 2012; Peters et al., 2006). Highly numerate people 

are more likely to be able to interpret the same risk presented in either frequency or percentage 

as equivalent (Peters, 2012; Peters et al., 2006). Exploring citizens’ use of frequency format and 

percentage format may provide insight into how citizens understand probabilities when 

estimating risks associated with COVID-19 infection and vaccination. 
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Using Benchmark Values to Estimate Probability 

Benchmarks are initial values that function as a point of reference to compare, assess, and 

adjust estimates of probabilities. We use the term benchmark value in this work to describe 

percentages that citizens’ use frequently and easily assign meaning to. Citizens often use 

benchmark values as a point of reference, and they adjust estimates up or down from these 

values. Tversky (1974) suggests that when estimating the probability of an uncertain event, 

people tend to use a starting value and adjust it to produce the final estimates. Then, different 

initial values result in different estimates; if the starting point is too high or too low, the 

subsequent adjusting process yields a final answer that is close to the starting information, which 

may lead to overestimation or underestimation (Epley & Gilovich, 2006).  

For example, a prior study found that many US citizens used the benchmark values, 0%, 

50%, and 100% for their estimates of risks associated with COVID-19 infection and vaccination 

(Yoon et al., 2022). Konold (1989) suggests that people who use the ‘outcome approach’ in their 

probabilistic reasoning focus on outcomes of single trials of events by interpreting 0% as 

meaning ‘no’, 50% as meaning ‘I don’t know’, and 100% as meaning ‘yes’. Yoon and colleagues 

(2022) used the outcome approach construct to hypothesize the citizens’ meanings for those 

benchmark values. Our theoretical focus on citizens’ meanings is inspired by Thompson’s work 

on mathematical meaning (Thompson, 2015). We remained alert that two different people could 

have different meanings for the same percentage and used the outcome approach as a way to 

make sense of the different meanings participants might have. 

Methods 

We collected interview and survey data. Both asked South Korean citizens to quantify their 

risks associated with COVID-19 infection and vaccination and to discuss how they reason about 

the risks. First, we conducted a survey with a random sample of 50 South Korean adults on June 

13, 2022 using a Korean survey company, Survey Top (https://www.surveytop.co.kr/)1. In our 

sample, there were 23 male and 27 female participants. The mean of participants’ age was 41.34 

years (SD = 14.77). As the level of highest education, 22 citizens reported a high school diploma 

and/or some college credits, and 28 citizens reported having a bachelor’s degree or higher. Out 

of the 46 participants who received at least one dose of COVID-19 vaccines, 13 citizens were 

fully vaccinated for COVID-19 (two-doses of Pfizer of Moderna or a single dose of J&J 

vaccine), 31 citizens were fully vaccinated for COVID-19 with one booster shot, and two 

citizens had received two booster shots. Four citizens responded that they had never received a 

COVID-19 vaccine. Survey questions were developed in prior research (Yoon et al., 2022) and 

included: 1) If you were infected with COVID-19, what do you think your percent risk of 

hospitalization from COVID-19 if infected. Why? 2) If you were infected with COVID-19, how 

concerned would you be about getting hospitalized? 3) If you receive a COVID-19 vaccine in the 

future, what do you think your percent risks of a serious adverse reaction would be? Why? Other 

questions are also asked such as demographic information, their reasons for vaccination, and 

general probabilistic questions. 

We also recruited three South Korean citizens for interviews. All participants were male, in 

their thirties, and held an undergraduate degree in non-mathematical fields. Both Chang-seob and 

Byung-soo (pseudonyms) were fully-vaccinated with a booster shot. Byung-soo was vaccine-

hesitant; he received COVID-19 vaccines because of social pressure. Sun-kyu (pseudonym) had 

 
1 The survey company provides information about the demographics of the panel and how to select a random sample from the panel 

(https://www.surveytop.co.kr/online-survey-panel). 
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not received any vaccines. Interviews were conducted through Zoom in Korean by the first 

author between June 19th, 2022 and July 4th, 2022. Each interview lasted approximately an hour 

and a half. During the interviews, the first author asked participants to quantify various risks 

associated with COVID-19 infection and vaccination, their opinions about COVID-19 

vaccination, and to interpret meanings of particular percentages in various contexts. The first and 

third authors, who are South Korean, translated the US survey and interview protocol into 

Korean. We coded the data using a priori and emergent codes and conducted a thematic analysis 

(Braun & Clarke, 2006). While conducting our study and analyzing data, we were alert to the 

possibility that South Korean citizens would use benchmark values to reason about risk and that 

their meanings for a particular percentage might differ from experts’ meanings. 

Results 

We found that participants’ risk perceptions and reasonings were complex, but they 

commonly used benchmark values as a starting point for estimating their COVID-19 infection 

and vaccination risks. In both the survey and interviews, we observed that many participants 

used certain values, 0%, 1%, 10%, and 50%, as benchmark values. In order to answer the 

research question, we focus on how South Korean citizens quantify risks using benchmark 

percentages and make sense of the severity of those percentages. 

Citizens’ COVID-19 Infection and Vaccination Risk Estimates on Survey 

In the survey data, we found noticeable clusters at 10% and 50% in citizens’ estimates. In 

response to questions about risks related to both infection and vaccination, 10% was the most 

frequent estimate. When estimating their personal COVID-19 hospitalization risk if infected, 

24% of citizens (12 of 50) estimated 10%. Further, 16% of citizens (8 of 50) estimated their risks 

of serious adverse reactions to COVID-19 vaccination as 10%. The question about adverse 

reactions clarified “An example of a serious adverse reaction is an allergic reaction requiring 

treatment in a hospital. Do not include your risk of common side effects such as fatigue.” 

Another frequent estimate was 50%. For their COVID-19 hospitalization risk if infected and 

COVID-19 vaccination risk, 18% of citizens (9 of 50) and 12% of citizen (6 of 50) estimated 

50%, respectively (Figure 1). 

We also wanted to understand citizens’ meanings for estimates of 0% because there is a 

small cluster at 0% (6 of 50) in the estimates of COVID-19 hospitalization risk if infected, and 

0% is a value that appeared in our study of US citizens (Yoon et al., 2022). 

 

   

Figure 1. Citizens’ estimated percent risk associated with COVID-19 infection and vaccination. 
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Use of Benchmarks in COVID-19 Infection and Vaccination Risk Estimates 

Because 0%, 10%, and 50% were common estimates in the survey and interview data, we 

decided to focus on interview participants’ meanings for these values and how they used them as 

benchmarks for estimation. Additionally, we discuss 1% as a benchmark value which emerged in 

our interview data, and we relate interview data with short fill in the blank responses on the 

survey. 

50% as a Benchmark. During the interview, Byung-soo estimated his COVID-19 

hospitalization risk if infected and unvaccinated as 50%. When asked how he quantified the 

50%, Byung-soo said “I really don’t know. I don’t know how to estimate that risk as a 

probability. I have no reason for it”. His response suggests his meaning of 50% is “I don’t know” 

which may be explained by the outcome approach (Konold, 1989). Similarly, in the survey data, 

four of nine citizens who estimated their risk of COVID-19 hospitalization if infected as 50% 

and three of six citizens who estimated their risks of serious adverse reactions to COVID-19 

vaccination as 50%, gave the reason for their estimate of 50% as “because I don’t know”. Thus, 

many citizens used 50% as a benchmark if they were unsure of their risk. 

0% as a Benchmark. Chang-seob initially estimated his risk of dying from COVID-19 if 

infected and unvaccinated (in the case of the Omicron variant) as 0% since he thought that it 

would never happen to him. When asked to estimate his risk of dying from COVID-19 if 

infected and unvaccinated, he said: “I think my COVID-19 death risk from Omicron is 0% 

because I think I will not die if I were treated”. Chang-seob used 0% as a benchmark to estimate 

his COVID-19 death risk if infected and unvaccinated given various treatments. Sun-kyu, who 

also thought that he would not die from COVID-19 if infected and unvaccinated, said “my risk 

would be convergent to 0%”.  

Similarly, in the survey, all six citizens who estimated their risk of hospitalization from 

COVID-19 if infected as 0% explained that they are unlikely to be hospitalized from COVID-19 

if infected. An outcome approach explains that a benchmark of 0% means “No, it will not occur” 

(Konold, 1989). Therefore, 0% is associated with an event that is impossible or unlikely to occur.  

10% as a Benchmark. Sun-kyu used a benchmark of 10% for estimating his risks associated 

with COVID-19 infection and vaccination. Sun-kyu estimated his risk of COVID-19 

hospitalization if infected and unvaccinated and his risk of a serious adverse reaction from 

COVID-19 vaccination as more than 10%. On the other hand, he gave estimates less than 10% 

for his risk of COVID-19 hospitalization if infected and vaccinated (Table 1).   

 

Table 1. Sun-kyu’s estimates of risks associated with COVID-19 infection and vaccination. 

Risk of 

COVID-19 Hospitalization,  

if infected and unvaccinated 

COVID-19 Hospitalization, 

if infected and vaccinated 

a serious adverse reaction to 

COVID-19 vaccine 

10~20% 5~10% 30~40% 

 

He transformed 10% into 1 out of 10. In this way, he interpreted 10% risk as “I don’t think 

that 10% risk associated with COVID-19 infection is high. But, one or two out of 10 people is 

not too low to ignore. So, I would be concerned about it a little”. In addition, he estimated his 

risk of serious adverse reactions from COVID-19 vaccination as 30~40%: “With a risk of 30% 
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related to vaccine side effects, I could be the one who had severe vaccine reactions, so I would 

much worry about it”. Sun-kyu considered 30-40% as risky because it is more than one or two 

out of ten people, and so he used 10% as a benchmark and adjusted from a low risk of 10% to a 

higher risk of 30-40%. 

In the survey, we found that all 12 citizens who estimated their COVID-19 hospitalization 

risk if infected as 10% tended to think that 10% is not very risky on a multiple choice follow up 

question. Of the 12 citizens, three responded that they were not concerned, five responded that 

they were slightly concerned, and four responded they were somewhat concerned about getting 

hospitalized if they were infected with COVID-19. Thus, participants from both the survey and 

interviews may use a benchmark as 10% to estimate a risk of an event that seem not very risky.  

1% as a Benchmark. During the interviews, we observed 1% was used as a benchmark to 

estimate risk and participants adjusted the 1% upward or downward to reach their final estimates. 

We also found that participants thought 1% was a small risk and that risks with less than a 1% 

chance were unlikely to occur. Two interview participants thought COVID-19 risks less than or 

equal to 1% are not worth worrying about. For example, Chang-seob used 1% as a benchmark 

for all estimates of his risk associated with COVID-19 infection and vaccination (Table 2). 

 

Table 2. Chang-seob’s estimates of risks associated with COVID-19 infection and vaccination. 

 COVID-19 Risk of  

Hospitalization,  

if infected (unvaccinated) 

Hospitalization, 

if infected (vaccinated) 

Dying, if infected 

(vaccinated) 

A serious adverse 

reaction to vaccine 

1% 0.1% 0.001% 0.001~0.0001% 

 

When the first author asked Change-seob to estimate his risk of hospitalization and dying 

from COVID-19 if infected and unvaccinated, he said: 

I estimate 1%, at most, that I would be hospitalized from COVID-19 if infected and 

unvaccinated. I think my risk of dying from COVID-19 if infected and unvaccinated 

would be from 0.01% to 0.1%. Assuming I am treated, I multiplied 0.01 to the 1% risk of 

hospitalization from COVID-19 and multiplied 0.1 to the 1% if not treated. Similarly, 

when vaccinated, I multiplied 0.1 to the 1% and got 0.1% risk of hospitalization from 

COVID-19 if infected. Also, I multiplied 0.1 to 0.01% risk of dying from COVID-19 if 

infected and unvaccinated and got 0.001% for my risk of dying from COVID-19 if 

infected and vaccinated. 

Chang-seob started from 1% as his estimated risk of COVID-19 hospitalization risk if infected 

and unvaccinated. Then, he adjusted the 1% to 0.1% and 0.01% to estimate his risks associated 

with COVID-19 infection if infected and vaccinated. He thought every other risk in Table 2 was 

less likely than hospitalization if infected and unvaccinated. He adjusted his 1% estimate 

downward by multiplying 1% by 0.1, 0.01 and 0.001 to estimate other risks. Thus, Chang-seob 

used a benchmark of 1% for estimates of his risk associated with COVID-19 infection and 

vaccination. Additionally, he thought a 1% chance of hospitalization is not risky to him: 

I’m just splitting the risks less than 1%, so I feel like 0.1%, 0.01%, and 0.001% are all the 

same to me which are extremely low and 0.0001% is almost 0%. If a risk is less than 1%, 
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I think the probability is low no matter what the value is, because it means less than 1 out 

of 100 people. 

Sun-kyu made a similar judgement about a 1% risk associated with COVID-19 infection and 

vaccination: “But if the chance has more zeros in the percentage such as 0.000…%, I would feel 

safe and comfortable with the risk”. He interpreted risks of the form 0.000…% as “1 out of 

1,000, 1 out of 10,000, and so on”. Both Chang-seob and Sun-kyu used 1% or 1 out of 100 

people and noted that if risks are less than 1%, it is meaningless to differentiate between them. 

Discussion and Conclusion 

From surveying and interviewing South Korean citizens about their COVID-19 risks, we 

found they used benchmark values of 0%, 1%, 10%, and 50%, and participants conveyed that 

10% and 1% risk are not risky. Interview participants used and interpreted the benchmark values 

of 1% and 10% for their COVID-19 risk as 1 out of 100 people and 1 out of 10 people, 

respectively, for who would be at risk. This may have led participants to perceive risks less than 

1% as small and negligible because they count the number of people out of 100 people, and 1 

person is the smallest countable number from those 100 people. Compared to a sample size of 

100, they perceived the occurrence of 1 out of 10 people as something that cannot be ignored but 

is slightly risky. Thus, reasoning with a frequency format using the number of people out of 10 

or 100 may explain the use of benchmark 1% and 10% and why those risks were not perceived 

as risky. 

In contrast, risks under 1% were more likely to be measured in a percentage format by a 

number of zeros in a decimal. When asked to transform 0.1% and 0.01% into a frequency format, 

the interview participants were able to correctly get 1 of 1,000 and 1 of 10,000. Nevertheless, 

they preferred to quantify risks less than 1% in a percentage format. Thus, the participants’ use 

of denominators (100 and 10) may explain why they thought 1% was not risky, and the smallest 

risk value they would pay attention to because 0.1% means less than 1 person dies out of 100. 

However, if the infection fatality rate of COVID-19 was 1%, and all 50 million South Korean 

citizens were infected, 500,000 people would die. Although the South Korean citizens in both 

our interviews and survey viewed risks near 1% as not too serious, it is clear that these risks are 

serious on a population scale. South Korean citizens’ estimates of risk in our survey are 

problematic and worthy of attention in the international mathematics education community. 

Before vaccines were available, the infection fatality rate of COVID-19 was estimated to be 

about 0.68% (Meyerowitz-Katz & Merone, 2020). Although this is less than 1%, it was still 

significant enough to cause significant loss of life, overwhelm medical systems, and lower life 

expectancies. A 10% or even 1% infection hospitalization rate would be catastrophic from an 

epidemiological perspective. 

Measuring small risks is hard. Small risks are represented in both frequencies and 

percentages. When thinking about the meaning of a percent in the COVID-19 context, it is 

important to think about that percent of a population of people. Moreover, it is important to 

understand the equivalent relationship in fractions and percents for risk perception, but many 

students as well as adults struggle with it (Sharp, 2002). These difficulties in understanding 

probabilistic information may cause problems in risk communication (Covello et al.,1986). 

Imagine if an epidemiologist tells us that a disease has a 5% infection fatality rate thinking that 

this will convey that the disease is extremely serious but what is actually conveyed to people is 

that they do not need to worry because it is less than their benchmark of 10%. As college 

instructors, it is important for us to ensure the graduates of our institutions are prepared to make 

sense of risks and develop more productive meanings for percent risks. 
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Students’ Perceptions of Active Learning Classroom Community 
 

 Gary Wright Karina Uhing 
 University of Nebraska Omaha University of Nebraska Omaha 

Classroom community plays a pivotal role in student success, especially when students have the 
opportunity to interact with their peers and instructors.  This study explores how students 
perceive classroom community and its impact on their learning. We present findings from an 
essay reflection assignment where students were asked to share their experiences with learning 
mathematics. We found that students felt more comfortable to ask questions and were able to 
develop interpersonal skills in conjunction with mathematical skills because of the classroom 
community. Conclusions drawn from this research can provide insights for instructors who are 
interested in fostering strong classroom communities in engaging learning environments. 

Keywords: community, active learning, group work, student-instructor relationships 

Being part of a classroom community has been described as having feelings of belonging and 
obligation to one another so that each members’ educational needs will be met through 
commitment to shared goals (Rovai, 2002). Research has shown that these two facets of a 
classroom community, sense of belonging and social interdependence, are crucial to students’ 
well-being and academic success (Awang et al., 2014; Johnson & Johnson, 2008). Classroom 
community develops through interactions between students, instructors, and content (Cohen et 
al., 2003; Lampert, 2001). These interactions often depend on the pedagogical choices of 
instructors and how students are positioned (e.g. active learners vs. passive recipients). In recent 
years, research has shown that active learning instructional strategies increase student 
engagement and success in undergraduate mathematics (Freeman et al., 2014). While several 
studies have focused on academic student success (Freeman et al., 2014; Laursen et al., 2014; 
Theobald et al., 2019) and differences in student outcomes in active learning classrooms based 
on gender (Johnson et al., 2020; Reinholz et al., 2022), few studies have looked at students’ 
perceptions of the classroom community in an active learning setting and how they perceive 
community to impact their learning.  

The purpose of our study is to investigate students’ perceptions of an active learning 
classroom community and how they interacted with their peers, their instructors, and the 
mathematical content. This proposal focuses on the following research question: How do 
students report that the community of an active learning class supports them in their 
mathematical learning? Our work provides insight for other institutions, departments, and 
instructors who are interested in incorporating more active learning into their undergraduate 
mathematics courses and highlights areas where more research is needed. 

Context 
Our study takes place in the context of a mathematics department that has recently undergone 

several major changes to its first-year mathematics program. Prior to Fall 2021, all first-year 
mathematics courses at this institution were taught using the emporium model (Twigg, 2011; 
Webel et al., 2017). Under this instructional model, students would attend a one hour lecture 
each week and then were required to spend a minimum of three hours in a computer lab working 
independently on online homework problems. Students were able to get individualized help from 
undergraduate tutors who worked in the computer lab, but there was little community developed 

25th Annual Conference on Research in Undergraduate Mathematics Education 477



amongst students and their peers. When COVID-19 emerged in Spring 2020, issues associated 
with the emporium model were exacerbated. Lectures and tutoring hours were held over Zoom 
making it easy (and normalized) for students to turn off their video cameras and avoid 
interactions with their peers and instructors altogether.  

In Spring 2021, a team of faculty members were hired to improve first-year mathematics 
courses at this institution. Course redesign efforts began in Summer 2021, and major changes 
were implemented in Fall 2021. Instead of using the emporium model, courses were scheduled to 
meet for 75 minutes twice a week, and sections were capped at 40 students. Each section had a 
designated instructor of record along with two classroom learning assistants. Courses were 
tightly coordinated with a team of faculty members working together to develop curricular 
materials, assess student learning, and make revisions to courses throughout the semester. The 
instructional team’s overall goal was to improve student learning in these first-year mathematics 
courses by creating an inclusive classroom environment where students felt safe to make 
mistakes and learn from them while working together with their peers. Thus, developing a strong 
sense of classroom community was central to the course redesign efforts. 

Background Literature and Theoretical Framing 
Classroom community is difficult to define, and many definitions exist in research literature 

(Summers & Svinicki, 2007). Baturay (2011) defines classroom community in terms of two 
components: “(a) social community or the feelings of connectedness among community 
members and (b) learning community or their common expectations of learning and goals” (p. 
564). In our study, we viewed classroom community through the lens of the instructional 
triangle; i.e. considering how students’ experiences in the classroom are influenced by 
interactions between students, instructors, and mathematical content, and the environment in 
which these interactions occur (Lampert, 2001; Cohen et al., 2003). Community is developed (or 
not) through these interactions, and classroom communities are formed when there is a “culture 
of learning, where students come to see themselves as contributors to their own learning and that 
of the community” (Bielaczyc & Collins, 2009, p. 10). 

Our study is situated within the context of an active learning classroom environment. Several 
definitions of active learning exist in the literature (Williams et al., 2022). For this study, we 
define active learning broadly as “classroom practices that engage students in activities such as 
reading, writing, discussion, or problem solving, that promote higher-order thinking” (CBMS, 
2016, p. 1). Another common definition of active learning draws on the four pillars of Inquiry-
Based Mathematics Education: students engaging deeply with mathematics, students working 
collaboratively, instructors inquiring into student thinking, and instructors fostering equity in 
their teaching (Laursen & Rasmussen, 2019). In this study, we investigate how students perceive 
the classroom interactions described by these pillars (between students, instructors, and 
mathematical content) and how these interactions relate to the classroom community. 

Finally, our work builds on the SEMINAL Project, which focuses on incorporating more 
active learning into first-year undergraduate mathematics programs. As part of this project, the 
second author and colleagues analyzed survey data from over 2500 students taking a range of 
first-year mathematics courses at several institutions across the United States. In their open-
ended survey responses, students discussed five major topics: student-to-student interactions, 
relationships with instructors, course format, assessment, and students’ affective experiences 
(Uhing et al., 2021). While this data was gathered in a different context, similar themes arose in 
our findings. In this proposal, we discuss and build on student-to-student interactions and 
relationships with instructors and relate these themes to classroom community. 
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Methods 
Data for this study come from a Mathography assignment that was assigned to students 

enrolled in a College Algebra course at a large, Midwestern, metropolitan university during Fall 
2021. The assignment was based on Drake (2006) and included prompts such as “Describe what 
you learned in College Algebra. These can be mathematical topics but also non-math things, like 
anything you learned about yourself or your ability to do math or what math is.” Out of 459 
students enrolled in the course at the beginning of the semester, 228 completed the assignment, 
which was collected at the end of the semester. Students were informed that class assignments 
would be gathered for research and course evaluation purposes. 

Mathographies were analyzed using Dedoose (2022). To establish a preliminary set of codes, 
deductive coding was conducted with an initial set of codes from the SEMINAL Project (Uhing 
et al., 2021). In order to refine our analysis, a set of subcodes was created for most initial codes. 
At least two researchers tagged each response to prompts in the Mathographies with these initial 
and secondary codes. Researchers then met to discuss and reconcile disagreements until 
agreement was reached. Excerpts were then sorted by initial codes and the code “Community 
and Culture” was selected for a second round of coding. Inductive coding was used to create sets 
of themes for each subcode, which illustrate how students experienced the classroom 
community. 

Findings 
Secondary analysis of the “Community and Culture” code yielded four subcodes. We 

describe themes that emerged under two of them, Student/Student Interactions and 
Student/Instructor Interactions, in this proposal. 

Student/Student Interactions 
Group work was a large focus of the College Algebra active learning curriculum. Students 

spent the majority of class time working together to solve problems posed by the instructor or 
complete classroom activities. As a result, Student/Student Interactions was the most common 
secondary code from Community and Culture (n=234 excerpts out of a total of 538 excerpts). 
Table 1 provides an overview of the most common themes under the Student/Student 
Interactions code. 

Table 1. Major Themes for Student/Student Interactions 

Theme Summary Student Excerpt  

Working in a 
team 

Learning mathematics 
through positive 
experiences with peers 

“I liked having people around me in my group 
that can help me understand concepts and I 
can do the same for others.” 

Meeting new 
people 

Building social networks 
and friendships with 
classmates 

“I got a lot out of this class lik em ynew [sic] 
friends that I happened to get partnered up 
with at the beginning of the class.”  

Building 
collaboration 
skills 

Developing collaboration 
and other interpersonal 
skills 

“I learned how to better manage my time, 
how to work in a group with efficiency, and 
how to learn alongside my peers.” 
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Disliking group 
work 

Preferring step-by-step 
instruction (i.e. lecture) or 
individual work over group 
activities 

“Something that didn’t work so well for me in 
this class was all the independent work time 
we had with our groups to work on 
worksheets/packets.” 

 
Working in a team. The notion of working with others was a common, positive response 

from students as almost 37% of the Student/Student Interactions excerpts referred to the concept 
of teamwork. In many cases, students felt that working with their peers allowed them to grasp 
mathematical concepts in a way that they had not been able to in prior math courses. There was a 
realization amongst students that the ability to collaborate with one another gave them additional 
resources, other than just the instructor, when they struggled with a mathematical concept. One 
student’s response illustrates this idea: “the use of groups allows students to help each other so 
more people learn than if the teacher was answering every individual student’s question. This 
also allows students to create some connection to the people in the course.” 

Several students also mentioned feeling comfortable working in groups and asking their 
classmates questions. One student remarked, “I think that discussing the problems in a 
judgement free environment helped me advance in this class a lot.” Another student explained 
how this course felt different from past experiences in which they had felt rushed or judged: 

We were giving each other pointers, and just getting along well and we weren’t rushing 
anyone, or judging one another if one was confused. It felt good on how well we were 
responding to each other. In the past there would always be someone trying to rush you, 
or make you feel less if you don’t understand, or catch on right away. Even teachers 
would do that. It made me realize people are respectful and patient when it comes to 
trying new things. 

As illustrated by these excerpts, students felt comfortable working in teams in a “judgement free 
environment”, and as a result were able to more deeply engage with the content and “advance” 
their mathematical knowledge. 

Meeting new people. Since College Algebra is a first-year mathematics course, many of the 
students who take this course are early in their academic careers. Moreover, during the Fall 2021 
semester, when data were collected, many students had just experienced several months of 
remote or online classes due to COVID-19, emphasizing the significance of this theme. About 
18% of the Student/Student Interactions excerpts described how students made new friends or 
developed close relationships with classmates while taking College Algebra. One student 
mentioned how they were new to the area and making friends and forming connections was 
critical in their success in College Algebra: 

I feel that I got friends out of the class and a more in-depth version of a high school math 
class, except it was college. Friends are important to me because I am new to [this city], 
and I felt welcomed by everyone in that class. It made me feel like I belonged to a big 
math family and community. 

This excerpt highlights how a strong classroom community can help students build social 
networks. Even though this student was new to the area, they were able to make friends with 
other students in College Algebra because of the “welcoming” environment, thus helping them 
feel a sense of belonging to a “big math family and community”. 

Building collaboration skills. In addition to developing mathematical skills, some students 
felt that they were able to develop their collaboration skills as a result of the emphasis on group 
work in College Algebra. Approximately 10% of excerpts under Student/Student Interactions 
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referenced building these collaboration and networking skills. One student described their 
experience: 

While I learned many new mathematical skills in this class, which I will no doubt be 
carrying into my future classes, I think that the most important lessons that I learned in 
this class did not pertain to math. While in [College Algebra], I learned a lot about myself 
and about networking. I learned that I could put aside my pride and independence when I 
need help. I can ask questions and not be judged – something that I had feared before. I 
also learned that I am capable of networking. By this, I mean that I was able to form 
relationships with my colleagues and professor that could help me in the future. 

Although this student acknowledged that their new mathematical skills will be useful in future 
classes, they emphasized that the “most important” part of College Algebra was building their 
collaboration (“networking”) skills. 

Disliking group work. Although the interactions with their peers resulted in many positive 
experiences for students, some students felt that this style of learning did not work as well for 
them. Around 8% of the excerpts indicated some kind of negative experience in relation to 
Student/Student Interactions. One student conveyed: “the style of learning that I learn best with 
is lecture-type style where I have an instructor explaining the concept step-by-step and less of me 
and my table partners working together to figure it out ourselves.” In this case, the student 
explicitly stated that they preferred learning in a passive, lecture-style learning environment 
compared to the active learning environment in which the class was designed, which is 
consistent with other research (e.g. Deslauriers et al., 2019).  

Not all excerpts tagged under this theme, however, were critical of the active learning 
environment. Some students were able to provide specific interactions with other students which 
created a negative experience for them. One student recounted such an experience: “I really liked 
working in groups however some of them were hard to get along with [...] I didn’t feel 
comfortable asking my group for help in certain cases because another member was very 
aggressive.” Another interaction a student discussed related less to the fact that they did not like 
working with their peers, but more that they found it easier to compare themselves to other 
students which resulted in a feeling of inadequacy: 

I remember when we were to work with our small groups over a set of problems that 
involved identifying parts of a quadratic function via a graph. While all three of them 
could understand how to find [the] domain, how to locate the vertex, and so much more, I 
couldn’t. I felt like if I asked for help, that I’d be labeled as something rather than 
intelligent. I was scared to even share my answers. 

Although most students who submitted the Mathography assignment enjoyed learning in a more 
active setting, these excerpts show that some students had uncomfortable experiences in this 
classroom setting due to poor group dynamics or personal insecurities.  

Student/Instructor Interactions 
After Student/Student Interactions, Student/Instructor Interactions was the next most 

common subcode under the Community and Culture (n=186 out of 538 excerpts). Table 2 
describes common themes associated with Student/Instructor Interactions and example student 
excerpts. Overall, comments under this subcode were positive in nature; only six out of 186 
excerpts were somewhat negative. The majority of these negative comments referred to students 
wanting more direct guidance from instructors (e.g., “I also feel like the guessing games waiting 
for someone to magically conjure an answer out of thin air gets annoying, I would prefer to be 
guided and shown the way rather than having to find the way myself.”). 
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Table 2. Major Themes for Student/Instructor Interactions 

Theme Summary Student Excerpt  

Creating a supportive, 
engaging classroom 
environment 

Providing in-class general 
instructional support to students 

“My professor was very engaging 
and always emphasized 
participation and asking 
questions.” 

Providing opportunities 
for support outside of 
the classroom 

Interacting with students 
outside of class time (including 
tutoring, review sessions, and 
office hours) 

“I also felt better about this when 
I went into tutoring the next week 
and my teacher told me I did 
really well.” 

 
Creating a supportive, engaging, classroom environment. Several students expressed how 

their interactions with instructors in class affected their learning. Some students appreciated how 
they were able to quickly get support from instructors as compared to other experiences where an 
instructor would lecture for the duration of the class. One student compared this course with 
others that they had taken saying, “this was my favorite I was able to talk to the professor or his 
Aids [sic] for help.” This student went on to say that “having the constant support was better than 
just having a professor stand in the front and just do problems all lecture and instead walk around 
and engage students.” Thus, because of the instructional methods and classroom community, 
students felt like they could get help immediately from instructors in class when they needed it. 

As mentioned in the Student/Student Interactions section, students occasionally felt reluctant 
to ask instructors for help or to ask them a question. Some students wrote that they appreciated 
when an instructor would approach them and ask how they were doing. As one student 
commented: 

Both the teacher and the teacher assistants, [TA Name] in particular, were very helpful 
and were always going around asking if people needed help and were most often able to 
provide an answer. Communication between everyone was very good and helped me feel 
more comfortable in the class when asking questions to the teacher or TA. 

Since the community of the classroom allowed for instructors to check on individual students 
and groups, students who were apprehensive about initiating a conversation with their instructors 
were still able to get the help they needed. Moreover, this type of classroom environment also 
allowed instructors to build trust with their students and eventually some students felt that they 
could ask their instructors questions when they did not understand a topic. Another student 
reflected on this growth: 

I also liked these assignments because I was able to ask my professor questions one-on-
one and get the clearer answers that I needed. At the beginning of the semester, I was a 
very shy and independent student. I think that these peak experiences helped me to “come 
out of my shell” and become more participative in class. I think that these experiences 
helped me to realize that it’s okay to ask questions. 

Overall, students appreciated the in-class support provided by their instructors. These in-class 
student/instructor interactions allowed students to not only get the help that they needed when 
dealing with challenging mathematical concepts, but also learn how to ask questions and speak 
up when they needed help. 
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Providing opportunities for support outside of the classroom. In addition to their in-class 
experiences, students also wrote about getting help outside of the classroom. Although getting 
help with classwork outside of class can be a daunting task for students, one student recounted 
when they went to their first review session: 

A high point for me in [College Algebra] was when I went to the review session for the 
class. I felt a bit uneasy and nervous about going there at first because I thought it would 
be awkward. When I gained the courage to go there, I saw the professors and students 
from other class periods. The environment was friendly. The professor sat down with me 
to help go step by step through the [learning outcomes] I had problems with. They 
answered all my questions, made me feel relieved about the coming [exam], and lifted the 
stress of not completing this class. 

The community aspect of the course and students’ relationships with their instructors allowed 
them to have the courage to ask for help when they needed it and better advocate for themselves 
outside of class. One student commented: 

What did I get out of this class? Honestly, I feel like this class taught me to approach my 
professors regarding any questions or concerns I may have. Honestly, that’s what they’re 
there for, and really to take the initiative to attend office hours because they are beneficial 
in the success of this course. 

These excerpts illustrate that students felt comfortable enough to approach instructors and ask 
them for help outside of class because of the open classroom community that was cultivated. 

Discussion 
The majority of excerpts about Student/Student Interactions were positive, showing that 

students were able to form a strong classroom community in an active learning setting. For the 
most part, students felt comfortable working together and asking each other questions even 
though there were some students who expressed disliking group work and feeling inadequate 
compared to their classmates. In addition, the excerpts relating to Student/Instructor Interactions 
show that students appreciated being able to develop close relationships with their instructors in 
an active learning setting. Due to the supportive classroom community that instructors helped to 
cultivate, students felt comfortable enough asking questions in class and seeking help from their 
instructors outside of class. 

These findings provide insight for others who are interested in developing supportive 
classroom communities in active learning settings. To facilitate positive student interactions, 
instructors should be intentional about structuring group activities and helping students create 
group norms that promote the sharing of ideas in a “judgement free environment”. In addition, 
instructors should strive to develop individual relationships with their students to help students 
feel more comfortable asking for help. Although this paper sheds light on interactions between 
students and instructors in active learning settings, further research is needed to better understand 
how these types of supportive classroom communities are cultivated. 

Positive interactions between students and their classmates and instructors are crucial to 
creating a strong classroom community in which students are able to excel in their mathematical 
learning. First-year mathematics courses play a pivotal role in students’ overall college success, 
so it is important that students feel like they belong in these classes. As demonstrated by our 
findings, a strong sense of community can help students feel both comfortable and confident in 
their interactions with other students and their instructors, thus supporting students in their 
learning and helping them to succeed in these courses.  
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How do STEM Undergraduates Structurally Conceive Change During Modeling?

Sindura Subanemy Kularajan Jennifer A. Czocher
Texas State University Texas State University

Using data from teaching experiments and theories from quantitative reasoning, we built
second-order accounts of students’ mathematics on how they conceived change via operating on
existing quantities. We report three different ways STEM undergraduates structurally conceived
change as they constructed mathematical models for real-world scenarios.

Keywords: Quantitative Reasoning, Mathematical Modeling, Change

A student’s conceptualization of change plays a central role in their mathematical models
they construct for real-world situations. Researchers have looked into how students’
conceptualizations of change inform the mathematical decisions students make while modeling
dynamic situations. For example, researchers have investigated students’ conception of rate of
change, limit, and accumulation through considering students’ images of change in dynamic
situations (e.g., Carlson et al., 2002; Thompson, 1994a). In addition, researchers have also
studied how students’ conceptions of change influence how students conceive variation and
make sense of dynamic situations (Castillo-Garsow et al., 2013). However, these studies report
on accounts of student thinking by focusing on students’ variational and covariational reasoning
as the student reasons about how values of a quantity are changing. We still need an account of
how students conceive change, as a measurable attribute of a varying quantity, through
establishing relations among existing quantities. Thus, we ask: how do STEM undergraduates
conceive change while constructing mathematical models for real-world scenarios?

Theoretical Underpinnings
Our research lies within the cognitive perspective of mathematical modeling (Kaiser, 2017).

In this perspective, mathematical modeling comprises the cognitive processes involved in
constructing a mathematical model for real-world scenarios. We define a mathematical model to
be a representation of the relations among conceived quantities.

Quantities are conceptual entities that exist in the mind of an individual. Thompson (1994b)
defined quantity as a mental construct of a measurable attribute. It consists of three
interdependent entities: an object, a measurable attribute, and a quantification. Quantification
involves conceiving a measurable attribute of an object and a unit of measure and forming a
proportional relationship between the attribute’s measure and the unit of measure (Thompson,
2011). Quantification takes place in the mind of an individual and, as observers, we can only use
an individual’s externalized actions to infer whether and how she has quantified an attribute.
Czocher & Hardison (2021) presented eight observational criteria that can be taken as indication
that a student has conceived measurement process for a measurable attribute of an object.

A relation among measurable attributes is established through operating on quantities.
Thompson (1994b) defines quantitative operation as the “mental operation by which one
conceives a new quantity in relation to one or more already-conceived quantities” (p.10). As a
result of a quantitative operation a quantitative relationship is created: the quantities operated
upon along with the quantitative operation are in relation to the result of operating (Thompson,
1994b). In other words, a quantitative relationship is the “conception of three quantities, two of
which determine the third by a quantitative operation (Thompson, 1990, p. 12).” Examples of
quantitative operations include combining two quantities additively, comparing two quantities
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additively, combining two quantities multiplicatively, comparing two quantities multiplicatively,
instantiating a rate, generalize a ratio, and composing two rates or ratios (Thompson, 1994b).
Thompson defined (1990) defined quantitative structure as a network of quantitative
relationships. For example, the total number of feral cats that visited a backyard during one
weekend is a quantity that may be constructed by additively combining the number of cats that
visited the backyard on Saturday and the number of feral cats that visited the backyard on
Sunday. At the same time, the total number of feral cats that visited the backyard on Saturday
during the time period 9am to 5pm is a quantity that maybe constructed by instantiating a rate of
10 cat-bird interactions per hour for 8 hours.

Borrowing ideas from the aforementioned constructs we define structural conception of
change as conceiving change as a measurable attribute of an object through forming a relation
among constituent quantities (i.e., operating on quantities). We operationalize change as a
measurable attribute of a varying quantity, that can be quantified via a quantitative relationship.
The research question addressed in this report is: In what ways do STEM undergraduates
structurally conceive change while constructing mathematical models for real-world scenarios?

Methods
We present data from a pair of 10-hour individual teaching experiments (Steffe & Thompson,

2000) conducted with undergraduate STEM majors at a large university. The overall goal of the
teaching experiment was to investigate how students conceive real-world situations through
quantities and relations among quantities. Our participants, Szeth and Pai were both enrolled in
differential equations at the time of the interviews. Throughout the teaching experiment, Szeth
and Pai worked on 10 and 9 tasks, respectively, that were based on real-world scenarios. In this
report we present data from The Disease Transmission Task, The Pruning Task, and The
Population Dynamics Task. We focus on these tasks because they exemplify how Pai and Szeth
operated on quantities that they had previously constructed, to structurally conceive change.

The Disease Transmission Task: Suppose a disease is spread by contact between sick and
well members of the community. If members of the community move about freely among each
other, develop a mathematical model that informs us about the dynamics of how the disease
would spread through the population.

The Pruning Task: Imagine you have a hedge in your garden of some size, , and you want it𝑆
to increase its size even more. You hire a gardener for some advice on growing this particular
plant. She advises you that the overall rate of growth will depend both on the extent of pruning
and on the regrowth rate, which is particular to the plant species and environmental conditions.
Both rates can be measured as a percentage of the size of the plant. The pruning rate can be
adjusted to result in a target overall growth rate. Can you derive a model for the rate of change of
the size of the plant?

The Population Dynamics Task: Suppose in a laboratory setting, we are looking at large
populations of breeding stock in which individuals give birth to new offspring but also die after
some time. Suppose that on average each member of the population gives birth to the same
number of offspring, α, each season. The constant α is called per–capita birth rate. We also define
β as the probability that an individual will die by natural causes before the next breeding season
and call it the per-capita death rate. Construct a mathematical model that describes the dynamics
of this population.

The interviews were retrospectively analyzed to construct second-order accounts (Steffe &
Thompson, 2000) of students’ reasonings via inferences made from students’ observable
activities such as verbal descriptions, language, written work, discourse, and gestures. The
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retrospective analysis consisted of multiple passes of through the data to arrive at examples that
illustrate the different ways Szeth and Pai structurally conceived change. First, we watched the
videos in MAXQDA in chronological order and paraphrased each interview by chunks. Next, we
created accounts of students’ mathematics and the reasons they attributed to their mathematics.
Next, we went over the accounts we created and the videos at the same time and refined our
accounts by adding details using theories from quantitative and covariational reasoning. We
credited a student to have instantiated a quantity if we were able to infer from his reasonings that
he had conceived an object, attribute, and a measurement process for the attribute. As evidence
of student to have conceived a measurement process, we checked if at least one of the
quantifications criteria was met (see Czocher & Hardison, 2021). We used segments of
transcripts, where the students engaged in quantitative reasoning along with inscriptions and
gestures as evidence for our claims. Next, from these accounts, we selected instances where the
students engaged in structurally conceiving change. Next, while watching the videos and going
over our accounts of students’ structural conception of change, we further refined our accounts
by adding details of how Pai and Szeth operated on constituent quantities to form a relation in
order to conceive change. Next, we went through our accounts of Pai’s and Szeth’s structural
conception of change and observed any patterns, in terms of operation on constituent quantities,
that were consistent throughout the sessions. We made note of them by summarizing the pattern.
We watched the videos in their entirety again and made sure all of the different ways of
conceiving change were recorded. Finally, we refined our second-order accounts by seeking
clarification on utterance and gestures to support our claims on Pai’s and Szeth’s structural
conception of change. We present some of these second-order accounts below.

Findings
Pai structurally conceived change as accrual and as the additive comparison of quantities. In

contrast, Szeth structurally conceived change as an instantiation of rate. I illustrate these
structural conceptions using Pai’s work from The Disease Transmission Task and The Pruning
Task and Szeth’s work from The Population Dynamics Task.

Change as the Accrual
Conceiving change as the accrual entails an image of accruing the amounts at different points

in time, by additively combining the amount present before and the amount that was newly
added. In The Disease Transmission Task, Pai constructed the expressions in Figure 1 to
represent the change in healthy people and change in infected people.

Figure 1. Pai’s expression for the change in infected people and change in healthy people

After Pai constructed the above expressions, we asked him by how much the infected people
would change. The goal of this question was to document how Pai was distinguishing between

and , because these two quantities carried the same meaning to"∆ 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑜𝑝𝑙𝑒" 𝐼(𝑡)∙ℎ(𝑡)∙α
us. Interestingly, Pai said that the “increase [in infected people]” was . Even though𝐼(𝑡)∙ℎ(𝑡)∙α
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we used the term change when we asked him by how much the infected people changed, Pai
replied with the “increase” in infected people. We interpret that Pai associated two different
meanings to the attributes change and increase of the infected people, while he continued to
associate change in infected people with expression B in Figure 1. This interpretation was further
evidenced in the excerpt below.

Pai: Well, yeah. Change in the infected people is the base infected people at time , plus𝑡
those again, infected at time . And this is just an increase. . Is going to be less𝑡 ℎ(𝑡)∙𝐼(𝑡)∙α
than... You're going to be adding this to...to the base population.

Interviewer: Okay. I see. So yeah, you are seeing the delta infected people as the change in
that sense, the total number of infected people that would be at the end of an infectious
period?

Pai: Right.
Interviewer: Whereas the other one, how much... How many are getting infected that you

have to add to the base.
Pai: Yeah, it's the increase, but just the increase of people infected in this time period.
Interviewer: Okay.
Pai: Maybe I could write that better saying this is the people infected in time period 𝑡

[pointing at the expression . That was a better statement of it. Like peopleℎ(𝑡)∙𝐼(𝑡)∙α]
infected... Well, people infected... In current period . Whereas is just how much we𝑡 𝐼(𝑡)
had already. Initially, before interactions with other healthy people. If that makes sense.

From the above excerpt, we interpret that Pai quantified change in infected people and
increase in infected people differently. While Pai quantified the change in infected people as the
“base population” plus how many more got infected, he quantified the increase in infected
population as just the how many more people got infected, which to him was .ℎ(𝑡)∙𝐼(𝑡)∙α

Pai continued to reason as to why expression B in Figure 1 represented the change in infected
people as “cause that's a change in two - over two time periods because you're adding one. Cause
you're adding another time period.” From his reasoning, we interpret that Pai imagined to be
representing the change in infected people as an accrual of the infected population at different
points in time. For Pai, represented the change in infected population as an𝐼(𝑡) + ℎ(𝑡)∙𝐼(𝑡)∙α
accrual of the amounts of infected people across a progression of time. On the other hand, for
Pai, represented increase in infected people during the moment of interest.ℎ(𝑡)∙𝐼(𝑡)∙α
Therefore, Pai structurally conceived change in infected people as the additive combination of
the amount of infected people present at the beginning of the moment of interest and amount of
people that got infected at the moment of interest.

Change as the Additive Comparison of Quantities
Structurally conceiving change as the additive comparison of quantities entails constructing

change in the amount during a time period [ , ] as the additive comparison of the amounts at𝑡
1

𝑡
2

𝑡
1

and , respectively. In The Pruning Task, Pai constructed the following expressions to represent𝑡
2

the size of the plant at the end of the first and second pruning periods, respectively.
𝑆

1
=  𝑆

0
− 𝑝 𝑆

0( ) + 𝑟 𝑆
0( )

𝑆
2

=  𝑆
1

− 𝑝 𝑆
1( ) + 𝑟 𝑆

1( )
In the above expressions, Pai defined as the size of the plant at the beginning of the first𝑆

0
pruning period, as the size of the plant at the end of the first pruning period, as the size of𝑆

1
𝑆

2
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the plant at the end of the second pruning period, as regrowth rate of the plant, and as the𝑟 𝑝
extent of pruning. After constructing the above expressions, Pai constructed the expression
below to be the change in size of the plant during the second pruning by additively comparing
the quantities and .𝑆

1
𝑆

2
 

∆𝑆 =  − 𝑝 𝑆
1( ) + 𝑟 𝑆

1( )
Next, Pai constructed a general expression for the change in size of the plant during any pruning
period of 1 unit, to be the following expression.

(1)∆𝑆 =  − 𝑝 𝑆
𝑡( ) + 𝑟 𝑆

𝑡( )
In the above expressions, Pai structurally conceived the change in size of the plant during a
particular period by additively comparing the sizes of the plant at the beginning and end of the
particular pruning period. Pai’s structural conception of change, in this manner was also
prevalent in the remaining of his work in this task. We illustrate this episode below.

Pai started working on deriving an expression for the rate at which the size of the plant was
changing with respect to time. As Pai was not sure how to proceed, the interviewer directed him
to derive an expression for the change of plant’s size during a pruning period of length . The∆𝑡
intent of this question was to guide Pai towards thinking of the average rate of change of the size
of the plant and how it can be manipulated to derive the instantaneous rate of change. Pai
constructed the expression below to represent the change in size of the plant during two
successive pruning periods.

(2)∆𝑆 =− 𝑝∙ 𝑆
𝑡+1( ) + 𝑟∙ 𝑆

𝑡+1( ) − − 𝑝∙ 𝑆
𝑡( ) + 𝑟∙ 𝑆

𝑡( )( )
Although expression 2, for Pai, represented the change in size of the plant during two successive
pruning periods, normatively it represents how much more the plant changed in size than the
previous pruning period.

The interviewer emphasized to Pai that expression 1 is the change in size of the plant during
any one pruning period and asked what the change in size of the plant would be during two such
pruning periods, given that the change is the same for each pruning period. The intent of the
question was to give Pai the opportunity to structurally conceive overall change during two
successive pruning periods as the additive combination of the changes in size of the plant, during
each pruning period. However, Pai was still referring expression 2 to as the change in size of the
plant during two pruning periods. Pai gave the following reasoning:

Pai: Because it's a change of the size of the plant over two periods. This is the change of...
It's the second pruning period, [pointing at , minus the initial𝑡 + 1 − 𝑝 𝑆

𝑡+1( ) + 𝑟 𝑆
𝑡+1( )]

pruning period change [pointing at ].− 𝑝 𝑆
𝑡( ) + 𝑟 𝑆

𝑡( )
When the interviewer pointed out that expression 2, to her, represented a “change minus
change,” Pai recognized expression 2 did not achieve his goal.

In an attempt to reduce Pai’s cognitive load and to aid in unpacking his conception of change,
the interviewer modified the scenario to be such that the change in size of the plant during a
pruning period would be a constant instead of . The interviewer asked Pai what the changeβ ∆𝑆
in size of the plant would be over two time periods, given that is the change during eachβ
pruning period. Pai said that it would be “The beta of the second pruning period minus beta of
the first pruning period”. This again serves as evidence that Pai’s structurally conceived of
change as the additive comparison of quantities.

The interviewer pointed out to the fact the quantity he constructed – “the beta of the second
pruning period minus beta of the first pruning period” – was change in change. She asked what
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the overall change would be from the beginning of the first pruning period to the end of the
second pruning period. Pai’s responded with “You take the end, the change... Well, take the size
at the end of period two minus the size of initial before period one. That's overall change.”
Again, Pai was only measuring the attribute change in size of the plant through comparing the
sizes of the plant at different times.

To circumvent Pai’s thinking of change as “beta of the second period minus beta of the first
period” the interviewer shifted his focus to the quantities . The interviewer asked Pai that𝑆

1
,  𝑆

2
given and so on, what the total change in size of the plant be fromβ =  𝑆

2
−  𝑆

1
= 𝑆

3
− 𝑆

2
,  

the beginning of the first pruning period to the end of the third period. To that, Pai answered
(Figure 2, point A). The fact that Pai was still considering the difference between and𝑆

3
− 𝑆

1
 𝑆

1
 

(instead of to find the change in size of the plant confirms our conjecture that his𝑆
2
 β + β) 

structural conception of change predominantly entails the additive comparison of the amounts at
different points in time. When the interviewer asked him what was in terms of , Pai𝑆

3
− 𝑆

1
β

solved for the system of linear equations to get . He attained through comparing the 2β 2β
quantities and and not by adding the during each compounding period (See Figure 2).𝑆

3
 𝑆

1
β'𝑠

Only after arriving at , Pai realized that it is “two changes in size ”.2β β

Figure 2. Pai additively compared the sizes of the plant at different times to evaluate the change in size of the plant

Change as the Instantiation of Rate
Structurally conceiving overall change as instantiation of change entails constructing overall

change through multiplicatively combining the change during an interval of one unit of time and
the length of the time period. In The Population Dynamics Task, Szeth constructed the
expression in Figure 4 to represent the “size of the population at time t.”

Figure 4. Szeth’s expression for the size of the population at time t

In the expression in figure 4, Szeth defined as the “size of the population at time ,” as𝑃(𝑡) 𝑡 𝑃
0

the population “that is already there” and and were given in the task as the per-capita birthα β
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rate of the population and the per-capita death rate of the population of the population,
respectively. In the above expression in Figure 4, Szeth nominalized as “how much it(α − β)∙𝑡
[the population] is growing by,” and as the change in the population during one∆𝑃 = α − β
season. Szeth explained that he multiplied by because he wanted a “method within theα − β 𝑡
equation for it to iterate over time [because ] is based on the one season.” When Szethα − β
referred to as “based on one season” and denoted , Szeth conceived theα − β ∆𝑃 = α − β
change in the size of the population during an interval of one unit of time as . Then∆𝑃 = α − β
to construct overall change in size of the population during a time period, Szeth multiplicatively
combined the net change in the population during an interval of one unit of time and the length of
the time duration. For Szeth, the length of the time duration was from to .𝑡

𝑖
= 0 𝑡

𝑓
= 𝑡

Discussion
We presented three examples of differing ways that Pai and Szeth structurally conceived

change in terms of operating on constituent quantities. Structurally conceiving change as the
accrual entails constructing an image of accruing the amounts at different points in time, by
additively combining the amount present before and the amount that was newly generated.
Structurally conceiving change as the additive comparison of quantities entails constructing
change in the amount during a time period [ , ] as the additive comparison of the amounts at𝑡

1
𝑡

2
𝑡

1
and . Finally, structurally conceiving overall change as instantiation of change entails𝑡

2
constructing overall change through multiplicatively combining the change during an interval of
one unit of time and the length of the time period.

In The Disease Transmission Task, Pai structurally conceived change in as an accrual through
additively combining the amount of infected people at the beginning of the moment of interest
and the amount of people who got infected at the moment of interest to construct the change in
the amount of infected people. However, in The Pruning Task, despite the interviewer’s efforts in
having Pai to construct change in the size of the plant during two pruning period through
additively combining the change in the size of plant during each pruning period, Pai consistently
constructed change as an additive comparison of quantities. We conjecture that Pai had a strong
preference for structurally conceiving change as the additive comparison of quantities, that he
dropped the situational attributes of the quantities operated on and the resultant quantities were
measuring. In contrast, Szeth structurally conceived change as an instantiation of rate where he
unitized the change in size of the population and then multiplied the unit change by the length of
the time period.

Knowing the different ways students structurally conceive change provides insights about the
mathematical decisions students make during their mathematical modeling activities. This
knowledge has implications for the teaching of mathematical modeling. For example, for a
student who structurally conceives change as an instantiation of rate, like Szeth, the construction
of instantaneous rate of change – typically the desired output while modeling dynamic situations
– can be scaffolded by first constructing the change during a time period to the average rate of
change during a time period, and finally to the instantaneous rate of change by considering
infinitesimally small time periods. For someone who conceives change as an accrual, like Pai,
focusing on the amount increased/decreased may yield favorable modeling outcomes. As
quantities are building blocks of a mathematical model (Larson, 2013), understanding how
students operate on existing quantities to construct a new quantity informs researchers and
educators where and how to intervene in the students’ mathematical modeling process.
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A Case of a Computational Setting Facilitating Empirical Re-Conceptualization 
 

 Adaline De Chenne Elise Lockwood 
 Oregon State University Oregon State University 

The use of computer programming is ubiquitous for research mathematicians, and two common 
practices are facilitation of experimentation and testing of conjectures. These practices align 
with empirical re-conceptualization, which is the process where empirical data is used to identify 
patterns, form related conjectures, and then re-interpret the conjectures from a structural 
perspective. However, literature on empirical re-conceptualization has only examined student 
work done by hand. We present case study data of one student, Allen, using the programming 
language Python to facilitate empirical re-conceptualization as he found the closed-form 
solution for binomial coefficient C(n,k). We discuss why the computational environment was 
productive for empirical re-conceptualization and provide avenues for future research. 

Keywords: Computation, Re-Conceptualization, Combinatorics, Generalization 

Introduction, Motivation, and Relevant Literature 
Mathematics as a discipline has adopted computation to progress research that has 

historically been performed by-hand, to provide additional insights into existing theory, and to 
pursue new solution methods for difficult problems. As computation—which, for our purposes, 
refers to the use of a computer to carry out, or otherwise assist in, a solution to a mathematical 
task—becomes increasingly ubiquitous in the discipline, there has been a push by mathematics 
education researchers for investigations into the interplay between computational environments, 
mathematics, and students. This has included investigating how computational environments can 
be used to facilitate conceptual development in novel and complementary ways (e.g., Sand et al., 
2022), how to assess student use of computation (e.g., Buteau & Muller, 2017), how computer 
programming informs student affect towards mathematics (e.g., Purdy & Lockwood, 2020), and 
how further research might benefit from theoretical perspectives that accommodate the 
increasing relevancy and diffusion of computing into mathematics (e.g., diSessa, 2018). 
Computing is now an authentic mathematical practice (Lockwood et al., 2019), and as 
mathematics education research seeks ways to foster student development of authentic 
mathematical practices across subject areas, we feel there is an opportunity to do so for 
computing. Specifically, Lockwood et al. (2019) identified ways in which mathematicians use 
computing in their work. In this paper, we build on two possible ways students can use a 
computational environment that align with those identified in Lockwood et al., (2019): to 
facilitate experimentation, and to test conjectures.  

Experimenting and conjecturing align with the concept of empirical re-conceptualization 
(ER) (Ellis et al., 2022), which is “the process of identifying a pattern or regularity, forming an 
associated generalization, and then re-interpreting those findings from a structural perspective” 
(p. 2). As yet, the literature on ER has only examined student work performed by hand. This 
work includes either the researchers providing a data set for students to study and conjecture 
about, or the students creating the data set themselves. We feel that a computational environment 
can facilitate ER by providing the means to quickly produce large data sets in ways that are 
intractable by hand, and to test the veracity of conjectures over these data sets. Moreover, this 
provides an opportunity to investigate how a computational environment can be used in 
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problems students are capable of solving while still having them engage in practices that are 
authentic to the discipline.  

In this paper, we seek to demonstrate an instance of a computational environment facilitating 
ER for a student, Allen (a pseudonym), as he finds a closed-form expression for the binomial 
coefficient, C(n,k), by writing computer code in Python. We will show that Allen used the 
computational environment to create data sets based on the parameters n and k, and he used the 
data sets to iterate between creation and validation of conjectures. In doing so, we hope to 
contribute to the literature on computation in mathematics education, and to the literature on 
conjecturing and generalization, by documenting one way that a computational setting can be 
used to open the door for students to engage in mathematical generalization. We also contribute 
to the literature on combinatorics education by discussing how Allen’s counting process for 
C(n,k) involved enumerating and tallying the entire set of outcomes, and discussing how he had 
difficulty connecting his counting process to the closed-form expression. This paper addresses 
the research question “In what ways might a computational setting facilitate empirical re-
conceptualization (ER) as students find closed-form expressions for binomial coefficients?”  

Theoretical Perspective on Empirical Re-Conceptualization 
Curricular development and mathematical reasoning hierarchies expect students to move 

from empirical toward deductive reasoning, and they broadly frame empirical reasoning as less 
sophisticated than deductive reasoning, or as a stumbling block to overcome. This is justifiable, 
as empirically-found patterns can be faulty, lack explanatory power (Bills & Rowland, 1999), 
and students may overly rely on a small number of cases to check the validity of mathematical 
statements (Knuth et al., 2009). Yet, students can be adept at empirical patterning (Küchemann, 
2010), and they demonstrate dynamic interplay between patterning empirically and arguing 
deductively, just as mathematicians do (de Villiers, 2010). Because students have difficulty 
shifting from empirical to deductive reasoning (e.g., Stylianides & Stylianides, 2009), there is 
motivation to search for ways of leveraging the productive aspects of empirical reasoning in 
order to enhance, or otherwise inform, deductive reasoning. As an example, empirical reasoning 
can give insight into a problem’s structure in a way that supports deductive reasoning. Further, 
students flexibly reason between multiple representations when reasoning empirically (Amit & 
Neria, 2008), which can be beneficial for deductive reasoning. Ellis et al. (2022) propose the 
concept of ER as one way that empirical reasoning can be leveraged to enhance deductive 
reasoning.   

Empirical re-conceptualization is “the process of identifying a pattern or regularity, forming 
an associated generalization, and then re-interpreting those findings from a structural 
perspective” (Ellis et al., 2022, p. 2). A structural perspective refers to the last four categories of 
structural reasoning as described by Harel and Soto (2017), whose five major categories are (a) 
pattern generalization, (b) reduction of an unfamiliar structure into a familiar one, (c) 
recognizing and operating with structure in thought, (d) epistemological justification, and (e) 
reasoning in terms of general structures. The first category further elaborates the difference 
between result pattern generalization (RPG), which is a way of generalizing that attends only to 
results, and process pattern generalization (PPG), which is a way of generalizing that attends to a 
process (Harel, 2001). Generalizations formed through empirical reasoning are examples of RPG 
because only the results (i.e., the empirical data) are used to create the generalization. A 
structural perspective refers to the other four categories of structural reasoning. ER can thus be 
evidenced by a shift from RPG to PPG, which entails a shift from pattern generalization to any of 
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the other four categories. In this study, we use this notion of ER to frame our student Allen’s 
work, and we highlight the ways in which the computer supported Allen’s ER. 

Methods 

Participants and Data Collection 
The data presented here are from a teaching experiment (TE) (Steffe & Thompson, 2000) 

that consisted of 3-4.5 hours of contact time each with four students in 60- to 90-minute 
interview sessions over the course of several weeks during a single academic term. This TE is 
part of a broader study that aims to investigate how a computational environment can be 
leveraged to enrich student understanding of mathematics. We focus on a single student, Allen 
(pseudonym), who was an Electrical and Computer Engineering major recruited from an 
introductory computer science course at a large university in the western United States. We 
chose Allen based on his responses to a recruitment questionnaire, which indicated that he had 
never taken a discrete mathematics course, and he exhibited a strong computer science 
background. We interviewed Allen in person over three 90-minute sessions, and we focus on the 
last session in this paper. We chose these data because they exemplify using computational 
techniques to engage in ER through experimentation and conjecture validation in a sophisticated 
way. Indeed, Allen’s mastery of fundamental computer science ideas indicates that most students 
would not produce similar results, but we nevertheless believe our findings have useful 
theoretical implications about using computer programming to engage in ER. For example, our 
findings might speak to how future studies could create tasks and scaffolding intended to elicit 
generalizing activity, such as ER, in a computational setting.  

During the TEs, the students sat at a desk and worked individually on a desktop computer in 
the programming environment CoCalc. CoCalc is an online-supported application that allows 
users to write in Jupyter notebooks, which include cells where Python code can be written and 
executed. Jupyter notebooks allowed the students to write separate pieces of code for each task, 
or multiple pieces of code for a single task, and to quickly reference code they had previously 
written. We also gave them paper handouts of the problem statements and provided a brief 
introductory guide to Python syntax. To capture the interviews, we videotaped and audiotaped 
the interviews, took screen recordings of the desktop computer, and scanned the students’ hand-
written work. 

Tasks 
Allen worked on a number of counting problems that involved finding the solution by hand, 

and writing a computer program that enumerates and tallied all possible outcomes. Throughout 
the TE, he worked on problems involving Cartesian products, arrangement with repetition, 
arrangement without repetition, and one problem involving selection without repetition. Allen 
used the multiplication principle to solve these problems by hand (with the exception of the 
selection without repetition problem), and his computer programs used nested for loops to 
implement an odometer strategy, similar to those reported by De Chenne and Lockwood (2022).  

We focus on his work on the Book Problem: “Suppose you have eight books and you want to 
take three of them with you on vacation. How many ways are there to do this?” The solution to 
this problem is C(8,3) = 56, the number of ways to select (without arrangement), three of eight 
books. We chose these data because Allen initially solved the problem incorrectly, and after 
finding the correct solution he decided to search for patterns between his initial incorrect answer 
and the correct answer. The pattern he found made him curious about how the pattern would 
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change with different parameter values, and Allen engaged in ER ultimately to find a closed-
form expression for the binomial coefficient, C(n,k). We elaborate on Allen’s solution, and his 
ER, in the Results section.  

Data Analysis 
We chose this episode because it demonstrates an instance of a computational setting 

facilitating ER. The first author identified key moments where Allen used his computer programs 
to reason empirically about the relationship between C(n,k) and P(n,k). She then created an 
enhanced transcript of the episode by including pictures of Allen’s work and screenshots of the 
computer programs he wrote. This analytic process allowed us to make a narrative of Allen’s 
reasoning about C(n,k) as it relates to P(n,k), and capture instances of conjecturing, validating 
conjectures, and re-conceptualizing the empirically-found patterns. Finally, both authors 
reviewed the enhanced transcript and identified ways in which Allen’s work with the computer 
demonstrated instances of ER. 

Results 
We first provide a chronological narrative of Allen’s work finding a closed-form expression 

for the binomial coefficient, C(n,k). Then, we discuss three ways in which the computational 
environment facilitated the ER: (1) isolating generalizable relationships, (2) generating data, and 
(3) validating conjectures.  

Allen began his work on the Book Problem (stated above). The correct solution to this 
problem is C(8,3), the number of ways to select three of eight books, but Allen’s initial solution 
was P(8,3) = 8*7*6 = 336, the number of ways to arrange three of eight books. The first author 
asked him how he would verify if his solution was correct, and Allen verbally described a 
computer program that would enumerate the outcomes. The computer program he described 
enumerated all arrangements of the books, which was consistent with the numerical solution he 
found, but was incorrect because it overcounted the outcomes. The first author asked him to 
write down the first ten outcomes his computer program would produce. When he wrote down 
these outcomes, Allen noticed that the computer program he described would produce both 1,2,3 
and 1,3,2, which represent the same outcome. Based on his realization that 1,2,3 and 1,3,2 
represent the same outcome, we infer that Allen understood that different arrangements of the 
same three books do not constitute different outcomes in this problem.  

After realizing his error, Allen was unable to find a closed-form expression that correctly 
counted the outcomes, but he was able to write a computer program that would correctly 
enumerate all the outcomes. To do so, he modified his enumeration strategy for arrangements so 
that a length three number sequence was enumerated only if the numbers in the sequence were in 
increasing order, as seen in Figure 1. This modification ensures a unique order for any length 
three number sequence, and so each combination is only counted once. Allen justified this 
modification by stating “Say I pick book number 5 as my second book. I don’t need to pick book 
1, 2, 3, 4, or 5 [as the third book] in that case, so I’d only have three books to choose from.” 
After executing his code, Allen found that the correct answer was one sixth of his original, 
incorrect answer; that is, Allen found that P(8,3) = 6*C(8,3).  

After finding that his initial solution was six times greater than the correct solution, Allen 
stated 

Allen: That’s interesting, 8*7 is 56 … Completely the third value [the value 6 in 8*7*6] 
didn’t even really matter it looks like … I just want to see if bringing the total number of 
books down by one, does that make it equal 7*6? Is there a relationship there?  

25th Annual Conference on Research in Undergraduate Mathematics Education 497



This is the first instance where Allen reasoned empirically about a generalizable pattern. He 
noticed that his initial solution was 8*7*6 and the correct solution was 8*7, and he conjectured 
that C(7,3)=7*6. We infer that Allen’s conjectured pattern was that the correct answer could be 
found by first finding his original answer, and then removing the last term in the product. Hence, 
because P(7,3) = 7*6*5, Allen conjectured that C(7,3) = 7*6 because the term 5 would be 
removed. This is an instance of RPG because Allen found the numerical pattern based solely on 
the results, and he did not provide structural reasoning that justified the pattern, or connect the 
pattern to his computer program. Allen modified his computer program to find C(7,3), seen in 
Figure 1, and he found that C(7,3) = 7*5. After observing that P(7,3) = 6*C(7,3), and the ratio 
was not 5 as he anticipated, Allen conjectured that P(n,3) = 6*C(n,3) for every value of n. This 
conjecture is another example of RPG because he justified the pattern based only on the 
observed results. To validate this conjecture, Allen wrote a function that would return the ratio 
for an input value of n (which is called ‘book’ in his code), and he used the function to check that 
the ratio was 6 for all n values up to 21. After validating this conjecture for those n values, Allen 
concluded that the ratio was 6 for all n values. 
 

 
Figure 1: Allen’s computational solutions for C(8,3), C(7,3), C(6,3), and C(n,3). 

Allen then conjectured how the ratio of P(n,k) to C(n,k) would change for other values of k. 
To generate a conjecture, Allen observed that 6=2*3, and he connected the 3 in the product to 
the parameter value 3 in C(n,3). He conjectured that P(n,4) = 12*C(n,4) because 12 = 4*3. This 
is another instance of empirical patterning, as Allen did not provide, or search for, structural 
justification for why the parameter value 3 was connected to the ratio. To validate his conjecture, 
Allen modified the function he previously wrote for C(n,3) to calculate C(n,4). This modification 
did not appear to be difficult for Allen, and he made the appropriate changes without prompting 
by the researchers. Using this function, Allen found that P(n,4) = 24*C(n,4), which was not the 
ratio he anticipated. He then characterized the change in ratio from 6 to 24 as a multiplication by 
22, not as multiplication by 4, which we take as further evidence that Allen was empirically 
patterning based on the 2 in the original product 6 = 2*3. Allen then conjectured that P(n,5) = 
40*C(n,5), where the 40 = 23*5. This is another example of RPG, where Allen generalized the 
results (factors of 2) without structural justification. However, after further modification of his 
code to calculate C(n,5), Allen found that the correct ratio was 120. 
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At this point, Allen had found that P(n,3) = 6*C(n,3), P(n,4) = 24*C(n,4), and P(n,5) = 
120*C(n,5), and he observed that 24 = 6*4, and 120 = 24*5. Based on these results, he then 
conjectured that “my next guess would be 120 times six, which would be 720,” which is to say 
that he conjectured P(n,6) = 720*C(n,6). This is correct, and in describing the pattern he states 
“What I noticed is each time you go up, you multiply by the next number. So 6 times 4 equals 
24, which multiplied by 5 equals 120, which multiplied by 6 equals 720.” To formalize his 
conjecture regarding the ratio between P(n,k) and C(n,k) for any parameter values n and k, Allen 
wrote the expression in Figure 2, which he characterized as his original solution, P(n,k), divided 
by k!. Although he had found the correct closed-form expression for the binomial coefficient, he 
had done so solely through empirical patterning. The first author asked Allen why dividing by k! 
might yield the correct solution. Allen recognized that k! represents the number of ways to 
arrange k objects, which he used as justification for why dividing by k! yields the correct answer. 
We view this justification as a shift from RPG to PPG because Allen moved from using 
empirical results to create patterns, to justifying those patterns structurally by arguing how the 
mathematical expression connects to the outcomes he was counting. Hence, this episode 
demonstrates ER because it presents an instance of finding a pattern (a constant ratio between 
permutations and combinations), forming an associated generalization (the closed-form 
expression for the binomial coefficient), and re-interpreting the generalization from a structural 
perspective (justifying the ratio based on the outcomes being counted).  

 

 
Figure 2: Allen’s closed-form expression for the binomial coefficient 

Having presented Allen’s work, we now discuss three ways in which the computational 
environment facilitated the ER: (1) isolating generalizable relationships, (2) generating data, and 
(3) validating conjectures. Together these highlight specific ways in which the computational 
environment served to support this practice of ER. 

Isolating Generalizable Relationships 
Allen’s generalizing activity in this TE centered on the relationship between P(n,k) and 

C(n,k), which is the relationship between a mathematical expression he found by hand, and a 
numerical solution he found computationally. Because C(n,k) is a 2-variable function, isolating 
this relationship required understanding the relationship as both variables changed. In Allen’s 
code, the variable k was hardcoded as the number of for loops, while the variable n was an 
assigned integer. Allen could easily change the value for n, which he used to his advantage by 
cycling through values of n in a for loop and observing the relationship between P(n,k) and 
C(n,k) for a fixed value k. However, changing the value for k required writing a new function, 
which can explain why Allen only examined the relationship for k = 3, 4, 5, 6. Having the two 
variable values manifested differently in the computer programs may have been beneficial, as it 
forced Allen to only change one variable value at a time. Creating conjectures that generalize the 

25th Annual Conference on Research in Undergraduate Mathematics Education 499



effect of changing one value while keeping the other constant may have been easier than if he 
had the ability to change both variable values simultaneously. 

Generating Data Sets 
Allen wrote computer programs to generate sets of outcomes that are intractable to write by 

hand. To do so, he was required to engage with the sets themselves, as generating them required 
creating an algorithm that enumerated every outcome. His conjectures evolved as he generated 
each data set, which may indicate that writing the computer programs is more beneficial to ER 
than if he were given the data sets by the researchers. In addition, Allen was unsure how to 
calculate C(n,k) without writing a computer program. Hence, we posit that this episode would 
not have occurred if not for the computational environment. 

Validating Conjectures 
Much of Allen’s work iteratively moved between conjecturing and validating conjectures. 

The computational environment seemed to positively impact how he formed conjectures by 
motivating him to form conjectures that he could validate computationally. Every time Allen 
formed a conjecture, he immediately wrote a computer program to validate that conjecture. What 
Allen decided to conjecture about may have been informed by the elements of his computer 
program that seemed immediately adaptable. For example, Allen could easily change the value 
of n, and his initial conjectures formed around how n impacted the numerical solution. We posit 
that Allen’s mastery of basic computer programming allowed flexibility in how he could adapt 
his code to accommodate changes in variable values. This flexibility manifested in his 
conjecturing by allowing some flexibility in the conjectures he was able to validate. 

Discussion 
In this paper, we have attempted to demonstrate a case in which a student leveraged a 

computational environment (and his computational facility) to engage with a combinatorial task, 
particularly using the computer meaningfully to engage in ER. We see much potential for ER to 
be a useful construct in considering students’ mathematical activity (particularly relating to the 
practices of generalizing and conjecturing). In light of this, we think it is important to explore 
different aspects of this construct. Further, given the growing importance and ubiquity of 
computing in mathematics, and mathematics education, we see value in particularly exploring 
ways in which ER may be reinforced via the computer (and, reflexively, how a computational 
environment can specifically support practices such as ER). In this way, our findings contribute 
to a growing body of literature that demonstrates ways in which computational activity supports 
students’ mathematical thinking and activity. Moreover, our findings also contribute to literature 
that demonstrates students using a computational environment in sophisticated ways that reflect 
the practices of research mathematicians. 

We were fortunate in this study to uncover a case of a student leveraging the computer in a 
powerful way to support ER. Further research could more explicitly target not only instances of 
students using the computer meaningfully, but could investigate ways to support and engender 
productive use of the computer to support students’ engagement in practices such as ER.  
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Resources for Participation: Examining Multilingual Students’ Perspectives on What it Means to 

Participate in Active Learning 

 

Jocelyn Rios 

Colorado State University 

More college mathematics classrooms are adopting active learning practices like collaborative 

learning. Participation in these practices typically requires students to engage in verbal 

communication and interpersonal interactions, which are mediated by language. Despite this, 

the experiences of multilingual students have often been overlooked in the literature on active 

learning. Through analyzing interviews with 26 multilingual students, this study explores what 

participation in active learning meant to these students. It also explores the resource that 

students perceived to be necessary in order to participate in active learning, for example, being 

comfortable speaking English. Finally, this study demonstrates how classroom discourses and 

broader social discourses about language shaped students’ perceptions about participation.  

Keywords: Multilingual learners, active learning, groupwork, classroom norms and discourses 

Introduction 

Active learning has become a well-established teaching pedagogy for improving student 

learning and promoting equity in undergraduate mathematics courses. Although this approach to 

teaching includes a broad range of strategies, students in active learning classrooms are often 

expected to work on mathematics collaboratively with peers. For instance, groupwork is a 

common way that instructor choose to infuse active learning into their courses (e.g., Bennett, 

2022). Collaboration is also a core pillar of inquiry-based learning (Laursen & Rasmussen, 

2019). As such, groupwork and collaboration are often integral parts of how students experience 

active learning in undergraduate mathematics courses.  

When students work in groups, they are typically expected to participate in talk-intensive 

activities, like discussing their thinking and arguing for why their solutions are correct (see also 

Laursen & Rasmussen, 2019; Voigt et al., 2022). These activities also require interpersonal 

communication, as students learn through social interactions with others. Therefore, in active 

learning classrooms, participation is often mediated by language and communication.  

Active learning has traditionally been linked with promoting equity in the undergraduate 

mathematics classroom. Analyzing data from over 100 courses, Laursen et al., (2014) found that 

inquiry-based learning (IBL) helped remove the gender performance gap that was observed in 

lecture-based courses. However, a growing body of research, questions whether students from 

underrepresented groups experience active learning in the same way and equitably benefit from 

it (Ernest et al., 2019; Henning et al., 2019; Johnson et al., 2020; Reinholz et al., 2020). For 

instance, Ernest and colleagues (2019) demonstrated that women’s verbal contributions during 

groupwork were less likely to be revoiced in whole class discussions.  

Given the mediational role of language in active learning classrooms, students’ linguistic 

identities may also shape how they experience active learning. At the post-secondary level, 

Hwang et al. (2022) documents two contrasting cases of students (Jia and Falon) who felt 

excluded during groupwork based on their home language identity. At the K-12 level, much has 

been learned about multilingual students’ experiences with groupwork. Numerous studies have 

found that multilingual students tended to participate more in small group settings than in whole 

class discussions (Brenner, 1998; Civil, 2008; Gorgorió & Planas, 2001; Planas & Civil, 2013; 
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Planas & Setati, 2009). In addition, these findings demonstrated how normative discourse about 

language can shape power and participations structures in the classroom. Planas and Civil (2013) 

show how students in Barcelona felt the need to use the language of instruction, Catalan, in 

whole group discussions. This perception contributed to students feeling less comfortable sharing 

ideas during class.  

As globalization increases, undergraduate mathematics classrooms are becoming more 

linguistically diverse. More research is needed to better understand how multilingual students’ 

experience classroom pedagogies like active learning. To this end, the goal of this study is to 

explore multilingual students’ perceptions about what it means to participate in active learning 

and how these perceptions are influenced by social and local discourses.  

Theoretical Perspectives 

A Sociopolitical Perspective on Participation 

A situated perspective (Lave & Wenger, 1991) emphasizes the connection between learning 

and participation. That is, learning can be conceptualized as changes in students’ classroom 

participation (Sfard 2007) where, by working together, individuals access resource for 

participation and become better able to engage in activities (Wood, 2013). Building on this 

perspective, a sociopolitical approach (Gutiérrez, 2013) recognizes that power and identity shape 

how participation structures unfold in active learning classrooms. A sociopolitical perspective 

argues that learners are not always inherently positioned in the same way in relation to the 

community that they are trying to participate in (Walkerdine, 1994). For example, students 

learning English may be positioned as less intelligent and have less access to participate in 

mathematical discussions (Flores et al., 2015). Thus, participation is subject to the norms and 

discourses1 established by a social practices. These discourses constitute what is considered 

meaningful participation (Lerman, 2000). Discourses also shape what resources for participation 

are consider legitimate and lead to full participation (Barton & Tan, 2009). For instance, being 

able to formally articulate mathematical thinking is often framed as an important resource for 

participation in mathematics classrooms (Moschkovich, 2002).  

 

A Sociopolitical Perspective on Language 

Like mathematics, learning a language also requires participating in a new language 

community (Barwell, 2005). Similarly, dominant social discourses about language constitute 

what it means to be a legitimate language-user. For example, although English has become a 

lingua-franca and is spoken in many parts of the world, discourses about nativeness give 

preferential status to native speakers from western countries (Ferri & Magne, 2021). Subtirelu 

(2015) claims that these discourses operate to position groups of people as Others (i.e., different 

from the dominant group). “Nonnative” varieties of language can become socially stigmatized to 

discredit and exclude the speaker (Birney et al., 2020). Furthermore, native speakers may feel 

less obligated to “ensure successful communication” with nonnative speakers (Subtirelu, 2015, p. 

36) and less willing to listen to and meaningful engage with their verbal contributions (Rios, 

2022). A sociopolitical perspective on language recognizes that language and language status are 

inherently connected to who is afforded power in the classroom (Takeuchi, 2016) and whose 

linguistic resources are legitimized (Planas & Civil, 2013). 

 
1 Gee (2015) defines discourse as: “distinctive ways of being, doing, and saying. They are ways of using words, 

doing deeds, valuing, thinking, believing, and feeling, as well as ways of using objects, tools, and technologies that 

allow us to enact or recognize socially meaningful identities” (p. 245). 
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Research Questions 

The research questions that this study addresses are: (1) How did multilingual students 

conceptualize participation in active learning and what resources did they feel were needed in 

order to participate? (2) What discourses (both at the classroom level and more broadly) were 

relevant in shaping students’ perceptions about participation?  

Methods 

This paper draws on data from semi-structured interviews with 26 multilingual 

undergraduate students whose home languages were not English. The study took place at a 

large Hispanic Serving Institution. Eighteen of the students interviewed were international 

students (countries of origin included Bangladesh, China, India, Iran, Peru, Saudi Arabia, 

South Korea, Trinidad and Tobago, Uzbekistan, and Vietnam). The remaining students were 

either immigrants (from China or Mexico), refugees from Afghanistan, or transitional 

students who grew up near the border with Mexico and lived and attended school across both 

countries (Hamman et al., 2010). Participants were selected based on: (1) their language 

identities, and (2) their enrollment in a pre-calculus or calculus course that used active 

learning. Based on students’ descriptions during interviews, their instructors typically 

implemented active learning by having students work on math problems in groups of three or 

four during class. Therefore, in this study, active learning is operationalized to be instances 

during class where students work on mathematics collaboratively via groupwork.     

All interviews were recorded and fully transcribed. Pseudonyms were assigned to each 

participant. Data analysis focused on exploring students’ perception about participation in 

active learning and the classroom and broader social discourses that shaped these 

perceptions. To do this, a data-drive approach to thematic analysis was used (Braun & Clark, 

2006). In the first stage of analysis, transcripts were carefully read over numerous times. The 

data was then coded using an open coding system to identify instances where students talked 

about participation. Codes were categorized based on whether they reflected how 

participation was defined or a resource for participation. Descriptors of the codes were 

developed. The final step of the analysis focused on comparing, contrasting, and connections 

codes and identifying themes across the data. Although interviews were transcribed verbatim, 

the quotes presented in this paper have been modified slightly for clarity. No modification 

impacted the meaning or feel of any of the sentences in the quotes.  

Results 

Most students in this study described participating less frequently in active learning 

classrooms compared to their English dominant peers. Figure 1 illustrates how the students 

conceptualized participation in active learning: that participation meant speaking. Given this 

framing, students also shared a range of different resources that they perceived to be necessary in 

order to be active participants in the classroom. These resources were essentially personal 

attributes, like being comfortable speaking English, being extroverted, being brave, being good 

at mathematics, being aggressive, and being resilient (the font size in Figure 1 corresponds to 

how frequently each resource was mentioned during interviews). The second stage of analysis 

focused on unpacking how local classroom discourses and broader social discourses influenced 

these perceptions about participation.  

In this section, I document what participation meant to students and how this was influenced 

by local classroom discourses. Next, I discuss two of the resources for participation mentioned 

by students, being comfortable speaking English and being aggressive, and demonstrate how 
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these resources were influenced by broader social discourses about language. The first resource 

was chosen because it was the most frequently discussed and the second one was chosen because 

it represented an interesting case.   

What Participation Meant: Speaking 

During interviews, students frequently discussed classroom participation in terms of 

speaking. Whether it was in analyzing their own participation, or the participation of others, 

students generally associated participation with actions that centered verbal contributions (e.g., 

contributing ideas, responding to peer ideas, asking questions, etc.). Students shared that 

participation meant: “you basically speaking in front of everyone” (Dan, Trinidad and Tobago) 

and is “all about the group work and like I have to speak up in the class” (Sun-Hi, Vietnam).  

Students also assessed their own participation in the course based on how often they spoke. 

For instance, although Dan was invested in the mathematics he was learning, he perceived 

himself as having poor participation in his calculus course because he rarely spoke during class: 

“When I'm not engaging much I feel like shoot. Especially when we have a question we don't 

understand and the other TA comes and help us with the question, my groupmate will be the one 

asking the question, not me”. Despite being involved in groupwork, Dan was disappointed by his 

level of participation because he was not the one verbalizing the group’s question. This 

exemplifies how participation was almost always associated with verbal communication. 

Classroom Discourses about Participation. Findings also demonstrated how classroom 

norms and discourses about participation communicated to students that participation meant 

speaking. For example, students frequently discussed the teaching moves that their instructors 

used to elicit more verbal participation during class. Several instructors used cold-calling2 as a 

way to ensure that all students were contributing (verbally) to class discussions. Similarly, one 

students’ instructor did not allow groups to leave until a group member, randomly chosen by the 

instructor, explained the group’s solutions to the class. These teaching strategies, geared toward 

 
2 Cold-calling refers to randomly choosing students to answer a question or discuss their solution. 

Figure 1. How multilingual students conceptualized participation and necessary resources for participation. 
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enhancing participation, all aimed at fostering verbal participation. Therefore, these strategies 

also reinforce to students the norm that participation in the classroom is a verbal activity.  

 

A Resource for Participation: Being Comfortable Speaking English  

Students felt strongly that English was the only language that could be used in the 

mathematics classroom. Additionally, every student in the study described the importance of 

being comfortable speaking English in order to fully participate (verbally) in active learning. 

Makhmud (from Uzbekistan) shared that the “students who are more comfortable speaking 

English” are the ones that are “more engaged in the math classes” and are “more active”. Prisha 

(from India) shared how being comfortable speaking English allowed her to be an active 

participant in her group:  

If it's a monolingual classroom like we have here in [the US], it pretty much forces people to 

get out of their comfort zone if they're not comfortable talking in English. If, say I'm not very 

comfortable explaining my thought process in English, it would hinder my way of 

communicating and collaborating and it would hinder how I put myself out there, how I talk 

to my teachers, or how pretty much I express myself in the classroom /…/ I wouldn't be 

comfortable asking questions. I wouldn't be comfortable putting myself in uncomfortable 

situations, because just speaking in English alone is uncomfortable for me. 

Groupwork in math can be a vulnerable, risk-taking activity where students are expected to 

produce the “right answer” and asses the correctness of their peer’s ideas. Tamir (from 

Afghanistan) described how these activities can feel “uncomfortable”. Engaging in them when 

you are already uncomfortable speaking the language “is pretty a lot to ask from somebody”. 

This demonstrates the importance students placed on needing to be comfortable speaking English 

in order to begin (verbally) participating in active learning.   

In addition, students felt that if they were not comfortable speaking English in the classroom, 

and as a result participated less, the responsibility was on them to become more comfortable. For 

example, Leo felt more comfortable interacting in Spanish and shared that it was “intimidating to 

try to participate with others” in English. When asked what instructors could do to make 

speaking in groups feel more comfortable, he responded “It’s not something that they can do. It’s 

just something that we have to get over. It’s something we have to work on”. 

Broader Discourses about Language. In contrast, study findings demonstrated how social 

discourses about language can impact students’ comfort speaking in the classroom. When Luis 

was asked if language mattered in his mathematics classroom, he responded “It’s mainly about 

how comfortable you feel speaking English in your class when you’re not like 100% good at the 

language”. Although language is a tool for communication, this quote evidences the expectation 

students can feel to be “100% good” at English. Numerous students described “staying silent” 

during class because they were afraid of making language mistakes or speaking with an accent. 

Many students also reported experiencing negative feelings (e.g., feeling nervous, anxious, 

ashamed, scared, or embarrassed) about their own language-use because they perceived it to be 

not “good enough”:  

- I don't feel so good when I talk. I don't know it's because of I'm an international student and 

my English is not perfect. – Nader, international student from Iran  

- Sometimes I really feel like too bad [because] sometimes in classes, I can't always speak as 

fluent English. – Abril, international student from Peru  

- A lot of times I was embarrassed to use my English because I didn't think it was good 

enough. – Habib, refugee student from Iraq  
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In addition, peers and instructors were often less willing to engage with the communicative 

contributions of multilingual students. For example, Anaís (from Mexico) described how others 

“avoid” talking to people with an “English accent” and Prisha shared how others are “not very 

willing to put in the same amount of effort as they would be if somebody was more fluent in 

English”. Makhmud felt that “if you’re not good at English, it’s boring for others who are 

listening to you”. This highlights that being comfortable speaking English also reflects the 

sociopolitical contexts of the classroom and the discourses about language that often stigmatize 

the linguistic resources of non-native speakers. 

 

A Resource for Participation: Being Aggressive  

As an international student from South Korea, Sun-Hi’s prior math education experiences 

had been with traditional lecturing where students “hardly speak up in the class”. For Sun-Hi, 

active learning required students to “speak”, engage in “more participation in class and more 

interaction with instructor”, things she was “not used to”. To Sun-Hi, these practices felt “more 

aggressive” than traditional lectures. In fact, she used the word aggressive to describe active 

learning more than ten times throughout the interview. 

Sun-Hi expressed that in order to participate in the active learning classroom, students also 

needed to be aggressive. This involved “being able to engage the instructor or disagree with 

opinions or discussing about the questions”. Although Sun-Hi did not explicitly articulate why 

these forms of participation felt aggressive, she did share that aggressive students were more 

likely to be noticed by the instructor. It may be the case that when students participated, they 

seemed to be competing for the conversational floor and the instructor’s attention, which felt 

aggressive to Sun-Hi. Sun-Hi expressed wanting to become more aggressive so that she could 

also “get noticed from the instructor”. She shared: “talking with the instructor helps me a lot, so I 

think being aggressive has more benefits than not aggressive”.   

Broader Discourses about Language. Sun-Hi shared that being aggressive was hard for her. 

As a non-native speaker of English, she felt “not comfortable in English” and “not that confident 

to speak in class”. She also explained that: “When I speak up in class, I’m afraid, what if I’m 

like, I look like a silly one”. Sun-Hi worried that the way she communicated in English might be 

interpreted by others as “silly”. This again demonstrates the sociopolitical nature of language and 

its impact on students’ comfort and confidence speaking English in the classroom.  

Discussion 

By exploring the relationship between language and participation, the current study reveals 

another complexity in striving for equity using active learning. Study findings suggest that 

classroom discourses had an impact on how active participation in the classroom was 

characterized. By overemphasizing verbal participation (in English), instructors created a narrow 

window of what active participation could look like (i.e., someone who speaks regularly during 

class), which had the tendency to exclude language diverse students. Other forms of 

participation, like writing, listening, gesturing, participating in embodied activities that utilize 

materials (Nemirovsky & Ferrara, 2009), and communicating using home languages should also 

be recognized as valid ways that one can be an engaged member of the classroom (see Figure 2).  

Furthermore, conceptualizing participation as speaking established a narrowly defined set of 

available resources for participation. This is particularly true in the context of multilingual 

students, given the stigma they often navigated in relation to their language identity. For 

example, discourses about language seemed to suggest to students that only English should be 
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used for communication in the mathematics classroom. This became a missed opportunity for 

students to leverage their home language in their mathematical sensemaking.  

Multilingual students also overwhelmingly perceived being comfortable speaking English in 

the classroom as a necessary resource for active participation and felt it was something they 

needed to continue developing. Fitri and Aeni (2021) state that the talk-intensive nature of active 

learning can help multilingual students practice speaking and feel more confident doing so in the 

classroom. While this may be true, the responsibility should not be exclusively placed on 

students for becoming more comfortable speaking. As the data in this study revealed, the 

sociopolitical realities of the classroom cannot be ignored. The ability to feel comfortable 

speaking English in the classroom encompasses more than just language skills, as students also 

often navigate accent bias, lack of access to peers who are willing to communicate with them, 

and so forth. Therefore, instructors must be aware of the complexities involved with developing 

comfort speaking in the classroom and work to establish norms that push back on these 

discriminatory discourses. 

 The set of resources for participation that students described were often personal attributes 

they did not possess, but felt they needed to develop (e.g., become more comfortable speaking 

English in the classroom, become more extroverted, etc.). If instructors work to create more 

inclusive classroom norms (i.e., norms that validate all students’ linguistic resources and expand 

what counts as legitimate classroom participation), then the set of available resources for 

participation will likely become more inclusive. Ideally, these resources will embody things that 

students bring into the classroom (e.g., speaking in their home language, being able to visually 

express or gesture their understanding). Exploring this can be an area for future research efforts. 

Finally, Sun-Hi and other international students described numerous cultural differences they 

experienced navigating active learning in their mathematics classrooms. Although all students 

might struggle to adjust to active learning pedagogies, international students might find certain 

norms and practices very different from previous classroom experiences. Making explicit some 

of the norms of participation and being mindful of other cultural practices can help students 

adapt to the new classroom environment. 

Figure 2. A reimagined and more inclusive model for conceptualizing classroom participation. 
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Engineering Instructional Practices to Better Support Access and Participatory Equity in 
Authentic Proof Activity 

Kathleen Melhuish Kristen Lew Paul C. Dawkins 
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Sharon K. Strickland Cody Patterson 
Texas State University Texas State University 

The Orchestrating Discussion Around Project (ODAP) was conceived of as an investigation into 
how instructors might support a student-centered classroom with aims of engaging students in 
authentic mathematical proof activity. The design-based research focused on engineering tasks 
and specific high leverage teaching practices to promote student engagement with three focal 
proofs in Abstract Algebra. In this report, we share a series of project learnings related to 
supporting students in accessing formal proof activity and promoting more equal participation 
amongst students. We focus specifically on how complex task launch, structuring group work, 
and working with student ideas in whole class discussion may be shaped to support more 
students in authentic mathematical proof activity. 

Keywords: design-based research, teaching practices, participatory equity, proof 

In the United States, there has been a substantial push for undergraduate mathematics classes 
to become more student-centered. To this end, several researchers have developed curriculum 
materials that provide resources for instructors to promote active engagement in classes. In the 
context of upper division proof-based courses, these innovations often exist within the inquiry 
paradigm (inquiry-oriented to inquiry-based) where students engage actively in constructing and 
presenting proofs, or in reinventing abstract definitions and theorems. In general, the field is in 
consensus that more active classes support deeper learning (Freeman et al., 2014). Others have 
suggested that active classes or in some cases inquiry in particular can lead to more equitable 
learning environments (Laursen et al., 2014; Tang et al., 2017; Theobald et al., 2020). Yet, others 
have argued that instruction geared towards inquiry can also open space for more inequitable 
interactions as students become more actively involved (Brown, 2018; Ernest et al., 2019). 
Recent large-scale results reflecting a performance disparity between men and women on a 
group theory concept assessment (Johnson et al., 2019) in inquiry classes has raised questions 
about how such instruction may alleviate or exacerbate inequity in classroom environments. That 
is, when classrooms are opened to be more student-centered, we now have students and 
instructors engaging with each other in ways that would not be found in a traditional lecture 
class. Thus, the classroom space can become a place where societal inequities can be reproduced 
and only certain students fully participate. There are several cases (Haider & Andrews-Larson, 
2021; Rasmussen & Kwon, 2007) that illustrate the potential for inquiry-oriented teaching to 
have a very positive impact on student learning. However, as noted in their recent literature 
review (Melhuish, Fukawa-Connelly, et al., 2022), we know little about the details of 
instructional practice that may account for when inquiry approaches are successful in supporting 
students. As noted by Adiredja and Andrews-Larson (2017), “more work is needed to document 
if, when, and how these instructional approaches are equitable for all students” (p. 459).  
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In this paper, we share some lessons we learned during our design-based research project that 
was designed around participatory learning goals in proof classes: engaging students in authentic 
activities related to comprehending, validating, and constructing proofs. That is, we explored the 
question, in what ways might HLTPs be incorporated in the proof setting to support our 
participatory goals? We made the decision to forefront instructional practices, a set we identify 
as high-leverage teaching practices, as objects of design. These practices stem from the K-12 
literature and have been documented to play a key role in structuring student-centered classes 
and have the potential to increase access and inclusion. Through cycles of design and 
engineering we found that our practices supported students in engaging in the type of 
mathematical activity we valued, yet, if we focused on the who and how of engagement, 
participation was often unbalanced across students. As we transitioned from the lab setting with 
small groups of students to the classroom setting, we found a need to disentangle our authentic 
activity goals into two underlying participation heuristics:  

• (Access) Providing access to opportunities to participate in authentic 
mathematical proof activity. 

• (Engagement) Promoting participatory equity in authentic mathematical proof 
activity engagement. 

We share a few key insights from our design cycles. We found that just having high-quality tasks 
and centering student reasoning was insufficient to support all students in engagement, and thus 
made several modifications to promote more equitable participation. For the scope of this work, 
we focus specifically on launching tasks, structuring group work, and selecting student ideas for 
discussion. We note that our focus on participation is a narrow view on equity, and caution that 
this exploration reflects just one dimension related to promoting equitable learning 
environments. While the question is beyond addressing fully in a single project like this, our 
report thus intends to help address the question, “What instructional practices support students’ 
engagement in authentic proof activity and promote participatory equity in such activity?  

Background and Perspective 
For the scope of this project, we view learning as participating in activity that resembles a 

broader community of practice (e.g., Sfard, 1996). That is, the proof-based mathematics 
classroom is a setting where students can be apprenticed into the work of research 
mathematicians. To adhere to these goals, we focus on learning in terms of student engagement 
in what we deem Authentic Mathematical Proof Activity. These activities include not just 
constructing formal proofs, but comprehending and validating them. A full treatment of valued 
activities can be found in Melhuish, Vroom, et al. (2022).  

We assume that that the classroom is a complex system and that instructional practices, those 
we consider high-leverage teaching practice, can serve to mitigate complexity in student-
centered classrooms and promote space where students can engage in authentic activity. We 
integrate several scholars’ (Ball et al., 2009; Woods & Wilhelm) definitions of high-leverage 
teaching practices to define these practices as those that:  

1. can be implemented routinely,  
2. use, shape, or otherwise integrate students’ mathematical thinking,  
3. have potential to increase equity, access, and/or engagement, and  
4. are supported by research connecting the practices to students’ learning.  
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Ultimately, we aim to support participatory equity, defined as “fair distribution of both 
participation opportunities and participation itself as students engage in the learning process” 
(Shah & Lewis, 2019, p. 423). 

For the scope of this paper, we focus on three such practices: complex task launch, 
structuring group work, and selecting and working with records of student thinking. These three 
practices can serve to structure a lesson and have been well studied and developed in the K-12 
setting. See Table 1 for descriptions and key citations.  

 
Table 1. Definitions and key citations for focal high leverage teaching practices. 
High Leverage Teaching 
Practice 

Descriptions (found in Melhuish, Dawkins, et al., 2022) 

Complex Task Launch 
(Jackson et al., 2012; 
Jackson et al., 2013; Khisty 
& Chval, 2002; Wood & 
Wilhelm, 2020)  

The teacher engages students in making sense of tasks via 
attending to relevant mathematical language, ideas, 
relationships, task contextual features, and development of a 
common understanding of the task goals and context. This 
practice occurs prior to or in parallel with problem-solving, but 
does not scaffold or directly instruct on solutions to the task 

Structuring Group Work 
(Cohen, 1994; Esmonde 
2009; TeachingWorks, 
2018; Webb, 2009) 

The teacher structures and manages partner and group work in 
order to engage all students meaningfully in mathematical 
activity. This can include scripts, clear mathematical activity 
expectations, and/or roles that provide guidance for how 
students are to interact with each other and the mathematics. 

Selecting and Working with 
Records of Student 
Thinking (Durkin et al., 
2017; Stein et al., 2008; 
TeachingWorks, 2018; 
Wilburne et al., 2018).  

The teacher orchestrates mathematical discussion where (1) 
students publicly present ideas and (2) students are prompted to 
meaningfully engage with the ideas through analyzing, 
critiquing, and/or comparing across student ideas. 
 

Methods 
This report summarizes findings from the ODAP design-based research project. This project 

consisted of six cycles of design and refinement (two in a lab setting, and four in classroom 
settings) all occurring at a Hispanic-serving, doctoral-granting research institution in the United 
States. The focus of instruction was engaging advanced undergraduate mathematics students in 
authentic proof activity related to three focal theorems in Abstract Algebra: Structural Property 
Theorem, Lagrange’s Theorem, and First Isomorphism Theorem. At a prior RUME conference, 
we shared some initial work designing and implementing for HLTP from the lab setting where 
we provided data showing that the K-12 practices could be adapted robustly to this setting 
(Melhuish et al., 2020). In this paper, we focus primarily on later cycles of development and key 
aspects of design that emerged during the rather complex transition (see Lamberg & Middleton, 
2009) from working with small groups of students in a lab to full classroom implementations.  

We focused on key hypotheses about how HLTPs could support students in participation in 
authentic activity. This analysis occurred in several layers. All implementations were video 
recorded, transcribed, as well as observed by several members of the research team. Observers 
took field notes on ways that students did or did not engage in hypothesized activity with 
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attention to issues of access and imbalances in participation. Between lessons, we engaged in 
debriefing and coming to a consensus related to lesson goals, HLTPs, and student activity. We 
attended specifically to ways our hypothesized relationships between HLTPs, and student 
participation were or were not realized. After the completion of each cycle, the team reflected 
more holistically on prior cycles, revisited important points in the data, and in some cases 
conducted extended analysis using specific frameworks to analyze elements of our study more 
systematically. For instance, we analyzed student activity (Melhuish, Vroom, et al., 2022), 
instructional moves (Melhuish et al., 2020) and distribution of authority in small groups (Hicks 
et al., 2021). After these debriefs and analyses, we made evidence-based modifications to 
improve the enactments of our HLTPs and developed new hypotheses of characteristics of HLTP 
and how they support student activity in proof settings. At the completion of the project, we have 
engaged in retrospective analyses to better describe elements of the HLTPs leveraging our data 
corpus. In this report, we share examples that span our project and evidence of what played out 
in proof contexts and particular instances that led to modifications.  

Results 
In this section, we focus on several adaptations and refinements we made to the three focal 

HLTPs for reasons related to either the proof context or participation inequities that emerged 
during the classroom implementations (see Table 2).  
 
Table 2. Questions related to each focal HLTP and student participation. 
High Leverage 
Teaching Practice 

Considerations      Key Features 

Complex Task 
Launch 

What information do students need 
to make sense to engage 
productively in a given task? 

• Attention to quantification and 
referent objects 

• Discussions of informal ideas 
that parallel formal tools 

Structuring Group 
Work 

What task features are needed to 
support students in shared 
engagement amongst group 
members?  

• Eliciting expertise beyond 
proof construction 

• Distributing roles and 
expertise 

Selecting and 
Working with 
Records of Student 
Thinking 

How can public records represent a 
multitude of student reasoning? 
What tools are needed for students 
to work from each other’s records 
productively? 

• Expanding records beyond 
proof construction 

• Introducing partial linking 
ideas 

Complex Task Launch 
In the proof-based setting, complex task launch involved supporting students in sense making 

about a focal theorem in ways that may anticipate important conceptual insights or proof 
structures. Ultimately, complex task launch serves the purpose of supporting access to the major 
ideas and tools needed to engage in a focal task. Our implementations shared many features of 
the K-12 versions; however, we found two needs specific to the proof context. First, in addition 
to questions about meaning, examples, and relationships, we also found a need to ask specific 
questions about quantifiers and referents. For example, to engage with the Structural Property 
Theorem that a group isomorphism preserves commutativity, complex task launch involved 
unpacking the different definitions involved including isomorphism and abelian. During these 
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conversations, students often provided imprecise explanations, such as articulating “𝐺𝐺 is abelian” 
as “ab=ba.” Both quantification (recognizing that a statement applies for all elements in in a 
group) and referent objects (recognizing that the isomorphism function must be introduced) are 
essential to the formal proof. Without these tools, many students hit an impasse about how to 
prove the statement or provided a proof that did not cover all elements in the codomain.  

We also found a need to explicitly consider parallelism between explorations of theorems 
and how these link to proofs. For example, in order to prove Lagrange’s Theorem, students were 
positioned to recognize this is a theorem about multiplication, and they were easily able to 
retrieve a relevant definition of divisibility (|𝐺𝐺| = 𝑘𝑘|𝐻𝐻| for some 𝑘𝑘). However, this formal 
definition did not evoke the parallel multiplicative structure (𝐺𝐺 being composed of 𝑘𝑘 disjoint 
subsets the same size as 𝐻𝐻) they needed to leverage to create a proof. In our first cycle, the 
students attempted to create a proof by cases depending on the order of the group, suggesting, 
“What if we did a couple of cases, like where the order of the group was even, or it was odd?” 
They introduced ideas of using different remainders to make the argument, soon recognizing the 
number of cases became unwieldy. We suggest that the formal statement evoked prior 
knowledge related to number theoretic proofs, rather than drawing on the idea of repeated 
addition or totaling equal sized sets. We modified this element of task launch in later cycles to 
incorporate explicit conversation about the conceptual meaning of multiplication that better 
paralleled the proof structure of Lagrange’s (e.g., “[L]et’s think back to elementary school when 
we write these things, and we’re gonna make a similar type of visual to go with this that’s kind 
of connected to what we mean by multiplication.”). In all cycles with these discussions, students 
built on notions of “repeated addition” or “totalling up” for their proof approaches. 

Structuring Group Work 
Structuring talk in group work became a major focus of design during the switch between lab 

setting and whole class setting. In our lab settings, we relied on mechanisms such as think-pair-
share and peer review to structure group work. When we switched to whole-class 
implementations, we found these structures insufficient to disrupt status differentials between 
students. For example, students were asked to share proofs of the Structural Properties Task 
written at home and answer “What is one thing that makes sense? What is one thing you have a 
question about?” in regard to your partner’s proof approach. The conversation often devolved 
into the student with a more complete proof teaching the student with a less complete proof. For 
example, in one exchange, we noted one of the partner stating they “don’t know anything” and 
the other partner walking them through what was “missing” from their proof. In this case, the 
introduction of a “function from 𝐺𝐺 to 𝐻𝐻 that is one-to-one and onto.”  

This led us to modify our focal proof activity. Instead of students peer-reviewing proofs they 
had written, they were each tasked with making sense of one of two prototypical student proofs 
provided by the instructor and becoming experts on the proof they read. The student 
conversations about these proofs were much more balanced both in the quantity of participation 
and in students’ mutual engagement (as opposed to exchanges resembling one-on-one tutoring). 
This change draws attention to a major theme in our work: expanding the evoked expertise 
beyond proof construction. If the only way to show competence is through constructing formal 
proofs, we are necessarily amplifying the status of certain students who have become more adept 
at engaging in this complex and challenging practice. 

In other tasks that had less support for equitable small-group discussion, we identified even 
more foundational issues. For example, when students were tasked with making sense of parts of 
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the First Isomorphism Theorem, some groups of students talked very little and did not appear to 
engage in meaningful comprehension. In later cycles, we changed the structuring of this task 
such that each member of the group was responsible for leading a discussion on a specific 
question, such as identifying the difference between the isomorphism and homomorphism 
involved in the proof the First Isomorphism Theorem. This structuring served to not only support 
students’ access into the proof, but also individual and shared accountability across students.  

Selecting and Working with Records of Student Thinking 
Finally, when we consider whole class discussion and comparison of student ideas, we found 

it important to attend carefully to whose ideas made it into the public space. As we anticipated 
certain approaches to select and sequence, we found the instructor was limited in whose proofs 
make it to the focus of discussion. In first classroom implementation of the Structural Property 
Task, the only students with largely complete (though possibly not fully correct) proofs were the 
more vocal, white men. This informed two modifications: expansion of expertise so that a 
presenting student would not have to have proven a statement (as discussed in the prior section) 
and developing interdependent ways of creating public records. For example, when students 
created examples to illustrate the First Isomorphism Theorem, the records were subdivided such 
that each student had a different role: writing domain and codomain elements, creating the 
homomorphism map, identifying the kernel, creating the isomorphism map (see Figure 1). In this 
way, discussions around this student work focused on a truly shared product. 

 

 
Figure 1. Cycle 5 small group student board work illustrating the FIT 

The other major component of comparing and using records of student reasoning was to 
position students to generalize and see important features of their ideas that may connect to more 
formal representations. This modification to our task implementation required a large amount of 
attention and reflection, because, as we compared across implementations, we found that certain 
discussions could easily devolve into an initiate-respond-evaluate conversation where the 
instructor was doing majority of the reasoning (and students were left searching for the target 
insight). To support students in further reasoning and meaningful contribution, we found it useful 
to introduce partial information that linked student ideas and the formal proofs. For example, we 
provided a partially written isomorphism map for students to complete “β (____) = ____” (First 
Isomorphism Theorem), a partial function diagram (Structural Property Task), or a series of 
formal lemma statements that students were asked to pair with their own informal conjectures 
(Lagrange’s Theorem). By providing partial information, the instructor navigated between 
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students’ ideas and formal mathematics while providing students explicit tools to increase access 
and engagement.  

  
Discussion 

Working in the formal proof setting, we encountered two substantial hurdles: (1) navigating 
between formal and informal ideas (Raman, 2003;Weber & Alcock, 2004; Zazkis & Mills, 2017; 
Zazkis et al, 2016); (2) student status differentials occurring based on students’ speed and ease 
working within the formal proof setting (cf., Weber & Melhuish, 2022). Regarding the first 
hurdle, we found for complex task launch to provide students access to necessary tools, the 
conversations had to draw attention to structural ideas (both formal and informal) and help 
connect imprecise language to quantification or to identifying referent objects involved. Simply 
unpacking definitions or creating examples was not sufficient to support later proof aims. We 
also found that orchestrating student discussions to promote comparison and generalization from 
their proofs and examples required careful attention to ways to connect between formal and 
informal representations systems (our access heuristic of authentic mathematical proving 
activity). Often the instructor would introduce an object to focus discussion and promote students 
in engaging in translating between systems and noticing important ideas.  

The second hurdle required us to return to the literature on promoting more equitable group 
work. As noted by many scholars, active engagement in proof contexts can favor students who 
are more comfortable with academic language or more quickly engage with the norms of proof 
(Brown, 2018; Weber & Melhuish, 2022). This can foster divisions of status between students 
and large inequities in who participates. To better navigate this issue, we incorporated more 
intentional features related to group-worthy tasks and Complex Instruction (Cohen & Lotan, 
1996). By subdividing responsibilities – for example, leading an assigned portion of discussion 
or taking on a specific role in the construction of an example – and promoting distributed 
expertise – for example, placing each student in charge of a particular proof approach – we were 
able to engage more students in authentic activity during group work (our engagement heuristic 
of authentic mathematical proving activity). This also freed us from constraints we previously 
experienced in selecting student ideas, as we were no longer tethered to finding certain, 
anticipated proof approaches or using an example that primarily legitimized only one students’ 
contribution.  

We suggest other design researchers consider the dual participation heuristics and 
engineering of HLTP implementations as they move from small-group lab settings to whole-
class instruction. Issues of access and participatory equity become amplified in the latter, where 
an instructor can no longer interact with each individual student throughout a lesson. HLTPs 
provide a means to manage some of this transition, but as we found in our project, also require 
intentional analysis and modification related to our heuristics and the specifics of theorems and 
proofs involved to meet our participation goals. 
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Shifting Students’ Feelings and Mindsets about Learning Mathematics through Standards-Based 
Grading 

 
 Karina Uhing Amy Been Bennett 
 University of Nebraska Omaha University of Nebraska-Lincoln 

Standards-based grading is an alternative assessment method that is gaining traction in 
undergraduate mathematics courses. Reported benefits for students include reduced math and 
test anxiety, increased achievement rates, and deeper understanding of concepts. However, 
evidence is mixed, and researchers have called for qualitative studies to explore students’ 
feelings and experiences with standards-based grading. In this study, we examined 228 College 
Algebra students’ responses to an end-of-semester reflection assignment. We discovered that 
some students expressed a shift in their feelings and mindset towards mathematics, and that 
these shifts were connected to the standards-based grading assessment structure. We present 
these findings, which describe how students viewed their learning and how shifts in their feelings 
and mindsets related to specific features of the course. We also discuss the internal and external 
motivations for these shifts and pose questions for future research related to students’ 
experiences with non-traditional assessment structures. 

Keywords: Standards-based grading, feelings, mindset, assessment 

Traditional grading and assessment methods are the norm in undergraduate mathematics 
courses, particularly at the introductory level (Harsy et al., 2021). However, in recent years, there 
has been a growing interest in alternative approaches to assessment. These alternative 
approaches share several characteristics, a primary one being that grades should reflect students’ 
final understanding of a learning objective after they have had multiple opportunities to 
demonstrate their learning. One such alternative assessment method is standards-based grading, 
where grades are intended to reflect students’ proficiency in clearly defined learning objectives 
(Lewis, 2021). Points and letter grades are de-emphasized in favor of thorough feedback given to 
students after an assessment, with students having multiple attempts to demonstrate their 
understanding on learning objectives throughout the course. 

The analysis presented in this proposal builds on a larger research study that examined how 
students perceived their mathematical experiences in a newly redesigned, introductory-level, 
mathematics course. Three themes emerged from preliminary data analysis: community, 
assessment, and mindset, with students discussing both positive and negative feelings throughout 
their reflections (Uhing et al., 2022). Through this analysis, we discovered that some students 
expressed a shift in their feelings and mindset towards mathematics, which prompted us to 
further examine this phenomenon. Students who discussed this shift primarily did so in the 
context of the assessment structure, which involved standards-based grading. Thus, the purpose 
of our work is to better understand shifts in students’ expressed feelings and mindset with respect 
to an alternative grading structure. 

Background Literature 

Standards-Based Grading 
While changing the undergraduate mathematics norm of summative exams to implement a 

new assessment method can be challenging (Elrod & Strayer, 2018), mathematics education 
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researchers argue that it is a worthwhile endeavor for increased student learning (Prasad, 2020) 
and decreased test anxiety (Harsy et al., 2021). In a study with 132 undergraduate students in the 
U.K., students rated less traditional assessments, such as presentations and projects, as some of 
their least preferred methods of assessment (Iannone & Simpson, 2015). Instead, they preferred 
more traditional assessments, such as closed book exams and weekly homework assignments. In 
addition, students preferred assessments that were better discriminators of mathematical 
proficiency and that seemed the fairest. Notably, this study did not include a standards-based 
model, where closed-book exams are accompanied with feedback and can be taken repeatedly. 

Students in Zimmerman’s (2020) large-scale standards-based grading College Algebra 
course expressed that this assessment structure held them accountable for their learning, gave 
them more feedback, and led to a deeper understanding. Zimmerman concluded that a standards-
based grading approach “removes the extrinsic motivation factor that often fosters unproductive 
learning behaviors” (p. 1052); however, their precise meaning of “extrinsic motivation factor” is 
unclear. In our study, we sought to explore different types of motivating factors and how they 
influence students’ shifts in feelings and mindsets about learning mathematics. 

Emotions and Expressed Feelings toward Assessment 
Wass and colleagues (2020) documented 14 distinct negative emotions expressed by students 

who completed undergraduate course assessments, such as “satisfaction”, “fear”, and “worry”. 
The two most common positive emotions were “happiness” (7%) and “pride” (5%) and the most 
common negative ones were “annoyance” (17%) and “frustration” (10%). They found that 
students’ positive or negative emotions toward assessments corresponded to their performance 
and argued that understanding students’ emotions better could help educators design more 
effective and supportive assessment structures. 

In our study, we use the term “expressed feelings” rather than “emotions” as “emotions are 
thought of as very primitive, extremely fast, unconscious mechanisms” while feelings are the 
“conscious and cognitive perceptions” of those emotions (Hansen, 2005, pp.1426-1427). Indeed, 
much of psychology research is in agreement that there are 27 distinct human feelings, which can 
be divided into two disjoint groups: positive feelings and negative feelings (Cowen & Keltner, 
2017). This dichotomy of feelings allows for examination of a change in feelings valence (e.g., 
Kleine et al., 2005). 

Traditional forms of assessment have been linked to increased feelings of stress and anxiety 
for students (Lewis, 2020; Prasad, 2020; Wass et al., 2020). A reported benefit of standards-
based grading formats is that they are lower-stakes, and thus can reduce anxiety for students 
(Harsy et al., 2021), although the evidence across disciplines is varied (Lewis, 2020). In 
mathematics, Lewis (2020) received contradicting responses from students on a survey related to 
their mathematics text anxiety in Linear Algebra and Differential Equations courses taught with 
a standards-based grading approach. Specifically, analysis of pre/post survey items showed that 
test anxiety significantly increased over the semester; however, students self-reported a decrease 
in text anxiety at the end of the semester and an appreciation for the standards-based grading 
format in their qualitative responses to open-ended questions. Lewis (2020) called for future 
research to examine this apparent contradiction using qualitative study methods.   

Mindsets about Learning Mathematics  
The notion of reflecting on, revising, and reattempting work builds on a growth mindset 

perspective of learning (Dweck, 2010). A student with a growth mindset believes that through 
their efforts they can nurture and develop a better understanding of a mathematical concept; 
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whereas, a student with a fixed mindset believes that mathematical ability is innate and 
unchangeable. As students enter mathematics classrooms with (sometimes deficit) views of their 
mathematical abilities, it is up to the practices of growth-mindset instructors to foster “academic 
growth by encouraging and recognizing students for their growth in learning” (Harsy et al., 2021, 
p. 1073). Standards-based grading emphasizes that learning mathematics is part of a process; 
deep understanding of concepts may not happen immediately. In this way, a growth mindset is a 
potential outcome of an experience with standards-based grading (Dweck, 2007). 

In a study with 104 students in mastery-based teaching Calculus and Linear Algebra courses, 
Harsy and colleagues (2021) found that there was no statistically significant change throughout 
the semester based on their responses to growth mindset items on a Likert-type survey. 
Additionally, regarding a growth mindset toward mathematics, they found no difference between 
students who experienced mastery-based testing and those who did not. However, they did not 
qualitatively explore the 89 students (85.57%) who disagreed or strongly disagreed with the 
fixed-mindset statement “Your math intelligence is something about you that you can’t change 
very much.” This exploration is a place for further research.  

Research Questions 
Using the existing literature to frame our study, the research questions we sought to address 

were: 
1. How did students’ experiences with a standards-based grading structure in a College 

Algebra class lead to shifts in their expressed feelings and mindsets about learning 
mathematics? 

2. Which aspects of students’ experiences in this course were most prevalent in their 
expressed feelings and mindset shifts about learning mathematics? 

Methods 
The data for this study come from a Mathography assignment that was collected at the end of 

the Fall 2021 semester from students enrolled in College Algebra at a large, metropolitan 
university. Out of 459 students enrolled at the beginning of the semester in 14 sections of 
College Algebra, 228 students submitted the assignment. During this semester, instructors were 
involved in a large-scale course redesign effort that involved developing new curricular materials 
around active learning and using standards-based grading for the assessment structure. 
Assessments were called Learning Outcome Assessments (LOAs) and were created based on 
clearly articulated learning outcomes (i.e., objectives). Students were allowed multiple attempts 
over the semester to complete each learning outcome. Sections of the course were also 
coordinated, using the same instructional materials and assessments.  

The Mathography data included student responses to prompts that were adapted from 
Drake’s (2006) mathematics story interview, particularly the “peak experience” and “nadir 
experience” that students experienced during their time in College Algebra. We coded all 228 
Mathography assignments in Dedoose individually and met pairwise to discuss and reconcile 
disagreements until we achieved 100% interrater agreement. Our predetermined codes in 
Dedoose (2022) included: emotions (subcodes of positive and negative), community and culture, 
assessment (subcode learning outcome assessments), and personal growth/mindset, which were 
determined after preliminary analysis of the data (Uhing et al., 2022).  

For the analysis of shifts in expressed feelings, we considered excerpts tagged with 
“assessment” AND “positive emotion” AND “negative emotion” codes. This produced 61 
excerpts. We analyzed these excerpts to determine if a negative to positive shift in feelings 
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occurred, which reduced our sample to 48 excerpts. In our initial tagging of excerpts for positive 
and negative emotions, we were careful to only include excerpts where students voiced an 
explicit emotion or feeling. For example, we did not include excerpts where students used verbs 
such as “struggling”, as this action could be connected to both positive or negative feelings (e.g., 
enjoying a challenge or feeling frustrated by a problem). To compare, we also looked at excerpts 
tagged with “positive emotion” AND “negative emotion” AND not with “assessment”. This 
yielded a total of 16 excerpts, only 9 of which exhibited a shift. We chose not to include these 
excerpts in our analysis as we wanted to focus on the context of assessment. 

For the analysis of shifts in growth mindset, we considered excerpts tagged with 
“assessment” AND “personal growth/mindset”. This produced 150 excerpts, 27 of which we had 
already included from the expressed feelings set. We analyzed the remaining 123 excerpts to 
determine if a shift toward a growth mindset occurred, which reduced our sample to 56 excerpts. 
Most excerpts included explicit shifts from a fixed mindset (e.g., “I didn’t think I could learn 
this.”) to a growth mindset (e.g., “It made me realize that if I work hard enough for something 
then I can accomplish it.”). However, some showed more implicit growth in mindset by 
discussing a “turning point” moment where they “kicked it into gear” or “started to turn things 
around”. Overall, excerpts varied in length but were generally 2-5 sentences in response to a 
single prompt. 

We emphasize that the final excerpts in our analyzed dataset are focused on a shift in feelings 
or mindset, not simply a single state. Several excerpts were tagged with positive feelings as 
students expressed their enjoyment, satisfaction, and confidence as a result of the assessment 
structure in this course. However, here we focus on excerpts where students first expressed a 
negative feeling or mindset, such as concern or nervousness, and subsequently expressed a 
positive feeling or mindset as a result of some shift during their experience in this course. Then, 
we used open, data-driven coding (Saldaña, 2016) to analyze the excerpts for the type of shift 
that occurred. 

Findings 
In our analysis, we found five primary causes that students attributed to a shift in their 

feelings or mindset (see Table 1). Three of the causes (the assessment structure, grading scale 
change, and LOA performance) related directly to the implementation of standards-based 
grading in the course, while the other two causes (external resources and overall course 
experience) were more general in nature.  

Table 1. Causes of Shifts in Students’ Feelings or Mindset 

Cause of the Shift Description 

Assessment Structure Overall structure of the assessment and grading system 

Grading Scale 
Change 

Instructors changed the grading scale nine weeks into the semester 
from needing to complete all 24 learning outcomes (LOs) twice, to 
having 5 "core" LOs and 19 "supplemental" LOs 

LOA Performance How students did on a particular learning outcome assessment 
(LOA) (i.e., a specific grade or outcome) 
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External Resources Other people (e.g., instructors, TAs, classmates) or other external 
resources 

Overall Course 
Experience 

Reflecting back on their experience in the course as a whole (e.g., 
talking about the hard work that paid off or things they learned about 
themselves) 

 
Table 2 shows the frequency across student excerpts for each cause with respect to shifts in 

feelings and mindset. Excerpts were only coded under one cause for a particular shift (e.g., a 
student excerpt that related to a shift in mindset was only attributed to a single primary cause, 
such as assessment structure). We expand on these findings below and provide illustrative 
student examples. 

Table 2. Number of Student Excerpts Relating to Different Causes of Shifts in Feelings and Mindset 

Shift Assessment 
Structure 

Grading 
Scale 

Change 

LOA 
Performance 

External 
Resources 

Overall Course 
Experience 

Total 
Number of 
Excerpts 

Feelings 7 (14.6%) 7 (14.6%) 23 (47.9%) 9 (18.8%) 2 (4.1%) 48 

Mindset 9 (16.1%) 0 (0%) 21 (37.5%) 10 (17.8%) 16 (28.6%) 56 
 
As shown in Table 2, LOA Performance was the most common cause of a shift in feelings or 

mindset for students. Several students discussed how getting feedback on an LOA cause them to 
experience this shift. For example, one student remarked: 

A peak experience that happened to me in [College Algebra], was after the second to last 
LOA of the semester. I hadn’t gotten any LO’s the previous assessments and was very 
concerned about my grade, especially since I had a core LO that I still needed 2 points in. 
I put in about an hour and a half of studying leading up to the day of the assessment and, 
and came out of class feeling accomplished. Every question I answered, I ended up 
getting the points for, giving me confidence that I will end up succeeding in class. 

This excerpt shows how performance on an LOA caused the student to feel “concerned” about 
their grade, which led to them studying more and doing better on the subsequent assessment, 
causing the student to then feel “accomplished” and confident. 

In terms of mindset, several students mentioned how their performance on LOAs caused 
them to “push themselves” and “work hard” to achieve better results. One student commented: 

A peak experience in my math story took place this year. I looked at my LOA scores and 
realized that I needed to pick it up or I would have problems passing the class. So, when 
the next LOA came up, I studied more than I had for any other test, and it paid off and 
now I am on pace to pass the class if I keep up my study habits for the next couple of 
tests. This experience says that I as a student am someone who learns well from their 
mistakes and is a hard worker who wants to achieve his goals. 

Instead of giving up after earning a low score on an LOA, this student viewed their mistakes as 
an opportunity to learn, thus providing motivation to study harder for the next assessment and 
demonstrating a growth mindset. 
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Several students mentioned a major change to the grading scale that occurred nine weeks into 
the semester in their reflections. About halfway through the semester, after reviewing assessment 
data and having multiple discussions about the assessment structure, instructors of the class 
decided to reduce the number of learning outcomes that students needed to demonstrate skill on 
twice. Several students discussed this key event and attributed it to feeling less stressed about the 
course overall. One student remarked, 

At the start of the year, we were having to complete quite a few LOs and we had to do 
them twice, which was stressful. Once the grading got changed to only having to do the 
supplemental LOs twice, it helped me gain confidence. 

Another student expressed a similar sentiment: 
A low point in Math 1220 this semester would be right before the grading requirements 
were changed. I hadn’t scored very well on the LOA’s at that point and I wasn’t sure if 
I’d be able to meet all the requirements. Overall, I was very discouraged and didn’t think 
I would be able to pass. I have definitely grown since then in my math skills and math 
confidence. 

Both of these students described shifts in their feelings from being stressed and discouraged 
to feeling more confident in their mathematical abilities. It is also interesting to note that 
while this grading scale change was expressed as a cause of shifts in feelings (7 out of 48 
excerpts), it was not discussed with respect to shifts in students’ mindsets (0 out of 56). 

On the other hand, shifts in mindset seemed to occur over the duration of the semester, 
leading to the code Overall Course Experience. For instance, one student discussed their view on 
“being good at math” and how they had persevered throughout the semester: 

While many people would describe being good at math as simply receiving good grades, 
that is not necessarily the case. For me, being good at math means persevering when you 
are not completely sure how to complete something. Being able to make a mistake while 
learning and growing from it is extremely valuable, not just in math but in life as well. 
Initially, my goal was to receive a C in the course [...]. However, closer to the end of the 
semester, my goal is to receive an A in the course. [...] I will be much happier knowing I 
gave this class my full effort and was rewarded for it.  

For this student, the overall experience of being in a course that used standards-based grading 
helped shift their mindset from wanting to earn a passing grade to wanting to give their “full 
effort” and feeling “rewarded” for doing their best. 

Discussion 
The most prevalent cause of a shift in both expressed feelings and mindset was students’ 

LOA performance, meaning how well they did on a specific LOA. This finding surprised us as 
we were expecting that LOA performance might be more closely related to a shift in feelings (as 
feelings are more fleeting and transitory) as compared to mindset (which is sustained over time). 
However, our findings suggest that students’ mindsets can also be shifted by their performance 
on assessments. Moreover, it is clear that even in a standards-based grading environment, 
students still cared about their grades on assessments as LOA performance was the most 
commonly referenced cause of both shifts in feelings and mindset. 

Zimmerman claimed that a standards-based grading approach “removes the extrinsic 
motivation factor that often fosters unproductive learning behaviors” (p. 1052). In other words, 
when students demonstrated a shift in expressed feelings regarding assessment or evidence of a 
growth mindset, did it appear to be motivated by extrinsic factors? Although the assessment 
LOA structure was a standards-based grading approach that allowed for multiple attempts, 
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students were still concerned about their immediate results on the individual assessments. This 
suggests that many students are still motivated by grades and, oftentimes, by their performance 
on the first attempt of an LOA. 

In addition to seeing a shift in mindset, we saw strong evidence for the presence of a growth 
mindset in several students, although it was sometimes unclear whether or not they previously 
held more of a fixed mindset toward learning mathematics. This finding supports other research 
which claims that the structure of standards-based grading courses provides students with 
multiple chances to succeed and thus helps students foster growth mindsets about learning 
mathematics (e.g., Harsy et al., 2021). Our findings further suggest that a standards-based 
grading structure may encourage students to metacognitively consider their internal and external 
sources of motivation and to persist toward their learning goals, rather than becoming 
discouraged after a nadir event (e.g., failing the first exam).  

Finally, one finding that we are still investigating is the difference between shifting to 
positive feelings/mindset versus shifting to non-negative feelings/mindset. For instance, we 
observed a marked difference between those excerpts that expressed a shift from negative to 
(explicitly) positive emotions (e.g., from worry to confidence) versus those that went from 
negative feelings to "decreased negative" or neutral feelings (e.g., from stress to a sense of 
relief/calmness, such as, "I felt relieved” or “I felt better"). In particular, “relief” appeared to be 
qualitatively different from the other feelings.  

This emergent finding may be connected to Lewis’s (2020) contradictory research with math 
test anxiety, which suggests that the feeling of relief plays a role in how students express their 
feelings towards mathematics assessments. Namely, does the timing of the survey (or 
Mathography assignment, in our case) matter? If students respond to questions at the end of the 
semester, are they more likely to express relief and positive feelings, or, is the stress of final 
grades weighing more heavily on their minds? Kleine and colleagues (2005) stated that future 
research should examine the direct relationship between achievement-related emotions and 
academic performance. We are continuing to explore this research finding. 

Implications and Limitations 
As other researchers and practitioners of standards-based grading have claimed, it is 

necessary to carefully consider how the course is designed (Collins et al., 2019), what the 
learning objectives are (Zimmerman, 2020), how the grading system is communicated with 
students (Kelly, 2020), and what strategies should be used for implementing these alternative 
grading approaches. In our study, we found that considering these components was not sufficient 
for all students to shift away from a grades/performance mindset to learning mathematics. We 
were, however, encouraged by the number of students (56 of 228 students, 25%) who 
demonstrated a shift toward a growth mindset for learning mathematics, especially those who 
clearly expressed that they initially held a fixed mindset about their math abilities. However, we 
emphasize that standards-based grading is not a cure-all for mathematics instruction. 
Implementing this assessment structure should be done thoughtfully and not prescriptively. 
Moreover, we should continue to explore how students’ feelings are entangled with grading and 
assessment and how we can work (within the confines of our educational system) to encourage a 
growth-oriented mindset toward learning mathematics. 
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Mathematicians’ Conceptions of Active Learning and Equitable and Inclusive Teaching: A Set 
Theory Analysis 

 
 Amy Been Bennett Karina Uhing 
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Although research on active learning suggests strong connections to equitable and inclusive 
teaching, few studies have explored the relationship between the two concepts. For this proposal, 
we examined how 13 participants in an equity workshop described the relationship between 
active learning and equitable and inclusive teaching. We used set theory as an analytic tool to 
categorize their descriptions. We found that all participants saw active learning and equitable 
teaching as related. The two most commonly held views were that active learning and equitable 
teaching are related yet independent sets, or that equitable teaching is a subset of active 
learning. We discuss implications of these findings and pose questions for further exploration. 
 
Keywords: Active learning, equitable and inclusive teaching, set theory 
 

Active learning, equity, and inclusion are often-referenced terms in undergraduate 
mathematics education. Despite their popularity, these terms are nuanced and often difficult to 
define (e.g., Roos, 2019). One well-known framework for conceptualizing active learning (AL) 
is Laursen and Rasmussen’s (2019) Four Pillars of Inquiry-Based Mathematics Education, which 
includes ideas about both AL and equitable and inclusive teaching (EIT). In past work (Williams 
et al., 2022), we used this framework to explore how various stakeholders in mathematics 
departments across multiple institutions conceptualized AL. We found that we were unable to 
categorize definitions of AL based solely on stakeholder role, and overall, stakeholders 
mentioned aspects of teaching and learning that related to the four pillars of inquiry-based 
mathematics education (students, content, teachers, and equity) in their definitions of AL. While 
stakeholders most frequently mentioned the actions of students in their definitions, they rarely 
acknowledged how equity played a role in their conceptualization of AL. This led us to wonder 
how members of a mathematics department perceive the relationship between AL and EIT. 

For this proposal, we examined how mathematics faculty members enrolled in a year-long 
workshop focused on equity described the relationship between AL and EIT. We used set theory 
as a tool for carrying out our analysis. Specifically, if AL and EIT are viewed as two sets, then 
how do they intersect (or not)? Thus, our guiding research question was: How do mathematics 
faculty members engaged in work on active learning and equitable and inclusive teaching view 
the relationship between the two concepts? We provide a brief theoretical framing and 
background before describing how we applied set theory to understand how participants 
described the relationship between AL and EIT.  

Theoretical Framing 
Equitable and Inclusive Teaching 

One definition of equity in mathematics education includes three criteria: 1) “Being unable to 
predict students’ mathematics achievement and participation based solely upon characteristics 
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such as race, class, ethnicity, gender, beliefs, and proficiency in the dominant language” 
(Gutiérrez, 2007, p. 41); 2) “Being unable to predict students’ ability to analyze, reason about, 
and especially critique knowledge and events in the world as a result of mathematical practice, 
based solely upon characteristics such as race, class, ethnicity, gender, beliefs, and proficiency in 
the dominant language” (p. 45); and 3) “An erasure of inequities between people, mathematics, 
and the globe” (p. 48). 

Accomplishing these three criteria requires teachers to attend to the dimensions of equitable 
mathematics, which lie along dominant and critical axes (Gutiérrez, 2007). The dimensions of 
the dominant axis are access and achievement, while the critical axis consists of identity and 
power. Studies on learning mathematics have frequently focused on the dominant axis by 
suggesting that interactive classrooms provide opportunities for students to access rich learning 
experiences, and by showing that student learning increases in classrooms that use collaborative, 
student-centered practices (Gutiérrez, 2013; Smith et al., 2021). However, creating equitable and 
inclusive mathematics classrooms involves thinking about how identity and power influence 
classroom interactions. In other words, EIT involves paying attention to how personal 
relationships and societal norms impact students’ interactions and experiences (Gutiérrez, 2007). 
Power dynamics and students’ identities affect students’ learning experiences, and thus should be 
considered in mathematics classrooms that are interactive (Adiredja & Andrews-Larson, 2017). 

Active Learning 
There are several definitions of active learning in research literature (e.g., Williams et al., 

2022; Prince, 2004; Stains et al., 2018). In their well-known metastudy, Freeman et al. (2014) 
provided a definition of AL that explained the difference between AL and passive lecture:  

Active learning engages students in the process of learning through activities and/or 
discussion in class, as opposed to passively listening to an expert. It emphasizes higher-
order thinking and often involves group work (pp. 8413-8414). 

Another broad definition was provided by the Conference Board of Mathematical Sciences 
(2016), which referred to AL as “classroom practices that engage students in activities, such as 
reading, writing, discussion, or problem solving, that promote-higher-order thinking” (p. 1). 
While these definitions provide us with some notion of what AL is, there is not a single, 
commonly agreed upon definition in undergraduate mathematics education. Therefore, recent 
studies have begun to examine the nuances and complexities of the term AL, and how it is 
operationalized in undergraduate mathematics classrooms (Williams et al., 2022).  

Research showing that AL can lead to improved student outcomes has contributed to a 
consensus in the field that AL is an equitable practice (Freeman et al., 2014; Laursen, 2019); 
however, student experiences with AL vary (Johnson et al., 2020; Reinholz et al., 2022). There is 
evidence from the context of upper-division mathematics courses that when directly compared to 
lecture-style instruction, AL may result in greater performance disparities between women and 
men (Johnson, et al., 2020). Moreover, Rios (2022) found that students in introductory-level 
courses whose preferred math language was not English felt a decreased sense of belonging in 
English-dominant math classrooms as AL practices increased. These findings, coupled with 
evidence that AL increases achievement outcomes for students from underrepresented groups in 
STEM (Theobald et al., 2020), suggest that the relationship between AL and equity is complex 
and not fully understood.  

Although research on AL suggests strong connections to EIT, such as Laursen and 
Rasmussen’s (2019) Four Pillars framework, few studies have explored the relationship between 
the two concepts. Moreover, these studies tend to focus on student outcomes, rather than how the 
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instructor’s view of these concepts may influence their role in the classroom. Thus, more work is 
needed to understand how members of mathematics departments view the relationship between 
AL and EIT. 

Methods 
Data Collection 

Data were collected from a total of 13 participants. These participants were undergraduate 
mathematics faculty members at a variety of institutions across the US who were participating in 
a year-long equity workshop as part of a larger study, which focused on AL in first-year 
mathematics courses. Interviews were conducted over the span of the equity workshop in 
September 2020, January 2021, and May 2021. Data presented in this proposal come from the 
final interview after the conclusion of the workshop in May 2021. As part of this interview, 
participants were asked to provide their definition of EIT, and discuss whether and how this 
definition might have changed over the previous academic year. Participants were also asked to 
respond to the following prompt: “Some people equate active learning with equitable and 
inclusive teaching. How do you see these as related, and in what ways are they different?”  
Participants’ responses to this prompt form the data set for this proposal. 

Data Analysis 
To analyze the data, we used set theory to list the possible relationships between AL and EIT. 

If we view AL and EIT as two distinct sets (see Figure 1), we can investigate the ways in which 
these two sets can interact. In this context, there are five possible relationships which correspond 
to five diagrammatic representations. Table 1 shows the five possible relationships between AL 
and EIT and provides descriptions from mathematical set theory along with interpretations of 
how we applied this logic structure to the data in our study.  

 An implicit assumption that we made in our analysis is that AL and EIT exist in the same 
domain and that it makes sense for these sets to be intersecting. We also assumed that AL and 
EIT are clearly defined terms and we can thus determine what is contained in each set. We 
discuss these assumptions further in our Findings and Discussion sections.  

 
Figure 1: AL and EIT as Two Distinct Sets  

 
After interviews were transcribed, the excerpts where participants were asked about the 

relationship between AL and EIT were identified and organized into a matrix for coding. Each 
row represented a participant and their specific response. The columns represented the different 
possible relationships between AL and EIT (as seen in Table 1). Our goal was to look for 
evidence of how the participant viewed the relationship between AL and EIT. We then decided 
on what relationship(s) from Table 1 the participant discussed (either saying that AL and EIT 
were related or were not related in the following ways) and copied text from their response to 
support our decision. The decision categories we used were:  
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● YES: if there was strong evidence in the participant’s response that aligned with that 
relationship 

● MAYBE: if there was possible evidence in the participant’s response that aligned 
with that relationship 

● NO: if there was no evidence in the participant’s response that aligned with that 
relationship OR there was evidence against that particular relationship (directly or 
indirectly) in the participant’s response 

Every participant’s response was coded independently by at least two of the authors, who then 
met to reconcile and discuss any differences (Creswell & Creswell, 2018).  

 
Table 1: Set Theory Relationships between AL and EIT 

Relationship between 
AL and EIT 

Set Theory Description Interpretation 

Disjoint 

 

• The intersection of AL and EIT is 
empty  
(AL ∩ EIT = 0)  

 

Whenever AL occurs, 
EIT does not occur.  
Whenever EIT occurs, 
AL does not occur. 

Equivalent 

 

• AL and EIT are equivalent sets  
(AL = EIT) 

• AL exists if and only if EIT exists. 

Whenever AL occurs, 
EIT occurs. Whenever 
EIT occurs, AL 
occurs.  

Some Overlap 

 

• The intersection of AL and EIT is not 
empty (AL ∩ EIT ≠ 0)  

AND 
• There exists EIT that is not AL, and 

there exists AL that is not EIT. 

AL and EIT can occur 
together, and they can 
also occur 
independently. 

AL Contained in EIT 

 

• AL implies EIT  
(AL  EIT) 

• There exists EIT that is not AL. 
• EIT is a necessary condition for AL 

Whenever AL occurs, 
EIT also occurs. 
However, EIT can 
occur without AL.  
 

EIT Contained in AL 

 

• EIT implies AL  
(EIT  AL) 

• There exists AL that is not EIT. 
• AL is a necessary condition for EIT 

Whenever EIT occurs, 
AL also occurs. 
However, AL can 
occur without EIT. 
 

Findings 
Our overall findings are summarized in Table 2. We provide examples and descriptions of 

participants' responses in each of the set theory relationships in the following paragraphs.  

Disjoint and Equivalent 
All participants (13 of 13) provided strong evidence that AL and EIT were not equivalent. 

Similarly, almost all participants (12 of 13) provided clear evidence that they saw some 
relationship between AL and EIT (i.e., that these two concepts were not disjoint). For example, 
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Lacy stated, “they’re related, but they’re not equal.” This provided evidence that Lacy saw that 
there was some relationship between AL and EIT, but that they were also not the same. 

Emma was the only participant who potentially saw AL and EIT as disjoint concepts. In her 
response, she discussed the difference between AL and EIT, describing AL as a “paradigm for 
learning” and EIT as what the teacher is doing to create an equitable environment in the 
classroom: 

The definition of active learning is that students need to construct knowledge for 
themselves and that we can provide them with information and scaffolding and 
opportunities to construct it for themselves [...] this is different from equitable teaching, 
right? Equitable teaching is sort of making a classroom where students of any 
background can learn and that's different from sort of this philosophical understanding of 
how learning happens. 

From this response, it was unclear whether Emma saw AL and EIT as disjoint (possibly in 
two separate universes without the same domain). One possible interpretation is that Emma saw 
AL from more of a student perspective (i.e., how students learn and construct knowledge in the 
classroom), whereas EIT is more focused on the teacher (i.e., what the teacher is doing to create 
an equitable environment). This led us to consider the possibility that perhaps AL and EIT could 
be viewed as existing in different universes (learning paradigms vs. teaching strategies) with no 
potential for overlap because they did not have the same domain. Therefore, we decided to code 
Emma’s response as a “MAYBE” under disjoint. 
 
Table 2: Evidence of Relationship between AL and EIT 
Participant Disjoint Equivalent Some Overlap AL Contained 

in EIT 
EIT Contained 
in AL 

Aadaya NO NO NO NO YES 
Bill NO NO NO NO YES 
Cassandra NO NO NO NO YES 
Crystal NO NO YES NO NO 
Collin NO NO MAYBE YES NO 
Camila NO NO MAYBE NO MAYBE 
Mark NO NO YES MAYBE NO 
Kathleen NO NO YES NO NO 
Lacy NO NO MAYBE NO MAYBE 
Emma MAYBE NO MAYBE NO NO 
Robert NO NO MAYBE NO NO 
Shea NO NO NO NO YES 
Thomas NO NO MAYBE NO YES 

 
Some Overlap 

Most participants (9 of 13) viewed AL and EIT as related to some extent. For some, the 
evidence for this relationship was straightforward; Robert said, “I think they intersect, but yet 
they’re not equal.” For other participants (Crystal and Kathleen), their expressions supported this 
relationship because they claimed AL and EIT are related and provided evidence against both 
containment relationships. For example, Kathleen said, “I was kind of surprised by that prompt, 
because they definitely have an overlap, but I don't see them as being equal to each other” 
(evidence for some overlap); she added, “while I think that active learning benefits all students, 

25th Annual Conference on Research in Undergraduate Mathematics Education 534



and also helps with teaching equitably, I think that teaching equitably is also like, it includes 
other things as well” (evidence against EIT contained in AL), and “even though [group work] is 
an active learning strategy, it's not necessarily equitable unless we think about equitable 
practices” (evidence against AL contained in EIT). Thus, some overlap best fit Kathleen’s view 
of the relationship between AL and EIT.  

Six participants (coded as “MAYBE” for Some Overlap) gave responses indicating that they 
saw AL and EIT as related, but it was not clear which relationship aligned best with their 
explanation. One participant, Camila, explicitly used set theory in her response and said, “I 
haven't thought, ‘which is a subset of the other,’ but it could be that maybe equitable and 
inclusive learning is a subset of active learning. I'm not quite sure yet.” Her acknowledgment of 
subsets shows she was considering the concepts to at least have some overlap, but then expressed 
doubt of a final relationship.  

AL Contained in EIT 
Overall, participants’ responses were least aligned with the relationship that AL is contained 

in EIT. Only one participant, Collin, expressed strong evidence for AL existing within the set of 
EIT, describing AL as a “specific pedagogical strategy” within the “more ingrained [...] act of 
learning”. He shared that  

“active learning is a specific pedagogical strategy, whereas equitable and inclusive 
learning is something less explicit and more ingrained in how you're doing the act of 
learning. [...] active learning sort of, in my mind, inherently has this idea that students are 
capable of learning independent of their background, so, in a sense, you are creating 
space for equity by allowing students to discover and have dialogue with the material.”  

Collin viewed AL as “inherently” equitable, implying that AL exists within the domain of EIT. 

EIT Contained in AL 
Seven participants’ responses aligned with EIT as a subset of AL, with five providing strong 

evidence and two providing possible evidence for this relationship. Aadaya’s response 
encapsulated this relationship as follows: "I think that they are related but yeah I think one would 
kind of be incorporated into the other." She elaborated further, stating, "So those are things you 
could do that maybe make students feel more included in the class when they're doing their 
active learning activities." In other words, in a classroom in which AL is being implemented, 
there are additional strategies that can be used to help students feel more included. This suggests 
a view that EIT is a special case of AL. 

Bill described a similar viewpoint with the response, "equitable and inclusive learning … 
might be more purposeful.” He went on to say, “there's things that you can do to be very 
purposeful as opposed to my current understanding of active learning as just good pedagogy, not 
necessarily, you know, driving in awareness of inequities." This points to a view that AL alone is 
not necessarily equitable or inclusive unless the instructor is “purposeful” about using equitable 
and inclusive teaching practices. 

Discussion 
Although our set theory framework allowed for the possibility of five clearly defined 

relationships, an overall glance at Table 2 shows that most of our participants’ responses fell into 
two categories. The strongest evidence aligned with the relationships involving some overlap of 
the two concepts or containment of EIT in AL. We originally conjectured that EIT might be a 
larger, umbrella term that contained AL. In other words, AL as a set of teaching practices might 
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be situated within equitable and inclusive teaching as a broader ideology (e.g., Roos, 2019). 
However, participants’ responses primarily pointed toward the reverse containment relationship, 
where EIT exists within AL. This finding is consistent with studies that showed that not all AL 
classrooms and practices are equitable for all students (e.g., Johnson et al., 2020; Rios, 2022). 
We continue to explore how this finding aligns with the Four Pillars framework (Laursen & 
Rasmussen, 2019), where equity as a pillar could be interpreted as one element contained within 
the larger set of AL, or that equity is a necessary condition of AL and thus AL is contained in 
EIT. Furthermore, the equity workshop was situated within a larger study on AL (SEMINAL 
Project; see Smith et al., 2021), where instructors were first introduced to AL in mathematics 
instruction before connecting this concept to EIT. Thus, the primary focus on AL might have 
prompted participants to think about EIT within an AL context.  

We also emphasize that participants shared their perceptions of the relationship between AL 
and EIT at the end of a year-long workshop on equity and equitable teaching practices. In other 
words, it seemed reasonable to presume that participants would have similar notions of EIT, AL, 
and the relationship between them. However, our data showed that participants expressed varied 
notions of the domains in which these terms exist (e.g., learning theories, pedagogies, specific 
teaching practices) and how they function in a mathematics classroom, much like Roos’s (2019) 
findings about the role of inclusion. Our findings illustrated that even after participating in a 
workshop focused on equity, instructors and other mathematics faculty can still hold diverse 
views of the relationship between AL and EIT. This has major implications for instructors who 
implement these pedagogical concepts in their classes and for future professional development 
centered on AL and EIT. Understanding this relationship and being aware of the potential 
differences in stakeholders’ views can inform how mathematics departments frame their 
collective efforts toward implementing AL and EIT, which is imperative to systemic and 
sustained change (Williams et al., 2022; Laursen, 2019). 

In some ways, our work generated more questions than answers. For example, does having 
one containment view of the relationship (compared to the other) change how educators 
implement these practices in mathematics classrooms? Based on someone’s view of the 
relationship, are some ideas privileged over others? Is there one “right” way of viewing the 
relationship between EIT and AL? Is it possible to hold multiple views of this relationship 
simultaneously (as responses from some of our participants suggest)? While we cannot 
definitively say which relationship between AL and EIT is “true” or even if one exists, our work 
raises questions about the implications of different views of this relationship, particularly for 
researchers and educators who are interested in instructional change efforts.  

Finally, we acknowledge that our analysis brings to light a tension between straightforward 
mathematical logic and messy teaching constructs. Mathematics often involves creating well-
defined categories in order to organize objects. For this analysis, we used set theory as an 
analytic tool to classify complex, fluid concepts within an exploratory qualitative study. As 
mathematicians, the structure of set theory is compelling and satisfying; however, as education 
researchers, we grappled with how to fit participants’ responses into precisely one set 
relationship. Further exploration is needed to better understand the relationship between AL and 
EIT and the implications it has for improving undergraduate mathematics education. 
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We analyzed end of course reflections of graduate students in mathematics courses for 
practicing teachers. Participants were asked questions about mathematics content, habits of 
mind, and whether being a concurrent mathematics teacher while taking the graduate course 
impacted the value that they saw in either area. Participants were also asked to reflect on 
whether they believed the course would have been valuable when they were an undergraduate 
student. We first coded these reflections with Hoffman and Even’s (2018, 2021) framework 
including essence, doing, and worth of mathematics. As a result of our analysis, we suggest 
extending their framework to mathematics and mathematics teaching, and to include content. 
Discussion includes suggestions for future research to understand how teaching mathematics 
reframes learning mathematics, and the importance of framing to understanding the uptake of 
mathematics courses for both prospective and practicing teachers.  

Keywords: Content Courses for Teachers, Mathematical Knowledge for Teaching, Masters 
Degree Programs 

Introduction & Background  
We open by recalling a conversation that one of the authors often encounters when teaching a 

content course for secondary teachers, although this proposal will address content courses for 
practicing elementary, middle, and secondary teachers. The conversation begins when the topic 
of abstract algebra is brought up, a course where prospective teachers first learn modular 
arithmetic. A prospective teacher says, “I hated abstract algebra. I learned in that class that I 
don’t like math.” Yet, when practicing teachers in a graduate summer course, from the same 
district, learn modular arithmetic once more, they will say, “I really liked this class! I want to 
find a way to teach mods to my kids.”  

The two courses, the undergraduate abstract algebra course, and the graduate summer course, 
are taught by faculty in the same department. They address similar topics. Across different years, 
different faculty members, and different cohorts of teachers, these contrasting conversations 
repeat, as if in a time loop. Why does the conversation change, as teachers in this district cross 
the threshold from future teachers to current teachers?  

While there is evidence that some teachers benefit greatly from taking graduate level 
coursework (University of Waterloo, n.d.), and there is evidence that content-focused 
professional development does impact teacher productivity across elementary and secondary 
(Harris & Sass, 2007), there is also evidence that it is pedagogical coursework and development 
that may ultimately make a larger impact on student outcomes (Baumert et al., 2010; Ottmar et 
al., 2015). Moreover, in some cases, the additional coursework may address content that overlaps 
with undergraduate coursework. There is a problem: the efficacy of undergraduate and graduate 
course taking, in terms of impact on teachers’ teaching or in perceived usefulness of the course, 
is debatable and idiosyncratic. 

The puzzle for us is this: mathematics teachers need more mathematics than they have 
learned in elementary, middle, and high school, in order to teach at that level. Yet taking 
mathematics as an undergrad--a natural place for candidate teachers to prepare mathematically to 
teach mathematics--seems to be met with adversity. There is a seeming paradox in how 
experience with teaching may mediate the uptake and relevance of mathematics courses.  
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Hence, we are interested in why teachers may find graduate and undergraduate courses useful 
or not. Our overarching research question is: How does teaching experience mediate teachers’ 
uptake of mathematics? We address: (RQ1) How do practicing teachers describe the 
contribution of graduate mathematics coursework on their learning? (RQ2) How would the same 
practicing teachers assess the relative value of this same mathematics coursework, had they 
taken the course as an undergraduate, prior to any teaching experience?  

In this study, we use teachers to refer to PK-12 classroom teachers, students to refer to PK-
12 students, and we only use instructor to refer to tertiary level instructors. 

Related Literature 
In the existing empirical literature on the contribution of academic mathematics experiences 

to teacher learning, many practicing and prospective secondary teachers have been documented 
to find their mathematics experiences disconnected from teaching (e.g., Goulding, Hatch, & 
Rodd, 2003; Zazkis & Leikin, 2010) to be difficult in unexpected and sometimes unpleasant 
ways compared to secondary mathematics experiences (see Corriveau & Bednarz, 2017 for a 
review). At the elementary level, some prospective elementary teachers have found courses to be 
emotionally stressful and detrimental to their mathematical confidence, and to be disconnected 
from their teaching (e.g., Hart, Oesterle, & Swars, 2013). The literature also suggests that 
instructors of mathematics courses for elementary and secondary teachers design courses to 
combat disconnects and to support students’ learning (e.g., Lai, 2019; Li & Superfine, 2018). 

This literature has gaps. First, the literature does not distinguish between viewpoints of 
teachers before and after teaching. As our experience suggests, there may be a change of 
viewpoint that occurs after teachers enter the classroom. Second, the literature tends to report 
results from either multiple institutions, so it is hard to disentangle results from context, or from 
small case studies, meaning that it is hard to generalize. Our study addresses these gaps.  

In designing our study, we observed that multiple guiding documents, in the US and beyond, 
emphasize the value of mathematical content and mathematical habits of mind (e.g., Ministry of 
Education, 2007; National Governors Association Center for Best Practices & Council of Chief 
State School Officers, 2010). We also used the results of Hoffman, Even, and Mytlis on the 
contribution of academic mathematics to teacher learning (Hoffman & Even, 2018, 2021; Mytlis 
& Even, 2021). Their findings suggest that teachers and mathematicians view contributions in 
three categories: (1) the essence of mathematics, that is the nature of mathematics, or “what is 
mathematics”; (2) doing mathematics, or “how is mathematics done”; and (3) the worth of 
mathematics, for its own sake or for its applications. We interpret the doing of mathematics to be 
synonymous with habits of mind. We used content and habits of mind as a proxy for what may 
be explicitly taught in a mathematics course, and we use the results of Hoffman, Even, and 
Myrtis as a hypothesis for the learning that teachers perceive from these courses.  

Conceptual Framework 
Our past experiences influence our current perception. From our expectation of success at a 

task, to how much we value doing a task, to reaction time, our past experience can mediate how 
we respond to a current moment (e.g., Eccles & Wigfield, 2020; Pearson & Brascamp, 2008). In 
the case of teachers, prospective and practicing mathematics teachers differ in one significant 
respect: only one of them has past experience of classroom mathematics teaching. We 
hypothesize that this difference in past experience mediates how they experience mathematics 
learning, so that prospective teachers and practicing teachers may view the same mathematics 
content differently. Our study is an initial step to test this hypothesis by posing to practicing 
teachers who were enrolled in mathematics courses a counterfactual: would they have found this 
course just as valuable had they taken the course as an undergraduate prior to teaching?  
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We investigate potential differences in terms of framing (Goffman, 1974): how a person 
defines a situation. For instance, if one teacher defines a situation of learning as a “hoop to jump 
through”, and a second teacher defines the same situation as “a place to learn how to do 
mathematics better”, they may end up having different experiences of the same situation. 

Participant Context 
At Indigo University, the STEM Education Center, in collaboration with the Department of 

Mathematics, offers graduate mathematics courses taken by K-12 mathematics and science 
teachers (all institutional names are pseudonyms). Although many teachers enrolling in these 
courses are local, there are also teachers who enroll from out of state, as well as from countries 
outside the US. These graduate courses have been offered for almost two decades, and typically 
feature high end-of-course evaluations from the enrolled teachers.  

We anticipated this site would be a fruitful context for our research questions for several 
reasons. The variety of backgrounds of teachers made it more likely that these teachers would 
have come from different undergraduate institutions. In this way, their collective viewpoints 
about experiences with undergraduate mathematics would reflect more than one particular 
institution or pedagogy. Moreover, we were interested in the case of a success story with 
mathematics. Frankly, we thought it would be more interesting and productive to document ways 
that experiences with graduate mathematics coursework are useful, rather than the opposite. 

Data & Method  
Participants included 46 practicing teachers who were enrolled in 9 mathematics courses in 

the summer masters program at Indigo University. Participants consented to sharing an end-of-
course reflection assignment, which formed the data source for analysis. In total, the 46 teachers 
submitted 61 separate responses, as some teachers were enrolled in more than one course. 
Among these were responses from courses intended for elementary teachers and for middle and 
secondary level teachers. Instructors who taught the participants agreed to include three common 
prompts for reflection. One prompt posed to teachers the counterfactual situation that they had 
taken the course prior to classroom teaching:   

 
Suppose you had taken this course as an undergraduate, before having any significant 
teaching experience. Would you have found the experiences with habits of mind less or 
more valuable than now? Would you have found the content less or more valuable than 
now? For what reasons?  
 
This was Prompt 3 of the reflection assignment. We report only on analysis of responses to 

this prompt. Prompts 1 and 2 asked about how their experiences with habits of mind and course 
content might change the way they taught an activity or topic in the future, and defined habits of 
mind as “approaches to creating mathematical ideas or working on math problems”. Example 
habits of mind and course content specific to the particular course were included in Prompts 1 
and 2 (e.g., “looking at a problem from multiple perspectives” and “using precise definitions” 
were example habits of mind; and “Pascal’s triangle” and “linear regressions” were example 
mathematical content). 

Analysis for RQ1: Characterizing the contribution of masters coursework in mathematics 
to teacher learning 

We used a combination of inductive and deductive coding (Miles, Huberman, & Saldana, 
2018). We began with deductive coding of responses according to Hoffman and Even’s (2018) 
categories of the contribution of academic mathematics to teacher learning: Essence, Doing, and 
Worth of Mathematics. However, we noticed statements describing contributions of the masters’ 
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course to teachers’ learning that did not fit neatly into Hoffman and Even’s descriptions, and 
wanted to differentiate between contributions for the purpose of mathematics from those for 
teaching. We inductively expanded the categories as shown in Figure 1 (next page). In tabulating 
the coding, we elected to use the unit of analysis of teachers rather than responses. We noticed 
that some teachers who had enrolled in different courses used the same phrasing across responses 
to different courses, and that this phrasing was essential to our coding. 

Analysis for RQ2: Comparing relative value of coursework before and after teaching 
We initially categorized responses as stating that the graduate course was more valuable 

before teaching, more valuable after teaching, valuable either way, or none (meaning, the 
response did not explicitly make a comparison of value before or after teaching). Then, as we 
noticed teachers stating that some aspects were more valuable before teaching and others more 
valuable after teaching, we inductively coded for the aspect of relative value (e.g., experience 
with habits of mind, content, technology).  

Finally, we excerpted frame statements from responses, that is statements that explained 
something to the effect of, “Teaching experience made a difference in how I learned in the 
course because …”. We surveyed these frame statements for themes in how teaching experiences 
framed the contributions of the mathematics courses to teacher learning. In tabulating this 
coding, we elected to use the unit of analysis of responses rather than teachers, because the 
comparison of contributions was course-dependent, and some teachers stated different 
comparisons for different courses.  
Figure 1. Categories of contribution to teacher learning for RQ1 

Contribution Description: Statement that the course experiences …  

Essence Essence of 
Math 

Changed a teacher’s conception of “what is mathematics”, or will help them convey 
to students a conception of “what is mathematics” 

Essence of 
Math Teaching 

Changed a teacher’s conception of the nature of teaching, including the possibilities 
of what teaching can look like  

Doing 
 
 

Doing of Math  
 

Contributed to a teacher’s mathematical habits of mind, or that the course will help 
teachers cultivate students’ mathematical habits of mind, including struggling or 
persevering through mathematics 

Doing of Math 
Teaching 

Statement that the course exposed teachers to teaching practices or activities they 
see as valuable or beneficial 

Worth Worth of Math Statement that the course improved a teacher’s sense of the value of mathematics, 
or helped a teacher convey to students the value of mathematics, either for its own 
sake, or because of its applications to science, technology, etc.. or that the  course  

Worth for 
Math Teaching 

Statement that the course improved a teacher’s sense of the value of mathematical 
knowledge for the purpose of teaching 

Content Content 
Knowledge 

Statement that a teacher developed specific content knowledge, or that the course 
will help teachers support students’ acquisition of specific content knowledge, 
including connections among topics and better explanations (Shulman, 1986) 

Pedagogical 
Content 
Knowledge 

Statement that a teacher developed specific pedagogical content knowledge, 
including detecting the potential of activities to facilitate learning; knowledge of 
student conceptions; or knowledge of or about multiple representations and 
explanations (Baumert et al., 2010) 
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Results 

Characterizing the contribution of masters coursework in mathematics to teacher learning 
Across our participants, the most frequently cited positive contribution of coursework was to 

the categories of doing mathematics (16 participants; 34.8%) and content knowledge (12 
participants; 26.1%). Our prompt specifically mentioned content and habits of mind, and hence it 
is unsurprising that these categories are mentioned frequently. Table 1 summarizes the results.  

Our main differences from Hoffman and Even are (1) introducing Content as a category and 
(2) extending contributions to both mathematics and mathematics teaching. This delineation 
allowed us to record that one possible benefit of these courses is the teaching itself: teachers 
mentioned the benefits of exposure to “great habits of teaching” (Doing of Math Teaching), or 
“realiz[ing] that how I am teaching now is not fulfilling what my expectations are for my 
students” (Essence of Math Teaching). Among our participants, 12 cited content knowledge as a 
contribution, for example, discussing the value of learning about concepts of calculus, or 
properties of number lines. Teachers explained the value in terms of being able to see more 
connections or providing better explanations in the future. All but 12 teachers cited a 
contribution of the graduate course in the responses analyzed. 

 
Table 1. Contributions of coursework in mathematics, with unit of analysis being teachers (n = 46) 

Contribution Math/Teaching # Participants mentioning contribution (%) 

Essence of Math | Math Teaching 0  (0%) | 2 (4.3%) 

Doing of Math | Math Teaching 16 (34.8%) | 7 (14.2%) 

Worth of Math | Math Teaching 0 (0%) | 2 (4.3%) 

Content CK | PCK 12 (26.1%) | 5 (10.9%) 

Analysis for RQ2: Comparing relative value of coursework before and after teaching 
We found that teachers parsed the relative value in terms of habits of mind, content, the 

course as a whole, and technology. We coded valuable either way when teachers wrote about 
benefits in both directions. We coded more valuable AFTER teaching only when teachers wrote 
about benefits in one direction (resp. BEFORE). See Table 2. We only coded course as a whole 
when the teacher did cite a specific aspect, but unambiguously stated relative value. 

 
Table 2. Aspects of contribution and their relative value, with unit of analysis being responses (n = 61) 

 Course as a whole Habits of Mind Content Technology 

More valuable 
AFTER teaching 

4 (6.6%) 24 (39.3%) 18 (29.5%) 1 (1.6%) 

More valuable 
BEFORE teaching 

3 (4.9%) 9 (14.8%) 11 (18%) 0 (0%) 

Valuable either way 1 (1.6%) 6 (9.8%) 6 (9.8%) 0 (0%) 

 
We found in total 27 framing statements. Analysis of framing statements suggests that 

overwhelmingly, teachers found an aspect more valuable after teaching because they could 
envision how the aspect could be applied to their teaching – and that they could not do so before.  
As one participant stated, “"Without teaching experience, I would not be thinking about those 
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things as we go along.” For brevity, we discuss only habits of mind here. Participants mentioned 
that habits of mind were useful now, and not previously, primarily because they now saw the 
value of habits of mind to students (“... now that I have had experiences working with students, I 
understand the importance of being able to solve using multiple strategies”) or because they 
could better empathize with students (“When I actually had the experience of teaching in a 
classroom, I was surprised how many students struggled with the content. Having to struggle 
through habits of mind problems helped me to see what my students go through daily. I think if I 
would have taken this class earlier, it would not have resonated with me as much.”).  

Discussion & Conclusion 
We undertook this study because of a local phenomenon that teachers seemed to have 

differing evaluations of the value of similar mathematics coursework, depending on whether they 
took the material after or before teaching experience. We posited that teaching experience 
mediated the uptake of course experiences in some way. Consequently, we examined how 
practicing teachers describe the contribution of graduate mathematics coursework to their 
learning, and how they would assess the relative value of this same coursework, had they taken 
the course as an undergraduate, prior to any teaching experience. We posed to teachers in an end-
of-course reflection assignment the counterfactual situation of taking the same course as an 
undergraduate. 

We found that most teachers cited some contribution of the graduate course to their learning, 
including the emphasis of the course on habits of mind, or the course’s content. We also found 
that the plurality of responses indicated that teachers felt this course was more valuable after 
teaching than prior to teaching. To investigate why this may be the case, we examined framing 
statements. In these statements, a common theme was that without teaching experience, teachers 
did not realize the worth of habits of mind, or of content, for cultivating these aspects in students. 
Another common theme was that struggling in graduate coursework gave teachers empathy for 
their students, which would ultimately help the teachers be more understanding of students in the 
future.  

We view our main contributions to be twofold. First, we extend Hoffman and Even’s (2018, 
2021) theoretical framework, and elaborate the possibilities for how academic mathematics 
coursework can contribute to teacher learning. Not only may they learn about mathematics, but 
they may also rethink their own teaching, or find teaching practices and activities modeled by the 
instructor they wish to bring into their classroom (cf. Wasserman & McGuffey, 2021). Second, 
we introduce the notion of framing as an explanation for why teachers may find courses useful or 
not, and how utility may shift over time. Prior work on teachers’ conceptions of academic 
mathematics experiences have not differentiated between viewpoints before and after teaching 
experience. But as our results suggest, undergraduates and practicing teachers may frame their 
mathematics learning very differently. We suggest that further work investigating these frames 
can contribute to improving courses for both populations, as well as potential differences to work 
into course design with intention. 
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In the past two decades, there has been a trend in materials for mathematics courses for 
prospective secondary teachers: more opportunities for teachers to “apply mathematics to 
teaching”. That is, materials increasingly highlight how mathematical knowledge learned in the 
course can be useful in secondary teaching, and provide opportunities for teachers to harness 
this knowledge in simulations of teaching. There is little known about the effects of this 
curricular reform on teachers’ competence. In this report, we use data from the Mathematics of 
Doing, Understanding, Learning, and Educating for Secondary Schools MODULE(S2) project to 
examine the potential impact of using such curricular materials. The data include over 300 
prospective secondary teachers’ responses to 3 sets of Likert pre-/post-term surveys addressing: 
mathematical knowledge for teaching; expectancy for enacting selected core teaching practices; 
and valuing of enacting these practices. We found mean increases across the survey results. We 
conclude with directions for future research on the impact of this curricular reform.

Keywords: Content Courses for Secondary Teachers, Mathematicians, Mathematical Knowledge 
for Teaching, Expectancy, Value 

Introduction & Background  
Many secondary teachers do not find their tertiary mathematics experiences usable in 

secondary mathematics teaching (e.g., Goulding, Hatch, & Rodd, 2003; Winsløw & Grønbæk, 
2014; Zazkis & Leikin, 2010). In response to this problem, multiple scholars, including within 
the RUME community, have advocated for mathematics courses for prospective secondary 
mathematics teachers to provide explicit opportunities to connect university mathematics with 
secondary mathematics teaching (e.g., Álvarez et al., 2020; Lai, 2019; Wasserman et al., 2017). 

In these scholars’ view, the disconnection problem in the US may be a consequence of 
historical attempts to emphasize tertiary-secondary connections through mathematics (e.g., The 
Panel on Teacher Training, 1971) at the expense of attention to mathematics teaching practice. 
To rectify this situation, secondary mathematics teacher educators have in the past decade or so 
developed materials that articulate links to teaching practice (e.g., Álvarez et al., 2020a, 2020b; 
Bremigan et al., 2011; Buchbinder & McCrone, 2020; Hauk et al., 2017; Heid et al., 2015; 
Lischka et al., 2020; Sultan & Artzt, 2011; Wasserman et al., 2017). An instructional device 
common to each of these materials is applications of mathematics to teaching – where teachers 
respond to a description of a secondary teaching situation by leveraging material learned in a 
tertiary course (cf. Bass, 2005; Stylianides & Stylianides, 2010).  

Since the advent of this curricular reform, there have been relatively few studies describing 
the potential impact of the use of materials featuring applications of mathematics to teaching. As 
far as we know, there are two exceptions (Buchbinder & McCrone, 2020; Wasserman and 
McGuffey, 2021) which though promising, also featured fifteen and six teachers only. Hence 
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advancement of research and practice in secondary mathematics education faces a problematic 
gap: we do not know much about the impact of a growing curricular trend in materials for 
mathematics courses for secondary teachers.  

The purpose of this report is to take a first step in addressing this gap, by examining changes 
in teachers’ competence. As explained below, we view competence as including mathematical 
knowledge for teaching, expectation of success of enacting core teaching practices, and valuing 
of core teaching practices. The research questions guiding this report are:  

Over the course of a semester-long experience featuring applications of mathematics to 
teaching that were coordinated with mathematical content learned,  
1. To what extent did teachers’ mathematical knowledge for teaching change? 
2. To what extent did teachers’ expectation of success for carrying out selected core 

teaching practices change? 
3. To what extent did teachers’ valuing of these selected core teaching practices change? 

We note that while statistics and mathematics are distinct disciplines, in secondary education, 
“mathematics” is often seen as including statistics, a practice that we will follow in this paper. 
Unless otherwise indicated, we use “teacher” to mean a prospective secondary mathematics 
teacher, “student” to mean secondary student, and “instructor” to mean a university instructor. 

Conceptual Perspective 
We follow Blömeke et al.’s (2015) notion of competence for teaching to include cognitive, 

motivational, and situational resources. Cognitive and motivational resources are also known as 
teacher traits; we see these as malleable. Cognitive resources include mathematical knowledge 
for teaching (MKT; Ball et al. 2008; Thompson & Thompson, 1996), the knowledge entailed in 
carrying out recurrent work of teaching. Within motivation, we focus on expectancy and value. 
Expectancy is the expectation of success at enacting a task in a particular situation (Wigfield & 
Eccles, 2000). Value is the subjective value of enacting the task, and it encompasses utility, 
enjoyment, and personal fulfillment (see Eccles & Wigfield, 2020, for a review).  

Situational resources include teachers’ understandings and conceptions of core teaching 
practices. These practices are those that benefit students in equitable ways; are learnable by 
teachers; and have the potential to promote teaching improvement over time (Grossman et al., 
2009). Example core teaching practices include generating questions and discussion that promote 
students’ reasoning, and learning about student understanding using their explanations. 

We follow Eccles and Wigfield’s (2020) framing that one’s choices and performance feed 
iteratively into one’s expectancy and value, and vice versa. If one experiences successful 
performance in mathematics and its applications to teaching, one is more likely to try again in 
the future. Conversely, if one perceives failure, one might desire to avoid core teaching practices.   

From this perspective, an important role of teacher education is socialization: providing 
opportunities for teachers to learn and succeed, so as to encourage them to choose to engage in 
core practices in the future. Figure 1 summarizes our conceptual perspective.  
Figure 1. Perspective on Competence  

  

Situational PerformanceSocialization

University 
mathematics 

curriculum and
instruction
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Data & Method  

Study Context 
Our report examines change in teachers’ competence over the course of using MODULE(S2) 

project materials in four different mathematical areas: algebra, geometry, mathematical 
modeling, and statistics. Materials for each area were intended to be used across one semester, 
and each featured 6 extended prompts. These extended opportunities specified a secondary 
student-level task, a goal for the scenario involving engaging students in a mathematical practice, 
and in most cases text or images of sample work drawn whenever possible from secondary 
student work obtained from secondary classroom teachers consulting for the project. Teachers 
were to respond to half of the prompts by writing a narrative describing how they would use the 
given responses to set up a whole class discussion, and the other half by videotaping themselves 
responding to sample student contributions as if they were personally responding to a student in 
their own class. For all responses, teachers were asked to make specific reference to the students’ 
thinking, elicit student conceptions, and pose questions to advance mathematical understanding. 
All materials came in instructor-facing and teacher-facing versions, with the instructor-facing 
providing guidance for enacting core teaching practices in their own instruction.  

Participants 
Participants were 368 teachers enrolled in tertiary mathematics courses using MODULE(S2) 

materials with 65 instructors at 54 different institutions across the United States and Canada. 
These participants consented to participation and completed various of the instrument forms 
detailed below. We defined “completion” as completing the majority of questions on that form.  

Courses were taught at institutions ranging from large public research universities to small 
private colleges to regional public universities, and from those that served predominantly white 
populations to those that served predominantly minoritized populations. 

Phases of Study and Instruments 
Research occurred in two phases, before and after the first year of the covid-19 pandemic. 

Phase One spanned the project’s Years 1 and 2, with data collected in two content areas per year. 
Phase Two spanned the project’s Year 4, with data collected in all four content areas.  

MKT measures. At the beginning and end of the term using MODULE(S2) materials, we 
measured teachers’ content knowledge for teaching. These include items from the Exponential, 
Quadratics, and Linear assessment (Howell et al., 2016); Geometry Assessments for Secondary 
Teaching (GAST; Mohr-Schroeder et al., 2017); Anhalt and Cortez’s (2016) instrument on 
preparation for teaching modeling; and sample items based on the Levels of Conceptual 
Understanding of Statistics repository (LOCUS, n.d.), and an assessment item developed by 
Randall Groth (personal communication). To analyze change in teachers’ content knowledge for 
teaching, we used Cohen’s d to quantify effect size for knowledge change in each area. As of 
writing, we scored only assessments from Phase One data collection, so we only report those 
results. 

Expectancy and value measures. At the beginning and end of the term, we measured each 
teacher’s expectancy and value for enacting selected core teaching practices (SCTPs) in the area 
emphasized by their course. In Phase One, we used the same form in pre- and post-term 
administrations. After analyzing these results, and in view of conversations with piloting faculty, 
we posited that the large pre- ratings potentially obscured changes in expectancy and value for 
participants. In particular, faculty reported that teachers enrolled in their class remarked on how 
much they learned that they did not know could be learned. In Phase Two, to take this perception 
into account, we modified the post-term form to include a retrospective pre-rating for each item 
on the post-term measures. Moreover, in Phase Two, conversations with piloters and among the 
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research team suggested adding an SCTP. See Table 1 for SCTPs included in each phase. See 
Figures 2 and 3 for a sample Expectancy item with a retrospective pre- rating; the post-term 
Value forms featured similar items. Underlined portions indicate parts specific to a content area. 

We analyzed categorical shifts from pre- to post-test on the expectancy and value instruments 
across SCTPs and content areas using descriptive statistics of differences paired by teacher. We 
are interested in the effect size of any changes, rather than simply asking whether a difference 
exists. We use Cohen’s d to quantify effect size for expectancy and value for enacting each 
SCTP; it measures the practical significance of the observed difference by accounting for 
variability in the difference. Common benchmarks for interpreting Cohen’s d are 0.2 for a small 
but non-negligible effect, 0.5 for a medium effect, 0.8 for a large effect, and 1.3 for a very large 
effect (Sullivan & Feinn, 2012). 
Table 1. Selected core teaching practices emphasized in materials used by study participants 
Code  Definition Phase One Phase Two 

SCTP1 Ask questions so that middle and/or high school students make conjectures. ✓ ✓ 
SCTP2 Ask questions and lead discussions that help middle and/or high school students 

come up with mathematical explanations. 
✓ ✓ 

SCTP3 Ask questions that help middle and/or high school students make connections 
between different representations of the same idea 

 ✓ 

SCTP4  Ask questions so that middle and/or high school students understand how to build on 
their thinking and what to revise. 

✓ ✓ 

SCTP5  Analyze middle and/or high school students' responses to understand their reasoning ✓ ✓ 
Figure 2. Sample items used in Phase One pre- and post-term and Phase Two pre-term only 

Expectancy item and set up,  
with content area and key concept emphasized 

Value item and set up,  
with content area emphasized (no key concepts cited) 

Suppose you are teaching middle or high school algebra 
students how to think about functions in terms of how 
changes in the value of one variable may impact the value 
of the other variable. 
How well does this statement describe how you feel? 

How much do you personally agree with the following 
ideas about teaching algebra in middle or high school? 

I would be comfortable regularly asking questions so that 
middle or high school students make conjectures. 

I think it is important to regularly ask questions so that 
middle or high school students make conjectures.  

 Not at all   Very much_    Not at all   Very much_ 
0 1 2 3 4 5 0 1 2 3 4 5 

Figure 3. Sample item in Phase Two Expectancy Measure, post-term only 
Expectancy item and set up, with content area and key concept underlined 
Suppose you are teaching middle or high school algebra students how to think about functions in terms of how 
changes in the value of one variable may impact the value of the other variable. 
Looking back, how well did these statements describe you at the beginning of the course, AND now at the end of the 
course? 
 BEGINNING of course NOW, at END of course 
I would be comfortable regularly asking questions so 
that middle or high school students make conjectures. 

 Not at all Very much_  Not at all Very much_  
0 1 2 3 4 5 0 1 2 3 4 5 
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Results 

Changes in mathematical knowledge for teaching (MKT) 
Table 2 indicates that all areas exhibited a mean increase in teachers’ MKT. All effect sizes 

are above the threshold for large practical significance (Cohen’s d > 0.8). All post scores are less 
than 50% of the maximum score, and pre- and post- means across all areas are roughly 
comparable. As context for interpreting this finding, we turn to validation studies of measures for 
content knowledge for teaching geometry, where there has been significant work at the 
secondary level with reported raw scores. Mohr-Schroeder et al. (2017) validated GAST forms to 
measure mathematical knowledge for teaching geometry with a sample of predominantly 
practicing teachers. In contrast, our participants were strictly prospective teachers. On full GAST 
forms, the mean score was 20 points out of 30 possible. Mohr-Schroeder et al. did not compare 
prospective and practicing teachers’ performance in their sample. However, in reports of their 
results with a different instrument (MKT-G), Milewski et al. (2019) reported that most 
prospective teachers’ scores were comparable to those in the lower half of practicing teachers’ 
scores. In view of these results, it is not surprising that the teachers in our sample scored, overall, 
in a lower range than those in Mohr-Schroeder et al.’s sample, and apparently in a similar range 
over all areas. Finally, we note that the indicated sample sizes include only those teachers who 
completed both pre and post forms. Because not all piloters administered the post form, 
participant numbers are lower in some areas. 
Table 2. Paired difference results for MKT, reported in terms of percentage of maximum score on each area 
assessment 
Area Pre-Mean Post-Mean Mean D SDD Cohen's d 
Algebra (n=9) 20.8% 39.2% 18.3% 13.5% 1.36 
Geometry (n=63) 25.6% 35.9% 10.3% 10.1% 1.02 
Mathematical Modeling (n=20) 31.3% 44.4% 13.1% 17.9% 0.73 
Statistics (n=40) 26.6% 42.2% 15.6% 16.4% 0.95 

Changes in expectancy and value for enacting selected core teaching practices (SCTPs) 
Tables 3-8 summarize our findings. For brevity, the table does not include all 32 + 40 

combinations of expectancy and value (Phase One: 4 SCTPs × 4 content areas ×{expectancy, 
value}; Phase Two: 5 SCTPs × 4 content areas ×{expectancy, value}), but we discuss their 
characteristics now. In Phase One, all expectancy effect sizes among SCTPs are non-negligible 
(Cohen’s d > 0.2). Eight of the 16 indicate at least medium practical significance (Cohen’s d > 
0.5), and 1 indicates large practical significance (Cohen’s d > 0.8). Among effect sizes for value, 
9 indicate non-negligible practical significance, with most of them being for SCPT1 and SCTP2. 

Retrospective pre-ratings were overall lower than actual pre-ratings, confirming our 
hypothesis that teachers, when looking back, now believe they perceived less expectancy and 
value at the beginning of term, as compared to their perceptions at the actual beginning of term. 
The lowest mean expectancy retrospective pre-rating for any SCTP in any content area was 2.58, 
compared to 3.20 for actual pre-ratings. The lowest mean value retrospective pre-rating for any 
SCTP in any content area was 3.46, compared to 4.28 for actual pre-ratings.  

All effect sizes for actual difference in pre/post expectancy are non-negligible, 16 indicate 
medium practical significance, and 8 indicate large practical significance. Effect sizes for actual 
pre/post increases in expectancy in Phase Two are slightly larger than those in Phase One; this 
may be due to improvements to the materials, or simply to differences in students and 
instructors. All effect sizes for retrospective difference in pre/post expectancy are non-negligible 
and in fact are above the threshold for large practical significance and 15 indicate very large 
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practical significance (Cohen’s d > 1.3). Among effect sizes for actual difference in pre/post 
value, 14 indicate small practical significance, and 1 indicates medium practical significance. All 
effect sizes for retrospective difference in pre/post value are above the threshold for medium 
practical significance, and 11 indicate large practical significance. 
 
Table 3. Phase One paired difference results for pre/post expectancy, with min and max Cohen’s d across SCTPs 
Area Pre-Mean Post-Mean Mean D min Cohen's d max Cohen’s d 
Algebra (n=54) 3.840 4.293 0.453 0.288 (SCTP5) 0.498 (SCTP1) 
Geometry (n=50) 3.583 4.040 0.457 0.292 (SCTP1) 0.446 (SCTP2) 
Mathematical Modeling (n=26) 3.421 4.320 0.899 0.675 (SCTP2) 0.839 (SCTP1) 
Statistics (n=44) 3.317 4.119 0.802 0.502 (SCTP4) 0.613 (SCTP2) 
 
Table 4. Phase One paired difference results for pre/post value, with min and max Cohen’s d across SCTPs 
Area Pre-Mean Post-Mean Mean D min Cohen's d max Cohen’s d 
Algebra (n=54) 4.384 4.565 0.181 0.075 (SCTP5) 0.336 (SCTP2) 
Geometry (n=50) 4.455 4.510 0.055 0.088 (SCTP5) 0.206 (SCTP1) 
Mathematical Modeling (n=26) 4.289 4.548 0.259 0.196 (SCTP5) 0.340 (SCTP2) 
Statistics (n=44) 4.489 4.705 0.216 0.094 (SCTP4) 0.450 (SCTP2) 
 
Table 5. Phase Two paired difference results for pre/post expectancy, with min and max Cohen’s d across SCTPs 
Area Pre-Mean Post-Mean Mean D min Cohen's d max Cohen’s d 
Algebra (n=69) 3.50 4.23 0.74 0.76 (SCTP1) 0.91 (SCTP5) 
Geometry (n=27) 3.44 4.37 0.92 0.67 (SCTP3) 0.83 (SCTP4) 
Mathematical Modeling (n=26) 3.35 4.36 1.02 0.71 (SCTP2) 0.99 (SCTP1,3) 
Statistics (n=68) 3.45 4.06 0.62 0.42 (SCTP2, 5) 0.5 (SCTP1) 
 
Table 6. Phase Two paired difference results for pre/post value, with min and max Cohen’s d across SCTPs 
Area Pre-Mean Post-Mean Mean D min Cohen's d max Cohen’s d 
Algebra (n=70) 4.60 4.75 0.15 0.12 (SCTP2) 0.28 (SCTP1) 
Geometry (n=27) 4.60 4.82 0.22 0.22 (SCTP3) 0.54 (SCTP2) 
Mathematical Modeling (n=26) 4.43 4.69 0.26 0.20 (SCTP3) 0.46 (SCTP1) 
Statistics (n=67) 4.47 4.65 0.18 0.07 (SCTP3) 0.40 (SCTP1) 
 
Table 7. Phase Two paired difference results for retrospective pre/post expectancy, with min and max Cohen’s d 
across SCTPs 
Area Pre-Mean Post-Mean Mean D min Cohen's d max Cohen’s d 
Algebra (n=54) 2.72 4.23 1.52 1.61 (SCTP5) 1.68 (SCTP1,4) 
Geometry (n=50) 2.75 4.37 1.58 1.51 (SCTP1) 1.56 (SCTP3) 
Mathematical Modeling (n=26) 2.79 4.36 1.56 1.76 (SCTP3) 1.91 (SCTP4) 
Statistics (n=44) 2.95 4.06 1.11 1.20 (SCTP3) 1.29 (SCTP1) 
 
Table 8. Phase Two paired difference results for retrospective pre/post value, with min and max Cohen’s d across 
SCTPs 
Area Pre-Mean Post-Mean Mean D min Cohen's d max Cohen’s d 
Algebra (n=54) 4.384 4.75 0.96 0.79 (SCTP5) 0.99 (SCTP3) 
Geometry (n=50) 4.455 4.82 0.81 0.56 (SCTP3) 0.88 (SCTP4) 
Mathematical Modeling (n=26) 4.289 4.69 1.11 0.83 (SCTP5) 1.11 (SCTP4) 
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Statistics (n=44) 4.489 4.65 0.62 0.67 (SCTP3) 0.82 (SCTP2) 

Discussion & Conclusion 
We sought to examine changes in teachers’ competence before and after a semester-long 

experience featuring applications of mathematics to teaching. Our results address a gap in the 
literature concerning the impact of curricular reform on teachers’ competence. We analyzed data 
about teachers’ cognitive and motivational resources, specifically MKT, and expectation of 
success and value for enacting core teaching practices when teaching a particular content area.  
Overall, we found that teachers’ MKT, expectation of success, and value increased after this 
semester-long experience.  

A significant strength of our results is that they come from teachers across a variety of 
institutions, with different instructors, across four distinct content areas. Our results on 
motivation are limited in that, like most studies in this area, we rely on self report. Teachers may 
have felt pressure to respond more positively than the reality. Nonetheless, the overall increase in 
all variables, across all areas, indicates that it is plausible that expectation of success and value 
did improve, even if it is to a lesser extent than reported. Hence, we theorize that teachers benefit 
when using materials that coordinated mathematical learning opportunities with applications of 
mathematics to teaching, and these benefits come in the form of increased competence for 
teaching.  

Any conclusions that can be drawn from these results are limited in two crucial ways, which 
also point to directions of future research. First, correlation is not causation. Although we 
designed the materials to enhance teachers’ competence, the data here do not say what factors 
exactly supported the mean improvement over time we found across our data. We cannot say 
whether the benefits derive from the materials’ design, the confluence of taking the content 
course alongside a pedagogically-focused methods course, a time effect that when teachers take 
similar pre/post forms they will generally improve, or another factor. Beyond technical studies of 
how teachers’ knowledge appears to change or not simply by having been exposed to an 
assessment of MKT, we also suggest that examining potential mechanisms for change is also 
important. Future studies, for instance, could investigate whether certain instructional practices 
are associated with changes in teachers’ competence; whether teachers’ knowledge changes as a 
result of propositional knowledge or change in mathematical practice; or how opportunities to 
learn mathematical content and applications of mathematics to teaching interplay. 

Second, we have not addressed directly the problem that many teachers themselves have 
been documented to find content courses not useful. We and other scholars believe that teachers 
would find applications of mathematics to teaching useful, but we cannot conclude this based on 
the analysis reported here. We are currently in the process of analyzing the data from 
MODULE(S2) project to address this gap.  

Finally, we observed that teachers’ retrospective pre- ratings of their motivation were 
generally lower than their actual ratings from the beginning of term. This finding suggests 
practical and methodological questions. The practical question is: What changes their 
perspective? The methodological question is: in what areas of competence would self-reports 
change retrospectively, and what are the affordances and limitations of retrospective ratings? 
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Although it is well known that motivational and cognitive resources influence secondary 
teachers’ instructional quality, less is known about the tertiary instructional factors that 
influence secondary teachers’ development of these resources. To address this gap, we report on 
factors that prospective secondary teachers attribute to their learning. We draw on survey 
responses of 70 prospective secondary teachers enrolled in mathematics courses for teachers 
using Mathematics of Doing, Understanding, Learning, and Educating for Secondary Schools 
(MODULE(S2)) materials in one of four content areas. We triangulate response themes with data 
from 300 prospective secondary teachers on their perceptions of instructional practices used in a 
mathematics course for teachers using the same suite of materials. Then, we compare these 
themes with literature documenting implementation of mathematics curricula in these courses. 
We argue that coordinating mathematics content, applications of mathematics to teaching 
practices, and tertiary instructional practices are key to success of these mathematics courses. 

Keywords: Content Courses for Secondary Teachers, Mathematical Knowledge for Teaching, 
Instructional Practices 

Although prospective teachers take many tertiary mathematics courses (e.g., Hill, 2011; Tatto 
& Bankov, 2018), many find their experiences in these courses irrelevant to secondary teaching 
(e.g., Goulding, Hatch, & Rodd, 2003; Zazkis & Leikin, 2010). One response to this problem is 
to incorporate applications of mathematics to teaching into content courses for secondary 
teachers (e.g., Álvarez et al., 2020a, 2020b; Bremigan et al., 2011; Buchbinder & McCrone, 
2020; Hauk et al., 2017; Heid et al., 2015; Lischka et al., 2020; Sultan & Artzt, 2011; 
Wasserman et al., 2017). Emerging empirical scholarship on the impacts of such applications 
points to the promise of this solution (e.g., Buchbinder & McCrone, 2020; Wasserman & 
McGuffey, 2021). However, as with any curricular innovation, it is not just the curriculum 
materials that matter, but also how the curriculum materials are deployed (e.g., Cohen, 1990; 
Stein et al., 2007). 

Our purpose in this report is to identify instructional factors in successful tertiary-level 
mathematics courses for prospective secondary teachers. By success, we mean that the 
prospective teachers develop their competence for teaching; and by competence, we include 
teachers’ cognitive and motivational resources for teaching. We focus especially on the resources 
of mathematical knowledge for teaching, value commitments, and expectation of success in 
mathematics and teaching. We address the research questions: (RQ1) What instructional factors 
do prospective secondary teachers attribute to their learning in a mathematics course for 
teachers? (RQ2) To what extent do tertiary instructors’ instructional practices associate with 
prospective secondary teachers’ increase in their expectation of future success? 
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In the remainder of the report, unless otherwise noted, we use “teacher” to refer to 
prospective secondary mathematics teacher, “instructor” to refer to the instructor of a tertiary-
level mathematics course, and “student” to refer to secondary students.  

Background & Conceptual Perspective 

Design and impact of mathematics courses for secondary teachers 
A teacher’s instruction benefits from robust mathematical practice and knowledge of 

secondary content from an advanced perspective (Baumert et al., 2010; Sword et al., 2018), and 
course design has historically reflected this understanding (e.g., CUPM, 1961; CBMS, 2001; 
Murray & Star, 2013; Tucker et al., 2015).  

However, results into the last decade also suggest that design principle for mathematics 
courses around only mathematics falls short: many teachers saw their mathematics courses as 
disconnected from their future teaching (e.g., Goulding et al., 2003; Zazkis & Leikin, 2010). 
Even when teachers enrich their understanding of the secondary mathematical concepts that they 
will teach, they may still exit tertiary mathematics believing that they may have become better 
mathematicians, but not better mathematics teachers (Wasserman & Ham, 2013). 

In response to the inefficacy of mathematics courses for teachers, a number of scholars have 
advocated for the inclusion of applications of mathematics to teaching in these courses (Álvarez 
et al., 2020; Artzt et al., 2011; Bremigan et al., 2011; Heid et al., 2015; Lai, 2019; Lischka et al., 
2020; Wasserman et al., 2017).  By applications of mathematics to teaching, we mean 
opportunities for teachers to respond to secondary teaching scenarios using content addressed in 
the course. Two examples of such applications are shown in Figure 1. Bass (2005) and 
Stylianides and Stylianides (2010) argued that drawing on mathematical knowledge to address 
problems of teaching is enacting a form of applied mathematics. Their arguments are consistent 
with principles of a practice-based theory of professional education (e.g., Ball & Cohen, 1999).  
Figure 1. Example snapshots of applications of mathematics to teaching  

Two parts of a student’s work on a task are 
shown below. Identify what the student has done 
well when analyzing the data, and areas to work 
towards understanding about analyzing univariate 
quantitative data. 

 

As students are working independently on 
rotations of a flag around a point, you observe 
two students with the following work completed. 

 
Record a video of yourself providing a response 
to both Student 1 and Student 2. Build on their 
thinking to help the student finish their thought, 
prompt the student to investigate an error, or help 
the student move forward in their thinking. 

Pilot studies examining courses where such applications are used suggest that, in contrast to 
previous studies, teachers are able to articulate how course content connects to future teaching 
(e.g., Fukawa-Connelly et al., 2020; Wasserman & Galarza, 2018). Further, the 15 teachers in 
Buchbinder and McCrone’s (2020) study went on to incorporate task designs from their tertiary 
mathematics course into a lesson for secondary students while student teaching. Teachers in 
Wasserman and McGuffey’s (2021) study of 6 teachers attributed teaching moves to their 
experiences in a real analysis course featuring these applications. Attributions were 
predominantly of two kinds: experiences with applications, and instructional practices that were 
modeled by their real analysis instructor. 
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Instructional practices in middle and secondary grades and at the undergraduate level 
Multiple studies with middle and secondary students suggest the beneficial impact of core 

teaching practices (e.g., Grossman et al., 2009) that maintain and elevate cognitive demand, and 
elicit and build on student thinking (e.g., Gates Foundation, 2012; Voss et al., 2011). Yet 
Banilower et al.’s (2013) national survey suggests that many secondary teachers may not teach in 
these ways. They found that only 55% of secondary teachers focus on developing students’ 
mathematical practices, including mathematical justification. Banilower et al. do not suggest 
reasons for their findings. However, based on other literature, we do know that teachers’ 
practices may depend on their self-efficacy (Zee & Koomen, 2016), values (e.g., Schoenfeld, 
2010), and pedagogical content knowledge (Baumert et al., 2010).  

Perhaps unsurprisingly, the principles of effective instruction for middle and secondary 
grades carry through to the undergraduate level. Undergraduate instructors are increasingly 
aware of benefits of eliciting undergraduates’ reasoning and supporting undergraduates’ 
collaboration (e.g., Laursen & Rasmussen, 2019). These teaching practices benefit student 
outcomes overall (e.g., Bressoud & Rasmussen, 2015).  

Summary of perspective based on the above literature review 
Altogether, we take the view that mathematics courses for teachers are a productive place to 

incorporate the kinds of teaching practices that have been shown to be effective at the middle and 
secondary level, where many candidates of secondary mathematics teacher education programs 
will end up teaching. These teaching practices are consistent with trends at the undergraduate 
level and benefit undergraduate students. Further, there is evidence that teachers may transfer 
instructional practices experienced at the tertiary to the settings of their future secondary 
teaching (Buchbinder & McCrone, 2020; Wasserman & McGuffey, 2021). Hence one way to 
move the needle on secondary teachers’ practice may include tertiary instructors’ modeling of 
effective teaching practices. 

Data & Method 

Study Context 
Our report examines teachers’ perceptions of their experiences in a mathematics course for 

teachers, during a term when the course used MODULE(S2) project materials in one of four 
different mathematical areas: algebra, geometry, mathematical modeling, and statistics. Materials 
for each area were intended to be used across one semester, and each area featured 6 extended 
applications of mathematics to teaching, termed “Simulations of Practice”. The examples from 
Figure 1 are excerpts of these Simulations of Practice. These activities asked teachers to build on 
sample student thinking, and to generate questions that elicited student reasoning. Simulations 
were designed to apply the mathematics learned through the materials. All materials came in 
instructor-facing and teacher-facing versions, with the instructor-facing providing guidance for 
building on teacher thinking, and generating questions that elicited teachers’ reasoning. 
Elsewhere we have analyzed teachers’ pre- and post-term expectation of success and value of 
carrying out core teaching practices, and found mean increases in these variables across all 
content areas (see Lai et al. in these proceedings). Instructors received support from the project 
team in the form of summer workshops and meetings with materials developers throughout the 
academic year.  

Participants 
Data were drawn from responses of 368 teachers enrolled in tertiary mathematics courses 

using MODULE(S2) materials with 65 instructors at 54 different institutions across the United 
States and Canada. These participants consented to participation and completed various of the 
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instrument forms detailed below. We defined “completion” as completing the majority of 
questions on that form. Courses were taught at institutions ranging from regional public 
universities to large public research universities to small private colleges, and from those that 
served predominantly white populations to those that served predominantly minoritized 
populations. 

Instruments, Analysis, and Phases of Data Collection 
RQ1: Teacher Perceptions of Learning (RQ1). We distributed a survey at the end of the 

term where we asked teachers to identify factors that influenced their learning. These open-ended 
questions asked teachers, “What did you learn about doing [content area] as a result of this 
course? What was most helpful about this course for learning to do [content area]?” and “What 
did you learn about teaching [content area] as a result of this course? What was most helpful 
about this course for learning to teach [content area]?”  

We examined factors influencing change in expectations of success or value in mathematics 
or mathematics teaching. We coded responses for expectation of success: confidence or facility 
in aspects of doing mathematics, learning mathematics, or teaching mathematics (Eccles & 
Wigfield, 2020); value: importance, benefit, worth, or enjoyment ascribed to aspects of doing 
mathematics, learning mathematics, or teaching mathematics (Eccles & Wigfield, 2020); and 
course attribution: attributing change in expectation of success or value to instruction, where 
instruction includes course activities, norms, or interactions (e.g., Cohen et al., 2003). 

RQ2: Pre/Post Expectation of Success in Teaching Practices (TPs). We measured each 
teacher’s expectation of success for enacting selected teaching practices (TPs) in the area 
emphasized by their course. Our items for this construct use phrasing from Eccles et al.’s (1993) 
study. All items used a Likert scale from 0 (not at all) to 5 (very much) and read: “Suppose you 
are teaching middle or high school [content area] students [about key concept]. How well does 
this statement describe how you feel? ‘I would be comfortable [TP].’” Key concepts aligned to 
curriculum materials (e.g., covariational reasoning was an algebra key concept). We analyzed 
categorical shifts from pre- to post-test on the expectancy and value instruments across TPs and 
content areas using descriptive statistics of differences paired by teacher. 

RQ2: Perception of Instructional Practices (IPs). We surveyed teachers’ perception of the 
extent to which they experienced instructional practices (IPs) similar to TPs. Item phrasing 
mirrored that of TPs, phrased from the perspective of learning (“I did ...”, “My class did ...”) and 
teaching (“My instructor ...”). We identified clusters of TPs that corresponded to or supported 
each other: for instance, an instructor or teacher’s capacity to build on learner thinking supports 
the capacity to ask questions that elicit conjectures. We used the Pearson correlation coefficient r 
to measure correlations between teachers’ expectation of success in a TP and IPs whose 
modeling corresponded to or supported the TP. For brevity, we do not list all TPs and IPs in full, 
but only a selection of them. These are shown in Figure 2. 
Figure 2. Correlations explored between TPs and IPs. Bold line indicates a corresponding TP-IP pair. Gray line 
indicates supporting TP-IP pair. 

 

Phases of Data Collection. Research occurred in two phases, before and after the first two 
years of the covid-19 pandemic. Phase One spanned the first two years of the project, with data 
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collected in two content areas per year. Phase Two spanned the fourth year of the project, with 
data collected in all four content areas. RQ1 analysis has only been completed with Phase Two 
data at time of writing. RQ2 analysis is reported with Phase One and Phase Two data. 

Results 

Instructional factors prospective secondary teachers attribute to their learning 
Table 1 summarizes the percentage of teachers who made at least one statement regarding 

expectation of success, value, or course attribution to their learning, across their entire response 
to the Teacher Perception of Learning survey. This table also shows the number of total 
statements of expectancy, value, or course attribution.  
Table 1. Coding results for responses to Teacher Perceptions of Learning.  

 

% participants 
mentioning 
expectation of 
success 

% participants 
mentioning 
value 

% 
participants 
mentioning 
attributions 

# Expectation 
of success 
statement 
(Pos + Neg)* 

# Value 
statements 
(Pos + Neg)* 

# Attribution 
statements 
(Pos + Neg)* 

Algebra (n = 28) 82.1% 60.7% 67.9% 37+0 25+2 27+2 

Geometry  (n = 6) 100.0% 83.3% 50.0% 12+0 7+0 5+0 

Math Modeling (n = 23) 78.3% 95.7% 73.9% 30+0 48+2 25+5 

Statistics (n = 13) 92.3% 76.9% 61.5% 21+1 14+2 9+3 
*Pos = positive statement, neg = negative statement 

Across all areas, teachers overall described increased facility in content knowledge and 
working with students. In algebra and geometry, multiple teachers cited increased knowledge of 
“why things work”, describing “deeper” levels of understanding (e.g., “Being challenged to dig 
deeper into these ideas will be helpful in my future career”). In statistics and mathematical 
modeling, multiple teachers described little previous knowledge of these topics, and feeling more 
confident about teaching the topic as a result of the course.  

When looking across instructional factors that teachers reported as influential, the most 
common elements across all areas are applications of mathematics to teaching, or simulations of 
practice (22 mentions; e.g., “The videos we had to create where we looked at a student’s 
answer… get them to think where they might come up with the answer on their own without me 
giving them the answer I found very beneficial and helpful!”) and discussion with other teachers 
(35 mentions; e.g., “Having conversations with peers and being given time to absorb and reflect 
on ideas was really helpful.”) All the above factors were mentioned across all areas. Teachers 
also cited curricular structure and content (e.g., “Assignments that led us to figuring out an idea 
before giving the definition of that idea really helped make the definition impactful”), 
opportunities to develop conceptual understanding (e.g., “The thing that was most helpful was 
discussing why things work and seeing how it all connected”). For brevity, we only list themes 
with at least 5 mentions found in attribution statements. See Table 2. 

Negative statements were comparatively rare, and differed by area. For instance, in Algebra, 
two teachers stated that the depth of content was inappropriate for secondary teaching. In 
Mathematical Modeling, all five negative attribution statements were from one instructor’s 
course and all described repeated experience with modeling as redundant. In Statistics, two 
stated that they still felt uncomfortable with statistical concepts, and one stated they had 
insufficient opportunity to apply statistics to teaching. In statistics and modeling, three described 
“unnecessary” inclusion of social justice issues. 
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Correlating changes in teachers’ expectancy and instructional perception  
Figure 3 indicates positive correlations between pairs of variables examined. Although all 

correlations are relatively small (0.07 < r < 0.24), that they are all positive indicates an overall 
pattern that larger increases in expectation of success can be predicted by teachers’ more positive 
experience of their instructional environment, in particular, their perception of how much they 
experienced core teaching practices during the content course. 
Table 2. Attribution categories for instructional factors 
Attribution 
category 

# statements 
(Pos + Neg)* 

Content areas 
of mentionsà 

Example 

Discussions with 
other teachers 
(including 
instructor role in 
facilitation)  

35+0 A, G, M, S “In this class, the teacher was probably the most helpful. She did a 
great job pushing us to talk and discuss each problem. Then 
looking back, you can see the results of those discussions. Being 
able to do that myself will be a massive help.”  

Simulations of 
practice 

22+0 A, G, M, S “The videos we had to create where we looked at a student’s 
answer… get them to think where they might come up with the 
answer on their own without me giving them the answer I found 
very beneficial and helpful!” 

Course structure 
and content 

7+4 A, G, M “When I heard the phrase "in the future your students will ask 
you.", I never really thought about it, but after witnessing it first 
hand and with the exact same topics from class... I was shook and 
thankful that I have this class to teach me fundamental techniques 
and strategies to help with my future class. Thank you!!!!!!!!!!! :)” 
“Although at some point it felt like I was doing the same 
assignment but with a different skin. What I mean by that is I felt 
like the assignment was the same for each new topic. The only 
difference was that we were given a new topic. I felt like there was 
nothing new to really learn after the first few weeks of the class.” 

Doing math 
modeling 

11+0 M “I think viewing and practicing modeling problems ourselves made 
it easier to see what modeling is and does.” 

Written materials 3+2 A, G, S “The way that the book, and the class as a whole, took us step by 
step through each new content element was incredibly helpful.” 
“The book was not helpful” 

* Pos = positive, Neg = negative 
à A = Algebra, G = Geometry, M = Mathematical Modeling, S = Statistics 

Figure 3. Correlations of change in expectation of success and instructional perceptions  
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Discussion & Conclusion  
We set out to examine the instructional factors that teachers attribute to their learning, and to 

what extent instructors’ practices associate with teachers’ increase in their expectation of future 
success. We found that discussions with other teachers and applications of mathematics to 
teaching were mentioned most as attributions to increased competence. In some ways, these 
results are not surprising. The findings bear out the working hypotheses of a practice-based 
theory of professional education: when teacher preparation is explicitly and intentionally linked 
to the practice of teaching, it is more likely to be effective.  

Our findings are important because teachers attributed usefulness to specific features of 
curriculum and instruction. We strengthen results from existing smaller studies (e.g., Buchbinder 
& McCrone, 2020; Wasserman & McGuffey, 2021) by establishing the impact of instructional 
practices and applications of mathematics to teaching in four different content areas, with over 
50 different instructors in over 50 different institutions.  

Generalizations from this study are limited by the fact that piloting instructors volunteered to 
participate and had support, so they may have been more equipped to enact the curriculum as 
intended. The survey responses are based on teachers’ self-report, and they may have felt 
compelled to respond more positively than they felt, or to not write as many negative comments. 
Nonetheless, given the sheer number of mentions of applications of mathematics to teaching, and 
discussion with other teachers, along with the overall small but positive associations between 
instructors’ practices and teachers’ expectation of future success in related practices, we 
conclude that applications of mathematics to teaching are a key innovation for secondary 
teachers to see the usefulness of the course content. We also conclude that instructors’ practices 
do shape the impact of the course on teachers.  

The practices identified by teachers in our study as well as in Wasserman and McGuffey’s 
study, such as facilitating productive whole class discussions, are consistent with principles of 
inquiry-based mathematics education (e.g., Laursen & Rasmussen, 2019). Yet we emphasize that 
our conclusion is not that inquiry-based mathematics education is needed (though we believe 
this), but that practices of such instruction are part of a bigger picture. This picture includes both 
how the course taught and what is taught. Instructional practices are how a course is taught; what 
is taught includes the opportunities to learn from the curriculum, including activities such as the 
applications of mathematics to teaching. Our curriculum features intentional coordination of 
content with applications of mathematics to teaching. We propose that this coordination is an 
essential feature of curriculum for secondary teachers, if the course is to be perceived as useful, 
and to support the development of teachers’ cognitive and motivational resources for teaching. 
Moreover, we posit that the instructional practices should be consistent with the images of 
teaching practice in applications of mathematics to teaching. 

Looking forward, we see the need for further studies to document the impact of instructors’ 
practices on teachers’ development, for instance conducting case studies of courses with higher 
and lower mean gains in teachers’ competence. With the hope that this curricular reform takes 
even greater hold, we also suggest studies into how instructors enact materials with applications 
of mathematics to teaching. 
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Isomorphism Theorem 
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Previous studies have established teacher questions as a significant interaction component in 
proof-based courses whether lecture-based or student-centered. However, little research has 
been conducted to investigate behind the types of questions asked in class. In this report, we 
share an analysis of three instructors’ lessons on the First Isomorphism Theorem. We 
characterized instructor question types and then conducted interviews with each instructor to 
investigate how their pedagogical beliefs relate to the types of questions they ask in class. We 
found that the instructors held similar pedagogical beliefs about student learning, but diverged 
in their views on the purpose of the course. Both beliefs on learning and their beliefs on purposes 
of the course linked to the nature of the questions asked in class.  

Keywords: Instructor beliefs, instructor questioning, proof presentation 

Instructor questioning is one of the primary ways students are invited to participate in 
mathematical proof courses (Artemeva & Fox, 2011, Melhuish et al., 2022; Paoletti et al., 2018). 
We conjecture that the types of questions instructors asked are shaped by their beliefs about 
teaching, learning, and proof-based courses. While we know broad information about instructors’ 
pedagogical decisions, investigations into the how and why of instructional practices in proof-
based courses are still needed.  

In this paper, we set out to address the research question: how do abstract algebra instructors’ 
pedagogical beliefs relate to the types of questions they ask in class? In proof-based courses, 
research on teaching practices can be sorted into two categories: lecture style teaching and 
student-centered teaching (Melhuish et al. 2020). Analysis of teaching actions, such as types of 
questions asked, is largely limited to lecture settings where instructors frequently engage in 
“chalk talk” (Artemeva & Fox, 2011) writing proofs on the board, adding verbal commentary, 
and asking questions. In contrast, in student-centered instruction studies, most focus has been on 
student activity and tasks with the role of the instructor backgrounded. There has also been some 
work has focused on the mathematical and noticing activity of instructors and how these shape 
in-the-moment instruction (e.g., Johnson and Larsen, 2012; Johnson 2013). With these different 
foci, several questions are open including the nature of questioning in more active classes, and 
rationales for how and when instructors ask questions across both settings.  This study makes a 
comparison between instructors who teach a lecture style classroom versus those who teach a 
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student-centered classroom. Specifically, we plan to investigate the way that instructor 
pedagogical beliefs shape the questions asked in class. For most classes, questions are one of the 
most common ways for students to be invited to participate in the class (c.f., Melhuish et al., 
2022; Paoletti et al., 2018). 

Relevant Literature 
Researchers have investigated instructor actions in lecture and rationales for their teaching 

styles. Paoletti et al. (2018) found that instructors typically ask factual and next step type 
questions (see Table 1 for definitions question types) during lectures in proof-based classes.  
Fukawa-Connelly et al. (2016) surveyed mathematicians and found that lecturers chose the style 
because of concerns about time and covering material. Woods and Weber (2020) reported similar 
findings. They also discussed other goals and orientations of lecturing instructors and how these 
can affect the instructor’s in-class behaviors such as lecture allowing for mathematical precision 
and formalism. That is, the literature largely suggests that lecturers are intentional and have 
robust rationales for the way they teach (Melhuish et al., 2022). 

Instructors also diverge on views of advanced courses and what the overall emphasis should 
be (e.g., Alcock, 2010).  For example, Johnson et al. (2013) conducted interviews with 
mathematicians implementing an inquiry-oriented (IO) abstract algebra curriculum and found 
that some instructors held different goals for the abstract algebra course (with or without the IO 
curriculum they were implementing). She found that one of her instructors emphasized 
mathematical practice and activities, while the other instructors had a heavier focus on the 
abstract algebra content. Each of these instructors had beliefs about what students should gain 
and learn from the course and then implemented and focused the course on these beliefs, even 
when using the IO curriculum. 

A recent case study was conducted by Rupnow (2021) where instructors were interviewed on 
their beliefs about mathematics instruction and their abstract algebra classes were observed to 
determine how these beliefs were enacted. In terms of questioning, Rupnow observed that the IO 
instructor asked more questions than the lecturer. Rupnow reported on two instructors, one using 
an IO curriculum where students were more actively working on mathematics in class while the 
other instructor more traditionally lectured. The instructors’ beliefs impacted the structures of the 
class and these structures changed over time due to additional beliefs such as those related to 
coverage.   

Conceptual Framing 
The framing underlying our study draws on Leatham’s (2006) sensible system framework. In 

this framework, teachers are viewed as sensible actors who can and do hold many beliefs. These 
beliefs work together in a sensible system, with some holding more power than others and some 
beliefs leading to other beliefs. A teacher’s belief may seem contradictory to an observer’s point 
of view, but from the teacher’s point of view all their beliefs are consistent and work together. 
Some relevant beliefs may reflect orientations towards teaching, learning, and course goals. 

We then make the assumption that beliefs play a mediating role in the nature of questions 
asked in classrooms. To parse question types, we adopt Paoletti et al.’s (2018) analytic 
framework (Table 1) of types of questions that were asked by instructors in proof-based 
classrooms.  
 
Table 1: Paoletti et al.'s (2018) Question Type Framework 
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Question Type Definition 
Fact Questions that elicit a closed form mathematical response. These questions 

do not call for a course of action from the students. 
Next Step Questions that elicit recommendations from students on what to do next 

within a proof or example. The purpose of these questions is to create 
logical progressions. 

Proof 
Framework 

Questions that elicit higher-order levels of proof structure. Such questions 
targeted proof structure such as type of proof or how to generically prove a 
construct such as one-to-one. 

Warrant Questions that elicit justification responses to a statement or claim. 
Evaluation Questions that elicit the truth-value of a statement. Typically answered 

with a yes or a no. 
Convention Questions that elicit mathematical convention of proof writing or notation. 
Other Questions that do not fit into any of the other question types. 

 

Methods 
Data for this study was collected for a larger NSF-funded design-based research project1. 

Data were collected in three instructors’ abstract algebra classes at a large research institution in 
the United States on days they covered three key theorems in the class. This paper focuses on the 
lessons addressing the First Isomorphism Theorem (FIT). Instructors A and B used an inquiry-
oriented approach to help students in comprehending the FIT. Instructor A was involved in the 
creation of the materials, and both Instructors A and B used these materials in their classes. This 
lesson was implemented across two 80-minute (160 minutes total) class days, with each 
instructor taking a total of approximately 61 and 65 minutes, respectively, of whole class 
instruction. Instructor C covered the FIT via an interactive lecture in one 80-minute class day 
with their lesson taking 54 minutes. All instructors have had prior experience teaching abstract 
algebra and had strong student evaluations. Instructor A has a Mathematics Education Ph.D., and 
their primary area of research is teaching and learning in advanced proof classes. Instructor B 
holds a Mathematics Ph.D. with a focus in geometric group theory but has transitioned to 
mathematics education research. Instructor C holds a Mathematics Ph.D., and his primary area of 
research is graph theory and combinatorics. Focal lessons from each instructor were video 
recorded and transcribed. At the end of the academic year, semi-structured stimulated recall 
interviews (Schepens et al., 2007) were conducted with each instructor. For each participant, a 
member of the research team went through the transcript data of classroom observations and 
identified all questions that met the following two criteria: (a) the question had to have been 
posed to the whole class and (b) the question had to have adequate wait time of at least 3 
seconds. The first criterion was implemented so we could analyze the ways in which instructors 
ask questions posed to the class and how these questions may reflect their beliefs. The second 
criterion was established to rule out questions where the instructor posed the question and 
immediately answered it. Questions that were asked towards individual students or groups of 
students during small group discussions or independent thinking were not considered for this 
analysis. 

 
1 DUE# 1836559 
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Once all questions asked by the instructor had been identified, the research team 
independently went through each of the participants’ questions to identify a representative set of 
questions. That is questions of a similar type (such as the multiple instances where instructors 
would ask students for the definition of a concept). The research team then met to determine 
which questions would be part of the stimulated recall interviews.  Instructor A was interviewed 
first by the whole research team and the data was initially used as a pilot for interview protocol 
question creation and interview practice. Two members of the research team interviewed 
Instructor B and two other members of the research team interviewed Instructor C.  

In addition to having instructors provide rationales for their questions, they were also 
prompted to answer questions about how students learn, the purpose of the course, and the 
meaning of mathematics. The interviews were then analyzed by two research team members 
independently to open code for salient instructor beliefs. The questions asked during the lesson 
were coded using the above analytic framework by two members of the research team. Any 
discrepancies in coding were resolved through discussion. After completion of this initial 
analysis, the interview transcripts and question rationales were considered in light of the types of 
questions asked, instructor beliefs, and the rationales provided by the instructor to develop initial 
explanatory mechanisms for the types of questions asked.  

Results 
To contextualize our results, we provide the frequency of types of questions in Table 2. Note 

that Instructor C’s question profile is reminiscent of most lecturers from Paoletti et al.’s (2018) 
study. Instructor C asked mainly fact questions (63%2) with next step as the second most 
frequent (19%). Instructor A asked “other” questions most frequently (43%) and fact questions 
(40%) as the second most frequently asked question type. While Instructor B asked fact and 
other types questions equally frequently with both having the highest frequency in comparison to 
the remaining question types (34%). We also note that unlike in Rupnow (2021), the number of 
questions asked in the lecture class and the active classes were not substantially different. Rather, 
we see that the type of questions asked in the inquiry proof comprehension lessons were 
qualitatively different than those asked in the lecture class on the same theorem.  

 
Table 2: Frequency of question types 

Instructor Facts 
Next 
Step 

Proof 
Framework Warrant Evaluation Convention Other Total 

Instructor 
A 23 0 3 5 2 0 25 58 
Instructor 
B 23 3 4 5 5 4 23 67 
Instructor 
C 39 12 6 1 2 2 0 62 

Total 87 15 13 11 9 6 45 186 
 

 
2 All displayed percentages are rounded percentages of total questions asked by that instructor 
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In order to make sense of these qualitative differences, we turn to the instructors’ stated 
beliefs. All three instructors shared similar ideas about how students learn focusing on students 
being actively engaged in the learning process. Instructor A explained that students need to be 
“actively engaging in things by making connections to prior knowledge” elaborating that this is 
hands-on and not just mimicry. Instructor A elaborated that students “need to have opportunities 
to really think through ideas.” Instructor B explained that experience and problem solving are the 
most important things for students to learn, stating “you learn through problem solving.” Adding 
that to accomplish this, Instructor B tries “to set-up a learning experience so there are 
opportunities to be active where being active will lead to at least some degree of success; some 
degree of intuition building.” Instructor C stated that, “You learn by doing.” For Instructor C, 
they viewed this idea of doing by having students engage in proof production, whether in-class 
by answering questions or by reproducing proofs on their own that they may have already seen. 
Each of these instructors viewed similar notions about learning in having students be active in 
their courses and attended to providing opportunities for students to engage in the course.  

While the instructors provided similar ideas about learning, they diverged on their primary 
foci in describing the aims of the course. All instructors had a shared focus on advanced 
mathematical content and thinking more broadly with Instructor A discussing apprenticeship into 
research mathematics, Instructor B stating that 90% of the course is “what it does for you as a 
mathematics learner” and Instructor C explaining the course as an “introduction to more 
advanced mathematics.” The instructors also all valued abstract algebra content-specific aims, 
such as better understanding underlying mathematical systems and structures students have seen. 
However, the respective weights and interpretations of each component differed. Throughout the 
interview, Instructor A tended to focus on understanding the concepts specific to abstract 
algebra, Instructor B focused on the problem-solving involved in proving and sense-making, and 
Instructor C focused on developing knowledge to succeed in constructing formal proofs. 

We believe the similarities and differences in beliefs, as expressed in the responses to how 
students learn and the aims of the course play a large role in the questions asked in class. All 
three instructors believe students should be active in their learning, and this manifests in different 
ways through the questions. Further, we hypothesize that the belief in the purpose of the course 
also interacts with the questions asked by further pushing their narratives in what the students 
should be focused on when discussing or contributing to the content. 

Throughout the interview with Instructor A, we saw many references to the importance of 
having students wrestle with complex ideas within class and a focus on abstract algebra specific 
content. For example, when asked about the purpose of turn-and-talks (a frequent occurrence in 
Instructor A’s class), Instructor A stated that they want to get “more students actively involved in 
the conversation. And give them a chance to tackle something that is kind of complicated.” For 
example, Instructor A gave students question prompts such as, “What in the world is a quotient 
group?... And I don't care if it's a formal definition or an informal explanation, but what is a 
quotient group for us?” (Other type question). This question had students actively engaging in 
their learning but also focuses them on the abstract algebra content of the course. Instructor A 
provided further rationale that they choose to ask questions about content-related issues that 
might be “stumbling blocks” for students. For example, Instructor A prompted another turn-and-
talk sequence with “What is the image of G? What do we mean by that? What is that thing 
representing?” (Other type question). This prompt focused students on attending to the difference 
between phi as a function and phi(G) being the image of a function. They chose the turn-and-talk 
mechanism to specifically give more students opportunity to talk and actively develop their 
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conceptual understanding. This reflects the stated value of having all students draw on their 
knowledge and participate in making sense of complex ideas.  

Unlike Instructor A, Instructor B was using curriculum materials that were developed 
externally. His value on problem-solving led him to note that without this task he may have 
“handed off actually more of it to the students” in terms of constructing the proof rather than just 
comprehending it. Instructor B’s focus on process and problem-solving came through via 
questions even though his lesson contained many of the same features as Instructor A’s. For 
example, Instructor B prompted his students to construct an isomorphism map that takes a coset 
to its image (first requesting what to call the input (convention question) then where it might map 
to (next step question)). He noted, “I kind of wanted students to experience coming up with 
that.” Instructor B further added that this also gave students more agency, stating “I feel like if I 
can hand a little bit of that agency of coming up with the map off the students, then then they 
own a little bit more of that now.” A student then suggested mapping to the representative 
element (𝛽𝛽(𝑎𝑎𝑎𝑎) = 𝑎𝑎).  Instructor B then asked, “So what might be problematic about saying this 
image is going to be just lowercase a here?”, an other type of question. Instructor B is 
encouraging students to engage in analyzing their mistakes and rectifying, a key part of problem-
solving. Another example is during the student presentations of each portion of the FIT proof. 
Instructor B gave students the prompts “focus on helping the class understand why this stuff is 
happening. Why did they do this?” Instructor B focused on problem-solving and processes, 
allowing students to be the owners of their learning and frequently putting them into situations in 
which they can productively struggle with the concepts and the proving process. 

For Instructor C, many of his questions asked for next steps and facts during the proving 
process. These questions were asked to engage students in the production of the proof.  He 
explained that “students will tune out if they don't feel ownership in what you're doing right, so 
that's certainly… if I am going to do something, I want them to be interacting with me.” 
Instructor C further elaborated that in an instance of a complex theorem, such as the FIT, his role 
is to break the proof into “bite sized pieces" for students to develop understanding of the idea in 
each of the pieces. For example, Instructor C asked the proof framework question “What else do 
we have to do?” This question had students attend to the different pieces of the FIT proof, 
specifically the different pieces of showing a mapping is an isomorphism. Instructor C also 
modeled the types of actions students would want to take in their own proving endeavors by 
asking next steps questions (“How can I use that ψ is onto?”) and for definitions (“So what does 
ψ from A to B being a homomorphism mean?”) to contribute to the proof construction. Instructor 
C noted that one of the major goals of the course is for students to use definitions to structure 
proofs and that students struggle with this idea. Instructor C's way of creating active learning is 
to engage students by asking small, manageable questions for the students to handle while he 
supports them in using the formal proof system, definitions, and attending to appropriate 
precision. 

Discussion 
We selected a common lesson focus across three instructors to better understand the nature of 

questions asked in an advanced undergraduate class and ultimately the rationales for selection of 
questions. Two of the instructors implemented an inquiry-oriented lesson where students 
engaged in comprehending the proof of the First Isomorphism Theorem. The third instructor 
presented the theorem and constructed its proof through an interactive lecture.  Our first 
contribution is illustrating that the three instructors had many commonalities in terms of how 
they believed students learn. All instructors discussed students being actively involved and doing 
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mathematics. Furthermore, throughout the interviews, all three instructors talked about students 
taking ownership over the mathematics in the class. However, we can note that the type of 
activity asked of the student varied. Instructor B had much of the activity divided between group 
work and whole class instruction with a focus on what students could construct or problem-
solve. Instructor A used a combination of group work, but also a turn-and-talk strategy where 
students engaged with partners briefly before responding to whole class discussion questions 
about points of difficulty related to the abstract algebra content. Instructor C used interactive 
discussion focusing on targeted questions that allowed students to contribute to the construction 
of the proof while also modeling ways to structure a proof based on using formal definition.  

As noted in Melhuish et al.’s (2022) literature synthesis, the choices that instructors make in 
advanced classes are well grounded and rational in view of pedagogical goals. Instructor C 
provides additional insight into the results of Paoletti et al.’s (2018) paper on lecture instruction 
in proof-based courses. The questions Instructor C asked were in service of students being both 
actively engaged in the proof construction process, while also being constrained enough such 
that the instructor can model nuances in this new way of thinking: using definitions to construct 
proofs.  

In contrast, Instructor A and B would have been considered anomalies in terms of their 
question profiles; however, quite similar to each other. However, where we saw substantial 
differences was in their questions in the “other” bin. Instructor A frequently used their 
knowledge of where students might struggle with abstract algebra ideas and notation to provide 
students time to recall prior knowledge and use their own words to make sense of ideas. 
Instructor B commonly focused on elements of problem-solving and letting students construct 
components where possible. These results contribute to the larger narrative about instruction in 
inquiry settings and surface somewhat distinct questioning profiles. 

The overarching beliefs about course purpose provide some insight into these differences 
with Instructor A focusing heavily on abstract algebra content, Instructor B on the problem-
solving process, and Instructor C on formal proofs and their connection to definitions. If we turn 
to Alcock’s (2010) identification of four modes of thinking in proof classes, we could suggest 
that Instructor C tended towards syntactic thinking (generating proofs of statements by formal 
structure), Instructor A towards semantic thinking (developing understanding of a statement via 
attention to concepts), and Instructor B towards creative and critical thinking (examining objects 
to support proving and checking correctness.)  Of course, any such classification would 
oversimplify the instruction and instructor rationales as elements of each thinking can be 
identified across instructors. Overall, we suggest that these orientations may play a more 
substantial role in questioning types in an advanced class than more general beliefs about 
learning and mathematics which tended to be rather uniform (at least from the surface) for our 
three instructors.  
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New Graduate Teaching Associates and Student-Centered Instructional Methods

Christopher Gibson
San Francisco State University

The importance of student-centered approaches took on new importance when the COVID-19
pandemic caused a tectonic shift in college instruction in 2020. In Fall of 2021, I reached out to
all 13 of the new graduate teaching associates (GTAs: graduate students who were
instructor-of-record for undergraduate courses) in the department. Eight of the 13 completed
three rounds of survey and two rounds of interview. The goal was to find out what they knew
about student-centered instruction and how that changed over time. GTAs spoke of the
importance of supporting students in evaluating knowledge claims, learning how to learn, how to
collaborate, and how to seek help. Their greatest opportunities for professional growth at the end
of the year were with teaching that supported students to: become capable of self-assessment, to
be resilient, and in building skills in what to do when they (students) do not know what to do.

Keywords: graduate teaching assistant, graduate teaching associate, GTA, novice instructor,
student-centered

Many departments rely on graduate students to teach introductory courses and course-
adjacent lab/discussion sessions. Such teaching experiences provide financial assistance to
graduate students and reduce the workload of the faculty (Muzaka, 2009). There has been
evidence that the work of graduate teaching assistants and associates (GTAs) leads to increased
retention of undergraduates (Zehnder, 2016). Also, undergraduates learn more and have higher
pass rates in classes that de-center instructors (e.g., where class time is spent on activities,
collaborative group work; Freeman et al., 2014; Laursen, et al., 2014). Over the past 30 years
more effective support for GTAs to learn about teaching has emerged (Deshler et al, 2015). An
additional factor in the development of teaching skills since 2020 has been the COVID–19
pandemic and the formidable challenges of synchronous online instruction (Lopez, 2021).

Activities and discussions about teaching, course-specific instructor interaction, and, more
generally, working with graduate student teaching-peers increase GTA confidence and the desire
to teach in the future (Ellis, 2015; Stes et al., 2010). Graduate students have little prior
experience with instruction that is student-interactive (Oleson & Hora, 2014). Yet, due to
changes in K-12 education, today’s graduate students are likely to be teaching undergraduates
who do have experiences with student-interactive mathematics instruction (Yonezawa, 2015). In
analysis and reporting results, I used Goodyear and Dudley’s (2015) theoretical perspective that
describes types of engagement entailed by student-centered approaches.

This study, at a large master’s-granting institution, explored what knowledge about
student-centered instruction GTAs built in their early experiences of teaching. The courses taught
by GTAs as instructor-of-record were pre-calculus, business calculus, and a statistics co-requisite
support course. Each of the courses had established curricula (e.g., materials for activities and
assessment) and regular course coordination meetings. GTAs in this study were offered several
forms of support for learning about teaching. There was a week of pre-semester workshop
sessions, university-sponsored professional learning opportunities, and a 3-hour per week
semester-long course in the mathematics department. This course, Mathematics Graduate
Teaching Workshop, focused on developing and refining teaching skills for student-centered
instruction. Half of the GTAs in this study also participated in one or more university-sponsored
“Teaching Squares” – where four instructors agree on a topic (e.g., “making group work work”)
and commit to meeting for at least ten hours across the semester as they rely on each other to
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address the shared topic in their own teaching. The research question driving the study was: How
does GTA knowledge about student-centered instruction develop over time when GTAs are in
online professional development for online teaching?

Methods 
Participants 

Many GTAs at the study site had little to no experience with active student-centered
instruction as either learners or teachers. The new GTAs in the study were also dealing with
online struggles. The GTAs were new to synchronous technology for teaching, particularly for
generating and maintaining online student interaction. To recruit participants for this research, I
sent an email to all of the 13 new GTAs in the mathematics program in Fall 2021. Of these, 9
consented to participate and 8 of the GTAs completed all three surveys and both interviews. The
pseudonyms of participants encode some basic information. One syllable indicates a person with
no teaching or tutoring experience or professional learning about teaching. A two-syllable name
indicates a person with some experience as a tutor or teacher of groups of people but no formal
preparation for it. A three-syllable name is used for people with at least some experience in both
professional learning for teaching and with tutoring or teaching groups of people.

Instrumentation 
The data gathering tools in this study were three surveys and two interviews. There was a

survey at the beginning of the Fall 2021 semester with a follow-up interview mid-semester.
There then was another survey at the beginning of the Spring 2022 semester with a follow-up
interview mid semester. Finally, there was one last survey at the end of Spring 2022. The main
survey item for this was repeated across all three surveys: In a few sentences, please explain
what “student-centered instruction” means to you. Surveys contained other questions. Survey 2
had a set of questions that asked GTAs to consider their teaching from their students’ point of
view. Survey 3 asked for GTAs’ reflections on student-centered teaching and what they had
learned during their professional activities across the year and a set of questions about personal
experiences as learners with student-centered instruction. I conducted two follow-up interviews
with each participant using the Zoom web conferencing tool. Each GTA consented to recording
of each interview. Interviews were completed by mid-Fall (#1) and end of Spring (#2). 

Data Analysis 
There were three questions directly about student-centered instruction in survey 1, two in

survey 2, and one in survey 3. I used three coding passes through that data to write a summary of
each GTA’s progress over time, as reported in the Cases section of the results. Interviews were
transcribed into a spreadsheet, one row per utterance (i.e., a complete thought, a new thought or
topic was a new utterance). I assigned a code to each row. The initial code ranged anywhere from
one word to a sentence and was intended to capture and summarize the essence of the utterance.
After this initial coding of each interview, I went through each interview again. The goal of the
second coding was to consider each of the other interviews when generating new categories that
grouped together initial codes that had something in common. In some cases, the commonality
was the topic, like “first week expectations.” In other cases a new category code connected
across initial codes. The third pass through the interviews involved noticing themes across the
existing codes. I used pivot tables to organize and review utterances and categories (from the
second pass). From the interviews there were a total 537 utterances across 19 different themes.
The next section includes descriptions of the central, most discussed, themes.
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Results 
First, I share the main themes that emerged from the interviews. Then I connect the themes

and survey findings to directly address the research question through cases that illuminate GTAs’
thought processes while they were trying to implement student-centered instruction as a
first-time instructor. In what follows, “a few” means two to three, “several” means three to four,
“many” means at least five, “most” means six or more, and “all” means all who responded.

Knowing and Doing Student-Centered Instruction 
The challenges of implementing student-centeredness. In interview 1, a few of the

interviewees had a similar statement to Patricia who said “I’d like to know where the line crosses
from student-centered teaching to like babysitting and hand-holding.” Many reported struggling
with a different teaching style than they were used to themselves. Robert found student-centered
instruction challenging because it required more of him than he had expected: 

Robert: To be student-centered they (the instructor) need to put a lot of effort into the way
they lecture or design the class because you need to have enough activities that need to be
engaging enough, it can’t be too difficult, but it needs to drive the point (of the lesson).

Patricia also suggested the department’s courses had a higher pass rate than first-year courses at
other universities because student-centered instruction made the course too easy for students.
The following semester, in interview 2, a few GTAs discussed dealing with student push-back.
Queenie said, “I felt like every time I tried to implement anything student-centered or group
worthy my students would kind of riot a little bit.” Also, most of the GTAs reported having a
tough time balancing students taking the lead and the demands of keeping “on track.” For
example Oliver reported, “I might be intervening too early in group work and telling them the
answers before they can figure it out, but …we only have so much time.” 

Learning without a referent experience. In interview 1, some GTA comments agreed with
Queenie’s, “Encouraging students to do math in a student-centered way . . . I think it’s very
difficult for me. I never even experienced it; I don’t know how I can implement it.” Many of the
interviewees weren’t sure what they would like to learn, with Oliver saying, “There are things
that I don’t need to know and I can point to those easily, but the thing is I don’t know what I need
to know.” In interview 2, a few of the GTAs felt it was hard to implement some of the lessons
from the workshop, for example: 

Tom: I can’t say that I always saw the point of what we were talking about [in the workshop]
...We were being taught about a bunch of things without really being told how to actually
go and use that knowledge to improve our own teaching. 

At the same time, a few female GTAs encountered new experiences (e.g., with male students)
that they did not know how to deal with, as an example: 

Patricia: I find myself constantly trying to make sure that I’m keeping up a very
professional demeanor and the right level of respect and professionalism. I haven’t heard
any of my male peers speak about that . . . I think it would have been helpful to have a
discussion about how to handle something like that. 

Student participation, engagement, and communicating with students online. There
were many comments about black screens and frustration at trying to get students engaged and
not being sure how to change that, for example: 

Robert: I was expecting college students to want to get a good grade and be sort of motivated
. . . So, on the first day of class, everything [cameras and microphone] was turned off. No
people are really talking. Had to overcome that. 
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Some GTAs talked about reaching out to students who were falling behind. The Graduate
Teaching Workshop helped Patricia figure out how, it helped her in “knowing how and when to
reach out to students who are not staying caught up on work or showing up to class all the time.”
In interview 2, GTA comments focused on disappointingly low attendance and disengagement by
students in Zoom class meetings. GTAs noted “fluctuations” and “students seeming lost.” For all
the GTAs, arriving in a silent breakout room and eliciting any response was a recurring challenge
in their first semester of teaching. Several GTAs echoed Queenie who said “online it was like
pulling teeth to get them to share their screen.” Sandra had challenges trying to communicate
with students who were not doing the work saying: 

Sandra: Students who wouldn’t show up to class and put in effort, they still wanted to pass,
but they weren’t doing any work. So having to reach out to them and figure out what was
going on was challenging. 

This sentiment was shared by most and they all struggled with connecting with students online.
All of the GTAs who later taught in person the second semester noted an improvement in
communication and student engagement. 

Less frequent themes that emerged from interviews. Though not universal, multiple GTAs
reported on: learning to be a teacher and what made them feel more like a teacher, giving and
receiving peer support, joys and challenges of planning, time management, working with the
university’s Learning Management System (Moodle), grades and grading, and balancing the role
of teacher with other roles (e.g., graduate student).

Cases: How GTA Knowledge about Student-Centered Instruction Changed Over Time 
This section draws on survey and interview data to offer five cases that answer the research

question. These cases characterize five ways GTA knowledge on student-centered instruction
changed over time. The primary value of the surveys was the snapshots of GTA knowledge at
different points in time. In this section, I use the seven touchstones from Goodyear and Dudley
(2015) to organize the comparison of the open-ended survey responses across time and link that
information to the interview themes. This framework uses seven ways teachers support engaging
students in: 1. how to learn; 2. how to collaborate; 3. how to evaluate knowledge claims; 4. how
to seek help; 5. how to become (formative) assessment capable; 6. how to be resilient; 7. what to
do when they do not know what to do.

For each GTA, I report on the evidence from the survey items and the previously discussed
themes to characterize the change in that person’s knowledge about student-centered instruction
and indicate theme by #1 through #7. I have grouped the cases where there were large
similarities (e.g., the growth for Nicholas was similar to that for Mateo and to save space only
Mateo’s case is included). At the end of the section, Table 1 summarizes the results.

Case A: Mateo (& Nicholas). Mateo’s first definition of student-centered instruction was
that “it is more about what the student is doing rather than the instructor.” He also mentioned
how student-centered instruction “is about conceptual change as opposed to information
transmission” and that it “related content to what the student already knows” with a focus on the
“development of learning skills.” His definition showed evidence of his knowledge including
supporting students in learning how to learn (#1). In survey 2, Mateo said that student centered
instruction “means giving up most of the control of what happens in the classroom to the
students,” which suggests evidence of attention to supporting students in decisions about how to
learn (#1). Mateo noted that he felt that he was effective at providing feedback to students, with a
focus on his job of assessing students rather than supporting students to assess themselves. His
third definition stated that “running more carefully-designed activities in groups” was important
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to student-centered instruction. This suggests knowledge about supporting his students to
collaborate (#2). In interview 1 he realized the importance of wording questions to get answers
that aren’t just a yes or no which would promote critical thinking. This could be considered
evidence of him supporting his students to evaluate knowledge claims (#3). 

Case B: Oliver. Oliver’s first definition stated that a “student-centered approach to
instruction focuses on how students learn rather than the material.” He also mentioned a need to
“give space for students” and to allow for “a hands-on approach to learning” to accomplish this.
This showed evidence of knowledge for supporting students in learning how to learn (#1). His
definition of student-centered instruction in survey 3 (he did not respond to the prompt on survey
2) included that “student-centered teaching puts more weight on the will of those who lack
knowledge [the students].” Meaning that “students create the focus of the course, rather than the
teacher.” This definition also suggests evidence of knowledge related to students learning how to
learn (#1). In interview 1 Oliver noted the value of student-centered instruction saying that “in
order to understand something you should be working with your hands.” This suggests further
evidence related to students learning how to learn (#1). In interview 2 he said he was maybe
“intervening too early in group work” This awareness about giving more time for struggle,
supporting students to persist in problem solving provides some evidence of his knowledge in
supporting his students to evaluate knowledge claims (#3).

Case C: Patricia (& Robert). In the first survey, Patricia said that she thought
student-centered instruction was “focused on student interests and needs” and that it included
“getting students involved in the direction” of the course. This could be evidence of knowledge
of supporting students in how to learn (#1). In survey 2, Patricia’s definition of student-centered
instruction included “creating a classroom environment in which students have an equal voice
with their professor” and “actively doing work rather than passively listening to a lecture.” This
gave evidence of her growing knowledge about supporting students in how to learn (#1). She
said she was effective at “giving helpful feedback” and encouraging “students to ask myself and
each other questions.” This was evidence of her knowledge expanding to include supporting
students in how to seek help (#4) and how to collaborate (#2). In survey 3 Patricia said “the
focus is on getting the student actively participating in their own learning” (i.e., supporting
students in how to learn, #1). Patricia also said she used group activities instead of lecturing so
that “students can explore concepts and learn from each other” (collaborate, #2). In interview 1,
Patricia said the orientation workshop helped her be more supportive of students who needed
disability resources (knowledge growth related to supporting students to seek help, #4). In
interview 2, she said the workshop course helped her “to ask better questions that would lead to
more discussion, rather than just like a yes or no answer.” This encouragement of critical
thinking provides evidence for supporting students in evaluating knowledge claims (#3). 

Case D: Queenie (& Sandra). Queenie’s definition of student-centered instruction in the
first survey mentioned “allowing students the space to form their own understanding and ask
questions”. This shows evidence of knowledge related to supporting students in learning how to
learn (#1) and how to seek help (#4). She also said that student-centered instruction “requires
group work and students discussing what they are learning” while giving “the tools to explain
back what they are figuring out.” These show evidence of knowing to support students in how to
collaborate (#2) and how to become formative assessment capable (#5). By survey 2 Queenie
was less sure about a definition for student-centered instruction, saying “all teaching has to be
student-centered” since teaching students is the focus. She also said that “teaching becomes
motivational.” In survey 3 her definition of student-centered instruction was mostly the same as
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her first definition saying that it included “giving space” and for students to “come to me with
their own ideas.” In both interviews, Queenie mentioned implementing group worthy activities –
evidence of her knowledge including support for students to learn to collaborate (#2).

Case E: Tom. Tom’s definition in survey 1 stated that student-centered instruction “describes
an approach to teaching where each student’s needs and background are considered.” This could
be evidence of knowing to support students in a variety of ways in learning how to learn (#1). He
also mentioned that it “involves a high level of student feedback and interaction.” This statement
provides some evidence of knowledge about supporting students in how to collaborate (#2) and
how to become formative assessment capable (#5). In the second survey Tom stated that
student-centered instruction puts “students in the driver seat” and makes students “active
members in the classroom and in their own learning.” This is more evidence related to how to
learn (#1). In interview 1 Tom said, “I’ve tried to be more careful in how I handle student
questions... thinking of understanding why something happened, not just what happened.” This
showed evidence of him supporting his students in evaluating knowledge claims (#3). In
interview 2 Tom said he would like to learn to create activities that will help students discover
knowledge on their own. This was evidence of supporting students in learning how to learn (#1).

Summary. Table 1 summarizes, grouped by case, what GTAs described in defining
student-centered learning. Notice there was evidence for all GTAs of supporting students in
learning how to learn (#1) and, with one exception, learning how to collaborate (#2). Most of the
GTAs had evidence of supporting their students in evaluating knowledge claims (#3). For several
of the GTAs there was evidence of supporting their students in how to seek help (#4). There was
sparse evidence of GTA awareness or use of supporting their students in how to become
assessment capable (#5), how to be resilient (#6), and what to do when not sure what to do (#7).

Table 1: Summary of GTA reporting on aspects of student-centered instruction.

Case Name 1. learn 2. collaborate

3. evaluate
knowledge

claims
4. seek

help

5. become
assessment

capable
6. be

resilient

7. what to
do when
unknown

A
Mateo X1, X2 X3 Y1

Nicholas X2 Y1, X3 Y2

B Oliver X1,  Y1, X3 Y2

C
Patricia X1, X2, X3 X2 Y2 Y1, X2

Robert X1, X2 Y2 Y1 X2, Y2

D
Queenie X1, X3 X1, Y1, Y2, X3 Y1, X2

Sandra X1, X2, Y2, X3 X1, X2, X3 X1, X2, X3

E Tom X1, X2 X1 Y1 X1   

Note: X1=survey 1, X2=survey 2, X3=survey 3; Y1=interview 1 and Y2=interview 2.

Discussion 
The question driving the study was: How does GTA knowledge about student-centered

instruction develop over time when GTAs are in online professional development for online
teaching? The short answer: Slowly. The surveys indicated that the majority of the new GTAs at
the master’s granting study site in the 2021-2022 academic school year built substantive
knowledge about student-centered instruction (as indicated in Table 1). At the same time,
consideration of each GTA experience shows differences in the nature and timing of those
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changes. In Survey 1, most GTAs’ ideas seemed to be based on the literal meaning of the phrase
“student-centered.” By Survey 2, GTAs had a formal definition and talked about what the goals
were for the students in student-centered instruction but said little about what the instructor did.
As time progressed, more GTAs included the teacher, using examples from their own instruction
in Survey 3 and some expanding on ideas in Interview 2 with additional classroom examples. 

Not only GTA knowledge changed. The GTAs perceptions of themselves and students
changed in many ways. GTAs were not just learning about student-centered instruction for
teaching, many were experiencing it as a student for the first time in their own graduate courses.
Most of the GTAs had not experienced student-centered instruction as a learner before teaching.
Moreover, no one reported they had been a college student in the class they were teaching.
Finally, for most, experience of online learning was only under the conditions of the pandemic. 

In the surveys and interviews all of the GTAs mentioned supporting students to learn how to
learn as a goal, but did not offer specifics about what instructional moves or approaches might
achieve that goal in the examples they provided. GTA focus was on “getting” students engaged –
a teacher-centered view about having students look at and do the things the teacher and/or
curriculum wanted/expected. That is, for #1 in Table 1, all of the GTAs appeared to include
learning how to learn as an important component in student-centered instruction, but they were
still working on how to accomplish it. 

Throughout the surveys and interviews all but one GTA mentioned the use of group work as
an important part of student-centered instruction. They all seemed to accept the idea that working
with others could be an effective form of learning in addition to or instead of lecturing only. The
one GTA, Oliver, who did not mention it was using a curriculum that had activities that required
group work, but he did not directly mention using group work in the surveys and interviews.
Thus, for #2 in Table 1, the GTAs in this master’s granting department were unlike the GTAs in
previous studies among doctoral students (Beisiegel, 2012, 2017, 2019). 

Directions for future work include:
● Following GTAs who start in a master’s program and continue on to a doctoral program;

capturing what ways their PD in their master’s program may have influenced their
knowledge about teaching and how that compares to their peers who went directly into
doctoral programs.

● Purposefully examine the future graduate experience and teaching development of
today’s undergraduates, who are experiencing student-centered instruction (unlike the
GTAs in this study).

● What are the benefits and pitfalls of extended PD for master’s program GTAs who are
instructor-of-record in terms of frameworks in previous work (e.g., Beiseigel, 2019)?

Limitations and Delimitations 
The main findings are from a study of a particular GTAs in the specific context of teaching

online synchronous courses at the study site and are not intended to be generalizable. Rather, the
goal is transferability: giving sufficient detail to support the reader in interpreting the results for a
situation similar to that presented here. This small study did not gather or analyze information
about societal structures and systemic influences (and consequences) of student and instructor
perceptions. Nonetheless, a useful example can anchor future research and GTA development.
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Exploring How Computation Can Foster Mathematical Creativity in Linear Algebra Modules  
 

Sarah D. Castle 
Michigan State University 

The mathematics education community has simultaneously experienced a call for mathematical 
creativity and the implementation of computing within the classroom. What has not been 
explored are the ways in which these two calls are complementary. This study investigates how 
computation, enacted through coding, can bring about mathematical creativity within a series of 
linear algebra computational notebooks designed using the Understanding by Design 
framework. Specifically, through the analysis of a group of students, this paper highlights how a 
computational prediction and reflection cycle enables exploration and student originality while 
also facilitating connections to multiple representations.  

Keywords: Computation, Linear Algebra, Mathematical Creativity, Coding 

Mathematics – a field of beauty, creativity, and innovation, yet what is echoed by students is 
not how mathematics allows students to explore, but rather the ways in which it constrains and 
does not necessitate creativity (Silver, 1997). Students state mathematics is “a dead subject 
[with] hundreds of methods and procedures to memorize that [students] will never use, and 
hundreds of answers to questions that they have never asked” (Boaler, 2022, p. 35). This decline 
in creativity within school mathematics has coincided with the evolution of computation. 
Computation is now a scientific pillar (Skuse, 2019) as well as a pedagogical tool within the 
mathematics classroom (Castle, 2022; Lockwood, 2022). Further, many students associate 
coding with freedom to create and express themselves (Isomöttönen et al., 2020) which is in 
sharp contrast with students’ views of mathematical creativity. Therefore, a natural question that 
arises is what if computation could offer mathematics education more, specifically with relation 
to mathematical creativity. This study is part of a larger research project that aims to address the 
ways in which computation enacted through coding can aid mathematical understanding and 
promote mathematical creativity, while preparing students for careers in the upcoming 
computational world. Within this paper, I seek to answer the following research question: What 
are the affordances and constraints that computation, as enacted in coding through a creative 
environment, provides for students’ learning of linear algebra concepts and procedures? 

Theoretical Perspective 
Cultural Historical Activity Theory (CHAT) is based on the of the work of Vygotsky, 

Leontiev, and Engeström (1987). It provides a framework for studying collective activity, 
specifically emphasizing the role of mediated activity, a key consideration when considering 
computing. Within CHAT, subjects are the people involved in the activity, whereas the object is 
the aim of the activity. Subjects’ actions are mediated by artifacts or tools. Further, it is 
imperative that individuals are understood within the context of their actions, and that the social 
elements must be brought in. Therefore, within this study individuals cannot be divorced from 
their group and context. There are different levels at which you can analyze the relationship 
between subject and object: activities, actions, and operations (Leontiev, 1974). Activity is 
composed of actions, and actions are composed of operations (Batiibwe, 2019). Operations are 
automatized or routinized behaviors and many times do not require conscious effort (Jonassen & 
Rohrer-Murphy, 1999). The conditions determine the operations. At the next level up, the goal 
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an individual holds results in actions, but the goal is also affected by the conditions. This is the 
functional level that uses planning and problem-solving to complete the activities. Finally, it is 
motive that generates activity, which is composed of actions, and the motive determines the goal. 
This hierarchical structure is used in order to operationalize activity theory within observations, 
as there are multiple units of analysis that can be used to build up the overall activity. As the 
action level is what is of interest within this study, applying this framework necessitates 
establishing what actions are manifestations of mathematical creativity, thereby providing a way 
of documenting how the relationship between the students and the aim (mathematical creativity) 
is mediated by the tool (Jupyter notebooks).  

Mathematical Creativity 
In order to engage with the notion of mathematical creativity it is important to define what I 

mean, as there is a plethora of definitions. Based on literature (Haylock, 1997; Savic, 2016; 
Savic et al., 2017; Silver, 1997; Sriraman et al., 2013) I define mathematical creativity as: 

A process that can be fostered, is context-dependent, and manifests in fluency, flexibility, 
and originality with respect to the mathematics which results in the connection and 
abstraction of ideas that bring a new perspective that is of use to the community and is 
many times the result of prolonged work and reflection.  

It is important to note that the focus is on creativity as a process, rather than a trait. This is an 
important distinction as it means there is the possibility to design opportunities to foster 
creativity and it is not a stagnant attribute of students. Further, I draw from mathematical 
creativity rubrics (Blyman et al., 2020; Henriksen et al., 2015; Savic et al., 2017) in order to 
establish an operationalization of mathematical creativity - specifically six dimensions of 
creativity: originality (ability to try novel or unusual approaches towards a problem), flexibility 
(ability to use multiple methods for solving the same problem), fluency (ability to apply the same 
mathematical idea, concept, or procedure, to a variety of problems and situations), visualization 
(development and use of illustrations, either physical or mental, to clarify or present concepts), 
elaboration (ability to establish meaningful connections between concepts), and risk (willing to 
take action where result is unknown, or a novel approach, to advance problem solving process).  

   Methodology 
This paper reports on data collected from a study investigating the role of computation in 

developing mathematical creativity. This study consisted of 8 different students recruited from 
an introduction to computational modeling course (Silvia et al., 2019) who met recurringly with 
a small group (2-3 members) for a total of 6 weeks. Each week students engaged with a Jupyter 
Notebook designed to introduce new linear algebra concepts while fostering opportunities for 
mathematical creativity and understanding for a total of two hours. Afterwards students would 
complete a reflection about the module. Additionally, I conducted semi-structured pre- and post-
study interviews with all participants as well as pre- and post-surveys. For the purposes of this 
paper, I will focus on a sole group composed of three students: Ivy, Alex, and Kylie, all of whom 
were non-mathematics STEM majors. This was done for space considerations, allowing an in-
depth exploration into their experience across the study and for a more nuanced understanding.    

Module Design 
An underlying portion of this study centers around the design of the computational modules, 

accomplished by implementing Understanding by Design framework (Wiggins & McTighe, 
2005). This process employs backwards design where the learning goals are first established, 
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then potential evidence for meeting the goals, and finally the activity design itself using the prior 
work. A textbook, syllabi, and curriculum analysis yielded potential topics and desirable 
understandings. As this was not an official course, nor a prerequisite, I had latitude in selecting 
the broad understandings that the modules would center on, specifically for students to develop 
geometric understandings of linear algebra ideas and properties, as well as how to represent and 
model systems using their understanding of these concepts. Learning goals were established for 
each module and the evidence for meeting these goals were written out. Finally, pairing the tasks 
with opportunities to foster mathematical creativity as well as computational pedagogies such as 
use-modify-create cycles (Lee et al., 2009) resulted in the final construction of these modules.  

Data Analysis 
For the results shared within this paper, I transcribed and coded all interviews, observations, 

and reflections along the mathematical creativity dimensions and whether they were mediated 
through the notebook. The unit of analysis for coding was individual actions, as determined from 
the CHAT framing.  I then wrote analytical memos detailing the initial themes of mathematical 
creativity followed by grouping codes along the dimensions of creativity and then along whether 
the action was mediated, resulting in sets of common elements. These groupings gave rise to two 
main themes within this set of students’ experiences: (1) computation enabled experimentation 
via prediction and reflection cycles and (2) prediction and reflection facilitated the connection of 
multiple representations.   

Results 

Computation Enabling Experimentation Within Mathematics via Prediction and Reflection 
During the fifth module, students were introduced to Markov chains. They wrote a function 

that would take in a state vector, a stochastic matrix, and the number of observations, and return 
the final state vector. They used the function to predict the population levels of a related suburb 
and city after 1, 2, and 5 years. The following exchange occurred after writing their functions:  

Kylie: I'm just like running them all. Uh, it basically just keeps going in the same direction. 
Alex: I think eventually it would, I don't know if we did, like, a thousand that would probably 

make our computers freeze, but um, would eventually it balance out somewhere. 
Ivy: Maybe we can try like 10 and see what happens. 
Alex: Maybe balance out, balance out isn’t the right word. But eventually it would like 50-50, 

the directions would've reversed. Yeah. 
Ivy: Let's try this. Yeah. It reversed at 10. So, the city is less than the suburb. 
Alex: I mean like eventually they would get like eventually a year would go by and the city 

would increase while the other one would decrease. 
Within this example, a key point is that students were never explicitly prompted to explore 

beyond the 5-year mark. Rather, they were designing a function in order to be able to easily 
model the Markov chains, and then testing that function to check predictions for a model. After 
completing the task at hand, the group demonstrated both originality and risk by asking a 
question that was of interest with a coupled prediction. Note that they had not specifically 
encountered the concept of steady state yet. After this prediction they tested their hypothesis, 
using their function, and then reflected on the output itself. Within this example, the 
computational environment enacted through coding enabled a cycle of prediction and reflection, 
which ultimately later led to a concept of steady state vectors. The coding enabled function 
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creation, which allowed for an efficient way to engage in experimentation. The students were 
able to create a prediction and then check their result.  

The fourth module focused on linear transformations and matrices as linear transformations. 
Prior to the discussion, the students had just finished up with figuring out how to take a matrix of 
points that defined a cat outline and double the cat image in size. They had experimented with 
this and graphed the resultant set of points. The next prompt within the notebook was “It will 
now be your turn to explore! See what happens when you try different matrices. Use the cell 
below to document your thoughts or whatever you find easiest! Try and state what you think will 
happen before you run the code”. This was followed by multiple cells designated for students to 
try different matrices. This portion was specifically designed for students to experiment.  

 
Figure 1. The output from Ivy’s Jupyter Notebook when using a matrix transform along a set of points. 

Ivy: I wonder if you like had like 3, 1, what would happen like anything that's not a zero.  
Alex: Or you wanna do 3, 1, 3, 1. (Referring to a 2x2 matrix) 
Kylie: Do you think it will work? 
Ivy: Um, we can say, we don't think it will work. 
Alex: What do you mean? What do you think? 
Kylie: I guess it will just change. Like it'll disproportionately change the width and length. 
Alex: Uh, I think the X values will be three times X plus Y and the Y values will be, uh, Y 

plus three X. So I think it, the X and Y will turn out to be the same, if that makes sense… 
Ivy: So you think that it's gonna, they're gonna be multiplied by three, but then the value, like 

a value's gonna be added to them as well…  
Kylie: Okay. And then what do we think that's gonna do the graph. It's gonna make it larger 

and move it? 
Alex: I don't think it'll look like a cat anymore. 
Kylie: Yeah. It's gonna move him around. So it's gonna like break up the lines. That is 

correct. It looks really weird. Oh! [Output graphic shown in Figure 1.] 
Ivy: It kind of looks like it just stretched linearly. Like, kind of like on a line. 
Kylie: It's it looks like if you took a side of it and just pulled yeah. You like took one of the 

cat ears and pulled it. 
Ivy: So it's still cat.  
Alex: I think it, it kinda looks like you took, like, we took the lines and multiplied them each 

by like some number, but it looks consistent, you know? You know what I'm saying? 
Ivy: Kinda like, it just looks linear to me. I don't know why. 
Alex: So for the next one, what do you guys wanna do? 
Kylie: What about if we did it like negative numbers? 
Alex: Oh, it'll flip it over. Like the X, Y or something? 
This process continued on and the students each completed 6-8 different trials, deriving their 

own novel transformations, and plotting the visualization. From here, students were then asked to 
define the matrices that would correspond to the points undergoing: reflection across each axis, 
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lines, and through the origin, as well as contractions and expansions, and shears. During each of 
these phases students then took what they had learned through experimentation to abstract, make 
meaningful connections, and create general representations of the types of transformations and 
the corresponding matrix. If they were usure, then they would experiment, using the insight they 
gained during the first part. Then they used code to validate their approaches and show the 
transformation on a set of points.  

During this activity, there was specific reference to ‘exploring’ within the prompt. However, 
it was previously shown that students engaged in experimentation via prediction and reflection 
even when not prompted. This new excerpt highlights the potential ways in which the prediction 
and reflection cycle can take place. Specifically, the students were able to predict the ways that a 
2x2 transformation matrix would affect an image and how the corresponding vertices would 
shift. The experimentation highlighted their initial choice in what matrix to start with and 
followed by different modifications. This allowed for their thoughts to guide the exploration. 
Further, during this experimentation, students were not simply ‘pushing buttons’. Rather, they 
actively engaged in the sense making and making predictions based on their current 
understanding of the materials. This exploration piece allows for an inquiry-oriented approach to 
transformations, and the computational environment is something that enabled this to be 
fostered, especially the visualization. This was drastically different than previous mathematics 
experiences for most students. When reflecting on the experience as a whole, Alex stated: 

“I know it was a math, you know, teaching us math, but it didn't feel like math the same 
way as like solving integral does … it was more so recognizing like what was changing 
… it felt much more like recognizing patterns... Yeah. Just, just figuring that out. It didn't 
feel so much like, step by, I move this over here and then simplify this, it felt more like, 
playing a game, trying to, trying to figure out the way to get to the end goal.” 
This quote highlights the fact that the experimentation portion felt different to Alex than 

previous math classes. Although he does not explicitly name experimentation, he discusses this 
concept of changing pieces and looking for patterns to get to the end goal, which mirrors the 
notion of prediction and reflection. Within the previous examples from the observations, the 
group engaged in making changes in order to figure out the corresponding effect, thereby 
developing a deeper understanding of the system. This experimentation fostered via computation 
countered Alex’s prior notions of mathematics, and specifically gave a framing of exploration 
rather than following a series of given steps, thereby promoting opportunities for creativity.   

Prediction and Reflection Facilitating Connections to Multiple Representations  
The second area highlighted during this pilot study was the ways in which the computational 

environment facilitated students making connections to multiple representations. To start, 
consider the following excerpt from the group’s sixth module. It shows the interplay between 
group members and the ways in which the development and running of code supports multiple 
representations. Within this activity, participants were provided a function that takes in three 
vectors and displays the corresponding parallelepiped. Kylie was sharing her screen with the 
group at this time, and began by plotting the identity matrix, which represents a unit cube. The 
group ensured the determinant was 1 since the volume of the cube was 1. They read through the 
plotting function to ensure they knew what was occurring and how to use the function. This is 
where the following excerpt picks up. The exchange has actions added within brackets in italics; 
also, some of the points of general conversation were removed for the sake of space. 
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Alex: So, let's use the columns of A as our vectors. Okay. So, um, I guess that kind of makes 
sense. Cause the determinant is like doing the, it's kinda like doing the cross products a 
couple times. Right. And cross products, like the area of a parallelogram. So anyway, um, 
that's our parallelepiped… Cool. What would cause the determinant of A, to be zero? Uh, 
if it were, how do you get a volume of zero? 

Ivy: Would it be like a 2D shape? 
Alex: Oh yeah! Yeah that makes sense. 
Ivy: But how would we express that?  
Alex: We could try different matrices. So v1, v2, and v3 are probably all gonna be in the same 

plane is my guess. I guess. Yeah but how do we –  
Ivy: Should we set one of them to all zeros? No –  
Kylie: We could try it! I guess we don’t need to plot it right now. We’re just looking at the 

determinant…. Uh okay. So we are trying. Yeah. Here is our original -  
Ivy: I’m just gonna change the first value to be zero for all of them. See if that does. Yeah. 

That is how you can do it… Cause technically you’re saying v1 has like zero value… 
[Kylie then sets one of the columns of A to be 0 and uses linAlg.det() to check determinant] 
Alex: Okay so that one is like on the same plane?  …  
[Kylie then runs the plotting code with the new matrix that has a determinant of 0] 
Kylie: … How does – no. Cause it’s all on the same plane, because one of them is zero. What 

must be true for one of them to not be zero?  
Alex: They must be on the same plane 
Ivy: So if we have three vectors that are all on the same plane or that they’re all, oh wait, like 

2d plane… 
Alex: Right. Well there’s no volume if they’re all on the same. 
Kylie: Plane. Yeah okay. No, no, okay, got it. Got it. We’re good. 
Ivy: Which means that they must be linearly dependent!  
Alex: … Oh yeah. So we can say they’re linearly dependent - if the determinant is zero.  

 
Figure 2. Visualizations Kylie created during the exploration of determinants, trying: (a) unit basis vectors, (b) 

linearly independent vectors, (c) linearly dependent vectors 

The group then goes on to check another set of known linearly independent vectors to verify 
the determinant is not zero. The three visualizations produced through this experimentation and 
reflection are shown in Figure 2. The activity does engage the previously discussed prediction 
and reflection cycle, but also leverages multiple representations as well. This in turn enabled 
students to discover the relation between the determinant being zero and the linear dependence of 
vectors, proving opportunities for flexibility and visualization. During the excerpt, the 
computational representations were the code itself and the actual output of the code, referring 
both to the visualization of the vectors in 3D as well as the numerical value of the determinant. 
That is, they were representations that existed via the computer alone. The code itself had 
students decompose the matrix into a set of vectors in order to calculate the volume to determine 
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the determinant while simultaneously using the full definition of a matrix to calculate the 
determinant. It was up to the students to determine the test matrices, how the matrix was then 
used to determine the parallelepiped, and then calculate and visualize the determinant. Besides 
the scaffolded plotting code, students are enacting all of these concepts, necessitating a switching 
between resources. Further, when they discussed the notion of determinant, they draw on the 
algebraic notion alongside the graphical interpretation, leading to the discovery of the impact of 
linear dependence on the determinant.  

Computation enabling prediction and reflection, as previously discussed, means that students 
are maintaining a constant balance between computational representations. Namely, the code 
itself and the output, such as Ivy coordinating the input and execution of code with the output 
value of the determinant. Therefore, since students are already engaging in this process of 
bridging representations (lines of code and output) then there is a natural way of connecting the 
tradition of multiple representations, namely students balancing both the graphical, numerical, 
and algebraic representation. All of these representations were brought into the excerpt, and this 
facilitated not only flexibility but also the creation of personal visualizations and elaborations.  

Discussion and Conclusion 
This work highlights the potential that computation has for engaging students in 

mathematical creativity, specifically when enacted through coding. Within the focal group of 
students, this was accomplished by computation naturally supporting experimentation through 
cycles of coding predictions and reflections. Specifically, students adapted their code to follow 
their own ideas and fluidly check how this altered the result. This cycle of prediction and 
reflection is not new to linear algebra (Wawro, 2009) nor computation (Lockwood, 2022). 
However, what this study contributes is specifically how computation enacted through coding 
can be leveraged to bring about this cycle to promote mathematical creativity. Students naturally 
explored utilizing the code and engaged in this cycle with and without prompting. These cycles 
contained multiple dimensions of creativity, especially along originality and risk, which is 
consistent with research on students’ epistemic agency within computational notebooks (Odden 
et al., 2021). Further, these cycles of prediction and reflection facilitate connections to multiple 
representations. During the determinant cycle, the group continually bridged and connected their 
code with the output produced. The modification of the code led to the determination of multiple 
cases of linear (in)dependence where they then pivoted to make connections between the 
concepts they had already encountered and the code output. This enabled for a natural bridging 
between the graphical, algebraic, and numerical understandings of a determinant. A key point 
within the literature is how students are able to develop great insight and creativity when 
developing geometric interpretations of key linear algebra concepts (Larson et al., 2008). This is 
one of the particular strengths of these specific modules but more broadly within computation 
enacted through coding. Many programming languages have supports built in for visualization 
which allows students to plot different objects that were previously unattainable by hand. 
Further, the act of coding coupled with students’ control over the representation enable not only 
originality but also constant maintenance of multiple representations. Within this paper evidence 
was presented for how computation enacted via coding can lead to opportunities for fostering 
mathematical creativity through experimentation within computational prediction and reflection 
cycles, promoting connections to multiple representations. As the relation between computation 
and mathematical creativity is relatively new, future work should entail focusing on computation 
as a pedagogical tool for mathematics education in addition to exploring the potentially unique 
insights that computation offers students.  
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What Do Students Do To Develop Understanding of Definitions in Proof-Based Courses? 
 

                                        Holly Zolt                                           Anthony Tucci 
 Texas State University Texas State University 

 
 Kathleen Melhuish Timothy Fukawa-Connelly 
 Texas State University Temple University 

Advanced, proof-based mathematics courses typically include learning goals of developing 
understanding of the relevant content of the class. The content always includes definitions of 
concept in that they are foundational to theorems and proofs. This study explores what three 
students believe it means to understand a definition, the actions they take to develop that 
understanding, and the rationales they use to explain why their actions are productive. The 
students held divergent beliefs about what it means to understand a definition. While all cited 
lecture attendance and homework as critical activities in their learning, they diverged on the use 
of outside resources and the rationales for why they might or might not be useful. 

Keywords: proof-based mathematics, student understanding, definitions, learning goals 

Mathematical definitions serve an essential purpose in proof-based courses, which require 
students to attend to these definitions in a distinct way: as stipulated rather than descriptive 
(Edwards & Ward, 2004). Definitions are often provided during lectures; however, we know 
little about what students understand from these settings. In one of the few fine-grained studies 
of what students gain from specific lectures, Lew et al. (2016) described that students may not 
apprehend the content that professors are attempting to convey. Melhuish et al.’s (2022) recent 
literature review points to a lack of empirical studies focused on student learning or what 
students might do outside of class to develop understanding.  

As understanding and using definitions constitute a major content goal of proof-based 
courses, we explore two primary research questions and two that provide context and explanation 
for the findings of the first two:  

§ What activities do students engage in to try to develop understanding of a definition? 
§ Why do they engage in those activities? 

To provide context, we also explore: 
§ What do students believe a definition is in advanced mathematics and why? 
§ What do students believe it means to understand a definition and why? 

Literature Review 
In formal mathematics, definitions stipulate the nature of a mathematical concept, and any 

object that meets the definitional criteria is an example, and any that does not is a non-example. 
Such definitions are referred to as stipulative (Edwards & Ward, 2004). Alcock (2010) suggested 
that mathematicians desire students to understand the stipulative nature of mathematical 
definitions. At the same time, extant research suggests that students do not consistently hold 
similar beliefs about definitions (c.f., Edwards & Ward, 2004; Alcock & Simpson, 2004; 
Krupnik, et al, 2018), and may operate with the definitions as if descriptive (that is they are 
extracted and created from use) rather than stipulated. Some studies have pointed to complexities 
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in students’ thinking of definitions attending to issues of mathematical criteria and 
communicative goals (Zazlavsky & Shir, 2005) or ways students may reinvent stipulative 
mathematical definitions (Zandieh & Rasmussen, 2010). 

In terms of lecture courses, mathematicians have argued that much of the work of learning, 
such as learning definitions, occurs outside of class (Wu, 1999; Weber & Fukawa-Connelly, in 
press.). This may involve homework activities (Rupnow, et al, 2020) and other types of at home 
activities. Yet, we know little about what types of activities students intend to and do engage in 
at home to meet learning goals. If we focus on definitions, we can find some papers on what 
mathematicians do to learn new definitions and content (e.g., Parameswaran, 2010; Wilkerson-
Jerde & Wilensky, 2011). In the context of definitions, Parameswaran (2010) interviewed and 
surveyed a set of mathematicians finding they studied examples, used definitions to prove 
theorems, explored equivalent definitions, and resolved cognitive conflicts while trying to 
understand a new definition. Others have pointed to how mathematicians’ use intuition and 
diagrams (c.f., Johansen & Misfeldt, 2020; Sinclair& Gol Tabaghi, 2010) in connection with 
formal definitions. That is, there may be reason to hypothesize that understanding a definition in 
a formal proof context, may also involve drawing on not just definition, but also concept image 
(as defined in Tall & Vinner, 1981). 

Theoretical Perspective 
The practical rationality framework, initially designed to analyze teacher decision making 

at the K-12 level (Herbst and Chazan, 2003), posits that decision-making is regulated by 
rationality. More specifically, the knowledge, beliefs, and goals of the teacher mediate the 
obligations and norms from stakeholders (Chazan, et. al. 2016; Webel 2013) and ultimate 
decisions. Since its development, it has been extended to investigate the students’ decision 
making.  Webel (2013) argued for attention to “both social and individual factors in describing 
how particular student actions come to take place in mathematics classes” (p. 25).  In our study 
we hold that the beliefs students held and the actions that they took were rational considering the 
obligations placed on them and their experiences within the mathematics discipline.  

Methods 
The results discussed here are a part of a pilot study aimed at exploring students’ beliefs 

about definitions. Data collection took place at a large research university in the southern United 
States. Our first round of data collection was an online questionnaire in which students were 
asked about what activities they engaged with in between classes that helped them better 
understand definitions and why they think these activities helped them. This survey was given to 
students in two undergraduate math classes (modern algebra, real analysis) a few days after their 
professor had introduced a new definition in class (direct products, continuity). Two students in 
modern algebra and one student in real analysis completed both the questionnaire and the 
interview. 

Data Collection Methods 
The goal of the survey was to document in-the-moment activities that students claimed to 

engage in to develop understanding of new definitions. During the follow-up interview, students 
were asked questions about their background, their beliefs about definitions – including what it 
means to understand a definition – and questions about how they come to understand definitions. 
For questions relating to how they developed understanding, we encouraged the students to think 
back to their most recent activity to understand a new definition which often focused on a 
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homework assignment. They were also given the opportunity to respond to other contexts such 
as preparing for exams or their general practice with new definitions.  

Data Analysis Methods 
To analyze our data, we began with an open coding scheme in which each interview was first 

transcribed and then coded for beliefs and activities. All four authors coded Kurt’s transcript for 
both beliefs and actions. For Kris’ and Dave’s transcripts, each transcript was coded for beliefs 
by two members of the research team and for actions by three members of the team.  We then 
met to reconcile the coding and any discrepancies were worked out through discussion. Using 
these codes, we built profiles of each student that addressed the following five areas: what is a 
mathematical definition, what is the purpose of a definition, what does it mean to understand a 
definition, what actions are taken to understand a definition, why the student holds each of these 
beliefs. Note that these are from the student’s perspective. The results of this process are 
addressed in the sections below.  

Data and Results 
Table 1. Definition Profiles of Participants 

Participant What is a definition? What is the purpose of 
definitions? 

What it means to 
understand a definition 

Kurt Rigid criteria 
categorizing a set of 
objects (“black and 
white, either in or out”) 
 

The purpose of a definition 
is to create and prove claims 
about objects that fit the 
definition. 

• Determine whether an 
object meets the 
definition 

• Developing Intuition 

Dave Axiomatic 
“Foundation” of 
mathematics that cannot 
be changed 

The purpose of definitions is 
to construct and prove 
mathematical propositions. 

• Knowing the definition 
• Being able to apply the 

definition in proofs 

Kris Fixed and cannot be 
argued as incorrect 

The purpose of a definition 
in mathematics is to 
contribute to the 
development of propositions 
and proofs 

• Understanding its 
purpose 

• Knowing when to use in 
proofs 

Before providing an overview of the at-home activities, we first share a brief overview of the 
three students’ beliefs (Table 1).  All the students held stipulated views of mathematical 
definitions with all three making explicit comments about the definitions being rigid. We also 
note that all shared a common view that definitions were in service of proofs and propositions. 
However, the three students reported somewhat distinct views on understanding definitions.  

Additionally, we note that none of the students claimed to take any specific activities to learn 
a definition the day it was presented in class. As we detail below, they all describe some 
activities that they take to learn definitions, and have well-developed rationales, none are taken 
immediately after the presentation.  
Kurt  

Kurt explicitly described four activities that he engages in to try to develop understanding of 
a definition and we inferred one additional activity, repetition. The first three that he named are 
attending class, looking at his notes, and doing the homework. He also claimed to look at online 
videos when those were insufficient or when he thought animations might be helpful.  

Kurt explained that he went to lecture diligently, took notes, and asked questions if he was 
not understanding. In particular, he explained for continuity,  
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I've mostly been relying on lectures for that too, like the first day that it was introduced to 
us. I was like I don't really get it, so I just I kept like, you know, going to class and like 
OK like let's try this again and my professor was really good about when we were like 
getting in deep with continuity being like OK class. 

He noted that he asked questions like, “When something isn't continuous, why does it break? 
Why doesn't it fit that definition? You know? Why does it break? So, I was like, can you show us 
like a picture of like the epsilon bubble and the delta bubble like show us like how its 
discontinuous function like breaks that so to speak.” 

Outside of class he then sought out YouTube animations to further develop his understanding 
with visuals in the cases he found lecture insufficient elaborating that, “OK, here's that curve, 
and here's what happens when we do this and this and this, that could be really handy. That's 
something that's kind of you can't replicate on a chalkboard super easily, you know.” He 
appreciated another perspective but noted sometimes what the professor said was simpler.  

Kurt also explained homework as his most valuable tool to develop his understanding of 
definitions, explaining that he needs to “play with [the definition] himself” and understand how 
to apply them in proof. This was a prevalent theme throughout the interview.  

Reflection. Kurt emphasized several activities that aligned with his view on understanding a 
definition, including attention to examples (categorizing in or out), and developing intuition from 
animations (often found online.) He did not see memorizing a definition as part of understanding 
nor did that influence his activity and uses homework as the primary way to achieve 
understanding. Although Kurt did not explicitly say using definitions to prove as part of 
understanding, this was stated as a purpose of definitions and the primary activity for Kurt, likely 
reflecting the nature of homework prompts. 

Dave 
When we consider the actions that Dave takes to understand a definition, we can summarize 

his activity by saying that he believes that he tends to do better on the coursework when he 
simply does the homework and try to understand each question conceptually. This approach is 
believed to lead to remembering definitions and proof strategies. If he does get stuck there is a 
preference of talking with the professor, but, if necessary, he will use the internet. We noticed 
that Dave has a nuanced stance on the actions he takes. For instance, he will make statements 
such as “maybe it's just me. But memorizing does not help. I think understanding the big picture 
helps a lot more than any amount of memorization.” We do not take this statement from Dave to 
mean that he is against knowing the definition. Instead, we take this to mean that Dave holds the 
belief that definitions are learned progressively and through doing mathematics as opposed to the 
use of flash cards or other memorization tools. Also in his internet use, there is a strong 
preference towards seeking help from the professor before turning to the internet as the internet 
often lacks the ability to give insight and creates confusion with different notation usage.  

In further consideration of Dave’s actions, he seems to take actions that he believes will 
support him in better developing his concept image of the topic at hand. During the interview 
Dave provided an instance in which talking to the professor was of greater benefit than the 
internet. In this dialog he stated 

And then [Dr. X], I went to his office hours once and I was like I don't understand what 
this looks like. Help me. So, then he pulls out his Rubik's Cube and he's like see how the 
face doesn't go anywhere. This is the stabilizer. Like I love stuff like that. I think that's 
way more helpful to me in the grand scheme of things than like just knowing that 
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definition, then trying to apply it, you know. That I can think about it better if I asked 
directly for help from the professor versus random Internet strangers online. 

In this case, directly talking with the professor allowed Dave to develop a richer concept image 
of the stabilizer than turning to “random internet strangers.” 

 The rationality for each of these actions was traced back to Dave’s intro to proof course. In 
the following excerpt, Dave describes his experience transition into proof-based mathematics 
courses  

I can trace it back to intro to advanced math. Umm? There was just kind of like this. I 
guess wall, right? Because when, when you're like doing computation, computation, 
computation for years. You hit calculus 3 computation, differential equations 
computations. And then suddenly, you're just thrown in this theorem land where like 
everything's completely different, and there's no computation. It's just you need to know 
how to use definition to prove big idea. It's just a completely different beast, I guess. Like 
in terms of like math. And I didn't see it coming, so I had to shape up.   

In this quote, Dave describes a form of distinction between the computational mathematics that 
he had been doing and the theoretical mathematics that he was beginning. This distinction 
between theoretical and application-based mathematics forced the development of new activities 
for learning.  

Reflection. Like Kurt, Dave’s activity was tied to his homework. Dave’s description of 
understanding definition aligned with his activity where he explicitly teases apart the ideas of 
“knowing how” and “knowing what”, both of which are a part of understanding. There is more 
value placed on the “knowing how” category, that is applying definitions to proofs, which we 
can see in the quote above dealing with the stabilizer. 

Kris 
Like his peers, Kris uses both lecture and homework as a primary means to engage in 

definitions. He also attends office hours and seeks out information from the internet. Kris 
claimed that his two primary activities to develop understanding were to attend lecture and do 
the homework, “But in my opinion, I think it's, that's the only two ways to help me to understand 
the definition is you just do the homework or see what Dr. X, like in know the instructor, what 
they expand for the definition.” 

Kris also acknowledged the importance of extended time noting that it “takes time to 
understand the definition and what’s the purpose…” and a single lecture is too short, and he may 
need to revisit ideas on the weekend. He also explains that during lecture it helped when the 
professor paused and gave “a little bit of time to think about the definition” and how important 
that time was for him to understand.  

While Kris said that those are the only two ways to develop understanding, he specifically 
describes other activities that he uses to develop understanding including office hours and using 
the internet as a resource. He would opt for the internet if his instructor was unavailable to meet 
searching out,” Where is this definition come from? And the work, the purpose of this definition 
for sometimes it helped me to understand more, but some not all the time.” He also would seek 
out different points-of-view on the definitions such as reading online arguments between 
different people.  He also sometimes asked his peers for what the “purpose” of a definition is.  

Kris’s last observation from his coursework is that while he tries to be able to state theorems 
in his own words, he does not do this for definitions. He explains that “if I change the words in 
my, I have a different story than a definition.” He elaborated how this led to him developing 
incorrect quantification in prior classes. That prior experience led to his decision to “force 
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[himself] to memorize” the definition exactly which can also help when they need to be stated on 
exams. 

Reflection. Like other cases, homework and lecture played a substantial role in Kris’s 
activity were using definitions to prove statements was a key activity and addressed the 
“purpose” of a definition.  However, we can see one substantial way that Kris’s case differed 
from the prior. He placed outsized value on memorizing a definition exactly as stated. This may 
reflect his beliefs on definitions as the “inarguable” parts of mathematics. He also did not go to 
the internet for animations or intuition, but rather history, which again may reflect how he sees 
the roles of definitions as foundational. 
 
Table 2. Actions taken by Participants 

Participant Actions taken to understand a definition Beliefs and Rationale for Actions Taken 
Kurt • Attending class 

• Reviewing notes 
• Doing homework 
• Using online resources 

• He needs to “play with it [the definition] 
himself” and understand how to apply 
them in proof. 

• Justifies actions using prior experiences 
in math courses and advice from friends. 

Dave • Doing homework 
• Talking with professor 
 

• Memorization is not useful to developing 
the ability to use the definition in writing 
proofs. 

• Justified actions based on the goals of 
understanding/ desired learning outcomes 
set for himself and prior experience in 
math courses 

Kris • Attending class 
• Doing homework 
• Talking with professor, online 

resources 

• Kris wants to know the historical uses 
and evolution of a definition, and this can 
be found via lecture and online 

 
Discussion 

The purpose of this study was to address two primary questions:   
• What activities do students engage in to try to develop understanding of a definition?  
• Why do they engage in those activities?  

In addressing these two questions, we also examined two additional questions:  
• What do students believe a definition is in advanced mathematics and why?  
• What do students believe it means to understand a definition and why? 

Regarding these first two questions, through both our survey and interview, we found that there 
are a range of activities that students engage in when trying to understand definitions and some 
consistencies. All the students suggested that doing homework and attending lectures were their 
primary means of developing understanding. Kurt also relied on additional resources, including 
those found on the internet, as part of their coming to understand. In contrast, Dave preferred not 
using outside resources like the internet. However, he does acknowledge that he has looked at 
them in the past. To account for differences in what students saw as useful, we return to the 
notion of the rationality of students and consider the goals that the students had. We do hold that 
each of the students utilized resources that were rational from their perspective as they 
considered their own learning goals. Webel (2013) had stated the importance of understanding 
the students’ goals when trying to examine the motives of their behavior.  
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The students had relatively similar backgrounds in terms of the mathematics coursework that 
they had taken. The students always engaged in the activities they believed would best help them 
achieve their learning goals but had developed very different sets of learning behaviors and 
rationales to explain them. Kurt, for example, believed that he should develop understanding of 
the definition through repeated exposure via lecture and practice with homework tasks. In 
contrast so as to be able to reliably classify sort candidates into the class of example and non-
example. In contrast, Kris memorized definitions for exams, but sought to understand the 
historical reasons that they were created and what theorems they lead to by using lectures, office 
hours, and resources found on the internet. Dave wanted to know when to use a given definition 
(akin to Weber’s (2001) strategic knowledge) and so did the homework, go to office hours, and 
sometimes use the internet. Dave was leery of the internet due to changes in ‘notation’ that might 
confuse him. That is, different goals for understanding appear to support different collections of 
behaviors. 

Through documenting both the activities students engage in when coming to understand a 
definition and the rationale behind why students engage in activities, we make a minor contribute 
to the literature on how students engage with definitions as there was little existing literature. We 
note two limitations that also suggest next directions for study. First, due to our limited sample of 
three students, we have no reason to believe that they are representative of students in advanced 
mathematics courses, and so one way to explore that would be to replicate the study with a larger 
sample. As a second limitation, we found that students provided incongruous responses during 
the survey and their initial claims during the interviews. We found that students recalled different 
behavior when prompted with their own survey responses than when asked to describe their 
behavior without prompting. At the same time, because the survey did not attempt to capture the 
logic for their behavior, more research is needed in order to explore the in-the moment decision-
making processes that students use to seek out outside resources and evaluate them. Finally, in 
addition to replication, we noticed that preferences and sense of self-efficacy may influence their 
behavior. Thus, it would be of interest to examine the relationship between students’ actions and 
their self-efficacy.  

While we note that this is a small group of students, all three noted that they did not recall 
their professors describing any practices or behaviors that would support coming to understand 
definitions outside of class to come to understand a definition. The research on classroom 
instruction (c.f., Pinto, 2019; Fukawa-Connelly, 2012) suggests that mathematicians engage in 
modelling behaviors that could support coming to understand the concept in ways that go beyond 
memorizing the words of the definition. There also is reason to believe that mathematicians want 
to promote conceptual understanding (Nardi, 2007). Thus, these students do not believe that they 
have given any instruction about how to develop this understanding or what this understanding 
might entail, which could explain the divergence in their beliefs about what it means to 
understand a definition. As a result, we suggest that if mathematics professors have specific 
actions that they want students to take, they need to more explicitly teach them. At the same 
time, the literature does not currently allow us to link teaching activities and students’ learning 
very well (c.f., Melhuish, et al, 2022). As a result, explorations of explicit instruction about 
coming to understand, how that relates to behaviors students actually carry out, and the types of 
understandings that result would be a valuable addition to the research literature. 
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Learning to interpret proofs is an important milepost in the maturity and development of students 
of higher mathematics. A key learning objective in proof-based courses is to discern whether a 
given proof is a valid justification of its underlying claim. In this study, we presented students 
with conditional statements and associated proofs and asked them to determine whether the 
proofs proved the statements and to explain their reasoning. Prior studies have found that 
inexperienced provers often accept the proof of a statement’s converse and reject proofs by 
contraposition, which are both erroneous determinations. Our study contributes to the literature 
by corroborating these findings and suggesting a connection between students’ reading 
comprehension and proof validation behaviors and their beliefs about mathematical proof and 
mathematical knowledge base. 

Keywords: logic and proof, belief about mathematical proof, mathematical knowledge base 

 Learning to interpret proofs is an important milepost in students’ mathematical development 
and maturity. Such development is especially crucial since proof is a structure unique to the field 
of mathematics (Balacheff, 2008; Fawcett, 1938). Though much variability exists in how 
transition-to-proof courses are delivered in the U.S., over 80% of them attend to principles of 
formal logic (David & Zazkis, 2020). Presumably among the many facets of students’ 
development with regard to proof is their ability to correctly discern whether a proof justifies a 
given theorem. While undergraduate students’ comprehension and behaviors have been a focus 
of research in the reading and validation of proofs (e.g., Dawkins & Zazkis, 2021; Selden & 
Selden, 2003), this study aims to provide insights of how students’ beliefs and knowledge about 
proofs might be associated with their reading and validation thereof. Building on the existing 
research (e.g., Dawkins & Roh, 2022), this study explores the accuracy with which students 
validate theorem-proof pairs, the reasons they offer for their decisions, and the similarities and 
differences exhibited by students with different degrees of proof experience. By studying 
similarities and differences between these groups, we address the following research question: 
What differences exist between novice and experienced provers in how they read proofs and 
characterize the relationship between proofs and theorems? 

Theoretical Perspective 
 In this study, we employ the lens of radical constructivism (Glasersfeld, 1988). Under this 
view, knowledge does not objectively reflect reality, rather it is stored in the mind of an 
individual learner who has organized their activity and experience idiosyncratically into 
schemes. As such, we designed our investigations to understand our participants’ schemes 
regarding proofs of theorems in order to build models for their thinking. 
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As a way of organizing and interpreting our findings about students’ schemes regarding 
proof, we introduce the constructs of beliefs about mathematical proof and mathematical 
knowledge base, both of which may differ from student to student. The former refers to general 
notions that students hold regarding the practice of proving or the properties that a proof should 
have. For example, a student might believe that a proof needs to make explicit the structure of 
their proof e.g., direct proof, contrapositive, while another would accept a proof which only 
implies the structure. The latter refers to content-specific knowledge that students accept without 
justification. For example, a student might conceive that the sum of two continuous functions is 
continuous and accept a proof that used this argument as valid. Another student might reject a 
proof which doesn’t justify this claim. In either case, such knowledge is only relevant in proofs 
that pertain to functions and their analysis. 
 Though ideas in one’s mathematical knowledge base do not require justification, students 
were asked on multiple occasions to explain why certain ideas were true. To more fully describe 
their understanding, we rely on warrants (Toulmin, 1958), the reason a prover gives for why 
their evidence is germane to their argument. In particular, we use the warrant-types described by 
Inglis et al. (2007) to make sense of our participants’ knowledge bases.  
 

Research Methodology 
As part of a larger study, we conducted clinical interviews (Clement, 2000) with 

undergraduate students with various levels of proof experience at a large public university in the 
United States from spring 2020 to spring 2022. We recruited eight students who had already 
taken at least two proof-oriented courses by spring 2020. We labeled these participants 
experienced provers. To compare and contrast these provers’ conceptions about proof, in the 
springs of 2021 and 2022, we recruited four students who had not yet taken any proof-oriented 
mathematics courses at the university level, labeling them novice provers. The second author of 
this paper served as the interviewer of all participants while the remaining authors served as 
witnesses. In the discussion of results, we label participants with E or N (indicating their 
experienced or novice prover classification), a number from 1-8, and a pseudonym. 

Each clinical interview lasted between 60 and 120 minutes. Some interviews in the spring of 
2020 were conducted in person in a space other than their regular classroom while the rest of the 
interviews were conducted remotely. To facilitate retrospective analysis, we video- and audio-
recorded all interviews. Participants completed all annotations on tablet computers, allowing us 
to collect digital copies of their work. 
 
Interview Tasks 
 The tasks for the clinical interviews consisted of a series of theorem-proof pairs. After 
showing a theorem and at least one proof associated with it, we asked a student participant to 
think aloud while reading and interpreting them. When the student had indicated that they had 
sufficiently reviewed the theorem and proof, we asked whether the proof proves the theorem. If 
they determined that the proof did not prove the theorem, we asked if there were other statements 
that it proved. As the student responded to our questions, the interviewer asked follow-up 
questions in tandem to understand the student’s reasoning for their decision. 
 While we asked all student participants the same questions for each theorem-proof pair, these 
pairs were not the same across the three all data collection periods. In spring 2020, we offered 
our experienced provers five different theorems (Theorems 1, 2, 4, 6, and 9 in Figure 1), each of 
which was accompanied by two or three different proofs. In spring 2021, we provided one 
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theorem (labeled Theorem in Figure 1) to two of our novice provers and four associated proofs. 
In spring 2022, we presented the remaining novice provers four different theorems (Theorems 
𝛼𝛼,𝛽𝛽, 𝛾𝛾, and 𝛿𝛿 in Figure 1), each with a single proof of its converse or contrapositive. 
 For all of the theorems in Figure 1 below, we provided students additional information such 
as relevant definitions or supporting theorems which may be needed for their reading of the 
proofs. We informed students that the proofs we provided were mathematically valid, but proofs 
associated with a theorem may not necessarily prove the theorem. 
 

Theorems presented to experienced provers in Spring 2020: 
Theorem 1: If 𝑥𝑥 is a multiple of 6, then 𝑥𝑥 is a multiple of 3.  
(Associated proofs are direct, disproof of converse, and contraposition) 
Theorem 2: If 𝑥𝑥 is a multiple of 2 and a multiple of 7, then 𝑥𝑥 is a multiple of 14.  
(Associated proofs are direct and proof of converse) 
Theorem 4: If 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a rhombus, then the diagonal 𝐴𝐴𝐴𝐴 forms two congruent isosceles triangles.  
(Associated proofs are direct and disproof of converse) 
Theorem 6: For any line segment 𝐴𝐴𝐴𝐴, if a point 𝑋𝑋 is on the perpendicular bisector of 𝐴𝐴𝐴𝐴, then 𝐴𝐴𝑋𝑋 = 𝐴𝐴𝑋𝑋.  
(Associated proofs prove the converse and prove directly) 
Theorem 9: If 𝑓𝑓 and 𝑔𝑔 are continuous on [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑎𝑎) = 𝑔𝑔(𝑏𝑏), and 𝑓𝑓(𝑏𝑏) = 𝑔𝑔(𝑎𝑎), then there is a 𝑐𝑐 in [𝑎𝑎, 𝑏𝑏] such that 𝑓𝑓(𝑐𝑐) = 𝑔𝑔(𝑐𝑐).  
(Associated proofs are direct, disproof of converse, and contraposition) 
 

Theorem presented to novice provers in Spring 2021: 
Theorem: For any integer 𝑥𝑥, if 𝑥𝑥 is not a multiple of 3, then 𝑥𝑥2 − 1 is a multiple of 3.  
(Associated proofs are direct, inverse, converse, and contrapositive) 
 

Theorems presented to novice provers in Spring 2022: 
Theorem 𝛼𝛼: Given a line segment 𝐴𝐴𝐴𝐴, for all points 𝑋𝑋, if 𝑋𝑋 is on the perpendicular bisector of 𝐴𝐴𝐴𝐴, then 𝐴𝐴𝑋𝑋 = 𝐴𝐴𝑋𝑋. 
(Associated proof proves the converse) 
Theorem 𝛽𝛽: For any triangle 𝑋𝑋𝑋𝑋𝑋𝑋, if no two angles are congruent, then the triangle is scalene.  
(Associated proof proves the contrapositive) 
Theorem 𝛾𝛾: For any integer 𝑥𝑥, if 𝑥𝑥 is a multiple of 4 and a multiple of 21, then 𝑥𝑥 is a multiple of 84.  
(Associated proof proves the converse) 
Theorem 𝛿𝛿: For any integer 𝑥𝑥, if 𝑥𝑥 is not a multiple of 3, then it cannot be written as the sum of three consecutive integers.  
(Associated proof proves the contrapositive) 

Figure 1. Theorems and types of proofs associated with them 
 

Data Collection and Analysis 
 To facilitate our analysis, we transcribed each interview and created detailed field notes to 
describe how students processed each proof. We analyzed data in hopes of building a theory 
grounded in the available data (Strauss & Corbin, 1998). We first coded each line of each 
transcript by describing student behavior e.g., reviewing given definitions, drawing diagrams, 
deciding on the validity of a proof. We further coded the transcripts to attend to students’ 
reasoning underlying their responses to questions, which revealed five different phenomena 
which we present in more detail shortly. These phenomena gave rise to two ways of categorizing 
students’ conceptions – belief about mathematical proof and mathematical knowledge base. 
 

Results 
 The goal for our research was to characterize the differences between how novice and 
experienced provers understood proofs, theorems, and the relationship between them. We begin 
by discussing their commonalities in order to provide a reference for their differences. We found 
that students’ comprehension and validation of proofs are associated with their beliefs about 
mathematics proof and mathematical knowledge base. Various sub-categories of each construct 
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emerged from our analysis. In particular, we found two different sub-categories of students’ 
beliefs and three sub-categories of their knowledge. Once we identified all students with these 
categories, we compared and contrasted novice and experienced provers. Our findings are 
summarized below (See Table 1). 
 

Table 1. Summary of conceptions about mathematical proof 
Conception Phenomenon Novice Experienced  
Beliefs about 
Mathematical 
Proof 

Valid proofs require logically sequenced arguments.   
Valid proofs require correct overall structure. ×  

Mathematical 
Knowledge 
Base 

Arguments rely on empirical evidence.  × 
Arguments rely on definitions. ×  
Arguments rely on logically sound principles. ×  

 
Summary of Conceptions of Proof of Novice and Experienced Provers 
 Both groups of provers exhibited a belief that valid proofs require correctly sequenced 
arguments, yet only experienced provers believed that proofs must also follow the correct 
structure i.e., assumptions and conclusions are correctly identified. Regarding mathematical 
knowledge base, novice provers primarily argued using empirical evidence while experienced 
provers preferred arguments based on definitions. Lastly, experienced provers alone showed 
consistent sensitivity to logically sound principles. 
 
Beliefs about Mathematical Proof 
 This category pertains to what students generally believe a prover should do when 
formulating a proof or what properties a proof ought to include. Our findings refer specifically to 
the characteristics that students believe contribute to the validity of a proof, or lack thereof. 

Valid proofs require logically sequenced arguments. A logically sequenced argument is 
such that each line in a proof is both justified by the ones that precede it and justifies the ones 
that follow. Put alternately, students attended to the body of the proof without necessarily 
attending to the assumptions and conclusions. In each of the following excerpts, one each from a 
novice and experienced prover, participants discussed why this coherent flow is necessary in a 
valid proof.  

Interviewer: “Can you explain why [this proof doesn’t prove the theorem]?” 
Priya (E4): “Because they’re not justifying their steps. When they don’t justify their steps, 

the steps they’ve omitted don’t indicate that they understand what’s going on. It just 
seems like they’re fudging because they know where they need to go.” 

 
Interviewer: “Can you explain why the proof proves the theorem?” 
Carl (N2): “If 𝑥𝑥 wasn’t on the perpendicular bisector…Therefore, the lines 𝐴𝐴𝑋𝑋 and 𝐴𝐴𝑋𝑋 

would not be equal. Because it is on the perpendicular bisector, triangles 𝐴𝐴𝐴𝐴𝑋𝑋 and 𝐴𝐴𝐴𝐴𝑋𝑋 
would be equal. By the SAS theorem, the triangles would be equal.” 

Priya referred to the desired conclusion as “where they need to go,” thereby acknowledging a 
proof framework, but rejected the arguments used to arrive there. Carl accepted his proof based 
solely on the links between arguments and did not attend to the hypothesis and conclusion. 

Valid proofs require correct overall structure. If the category above pertains to the body 
of a proof, this category pertains to its head and tail, the assumptions and conclusions, 
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respectively. The belief that a proof’s validity depends on its hypotheses and conclusions, and 
the flow from the former to the latter, was prevalent only among experienced provers. 

Interviewer: “Can you explain why [the proof doesn’t prove the theorem]?” 
Nate (E6): “In proof 1.2, your given assumption is actually what we’re trying to prove…This 

statement is what we’re needing at the end of our proof…So they’re starting at the 
opposite end of the proof…This is saying that if 𝑥𝑥 is a multiple of 3, then it’s not a 
multiple of 6, which is not what we’re actually trying to prove.” 

 
Interviewer: “What is your top criterion for this to be a valid proof?” 
Heather (E2): “It starts by assuming that the if condition is true.” 

Nate and Heather each attended to how the proof began and ended. Nate rejected the proof 
because it assumed the wrong premise. Heather cited the correct assumption as her top validation 
condition. In each case, the student attended to the ends of the proof rather than the body thereof. 
 
Mathematical Knowledge Base 
 A student’s knowledge base refers to the information that they have at their disposal which 
helps them read, interpret, and formulate proofs. Most relevant to this study is the set of content-
specific tools that students have which allows them to analyze and compare arguments. 
 Arguments rely on empirical evidence.  Under this approach, students cited particular 
examples to substantiate their claims. On several occasions, novice provers used one or more 
particular examples directly before declaring that a theorem was indeed valid. 

Interviewer: “Can you explain why [proof 1 proves for any integer 𝑥𝑥, if 𝑥𝑥 is not a multiple of 
3, then 𝑥𝑥2 − 1 is a multiple of 3]?” 

Joaquin (N4): “I didn’t realize that the proof would approach the problem like this…It says 
let 𝑥𝑥 be an integer that is not a multiple of 3…We could pick 8, 7 even…For me 
personally, I experimented with some numbers. For example, I let 𝑘𝑘 equal 1.” 

Joaquin’s acceptance of the theorem stemmed from his ability to satisfy it with several 
spontaneously chosen examples. Though he convinced himself of the validity of the proof 
inductively, we do not necessarily claim that he would have accepted a proof by example. 
Nonetheless, his empirical reasoning was fairly common among novice provers. 

Arguments rely on definitions. Rather than using particular examples, provers in this 
category reasoned arbitrarily i.e., using examples which represent all examples. Put alternately, 
experienced provers reasoned from definitions and properties rather than from examples. 

Interviewer: “Can you explain in your own words what this theorem states?” 
Priya (E4): “Given any integer 𝑥𝑥, if 𝑥𝑥 satisfies the property of being a multiple of 6, meaning 

there is some number that multiplied by 6 gives you 𝑥𝑥,…There is another number that 
when multiplied by 3 gives you 𝑥𝑥.” 

Whereas Joaquin reasoned via empirical evidence, Priya reasoned arbitrarily and directly from 
the definitions. Joaquin’s and Priya’s preferred modes of reasoning were common among other 
novice and experienced provers, respectively. 

Arguments rely on logically sound principles. Provers in this category were adept at 
employing logic, most notably for this study contrapositive equivalence and converse 
independence (CE/CI). Novice provers did not consistently exhibit understanding of CE/CI. 
Nevertheless, the manners in which experienced provers justified these principles varied greatly. 

Interviewer: “Can you explain why [this proves if 𝑥𝑥 is not a multiple of 3, then 𝑥𝑥2 − 1 is a 
multiple of 3]?” (proof proves the converse) 
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Violet (N3): “They’re showing that 𝑥𝑥 is not a multiple of 3 by saying that 𝑥𝑥 equals 𝑘𝑘 times 
3…But it can’t be since in the theorem it says that 𝑥𝑥 is not a multiple of 3…I think it 
[proves the theorem] because they’re showing in their work that 𝑥𝑥 is a multiple of 3, 
because they’re assuming that it’s a multiple of 3.” 

Note that Violet attended to the arguments in the body of the proof but exhibited no sensitivity to 
the overall structure of the proof. 
 Experienced provers, on the whole, reliably recognized CE/CI. Significant differences 
however existed in the way they justify these ideas. For example, some participants took CE/CI 
as given, but did not provide a justification. 

Interviewer: “Why do you think that since this disproves the converse that it does not prove 
the theorem?” 

Priya (E4): “Because the converse is not logically equivalent to the original.” 
I: “What do you mean that they are not equivalent?” 
Priya (E4): “That’s a good question. Like how do I know that two things aren’t logically 

equivalent? I guess at this point, that’s just an inherent fact to me.” 
Provers who reasoned about CE/CI in this fashion perhaps viewed CE/CI as a belief rather than 
knowledge since it is neither requires nor is accompanied by warrant. 
 Other experienced provers were able to warrant CE/CI with concrete examples which were 
specific to a particular context. These contexts were not always overtly mathematical in nature, 
as shown by the excerpt below. 

Interviewer: “You said this proves if 𝑄𝑄, then 𝑃𝑃, right? My question is why a proof of if 𝑄𝑄 
then 𝑃𝑃 is not a proof of if 𝑃𝑃 then 𝑄𝑄.” 

Mark (E7): “Let’s say I say that if an animal is a blue jay, then it is a bird…This is the 
example I always think of when I have to think of if-then statements.” 

Though not explicitly stated by the student, it can be reasonably presumed that since the 
statement he gave had a false converse, its purpose is to illustrate general converse independence 
through a particular example. Note that while empirical evidence was primarily used by 
experienced provers, this was not exclusively the case. 
 Finally, our participants also justified their knowledge of CE/CI through abstract warrants 
which were not beholden to any particular contexts. Such justifications most often took the form 
of truth tables, subset relationships, and logical manipulations (see Figure 2). 

Mark (E7): “It works from logic that for an implication to be true, either the hypothesis is 
false or the conclusion is true. Since they have the same truth table, we know that the 
statements are going to be equivalent.” (see figure 2, left image) 

 

 
Figure 2: Mark’s truth table and Euler diagram as well as Nate’s syntactic argument 

 
Interviewer: Can you explain why the proof demonstrates [if 𝑄𝑄, then not 𝑃𝑃]?” 
Mark (E7): “So it could be the case that 𝑥𝑥 is a multiple of 3 and not a multiple of 6. It could 

be the case the 𝑄𝑄 and we don’t know anything about 𝑃𝑃. So, what the theorem says is that 
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if I am anything in 𝑃𝑃, then I will also be in 𝑄𝑄. But what this shows is that if I’m in 𝑄𝑄, then 
I might not be in 𝑃𝑃.” (see Figure 2, middle image) 

 
Interviewer: “How can you tell that the proof of the contrapositive also proves the theorem?” 
Nate (E6): “I think the easiest way would be through logic. The statement is 𝑃𝑃 implies 𝑄𝑄. 

That’s the same is not 𝑃𝑃 or 𝑄𝑄. Then, if we do double negation, we get not 𝑄𝑄 implies not 
𝑃𝑃. So, these two are exactly the same.” (see Figure 2, right image) 

 
Discussion and Conclusion 

 The goals of this study were to characterize the ways in which undergraduate students 
interpret proof-texts, their relationships to underlying theorems, and to describe the differences 
between novice and experienced provers. Though our tasks were designed to gauge reading 
comprehension through student behaviors, we learned much about their conceptions of proof, 
suggesting that the phenomena are related.  

With regard to beliefs about mathematical proof, both groups of provers asserted that a 
logical linking of ideas should be present in a proof. Our research is thereby consistent with prior 
literature (e.g., Ko & Knuth, 2013; Selden & Selden, 2003; Dawkins & Zazkis, 2021). Similarly, 
we found that students with more mathematical development were more likely to attend to the 
assumptions that are made at the outset of the proof and the overall structure, which is also 
consistent with prior studies (e.g., Heinze & Reiss, 2003; Weber, 2008). Indeed, experienced 
provers validated proofs correctly more often than novice ones, though experienced provers 
make occasional errors. Our findings in this regard support the work of Inglis and Alcock (2012).  
 The results of our study also highlight the different ways in which our participants justify the 
ideas of contrapositive equivalence and converse independence. Our findings are consistent with 
prior literature. In their discussion of modeling arguments, Inglis et al. (2007) discuss the 
warrants used by graduate students of number theory. Though their participants were more 
mathematically developed than ours, parallels exist between our findings and theirs. Inglis et al. 
(2007) do not discuss participants who offer no warrant, but our provers who readily asserted the 
ideas of CE/CI but could give no reason for their validity exhibit what Krupnik et al. (2018) call 
psychological knowledge, a belief that an idea is true which the knower cannot justify. Our 
participants who warranted CE/CI with a single example e.g., the blue jay, parallel what Inglis et 
al. (2007) call the inductive warrant-type, wherein a prover evaluates a conjecture using one or 
more specific examples. Inglis et al. (2007) also describe a structural-intuitive warrant-type, 
wherein a prover uses a mental or visual structure to support a conjecture. This is consistent with 
our experienced provers who used set-theoretic notions and Euler diagrams to justify CE/CI. 
Inglis et al. (2007) describe the deductive warrant-type as reasoning solely from axioms. Since 
our provers who used truth tables and logical manipulations were relying on the base 
relationships between propositions in an implication, their reasoning was consistent with this 
warrant-type. 
 Our findings suggest that students with formal training in proof validate proofs with greater 
reliability but greater attention may be paid to the justification for CE/CI. Ongoing studies are 
testing instructional interventions using set-theoretic activities to effect deeper conceptual 
understanding of proof structures (Dawkins et al., in preparation). 
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“I want this to be the last time. I don't want to teach myself anymore”:  
Relearning Factorization from Middle school through College  

 
 Kristen Amman Juan Pablo Mejía-Ramos 
 Colorado Mesa University Rutgers University 

We report results of a longitudinal case study of one Intermediate Algebra student Sierra’s 
experiences relearning factorization from 8th grade through Precalculus. This data comes from 
a larger project investigating six developmental mathematics students’ perceptions of the 
experience of relearning individual topics and reflections on relearning across two semesters of 
college algebra courses. Such a student-centered perspective is critical to developmental 
mathematics educators who are currently grappling with high rates of failure and attrition in 
such courses nation-wide. In examining Sierra’s learning experience as one of relearning, this 
report sheds light on how students may use their previous algebra learning experiences to make 
predictions about the kind of understanding they will come to have about particular topics, and 
to motivate particular behaviors and affective states during instruction. Furthermore, we 
illustrate how such topic-level experiences may be used to shape learning experiences in 
subsequent mathematics courses involving algebra. 

Keywords: developmental mathematics, relearning, factoring 

This report centers on student perceptions of the experience of relearning, i.e., the experience 
of learning about content one has already tried to study in a previous course (Amman & Mejía-
Ramos, 2022). In particular, we focus on traditional developmental math courses: semester-long 
courses whose content focus mirrors that of middle and high school pre-algebra to algebra 
courses. Such courses persist in making up a significant portion of developmental math offerings 
(Kosiewicz, Ngo & Fong, 2016) and lie at the heart of scrutiny in the developmental math space. 
We argue that understanding students’ expectations and perceptions surrounding the relearning 
process can help explain their motivations, behaviors, and affective dispositions while learning in 
courses with previously seen content (Amman & Mejía-Ramos, 2021). While relearning is not 
exclusive to developmental mathematics courses, it is a uniquely central feature of these courses 
(due mainly to the prevalence of Algebra in United States middle/high school curricula). This 
work contributes to a small but growing body of literature that seeks to open up the “black box” 
of teaching and learning in developmental mathematics courses (Grubb, 2001; Sitomer et al., 
2012; Mesa, Wladis & Watkins, 2014) to better understand their historically high failure rates 
(Chen, 2016) and reputation as deterrents to college completion (Bailey, Jeong, & Cho, 2010).  

In a previous report (Amman & Mejía-Ramos, 2021) we discussed students’ perceptions of 
the experience relearning an Intermediate Algebra topic that they had seen in a previous algebra 
course. Although the topics studied were presented within the first third of the semester, students 
described having complex relearning experiences. Contrary to current depictions of 
developmental mathematics students, which collapse their learning needs across individual 
topics to describe them as needing either a “refresher” of course material or an intensive review 
of “basic skills” (e.g. Grubb & Gabriner, 2013; Cox & Dougherty; 2019), these students’ 
experiences shifted according to both the sub-topic under discussion and whether the interview 
was predictive or retrospective. The data presented in the current report come from a larger study 
motivated by the question of how such relearning experiences might evolve over the course of a 
semester, as students are exposed to topics of varying complexity, and as their familiarity with 
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the notion of relearning grows. Specifically, we report findings related to one student’s 
relearning experiences throughout two semesters of algebra-based, college-level coursework. In 
doing so, we seek to contribute to educational theory concerning the variety of possible impacts 
of relearning on one’s understanding of content seen before, as well as the behavioral and 
affective associations with relearned content that distinguish it from learning for the first time.  

Literature Review 
Typical profiles of developmental mathematics students describe them as having a lack of 

sufficient algebra coursework in high school (e.g. Kinney, 2001; Grubb & Gabriner, 2013; 
Boylan, 2011). However, current research suggests that many developmental mathematics 
students completed at least Algebra II in high school, and that a substantial portion were enrolled 
in mathematics courses for all four years in high school (Benken et al., 2015; Ngo, 2020; Moran, 
2008). For instance, in their study of 306 first-year students placed into Intermediate Algebra at 
California State University, Benken et al., (2015) found that nearly 60% of these students had 
taken courses beyond Algebra II in high school. Additionally, 66% of participants had taken 
mathematics all 4 years of high school, and 23% had spent 3 or 4 of those years just attempting 
to pass coursework at or before Algebra II. Likewise, Ngo (2020) investigated the percentage of 
college students who take “redundant” math courses, or courses whose content is either at the 
same or lower level than their highest completed math course in high school (or lower than what 
they would be predicted to pass given their results on a 12th grade math assessment). He found 
that while roughly 20% of all college students take redundant math courses, that percentage 
increases to roughly 40% when looking at developmental math students specifically. This 
suggests that roughly 40% of students in these developmental mathematics courses had 
completed coursework above the level of at least Algebra I in high school. Thus, counter to the 
belief that a sizeable number of developmental math students enroll in such courses because they 
were never exposed to algebra concepts in high school, these studies suggest that a sizable 
number of students have taken algebra prior to developmental mathematics enrollment. While 
these studies do not make explanatory claims to help us understand student outcomes, they 
provide valuable insights into the widespread nature of relearning in developmental math classes. 
In attempting to explain phenomenon such as high failure rates and attrition, it would seem 
critical to better understand student relearning experiences in this context.  

In contrast to the lack of research on student perceptions of their experience with 
developmental mathematics content, there is a growing number of studies that focus on 
describing how developmental mathematics instructors view students in terms of their readiness 
for college mathematics and the detriments to their success mathematically. These studies 
suggest that instructors perceive many developmental math students as lacking in basic skills that 
are both meant to be formed in high school courses and critical for mathematical success (Er, 
2018; Reichwein, Schneider & Onwuegbuzie, 2014; Grubb & Gabriner, 2013). For instance, in 
their interviews with instructors from over 20 community colleges in California, Grubb and 
Gabriner (2013) found that instructors perceived the majority of developmental math students as 
being placed into such a course due to a need for an in-depth review of basic skills, whereas a 
minority of “brush up” students are misplaced due to a time lapse since their previous 
mathematics course and a need for only a quick review of the material in order to be college 
ready. However, instructors surveyed by Benken et al., (2015) thought it was problematic to 
approach the course as a “review” rather than an “opportunity to learn new content”, assuming 
such an approach stems from an overconfidence in students’ skills as opposed to a true need for a 
quick review. Furthermore, there appears to be inconsistencies in which skills specifically 
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instructors are referring to. Whereas some studies of instructor perceptions relate a lack of basic 
skills toa likelihood to engage in unproductive learning behaviors such as self-handicapping 
strategies (Mesa, 2012), others note poor study skills (Reichwein, Schneider & Onwuegbuzie, 
2014), while still others note basic mathematical skills related to arithmetic and algebraic 
procedures (Grubb & Gabriner, 2013).  

An interesting question is how instructors’ perceptions relate to those of their students. For 
instance, Cox and Dougherty’s (2019) interviews with 25 community college pre-algebra 
students indicated that while many students perceived the course to be useful in “refreshing” 
their memory, others found ‘reviewing’ to be a waste of time given their prior experience with 
the content. Consistent with findings reported by Mesa (2012), 18 students indicated that they 
“wanted to ‘really understand’” the reasoning behind their use of procedures in the course in way 
that they had not accomplished previously (p. 256). However, it was relatively uncommon for 
students to indicate that they felt this had been accomplished by the end of the course. Indeed, a 
critical finding of Mesa (2012) was the vast discrepancy she found between instructor 
perceptions of students and students’ perceptions of themselves. Namely, she found that students 
indicated preferring mastery over performance goals, a lack of engagement in self-handicapping 
behaviors, a disposition towards hard work, and an expectation that instructors would challenge 
them. As illustrated above, instructors perceived students in a near complete opposite manner. 
The results of these studies raise interesting questions about how student perceptions of their 
own learning needs, behaviors, and affective dispositions relate to those of their instructors. 
These results, as well as the muddling of “refresher” students and “basic skills” students led us to 
conduct the current investigation into student perceptions of their experience learning about 
content seen before.  

Theoretical Framework 
Consistent with Amman and Mejía-Ramos (2021; 2022), we conceptualize the experience of 

relearning as broader in scope compared to previous work on memory in cognitive psychology 
(Ebbinghaus, 1885; Bahrick, 1979; Rawson, Dunlosky & Janes, 2020) and mathematics teacher 
education (Zazkis, 2011). We define relearning in mathematics as the experience of learning 
about content (T1) one has already tried to study in a previous mathematics course (T2). 
Importantly, the target content must remain stable across the two learning experiences. That is, 
the mathematical content in the second learning experience cannot be simply reviewed or 
relevant for the purpose of teaching something else. In such scenarios, we typically consider 
students to be using their prior knowledge in service of learning about new content. The 
definition of relearning used here is broader in the sense that it does not require specific learning 
outcomes at T1 or T2 (e.g., work on memory in cognitive psychology traditionally requires 
content to be fully memorized and recalled in order for relearning to occur). Similarly, this 
definition does not characterize specific relearning experiences as successful or unsuccessful. 
Instead, it is deliberately general to allow researchers to more broadly describe how students’ 
existing understanding of content can be (or be perceived to be) impacted by relearning, without 
a predetermined framing in mind.  

In developmental mathematics courses, relearning occurs at multiple levels. The results 
presented here consider two such levels. The first is what we refer to as “topic-level” relearning 
in which the focus is on a student’s experience relearning a single topic (e.g., the content of a 
single chapter or unit) in an algebra course. Topic-level relearning was the sole focus of our 
earlier work (Amman & Mejía-Ramos, 2021), in which we asked questions about what it was 
like for students to relearn content from one of two specific textbook chapters in an Intermediate 
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Algebra course. In the results of that study, we provided preliminary descriptions of student 
perceptions of the impact of relearning on their understanding of a particular topic, such as 
confirming my understanding, jogging my memory, and reconstructing my memory with 
guidance. These perceived impacts of relearning were used to guide the current investigation 
while still allowing for such descriptions to be expanded or refined (see Amman, 2022 for 
details). The second level pertains to “course-level” relearning. Course-level relearning 
experiences focus on holistic perceptions of what learning is like overall in a course, and is the 
perspective more commonly taken by studies that ask about student perceptions of their course 
experience, without focusing on any particular piece of content (e.g., students got a “refresher” 
of the subject of algebra in Cox & Dougherty, 2019). However, as demonstrated by the current 
study, course-level relearning perceptions are not necessarily simple aggregates of topic-level 
experiences formed at the end of a course, but may also already be formed by students early on 
in the semester and may help explain subsequent patterns in topic-level experiences. In the 
current study, we present findings that describe the relationship between one student’s topic-
level and course-level perceptions of relearning as she continued to encounter content involving 
the sub-topic of factorization throughout a developmental math course.  

Methods 
We conducted six longitudinal case studies each spanning two semesters between Spring 

2021-Spring 2022 enrolled in either Elementary or Intermediate Algebra at a four-year 
university. Elementary and Intermediate Algebra are non-credit-bearing courses whose syllabi 
reflect those of a typical high school algebra course. Sierra, the pseudonym given to the 
participant whose data is the focus of this report, began the study as a freshman Intermediate 
Algebra student in Fall 2021 followed by Precalculus in Spring 2022. All participants were 
recruited at the beginning of the semester via email for a series of paid interviews focused on 
their experiences with relearning in their current math course and in the following semester. 
Interested students were given a recruitment survey in which they were shown topics that would 
be taught in their current course and asked to describe how well they remembered and how 
confident they were in their understanding of them. Participants were chosen to reflect an even 
distribution of starting course, memory, confidence in understanding of each topic, and semesters 
of experience with college algebra courses. Sierra, like the other participants, indicated that she 
knew she had learned about each course topic before, even if she could not always remember 
exactly what she had learned, and she had previously completed Algebra II, and Precalculus in 
high school. This indicated that much of her upcoming learning experience was likely to be 
characterized as relearning. Data collection consisted of six one-hour interviews per student, 
surveys and, when possible, responses to questions on course exams. For the sake of space, we 
describe only interviews 1-4, those focused on topic and course-level relearning, for this report.  

Interviews 1-4 occurred in the first semester of study enrollment. In order to understand how 
previous learning experiences influenced students’ relearning experiences, each interview 
contained sections for students to both predict and reflect on aspects of upcoming and recent 
relearning experiences, respectively. Specifically, students were asked to predict how their 
memory and current understanding of a topic would influence how they approached the task of 
relearning that topic in class (behaviorally and affectively) and what the anticipated impact of 
that relearning experience would be on their understanding. In terms of reflections, students 
utilized their own exam responses and their predictions from previous interviews to reflect on 
their relearning experience. At the end of every interview, we asked students to reflect on their 
course-level relearning experience by describing, overall, how they thought the experience of 
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relearning had been different from learning new content in mathematics for the first time. 
Responses to this item were carried over to subsequent interviews for further reflection in order 
to understand students’ evolving perception of relearning throughout the semester.  

Formal analysis proceeded in multiple rounds. The first round focused on building 
descriptions of individual cases utilizing the main variables outlined in the theoretical 
framework. They are: perceptions of similarity to and confidence in understanding from the T1 
learning experience, predictions and reflections of the impact of relearning on understanding, 
behaviors associated with relearning, and affective dispositions associated with relearning. The 
second stage involved cross-case comparisons resulting in preliminary themes that either 
connected variables within a type of relearning or helped explain linkages between variables 
across different types of relearning. This process involved engaging in explanation-building 
utilizing all data sources for an individual participant, then moving to the next participant in 
order to locate commonalities across experiences and produce evidence of rival explanations if 
that participant experienced a similar outcome despite different combinations of the study 
variables (Yin, 2009).  The result of this stage of analysis was a set of preliminary themes that 
were refined over a period of several further rounds of analysis for consistency.  

Results 

How Relearning at the Topic-level Influences Behavior and Affect 
Sierra came into her first interview with a vivid memory of a frustrating history with learning 

(and relearning) how to factor polynomial expressions. She recalled missing the first day of math 
class in 8th grade when factorization techniques were introduced. To quickly catch up, Sierra 
went online to “whatever was available” to teach herself what she had missed. While she 
performed well in Algebra I, her technique for learning about factorization did not allow the 
content to “stick”; she forgot everything when she reencountered the topic in her high school 
Algebra II class. Once again, Sierra felt she needed to catch up to the rest of the class and turned 
to outside sources to re-teach herself the factorization techniques that she was expected to 
already have learned. She then promptly forgot these techniques and relearned them again in her 
high school Precalculus course. Sierra was looking forward to using her time in Intermediate 
Algebra to end this cycle. In her first interview, she stated, “I want this to be the last time. I don't 
want to teach myself anymore.” Sierra consistently received good grades in high school and was 
a member of an honors program at the University—she was confident that her main concern was 
not whether she could reteach herself factorization and perform well on assignments, but on her 
inability to recall any of what she had taught (and retaught) herself concerning this subtopic in 
the past. Specifically, she identified her behavior of inconsistently turning to various sources 
outside of the class each year as resulting in her struggle to remember what she had learned the 
following year. She predicted that by closely adhering to her professor’s approach to factoring, 
she would be able to reorganize her knowledge in a way that would make it easier to remember 
in the future (Amman, 2022, termed this particular relearning outcome Reorganization).  

Unfortunately, Sierra’s anticipation of this change in behavior and subsequent change in 
understanding was not realized. Sierra found that she remained stuck in her previous 
understanding (Amman, 2022). In her second interview, Sierra reviewed her responses to items 
on the first exam involving factoring, almost all of which she received full credit for. Despite her 
high performance, Sierra lamented that she found herself stuck in her old relearning approach in 
which, “I just had to learn it [myself] again, like every time when it comes to factoring.” Just as 
before, she found herself turning to outside sources to reteach herself, and once again did not feel 
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she had addressed the root cause of her memory issues. Indeed, when encountering future 
problems involving factorization in class, she remarked in later interviews, “[my memory] 
wasn’t really helpful...I kind of knew I was on the right track because I remembered seeing it, 
but it didn't help me in terms of solving the actual problem.” As a result, Sierra found that her 
understanding of factoring after relearning was, “the same. I just get there faster [every time I 
learn it].” Sierra explained that she was able to pick up on factoring techniques more quickly 
than in previous algebra courses, but this was not accompanied by a feeling of improved 
understanding that could have come from the implementation of a more conceptual organizing 
principle of content that she had hoped for. When asked what had made her feel like she needed 
to use her old relearning approach again, she stated, “I think it’s more to like a mental thing. Like 
once I see the word factoring, I'm like, ‘oh I know I'm not going to do well on this unless I teach 
myself again.’” Here, we see that Sierra’s previous experiences with factoring triggered a 
prediction (“I’m not going to do well”) concerning the outcome of her topic-level relearning 
experience before her instructor had even begun the first lesson on factoring. This prediction was 
then used to motivate behaviors (“unless I teach myself again”) that impacted how she decided to 
approach studying this topic. Sierra’s previous experience learning this material also had an 
impact on her affective response to relearning it. She mentioned feeling discouraged from the 
moment the class had begun the factoring sub-unit and struggled with these negative feelings 
associated to her previous experiences throughout the rest of the classes in which factoring was 
mentioned. For instance, while reviewing for her first exam, she questioned, “why am I still 
doing this in college? That's what I was asking myself a lot while I was studying…I feel like 
every time I revisit this topic it's a little bit discouraging. Because it's not sticking and I don't 
know why.” In this way, Sierra’s ability to recognize previously learned material and make 
predictions surrounding the outcome of relearning had significant consequences for her (and 
other participants) in terms of her behaviors and affective states during course instruction.  

How Topic-Level Relearning may Shape Perceptions of Course-Level Relearning 
Sierra’s experience relearning factorization also came to impact her course-level relearning 

perceptions. In contrast to the idea expressed by other participants that previous experience must 
make relearning easier than learning something new, Sierra came to view her previous algebra 
learning experiences (in middle and high school) as a potential hindrance in the course. 
Discussions around this perception began in her third interview, after polynomials (and the 
factoring sub-topic) had been covered and she had experienced the shift from predicting that she 
would be able to reorganize her knowledge of factorization to subsequently reflecting she had 
remained stuck in her previous understanding of the topic. At that point in the semester, Sierra 
described her overall outlook on relearning in the course as, “I feel like as opposed to other 
subjects, I feel like math is all about confidence…If I don't have that confidence and I'm 
confident that I don't remember it, past [Sierra] didn't know how to do it, or couldn't figure out 
how to do it, then it’s gonna be a doozy trying to figure out how to solve it.” She explained in her 
fourth interview that her confidence throughout the semester came to be tied to her 
understanding of factoring, given that subsequent course topics such as combining rational 
expressions and solving quadratic equations involved factoring as a subtopic. In interview 4 she 
described changes in her confidence throughout the semester by saying “I was like ‘um what are 
doing?’ [every time] factoring came back in,” indicating that her confidence would dip down 
repeatedly every time factoring was reintroduced in a new topic. In essence, Sierra’s experience 
relearning about factorization seemed to have influenced her perspective of what to expect for 
the course as a whole: she saw an inability to use what she had previously learned as a warning 
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sign that her relearning experience was about to be difficult and did not allow for the possibility 
of an improved experience relative to her first time learning these topics. In summary, Sierra’s 
topic-level experience came to inform her overall outlook on relearning in the course, 
transforming her from a student who in Interview 1 was “looking forward to” intellectually 
grappling with questions like “Why am I getting this answer? Why do I have to do this step?” to 
a student who came to view the presence of such questions as hits to her confidence and 
indicators that her relearning experience would be more difficult than it should.  

Sierra enrolled in Precalculus the following semester, another course which she had 
previously taken in high school. Although she was unable to achieve the impact of relearning on 
her understanding of factorization that she had predicted, she mentioned hoping that the 
combination of the short break between Fall and Spring semesters and the increased speed with 
which she arrived at her understanding of factoring would improve her results next semester. 
Unfortunately, this was not the case. In her fifth interview she noted that she had done poorly on 
her first exam, and that, “the ones that I struggled on, it was factoring, of course. The whole 
entire test was factoring.” In this way, Sierra’s topic-level experience could be understood as part 
of a self-reinforcing cycle that comes to inform her experiences with relearning not only within 
her algebra course, but also in future courses involving said algebraic topics.  

Conclusions 
By presenting Sierra’s case, we intend to contribute to theoretical accounts of the experience 

of relearning as instantiated in developmental algebra courses. Studies in reforms of 
developmental math courses have begun to suggest that the most successful reforms are 
multifaceted in terms of the modifications they make to course experiences (e.g. Hodara, Jaggars 
& Karp, 2012; Yamada & Bryk, 2016). That is, successful reforms address placement into 
courses, instruction while students are enrolled in such courses, and alignment with students’ 
overall goals for college after the course is over. Similarly, the results of this study suggest that 
fully understanding student experiences with relearning in developmental mathematics requires a 
multifaceted approach. Whereas topic-level perceptions help us to understand the decisions 
Sierra was making and the impact of the course on her understanding of factoring on a local 
level, her course-level perceptions allow us to understand the motivations behind patterns in her 
experiences that were more than the sum of her topic-level perceptions in terms of their impacts 
beyond one semester. We would argue that in our efforts to better evaluate developmental 
mathematics courses and understand exactly how they impacting students, we need to be aware 
of the limitations of taking the perspective of students at any one “level”, and ensure that the 
claims we want to make about student experiences are aligned with this. For instance, co-
requisite algebra courses are designed to improve alignment with students’ overall goals for 
college and modify the algebraic content presented in class accordingly (e.g. Logue, Douglas & 
Watanabe-Rose, 2019). However, there are very few studies that seek to investigate the 
hypothesis that student understanding of algebra in these courses will be improved as a result of 
an ability to see more directly the purpose of relearning particular algebra concepts related to 
students’ majors. This suggests we would do well to focus on student perceptions of relearning at 
both the topic- and course-level in these courses: how students view the relearning of specific 
topics as understanding of these topics is needed in the context of the college-level course, and 
how they view relearning of algebra as a whole in the special context of a co-requisite course. 
We suggest that future work seeking to qualify the impact of such courses on student 
understanding takes into account the particular components of relearning focused on here in 
order to be able to best explain student approaches to and reflections on course material.   
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This paper presents six categories of undergraduate student explanations and justifications 

regarding the question of whether a converse proof proves a conditional theorem. Two 

categories of explanation led students to judge that converse proofs cannot so prove, which is the 

normative interpretation. These judgments depended upon students spontaneously seeking 

uniform rules of proving across various theorems or assigning a direction to the theorems and 

proof. The other four categories of explanation led students to affirm that converse proofs prove. 

We emphasize the rationality of these non-normative explanations to suggest the need for further 

work to understand how we can help students understand the normative rules of logic.  

Keywords: logic, proof, converse independence 

Introduction 

Proof-based mathematics education research has long attended to how students think about 

the relationship between mathematical proof and the truth of mathematical claims. Within 

mathematical practice, deductive proof is the dominant standard for declaring a theorem true. 

Similarly, we would like students learning proof-based mathematics to adopt normative 

standards for what kinds of proofs justify a given mathematical claim. In this paper, we 

specifically consider theorems that are universally quantified conditionals, meaning they can be 

expressed in the form “For all… , if P, then Q.” Since many theorems in undergraduate 

mathematics are of this form, introduction to proof texts introduce standard proof techniques 

related to such statements: direct proof, converse proof, contrapositive proof, and proof by 

contradiction. Of these four types of proof, all prove the given theorem except for the second. A 

converse proof assumes Q is true and concludes why P must be true as a consequence. We call 

the principle that the converse proof never proves the given theorem Converse Independence 

(hereafter, “CI”). In common mathematical parlance, the theorem states that P implies Q and the 

converse proof proves that Q implies P, which are taken to be related, but independent claims. 

Previous studies (e.g., Hoyles & Kuchemann, 2002; Yu, et al., 2004) have noted that students 

often strongly associate a conditional and its converse statement. It has also been suggested that 

making a distinction between a statement and its converse may be even more difficult when the 

statement and its converse are both true (Imamoglu & Togrol, 2015), though no explanation was 

provided for how students should understand CI in this case. CI is meaningfully different for 

theorems where the statement and converse are both true. Durand-Guerrier (2003) and Dawkins 

(2019) both discussed how students interpret mathematical statements to refer to the objects that 

make them true. This referential way of reasoning emphasizes a challenge: how might students 

distinguish converses that are not distinguished by their truth-values? Our study investigates the 

question: how do students' reason about the relationship between a converse proof and a 

conditional theorem, especially in cases where the theorem is true biconditionally? 
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We answer this research question by characterizing novice undergraduate students’ 

explanations and justifications regarding the relationship between a converse proof and a 

conditional theorem. These findings help elaborate Hoyles & Kuchemann’s (2002) findings of 

how students might interpret the relationship between converse statements. In other words, our 

study offers qualitative insights into the previously documented ways students closely associate 

converse claims. We shall emphasize the coherence and rationality of students’ non-normative 

explanations, which suggest a need for greater attention to this topic in introductory logic.  

Literature Review 

There are three primary task types that have been used to study how students relate a 

conditional statement and its converse: inference tasks, statement tasks, and proof tasks. First, 

some studies consider the inferences that students make or endorse based on a conditional claim. 

The statement “If P, then Q” is taken to justify inferring Q given knowledge that P is true (often 

called modus ponens). However, according to mathematical logic the conditional statement 

above does not justify inferring P given knowledge of Q (affirmation of the consequent), though 

students often make this inference or endorse it as appropriate (Evans & Over, 2004; Inglis & 

Simpson, 2008; Alcock, et al., 2014). Attridge and Inglis (2013) compared inference task 

performance between UK secondary students studying mathematics and their peers studying 

English literature (and not mathematics). The year of mathematics study reduced the frequency 

of affirmation of the consequent responses more than the year of English study did, suggesting 

that general mathematics instruction influences this aspect of CI.  

A second type of research task relevant to CI invites students to make judgments about 

conditional statements and their converse statements. For instance, some scholars (e.g., Hoyles 

and Kuchemann, 2002; Yu, et al., 2004) have shown that many middle school students believe 

that conditional statements and their converses say the same thing. Both studies explained this 

finding in light of the way that students interpreted the truth/falsehood of the statements. Many 

students affirmed and denied statements using affirming examples (which were provided in the 

task statement) or counterexamples (which the task did not provide). Accordingly, many students 

judged the false conditional claim to be true based on affirming examples, so the truth-value did 

not distinguish the statements. 

Introduction to Proof textbooks generally justify CI either using 1) the truth-table or 2) 

example statements. The former argument (converses have different truth tables) assumes that 

students are using the truth-table definition to interpret conditional claims, though this has been 

long shown a poor model of how people interpret such statements (e.g., Evans & Over, 2004; 

Schroyens, 2010; Inglis, 2006). The second textbook argument is worth considering in more 

detail. Hammack’s (2013) Introduction to Proof textbook provides an instance of this type of 

argument. It presents one example of a true conditional claim with false converse (“a is a 

multiple of 6 ⟹ a is divisible by 2”) and explains, “Therefore the meanings of P⟹Q and Q⟹P 

are in general quite different… a conditional statement and its converse express entirely different 

things” (p. 44). This justification relies on an implicit meta-theorem about the nature of logic, 

which we shall call the Fundamental Warrant of Logic (FWL). It states an argument of a given 

form is only valid if all examples of this argument with true premises have true conclusions. 

Thus, a single example of some form of argument that yields false results invalidates all other 
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arguments of that same form. In this case, the argument in question would be “If (P⟹Q), then 

(Q⟹P).” The FWL asserts that the relationship between a statement and its converse must be 

the same for all conditional statements. The extent to which students agree with this justification 

or find it compelling is an open question that our study will begin to address.  

A third type of task used in research invites students to consider the relationship between a 

conditional theorem and a converse proof. This is a novel type of task used in the sequence of 

experiments in which our data originated (see Dawkins & Cook, 2017; Dawkins & Roh, 2022), 

which we shall describe in the methods section.  

Theoretical Framing 

Our study draws upon the tradition of Piagetian constructivism both in theoretical orientation 

(e.g., von Glasersfeld, 1995) and methods (Steffe & Thompson, 2000). Piaget was fond of using 

logic to model children’s reasoning (e.g., Inhelder & Piaget, 1958, 1964). However, the nature of 

his claims have been widely (mis)understood as claiming that adolescent reasoning comes to 

conform to formal logic in some strong sense (thought is the mirror of logic). This would violate 

Piaget’s principle of the constructive independence of knowledge. We understand that Piaget 

used logic as a convenient organizing tool to describe patterns of reasoning (logic was the mirror 

of thought) that for the student were embedded in more complex systems of meaning (Piaget & 

Garcia, 2011). Only upon conscious reflection on the form of statements and reasoning can 

someone abstract conscious understandings of logic (see Beth & Piaget, 1966). A helpful 

distinction here is between what students construct in activity and what they have reflexively 

abstracted to some higher level of re-presentation (von Glasersfeld, 1995). In this study, we do 

not assume that students have stable re-presentations of logical structure or the abstract 

relationships between a statement and its converse. Instead, we seek to describe their often 

tenuous and provisional ways of reasoning about CI that may shift based upon the context of the 

statements and the task (what Thompson, et al., 2013, called in the moment meanings). As such, 

we present categories of explanations and justifications that students give in particular moments, 

which are neither mutually exclusive nor necessarily stable throughout their participation in our 

study. In other words, we seek to understand the subjective rationality of how students begin to 

reason about such logical relationships.  

Methods 

The data from this study comes from a larger series of constructivist teaching experiments 

(Steffe & Thompson, 2000) with undergraduate students from three large public universities in 

the United States. A total of six teaching experiments were conducted with pairs of students over 

the course of five years, resulting in a total of 12 participants. None of the students had 

previously taken a proof course. A key goal of the experiment was to support them in 

constructing more normative understandings.  

The goal of this paper is to characterize students’ explanations and justifications regarding 

whether a converse proof proves a conditional theorem. These explanations and justifications 

arose in response to What does it prove? tasks. These tasks involve presenting students with a 

theorem and an associated proof, and students are asked to decide, “Does the proof prove the 

theorem? Why or why not?” as well as “If the proof does not prove the theorem, what statement 

25th Annual Conference on Research in Undergraduate Mathematics Education 620



does it prove or disprove?” This invites students to attend to the structural relationship between 

the theorem and the proof and to begin comparing such relationships across theorem/proof pairs. 

In this paper, we focused on analyzing data from three What does it prove? tasks involving 

converse proofs (or disproofs). Table 1 presents the three theorems and the structure of the 

associated proof.  

 
Table 1. The three converse What does it prove? tasks studied in this report.  

Though we engaged in the experiments overall to promote set-based reasoning (Dawkins, 

2017), these tasks were implemented without instructor guidance toward the normative way of 

reasoning regarding CI. Since our goal was to categorize students’ initial responses regarding CI, 

the analysis in this paper approached the data as task-based interviews (focusing only on the 

initial implementation of the three tasks above). Consistent with teaching experiment 

methodology, the researchers continuously generated and tested hypotheses about students’ ways 

of reasoning. We thus had developed models of how each student reasoned about CI, and were 

struck by the coherence of students’ explanations and justifications, especially those that were 

non-normative (i.e., argued that the converse proof did prove the theorem). Using comparative 

coding methods (Glaser, et al., 1968), we identified six categories for students’ explanations and 

justifications for whether a converse proof proved the original theorem (henceforth we shall say 

“does prove” or “does not prove” always referring to the theorem that is converse to the proof). 

As noted above, these ways of reasoning were not always stable, nor were they mutually 

exclusive. However, some of the non-normative categories of explanation persisted with certain 

participants, suggesting they may be important for future work.  

Results 

In this section we describe the six categories of explanations and justifications regarding CI. 

The first two categories led students to the normative interpretation that converse proofs do not 

prove while the latter four led them to affirm that the converse does prove. Overall, four of the 

12 students initially decided Proof 2.2 did not prove Theorem 2.  

Category 1: Proof Rules Should be Universal 

Students who were observed using this category of reasoning believed that proof rules should 

be universal, that is, a proof rule cannot be accepted unless it works in all cases (similar to 

Hammack’s, 2013, explanation that implicitly invokes the FWL). Students using this category 

acknowledged that a statement and its converse can have different truth values (Theorem 1) and 
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used this to conclude that there are cases where one can prove the converse of an implication 

while the implication itself is false (like Theorem 2’). Therefore, they claimed that a converse 

proof cannot be accepted as proof of an implication because it would only lead to the correct 

conclusion when the implication and its converse are both true (Theorem 2). One student, Theo 

(all names are pseudonyms), provided a justification for why Proof 2.2 did not prove Theorem 2 

that fit into this category. He explained (imagining the truth-sets of the hypothesis and 

conclusion as circular regions): 

In this case, the circle of the “if” exists inside the “then,” but it encompasses the whole 

“then.” They’re the same set. So, in 2.2, when we switch them around, the “if” and the 

“then” are still the same sets, but, if we had an example where the “if” is a subspace of 

the space, and then you switch it around, it’s not necessarily true. In this case, it is, but, in 

general, if you switch them, it might not work. 

Theo recognized that the truth sets were the same in this case, and thus each was contained in the 

other. He used this to explain why the implication and its converse are both true for Theorem 2. 

It is important that Theo treated all conditional theorems and proofs as instances of the same 

relationship, and judged that the relationship should remain invariant across the different 

theorems. Therefore, he claims that the proof of a converse cannot be accepted as proof of an 

implication because it would not always lead to the correct conclusion. 

Category 2: Proofs Should Match the Theorem Direction 

Students who used this category of reasoning understood that conditional statements and 

proofs both had an inherent direction. Accordingly, they judged that a proof should match the 

theorem’s direction. This is distinct from the first category because it was not based on 

comparing proof relationships across different theorems. One student, Moria, gave an 

explanation that serves as an example of this category: 

I don’t feel like the converse is inherently proving the theorem and if you do that across 

it’s like the converse is proving the theorem… I think it has to do with the trickle down 

what you’re starting with necessarily, if I start with 14, it’s going to be a multiple of 14, 

that’s just, it’s not going to prove anything… Using those two [Proof 2.2 proving 

Theorem 2] is saying, “if you have a multiple of 14, it will be a multiple of 14” is what 

that kind of 2.2 to the theorem 2 is saying. 

Moria claimed that combining Proof 2.2 and Theorem 2 would be tautological because the 

hypothesis of the proof is the same as the conclusion of the theorem. Since she viewed theorems 

and implications as paths from one claim to another, she argued that the proof began at the 

ending point of the theorem, which is “not going to prove anything.” This led her to claim that 

Proof 2.2 did not prove Theorem 2 (affirming CI). 

Category 3: Equivalent Properties Allows for Substitution 

Students who were observed using this category of justification claimed that the properties in 

the theorem’s hypothesis and the properties in the theorem’s conclusion were equivalent. They 

then used this to argue that the direction of the proof did not matter because the properties being 

related were the same. One student, April, justified that proof 2.2 proved theorem 2 by writing 

the equation “2*7*k=14*k” and claiming that this shows that the properties “multiple of 2 and 
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multiple of 7” and “multiple of 14” are equivalent. Another student, Jean-Luc, also provided this 

type of explanation. His partner had argued for CI, but he responded: 

I guess we’re having trouble because multiple 14 breaks down into seven and two and 

then seven and two break down right into 14. So, I feel like it’s saying the same thing, but 

I totally understand what you’re saying. It’s reversed. 

While Jean-Luc acknowledged that the direction of the proof was the reverse of the direction of 

the theorem, his belief that “multiple of 14” and “multiple of 2 and multiple of 7” are “saying the 

same thing” led him to see no conflict between the proof and the theorem. Since he viewed 

“multiple of 14” and “multiple of 2 and multiple of 7” as being the same property, he treated 

them as though they were synonymous. This sense of identity led him to deny CI since the order 

did not distinguish the proof from the theorem.  

Category 4: Set Equality has No Direction 

Students who provided this category of explanation acknowledged that the set of objects that 

satisfied the hypothesis was equivalent to the set of objects that satisfied the conclusion. They 

then used this to argue that since the hypothesis and conclusion were referring to the same set of 

objects, they were interchangeable. This category is very similar to the previous; they differ with 

regard to whether the student is attending to sets of objects or properties. Mathematically 

speaking, the sets of objects are truly equal while the properties differ in definition. For example, 

the set of integers that are multiples of both 2 and 7 is the same as the set of integers that are 

multiples of 14. Students giving such justification thus did not find grounds to distinguish a 

converse proof from the conditional theorem. One student, Phil, reasoned in this manner: 

I was saying I feel like it’s true because all multiples of 2 and 7 are all multiples of 14. 

So, if it’s a multiple of 2 and a multiple of 7, then it’s going to be a multiple of 14 

because multiples of 2 and 7 are 14, 28, and 42, and then to whatever degree you want to 

go to. 

Phil claimed that Proof 2.2 still proves Theorem 2 because both the hypothesis and the 

conclusion are referring to the same set of objects. Therefore, switching them around in a 

statement does not change the meaning of the statement. 

Category 5: The Theorem, the Proof, and my Knowledge All Agree 

Students who used this category of reasoning focused on what they knew to be true when 

deciding whether a converse proof proved. If there were no contradictions between the theorem, 

the proof, and what they knew to be true, then they affirmed that the proof proved. In 

biconditional situations, this led them to affirm the converse proof. One student, Carl, used this 

category of reasoning to justify why Proof 2.2 proved Theorem 2: 

I said that it proves that if x is a multiple of 14, then x is a multiple of 2 and 7. Which is 

kind of like the opposite, but not really, of Theorem 2. But because the statement is true it 

doesn’t really matter. 

Carl argued that because Theorem 2 and its converse are both true, the order of the proof 

“doesn’t really matter.” In other words, Carl did not distinguish the truth of the claim from the 

efficacy of the proof in justifying the claim, since both the theorem and the proof described 

accurate facts about the same objects and properties. This reflects the common phenomenon that 
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people judge arguments very differently depending upon whether they believe the conclusion of 

the argument (Inglis & Simpson, 2007; Evans & Feeny, 2004). 

Category 6: Error-free Proofs Prove 

Students who used this category of justification did not attend to the direction of the proof at 

all. Instead, students only focused on dissecting the line-by-line content of the proof for errors. 

Two participants, Joaquin and Violet, had a long discussion about whether the inferences made 

within the proof were valid. They sought to determine whether they believed each line in the 

proof followed from the previous line. Since they concluded that this was the case, they also 

concluded that proof 2.2 did in fact prove theorem 2. Interestingly, they frequently stated that the 

theorem was “true” and the proof was “true,” seemingly assigning the same epistemic roles to 

the two kinds of text. Whereas the previous type of explanation notes the reversed order and 

dismisses its importance, this kind of explanation does not entail attention to an explicit link 

between the proof and the theorem beyond discussing the same topics.  

Discussion 

We present six categories of student explanation and justification regarding the relationship 

between a converse proof and a conditional theorem. There is some overlap with Hoyles and 

Kuchemann’s (2002) description of four types of reasoning about CI: converses are the same in 

general, converses are distinct in general, converses are the same with reference to data, and 

converses are distinct with reference to data. Our first category matches the view that converses 

are distinct in general. It depended upon students perceiving all conditional theorems and proofs 

as instances of the same relationship (in accordance with the FWL). Our second category is 

similar, though it depended upon students according some significance to the direction of a 

theorem and proof. Our latter four categories all correspond to the view that converses are the 

same with reference to data. We did not observe the view that converses are the same in general 

(possibly since we presented Theorem 1) or that converses are distinct with reference to data for 

Theorem 2 (since this theorem is true biconditionally).  

Students rejecting CI (for Theorem 2) variously attended to properties, sets of objects, or to 

their judgments about what is true. In each case, they did not see a reason to distinguish converse 

proofs from the given theorem, even when their partners provided explanations from Categories 

1 and 2. Indeed, we are struck by the coherence of these non-normative explanations. Once 

students perceive some kind of identity (of property or set), it is hard to understand why they 

would perceive it as having some direction. Furthermore, explanations in Categories 5 and 6 

raise more fundamental issues of how students learn to distinguish what a proof accomplishes 

from what they believe to be the case. It is worth noting that many students providing 

explanations in Categories 3-5 recognized the reversed order and also recognized that the shared 

structure among the proofs that follow converse order. Nevertheless, they affirmed that converse 

proofs can prove the theorem and that this relationship differed by context. We interpret this as a 

rejection of the FWL as applied to this type of proof, which poses a major challenge for the 

teaching of logic and proof that we hope will be addressed in future research in this area. 
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What Do the Calculus I Students Say About the Impact of IBL on Their Math Anxiety 

Harmon P. Aryal 
Stockton University 

Math anxiety negatively affects student learning and academic performance. Students with high 
math-anxiety exhibit physical, mental, and emotional symptoms. These symptoms often have a 
short-term and long-term impact on students’ mathematics learning and their performance both 
inside and outside of school. This study investigated the effects of inquiry-based learning (IBL) 
on Calculus I students’ math anxiety, compared to lecture-based instruction. The short version of 
the Mathematics Anxiety Rating Scale (MARS-S) was used as a pre- and post-test to identify the 
students whose anxiety from pre- to post-test—greatly increased, greatly decreased, and did not 
change much. The selected participants were interviewed one-on-one to understand their 
perceptions and experiences of learning Calculus I. The results showed that some activities, such 
as the opportunity to work in groups, optional and ungraded homework, and the instructor's 
welcoming, caring, and amicable nature decreased IBL students’ anxiety. On the other hand, the 
instructor’s readiness to explain the material in class when students asked him to do so and his 
care for student success decreased lecture-based students’ anxiety. However, the tests and exams 
and anticipating the instructor’s call for a response increased anxiety among both groups of 
students.  

Keywords: math anxiety inquiry-based learning, collaboration 

Math anxiety affects student learning and academic performance. Highly math-anxious 
students exhibit physical, mental, and emotional symptoms. Physical symptoms include nausea, 
sweaty palms, and increased cardiovascular activity (Ashcraft, 2002; Chang & Beilock, 2016). 
Mental symptoms include an inability to concentrate and mind blanking (Plaisance, 2009; 
Ruffins, 2007). Emotional symptoms include extreme nervousness and apprehension (Mattarella- 
Micke et al., 2011). These symptoms often have a short-term and long-term impact on students’ 
mathematics learning and their performance both inside and outside of school. In a short term, 
students may begin to dislike mathematics and take fewer mathematics courses, and in the long 
term, they tend to avoid mathematics and mathematics-related courses (Godbey, 1997; Hembree, 
1990).  

Due to the substantial impact of math anxiety on mathematics learning and mathematics 
performance, it is essential to diagnose the causes of math anxiety and to determine some 
potential interventions to reduce such anxiety. Therefore, this study investigated the effects of 
inquiry-based learning (IBL) pedagogy on Calculus I students’ math anxiety, with lecture-based 
instruction as a comparative group.  

Literature Review 
Math anxiety has been a part of the human experience for centuries. The verse, 

“Multiplication is vexation ... and practice drives me mad” goes back at least to the 16th century 
(Dowker et al., 2016). In 1957, Dreger and Aiken introduced the concept “number anxiety,” and 
math anxiety received increasing attention thereafter. Richardson and Suinn (1972) conducted 
the first formal study of math anxiety, who characterize math anxiety as “feelings of tension and 
anxiety that interface with the manipulation of numbers and the solving of mathematical 
problems in a wide variety of ordinary life and academic situations” (p. 551). Since then, studies 
on math anxiety have been substantially investigated.  
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Traditional lecturing, which is a predominant mode of instruction in college mathematics 
courses across the United States (Stains et. al., 2018) and is ineffective in helping students learn 
mathematics (Boaler, 2008), could be one of the possible reasons for evoking math anxiety 
among students. The lecture-based does not offer substantial opportunities for students to share 
each other’s ideas and experiences with their teachers and peers. On the other hand, IBL, which 
is an active learning pedagogy, provides extensive opportunities for students where they can 
work in pairs or groups to make conjectures, gather information for problem-solving, and present 
their work to groups and to the whole class (Kogan & Laursen, 2014). Through a comparative 
study, Laursen et al. (2014) reported that students in IBL math-track courses achieved greater 
learning gains than their non-IBL peers in cognitive, affective, and collaborative areas. Similarly, 
Laursen et al. (2011) found that the IBL students were involved more in interacting with each 
other, with the instructor, and they were more involved in setting the course pace and direction. 
It is also reported that IBL enhances students’ conceptual understanding (Jensen, 2006), 
communication skills, confidence, and self-efficacy (Laursen et al., 2011). Considering the 
benefits of IBL as a ground, this study sought to examine the relative changes in the scores of 
Calculus I students’ math anxiety, using a short version of the Mathematics Anxiety Rating Scale 
(MARS-S). 

Method 
Research Context and Participants  

The students, who were enrolled in Calculus I course and were taught using either IBL or 
lectures during Spring 2021at a university located in the Midwestern United States were the 
sample for this study. Students, who were engaged via IBL pedagogy were IBL group and those 
who were lectured were lecture-based group. In this study, about 65% (n = 15) of the students off 
the 23 from the two IBL sections and about 41% (n = 20) students off the 49 from one of the 
lecture-based sections responded to both the pre- and post-MARS survey. Table 1 shows the 
distribution of IBL and lecture-based participants by their gender and academic standing.  

Table 1. Distribution of IBL and lecture-based students by their major and academic standing. 

Characteristics IBL Group Lecture-Based Group 
Frequency Percentage Frequency Percentage 

Gender 
   

Male/Man 5 33.3% 8 40.0% 
Female/Woman 10 66.7% 11 55.0% 
Non-Binary 0 0.0% 1 5.0% 

Academic Standing 
   

Freshman 11 73.3% 15 75.0% 
Sophomore 2 13.3% 1 5.0% 
Junior 2 13.3% 4 20.0% 
Senior 0 0.0% 0 0.0% 

Regarding the instructors, the IBL instructor had 15 years of experience in teaching Calculus 
I at the university and high school level via active learning, including an IBL. The lecture-based 
instructor had 2 and a half years of experience in teaching Calculus I at the university level and 
14 years of experience in teaching undergraduate-level mathematics courses via a lecture-based 
approach. Both the instructors taught remotely using audio-visual conferencing platform; the IBL 
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instructor taught using Microsoft Teams, whereas the lecture-based instructor taught using 
Zoom. Throughout the semester, both IBL and lecture-based classes had class meetings every 
Monday, Wednesday, and Friday. 

The IBL instructor engaged students collaboratively in sequentially organized pre-tasks and 
tasks in and out of the class. Students were supposed to practice the pre-tasks before the class for 
a better understanding of the material during the next day’s class meeting. The instructor usually 
began the class by welcoming each student and briefly describing the tasks and activities for that 
day. Then, the students were sent to Teams breakout rooms, where they shared each other’s 
ideas, asked questions, made conjectures, and solved problems while they were working with 
their small group members. The instructor visited each group at least once, or as needed and 
prompted students if they had any questions or concerns. In the end, the students were returned 
to the main room, where the instructor facilitated whole class discussion. On the other hand, the 
lecture-based instructor began the class by asking students whether they had any questions or 
concerns from the previous class. If they had, then, the instructor solved the examples or 
explained the concepts as needed. After that, the instructor usually began the lecture by solving 
preselected examples using the Notability app from his iPad. Occasionally, the instructor paused 
during the lecture and asked some questions to the whole class. Students were never sent to 
breakout rooms and never provided opportunities for group discussions. 

Data Collection and Analysis 
Qualtrics online survey was used to collect the pre- and post-MARS data from both IBL and 

lecture-based groups after receiving an institutional review board (IRB) approval. The MARS-S 
survey is the 30-item anxiety measuring instrument that was developed by Suinn and Winston 
(2003). The pre-MARS survey, in conjunction with a demographic questionnaire, was 
administered during the second week and the post-MARS was administered during the eleventh 
week of the class. Based on the change in anxiety scores from pre- to post-test, 9 students from 
the IBL group (3-greatly increased, 3-greatly decreased, and 3 did not change much) and 3 
students from the lecture-based group (1 student from each of the categories) were invited for a 
semistructured interviews. Additionally, eight classes of each of the two sections of IBL group 
and eight class of one lecture-based group were observed remotely. The data thus collected were 
transcribed using NVivo, a qualitative data analysis software, and generated several codes. 
Thematic analysis was conducted to identify various emergent themes. The results were then 
organized based on the themes generated.  

Results  
In this section, I present the major findings from the analysis of the data obtained from 

observations and interviews. While doing this, I compare the findings from both the IBL and 
lecture-based groups. 

The in-class group work and lecturing reduced IBL students' anxiety; out-of-class group 
chats reduced lecture-based students’ anxiety. IBL students were partly lectured and partly 
engaged in collaborative work in each class; lecture-based students were fully lectured, but some 
students managed to chat via GroupMe. Because of the collaborative learning opportunities, IBL 
students became closer to each other and were not scared of asking questions, responding to their 
groupmates’ questions, proposing their own solution strategies, and listening to their peer’s 
various perspectives. Such types of activities made them feel relaxed and also reduced their 
anxiety. On the other hand, lecture-based students initiated out-of-class collaboration via 
GroupMe. They maintained it throughout the semester, where they felt comfortable asking 
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questions and responding to each other. Cooperation and mutual support received by these 
students reduced their anxieties and frustrations with learning Calculus I. 

Table 2 and 3 below show sample of the emergent themes, related codes, and student 
quotations, respectively, for the IBL and lecture-based groups. 

Table 2. Emergent Themes, Related Codes, and Sample Student Quotations for IBL Group 

Theme Related codes Sample quotation 
Both lecturing and 
collaborative 
learning  

• The instructor delivered
minilectures

• Students were engaged in
small group works

He typically starts off with a 
small lecture … and then, we’ll 
typically go into a group setting 
into our breakout rooms.  

Students received 
optional and 
ungraded 
homework 

• Assigned optional
homework

• Homework was not graded
• Students were less stressed

I know they're just used for 
practice and prep for the exams 
and for class. So, I don't feel as 
stressed about them.  

Instructor 
questioning 

• Frequently asked short-
answer-type questions

• Asked to respond in chat

He would give each individual 
student a certain problem to do 
… and randomly call on people 
for it. 

Engaging in 
behaviors that 
decreased anxiety 

• Working in group
• Asking questions of the

instructor outside of class
• Talking to groupmates

I think doing the task in a group 
reduced it for sure, and ... 
watching the videos in class, like 
that does not stress me out or 
anything. 

Engaging in 
behaviors that 
increased anxiety 

• Thinking of being called
on by the instructor

• Responding to the
instructor questions in
front of the colleagues

I would definitely say I don't 
enjoy going to class because I'm 
scared, he's going to call on me 
and ask me a question I don't 
know the answer to. 

Instructors' readiness to meet and help students at any time decreased IBL students’ anxiety; 
the long wait for the instructor’s email replies increased lecture-based students’ anxiety. The 
IBL instructor’s readiness to meet with students at any time and discuss their questions, 
concerns, or problems in and out of the class decreased IBL students’ anxiety. Students could ask 
questions to the instructor at any time—during the class, at the end of the class, right after the 
class, or by scheduling a virtual meeting—and discuss their problems. They could approach the 
instructor at “eleven o’clock” at night or “7:00 am that morning;” he was always ready to meet 
and talk with them. Students could also send their questions or concerns via email, to which he 
replied promptly. This kind of flexibility of the instructor made students calm down and reduced 
their anxiety. Alternatively, although the lecture-based instructor encouraged students to reach 
out to him with their questions, students had to wait for long hours for his responses. Students 
were disappointed and frustrated for not receiving a response to their emails for several days. 
Liz, for example, mentioned, “We have an assignment that's due on Friday, and I need help. And 
I can't afford to wait three days for you [the instructor] to email me back because this piece of 
information is necessary for me to do 60 percent of the assignment.” 
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Table 3. Emergent Themes, Related Codes, and Sample Student Quotations for Lecture-Based Group 

Theme Related codes Sample quotation 
Students received 
too many online 
homework 
problems 

• Too many online 
homework problems 

• The number of online 
homework problems 
gradually decreased 

He gave us homework 
assignments that had eighty-
seven problems. ... But that was 
really the only thing that made 
me feel anxious about the 
assignments. 

Initiating and 
maintaining out-
of-class 
collaboration  

• Worked together through a 
GroupMe chat application 

• Liked helping each other 

We all try to help each other out 
so I would say it's very 
collaborative. 

Instructor 
questioning 

• Frequently asked short-
answer-type questions 

• Asked to respond in chat  

He would give each individual 
student a certain problem to do … 
and randomly call on people for it. 

The instructional 
environment that 
decreased 
students’ anxiety 

• Instructor’s willingness to 
review the materials 

• Recitation classes 
• Recorded lecture videos 

His [instructor] willingness to 
kind of like go over things makes 
me feel like very comfortable. 

The instructional 
environment that 
increased students’ 
anxiety 

• Tests and exams 
• online homework 
• Online learning  
• Proctored-track exams 

I still get nervous every time 
when quizzes [are] announced or 
an exam is announced because 
like I said, this material has been 
hard. 

 
Optional tasks and ungraded assignments decreased IBL students’ anxiety, and the 

overwhelming number of online homework problems, especially at the beginning of the semester, 
increased lecture-based students’ anxiety. In addition to the midterms, the IBL instructor 
engaged students in both optional and mandatory works, which were rarely graded. His pretasks 
were optional and ungraded but recommended for students to complete before class. However, 
the tasks, mock exams, and group competitions were mandatory and were required to complete 
during class but were rarely graded. Students did not feel stressed working with the optional and 
ungraded tasks and activities because they did not impact their grades; rather, these activities 
reduced IBL students’ anxiety by developing confidence and problem-solving ability. Lecture-
based students, on the other hand, experienced stress, frustrations, and anxieties when they 
confronted as many as 87 online problems as homework assignments during the first week. 
Students were anxious, thinking that they might continue receiving problems in the same 
manner. However, their anxiety reduced as the online homework problems decreased as the 
semester progressed. 

Both IBL and lecture-based students felt anxious about being called on during the lectures 
and whole-class discussions. Students in both groups experienced extreme anxiety in the class, 
more specifically during the whole-class discussions, thinking that the instructor might randomly 
call on them for a response at any time. Recall that IBL student Camila stated, “the rest of the 
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time, I am comfortable until he directly calls on me.” These students were worried about their 
colleagues’ judgments when they could not respond to the instructor's questions correctly and 
instantly. Likewise, lecture-based students were worried about being called on during the lecture 
for similar reasons. Unlike the IBL students, lecture-based students were usually busy “trying to 
write everything down” that the instructor wrote, and they experienced nervousness when they 
did not respond quickly to the instructor’s abrupt questions. One of the lecture-based students, 
Liz, stated “Occasionally he would … call on someone, and if they wouldn't know, he'd be like, 
you should know this. I would be, like, woo, I should know this by now, which would freak me 
out a little bit.” 

Tests and quizzes, online learning, and proctored-track exams increased both IBL and 
lecture-based students’ anxiety. Both IBL and lecture-based students were anxious about taking 
exams, remote learning, and proctored-track exams. Although midterms and final exams were 
cumulative for IBL students, they were more anxious about taking the final exam than the 
midterms. In contrast, the lecture-based students were anxious about taking the tests and the final 
exams because they weighed the largest proportion of the overall grades. Also, lecture-based 
students were anxious to see a few questions on the exams because they would lose huge points 
if they did even a single problem incorrectly. 

Online learning was another aspect that induced anxiety among both groups of students. IBL 
and lecture-based students occasionally missed a part of or the entire class due to the poor Wi-Fi 
connection, which added an extra pressure on students. Moreover, proctored-track exams caused 
anxiety among both groups of students. They were anxious about being watched by someone 
remotely and hearing a loud noise when someone asked clarifying questions to the instructor, 

Instructors’ questions increased both IBL and lecture-based students’ anxiety. Instructor 
questions—either during lectures or whole-class discussions—increased IBL and lecture-based 
students’ anxiety. Three out of nine IBL students said that they feared the instructor’s questions, 
specifically when they were unsure of the answers and were still processing the information. 
Maria said she is terrified of instructor questions thinking of giving an incorrect answer in front 
of her colleagues, who were not from her small collaborative group. Although lecture-based 
students experienced similar types of anxieties in responding to instructor questions, they were 
also anxious by the instructor’s verbal pressures, such as “There's been a couple of times when 
he [the instructor] said, you should know this, and I did not know it, and that made me very 
anxious,” Recall what Liz from the lecture-based class said before. 

Discussion 
Findings from the analysis of the interviews and observations show that the factors, such 

as the instructor’s amicable and cordial nature, readiness to help students at all times, in-class 
group work, and optional and ungraded homework assignments decreased IBL students’ anxiety. 
However, some other factors, such as thinking of being called on for a response and asking 
questions in front of their peers, increased these students’ anxiety. On the other hand, the 
classroom activities, such as the overwhelming number of online homework problems that were 
due every week, thinking of being called on for a response in class, responding to the instructor's 
questions in front of their colleagues, instructor’s questions, and fast-paced teaching increased 
lecture-based students’ anxiety. Still, other factors, such as the instructor’s readiness to explain 
the materials in class reduced the anxiety of lecture-based students. 

Based on the findings from the present study, I recommend that although some factors of the 
instructional environment, student behaviors, and instructor behaviors have been found to be 
increasing anxiety among both groups of students, there are many other factors that have 
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lessened their stress, frustration, and anxiety. It is suggested to the instructors of Calculus I and 
other similar mathematics courses to implement IBL in their classes or at least transition toward 
the student-centered approaches to instruction because of the benefits of such instructional 
practices on students’ ability to critical thinking, reasoning, and problem-solving. It is also 
suggested to avoid the instructional activities that have been found to increase students’ anxiety. 
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Using Professional Learning in Practice: The Case of Novice College Instructors

Billy Jackson JenqJong Tsay Shandy Hauk
University of Wisconsin University of Texas Rio Grande Valley San Francisco State University

We report on findings from a mixed methods study on preservice elementary teacher learning 
outcomes as a result of being enrolled in courses where their instructors were participating in 
professional development designed for those new to teaching content courses for future teachers. 
The study contributes to the current sparse literature within the RUME community on student 
performance as a result of professional learning opportunities for mathematics faculty. Results 
indicate improved undergraduate learning outcomes among preservice teachers when instructors 
engaged in a professional short-course that both fostered growth of instructors’ own 
Mathematical Knowledge for Teaching (MKT) for teaching undergraduates and provided 
instructors with opportunities to learn about and support prospective teachers’ development of 
MKT (for teaching children).

Keywords: professional development, mathematical knowledge for teaching, teaching for robust 
understanding

There have been many calls in the last decade to devote time and effort to the professional 
development (PD) of faculty in mathematics departments who teach the courses for future K-8 
teachers (Flahive & Kasman, 2013; Masingila et al., 2012; Masingila & Olanoff, 2022).  Indeed, 
Greenberg and Walsh (2008) noted that mathematics faculty regularly seek professional support 
in the work of teaching prospective teachers. To the best of the authors’ knowledge, there have 
been two documented efforts in the literature to meet the needs of this call. Castro Superfine and 
colleagues (2013, 2014) have discussed the design model for their NSF funded Mathematical 
Knowledge for Teaching Teachers (MKTT) project, while we (Jackson et al., 2020) elaborated on 
the design features of our NSF funded Professional Resources and Inquiry into Mathematics 
Education (PRIMED) for K-8 Teacher Education project. In the former, the use of a
research-based curriculum by experienced teacher educators was associated with large learning 
gains by undergraduates (Castro Superfine et al., 2013). However, the work did not include 
explicit attention to investigating prospective teacher learning outcomes as a result of faculty 
participation in professional development or include instructors who were new to teaching future 
teachers. This report aims to provide at least a partial snapshot of the relationships among novice 
instructor PD and undergraduate learning. The study is part of a larger (PRIMED) project. Here 
we share results of examining measures of particular target outcomes – related to mathematical 
knowledge for teaching – among participating faculty and their undergraduate students.

Theoretical Foundations

Mathematical Knowledge for Teaching and Its Assessment
The types of knowledge required of mathematics teachers  have emerged from several 

decades of research and development that have grown from seeds sown by Shulman (1986). In 
2008, Ball and colleagues described mathematical knowledge for teaching (MKT). As
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initially conceptualized, MKT consists of subject matter knowledge and pedagogical content 
knowledge. Subject matter knowledge included common content knowledge, specialized content 
knowledge, and horizon content knowledge. In particular, common content knowledge is used in 
everyday activities by teachers and others such as mathematicians, engineers, or homemakers. 
By comparison, specialized content knowledge is the knowledge that is specific to the task of 
teaching. Within pedagogical content knowledge, there are knowledge of curriculum, knowledge 
of content and students, and knowledge of content and teaching.  Knowledge of curriculum 
includes awareness of the content and connections across standards and texts .  Knowledge of 
content and students blends knowledge for doing mathematics with knowledge for unpacking it 
in ways relevant to  how students think about, know, or learn (Hill, et al., 2008). Knowledge of 
content and teaching is a knowledge of teaching moves for making unpacked meanings 
accessible to students.

The Learning Mathematics for Teaching (LMT) instrument developed by Hill, Schilling, and 
Ball (2004) is a validated and reliable tool for assessing MKT development. The instrument 
assesses common and specialized content knowledge in different domains of K-8 mathematics 
including number and operations; in addition, some items assess knowledge of content and 
students. Though the instrument was initially validated for the purposes of measuring MKT 
among in-service teachers, in recent years it has been used to measure MKT development in 
courses for future teachers (Flake, 2014; Namakshi et al., 2022).  A sample released item from 
the LMT instrument assessing specialized content knowledge is shown in Figure 1.

Figure 1 Sample Item from LMT Instrument (Hill et al. 2004)

Teaching for Robust Understanding
Teaching for Robust Understanding (TRU, Figure 2) is a research-based framework designed 

to attend to particular aspects of instruction (Schoenfeld, 2016). The framework was developed 
for research and has proven useful in practice. The TRU framework is used to explore  the 
attributes of equitable and robust learning environments that support each student in becoming a 
knowledgeable, flexible, and resourceful disciplinary thinker. The TRU framework is a powerful 
tool because it provides a working definition of effective mathematics instruction that includes 
attention to equity along with language for describing characteristics of classroom activity. Given 
the centrality of educational equity in the PRIMED project, the TRU framework served a dual 
purpose: as a resource to guide participants in examining their own and peers’ responsiveness to
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prospective teachers in curricular and instructional choices, and as a resource for the developers 
in the design, development, implementation, and evaluation of the PRIMED short-course itself.

Figure 2: Teaching for Robust Understanding (TRU) Framework, Schoenfeld (2016)

Effective Design and Implementation of PD for Instructors of Future Teachers
Castro Superfine and Li (2014) discussed features of high quality professional development that
they considered effective for teacher educators:

(1) Participants should be engaged in learning that is grounded in the content of teaching and
learning. In particular, it must pay special attention to the MKT that is used in the work of
teaching undergraduates who are preservice K-8 teachers in addition to bringing
awareness to the instructional challenges of teaching MKT (for K-8 teaching).

(2) The PD must create the possibility of cognitive disequilibrium. That is, instructors are
challenged to think about what they believe future elementary teachers need to know
about MKT and why.  They must also reflect on how future teachers learn about MKT.

(3) Participants must be provided with opportunities for collaboration in order to form a
professional community of practice. Thus, effective PD allows for the mutual sharing of
ideas and lessons learned from the work of teaching future teachers.

(4) Learning opportunities and tasks within the PD must be embedded in or directly related
to the particular specialized work of teaching future teachers. PD tasks are situated in the
actual work that instructors do every day in their own local institutional contexts.

Whereas the four points above address the design and development aspects of effective PD,
Guskey (2000) highlighted the critical stages involved in evaluation of PD (Figure 3). In Level 1,
evaluation focuses on participants’ experience of the PD. Participants are questioned in surveys,
interviews, and/or focus groups about how useful they feel the experience was and of what use
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the PD was to them professionally. In Level 2, the focus is on measuring the knowledge and
skills that instructors gained as participants in the PD – specific learning goals are outlined
before the PD together with a plan for assessing those goals and assessments typically include
things such as pencil-and-paper instruments, reflections, journals, discussion boards, portfolios.
At Level 3, evaluation turns attention to the local contexts within which participants operate
professionally; common questions at this level attend to how change was (or was not) supported
at the departmental/college/university levels. In Level 4, evaluation examines if and how the
knowledge and skills from the PD are actually applied in the instructors’ professional practice –
evidence occurs through such things as direct observations, documented instances in reflective
journals or portfolios, and interviews with participants and/or their supervisors. At Level 5,
evaluation considers if and how participation in the PD impacted student learning outcomes –
indicators of student achievement may include cognitive aspects such as performance in things
like course grades, assessment scores, or scores from standardized tests. However, affective and
psychomotor outcomes are also commonly measured in lieu of/in addition to cognitive skills by
examining such things as student attitudes and beliefs, dispositions, and classroom behaviors.

Figure 3: Five Critical Levels of PD Evaluation (Guskey, 2000)

The emphasis in the current study was to dig into the connections among Levels 2, 4 and 5. 
In particular, the aim in this report is to illustrate how the PRIMED design – which had the four 
principles documented by Castro Superfine and Li (2014) and incorporated use of the TRU 
framework – had downstream effects on Levels 2, 4 and 5. In this vein, the research question this 
study addressed was: What is the nature of relationships among participation in PRIMED 
activities, college instructors’ mathematical knowledge for teaching, and that of their students?

Methods
For the PRIMED project, each participating college instructor agreed to complete various 

research tasks and agreed to include assignments in their courses through which their students 
completed assessments of the mathematical knowledge needed for teaching grades K-8 (the 
LMT). Instructors (n=15) and undergraduates (n=476) providing data for the study were from 12 
different institutions of higher education (2 public community colleges, 7 master’s granting [6 
public, 1 private], 3 doctorate-granting [2 public, 1 private]).

The PRIMED design and learning goals are briefly described here (see Jackson et al., 2020 
for a detailed description). The PRIMED professional learning experience was through the 
Canvas online course management system and was a hybrid: two of the five modules (Module 2 
and Module 5) included both asynchronous and live online activity-based work by instructor 
teams from different colleges and universities; the other three modules were sets of self-paced 
asynchronous web-based activities completed by instructors individually with asynchronous 
discussion board interaction and the option of online meetings of the instructor teams. The short-
course included assessments of instructor learning in each module. Participant teams rarely met 
in real time during the asynchronous modules and tended to check-in with each other by email or 
through the online discussions in Canvas.
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Performance on the LMT was used as one of the outcome measures for Guskey’s Level 2 (of 
instructors) and for Level 5 (of undergraduates). Participants who fully engaged in the short 
course completed three lesson experiments in which they enacted PD principles as part of their 
instruction using task-based active learning techniques. In addition to surveys, the project team 
collected artifacts from the course such as online discussion board posts about lesson experiment 
efforts by instructors, in-module assessments, and intake/exit interviews with each individual 
participant.

Results
For Guskey’s Level 4 effects we examined details related to the second of the three lesson 

experiments. For Levels 2 and 5 we looked at gains on the LMT among the undergraduate future 
teachers (students) and level of PRIMED participation of instructors.

Evidence of Undergraduate Learning from Lesson Experiment Reporting
In the second lesson experiment, which occurred about halfway through the short-course, 

instructor participants were asked to search the practice literature in teams (of 2 or 3) for a task 
that had already been developed and implemented in a course for future K-8 teachers. After 
locating the task, each team agreed on two of the TRU dimensions to pay particular attention to 
while implementing the task in their own classes. The participants were asked to observe each 
other and debrief about the observation as each partner implemented the task. Each team was 
given the prompts below to document their experiences about the entire process:

Before the Lesson Prompts:
1. Which TRU framework dimensions have you selected? What do you hope to learn

about yourself as an instructor by paying attention to those dimensions?
2. What is the task you have chosen? Say a little about why you chose it.
3. In terms of the selected TRU dimensions, what do you anticipate will be your

greatest challenge with the lesson? How do you plan to address that challenge?
After the Lesson Prompts:

4. How was thinking about the two TRU dimensions challenging? How was it
useful/beneficial?

5. How might paying attention to the TRU framework inform future task selection?
Implementation?

6. [Bonus question!] Did any of the students get stuck at some point? What did you
do or say to help them advance? Would you do the same thing in the future? Why
or why not?

Notice that the prompts were written to have the participants actively reflect on their practice,
implementing the recommendations set by Castro Superfine and Li(2014). The lesson
experiment itself was structured within the work that they did as instructors, another aspect that
followed the recommendations.

For the sake of space, we report here on the responses of one participant Sheila (a
pseudonym) to demonstrate aspects of her own professional learning as well as that of her future
teacher students. Sheila chose a task titled “Maren’s Garden” in which the undergraduates in her
class had to determine how many gardens could be planted with 4 bags of soil if each garden
required ¾ of a bag of soil. Sheila also asked students how much soil would be left. In the
Maren’s Garden activity, students were asked to solve the problem in two different ways, one of
which had to include pictures/diagrams. Sheila indicated that she was aware that future teachers

25th Annual Conference on Research in Undergraduate Mathematics Education 638



might find it challenging to make sense of what the fractional part of the answer represented in
terms of the context of the problem (i.e., that the 1/3 in the answer 5 1/3 referred to a unit of a
garden rather than a bag of soil). Sheila indicated in the first prompt that she had chosen to focus
on Cognitive Demand and Agency because she wanted the future teachers to make connections
with their previous procedural knowledge of fraction division. For prompt 5, Sheila answered:

Paying attention to the TRU framework will help me to choose tasks that give
students opportunities to make connections between concepts or skills that they
already know.  For example, in the task I selected (which required students to
compute  4÷3/4 in more than one way), we were able to compare/contrast solution
methods and even provide a reason why multiplying by the reciprocal made physical
sense in the problem!

In answering the prompt 6, Sheila noted that:
Yes, students got stuck, and it was a great opportunity for learning! They got stuck
when comparing their answers from two methods (one of which had to be visual).  In
the visual method, it was found that 4 bags of soil divided among gardens that each
required 3/4 of a bag of soil meant that 5 full gardens could be made with 1/4 bag of
soil remaining. Using the calculation, however, 4÷3/4=4×4/3=16/3=5 1/3.  Students
were puzzled why the calculation showed a left over part of 1/3 compared to the
picture, which showed ¼.

I asked them to think about what the fractional part represented in each case and
then gave them some time to think about this. In the end, some of the groups realized
that the calculation was counting gardens and so the 1/3 represented part of a garden,
not a bag of soil. I would do this activity again and implement it in the same way.

For Sheila, an important part of her job as a teacher educator was to make sure that her 
students could develop their specialized content knowledge, to make connections between 
representations (i.e., the symbolic and diagramatic in this case). Sheila found it important to let 
her undergraduate students explore for themselves in order to become agentic, owners of their 
own learning. That this was happening was evidenced in her report of the future teachers 
exploring the distinction between the units involved in the problem.

Association Between Undergraduate Learning and Instructor Participation in PRIMED
The overall mean gain for undergraduates on the LMT was 0.29 standard deviations (sd), 

indicating they increased knowledge of target ideas. Other research on prospective teacher 
learning has indicated that one semester of instruction in a carefully designed course by an 
experienced teacher educator can lead to gains of up to 1sd (Castro Superfine et al., 2013). 
However, typical instruction when college instructors have professional development to 
strengthen their teaching has seen gains among their prospective teacher students of around 0.25 
sd (Laursen et al., 2015). Here, the instructors were novices with teaching future teachers and 
had a comparable downstream effect (i.e., the average of 0.29sd across all instructors).

The research team also examined the relationship between an instructor’s level of 
participation and their undergraduate students’ average gain on the LMT instrument. Level 1 was 
assigned to the lowest amount of participation (less than one-third of the short-course activities 
engaged in/completed). For these instructors the average gain was about 0.13sd.  Level 2 
indicates moderate participation (up to two-thirds of activities completed; for example, parts of 
some modules not accessed or missing parts of one or two lesson experiment planning, 
implementation, or reflection activities). Learning gains among students in the classes of Level 2
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participants averaged about 0.28sd. Level 3 indicates high participation in most activities and at
least two completed lesson experiments. For the students of Level 3 instructors the average LMT
gain was about 0.35sd. Instructors reported on their perceived participation in the exit interview:
based upon evidence presented within the course, the research team agreed with all of the
participants except for one who ranked herself at Level 2. Compared with the other participants,
her engagement was Level 3. As the plot of the regression line in Figure 4 shows, there appears
to be a robust correlation between rising average LMT gains and increasing levels of
participation (r2~0.6).

Level of Instructor
Participation

Average of Student
LMT Gain (sd)

1 0.10
1 0.14
1 0.16
2 0.18
2 0.20
2 0.29
2 0.43
3 0.27
3 0.33
3 0.33
3 0.39
3 0.43

Figure 4. Association and table of values for level of PRIMED participation and student LMT gain.

Conclusions and Future Research
We see from the lesson experiment and LMT data that there was a positive relationship 

between PRIMED participation and the knowledge for teaching gained by their students. While 
limited in scope due to the size of the study, we see that instructors implemented their intended 
lesson experiment curriculum with careful attention to the TRU framework and, as illustrated in 
the case of Sheila, their future teachers gained specialized content knowledge. The more 
instructors participated, the more opportunities they had to put into play a Castro Superfine and 
colleagues’ (2013, 2014) action knowledge – an analog of knowledge of content and teaching for 
teacher educators (see Jackson, et al., 2018).

While certainly not evidence for a causal effect (Yoon et al., 2007), the study reported here 
contributes to the literature on ways to connect PD impact with undergraduate learning impact. A 
real challenge for the RUME community is to design and conduct large enough studies (or 
multiple repetitions of moderate sized studies like ours) to explore robust causal effects. Methods 
for addressing this challenge are part of ongoing work in educational research at all levels (e.g., 
Kim et al., 2018; Rosenbaum, 2005).
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The method of Least Square Approximation is an important topic in some linear algebra classes. 

Despite this, little is known about how students come to understand it, particularly in a Realistic 

Mathematics Education setting. Here, we report on how students used literal symbols and 

equations when solving a least squares problem in a travel scenario, as well as their reflections 

on the least squares equation in an open-ended written question. We found students used 

unknowns and parameters in a variety of ways. We highlight how their use of dot product 

equations can be helpful towards supporting their understanding of the least squares equation. 

Keywords: linear algebra, least squares, dot product, student reasoning, inquiry 

Linear algebra courses frequently include the topic of least squares approximation. A central 

focus of the least squares problem is when the matrix equation 𝐴𝒙 = 𝒃 has no solution. When 

this occurs but some kind of solution is needed, one tries to “find an 𝒙 that makes 𝐴𝒙 as close as 

possible to 𝒃” (Lay et al., 2016, p. 362). This is consistent with a subspace orientation to the least 

squares problem (i.e., finding the best approximation in a subspace to a vector not in a subspace), 

which we leverage in our design research, as compared to a statistical interpretation. The set of 

least squares solutions to 𝐴𝒙 = 𝒃 are the vector(s) 𝒙 that are solution(s) to 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃. How

can we, as instructors, help students come to understand why that equation is relevant to solving 

the least squares problem? Or, how can we, as curriculum designers, engage students in the 

guided reinvention of that equation? In this paper we pursue the research question: How do 

students use literal symbols and equation types as they solve an experientially real least squares 

problem, and what reactions do they share about the least squares equation 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃?

The work presented in this paper is from a project (DUE-1915156/1914841/1914793) that 

aims to create research-based curricular materials for the guided reinvention of core concepts 

within an inquiry-oriented linear algebra class. This work is guided by making sense of student 

thinking and the complexity of mathematical ideas, which informs the refinement of the 

curricular materials. In pursuit of our research question, we examine written data from 13 

students and analyze the variety of ways they use literal symbols and equations when solving a 

least squares problem in an experientially real (Gravemeijer, 1999) task setting. We also analyze 

the students’ reactions to the least squares equation 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃. This analysis will inform a

future conceptual analysis of the mathematics as well as refinements to the task sequence.  

Theoretical Framing and Literature Review 

Our approach to design research is informed by what we refer to as the Design Research 

Spiral (Wawro et al., 2022), which is based on the design research cycle (e.g., Cobb et al., 2003), 

is composed of five phases, with revisions occurring between each phase based on ongoing 

analyses of student thinking and reflections on the mathematics. Within the first phase, the 

Design phase, our work is based in Freudenthal’s philosophy of mathematics as a human activity 

(1973) and the design principles that emerged from his work in Realistic Mathematics Education 
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(RME) (Gravemeijer, 2020; Gravemeijer & Terwel, 2000; Treffers, 1987). RME design 

principles include didactical phenomenology (the means for creating the task setting of the 

phenomena to be organized), emergent models (a process through which students can progress 

from a less formal understanding of the phenomena to a more mathematized organization of the 

phenomena), and guided reinvention (a mechanism by which students can reinvent mathematical 

ideas guided by the task structure and their interactions with the instructor and their peers).  

There is little literature on the teaching or learning of least squares approximation within the 

context of linear algebra. Turgut (2013) designed a lesson to teach least squares as a line of best 

fit using Mathematica. His lesson invited students to use commands in Mathematica to plot dots, 

form matrices from points, transpose a matrix, and take an inverse of a matrix in finding the best 

possible solution. A topic we view as related to the teaching and learning of least squares is dot 

product. Donevska-Todorova (2015) identified three definitions of the dot product within three 

modes of description (arithmetic, geometric, abstract-axiomatic) and created an applet to 

promote students’ geometric understanding of the dot product. Cooley et al. (2014) developed a 

module to teach dot product, focusing on the cosine definition. Their task included comparing 

frequency vectors and determining if an author wrote two different texts. Dray and Manogue 

(2006) found projection to be essential in understanding dot product. They claimed the geometric 

approach of the dot product benefits students in many applications of physics and engineering. 

As we examined students’ work on the question shown in Figure 2, we were struck by the 

variety of ways literal symbols and equations were used as students completed the problem. In 

undergraduate mathematics, literal symbols are used in many ways. It is important to understand 

students’ interpretation of literal symbols and how they are used when solving problems. For our 

analysis, we draw from Philipp (1992) and Drijvers (2003) for unpacking the nuance in literal 

symbol use. Drawing on works such as Keiran (1988), Küchemann (1978), and Usiskin (1988), 

Philipp uses literal symbol to describe the mathematical use of a letter; he provides seven literal 

symbol uses: labels, constants, unknowns, generalized numbers, varying quantities, parameters, 

and abstract symbols; most relevant to our work is unknown, varying quantity, and parameter. 

Philipp states that an “unknown involves the use of a literal symbol when the goal is to solve an 

equation” (p.558), such as in the role of x in 8x + 4 = 28. Philipp’s use of varying quantity is 

consistent with Knuth et al.’s (2005) definition of variable as “a literal symbol that represents, at 

once, a range of numbers” (p. 70), such as x and y in y = 3x + 5. Finally, Philipp describes 

parameters as generalized constants, such as m and b in the linear equation y = mx + b. 

Drijvers (2003) focused on design research related to the concept of parameter, which he sees 

as “an ‘extra variable’ in a formula or function that makes it represent a class of formulas, a 

family of functions and a sheaf of graphs” (p. 60). Drijvers delineates four roles that a parameter 

can assume: placeholder, changing quantity, generalizer, and unknown. First, a parameter as a 

placeholder plays the role of a constant value that does not change; whether known or unknown, 

its value is fixed, and filling in different known values relate to different situations rather than 

variations of the same situation. Second, a parameter as a changing quantity represents a 

numerical value that takes on a dynamic character of systematic variation. It runs smoothly 

through a reference set, affecting the complete, global situation set rather than a single situation 

(e.g., 𝑝 and 𝑞 in 𝑦 = (𝑥 − 𝑝)2 + 𝑞). Third, a parameter as a generalizer does not stand for a 

specific number but rather for an exemplary number or set of numbers. It facilitates seeing the 

general in the particular, formulating solutions at a general level, and solving concrete cases at 

once by means of a parametric general solution (e.g., 𝑡 in a parametric solution 𝑥 = 𝑡(1,2,3)). 

Fourth, the parameter as unknown facilitates “selecting particular cases from the general 
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representation on the basis of an extra condition or criterion. In such situations, the parameter 

acquires the role of unknown-to-be-found” (p. 69) (e.g., solve for 𝑡 for a specific 𝑥 in the above).  

Finally, these roles are not fixed and can change in the solution process.   

 

The Task Setting 

Our task sequence leverages the subspace-oriented version of the least squares problem (the 

best approximation to a vector not in a subspace is its orthogonal projection onto the subspace). 

We designed an experientially real task setting called Delivering Mail to Gauss, which is based 

on the Magic Carpet Ride sequence (Wawro, et al., 2012) in the Inquiry-Oriented Linear Algebra 

(IOLA) curriculum (Wawro et al., 2013). Even though it is a fantasy setting, we have found that 

students can immediately engage with the idea of different transportation modes, each traveling 

forward and backward in a single vector direction. The first Delivering Mail task asks students to 

use three specific travel vectors (the same vectors in Task 3 of the Magic Carpet Ride sequence) 

to travel to Gauss in ℝ3 so that they can deliver his mail. This differs from the Magic Carpet ride 

task in that Gauss is now in a location outside of the span of the travel vectors. Using previous 

knowledge, students determine Gauss cannot be reached and the travel vectors span a plane in 

R3. Students are then told their cousin has a drone they can use to deliver Gauss’s mail, on the 

condition that they get as close as they can to Gauss using the travel vectors before they use the 

drone. They then determine where to travel to, how to get there with the travel vectors, along 

what vector the drone would travel, and what distance the drone’s trip would be (Figure 1a).  

 

 
(a)                                                                                               (b) 

Figure 1. The setup of Task 3 and the class’s shared development of known relationships to help solve the task.  

 

There are many aspects of the problem to symbolize. Gauss’s location is denoted as 𝒃. The 

three travel vectors 𝒗1, 𝒗2, and 𝒗3 are in the first task statement, but once students realize the 

three span a plane, they work only with 𝒗1 and 𝒗2. The sequence is designed to foster students’ 

exploration of what location on the plane would be closest to Gauss, and students consistently 

suggest the location that creates a path orthogonal from the plane to Gauss (Lee et al., 2022). 

With an instructor’s suggestions for which literal symbols to choose, the class uses vector 𝒑 to 

denote where on the plane they should travel to and use the drone, e as the drone’s path to Gauss, 

and ||𝒆|| as the distance of the drone’s trip. The class symbolizes the relationship between these 

as 𝒑 + 𝒆 = 𝒃. To denote how to get to 𝒑 using the travel vectors, the scalars 𝑥1 and 𝑥2 are used 

to mean how much and in what direction to travel on 𝒗1 and 𝒗2 so that 𝑥1𝒗1 + 𝑥2𝒗2 = 𝒑, which 

can be written as a matrix equation 𝐴𝒙 = 𝒑 where 𝐴 is the matrix with columns 𝒗1 and 𝒗2 and 𝒙 

is the vector with components 𝑥1 and 𝑥2. Finally, the instructor leads the class in a derivation that 

the dot product of two orthogonal vectors is zero, which results in the class denoting 𝒗1ᐧ 𝒆 = 0, 

𝒗2ᐧ 𝒆 = 0, and 𝒑ᐧ 𝒆 = 0. All of these relationships are summarized in Figure 1b, which shows 
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one instructor’s written work that recorded the relationships during class. 

Students then use these known relationships to solve for 𝒑, 𝒙, 𝒆, and ||𝒆||. Students make 

progress in a variety of ways. If students combine 𝒗1ᐧ 𝒆 = 0 and 𝒗2ᐧ 𝒆 = 0 into a system of 

equations and write it as an augmented matrix, the instructor could notate the coefficient matrix 

as 𝐴𝑇  and leverage the student work towards the matrix equation 𝐴𝑇𝒆 = 𝟎. The final task 

prompts students to “Combine three of our main equations, 𝐴𝒙 = 𝒑, 𝒑 + 𝒆 = 𝒃, and 𝐴𝑇𝒆 = 𝟎, to 

come up with one general equation (symbols only, no specific numbers) that would help us 

determine 𝒙 for any 𝐴 and 𝒃. The only unknown in your general equation should be 𝒙 (i.e., no 𝒑 

or 𝒆).” Student work on this task allowed for the guided reinvention of the least squares equation 

𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 (abbreviated LSE), where 𝒙 is the least squares solution to 𝐴𝒙 = 𝒃.  

 

Methods 

The data for this paper come from in an in-person introductory linear algebra class at a large, 

public, research university in the Mid-Atlantic US. The course had 27 students, of which 13 both 

gave consent and completed the assignments analyzed in this paper. In the university system, 8 

of these students chose he/him/his pronouns (pseudonyms begin with “M”), 4 chose she/her/hers 

pronouns (pseudonyms begin with “W”), and 1 did not choose pronouns (pseudonym P1). Most 

were second-year students by credit hours and were general engineering majors. The prerequisite 

was a B or higher in Calculus I or a passing grade in Calculus II. The data analyzed in this paper 

come from student responses to two written reflections. After most class sessions, students were 

asked to complete a reflection by the end of the day and submit their work via an online learning 

management system. Students were asked to spend 5-10 minutes on a reflection, for which full 

credit was awarded based on effort rather than correctness. Reflection #1 (Figure 2) was given 

the day that the class completed their solutions to the Delivering Mail to Gauss tasks and the 

reinvention of 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 (the LSE). The purpose of this reflection was to learn more about 

how students were making sense of the various aspects of the least squares problem and what 

solution approaches they would use. Reflection #2 (Figure 3) was given the following day to 

learn more about how students were making sense of the least squares equation.  

 
Create your own example of two travel vectors in ℝ3 and a 

location for Gauss in ℝ3that you cannot reach with your 

travel vectors. Then solve for at least two of the following: 

the vector closest to Gauss that you can reach, how you 

would get there with the travel vectors, and the distance 

from that location to Gauss. Show your work and/or 

explain your thinking 

 We started Least Squares Approximation with the 

“delivering mail to Gauss” scenario, eventually 

deriving the equation 𝐴𝑇𝐴�̂� = 𝐴𝑇𝒃 as a way to directly 

solve for �̂�. We are really curious about your reaction to 

the equation. In 2-3 sentences, please share with us how 

you are making sense of it, your thoughts, or any 

questions you may have. 

Figure 2. Reflection prompt #1.  Figure 3. Reflection prompt #2. 

 

To analyze the data, we began by creating thick descriptions for student responses to 

Reflection Prompt #1. In doing so, we were struck by the variety of ways in which most students 

leveraged the known relationships from Figure 1 to reach a solution for the travel scenario that 

they created, rather than using the LSE formalized in class that day. In order to capture the 

nuance of students’ solution processes, we decided to focus on the diversity in their use of literal 

symbols and equation types. We studied the related literature and found Philipp’s (1992) 

characterization of literal symbols and Drijver’s (2003) characterization of parameter to be 

particularly appropriate; thus, we coded the data within their frameworks (summarized in the 

Theory section). We also studied the literature related to students’ use of various types of 

equations in linear algebra, and we found Zandieh and Andrews-Larson (2019) to be most 
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helpful. Their work, which is grounded in their prior research on three interpretations of 𝐴𝒙 = 𝒃 

(Larson & Zandieh, 2013), characterizes students’ symbolizing while solving linear systems. We 

coded the data in a way compatible with their approach, analyzing the various equations types 

(e.g., vector equation, matrix equation) students brought to bear in their solution process. For 

Reflection #2, we engaged in open coding to make sense of the variety of student responses. The 

first two authors independently coded all the data, conferred with each other to resolve any 

differences, discussed the data with the author team, and further refined as needed.  

 

Results 

Overall, in Reflection Prompt #1, we found that students use literal symbols as unknowns in 

three ways: as vectors, vector components, and scalars. We found that students used literal 

symbols as parameters in three ways: as placeholder, generalizer, and unknown. Students also 

leveraged six equation types in their problem solving: matrix equation, vector equation, system 

of linear equations, augmented matrix, dot product equation, and quadratic equation. Because of 

space, we focus on a vignette from one student. We chose M7 as a paradigmatic example 

because of the broad range of literal symbols and equation types that he used. A limitation of 

our data is that it is written data only; we cannot know how the students were thinking about the 

various symbols they wrote. Instead, we focus on how the literal symbols seemed to function in 

use; for this reason, our analysis makes claims such as “𝒆 and 𝒑 are unknowns” rather than “the 

student reasoned about 𝒆 and 𝒑 as unknowns.” To help the reader follow the analysis, we use 

italics for literal symbol use and underlining for equation type within the vignette. We do not 

label the equations that are of the type unknown = determined value, which communicate when a 

student completes a solution process for the unknown vector, component, parameter, or scalar. 

 

M7’s Work on Reflection Prompt #1  

At the top of his page (see Figure 4), M7 wrote the relationships 𝒆 ∙ 𝒑 = 0, 𝒆 ∙ 𝒗1 = 0, and 

𝒆 ∙ 𝒗2 = 0, which had been established in class (Figure 1). These three equations are dot product 

equations; within them are four literal symbols: 𝒆 and 𝒑 are unknown vectors, and vectors 𝒗1 and 

𝒗2 are each a parameter-as-placeholder. M7 shifts to a system of equations 𝑒1 + 2𝑒2 + 3𝑒3 = 0, 

𝑒1 + 𝑒2 + 𝑒3 = 0 created from the latter two dot product equations. This introduces three new 

literal symbols– 𝑒1, 𝑒2, and 𝑒3 –which are each unknown components. We note that 𝑒1, 𝑒2, and 

𝑒3 are the components of the 𝒆; to eventually solve for unknown vector 𝒆, M7 decomposed it 

into unknown components. M7 transitions to an augmented matrix equation, using it four times 

as he carries out row reduction. M7 expresses the solution resulting from the row reduction as a 

system of linear equations 𝑒1 = 𝑒3 and 𝑒2 = −2𝑒3, which again use 𝑒1, 𝑒2, and 𝑒3; in this 

instance, however, the three literal symbols are now used as varying quantities because the 

system expresses how they are related and change together. It seems that M7 next compacted this 

information into 𝒆 = [
𝑡

−2𝑡
𝑡

]. M7 did not explicitly write the “𝒆 =”, but he substituted the vector in 

for 𝒆 twice in his subsequent work. Thus, at this point in his work, M7 used the literal symbol 𝑡 

as a parameter-as-generalizer to represent all possible solutions for 𝒆.  

M7 then writes the vector equation 𝒃 − 𝒆 = 𝒑. Here, 𝒃 is a parameter-as-placeholder and 𝒑 

is still an unknown vector. However, we see a shift in 𝒆 from vector unknown to parameter-as- 

placeholder; this is evidenced by the subsequent vector equation in which M7 substitutes in 

component-wise versions of both 𝒃 and 𝒆, using the parameterized version of 𝒆, where again 𝑡 

functions as a parameter-as-generalizer. M7 then simplifies that vector equation into 𝒑 in terms 
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of 𝑡. Next, M7 next brings in the very first known relationship he had written, 𝒆 ∙ 𝒑 = 0, but now 

that dot product equation is written with component-wise expressions in terms of 𝑡 for both 𝒆 

and 𝒑. Thus, we see a shift in the role of 𝑡 to that of parameter-as-unknown. This use of 𝑡 

continues in M7’s simplification of the dot product equation into a quadratic equation in 𝑡; two 

additional quadratic equations are written as M7 simplifies in order to solve for 𝑡. This leads to 

M7’s solution 𝑡 = 0, ⅙, where 𝑡 as a literal symbol is a determined value (i.e., the values of 𝑡 

that make the equation true, determined through a solution process). Choosing ⅙ as an assigned 

value for 𝑡 (Alaee et al., 2002), M7 gets exact solutions for 𝒆 and 𝒑 via substitution. M7 boxes 

the 𝒑 vector and writes “closest vector we can reach.” M7 completes his work by using a vector 

equation to write 𝒑 as a linear combination of 𝒗1 and 𝒗2, with the literal symbols 𝑠 and 𝑡 as 

unknown scalars. Although M7 again uses 𝑡 as a literal symbol, we see no evidence that the two 

uses of 𝑡 were connected in any way. M7 transitions to a system of linear equations in 𝑠 and 𝑡 

and solves for the unknown scalars 𝑠 = −½ and 𝑡 = 4/3; M7 concludes by explaining how to 

use the travel vectors, presumably to reach 𝒑, which is consistent with his algebraic solution.  

 

 
Figure 4. Student M7’s written solution for Reflection 1.  

 

We emphasize that the first augmented matrix M7 wrote corresponds to the matrix equation 

𝐴𝑇𝒆 = 𝟎; he did not use the literal symbol 𝐴𝑇  to notate his work, and we have no evidence he 

recognized the coefficient matrix as 𝐴𝑇 . We point this out as an implicit use of 𝐴𝑇  that grows out 

of the student’s own problem-solving, which is important in terms of RME-inspired curriculum 

design and the class’s use and understanding of the least squares equation 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃.  

 

Student work on Reflection Prompt #2 

When asked about their sense-making, thoughts, or remaining questions they may have about 

𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 (Figure 3) after the following class, students shared a range of reactions about both 

individual parts of the equation and it as a whole.  

Reactions to individual parts of the equation were typically related to the interpretation of its 

components. Among these, the most common topic invoked by students was that of 𝐴𝑇 , both its 

properties and its function in the LSE. For example, W4 shared, “I’m wondering how 𝐴𝒙 = 𝒃 

and 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 don't have the same solutions since it's just multiplication 𝐴𝑇  to both sides.” 

We note that W4 wrote x rather than 𝒙 in her LSE, helping us understand that the nuance 

between x and 𝒙 may not be straightforward for students. W7 wrote, “It may be because I’m still 

a little confused as to how transposing a matrix effects [sic] the original image, but I still don’t 

understand how it adds possible solutions to the equation.” We interpret the first part as W7 

trying to make sense of what 𝐴𝑇  means as a linear transformation, which we see as a valuable 
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curiosity. We interpret the second part as W7 grappling with how the two equations are related 

and what it means to be a solution, which seems related to W4’s response. We do have evidence 

that some students understood the utility of the transpose matrix; for example, M6 wrote "𝐴𝑇𝒆 

does the job of dot product each column of 𝐴 by 𝒆, that's why 𝐴𝑇𝒆 would yield the zero vector." 

Other students commented on the efficiency of the LSE or contextualized their understanding 

on how to use the LSE within the class’s work together. For example, M2 wrote “It condensed a 

mess of variables and diagrams into a single expression,” and M8 said “The formula is quite 

simple to use” (M8). It appears that some students’ comfort in using the equation related to their 

understanding of its derivation. For example, W5 wrote: “I would not know what to do with [the 

equation] if I didn't understand the derivation.” It is unclear what W5 means by “what to do,” 

possibly meaning use the equation to solve a least square problems or knowing what each literal 

symbols means in the context of least square problems. W6 wrote: “The equation makes sense to 

me based on how we derived it based on what we knew. However, I don’t really understand how 

it all works together/why it all works.” It is unclear what the distinction is for W6 between the 

LSE making sense and understanding why it works.  

 

Discussion 

The method of Least Squares is an important topic in linear algebra, although it is not always 

discussed in a first course possibly because of the background needed to understand all aspects 

involved in the SLE solution method. The first task in the least squares sequence, Getting Mail to 

Gauss, is straightforward enough to introduce in the first or second week of an introductory 

linear algebra course (such as after the second task of the Magic Carpet Ride IOLA sequence, 

Wawro et al., 2012). As explored in this paper and in our previous work (Lee et al., 2021), 

however, the solution process may bring to bear equation types and solution strategies learned 

across the entire introductory course. M7’s work above illustrates the range of equation types 

and literal symbol use that this student has knowledge of and can flexibly move between in 

reconstructing a successful solution method.  

One of the key features of the LSE is the presence of the matrix 𝐴𝑇 . The student work in this 

study (not all of which we could share in limited space) suggests some connections the students 

were making between the LSE and 𝐴𝑇 . While some students used 𝐴𝑇  immediately in Reflection 

#1, such as M8, others such as M7 derived it through their solution process without labeling with 

the literal symbol 𝐴𝑇 , such as M3, M7, and P1. The use of the array of numbers that experts 

think of as 𝐴𝑇  was not problematic for students such as M7 when using these as coefficients in a 

system of equations or within the related augmented matrix equation. Students in this class were 

familiar with converting between systems of equations (or augmented matrices) and matrix 

equations of the form 𝐴𝒙 = 𝒃. So, converting equations such as M7’s initial work into the 

expression 𝐴𝑇𝒆 = 𝟎 was not itself problematic for students; however, thinking of this array as a 

matrix that 𝐴, 𝐴𝒙, or 𝒃 can be multiplied by seemed to be something students wondered about. 

The questions some students such as W7 and W6 wondered about on Reflection #2 seemed to be 

about the meaning or role of 𝐴𝑇  when multiplied by the other expressions in the LSE. Given that 

students in an IOLA classroom tend to be familiar with reasoning about a matrix times a vector 

as a transformation of that vector (Andrews-Larson et al., 2017), these students may have 

wondered what transformation 𝐴𝑇  imparts on input vectors.  

Our future work involves further analyzing the nuances in student solution strategies and 

their conceptual understanding of the LSE, using this to make adjustments to the task sequence, 

and developing a conceptual analysis for the mathematics in least squares approximation. 
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Two Vignettes on Students’ Symbolizing Activity for Set Relationships 
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Mathematicians often use set-builder notation and set diagrams to define and show relationships 

between sets in proof-related courses. This paper describes various meanings that students might 

attribute to these representations. Our data consist of students’ initial attempts to create and 

interpret these representations during the first day of a paired teaching experiment. Our analysis 

revealed that neither student imputed or attributed our desired theoretical meanings to their 

diagrams or notation. We summarize our findings in two vignettes, one describing students’ 

attributed meanings to instructor-provided set-builder notation and the other describing 

students’ imputed meanings to their personally-created set diagrams to relate pairs of sets.  

Keywords: Symbolization, representations, student thinking, sets, set relationships 

Introduction and Literature Review 

Mathematics is a unique science in which objects of analysis are inaccessible to the five 

senses and can only be visualized indirectly using various representations (Duval, 2006). 

Theories of representation abound in the mathematics education literature (e.g., Duval, 1999, 

2006; Godino & Font, 2010; Goldin, 2008; Radford, 2013; Vergnaud, 1998). Previous 

researchers have called for increased visual representations (e.g., Arcavi, 2003) and identified 

privileged forms of representation for specific mathematical topics (e.g., González-Martín et al., 

2011). Diverse representations provide opportunities to construct shared meanings, which invite 

further investigation into how students invest representations (standard or not) with meaning. 

This paper investigates undergraduate students’ symbolizing activity about sets and set 

relationships. We define symbolizing activity as a process of mental activities that entails 

students’ creation or interpretation of a perceptible artifact (writing, drawing, gesture, 

verbalization) to organize, synthesize, or communicate their thinking. We refer to symbolization 

as the status of completing the symbolizing activity and perceptible artifacts as symbols. Our 

definition differs from Tillema’s (2010) communication-focused symbolizing activity by 

including individuals’ creation of personal representations to reflect on their thinking.  

As part of our investigation into the role of set-based reasoning in students’ comprehension 

of conditional statements (Dawkins, 2017; Dawkins et al., 2021), we created an instructional 

sequence for students to investigate sets using set-builder notation and diagrams. We present two 

vignettes detailing the various meanings students imputed to these representations during their 

initial exposure to these ideas. We provide the following research question to contextualize the 

vignettes: What differences in thinking did students exhibit as they (a) made sense of set-builder 

notation and (b) created set diagrams to describe relationships between sets? 

Theoretical Perspective 

One problem with studying representations in isolation from student thinking is that students 

can impute various ideas to the same symbol. For instance, Gray and Tall (1994) stated that 

mathematicians utilize algebraic notations (e.g., the numeral 6) fluidly to refer to either a process 
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(e.g., putting together two and four pennies) or a stabilized concept (e.g., a pile of 6 pennies). 

Thompson (2002) showed differences between individual student meanings for a point on a 

graph, even after students agreed upon a group definition. Alternately, Eckman and Roh (2022) 

showed that students might generate one notation to reason about a process they conceive and a 

different convention to describe a concept they abstract from reflecting on the process.  

We propose two constructs to describe the representations we investigate in this paper. First, 

Eckman and Roh (2022) used the term personal expression to describe students’ imputation of 

meaning to a self-generated algebraic expression. In this paper, we expand the definition of 

personal expression to cover all forms of students’ mathematical representation. There are two 

components to personal expressions: a meaning and a perceptible artifact to which the student 

imputes their meaning. We use the term meaning in the constructivist sense (Thompson, 2013; 

Thompson et al., 2014) that individuals construct and maintain cognitive structures through their 

experience. A perceptible artifact includes any action or product a student produces to convey 

their meanings (writing, drawing, gesture, verbalization), which another individual might observe 

with his five senses. Our definition of personal expression is related to de Saussere’s (2011) 

notion of signifier and signified, which also informed Glasersfeld’s (1995) definition of symbol. 

When a student creates an expression to organize or synthesize her thinking, she creates a 

personal expression. We consider all non-student generated expressions that require the student 

to anticipate the expression creator’s intended meaning to be communicative expressions. There 

are three components to a communicative expression: (a) the creator’s intended meaning, (b) the 

interpreter’s evoked meaning, and (c) the perceptible artifact the creator uses to convey their 

intended meaning. For instance, Jill might create the personal expression 𝑆 = {𝑥 ∈ ℤ|𝑥 is prime} 

to denote her image of the set of prime numbers. If Jill presented her personal expression to Jack, 

Jack would perceive 𝑆 = {𝑥 ∈ ℤ|𝑥 is prime} as a communicative expression to which he would 

need to assign meaning. However, Jack’s evoked meaning from Jill’s personal expression may 

not reflect Jill’s intended meaning. In summary, whether a perceptible artifact is a personal or 

communicative expression is in the eye of the beholder. The expression 𝑆 = {𝑥 ∈ ℤ|𝑥 is prime} 

is personal to Jill because she created it and communicative to Jack because he must interpret it. 

Methodology 

The data we present in this paper come from an ongoing project to develop models of 

students’ abstraction of logic for conditional statements (Dawkins, 2017; Dawkins et al., 2021). 

During the study, we conducted six paired constructivist teaching experiments (Steffe & 

Thompson, 2000), consisting of 8-12 sessions lasting 60-90 minutes each. We focus on the first 

day of the Spring 2022 teaching experiment. Our students, who chose the names Sarah and Carl, 

were enrolled in Calculus 3 at a large public university in the United States. The second author 

served as the teacher-researcher, with all other authors serving primarily as witnesses. 

Students’ work was collected via video recording, a shared whiteboard application, and 

photographs of physical board work. We analyzed the data using the principles of open coding 

(Strauss & Corbin, 1998). As our initial codes emerged, we realized that some findings aligned 

with previously proposed constructs (Dawkins et al., in preparation; Sellers et al., 2021). During 

axial coding, we combined our unique codes with these constructs to describe meanings students 

exhibited during their symbolizing activity. We synthesized our findings into two vignettes. The 

first vignette describes meanings that students might attribute to communicative expressions of 

set-builder notation. The second vignette describes how students might construct set diagrams as 

personal expressions to express their image of the relationship between two sets. 
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Results 

For each vignette, we first present a theoretical model of a beneficial meaning for 

representing sets or set relationships. We then offer two alternative meanings from our data that 

students exhibited in their symbolizing activity.  

Vignette 1: Students’ Meanings for Set-builder Notation (Communicative Expressions) 

We initially presented Sarah and Carl with pairs of sets (defined using set-builder notation) 

and asked them to posit relationships between the sets (see Figure 1). Our examples constituted 

communicative expressions because students interpreted our notation. In this vignette, we report 

on students’ imputed meanings to set-builder notation while comparing set pairs 𝛼, 𝛽 and 𝛼, 𝛾. 

 
Figure 1. An excerpt from Task 1. The prompt is shortened for brevity, and not all pairs of sets are shown. 

A beneficial way to interpret communicative expressions for set-builder notation. We 

first present a theoretical meaning that did not emerge in our data but we considered beneficial 

for students to compare two sets appropriately (see Figure 2). 

 
Figure 2. A productive meaning and resulting method for comparing sets 𝛼 and 𝛽. 

A student determining the relationship between sets 𝛼 and 𝛽 might first imagine arbitrary 

elements, Δ𝐴𝐵𝐶 and Δ𝑋𝑌𝑍, from each set (Figure 2, step 1). These arbitrary elements contain no 

specific measurements for characteristics such as angle measure. The student would then 

compare the properties of the two elements to determine their relationship (Figure 2, step 2). For 

instance, the student might imagine that since the isosceles triangle has at least two equal sides 

and the equilateral triangle has exactly three equal sides, the equilateral triangle can be 

considered isosceles. The student would then infer that since every element in set 𝛽 has exactly 

three equal sides, all equilateral triangles can be considered isosceles (Figure 2, step 3). Finally, 
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the student would conclude that if all equilateral triangles are isosceles, then set 𝛽 must be a 

subset of set 𝛼 (Figure 2, step 4). Conventionally, we call this meaning for Δ𝐴𝐵𝐶 or Δ𝑋𝑌𝑍 an 

arbitrary particular. However, our theoretically propitious meaning was distinct from the 

meanings exhibited by Carl and Sarah. In the following data-driven examples, we show two 

meanings these students attributed to set-builder notation while comparing pairs of sets. 

Meaning 1a: Particular 𝚫𝑨𝑩𝑪. When Sarah read the teacher-researcher’s communicative 

expressions 𝛼 = {𝛥𝐴𝐵𝐶 ∈ 𝕋: 𝛥𝐴𝐵𝐶 is isosceles} and 𝛽 = {𝛥𝑋𝑌𝑍 ∈ 𝕋: 𝛥𝑋𝑌𝑍 is equilateral}, 

she imagined specific triangles with corresponding values and labels unique to each triangle.  

Sarah: I have a question. (Interviewer 1: Ok.) The left-hand side set (𝛼) is congruent to the 

right-hand side set (𝛽) but they’re two different triangles…or are they the same triangle? 

Like, they are different sets of triangles, right? 

(omitted dialogue) 

Interviewer 2: Sarah, just to clarify, was your question in part about set 𝛼 has the letters ABC 

and set 𝛽 has the letters XYZ? 

Sarah: Yes. 

Interviewer 2: And so, because there are different letters, you weren’t sure if the triangles 

were the same triangles? 

Sarah: Yeah, I just got a little bit confused on that. 

In this example, Sarah questioned interviewer 1 (second author) whether two triangles from 

sets 𝛼 and 𝛽 (which she considered congruent) could be regarded as the same triangle when 

comparing sets. Eventually, interviewer 2 (first author) asked whether Sarah’s confusion 

emanated from denoting elements of set 𝛼 with Δ𝐴𝐵𝐶 and elements of set 𝛽 with Δ𝑋𝑌𝑍, which 

she confirmed. In other words, Sarah comprehended that a triangle Δ𝐴𝐵𝐶 from set 𝛼 could be 

congruent to a triangle Δ𝑋𝑌𝑍 in set 𝛽 but was unsure whether Δ𝐴𝐵𝐶 could exist within set 𝛽 

because the vertices of Δ𝐴𝐵𝐶 in the communicative expression for set 𝛼 were not labeled with 

the letters for set 𝛽. We call Sarah’s evoked meaning for the expression Δ𝐴𝐵𝐶 a particular 

triangle. We compare Sarah’s meaning with our theoretical meaning in the vignette 1 summary. 

Meaning 1b: Spontaneous particular 𝚫𝑨𝑩𝑪. When Carl compared the the communicative 

expressions Δ𝐴𝐵𝐶 and Δ𝑋𝑌𝑍, he imagined various possible pairings between elements in set 𝛼 

and set 𝛽 and the relationships that might occur for each comparison. 

Interviewer 1: What do you think, Carl (about the relationship between sets 𝛼 and 𝛽)? 

Carl: Yeah. Um, I thought that it was. I don’t think of like, the sets. I thought it more like, it 

could, like have a good chance of being 100% the same triangle. But also, there’s also a 

good chance that it’s close, similar, but not quite. Like 70 or so percent chance. 

Interviewer 1: You’re talking about one specific triangle? 

Carl: Yeah, like comparing ABC to XYZ. 

Carl’s explanation shows that he was considering two distinct situations: (1) comparing a 

triangle with exactly two equal sides from set 𝛼 with a triangle from set 𝛽 and (2) comparing a 

triangle with exactly three equal sides from set 𝛼 with a triangle from set 𝛽. Carl’s probabilistic 

language also indicates that he imagined how often the triangles he selected spontaneously were 

likely to be in both sets. We thus say that Carl’s evoked meaning for the expression Δ𝐴𝐵𝐶 was 

of a spontaneous particular and not an arbitrary particular triangle. We further discuss how 

Carl’s spontaneous particular meaning emerged in his set diagram personal expressions in 

vignette 2. 

Carl’s spontaneous particular meaning Δ𝐴𝐵𝐶 and Δ𝑋𝑌𝑍 is analogous to what Sellers et al. 

(2021) called an MQ4 meaning for a quantified variable. Students exhibit an MQ4 meaning when 
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they spontaneously select elements within a domain of universal discourse, make inferences 

without exhausting all elements, and may or may not repeat this process to make (potentially 

different) inferences about other elements.  

Summary of vignette 1. In this vignette, we have shown three meanings that a student might 

have for Δ𝐴𝐵𝐶 in the communicative expression 𝛼 = {𝛥𝐴𝐵𝐶 ∈ 𝕋: 𝛥𝐴𝐵𝐶 𝑖s isosceles}. A 

student exhibiting the arbitrary particular meaning (see Figure 2) imagines triangles defined by 

the properties described in the set-builder notation and would be capable of making general 

comparisons between sets. Sarah’s meaning of particular triangles allowed her to imagine 

elements of sets 𝛼, 𝛽 and 𝛾 (Figure 2, step 1) and make rudimentary comparisons between these 

elements (Figure 2, step 2). However, her image of triangles with fixed values for various 

characteristics precluded her from discerning the appropriate relationship between the entire sets 

of objects (Figure 2, steps 3, 4). Carl’s meaning of spontaneous particular triangles allowed him 

to imagine random pairings of elements from sets 𝛼 and 𝛽 (Figure 2, step 1) and compare them 

(Figure 2, step 2). In effect, Carl constructed relationships of likelihood, not relationships of 

necessity as are privileged in mathematical logic, which are essential for proving. 

Vignette 2: Students’ Meanings for Set diagrams (Personal Expressions) 

We also invited Sarah and Carl to construct set diagrams to represent the relationships they 

envisioned between pairs of sets (see Figure 1, question 4). We consider the diagrams that Carl 

and Sarah generated (even if they exhibited the conventions of Euler diagrams) to constitute their 

personal expressions for organizing their thinking about various pairs of sets.  

Regions that partition: A beneficial way to construct a set diagram. We first present a 

beneficial meaning that did not emerge in our data which a student might leverage to construct a 

set diagram to compare sets 𝛼 and 𝛽 (see Figure 3). First, the student would imagine the universe 

of discourse, 𝕋, the set of all triangles. The student might then draw a box to metaphorically 

gather all triangles into an enclosed entity (Figure 3, part 1). Second, the student would consider 

set 𝛼, the set of isosceles triangles. The student might represent 𝛼 by drawing an oval region 

inside the box to simultaneously gather all isosceles triangles and partition them from other 

triangles (Figure 3, part 2). The student would recognize that the region outside the oval denoting 

𝛼 constitutes the complement set to 𝛼 (𝛼𝑐). Third, the student would utilize the arbitrary 

particular meaning to determine that all elements of 𝛽 exist within set 𝛼 (Figure 3, part 3).  

 
Figure 3. A productive method to produce a set diagram comparing sets 𝛼 and 𝛽. 

The student might then draw an oval region to represent set 𝛽 within his previously created 

region for 𝛼 (Figure 3, part 4). The student would realize that his actions (a) gather equilateral 
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triangles from the universal set 𝕋 into the oval region 𝛽 and (b) denote the regions outside the 

oval for set 𝛽 as the set of all non-equilateral triangles (𝛽𝑐; Figure 3, part 5). We have previously 

used regions that partition to describe students’ set diagrams constructed through this propitious 

meaning (Dawkins et al., in preparation). In the following data-driven examples, we report two 

other meanings that Sarah and Carl attributed to their diagrams comparing set pairs 𝛼,𝜂 and 𝛼, 𝛾. 

Meaning 2a: Regions that gather. When Sarah drew her set diagram personal expression to 

relate sets 𝛼 and 𝜂 (which are disjoint sets), she drew one oval region to represent 𝛼 and a 

second, non-overlapping oval region to represent 𝜂 (see Figure 4). Sarah then drew isosceles and 

equilateral triangles to represent the elements she imagined in set 𝛼 and a scalene triangle to 

represent the elements she imagined in set 𝜂 (see Figure 4). When the interviewer asked Sarah 

what she imagined the region outside 𝛼 and 𝜂 to represent, Sarah responded that this area was 

irrelevant but she could imagine the region as empty if she chose. Sarah’s comment indicates that 

she created her personal expression to represent solely her images of 𝛼, 𝜂, and their relationship. 

 
Figure 4. Sarah’s set diagram comparing sets 𝛼 and 𝜂 (regions that gather). 

We have previously defined students’ diagrams to which they gave meaning solely to the 

inside of drawn regions as regions that gather (Dawkins et al., in preparation). A student who 

creates a diagram to express regions that gather typically ignores areas outside their drawn 

regions (i.e., no partitioning). These students use set diagrams to highlight sets of interest, not 

construe relationships between all the elements within the universal domain. 

Meaning 2b: Regions that distinguish. While comparing sets 𝛼 and 𝛾, Carl initially 

concluded the two sets were equal and drew a single ovular region (see Figure 5). Carl then 

claimed that he could further clarify his diagram by drawing a second oval region inside the first. 

Carl explained that the new oval region denoted instances where he was comparing triangles 

from 𝛼 and 𝛾 with exactly three congruent sides. He then stated that the region outside of the 

interior oval (but inside the exterior oval) represented instances where he was comparing 

triangles with exactly two congruent sides. In other words, Carl introduced a local partition to 

distinguish two classes of elements he perceived within his gathered set containing elements of 

sets 𝛼 and 𝛾. We use the term regions that distinguish to describe Carl’s separation-of-elements-

into-cases meanings he imputed within a locally gathered region of his set diagram.  

 
Figure 5. Carl’s set diagram for comparing sets 𝛼 and 𝛾 and a digital reproduction (regions that distinguish). 
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Summary of Vignette 2. In this vignette, we have shown three meanings that students might 

attribute to the regions they draw in a set diagram personal expression. Sarah’s meaning allowed 

her to imagine gathering elements of a similar type, and she drew regions that gather to denote 

her grouping action. Sarah’s meanings allowed her to create oval regions to represent the sets 𝛼 

and 𝜂 and successfully determined that the sets were disjoint (Figure 3, steps 2-4). However, 

Sarah indicated that the regions outside the ovals were irrelevant to the task. Later in the 

interview, Sarah claimed that exterior regions contained non-examples of the sets but gave no 

indication that she considered these elements as the complement of the sets portrayed by her 

ovular regions (Figure 3, steps 2, 5). We also note that some students creating regions that 

gather may not include a box representing the universe of discourse (see Dawkins et al., 2021; 

Figure 3, step 1). Carl’s meaning allowed him to imagine sorting comparisons between classes of 

elements, and he drew regions that distinguish to denote his sorting of these cases. Carl provided 

meaning to all areas within his outermost region (Figure 2, steps 2-4). However, Carl created his 

set diagrams not to partition the universe into sets possessing or not possessing properties (Figure 

3, steps 2, 5) but to sort comparisons of set elements. Finally, a student imagining gathering 

elements into one set while simultaneously creating a complement set draws regions that 

partition to denote this partitioning action. 

Discussion and Conclusion 

Our research question for this paper was related to students’ differences in meaning when 

creating personal expressions and interpreting communicative expressions for sets and set 

relationships. In vignette 1 we described three meanings, one theoretical and two emerging from 

our data, that students might possess for communicative expressions of set-builder notation 

presented to them by an instructor. In vignette 2 we described three meanings, one theoretical 

and two emerging from our data, that students might attribute to personal expressions they create 

to diagrammatically represent set relationships. Our results show that students can (a) invest only 

one portion of a conventional meaning to an expression (e.g., regions that gather, particular) or 

(b) aatribute meanings that allow local comparisons of element classes but fail to support claims 

about set relationships (e.g., spontaneous particular, regions that distinguish).  

Our findings further work done by previous mathematics educators. For instance, we 

provided an expanded definition of Eckman and Roh’s (2022) personal expression and proposed 

communicative expressions to describe the role of symbols in mathematical communication. We 

also added regions that distinguish to Dawkins et al.’s (in preparation) description of the 

meanings students attribute to set diagrams. Finally, we utilized Sellers et al.’s (2021) MQ4 

meaning to inform our descriptions of spontaneous particular and regions that distinguish, 

extending their MQ framework beyond the context of interpreting quantified variables. 

Our vignettes also have relevance for instructors. Vignette 1 highlights that students may 

attribute very different meanings to a communicative expression of set-builder notation than their 

instructor intended when creating the symbol as a personal expression. Vignette 2 reveals that 

students’ imputed meanings to local regions of their personal expression set diagrams may vary 

across students and differ from convention. Therefore, we recommend that instructors regularly 

facilitate classroom discussions about personal and communicative expressions and the potential 

meanings the expression creators and interpreters attribute to these expressions. 
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What is a “Math Person?”: Students’ Interpretation of Identity Terminology 
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We investigated seven undergraduate students’ definitions of two terms used in mathematics 
education research: “identity” and “math person.” Students’ interpretations of these terms were 
compared to an existing identity framework (Cass et al., 2011; Cribbs et al., 2015). Participants’ 
definitions for “identity” varied widely, emphasizing different aspects of personal, social, and 
mathematics identities. In contrast, students were fairly uniform in describing a “math person” 
as an individual who enjoys and/or is proficient in mathematics, which is consistent with known 
factors related to mathematics identity. This second finding bears relevance given the use of self-
identification as a “math person” in measurements of students’ mathematics identity. These 
results guide our development of survey items meant to assess aspects of student affect in the 
mathematics classroom, with the ultimate goal of providing instructors actionable insights into 
their classroom climate.  

Keywords: Math Person, Identity, Mathematics Identity 

Research has shown that the development of a strong mathematics identity is critical to 
students’ persistence in STEM and success in their math courses (Meece et al., 1990; Boaler & 
Greeno, 2000; Gonzalez et al., 2020). However, identity and mathematics identity have been 
conceptualized and measured in different ways by different scholars (e.g., Sfard & Prusak, 2005; 
Cass et al., 2011). As part of a project aimed at measuring various aspects of student affect, we 
reviewed instruments developed to measure identity and became curious about students’ 
interpretation of these constructs – and of the survey questions intended to measure these 
constructs. With an eye toward understanding the student perspective, as well as to reducing 
measurement error in our own work, we ask:  

(1) How do students conceptualize “(mathematics) identity” and “math person?”  
(2) How do students’ perspectives relate to usage of these terms in prominent mathematics 

identity frameworks? 
To begin answering these research questions, we interviewed seven undergraduate students 
enrolled in university mathematics courses and considered their responses in relation to the 
mathematics identity framework used extensively by Cribbs and colleagues (Cribbs et al., 2015; 
Cass et al., 2011; Godwin et al., 2016; Dou et al., 2019). 

Mathematics Identity & Relevant Literature 
The framework we use for mathematics identity (Cass et al., 2011; Cribbs et al., 2015) has its 

origins in studies of science identity (Carlone & Johnson, 2007), has been refined over time 
(Hazari et al., 2010), and has been positively linked to students’ persistence in STEM majors and 
career choices (Cribbs et al., 2015; Cass et al., 2011; Verdín & Godwin, 2015; Godwin et al., 
2016). In this framework, mathematics identity refers to how one views themselves in relation to 
mathematics; this is distinct from, but not entirely independent of, personal identity (one’s 
individual characteristics) and social identity (one’s characteristics as a member of a group or 
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community). In empirical studies, self-identification as a “math person” (or “science person” 
etc.) has repeatedly been used as a measure of mathematics (science, etc.) identity (e.g., Cribbs et 
al., 2015; Gonzalez et al., 2020; Shanahan, 2008; Hazari et al., 2010; Carlone & Johnson, 2007). 
Three constructs have been shown to contribute to a positive mathematics identity, as measured 
by seeing oneself as a “math person”: competence/performance, interest, and recognition (Cribbs 
et al., 2015). Competence/performance refers to a student’s beliefs about their ability to 
understand and perform in mathematics, interest as a student’s desire to learn mathematics, and 
recognition as how students think that others perceive them and their mathematical abilities. In 
this study, we explored seven students’ interpretations of “identity” and “math person,” and 
compared these to these interpretations, respectively, to the identity factors (mathematics, 
personal, social) and mathematics identity factors (competence/performance, interest, 
recognition) described above. 

Studies have demonstrated, with varied methods and populations, that mathematics identity 
can be linked to several student outcomes. Here, we highlight a few of these findings related to 
students’ persistence and success in STEM classes. In a large study of undergraduate calculus 
students, Cass et al. (2011) found that three of the factors related to mathematics identity 
(interest, performance, recognition) were significant predictors of students choosing careers in 
engineering. In another study, Boaler and Greeno (2000) conducted interviews with high school 
students and found that those planning to leave the discipline often lacked interest in the 
procedural nature of the mathematics being taught. This link between mathematics identity and 
retention in STEM courses has been examined in studies alongside other outcomes, such as 
success in math courses. For instance, Meece et al. (1990) employed surveys with middle 
schoolers in suburban communities and found that students’ ratings of the importance of math 
predicted their future enrollment in mathematics courses. They also determined that students’ 
performance expectations in their math courses strongly predicted their subsequent grades. More 
recent studies have further explored this relationship between students' mathematics identity and 
performance. For example, Gonzalez et al. (2020) demonstrated a positive correlation between 
mathematics identity and mathematics GPA for Black secondary students in a large-scale survey 
across the U.S. From these findings and others, we consider fostering a positive mathematics 
identity in students to be an important component of their persistence and success in STEM. This 
study presents a first look at understanding terms associated with mathematics identity, so that 
we may more accurately and sufficiently assess it in students. 

Methods 
In Spring 2022, we conducted IRB-approved interviews with undergraduate students at a 

large public research university in the southwestern United States. These interviews are part of a 
larger project intending to add questions to the mathematics department’s end-of-course 
evaluations for assessing the current atmosphere in mathematics classrooms at the university. A 
preliminary version of such a survey included items aimed at measuring students’ (1) sense of 
community, (2) sense of belonging, (3) sense of inclusion in mathematics classrooms, and (4) 
self-perceptions of ability and identity. As part of the design process, we developed an interview 
protocol to better understand how students interpret terms and respond to questions.  

One purpose of the interviews was to gain insight into the design of the selected questions to 
inform the revision and refinement of the survey items. Accordingly, the interview was 
structured to investigate how participants interpreted the terms and questions and to understand 
how these interpretations informed their responses. This study employs clinical interview 
methodology using open-ended, think-aloud interview questions (Clement, 2000). The interview 
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protocol consisted of two major parts. First, students were asked to define each of six terms: 
“sense of community,” “sense of belonging,” “sense of inclusion,” “math person,” “identity,” 
“classroom climate.” Second, participants responded aloud to free-response and Likert-style 
items from the survey, while explaining the reasoning behind their responses and their 
interpretations of the questions as written.  

Invitations to participate were distributed via email from the instructor of record to students 
in all levels of undergraduate mathematics classes. Seven students participated in the interviews 
and were each compensated with a $15 e-gift card. These students had a wide range of 
experience with mathematics at the university, with enrollments from college algebra to upper-
division proof-based courses. Interviews lasted between 30-60 minutes and were conducted 
remotely, using web-based video conferencing software.  

Data analysis was conducted on de-identified transcripts of the seven clinical interviews. The 
transcripts were automatically generated by the video conferencing software and then verified 
and edited for accuracy by members of the research team. Participant responses for the first set 
of interview items (defining terms) were analyzed using conventional content analysis (Hsieh & 
Shannon, 2005). This process involved identifying themes and patterns in the students’ responses 
without using preconceived codes. Though our analysis involves comparing students’ responses 
to an existing mathematics identity framework (Cass et al., 2011; Cribbs et al., 2015), we 
decided not to use the existing framework for creating initial codes from the interview 
transcripts. We wanted to ground our developed codes in the key thoughts and concepts from the 
students’ responses, without preconceived notions of what “identity” or “math person” could 
mean. Our codes were then refined through several iterations with constant comparison. Final 
primary codes capture the essence of student responses, with secondary codes and modifiers used 
as needed for additional specification.  

Although this coding process was implemented for all parts of the transcripts, we restrict our 
attention to students’ definitions of “identity” and “math person” in this study. We leverage our 
codes to understand how participants define these terms and compare their definitions to the 
factors that influence mathematics identity formation (Cass et al., 2011; Cribbs et al., 2015). In 
particular, we examine how these students’ definitions for “identity” relate to the personal, 
social, and mathematics components of identity and how their definitions for “math person” 
relate to the performance/competence, interest, and recognition factors of mathematics identity.  

Results 

Identity 
We first present themes which emerged from students’ responses to the item, “What does 

‘identity’ mean to you in the context of the mathematics classroom?” Note that, due to time 
constraints while interviewing, only five of the seven students responded to this question. 
Representative excerpts from each student are shown in Table 1, with key sections bolded; the 
right-hand column displays the codes assigned to each excerpt. 

There was little to no overlap in themes between the students’ definitions of “identity.” Two 
students, Student1 and Student2, described “identity” in a general sense, which was 
decontextualized from the mathematics classroom. Student1 described “identity” as how 
someone views themselves (and thinks others view them), with particular focus on one's 
personality and interests. On the other hand, Student2 specifically called for going beyond “just 
who you are,” and instead defined “identity” as including one’s morals and values. Both students 
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interpreted identity as an “inner” part of oneself but differed in whether they focused on a 
person’s actions or values. 

The remaining three students thought of “identity” specifically in the context of their 
mathematics classroom but were influenced by different components of the classroom. Student3 
conceptualized “identity” as what one contributes to the mathematical and social environment of 
the classroom. They focused on the interactions that one has with their peers and TAs, as well as 
the effects these interactions have on establishing a hierarchy within the class (teacher > TAs > 
students). Student4’s definition of “identity” was less about interpersonal interactions and more 
about one’s math ability. The impact of the teacher is still significant in this definition, but only 
insofar as the teacher is able to foster the student’s mathematics identity. Student5 also 
highlighted the similarities between “math person” and “identity,” focusing on a person’s 
priorities and interests related to math as central to their identity in the math classroom. 
However, unlike the previous two students, this definition omitted interactions with people in the 
classroom and instead emphasized a student’s personal motivations. 
Table 1. Excerpts of student responses to “What does ‘identity’ mean to you in the context of the mathematics 
classroom?” with coding. Emphasis added. 

Excerpt Coding 

Student1: It's, it's who you are and what makes you different…If I 
can play guitar, which I’m trying to do, but I suck at it. If I suck at 
playing the guitar, that adds to my identity, because there are not 
as many people in the world who suck at playing the guitar. And so 
you keep adding that. Well, I also like video games. Well, people 
who suck at guitar and who play video games is even smaller in 
between. Well, I also like creative writing, and it keeps getting 
smaller and smaller until you’re your own unique person.  

How you view 
yourself; 

 
How others view you; 

 
Skills; 

 
Likes and Interests 

Student2: Because I think of identity more of like an inner, like a 
personal level rather than just who are you, what are your credentials. 
What are, like, what are your values, what are your morals, what 
do you support? How do you, like, do you respect people? 

Personality (vs. 
achievements); 

 
Values/morals; 

 
Respecting others; 

Student3: So, I guess I would identify identity in, like, the math 
class as, like, like, your own personal identity. Like, what you do, 
how you contribute to the classroom at all, if you do. So, like, if 
you are someone that's like, “Hey, I’m really good at math. I can help 
you. Like, here's my phone number, like, I can help tutor you.” I feel 
like that's, like, your sense of identity. Um, I feel like in the math 
class, because there is very little peer interaction, there isn't really a 
lot of identity.” 

Making Contributions 
(to class); 

 
Interactions (student-

student) 

Student4: I think identity in a math class has quite a bit to do with 
the teacher. Because in my, in my earlier days, like in middle school 
and high school, when I was doing math, I didn't have a very good 

Teacher-dependent; 
 

Academic identity; 
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teacher. So, I was, my main instinct was just to think, “well, my 
teacher isn't good. I’m not understanding, even though they tried to 
explain. So, I’m not very good at math…So, yeah, it all boils down 
to, firstly, if you're a math person, which we addressed already. But 
also, your teacher and how you’re, how you develop in the math 
class over the years.” 

 
“Math person”; 

 
Developing skills 

Student5: Um, I don't think [personality traits and interests are as] 
significant as…like it kind of, it kind of goes hand in hand with 
like my definition of a math person. Like, are you more single 
minded like, into like, you know, your major and your career, or are 
you, you know, like balancing kind of a lot of like interests and 
priorities? Because I know some people who will spend like hours 
studying for a class that I might spend a couple…you know, like, it 
just, it just, you know, some people are just like really into getting 
everything and getting the theory and I do, I do think that like 
contributes to identity. 

Personality (not as 
important); 

 
Priorities (single-
minded vs. broad 

interests, studying); 
 

Inconsistent definition 
(self); 

 
Likes and interests 
(concepts, theory) 

 These responses can be considered in light of an overall framing of identity in mathematics 
education literature (Cass et al., 2011; Cribbs et al., 2015). Student1 and Student2 did not 
contextualize their responses in terms of a mathematics classroom; instead, their responses most 
closely align with descriptions of personal identity (Cass et al., 2011). That is, they centered on 
interests and values related to the individual person. On the other hand, Student3, Student4, and 
Student5 contextualized their definitions within the mathematics classroom. While they also 
referred to aspects of personal identity, these students emphasized the social and mathematics 
identities that they formed in the classroom. They focused on their ability to do mathematics in 
the classroom, as well as the various interactions in the classroom that influence their 
development as a “math person.” Within these responses, different components of mathematics 
identity were mentioned by different students: For example, Student4’s response incorporates 
elements of competence/performance and interest, while Student5’s response mostly focused on 
interest alone. 

Math Person 
 In this section, we present and analyze participant responses to the item, “What does ‘math 
person’ mean to you?” Recall that “math person” is a term used to evoke a person with a positive 
mathematics identity (Cribbs et al., 2015). We identified more commonalities in these responses 
than in the identity question, with multiple students’ entries receiving the same codes. Table 2 
presents operationalized definitions of codes assigned to more than one student, as well as how 
many students (out of seven) were assigned each code. Since these codes were produced through 
conventional content analysis of the interview data (Hsieh & Shannon, 2005), each code may not 
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be directly associated with the mathematics identity factors from Cribbs et al.’s (2015) 
framework.  
 

Table 2. Codes for student responses to “What does ‘math person’ mean to you?” 

Code: Description N 

Skills: Abilities related to successfully performing a task or action 6 

Likes/Interests: Topics or activities that elicit feelings of interest or like, with or without 
enjoyment 5 

Disinterested: Topics or activities that do not explicitly elicit feelings of interest 4 

Enjoyment: Pleasure or satisfaction derived from an action or interest 4 

Field of study: Reference to field(s) of study other than math 4 

“Non-math person”: Participant mentions “non-math” people 3 

Counter-example: Participant uses a counter-example to explain a concept 3 

Math is …: Subjective description of mathematics or its qualities 3 

Priorities: Activities or topics that are preferentially attended to 3 

Developing skills: Action of improving or expanding skills, intentionally or otherwise 2 

Intelligence: Quality of being intelligent/smart, potentially in relation to others 2 

Interviewee academic details: Participant gives general academic information about 
themselves (e.g. major or classes), with or without prompting 2 

Logical: Characterized as being able to use formal/informal logical reasoning 2 
 

A majority of the definitions of “math person” included a discussion of one’s capacity to 
perform mathematical tasks, which we coded as Skills. These were sometimes explicit 
statements, e.g., “being good at math” as a prerequisite for being considered a “math person.” 
Other times, students referenced skills that “math people” possessed, such as “calculating on the 
spot” or being able to “rearrange numbers in their head.” One student who did not explicitly state 
the significance of skills still thought of “math people” as people who “think logically.” In some 
capacity, all participants conceived of a “math person” as someone who thinks with and about 
mathematics. 

Enjoyment of mathematics or mathematical thinking was also an important characteristic of 
“math people” for five of the seven students. This was observed in explicit statements suggesting 
that Enjoyment is essential, such as “one of the big denominators of if you’re a math person is if 
you enjoy it.” It was also implied by statements of Likes and interests in reference to logical or 
quantitative thinking, such as finding the “puzzle aspects of mathematics fun.” However, one 
student did directly note that enjoyment was not essential, stating that “you don’t have to like 
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math to be a ‘math person.’” This student’s reasoning was that, after a certain point, performing 
mathematics becomes intuitive and does not necessarily require enjoyment (much like 
breathing). This is not so much a statement of lack of enjoyment as it is a statement suggesting 
that, after a certain level of mathematical skill attainment, enjoyment may not be a prominent 
factor in being considered a “math person.” 

Our findings with respect to “math person” were mostly consistent with a mathematics 
identity framework (Cass et al., 2011; Cribbs et al., 2015). The competence/performance factor 
can be seen in the participants’ consistent focus on the Skills necessary to be a “math person.” To 
them, a “math person” is someone who can perform calculations quickly or has some natural 
competence when it comes to mathematics. The interest factor is also clearly apparent in 
participants’ mentions of Enjoyment and Likes and interests. However, recognition was only 
seen in one of the seven students’ descriptions of a “math person.” Student3 described a “math 
person” as “your person to go to” if you have a question, although they also noted that 
recognition by peers was not a definitive requirement for being a “math person.” Overall, the 
seven students we interviewed did not incorporate external perceptions in their definitions. 

Discussion and Next Steps 
Participants’ definitions of “identity” in the mathematics classroom were highly varied. Some 

students described only aspects of personal identity, while others referred to all three identity 
components (personal, social, and mathematical) in their responses. Additional research would 
be needed to understand this variation in response. In contrast, students were mostly consistent in 
describing a “math person” as someone that enjoys mathematical processes and has the skills 
necessary to be proficient at math. These components are closely related to the interest and 
competence/performance components of a mathematics identity framework (Cass et al., 2011; 
Cribbs et al., 2015). While students did not explicitly incorporate the recognition component into 
their definitions, this could be because they were doing the recognizing themselves by defining 
characteristics of a “math person.” That is, the phrasing of the interview question could have 
made the recognition component of mathematics identity less salient in student responses.  

We take these results as evidence that we might want to explicitly define “identity” or avoid 
the term in surveys altogether, and that using the term “math person” on our survey could be 
productive. Immediate next steps in the larger project will explore how students interpret terms 
for other affective constructs linked to student success and persistence in STEM, such as “sense 
of belonging” (Strayhorn, 2018). We will interview additional students from varied backgrounds 
from within the university to further enrich our understanding of these constructs. These results 
will be used to develop a questionnaire that captures meaningful information about the impact of 
a mathematics course on students’ affect, while being brief enough to be appended to end-of-
term course evaluations. The current study contributes towards this goal by providing insight into 
students’ understanding of mathematics identity terminology, so that we may create more 
accurate and actionable items for instructors to assess and foster this form of identity in their 
students. 
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Exploring Relationships Between First-Semester Calculus Students’ Self-Regulation Strategies 
and Their Mathematics Identity and Mathematics Self-Efficacy 

 
 Kyle R. Turner James A. M. Álvarez 
 The University of Texas at Arlington The University of Texas at Arlington 

This mixed-methods study examines the self-regulation strategies that first-semester 
undergraduates use in a first-semester calculus course through quantitative analysis of student 
survey responses and qualitative analysis of student interviews. The relationship between these 
self-regulation strategies and both mathematics identity and mathematics self-efficacy was found 
to be positively correlated. The strategies of metacognitive self-regulation, effort regulation, and 
time and study environment were found to be the most commonly used strategies by academically 
successful students based on a large-scale survey given to 188 first-semester calculus students as 
well as from interviews that occurred throughout the Fall 2021 semester.  

Keywords: Calculus, Undergraduate Mathematics, Self-Regulation, Self-Efficacy, Mathematics 
Identity 

The transition from high school mathematics to undergraduate mathematics presents 
challenges for many students in the United States (Clark, 2005; Gueudet, 2008, Ulriksen et al., 
2017). These challenges include difficulty with foundational mathematics content, lack of self-
regulation strategies, low degrees of self-efficacy, social challenges of being in a new 
environment, and institutional challenges of interacting with a new institutional system 
(Hernandez-Martinez et al., 2011 and Seymour & Hunter, 2019). High failure rates in college 
calculus as reported by Bressoud et al. (2015), Rasmussen et al. (2019), and Seymour and Hunter 
(2019) highlight the need for academic intervention for incoming college students. This 
intervention includes not only attending to the mathematics content understanding needed for 
success in first-semester college calculus, but also developing effective study strategies and self-
regulation strategies employed by successful calculus students. This case study presents findings 
from a larger study that explores the self-regulation strategies of first-semester calculus students 
and how those strategies relate to their mathematics self-efficacy and mathematics identity.  

To adjust to these challenges, students employ self-regulation strategies as researched by 
Zimmerman and Pons (1986) in a high school setting and by Wolters (1998) and Johns (2020) at 
the undergraduate level. In a mathematics setting, self-regulation strategies can be thought of as 
actions used to overcome some obstacle when working on tasks associated with a mathematics 
classroom. This can be in relation to specific mathematics problems and strategies used when 
experiencing some difficulty, or more general strategies or practices regarding tests and studying. 
In this report findings related to the following research questions are presented and discussed: 
“In what ways do students adapt self-regulation strategies from high school mathematics to 
college-level mathematics?” and “How does a student’s mathematics identity and/or 
mathematics self-efficacy relate to their implementation of self-regulation strategies?” 

Conceptual Framework 
Zimmerman and Pons (1986) and Wolters (1998) identified categories of self-regulation 

strategy usage in high school students and undergraduate students respectively. The categories 
developed by these researchers include seeking information, keeping records and monitoring, 
organizing and transforming information, seeking assistance, self-evaluating, setting goals, 
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providing rewards, changing environmental conditions, and identifying internal motivational 
factors such as interest, self-efficacy, emotion, attention, and willpower. Zimmerman and Pons 
argue that as students use the strategies and reflect on how they use the strategies, that their 
overall strategy usage will improve.  

Johns (2020) examined the self-regulation strategies used by students enrolled in a first-
semester calculus course, especially as it correlated with academic performance. In Johns’ study 
she examined student responses to the Motivated Strategies for Learning Questionnaire (Pintrich 
et al., 1991) which gave a quantifiable measure of what strategies students used in a particular 
course setting. This data was then correlated with overall course grades for her 424 participants, 
and it was shown that there was a positive correlation between student course grades and the 
number of self-regulation strategies used. 

Researchers find that positive mathematics identity and high degrees of mathematics self-
efficacy contribute to students’ persistence in a mathematics-based major and higher academic 
achievement. For example, the ways in which students view themselves as mathematics learners 
can be a motivating force for whether they will further their mathematics career (Cribbs et al., 
2015; Gutiérrez, 2013; Ulriksen et al., 2017). Also, high measures of self-efficacy have been 
correlated with higher academic achievement, more frequent completion of academic goals, and 
academic persistence (Bandura, 1997; Hackett & Betz, 1989; Tinto, 2017; Usher & Pajares, 
2009). Hernández-Martínez et al. (2011) argue that during times of transition and difficulty there 
is a restructuring of mathematics identity that can occur for students, such as in the transition 
from high school to college mathematics. 

How self-regulation strategies are used and developed by undergraduates in mathematics 
courses has not been widely studied while attending to transition to college mathematics and 
connections between self-regulation strategy usage, mathematics identity, and mathematics self-
efficacy. Gueudet (2008) outlined several of the challenges that arise during the transition to 
tertiary school, especially related to individual, social, and institutional phenomena. For the 
individual phenomena, Gueudet describes that undergraduates beginning the transition often lack 
flexibility of switching between different thinking modes, such as practical and theoretical 
thinking. Sonnert et al. (2020) found that high school preparation was a significant factor on 
retention and performance for first-year students, but as the distance from high school grows the 
influences lessens. Though for those first-year students it was preparation in mathematics, and to 
a lesser extent attitudes about mathematics, that had the largest impact on performance in a 
calculus class. This is attributed to the highly cumulative nature of mathematics. Self-regulation 
strategies play an important role in helping students to adapt to and overcome these transitional 
challenges. 

Methodology 
This report focuses on two individual student interviews for each of the six first-semester 

undergraduate students participants enrolled in a first-semester calculus course and participant 
responses to a large-scale survey. Interviews occurred throughout the Fall 2021 15-week 
semester. The study occurred at a large, urban research university in the Southwestern United 
States. All first-semester calculus courses meet two (for 80-minute lecture periods) or three (for 
50-minute lecture periods) times a week for lecture. Two additional weekly 50-minute meetings 
engage students in a collaborative lab activity facilitated by the instructor and graduate teaching 
assistant (GTA) for one class meeting and traditional recitation activities facilitated by the GTA 
during the other meeting. Each of the courses have departmentally coordinated exams written by 
the course instructors, these exams are typically offered the fourth full week of the semester, the 
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ninth full week of the semester, and the final exam during the last week of the semester. Of the 
five interviews, the two individual interviews occurred within a week of the first midterm and 
within a week of the final exam. These interviews lasted 20-30 minutes and focused on students’ 
mathematics background, self-efficacy, and identity as well as differences between their 
experiences in high school and college mathematics. The other three interviews were task-based 
group interviews, lasting 50 minutes to an hour, occurring a week before each midterm and the 
final exam.  

The initial surveys were sent to thirteen first-semester calculus sections which included 
approximately 800 students. Of those invited, 188 students completed the initial survey which 
included background information, the MSLQ (Pintrich et al. 1991), a survey to measure 
mathematical identity (Kaspersen, 2016), select questions from the Factors Influencing College 
Success in Mathematics (Sonnert et al., 2020), and a survey to measure the sources of self-
efficacy (Usher & Pajares, 2009). Scores for each category were calculated using the scoring 
rubric provided with the MSLQ. Once self-efficacy, mathematics identity, and self-regulation 
strategy usage had all been scored, a scatterplot was created. Each score for the MSLQ strategies 
could range from 0 to 7, where 0 indicated that a participant never used the strategy and higher 
scores indicated a stronger, more frequent, use of the strategy. From the MSLQ the authors state 
that a score above 3 indicates an adequate use of the strategy. A weighted average was calculated 
from the MSLQ scores and related to both the self-efficacy scores and mathematics identity 
scores on a graph along with the correlation coefficients. For self-efficacy, a low score would 
indicate that a student is not confident in their ability to complete mathematics tasks, while a 
high score indicates a strong confidence in that ability. The mathematics identity score relates to 
how strongly a student perceives themselves in relation to mathematics. A low score would 
indicate that the student does not see themselves as being particularly mathematically minded, 
while a high identity would indicate that students see themselves as being highly mathematically 
minded.  

To obtain an interview pool of first-time first-semester freshmen with differing measures of 
self-efficacy, mathematics identity, and self-regulation strategy usage on the initial survey, 38 of 
the students were invited to participate in a sequence of five interviews. Of these, seven accepted 
and began the interview sequence, with one student dropping out after the third interview. Table 
1 provides information of the interview participants, including their pseudonym, major, and the 
highest level of mathematics course they took in high school. 

 
Table 1: Interview Participant Information 

Participant Major Highest Mathematics Course 
Taken in Secondary school 

Aria Civil Engineering AP Calculus AB 
Cyndy Biology Precalculus 
Frank Computer Engineering AP Calculus AB 
Jane Architectural Engineering Calculus 
Jay Computer Science Trigonometry 

Sunny Computer Science AP Calculus BC 
 
A case study methodology was chosen to explore individual experiences of undergraduates’ 

transitions to college mathematics and their uses of self-regulation strategies. A mix of 
qualitative data from the interviews and quantitative data from the initial surveys helped 
formulate our depiction of the students’ transition. Content analysis (Stemler, 2000) methods 
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were used to analyze interviews. For each interview an audiovisual recording was made and 
transcribed verbatim. Participants were given pseudonyms. To code the data, the first author used 
codes derived from synthesized categorizations by Zimmerman and Pons (1986) and Wolters 
(1998) and developed codes related to statements related to mathematics identity, self-efficacy, 
and differences between high school and college mathematics experiences. To ensure inter-rater 
reliability, the second author coded a subset of the interviews for comparison. Most codes were 
consistent across coding instances, and any differences were resolved. 

Findings 
Through the analysis of the initial survey and interviews, findings related to the relationship 

of self-regulation strategies to students’ mathematics identity and mathematics self-efficacy were 
determined. First, the results of the initial survey and the quantitative data collected will be 
presented. Secondly, the results of the individual interviews will be presented as they inform the 
research questions.  

From the 188 initial survey participant responses, a positive correlation between self-
regulation strategy usage and mathematics self-efficacy and identity can be shown. In the 
following two figures (Figure 1 and Figure 2) we see the general trend of the data where self-
regulation strategy usage, mathematics identity, and mathematics self-efficacy scores were 
determined as described in the previous section.  

 

 
Figure 1. Population of Calculus participants’ (𝑛𝑛 = 188) score obtained from Motivated Strategies for Learning 

Questionnaire versus Mathematics Identity score. Pearson’s 𝑟𝑟 = 0.4101 

Figure 1 shows that as mathematics identity scores increase student use of self-regulation 
strategies tends to increase also. There is a moderately positive correlation between participants 
use of self-regulation strategies and their mathematics identity scores.   
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Figure 2: Population of Calculus participants’ (𝑛𝑛 = 188) score obtained from Motivated Strategies for Learning 

Questionnaire versus Mathematics Self-Efficacy score. Pearson’s 𝑟𝑟 = 0.3589 

As in Figure 1, Figure 2 shows a moderately positive correlation between the use of self-
regulation strategies as determined by the MSLQ score and participants mathematics self-
efficacy. Aside from the correlation data, data about individual participants’ self-regulation 
strategies was found using the MSLQ. Comparing the scores from the MSLQ with participants’ 
self-reported expected course grades it was found that three major strategies emerged as being 
frequently used by successful undergraduates in a first-semester calculus course. These three 
strategies were metacognitive self-regulation, effort regulation, and time and study environment. 
These strategies were also present with the academically successful interview participants as will 
be described later in this paper. 

Along with the initial questionnaire data, data about participants’ self-regulation strategy 
usage as it relates to mathematics identity and self-efficacy was examined through the individual 
interviews that occurred at the beginning and end of the semester. Within the interviews 
participants spoke about their general study habits in high school and how they studied for each 
midterm in their college calculus course. They also reported on their confidence as a 
mathematics student and how they saw themselves as mathematics learners. Based on their 
responses to the initial survey, interview participants had self-efficacy and identity scores that 
ranged from medium to high, but no participants with low scores agreed to be a part of the 
interviews. The examination of those participants with higher scores of mathematics self-efficacy 
and mathematics identity was used to identify what strategies students tended to employ. This 
analysis provides a preliminary framework of self-regulation strategies that could benefit 
students in their transition to undergraduate mathematics courses. From the initial questionnaire, 
while the three strategies of metacognitive self-regulation, effort regulation, and time and study 
environment were present in the interview participant responses, examining the successful 
interview participants’ strategies also revealed they had a high frequency of organization and 
elaboration of course content. 

From both interviews key elements emerged regarding how participants adjusted their study 
habits for exams from high school mathematics to college mathematics can be shown. Moving to 
a college setting, participants discussed how they expected to study on the calculus midterms, 
before having taken any mathematics midterms, and then during the final interview they 
discussed how they studied for the first and second midterms. The strategy most used in a high 
school course by these six students involved self-evaluating understanding by using test reviews 
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or memorization tools. The next most used strategy was to seek peer assistance. Several of the 
participants reported that they did not expect to change their study habits significantly, but for 
those that did, the participants reported that they would seek external resources to further their 
understanding of the course content. Participants reported using more self-regulation strategies 
than they at first anticipated. While seeking external resources was one of the most reported 
additions to studying for the college mathematics midterms, most of the participants also 
reported adjusting their routine of studying, indicating that they spent more time studying for 
college exams than in high school. A couple participants, Jane and Jay, also reported adding 
other strategies including setting performance goals such as striving to earn a B on a particular 
midterm because that is what is needed to pass the course. Participants reported that this increase 
in strategy usage was heavily influenced by the first midterm grade and perceived difficulty of 
future exams; the first midterm either being lower-than-expected in Cyndy, Jane, and Jay’s cases, 
or in the cases of Aria, Frank, and Sunny having a high midterm and resolving to keep the grade 
high which required additional studying. 

Along with changing their strategy usage to adjust to the difficulty of the course exams, 
participants also discussed whether their perceptions of their mathematics identity and 
mathematics self-efficacy had changed. Based on the initial survey, Jane and Sunny had the 
highest scores of self-efficacy and mathematics identity, with all the other participants having a 
score indicating a medium degree of self-efficacy and mathematics identity. Cyndy and Jay 
reported that their confidence in their ability to work mathematics tasks was lower than when 
starting the course, although Jay did add that by becoming less confident it made her realize that 
she needed to spend more time and effort studying and preparing for exams, especially through 
self-evaluation of her understanding. Aria, Frank, Jane, and Sunny each reported raising their 
confidence levels throughout the semester, citing that their understanding of the material and the 
requirement of needing to know the material at a deeper level than high school improved their 
confidence. Jane did add that although her grade lowered, like Jay, this change in performance 
helped her reflect on how to better her study habits and require her to increase the effort she put 
into her mathematics course. Only two participants reported any change to their mathematics 
identity during their first semester of college. Jay reported that she did consider herself good at 
mathematics during the first interview, but during the final interview no longer held that belief of 
herself. Sunny on the other hand increased her perception of herself as a mathematics student. In 
general, data from the interviews and initial surveys show that these interview participants had 
higher rates of self-regulation strategy usage as their mathematics identity and mathematics self-
efficacy increased, although in some cases like Jay, it was through the reflection that her self-
efficacy had decreased that motivated her to better her study habits. Additionally, while the 
overall use of strategies tended to increase, in the case of Jane it was reported that she did not use 
certain beneficial strategies, such as seeking assistance from peers or instructors, because of her 
high degree of mathematics identity which led her to believe that she needed to be able to solve 
the problems independently to be good at mathematics. 

Discussion and Conclusion 
Participants in the study adapted their self-regulation strategies to the college setting by 

changing their study habits in response to exam performance and the increased difficulty of the 
course. This adjustment tended to involve some reflection about their study habits, an increase to 
time spent studying, or improved effort while studying which could take the form of attending to 
test reviews more frequently or seeking assistance from peers or instructors. Participants reported 
expecting a need to increase or change their high school study habits, but not to the degree that 
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might be necessary. This finding aligns with Collier and Morgan’s (2008) report that indicated 
undergraduate students did not expect to spend as much time per week studying in general 
undergraduate courses as what was recommended by the faculty that taught those courses. 
Almost all participants added or changed some aspect of their self-regulation strategy of setting a 
routine by increasing the time spent studying to adjust to the difficulty of the course, and 
specifically the difficulty of early exams. Participants were inclined to continue using strategies 
that worked for them in high school, but after recognizing the higher cognitive demand of their 
college course and the difficulty of their exams, participants adapted their study habits.  

To inform the relationship between self-regulation strategy usage and mathematics identity 
and self-efficacy, we see a positive correlation between these factors as measured by the MSLQ, 
the mathematics identity survey by Kaspersen (2016), and the self-efficacy survey by Usher and 
Pajares (2009). Within the interviews we also saw that participants’ discussions of their 
mathematics identity and self-efficacy affected their self-regulation strategies. As some 
participants, when their self-efficacy or identity was challenged by the difficulty of the course, 
were motivated to increase their use of self-regulation strategies to better their academic standing 
in the course.  This positive correlation between self-regulation strategies versus mathematics 
identity and mathematics self-efficacy supports Hackett and Bets’ (1989) call for promoting 
positive development of students’ mathematics identity and self-efficacy at a young age. This 
also relates to Tinto’s (2017) recommendation that development of self-efficacy can be 
accomplished through careful monitoring of first-year college students to provide social and 
academic support when facing difficulties.  
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In this paper, we describe the results of administering a survey we created to investigate 

students’ meanings for a universally quantified variable. Respondents with various levels of 

proof-course experience reviewed statement interpretations showcasing different meanings for 

quantified variables, indicating their preferred examples, which examples they believed to be 

viable, and a truth value for the statement. We developed the various interpretations from 

meanings described in our previous qualitative work on student quantification (e.g., Sellers et 

al., 2021). Our results suggest that students with a range of proof-course experience may benefit 

from reviewing diverse interpretations of a quantified statement. Still, students with less proof 

experience tended to accept more interpretations as viable or chose inappropriate truth values. 

In particular, we identify two non-normative interpretations most students believed were viable. 

We recommend proof-course instructors explicitly address these meanings in their classroom to 

foster student understanding of quantified statements. 

Keywords: Quantification, proof education, scaling qualitative research, survey design 

Introduction 

Research has shown that students’ interpretations of quantified mathematical statements play 

a crucial role in their understanding of advanced mathematical concepts in real analysis (Roh, 

2010; Roh & Lee, 2017) and their proof writing and comprehension (Dawkins et al., 2021; 

Selden & Selden, 1995). Our previous work (e.g., Sellers, 2020; Sellers et al., 2018, 2021) has 

described five distinct ways students might interpret quantified variables. We have also shown 

that students’ meanings for quantified variables can change from moment to moment, with the 

highest instability in meaning shown by calculus and transition-to-proof students (Sellers et al., 

2017).  

In this paper, we report the results of administering a survey we designed to (a) investigate 

the prevalence of these quantified variable meanings among collegiate students and (b) provide 

insight into instructional interventions that might promote students’ appropriate quantification. In 

the survey, respondents with various levels of proof experience identified: (a) meanings they 

believed produced viable interpretations of a quantified statement, (b) which interpretations they 

preferred, and (c) a truth value for the statement. Our research questions emerged through 

reflection on what we might learn about students’ quantification through a survey. Specifically, 

we investigated: 

1. How does exposure to various interpretations of the quantified variable in a mathematical 

statement impact students’ selection of the truth value for the statement? Do students’ 

selections vary by proof-course experience? 

2. Which meanings for quantified variables do students consider to be viable? Do students’ 

selections vary by proof-course experience? 

3. What meanings for quantified variables do students who select an inappropriate truth 

value prefer or believe to be viable after viewing the various interpretations? 
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Theoretical Framework 

Sellers et al. (2018, 2021) propose the Meanings for Quantified Variables (MQ) framework 

to explain possible meanings students might have in a given moment for a quantified variable 

(see Table 1). We adopt the constructivist definition of meaning, grounded in the notion that 

individuals construct meanings in their minds through experience (Thompson et al., 2014).  

 
Table 1: Categories of Meanings for Quantified Variables  

Meaning Mental Actions 

MQ1 Checking if the predicate 𝑃(𝑥) holds for at least one value of 𝑥 in 𝑋 

MQ2 Checking if the predicate 𝑃(𝑥) holds for exactly one value of 𝑥 in 𝑋 

MQ3 Checking if the predicate 𝑃(𝑥) holds for all values of 𝑥 in 𝑋 

MQ4 Checking if the predicate 𝑃(𝑥) holds for spontaneously chosen values of 𝑥 in 𝑋 

NQ No quantification (or absence of meaning for a quantified variable) 

 

We describe how a student with each meaning might interpret a universally quantified 

statement, which we refer to as Statement 1 (S1): For each real number x, let 𝑓(𝑥) = 𝑥4. 

Consider the following statement about the function 𝑓: For all real numbers x, √𝑓(𝑥)4 = 𝑥. The 

predicate 𝑃(𝑥) for S1 is √𝑓(𝑥)4 = 𝑥, the domain of discourse 𝑋 is the set of all real numbers ℝ, 

and the truth value of the statement is false. A student who uses MQ1 would check whether at 

least one real number satisfies the predicate √𝑓(𝑥)4 = 𝑥. A student who uses MQ2 would check 

whether precisely one real number satisfies √𝑓(𝑥)4 = 𝑥. A student who uses MQ3 would check 

whether all real numbers satisfy √𝑓(𝑥)4 = 𝑥. A student who uses MQ4 would spontaneously 

choose real numbers and individually test whether each value satisfies √𝑓(𝑥)4 = 𝑥. A student 

who exhibits no meaning for a quantified variable (i.e., NQ) might adopt an algebraic approach 

to investigating the predicate √𝑓(𝑥)4 = 𝑥 rather than address how the quantified variable affects 

his interpretation of S1. A student normatively interpreting the quantified variable 𝑥 in S1 would 

likely conclude that S1 is false by using MQ3 to identify a negative real number as a 

counterexample. However, other students might determine that S1 is false using MQ2, NQ, or 

MQ4, arriving at a normative truth value using an inappropriate quantification. 

Survey Design and Methodology 

Our survey instrument contained one universally and one existentially quantified statement. 

In this paper, we focus on S1, the universal statement. For S1, we included seven interpretations 

for 𝑥 based on the MQ framework (see Table 2): one interpretation for each of the five meanings, 

and a second interpretation for both MQ1 and MQ3. In the first MQ1 and MQ3 examples, we 

included only values of 𝑥 that satisfy the predicate √𝑓(𝑥)4 = 𝑥 (which we called “E” for 

“examples”). In the second MQ1 and MQ3 interpretations, we included only values of 𝑥 for 

which the predicate fails (which we called “CE” for “counterexamples”). 

For both quantified statements in the survey, the respondents answered questions in four 

distinct phases (see Figure 1). In Phase I, the students viewed and selected a truth value for the 

statement (options included true, false, cannot be determined, and other). The students then read 

a definition of “viable:” capable of working, functioning, or developing adequately (Merriam-

Webster, n.d.). We included this definition to minimize the differences in how students might 

understand the term “viable” in our survey prompts. 
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Table 2: Text of the Hypothetical Interpretations for S1 on the Survey 

Meaning Text of hypothetical interpretation for S1 on survey 

NQ I would just plug in the function formula to the equation in the statement. The 

statement means that 𝑥 is a real number and √𝑓(𝑥)4 = √𝑥44
= 𝑥. 

MQ1-E I would expect to see there is at least one real number for 𝑥 so that √𝑓(𝑥)4
= 𝑥. 

If 𝑥 = 2, then √𝑓(2)4 = √16
4

= 2. So, I have at least one real number for 𝑥 so 

that  √𝑓(𝑥)4 = 𝑥. 

MQ2 I would expect to see there is only one real number for 𝑥 so that √𝑓(𝑥)4
= 𝑥. But 

I found more than one real number for 𝑥 so that √𝑓(𝑥)4
= 𝑥. If 𝑥 = 2, 

then√𝑓(2)4 =   √16
4

= 2. If 𝑥 = 3, then √𝑓(3)4 =  √81
4

= 3.  

MQ3-E I would expect to see no matter what number I select for 𝑥, if 𝑥 is a real number, 

then √𝑓(𝑥)4 = 𝑥. If 𝑥 = 2, then√𝑓(2)4 =   √16
4

= 2.  

If 𝑥 = 3, then √𝑓(3)4 =  √81
4

= 3. I imagine that if I were to have unlimited 

time, I could keep selecting a different real number for x each time and see that I 

would have √𝑓(𝑥)4
= 𝑥.   

MQ1-CE I would expect to see that there is at least one real  

number for 𝑥 so that √𝑓(𝑥)4
= 𝑥. If 𝑥 = −2, then √𝑓(−2)4

≠ −2 because 

√𝑓(−2)4 = √16
4

= 2. Well, I will keep trying to check other real numbers to see 

whether I have at least one number for 𝑥 so that if 𝑥 is a real number, then  

√𝑓(𝑥)4 = 𝑥.  

MQ3-CE 

(Normative) 
If I choose a real number −2 for 𝑥, √𝑓(𝑥)4

≠ 𝑥 because √𝑓(−2)4
=  √16

4
= 2. 

So there is at least one real number 𝑥 such that √𝑓(𝑥)4
≠ 𝑥. 

MQ4-E/CE It could be √𝑓(𝑥)4
= 𝑥 or it could be √𝑓(𝑥)4

≠ 𝑥. For instance, if 𝑥 = 2, 

√𝑓(𝑥)4
= 𝑥 because √244

= 2. On the other hand, if 𝑥 = −2, √𝑓(𝑥)4
≠ 𝑥 

because √(−2)44
=  2. 

 

 
Figure 1: Visual Depiction of the Four Phases of the Survey for Statement 1 

In Phase II, students read individual interpretations of the quantified statement, indicating 

whether they believed each example to be viable. In Phase III, students who indicated at least 

one interpretation was viable (a) reviewed their previous viability choices and (b) selected one or 
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more preferred interpretations to reason about the truth value of S1. In contrast, students who 

claimed that no examples were viable described an alternative interpretation they considered 

viable. In the final phase, Phase IV, students again read the quantified statement and assigned a 

truth value. Students whose final truth value for S1 differed from their original truth value were 

prompted to explain why their choice changed. 

We collected responses from 108 students enrolled in calculus courses and a proof-based 

geometry course at two universities in the United States. After comparing students’ overall 

survey completion time, item completion times, and truth-value-change justifications, we deleted 

eight responses that appeared to be unreliable. The final sample of 100 students included 37 

respondents who self-reported no proof-based course experience, 39 who reported taking one 

proof course, and 24 who reported participating in more than one proof course. 

Results 

In this section, we describe the results of our preliminary descriptive analysis of the data in 

relation to our three research questions regarding (a) the impact of the interpretations on 

students’ truth value selections, (b) students’ beliefs regarding the viability of the various 

hypothetical examples, and (c) which interpretations students who persisted in claiming S1 is 

true preferred or believed to be viable. We devote a subsection to each research question. 

RQ1: Impact of Hypothetical Interpretations on Students’ Truth Value Selections 

We found a significant difference in the distribution of students’ chosen truth values before 

and after reviewing the hypothetical interpretations, which we show in Table 3. Specifically, 

69% of the 100 students initially indicated S1 is true, and 70% of the overall sample concluded 

that S1 is false after viewing the interpretations. This change in students’ perception of S1’s truth 

value seems to have emerged from their reflection on our survey items. For example, two 

students who changed their truth value from “true” to “false” explained that “I viewed instances 

where this statement couldn’t be true” and “I did not initially think…negative numbers would 

not be viable solutions, as presented by multiple students.” 

 

Table 3: Initial and Final Truth Value Selections for S1 (Overall Sample of 100 Students) 

Initial Chosen 

Truth Value 

The statement is true 69% 

The statement is false 24% 

We cannot determine if the statement is true or false 6% 

Other (Please explain) 1% 

Final Chosen 

Truth Value 

The statement is true 26% 

The statement is false 70% 

We cannot determine if the statement is true or false 3% 

Other (Please explain) 1% 

 *Highlighted rows indicate the most selected truth value among respondents 

 

When we separated students’ responses by proof-course experience, we discovered that 

students with little or no proof experience initially selected S1 is true in much greater numbers 

than those with more than one proof-based course (see Table 4). We also noted a large gain in 

the percentage of students who indicated that S1 is false after reviewing our interpretations (~50 

percentage point increase for each group). Still, due to the near-universal initial response that S1 
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is true by students with no proof experience, we found that over 40% of calculus respondents 

still maintained that S1 is true after reviewing all seven interpretations.  

 
Table 4: Initial and Final Truth Value Selections for S1 (100 Students Sorted by Proof-course Experience) 

 
 

0 Proof Courses 

(𝑛 = 37) 

1 Proof Course 

(𝑛 = 39) 

More than 1 Proof Course 

(𝑛 = 24) 

Initial Chosen 

Truth Value 

True 34 (92%) 26 (67%) 9 (38%) 

False 3 (8%) 10 (26%) 11 (46%) 

Final Chosen 

Truth Value 

True 15 (41%) 6 (15%) 5 (21%) 

False 21 (57%) 30 (77%) 19 (79%) 

*Highlighted cells indicate the most commonly selected truth value among respondents. Students who selected 

“Cannot be Determined” or “Other” for their initial or final truth value are not included in this table. 

RQ2: Students’ Determination of Viability for Individual Interpretations 

We chose the order in which the hypothetical interpretations were presented to students 

strategically, considering that some students may not initially consider negative real numbers for 

values of 𝑥. We first presented an algebraic example, followed by arguments utilizing positive 

real numbers for 𝑥, and concluded with interpretations using negative real number values for 𝑥.  

The following table, Table 5, shows the percentage of students in each proof-experience 

category that indicated a particular interpretation is viable. We found that at least 50% of 

students with no proof experience accepted 6 of the 7 interpretations as viable. Although students 

with proof experience tended to select fewer interpretations as viable, we noticed that a majority 

of students with proof experience still believed NQ, MQ3-CE (the normative interpretation), and 

MQ4 examples were viable. In contrast, the percentage of students who accepted the MQ1-E, 

MQ2, and MQ3-E interpretations decreased for each proof experience category. Our data imply 

that for our respondents, proof course experiences may have impacted their viability beliefs 

about some interpretations (i.e., MQ1-E, MQ2, MQ3-E) but not fully convinced them that other 

interpretations are unviable (i.e., NQ, MQ4). 

 

Table 5: Viability Selections for S1 (100 Students Sorted by Proof-based Course Experience) 

Proof 

Experience 
NQ MQ1-E MQ2 MQ3-E MQ1-CE 

MQ3-CE 

(Norm) 

MQ4-

E/CE 

0 courses  

(n = 37) 

27  

(73%) 

23 

(62%) 

20 

(54%) 

30 

(81%) 

13 

(35%) 

24 

(65%) 

20 

(54%) 

1 course  

(n = 39)  

22 

(56%) 

12 

(31%) 

10 

(26%) 

24 

(62%) 

16 

(41%) 

29 

(74%) 

26 

(67%) 

More than 1 

course  

(n = 24) 

13 

(54%) 

7 

(29%) 

4 

(17%) 

9 

(38%) 

9 

(38%) 

20 

(83%) 

14 

(58%) 

*Interpretations highlighted indicate more than 50% of respondents selected “viable” 

RQ3: The Preferred and Viable Interpretations of Students who Selected S1 is True 

A vast majority of students in our sample concluded that S1 is false after viewing various 

hypothetical interpretations we provided in our survey. Still, a non-trivial minority of students 
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(26%) continued to insist that S1 is true (see Tables 3, 4). In this section, we examine the 

preferred and viable interpretations indicated by these students. 

The following table, Table 6, contains two rows. The first row shows the percentage of the 

26 students who insisted S1 is true that selected a particular meaning among their preferred 

interpretations. The second row displays the percentage of the 26 students who selected “true” 

that indicated an interpretation was viable. From these two rows, it appears that students who 

insisted that S1 is true preferred examples that only utilized positive real number values for 𝑥 

(i.e., MQ1-E, MQ3-E).1 We also found that many students who indicated that S1 is true rejected 

interpretations that used negative values of 𝑥. For instance, no student who claimed S1’s final 

truth value is true preferred the normative counterexample-based interpretation. Additionally, 

only 23% of these students claimed the normative interpretation is viable (whereas 91% of the 

students who claimed S1 is false stated the normative example is viable). 

 

Table 6: Preferred and Viable Interpretations of the 26 Students whose Final Truth Value for S1 was “True” 

 NQ 
MQ1-

E 
MQ2 

MQ3-

E 

MQ1-

CE 

MQ3-CE 

(Norm) 

MQ4-

E/CE 

Students preferring 

interpretation (𝑛 = 26)  

12  

(46%) 

6 

(23%) 

2 

(8%) 

8 

(31%) 

1 

(4%) 
 

3 

(12%) 

Students indicating 

interpretation is viable 

(𝑛 = 26)  

18 

(69%) 

14 

(54%) 

11 

(42%) 

20 

(77%) 

7 

(27%) 

6 

(23%) 

9 

(35%) 

*Interpretations highlighted indicate the 2-3 highest (or lowest) percentages in each row 

Discussion and Conclusion 

Our study aimed to gain insight into meanings for quantified variables that students preferred 

or believed to be viable for interpreting statements. Our survey constitutes an attempt to study 

these meanings, which emerged from our previous qualitative work (e.g., Sellers et al., 2017), on 

a larger scale. Our survey varied from our clinical interviews (Clement, 2000) in two distinct 

ways. First, in the survey, we gave students various statement interpretations and asked them to 

indicate which examples they believed were viable, while in the interviews, we modeled 

students’ naturalistic interpretations of statements. Second, in the survey, we asked students to 

denote one or more provided arguments they preferred to use for interpreting the statement, 

while in the interviews, we assumed students’ expressed ideas were their preferred interpretation. 

Our first research question was related to how students’ reading of various interpretations 

might impact their truth value choice for S1. Our results show that students selected an 

appropriate truth value for S1 at much higher rates after viewing the interpretations, although 

41% of calculus respondents still maintained that S1 is true after reviewing our examples. This 

finding indicates that for many calculus students, pondering various examples of statement 

interpretations may not be sufficient to develop normative meanings for quantified statements. 

Our second research question was related to the meanings students believed to produce 

viable interpretations of S1. Our results show that students with no proof experience might 

accept a broad range of non-normative meanings for the variable 𝑥. Additionally, our findings 

indicate that many students (regardless of proof experience) believe that NQ and MQ4 are viable 

 
1 We do not include the NQ example because 61% of students who selected S1 is false believed it to be viable. 
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quantifications. However, students’ use of NQ or MQ4 is problematic because they might utilize 

these non-normative meanings to provide the appropriate truth value of S1. We thus encourage 

calculus and proof-based course instructors to facilitate student discussion activities to compare 

NQ, MQ4, and normative interpretations of quantified statements in their curricula.  

Our third research question was related to students who maintained S1 is true after reviewing 

various interpretations of the statement. Our results show that these students preferred algebraic 

examples or those that only utilize positive real number values of 𝑥. These students’ preference 

for NQ was unsurprising (to us), since we have previously reported that calculus students often 

exhibit NQ while interpreting statements (Sellers et al., 2017). Our finding that many students 

who maintained that S1 is true also believed that MQ1-E and MQ3-E are viable is a novel 

contribution to the quantification literature. We conjecture that these students might have relied 

more on examples than quantification to interpret S1. In this case, we would consider these 

students’ rejection of MQ3-CE and MQ1-CE to be a natural consequence of their focus on 

interpreting S1 through examples. Specifically, these students may have believed that values of 𝑥 

that did not satisfy the predicate 𝑓(𝑥) = √𝑥
4

 were irrelevant to the interpretation process because 

they constituted “non-examples” of S1.  

In summary, our survey results both verify and extend our previous qualitative findings. For 

instance, Sellers et al. (2021) described the existence of the five meanings in their MQ 

framework. In this paper, we extend these findings by showing (a) which meanings students 

prefer or believe are viable to interpret a universally quantified statement and (b) patterns in the 

meanings of students who believe a false universally quantified statement is true. We also 

provide insight into how teachers might implement Sellers et al.’s (2021) suggestion that 

instructors construct activities to address students’ non-normative meanings for quantified 

variables. Our findings highlight one possible activity: asking students to compare NQ, MQ4, 

and normative interpretations for a universally quantified variable in a mathematical statement. 

In future studies, we plan to investigate further the prevalence of non-normative quantification 

among students and potential instructional interventions to facilitate students’ construction of 

mathematical logic. 
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What is so difficult about teaching precalculus for the first time? Graduate students’ perspectives 
on learning to teach. 

 
 Jen Crooks Monastra Sean Yee 
 University of South Carolina University of South Carolina 

This study seeks to explore and understand the challenges of teaching precalculus for the first 
time from the perspective of a novice Mathematics Graduate Student Instructor (MGSI). This 
qualitative multiple-case study followed three MGSIs through a semester of teaching to 
understand their needs and inform efforts to support instructors. Findings indicated novice 
MGSIs encountered many challenges including covering course content, estimating class time, 
facilitating activities, maintaining student engagement, and adjusting to variation in students’ 
preparation. However, balancing dual responsibilities of student and instructor, working with 
students’ negative responses to engaging teaching methods, and interpreting students’ 
performance on assessments emerged as the most difficult challenges to overcome.  

Keywords: Graduate Student Instructors, Challenges, Professional Development, Precalculus 

Many graduate students aspire to careers in academia (Golbeck et al., 2016) and desire to be 
effective instructors. Research suggests graduate teaching assistants are concerned about their 
teaching effectiveness, communicating with students (Feezel & Meyers, 1997), dealing with 
student conflict (Park, 2004), and desire support for working with undergraduate students (Boyle 
& Boice, 1998). This study focuses on mathematics graduate student instructors (MGSIs), 
defined as a graduate student who serves as full instructor of record for an undergraduate 
mathematics course as part of their assistantship. Thus, they present course material, assess 
student learning, and assign final course grades. MGSIs are commonly assigned to teach 
introductory mathematics courses, despite being students themselves, having limited access to 
professional development (PD), and limited teaching experiences (Deshler et al., 2015; Ellis, 
2014; Speer et al., 2005). They may face challenges including balancing teaching with their own 
coursework or research, awareness of low status of teaching at a research university, difficulties 
getting and interpreting feedback, working with undergraduates who bring negative 
mathematical experiences to their classrooms, and anxiety in dealing with these challenges 
(Hauk et al., 2009). Further, their previous experiences and competency with mathematics likely 
vary greatly from the undergraduate students they teach (Deshler et al., 2015). Additionally, 
MGSIs may need to develop pedagogical content knowledge such as understanding common 
student difficulties, different ways students approach tasks, and illuminating examples to share 
with students (Speer, 2008).  

Although many universities have developed PD opportunities and supports for MGSIs, they 
vary greatly in depth and breadth (Belnap & Allred, 2009). Formal PD courses can improve 
STEM graduate students’ college teaching self-efficacy, particularly for teaching methods, 
course planning, and assessment of student learning (Connolly et al., 2018). Efforts to develop 
and improve such programs benefit from a rich understanding of MGSIs needs and teaching 
experiences and focusing on novice or less experienced instructors is important as universities 
continually use new MGSIs to provide instruction to undergraduates.  

To deepen the understanding of MGSIs’ needs, a larger semester-long study explored how 
MGSIs understand their planning and teaching for student learning and their efforts to 
incorporate active learning methods into an undergraduate course by examining reasons they 
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gave for making pedagogical decisions and identifying their perceived challenges1. The larger 
study sought to address the research question: During their first semester teaching a new 
undergraduate mathematics course, how do MGSIs plan (design and reflect) and implement their 
plans, with a focus on their goals for student learning? To address this broad question, four sub-
questions were created. Due to space limitations, this paper focuses on findings to only the final 
sub-question: What challenges do MGSIs describe as they reflect on their planning and 
classroom instruction?  

Theoretical Framework 
 Jackson (1968) described three phases of teaching: preactive, interactive, and postactive. 
The preactive stage could be thought of as planning or what teachers do to prepare for class. This 
could include writing lesson plans, making decisions about content, selecting mathematical tasks, 
identifying instructional goals, or preparing materials. The interactive phase consists of the time 
spent in the classroom with students. Thus, it describes the time when the lesson plan is 
executed. The postactive stage of teaching follows the interactive stage and includes the 
teacher’s reflective or evaluative thinking and their consideration of future lesson modifications.  

However, Clark and Peterson (1986) note that many researchers do not differentiate 
preactive and postactive thinking when studying teacher planning. They argue that teaching is a 
cyclical process and that a teachers’ reflections may influence their plans for subsequent classes. 
Thus, they conceptualized teacher planning to include both preactive and postactive thinking. 
Similarly, the Mathematical Association of America defined design practices as “the plans and 
choices instructors make before they teach and what they do after they teach to modify and 
revise for the future” (Abell et al., 2018, p. 89) reiterating the notion that these phases of 
teaching may be combined. Yet Clark and Peterson do contend that the “kind of thinking that 
teachers do during interactive teaching does appear to be qualitatively different from the kind of 
thinking they do when they are not interacting with students” (1986, p. 258) and maintain the 
distinction between planning and the interactive phase of teaching.  

Methods 
Methodological Approach 

In order to deeply explore MGSIs perspectives on planning and teaching, a qualitative 
multiple-case study methodology was selected. Case study is defined as “an empirical method 
that investigates a contemporary phenomenon (the “case”) in depth and within its real-world 
context” (Yin, 2018, p.15). The research design provided ample reflection time and space for 
MGSIs to describe their goals, decisions, and challenges. The site, timeframe, course, and 
participants defined the bounds of this case (Yin, 2018). Each case is comprised of an MGSI 
serving for the first-time as a full instructor of record for precalculus, an undergraduate service 
course in the mathematics department, as part of their teaching assistantship during fall 2019 at a 
large research university in southeastern United States.  

Participants and Setting 
All MGSIs teaching precalculus in fall 2019 were invited to participate in this study and 

three male MGSIs in their early twenties volunteered. All three were in their second year of 
graduate school, cared about their teaching, and were considering academia as a potential career 
track. None had experience teaching precalculus and all had served as a calculus teaching 

 
1 Supported by the University of South Carolina SPARC Grant (2020-2021) 
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assistant during their first year of graduate school. At the end of the study, each MGSI chose a 
pseudonym. Chen was an international graduate student and the other two, Willie and Patrick, 
were domestic graduate students. These MGSIs were actively receiving university support for 
learning to teach as they were provided with a peer mentor, were enrolled in a one-credit, year-
long pedagogy course, and had access to lesson plans that included problem sets and teaching 
suggestions. 

Precalculus is the prerequisite course to the calculus sequence which most STEM majors are 
required to complete. It is a four-credit hour course covering topics in algebra and trigonometry 
and is considered a service course, meaning the majority of students enrolled in the course are 
not mathematics majors. The course typically meets Monday through Thursday and enrolls about 
38 students in each section. At this university, precalculus is a common teaching assignment for 
second-year graduate students.  

Data Collection 
To answer the research question and provide a rich understanding of MGSIs challenges and 

teaching experiences, data was collected throughout the fall 2019 semester and included (1) 
interviews, (2) lesson observations, (3) weekly journals, (4) course documents, and (5) a focus 
group. MGSIs were interviewed at the beginning of the semester to understand their prior 
teaching experiences and beliefs about teaching and student learning. They were asked to select a 
total of three lessons, roughly one each month, where they planned to seek student engagement. 
These lessons were observed and video-recorded, lesson plans were collected, and followed by a 
semi-structured interview (50–100 minutes) that explored the MGSIs’ goals, planning and lesson 
design, and perceived challenges. Other forms of data included weekly journal entries 
(responding to 3–6 prompts), participant observations from the pedagogy course for MGSIs, 
their course assignments, and interviews with their peer mentors. At the end of the semester, 
MGSIs participated in a focus group seeking to gain insight into their overall experience as first-
time instructors of record. The focus of this study was on understanding the MGSIs experience 
of learning to teach undergraduate precalculus.  

Data Analysis 
The purpose of this study was to understand MGSIs’ needs by examining their thinking and 

teaching experiences in order to inform efforts to support their development. Thus, dramaturgical 
coding was chosen as the coding scheme. According to Saldaña (2016), it is useful for exploring 
underlying psychological constructs and “attunes the researcher to the qualities, perspectives, 
and drives of the participant” (p. 146). It includes six types of codes: objectives, conflicts, tactics, 
attitudes, emotions, and subtexts. Objectives typically referred to MGSIs goals for student 
learning. Conflicts, or obstacles, referred to aspects of teaching MGSIs identified as challenging 
or difficult and are the focus of this paper. Tactics provided insight into MGSIs’ lesson design 
and classroom practices. The attitude codes included the MGSIs orientations about teaching and 
learning. Analysis of a pilot study suggested the emotion and subtext codes were not useful for 
answering the research questions, thus they were omitted from later analysis. A fifth category 
called influences was added to capture references to external influences on MGSIs planning. 

Seven sources of data were coded for each MGSI: their semester-long journal, three lesson 
interviews, the background interview, and two written assignments from a pedagogy course. All 
codes were created in a hierarchical manner; each code was placed under the categories of 
objectives, tactics, conflicts, attitudes, or influences (level 1). To maintain MGSIs perspectives in 
the analysis, coding included in vivo codes (Saldaña, 2016). This paper focuses on the analysis 
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of the conflict codes which included codes such as “run out of time” and balancing workload. 
Code mapping (Saldaña, 2016) included reviewing quotes from categories at levels 2 and 3 to 
confirm that quotes described the same concept, discussing unclear passages with a colleague, 
and listing, comparing, and organizing codes into categories by rearranging or combining similar 
codes, was utilized at four points in the analysis: after coding the first piece of data (Chen’s 
journal) and again after completing coding the data from each MGSI. The codes were then 
condensed into themes, by grouping level 2 codes into larger categories. The analysis sought to 
identify areas MGSIs described as problematic from their perspective. As MGSIs expressed 
many common difficulties, findings are reported only through cross-case analysis.  

Throughout data collection and analysis, a research log was created containing memos to 
document the research process, reflect on lesson observations and interviews, generate future 
questions, discuss concerns, and contemplate next steps in the research process (Saldaña, 2016). 
All interviews were transcribed using software and were cleaned by the author. All coding was 
done in Dedoose and coding proceeded one MGSI at a time so that each instructor could be 
studied individually before making comparisons across cases. Tentative findings were shared 
with and reviewed by MGSIs for trustworthiness. 

Findings 
MGSIs limited teaching experience likely contributed to some of their challenges, 

particularly as they were trying out new teaching methods and thus struggling to facilitate 
activities or estimate time students would need to complete problems or tasks. Further, they were 
teaching the course for the first time and still grappling with determining the depth and length of 
time to spend on mathematical concepts. The difficulties with managing class time and course 
pacing could easily be attributed to their stage of beginning to learn to teach and are not 
elaborated upon in this paper due to space limitations. Further, MGSIs noted times in the 
semester, such as before breaks or near the end of the semester, when students seemed generally 
less engaged. MGSIs were able to manage most of these challenges with support from mentors 
and peers. Thus, this paper focuses on other more enduring challenges highlighted in the table. 

 
Table 1: Summary of Challenges and Aspects of the Challenges 
 

 Phases of Teaching Challenges 
Preactive: Planning  (1) Limited time for planning; (2) Course content coverage 

Interactive: Implementing 
Lesson Plans  

(1) Estimating time needed for tasks or activities; (2) Students’ 
responses to teaching methods (3) Facilitating lesson logistics; (4) 
Maintaining semester-long student engagement 

Postactive: Reflecting on 
Teaching Experiences 

(1) Interpreting students’ performance on quizzes or tests; (2) 
Interpreting students’ course preparation 

Preactive Challenges: Preparing to Teach 
MGSIs are simultaneously both a student and an instructor. As a result, Willie expressed 

in his journal that he was “essentially working two full time jobs.” Learning to balance these 
responsibilities and mange workloads was a challenge for all MGSIs in this study. Throughout 
the semester, MGSIs found weeks where the time needed for their own coursework conflicted 
with their responsibilities as an instructor. Both Patrick and Chen identified this as their greatest 
teaching challenge in the final journal entry. Chen reflected, 
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Time management is probably the most difficult in the past semester. This semester is the 
first time that I taught MATH 115 [precalculus]. We meet four times a week, so, I have to 
do a lot of lecture preparation (which I have been trying to align with homework, quiz, 
and exam). Even though we have the lesson plans in online material and worksheets, I 
still usually go over the book, look for extra material online, and compare my notes to 
other peoples’ notes. These planning worked fine when I am not busy, however, toward 
the end of the semester, I find it difficult to balance planning the lesson with focusing on 
my own study.  

Patrick identified the same challenge and stated, “there were weeks this semester where it felt as 
though I had to choose between doing well in my role as a MATH 115 instructor and doing well 
in my courses. This is a no-win situation.” In the focus group, MGSIs collectively agreed they 
spent most of the day teaching, holding office hours, or preparing for teaching in some way and 
then would go home and complete their own graduate coursework in the evening or over the 
weekend. These MGSIs chose to spend a large amount their time on preparing to teach and 
wanted to be effective instructors. Willie explained,  

I feel like if you want to have a good class, it takes a lot of preparation. It's pretty much 
writing all those assignments and grading. You know, if you really want to be a good 
teacher, you're going to spend more time. 

MGSIs reported that planning active learning activities tended to take more time to prepare than 
traditional lecture-type lessons. Experienced faculty often cite lack of time to redesign courses as 
a reason for not incorporating active learning (Johnson et al., 2018; Plush & Kehrwald, 2014). 
Thus, it may be that examples of these types of activities are more valuable to share with new 
instructors. To a lesser extent, MGSIs occasionally mentioned concerns about feeling behind 
schedule, pacing material, or selecting problems of the right difficulty level. 

Interactive Challenges: Implementing Lesson Plans 
A conflict MGSIs experienced with implementing lesson plans came from some students’ 

responses to MGSIs efforts to create student engagement. MGSIs experienced conflict when 
their students either provided feedback indicating they disliked an activity or appeared frustrated 
by or not engaged in an activity. These challenges often related to lessons when MGSIs planned 
activities intended to engage students. MGSIs tended to reference a few students or a group of 
students rather than an entire class when reflecting on this difficulty. For example, Chen 
reflected in an interview on feedback he received from a few of his students on both a mid-
course evaluation and directly following a discovery type lesson he designed to help students 
make meaning of asymptotes. He stated, “they don't like when I do this kind of stuff, have them 
struggle and conclude an idea from the lesson. A few people don't like that.” Similarly, Patrick 
reflected on student feedback related to a jigsaw activity in his journal. He wrote, “many 
comments suggested that they prefer a standard lecture because the way that I explain topics is 
clearer and more organized” than their peers’ explanations.  

Beyond preferring lecture-style instruction, MGSIs occasionally encountered students 
who opposed non-lecture teaching methods. Willie discussed at length difficulties he 
encountered with one group who struggled to complete a jigsaw activity about quadratic 
functions. Willie shared in the interview,  

I just remember it was three red faces right in front of me. I was like, Oh no, that's not 
good! I tried to help. [It] just wasn't sticking. They weren't putting in effort. They just 
want to come into class, take notes and leave is what it felt like. They were unhappy. 
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Willie confirmed the students were unhappy with the teaching method, explaining, “I had one of 
them come up to me and said, can we not do this again? So yeah, she was not happy with the 
method.” Willie tried to provide hints to move the group along, but their progress lagged well 
behind other groups and their attitudes did not improve.  

Although these MGSIs participated in some PD related to facilitating student-to-student 
interactions, MGSIs perceived success with group work varied greatly in this study. Patrick and 
Chen repeatedly expressed difficulties getting students to engage in group work, indicating that 
students tended to work alone despite their efforts to encourage collaboration. Patrick stated in 
his journal, “I am having trouble getting my students to interact with each other.” And elaborated 
in the first lesson interview, 

Maybe I can find some way to make my lessons so that they are helping each other a little 
more or at the very least so that it's not just silent in my classroom. Sometimes it is. A lot 
of times it is… I'll say you can work on these problems. You can work with people 
around you or people next to you. They just work by themselves mostly. I don't know if 
it's a matter of they just want to try it [alone] or what.  

Despite the limited success, both continued to try various approaches to group work. Chen 
shared, “I'm not gonna give up doing group work so, but I have to like find a better way to do it.” 
Both suggested time of day could have impacted their students’ engagement. Many students 
appreciate aspects of group work yet report dissatisfaction if they prefer to work at a different 
pace than their group, are uncomfortable, shy or introverted, or need more clarity on a topic 
(Uhing et al., 2021). MGSIs perceived these types of teaching challenges as difficult to 
overcome, and during the focus group they expressed a consensus understanding that it is not 
possible to please all students.  

Postactive Challenges: Reflecting on Teaching  
MGSIs discussed challenges related to understanding their precalculus students, 

particularly their performance on quizzes or tests, but also around students’ prior preparation, 
and how students appeared to prepare for their current course. In this study, quizzes and tests 
refer to written assessments of students’ knowledge of mathematical content which MGSIs 
collected and graded. MGSIs were troubled that some students at times struggled to demonstrate 
mathematical knowledge, understand concepts, recall facts or procedures on quizzes or tests, or 
repeated errors that MGSIs attempted to address in their teaching despite MGSIs best efforts to 
include student-centered teaching methods.  

MGSIs’ feelings, and perhaps efficacy for teaching, seemed to be negatively impacted by 
student performance on graded assessments and at times they pondered to what extent they were 
accountable for student learning. In some ways, this presented an emotional challenge for MGSIs 
as they expressed feeling responsible for student performance on quizzes and tests. Patrick wrote 
in his journal: “When quiz scores are lower than normal, it's hard not to feel like it's my fault 
somehow.” Chen stated in the third lesson interview, “I feel like as an instructor I should be 
somewhat responsible for how they learn.” Willie also expressed feelings of responsibility for 
student learning during the third lesson interview when he asked, “I mean 70 is like the 
minimum that I want it. So, when I get below it, I'm like, did I do something wrong?” MGSIs 
contemplated their responsibility for student learning. Chen expressed this in his journal when 
reflecting on things he could do to help students remember concepts and concluded “I don’t 
know if it’s the students or my fault that they don’t learn, I don’t know.” In the final journal 
entry Willie expressed, 
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The most difficult thing for me was watching kids not do well and knowing I've tried 
everything I could and offered everything I could to help them. It made me feel bad as a 
teacher and bad for the student. However, I have to learn that I cannot help everyone! 

Processing students’ performance on tests or quizzes and communicating with students about 
low scores can be difficult for instructors. MGSIs responded to students low scores in a variety 
of ways including curving scores, offering extra credit, dropping quizzes, and allowing students 
to correct exams for points. The experience of seeing students struggle with problems on a quiz 
or test that had been, from the instructor’s perspective, clearly covered during class was a source 
of conflict for these MGSIs whose goals included helping students develop mathematical 
thinking and procedural skills so that they could succeed in both current and future courses 
(Monastra & Yee, 2021). This tension may cause distress, disappointment, or discouragement for 
MGSIs and may have been especially salient in this study as MGSIs spent a lot of time reflecting 
on their goals for student learning. Further, MGSIs put a great amount of effort into their 
teaching and then did not always receive the benefit of large amounts of student success.  

Discussion 
This study’s findings suggest that MGSIs need opportunities to reflect on and discuss 

their teaching, support and training for working with undergraduate students, and planning time. 
Cognitive coaching techniques (Costa & Garmston, 2018) may be helpful for promoting 
reflection. Graduate student PD can address a wide range of topics, yet often focuses on generic 
teaching skills (Park, 2004) or “administrative responsibilities and mechanical aspects of 
teaching” (Speer, 2008, p. 313). These topics are important and necessary, yet they may not be 
sufficient for supporting MGSIs. Further, their teaching does not always lead to the desired 
results. MGSIs may experience tension between their goals for student learning and the actual 
learning they see demonstrated on tests or quizzes. Acknowledging and reflecting on these 
tensions by pondering questions about instructors’ responsibility for motivating their students 
may be an important area for PD. Allowing MGSIs to reflect on who should be accountable for 
student learning may lead to fruitful discussions.  

Further, MGSIs may encounter some negative responses or pushback from their students. 
Student attitudes have been identified by faculty as a reason to not utilize reform materials or 
teaching methods (Deslauriers et al., 2019; Henderson & Dancy, 2007) and student stress can 
impact instructors’ problem selection on assessments (Yerushalmi et al., 2010). Further, 
undergraduate STEM students perceive they learn more and prefer well-delivered lectures when 
compared to the increased cognitive effort required in active learning settings (Deslauriers et al., 
2019). Discussing productive ways to respond to students’ attitudes towards teaching methods, 
tips for creating learning environments that promote student engagement with tasks, and 
discussions or suggestions related to setting class norms, features of high-quality tasks for group 
discussion, various models of group work, and question posing techniques would appear to be 
beneficial for graduate student instructors. Some of these topics were addressed in these graduate 
students’ PD, which emphasizes the point that support cannot be limited to a one-time training. 
Rather novice instructors need sustained discussion and models of teaching methods as well as 
opportunities to share success and struggles with implementing various teaching methods in their 
classrooms. Finally, PD providers and mathematics departments must be aware of the time strain 
some graduate students may be experiencing as time is identified as a barrier to instructors 
adopting reform teaching practices (Henderson & Dancy, 2007; Johnson et al., 2018). Future 
research into the impact of graded assessments on MGSIs self-efficacy or teacher identity and 
how MGSIs understand student motivation would be helpful. 
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This study explores how instructional interventions and teacher moves might support students’ 

learning of logic in mathematical contexts. We conducted an exploratory teaching experiment 

with a pair of undergraduate students to leverage set-based reasoning for proofs of conditional 

statements. The students initially displayed a lack of knowledge of contrapositive equivalence 

and converse independence in validating if a given proof-text proves a given theorem. However, 

they came to conceive of these logical principles as the teaching experiment progressed. We will 

discuss how our instructional interventions played a critical role in facilitating students’ joint 

reflection and modification of their reasoning about contrapositive equivalence and converse 

independence in reading proofs. 

Keywords: logic and proof, instructional interventions and teacher moves, contrapositive 

equivalence, converse independence 

The purpose of this study is to explore how students might learn logical principles and how 

instructional interventions and teacher moves might support students’ learning of logic. We 

focus on two logical principles: contrapositive equivalence and converse independence. By 

contrapositive equivalence, we refer to a logical principle that a conditional statement has the 

same truth value as its contrapositive. By converse independence, we mean a logical principle 

that a conditional statement does not necessarily have the same truth value as its converse.  

These two logical principles are foundational for mathematical justification: the former provides 

a logical account that proof of a conditional statement is also a proof of its contrapositive, and 

the latter provides a logical account that proof of a conditional is not a proof of its converse.  

It is critical for students in proof-oriented mathematics courses to know and use 

contrapositive equivalence and converse independence for their proof activities. However, 

empirical studies have reported students’ challenges with using these logical principles: In 

Stylianides et al.’s (2004) study, many mathematics undergraduates did not use the 

contrapositive equivalence as a valid inference. Dawkins et al. (2021) reported a similar 

phenomenon in which undergraduate students with no proof experience in college conceived that 

the proof of the contrapositive would not provide a proof of the original conditional statement. 

Dawkins et al. (2021) also documented calculus students conceiving a proof of a conditional 

statement as proof of its converse when both the conditional and its converse are true.  

While issues with student learning of these logical principles have been studied widely in 

proof research, these empirical studies have not focused much on how instructional interventions 

and teacher moves might provide support for students to learn these logical principles (Melhuish 

et al., 2022; Stylianides & Stylianides, 2017). In this paper, we document a case of two 

undergraduate students, Carl and Sarah, as a possible account for students coming to understand 

and might use these two logical principles. We also examined how the instructional interventions 

25th Annual Conference on Research in Undergraduate Mathematics Education 694



and teacher moves we designed and implemented might have played a role in students 

developing set-based reasoning for these logical principles. This study addresses the following 

research questions: (1) How might students make progress in learning to use contrapositive 

equivalence and converse independence by engaging in set-based reasoning? and (2) how, when, 

and what types of instructional interventions and teacher moves could encourage or facilitate 

their set-based reasoning for learning these logical principles?  

Theoretical Framework 

We employ Piaget’s genetic epistemology as our theoretical lens for this study. From this 

perspective, we assume that individual students idiosyncratically organize their experiences 

within mental schemes (Glasersfeld, 1995; Piaget, 1971; Piaget & Inhelder, 1969). The schemes 

organized by an individual student’s unique experience would provide space of implications for 

her reasoning (Thompson et al., 2014). On the other hand, individual students’ ways of reasoning 

are not accessible to observers; we, as researchers, propose viable models of their ways of 

reasoning through their behaviors and utterances. We suggest and use a triad of relationships a 

student might need to construe when validating a proof-text paired with a conditional statement 

to be proven (Error! Reference source not found.):   

• What the student knows: this may include mathematical propositions, logical principles, 

or any relationship that the student conceives from the given conditional  

• What the student construes from the given conditional to be proven: a student might posit 

a relationship that the given conditional construes (to them).  

• What the student believes the given proof-text attempts to prove: A student might posit a 

relationship that the given proof-text construes (to them). 

The three relationships a student construes would likely support her reasoning when examining if 

the proof-text proves the statement to be proven. However, students may not find compatibility 

among the relationships they have construed. In such cases, instructional interventions and 

teacher moves could play a critical role in supporting students in connecting these relationships 

(e.g., Ellis et al., 2019; Mata-Pereira & da Ponte, 2017). Using this triad as an analytic tool, this 

paper provides empirical evidence that instructional interventions and teacher moves could 

leverage students’ learning of contrapositive equivalence and converse independence. 

Research Methodology 

As part of a more extensive study aiming to develop constructivist models of students’ 

abstraction of logic for proof of conditional statements, we have conducted exploratory teaching 

experiments (Steffe & Thompson, 2000) since 2018. The exploratory aspect of the experiments 

allowed us to repeat six iterations of the design-implementation-analysis cycle over five years to 

refine the instructional tasks and our models of students’ ways of reasoning about logical 

principles.  

Figure 1. Three relationships a student may construe while reading a proof-text paired with a statement 
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This paper documents our findings from our sixth iteration of the teaching experiments 

conducted at a large public university in the United States. Two undergraduate students, Carl 

(engineering major) and Sarah (mathematics major), were recruited from calculus 3 at the 

beginning of the semester in the Spring of 2022. We selected Carl and Sarah out of 14 students 

who completed the screening survey (Roh & Lee, 2018) as they met our selection criteria. Their 

survey responses indicated they would have sufficient mathematical knowledge to comprehend 

conditional statements and proof-texts in our designed tasks yet need to learn logical principles 

to validate mathematical proofs. Both students also reported they learned proofs in geometry in 

high school but had not yet taken any proof-oriented courses in college.  

The exploratory teaching experiment was organized once a week for 12 weeks for 75-minute 

interviews. For the first (intake) and last (exit) interviews, we conducted clinical interviews 

(Clement, 2000) by meeting each student individually to assess their use of logic to validate 

proofs of conditional statements. We conducted exploratory teaching interviews for the rest of 

the ten interviews (Sellers, 2020). We met with both students and implemented the tasks we 

designed to help students leverage set-based reasoning. The tasks for the teaching interviews 

consisted of 4 tasks: (1) set theory tasks (defining sets by shared properties); (2) truth conditions 

tasks (evaluating truth values of conditional statements); (3) what-does-it-prove tasks (reading 

and comparing proof-texts paired with a conditional statement), and (4) abstraction task 

(comparing various proofs across different mathematical contents to abstract general proof 

frames for conditional statements). With these tasks, we tried to create a student-centered 

learning environment to encourage students’ reflection and modification of their reasoning.  

Results 

At the intake interviews, Carl and Sarah exhibited the opposite of the normative 

mathematical logic regarding contrapositive equivalence and converse independence. 

Specifically, they both responded that a proof of the contrapositive of a given conditional does 

not prove the statement. In contrast, a proof of the converse of a given conditional proves the 

statement when both the original conditional and its converse are true. Their responses at the 

intake interviews indicate the absence of these logical principles in the students’ reasoning, or at 

least the intake interview tasks did not evoke the students to use these logical principles. 

However, their reasoning about logic shifted during the teaching interviews in which we 

implemented the what-does-it-prove (WDIP) tasks (Days 5-8). Carl and Sarah first made sense 

of the contrapositive equivalence and later began to make sense of the converse independence. 

We describe how contrapositive equivalence became these students’ knowledge base for proof 

by contrapositive, yet created resistance to develop converse independence. We also document 

how our instructional interventions designed to leverage set-based reasoning and teacher moves 

facilitated students’ reflection on mathematical proof and their eventual recognition of converse 

independence.       

Teacher Moves Leveraging Student Progress in the Contrapositive Equivalence   

On Day 5, the first day for the WDIP tasks, the interviewer presented Theorem 1 (“For every 

integer x, if x is a multiple of 6, then x is a multiple of 3”) with three associated proof-texts, 

Proof 1.1 (direct proof), Proof 1.2 (disproof of converse), and Proof 1.3 (proof of the 

contrapositive). Carl and Sarah immediately attended to the first and last lines of Proof 1.1 and 

said that Proof 1.1 would prove Theorem 1. Afterward, these students frequently examined if the 

first line and last line of other proof-texts matched the if-part (the premise) and the then-part (the 

conclusion) of the theorem to be proven, respectively. These students’ attention to the first and 
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last lines of the proof-texts enabled them to find the compatibility among what relationship they 

know about the premise and conclusion of the given theorem, what relationship the given 

theorem describes, and direct proof attempts to prove the given theorem.  

On the other hand, these students’ tendency to check the matches between the first line of a 

proof-text and the premise of the theorem statement may have hindered them from discerning 

why proof of contrapositive indeed proves the given theorem, even though proof of 

contrapositive does not start with the if-part of the given theorem statement.  

Sarah: I said it [Proof 1.3] proves something different. I guess it [Proof 1.3] proves the 

complements of the original one that if x is not a multiple of 3, then x is not a multiple of 

6, which [is] base[d] off of how we were seeing the complement, remember? That could 

possibly be true [inaudible]. 

Carl: Yeah. I said the same thing […] It’s, yes, if we’re allowed to say that if A is a subset of 

B, and B’s complement is a subset of A’s complement. 

In the dialogue above, Sarah and Carl used set languages, such as subsets and complement sets. 

Carl used letters A and B to name the truth sets for the premise and conclusion of Theorem 1 and 

used these letters to interpret what Theorem 1 says and what Proof 1.3 proves in terms of subset 

relationships. Sarah then claimed that what Proof 1.3 attempts to prove is the contrapositive of 

Theorem 1 and could also be true. Carl agreed to interpret Theorem 1 and Proof 1.3 in terms of 

subset relationships if they were allowed to say the set relationships 𝐴 ⊆ 𝐵 and 𝐵𝑐 ⊆ 𝐴𝑐. 

However, the students’ use of set language itself did not indicate their use of contrapositive 

equivalence. They responded that both Theorem 1 and its contrapositive are true in this case but 

drew two different diagrams to represent what Theorem 1 construed to them and what they 

believed Proof 1.3 attempts to prove. Sarah drew a diagram to represent what Theorem 1 meant 

to her: the truth set 𝑃 of the premise of Theorem 1 is a subset of the truth set 𝑄 of the conclusion 

of Theorem 1. She also drew another diagram for Proof 1.3, in which 𝑄𝑐 is contained in 𝑃𝑐 

(Error! Reference source not found. left).  

At this point, the interviewer intervened with Carl and Sarah by inviting them to use only one 

diagram for both Theorem 1 and Proof 1.3. This teacher intervention enabled Sarah to use her 

diagram for Theorem 1 to shade the region corresponding to the complements of 𝑃 and 𝑄. (i.e., 

If 𝑃 ⊆ 𝑄, then 𝑄𝑐 ⊆ 𝑃𝑐). By Instructor’s request, Sarah was also able to use her diagram for 

Proof 1.3 to describe Theorem 1 (i.e., If 𝑄𝑐 ⊆ 𝑃𝑐, then 𝑃 ⊆ 𝑄). Sarah’s revised diagrams 

(Error! Reference source not found., right) are indicative of her progress in the 

conceptualization of contrapositive equivalence (P ⊆ 𝑄 iff 𝑄𝑐 ⊆ 𝑃𝑐). After looking at Sarah’ 

revised diagrams, Carl agreed with Sarah and illustrated his diagram, which was similar to 

Figure 2. Sarah’s diagrams for Theorem 1 & Proof 1.3: (left) initial; (right) after the teacher intervention 
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Sarah’s diagrams. But he also added another case in which if two sets A and B are equal, then 

A’s complement and B’s complement are also equal (If P = 𝑄, then 𝑄𝑐 = 𝑃𝑐). Figure 3 

illustrates our model of Sarah’s reasoning in which she began to use contrapositive equivalence 

as her new knowledge to comprehend a proof of contrapositive as a proof of the original 

conditional. From that point, the contrapositive equivalence became robust knowledge for Carl 

and Sarah for the rest of the teaching experiment. Here, we see the teacher intervention 

supported these students to use what they came to know (contrapositive equivalence) to connect 

what relationship Theorem 1 construed to them (𝑃 ⊆ 𝑄) with what they believed Proof 1.3 

attempts to prove (𝑄𝑐 ⊆ 𝑃𝑐). 

Teacher Moves Leveraging Student Progress in Converse Independence   

On Day 6, the interviewer presented Theorem 2 (for any integer 𝑥, if 𝑥 is a multiple of 2 and 

7, then 𝑥 is a multiple of 14) with two associated proof-texts: Proof 2.1 (proof of converse) and 

Proof 2.2 (direct proof). Carl and Sarah responded that Proof 2.1 proves Theorem 2 despite the 

reversed order because they believed Theorem 2 and its converse are both true. To be more 

specific, Carl explained that he knew the set of all multiples of 2 and 7 (𝑃) is the same set as the 

set of all multiples of 14 (𝑄), i.e., 𝑃 = 𝑄, and to him, Theorem 2 interprets the subset 

relationship 𝑃 ⊆ 𝑄. Carl also believed Proof 2.1 proves the reversed subset relationship 𝑄 ⊆ 𝑃. 

While Theorem 2 and Proof 2.1 form different subset relationships, he could infer Theorem 2 

from Proof 2.1 by substituting 𝑃 to 𝑄 and 𝑄 to 𝑃 in the subset relationship 𝑄 ⊆ 𝑃. He said that 

since he already knows 𝑃 = 𝑄, by using his knowledge, he could infer Theorem 2 from what 

Proof 2.1 proves.  

On Day 7, the interviewer presented Theorem 4 (Given any quadrilateral ABCD, if ABCD is 

a kite and parallelogram, then ABCD is a rhombus) with Theorem 4.1 (proof of converse) and 

Theorem 4.2 (direct proof). Carl continued claiming, and Sarah agreed, that although Proof 4.1 

proves the converse of Theorem 4, it also proves Theorem 4 because both Theorem 4 and its 

converse are true. We infer that these students meant the two subset relationships 𝑃 ⊆ 𝑄 and 

𝑄 ⊆ 𝑃 are indistinguishable to them when 𝑃 = 𝑄. In our model, they conceived that Proof 4.1 

proves the converse of Theorem 4. But since they already knew the premise and the conclusion 

of Theorem 4 represents the same truth sets (𝑃 = 𝑄), they went further to infer that Proof 4.1 

proves Theorem 4 as well.  

Figure 4. A model of Carl's reasoning about why Proof 2.1 proves Theorem 2 

Figure 3. A model of Sarah's way of reasoning with contrapositive equivalence 
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On Day 7, Carl claimed, and Sarah agreed, that they should be allowed to use what they 

know without justification. He compared proof of converse with proof of contrapositive. 

Although Proof 1.3 does not justify contrapositive equivalence, Carl accepted that Proof 1.3 

(proof of contrapositive) proves Theorem 1 because he knew contrapositive equivalence. Carl 

then claimed with an analogy that we should also accept Proofs 2.1 and 4.1 (proofs of converse) 

even though these proofs do not provide justification for 𝑃 = 𝑄, since he already knew these sets 

were equal. Furthermore, Carl claimed, and Sarah agreed, that proof does not necessarily justify 

explicitly what they already know. This is similar to how one may apply a known theorem 

without reproving it. The distinction between the ways mathematicians cite prior knowledge and 

how Carl wanted to cite prior knowledge is quite subtle, and we see Carl’s reasoning as 

subjectively rational. The more central question was: how would Carl and Sarah justify 𝑃 = 𝑄 

instead of saying they already know it?  

On Day 8, the interviewer presented Proof 4.4 () as an instructional intervention, which 

resembled our model of Carl’s reasoning on Day 7. As a version of proof of converse, Proof 4.4 

explicitly stated the equal set relationship that “we already know” without justification. Both 

students responded that Proof 4.4 would prove Theorem 4 directly because it explicitly stated 

𝑃 = 𝑄 in the proof-text and thus provided warrants (𝑃 = 𝑄) to support Proof 4.1 (𝑄 ⊆ 𝑃) infers 

Theorem 4 (𝑃 ⊆ 𝑄).  

While the interviewer acknowledged that the students already knew 𝑃 = 𝑄, she invited them 

to state what it would mean for two sets 𝑃 and 𝑄 to be equal. Students’ responses to this 

instructional intervention uncovered the absence of meaning for equal sets in these students’ 

reasoning: They were not sure how to say two sets are equal. Carl merely suggested that two sets 

are equal (𝑃 = 𝑄) when their complements are equal (𝑃𝑐 = 𝑄𝑐) (see Error! Reference source 

not found., left). Sarah then suggested combining Theorem 4 and its converse (see Error! 

Reference source not found., right) as a meaning for equal sets.  

 

Figure 6. Students wrote their meaning of equal sets: Left: Carl; Right: Sarah 

Figure 5. Proof 4.4: A model of Carl's reasoning in accepting Proof 4.1 (proof of converse) as a proof of Theorem 4 
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After the interviewer invited Carl and Sarah to state their meaning of equal sets, Sarah shifted 

her interpretation, revealing a sense of circularity. In particular, her interpretation of equal sets 

by this conjunction of a conditional and its converse helped her to realize the absence of 

justification for 𝑃 = 𝑄 in Proof 4.4. When Carl asked if “we are given 𝑃 = 𝑄 from Proof 4.4 or 

not,” Sarah responded to Carl that “No, Proof 4.4 isn’t even really proving 𝑃 =  𝑄. It’s just 

saying it is.” When Carl asked again if that (𝑃 = 𝑄) is “given or inferred,” Sarah again 

responded to Carl that “it [Proof 4.4] never says [justifies] 𝑃 = 𝑄.” From this student dialogue, 

we could see Sarah’s reasoning had evolved regarding the converse independence. While 

engaging in the sequence of activities and responding to the interviewer’s prompts, she 

concluded that we should use only what we had already proved without justification again. Since 

they already justified contrapositive equivalence by diagrams (Figure 2), Sarah believed that they 

could say Proof 1.3 (proof of contrapositive) proves Theorem 1 even though Proof 1.3 does not 

justify the contrapositive equivalence. However, she contended that “Proofs 2.1 and 4.1 (proofs 

of converse) do not necessarily prove their original theorems because the theorems ask “if 𝑃, 

then 𝑄” (𝑃 ⊆ 𝑄) but the proofs instead prove “if 𝑄, then 𝑃” (𝑄 ⊆ 𝑃). To prove the theorem to be 

proven, the proofs would have to prove 𝑃 = 𝑄 so we can assume 𝑃 ⊆ 𝑄 and 𝑄 ⊆ 𝑃.” While Carl 

did not accept Sarah’s claim on Day 8, he exhibited his acceptance of converse independence at 

the exit interview. Specifically, Carl determined, “Proof 𝛾 (proof of converse) proves 𝐵 ⊆ 𝐴 but 

doesn’t really prove Theorem 𝛾 (𝐴 ⊆ 𝐵) [because] Proof 𝛾 lies on the reader inferring 𝐴 = 𝐵. 

Basically, if proof 𝛾 added an extra line, proving 𝐴 = 𝐵, then it would be equal to it. Then it 

would prove the theorem. [but] I don't think they do it.” 

Discussion 

 In this paper, we documented how Carl and Sarah generalized contrapositive equivalence 

and converse independence across proofs of conditional statements as they were engaging with 

the WDIP tasks. The interviewer’s prompting to use only one diagram to interpret two subset 

relationships helped the students make the line of inference between Proof 1.3 (proof of 

contrapositive) and Theorem 1 explicit, such that they affirmed it by their “prior knowledge” 

regarding the contrapositive equivalence. Later, Carl used this idea to justify why proof of 

converse proves the original conditional. For him, proof of contrapositive and proof of converse 

both relied on his prior knowledge, which he called “prove indirectly.” Indeed, in one case, his 

prior knowledge was logical knowledge about the generalizable contrapositive relationship; in 

the other, it was local mathematical knowledge that the situation described by Theorem 4 related 

two equal sets of quadrilaterals. By introducing Proof 4.4, the interviewer’s move of reflecting 

the form of Carl’s justification back to the students allowed them to move forward in critiquing 

the justification. However, to see the conflict, which is what mathematicians usually call 

“circularity,” Sarah needed to interpret set equality as the conjunction of two subset claims. This 

made it clearer how asserting 𝑃 = 𝑄 without proof was tantamount to asserting 𝑃 ⊆ 𝑄 without 

proof. Understanding the logic of the relationships between proofs and theorems is quite 

challenging. Still, we see how these instructional moves supported Carl and Sarah in 

apprehending the structure of their own arguments to evaluate them more precisely. We are 

pleased with how our interventions allowed these students to wrestle deeply with these matters of 

justification, though more work is needed to explore this arena of learning.  
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Students’ Inferences Using a Conditional Statement in Probability: The Relationship between 

Independence and Covariance of Random Variables 
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The purpose of this study was to investigate how students in a probability course interpret a 

theorem and how they apply the theorem when asked to determine whether two random variables 

are independent given the value of the variables’ covariance. We considered how responses of 

students with prior training in logic compare to other students, as the theorem is a conditional 

statement. We used a quasi-experimental design to investigate the impact of two instructional 

treatments, using isomorphic colloquial statements and using Euler diagrams. Participants 

largely gave conventional truth values for variants of the conditional statement prior to 

instruction, but many of them used the converse and/or did not use the contrapositive when given 

covariance values and asked to determine whether two variables were independent. Our results 

do not consistently show a significant difference in students’ choices based on their prior logic 

training or either treatment. 

Keywords: Probability, Conditional Statements, Logic, Covariance, Independence 

Students are frequently presented with conditional statements in undergraduate mathematics 

courses that do not place a large emphasis on proof; consider as examples the Intermediate Value 

Theorem and the Divergence Test for Series in Calculus and the Existence and Uniqueness 

Theorems in Differential Equations. Challenges arise as students with no formal training in logic 

contend with deciding when and how to apply these tests and theorems while instructors 

sometimes make assumptions that logical inference is more intuitive than it is. While studying 

students’ use of formal mathematical logic has long been of interest for the training of students 

majoring in mathematics, it has taken more time for researchers to begin exploring how students’ 

interpretations of conditional statements in courses like calculus might impact their success 

(Case, 2015; Durst & Kaschner, 2020; Sellers et. al, 2021).  

In this study we consider how Probability students interpret and use the following theorem 

about random variables: “If 𝑋 and 𝑌 are independent random variables, then Cov(𝑋, 𝑌)  =  0” 

(Casella & Berger, 2002, p. 171). The statement’s converse, “If Cov(𝑋, 𝑌)  =  0, then 𝑋 and 𝑌 

are independent” is logically false. (Covariance is a measure of a linear relationship, and 

variables may be clearly related without being linearly related.) In a probability course, students 

may be asked to use their knowledge about the independence or covariance of two random 

variables to make inferences about the other, and more importantly, to recognize in which 

situations they can do so.  

Our study differs from the majority of prior work on students’ understanding of conditional 

statements in two ways. First, our goal is not to help students redevelop conventional rules of 

logic to then use more broadly. Rather, we are providing students with the truth values of a 

statement and its three variants (subsequently referred to as the contrapositive, converse, and 

inverse) and we want to know which analogies and connections might be useful in helping 

students use this particular conditional statement to make accurate inferences about 

independence. Secondly, because of the nature of these problems, students have the option to 

entirely bypass the use of logical inference. While calculations may be cumbersome, covariance 
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can be calculated directly and independence determined using the definition of independence. 

That is, students may choose to avoid using the logic of conditional statements altogether to 

answer the problems we give them. We therefore pose the following questions: 

 

1. How do students use covariance values to determine whether two random variables are 

    independent? 

2. Are their choices influenced by prior formal logic training? 

3. Are their choices influenced by connections to isomorphic colloquial examples and/or the  

    use of Euler diagrams? 

 

Review of Literature and Theoretical Perspective 

An important and consistent finding in prior studies of students’ interpretations of conditional 

statements is that students very often interpret conditional statements as biconditionals (Hoyles 

& Küchemann, 2002; O’Brien et. al, 1971; Wason, 1968). This presents as students assuming 

inverse and converse statements are true even though they are not. Possibly more significant is 

the finding that even the same student often does not make the same logical inferences 

consistently; instead, their inferences depend on the context, particularly when it is a familiar 

one. (Dawkins & Cook, 2017; Durand-Guerrier, 2003). 

The results above must be interpreted in light of which “reasoning domain” the researchers 

used (Sylianides et. al, 2004). Logic can be taught using meaningful everyday (colloquial) 

statements, meaningless everyday statements, mathematical statements, or formal syntax (Hub & 

Dawkins, 2018). Claims have been made that students have less difficulty interpreting verbal and 

mathematical statements than abstract or symbolic ones (Case, 2015). Moreover, it has been 

hypothesized that everyday statements may be used to help students develop logical principles. 

Epp (2003) argues “it is helpful to introduce each principle with examples of sentences whose 

“natural” interpretation agrees with the one used in standard logic” (p. 895). Stylianides et. al 

(2004) found evidence to support this. Specifically, students who initially identified a 

contrapositive statement as false changed their minds after seeing an isomorphic statement in the 

verbal domain.  

However, formal logic conventions do not align with the way conditional statements are used 

in everyday language. Epp (2003) provides the following example. A parent may say, “You can 

go to the movie if you finish your homework” when what she intends is “You can go to the 

movie if and only if you finish your homework,” but the latter rarely gets stated. “If you don’t 

finish your homework, you cannot go” is implied. So while they only state a conditional, the 

intention is biconditional. It is not surprising that students would interpret conditional statements 

in mathematics similarly. We interpret the theorem relating independence and covariance as a 

“generalized conditional statement” (Durand-Guerrier, 2003). There is an implicit universal 

quantifier within the antecedent, “𝑋 and 𝑌 are independent random variables,” so 

mathematicians interpret the conditional as “For all pairs of random variables 𝑋 and 𝑌, if 

𝑋 and 𝑌 are independent, Cov(𝑋, 𝑌)  =  0.” Accordingly, mathematicians assign a positive truth 

value to the statement and its contrapositive and negative truth values to its converse and inverse. 

Students often, and reasonably so, read conditional statements as “open statements” which have 

no quantifier and no truth value (Durand-Guerrier, 2003).  

Some authors have posited that explicit training in logic and/or exposure to more 

mathematics should improve students’ ability to make correct logical inferences. Durst and 

Kaschner (2020) for example, show that students often label statements such as “If the limit of a 
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sequence is 0, the corresponding series converges” as “Sometimes True, Sometimes False.” They 

argue that explicit training in logic would assist students in adopting the conventions of formal 

logic. However, there has been no clear relationship established between current performance 

and either prior exposure to either mathematics or logic instruction (Attridge et. al, 2016; Cheng 

et. al, 1986; Inglis & Simpson, 2008).  

Our position is that students, in identifying some statements as “sometimes true,” have viable 

reasons for doing so. These students are not conforming to conventional rules of logic but may, 

in fact, be being more specific. Additionally, while adhering to these conventions may be 

essential for success in mathematics, we question whether this should be a goal for engineering 

students. Engineers are trained to become comfortable with uncertainty and this training leads to 

a reasonable and necessary discomfort with absolutes (Cardella & Atman, 2005; Gainsburg, 

2006). Recognizing this, we narrow our focus to identifying analogies that students may use to 

convince themselves of when independence and covariance may be used to determine the other. 

Recently Dawkins and colleagues have argued for developing in students a “subset meaning 

for conditional truth” (Dawkins & Cook, 2017; Hub & Dawkins, 2017). Their work suggests that 

given a conditional statement, students initially struggle to determine whether the set of elements 

that satisfy the if are contained in the set of elements that satisfy the then, or vice versa. Hub and 

Dawkins make the case that using Euler diagrams, which provide an illustration of this subset 

relationship, may facilitate the development of the subset meaning which will then help them 

move towards consistently making normative logical inferences. For example, a student who 

places set P within set Q can recognize in the visual representation that elements outside Q are 

also outside P.  

 

Methods 

Data Collection 

The data was collected during in-class instruction and testing in the spring of 2022 in a 

semester-long Applied Probability course for engineering and computer science students at a 

large public institution in the United States. Prerequisites for the course include multivariable 

calculus and an introduction to programming. All students from the four sections who were 

present during this lecture were invited to participate and 72 students provided consent. Of these 

72 students, 53 had previously taken or received credit for Discrete Mathematics, which provides 

an introduction to logical inference and proof techniques.  

The second and third authors each taught two sections of the course on the same day when 

they covered the relationship between covariance and independence of random variables. Each 

instructor taught one “control” and one “treatment” section, though the treatments differed. After 

the initial presentation of the theorem in each section, the instructors asked each student to 

determine whether each of the following statements below (subsequently referred to as the 

inverse, converse, and contrapositive) were true or false and collected their responses prior to 

any discussion. 

a. If X and Y are not independent, then Cov (X,Y) ≠ 0. 

b. If Cov (X,Y) = 0, then X and Y are independent. 

c. If Cov (X,Y) ≠ 0, then X and Y are not independent. 

The instructors then explained briefly why statement (c) was true but statements (a) and (b) 

were false. Specifically, they shared an example of two random variables that were dependent 
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but had no linear relationship (thus having a covariance of 0) and briefly reiterated that 

covariance is specifically a measure of the linear relationship between the variables. 

At this point in the lesson, instruction in the control and treatment sections diverged. In the 

Control sections, which closely resembled how instructors of this course have presented this 

lesson in past semesters, the instructors completed 2 examples where they first determined 

whether two random variables were independent and then found the covariance of those 

variables. In the first example, the variables were independent and therefore the statement of the 

theorem could be applied directly to decide that the covariance must be 0. In the second, the 

variables were determined to be dependent, so the covariance had to then be calculated.  

Instructor 1 presented the Treatment 1 students with the colloquial statement: “If it is raining, 

there are clouds” and asked them to determine whether the other variants of this statement, such 

as “If it is not raining, there are no clouds” were true. This was completed as a whole class 

discussion and subsequently the instructor made a direct comparison between the truth values of 

the rain/clouds statements and variants of the theorem.  

Instructor 2 presented an Euler diagram illustrating the universal set of all pairs of random 

variables. (Note that in our conditional statement, the elements of sets P and Q are pairs of 

random variables, which is a potential complication for students in the process of abstraction.) In 

the diagram, an oval representing the pairs of independent random variables was completely 

contained within an oval representing the pairs of random variables with a covariance of zero. 

The class then discussed how a situation could be in the outer oval without being in the inner 

oval, but it was impossible to be in the inner oval without also being in the outer oval.  

At the end of class for all four sections, students individually provided open-ended responses 

to two problems in which they first computed covariance of two random variables and then were 

asked to determine whether those variables were independent and justify their answers. In the 

first example, the covariance was 0 so independence had to be determined using the definition of 

independence. In the second example, the covariance was not 0 so dependence was guaranteed. 

We will subsequently refer to these examples as the “In Class Converse” problem and the “In 

Class Contrapositive” problem, respectively.  

We also collected data on a midterm exam and the final exam. The midterm contained a 

similar converse problem and the final exam a similar contrapositive problem. The midterm and 

final exam were given 12 days and 6 weeks after the in-class instruction, respectively and there 

was no significant intervention between assessments.   

 

Analysis 

The first and third authors first open coded responses to the two in-class problems. When 

coding the midterm and final exam problems, we built on and refined the coding schemes from 

the in-class problems since they were very similar to the in-class problem 1 and 2, respectively. 

At this stage we were attending to correctness as well as the type of justification provided. The 

second author then used the coding scheme to code all 4 problems and we refined the coding 

scheme to reach agreement on approximately 95% of responses across the 4 problems. 

For ease of comparing groups by treatment and by exposure to prior logic instruction, we 

opted to complete a second round of coding to condense the number of codes for each type of 

problem. For the contrapositive problems, we considered whether the student used the fact that a 

covariance other than 0 implies variables are dependent (which we labeled “using the 

contrapositive”). For the converse problems, we asked whether students used the fact that 

covariance was 0 to (incorrectly) claim that the variables were independent (which we labeled 
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“using the converse”). This resulted in a binary response for each student for each of the 4 

problems that we then used in the comparisons discussed below. 

 

Results 

Prequiz Truth Values 

The truth values that students assigned after being presented with the theorem but prior to 

instruction were largely in line with conventional logic. Of the 72 participants, 59 of them (82%) 

stated the inverse was false and (though not the exact same group of students) 59 also claimed 

the converse was false. 64 students (89%) selected true for the contrapositive statement. 49 

students (68%) gave conventional truth values for all three statements. Prior logic training did 

not appear to impact responses; 68.4% of students who did not have credit for Discrete Math 

gave conventional truth values for all three statements while 67.9% of those with credit for 

Discrete Math did the same.  

 

Types of Responses 

For the in-class and midterm converse problems, we focused on whether students used the 

fact that covariance was 0 to (incorrectly) claim that the variables were independent (which we 

will subsequently refer to as “assuming the converse”). 38% of students used this argument on 

the in-class converse problem and 31% used it on the midterm. Only 25% used the definition of 

independence on the in-class problem to correctly conclude that X and Y were dependent. 

However, the response of 17% of students in class and 10% of students on the final exam was 

that independence could not be determined since the covariance was 0. These students made a 

conventional logical inference, although they failed to recognize that independence can be 

determined directly through use of the definition of independence. This highlights another 

challenge of introducing and asking students to use this conditional statement; students may 

focus on the application of the theorem and neglect viable and necessary alternatives. We saw 

improvement in using the definition of independence on the midterm; 40 of the students (56%) 

used the definition of independence on the midterm problem to reach the correct conclusion that 

𝑋 and 𝑌 were dependent. The remaining students used incomplete or incorrect arguments, some 

of which referenced the definition of independence and some which did not.  

On the in-class contrapositive problem, 90% of students used the covariance being a value 

other than 0 to (correctly) claim that 𝑋 and 𝑌 were dependent. In contrast, only 44% of students 

used this argument on the final exam problem. On the final exam problem, 33% of students 

“bypassed” the theorem and used the definition of independence correctly. This appears to 

coincide with the increase in students using the definition of independence correctly on the 

midterm converse problem. 13% of students provided multiple justifications; specifically, they 

stated that 𝑋 and 𝑌 must be dependent because the covariance is not 0 and also used the 

definition (either by stating 𝑃𝑋(𝑥)𝑃𝑌(𝑦) ≠ 𝑃𝑋,𝑌(𝑥, 𝑦) for all 𝑥, 𝑦 or by providing an example.) 

We grouped these students with those who did not use the contrapositive in our analysis below. 

 

From Covariance to Independence 

We might expect students who claimed the converse was true on the prequiz to be more 

likely to use the covariance of 0 as justification to claim independence on the in-class converse 

problem. (We highlight the cells in Table 1 below where responses on the prequiz and in-class 

problem are consistent from our perspective.) However, students who said the converse was false 

on the prequiz were actually slightly more likely to use covariance being 0 as justification for 
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independence in the example problem than students who had said the converse was true in the 

prequiz.  

 

Table 1. Converse Prequiz Truth Value versus In Class Problem Approach 

Prequiz Response 

Converse: False 

Converse: True 

TOTAL 

Used Converse  

22 

5 

27 

Did Not Use Converse 

37 

8 

45 

TOTAL 

59 

13 

72 

 

A smaller percentage of Treatment 2 students assumed the converse on the In Class Problem 

than Control 2 students. In contrast, a smaller percentage of Control 1 students assumed the 

converse than Treatment 1 students. However, these differences were not statistically significant. 

We built a binary logistic regression model for the response on the In-Class Converse problem 

for each instructor using Previous GPA, prior logic experience, and treatment as independent 

variables. For each instructor, p-values for all three variables were each at least 0.1. Trends on 

the midterm Converse problem closely resembled those on the in-class problem except that on 

the midterm, treatment for Instructor 1 was a marginally significant predictor (𝑝 = .042) with 

Control students less likely to assume the converse.  

There was greater consistency between the truth value students selected on the prequiz and 

the approach to the in-class problem for the contrapositive than for the converse (see Table 2). 

Specifically, 58 of 72 students claimed the contrapositive was true and used covariance being 

nonzero to decide 𝑋 and 𝑌 were dependent. However, of the eight students who declared the 

contrapositive was false on the prequiz, seven of them used covariance being nonzero as their 

sole justification for the variables being dependent. Furthermore, six students claimed the 

contrapositive was true but did not use the covariance value in determining independence. 

 

Table 2. Contrapositive Prequiz Truth Value versus In Class Problem Approach 

Prequiz Response 

Contrapositive: False 

Contrapositive: True 

TOTAL 

Used Contrapositive 

7 

58 

65 

Did not Use Contrapositive 

1 

6 

7 

TOTAL 

8 

64 

72 

 

Treatment 2 students were more likely than Control 2 students and Control 1 students more 

likely than Treatment 1 students to use the contrapositive on the In Class Problem. On the final 

exam problem, Treatment 2 and Control 2 students performed comparably and Control 1 

students again used the contrapositive more than Treatment 1 students. These results were not 

significant when using binary logistic regression and neither GPA nor prior logic training were 

statistically significant predictors for whether students used the contrapositive. 

 

Discussion and Limitations 

Students in this study were more likely to provide conventional truth values for variants of a 

conditional statement than they were to apply those only when appropriate to determine whether 

two random variables are independent. Students who provided conventional truth values were 

not more likely than others to use the contrapositive or avoid using the converse. This may 
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partially explain why prior logic training was not a statistically significant factor impacting 

problem response. We posit that many students are able to identify contrapositive and converse 

statements and have learned conventional truth values for the same, but do not hold the same 

meanings for “true” and “false” as those in the mathematics community. This may help explain 

why one of the control groups outperformed the treatment group. Each treatment focused on 

helping students reach agreement with the conventional truth values of the contrapositive and 

converse statements. Yet, our data suggests that this is not the primary issue. The examples used 

in instruction with only the control sections accomplished something the treatments did not; they 

made explicit that the theorem could not be used to solve all problems and that alternative 

methods to calculating covariance or determining independence are available. 

We saw a marked increase in using the definition of independence from in-class to 

midterm/final exam on both converse and contrapositive problems. It is natural as an instructor 

to view this shift positively for the converse problems and somewhat negatively for the 

contrapositive problems. It may be that some students did not have confidence in their ability to 

apply the theorem correctly during exams and therefore decided to always calculate covariance 

and determine independence directly. Alternatively, it is possible students simply didn’t think to 

use the theorem. Students also may have been less likely to use the definition of independence on 

the in-class problems because of availability bias (Tversky & Kahneman, 1973); they had 

discussed the theorem more recently than the definition of independence in class, but between 

class and the midterm and final exam had more time to review. Other explanations are possible 

of course and this is one question that should be explored in the future with student interviews. 

A primary limitation in this study is the single source of data (student written responses) and 

our inability to perfectly dichotomize students by their understanding of the conditional 

statement and its implications. For example, a student who chooses to use the definition of 

independence when the covariance is 0 does not necessarily believe the converse is false. The 

student may, in fact, answer this way with little to no knowledge of the theorem or logic 

principles. As another example, some students provided multiple justifications to one of the 

problems and we do not know why. They could have been simply checking or confirming their 

work with a second method. Alternatively, students who use the contrapositive correctly may 

simply be reiterating a rule they’ve been taught but do not necessarily believe it is always true. 

Future studies may follow up these types of responses with interviews and slightly modified 

problems so that students can be more carefully classified. We are particularly interested in the 

22 students who claimed the converse was false but then used covariance being 0 as justification 

for 𝑋 and 𝑌 being independent on the in-class converse problem. 

Another limitation is using credit for Discrete Math as a proxy for whether the student had 

received prior instruction in logic. We cannot guarantee that some of the students who did not 

have credit for Discrete Math had not taken other courses in logic. Moreover, we did not capture 

performance in Discrete Math but only whether credit had been achieved.  

Finally, the instruction was limited to one 50 minute class period, not by choice but because 

of the restrictions imposed by the course schedule. This once more highlights the common 

challenge of how to best prepare students who are not math majors for courses that rely on an 

understanding of logical implication but do not have time allotted for explicit logic instruction. 
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Analyzing the Reasoning Types potentially Required by Tasks in an Open-Source Introductory 
Statistics Textbook. 

 
Joash M. Geteregechi 

Ithaca College 
 
This study examined the tasks in the exercise sections of a popular open-source statistics 
textbook in order to characterize the types of reasoning the tasks are likely to elicit from readers. 
To achieve this, I examined the narrative sections of the book alongside the solved examples to 
determine the extent to which the kind of guidance provided was relevant in solving the tasks in 
the exercise sections of the book. Findings show that although most tasks could be solved by 
closely following the procedures and methods in the book (imitative tasks) there were other tasks 
that could elicit more nuanced forms of reasoning (creative mathematical reasoning tasks). 
These tasks were more prominent on the tail ends of the exercises section than on the beginning 
parts. Implications of these findings are discussed. 
 
Keywords: Creative mathematical reasoning, Task analysis, Mathematics textbooks, Imitative 
reasoning. 
  

Mathematics textbooks are among the most important resources for the teaching and learning 
of mathematics at the college level (Geteregechi & Waswa, 2020). Both instructors and students 
rely on mathematics textbooks to meet various learning needs such as self-study, practice, among 
others (Van Steenbrugge et al., 2013). Although it is difficult to exclusively characterize the role 
of textbooks in students learning of mathematics (Tarr et al. 2008), researchers (e.g., Stylianides, 
2009) have reported that textbooks have a significant influence on how students make sense of 
and learn mathematics concepts. 

One of the most important aspects of student learning is the kinds of reasoning that they 
engage in. Instructors often want to understand students’ ways of thinking so they can better 
support their learning. However, what is often ignored is the sources that may inform students' 
thinking. In this paper, I argue that textbooks play a significant role in informing students' ways 
of thinking and thus there is need to examine the opportunities they present. Although there are 
many studies on the kinds of opportunities that mathematics textbooks provide for their readers 
(Thompson et al., 2012), not many such studies focus on how the narrative section of the texts 
influence the kinds of reasoning that students use for future task solving including tasks found in 
the exercise sections of the texts. I define the narrative section as the parts of a textbook where 
the readers learn the intended concepts and ideas. For most textbooks, the narrative section 
comprises of descriptions, illustrations, solved examples, among others. Exercise sections, on the 
other hand, comprise of the tasks intended to be completed by the readers of the text. 

Most studies examining mathematics textbooks focus on calculus and geometry textbooks 
hence leaving a dearth of research in other important areas such as statistics. Furthermore, not 
many studies examine tasks from the perspective of the kinds of reasoning they are likely to 
elicit from readers. The term reasoning is often used without a clear definition of what it is and 
how to characterize it which means many studies on textbook analysis do not provide ways to 
characterize the potential of tasks to elicit specific kinds of reasoning. In this study, therefore, I 
sought to answer the following research questions: 
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1. What kinds of reasoning can be expected from tasks in a popular introductory open-
source statistics textbook? 

2. How are these tasks distributed within the exercises section of the book? 
 

Related Literature  
Most studies analyzing opportunities for reasoning in mathematics describe general 

characteristics associated with higher order thinking. Dolev and Even (2015), for example, 
examined the extent to which tasks in mathematics textbooks required students to provide 
justifications for claims made. The study compared six textbooks with a focus on geometry and 
algebra strands. Their findings indicated that geometry tasks tended to have more opportunities 
for justifying than algebra tasks across all textbooks. Similarly, Otten et al. (2014) examined the 
reasoning-and-proving opportunities available in secondary geometry textbooks and reported 
that although there were numerous reasoning and proving opportunities in both the narrative 
section and the exercises section of the books, these opportunities were not an object of focus in 
these books. While these studies provide insights into the kinds of tasks in textbooks, they rarely 
classify tasks themselves based on the reasoning types they are likely to elicit. This is due, in 
part, to the fact that the studies did not approach the analysis with a specified definition of 
reasoning. Thus, this study uses Lithner’s well defined framework on reasoning to characterize 
tasks according to the kinds of reasoning they are likely to elicit. There are, however, some 
studies that have used specified definitions of reasoning in conducting their analysis. For 
example, Sidenvalli et al. (2015) analyzed the reasoning types required by secondary 
mathematics textbooks and compared them to the types of reasoning actually used. The study 
reported that most tasks (80%) could be solved by imitating the procedures given in the book. 
Studies such as this are rare for college-level textbooks especially ones that focus on statistics 
concepts. 
 

Frameworks 
Lithner (2008) defined the term reasoning as “the line of thought adopted to produce 

assertions and reach conclusions in task solving” (p. 257). Argumentation is the part of reasoning 
that one uses to ground the truthfulness or otherwise of assertions. Argumentation could be based 
on intrinsic properties (relevant and correctly applied mathematical features in a given situation) 
or non-intrinsic ones. If one is trying to tell which fraction between 7/8 and 8/9 is bigger, for 
example, an intrinsic property would be the quotient while a non-intrinsic one would be a focus 
on the magnitudes of the numbers themselves (e.g., 9 is bigger than 8 so 8/9 is bigger). Lithner 
(2008) categorized mathematical reasoning into two broad categories namely imitative reasoning 
(IR) and creatively founded mathematical reasoning (CMR). IR is analogous to rote learning and 
is further categorized as memorized imitative reasoning (MIR) or algorithmic imitative reasoning 
(AIR). MIR involves complete recall of a solution to a problem and is common especially in 
tasks requiring proofs of mathematical claims and theorems. AIR, on the other hand, involves 
following certain solution procedures/algorithms to a certain class of problems without a deeper 
understanding of the process. 

Reasoning is classified as CMR, if it meets the following conditions: 
1. Novelty. A new (to the reasoner) reasoning sequence is created or a forgotten one is 

recreated. 
2. Plausibility. There are arguments supporting the strategy choice and/or strategy 

implementation motivating why the conclusions are true or plausible.  
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3. Mathematical foundation. The arguments are anchored in intrinsic mathematical 
properties of the components involved in the reasoning. (Lithner, 2008, p. 266)  

 
CMR is further classified as local or global. Local CMR can be thought of as an improved 

form of AIR. Local CMR happens when someone makes non-trivial modifications to parts of an 
already known solution strategy or algorithm in solving a new task. Global CMR happens when 
a solver has no known solution strategy or algorithm and thus engages in CMR throughout the 
task. Using these classifications of reasoning, I define tasks accordingly. A task that requires 
imitative reasoning is called an IR task while a task that requires CMR is labelled a CMR task. 
CMR tasks are further classified as global or local while IR tasks can be algorithmic (AIR) or 
memorized (MIR). 

In making the above classification of tasks, I recognize the fact that different solvers may 
experience the same task differently depending on several extraneous factors. A task may be a 
local CMR task for one person while being a global CMR task for another. Since the focus of 
this study was to examine the tasks themselves, the study only considered the guidance provided 
in the narrative section of the book and the extent to which such guidance would likely elicit 
different kinds of reasoning among readers of the book. 
 

 
Method 

Data and Setting 
The text analyzed in this study is the fourth edition of OpenIntro Statistics by David Diez, 

Mine Centikaya-Rundel and Christopher Barr. I chose this book because it is one of the most 
popular open-source books being used as the main text or as an additional reference “at 
community colleges to the Ivy League” (OpenIntro, n.d). The book is divided into nine chapters 
each with several sections. Each section has one exercise set with several exercise tasks for 
readers to complete. I randomly sampled four tasks from selected sections within chapters five, 
six, seven, and eight. I chose these chapters because their primary focus was on statistical 
inference, which according to previous studies, is one of the areas that many students struggle in 
(Makar & Rubin, 2018). Chapter five had three sections with a total of 26 tasks while chapter six 
had five sections with a total of 38 tasks. Chapter seven on the other hand had five sections and a 
total of 46 tasks. For chapter eight, only one section focused on inference (i.e., inference for 
linear regression) and had six tasks. Previous studies (e.g., Author, 2020) have shown that for 
many textbooks, more cognitively demanding tasks tend to appear towards the end of the 
exercises. Since I were not sure whether this is the case for the book that I analyzed, I wanted to 
ensure our sample had at least one task from all parts of the exercises (i.e., initial, middle and 
last). To achieve this, I used stratified sampling where I split the questions into the first 25%, 
middle 50% and upper 25%. I then used simple random sampling to select one task from the first 
stratum, two from the second, and one from the last. Some selected tasks had several parts (like 
a, b, c etc.) that were related and built on one another. Whenever such a task was selected in the 
random sampling, I purposefully chose the last one in the series since it was likely to incorporate 
all the others in some way. In the end, I had 54 tasks in the sample, representing 47% of all tasks 
within the target sections of the book. 

Within the narrative of the text, I focused mainly on the solved examples, guided practice 
items, and the solved case studies. I also brushed through the other parts of the narrative section 
(e.g., introduction and motivation) for descriptions of procedures and methods of solving certain 
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kinds of tasks. This information was useful in characterizing the reasoning forms that the tasks in 
the exercise section of the book might elicit. 

 
Analytic Procedures 

To analyze the data described above, I used a modified version of Lithner's framework as 
provided in Mac an Bhaird et al. (2017). As described earlier, argumentation is an important 
component in any attempts to characterize reasoning. However, since the aim in this study was to 
characterize exercise tasks according to the kinds of reasoning they are likely to elicit from their 
readers and not the reasoning of specific students, I thought that examining the model solutions 
alongside the argumentations given in the book would be more meaningful. This is because the 
solutions in the book provide a model that readers may use with varying degrees of modification 
when solving the exercise tasks. While I recognize that a reader can use knowledge gained 
elsewhere to solve problems in the book, I believe that for most readers, the methods described 
in the book would play a significant role in their task solving process. Indeed, Mac an Bhaird et 
al.'s (2017) noted that the solved examples provided in math textbooks and lectures play a key 
role in students’ task solving processes. I then solved the sampled tasks from the exercise 
sections by following the methods given in the book whenever possible while keeping track of 
the number and nature of any required modifications on the book methods. I defined 
modifications as any alterations on the book methods without which a successful solution would 
be impossible. Trivial alterations such as a different problem context and numerical values were 
not considered modifications. Another expert also worked on the problems separately then we 
met to discuss. The interrater agreement on the modifications was 94%. I labelled tasks that 
required no modification of procedure in the book as IR tasks and those that required at least one 
modification or that did not have a procedure in the book as CMR tasks. I classified CMR tasks 
as local CMR if they required only one modification and global CMR tasks if they required at 
least two modifications or if there was no algorithm or procedure for solution in the book. 
 

Results 
To concretize the analysis described above, I start by using a task (see Figure 1) drawn from 

a section called “Confidence Intervals for a Proportion” under the chapter titled "Foundations for 
Inference". 

 

 
Figure 1. A task from Inference for Single Proportion 

 
 We were able to solve this task by closely following the solution model to one of the guided 
exercises (see Figure 2) in the book. Although the problem does not provide a percentage value 
for the success rate (in this case percentage of shoppers who made a visit because of a coupon), 
this is considered trivial given that most readers of the book would be college or high school 
students. The rest of the solution requires using different numbers and substituting them in the 
formulas appropriately. The critical value associated with the new confidence interval can be 
confusing to some readers but the process of finding it was provided elsewhere in the book and 
could be applied in this new situation. 
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Figure 2. Sample guided practice exercise and solution  

 
A reader solving the task in Figure 1 can provide a similar sequence of argumentation as 

given in the guided practice and other parts within the text. For this reason, I categorized the task 
as an AIR task. Next (Figure 3) I consider an example of a CMR task. 

 

 
Figure 3. A sample CMR task 

 
 Although there were several solved examples and guided exercises in the narrative section of 

the text, none of them was presented in a way that can be directly used to answer the task in 
Figure 3 (part d). The examples provided step by step procedures for creating confidence 
intervals but did not provide ways of assessing the effect of sample size on the margin of error. 
As a result of this, I concluded that a solver would have to reuse the procedure for creating 
confidence intervals in a different way that goes beyond a mere plugging in of numbers. 
Specifically, a solver will need to think about the procedure in a reverse manner since the 
confidence interval is already provided. These two modifications meant that the task was further 
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classified as a global CMR. In an analogous manner, I examined all sampled tasks within the 
chapters focusing on statistical inference. I summarized the results in Table 1. 
 

Table 1. Classification of Task Types by Chapter and Distribution 
 

Chapter IR Tasks CMR Tasks 
Local CMR Global CMR 

First 
25% 

Mid. 
50% 

Upper 
25% 

First 
25% 

Mid. 
50% 

Upper 
25% 

First 
25% 

Mid. 
50% 

Upper 
25% 

Foundations of 
inference 

5 3 1 0 1 1 0 0 1 

Inference for 
Categorical data 

4 6 2 0 1 1 0 1 1 

Inference for 
numerical data 

7 6 2 1 2 1 0 0 1 

Linear 
Regression  

2 2 1 0 0 1 0 0 0 

 18 17 6 1 4 4 0 1 3 
 

The general trend prevalent in Table 1 is that the text has more IR tasks than CMR tasks. Out 
of the 54 sampled tasks, 41 (76%) were found to be IR tasks. These tasks tended to appear more 
at or below the 50th percentile. Indeed, out of the 41 IR tasks, 35 (85%) appeared at or below the 
50th percentile. This trend appears to be reversed for CMR tasks, especially for global CMR 
ones. Three out of 4 global CMR tasks were all found at or above the 75th percentile of tasks. 
Similarly, for local CMR tasks, 8 out of 9 tasks were at or above the 50th percentile. 
 

Discussion 
This study sought to explore the kinds of exercise tasks in a popular open-source statistics 

textbook based on the kinds of reasoning the tasks are likely to require for successful solution. 
As noted earlier, most studies on textbook analysis are based on calculus and geometry strands 
and do not use well specified definitions of reasoning. Thus, this study addresses this gap by 
using a well-specified framework for mathematical reasoning to characterize mathematical tasks 
based on the kinds of reasoning they are likely to elicit from readers. The study targeted one of 
the most challenging parts of statistics (inference) within a popular open-source textbook used in 
several colleges for introductory statistics courses. 

 In general, the study found that the processes described and/or implemented within the 
narrative sections of the book could be followed with little to no modifications for successful 
solution of most tasks within the exercise sections. This means that opportunities for engaging in 
deeper thinking were limited at least in the exercise sections. This finding should not be taken to 
mean that there are no opportunities for deeper thinking in the textbook. In fact, the narrative 
section did have examples that provide opportunities for deeper thinking but only of the reader 
attempts them before looking at the solution provided. Nevertheless, there were several tasks that 
provided opportunities for deeper thinking in the sense that solvers would have to engage in 
creative reasoning for successful solution. These tasks require major modifications to the 
procedures described in the book and a reader would need to think deeply about the concepts for 
successful solution. This finding is similar to those reported by Sidenvalli et al. (2015) which 
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indicated that mathematics textbooks tended to have more imitative reasoning tasks than creative 
reasoning tasks. 

In regard to the distribution of the tasks within the exercises section, I found a general trend 
in which imitative reasoning tasks appeared at or below the 25th percentile while creative 
reasoning tasks appeared at the tail end (above the 75th percentile). A possible explanation for 
this trend could be that the authors intended readers to practice with basic concepts and factual 
tasks before they could engage with more cognitively engaging ones. 

One possible implication of this study is for instructors using the text as a resource in their 
classrooms. When assigning exercises, it would be helpful to have students complete at least one 
task from the initial, middle and the last parts of the exercise sections. Depending on the goal of 
assigning the exercises, it might also be helpful for instructors to modify the tasks in some way 
before assigning them to the students. 

One limitation of this study is the lack of student voices in characterizing the reasoning likely 
to be elicited by the tasks. Nevertheless, the fact that the study examines the tasks in relation to 
the narrative section still provides useful information because the arguments provided in the 
narrative section are likely to be repeated by students solving the tasks. 
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Navigating AB705 and a Pandemic: An Investigation of Students’ Experiences With Placement 
and Advising 

 
 Alicia Hernandez Charles E. Wilkes II 

 San Diego State University  San Diego State University  

Recent state policies have pushed for more diversity in the STEM pipeline. One proposed 
solution is the California Assembly Bill (AB705) (California Community College, 2018), which 
requires students to take and pass gateway math courses within their first year at community 
colleges. In theory this policy seems like a solution, however pragmatically there is a lot to be 
learned about its implementation and consequences for students. In this paper, we address the 
research question: What are students experiences with placement and advising at a local two-
year college. We conducted a descriptive qualitative case study (Yin, 2009) that draws upon s 
student outcome data and focus groups. We focus on 5 STEM majors’ experiences. Findings 
suggest most students passed their gateway math courses within a year, however students 
described negative placement and advising experiences: receiving deficit-oriented suggestions 
from counselors and limited counselor availability. We discuss implications in the paper.  

Keywords: Gateway Mathematics Courses, Placement, Advising, Guided Self Placement (GSP) 

Introduction 
California Assembly Bill 705 (AB705) was created to increase the diversity of students 

pursuing STEM (California Community College, 2018). AB705 requires that students enroll and 
complete transfer-level mathematics courses, such as college algebra, trigonometry, or pre-
calculus by the end of their first year. In order to meet state mandates, institutions were forced to 
adjust structures and procedures, while still navigating various levels of students’ preparation. 
Despite AB705 being well intentioned, one potential consequence is that the increase in students 
taking STEM courses sooner, has not led to a decline in student failure rate in these courses. In 
fact, the failure rate in these courses is the same or in some cases higher. This creates a paradox 
of sorts, as administrators see the increase in “throughput” as a positive, while instructors see the 
unchanging or higher failure rates as a negative result. This paradox raises concerns about what 
issues are underlying the implementation of the state mandate. In this paper we describe 
students’ experiences with placement and advising at a local two-year college. Specifically, we 
consider the role of counselors in placement and advising students. It is important to note that the 
study took place during the pandemic. We highlight the pandemic because it is an additional 
layer of complexity that potentially impacts student placement and advising. As a result, this 
paper has two purposes: understanding students’ experiences with placement and advising and 
highlighting the challenges of ensuring that students are appropriately placed in gateway 
mathematics courses. The research question that guides this paper is How do students feel about 
their placement and advising compared to how they did in the course they were placed into? 

Literature Review 
Several researchers have investigated gateway mathematics courses at two-year colleges. For 

example, one thread of inquiry researchers have tried to understand is student placement and the 
subsequent role that advising plays in the placement process. By gateway mathematics courses, 
we mean courses that are credit-bearing and transferable to four-year institutions (e.g., College 
Algebra, Precalculus). With respect to student placement and advising, there are several key 
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findings worth highlighting. First, Kosiewicz and Ngo (2019) using self determination theory, 
found students who have autonomy to select their courses are successful in enrolling and passing 
those courses. This finding is important as it highlights the value and importance of student 
agency. In contrast, other research using Behavioral Decision Theory (BDT) has found that 
students often do not make good decisions on which course to take (Payne, Bettman, & Johnson, 
1992). The tension between findings that show students successfully enrolling and passing their 
course, alongside studies that show students do not make good decisions raises the question: 
Under what circumstances is it possible for students to exercise their autonomy and agency in 
course selection so that they can be successful? 

There is literature that points to the idea of directed self placement (DSP) meaning that 
students have some autonomy, but also have guidance in the placement process. Tovar (2015) 
highlighted how crucial it is for counselors and students to develop a good relationship with one 
another in order to allow counselors to have a positive impact on supporting students to take and 
pass courses throughout their college career. Based upon this literature it seems it is possible that 
students can be placed in the correct courses and pass them. By correct courses we mean courses 
that students are prepared to take and likely to pass. It also seems that key individuals such as 
counselors play a pivotal role. However, one area that needs further study is understanding how 
students navigate having more agency and autonomy in selecting courses as a result of state 
mandate. Additionally, we need more understanding of the role that counselors in particular play 
in this process to ensure that students are placed in the appropriate course. Our study attends to 
these questions by focusing on students' experiences with placement and advising during the 
implementation of AB705.  

Theoretical Framework 

Self Determination Theory 
Self determination theory (SDT) is a framework at the macro level utilized to comprehend 
personal intrinsic motivation and how social circumstances can influence individual intrinsic 
tendencies to not only grow, but also develop (Ryan and Deci, 2005). Moreover, social 
determination theorists have found that when a student is in an educational environment that 
captures three psychological needs, autonomy, competence and relatedness, student academic 
achievement is enriched (Kosiewicz and Ngo, 2019). Autonomy refers to the students using their 
own interest to decide how to take action.  
In this study, we will focus on students’ autonomy in order to understand how students decide to 
place themselves into their courses. From a SDT perspective, we expect that students’ individual 
autonomy will make them feel like they were placed into the correct course. On the other hand, 
BDT suggests that students underestimate their abilities because of factors such as personal 
experience, demographics, and psychological features (Kosiewicz and Ngo, 2019). As a result, 
students tend to make suboptimal decisions. Our study intends to explore and highlight student 
experiences when it comes to placement and advising using both SDT and BDT. The 
implementation of AB705 removes the high stakes of a placement test in order to properly place 
students into their respective courses. Furthermore, this removal gives students more autonomy 
as additional measures such as high school GPA, high school courses and high school grades are 
taken into consideration when placing students into courses. Since students are aware of these 
additional measures that are being considered, they realize their current skills and abilities and 
use their autonomy to ultimately decide which math course they want to take. 
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Social Capital Theory and “Cooling Off” 
Social capital theory is a framework that considers all the resources such as social networks 

and interpersonal relationships created and maintained by individuals when support is being 
sought (Bourdieu, 1986). Additionally, Tovar (2015) found that counselor and student 
communication impact not only how students interact with faculty members, but also their 
acclimation to social and academic environments in college. This highlights the importance of 
fruitful interactions and relationships between students and counselors. One may deduce that a 
lack of developing and nourishing this relationship between students and counselors may be 
detrimental to a student's overall experience navigating college. Using social capital theory as a 
framework, we hypothesize that counselors are supportive and helpful in advising students, and 
predict that as a result of this support, students will have positive experiences with counselors. It 
is important to note that although counselors are meant to act as agents of the institution who are 
supposed to provide students with the help, guidance, and support they need to be successful in 
their academic endeavors, Bahr (2008) emphasizes that counselors are subject to “cooling off” 
students. Bahr (2008) defines the “cooling off” process as the progressive detachment of a 
student from his or her personal academic goals. Furthermore, Bahr (2008) explains that this is 
executed by counselors using factors from students such as level of preparation, skills and 
abilities in order to lead them down a lesser path of achievement rather than the path students 
intend to take. In our study, we intend to explore the role counselors have on students and how 
student experiences with advising affect placement.  

Collectively we leverage SDT to understand the ways students exercise their autonomy with 
respective placement and advising. BDT is used to capture if students are not appropriately 
placed and/or do not pass their course to understand what mechanism might contribute. Lastly, 
we use “cooling off” as a lens to describe how counselors place and advise students.  

Methods 

Context 
Focus groups and interviews were conducted at Southern Hispanic Serving Institution 

(SHSI).  When collecting the data, courses taken by students and taught by instructors at this 
institution were college algebra and precalculus with trigonometry. This HSI has diverse students 
with 90% racial-ethnic minorities and the Hispanic population making up 70% of the population. 
Furthermore, the most common demographic for instructors at this institution was female 
professors, followed by male professors and female assistant professors. 

Data 
The data used for this study comprised student interviews and student outcomes. Student 

interviews were done in the format of focus groups. There was a total of 19 students interviewed 
across gateway math courses. Student interviews focus on students' experiences navigating 
placement and advising with a focus on counselors. We define counselors as fine non-department 
university staff who work with students on course selection. The last data used in this paper is 
student outcome data. Student outcome data contained the courses students took for Fall and 
Spring and whether the student passed a course. This data included only gateway mathematics 
courses. It is important to note that we define passing as a student who does not need to take the 
course again. For example, if a student earned a C in College Algebra, then they would not need 
to retake College Algebra. 
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Data Analysis  
Analysis of the qualitative data was done using MAXQDA software. Interview transcripts 

were coded using open coding with a focus on advising and placement. In the first round of 
coding, the first author coded the student transcripts. After coding the first and second author met 
to discuss first level codes. That is, segments of the data that focused on placement and advising. 
In the second round of coding the first author developed subcodes to further unpack the first 
level codes. The first author then met with the second author to confirm the subcodes. Lastly, the 
first author looked across the coded transcripts for similarities and differences between and 
among students’ transcripts.  

Findings 
In this section we provide data on students' course trajectory to get a sense of the courses 

students took and the letter grade they received, which indicates whether they passed. Next, we 
address the research question: How do students feel about their placement and advising 
compared to how they did in the course they were placed into?  

After the passing of AB705, the SHSI created an assessment called Guided Self Placement 
(GSP) that considers additional measures such as high school transcripts, last math course taken, 
etc., in order to help students be successful in their respective placed courses. In some cases, if a 
students’ assessment determines that they are going to require additional help to be successful in 
their math course, the student needs to enroll into a support course for the math course they were 
placed into. Regarding placement, most of the nineteen students interviewed in focus groups 
believed they were placed into the correct math course. Additionally, students who felt they were 
not due to either the difficult transition to online classrooms during a pandemic and/or lack of 
proper foundation to be successful in their placed course. Despite students feeling that they were 
placed into the correct course, multiple students described having negative experiences while 
trying to get placed into the proper course. There were two categories of negative experiences 
students had with placement, interactions with counselors and counselors not having adequate 
time. Below I provide student examples to illustrate students' negative experiences with 
placement.   

Counselor Suggestions Through Deficit Orientation  
Kali is a student who enrolled into Precalculus with Trigonometry after taking the SHSI’s 

Guided Self Placement (GSP). When consulting a counselor about her math placement, the 
counselor questioned Kali’s ability to be successful in the course by saying “oh a lot of people 
take Applied Calculus I first because they think it’s easier, are you sure you want to take 
Precalculus with Trigonometry?” This comment shows how counselors partake in the “cooling 
off” process described by Bahr (2008). Kali stated that the counselor’s comment, “...kind of 
rubbed me the wrong way.” Kali’s reaction to the comment highlights how although it may seem 
like counselors have the students’ best interest at heart, they may not properly convey that. As a 
result, a weak relationship is developed between Kali and this counselor, which limits the social 
capital Kali has access to. Having limited access to social capital can be detrimental to student 
experience, but regardless of what she was told, Kali felt like she was placed into the correct 
course. This shows that through her own agency and autonomy, Kali decided Precalculus with 
Trigonometry was the correct fit for her level of preparation. Lastly, she was able to prove the 
counselor wrong by receiving a passing grade.  

After taking Intermediate Algebra I and II, Saul is a student who decided to reach out to his 
math instructor to receive guidance on which class to take next. He ended up enrolling in 
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Precalculus with Trigonometry. When Saul decided to consult with a counselor to get advice, the 
counselors completely disregarded what Saul said and did not give him advice to help him take 
the proper steps toward achieving his academic goals. Instead, the counselor advised Saul to 
change his major, which leaves Saul in a tough position since he knows what major he wants to 
pursue and decided to attend this SHSI in order to save money. This interaction highlights how 
counselors accomplish “cooling off” by not listening to students and suggesting them to stray 
away from their academic goals. Furthermore, it highlights the importance of listening to a 
students’ wants and needs, and having the counselors receive the proper professional 
development to ensure those needs are met. Even having a negative experience with advising, 
Saul used his own agency and autonomy to ultimately enroll in and pass the Precalculus with 
Trigonometry. 

While only two experiences are highlighted in this section, these experiences are powerful 
because they highlight the counselors' deficit perspective on student trajectories in STEM (e.g., 
Change of Major). Since only two students were able to personally interact with counselors, this 
shows the limited availability of counselors. We will say more about limited counselor 
availability in the next section and how it affects student placement and advising.  

Limited Counselor Availability  
Nicole is a student who was placed into Analytic Geometry and Calculus II. The path to 

getting the correct placement was not easy. Nicole had to talk to her high school teacher for 
guidance because her discrete math class did not transfer credit to the SHSI, but the material 
covered in the discrete math course should place her in a higher level of math. After speaking to 
a counselor about her misplacement, Nicole was placed into Analytic Geometry and Calculus II. 
This particular experience highlights the lack of coordination between high schools and local 
community colleges. Furthermore, it shows that students rely on former math instructors for 
guidance on which math course to take when they transition into college, which shows Nicole 
utilized her autonomy to ultimately decide what course she wanted to be in. Nicole states in her 
interview that getting counseling is a bit hard. As a result, she relies on the SHSI’s student plan 
that was made with a counselor in order to help her choose the classes she needs to achieve her 
academic goals. Although it was difficult to receive advising, through her own agency and 
autonomy, Nicole enrolled into and received a passing grade in her placed course. 

Evie is a student who enrolled into College Algebra with support after filling out the SHSI’s 
GSP. When the GSP assesses that a student is going to need support to be successful in the 
course they place into, the student is required to enroll into the support course. Evie took 
initiative and decided to reach out to counselors to get advice on which courses to take. She 
states, “Well, I went to the counselor and um, I just, I did-they didn't have time to do a 
counseling meeting um at the time. So, it was just some lady in the front. She just could see me 
for five minutes.” Evie not being able to access helpful resources such as counselors shows that 
Evie’s social capital is limited. Additionally, it shows a need for properly trained counselors for 
students to be able to receive the proper resources to be successful. Overall, despite not being 
able to access counselors, Evie utilized her autonomy to ultimately enroll into College Algebra 
with support and received a passing grade.  

Domi is a student who enrolled into Precalculus after using the SHSI’s GSP. When 
attempting to reach out to counselors about which math course to enroll into, Domi did not 
receive a response. As a result, Domi attempted to enroll into Calculus, but due to not meeting 
the prerequisites was unable to. After this experience, Domi reached out to a friend who told him 
to fill out the GSP. The path Domi had to take in order to be properly placed into his math course 
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is common for students. Additionally, not being able to access counselors during a time of need 
shows that there are more students needing help than counselors can attend to. Although Domi 
was unable to seek support from institutional agents (e.g., counselors, faculty/staff), he utilized 
his autonomy to reach out to others in order to ultimately make a well-informed decision on 
which course he should enroll in. Additionally, Domi’s experience highlights the power of GSP 
as it helps students place themselves in their math courses. Overall, although Domi had to reach 
out to resources other than counselors, he still felt like he was placed into the correct course and 
received a passing grade. 

Discussion 
The purpose of this study was to investigate students’ experiences with placement and 

advising at a two-year college in the aftermath of passing AB705. In our study, we noticed that 
fifteen out of the nineteen students passed the gateway mathematics courses they were placed 
into within a one year time frame. Furthermore, we found that most students felt like they were 
placed into the correct mathematics course. Although this was the case, students described 
having negative experiences when interacting with counselors. These experiences were grouped 
into two categories, Counselor Suggestions Through Deficit Orientation and Limited Counselor 
Availability. These findings highlight points made in the literature about counselors “cooling 
off” students, and not developing positive relationships with students, which can limit the access 
to resources within a students' social capital. An important resource students mentioned being 
helpful was being a part of the First Year Experience (FYE), which gives students direct access 
to counselors who can dedicate themselves fully to them. On the other hand, students who did 
not have a resource such as FYE had a more difficult time accessing counselors. As a result, 
although not focused on this paper, there seems to be a lack of counselors needed to ensure that 
students are able to obtain and access the resources they need, which brings attention to 
limitation of resources available in a students' social capital. Other work might also attend to the 
ways in which counselors are trained, as several interactions between counselors and students 
highlighted the deficit lens. It is important to note that this study was conducted during the 
pandemic, which may have contributed to the experiences students described. However, the 
concerns raised are very significant while learning to navigate a pandemic. 

Limitations 
While our study focused on student experiences with placement and advising, our study did 

not allow us to interview many students. In addition, student focus groups were conducted over 
Zoom, which may have contributed to why students may have resisted being interviewed as they 
were just beginning to use the platform. Collecting data over Zoom may not give diverse 
perspectives. Moreover, we also recognize that when this data was collected students were 
learning how to navigate the world in a pandemic, which could heavily influence their responses 
and experiences at the SHSI. As a result, we must acknowledge that the self-reported data we 
gathered may be subject to bias. These limitations highlight the importance of further research of 
student experiences with placement and advising during a pandemic.  
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Participatory Equity in One Undergraduate Linear Algebra Class 
 

Jessica L. Smith 
Vanderbilt University 

Inquiry and active learning instructional methods have largely been regarded as equitable and 
beneficial for students. However, researchers have highlighted math classrooms as racialized 
and gendered spaces that can negatively impact marginalized students’ experiences in such 
spaces. In this study, I examine the development of one argument, and whose ideas are solicited 
and leveraged, in an inquiry-oriented linear algebra course with an eye toward participatory 
equity. I found that gender related most to the inequity of participation in argumentation and 
that only men participated in generalizing activity. This study adds to the growing literature 
addressing equity in inquiry and active learning math settings. 

Keywords: Inquiry-oriented instruction, Participatory equity, Argumentation, Linear Algebra 

Researchers have found active learning to be beneficial for students (Esmonde, 2009; 
Freeman et al., 2014; Laursen et al., 2014; Rasmussen et al., 2020; Yackel & Cobb, 1996) and 
link active and cooperative learning environments to higher student achievement and success in 
STEM courses compared to traditional, lecture-based teaching methods (Freeman et al., 2014; 
Theobald et al., 2020; Zakaria & Daud, 2010). These student-centered approaches generally 
involve argumentation; however, argumentation can take many forms depending on who 
contributes and connects between ideas in the arguments. While many of these approaches have 
been linked to positive outcomes, researchers have also found whole-class and small-group 
discussions in mathematics classes to be gendered and racialized spaces, which can create 
negative mathematical experiences for women and students of color (Boaler, 2008; Ernest et al., 
2019; Hand et al., 2012; Jackson & Cobb, 2010; Leyva et al., 2020; Reinholz et al., 2022; Wilson 
et al., 2019). Some students might have their mathematical methods consistently explored more 
often or more thoroughly, while others might feel as though their ideas are overlooked. The 
emphasis on certain ways of participating in mathematical activity involve cultural assumptions 
and expectations about what is normal and acceptable (Boaler, 2002; Nasir & Cobb, 2007).  

Studies examining students’ success, achievement, or growth in active learning mathematics 
classrooms often omit the gendered and racialized experiences that transpire in these classrooms. 
Much of the research detailing the latter tend to background the mathematics. This study fills a 
gap in the research by analyzing argumentation in an inquiry-oriented linear algebra course while 
attending to racialized and gendered interactions. My goal is to illuminate ways in which certain 
interactions in student-centered classrooms, such as who gets called on or whose ideas get taken 
up, can lead to racialized and gendered experiences in mathematical practices, such as 
argumentation. One research question guided this analysis: In the context of an inquiry-oriented 
linear algebra class, how are arguments being developed and whose ideas are solicited and 
leveraged during this development? 
 

Theoretical Background: Equitable Participation and Argumentation 
Equitable Participation 

Leyva et al. (2020) theorize the ways in which mathematics classrooms are racialized and 
gendered by locating classroom events at the intersection of societal discourses about ability in 
STEM and explicit and implicit institutional logics related to access and authority (e.g., use of 
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certain mathematics courses to prevent students from entering certain majors). With this lens, 
they highlight the ways in which students experience a range of classroom events that provide 
different opportunities and support to students in math class that vary systematically by race and 
gender. Reinholz and Shah (2018) refer to equity related to who is allowed to participate in 
classroom practices, such as discussions, as participatory equity. Ernest et al., 2019 describe 
participatory equity as concerning “the fair distribution of both participation and opportunities to 
participate in core aspects of the learning process” (p. 155). Reinholz and Shah (2018) explain 
that participating in mathematical discussions is part of the learning process, which can present a 
variety of settings for inequities. They explain that while it might not be intentional, women and 
students of color tend to be systematically given easier tasks and fewer opportunities to 
participate in doing mathematics. 
 
Argumentation 

I use Toulmin’s (1958/2003) model of argumentation not only to examine the mathematics 
being discussed by students and the instructor but also to organize the instructor’s prompts for 
contributions and responses to those contributions. Toulmin originally used this model to 
examine “argumentation in the traditional sense of one person convincing an audience of the 
validity of a claim” (Conner et al., 2014, p. 404). Mathematics education researchers (e.g., 
Andrews-Larson et al., 2019; Conner et al., 2014; Rasmussen & Stephan, 2014) have shifted the 
way this model is used, to examine the development of ideas through argumentation. An 
argument is a series of statements involving a combination of claims, data, warrants, rebuttals, 
and backings as defined below (Conner et al., 2014; Toulmin, 2003). 

o Claim: statement to be validated  
o Data: evidence validating the claim 
o Warrant: statement connecting data to the claim  
o Rebuttal: statements asserting when the warrant would not be valid  
o Backing: “support that give warrants authority” (usually unstated) (Andrews-

Larson et al., 2019, p. 4)  
Data or warrants can become a Data/Claims or Warrant/Claims, respectively. For instance, if a 
claim that once needed validation becomes data to validate another claim, it is a Data/Claim.  
 

Methods 
Study Context, Participants, and Data Sources 

This study focuses on a single instructional unit (systems of linear equations) in one 
undergraduate linear algebra class at a public institution in the Southeastern United States. 
According to institutional data, this university is categorized as a primarily Black institution. The 
class was taught using a hybrid format, where some students were in-person and some online via 
Teams. Students could decide each day how they wanted to join the class (in-person or online). 
The class used OneNote, a platform where the instructor and students could see the tasks, insert 
text or images, write notes, and see what each group did every class (making sharing group work 
easier in the hybrid format). The instructor for this course, Dr. Pi (all names are pseudonyms), 
used inquiry-oriented instruction to teach most, if not all, of the topics. All gender and race data 
were self-reported by students via survey. The participants were students enrolled in the course 
who consented to participate, which included four women, eight men, and no students self-
identifying in any other gender categories; six students self-identified as Black, two as two or 
more races, one as Asian, one as Hispanic or Latinx, one as White, and one preferred not to 
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respond. The data sources were video and audio recordings of whole class discussions (across 12 
days), records of the chat in Teams, and field notes.  
 
Data Sources and Analysis 

Equitable participation analysis. To examine the equitable participation in the arguments 
described below, I coded students’ contributions using Reinholz and Shah’s (2018) EQUIP 
observation codes. The unit of analysis was a sequence of talk. A sequence begins when a 
student initially speaks and ends when another student speaks, thus starting a new sequence of 
talk. Because of the reliance on another student speaking, sequences vary in length depending on 
how long the instructor and student are speaking. If two students are going back and forth in 
conversation, then each time a student speaks starts a new line of code. For this study, I used 
Author’s (2019) modified EQUIP codes. I generally focused on Dr. Pi’s Solicitation Method and 
Evaluation. I counted the number of sequences involved in argumentation and the number of 
sequences involving contributions from women and from men. I used these numbers to calculate 
equity ratios (Reinholz & Shah, 2018), which compare the percentage of sequences involving 
women or men to their percentage in the population. An equity ratio of one means the ratio of a 
group’s contributions in discussions (in this case, argumentation) was proportional to their 
representation in the class. An equity ratio less than one means a group is underrepresented in 
argumentation, where an equity ratio greater than one means an overrepresentation. 
 

Argumentation analysis. I identified 12 different arguments taking place throughout the 
systems unit, which was eight class days long. For a discussion to be identified as an argument, 
students had to make vocal mathematical contributions. The arguments were large in grain size, 
where I allow for subarguments in the development of arguments (Conner et al., 2014). I 
identified the arguments by topic using my knowledge of the tasks and what happened in class. I 
identified all mathematical whole class discussions in the video data and selected which ones I 
wanted to further analyze based on observed trends, which will be described later in this section. 
After transcribing, I did the argumentation analysis first, which involved identifying the different 
arguments. I then examined the overall flow of ideas, later adding the evidence provided by 
students and Dr. Pi. I then labelled the different contributions as components in the arguments. In 
the 12 arguments I identified, I noticed some important trends that were relevant to the research 
question as they directly related to equitable or inequitable participation in argument 
development. The trend highlighted in this paper is that no women contributed to any arguments 
after the second half of the fourth day. This happened to be when the class started moving toward 
general activity (Gravemeijer, 1999), in which they generalized knowledge they had developed 
about solution sets so far in the unit. Instead, women only participated in situational activity in 
which students worked with systems in the context of a meal plan.  

 
Findings 

EQUIP Findings 
Equity ratios were calculated based on a population of 8 people (due to consent), 2 women 

and 6 men. There were 98 sequences of talk throughout the unit, 5 (5%) from women and 93 
(95%) from men. The 5 sequences involving women were all made within the first 4 (of 8) days 
of the systems unit, when the task sequence intended for mostly situational activity. Women had 
5% of the total sequences but comprised 25% of the total population, as compared to men having 
95% of the sequences while comprising 75% of the population (shown in Table 1). This 
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produces an equity ratio of .2 for women and 1.267 for men. Thus, men were participating in 
argumentation far more than their representation in class, where women were involved in 
argumentation much less than their representation. Overall, men spoke more in general and, 
when women did speak, it was earlier in the unit, pointing to more contributions from women 
during situational activity than generalizing activity. When I examined the solicitation method by 
gender, I found that women were called on and not called on two times each (50% of the time for 
each code) (shown in Table 2). Table 2 shows men spoke most of the time without being called 
on (66.7%), but also spoke a fair amount being called on (29.4%). Sometimes men were called 
on was because they had previously spoken without being called on and Dr. Pi later asked them 
to elaborate or made a connection back to their idea. Women were also only solicited to give 
contributions answering a “what” type question, where men were solicited to give answer what, 
how, and/or why questions.  
 
Table 1. Sequences and equity ratios by gender. 

Gender % Of Sequences % Of Population Equity Ratio 

Women (2) 5% 25% .2 

Men (6) 95% 75% 1.267 
 
Table 2. Solicitation method by gender. 

Gender Called On Not Called on Called on Volunteer Called on Group 

Women (2) 2 (50%) 2 (50%) -----  ----- 

Men (6) 30 (29.4%) 68 (66.6%) 2 (2%) 2 (2%) 
  

I found that the groups by race that participated in arguments almost proportionally to their 
representation in the class were the Asian student (equity ratio of 1.2 shown in Table 3) and the 
Black students (.82). The four Black students consisted of two women and two men. One man, 
Noel, had about 83% of the sequences within this group. He was both called on and not called on 
about equally as often. It could be argued that the White student had an equity ratio relatively 
close to 1 (.72). Alberto, who identified as multiracial, contributed considerably more than his 
representation in the class. He contributed to arguments more than three times his representation 
in the class. He was often not called on and had some of the longest sequences of talk. Lastly, the 
Hispanic/Latinx man, Jorge, was involved in argumentation much less than his representation in 
the class. He was generally called on and often had short sequences of talk.   
 
Table 3. Sequences and equity ratios by race/ethnicity. 

Race/Ethnicity % Of Sequences % Of Population Equity Ratio 

Black (4) 41% 50% .82 

Asian (1) 15% 12.5% 1.2 

Hispanic/Latinx (1) 3% 12.5% .24 
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White (1) 9% 12.5% .72 

2 or More Races (1) 32% 12.5% 2.56 
 
Argumentation Findings: Contributions from only men during generalizing activity 

The selected argument (shown in Figure 2) was chosen because it highlights and is 
representative of the type of generalization that occurred in the class, where students were 
generalizing knowledge about solution sets of systems by drawing on what they learned 
previously in the meal plans task. It lasted about 16 minutes and took place on the sixth day of 
the unit. Students were discussing a task in which they match four different systems to images of 
what their graphs would look like before solving the system or using technology to graph. In 
particular, students were discussing which graph out of six choices corresponded with System 1, 

�
𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 210

5𝑥𝑥 + 7𝑦𝑦 + 10𝑧𝑧 = 1500
𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 500

. Dr. Pi started the discussion by looking at and reading out each 

group’s choices for which graph matches:  
 

“So y'all say that system one, the third equation will be parallel to equation one, 
but intersects equation two [Data/Claim 11]. So, we believe it's graph E [Claim 
12] … They said for D, E, F (shown in Figure 1), that they have no common 
points of intersection [Data 10] … But due to the way systems three and four 
equations were made, they had connection either to D, E, or F.”  

 
All the groups agreed that System 1 has no solution (Data/Claim 1); thus, System 1 corresponds 
with D, E, or F (Data/Claim 2). Dr. Pi then explained what the same group said about two of the 
equations, “we know that 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 210 and the money equation, [5𝑥𝑥 + 7𝑦𝑦 + 10𝑧𝑧 = 1500] 
do intersect,” (Rebuttal 3, Data/Claim 11) with which the class agreed. The group also said that 
“the scalars of 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 210 and 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 500 are the same and would probably lie on 
the same plane or be parallel to each other” (Data/Claim 3). This was revoiced by Dr. Pi and 
other students, notably Noel who pointed out which planes in the graph were parallel. 

 
Figure 1. Options D, E, and F as possibilities for the graph of System 1. 

 
This argument was driven by students’ ideas. Dr. Pi voiced some of the argument by reading 

out each group’s decision and explanation and drew in students to explain their reasoning or 
reason with other students’ ideas. Dr. Pi did not make many connections during this argument, 
but rather engaged students in sensemaking about their own and others’ decisions and making 
connections between those. In the end, students articulated what it means for a system to have no 
solution: there are no intersections between any of the three planes, or there is no common 
intersection between all three planes. Dr. Pi emphasized the latter as correct, and Aaron 
concluded E represents System 1.  
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Figure 2. Map of the argument: Contributions from only men during generalizing activity. 

 
Argument with EQUIP. Recall that this argument was selected because it is representative 

of the generalizing argumentation in which students engaged later in the unit. Also recall that no 
women verbally contributed to this type of argumentation during this unit, which I noticed 
during the argumentation analysis but confirmed through the EQUIP analysis. The EQUIP 
analysis showed that many of the students who did participate in developing this argument spoke 
without being called on, which could contribute to women not participating because men tend to 
dominate open discussions (Reinholz et al., 2021; Author, 2019). There was one instance in 
which Dr. Pi called on a group to see if they wanted to change their answer, which still elicited a 
response from a man. These findings of more men participating when Not Called On or Called 
On Group are consistent with findings from Author (2019). 

Dr. Pi started the discussion by reading out different groups’ ideas, so several argument 
contributions were provided by students but voiced by Dr. Pi. He started with a group’s idea that 
System 1 has no solution because two of the equations are parallel planes, so System 1 must 
match with D, E, or F. To further think about this, the class looked at a graph of the system that a 
group developed to find which two planes were parallel. When discussing the colors of the 
planes, Alberto said, “Leave the color identification to the girls.” Dr. Pi made an uncomfortable 
noise in an effort to push back a bit on this comment. Alberto added that he said this “because 
[he is] colorblind.” This presented a moment when the women in the class could have felt 
uncomfortable and framed as less capable than the men, or like they do not belong. Alberto was 
suggesting that men need to make more mathematical contributions while the women can be left 
to decide colors. There were no women attending in-person in class that day and students joining 
virtually always had their cameras off, so it was hard to tell women’s reactions. This comment 
created a slight disruption in the class discussion before Dr. Pi continued.  

At one point after reading the groups’ decisions, Dr. Pi asked if the group from Breakout 
Room 1 wanted to change their answer. Aaron spoke on behalf of the group and explained that 
he still thinks System 1 matches F because there should be no intersections when a system has no 
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solution. Alberto interjected, without being called on, that a solution to a system would be 
somewhere all three planes intersect, not just two of them. In the end, Dr. Pi leveraged Alberto’s 
contributions leading Aaron to agree that System 1 matches with E. In this argument, Alberto, 
Noel, and Aaron had the largest number of talk sequences. Alberto had 33% of the 15 sequences 
of talk, Aaron had 26.67% of the sequences, and Noel had 20% of the sequences, so they 
comprised 79.67% of the sequences of talk were contributed by three students in the class. This 
tended to be the trend throughout the generalizing arguments, where only a few students, always 
men, contributed most of the arguments. Alberto, who made a comment that suggested women’s 
role in a mathematics classroom is to identify colors on a graph, was ultimately positioned as 
making the mathematically correct contribution that was publicly accepted by the authority 
figure, Dr. Pi. Not only were women not part of the development of the argument, but they were 
also learning mathematics in a context where a fellow student (a man) who made a sexist 
comment regularly played a central role in the mathematics that was developed. 
 

Discussion 
In this paper, I found that the data showed that the most distinct participation inequities in 

this class related to gender more than race. Women contributed between zero and three times per 
class, while provided between 4 to 30 sequences. Women’s overall representation was 
substantially less than what would be considered equal, let alone equitable. Women participated 
in argumentation during situational activity and not formalizing activity. This could be related 
gender stereotypes in which women are framed as procedural and algorithmic thinkers as 
opposed to creative and abstract (Leyva, 2017). This could also be related to a larger 
stereotypical narrative in society (and STEM classrooms) around what women can and cannot 
do. Furthermore, this could contribute to similar outcomes between women enrolled in inquiry 
courses and women enrolled in non-inquiry courses (Johnson et al., 2020), as abstraction and 
generalization are core components of inquiry-oriented instruction. The current study adds to 
literature highlighting the nuance and complexities of active learning and discussions in 
mathematics classrooms. 

Additionally, Alberto tended to dominate discussions and, because he usually spoke without 
being called on, there was limited space for other students to contribute. Instructors can 
sometimes implicitly, and unintentionally, allow students to drive the mathematical discussion, 
even when the other students provide more mathematically sound arguments (Black, 2004). 
Alberto also publicly commented during whole class discussion, saying Dr. Pi and Noel should 
“leave color identification to the girls.” This was a multi-faceted situation in that Alberto felt 
comfortable enough in the class to make this comment but there are also implications for how 
this could have affected women in the class. It was normal for Dr. Pi and students to make jokes 
during class, but these jokes generally did not reference anyone’s gender or race. This comment 
implied that men’s role is to do the mathematics and women can take on a more superficial role 
(e.g., identify colors). Despite making this comment, Alberto spoke more than most students in 
the class and had his mathematical reasoning heavily publicly featured in almost every argument. 
These findings together point to the need for further examinations into the nature of interactions 
in inquiry and active learning classrooms, even when there appears to be strong argumentation 
taking place. Exploring these interactions can reveal inequities taking place when using a type of 
instruction thought to be the most equitable.  
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Identifying Tensions in a Small Group Work on an Open-Ended Modelling Task 
 

 Yuriy Rogovchenko Svitlana Rogovchenko 
 University of Agder, Norway University of Agder, Norway 
 
We analyze students’ cooperative small group work on an open-ended mathematical modelling 
task. Introduction of new ideas and techniques challenged traditional students’ views on 
mathematics and conventional solution routines. This caused tensions in the student activity 
system pointing towards primary and secondary contradictions. To identify contradictions, their 
discursive manifestations were used.   

Keywords: mathematical modelling, activity theory, contradictions, discursive manifestations of 
contradictions 

The role of mathematics in life sciences has been continuously growing over past decades. 
Biology eventually replaced physics as the principal research partner for mathematics, and “after 
a century’s struggle, mathematics has become the language of biology” (Steen, 2005, p. 22). An 
emergent need for professionals combining the knowledge of biology and mathematics 
stimulated changes in biology education, “the need for basic mathematical … literacy among 
biologists has never been greater” (Gross, Brent & Hoy, 2004, p. 85). New demands on the 
education of future biologists created major challenges for both disciplines calling for the reform 
of undergraduate biology education which “is burdened by habits from a past where biology was 
seen as a safe harbour for math-averse science students” (Steen, 2005, p. 14). New educational 
trends promoted interdisciplinary integration suggesting that “concepts from biology should be 
integrated within the quantitative courses that life science students take, and quantitative 
concepts should be emphasized throughout the life science curriculum” (Gross, Brent & Hoy, 
2004, p. 86). Higher education institutions were encouraged to create strong interdisciplinary 
curricula integrating life sciences, mathematics, physics, and information science (Steen, 2005). 
In applications, mathematical modelling (MM) is often used to describe real-world problems in 
mathematical terms and analyze the real system gaining a deeper insight allowing to understand 
the future and take necessary actions. Motivated by the idea that MM can serve as a “didactical 
vehicle both for developing modelling competency and for enhancing students’ conceptual 
learning of mathematics” (Blomhøj and Kjeldsen 2013, p. 151), in this paper we analyze the 
work of biology undergraduates on an open-ended MM task.  

Design of the Study  
An extra-curricular MM project for the first-year undergraduate biology students at a large 

Scandinavian university was designed to engage students into solution of biologically 
meaningful tasks. A group of twelve volunteer students (nine female and three male) met for five 
four-hour sessions where they were introduced to fundamentals of mathematical modelling (both 
theory and worked out examples) and worked on similar tasks in small groups of three to five 
students. Only two students had previously taken mathematics courses and ten were enrolled at 
the same time in a regular first-semester compulsory mathematics course.  Our main goal was to 
demonstrate applications of different mathematical ideas and tools in life sciences and increase 
students’ motivation for learning mathematics. Students’ work on MM tasks was as a 
cooperative learning understood as “students working together in a group small enough that 
everyone can participate on a collective task that has been clearly assigned … without direct and 
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immediate supervision of the teacher” (Cohen, 1994, p. 3). In the very first session students were 
introduced to basic ideas of modelling and a model of a modelling cycle illustrated with relevant 
examples. To get an idea of students’ initial preparedness for mathematical modelling tasks, they 
were asked to work on an open-ended task ‘Rabbits on the Road’ (Harte, 1988, pp. 211–213).  

Driving across Nevada, you count 97 dead but still easily recognizable jackrabbits on a 
200-km stretch of Highway 50. Along the same stretch of highway, 28 vehicles passed 
you going the opposite way. What is the approximate density of the rabbit population to 
which the killed ones belonged? 
The work of two groups of students was video recorded and transcribed. The data set also 

includes answers to two self-administered questionnaires on a 5-point Likert scale on students’ 
perception of mathematics and its relevance for biology. For more details about the activity, 
selection of tasks, and organization of students’ work we refer to Rogovchenko (2021).  

The research question we address in this paper is: What contradictions arose during a small 
group work of biology undergraduates on an open-ended modelling task and how they were 
manifested? 

Activity Theory and Contradictions  
Activity theory (AT) provides a versatile tool for inquiry into various aspects of interactions 

in a teaching and learning process. The main unit of analysis in AT is the activity system 
composed of six core elements. A mediational triangle is formed by a subject (an individual or a 
group of individuals) dealing with an object (a desired outcome) via mediating tools or artefacts 
(material and conceptual). The object embodies the meaning and purpose of the system, and the 
analysis of the system is based on point of view of the subject. The activity of the subject is 
directed towards the object and is transformed into outcomes through the tools. The base of the 
triangle represents the contextual characteristics of the activity system. It is composed of the 
community (individuals and groups that share with the subject an interest in the same object), the 
rules (explicit or implicit) that regulate the actions of the subject towards an object, and the 
division of labor (horizontal and vertical) stipulating the division of tasks between the 
community members. The model of the activity system we use in this paper is represented in 
Figure 1. With the main focus on the student group, the six core elements of the activity system 
are contextualized as follows. The subject is a student group acting towards the object which is 
related to desired outcomes (engaging in a MM activity; learning new practices; gaining new 
skills, solving assigned problems). To achieve the goals, tools (instruments, mediating artefacts) 
are used including MM tasks; problem-solving strategies; mathematical symbols, concepts, 
procedures, and results. The object and tools can eventually change impacting in turn the 
activity. A wider community includes the MM project group, fellow students, family, friends, 
educational officials, academics influencing the activity system. The system is regulated by the 
rules -- social-mathematical norms, university regulations, class culture, educational pedagogy, 
expectations of peers. The division of labor defines the roles and responsibilities of community 
members along with their expectations of each other’s roles. 
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Figure 1. A model of the second-generation activity system. Adapted under CC-by-SA-3.0, Bury (2012). 

Contradictions and Their Discursive Manifestations  
Each activity system continuously evolves through collective actions; it is not isolated and 

interacts with other activity systems. In activity systems, “equilibrium is an exception, and 
tensions, disturbances, and local innovations are the rule and the engine of change” (Cole & 
Engeström, 1993, p. 8). External influences are appropriated by the system and modified into 
internal factors which impact the system’s development. The third generation of AT identifies 
contradictions as “historically accumulating structural tensions within and between activity 
systems” emphasizing “the central role of contradictions within an activity system as sources of 
change and development” (Engeström, 2001, p. 137). Contradictions should not be perceived as 
system’s deficiencies but rather as opportunities for transformations that change the activities. 
Implementation of new teaching approaches, ideas and tools disturbs activity systems and creates 
tensions which manifest contradictions in the system that should be resolved to improve the 
quality of education. The process of using contradictions to promote learning and change is 
referred to as expansive learning and should be understood as “construction and resolution of 
successively evolving contradictions” (Engeström & Sannino, 2010, p.7). Our recent research  
discusses tensions arising in the modeling project analyzing two activity systems for students and 
for the project team (Rogovchenko, 2023). 

Contradictions are the systemic phenomena which develop in time; they cannot be identified 
directly. Contradictions should be “approached through their manifestations” (Engeström & 
Sannino, 2018, p. 49), and we use the term ‘tensions’ for the latter. Tensions signal internal 
contradictions in the activity system both within its core elements (primary contradictions) and 
between these elements (secondary contradictions). In a network of interacting systems tensions 
may point towards tertiary and quaternary contradictions (Engeström, 1987) which are out of the 
scope of this paper. Engeström and Sannino (2011) introduced a methodological framework for 
the identification and analysis of discursive manifestations of contradictions distinguishing four 
main types described in Table 1. We use this tool to analyze the transcripts of students’ small 
group work on a MM task. 
 

Table 1. Types of discursive manifestations of contradictions (adapted from Engeström & Sannino, 2011, p. 
375). 

Manifestation                 Features Linguistic cues  
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Dilemma 
 
Conflict 
Critical 
conflict 
Double bind 

Expression or exchange incompatible 
evaluations   
Arguing, criticizing 
Facing contradictory motives in social 
interaction, feeling violated or guilty 
Facing pressing and equally 
unacceptable alternatives in an 
activity system 

“On the one hand […] on the other 
hand”, “yes, but” 
“no”, “I disagree”, “this is not true” 
Personal, emotional, moral accounts, 
narrative structure, vivid metaphors 
“we”, “us”, “we must”, “we have 
to”, pressing rhetorical questions, 
expressions of helplessness 

 

Methodology 
Our research focus is mainly on the student group whose traditional views on mathematics 

and conventional solution routines were challenged in the project when new ideas and techniques 
of MM were introduced. It was expected that tensions in the activity system would arise, in 
particular, in relation to student engagement, understanding of a modelling task, comprehension 
of the mathematical content, and approaches to solution of a modelling task. Since tensions in 
the system were anticipated, deductive thematic analysis of the data was conducted to identify 
the presence of contradictions in our activity system. The list of tensions-related themes was 
generated, and the search for discursive manifestations of contradictions was made by the 
authors based on the descriptions and linguistic cues in Table 1. Full session transcripts were 
analyzed for two groups working on the task, the transcripts of a 42-minutes long recordings 
with 5,076 words and 7,874 words respectively. The word count includes speaker labels (Student 
2 or Teacher), time stamps (01:00 or 01:26-01:38), and short comments of transcript writers 
(“inaudible” or “students work silently”). The initial screening of full transcripts was made, and 
eight episodes were selected for the analysis in this paper. Separate coding was used for 
identifying four types of discursive manifestations of contradictions (as in Table 1) and four 
types of tensions related to (i) student engagement, (ii) understanding of a modelling task, (iii) 
comprehension of the mathematical content, and (iv) approaches to solution of a modelling task. 
Tensions that were identified were in turn coded in relation to core elements of the student 
activity system and associated primary or secondary contradictions. Both authors independently 
coded each of the eight episodes; the count of discursive manifestations and tensions is shown in 
Tables 2 and 3.  

Table 2. Discursive manifestations of contradictions identified by the authors. 

Manifestation                 First author Second author  

Dilemma (D) 
Conflict (C) 
Critical conflict (CC) 
Double bind (DB) 

       3 
       4 
       6 
       7 

           4 
           5 
           6 
           6 

 

 
Table 3. Tensions identified by the authors. 

Tension                 First author                Second author  

Engagement (E)         2          2  
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Understanding of the task (U) 
Comprehension of the mathematical content 
(MC) 
Approaches to solution (A) 

        8 
 
        2 
        6 

         9 
 
         2 
         7 

 
The disputed issues were reviewed again, the authors discussed the codes applied in the 

episodes and negotiated common meanings coming to the agreement.  

Analysis 
Eight episodes were selected from the transcripts to illustrate tensions identified through 

discursive manifestations of contradictions. For each episode we provide the codes used in the 
analysis of students’ work.  

Episode 1 
Student 1: Eh, and then we have to assume how many cars are running over a rabbit then. 
Student 3: Oh, God… 
Student 2: Not everyone runs over a rabbit! 
Student 1: No, it is not so! And that is not even a half either, it is maybe five percent. (C, A) 
Student 2: Right. 
Student 1: Five percent is one out of 20. 
Student 3: But one out of 20 sounds like quite a lot of rabbits then. (D, A) 
Student 1: Yes. 
Student 3: So, one out of 20 is not so wrong. Take five percent then.  
Student 1: Five percent. 
Student 3: We just have to put… we just have to put something like this. (DB, A) 
Student 1: But no! We have 97 dead [rabbits]. But if we assumed that they died in the last 24 

hours, then we divide it by the number of cars. Then we find that percentage. (DB, A). 

Episode 2 
Student 5: Can’t we just divide the number of individuals in the area and find out how many 

are there in each square meter? 
Student 1: But we don't know what the area is, we only know the stretch. We don't know how 

wide it is. (DB, U) 

Episode 3 
Student 3: No, but let's just assume, as she says, that we have 20 miles that way and 20 miles 

that way, then we have 20 miles on the stretch. 
Student 1: Yes. 
Student 3: But then there is still a very large area, for only 20,000 rabbits. (D, U) 
Student 1: Yes, I think, I don't know if this is what they mean by density. ]So, density.  
Student 3: ]No. 
Student 1: There is no point in calculating density per hypothetical square kilometer. (C, A) 
Student 2: You never know how big it is as well… 
Student 1: So, I do not know if that's what they mean by density, or if it is just a part of the 

population they're looking for. It is like ‘What is the approximate density of the rabbit 
population?’ 
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Student 3: To obtain density, we have to have the whole area; we can't use just a stretch. You 
must have something like a square. (DB, A) 

Episode 4 
Student 4: Yes, you have to say how many remain alive, that is something. 
Student 2: Yeah. Not all [rabbits] who jump over there die. 
Student 2: No, and there were only 28 cars, and you don't know for how long the bodies have 

been laying there. (C, U) 
Student 4: No, that's exactly it. ‘Easy recognizable,’ then it's like that, then it's like they have 

just been ran over, so you can see what they are. (C, U) 

Episode 5 
Student 4: No, you find kilometers per rabbit. Ninety-seven, what did you get? 
Student 3: Hm? 
Student 4: Ninety-seven divided by two hundred 
Student 3: That's half a rabbit per kilometer 
Student 4: Yes, approximately one half 
Student 2: So, half a rabbit dies per kilometer 
Student 4: Yes, per kilometer 
Student 3: Every two kilometers there is a dead rabbit. 
Student 4: Yeah, but that’s hell is not right, it's not logical at all! (CC, U) 

Episode 6 
Student 3: Since he] drives two hundred kilometers an hour  
Student 2: What if we just round it [velocity] up to a hundred? 
Student 4: Sure.  
Student 3: It makes it much easier to round up to a hundred.  
Student 4: Yes, but we have, we have this bizarre thing, so it will be the same anyway. (CC, 

U) 
Student 2: Hmmm, this was a frustrating task. You think it's a math problem, but then you 

know nothing. So, you can't solve it. (CC, U) 
Student 4: Yes, we have to, we have to [solve it] somehow. Find our own numbers. (DB, U). 

Episode 7 
Student 1: Won't it be too many, because it gets a bit more complicated when you start 

pulling so many different factors into 
Student 4: Yeah, but it is only getting … The answer will just be better and better (D, U) 
Student 1: That's about it. 
Student 4: Then there will be fewer factors that will screw us up. (CC, U) 
Student 2: Just assume something about all the factors in the end!  
Student 1: I wonder if it is possible to solve this task here. (CC, U) 
Student 4: Sure, it is. 

Episode 8 
Student 4: I'm really just looking forward to getting an answer, because this was really 

annoying! (CC, U) 
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Student 2: Hmm, but I think I will be just as annoyed then, because there is no correct 
answer. But it will be fun to hear what can be assumed. (C, U) 

Conclusions 
 
Activity theory acknowledges that contradictions can potentially transform the activity 

system, but this may not necessarily happen. Contradictions are present in each activity system; 
they may originate from multiple perspectives, cultural and historical traditions, different 
interests of members of an activity system. Experiencing problems, conflicts, disturbances that 
originate from the contradictions in the activity system, individuals or groups of individuals 
attempt to change the system to alleviate tensions. Nevertheless, resolution of contradictions by 
individual actions alone is not possible, significant changes in the activity system require 
cooperative actions leading to the development of a historically new form of activity. Ultimately, 
“an expansive transformation is accomplished when the object and motive of the activity are 
reconceptualized to embrace a radically wider horizon of possibilities than in the previous mode 
of the activity” (Engeström, 2001, p. 137).  

In our MM project, primary contradictions were observed within the subject (engaged 
learners vs passive participants), tools (new methods of population dynamics vs student’s 
traditional mathematics toolkit), rules (student-oriented learning in MM sessions vs teacher-
centered pedagogy in regular classes), object (scientifically based understanding of phenomena 
vs intuitive interpretation of the reality), division of labor (lack of scaffolding vs increased 
volume of the independent student work). Secondary contradictions were manifested between the 
rules and object (students’ engagement with extra-curriculum modelling tasks vs the need to 
perform well in the exam; instructor’s wish to infuse teaching innovations in students’ learning 
vs curriculum and time constraints), between the tools and division of labor (new thinking 
required by MM tasks vs learners’ expectations how the learning of mathematics should be 
organized), and between the community and object (creating numerate mathematicians and 
students’ conventional perceptions of mathematics and their previous bad experience with it).  

Although the work on an open-ended modeling task was challenging for students, they 
mentioned the work with assumptions as the best thing in the project: “It made me think in a 
different way than usual and it was exciting. Making assumptions was new to me.” “The 
assumptions. To understand what assumption is important and which is not.” We observed that 
students interest in mathematics was gradually increasing, and they were opening up for new 
ways of learning the subject. Students’ answers prompted that the use of MM in teaching biology 
undergraduates stimulates their interest in mathematics and its interdisciplinary applications: “It 
was interesting to try to solve problems without knowing all about them.” “It was social and 
challenging; it was also very interesting to experience new educational methods.” Students’ 
positive feedback on the project indicates possibilities for the expansive learning in the activity 
system which can transform students’ learning of mathematics by enriching the standard 
curriculum with biologically meaningful mathematical tasks. 
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A Student’s Application of Function Composition when Solving Unfamiliar Problems: The Case 

of Zander 

 

Lorna Headrick 
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Function composition is highly useful for making sense of many fundamental ideas in calculus 

and related areas of mathematics. However, of the large body of research investigating students’ 

understandings of function, very little has been centrally focused on function composition. In an 

effort to contribute to the existing findings pertaining to function composition, this interview-

based study involved an exploration of a first-semester calculus student’s use of function 

composition when solving unfamiliar problems. The student’s responses revealed potential 

evidence of his understanding of function composition, function as an action or process, and 

covariational reasoning. 

Keywords: Function Composition, Function, Covariational Reasoning 

Introduction and Literature Review 

Functions serve a fundamental role for modeling dependence relationships between variables 

in every area of mathematics and physical science. Thus, it is not surprising that the idea of 

function is heavily emphasized in mathematics curricula, and has been heavily studied in 

mathematics education research (early examples include Breidenbach et al., 1992; Carlson, 1998; 

Vinner & Dreyfus, 1989). Function composition has also been mentioned as an area of 

importance, but often briefly or in passing. To date, few studies in mathematics education related 

to the idea of function have had function composition as their central focus (a few exceptions 

include Bowling, 2014; Engelke et al., 2005; and Kimani, 2008). However, applications of 

function composition can be found in many important ideas studied in calculus, including the 

limit definition of derivative, related rates problems (Engelke, 2007), and the chain rule (Clark et 

al., 1997; Cotrill, 1999; Engelke, 2007). Thus, function composition is an area worth studying 

further, particularly in the context of students’ experiences prior to and during calculus. 

Many of the existing studies pertaining to function composition have been based on the 

primary theoretical frameworks used to explain students’ understandings of function more 

generally. Among the most common are Breidenbach et al.’s (1992) characterization of students’ 

perspective of function in terms of specific actions or procedures to compute a result, or an 

“action” view of function, versus a general process that associates input with output values, or a 

“process” view of function (empirical studies using this framework have included Ayers et al., 

1988; Bowling, 2014; and Engelke et al., 2005). Other frameworks used in function composition 

studies have included Carlson et al.’s (2002) framework for covariational reasoning (Bowling, 

2014), a framework to study the impact of representational context (e.g., symbolic, tabular, 

graphical, word problem) on a student’s conception of functions in a problem (Kimani, 2008), 

and Sfard’s (1992) framework for function in terms of operations or in-progress activities, 

referred to as an “operational” view of function, or in terms of a single object that could be 

operated upon, referred to as a “structural” view of function (Kimani, 2008).  
Several findings from existing studies pertaining to function composition have been focused 

on students’ reasoning relative to the above frameworks. For example, studies employing the 

action and process framework have found that a process view of function can play an important 

role in student success with unfamiliar function composition problems, which the students would 
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not be able to rely on a memorized procedure to solve (Ayers et al., 1988; Bowling, 2014; 

Engelke et al., 2005). Across multiple studies, another common finding is that students are often 

more comfortable solving function composition problems with functions defined symbolically 

than problems with graphical, tabular, or applied (word problem) contexts (Engelke et al., 2005; 

Kimani, 2008), which could be linked to the symbolic substitution approach to function 

composition commonly presented in high school curricula (e.g., Bowling, 2014).  These studies 

have provided insight into how students’ understandings of function might inform their 

approaches to solving function composition problems.  

In addition to the above findings based on existing frameworks, a few studies have resulted 

in findings related to students’ reasoning specific to function composition. One such finding was 

that, when solving related rates problems involving variables which the students found difficult 

to relate directly, students found a “middle variable” to be helpful for identifying familiar 

functions that could be composed to relate the primary variables of interest (Engelke, 2007). This 

finding suggests a possible extension of existing function frameworks to account for reasoning 

involved in function composition. In an effort to continue extending existing frameworks, this 

study was intended to address the question: In what ways does a calculus student apply their 

understanding of function composition, variable, and function to solve unfamiliar problems?  

Theoretical Perspective 

The analysis for this study involved a characterization of the types of functions and 

relationships between values a student might construct. For this work, two main frameworks for 

explaining students’ understanding of function were leveraged: action and process view of 

function (Breidenbach et al., 1992) and covariational reasoning (Carlson et al., 2002; Castillo-

Garsow et al., 2013). Each of these frameworks are described in more detail below. 

Action and Process View of Function 

Someone using an action view of function perceives a function as a specific set of 

computations or other describable, repeatable activities to get a particular result from given 

information. With an action view, a function is the method by which a result can be related to the 

given information (often both the result and given information are numerical values). For 

instance, someone with an action view of function might associate 𝑓(𝑥) = 3𝑥 + 2 with the series 

of computations: ‘multiply 𝑥 by 3 then add 2’. On the other hand, someone using a process view 

of function perceives a function as an association between values which could be specified in 

different ways and is not tied to a specific rule. With a process view of function, someone might 

associate 𝑓(𝑥) = 3𝑥 + 2 with an assignment of every real number (each of which would be a 

value of 𝑥) to a number that is 2 units greater than the number 3 times its value. With a process 

view, someone might imagine the rule of assignment according to the equation above, a graph, a 

computer program, a verbal description, an applied context, or a variety of other ways. 

Covariational Reasoning 

A commonly adopted perspective of covariational reasoning for modeling students’ 

understandings of function is that of Carlson et al. (2002). Re-framed to account for the idea of 

function as a dependence relationship, Carlson et al. (2002) defined covariational reasoning as 

imagining a situation with multiple variables that change together such that the value of one 

variable depends on the value of the other. Underlying the idea of variable according to this 

perspective is an idea of quantity as conceiving of a feature of an object which one can imagine 

measuring (e.g., Thompson, 2011). The situation in which one might imagine a quantity could be 
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a tangible, real-world situation, or it could be more abstract. For example, someone could 

quantify their distance from a wall in a number of feet, or they could quantify the 𝑥-coordinate of 

a point in the Cartesian plane as the horizontal distance of that point from the origin, measured in 

some specified unit used to scale the graph.  

Carlson et al. (2002) characterized students’ covariational reasoning into five stages of 

mental activity (MA1 – MA5). A description of the first three (used in this study), framed in 

terms of constructing a dependence relationship between variables is as follows: (a) MA1: 

identifying two varying quantities and noting that the value of one depends on the value of the 

other, (b) MA2: a qualitative description of the direction of change in one variable with respect 

to the value of the other; and (c) MA3: a description of an amount of change in one variable with 

respect to the value of the other. Castillo-Garsow et al. (2013) proposed two additional forms of 

covariational reasoning: chunky continuous covariation, through which someone imagines the 

variables’ values changing in completed chunks or intervals, and smooth continuous covariation, 

through which someone imagines the variables’ values changing gradually, smoothly, or through 

each moment in time. In addition to the forms of covariation above, in some situations, someone 

might conceive of a fixed quantity, or, in an algebraic context, associate a symbol with a fixed 

value (which they may or may not imagine as a quantity). 

  Methods 

Data Collection and Task Design 

The researcher (author of this paper) conducted a semi-structured interview with a first-

semester calculus student, Zander, attending a large, public university in the Southwestern 

United States. Zander’s calculus course involved a research-based curriculum, which could have 

impacted his understanding of function, covariation, and function composition differently from 

traditional calculus curricula. While solving the interview tasks, Zander was asked to think 

aloud. As he described his thinking and solution approaches, the researcher sometimes asked 

follow-up questions to further inform hypotheses about his thinking. Scanned images of any 

written work from the interview were also collected for further evidence of Zander’s thinking.  

The interview tasks were designed to be unfamiliar to most students, so that a solution would 

probably not be immediately available from experiences with similar problems. The researcher 

anticipated that a student’s reasoning about the task context and solution attempts would give 

rise to some form of function composition, while also providing opportunities to generate 

hypotheses about their understanding of function and types of covariational reasoning. 

Data Analysis 

The author intended to leverage existing frameworks (as described in the theoretical 

perspective) and generate new explanatory models for students’ applications of function 

composition in solving the tasks. In alignment with this goal, the author analyzed the interview 

using a process similar to that described by Simon (2019). Analysis consisted of three primary 

phases: (a) generating hypotheses about a student’s thinking at specific moments in the 

interview; (b) generating hypotheses about a student’s thinking over the course of the interview; 

and (c) modeling the student’s understanding of function in the context of the interview. 

Results 

To illustrate the multiple types of function composition Zander appeared to use during the 

interview, data will be reported from two tasks in contrasting representational contexts. 
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The Equation Task 

 
Figure 1. The Equation Task Prompt 

The equation task was designed with the hypothesis that most students will imagine the 

equation 𝑦 = 5𝑥 as a way to directly relate a value of 𝑥 to a value of 𝑦 and the equation 𝑓(𝑥) =
𝑥2 as a way to directly relate a value of 𝑥 to a value of 𝑓(𝑥), though the nature of the 

relationships students construct could vary widely. The prompt provided numerical information 

with which to associate 𝑦 and requested that the student state a conclusion about 𝑓(𝑥). No 

equation or other function definition was provided to relate a value of 𝑓(𝑥) with a value of 𝑦, 

posing a potential challenge for many students in finding a relationship between 𝑦 and 𝑓(𝑥). 

Zander’s Response to the Equation Task 

Zander first responded to the equation task by stating an equation of the form  

𝑥 =  [expression containing y], but shortly afterward, indicated that the equation ultimately 

would not matter and gave a more general description of how he imagined the value of 𝑓(𝑥) 

might change with the value of 𝑦. 

Zander: so x is equal to y divided by five I think, and—but y is from minus twenty 

(inaudible) but it does not really matter at the end because, uh, x squared, because it’s, 

uh, x squared, so I think the value of y, I mean the value of f x will increase, when you go 

from minus twenty to twenty for y. 

Zander’s initial response suggested some details about his goal for solving the problem he 

appeared to perceive in the task and the way in which he might describe two variables he 

imagined, 𝑦 and 𝑓(𝑥), changing simultaneously. However, there was almost no evidence as to 

why Zander had initially stated that “𝑥 is equal to 𝑦 divided by five”. Upon probing for further 

evidence, Zander’s response revealed that writing an expression for 𝑥 in terms of 𝑦 was most 

likely part of a strategy that would allow him to compute—or imagine computing—a specific 

value of 𝑓(𝑥) from a specific value of 𝑦. 

Zander: So, like, the…I think (inaudible) a function we’re supposed to plug in the value of x, 

and then we’re supposed to get another answer which is like our value of y or it could be 

something else too. So, in this we’re like given two things. First of all, it’s a function 

which is f x equals to x squared, so if we have a value of x, we just plug it in for, I’m 

talking about f x equals to x squared, and then we’ll get our y, right? So if we plug in one, 

it’d be one. Plug in two, it’d be four. So, but (inaudible) to figure out what our y will be, 

uh, I mean our x will be, we are given another equation, which is that y equal to five x. 

So, I think from this equation, y is equal to five x, we’re supposed to figure out what our 

x will be, and then we can plug in that x into f x equals to x squared and then we can 

figure out uh, another, like the, another function (inaudible) y for that one. 

From Zander’s statement at the beginning of the above excerpt, he appeared to be imagining 

a situation in which he would consider a specific value of 𝑥, perform a calculation, and obtain a 

specific value of 𝑦 resulting from that calculation. It is not completely clear from Zander’s 

overall response how he imagined the relationship between 𝑥 and 𝑦 to yield the equation 𝑥 =
𝑦/5; however, given what appears to be a computational use for the equation with specific 
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values of 𝑥 and 𝑦, it is plausible that Zander imagined manipulating the equation using a 

“solving” or “switching” procedure. More evidence would be needed to confirm this. Zander 

also mentioned an overarching strategy for figuring out a value of 𝑓(𝑥) from a value of 𝑦 that 

involved two separate calculations: a calculation that would give him a value of 𝑓(𝑥) from a 

value of 𝑥, and a calculation that would give him a value of 𝑥 from a value of 𝑦. 

The Cylinder Task 

 
Figure 2. The Cylinder Task Prompt 

The cylinder task is loosely based on a problem from the Precalculus: Pathways to Calculus 

workbook (Carlson et al., 2020). This task was designed in anticipation that if a student wanted 

to relate the height of liquid in the smaller cylinder and the larger cylinder numerically, they 

would need some intermediate value (which they could imagine as fixed or varying) they could 

individually relate to both heights. Then, they could use the intermediate value to compose the 

relationships, forming a relationship between the height of liquid in each cylinder. One 

anticipated intermediate value would be the volume of water in each cylinder, since the task 

context specifies that the volume would be fixed, and it might occur to many students to leverage 

the formula for the volume in a cylinder with respect to radius of the base and height: 𝑉 = π𝑟2ℎ 

(this formula was not provided in the task context, but was given to a student upon request).  

Zander’s Response to the Cylinder Task 

Zander appeared to engage in two primary forms of function composition in his response to 

the cylinder task, both of which involved a relationship between the volume of liquid in each 

cylinder and the height of liquid in each cylinder. The first composition involved computing a 

single value for the volume of liquid in the smaller cylinder, substituting the result into the 

formula for volume in a cylinder with respect to radius of the base and height of liquid in the 

cylinder, and solving for the height of liquid in the larger cylinder. Zander’s computation of a 

single value for the volume in each cylinder and solving for the corresponding height in the 

larger cylinder enabled him to achieve the goal of getting a numerical answer. The type of 

function composition he appeared to use in this instance could be regarded as grounded in an 

action view of function (Breidenbach et al., 1992) and a fixed-value understanding of the volume 

and height of liquid in each cylinder. However, his description of the relationship between the 

height in each cylinder shortly before this series of calculations suggests that he imagined the 

height and volume as variables with which he could make a general, qualitative comparison. In 

fact, his first inclination for finding the height of liquid in the larger cylinder was to use the 
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relationship between the radii of the cylinders to form a mathematical analogy with which to 

compare the heights. 

Zander: Um so first of all, I’d say that the height of the liquid in the larger cylinder is going 

to be less than what it is for the smaller one, because the radius is less, which means that 

for the first one, it is like kind of small, so it will fill up more. And the second one is a 

larger cylinder, it has a radius of three, so basically its base is bigger, so it could fill in the 

same volume but in like less height, that is what I’m trying to say here.  

Following his description, Zander tried to use a proportion to express the comparison 

mathematically and ultimately calculate a value for the height in the larger cylinder, but he was 

not confident that the equation he wrote would result in the correct calculation. 

Zander: I’d say, when our radius was two, our height was eleven, and then that’d be, is 

equals to when our radius is three, what is going to be our height. I’m not really sure if 

this is like in a ratio or not, but it should be because after all it’s like a cylinder, it’s just 

different size. The volume is going to be the same, the amount of liquid poured is the 

same so, this should be like in a ratio with each other. 

When asked why he decided to set up a proportion, Zander’s response suggested he was 

trying to guess what equation he could set up to calculate the desired value: the height in the 

larger cylinder. He noted that there was little information given in the problem overall that he 

could use to achieve this goal. Thus, the interviewer asked him what other information would be 

useful for him to know, and after only a short pause, he stated that it would be useful to know the 

formula for the volume in the cylinder. 

Interviewer: Um, what information would be useful for you to have, that would allow you to 

figure out the height of water in the larger cylinder? 

Zander: (inaudible) Radius. Uh, I think for this, we need to know the formula for the volume 

of the cylinder. If we do know the formula of the volume, I don’t remember it that well, 

maybe it is—I don’t know, I don’t remember. 

Once the interviewer gave him the formula for the volume in the cylinder, he made a 

statement that suggested he imagined the formula as a way to express a dependence relationship 

between the enclosed volume, height, and radius of a cylinder. 

Zander: Yeah, so our pi is always constant, so if you’re making comparison, it does not 

really matter. We are only dependent on two things for the volume. The first one is our 

radius, and the height. 

Following his use of the volume formula to calculate the height of liquid in the larger 

cylinder, Zander rejected the proportion he initially had set up, concluding that it would not be 

possible to have a greater height of liquid in the larger cylinder than in the smaller cylinder (he 

had calculated a greater height from his initial proportion, whereas the volume formula produced 

a smaller value for the height in the larger cylinder). 

The second form of function composition Zander used emerged when prompted to describe 

how the height of liquid would vary in the larger cylinder. Zander described a comparison of two 

graphs he imagined: one for the height of liquid in the smaller cylinder with respect to volume, 

and the other for the height of liquid in the larger cylinder with respect to volume. 

Zander: Our x is going to be the volume and our y is going to be the height…so if the 

volume is increasing for the smaller one, our height is also going to, height is going to 

increase in both of these, so we do know that the graph is going to be like linear in this, 

it’d be increasing, but at a different rate for the smaller one, it would increase at like a 

really high rate so our slope is going to be really high; however for the larger one it’s not. 
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Following his description of the graphs and a discussion about how he conceptualized the 

“rates” he was comparing, Zander described what first appeared to be evidence of a smooth 

continuous conception (Castillo-Garsow et al., 2013) of the covariation of each height with 

respect to volume. After further discussion, the researcher concluded that Zander was most likely 

employing a chunky continuous conception of covariation, since he stated that the slope of the 

graph should be the same over any size of interval for the volume. 

Zander: So like we can, in this equation, we can find out our, like, height at every single 

moment as volume changes, so as of here, our volume was one thirty eight point one six, 

and we figured out that our height would be four point eight, so we can increase that 

volume to one forty and then we can figure out our height. This is what we can do. Then 

we could like have a slope at this point, and I hope that this slope is the same for the, 

every single interval in there, otherwise it won’t be linear. 

Conclusion 

In response to both tasks, Zander frequently alternated between computing specific values 

and using algebraic manipulation procedures, and making general descriptive comparisons 

between what he seemed to imagine as variables. Zander appeared to imagine the functions as a 

means of relating the direction of change in two variables (Carlson et al., 2002). Thus, it appears 

that Zander leveraged a process view of function (Breidenbach et al., 1992). However, whether 

he used an action or process view of function in particular parts of his solution depended on his 

goal at that point in his thinking process. When his goal was to calculate a specific value or 

define an algebraic equation, he described a series of computations between individual values, 

suggesting he employed an action view of function in these situations. 

In addition, Zander appeared to engage in several types of function composition. One form of 

function composition involved a series of computations and substitutions to compute one specific 

value given another (i.e., computing the height of liquid in the larger cylinder from a known 

height of liquid in the smaller cylinder). A second form of function composition involved 

algebraic manipulations to link together two equations, followed by a two-step sequence of 

computations to relate several numerical values, one-at-a-time, input to the first equation to 

corresponding numerical values output by the second equation (i.e., using the equation 𝑥 = 𝑦/5 

and subsequently the equation 𝑓(𝑥) = 𝑥2 to compute values of 𝑓(𝑥) from values of 𝑦). Finally, a 

third form of function composition involved a sequence of covariational relationships through 

which he appeared to imagine a chunky continuous, or possibly even smooth continuous variable 

(Castillo-Garsow et al., 2013) in relation to another by comparing his visualization of two graphs 

(i.e. comparing volume-height graphs he constructed in response to the cylinder problem). 

Zander provides an example of how one student can use several different forms of function 

composition, covariation, and function to solve unfamiliar problems. His case suggests that the 

type of function composition that might be deemed applicable in a problem situation depends on 

the experiences with covariation and function someone associates with a problem’s 

representational context and the goal someone has for a solution at particular points in the 

solution process. 
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Magnitude Bars and Covariational Reasoning 
 

Irma E. Stevens 
University of Rhode Island 

In this report, I examine the recommendations made by researchers to use magnitude bars (or 
dynagraphs) with students to support their reasoning about quantities. More specifically, I look 
at implications of an undergraduate pre-service secondary mathematics teacher’s reasoning 
when using tasks with magnitude bars designed to support students’ meanings for geometric 
formulas in dynamic contexts. I illustrate the ways in which a student reasoned, ways that both 
resonated with researchers’ recommendations but also introduced unanticipated difficulties that 
resulted from the introduction of the magnitude bars. Specifically, I show two different ways of 
comparing magnitudes a student illustrated in the Painter Problem-using amounts of change 
reasoning and length comparison reasoning. The results of this study contribute to the literature 
on using magnitude bars to support students’ reasoning by illustrating the different ways in 
which a student can reason with magnitudes.   

Keywords: Pre-Service Teachers, Covariational Reasoning, Dynamic Geometry, Representations 

In RUME 2017, Stevens, Paoletti, Moore, Liang, and Hardison (2017) provided principles 
for designing tasks that promote covariational reasoning—in which students reason about two 
quantities changing in tandem (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). Among their 
considerations to use quantities that are not monotonic, to use shapes strategically, and to use 
different representational systems, the authors suggest to “use varying segment magnitudes to 
represent a quantity’s magnitude in a situation” (p. 933). In this report, I first (i) review how and 
why these researchers and others have argued for using dynamic magnitudes to support students’ 
reasoning (ii) describe the methods of a study with pre-service secondary mathematics teachers 
(hereafter, PSTs) that considered the aforementioned design principles from Stevens et al. 
(2017), (iii) describe the results of the study by illustrating one PST’s reasoning, and (iv) discuss 
how analysis of the larger study included insights into the affordances and limitations of using 
varying segment magnitudes that do not have any numerical values or units labeled (hereafter, 
magnitude bars). Specifically, the results section includes how magnitude bars were able to 
support students’ covariational reasoning but also provided additional sources of confusion about 
what quantities were being represented. In sum, this report is of a study that aims to answer the 
question, “What role does the use of magnitude bars play in students’ reasoning about 
relationships between quantities in dynamic geometric contexts?”.  

The Cases for Varying Magnitudes 
This section is a summary of researchers’ justifications for using dynamic magnitudes to 

support students’ mathematical reasoning. It includes recommendations from researchers who 
consider the role of technology in reasoning and are interested in students’ cognition.  

Varying bars as a way for students to construct productive meanings for graphs 
As mentioned in the introduction, Stevens et al. (2017) proposed the following task design 

principle for designing tasks that promote covariational reasoning—using varying segment 
magnitudes to represent a quantity’s magnitude in a situation. Specifically, the authors stated that 
using the magnitude bars instead of prompting for a graph immediately offers researchers 
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“insights into students’ reasoning while minimizing the influence of the ways of thinking they 
have developed for graphs (e.g., iconic translations, issues of function/dependency, ways of 
thinking based on figurative thought)” (p. 933). They also described how the magnitude bars 
served to help scaffold students into constructing graphs by placing the magnitude bars 
orthogonally and constructing a multiplicative object (i.e., a point on the graph in this case) and 
then an emergent trace of all the instantiated pairs (see also a similar use of dynagraphs from 
Antonini, Baccaglini-Frank, & Lisarelli (2020). This emphasis on using different representations 
to support productive meanings for graphs relates to the task design principle of Marton’s 
Variation Theory (Kullberg et al., 2017; Marton, 2015) that Johnson (2022) described, though 
she recommended specifically using different forms of the same type of graph to support 
students’ meanings for rate (building of literature such as Johnson (2012)). Liang & Moore 
(2021) extend the idea of partitioning magnitudes and its role in students’ covariational 
reasoning. They noted how students’ partitioning activities can be rooted in figurative thought by 
illustrating cases in which students struggled to relate partitions constructed in situations with 
partitions constructed in graphs intended to represent relationships between quantities from those 
situations. Thus, collectively, these authors have concluded that magnitude bars can be used to 
support productive meanings for graphical representations via covariational reasoning but also 
note the importance of attending to how partitions of magnitudes relate across representation 
systems.  

Varying bars as having semiotic potential for function 
Hollebrands, McCulloch, & Okumus (2021) considered the theory of semiotic mediation to 

discuss the design idea that a tool (such as the dragging tool in dynamic geometry tasks) has 
semiotic potential that a teacher can exploit to “guide students to produce mathematical signs 
(definition, proof, mathematical conclusion, generalization, etc.). Here semiotic potential of an 
artifact relates to the “mathematical meanings related to the artifact and its use” (Bartolini Bussi 
& Mariotti, 2008, p. 754). For example, they described how dynagraphs elicited students’ 
understandings of the notion of function, referencing, the work of Antonini, Baccaglini-Frank, & 
Lisarelli (2020). Dynagraphs are like magnitude bars where students drag the bar representing 
the independent variable and can observe the effects of the bar representing the dependent 
variable, but unlike magnitude bars, they are typically placed on a number line with values 
labeled. In summary, these authors argued that interacting/dragging the bars in the dynagraphs 
has the semiotic potential for students to find patterns and generalizations related to ideas of 
function.  

Magnitude bars as a way for students to understand measurement 
The idea of motivating ideas about measurement through motion stems from Piaget and 

colleagues (1960). They and other researchers (e.g., Curry, Mitchelmore, & Outhred, 2006; 
Kamii, 2006) have reported that students start to conceptualize a length or magnitude via motion 
(e.g., stepping, sweeping, and pointing motions across straight paths). Moreover, Barrett et al. 
(2012) proposed a hypothetical learning trajectory that intends to build on this meaning for the 
quantity by introducing the iteration of single units (eventually without gapping, overlapping, or 
inconsistent unit size.). These researchers, although not explicitly mentioning magnitude bars, 
describe an image of movement associated with a length quantity to support students in learning 
about measurement.   

25th Annual Conference on Research in Undergraduate Mathematics Education 753



Magnitude bars as a way for students to compare quantities 
Lastly, the idea of comparing two magnitude bars to each other at different lengths shows up in 
the literature as well. These researchers have discussed how comparing dynamic magnitudes can 
support students at various levels. Yeo (2021) described how “dragging mathematical objects 
plays a critical role to mediate and formulate fraction understandings” (p. 1) And at the 
undergraduate level, Beckmann & Izsák (2020) described how a variable-parts perspective (in 
which the unit measurement varies and is then multiplicatively compared to the output 
measurement) can be considered when representing measurements graphically to support 
learning about average rate of change, the Fundamental Theorem of Calculus, and Trigonometry. 
These researchers highlight how the multiplicative comparison of dynamic magnitudes can 
support the learning of several different mathematics topics from the elementary to the 
undergraduate level.   

Methods 
In part of a semester-long teaching experiment (Steffe & Thompson, 2000), three 

undergraduate students in a preservice secondary mathematics education program at a large 
public university in the southeastern U.S individually interviewed with a teacher-researcher and 
observer(s) to reason about formulas via dynamic geometric objects. Each student participated in 
12-15 teaching sessions. Due to space constraints, I discuss only one students’ work (Lily) on a 
single dynamic geometric context (called the Painter Problem), one that she worked on over the 
course of six total sessions, resulting in about six hours of video data. I video-recorded and 
screen-captured students’ work on a tablet and scans were made of student work.  

The overall goal of the teaching experiment was to analyze the mental operations needed to 
support students in constructing productive meanings for formulas (see Stevens (2019) for full 
details), but this report focuses specifically on the role of magnitude bars in their reasoning by 
attending to the ways in which Lily reasoned with magnitude bars in the Painter Problem. To do 
so, I attended to the descriptions Lily provided for her reasoning when discussing magnitude 
bars, focusing specifically on (i) what quantities (if any) she was referencing in the situation 
when describing the magnitude bars (ii) what the goals were for Lily when she was reasoning 
with the magnitude bars and (iii) what mental operations she was describing when trying to 
achieve those goals. In particular, I look at students’ covariational reasoning—the mental actions 
involved in reasoning about changing quantities. Of note in this proposal are directional 
covariational reasoning (i.e., as one quantity increases/decreases another quantity increases/ 
decreases), and amounts of change reasoning (i.e., as one quantity changes by equal amounts, 
another quantity changes by increasing/decreasing/equal amounts) (see Carlson et al., 2002).  

Task Design 
As mentioned, the tasks used in the teaching experiment as a whole considered the design 

principles outline in Stevens et al. (2017), and the Painter Problem involving a dynamic rectangle 
described here is no exception. The context of a dynamic rectangle varying in one dimension to 
discuss area in relation to width has been used by several other researchers (e.g., Ellis, 2011; 
Kobiela, Lehrer, & VandeWater, 2010; Matthews & Ellis, 2018; Panorkou, 2020). In this 
version, the students are given a dynamic geometric sketch in which they can drag the bottom 
right corner to the right or left. They can also press the “Paint” button to watch the rectangle 
sweep out to the right (maintaining the constant height of the paintbrush used to create the 
painted area) and “Reset” to move the bottom right point back to the beginning location (thus 
removing the rectangle). The novel addition to this varying rectangle in the Painter Problem is 
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the inclusion of magnitude bars. Doing so meets the task design principle of using varying 
magnitudes from Stevens et al. (2017). In Part II of the problem (Figure 1), the students were 
told that the orange bar represented the length that a painter had swept out the roller (i.e., the 
width of the rectangle) and that they were to decide which, if any, of the purple bars represented 
the area of the rectangle. The top purple magnitude bar was an appropriate bar to represent the 
area of the rectangle because it has a linear relationship with the orange bar, whereas the bottom 
purple bar increases at an increasing rate with respect to the orange bar.1The students could move 
around the dots, which they used to mark specific widths of the rectangle and endpoints of the 
magnitude bars. Other design principles from Stevens et al. (2017) were also met. For example, 
the choice to allow the student to move the rectangle to the right or left by dragging the points 
met the design principle of not providing monotonically increasing quantities. The choice to keep 
the rectangle shape was strategic in that it provided students with a proportional relationship 
(other tasks considered different relationships between a length dimension and (surface) area). 
And lastly, throughout the interviews, students were asked to represent the relationship between 
quantities using different representations (with a formula being the focus of the teaching 
experiment), meeting that design principle.  

 

 
Figure 1. The Painter Problem Part II.  

Results 
In this section, I describe how Lily reasoned with magnitude bars while considering the 

relationship between the area and height of a dynamic object, the rectangle in the Painter 
Problem. Specifically, I attend to her descriptions of (i) the quantities she constructed with the 
dynamic geometry software (ii) the quantities she constructed with the magnitude bars, and (iii) 
the quantities she represented in her formulas.  

For some context, in the Painter Problem Part I (i.e., prior to the introduction of magnitude 
bars), Lily had made three conclusions. First, she concluded that the area painted increased as the 
length that roller swept out increased (a directional covariational relationship as defined by 
Carlson et. al (2002)). Second, she knew to multiply the length and width to get the area of the 
rectangle (specifically, her formula was A=bh). Lastly, Lily had referenced the idea that 
“multiplication makes bigger”.  

Reasoning with the idea that multiplication makes bigger 
When Lily started the Painter Problem Part II, she immediately chose Bar #1 (the top purple 

bar) as appropriate because “the value of the area is bigger than the value of the base, and I think, 

 
1 In Part III of the problem, the students were allowed to determine a number of partitions that would populate along 
the length of the rectangle. They could also see measurements of the length and area based on their chose unit sizes. 
The results of this part of the Painter Problem are not discussed in this section. See Stevens (2019) for details.  
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it can’t-I don’t think the area can be smaller than the base.” She then discussed three different 
cases of the magnitude bars (which she called “segments”) (Figure 2): when the purple segment 
(area magnitude) was less than, equal to, or greater than the orange segment (length magnitude). 
Since there were cases in which Bar #2 was not longer than the orange bar, and since 
multiplication makes larger means that the purple bar should always be longer than the orange 
bar to represent the multiplicative relationship between length and area, then Bar #2 could not be 
appropriate. Bar #1 satisfied her condition because its magnitude was always greater than the 
orange bar. Thus, Bar #1 was Lily’s choice.  

 
      (a)                  (b)              (c) 

Figure 2. Lily’s three cases for Bar #2 in the Painter Problem Part II: (a) area less than length (b) area equal to 
length and (c) area greater than length. 

Lily felt unsatisfied with her justification for Bar #1, worried she was overgeneralizing the 
rule that “multiplication makes bigger”. Thus, she decided to test various numerical values with 
her formula A=bh to decide if it was a viable generalization. Her results are in Table 1.  

 
Table 1. Lily’s list of numerical calculations using A=bh to compare A (which should correspond to the value of the 
purple bar) and b (which corresponds to the value of the orange bar). 

  Painter Problem 
Part II 

  

 
1 
2 
 
3 
 
 
4 
 
5 

 (Cases) If… 
h = 1 
(unspecified) 
 
b > h 
 
 
b < h 
 
h is a constant 

(Conclusions) Then… 
b = A 
A < b 

 
A £ b 

 
 

A ³ b 
 

“If the area starts 
smaller, it should stay 
smaller. But if the 
area starts bigger than 
the base, then it 
should stay bigger.”  

Numerical Example 
b=3, h=1 Þ A=3 
b=6, h=½ Þ A=3   
b=2, h=½ Þ A=1 
b=6, h=½ Þ A=3 
b=2, h=½ Þ A=1 
b=6, h=1 Þ A=6 
b=.5, h=4 Þ A=2 
b=.5, h=1 Þ A=.5 
h=½ Þ “It would 
always make the 

area half the base.”   

 
As a result of Lily’s reasoning with numerical values, she stated that she could no longer rule 

out Bar #2 as a potential viable candidate based on “my discovery that the area can be smaller 
than the base, the value of it” (Case 2). But after constructing Case 5, she decided to rule out Bar 
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#2 again because “[dragging the corner of the rectangle back and forth] I don’t think [the area 
bar] should be less than [the base bar] and then greater than [the base bar].” Beyond saying “I 
don’t think” and referencing the idea that “multiplication makes bigger”, however, Lily struggled 
to relate her conclusion to the rectangle in the dynamic situation.   

Reasoning with Amounts of Change 
In a follow-up session, I asked Lily to consider the case where both purple magnitude bars 

were always bigger than the orange bar (essentially considering the case where the orange 
magnitude starts at its location in Figure 1c and extends to its maximum length). After some 
time, she stated that for equal changes in the base (she specifically stated, “like plus two, plus 
two, plus two” while dragging the corner of the rectangle in small chunks to the right), the purple 
magnitude bar should indicate a “constant increase in area.” After some effort, and some 
additional numerical calculations to support her conclusions (see Figure 3), Lily reasoned using 
amounts of change; namely, that for the rectangle situation, for equal changes in the base, the 
amount of area increased by a constant amount. When she made that conclusion, she had no 
difficulty in deciding that Bar #1 was appropriate. That is, she could identify the magnitude bars 
as “increasing at a constant amount” (for Bar #1) and “increasing by increasing amounts” (for 
Bar #2). For example, for Bar #2, she described the situation as adding two “square units” for the 
first change in length and then four “square units” for the second successive equal change in 
length. Her discussion of the values was consistent across the situation and the magnitude bars; 
she associated an increasing number of boxes in the situation with a magnitude bar with 
increasing changes in magnitude (for the same successive change in the orange magnitude). 
 

 
Figure 3. (left) Lily's numerical amounts of change calculations and (right) Lily’s amounts of change in the situation 

after focusing on magnitudes. Bottom right corner shows Lily’s markers for amounts of change and main figure 
shows post hoc edits for the reader to indicate the three boxes corresponding to her amounts of change in area.  

Discussion and Implications 
Researchers have already identified several reasons to include dynamic magnitude bars when 

introducing students to topics ranging from graphical representations to functions to fractions to 
trigonometry to the Fundamental Theorem of Calculus. These recommendations stem from ideas 
that the bars provide a means for comparison (via segmenting, iterating, counting, making 
multiplicative comparisons, etc.) and that the dynamic nature of the segments supports means for 
constructing length as a quantity or for observing patterns and generalizing.  

In the results of this study, I reported on how the introduction of the magnitude bars 
supported Lily in covariational reasoning. Lily did not need the magnitude bars to make the 
conclusion about a directional covariational relationship between quantities. That is, already in 
Part I, she claimed that as the length the paint roller has swept out increases, the amount of paint 
increases. However, given the nature of the initial prompt (i.e., to describe the relationship 
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between the two quantities), there was no intellectual need to compare the quantities beyond a 
directional covariational relationship. Further inquiry was needed but magnitudes are not the 
only option. If, for instance, she was asked to create a graph, the graph, whether intentional or 
not, would have been either straight or curved, giving the researcher a natural place to motivate a 
discussion about rate of change (e.g., Stevens, & Moore, 2016). Or given a formula, the student 
could be asked to discuss the form of the equation (y=kx,  y=mx+b, y=x2, y=sin(x), etc.) to 
motivate discussions of rates of change. But both of these methods of prompting reasoning about 
rates of change rely on perceptual features of the representation (i.e., the straightness of the line, 
the arrangement of the letters) and steps away from the quantities at hand. In doing so, students 
can turn to relying on conventions they have learned (e.g., shape thinking (Moore & Thompson, 
2015)) to justify responses. Instead, by providing students with magnitude bars that represent 
different relationships between quantities and asking the students to indicate which one is 
appropriate, students are intellectually motivated to identify differences between the bars that go 
beyond the directional covariational relationship. For Lily, that prompted her to consider 
amounts of change covariational reasoning. That is, she considered equal changes in length on 
both the sketch of the situation and the orange magnitude bar representing that length, observed 
the resulting equal changes in area, and then identified which of the two magnitude bars also had 
equal changes. The larger teaching experiment showed similar gains by other students, with 
more or fewer struggles revolving around the use of numerical values to support their reasoning 
(see Stevens, 2019). Thus, this study contributes to the knowledge about magnitude bars by 
illustrating that they can provide a way for students to reason covariationally about amounts of 
change that do not rely on their understandings of graphs or equations. 

Though Lily demonstrated amounts of change reasoning with the magnitude bars, she also 
demonstrated that it should not be assumed that students will necessarily reason quantitatively. 
Namely, Lily also compared each purple bar’s magnitude to the orange bar’s magnitude at 
specific points. This reasoning was not productive for her because she started relying on 
generalizations she recalled about mathematical operations (i.e., multiplication makes bigger) 
rather than attending to how the magnitudes were representing the growing rectangle. Thus, this 
study also contributes to the knowledge about magnitude bars by illustrating that students’ ways 
of reasoning about the magnitude bars may not result in conclusions that they can relate to the 
quantities they are being asked to consider in the situation.  

In conclusion, the results of this study show that magnitude bars have the potential to support 
student’s covariational reasoning about formulas without relying on numerical values or 
understandings of different representation systems. I call for the research community to consider 
how different ways of reasoning with magnitude bars could be productive when learning 
different mathematical ideas. For example, although Lily’s first way of reasoning about the bars 
did not support her in making a conclusion about the amounts of change relationship between 
quantities she was asked about, perhaps her comparison of quantities’ values would be 
productive for different mathematical goals.   
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A Linear Algebra Instructor’s Ways of Thinking of Moving Between the Three Worlds of 
Mathematical Thinking Within Concepts of Linear Combination, Span, and Subspaces   

Avery Madden Sepideh Stewart Jeffrey S. Meyer 
University of Oklahoma University of Oklahoma CSU, San Bernardino  

Linear algebra is an important topic for many STEM students and presents unique challenges for 
teaching and learning. In this study, we analyzed one mathematician’s instructional materials 
and spoken language. Our theoretical framework is based on Tall’s (2008) three 
worlds of mathematical thinking and Harel’s (2008) ways of thinking. The goal of the study 
was to examine the complexities of a mathematician’s ways of thinking while moving between 
the three worlds of mathematical thinking, while orchestrating the important aspects of 
linear combination, subspaces, and span. 

Keywords: subspace, linear combination, span, ways of thinking, three worlds of mathematical 
thinking 

Literature Review 
Establishing the current state of linear algebra education research, a survey paper by Stewart, 

Andrews-Larson, and Zandieh (2019) highlights the students reasoning on the topics of span 
(e.g., Wawro, Zandieh, Rasmussen, & Andrews-Larson, 2013) and subspaces (e.g., Britton & 
Henderson, 2009). However, most studies focus on these topics and student comprehension, 
leaving a gap in the investigation of teacher understanding. Furthermore, the survey paper helps 
indicate extensive research into linear combinations and span, but less so in subspace.  

  When discussing Subspace, the idea of “Span” and “Spans” is inevitable. These two words 
are quite similar but mean different things invoking a type of polysemy, which can create 
challenges for the learning of subjects when it occurs in mathematics (Kontorovich, 2018). This 
issue overlaps with the understanding of subspace, something that research has documented as a 
challenge for student understanding (Britton & Henderson, 2009). Specifically concerning 
subspaces, one study showed that students prefer to use geometric intuition to understand 
subspaces (Wawro, Sweeny, & Rabin, 2011). Furthermore, students struggled with 
understanding how many subspaces are in a given space (Fleischmann & Biehler, 2018). Similar 
struggles exist in learning the concept of linear combination. When researching undergraduates’ 
ability to determine if something is linearly dependent or not, instead of utilizing the 
characteristics of linear combination, the students preferred to use matrix operations (Aydin, 
2014). Navigating these challenges presents important considerations for an instructor’s teaching 
methods. 

Looking to how this information is communicated, a teacher’s knowledge base is an 
important aspect of education. A teacher’s knowledge base and its relation to student 
understanding is a deep facet of education that has been studied (Tallman & Frank, 2020). This 
knowledge base may be accessed through the educator’s ways of thinking (Harel, 2008). In their 
view Tallman and Frank (2020) find for a given topic, “this study provides support for the notion 
that mathematical ways of thinking comprise a fundamental aspect of teachers’ professional 
knowledge base” (p. 92). A teacher’s knowledge base has overlap with how they present 
information. In the literature, there has been an increasing interest in examining this topic in how 
an instructor conveys information to students and conducts procedures in the classroom. For 
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example, Stewart, Troup, and Plaxco (2019) discussed an instructor’s reflections on his lectures 
and movements between different mathematical worlds. The study concludes that the instructor 
was able to give careful attention to the needs of the students after consulting with his own 
reflections and knowledge base.    

 Emerging studies have begun examining how digital resources can be used to help students 
understand linear algebra topics. Previously, introducing drawings into linear algebra education 
has been a topic of study. Gueudet-Chartier (2004) argues that “the concreteness that seems to 
lack in linear algebra could be more efficiently provided by the use of drawings” (p. 500). 
Research into the learning of span has shown that visualization can be helpful in making students 
more flexible in their reasoning of the topic (Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 
2012; Wawro, Rasmussen, Zandieh, & Larson, 2013b; Cárcamo, Fortuny, & Gómez, 2017). 
Further, it has been shown that using GeoGebra to assist students in understanding subspace, 
specifically the zero vector is beneficial (Caglayan, 2019). These studies suggest that linear 
algebra concepts can be enhanced by visualization tools. Similar studies were conducted on 
students showing that these students benefited from a more embodied representation (Hannah, 
Stewart, & Thomas, 2013).   

Theoretical Framework 
The theoretical framework for this study will utilize Harel’s (2008) ways of thinking and 

Tall’s three worlds of mathematical thinking (2010). Harel (2008) introduced the notion of a 
mental act as actions such as interpreting, conjecturing, justifying, and problem solving, which 
are not necessarily unique to mathematics. These several types of mental acts are the foundation 
of ways of thinking defined as “a cognitive characteristic of a mental act” (p. 269). These ways 
of thinking have the characteristics of being able to abstract, generalize, structure, visualize, 
and reason logically. Tall (2010) describes the embodied world as “our operation as biological 
creatures, with gestures that convey meaning, perception of objects that recognize properties and 
patterns… and other forms of figures and diagrams” (2010, p. 22). In his view, “The world of 
operational symbolism involves practicing sequences of actions until we can perform them 
accurately with little conscious effort. It develops beyond the learning of procedures to carry out 
a given process (such as counting) to the concept created by that process (such as a number)” 
(2010, p. 22). The formal world “builds from lists of axioms expressed formally through 
sequences of theorems proved deductively with the intention of building a coherent formal 
knowledge structure” (2010, p. 22). Using the above frameworks, the goal of this narrative study 
is to examine the complexities of a mathematician’s ways of thinking while moving between the 
three worlds of mathematical thinking while orchestrating the important aspects of linear 
combination, subspaces, and span.  

         In analogy with Tallman and Frank (2020), we consider moving between the embodied, 
symbolic, and formal worlds as a characteristic of mental acts and, as such, a way of thinking. It 
is through Tall’s three worlds lens of mathematical thinking that we evaluate the teaching moves 
of the instructor. 

Methods 
This qualitative narrative study (Creswell, 2013) took place in the Fall of 2021. The 

participants in this research consisted of a mathematician and co-author. The mathematician, 
thereafter, referred to as the instructor, specialized in geometry, linear algebra, and number 
theory. The teaching material of note is part of a first-year linear algebra course from a university 
located in the southwest region of the USA taught by the instructor. There were 30 students 
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enrolled in this course. In addition, a mathematics educator, and a research undergraduate 
assistant from another university in the USA were part of the research team. The data consisted 
of (a) the instructor’s notes (which he authored) on linear combinations, span, and subspaces (in 
this order) that was available to students (Figure 1), (b) his notes on the blackboard (Figure 2a & 
b), and a GeoGebra interactive example (Figure 2c), (c) two of his recorded video lectures, and 
(d) students’ weekly reflections and homework. The data analysis for this study consisted of 
transcribing the second lecture, finding pertinent sections in the notes related to the lecture 
concepts, and coding the different themes. These different components of analysis were done 
with the instructor as part of the research team. Harel’s (2008) ways of thinking and Tall’s three 
worlds of mathematical thinking (2008) were employed as a framework to analyze the data. We 
identify and analyze the instructor’s one specific way of thinking, namely, the disposition of 
moving between languages as well as Tall’s (2008) three worlds of mathematical thinking 
(embodied, symbolic, formal). The data from students’ work is in the process of being analyzed 
for future research. 

Results  
 The instructor intentionally ordered his lecture with the goal of building on intuition with 

more embodied understandings before generalizing to reach into new topics. The instructor gave 
a variety of connections between topics to aid in understanding. In his lecture, he reminds 
students of the definitions in the notes and refers to them. Descriptive ways of how to understand 
and apply these concepts are placed on the board. In the first and second lectures, diagrams of 
two- and three-dimensional space are drawn on the board to emphasize embodiment (Figures 2a 
& b).  

Linear Combination and Span: the language and movements between the three worlds 
We noted the instructor used a variety of informal and geometric language to support the 

concepts and their definitions. In the notes, the instructor used words like “reach”, “line”, and 
“parallelogram” to describe linear combination and span (Figure 1). He repeatedly used the 
informal language of “mixture” to refer to linear combinations. For example, he asked, “Which 
vectors? The collection of how many mixtures? Some mixtures? … All mixtures. Right, …all 
mixtures you can make with these not some, not half, not a few, but all mixtures right.” Here the 
instructor relies on language to give meaning to linear combinations as his way of thinking about 
the topic. An instance of the instructor’s disposition to attend to language is when they 
anticipated and addressed student confusion stemming from the polysemy “span.” Figure 2b 
breaks the topics of possible linear combinations “span the noun” and spanning sets making 
subspaces “span the verb” into two categories and highlighting the most crucial pieces of the 
definition. Harel (2008 considers ‘anticipating’ as a mental act. This certain mental act motivated 
the teaching act described above. The instructor further clarifies the distinction between an object 
and the relationship between two objects: “Right, that’s very different than the noun right this is 
just a set (gestures to W = Span(S) this is like a true false kind of thing (gestures to S spans W) it 
either does or doesn’t span.” During the lecture (see Figure 2b), the instructor said: “I would call 
span the mixture set associated to any collection of vectors, okay and then we could talk about uh 
span the verb you know if if you know if given a set of vectors right if it’s mixture set is the 
subspace in question, we would say it spans the subspace.” Following, the core mixture 
questions (Figure 1) are set up in such a way as to help internalize what is important about the 
concept and give these characteristics of linear combinations meaningful language while also 

25th Annual Conference on Research in Undergraduate Mathematics Education 763



pushing towards the concept of span. During the first lecture, some examples with matrix 
representations are written on the board to assist in symbolic understanding (Figure 2a).  

During the second lecture, the word “mixtures” is used. This way of thinking about the 
concept of linear combinations involves changing the language to give the term linear 
combination additional “meaning”. The instructor poses the question, “So let’s say what’s the 
noun associated to this, what is the noun given a collection of vectors, what can we make with it? 
... Yeah …so we can make mixtures.” The instructor utilizes the movement between the 
mathematical worlds of thinking throughout the lecture. In one such example (Figure 2), the 
instructor moved from the formal to embodied and acknowledged the possibilities of movements 
to symbolic: “the span of those guys it equals the line, and you can see that visually and if we 
wanted to, we could verify that symbolically”. For the topic of span, the notes provided a 
definition of span with emphasis on the word “all” this is done to emphasize any possible linear 
combination is made up in this set. Meanwhile, the embodiment of the definition invokes the use 
of visualizing a line that represents all linear combinations of a single vector. This is further 
extended to the notion of two vectors and a plane. In analyzing the concept of span, in the first 
lecture, the instructor drew two vectors, proceeded to analyze their linear combinations visually 
via a parallelogram, and then moved to the symbolical representation (Figure 2a). Next, he 
showed symbolically how to create an arbitrary vector in R2  as a linear combination of the 
original vectors. Performing examples in this order suggest that the instructor comes from a 
place of visualizing the span first and symbolizes in the matrix form. Visualization continues to 
be included in the second lecture, with vectors being drawn on the board and displayed in 
GeoGebra (Figure 2b & c). 

Subspace: the language and movements between the three worlds 
In the notes (Figure 1), the instructor provided a nonstandard formal definition of subspace 

relying on the concept of span. His notes continued to discuss a “quick” way to determine if a 
region is a subspace by checking if it is closed under scaling and addition, but he phrased it in 
geometric language as “line containment” and “parallelogram containment”, respectively. In the 
first lecture, the notion of subspace, having a set of “mixtures” and then a spanning set, are all 
written on the board (Figure 2a). With these components, the same language of the notes is used 
where a plane is drawn on the board in a projected three-dimensional space. The use of line test 
and parallelogram test are employed with the inclusion of passing through the origin.  

During the second lecture, the instructor used GeoGebra as an activity and demonstration to 
discuss single vectors, zero vectors, and span vs. spans. With the focus changing to subspace, a 
GeoGebra three-dimensional model is placed on the top of the board, where the instructor 
manipulated different vectors and created a variety of subspaces (Figure 2c). After the group 
activity, an example from the class dialogue continued as follows:  

“So, let’s see, A plus B spans the line well that’s a very good point again what is A plus 
B?... So there’s there’s also there’s all sorts of relationships here so so you could say A plus 

B spans but A plus B goes by another name D. So, there’s all sorts of algebraic relations between 
these things.”  
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Figure 1. Linear combinations, Span, and Subspaces from the instructor’s notes. 
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(a) 

 

(b)      (c) 
 

Figure 2. The instructor is writing on the board during lectures one and two and engaging students via GeoGebra. 
 

During this episode, the instructor focused on how the zero vector and the zero-subspace fit 
into 3D space. Here is a sample of subsequent discussions: 

Instructor: [I]s a single vector a span? No, right, so we have to go back to our precise  
definition. So, a single vector is not a span right, but a line here is a span. What other things 

in somehow depicted here are spans of something?   
Student 1: Like a point.   
Instructor: Uh which point?   
Student 2: Any point on the line.  
Instructor: Is Anything on the line, Is any point a span? This is a span? (Gestures at a 

drawing point of a line on board). This is a subspace? No because right a single point cannot be a 
subspace unless there’s one exception.  

Here the instructor is connecting the different ideas about what a single vector can generate 
while also asking them to recall special cases. This response is supported by the picture of a line 
placed on the board earlier in the lesson (Figure 2b). “Does this guy span the trivial subspace, 
zero? Some people say no. No! As they take mixtures of this is bigger, it’s bigger it’s not equal.” 
Here the instructor used geometric language of relative size to support the idea that the span of a 
non-zero vector cannot be the trivial subspace. 

Discussion and Conclusions 
Upon analyzing the data in this study, we observed the instructor relied heavily upon 

reasoning in many representations, which impacted his choices in instruction. We observed how 
this informed his selection of demonstrations and his attention to language.  

25th Annual Conference on Research in Undergraduate Mathematics Education 766



 We also found that these ways of thinking impacted the choices that he made in instruction. 
He consistently moved from embodied to symbolic to formal worlds, and back again. His choice 
of language moved from informal to geometric to formal, and returned to informal. This was 
observed in both his prepared lecture and his spontaneous responses to questions. The weaving 
of formal language with informal and familiar language made the topics more accessible. The 
lecture began using descriptive geometric words such as “sweep out”, “stretch” and “reach” to 
articulate how these objects look. The instructor used informal terms during the lecture to 
familiarize informal terms like “mixtures”, “span the noun”, “span the verb”, when talking about 
these concepts. In their responses to questions, students also used this informal language, 
indicating that the familiarization may have been effective. The prepared and distributed notes 
allowed students to focus on active participation within the class. The lecture weaved through 
multiple understandings of each concept allowing for engagement with familiar concepts, 
language, and embodied objects, only to then progress to understanding the mathematical 
machinery of the subjects before being exposed to their deeper meaning. Here the use of 
language is crucial again as the lecture begins using descriptive words such as “sweep out”, 
“stretch” and “reach” to articulate how these objects look.  

Furthermore, the use of GeoGebra during the lectures supports this meaning by seeing all the 
different possible combinations of vectors and having students identify what they created. The 
instructor gives meaning to span and subspace in similar ways by providing a definition and then 
constructing a visual representation of the topic. The instructor employed the use of language to 
illustrate how the zero subspace looks, citing that adding anything besides zero would be 
“bigger” than the zero subspace. He made a clear distinction between the words span and spans 
when a discrepancy appeared about what a singular vector can make. Following these results, our 
future research will include an analysis of students’ weekly surveys and some of their 
homework. 
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Synthetic vs. Analytic Formalism of Matrix Representations in Linear Algebra: What it Means to 
Diagonalize a Linear Transformation 

Günhan Caglayan 

New Jersey City University 

The contributed report highlights linear algebra students’ understandings of the matrix 
representations of certain linear transformations defined on with respect to given bases in a 
DGS-MATLAB assisted pedagogical environment. The research focused on the diversity of 
strategies that students utilized specifically in the process of diagonalizing linear 
transformations in a series of in-depth qualitative interviews within a framework of modes of 
description and thinking in linear algebra (Dreyfus, Hillel & Sierpinska, 1998; Sierpinska, 
2000). Data analysis revealed three main categories: (i) synthetic-geometric mode manifested as 
the visual alignment strategy in which students visualized each image vector as a multiple of the 
corresponding preimage vector; (ii) analytic arithmetic mode prevailed in the process of 
expressing the image vectors in terms of the preimage vectors; (ii) analytic structural mode was 
observed in the process of determining the diagonal form of the linear transformation with 
reference to the transition matrices and the commutative diagram. 

Keywords: matrix representation of linear transformations; transition matrices; diagonalization; 
eigenbasis; dynamic geometry software; modes of description and thinking in linear algebra 

Theoretical Background and Motivation for the Study 
The pedagogy of linear algebra has been a focus of research interest for many years (Dogan-
Dunlap, 2010; Dorier, 1991, 1995, 1998; Dorier, Sierpinska, 2001; Gueudet-Chartier, 2006; 
Harel, 1987, 1989, 1990; Parraguez & Oktac, 2010; Pavlopoulou, 1993; Robert & Robinet, 1989; 
Rogalski, 1994; Sierpinska, 1995, 2000; Sierpinska, Dreyfus & Hillel, 1999; Sinclair & Gol 
Tabaghi, 2010; Thomas & Stewart, 2011; Zandieh, Wawro & Rasmussen, 2017). Hillel (2000) 
characterized linear algebra students’ understanding of matrices and linear operators to be at the 
interoperational level of thinking – although they were expected to communicate at the 
transoperational level of thinking. Hillel (2000) further posited the requirement that at the trans-
level linear algebra learners should be able to: (i) determine the matrix representation of a linear 
transformation relative to a given basis; (ii) determine the coordinate representation of a vector in 
a vector space relative to a basis; (iii) think about these representations (coordinate 
representations of vectors and matrix representations of linear transformations) as “objects of 
inquiry in their own right;” (iv) think about “the general conditions under which a vector or a 
linear operator can have a particularly desirable representation” (p.206). 

Harel and Kaput (1991), and Harel (1985, 1990) formulated the concreteness principle, as a 
fundamental approach for the teaching and learning of linear algebra, originated from Piaget’s 
(1977) idea of conceptual entities. According to this principle, “for students to abstract a 
mathematical structure from a given model of that structure the elements of that model must be 
conceptual entities in the student’s eyes; that is to say the student has mental procedures that can 
take these objects as inputs” (Harel, 2000, p.180). Concreteness principle requires that “students 
build their understanding of a concept in a context that is concrete to them” (p.182). He 
recommends MATLAB as a tool that would help students visualize vectors and matrices as 
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concrete mathematical objects, in accordance with the concreteness principle. Aligned with the 
concreteness principle (Harel, 2000) and in search for a desirable matrix representation for a 
linear transformation as brought forward in Hillel (2000), this study focuses on students’ 
questioning of the essence of diagonalization of linear transformations in a DGS-MATLAB-
assisted learning environment. 

Modes of Description and Thinking in Linear Algebra 
Representations are central to the teaching and learning of linear algebra. Harel (1989) 
established, among other things, that geometric representations contribute significantly in linear 
algebra students’ concept image formation (p. 57). The present report is guided by the theoretical 
viewpoint that identifies three modes of description (language) with the corresponding three 
modes of thinking as demonstrated by linear algebra students (Dreyfus, Hillel & Sierpinska, 
1998; Hillel, 1997, 2000; Sierpinska, 2000): (i) Geometric description (synthetic-geometric 
mode of thinking): point, line, plane, geometric transformation (translation, reflection, rotation, 
projection), vector as a directed line segment (arrow with a head and tail); (ii) Arithmetic 
description (analytic-arithmetic mode of thinking): 𝑛𝑛-tuples, matrices and operations on matrices 
including the inverse of a matrix, the adjoint of a matrix, partitioned matrices, systems of linear 
equations and their solutions; (iii) Algebraic description (analytic-structural mode of thinking): 
theory of vector spaces, subspaces, inner product spaces, linear transformations. 

Context and Method 
Qualitative-descriptive interview data were collected over three years in a university in the 
United States, as part of a research project which was designed for the purpose of enhancing 
mathematics and mathematics education majors’ content knowledge of advanced mathematics, 
with particular focus on geometry-linear algebra connections using DGS-MATLAB technology. 
The data for the analysis of matrix representations of linear transformations concept came from 
the videotapes of interview sessions in a computer lab that included a total of sixteen math 
majors who successfully completed a one-semester long linear algebra course, who were 
interviewed by the author individually on separate days. The university linear algebra course 
math majors took had covered the first eight chapters of Ron Larson’s “Elementary Linear 
Algebra” textbook. Math majors were familiar with the MATLAB and DGS as they had already 
used them during the preceding interview sessions on linear algebra topics; they were not 
provided any training or instructional help during the interviews. 
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The qualitative interviews were based on a semi-structured interview model (Kvale, 2007) in the 
course of which the interviewer followed-up with probes and questions on the interviewees’ 
responses. Math majors were asked to respond to a variety of interview questions with primary 
focus on the matrix representations of linear transformations in a manner leading to students’ 
questioning of the essence of diagonalization. During the interviews, math majors were asked to 
think aloud, to clearly indicate their problem solving procedure, and to explain their reasoning in 
detail. Math majors were granted access to scratch paper along with MATLAB and DGS to 
facilitate and clarify their explanations during the interviews. All interview tasks were designed 
in such a way that they could be explored via both analytic and synthetic approaches, in accord 
with the guiding theoretical framework used in the study. Table 1 outlines the linear 
transformations along with an interview outline that were used during these interviews. Though 
it was optional, all math majors were very eager and passionate about using MATLAB and DGS, 
primarily for checking their work, visualizing analytic approaches, testing conjectures, or 
providing examples and counter-examples. 

Analysis of data, which consists of videotaped qualitative interviews along with MATLAB-DGS 
work and inscriptions, was carried out using thematic analysis (Boyatzis, 1998). The thematic 
analysis was primarily used to describe how research participants came up with a diversity of 
innovative and creative ways for understanding and making sense of matrix representations of 
linear transformations and their connections to other important concepts of linear algebra. After 
transcribing all interview videos, using thematic analysis, the author reviewed the interview 
videos along with the original transcripts line by line to gain access to the modes of description 
and thinking adopted by students as they explored matrix representations of linear 
transformations and their relationship to other core concepts of linear algebra, in accordance with 
the research objective. The last cycle of data analysis process consisted of a holistic review of the 
corpus of data multiple times, in accordance with constant comparative methodology (Glaser & 
Strauss, 1967). 

Results 
Overall, students provided a diversity of synthetic and analytic strategies in their exploration of 
the diagonal form of linear transformations. This section considers the visual alignment approach 
(synthetic-geometric mode), the expressing of the image vectors in terms of the preimage vectors 
approach (analytic-arithmetic mode), and the transition matrix approach (analytic-structural 
mode), respectively. In each interview task, students were asked to find the matrix representation 
𝐴𝐴’ for the given linear transformation 𝑇𝑇:ℝ3 → ℝ3 relative to a specifically chosen nonstandard 
basis 𝛽𝛽′. Because most of the time all sixteen students began each task by retrieving the standard 
matrix 𝐴𝐴 for 𝑇𝑇, the analysis that follows primarily focuses on what happened next. 

Synthetic-Geometric Mode: The Visual Alignment Approach 
Upon obtaining the standard matrix 𝐴𝐴 for 𝑇𝑇, six out of sixteen students consistently embraced the 
synthetic-geometric approach in an organized attempt to arrive at the matrix 𝐴𝐴′ for 𝑇𝑇 relative to 
𝛽𝛽′. Typical student approach was to first introduce 𝐴𝐴 along with the basis vectors 𝐯𝐯1, 𝐯𝐯2, 𝐯𝐯3, 
respectively on the DGS. Second step was to obtain the matrix-applied basis vectors 
𝐴𝐴𝐯𝐯1,𝐴𝐴𝐯𝐯2,𝐴𝐴𝐯𝐯3,  denoted by 𝐮𝐮1,𝐮𝐮2,𝐮𝐮3, respectively on the DGS (Figure 1). Upon noticing the 
parallel relationships 𝐯𝐯1 ∥ 𝐮𝐮1, 𝐯𝐯2 ∥ 𝐮𝐮2, 𝐯𝐯3 ∥ 𝐮𝐮3, visually, students in this category immediately 
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focused on the scale factor 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, for each parallel vector pair, which, they mentally 
straightforwardly determined as 𝜆𝜆1 = 1, 𝜆𝜆2 = 2, 𝜆𝜆3 = 3, respectively. The final step was to 

simply write down the diagonal matrix 𝐴𝐴′ = �
1 0 0
0 2 0
0 0 3

�. 

 
Figure 1 Typical student synthetic-geometric approach for Task 1. 

Students’ synthetic-geometric description of the parallel vector pair (i.e., the basis vector 𝐯𝐯𝑖𝑖 and 
the matrix-applied basis vector 𝐴𝐴𝐯𝐯𝑖𝑖) relationship appeared to have functioned in two steps: (i) 
when 𝐯𝐯𝑖𝑖 and 𝐴𝐴𝐯𝐯𝑖𝑖 were aligned in the same octant, the corresponding eigenvalue 𝜆𝜆𝑖𝑖 was given by 
the ratio of the length of 𝐴𝐴𝐯𝐯𝑖𝑖 to the length of 𝐯𝐯𝑖𝑖; (ii) when 𝐯𝐯𝑖𝑖 and 𝐴𝐴𝐯𝐯𝑖𝑖 were aligned in opposite 
octants, the corresponding eigenvalue 𝜆𝜆𝑖𝑖 was given by the negative ratio of the length of 𝐴𝐴𝐯𝐯𝑖𝑖 to 
the length of 𝐯𝐯𝑖𝑖. Upon the interviewer’s probing whether 𝑇𝑇 is diagonalizable, S1 responded: 
“Well in this case 𝐴𝐴′ is a diagonal matrix so I would say yes 𝑇𝑇 is diagonalizable.” S2, who 
embraced the visual approach like S1, was more specific in her explanations: “Only because all 
these [pointing to the image vectors] are multiples of these [pointing to the preimage vectors] the 
linear transformation is diagonal.” In the synthetic-geometric approach, students simply focused 
on each image vector as a multiple of the corresponding preimage vector, without considering 
the remaining two preimage vectors. This was what made the linear transformation diagonal. 

Analytic-Arithmetic Mode: Expressing the Image Vectors in Terms of Preimage Vectors 
Six students consistently embraced the analytic-arithmetic mode. Among these six, three 
students directly applied the linear transformation to each vector of the given nonstandard basis, 
whereas the other three applied the standard matrix representation of the linear transformation to 
the coordinate vector representation of each basis vector. This was the slight difference in the 
thinking of these two groups of students. 

Expressing 𝑇𝑇𝐯𝐯1,𝑇𝑇𝐯𝐯2,𝑇𝑇𝐯𝐯3 in terms of 𝐯𝐯1, 𝐯𝐯2, 𝐯𝐯3. In Task 2, for instance, S3 first evaluated the 
linear transformation-applied basis vectors 𝑇𝑇𝐯𝐯1 = 𝑇𝑇(1,−5,5),𝑇𝑇𝐯𝐯2 = 𝑇𝑇(−3,1,1),𝑇𝑇𝐯𝐯3 =
𝑇𝑇(1,0,0) and obtained the corresponding image vectors (−2,10,−10), (−6,2,2), (3,0,0). Simply 
by comparing the preimage-image vector pairs was she then able to retrieve the eigenvalues as 
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𝜆𝜆1 = −2, 𝜆𝜆2 = 2, 𝜆𝜆3 = 3, respectively via mere inspection. This was enough for her to deduce 

the desired matrix representation as 𝐴𝐴′ = �
−2 0 0
0 2 0
0 0 3

�. 

Expressing 𝐴𝐴[𝐯𝐯1]𝛽𝛽 ,𝐴𝐴[𝐯𝐯2]𝛽𝛽 ,𝐴𝐴[𝐯𝐯3]𝛽𝛽 in terms of [𝐯𝐯1]𝛽𝛽 , [𝐯𝐯2]𝛽𝛽 , [𝐯𝐯3]𝛽𝛽. Among the three who 
embraced this representation approach, only one student felt the need to specify the coordinate 
vector representation notation [𝐯𝐯1]𝛽𝛽 , [𝐯𝐯2]𝛽𝛽 , [𝐯𝐯3]𝛽𝛽 where 𝛽𝛽 denoted the standard basis. The other 
two students, without being specific, still were able to interpret it as the representation of the 
vector object. S4, who embraced the representation approach for Task 3, explained: “I'd first 
apply A to each basis vector.” Upon juxtaposing the three image vectors (written as 3 × 1 

column matrices �
−3
−3
−9

� , �
3
0
−3

� , �
3
3
0
�), respectively, she first suggested 𝐴𝐴′ = �

−3 3 3
−3 0 3
−9 −3 0

� as the 

matrix representation of 𝑇𝑇 relative to 𝛽𝛽′. Upon the interviewer’s probing how she knew whether 
her suggestion was the desired matrix representation, she responded: “I compare each column to 
the standard basis vectors… No, that’s not right. I am supposed to be comparing them to the 
nonstandard basis vectors and it looks like each column is a factor.. I mean multiple of each 
basis vector so I am changing my answer to a diagonal matrix.” This way, S4 obtained 𝐴𝐴′ =

�
−3 0 0
0 3 0
0 0 3

� as the desired matrix representation. 

Analytic-Structural Mode: The Transition Matrix Approach 
Among the four consistently adopting the transition matrix approach, two students emphasized 
the matricial relationship by drawing a commutative diagram. Except for one student, S5, all 
students began each task by first writing the transition (change of basis) matrix as 𝑃𝑃 = 𝛽𝛽′. S6, for 
instance, began her exploration of Task 4 by setting 𝑃𝑃 = 𝛽𝛽′ while explaining: “Okay I remember 
this very well.. this is the nice case.. P is the transition matrix from 𝛽𝛽′ to 𝛽𝛽 so I don’t have to do 
anything I remember this very well.” With reference to her commutative diagram, she proposed 

the matricial equation 𝑃𝑃−1𝐴𝐴𝑃𝑃 = 𝐴𝐴′ and verified her proposed diagonal form �
−2 0 0
0 1 0
0 0 1

� on 

MATLAB (Figure 2a). Likewise, Figure 2b demonstrates S7’s MATLAB procedure based on the 
transition matrix approach in her exploration of Task 2. 

 
Figure 2 Transition matrix approach. 
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Difficulties Observed within the Three Modes of Description 
This section highlights some of the difficulties students encountered in their exploration of the 
matrix representations of linear transformations in all three modes of description. 

Retrieving the zero eigenvalue from the matrix applied eigenvector. This difficulty occurred 
in the synthetic-geometric approach in the exploration of Task 5. All six students who embraced 
the visual approach successfully graphed the given basis vectors along with the matrix-applied 
basis vectors. Obviously, 𝐯𝐯2 and 𝐯𝐯3 were both parallel to 𝐴𝐴𝐯𝐯2 and 𝐴𝐴𝐯𝐯3, respectively, in the same 
direction, with corresponding eigenvalues 2, and 2, respectively (Figure 3). It took quite some 
time for all students to realize that 0 was indeed the eigenvalue corresponding to 𝐯𝐯1. S8, for 
instance, felt the need to switch to the analytic-arithmetic mode to resolve his confusion 

regarding 𝐯𝐯1. In his first attempt, he used the matrix approach by writing 𝐴𝐴 �
1
−3
−1

� = �
0
0
0
� ,𝐴𝐴 �

3
0
1
� =

�
6
0
2
� ,𝐴𝐴 �

−2
1
0
� = �

−4
2
0
�. Inconclusive, he switched to the transformation notation by explicitly 

writing �
𝑇𝑇𝐯𝐯1 = 0𝐯𝐯1 + 0𝐯𝐯2 + 0𝐯𝐯3
𝑇𝑇𝐯𝐯2 = 0𝐯𝐯1 + 2𝐯𝐯2 + 0𝐯𝐯3
𝑇𝑇𝐯𝐯3 = 0𝐯𝐯1 + 0𝐯𝐯2 + 2𝐯𝐯3

. This way of writing enabled him to obtain the diagonal matrix 

𝐴𝐴′ = �
0 0 0
0 2 0
0 0 2

� while explaining: “now it looks like a matrix.. a diagonal matrix with 

eigenvalues on the diagonal.” In theory, all students seemed to accept the possibility of having 0 
as an eigenvalue, however, when it came to visualize or algebraically work it out, difficulties 
arose, as also shown in the present report. 

 
Figure 3 Typical student synthetic-geometric approach for Task 5. 

Retrieving the negative eigenvalue from the matrix applied eigenvector. This difficulty 
occurred in the synthetic-geometric approach in the exploration of Task 3. Upon graphing the 
basis vectors 𝐯𝐯1, 𝐯𝐯2, 𝐯𝐯3, and the matrix-applied basis vectors 𝐴𝐴𝐯𝐯1,𝐴𝐴𝐯𝐯2,𝐴𝐴𝐯𝐯3, respectively, S9’s 
first reaction was that that 𝐯𝐯2 and 𝐯𝐯3 were eigenvectors of 𝐴𝐴 corresponding to the same positive 
eigenvalue 𝜆𝜆 = 3 (Figure 4a). Regarding 𝐯𝐯1, S9’s first conjecture was that, rather than being a 
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scalar multiple of 𝐯𝐯1, 𝐴𝐴𝐯𝐯1 was perhaps a linear combination of 𝐯𝐯2 and 𝐯𝐯3. Upon using some 
techniques such as rotating the view, hiding the xy-plane, changing the scale by zooming in/out, 
hiding 𝐯𝐯2 and 𝐯𝐯3, etc., she ultimately came to the conclusion that 𝐴𝐴𝐯𝐯1 was indeed “three times 𝐯𝐯1 
but pointing in opposite directions so the eigenvalue must be -3 and not 3 (Figure 4b).” 

 
Figure 4 S9’s synthetic-geometric approach for Task 3. 

Issues within the analytic-arithmetic mode. S10, who embraced the analytic-arithmetic mode 
in Task 2, used a combination of representation approach and object approach by explicitly 

writing �
𝐴𝐴𝐯𝐯1 = ⋯ = −2𝐰𝐰1 + 10𝐰𝐰2 − 10𝐰𝐰3
𝐴𝐴𝐯𝐯2 = ⋯ = −6𝐰𝐰1 + 2𝐰𝐰2 + 2𝐰𝐰3
𝐴𝐴𝐯𝐯3 = ⋯ = −3𝐰𝐰1 + 0𝐰𝐰2 + 2𝐰𝐰3

 (where 𝐰𝐰1,𝐰𝐰2,𝐰𝐰3 denoted standard basis vectors 

for S10) which enabled him propose an incorrect matrix 𝐴𝐴′. Only after switching to the analytic-
structural mode was he able to obtain the correct diagonal matrix representation as a result of 

computing 𝑃𝑃−1𝐴𝐴𝑃𝑃 = �
−2 0 0
0 2 0
0 0 3

� (in a manner similar to S6 and S7’s approaches described 

above but without using MATLAB). It can be postulated that S10’s willingness to make use of 
the standard basis vectors within the analytic-mode is perhaps what caused the emergence of an 
incorrect matrix 𝐴𝐴′. 

The issue was not the fact that she managed to obtain the correct answer at the end; the issue 
was, rather, that it took S11 quite longtime to solve three sets of systems of equations. S11, who 
embraced the analytic-arithmetic mode in Task 3, began with the representation approach by 

explicitly writing �
𝐴𝐴𝐯𝐯1 = ⋯ = −2𝐰𝐰1 + 10𝐰𝐰2 − 10𝐰𝐰3
𝐴𝐴𝐯𝐯2 = ⋯ = −6𝐰𝐰1 + 2𝐰𝐰2 + 2𝐰𝐰3
𝐴𝐴𝐯𝐯3 = ⋯ = −3𝐰𝐰1 + 0𝐰𝐰2 + 2𝐰𝐰3

. However, she failed to see the 

eigenvalue-eigenvector relationships, which led her to write and solve three sets of systems of 
linear equations (each with three unknowns and three equations). 

Issues within the analytic-structural mode. S5, who embraced the analytic-structural mode in 
Task 3, began by defining the inverse of the transition (change of basis) matrix as 𝑃𝑃−1 = 𝛽𝛽′ (as 
opposed to the others who defined the transition matrix as 𝑃𝑃 = 𝛽𝛽′). This way, she obtained 𝐴𝐴′ =
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𝑃𝑃−1𝐴𝐴𝑃𝑃 = �
13 −20 0
8 −13 0
4 −8 3

�. Upon the interviewer’s probing how she knew this was the correct 

matrix representation for 𝑇𝑇, she switched to the analytic-arithmetic mode (based on pure 
representation approach unlike S10 who blended representation approach and object approach) 
and obtained another incorrect matrix for 𝑇𝑇 due to the involvement of the standard basis vectors 
like S10. Inconclusive, she felt the need to switch to the synthetic-geometric approach via which 

she ultimately was able to obtain the correct matrix representation as 𝐴𝐴′ = �
−3 0 0
0 3 0
0 0 0

�. 

Conclusion and Discussion 
This report delved into mathematics students’ interpretations of a classical problem in linear 
algebra, diagonal matrix representations of linear transformations with respect to eigenbases. All 
three modes of description in linear algebra appeared to have been adopted by the students; in 
some cases, students felt the strong need to switch between modes or utilize multiple modes of 
description. All students insistently questioned the meaning of having an eigenbasis such that the 
matrix representation for 𝑇𝑇 relative to the given eigenbasis is diagonal. Using these multiple 
modes of description also enabled students acknowledge the importance of adopting a 
nonstandard basis with respect to which certain linear transformations revealed diagonal matrix 
representations. Some difficulties arose within each mode of description; notwithstanding, 
students addressed these difficulties by (i) paying close attention to the diagonalization structure; 
(ii) delving into the fundamental linear algebraic structures within and between modes 
description; and (iii) pondering deeply upon the desirableness of the diagonal matrix 
representation of the linear transformation under consideration. 
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The Need for Conditional Reasoning Tasks with Mathematical Content

Lara Alcock
Department of Mathematics Education, Loughborough University, UK

This theoretical report argues that conditional inference is central to undergraduate
mathematics, and that there is potential for using and adapting conditional inference tasks from
cognitive psychology to study ways in which reasoning develops (or does not develop) with
mathematical expertise. Specifically, developing mathematical expertise might improve
conditional reasoning in mathematics only, or it might improve conditional reasoning in a way
that transfers to abstract and/or everyday contexts; alternatively, it might develop conceptual
understanding, so that people become better at conceptually valid mathematical inferences but
more vulnerable to invalid responses typically seen in tasks with everyday content. This report
argues that, to test and distinguish these possible developmental mechanisms, we need new
conditional inference tasks with mathematical content. It also describes the first stage of a
project designed to develop (and later use) such tasks, initial outcomes of which will be reported
at the conference.

Keywords: logic, reasoning, conditional, if-then

Introduction
Conditional reasoning is central to undergraduate mathematics, especially in upper-level

courses. Students learning to understand and construct proofs need to work in mathematically
valid ways with conditional (if-then) statements. They need, for instance, to make standard
interpretations in relation to implicit quantification. Mathematically experienced people tend to
infer universal quantification, reading “If 3 divides x, then 6 divides x” as (something like) the
proposition “For all , if 3 divides x, then 6 divides x” and thus interpreting the statement as𝑥∈𝑍
false (Hub & Dawkins, 2018; Solow, 2005). Less mathematically experienced people might not
infer universal quantification, and reasonably claim that the truth value of “If 3 divides x, then 6
divides x” is undetermined because it depends on the value of x (Durand-Guerrier, 2003).

Importantly for this report, students also need to recognise that some inferences from
conditional statements are valid and some are not. Four standard inference types – modus
ponens, denial of the antecedent, affirmation of the consequent, and modus tollens – are
illustrated below.

Modus Ponens (MP) Denial of the antecedent (DA)
If x is less than 2, then x is less than 5; If x is less than 2, then x is less than 5;
x is less than 2; x is not less than 2;
Therefore, x is less than 5. Therefore, x is not less than 5.

Affirmation of the consequent (AC) Modus Tollens (MT)
If x is less than 2, then x is less than 5; If x is less than 2, then x is less than 5;
x is less than 5; x is not less than 5;
Therefore, x is less than 2. Therefore, x is not less than 2.

With universal quantification assumed, MP and MT inferences are valid under the
mathematically normative material interpretation of the conditional, in which a conditional
statement is false if and only if its antecedent is true and its consequent is false (Velleman, 2006).
DA and AC inferences are not valid, but endorsing them is natural if the conditional “if A then
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B” is interpreted as the biconditional “A if and only if B” (Blockowiak, Castelain,
Rodriguez-Villagra & Musolino, 2022).

In cognitive psychology, conditional inference has been studied extensively via tasks that
systematically vary content across the four inference types (Oaksford & Chater, 2020). Some
research uses everyday content with statements like “If Jenny turns on the air conditioner, then
she feels cool” (De Neys, Schaeken & d’Ydewalle, 2005). Other research uses abstract content
with imaginary letter-number pairs and statements like “If the letter is A then the number is 1”
(Evans, Clibbens & Rood, 1995). Participants are typically asked whether or not they endorse
inferences of the four types. With variations depending on factors such as believability of the
conditional statements (Evans, Handley & Bacon, 2009) and availability of counterexamples
(Cummins, 1995; De Neys, Schaeken & d’Ydewalle, 2003), people often endorse inferences that
are not normatively valid.  

Departures from normatively valid interpretations need not be problematic in everyday life,
where we tolerate ambiguity and rely on context to infer intended meanings (Evans & Over,
2004). Indeed, reasoning research is much occupied with developing models that describe
human reasoning more accurately than does normatively valid logic (Oaksford & Chater, 2020).
However, departures are problematic in mathematics, which makes strict distinctions between
inferences available from true conditional statements like “If x is less than 2, then x is less than
5”, and those available from true biconditional statements like “x is even if and only if 3x is
even”. Failure to recognise invalid inferences can lead to making or accepting invalid
mathematical arguments (Inglis & Alcock, 2012; Selden & Selden, 2003), so mathematicians
care greatly about valid conditional reasoning.

Wider society cares about valid reasoning too, and mathematical education is valued partly
because there is widespread belief that it develops logical reasoning skill in general (Inglis &
Attridge, 2016). This is known as the theory of formal discipline and it is certainly plausible.
Mathematics has clean conceptual boundaries (Vinner, 1991): a number either is or is not less
than 2. So logical relationships in mathematics are clear-cut in a way that everyday ones are not.
Consequently, studying mathematics – especially at advanced levels – might help people to
become sensitised to logical structures and to transfer this understanding to general contexts.
Empirical evidence on this process is, however, minimal and mixed, as described below.

Conditional Reasoning and Mathematics
Research indicates that, as the theory of formal discipline predicts, post-compulsory

mathematical study does develop conditional reasoning toward normatively valid interpretations.
However, it does so unevenly and imperfectly. Research in the UK (Attridge & Inglis, 2013) and
in Cyprus (Attridge, Doritou & Inglis, 2015) found that among 16-18 year-old students, those
studying mathematics intensively became better able to reject invalid DA and AC inferences in
abstract conditional inference tasks. However, they still endorsed just under half of DA
inferences and more than half of AC inferences (Attridge & Inglis, 2013). These students also
became slightly more likely to reject normatively valid MT inferences (Inglis & Attridge, 2016),
a finding in line with work showing that individuals with higher general intelligence scores and
higher overall conditional inference scores tend, if anything, to endorse fewer MT inferences
than those with lower scores (Inglis & Simpson, 2009; Newstead, Handley, Harley, Wright &
Farrelly, 2004). This means that mathematical study seems to shift students away from naïve
interpretations of conditionals but not toward a material interpretation; the shift is better
understood as toward a defective interpretation in which a conditional statement is viewed as
irrelevant when its antecedent is false (Attridge & Inglis, 2013).
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Indeed, although individuals might tend to endorse conditional inferences in line with
particular interpretations, this does not mean that they apply those interpretations consistently
(Evans, Handley & Bacon, 2009). Reasons relevant to pedagogical design are evident in detailed
qualitative research in undergraduate mathematics education. For instance, it would be a mistake
to think that students considering conditionals with mathematical content are necessarily
thinking about logic. Their reasoning might instead be built on content-specific and pragmatic
factors (Dawkins & Cook, 2017), so that they benefit from experience designed to focus their
attention on assigning truth values consistently across contents (Dawkins & Norton, 2022;
Dawkins & Roh, 2022; Hub & Dawkins, 2018). Similarly, it would be a mistake to think that
students understand the connections within and between conditional statements and the truth
tables often used in teaching. Instead, they might treat the components of both statements and
tables as separate entities, which prevents them from effectively reasoning about negation and
about conditions under which statements would be false (Hawthorne & Rasmussen, 2015)

We see the impact of imperfect conditional reasoning in undergraduate students’ evaluations
of mathematical arguments: secondary students and undergraduates often fail to distinguish
arguments for the converse of a conditional statement from those for the statement itself
(Dawkins & Roh, 2022; Hoyles & Küchemann, 2002; Selden & Selden, 2003). Professional
mathematicians do not make that mistake: they reliably identify and reject arguments that prove
a converse (Inglis & Alcock, 2012). However, their conditional reasoning remains intriguingly
imperfect. They do not, for instance, perform as well as might be expected on the Wason
selection task (Wason, 1968). This task involves cards with a number on one side and a letter on
the other: participants are shown cards labelled D, K, 3 and 7 and asked which should be turned
over to determine whether the rule “every card that has a D on one side has a 3 on the other” is
violated. Inglis and Simpson (2004) found that mathematicians largely avoided the common
error of selecting D and 3, but fewer than half gave the normatively valid answer D and 7. This
task involves evaluating the truth of a conditional rather than making inferences from a
conditional that is assumed to be true, but the result is in line with the findings on mathematics
students: mathematicians neglect the case corresponding to MT (if not-3 then not-D).

Unsurprisingly, given these findings, there is no standard way of teaching conditional
inference. Mathematicians explicitly teach logical reasoning in textbooks (e.g., Houston, 2009;
Velleman, 2006) and in introduction-to-proof courses (Davis & Zazkis, 2019), but there is debate
on how to do this. Some, for instance, believe that teaching should leverage everyday reasoning
and previous mathematical knowledge, others that everyday content muddies the waters and that
mathematical education should focus on abstract logical structures (Alcock, 2010; Epp, 2003;
Hawthorne & Rasmussen, 2015). Books designed to support students at the transition to proof
offer short explanations of truth values in relation to conditional statements, perhaps emphasising
the difference between a conditional statement and its converse and explaining why we consider
a conditional to be true when its antecedent is false (e.g., Houston, 2009; Solow, 2005; Velleman,
2006). But they do not usually explain any research on everyday reasoning or acknowledge that
professional mathematicians apparently need not be perfect logicians. If we wish to support
students in developing mathematical expertise, there is pragmatic reason to investigate what that
development might look like and where it ends up.

Possible Mechanisms and the Theory of Formal Discipline
Of theoretical interest is that although the theory of formal discipline seems to be partially

valid, the mechanism by which it operates remains largely unexamined. The mechanism
suggested in the Introduction requires that studying mathematics sensitises people to logical
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structures and that this understanding transfers to other contexts. This appears not to be fully
correct: Inglis and Attridge (2016) suggested that mathematics students’ lower endorsement of
all three of DA, AC and MT inferences might result from their greater experience of error
checking, which leads them to be more productively skeptical about all conditional inferences
(see also Inglis & Simpson, 2004). But the larger point stands: if mathematical expertise makes
people more productively skeptical, then those with more expertise should perform in similar
ways across tasks with all types of content. However, mathematical study could promote
different reasoning in mathematics without promoting transfer. If so, people with more
mathematical expertise should perform more normatively on mathematical tasks but not on tasks
with everyday content. In that case, abstract tasks make an interesting and potentially
intermediate possibility: the evidence so far has used exactly these tasks, showing that
mathematics students become better at rejecting DA and AC inferences (Attridge & Inglis,
2013). Performance with abstract content might represent the best that we can expect in terms of
valid reasoning, or performance might be even better with meaningful mathematical content.

Alternatively, mathematical expertise might be less about sensitivity to logical structures or
general skepticism, and more about deeper conceptual understanding: greater familiarity with
mathematical examples, definitions and theorems might enable people to “understand the
terrain” (cf. Goldenberg & Mason, 2008; Michener, 1978) and avoid errors by thinking about
mathematical situations as they would about “real” situations. If so, people with more expertise
might exhibit patterns of mathematical reasoning that reflect those seen for everyday content.
For instance, conditional inference is known to be affected by believability. Individuals are less
likely to endorse inferences of all four types when a conditional is less believable (Evans,
Handley & Bacon, 2009). Similarly, conditional inference is affected by counterexample
availability. For a causal conditional “If p then q”, people are less likely to endorse DA and AC
inferences if there are many alternatives that might cause q in the absence of p; they are less
likely to endorse MP and MT if there are many disablers that might intervene to prevent p from
causing q (De Neys, Schaeken & d’Ydewalle, 2005). People can usually think of several
alternatives and disablers for “If the brake was depressed, then the car slowed down”, for
instance (Cummins, 1995). If greater expertise makes mathematics more “real”, then it should
be possible to manipulate believability and counterexample availability in mathematical content
so as to induce everyday-like response patterns. This might support an account in which
mathematicians do not really need formal discipline because expertise is primarily a matter of
content knowledge.

These possible mechanisms for the theory of formal discipline – or for its relative
unimportance – are not currently distinguishable because research has not examined conditional
reasoning with mathematical content. Cognitive psychologists have almost exclusively used
tasks with abstract or everyday content, even when studying mathematics students (Morsanyi,
McCormack & O’Mahony, 2018) or investigating the theory of formal discipline (Attridge &
Inglis, 2013). Research in mathematics education has been small-scale (Hub & Dawkins, 2018)
or not systematically related to all four inferences (Hoyles & Küchemann, 2002). To understand
how mathematical expertise develops conditional reasoning, and to relate that development to
research in cognitive psychology, we need tasks with mathematical content.

From Theory to Empirical Research
The talk for this report will present the theoretical argument given above and describe the

development of two new conditional reasoning tasks with mathematical content. (The larger
project of which this work forms part will use these alongside tasks with abstract and everyday

25th Annual Conference on Research in Undergraduate Mathematics Education 782



content to study how conditional reasoning develops with mathematical expertise.) The new
tasks will both comprise conditional inference items of the form shown in the Introduction. One
(MCB) will have basic mathematical content familiar to all educated adults; inferences will
likely be from conditional statements such as “If x is less than 2, then x is less than 5”. The other
(MCA) will have advanced content familiar only to people with upper-level undergraduate
mathematical experience; inferences will likely be from conditional statements such as “If

is differentiable at a then f is continuous at a”. Both tasks will be structured using a𝑓: 𝑅→𝑅
standard negations paradigm, systematically varying negated elements across antecedents and
consequents of conditional statements (see Attridge & Inglis, 2013; Evans, Handley, Nielens &
Over, 2007).

Specific content for the MCB and MCA will be developed in Fall 2022. Mathematicians
experienced in teaching proof-based courses will learn about factors known to affect everyday
and abstract conditional inference; they will take these into account when generating potential
items. This will not necessarily be straightforward for mathematical content. For believability,
there are obvious possible manipulations: switching a true conditional like “If x is less than 2,
then x is less than 5” for its false converse “If x is less than 5, then x is less than 2” might
interfere with performance in predictable ways; switching it for a conditional with no obvious
truth value, like “If x is less than 2, then y is less than 5” might render it more like an abstract
task. For counterexample availability, the picture is more complex. It might be straightforward
to affect DA and AC inferences: alternatives to “If x is less than 2, then x is less than 500” should
be more accessible than alternatives to “If x is less than 2, then x is less than 5”, for instance (see
Hamami, Mumma & Amalric, 2021, for related results in geometric contexts). But the absolute
nature of truth in mathematics makes it difficult to manipulate disablers that might affect MP and
MT inferences: nothing could interfere to prevent x being less than 2 from “causing” x to be less
than 5, and there is no readily inferable cause in “If x is less than 2, then y is less than 5”. It will
be interesting to see whether and how mathematicians attempt to address these issues, as well as
whether and how they deal with implicit quantification.

With potential items in place, the mathematicians will collaboratively narrow down the list
with the aim of constructing MCB and MCA tasks that mimic the systematic variation in tasks
with everyday and/or abstract content. This will be accomplished using a Delphi-like process in
which the mathematicians review, revise and prioritise one another’s suggestions; individual
interviews will capture the reasoning behind their suggestions, revisions and prioritisations.
Later, the items will be tested with undergraduate participants to establish the extent of their
comparability with standard abstract/everyday tasks. The talk for this report will present the
outcomes of the Delphi process and the interviews: it will exhibit the items developed and
present a qualitative analysis of the mathematicians’ input in light of the theory outlined in this
report.
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Re-envisioning a Value Framework for Examining Transformational Communities of Practice in
Mathematics Education

Paula Jakopovic, Ph.D. Kelly Gomez Johnson, Ed.D.
University of Nebraska at Omaha University of Nebraska at Omaha

Communities of practice (CoPs) provide a structure that allows individuals with a common goal
or purpose to come together to engage in collective learning (Wenger-Trayner &
Wenger-Trayner, 2015). The COMmunity for Mathematics Inquiry in Teaching (COMMIT)
Network was developed to support regional Math CoPs, called COMMITs, composed of
undergraduate mathematics faculty interested in using active learning and inquiry teaching
approaches in their courses. For the past three years, we have utilized the value framework,
presented by Wenger et al. (2011), to better understand the layers of value faculty experience as
they engage in COMMITs and the broader network. In doing so, we have identified modifications
to the original model from Wenger et al. that may further interrogate and articulate the layers of
value that can be used to help advance and sustain CoPs longterm. We present our theoretical
adaptation in the following report.

Keywords: Community of Practice, STEM Faculty, Theories of Change, Value Creation
Framework

In recent years, mathematics faculty at institutions of higher education have begun to focus
on the use of evidence-based teaching practices, such as active learning and teaching with
inquiry, to help support undergraduate student success. Despite mounting research that backs the
use of such practices (e.g., Chen & Yang, 2019, Cook-Sather et al., 2016; Freeman et al., 2014;
Healey et al., 2014, 2016; Werder & Otis, 2010), many math faculty still engage in traditional
lecture style instruction, which is often less effective in supporting student success (Jaworski &
Gellert, 2011). Attempting to integrate innovative teaching techniques in isolation can make
sustained implementation challenging (Banta, 2003), therefore communities of practice (CoPs)
offer a pathway to connect like-minded faculty and create a support system for instructional
change. CoPs are defined as “groups of people who share a common concern or a passion for
something they do and learn how to do it better as they interact regularly” (Wenger-Trayner &
Wenger-Trayner, 2015). They help the group to identify common goals, develop and share
resources and ideas, and engage in shared learning to foster transformational change.

Our research team is part of a grant funded project focused on supporting regional CoPs of
undergraduate mathematics faculty as they attempt to implement active learning and teaching
with inquiry strategies into their courses. The project developed the COMmunity for
Mathematics Inquiry in Teaching (COMMIT) Network as a way to loosely connect each region
to help the regional CoPs (COMMITs) mature and shift toward sustainability. We identified the
value creation framework developed by Wenger et al. (2011) as a tool with which to examine the
role of the COMMITs and the broader network in supporting faculty members in their efforts to
implement instructional innovations in their courses. We have also examined value-add from the
COMMIT level through regional leaders, to determine the facets of the COMMITs and the
connecting network that best support all participants (including the leaders themselves) in their
pursuit of instructional change. Our preliminary findings support the use of the value framework
as a mechanism for exploring this work (Gomez Johnson, Jakopovic, von Renesse, 2021; Gomez
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Johnson, Jakopovic, Rech et al., 2021). However, through our data analysis we have established
several modifications to the original value framework that we hypothesize will more effectively
describe the patterns emerging within value-added data at the CoP and network level. In this
report, we share our use of the value creation framework, as well as our proposed modifications
and the rationale behind the changes.

Teaching with Inquiry and the Role of Communities of Practice
There is an established body of research that shows how active learning and instructor

effectiveness can positively impact students' learning, attitudes, and educational experiences
(Freemen et al., 2014; De Vlieger et al., 2016; Laursen & et al., 2019). Incorporating active
learning teaching strategies in STEM classrooms can impact students’ academic success, overall
attitude toward content, and their retention rates in STEM courses (Bowen, 2000), as well as
lesson the achievement gap for students from historically underrepresented groups in STEM
(e.g., people of color, women) (Freeman et al., 2014; Haak et al., 2011; Hrabowski & Henderson
2017; Laursen et al., 2014; Theobald et al., 2020). Active learning classrooms situate students as
partners in the learning process with the instructor rather than acting as passive observers
(Cook-Sather et al., 2016; Healey et al., 2014, 2016; Werder & Otis, 2010).

A survey by Rassmusssen et al. (2019) found that many mathematics departments in
institutions of higher education report believing that active learning is “very important” or
“somewhat important,” however these beliefs translated to programmatic implementation only
15% of the time. Garnering buy-in from mathematics faculty can be challenging, as active
learning practices challenge the historically accepted cultural norms of mathematics teaching.
CoPs have the potential to serve as a vehicle for change (Gehrke & Kezar, 2017). Like other
areas of social change, this requires disruption to systems that have been historically inequitable
and act against and across existing boundaries (Hooks, 1994). For mathematics education,
participation in praxis—engagement in reflection, learning, practice, and action—reduces the
gap between theory and practice for faculty. In CoP structures, this allows members to defy
norms about who belongs in a community or field, what is pursued, how it is organized, and how
it works (Drane et al., 2019; Freire, 1968/2000; Hooks, 1994). CoPs can also give a voice to
counter-narratives and people who have been historically excluded from stories and spaces
(Solórzano & Yosso, 2002). Given the organic nature of CoPs, they transform and evolve at key
points in their development or cease to be sustained if they no longer serve a useful purpose to
individual members (Stuckey, 2004). For this reason, attention to the value-added aspects of
participation at the COMMIT regional and network levels is important to not only examine
long-term sustainability impacts, but CoP creation and implementation factors as well.

Theoretical Framework
We established our research design to study the COMMIT Network project as a

community-based approach to instructional and institutional change using situated learning
theory (Lave & Wenger, 1991; Wenger, 1998) as the theoretical perspective. Rather than
focusing solely on the traditional conception of teacher/pupil learning, situated learning theory
conceives of learning as something that occurs as individuals engage in CoPs and social
networks (Lave & Wenger, 1991). CoPs involve intricate levels of interaction that can make
examining the factors leading to the success or failure of these communities a challenging
endeavor. The value creation framework positions CoPs within “a dynamic process in which
producing and applying knowledge are tightly intertwined and often indistinguishable” (Wenger
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et al., 2011, p. 21). As Figure 1 illustrates, the original framework includes five cycles, or layers,
of value creation—immediate (in the moment resources, information, connections), potential (for
the future), applied (piloted implementation), realized (actualized implementation), and
transformative (broad dissemination to others) value. One cycle does not necessarily lead to the
next and the importance of the various cycles can differ for different stakeholders and at different
points in the life of the CoP. Strategic and enabling value layers attend to the programmatic
processes, structures, and ways of evolving and sharing value with others that support these five
cycles.

Figure 1. Value creation framework (Wenger et al., 2011).

The value framework in its original form has been utilized in a range of studies around CoPs.
For example, Booth and Kellogg (2015) used the value framework specifically to examine value
cycles within online CoPs. They identified labels for each type of value as follows: immediate
value - productive activities, potential value - knowledge capital, applied value - promising
practices, realized value - “return on investment” (i.e. seeing the payoff/benefit of the new
knowledge implementation in practice). Clarke et al. (2021) applied the value framework to
develop “ground narratives” that allowed them to identify themes within the broader community.
In our project, we sought to better understand how the larger network of COMMITs might help
to engage stakeholders and expand faculty engagement in the COMMITs. Therefore we adopted
the value framework to investigate the experiences of COMMIT participants and leaders and
follow the trajectory of the COMMITs themselves, within the context of the larger network.
Through our ongoing analyses we gradually began to re-envision the framework. Specifically,
we encountered nuances of the value layers emerging as we shifted away from looking at the
value of individual participants and toward identifying the value the COMMIT Network afforded
regional leaders and their CoPs. In the following sections, we present the findings from our
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research that support the need for the hypothesized revision to the value framework at the
network level value.

Research Methodology
Data analysis is an ongoing, recursive process that involves the examination, interpretation,

and reinterpretation of data and findings (Patton, 2002; Richards, 2009). Design based research
positions theory development and refinement within the complex, social contexts within which
interventions are examined (Brown, 1992; Tabak 2004). In this section, we report on the findings
from our research as a way to illustrate both the need for and envisioning of the hypothesized
value framework revisions, as this process is intrinsically embedded into the iterative nature of
qualitative research design.

Context
Our research on the COMMIT Network is part of a project funded by a National Science

Foundation grant (No.1925188). The authors of this report are researchers on the grant
leadership team, initially tasked with gathering and analyzing data to better understand how the
COMMIT, supported by the network, could recruit, develop, and retain mathematics faculty use
of active learning and inquiry-based teaching practices. During the initial two years of the grant,
our research focused on identifying the layers of value that individual COMMIT faculty
members self-reported after engaging in COMMIT events and activities. At the end of Year 2 of
the grant, we gathered additional data from members of the regional COMMIT leadership teams
in an effort to expand our examination of value beyond individual participants to the regional
COMMIT and COMMIT Network levels.

Participants and Data Collection
Midway through Year 2 of the project, we surveyed individual CoP participants representing

a total of five regional COMMITs in the Math COMMIT Network to gather a first round of data.
Participants in this initial data set included responses from 156 faculty members who participated
in COMMIT workshops and events in their region. The participants included faculty from a
broad range of institution types. Coverage of survey responses represented faculty from K-12
schools (4%), two-year colleges (10%), doctoral granting institutions (18%), and predominantly
undergraduate institutions (68%). We created an online survey that included a combination of
multiple choice and open-ended follow up questions for participants to identify the value, if any,
they found through engaging in COMMIT activities and to what extent they planned to use ideas
from these events in their teaching practice.

At the end of Year 2, we used social network analysis to identify leaders within each of the
regions (Gomez Johnson et al., 2021b). We then gathered a second phase of data, conducting a
total of 19 semi-structured interviews with COMMIT leaders representing eight of the regions in
Spring 2021. The interviews focused on the experiences of leaders as individuals, as well as
representatives of their regional COMMIT. We collected and analyzed the interview data to help
us begin to understand the collective value these CoPs identified as a result of engaging in the
COMMIT Network. The analysis of this second data set became the area of focus in our
re-imagining of the value framework, as we shifted from talking about the value found by
individuals within their group to the value the COMMITs found within the Network. The
analysis of this second data set led us to uncover more complex, nuanced sub-layers of value that
were not completely captured within the original value framework.
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Data Analysis
Our initial analysis of the COMMIT participant surveys involved first deductively coding the

open-ended survey prompts for instances where faculty identified any immediate, potential, or
transformative value they found by engaging in COMMIT activities. In the second round of
coding, we used a priori codes where we identified responses that aligned with one of the Four
Pillars of inquiry based teaching: 1) students engage deeply with coherent and meaningful
mathematical tasks, 2) students collaboratively process mathematical ideas, 3) instructors inquire
into student thinking, and 4) instructors foster equity in their design and facilitation choices.
(Laursen & Rasmussen, 2019). We determined that these four codes did not completely capture
the essence of all participant responses, therefore we conducted a third round of descriptive
coding (Miles et al., 2014; Saldaña, 2021) where we identified additional emergent codes in the
data. These codes included resource sharing, ideas for technology integration, forms of
assessment, evolving beliefs about teaching mathematics, and the usefulness of the COMMIT
Network. Participants regularly self-reported finding immediate (in the moment), potential (for
future use), and transformative (worth sharing with others) value around these five topics
(Gomez Johnson, Jakopovic, von Renesse, 2021). Reflecting on this first set of findings, we
determined that, for this data set that focused on the experiences of individual participants, the
five layers of value that are described by Wenger et al. (2011) appropriately captured the essence
of participant responses.

With the semi-structured COMMIT leader interviews, we began in a similar fashion, coding
in a first pass deductively for evidence of the five layers of value. As we coded for
transformative value, we identified the need for a distinction between enacted transformative
value (dissemination and change that has taken place) and the “potential to transform” (future
possibilities to promote teaching with inquiry to the broader community). Therefore, we
inductively added a sixth code. This came about due to leaders’ reflections on the value they
identified the COMMIT Network providing to their regional COMMITs (versus identifying the
value-add for individual participants). At times, leaders shared the ways in which they
envisioned taking steps toward transformative action in their COMMIT, but these were phrased
as future aspirations and ongoing goals rather than work currently happening within the region
(Jakopovic & Gomez Johnson, 2021).

Reframing the Value Creation Framework
As we reflected on this need for an additional code to more accurately capture the essence of

value creation at the CoP level, we realized there is a potential connection between the unit being
studied (individual participant or COMMIT leader/representative) and the ways in which
“transformative value” manifests itself. With faculty participants, their descriptions of “potential
value” encompassed the ways in which their participation in the COMMIT Network and regional
COMMITs might influence their future, individual teaching practice. Their responses also
included ideas as to how they might “transform” teaching by sharing this information with close
colleagues or peers. When we analyzed the COMMIT leader interviews, however, they identified
opportunities where the Network provided ideas and supports that have the potential to create
transformative value within and across COMMITs. For example, one regional leader explained,

I think we have a lot to offer. I think especially because we might be ahead, at least in the
idea of [our cultural renaissance], There is a huge focus on respecting [our] culture. Even
in the aspect of math, that can be shared in the broader network nationwide and reaching
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out to Native American/first nations to collaborate and share ideas. [Our region] has had
this ability because of the renaissance of [our] culture happening in the 70s, we are a little
further along that we can share, not even inquiry based, but also focus on the place where
you are and the people you are teaching.

A leader from a different region shared similar comments with regard to ways their COMMIT
had the potential to support other COMMITs, stating, "We have been trying to learn from the
others in the network and what they are doing. It is nice to figure out what they are doing. It has
been inspiring for us. We hope to contribute like that in the future. I would hope that it’s
reciprocal." These recurring observations based on our coding and analysis evolved as we made
further shifts from studying individuals to COMMIT leaders and have led us to hypothesize a
reimagined visualization of the value creation framework, as shown in Figure 2.

Figure 2. Value creation for community of practice leaders.

We realized that the ways in which value is created through the COMMIT Network for
faculty participants is different from that of COMMIT leaders. In the figure above, we attempt to
articulate our vision of this hypothesis. The five layers of value creation all lead participants to
process and consider new ideas, to make plans and imagine acting on the new information, and
eventually to enact these plans in their practice. For individual faculty members, this most often
encompasses the first four layers of value: immediate, potential, applied, and realized. They
consider new ideas, plan for them, and then implement them in their mathematics courses. They
may consider sharing these ideas with others, yet in our findings this typically happened due to
the support of their COMMIT and the larger COMMIT Network through established structures
like regular meetings, book clubs, and online workshops.

25th Annual Conference on Research in Undergraduate Mathematics Education 791



In our consideration of the value COMMIT leaders experienced in their COMMITs and in
the Network, however, we overwhelmingly saw more evidence of their plans to share at the
regional and network level in addition to the ways they identified their COMMITs as currently
acting to share and transform with other COMMITs in the Network.

Implications and Conclusion
To date, we have found the value creation framework first established by Wenger et al.

(2011) to be an invaluable tool for studying the potential impacts of STEM CoPs on instructional
transformation, particularly at the individual participant level. CoPs are meant to meet the needs
of individual participants in a specific area or domain, however, evolution and sustainability are
often a challenge once their needs are met (Wenger et al., 2002). Knowing the contextual factors
impacting CoPs, we recognize that the ways in which value is defined shifts when moving from
studying individual participants to regional COMMITs and broader network levels. Our goal
moving forward is to continue refining the model based on new and additional data analysis, to
more clearly define how leaders interact with their COMMITs and drive not only transformation
of practice but also sustainability of the community as a resource. We believe this work can
inform others who are studying COMMITs and sustainability, particularly in subject-specific
areas, such as mathematics and more broadly STEM education.

Additional studies in different contexts and subject areas can contribute to our developing
understanding of CoP sustainability within the framework of value-add. For example, research is
currently underway with other STEM CoPs to further examine if and how this work may be
similar or different based on variables such as geographic location, participant demographics,
etc. This additional research within this project and other STEM projects is needed to help
generalize our findings and proposed model. Our team plans to continue our investigation in this
area, with future work focused on considering how strategic and enabling value (see Figure 1)
may also need to be reimagined when shifting from the value a regional CoP can provide
individuals to the value the CoP can find within a broader network structure.
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Characterizing a Teacher’s Ways of Thinking about Teaching the Idea of Sine Function 

 

Abby Rocha 

Arizona State University 

Over the past thirty years, researchers have developed constructs to investigate teachers’ 

knowledge base and how it relates to their teaching. These constructs include Mathematical 

Knowledge for Teaching (MKT), Mathematical Meanings for Teaching (MMT), and Key 

Pedagogical Understandings (KPUs). In this report, I describe each of these constructs, their 

uses, and how they are related. I then describe a recently introduced construct, Ways of thinking 

about Teaching an Idea (WTTI) (Carlson, Bas-Ader, O’Bryan, & Rocha, in press) and illustrate 

the usefulness of this construct for investigating a teacher’s mathematical understanding of sine 

function and how this understanding is related to the teacher’s instructional goals and actions.    

Keywords: Mathematical Knowledge for Teaching, Meanings, and Ways of Thinking 

Introduction 

Mathematics educators have asked the question, “what do teachers need to know to teach 

students?” for quite some time. In the late 1800s, debates about teachers’ knowledge primarily 

focused on teachers’ experience with the subject matter (Shulman, 1986). A century later, 

emphasis on teachers’ subject matter knowledge lost traction as new policies concerning 

teachers’ evaluation and testing were implemented. During the 1960s and 1970s, research 

programs shifted their focus to teachers’ pedagogy with little regard for teachers’ content 

knowledge. Shulman (1986) described the education community’s disregard for teachers’ 

content knowledge as the “missing paradigm problem” and responded by proposing that 

researchers “blend properly the two aspects of teachers’ capacities” (p.5) and begin focusing on 

teachers’ pedagogical content knowledge, a type of knowledge that “goes beyond knowledge of 

subject matter per se to the dimension of subject matter knowledge for teaching” (p.6). 

Following Shulman (1986), teachers’ knowledge in the context of teaching became a focus of 

mathematics education research. This area of research on teachers’ knowledge is now known by 

many as Mathematical Knowledge for Teaching (MKT)(Thompson & Thompson, 1996).  

Mathematical Knowledge for Teaching 

In the last three decades, researchers have turned their attention to teachers’ MKT to improve 

the quality of mathematics teaching and learning in the United States. While the literature on 

teachers’ MKT is vast, various research groups’ foci and ontological stances differ significantly.  

A Practice-Based Theory of MKT 

Ball and colleagues (e.g., Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2005) sought to 

answer the question, “what do teachers do in teaching mathematics, and in what ways does what 

they do demand mathematical reasoning, insight, understanding, and skill?” (Ball, Hill, & Bass, 

2005, p. 17). Ball’s work on teacher knowledge began in 1990 when she studied 252 pre-service 

teachers’ understanding of division with fractions. In this study, most teacher candidates could 

correctly complete the procedures of dividing fractions. However, few were able to describe a 

situation that represented the division of fractions accurately to students (Ball, 1990). 

Following Ball’s (1990) findings of teachers limited mathematical understandings, Ball and 

Bass (2003) proposed focusing on the mathematical work of teachers, including how and where 
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teachers use their mathematical knowledge in practice. Ball and Bass’ analyses revealed that the 

mathematical knowledge needed for teaching differs from that of mathematicians and other 

practitioners of mathematics. Namely, mathematics teaching requires teachers to have 

knowledge of (1) the work involved in problem-solving, (2) how to “unpack” their mathematical 

understandings, and (3) how to help students in making connections across mathematical 

domains (ibid). These empirical analyses lead to Hill, Schilling, and Ball’s (2004) proposal that 

teachers’ MKT is multidimensional, and Shulman’s (1986) original category of subject matter 

knowledge be subdivided to include teachers’ common content knowledge (CCK) and specialized 

content knowledge (SCK). 

In the past twenty years, these researchers have explored the multi-dimensional nature of 

teachers’ knowledge when teaching and classified teachers’ MKT into five types of specialized 

knowledge (Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2005). These researchers have 

also identified positive links between teacher knowledge and student performance (Ball, Thames, 

& Phelps, 2008; Hill & Ball, 2004; Hill, Ball, & Schilling, 2008; Hill, Schilling, & Ball, 2004, 

Hill et al., 2008).  

A Piagetian Theory of MKT 

While Ball and colleagues (e.g., Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2003; 

Hill, Rowan, & Ball, 2005) primarily focused on identifying how teachers must know 

mathematics to teach it, Silverman and Thompson (2008) focused on the nature of teachers’ 

MKT and how it develops. Silverman and Thompson (2008) made two propositions, (1) 

teachers’ MKT is grounded in personally powerful understandings of mathematical concepts, 

and (2) teachers’ MKT is created through the transformation of those concepts from an 

understanding having pedagogical potential to an understanding that has pedagogical power.  

Mathematical understandings are personally powerful if they carry throughout an 

instructional sequence, are foundational for learning other ideas, and play into a network of ideas 

that do significant work in students’ reasoning (Thompson, 2008). According to Silverman and 

Thompson (2008), Key Developmental Understandings (KDUs) (Simon, 2006) are an example 

of mathematical understandings that are personally powerful. A KDU is an individual’s 

understanding of an idea that is critical to their learning of other related ideas (Simon, 2006). We 

say an individual has developed a KDU for a mathematical idea if they (1) make a conceptual 

advance or have “a change in [their] ability to think about and/or perceive a particular 

mathematical relationship” (Simon, 2006, p. 362) and (2) develop an understanding for the idea 

through their own activity and reflection on their activity.  

Silverman and Thompson (2008) propose that “developing MKT involves transforming 

[personal] KDUs of a particular mathematical concept to an understanding of: (1) how this KDU 

could empower their students’ learning of related ideas; (2) actions a teacher might take to 

support students’ development of it and reasons why those actions might work” (p. 502). More 

concretely, the development of MKT involves transforming teachers’ KDUs into Key 

Pedagogical Understandings (KPUs). A KPU is a mini theory that a teacher has regarding how 

to help students develop the meanings she intends (Byerley & Thompson, 2017). As such, these 

researchers developed a framework to describe the process by which teachers’ MKT-their KDUs 

and awareness of their KDUs- develop.  

Comparing Research on Teachers’ MKT 

There are two distinguishing characteristics in research programs focused on teachers’ MKT. 

The first involves the focus of each program. Ball and Colleagues’ investigations primarily 
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focused on what teachers do in their teaching and the knowledge required to engage in these 

teaching actions (Ball & Bass, 2003). In contrast, Silverman and Thompson (2008) focus on the 

cognitive mechanisms that enable teachers’ behaviors. These researchers seek to uncover the 

nature of teachers’ knowledge and how it develops. According to Silverman and Thompson 

(2008), the second distinguishing feature of MKT research involves their ontological stance that 

an individual’s knowledge is constructed and is idiosyncratic. Ball and colleagues (e.g., Ball 

1990, Ball & Bass, 2003, Ball, Hill, & Bass, 2005) describe teachers’ knowledge in the sense of 

a truth about a reality external to the knower. In comparison, Silverman and Thompson describe 

teacher knowledge in the sense of Piaget and von Glasersfeld (1995)- as schemes and ways of 

coordinating them that explain how a person might act when teaching. Moreover, Silverman and 

Thompson describe a teacher’s knowledge base in terms of her individual cognitive structures 

and thought patterns. Silverman and Thompson use the phrase Mathematical Knowledge for 

Teaching (MKT) to describe teachers’ schemes or meanings for the ideas they teach and hold at a 

reflected level.  

Mathematical Meanings for Teaching 

In 2016, Thompson proposed using the construct Mathematical Meanings for Teaching 

(MMT) rather than MKT to make explicit that he was using the word knowledge to describe an 

individual’s schemes or meanings for an idea. An individual’s meaning is the space of 

implications resulting from assimilation to a scheme (Thompson, 2016). Thus, to say an 

individual has a meaning for a word, symbol, expression, or statement means that the individual 

has assimilated that word, symbol, expression, or statement to a scheme. A scheme is a mental 

structure that “organize[s] actions, operations, images, or other schemes” (Thompson et al., 

2014, p. 11). When defining Mathematical Meanings for Teaching, Thompson (2016) extended 

the construct mathematical meaning to account for characterizations of teachers’ actions related 

to teaching. As such, a teacher’s mathematical meanings for teaching an idea include (1) the 

meanings (schemes) the teacher uses while teaching or thinking about teaching, and (2) the 

teacher’s image of the meanings (schemes) they want students to develop for the idea.  

The construct Mathematical Meanings for Teaching differs from the construct Mathematical 

Knowledge for Teaching in two distinct ways. First, Thompson’s use of the word meaning 

connotes something personal (i.e., meanings existing in the mind of the knower) to readers rather 

than knowledge, which seems less personal and disjoint from the knower (Thompson, 2016). 

Second, and arguably most important, the construct Mathematical Meanings for Teaching is used 

to describe the status of an individual’s understandings relative to teaching. Although Ball and 

Thompson defined teacher’s MKT differently, both researchers used the construct MKT to 

describe teacher knowledge as a target for teachers to achieve, not a state of teacher’s 

knowledge. For instance, Ball, Hill, and Bass (2005) use the example of multiplying two integers 

to demonstrate that a teacher’s sole ability to compute 35 x 25 correctly is insufficient 

knowledge. These researchers argue instead that teaching involves knowledge of an effective 

way to represent the meaning of the algorithm to multiply. In this example, Ball, Hill, and Bass 

(2005) state what teachers must be able to do and know, but they do not make explicit the ways 

of thinking that enable the teacher to do or know. As a second example, Silverman and 

Thompson (2008) outline a framework for developing teachers’ knowledge that supports 

conceptual teaching of a particular mathematical topic. This framework frames teachers’ MKT 

as something that must be attained as opposed to a status of teachers’ knowledge that may be 

advanced.  
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The Affordances of Attending to Teachers’ MMT 

Attending to teachers’ mathematical meanings for teaching an idea has many affordances. 

Investigations into teachers’ meanings enable researchers to focus their attention on the 

mathematical conceptions teachers have and the implications of these understandings on 

students’ learning. In particular, focusing on teachers’ MMT enables researchers to shift their 

focus from the behaviors that a teacher exhibits while teaching to the cognitive mechanisms, 

meanings, and ways of thinking that enable these behaviors. This shift in focus to teachers’ 

meanings allows mathematics educators to explain why teachers act as they do and how we can 

improve their teaching (Thompson, 2013; 2016). 

As one example, Thompson (2013) described his observation of a ninth-grade teacher’s 

lesson on the point-slope and point-point formulas. In this example, the teacher can write an 

equation of a line through a point when provided the slope. However, when provided two points 

and asked to write an equation of a line through the two points, the teacher is unable to do so. 

Thompson’s (2013) efforts to make sense of and characterize the instructor’s meaning for 

constant rate of change led to him uncovering that the instructor’s difficulty resided in her 

schemes for variation, slope, division, and rate of change. As one example, the instructor 

expressed a meaning for slope as “rise over run” where rise and run represented “two things 

changing in chunks” (Thompson, 2013, p. 81). With this way of thinking, the instructor could not 

determine the y-intercept as her “chunk” did not place her at x=0.  

 
Figure 1. An example provided in Thompson (2013, p. 81)  

By investigating instructors’ meanings for ideas, we, as mathematics educators, are positioned to 

enhance our understanding of teachers’ practice and develop ways to improve it. 

While few mathematics educators have investigated teachers’ MMT, the results of the few 

are alarming. Thompson and colleagues (e.g., Thompson, 2016; Byerly & Thompson, 2017; 

Yoon & Thompson, 2020; Thompson & Milner, 2018) have repeatedly uncovered the 

unproductive nature of U.S. mathematics teachers’ mathematical meanings for teaching. Yoon 

and Thompson (2020) have also shown that U.S. teachers’ meanings for foundational 

mathematical ideas are less productive than their South Korean counterparts. The South Korean 

teachers’ conveyance of productive meanings implies that it is reasonable to expect U.S. teachers 

to be able to construct and convey mathematical meanings in this way (ibid).  

One approach for improving US students’ mathematical understandings is to support US 

teachers in advancing their mathematical meanings. Musgrave and Carlson (2017) have 

demonstrated that teachers’ meanings for a foundational mathematical idea can become more 

productive if these teachers are engaged in interventions designed to support teachers’ 

development of coherent mathematical meanings. “A focus on MMT would also foster the 

field’s conceptualization of bridges among what teachers know (as a system of meanings), how 

they teach (their orientation to high-quality conversations), what they teach (meanings that an 
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observer can reasonably imagine that students might construct, over time, from teachers’ 

actions), and what students learn (the meanings they construct)” (Thompson, 2013, p. 82).  

The Need for a New Construct 

Although attention to teachers’ mathematical meanings for teaching an idea is needed to 

support teachers’ development of coherent mathematical meanings; researchers who have 

investigated teachers’ MMT have claimed that teachers’ development of strong mathematical 

meanings does not necessarily lead to their conveying these meanings to students (Carlson, 

O’Bryan, & Rocha, 2022; Rocha, 2021; Tallman & Frank, 2018; Tallman, 2021). Instead, 

scholars have proposed that teachers’ ways of thinking are critical to their ability to develop, 

advance, and convey coherent meanings to students (Carlson, O’Bryan, & Rocha, 2022; Carlson 

et al., in press; Musgrave & Carlson, 2017; O’Bryan & Carlson, 2016; Rocha & Carlson, 2019; 

Rocha, 2022; Tallman, 2015; Tallman & Frank, 2018). As one example, these researchers have 

proposed that quantitative reasoning is a critical way of thinking that supports teachers’ in (1) 

developing coherent mathematical meanings, (2) conveying coherent and consistent meanings to 

students, and (3) designing activities that create opportunities for students to engage in 

quantitative reasoning (ibid).  

The nature of a teacher’s decentering actions has also been identified as a mechanism for 

advancing teachers’ MMT and their ability to convey coherent meanings to students while 

teaching (Carlson & Bas Ader, 2021; Carlson et al., in press; Rocha & Carlson, 2019; Teuscher, 

Moore, & Carlson, 2016). In particular, researchers have argued that decentering or setting aside 

one’s thinking to understand what students understand (Steffe & Thompson, 2000) is useful for 

explaining and characterizing teachers’ responses and interactions with students while teaching 

(Carlson & Bas Ader, 2021; Carlson et al., in press; Rocha & Carlson, 2019; Tallman & Frank, 

2018; Teuscher et al., 2016). As one example, Teuscher et al. (2016) propose that a teachers’ 

ability to decenter is related to the nature of their interactions with students and the development 

of their mathematical meanings for teaching. Teuscher et al’s., (2016) empirical study revealed 

that teachers’ explanations advanced to become more conceptually oriented as the instructors 

made their speaking and listening to others a specific object of focus and reflection. In 2019, 

Rocha and Carlson corroborated Teuscher et al.’s (2016) proposal by providing empirical 

evidence of the reflexive relationship between teachers’ meanings and their decentering actions. 

Rocha and Carlson’s’ (2019) analysis of an instructor’s teaching revealed that the teacher’s 

actions to decenter advanced her MMT by providing the teacher with more refined images of a 

student’s ways of understanding the sine function.  

It is relevant then to describe mechanisms for advancing teachers’ MMT in ways that support 

their development of ways of thinking and decentering actions that support the instructor in 

developing images of students’ thinking about an idea and leveraging those images while 

teaching. Carlson et al. (in press) have classified images of teaching that include ways of 

thinking about students’ ways of learning an idea as a way of thinking about teaching that idea. 

In the next section I illustrate the alignment of these images with an instructor’s instructional 

goals and actions. 

Ways of Thinking about Teaching an Idea 

The construct Ways of Thinking about Teaching an Idea (WTTI) was introduced by Carlson 

et al. (in press). These researchers leveraged Harel’s construct of way of thinking to describe a 

“habitual form of reasoning that governs the application of a variety of specific mathematical 
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schemes” (Thompson et al., 2014, p. 12). A teacher’s Way of Thinking about Teaching an Idea 

(WTTI) includes: 

1. How the teacher reasons about and understands the idea (the teacher’s MMT which 

includes the ways of thinking the teacher engages in when reasoning about the idea) 

(Thompson, 2016). 

2. The teachers’ images (second order models) of students’ thinking about and learning that 

idea (Steffe et al., 1983; Thompson, 2000). 

3. The teachers’ image of ways of thinking students may engage in to develop and refine 

their understanding of an idea (ways of learning an idea) (Carlson et al., in press; 

Silverman & Thompson, 2008). 

Carlson et al., (in press) claim that a  teacher’s WTTI becomes more connected and refined as 

the teacher engages with students, while attempting to model students’ thinking. Repeated efforts 

to do so typically results in refinements of a teacher’s MMT and their images of students’ way of 

learning an idea. The construct WTTI is useful for describing the relationship between teachers’ 

MMT, their ways of thinking about learning an idea, and their actions while teaching. 

Researchers have demonstrated links between a teacher’s MMT and how a teacher interprets and 

responds to students’ questions (decenter) (Carlson et al., in press; Rocha & Carlson, 2019; 

Tallman, 2015, 2021). Based on these claims of the symbiotic relationship between a teacher’s 

MMT and their decentering actions (Carlson et al., in press; Rocha & Carlson, 2019; Tallman, 

2015, 2021), there is a need for research to investigate teachers’ decentering actions and the 

impact of these actions on advancing teachers’ MMT and ways of thinking about learning and 

teaching an idea. 

An Example: A Way of Thinking about Teaching Sine Function 

A teacher’s WTTI is a status of their current meanings and ways of thinking about teaching 

and learning. As such, a teacher’s WTTI can be more or less productive for teaching. Below I 

present an example of a precalculus teacher’s current ways of thinking about teaching sine 

function. The data presented comes from a clinical interview with an instructor, Uri, who (1) was 

in his second semester of teaching pre-calculus using a research-based curriculum, and (2) 

regularly attended a weekly professional development seminar designed to support instructors in 

engaging in conceptually oriented teaching (Thompson & Thompson, 1996).  

During the clinical interview, Uri was asked to describe how he wants students to reason 

about what the values in the table below (see Figure 2) represent. Uri responded by stating that 

he wanted students to understand that “sine is a function that relates an angle measure with the 

height [of the terminal point] above the horizontal diameter”. Uri further conveyed that he 

wanted students to view the value of sin(𝜃) as a means of representing the terminal point’s height 

measured in units of the circle’s radius. For example (see Figure 2), when prompted to explain 

the meaning of the point (337° , -0.391) Uri expressed that “the table of values is a snapshot, like 

if we were to pause an animation, at these instances in angle measure, then this [-0.391] would 

be the corresponding height above the vertical diameter in radius lengths.” 

As Uri described the meanings for sin(𝜃) he wanted students to develop, he also conveyed 

that he wanted students to view sine as representing how the terminal point’s height above the 

horizontal diameter varies with the measure of an angle. When Uri was asked if his prior 

teaching of sine function has informed his preparation for teaching the same topic during the 

current semester, Uri conveyed that his previous students’ conception of the value of sine as a 

multiplicative comparison between the terminal point’s vertical distance and the circle’s radius 

supported his students’ later learning of right triangle trigonometry. In particular, Uri expressed 
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that his former students’ conception of the output of the sine function as a multiplicative 

comparison of two quantities’ values supported them in recognizing where the commonly 

applied trig ratios (SOHCAHTOA) come from.  

 
Figure 2. Uri’s Description of Sine Function 

Uri’s description of the meanings he hopes to support students in developing for sine 

function provides a window into Uri’s way of thinking about teaching sine function. In this 

example, Uri expressed (1) a meaning for sine function that he intended to support students in 

developing, (2) ways of thinking (quantitative and covariational reasoning) that he anticipated 

would support students’ development of this understanding, and (3) images of student thinking 

and ways of learning that appeared to influence his instructional goals and actions.  

Discussion and Conclusion  

In the past thirty years, researchers have used the constructs Mathematical Knowledge for 

Teaching and Mathematical Meanings for Teaching to describe teachers’ knowledge base while 

teaching. While research on teachers’ knowledge base is vast, scholars’ use of these constructs 

varies greatly. The constructs MKT and MMT differ in the nature of the phenomena they 

describe. Researchers have used the construct MKT to describe a knowledge base as a target for 

teachers to achieve. In contrast, the construct MMT has been used to describe the current state of 

teachers’ mathematical understandings relative to teaching. While many researchers have 

advocated for more attention to teachers’ MMT, a sole focus on advancing teachers’ MMT is 

insufficient for explaining a teachers’ instructional planning and actions. Instead, a focus on a 

teacher’s ways of thinking about teaching an idea (that includes teachers’ MMT) may provide a 

more powerful lens for studying a teacher’s instructional goals and teaching of a specific idea. 

This report provides an example of how a teacher’s ways of thinking about teaching the idea of 

sine function are related to his instructional goals and actions. In particular, this report highlights 

the critical role a teacher’s mathematical meanings for teaching sine function and ways of 

thinking about learning and teaching sine function have in the instructor’s planning for teaching. 

The example provided in this report provides empirical support for Carlson et al.(in press) call 

for the design of professional development seminars focused on developing and advancing 

teachers’ WTTI. Seminars with this focus may support instructors’ enactment of teaching 

practices that focus on understanding and advancing student thinking and learning. As such, 

further exploration of the role of teachers’ WTTI on their enacted teaching actions and 

mechanisms for developing and advancing teachers’ WTTI are needed. 
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Explicating the Role of Abstraction During Analogical Concept Creation 
 

 Michael D. Hicks Kyle Flanagan Matt F. Park 
 Virginia Tech Virginia Tech Virginia Tech 

Recent research has explored the potential for students to create new mathematical concepts by 
analogy with previously known concepts. However, there is more to be understood about the 
intricate processes of analogical reasoning that students leverage when creating new concepts. 
In this paper, we describe an initial theory explicating the role of abstraction during analogical 
concept creation. First, we introduce the abstracted domain to operationalize abstraction during 
analogical reasoning. We then describe two mechanisms of analogical concept creation through 
which abstraction may occur while reasoning about a ring-theoretic analogue to subgroups: (1) 
comparative analogy, and (2) inductive analogy. To broaden the interpretive scope of the theory, 
we further apply the mechanisms to scenarios involving meta-analogical reasoning and 
pedagogy. Implications for research and teaching mathematics with analogy are discussed.  

Keywords: Abstract algebra, Abstraction, Analogical reasoning,   

Analogical reasoning typically involves the comparison of two previously given or known 
concepts in search of relational similarity between the two (Gentner, 1983; Holyoak & Thagard, 
1989). This forms the basis for many pedagogical analogies that are used in mathematics courses 
(Greer & Harel, 1998). For example, the concept of projection of a vector onto a general 
subspace is often presented with analogous references to spatial examples of a geometric vector 
projected onto a two-dimensional Euclidean plane, the goal being to ground students’ knowledge 
of the abstract concept within a more accessible one.  

While pedagogical analogies are often leveraged as a tool for reinforcing previously 
introduced concepts rather than creating new ones (e.g., Cobb, Yackel, & Wood, 1992), recent 
research has explored the potential for students to create new mathematical concepts, thereby 
expanding the scope of productive pedagogical analogies in undergraduate mathematics 
classrooms to allow for students to establish new mathematics for themselves. For example, it 
has been shown that students can explore, define, and create new concepts in ring theory by 
analogy with known concepts in group theory rather than simply reinforce their previous 
understandings (e.g., Hejný, 2002; Hicks, 2022; Stehlíková & Jirotková, 2002). This expanded 
view of pedagogical analogies in mathematics broadens the horizons for what pedagogical 
analogies can accomplish in advanced mathematics classrooms. However, to promote more 
productive pedagogical analogies in advanced mathematics, we must first better understand the 
intricate processes of analogical reasoning that students leverage when creating brand new (to 
them) concepts by analogy. 

One avenue for deepening our understanding of analogical concept creation is to explore the 
role of abstraction within the process of analogical reasoning. Prior research in mathematics 
education has touched on the presence of abstraction in analogical reasoning (e.g., English & 
Sharry, 1996), although this research has not focused as heavily on cases in which students are 
generating new concepts or defining structures through analogy, focusing instead on developing 
conjectures to be verified (e.g., Lee & Sriraman, 2011). As such, the focus of this report is to 
develop an initial theory for explicating the role of abstraction during analogical concept 
creation. We are guided by the following overarching question: What is the role of abstraction 
during analogical concept creation? 
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Theoretical Underpinnings 
The typical framework of analogical reasoning strives to capture very specific or ‘perfect’ 

representations of analogy rather than interpret potentially imperfect reasoning. In contrast, our 
proposed theory builds off the Analogical Reasoning in Mathematics (ARM) framework (Hicks, 
2020) to interpret analogical activity that is specific to mathematics and may not align with usual 
or perfect cases of analogical reasoning. Analogies are viewed as series of mappings between a 
(typically) known source domain and a (typically) unknown target domain (Gentner, 1983), 
while analogical reasoning is the search for underlying structural relation between domains. A 
key component of the ARM framework is the adoption of the Actor-Oriented (AO) perspective 
(Lobato, 2012) to interpret analogical reasoning which allows for non-standard and idiosyncratic 
cases of analogical reasoning. During novel concept creation by analogy, immediate analogies 
are often impractical and instead require effort to refine the analogy. Thus, we draw upon the 
notion of progressive alignment (Gentner & Hoyos, 2017) to describe the process of developing 
an analogy through multiple analogical inquiries. In other words, we allow for the possibility for 
analogies to be incomplete at a given moment in time and consider them to be ‘under 
construction’ during analogical reasoning. Finally, for the purposes of this paper, we adopt 
Mason’s (1989) notion of mathematical abstraction as a “delicate shift of attention” (p. 2), as 
well as acknowledging mathematical abstraction as a process closely linked to relational property 
recognition (e.g., Dreyfus, 1991; Ohlsson & Lehtinen, 1997; Piaget, 1985; Skemp, 1987). More 
specifically, Dienes (1967) indicated that “the essence of abstraction is to draw out common 
properties from different types of situations” (p. 201). 

Developing the Theory: An Example of Student Thinking 
To assist with presenting our proposed model of abstraction through analogical reasoning, we 

interlace the description of the general model with an example of analogical concept creation in 
abstract algebra. This particular example is based off of previously collected data of students’ 
analogical reasoning in which the goal was to develop a ring-theoretic analogy to subgroups. 
Hence, the source concept is the subgroup concept, while the target concept is an analogous 
concept for rings. 

To operationalize abstraction during analogical reasoning, we introduce the concept of the 
abstracted domain. We define the abstracted domain to be the domain to which the desired 
abstracted characteristics are mapped. Thus, the abstracted domain acts as a ‘shell’ of a concept 
or structure and forms the basis for future potential analogies. Figure 1 displays a possible 
abstracted domain for subgroups and subrings in which the notion of a ‘sub-structure’ would 
behave as a shell for future analogous concepts (such as subspaces of topological spaces.) The 
abstracted domain may vary in scope depending on the original concepts and domains being 
investigated. 

The abstracted domain may not exist in every case of analogical reasoning. For example, a 
student may engage in a pure analogical comparison of two entities and construct a new concept 
without ever abstracting from the original structure by attending solely to surface level or 
superficial features. Instead, we claim that the abstracted domain exists only when abstraction 
activity arises during analogical reasoning. In alignment with ARM, we accept that the 
abstracted domain may be vague during its creation and may never be fully realized. Through 
progressive alignment, the abstracted domain may be refined over time as further inquiries are 
made. Our initial theory proposes two mechanisms through which the abstracted domain is 
developed: (1) comparative analogy and (2) inductive analogy.   
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Figure 1. A possible abstracted domain associated with subgroup/subring. 

Comparative Analogy 
The first mechanism for developing the abstracted domain is comparative analogy. This 

process begins with a typical approach to analogical reasoning in which an analogy is either 
formed (or in the middle of being constructed) between the source and target domain. To 
illustrate this mechanism, we leverage an example of one student who had constructed an 
analogy to subgroups in the context of rings by directly mapping the subgroup structure and then 
making modifications to fit the ring context. After exploring the ring-theoretic analogy to 
subgroups, the student began to inspect his resulting analogy and reflect upon what he 
considered to be the key aspects of the two concepts of subgroup and the newly created concept 
of subring. During his reflection, some evidence of an abstracted concept appeared. In the 
following quote, the student is making observations about the subset similarity: 

 
Student: My idea is just a set and a subset. Like that, it lives inside of it. 
Interviewer: So you have this set and a subset idea? And that also carried over to this kind of 

context? 
Student: Yeah, so we would say this would imply S is, maybe let me draw a little ring [draws 

subset symbol with a small “o” over it]. Like, subring. 
 
 Thus, after having developed the concept of ‘subring’ and directly comparing to subgroups, 

this student began to recognize a broader concept of a ‘set and a subset’ that ‘lives inside of it’ 
that could potentially describe a larger class of analogous structures. The left figure within 
Figure 2 displays the process of comparative analogy in the context of comparing the subgroup 
concept and the new subring concept to establish the abstract concept of ‘sub-structure’. The box 
in Figure 2 indicates that it was the analogy between the source and target that produced the 
abstracted domain. 

Inductive Analogy 
While comparative analogy requires a comparison of two concepts to create the abstracted 

domain, our second mechanism involves the development of the abstracted domain before the 
target concept is established. We refer to this second mechanism as inductive analogy. In 
contrast to comparative analogy, inductive analogy may occur with only one known concept to 
begin with (e.g., subgroup), as well as a possible awareness of other contexts (e.g., the subject of 
ring theory.) Knowledge of the original concept is then leveraged to develop the abstracted 
domain. A target concept is then created by making inferences about how the abstracted domain 

25th Annual Conference on Research in Undergraduate Mathematics Education 808



may be mapped onto the target. Consider the following quote by another student who was in the 
process of creating the subring concept by analogy: 

 
Yeah, well that's pretty much the definition for groups, if we have some group G and 
some operation *. Then if H is a subset of G and H is a group under that same operation, 
then we say H is a subgroup of G. So, I literally just took the exact same thing from 
group theory and applied it to rings. 
 
We view the last sentence as partial evidence that this student had identified the abstracted 

concept of a sub-structure based on the subgroup concept.1 Afterward, the new sub-structure 
concept is then mapped to the context of rings to form what the student eventually described as a 
‘subring’. The visual on the right of Figure 2 displays the mechanism of inductive analogy 
wherein the source concept of subgroup is leveraged to create the concept of ‘sub-structure’ 
before subring. We note that it is possible that multiple source domains are leveraged as the 
‘base case’ for the abstracted domain. In those cases, progressive alignment may occur through 
multiple instances of comparative analogy preceding the induction and the creation of the new 
target structure. 

 

 
Figure 2. The mechanisms of comparative analogy (left) and inductive analogy (right). 

In this section, we have introduced the mechanisms of comparative and inductive analogy to 
describe ways through which abstraction may occur during analogical concept creation. In the 
section that follows, we broaden the scope of this initial theory and apply it outside of the context 
of interpreting students’ analogical reasoning between two structures in abstract algebra by 
looking more deeply at how this theory might inform purposeful analogical concept creation, and 
how this theory might be applied to pedagogy. 

Further Applications of the Theory 

Identifying Strategies for Purposeful Analogical Reasoning 
In the absence of prior opportunities to reason by analogy in advanced mathematics, the 

students in the above examples may have been reasoning by analogy about advanced 

 
1 We choose this example to clearly display reasoning with one domain rather than comparing across two domains. 
However, we recognize that the student may have been carrying the subgroup concept itself into the ring context 
without having created the abstracted sub-structure concept.  
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mathematics in a manner that was brand new to them. Overtime, learners may develop meta-
analogical awareness (Modestou & Gagatsis, 2010) and, by extension, learn to purposefully and 
strategically reason by analogy. In particular, the increased awareness of one’s own analogical 
reasoning can widen the range of strategies for analogical concept creation. For example, 
purposeful reasoning by analogy is a known strategy used by research mathematicians when 
defining new concepts (Ouvrier-Buffet, 2015). In this section, we describe how the mechanisms 
of comparative and inductive analogy clarify what one case of purposeful reasoning might entail 
when defining a new concept. To show this, we describe a hypothetical example of a student 
purposefully defining topological subspaces by analogy with several known algebraic concepts. 

Consider a student who possesses an understanding of several algebraic structures and has 
recently learned of the definition of a topological space (i.e., a set X along with a collection of 
subsets containing X, the empty set, and is closed under arbitrary union and finite intersection.) 
Their experience in algebra suggests that given any particular algebraic structure, one can 
construct an additional one. Thus, upon becoming aware of the context of topology, an inductive 
analogy can be invoked to begin considering the meaning of a topological subspace. First, the 
student understands that subgroup, subring, subalgebra, or algebraic sub-structures in general are 
modeled by taking a subset of the collection of elements with respect to the structure in some 
way (i.e., the subset must be closed under the algebraic operation(s) of the over-structure.) In this 
way, the student may have already created an abstracted domain relevant to algebraic sub-
structures. The student may then inductively analogize the notions of both ‘subset’ and ‘respect 
the structure’ from algebra within topology to establish the concept of a topological subspace. 
For this mathematically experienced student, it may be straightforward to argue that because an 
algebraic substructure is modeled with subsets, a topological substructure should be modeled by 
subsets as well. However, the student can also begin investigating what it means for a 
substructure to ‘respect the structure’ in the context of topology. In this way, purposeful 
inductive reasoning has provided an opportunity for rich exploration for this student to begin 
thinking about how a topological subspace may be defined. 

After having established some notion of topological subspace (whether it is complete or not 
from the student’s perspective), suppose now that the student encounters the definition of a 
topological subspace in a textbook or in a class lecture. The student may now reason by 
comparative analogy while also being informed by the findings from the prior inductive 
analogical reasoning. As an algebraic structure is a set along with various operations and a 
topological space is a set along with a collection of open subsets, the student may try to draw an 
analogy between operations and collection of open subsets. While the subset analogy was 
perhaps trivial, the student may not be immediately sure of the analogy of the restriction of the 
operations within a topological space. The modeling of topological spaces purely in the language 
of sets may motivate them to understand n-ary algebraic operations as sets as well. Particularly, 
an n-ary operation could be modeled as a subset of the (n+1)-fold cartesian product of the 
underlying set, and the restriction to a substructure can be realized by considering the restriction 
to the substructure to be the sequences that only contain its elements. Thus, they are drawing a 
comparative analogy between a subset of the cartesian product of a set with itself and a subset of 
the power set of a given set. In negotiating a satisfactory definition of a topological subspace, 
they are drawing on comparing different kinds of sets: they are attempting to understand the 
notion of topological subspaces by drawing comparisons between the cartesian product of set 
and the power set construction. 
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Applications to Pedagogy 
Students may engage in analogical reasoning in any classroom setting. While the prior 

examples linked our proposed theory to interpreting student thinking and analogical reasoning, 
our final example links our proposed theory to teaching and curriculum design. In particular, we 
assert that increased attention to comparative or inductive analogy can assist teachers with 
identifying affordances or obstacles to promoting analogies in specific ways as well as consider 
the timing for productively introducing an analogy. In this section, we consider an example in 
undergraduate linear algebra. An important analogy that helps link many of the concepts in this 
course is the three-way analogy between systems of linear equations, matrices (or matrix-vector 
equations), and linear transformations (Larson & Zandieh, 2013). Every system of 𝑛 linear 
equations in	𝑚 variables can be represented with a matrix-vector product using an 𝑛 × 𝑚 
coefficient matrix (or an 𝑛 × (𝑚 + 1) augmented matrix), and vice versa. Similarly, every linear 
transformation 𝑇:	𝑹! → 𝑹" has a standard 𝑛 × 𝑚 matrix representation, and vice versa. This 
ability to transform between systems of equations, transformations, and matrices leads to many 
analogous theorems and properties in linear algebra, including the infamous Fundamental 
Theorem of Invertible Matrices.  

One concept that is closely tied to this analogy is matrix multiplication, as matrix 
multiplication corresponds to compositions of linear transformations. Cook et al. (2018) 
conducted a textbook analysis on 24 introductory linear algebra textbooks, analyzing how matrix 
multiplication was presented in each text. They identified three overarching sequences for when 
and how matrix multiplication was introduced, and characterized these sequence rationales 
utilizing Harel’s (1987) classification of linear algebra content sequencing. Pedagogically, the 
choice of which of these sequences is used for course design influences what analogical 
reasoning students engage in during class. Students’ potential analogical reasoning in two of 
these sequences is provided. It is important to emphasize that neither sequence is considered 
better, but rather these examples demonstrate that pedagogical choice can influence students’ 
analogical reasoning, and this framework provides a way to understand that reasoning.  

Many of the common undergraduate linear algebra textbooks for large universities begin by 
introducing systems of linear equations and immediately transition into basic matrix operations, 
such as (typically in this order) addition, scalar multiplication, and multiplication (e.g., Larson, 
2016; Poole, 2014). Textbooks with this structure often fall into the sequence where matrix 
multiplication is first defined using the matrix-matrix product AB determined by the dot products 
of row and column vectors, and the justification for the definition’s rationale is postponed until 
much later in the course. Under this course design, after students have been provided with the 
definitions for matrix addition and scalar multiplication, it is possible that students may engage 
in inductive analogical reasoning, where these definitions induce the creation of an abstracted 
domain encompassing matrix operations as component-wise operations. Though this would lead 
to the ‘incorrect’ definition, it should be noted that this is reasonable analogical reasoning; hence, 
it should not be surprising that students are perplexed when the actual definition is presented. 

Another common sequence for matrix multiplication includes first defining matrix 
multiplication with the matrix-vector product Ax as a linear combination of column vectors, 
which follows an introduction to systems of linear equations and linear transformations (e.g., Lay 
et al., 2015). Since the three-way analogy has already been introduced to the students, when 
some students see the full definition of the matrix-matrix product AB, they might construct a 
comparative analogy using any two (or all three) of those domains. In particular, some students 
may construct or refine an abstracted domain about ‘how vectors are transformed.’ In addition, 
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prior to seeing this full matrix-matrix product definition, some students might engage in 
inductive analogy, hypothesizing what the actual definition is, being informed by the matrix-
vector product definition. However, it is entirely possible that students will not engage in either 
of these forms of analogical reasoning. 

Implications for Theory and Future Research 
In this paper, we set out to describe an initial theory intended to explicate the role of 

abstraction during the process of analogical concept creation. To this end, we described two 
mechanisms through which abstraction may occur and illustrated several scenarios in which 
these mechanisms assist with interpreting or predicting possibilities of students’ thinking. These 
mechanisms contribute to the literature on analogical reasoning in mathematics education, 
especially with respect to analogical concept creation. In particular, we greatly expanded the 
scope of possible scenarios presented by English and Sharry (1996) and Lee and Sriraman (2011) 
by both operationalizing and clarifying what abstraction during analogical reasoning might look 
like. 

In addition to the examples presented in this paper, this theory can be applied to various other 
contexts, demonstrating even further potentially far-reaching implications. For instance, one can 
frame both problem-solving strategies (Weber & Leikin, 2016) and problem-solving analogies 
(English, 2004) in this theory. When an individual has solved two different problems with an 
analogous problem-solving strategy, there is a possibility that this individual will retroactively 
engage in comparative analogy, constructing an abstracted domain containing a ‘problem-
solving heuristic or strategy.’ Moreover, an individual may also be in the process of solving a 
problem and is looking for ways to complete the problem. In this scenario, the individual could 
engage in inductive analogy, by reflecting on how a previous problem-solving technique could 
apply to the current problem, and constructing an abstracted domain for the general problem-
solving strategy. This can also apply to proof-writing and proof-constructing strategies (e.g., 
Zazkis, Weber & Mejía-Ramos, 2015). Furthermore, researchers have demonstrated the value of 
example-based reasoning in mathematics (e.g., Lockwood et al., 2016; Lynch & Lockwood, 
2019).  It is possible that two or more examples give rise to comparative analogy, where the 
abstracted domain is an analogous property, concept, or new mathematical definition. 
Additionally, after an individual has meaningfully engaged with one example, and is about to 
engage with a subsequent example, this person may engage in inductive analogy. Prior to 
working out the details, the individual may construct an abstracted domain containing certain 
potentially relevant properties, which help the individual to predict how the example may work. 

Though this paper has outlined the central components of this theory about the role of 
abstraction in analogical concept creation, and demonstrated its implications to various facets of 
mathematics education research, we have several future goals for expanding on and refining the 
theory. First of all, two mechanisms for this theory were introduced, comparative and inductive 
analogy; however, we acknowledge that these mechanisms do not always function entirely 
separate from one another. The example of the algebraically mature student engaging with 
topology explicates how one might engage in inductive analogy and then comparative analogy, 
and we would like to further delineate how these mechanisms interact. Second, we would like to 
more specifically explore how this theory is connected to theories of abstraction. In particular, 
we recognize that the construction of an abstracted domain aligns closely with Piaget’s reflective 
abstraction (Beth & Piaget, 1966; Piaget, 1977, 2001). To what extent these two mechanisms 
entail reflecting and reflected abstractions versus empirical or pseudo-empirical abstractions is 
worth further exploration. 
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Proving as cooperative communication: Using Grice’s maxims and implicature to understand
proof comprehension in undergraduate mathematics education

Keith Weber Paul Dawkins Elise Lockwood
Rutgers University Texas State University Oregon State University

In this exploratory theoretical analysis, we apply Grice’s maxims for cooperative communication
to make sense of the ways that proofs are written and understood. We argue that proving can
sometimes be productively viewed as a form of cooperative communication. Grice’s maxims
place expectations on the prover and provide norms for how proofs should be written. The
reader’s expectation that the prover is adhering to these norms allow for the possibility of
implicature—that is, the prover can imply statements to the reader that are neither explicitly said
nor logically necessary. We use this analysis to better understand the practice of proving and to
suggest a future line of empirical research.

Keywords: Linguistics; Grice’s Maxims; Proof; Proof Comprehension

A central goal of research in undergraduate mathematics education is to design instruction to
enculturate students into the process of proving. We would like students to use proof for the same
reasons that mathematicians do (e.g., deVilliers, 1990) and to understand and learn from the
proofs that they read (e.g., Conradie & Firth, 2000; Mejía-Ramos et al., 2012). Unfortunately,
these goals are often not achieved in undergraduates’ advanced mathematics courses, with many
students emerging from these courses unable to read or write proofs successfully and, more
generally, lacking a sense of what proof is about (e.g., Stylianides et al., 2017).

There has been substantial research into helping students understand what type of reasoning
is permissible in a proof. For instance, there has been work into helping students realize that
inferences must be based on deductive, rather than empirical, argumentation (e.g., Brown, 2014),
to learn new proving techniques such as proof by induction (e.g., Harel, 2001), and about the
nature of modus ponens reasoning (e.g., Dawkins & Norton, 2022). This research is important
and has substantially increased our understanding of pedagogical issues related to proof.
However, we argue that this work alone is not sufficient to enculturate students into the practice
of proving. Knowing what types of reasoning is allowable in a proof underdetermines how
proofs should be written and read. There are permissible moves in a proof that are almost never
carried out in mathematical practice (e.g., introducing variables or making explicit assumptions
that are never used again in the proof). There are formal violations of logic and syntax that
frequently appear in proofs (e.g., abuses of notation). There are norms of proof writing that are
independent of logic (e.g., not using the first-person pronoun “I” and not including information
about the wrong turns made in the proving process). Some mathematicians have complained that
their students are “tone deaf” with respect to proof and do not have a feel for the game (Weber,
2012). Elsewhere, we have speculated that part of enculturating students into proof is helping
them learn the linguistic norms of proving along with the values that they uphold (Dawkins &
Weber, 2017). These kinds of rules of the game that are not captured by the grammar or direct
meaning of proof might be appropriately categorized as part of the pragmatics of proving.
Pragmatics refers to the use and contexts of use. This is an understudied arena of proving
practice, which might reflect how proving is often understood as decontextualized and
depersonalized (Balacheff, 1988). We argue that proofs still communicate through shared rules.
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The goal of this theoretical report is to use Grice’s maxims for cooperative communication to
better understand how proofs are written and read in mathematical practice (Grice, 1975, 1989).
We first document that in mathematics education, proof is often treated as an adversarial form of
communication. We argue that it would behoove mathematics educators to also view proof as a
form of cooperative communication. Next, we review Grice’s maxims for cooperative
communication. Critical to this paper is Grice’s notion of implicature: when we assume that a
speaker is communicating cooperatively with us, we can infer many things that the speaker did
not explicitly state. Then we explore the consequences of applying Grice’s maxims to proof in
mathematical practice and undergraduate mathematics classrooms, showing how proofs invite or
even expect implicatures. There are ideas that one can from a proof that are neither explicitly
stated nor logically necessary. Finally, we suggest a line of empirical research based on our
theoretical explorations.

Proof as a cooperative form of communication

Proof as an adversarial form of communication in mathematics education research
Frequently, proof is framed as a semi-adversarial form of communication: the prover is trying

to persuade a skeptic to accept a claim that the skeptic doubts and the skeptic will not (and
should not) be swayed easily. Mason (1982) described proving as convincing an enemy and
Volminik (1990) defined a proof as an argument that would convince a reasonable skeptic. More
recently, Dutilh Novaes (2020) wrote that “a good proof is one that convince a fair but ‘tough’
opponent” (p. 50). When students are reading proofs, they are encouraged to take a skeptical
stance, with Brown (2014) arguing that the capacity to retain doubt is critical to understanding
proof. Similarly, Inglis (2022) argued that developing one’s inner skeptic when considering
proofs may be a critical part to becoming a mature mathematician.

Inglis (2022) referred to the dialog between a prover and their skeptical audience as
“semi-adversarial” because neither the skeptic nor the prover engages in a “win-at-all-costs”
strategy. A reasonable skeptic must grant sensible premises and not repeatedly ask for supporting
evidence in bad faith. A reasonable prover should not use rhetoric to mislead the skeptic. Both
the prover and the skeptic share the communal goal for identifying the flaw in a proof, should
one exist, or otherwise verifying that the proof is airtight (Dutilh Novaes, 2020). Nonetheless, to
achieve these shared aims, the reader is asked to take an adversarial role, only granting
inferences if it is epistemologically necessary to do so. In short, according to the adversarial
account of proving the audience of the proof of a theorem acts as a gatekeeper who checks that
the proof passes a high standard of muster, lest a false theorem enter into their collection of
mathematical facts (or, in the case of a referee, in the mathematical community’s accepted
statements).

Proof as cooperative communication
Mathematicians do not always view other mathematicians’ proofs adversarially, or even with

skepticism. Indeed, when mathematicians read proofs in the published literature, they often do
not check proofs for correctness; they presume the proofs are correct (Mejía-Ramos & Weber,
2014; Weber & Mejía-Ramos, 2011). As one mathematician described things, “when I was
reading a proof in a journal or a proof that was handed to me by a mathematician friend and they
were pretty sure it was true, my assumption would be that the steps are probably correct and that
I need to work hard to make sure I understand and can justify each step” (Weber, 2008, p. 448).
The point here is that while proofs in the literature and proofs from trusted peers can contain
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mistakes, mathematicians often do not read the proof scouring for errors. They do not assume
unclear statements in a proof are wrong, but rather work to justify these steps. We believe
students are in a similar position when they read proofs in a textbook or hear proofs in a lecture.

Grice (1975, 1989) characterized communication as cooperative if the interlocutors are
working together to actively achieve a particular goal. Proving can sometimes best be understood
as a collaborative communication in which the prover is trying to help their audience see how
their theorem can be reached from shared premises by a series of deductive inferences that their
audience accepts as clear, indubitable, and not admitting exceptions. Of course, proofs in
textbooks and in journals often contain inferences that are neither clear nor obvious. Hamami
(2021) explained the situation as follows: The prover hands her audience a proof P. Some steps
in P will not be clear to a reader. To address this, a reader will expand P to a longer proof P*,
such that each step in the proof is either an accepted statement or an immediate consequence of a
known rule of inference. An accepted statement might be a definition, a result that is established
elsewhere in the literature, or a statement that the reader had personally proven in the past. A
known rule of inference might be an axiom or the application of a previously proven theorem.

As a brief clarification, while mathematicians sometimes seek out a proof as an end in itself
(c.f., Paseau, 2011), they frequently use proof as a means to achieve other epistemic goals
(deVilliers, 1990). Possessing the expanded P* consisting of a series of indubitable inferences
can help achieve epistemic aims of proof such as conviction and explanation highlighted by de
Villiers (1990) and others (e.g., Hanna, 1990). For instance, if a mathematician harbored
significant doubts about the truth of an assertion, seeing how the statement could be reached by a
series of indubitable inferences could increase their confidence that the statement was true.

Grice’s maxims and implicature

Grice’s maxims
When interlocutors are engaged in a cooperative conversation, they are trying to achieve a

shared goal. When a speaker offers a contribution to a cooperative conversation, Grice (1975,
1989) argued that the speaker is expected to follow the Cooperative Principle and make
contributions that will efficiently facilitate the achievement of these goals. Grice offered four
conversational maxims specifying how contributions should be made: The maxim of quality (be
truthful); the maxim of quantity (offer the right amount of information); the maxim of relation
(be relevant); and the maxim of manner (be clear). These maxims can be regarded as norms or
obligations that constrain what contributions a speaker can make in a conversation (in the sense
of Herbst et al., 2011 and Yackel & Cobb, 1996). When we apply these maxims of proof, these
will yield norms about how proofs should be written (in the sense of Dawkins & Weber, 2017).

Implicature
In a cooperative conversation, a listener presumes that a speaker is following the Cooperative

Principle in general and Grice’s maxims in particular. Grice’s (1975) key insight was that this
enables the listener to make inferences that are neither explicitly stated nor deductively implied
by the speaker’s utterances. To illustrate, consider the following conversational exchange:

Man (speaking to a passerby on the road): My car has run out of gas.
Passerby: There is a gas station around the corner.

The explicit contribution from the passerby is the location of a gas station. Grice (1975) argued
that the passerby is also making an implicit contribution, namely that (the passerby believes) the
gas station is open. The reason this implication is possible is because the man assumes that the
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passerby is following the Maxim of Relation (and the passerby assumes this). The man and the
passerby are working toward the shared goal of helping the man resolve his problem of finding
fuel for his car. If the gas station around the corner were closed, the existence of the gas station
would not be useful for achieving this goal. Therefore, by stating the location of the gas station,
the passerby is implying that this is open. Grice (1975) referred to implicature as the act of
making this type of implication and implicatum as what is being implied. As we view the
situation with proof, Grice’s maxims place norms upon the prover. The recipient of the proof
makes the presumption that the prover is following Grice’s maxims, which allows for the
recipient to infer ideas that were neither explicitly stated nor logically necessary consequences of
what appears in the proof. These ideas are implicatum. The shared assumption of cooperative
communication allows the prover to convey implicata without explicitly stating them.

Grice’s Maxims, Norms, and Implicature and proof
In this section, we present norms and their associated implicatures for proof presentation for

each of Grice’s Maxims. In our presentation, we will discuss norms that the maxims impose on
the prover and the implicata that a reader may gain.

The Maxim of Relation
The Maxim of Relation asserts that contributions to a conversation should be relevant to the

goals of the conversation. Any contribution in a proof P should be relevant to obtaining a chain
of indubitable inferences that lead to the conclusion.

Norm of proof writing: Any assumption, deduction, or variable introduced in a proof
should be useful in the final chain of argumentation establishing the theorem.

Associated implicatum: If a statement or variable appears in a proof, the reader can
expect that it will be built upon at a later stage in the proof.

In other words, proofs do not contain digressions. The prover should not include “logical
dead-ends” in a proof and the reader can expect that none will be included. Strictly speaking,
from a formalist perspective, adding unused assumptions and including extraneous true
statements or valid deductions in a proof does not render it invalid. Nonetheless, this is rarely
done. One consequence is that when the prover makes an assumption in the proof, the prover is
implying that this assumption will be useful for establishing the theorem. One consequence of
the implicatum is that one can understand a proof by seeing why assumptions are necessary or
how statements are built upon (e.g., Mejía-Ramos et al., 2012). This consequence only follows
based on the expectation that the prover is following the norm above.

The Maxim of Quantity
Grice (1975) summarized the Maxim of Quantity by saying, “make your contribution as

informative as required (for the exchange) [and] do not make your contribution more informative
than is required” (p. 45). Applying this notion to proof, the prover is aiming to give the reader
sufficient information in the proof P so the reader can produce an expanded chain of indubitable
inferences P*, but no more. This suggests some interesting norms and implicata.

Norm of proof-writing: In a conditional statement, “If A, then B” or “Since A, then
B”, the truth-value of B is tracked by the proof value of A.
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Associated implicatum: If “Since A, then B” appears in a proof, there is a general
principle for how the truth of A necessitates the truth of B.

Grice (1989) discussed the nature of conditionals more generally. Suppose one asserts, “If
John walks to the party, he will be late.” Technically speaking, this statement would be true if the
speaker knew that John would be late regardless of how he reached the party. However, making
such as assertion would be violating the Maxim of Quantity, as the simpler statement “John will
be late” would be simpler and more informative. Similarly, if the speaker knew that John would
be driving to the party, the statement would be (vacuously) true, but making the assertion would
be violating the Maxim of Relation, as John’s timing if he were walking would not be relevant in
this situation. Hence, when the speaker asserts that “If John walks to the party, he will be late,”
the implicature is that the speaker is certain neither of how John is getting to the party or whether
John will be late, but the speaker believes that the truth of the antecedent implies the proof of the
conclusion.

A similar analysis follows from statements such as “if A, then B” or “since A, then B” in a
proof. A prover should not proffer such a statement if B could easily be seen in the absence of A,
since it would be simpler and more informative to simply state B. Further, to understand the
proof, the reader should try to find a chain of reasoning from A to B. There is evidence that this
phenomenon is borne out in practice. Some mathematicians will reject statements like “if 13 is
prime, then 1013 is prime” in proofs even though they are true because they are not informative.
Some will infer that there is a relationship between 13 being prime and 1013 being prime (such
as adding 1,000 to a prime number will yield a prime number) and reject the statement not
because it is explicitly false, but because the implied warrant is invalid (c.f., Weber & Alcock,
2005). There is further empirical support for this statement. In pedagogical setting,
mathematicians do not think it is appropriate to make a statement of the form “If A, B, and C,
then D” unless A, B, and C are all relevant to the truth value of D (e.g., Lai et al., 2012).
Presumably, this is because, if C was unnecessary, it would be simpler and more informative to
state “If A and B, then D.”

Norm of proof-writing: The prover will provide enough information in P for the
reader to expand without extraordinary effort.

Associated implicata: New steps in the proof may require justification, but the
justification should not be based on sophisticated ideas outside the proof or be
exceptionally difficult.

Recall the passerby who told the stranded motorist that there was a gas station around the
corner. The passerby probably would not instruct the man where to look for the gas station after
he turned the corner if gas station was clearly visible. The passerby would only provide this
information if the location of the gas station was not obvious (e.g., if it were behind a strip mall)
and would not be found by a routine search of the area. Similarly, justifications for statements
within a proof are only provided if the reader could not find them through ordinary effort. What
is interesting here is that the implicature is based on what the passerby did not say. If the location
of the gas station would not be obvious to the stranded motorist, the Maxim of Quantity would
dictate that more direction would be provided. Since the passerby did not provide that
information, the location of the gas station should be clear when the motorist walked to it.

25th Annual Conference on Research in Undergraduate Mathematics Education 819



There are a few remarks worth noting. First, the ability for the reader to justify steps within a
proof P is clearly audience dependent, so how a prover follows this norm depends on the
audience. A proof appropriate for a professional number theorist would not be appropriate for a
student in a transition-to-proof course, and vice versa. Second, what the readers are capable of
doing “without extraordinary effort” is a nebulous concept. At least in pedagogical settings,
mathematicians seem to disagree on how much detail a proof should provide (Lai et al., 2012).
Research has revealed that students do not appreciate that it is their responsibility to justify some
of the steps in a proof (e.g., Weber & Mejía-Ramos, 2014). Nonetheless, when a prover chooses
not to provide detail for how a particular step can be established, the prover is conveying
information about the existence of a type of justification for the step—namely it is a justification
that can be formed routinely without extraordinary effort.

In addition to the knowledge of the intended audience, we expect that the application of this
maxim is also sensitive to the intended purpose within the proving context. If the proving context
is focused on developing an axiomatic system or proving the properties of an axiom system, the
prover may adhere to stricter rules regarding what the reader should have to expand on their
own. This again portrays how the context of proving influences the rules at play in the
cooperation between the prover and reader.

The Maxim of Manner
The Maxim of Manner asserts that speakers try to say things as clearly and orderly as

possible. Suppose that you are asked to prove a statement of the form “A if and only if B”.
Suppose you have a subproof that A implies B, say A→A1→B, and you have a subproof that B
implies A, say B→B1→A. You could, in principle, write a logically valid proof as follows.

1. Assume A
2. Assume B
3. Since A, A1
4. Since B, B1.
5. By (3), B
6. By (5), A
7. Since A→B and B→A, A if and only B.

Of course, no one would write the proof in such a confusing manner.

Norm: Proofs are ordered to make the chain of arguments clear.
Implicature: The justification for how a new line follows in a proof will depend on

previous statements in a proof.

Mirin and Dawkins (2022) have illustrated how when a proof involves a string of identities
(i.e., showing A=D by showing A=B, B=C, and C=D), mathematicians are sensitive to the order
of these identities. They will think norms are being broken and proofs are deficient if the
identities are not ordered in the most sensible manner.

Norm: Name objects in proofs according to convention to convey their role or status
in the proof.

Implicature: The name of an object will help the reader keep track of its role in the
proof or its quantificational status.
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The names assigned to mathematical objects is taken to be logically irrelevant. Nevertheless,
there are strong norms for how things are usually named. For instance, input variables are
frequently named and bounds on output estimates are usually named . Quantification is often𝑥 ε
encoded using indices and superscripts. A reader who notes that a set indexed by the natural
numbers would be justified in drawing the implicature that the set is countable or finite. It would
also be strange to denote an object if the variable name was not used elsewhere in the proof.𝐺* 𝐺
The superscript is only used to distinguish various objects bearing the label . As ** stated, one𝐺
would never give the name “6” to a group. Strictly speaking, these naming conventions bear no
logical status and the proofs would remain valid were they not followed. Nevertheless, they are
strong conventions of naming because the notation affords implicatures that aide readers in
constructing the line of inference intended by the prover.

Discussion and future research
In this paper, we have argued that both in the advanced mathematical classroom and in

mathematical practice, it is often productive to frame proof as a cooperative form of
communication. We have asserted that Grice’s maxims for conversation are useful in two
respects. First, Grice’s maxims suggest norms for proof writing that place expectations on the
prover for how proofs are written. Second, the presumption that the prover is following these
norms allow for implicature; the reader of a proof may infer things that are neither explicitly
stated nor logically necessitated by the proof text being read.

We believe that this has pedagogical consequences. Much of advanced mathematical
instruction (and undergraduate mathematics education research) focuses on the type of reasoning
that is admissible in a proof. We agree that this is essential, but argue that this is not enough to
fully enculturate a student into the practice of proving. We suggest more effort can be put into
instruction as to norms about how proofs are written and how they can be read. There is an
intimate relationship between the form of mathematical proofs and the proving practices they
express. As Schleppegrell (2004) explained, “It is important for students to develop academic
register options in different disciplines because particular grammatical choices are functional for
construing the kind of knowledge typical of a discipline” (p. 137).

We also believe that our exploratory theoretical analysis suggests a further line of research.
We have made a number of speculative claims about norms for proof writing and opportunities
for implicature. Such claims can be empirically tested with breaching experiments by showing
both mathematicians and students situations in which those norms were violated, or showing
mathematicians and students situations in which our proposed norms were followed and asking
them if they believed that the implicata likely held. Mathematicians’ responses to such situations
would reveal if our speculative claims were accurate and provide us with a richer sense of why
these proving norms were operative. Differences between students’ and mathematicians’
responses could help us unpack one way in which students might not yet have a feel for the game
of proving.
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(Re)defining Developmental Mathematics: A Critical Examination of the Research Literature
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Although “developmental math” is widely discussed in higher education circles, exactly what
developmental math encompasses is often underdeveloped. In this theoretical report, we use a
sample of highly cited works on developmental math to identify common characterizations of the
term “developmental math” in the literature. We then interrogate and problematize each
characterization, particularly in terms of whether they serve equity-related goals such as access
to college credentials and math learning. We close by proposing an alternative characterization
of developmental math and discuss the theoretical implications. We see this as a first step
towards conversations about how developmental math could be conceptualized.

Keywords: Developmental Math; Equity; Time Capital; Postsecondary; College Level

Developmental math has been a regular focus of education research for decades.
Understanding these courses is important as they disproportionately enroll students from
historically marginalized backgrounds (e.g., Chen, 2016) and many students in these courses
never complete their required math sequence (Bailey et al., 2010). We posit that despite the
heavy focus on developmental math in higher education research and policy, the way that
“developmental math” is defined or characterized in the research literature often runs contrary to
equity concerns and begs the question of what developmental math actually is. Using definitions
drawn from a comprehensive literature search, we consider how developmental math has been
defined in the research literature, with the aim of problematizing some common characteristics of
these definitions. We refrain from initially defining developmental math explicitly so as to let the
term itself drive our sampling and analytical procedures. We devote the majority of this report
towards developing a framework for understanding characteristics used to define developmental
math and the different conditions each characteristic privileges. We close with a discussion about
how we might define this term moving forward, and how this may impact equity goals.

Theoretical Framework: Approaching Equity from Credential vs. Learning Orientations
There is a growing recognition that developmental math and institutional structures around it

are a consequence of and often reproduce structural inequalities in K-12 education (e.g., Larnell,
2016; Ngo & Velasquez, 2020). That is, the developmental population is created through often
unexamined institutional norms and values. We aim to make the values and associated equity
implications that are implied by various definitions of developmental math explicit, with the goal
of proposing a way to move forward with how we understand and define developmental math.

Historically, developmental math was created to provide access to college math classes by
providing instruction on content that has traditionally been considered prerequisite to advanced
study, such as algebra, that students may not previously have had the opportunity to master, or
that they have forgotten after a gap in enrollment between high school and college (e.g., Dotzler,
2003). Providing access to advanced study in math is motivated by two distinct, but related,
equity goals: providing access to (a) college credentials (e.g., degree progression, retention),
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which we refer to as a credential orientation, and (b) math learning (e.g., procedural/conceptual
knowledge), which we refer to as a learning orientation. Both orientations center equity, but
have different outcomes of interest, even as they are interdependent (Figure 1). Considering only
one at a time may have negative equity consequences. Problematically, research demonstrates
that inequities exist in both developmental students’ access to college credentials (e.g., Boatman
& Long, 2018; Crisp & Delagado, 2014; Sanabria et al., 2020; Xu & Dadgar, 2018) and their
access to rich and meaningful math learning or instruction (e.g., Givvin et al., 2011;
Goldrick-Rab, 2007; Hammerman & Goldberg, 2003; Stigler et al., 2010; Webel & Krupa,
2015).

Figure 1. Framework Relating Learning and Credential Orientations to Equity Approaches in Developmental Math

Method
We conducted a comprehensive literature search for original reports related to developmental

math. This work is part of a larger project. Here we focus only on how developmental math was
defined or characterized in highly cited empirical reports or peer-reviewed journal articles.

Sample
To identify articles related to developmental math, we searched EBSCOhost for journal

articles or reports published between 2000 and 2020 (inclusive) with abstracts that included the
word “developmental” or “remedial”, a word with the stem “math”, and one of the following:
college(s), universit(y/ies), post-secondary, postsecondary, or undergraduate(s). We removed
duplicates, brief reports of full reports that were also included in the sample, and any articles that
were not about developmental math instruction, classrooms, curricula, instructors, or students
enrolled in U.S. colleges or universities. This resulted in 446 reports: 281 (62%) peer-reviewed
journal articles and 168 (38%) non-journal reports. Of the 281 peer-reviewed articles, 66 (23%)
were published in journals usually consumed by a math education audience. The remaining
articles were published in journals with a more general education audience or that target an
educational research subdomain, with the higher education audience the most prominent (47%).

Because we were interested in analyzing the most “influential” definitions in the literature,
we used citation frequency as a rough proxy for a report’s “influence” in order to determine
which reports to code. Towards this end, in June 2022 we used Google Scholar to find the
number of times each report in our sample had been cited (26 reports did not show up on Google
Scholar, in which case we entered 0). We calculated the Annual Citation Rate (ACR; total
number of citations divided by the report’s age, in years) for each report. We formed our final
subsample of influential reports by including any report that had the top 10 highest ACR and/or
the top 10 total number of citations in one of the following categories: peer-reviewed journal
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article aimed at a math education audience, peer-reviewed journal aimed at a general education
audience, and non-journal reports. We sampled from different groups to be able to contrast the
definitions used by different stakeholders. There was overlap between articles with top ACRs
and top overall number of citations, so the final sample included 36 records (8% of the total
sample). The list of the 36 coded reports is available at Open Science Framework. Here we focus
on two groups of reports within this sample: those geared at a math education audience and those
not published in math education journals, hereafter referred to as “non-math education reports”.

Analysis
Development of Coding Scheme. Using the constant comparison method (Lincoln & Guba,

1985), we developed an emergent coding scheme to capture the most common characterizations
observed across the literature (Table 1). These were Level (e.g., described as “not-college-level”),
Credit (e.g., described as “not-for-credit”), and Content (e.g., described in terms of the content
covered or the course names). The three characterizations are necessarily intertwined, but capture
different implicit orientations about developmental math, discussed in the next section.

Table 1. Coding scheme for characterizations of developmental math
Code & Description Example
Level: Developmental
math courses cover
content that is not
“college-level”,
sometimes described as
secondary school level.

“Broadly speaking, the term ‘developmental education’ connotes a
set of policies and practices designed for students who are
underprepared to do college-level work in a given area. The goal of
this experience is to give students the knowledge, skills, and habits
that will help them be successful in the college-level version of the
course (Bailey et al., 2016). The growing use of developmental
education reflects an increasingly normative transition from high
school to college, which while predicated on completion of secondary
schooling, does not necessarily imply adequate preparation for what
is deemed ‘postsecondary’ work.” (Valentine, et al., 2017)

Credit: Developmental
math courses are
non-credit courses.

“With their open-door admission policy, community colleges serve a
population with diverse needs and a wide range of skills. In order to
prepare this diverse population for college-level courses, community
colleges offer non-credit developmental courses in math, reading, and
writing.” (Ashby, et al., 2011)

Content: Courses cover
specific math topics,
typically substantially
similar to second year
school algebra or below.

“Remedial math includes basic arithmetic, pre-algebra, beginning
algebra, intermediate algebra, and geometry. College-level math
includes all courses that address topics of a skill-level equal to, or
greater than, college algebra.” (Bahr, 2008).

During the code development process, we noticed that sometimes characterizations of
developmental courses were mentioned, but that developmental math was never explicitly
defined. A lack of an explicit definition suggests the assumption that the reader has a shared
understanding of what is being discussed, which may be problematic given the complex nature
of developmental math. To capture such instances, we coded whether the characterizations were
part of an explicit definition, an implicit definition (in which some characteristics of
developmental math were described but no explicit definition was given), or whether there was
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no clear attempt to define developmental math (either explicitly or implicitly).
Coding Developmental Math Characterizations. Each report was coded by two coders.

Initial agreement across all codes was between 81% and 92%. Further norming was undertaken
to reach consensus for all codes. Codes for the characterization of developmental math were not
mutually exclusive. Codes for the nature of the definition were mutually exclusive.

Results
Table 2 gives the coding distribution in the sample overall and for our subsamples of interest.

“Not college-level” was the most common characterization of developmental math (92%),
followed by mathematical content (67%) and then “not-for-credit” (53%). Characterization
choice appears field related. Non-math education reports used “not-college-level” (100%) and
“non-credit-bearing” (70%) characterizations more often than math education (77% and 23%,
respectively). In contrast, math education research favored characterizing developmental math by
content (85%) compared to non-math education research reports (57%). While “non-credit” and
“not-college-level” characterizations might be presumed to be linked, these characterizations
only co-occurred in 53% of reports. In addition, while the specific math content might be
presumed to determine whether a course is “college-level”, these characteristics did not always
co-occur, especially in math education literature where 41% of papers that characterized
developmental math in terms of content did not characterize the course as “not-college-level”.

Table 2. Summary of characterizations of developmental math in research articles in the sample
 Overall Math-education Non-math education
 n % n % n %
College-level 33 91.7 10 76.9 23 100
Not for credit 19 52.8 3 23.1 16 69.6
Mathematical content 24 66.7 11 84.6 13 56.5
College-level & not for credit 19 52.8 3 23.1 16 69.6
College-level & mathematical content 21 58.3 8 61.5 13 56.5
All three 12 33.3 3 23.1 9 39.1
n 36 13 23

In terms of implicit versus explicit definitions, 7 (19%) reports did not provide either an
explicit or implicit definition; only 9 (25%) provided an explicit definition. The distribution of
the nature of the definition was similar between non-math education and math education reports.

Problematizing Characterizations of Developmental Math
The characterizations of developmental math courses that we identified (level, credit, and

content) align somewhat with the credential and learning goal orientations for developmental
math discussed in the Theoretical Framework. However, the extent to which these
characterizations measure the intended credential and learning goals is unclear. While there is
much discussion in the literature about whether existing developmental math courses serve
students, we could find no substantial discussion about whether or not existing definitions of
developmental math serve these goals. Here we attempt to address that gap.

Level Characteristic
The most commonly used characteristic to describe developmental math was
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“not-college-level”, which often co-occurred with both “not-for-credit” and content
characteristics (and by extension both credential and learning orientations). But what constitutes
“college-level” math content was often left undefined and unexamined. Doing so invites a deficit
framing of students in developmental classes by implicitly suggesting that developmental
students lack necessary skills for engaging in college-level math work (e.g., Larnell, 2016).
Indeed, characterizing developmental math courses as “not-college-level” suggests an
assumption that students can only access college-level math by first repeating high-school course
content; however, this assumption is problematic (e.g., Stigler et al., 2010) and unsupported by
evidence.

Credit Characteristic
Characterizing developmental math courses as “not-for-credit” was particularly common in

non-math education reports (and by extension, higher education research literature), which is
consistent with a credential orientation that stresses degree progress. However, credits may not
be a good measure of degree progress, and measuring credits in isolation de-couples equity from
any direct relationship to learning outcomes. For example, there are many credit-bearing courses
(e.g., precalculus) that carry credits but do not always “count” towards STEM degrees.

Previous scholarship has critiqued the non-credit characteristic of developmental courses for
introducing stigma (e.g., Larnell, 2016) and not directly furthering degree progress (e.g., Logue
et al., 2016). However, an oft-neglected issue with “not-for-credit” characterizations is that
non-credit developmental courses have inequitable time costs for students. Students must still
invest time in the material, regardless of whether credit is awarded. Simply attaching credits to
all courses does not necessarily address this inequity. For example, co-requisite models often
merge non-credit and credit-bearing math courses to produce a single for-credit course with
additional non-credit hours attached (Meiselman & Schudde, 2021; Ran & Lin, 2022). While this
may reduce the number of terms needed to access “college-level” math, it does not reduce the
time capital students invest in the non-credit portions of the course. This exacerbates existing
time inequities, as Black, Hispanic, female, and “non-traditional” students are more likely to
both take developmental math (Chen, 2016) and to have disproportionately less time capital to
invest in college (Wladis et al., 2018, 2021a, 2021b, 2022; Conway et al., 2021).

Critical structures, such as financial aid, do not give developmental students, or others with
low time capital or high academic time demands, more time for college. Instead, higher time
costs, which are the consequence of structural inequities, are borne by individual students (e.g.,
Wladis et al., 2018). Real systemic change requires an attempt to equalize time inequities, rather
than focusing solely on credits, which requires shifting our definition of developmental math.

Content Characteristic
Characterizing developmental math courses as those that cover particular mathematical

content was typically linked to whether that content was considered “college-level” or not.
However, which courses signal the transition to “college-level” varies, ranging from Intermediate
Algebra (e.g., Logue et al., 2016) to Calculus I (e.g., Hsu & Gehring, 2016). Sometimes
“college-level” appears to be defined as “not-secondary-level”, but this is also contradictory, as
many classes often considered “college-level” are regularly taught in high school: for example,
courses above Algebra II (typically called Intermediate Algebra in college) almost universally
carry college credit, yet 70% of students who enrolled directly from high school into college had
taken a course above Algebra II in high school (IES, HSLS:09).

The content characteristic appears to be motivated by a learning orientation, yet learning
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objectives for these courses were systematically underspecified. Typically reports characterized
content by the specific objects of study (e.g., linear equations) or specific course titles. But these
characterizations tell us little about how students might be expected to engage with those
mathematical objects. This is inconsistent with how courses are designated as “college-level” in
other disciplines: for example, students might study Shakespeare in the secondary or
postsecondary context, yet college Shakespeare courses are not typically classified as
“developmental”1. This is presumably because it is not the specific object of study that
determines the “level”, but rather how students engage with that object. Mathematicians also do
not classify “level” based on the objects of study, but by how one reasons about them: both first
grade arithmetic and number theory focus on the integers, but at radically different levels.

Developmental algebra courses have typically taken the same teaching/learning approaches
as 8th/9th grade Algebra I (Givvin et al., 2011; Grubb et al., 1999; Mesa et al., 2014; Stigler et al.,
2010). However, college students are developmentally different from 14-year-olds: they have
typically already passed an Algebra I class (e.g., Ngo & Velasquez, 2020); they have more
sophisticated reasoning skills, independence, and life experience (e.g., Mesa et al., 2014); and
they often excel in academic areas in which computational math skills are not a prerequisite. Yet,
existing developmental algebra courses rarely leverage these strengths. Research suggests that
developmental algebra students are capable of engaging in more rigorous reasoning, justification,
generalization, and abstraction about core algebraic objects, without requiring extensive
prerequisite courses in computation (e.g., Givvin et al., 2011). Thus, it is possible to offer
no-prerequisite algebra courses at the college-level, if we re-define “college-level” as being
measured by the way in which students engage with those algebraic objects. In fact, offering
such courses is critical if we are to provide students access to college-level math: students need
opportunities to develop the higher-order-math skills that will be necessary for upper-level math
courses, rather than spending time repeating procedural processes that they already practiced in
high school. This, along with other features of our problematization and interrogation of other
definitional characteristics of “developmental math” in the literature, leads us to propose one
potential new definition of developmental math.

New Definition of Developmental Math
In this section we present one potential new definition of developmental math, where

developmental is no longer the complement to college-level, but rather a subtype of
college-level. In particular, we propose to define developmental math as follows:

Definition: Developmental math courses in college are courses that (1) require no extensive
prerequisite knowledge of algebra (or other computational skills beyond arithmetic), (2)
provide students with immediate access to college-level math (defined based on the kinds of
reasoning/justification, abstraction/generalization, and particular conceptions expected of
students), and (3) provide students with necessary time resources for learning college-level
math, based on their individual math time demands and access to time capital more generally.

This reconceptualization addresses several issues associated with current characterizations of
developmental math. First, by positioning developmental courses around college-level skills that
do not require algebra, this conceptualization is an asset-based approach that focuses on

1 Special thanks to Carolyn James for the specific use of Shakespeare as a metaphor.
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leveraging college students’ strengths (such as their developmental maturity). Doing so also
provides better access for every student to develop higher-order mathematical skills from the
start, which are necessary to succeed in advanced math courses. Second, positioning these
courses as college-level also eliminates stigma and practical problems associated with offering
courses not-for-credit. Lastly, this conceptualization explicitly recognizes and addresses systemic
time inequities that have been ignored by existing structures.

Reconceptualizing what developmental math is also requires reconceptualizing how success
in developmental math is assessed. As previously discussed, measures of success require both a
credential and learning orientation. Towards these goals, measures of success in a
reconceptualized developmental math framework could include: 1) whether the courses meet the
criteria stipulated in the developmental math definition above; 2) what students are actually
learning in these courses (e.g., using concept inventories or other validated assessments [e.g.,
Carlson et al., 2010; Peralta et al., 2020; Wladis et al., 2018]); and 3) whether students are given
the time resources needed to succeed in these courses (e.g., validated measures of time
capital/demands [e.g., Wladis et al., 2018; Conway et al., 2021]). We note that if these three
measures are met, we should also naturally see other positive outcomes (e.g., grades, persistence,
general and STEM-specific degree progress and attainment). However, more traditional
measures alone do not necessarily ensure that the first three measures are being met, and thus
that equity in terms of access, learning, and time capital is being attained.

We recognize that our proposed definition requires a dramatic shift in how developmental
math is implemented and thought about. If adopted, it also requires a renegotiation of
undergraduate mathematics at large. This is not an easy proposition and would likely be the work
of a generation of researchers and practitioners working together. However, substantial evidence
suggests that existing definitions and implementations of developmental math are both
inequitable and ineffective. We contend that dramatic reconceptualizations are necessary.

Conclusion
In this paper we have proposed to re-frame the definition of developmental math around two

critical areas: (1) the extent to which developmental courses provide students access to true
“college-level” math content (defined by the types of reasoning, abstraction and conceptions in
which students engage, rather than computational skill), and (2) the extent to which
developmental math courses provide students access to the time resources needed to address
inequities in other resources (e.g., financial, prior educational access). These two foci of our
revised definition align with the traditional learning and credential orientations, but in new ways
that we have not seen represented in the literature. Our hope is that other scholars will build on
this perspective, to further improve on our implementations of developmental math, so that it can
better serve the equity goals developmental math was designed to support.

This new definition alone is not enough to solve all of developmental math’s equity
challenges. Research and advocacy are needed in many other areas, including: classroom and
college climate, implicit bias, math anxiety and trauma, and specific teaching methods (e.g.,
Larnell, 2016; Martin, 2009; Mesa et al., 2014). This new perspective is just one important shift
that we see as critical to more equitably serving developmental math students.

Acknowledgments
This research was supported by a grant from the National Science Foundation (Grant No.

1760491). Opinions reflect those of the authors and do not necessarily reflect those of the
granting agency.

25th Annual Conference on Research in Undergraduate Mathematics Education 830



References
Ashby, J., Sadera, W. A., & McNary, S. W. (2011). Comparing student success between

developmental math courses offered online, blended, and face-to-face. Journal of Interactive
Online Learning, 10(3), 128-140.

Bahr, P. R. (2008). Does math remediation work?: A comparative analysis of academic
attainment among community college students. Research in Higher Education, 49(5),
420-450.

Bailey, T., Jeong, D. W., & Cho, S. W. (2010). Referral, enrollment, and completion in
developmental education sequences in community colleges. Economics of Education
Review, 29(2), 255-270.

Boatman, A., & Long, B. T. (2018). Does remediation work for all students? How the effects of
postsecondary remedial and developmental courses vary by level of academic preparation.
Educational Evaluation and Policy Analysis, 40(1), 29-58.

Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept assessment: A tool
for assessing students’ reasoning abilities and understandings. Cognition and Instruction,
28(2), 113-145.

Chen, X. (2016). Remedial coursetaking at US public 2-and 4-Year institutions: Scope,
experiences, and outcomes (NCES 2016-405). National Center for Education Statistics.

Conway, K. M., Wladis, C., & Hachey, A. C. (2021). Time poverty and parenthood: Who has
time for college?. AERA Open, 7. https://doi.org/10.1177/23328584211011608

Crisp, G., & Delgado, C. (2014). The impact of developmental education on community college
persistence and vertical transfer. Community College Review, 42(2), 99-117.

Dotzler Jr, J. J. (2003). A note on the nature and history of post-secondary developmental
education in America. Math and Computer Education, 37(1), 121-125.

Givvin, K. B., Stigler, J. W., & Thompson, B. J. (2011). What community college developmental
math students understand about math, Part II: The interviews. The MathAMATYC Educator,
2(3), 4-18.

Goldrick-Rab, S. (2007). What higher education has to say about the transition to college.
Teachers College Record, 109(10), 2444-2481.

Grubb, W.N., Worthen, H., Byrd, B., Webb, E., Badway, N., Case, C., Goto, S., & Villeneuve,
J.C. (1999). Honored but invisible: An inside look at teaching in community colleges.
Routledge.

Hammerman, N., & Goldberg, R. (2003). Strategies for developmental math at the college level.
Math and Computer Education, 37(1), 79-95.

Hsu, J., & Gehring, W. J. (2016). Measuring student success from a developmental math course
at an elite public institution. Society for Research on Educational Effectiveness.

Institute of Education Sciences, National Center for Education Statistics (2009). The high school
longitudinal study of 2009 (HSLS:09). Washington, DC: U.S. Dept. of Education.

Larnell, G. V. (2016). More than just skill: Examining math identities, racialized narratives, and
remediation among black undergraduates. Journal for Research in Math Education, 47(3),
233-269.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.
Logue, A. W., Watanabe-Rose, M., & Douglas, D. (2016). Should students assessed as needing

remedial math take college-level quantitative courses instead? A randomized controlled trial.
Educational Evaluation and Policy Analysis, 38(3), 578-598.

25th Annual Conference on Research in Undergraduate Mathematics Education 831



Martin, D. B. (2009). Researching race in math education. Teachers College Record, 111(2),
295-338.

Meiselman, A. Y., & Schudde, L. (2021). The impact of corequisite math on community college
student outcomes: Evidence from Texas. Education Finance and Policy, 1-26.
https://doi.org/10.1162/edfp_a_00365

Mesa, V., Celis, S., & Lande, E. (2014). Teaching approaches of community college math
faculty: Do they related to classroom practices? American Educational Research Journal,
51(1), 117-151.

Ngo, F. J., & Velasquez, D. (2020). Inside the math trap: Chronic math tracking from high school
to community college. Urban Education, 1-29. https://doi.org/10.1177/0042085920908912

Peralta, Y., Kohli, N., Strom, A., Duranczyk, I., Mesa, V., & Watkins, L. (2020). A psychometric
analysis of the algebra and precalculus concept readiness assessment for community colleges.
Journal of Psychoeducational Assessment, 38(3), 321–336.
https://doi.org/10.1177/0734282919846019

Ran, F. X., & Lin, Y. (2022). The effects of corequisite remediation: Evidence from a statewide
reform in Tennessee. Educational Evaluation and Policy Analysis, 44(3), 458–484.
https://doi.org/10.3102/01623737211070836

Sanabria, T., Penner, A., & Domina, T. (2020). Failing at remediation? College remedial
coursetaking, failure and long-term student outcomes. Research in higher education, 61(4),
459-484.

Stigler, J. W., Givvin, K. B., & Thompson, B. J. (2010). What community college developmental
math students understand about math. MathAMATYC Educator, 1(3), 4-16.

Valentine, J. C., Konstantopoulos, S., & Goldrick-Rab, S. (2017). What happens to students
placed into developmental education? A meta-analysis of regression discontinuity studies.
Review of Educational Research, 87(4), 806-833.

Webel, C., & Krupa, E. (2015). Benny goes to college: Is the "math emporium" reinventing
Individually Prescribed Instruction? MathAMATYC Educator, 6(3), 4-12, 62.

Wladis, C., Hachey, A. C., & Conway, K. (2018). No time for college? An investigation of time
poverty and parenthood. The Journal of Higher Education, 89(6), 807-831.

Wladis, C., Hachey, A.C. and Conway, K.M. (2021a). It's about time: The inequitable
distribution of time as a resource for college, by gender and race/ethnicity.

Wladis, C., Hachey, A.C. and Conway, K.M. (2021b). It’s about time, Part II: Does Time
Poverty contribute to inequitable college outcomes by gender and race/ethnicity?

Wladis, C., Hachey, A.C. and Conway, K.M. (2022) Time Poverty: A hidden factor connecting
online enrollment and college outcomes? Journal of Higher Education. doi:
10.1080/00221546.2022.2138385

Wladis, C., Offenholley, K., Licwinko, S., Dawes, D. & Lee, J. K. (2018). Development of the
elementary algebra concept inventory for the college context. In A. Weinberg, C. Rasmussen,
J. Rabin, M. Wawro, & S. Brown (Eds.), Proceedings of the 21st Annual Conference on
Research in Undergraduate Math Education. San Diego, CA.

Xu, D., & Dadgar, M. (2018). How effective are community college remedial math courses for
students with the lowest math skills?. Community College Review, 46(1), 62-81.

25th Annual Conference on Research in Undergraduate Mathematics Education 832

https://doi.org/10.1162/edfp_a_00365
https://doi.org/10.1177/0042085920908912
https://doi.org/10.1177/0734282919846019
https://doi.org/10.3102/01623737211070836


What is College-Level Mathematics? A Proposed Framework for Generating Developmental
Progressions in Mathematics up to and through College
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In this theoretical paper, our aim is to start a conversation about how “levels” in mathematics
are operationalized and defined, with a specific focus on “college level”. We approach this from
the lens of developmental stages, using this to propose an initial framework for describing how
learners might progress along a developmental continuum delineated by the kinds of
reasoning/justification, generalization/abstraction, and types of conceptions that they hold,
rather than by the particular computations learners are able to do, or the kinds of mathematical
objects with which learners are engaging.

Keywords: college level; mathematical maturity; reasoning and justification; generalization and
abstraction; conceptions

It is often assumed to be obvious whether a particular mathematics course is “college-level”
or not; however, in practice, the transition point operationalized as “college-level” begins as
early as Intermediate Algebra (Logue et al, 2016) and as late as Calculus I (Hsu & Gehring,
2016). In addition, determinations about which courses “count” as college-level are often based
on syllabi that focus primarily on a list of computational skills on specific mathematical objects
(e.g., linear equations, trinomials), rather than on how students reason with, justify, generalize or
conceptualize mathematical ideas. Yet a conception of “level” that is driven more by the
mathematical objects that are the focus of study, rather than how learners engage with those
objects, contradicts many of the values of both mathematicians and mathematics educators about
what high quality mathematics learning looks like. In addition, it further disadvantages students
who may have strong higher-level thinking skills but who, for a variety of reasons, may not
perform well on computational placement exams; currently, such students are often placed into
non-credit bearing developmental courses that focus heavily on procedures, and which contribute
to disparate impacts on college and economic outcomes (e.g., Bailey & Cho, 2010).

Mathematical learning is about more than just “content” (conceptualized as the specific
mathematical objects of study or the particular procedures that students are expected to use):
there are other skills, knowledge and practices that are important; yet much of this is left
unarticulated in learning outcomes, and rarely used in the determination of course level. In this
paper, we describe an initial framework for how we might define “college-level” mathematics, or
more specifically, a spectrum of different “levels” of learning across the K-16+ mathematics
curriculum as characterized by the kinds of reasoning, generalization, and conceptions that might
describe developmental shifts or progressions in learning. This then includes a more focused
discussion of how we might use such a framework to better articulate where the shift from K-12
to “college level” might occur in various mathematical domains.
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Adolescent and Young Adult Development in Psychology and Neuroscience
It is known that the brain changes physically throughout the lifespan and that the last

significant period of remodeling begins in adolescence and culminates in the early to
mid-twenties. The parts of the brain most impacted by this last remodeling are those that control
functions such as working memory, planning, and impulse control (Konrad et al, 2013). Based on
this science, it is developmentally appropriate that college students should be able to interact
with mathematical objects (e.g., algebraic expressions) in more sophisticated ways than younger
students. Early educational literature, such as that of Piaget (1964), posited developmental stages
for school-aged children that influence our expectations for what “grade level” means in subjects
like math, reading, and writing. Psychology and neuroscience research acknowledge how
understudied adolescents and young adults are and posit that much still remains to be learned
about how brain development might impact behavior and learning (Blakemore, 2012;
Shanmugan & Satterthwaite, 2016). In her survey of the field of adolescent brain imaging,
Blakemore (2012) speculated about how changes in brain structure could make signal processing
more efficient, which we speculate could have a direct impact on mathematics learning. This
work in neuroscience compliments frameworks like that proposed by Erik Erikson (1994) for
ongoing psychosocial development into and continuing through adulthood. Yet while it is known
from neuroscience and developmental psychology research that college students differ
developmentally from younger students, mathematics education frameworks have tended to
ignore this when describing domains such as algebra that may be learned by students of widely
varying ages. This paper seeks to explore how we might begin to conceptualize developmental
stages as impacting how the same mathematical “objects” might be studied at different levels,
with particular focus on what it might mean to do mathematics at the college level.

Proposed Mathematical Maturity Framework
In this paper we aim to problematize and redefine the term mathematical maturity. This term

has been used in both research and practice to describe a kind of developmental progression like
the one we hope to focus on here. However, this term has also been used in ways that are often
vague and ill-defined; that provide deficit framings of students (e.g., “students can’t take linear
algebra before calculus because they don’t have the mathematical maturity for the course”); and
that describe binary destinations (e.g., students either have “mathematical maturity” or they
don’t) of what we conceptualize as a continuous life-long process of growth.

Mathematical maturity is a term used widely and often without formal definition within
undergraduate mathematics education research and practice (Braun, 2019; Lew, 2019). In some
instances, the completion of a specific course is used as an operational definition for the sake of a
study, but even in those cases it is generally clarified that it is not the course content but a set of
skills and increasing sophistication in how one approaches mathematics that is being referenced
(Faulkner, Earl, & Herman, 2019; Lew, 2019). Two recent studies sought to determine how those
using the term “mathematical maturity” define it. Faulkner et al (2019) interviewed engineering
faculty and Lew (2019) interviewed mathematics faculty about their use of the term. Common
definitions provided between these studies included many types of reasoning, generalizing, and
conceptualizing, including the ability to: make connections across mathematical topics; use
symbolic representations; relate different representations to one another and recognize when they
describe the same phenomenon or relationship; choose between different representations for the
purpose of solving problems; and understand if a solution to a problem makes sense.
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Definition of Mathematical Maturity
Here we offer a new conceptualization of mathematical maturity via a framework, which we

see as a starting point for describing how learners might acquire higher-level mathematical
thinking skills and practices as they develop over time. We anticipate that this definition will
evolve over time, but we present this as a first step, to start a conversation about what it means to
learn mathematics at different “levels”. A framework of this sort could then be used to generate
new courses which could allow learners with missing “content knowledge” to nonetheless take a
college-level, credit-bearing mathematics course that respects their different developmental stage
compared to the age at which such content is traditionally introduced. For example, a course
might require no algebra prerequisite, but allow students to engage with algebraic reasoning and
justification at a higher level than would be expected in a typical K-12 algebra course.

We define mathematical maturity as a spectrum with no upper bound that describes the
extent to which learners may acquire over time the ability to 1) reason and justify; 2) generalize
and abstract; and 3) internalize particular conceptions of specific mathematical objects that occur
throughout the curriculum. We conceptualize the process of developing mathematical maturity as
a combination of physiological development and the outcome of particular mathematical
experiences acquired over time. We now briefly present a framework for describing
mathematical maturity which we have synthesized from existing research literature (Figure 1).

Reasoning/Justification: To what extent are students expected to be able to reason (i.e., explain to themselves
why/how something works), justify (i.e., communicate to others how/why something works), or prove (i.e.,
justify using more formal mathematical conventions accepted within a particular context)?

When reasoning, justifying or proving, what level of formality of language and convention is expected?
(imprecise language vs. well-defined but informal language vs. formal mathematical terminology and/or
symbols)

Generalization/Abstraction: How generalized is a learner’s understanding expected to be (e.g., is the goal to
understand a single example vs. a limited class of examples vs. a generic example)?
How explicit are students expected to be about the boundaries of the problem space? What kinds of
connections between domains or representations are they expected to make?

Specific Conceptions/Concept Images: In a particular domain, which particular conceptions or concept images
are learners expected to acquire (e.g., if a process vs. object transition, what is the specific object that is
supposed to result from reification/encapsulation)?

Figure 2. Mathematical Maturity Framework for Describing Developmental Progression through K-16+
Mathematical Curriculum, Three Possible Dimensions
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We contrast this approach with traditional conceptualization of “level” which have tended to
focus on computations on particular mathematical objects as the primary feature which
determines the “level” of a course (Figure 2).

Figure 1: Informal model of progress through mathematics as currently conceived

In contrast, we consider which features are most relevant to determining the “level” at which
the same mathematical object might be learned at different points in a students’ K-16+
learning trajectory. We now describe each of the three dimensions of the framework in more
detail.

Review of Literature from which the Proposed Framework was Drawn

Reasoning/Justification
One of the topics that is often discussed in the literature as a way of distinguishing whether

students have “learned” mathematics, is the extent to which and ways in which students are able
to reason or justify in mathematics. One of the major formal transitions in this area is when
students are expected to generate mathematical proofs in college; substantial research has
documented student difficulties with this. One explanation for this is that while students have
experienced instruction focused on specific “content”, students often do not come out of these
courses with clear understanding of more general mathematical skills and practices, such as what
constitutes mathematical proof (Selden & Selden, 2008). But formal proof simply describes one
end of a much longer spectrum of skills, perspectives and practices. There have been extensive
calls for students in K-12 to learn to reason and justify, long before the introduction of formal
proof (e.g., National Governors Association Center for Best Practices [NGA] & Council of Chief
State School Officers [CCSSO], 2010). And the processes of reasoning and justifying have been
identified as critical mathematical skills that students may often not acquire during “standard”
computational instruction (e.g., Mata-Pereira & da Ponte, 2017; Ball & Bass, 2003). Thus,
reasoning and justification describes a core skill that is critical across mathematical domains.

Generalization/Abstraction
Another feature of mathematical “level” that often arises in the literature is the extent to

which students are able to generalize about mathematical objects. To date, most of the research
on generalization has been in the realms of early algebra (Carraher et al., 2008), pattern-forming
(Amit & Neria, 2008), and linearity (Ellis, 2007) (see Ellis et al. 2022 for a more complete list).
Notably, Ellis et al. (2022) is the first to consider students’ generalizing activity across multiple
domains and grade levels, ranging from middle school to undergraduates. Through their
extensions of Ellis’ (2007) taxonomy for categorizing types of generalization, they identified
three main types: relating, forming, and extending. This framework enabled the researchers to
identify what they considered to be generative (i.e., productive or useful) generalizing activity,
and discuss how generalizing was both independent and dependent of the mathematical domain.
We see this research area, and the RFE framework in particular, as having great potential for
helping to illuminate our eventual taxonomy of delineating college-level mathematics.

Strongly related to generalization is the notion of abstraction. Abstraction may be defined as
the processes that lead learners to grasp deeper understandings of mathematical structures, such

25th Annual Conference on Research in Undergraduate Mathematics Education 836



as the underlying structure behind a vector space (Dreyfus, 2020, p. 13). Abstraction may also be
thought of as a vertical reorganization of existing knowledge, or as a reconceptualization of
information (as opposed to a de-construction). Many researchers have considered abstraction as
part of a student’s cognitive development, such as Piaget’s ideas of empirical and reflective
abstraction (Dubinsky, 2002), Thompson’s processes and objects (1985), APOS theory (Asiala et
al, 1997), Sfard’s reification (1991), and Tall’s structural abstraction (2013).

Conceptions/Concept Images
A third feature that often arises in studies of learners’ progression through mathematical

levels is the extent to which learners have particular conceptions about mathematical objects or
concepts. One example that has been widely discussed is the transition documented by
process-to-object theories (Sfard, 1991; Dubinsky, 1991; Gray & Tall, 1994), in which learners
are theorized to conceptualize certain entities first as a process, and then later to
reify/encapsulate that process into an object which can then subsequently be acted upon by even
higher-order processes. For example, the expression could be conceptualized as a process2𝑥
representing that 2 and should be multiplied together. Later, a learner may conceptualize as𝑥 2𝑥
an object itself, representing the process of multiplying 2 by or the result of multiplying 2 by ,𝑥 𝑥
without actually carrying out computation. Then can be acted on by even higher-order2𝑥
processes, for example adding it to another object, , to obtain the result .3𝑥 5𝑥

While students may switch back and forth between process and object conceptualizations, the
ability to utilize an object conception is typically considered to be further along the
developmental spectrum than using process conceptions alone (e.g., Sfard, 1991). Many
higher-level mathematics courses also require object conceptions: for example, while arithmetic
is rooted in a process conception of numerical computation, algebra requires that these same
calculations be reified or encapsulated into objects (i.e., expressions/equations that can
themselves be transformed using higher-order processes). Similarly, as algebra becomes more
complex, students may be required to reify the process of the order of operations on algebraic
expressions into subexpressions as objects (i.e., substrings of expression/equations that must be
treated as unified objects); for example, this kind of higher-order structuring is necessary in order
to perform function composition, u-substitution, or the chain rule in calculus. In fact, we can
envision a larger progression in which one process is reified into an object, which is acted upon
by higher-order processes which are themselves reified into an object, which is itself acted upon
by even higher-order processes, etc. This progression has tended to be studied as individual shifts
for one particular entity going from a process to an object, rather than discussed as a larger
progression with many different shifts; however, original process-to-object theories precisely
pointed out how reified objects became the focus of yet higher-order processes (Sfard, 1991),
thus implying the existence of a larger progression containing many layers of more and more
complex reified objects. Process to object views are likely not the only kinds of conceptual
shifts that are expected of students as they progress through the mathematics curriculum; we
present them here only as one example of how a key characteristic that determines the “level” of
a mathematics course is the set of particular conceptions that learners are expected to internalize.

Brief Illustrative Example: The Distributive Property
In order to illustrate some of the affordances of the Mathematical Maturity Framework, we

present one example of how this framework could be used to map out learning goals for the same
object (the distributive property) at different stages of the K-16+ trajectory (Figure 3). The
distributive property is first encountered in 3rd-5th grade, but is also the subject of study
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throughout the K-16+ curriculum. Currently, much focus is on which objects learners are
expected to transform using the distributive property, yet research has documented extensive
difficulties that students have in using the distributive property appropriately at many different
levels (e.g., Malle, 1993; Schüler-Meyer, 2017). This may be because instruction often focuses
on computation divorced from reasoning and justification. However, reconceptualizing the
distributive property as a learning object by thinking about the types of reasoning, generalization,
and conceptions students might use, could help us to shift our conceptions of how we determine
the mathematical “level” of a particular course.

Algebra I (8-12th grade): Learners are expected to understand the symbolic representation
as a pattern in which and of the property represent objects (simple𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 𝑎,  𝑏 𝑐

terms that are the product of a number and variable(s)). They are expected to conceptualize simple
subexpressions such as and as reified objects representing generic unknown numbers. The𝑝𝑥 𝑞𝑦
property is seen to hold because it represents two processes that produce the same numerical output
for every possible numeric input from the domain into the expression which is being “transformed” by
the property. They may or may not be expected to use an area model of multiplication to reason
about or justify this idea, but they are not expected to prove the property, nor necessarily to
generalize to algebraic objects with other forms.

Intro college-level algebra (lower-level undergraduate): Learners are expected to conceptualize the
distributive property as a one-to-one mapping of specific reified subexpressions to and ,𝑎,  𝑏 𝑐
respectively, in the property. Thus , and are seen as representing generic algebraic𝑎,  𝑏 𝑐
subexpressions and the specific reified subexpressions which are being mapped to variables in the
property are seen as representing generic numerical values. The property is seen to hold because it is
the process of replacing one expression with another equivalent one (substitution equivalence). The
property is understood to be generalized to a generic number of terms, and students are able to
describe this clearly but somewhat informally, and to justify why this is the case using an area model
of multiplication. Reasoning and justification are expected, with well-defined language and some
limited formal symbolism and terminology, but proof is not expected.

Abstract algebra (upper-level undergraduate or graduate): Multiplication and addition are
conceptualized as abstract binary operations on an (often abstract) set, with and in the property𝑎,  𝑏 𝑐
representing generic set elements. Operations are defined axiomatically. The distributive law itself
has been reified into an object: a property which a given set and pair of operations may or may not
have. Learners are expected to prove, using formal mathematical terminology and symbolism,
whether or not the left or right (or both) distributive properties hold for a given set with a given pair of
operations (or for a larger class of sets with pairs of operations).  

Figure 3. Examples of how levels of understanding of the distributive property might differ (as described by
student learning goals) in high school versus lower/upper-level college, even when the objects which are the focus of

the distributive property (algebraic expressions) are similar

The descriptions in Figure 3 are just one example of how we might describe learning
outcomes which depict different levels of learning for a common mathematical “object”. For
students in the theoretical “intro college level” algebra class described in Figure 3, no extensive
prerequisite proficiency in algebraic computation is required–however, once the learner starts
working with the distributive property, higher-level reasoning/justification,
generalization/abstraction, and reified objects are expected to be used and learned as a part of the
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curriculum. This is just one brief example of how using the Mathematical Maturity Framework
as a tool for developing and describing learning in college-level mathematics may help us to shift
our focus from computations on specific objects, to how students are learning to reason about,
generalize and conceptualize specific key mathematical ideas as they progress along their
mathematical learning trajectories up to and through college.

Conclusion
Our aim in presenting this framework is to shift our discussion of “college-level”

mathematics (and levels in mathematics more generally) away from a focus on specific
computations or particular mathematical objects, and towards a focus on reasoning, generalizing,
and particular conceptual shifts. This reconceptualization can be particularly important from an
equity perspective, since conflating computational skills with reasoning ability can be
particularly detrimental to some of the most marginalized students. One example of this is
developmental mathematics in college. The term “developmental” is often used to describe
courses that are not “college-level”, but this definition is ill-defined in the research literature
(Wladis et al, 2022) and may be circular (e.g., a course is developmental because it does not earn
college credit and does not earn credit because it is not “college-level”). Most students in
college are in fact re-taking mathematics which they already took in high school (e.g., 70% of
those who attended college the year after graduating HS had already taken at least one math
course above Algebra II [IES, HLS, 2009], and 52% of students who enroll in Calculus I in
college have taken calculus previously (Sadler & Sonnert, 2016), yet what makes some of the
courses that students repeat in college “college-level” and others not is unclear. We see this as a
critical equity issue in mathematics: many college students (particularly those from more
marginalized groups) are labeled “developmental” in college (with both stigma and practical
barriers attached to these labels) because they are deemed “not ready for college-level work”, yet
what it means to be ready for college-level work is not well-defined.

The transition from high school to college is also not the only transition point in mathematics
learning in college that has been documented to be difficult for students. For example, many
students struggle with the transition to proof in undergraduate mathematics (Selden & Selden,
2008). One reason the observed difficulty with many transition points into and through college
mathematics may be that as a community we have not yet clearly enough articulated the specific
goals of instruction, as defined in terms of particular types of higher-order thinking skills such as
reasoning, generalization, and specific conceptions of mathematical concepts; nor have we
adequately described on a larger-grained scale how we might expect students to progress through
these developmental stages as they mature mathematically. This paper is an attempt to start a
conversation about the potential of reframing “college-level” classifications based on specific
high-level thinking skills, rather than organizing it around the specific mathematical objects to be
studied or the particular calculations to be made. Our hope is that this will lead to more
productive and equitable ways of teaching and assessing students in college, and across the
K-16+ mathematics spectrum.
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Syntactic Reasoning and Cognitive Load in Algebra

Claire Wladis Benjamin Sencindiver Kathleen Offenholley
CUNY CUNY CUNY

In the context of proofs, researchers have distinguished between syntactic reasoning and
semantic reasoning; however, this distinction has not been well-explored in areas of mathematics
education below formal proof, where student reasoning and justification are also important. In
this paper we draw on theories of cognitive load and syntactic versus semantic proof-production
to explicate a definition for syntactic reasoning outside the context of formal proof, using
illustrative examples from algebra.

Keywords: Syntactic reasoning; Semantic reasoning; Cognitive load; Algebra

In this paper we outline a framework for analyzing student reasoning in mathematics, using
the distinction between syntactic and semantic reasoning. This distinction has been a helpful
framework for analyzing proof construction (Weber & Alcock, 2004) but has rarely been used as
a framework for analyzing reasoning or justification in other mathematical domains where
formal proof is not common. Even when syntactic reasoning is referred to directly in the context
of proof, it is often conflated with manipulation of symbols without understanding. In this paper,
we explicate a definition for syntactic reasoning outside the context of formal proof, presenting it
as a form of reasoning that is distinct from rote “symbol pushing”. We then use one example
from school algebra to illustrate: 1) how syntactic and semantic reasoning play critical and
complementary roles in this context; 2) how leveraging syntactic reasoning can reduce cognitive
load; and 3) how preferences for syntactic or semantic reasoning approaches may relate to prior
knowledge and schema. Our aim is to start a conversation about the potential affordances of
more explicitly attending to syntactic reasoning in task and curriculum design and instruction.

Syntactic and Semantic Reasoning
In the literature on student proof construction, a number of studies have explored syntactic

versus semantic reasoning during proof production. Weber and Alcock (2004) define syntactic
proof production as drawing “inferences by manipulating symbolic formulae in a logically
permissible way” and semantic proof production as using “instantiations of mathematical
concepts to guide the formal inferences that [the prover] draws”. In some work these categories
are binary and assigned to a whole proof production, but in other work (e.g., Weber and
Mejia-Ramos, 2009) syntactic and semantic reasoning are conceptualized as describing different
steps in a students’ reasoning process, where students may switch back and forth between
different approaches; the latter is the approach we aim to take.

We also point out two key distinctions between our definitions of syntactic reasoning and
those that have been used in proof literature. In particular, Weber and Alcock’s (2004) definition
of syntactic reasoning as drawing “inferences by manipulating symbolic formulae in a logically
permissible way” is for us incomplete—we are not only interested in the result of a student’s
calculations, but also in their reasoning1. A second key distinction is that while Alcock & Inglis
(2008) classify reasoning as syntactic if it takes place within the “representation system of

1 We note that in other work, Weber (2005) distinguishes between syntactic and procedural proof production (the
latter being based more on imitation of particular proof “templates” without necessarily understanding why they are
valid)—this distinction is similar to, but different from our distinction between syntactic reasoning and symbolic
manipulation that is not grounded in syntactic reasoning.
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proof,” we discuss a context in which syntactic reasoning can occur beyond proof production,
which we call an “abstract symbolic system.”

Abstract Symbolic Systems
We situate our definition of syntactic reasoning within abstract symbolic systems:

self-contained systems in which the symbolic objects are what Tall et al. (1999) describe as
axiomatic objects, or objects that arise “from specifying criteria (axioms or definitions) from
which properties are deduced by formal proof” (p.239). This is also related to, but more narrowly
defined than, what Goldin (1998) termed a symbolic system—a set of conventions and implicit
or explicit axioms for the use of mathematical symbols which is:

1. Abstract, in the sense that it does not necessarily have any “real world” or alternative
representations beyond what is specified by the axioms in the system.

2. Self-contained, in the sense that one has all the tools one needs already within the
system to be able to identify or generate equivalent objects.

Our Definitions. Syntactic reasoning is reasoning which justifies mathematical work by
referring back to conventions and axioms within the abstract symbolic system. Semantic
reasoning involves justifying mathematical work by connecting it to representations or concept
images outside the abstract symbolic system (e.g., the concept image of multiplication as area).

Distinguishing syntactic reasoning from “symbol pushing”
We have observed a tendency in the mathematics education community to frame syntactic

reasoning as normatively undesirable, and semantic reasoning as normatively superior (see e.g.,
Easdown, 2009; Weber & Alcock, 2004). This is likely a reaction to approaches to teaching in
which students are taught to manipulate symbols without connecting them to relevant underlying
mathematical reasoning (e.g., Stacey, 2010). However, it is important to distinguish between
syntactic reasoning versus symbolic manipulation that is disconnected from relevant logical
reasoning.2 We contend that the former is an essential component of mathematical reasoning,
complementary to semantic reasoning, and necessary to manage the cognitive load of
syntactically complex tasks. In our framework, syntactic and semantic reasoning are viewed as
two essential and complementary components of mathematical reasoning.

For our definition of syntactic reasoning, it is not enough that a student manipulates symbols,
even correctly—they must show evidence of reasoning within an abstract symbolic system. For
example, a student may correctly transform with the distributive property in the following way:

. However, what reasoning this student has used is not clear from this2 3𝑥 + 5( ) = 2⋅3𝑥 + 2⋅5
work alone. Here are some examples of explanations that we would and would not consider to be
syntactic reasoning (these examples are fictional, but have been written to mimic common forms
of explanation that college students have provided in other empirical work):

1. Student 1 (neither syntactic reasoning nor semantic reasoning): You take whatever
is on the outside of the parentheses, and put it next to each thing inside the
parentheses.

2. Student 2 (syntactic reasoning): has the form if we let ,2 3𝑥 + 5( ) 𝑎(𝑏 + 𝑐) 𝑎 = 2
and . We know from the distributive property that𝑏 = 3𝑥 𝑐 = 5

, so we know that by substituting ,𝑎 𝑏 + 𝑐( ) = 𝑎𝑏 + 𝑎𝑐 2 3𝑥 + 5( ) = 2⋅3𝑥 + 2⋅5 2
and 5 into the correct variables in the distributive property.3𝑥

2 We use the modifier “relevant” because students who are “symbol pushing” often use complex or abstract forms of
reasoning that are not connected to the relevant mathematical-logical justification.
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3. Student 3 (semantic reasoning): When you have two terms that are doubled, it
doesn’t matter if you add first and then double the result or double each term
separately. Because either way you are still doubling each individual term.

Student 1 describes a procedure but does not draw on any conventions or axioms of the
abstract symbolic system in their justification, so this is not considered syntactic reasoning by
itself. Student 2, in contrast, is drawing only on conventions and axioms given in the abstract
symbolic system to justify their work. Unlike the others, Student 3 has drawn on meanings for
multiplication and addition that go beyond what is given in the axiomatic system; this student is
using other definitions of addition (e.g., as combining parts or terms) and multiplication (e.g., as
doubling) to justify their work. Some readers may prefer the semantic explanation to the
syntactic one or vice versa. We note only that both draw on distinct forms of reasoning, and that
each approach directs cognitive resources towards something different. The syntactic approach
directs resources in working memory towards parsing complex syntax so that a learner can view
complex expressions as “having the form” . On the other hand, the semantic approach𝑎(𝑏 + 𝑐)
directs cognitive resources towards understanding why the distributive property can be derived
from specific conceptions of addition and multiplication. However, the working memory
resources necessary to process this semantic explanation may increase significantly as the
subexpressions which represent , and become progressively more syntactically complex.𝑎 𝑏 𝑐
We likely do not expect students to justify the distributive property every single time that they
use it, just as we do not expect students to semantically justify every sum or product every time
that they calculate. Ideally, students would be able to employ both forms of reasoning when
solving problems, switching back and forth between them strategically, in ways that both
maximize their understanding of the underlying mathematics, and keep the cognitive load of a
particular problem to manageable levels.

Cognitive Load and Strategic Selective Attention
There are several key features of cognitive load theory. Firstly, it characterizes learning as the

process of encountering novel information, processing it in working memory, and then (to the
extent that it is perceived as useful) encoding it in some way into long term memory (see e.g.,
Kalyuga, 2010). During this process of learning novel material, elements which are encountered
during learning are encoded into mental schema3, which vary in size and complexity based on
the learner’s expertise in a specific knowledge domain (de Groot, 2014; Ericsson & Kintsch,
1995; Sweller et al., 2019). The number of elements that can be held in working memory does
not vary for “novices” vs. “experts” in a given domain; rather, it is the complexity of the mental
schema that make up the individual elements which varies based on a learner’s level of expertise
in a particular area (de Groot, 2014; Ericsson & Kintsch, 1995; Sweller et al., 2019).

Thus, during the process of problem solving, how much cognitive load a particular task
requires will vary based on the existing mental schema of the learner. A task that is perceived to
have a dozen elements by a “novice” might be perceived as all fitting into a single mental
schema for an “expert” in that domain (and thus from a cognitive load perspective, would take
up only one element of working memory for the “expert”). In addition, the information encoded
in mental schema may be automated, so that it is no longer processed consciously. This reduces
the cognitive load for the learner, but also removes much of the work of solving problems from
their conscious mental awareness (Cooper & Sweller, 1987; Sweller, 2011). This may have

3 We note that the term “schema” is used differently in cognitive load literature and should not be conflated with
more specific usage in mathematics education research (e.g., APOS theory [Dubinsky, 1991]).
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consequences for both learners and instructors: for instructors who have automated particular
complex schema, attempting to explain these processes which they no longer execute
consciously can significantly increase their cognitive load during instruction (Lee & Kalyuga,
2014), and also make it difficult for instructors to accurately gauge the cognitive load that a
“novice” (who does not have these automated schema) might experience from the same problem.

Strategic selective attention
Because syntactic and semantic approaches can have different implications for cognitive

load, switching back and forth between these two approaches may be one way of strategically
managing cognitive load within a single task. This could be described by theories of selective
attention. Selective attention is a measure of the extent to which someone is able to filter out
irrelevant information during the problem-solving process and focus only on the aspects of the
problem that are salient to the task at hand (Broadbent, 1958; Treisman, 1964). Research has
established that selective attention may be a key skill in mathematical problem-solving and is
related to students’ working memory (see e.g., Arán Filippetti & Richaud, 2016; Campos et al.,
2013). Most use of selective attention in the mathematics education literature focuses on it as a
learner’s ability to filter out completely irrelevant information (e.g., on a one-step problem about
red apples, ignoring information about green apples), but we focus on a related but slightly
different aspect of selective attention, which we term strategic selective attention: a student’s
ability to temporarily ignore information that is not relevant to the current step in solving a
problem (but which may be relevant at another step, or to interpreting the answer, etc.). For
example, a student may temporarily ignore concept images that are helpful for reasoning
semantically during a problem-solving step that is focused on syntactic reasoning (or vice versa),
in order to lower their cognitive load.

Because strategic selective attention allows a student to temporarily ignore information that
is not relevant to the current step, it narrows the amount of information that must be held and
processed in working memory and can therefore be critical once mathematical problems become
more complex. Thus, learning to work in valid ways with abstract symbolic systems by focusing
on syntactic reasoning could be key to helping students reduce the cognitive load of many
standard mathematics problems. To illustrate how strategic use of syntactic reasoning could help
to reduce the cognitive load of mathematical problems, we present a few examples of how a
standard algebra problem might be justified. We do not contend that any particular choice of
when to reason syntactically versus semantically is right or wrong—this may vary for different
people in different contexts.

Illustrative Example
As a starting point for discussion, we consider the following problem, which is a standard

question in school algebra, typically introduced in 8th or 9th grade in the U.S.:

Example 1. Simplify completely (assume ).6𝑥2+2𝑥
2𝑥 𝑥≠0

We have chosen this example because it is fairly accessible, but student errors are
nonetheless quite common, often involving invalid “cancelling” procedures, for example (Malle,
1993):

6𝑥2+2𝑥
2𝑥 = 6𝑥2

Researchers have explained this invalid form of ‘cancelling’ in a variety of ways:
generalizing from a limited set of examples where this heuristic holds to contexts where it no
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longer holds (Matz, 1982, p.26), and attending to visual similarities and patterns on the page
(Erlwanger, 1973; Kirshner & Awtry, 2004). We note that if a student is performing this
cancelling approach, they are not drawing on important syntactic meanings within this abstract
symbolic system. For example, one critical syntactic meaning is that the numerator is a6𝑥2 + 2𝑥
single unified object, and cannot be partially canceled, as is done in the work above. Another
critical syntactic meaning is that canceling represents the replacement of a single fraction of the
form with the equivalent expression 1 (assuming ); it does not represent a𝑎

𝑎 𝑎≠0
“disappearance” of the objects being “cancelled”.

A “semantic” reasoning approach
We now present a semantic reasoning approach, shown in Figure 1. However, we first note that
no approach to this problem in its current form can be 100% semantic, because at a minimum,
syntactic reasoning is necessary to read the symbolic expression. (For example, we need to know
that when a number is written next to a letter, it means multiplication.) Therefore, because no
approach justifying mathematics written using symbolic representations is 100% semantic, we
write the word semantic in quotes for this overall example.

Step 1 6𝑥2+2𝑥
2𝑥

= 6𝑥2

2𝑥 + 2𝑥
2𝑥

Semantic reasoning: Fractions can be thought of as parts of a whole, where the
top number represents the number of pieces and the bottom number represents
the size of the pieces. So, if we want to split these two subexpressions into two
separate fractions, it will have the same meaning as long as we use the same
denominator for both fractions, using the denominator that was in the original
fraction.

Step 2 = 2𝑥( )(3𝑥)
2𝑥 + 2𝑥

2𝑥
Syntactic reasoning: Because of the generalized associative/commutative
property of multiplication, we can perform multiplication using any order or
grouping (as long as only multiplication is involved). So

.6𝑥2 = 6⋅ 𝑥⋅𝑥( ) = 2𝑥( )⋅(3𝑥)
Step 3 = 2𝑥

2𝑥 · 3𝑥( ) + 2𝑥
2𝑥

Semantic reasoning: Dividing by a number is the same as multiplying by the

reciprocal of that number because both dividing by and multiplying by can be𝑐 1
𝑐

thought of as breaking the original number up into -many equally-sized groups,𝑐
and then taking the size of just one of those groups.

Syntactic reasoning: Combining this semantic reasoning with the generalized

commutative/associative property of multiplication, we can replace with
2𝑥( )(3𝑥)

2𝑥
2𝑥
2𝑥 3𝑥( ).  

Step 4 = 1⋅ 3𝑥( ) + 1 Semantic reasoning: Dividing anything by itself will always be 1, because

everything goes into itself only once, so as long as is not zero.
2𝑥
2𝑥 = 1 𝑥

Step 5 = 3𝑥 + 1 Semantic reasoning:Multiplying anything by 1 is just like taking it one time, so it
does not change it.

Figure 1: Using “Semantic” Reasoning

In Figure 1, the reader will notice the label “syntactic reasoning” for the two areas where the
generalized commutative/associative property of multiplication is used. Students may be asked to
justify this property semantically in specific cases, but are not expected to justify the general case
semantically (i.e., that when multiplying any number of factors, neither the order nor the
grouping matters). The generalized case is typically justified formally using proof by induction,
which is by definition a syntactic justification that is not appropriate for most K-12 (or even
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college) students. Thus, most students who use the generalized commutative/associative
property of multiplication are using it syntactically, as a stated axiom within the abstract
symbolic system within which they are working.

Hidden forms of syntactic reasoning in our “semantic” example
Embedded within each step labeled ‘semantic reasoning’ is hidden syntactic reasoning which

is necessary in order for the semantic reasoning to be connected to the symbolic representations.
In Figure 2, we now fill in some of that reasoning, making the implicit more explicit for Step 1.

Step 1 6𝑥2+2𝑥
2𝑥

= 6𝑥2

2𝑥 + 2𝑥
2𝑥

Syntactic reasoning: In this expression, we can treat and at the top of the6𝑥2 2𝑥
fraction and at the bottom of the fraction each as a unified subexpression, because2𝑥
of the convention that the top and bottoms of fractions should be treated as unified
subexpressions, and because according to the order of operations, exponents and

multiplication come before addition. So, we can think of this as where
𝑎+𝑏

𝑐 𝑎

represents , represents , and represents .6𝑥2 𝑏 2𝑥 𝑐 2𝑥
Semantic reasoning: Fractions can be thought of as parts of a whole, where the top
number represents the number of pieces and the bottom number represents the size
of the pieces. So, addition involving two subexpressions at the top of a fraction (𝑎 + 𝑏
) represents addition of one number of pieces of the same size from another. So, if we
want to split these two subexpressions into two separate fractions, it will have the
same meaning as long as we use the same denominator for both, using the
denominator in the original fraction.

Figure 2: First Step of Expanded “Semantic” Reasoning Example, with “Hidden” Semantic Reasoning Added

There are several interesting things to note about the expanded example in Figure 2. Firstly,
in each step, the semantic reasoning is dependent upon some underlying syntactic reasoning.
Although this reasoning is hidden, it is still needed to complete the problem. Thus, many
semantic explanations provided to students during instruction and in curriculum may actually be
more syntactic than they seem and may hide key parts of justifications from students.

Secondly, this explanation reads as quite long, because it combines the necessary syntactic
reasoning with added semantic explanations which are, in a sense, justifications of the properties
that need to be used when justifying syntactically (in a purely syntactic example these properties
might be treated as axioms that do not require justification). Thus, there is increased cognitive
load needed to provide both semantic and syntactic justification simultaneously. This increased
load may be desirable in some cases and undesirable in others, depending on factors which will
vary from one problem-solver to another, and from one instructional context to another.

The role of cognitive load in choices to implement syntactic vs. semantic reasoning
Many readers who are “experts” in algebra (e.g., algebra instructors, mathematicians) may

prefer the short “semantic” justification in Figure 2 and feel that the expanded “semantic”
justification in Figure 3 carries a higher cognitive load, because it contains significant amounts
of “extraneous” information. For these experts, the syntactic reasoning that has been explicitly
given and broken down in detail in the expanded explanation represents prior knowledge that
they have already reified into unified schema and automated. Thus, unpacking this prior
knowledge by breaking it down and making it conscious requires more cognitive effort.

On the other hand, for a problem-solver who lacks some of these schema, or who has not
automated them (or has automated non-normative syntactic meanings), the additional
information given in the expanded explanation may be helpful, or even essential, to
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understanding the “semantic” example. Including these additional details may make the
“semantic” justification accessible in a way that it was not before. This contrast between how an
“expert” and a “novice” might experience worked examples with additional explanatory
information is similar to patterns that have been found in the research literature, in which
additional explanatory information improved the performance of “novices” but slowed down
“experts” who did not need it (the “expertise reversal effect”; see e.g., Kalyuga, 2007; Kalyuga et
al., 1998). We note, however, that the cognitive load in the expanded “semantic” justification is
still quite high. We see this expanded “semantic” justification as a useful tool for unpacking
many of the different kinds of knowledge that are necessary for understanding the justification of
the short “semantic” example; it is not intended to be presented as a useful example of how this
might be taught to students.

We are left with the challenge of how to teach justification without overloading students’
working memory, even in cases where they have not yet acquired the necessary schema and
automated syntactic knowledge to parse a short “semantic” justification. One option is to break
down the complex network of interacting information into isolated elements which can be
learned separately, each with a lower cognitive load individually. Studies that have employed this
kind of approach in other contexts have shown that it can help students to learn complex
interdependent types of knowledge which would have a too high cognitive load if learned all at
once (see e.g., Pollock et al., 2002). Further research is necessary to determine the best methods.

Conclusion
In this paper we have described how syntactic reasoning could be defined for mathematical

contexts that do not use formal proof. Our definition of syntactic reasoning is distinct from mere
“symbol pushing.” It requires not just manipulation of symbols, but reasoning behind symbolic
manipulation that draws on specific syntactic meanings of the abstract symbolic system in which
the manipulations are being conducted. Thus, in our framework, semantic reasoning does not
have to be present for productive and authentic mathematical reasoning to occur.

We have illustrated how syntactic and semantic approaches to problems may impact the
cognitive load of particular tasks differently, particularly with respect to the existing schema of
the problem-solver. We deconstructed one particular algebra task in order to illustrate many of
the hidden ways in which semantic reasoning depends on syntactic reasoning as soon as algebra
is written symbolically. This “hidden” syntactic reasoning may relate to the difference in
cognitive load that “experts” and “novices” experience. “Experts” may have already automated
much of the syntactic reasoning that they use, whereas “novices” may have no awareness of the
role that syntactic reasoning plays. “Experts” may also be unaware of their own unconscious
automated processes, which may perpetuate implicit, rather than explicit, handling of syntactic
reasoning in curriculum and instruction. This suggests that to maximize rich understanding and
minimize cognitive load for all learners, more research is needed to understand how syntactic
reasoning can best be taught to learners with varied levels of prior knowledge, and to tease out
how students and instructors can leverage strategic selective attention to switch between
syntactic and semantic modes of reasoning.
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Reconceptualizing Algebraic Transformation as a Process of Substitution Equivalence

Claire Wladis Benjamin Sencindiver Kathleen Offenholley
CUNY CUNY CUNY

In this theoretical paper, we describe how algebraic transformation could be reconceptualized as
a process of substitution equivalence, and we discuss how this conceptualization affords
mathematical justification of transformation processes. In particular, we describe a model which
deconstructs the process of substitution equivalence into core subdomains which could be
learned serially and then re-integrated, in order to make them accessible to students with lower
prior knowledge in syntactic reasoning. Our aim in presenting this model is to start a
conversation about what the core components of knowledge might be in order for students to
reason about and justify algebraic transformation using symbolic representations.

Keywords: algebraic transformation; substitution equivalence; reasoning and justification;
syntactic reasoning; cognitive load

Algebraic transformation has been identified as a core task of algebra (e.g., Kieran, 2004),
yet students often struggle to transform algebraic expressions and equations correctly (e.g.,
Agoestanto et al., 2019; Dustin & Coleman, 2012). One reason may be that algebraic
transformation is often taught procedurally. Without the connection to syntactic reasoning,
students may not understand why certain transformations can be justified mathematically as
preserving equivalence. For example, in the case of equations, students often do not realize that
valid transformation produces an equation that has the same solution set as the original (e.g.,
Pilet, 2012, 2013). In this paper, we develop a theoretical model for how algebraic
transformation could be reconceptualized as a process of substitution equivalence. Our model
describes separate but related concepts necessary to use substitution equivalence to replace one
expression or equation with an equivalent one during the problem-solving process. This model is
the result of a decades-long design research experiment that we do not report on here; analysis of
those data is the focus of other ongoing research (e.g., Wladis et al, 2022a, 2022b, 2022c, 2022d,
2022e). Instead, in this paper, our goal is to describe the theoretical model and its relationship to
existing theory, including a discussion of its affordances in helping us to understand how learners
might reason about and justify algebraic transformation.

Theoretical Framework: Generalizing Computational Versus Relational Views of the
Equals Sign to Equivalence Relationships Preserved by Algebraic Transformation

Research on the equals sign distinguishes between whether students have a computational
(the equals sign is a cue to compute what is on the left and put the answer on the right, which can
lead to errors such as ) or relational (the equals sign represents a2 + 4 = 6 + 2 = 8
relationship between two equal quantities) conception of the equals sign (e.g., Stephens et al.,
2013). We could similarly generalize this beyond the equals sign to any type of equivalence such
as equivalent algebraic expressions or equations. For example, a computational view of
equivalent algebraic expressions (equations) would describe a learner who sees transformation
as a command to perform some sort of procedure on the expression (equation) to produce a
resulting expression (equation), without realizing that there is an equivalence relationship
between the original and resulting expressions (equations) (e.g., contributing to such errors as

“cancelling” the in the top and bottom of the expression (e.g., Cunningham & Yacone,2𝑥 6𝑥2−2𝑥
2𝑥
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2013) or to believing that could be interpreted to sometimes mean and6𝑥2 − 2𝑥 6(𝑥2) − 2𝑥
sometimes mean , even though the two expressions do not produce equal outputs for(6𝑥)2 − 2𝑥
most inputs of ). A relational view of equivalence of expression (equations) would view𝑥
transformation as a way of replacing one expression (equation) with an equivalent one: thus,
transformations are only permitted if they preserve equivalence (i.e., produce an equivalent
expression [equation]). Further, reasoning about or justifying which transformations are allowed
requires determining which preserve equivalence. The relational conception allows for
justification of computation, whereas a purely computational conception does not. In particular,
because the relational conception requires the notion of replacing one expression (equation) with
an equivalent one, this is an example of substitution equivalence. Thus, algebraic transformation
could be reconceptualized as a process of substitution equivalence, which could be viewed as a
relational conception of algebraic transformation. This conceptualization then also links the
action of transformation directly to its justification: namely, whether it is equivalence-preserving.

A Motivating Example
In order to provide a concrete example of how algebraic transformation can be

conceptualized as a process of substitution equivalence, we choose one common algebraic task:

Example 1. Simplify completely.6𝑥2−2𝑥
2𝑥

We have chosen this particular task because student errors from employing a computational
rather than relational view of transformation are common (e.g., invalid “cancelling” of ); thus2𝑥
it is an illustration of some affordances of taking a relational approach. Here is one possible way
that substitution equivalence could be used to begin to simplify this expression:
Step 1  6𝑥2−2𝑥

2𝑥 = 6𝑥2

2𝑥 − 2
2 has the form (where , so we can use the property

6𝑥2−2𝑥
2𝑥

𝑎−𝑏
𝑐 𝑐≠0) 𝑎−𝑏

𝑐 = 𝑎
𝑐 − 𝑏

𝑐

(where ) by substituting , and into the property, which𝑐≠0 𝑎 = 6𝑥2 𝑏 = 2𝑥 𝑐 = 2𝑥

gives us .
6𝑥2−2𝑥

2𝑥 = 6𝑥2

2𝑥 − 2𝑥
2𝑥

Step 2  = 2𝑥( )(3𝑥)
2𝑥 − 2𝑥

2𝑥  Because of the generalized associative/commutative property of multiplication, we
can perform multiplication using any order or grouping (as long as only multiplication

is involved). So .6𝑥2 = 6⋅ 𝑥⋅𝑥( ) = 2𝑥( )⋅(3𝑥)
Figure 1. Example substitution equivalence justification for solution to Example 1

Components of a Relational View of Transformation
If a learner has no experience with reasoning syntactically, the details in steps 1 and 2 above

would produce a cognitive load that is too high for a learner to understand or reproduce this
solution. However, the explanations in steps 1 and 2 can be broken down in to more discrete
knowledge elements (which we call subdomains) that could each potentially be learned
separately, and then reintegrated later. By identifying these elements separately, we serve two
goals: 1) this may allow us to better diagnose which specific conceptions are the cause of
observed difficulties; and 2) this may allow us to teach substitution equivalence in smaller
“chunks”, limiting the cognitive load placed on learners. In Figure 2 we illustrate the model; we
begin by describing each subdomain individually.
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Figure 2. Model of Algebraic Transformation as Substitution Equivalence

Substitution Equivalence

To understand why can replace in Step 1 above, a student must understand6𝑥2

2𝑥 − 2𝑥
2𝑥

6𝑥2−2𝑥
2𝑥

that any expression can be replaced with an equivalent one during the problem-solving process.
Similarly, they must understand that if , and , then and can be𝑎 = 6𝑥2 𝑏 = 2𝑥 𝑐 = 2𝑥 𝑎,  𝑏 𝑐
replaced with , and , respectively, in the property , and the property will6𝑥2 2𝑥 2𝑥 𝑎−𝑏

𝑐 = 𝑎
𝑐 − 𝑏

𝑐
still be true because this is substitution of one subexpression for an equivalent one. During Step
2, they must also understand that means that the subexpression6𝑥2 = 6⋅ 𝑥⋅𝑥( ) = 2𝑥( )⋅(3𝑥) 6𝑥2

can be replaced by the equivalent subexpression , and the resulting expression will be2𝑥( )⋅(3𝑥)
equivalent to the original one. All three of these processes are facets of the concept of
substitution equivalence: that one mathematical object can be replaced with another during the
problem-solving process if and only if those two objects are equivalent (Wladis et al, 2022a).

Equivalence: Having a conception of substitution equivalence requires some underlying
definition of equivalence, which in this case could simply be a stipulated insertion equivalence
definition of expressions (Zwetzschler & Prediger, 2014, e.g., two arithmetic expressions are
equivalent if they produce the same result for every possible combination of variable values). Or
it could be a different definition of equivalence (e.g., a generalized equivalence relation
definition). Regardless of the definition, in order to use substitution equivalence, a student has to
recognize some key characteristics of the concept of equivalence more generally: that
equivalence is a stable relationship between two specific objects, based on some well-defined
criteria (Wladis et al, 2022a, 2022b). In other words, equivalence is a relationship (not a
computation) between two objects (it requires two things to be compared) that is well-defined (it
requires an unambiguous set of criteria for determining whether those two things are equivalent),
and finally: two things are either equivalent or not, and they stay that way (two objects are not
equivalent sometimes and not others; they don’t “become” equivalent with
transformation—rather, transformation reveals a pre-existing equivalence relationship).

Substitution: Using substitution equivalence also requires a more general definition of
substitution, in which it is conceptualized as the replacement of one unified subexpression with
an equivalent unified subexpression. For example, if a student only conceptualizes “plugging a
number in” for a letter as substitution, it becomes difficult to talk about replacing with6𝑥2

in the expression to generate as a process of substitution equivalence.2𝑥( )⋅(3𝑥) 6𝑥2

2𝑥
2𝑥( )⋅(3𝑥) 

2𝑥
Thus, the domain of substitution equivalence describes the extent a learner can conceptualize

equivalence as a stable relationship between two objects that meet well-defined criteria, and the
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extent to which the learner understands that one object can be replaced with another during the
problem-solving process if and only if the two are equivalent, based on a stipulated equivalence
relationship. This is more than being able to execute more complex substitutions correctly; it
includes the ability to justify transformations because they preserve equivalence, by describing
the particular equivalence relationship that is preserved by that transformation.

Syntactic Structure
Understanding the concept of substitution equivalence alone is not enough to have a

relational view of transformations: for example, in Steps 1 and 2 in Figure 2, in order to perform
substitution correctly, it is necessary to identify the correct unified subexpressions that can be
substituted out or in. Another skill that is necessary to tackle the task above is the ability to parse

the intended meaning of the syntax by recognizing which substrings of the expression6𝑥2−2𝑥
2𝑥

can be treated as subexpressions, or which substrings of the expression could have brackets
placed around them without changing the syntactic meaning of the expression (i.e., the
expression would still represent the same operations on the same objects in the same order). In
this example, this would mean being able to recognize that this expression has the following

syntactic meaning as it is currently written: , and that and are both6(𝑥)2( )− 2𝑥( )
2𝑥( ) 6𝑥2 𝑥2

subexpressions, but is not.6𝑥
Just as substitution equivalence can be seen as a more structural than computational approach

(i.e., as a relational versus a computational view), understanding syntactic structure can also be
seen as a shift from thinking computationally to thinking structurally. This is related to what has
been observed by Sfard (1991) and others (Asiala et al., 1997 Dienes, 1969, Dubinsky, 1991,

Gray & Tall, 1994), when they observe that an expression like can be viewed as a process6𝑥2−2𝑥
2𝑥

of squaring , then multiplying 6 by that result, then separately multiplying 2 by , then taking𝑥 𝑥
that result away from the first result, then dividing that result by the result obtained after
multiplying 2 by again. Or, it can also be seen as an object that is a reification/encapsulation of𝑥
a process: the anticipated final result of the process described above (whether or not one has
actually carried that process out). We focus on this slightly differently by focusing on how and
whether a learner is able to identify subexpressions as objects. This requires more than simply a
reification of the process of computation, but rather, a reification of the process of the order of
operations: in the computational view, a learner would conceptualize the process of the order of
operations as telling us that x must first be squared, and then 6 must be multiplied afterwards by
the result; in contrast, in the structural view, a learner would conceptualize the order of
operations as being reified into a fixed structure where is conceptualized as a unified𝑥2

subobject (i.e., a subexpression) which is a part of the larger expression .6𝑥2

We call the domain that includes knowledge of how to parse algebraic symbolic
representations and to identify subexpressions syntactic structure. This includes not just the
ability to normatively interpret the symbols, but also the ability to link that interpretation to a
normative justification (i.e., by explaining how the order of operations and other stipulated
conventions dictate which substrings are subexpressions). Our definition of syntactic structure is
closely related to the notion of surface structure as defined by Kieran (1989) and others in
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linguistics (e.g., Chomsky, 1966)1, and is also related to Malle’s Termstrukturen, or “expression
structuring” (1993). We discuss this in detail elsewhere (Wladis et al, 2022c).

Using Mathematical Properties, or “Form Mapping”
Substitution equivalence and syntactic structure alone are not enough to justify the

transformation work in Figure 1. To use the property (when ) to determine𝑎−𝑏
𝑐 = 𝑎

𝑐 − 𝑏
𝑐 𝑐≠0

that is equal to in Step 1, a learner must do several things. First, they must6𝑥2

2𝑥 − 2𝑥
2𝑥

6𝑥2−2𝑥
2𝑥

map one-to-one each subexpression in to each variable in the “form” so every6𝑥2−2𝑥
2𝑥

𝑎−𝑏
𝑐

symbol in gets mapped to a symbol with the same syntactic meaning in , and the6𝑥2−2𝑥
2𝑥

𝑎−𝑏
𝑐

mapping preserves the relative order of all the subexpressions and symbols in the expression.
Second, learners must use the form to map the same subexpression to the same variable𝑎

𝑐 − 𝑏
𝑐

in as they did in . Thus, the using properties (or form mapping) domain describes𝑎
𝑐 − 𝑏

𝑐
𝑎−𝑏

𝑐
the extent to which a learner can construct one-to-one mappings from a symbolic representation
to a mathematical property so that every symbol is mapped to a symbol (or syntactic convention)
with the same meaning in the property, and each variable in the property is mapped to a
subexpression (with the same variables mapped to the same or equivalent subexpressions).

As with the other two subdomains, this also involves a shift from a process to object view:
the student must shift from conceptualizing the use of properties as plugging in one particular set
of values (or variables) into the property, to thinking of the property itself as a canonical
representation of a particular existing structure in the expression which they are attempting to
transform. The form mapping required to use the property on more complex expressions requires
that the student be able to think structurally about subexpressions as objects in the expression
that they are trying to transform, as well as the relationship between these various sub-objects,
and whether this is the same relationship as the relationship between various variables in the
property. They must also have a relational view of equivalence, as the property must be
conceptualized as a statement about the relationship between the original expression and the
transformed result. A student might also reify the process of substitution into the particular form
mapping object itself. There are many different objects which the student could conceptualize
(the form mapping itself; the property as a canonical representation of structural relationships,
etc.); the key difference is that the student is doing more than simply “moving around” symbols
in the expression in an attempt to produce a pattern that “looks like” the property.

This domain includes not just the ability to use properties to correctly transform one
expression or equation into an equivalent one, but the ability to reason or justify how a particular
structural mapping of subexpressions and symbols in the expression/equation to various
variables and symbols in the property allows us to make an argument about the equivalence of
the original expression/equation and the resulting expression equation.

Learning subdomains serially
The subdomains of substitution equivalence, syntactic structure, and using properties are all

deeply interconnected, and are all necessary in order to conceptualize algebraic transformation as
substitution equivalence. But they need not be learned all at once; the cognitive load of such a

1 Our use of the term syntactic structure should not be confused with Chomsky’s use, which is different.
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task is likely to be too demanding for learners with limited prior experience with syntactic
reasoning. Thus, as a brief illustration, we demonstrate some ways in which aspects of these
domains might initially be learned separately, or serially (and then later re-combined). In other
contexts, this approach has been successful at improving student learning of complex ideas by
reducing cognitive load (e.g., Pollock et al., 2002).

Syntactic structure and subexpressions
There are many ways that we could ask students questions that only draw on their knowledge

of syntactic structure, and not require other types of complex and interrelated syntactic reasoning
skills. For example, consider the following question, which limits the task not only to just
identifying syntactic meanings, but also to identifying only one syntactic meaning at a time,
significantly reducing the number of elements which must be held in working memory: “In the

expression , what is being squared? Use the order of operations to justify your choice.” In6𝑥2−2𝑥
2𝑥

other research, we have found that many college students identify as the base of the exponent6𝑥
instead of (Wladis et al, 2022c), often because they have extracted their notions of which𝑥
subexpressions “look right” based on experience, rather than reifying them from the process of
the order of operations (even when they can recite the order of operations correctly, or use it to
calculate correctly with numbers). This suggests that it may be essential to tackle syntactic
structure individually, before proceeding to other syntactic reasoning skills which may be more
complex and interrelated, and all of which depend upon a student first being able to identify the
“right” subexpressions in an expression to be transformed.

It may also be necessary to ask students whether there is more than one right answer to this
question. In our research, we have encountered students at many levels who have explained that
an expression can have multiple correct meanings, where different meanings provided by the
student are not equivalent (Wladis et al, 2022c). Thus, another component of this subdomain is
discussing with students that all expressions must be well-defined, with one unambiguous
meaning. Students may not realize that this is a core tenet of mathematics.

We note that determining whether a student has an object or a pseudo-object conception of
the order of operations may be difficult to determine when looking only at “standard” problem
contexts. Students have created pseudo-object mental schema precisely because they appear to
mimic the subexpression structurings of expressions and equations that “work” during situations
seen during instruction (e.g., Aly, 2022; Erlwanger, 1973). Often it only becomes obvious that
students’ justifications for choosing certain subexpressions are not mathematically valid when
students are given more “non-standard” problems, or when students are asked directly how their
choice of sub-expression relates to the order of operations (in our research, a common response,
even from students in higher-level courses such as calculus was “it doesn’t relate to the order of
operations” [Wladis et al, 2022c]). Giving students explicit instruction in syntactic structure may
act to mitigate this issue that has been observed elsewhere in the literature.

Substitution Equivalence
As with the syntactic structure subdomain, the substitution equivalence domain (and by

extension equivalence subdomain) can be thought of as an element which could be learned
separately, to reduce the cognitive load of learning syntactic reasoning all at once. For example,
in this particular problem, it might be important to find out if a learner understands that replacing

with during step 1 is a process of replacing an expression with another6𝑥2−2𝑥
2𝑥

6𝑥2

2𝑥 − 2𝑥
2𝑥
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equivalent expression. Some students may have a computational rather than relational view of

equivalence of expressions or equations, where they see as the result of “doing6𝑥2

2𝑥 − 2𝑥
2𝑥

something” directly to and do not see an equivalence relationship between the two6𝑥2−2𝑥
2𝑥

expressions (or may not even conceptualize equivalence as a relationship between two things,
but rather as a process of computation) (Wladis et al, 2022a, 2022b). This can be seen
particularly clearly when we look at the substitution equivalence that the student needs to
recognize in order to perform step 2. We could, for example, limit the cognitive load of that step
almost exclusively to the process of substitution equivalence if we asked: “Suppose that

. Use this fact to replace the expression with an equivalent6𝑥2 = 2𝑥( )⋅(3𝑥) 6𝑥2

2𝑥 − 2𝑥
2𝑥

expression, and to explain why the new expression is equivalent to .” As long as a6𝑥2

2𝑥 − 2𝑥
2𝑥

student has enough understanding of syntactic structure to know that the numerator of a fraction
is always a subexpression, and they understand the notion of substitution equivalence, this

information should be sufficient for them to be able to replace with6𝑥2

2𝑥 − 2𝑥
2𝑥

2𝑥( )(3𝑥)
2𝑥 − 2𝑥

2𝑥
and to explain why the two expressions are equivalent. This can later be combined with more
robust knowledge of identifying subexpressions to combine the two domains of substitution
equivalence and syntactic structure, after students have had opportunities to master key
conceptions in each subdomain separately.

Using Properties/Form Mapping
As with the syntactic structure and substitution equivalence domains, the using

properties/form mapping domain can also be thought of as an element that could be learned
separately, in order to reduce the cognitive load of learning syntactic reasoning all at once. For
example, in this particular problem a student could be asked: “Let , and𝑎 = 6𝑥2 𝑏 = 2𝑥 𝑐 = 2𝑥

. Then use the property (where ) to explain why .” In𝑎−𝑏
𝑐 = 𝑎

𝑐 − 𝑏
𝑐 𝑐≠0 6𝑥2−2𝑥

2𝑥 = 6𝑥2

2𝑥 − 2𝑥
2𝑥

this example, students need to have a basic idea of substitution equivalence, but they do not need

to be able to identify the subexpressions of , as this has already been done for them. Thus,6𝑥2−2𝑥
2𝑥

a task like this could be used to allow students to practice their knowledge in the domain of using
properties, without yet requiring substantial knowledge of syntactic structure, and thus reducing
the learner’s cognitive load by allowing them to focus on fewer domains at a time.

After a leaner has had the opportunity to master substitution equivalence and syntactic
structure, these separate conceptions that have been learned serially could be reintegrated with
the using properties domain to complete questions like Example 1 without being given the
specific values for a, b and c. Then, once the conceptions necessary to engage with these types of
problems have been mastered, students could be given questions where they need to choose the
particular property that could be fitted to the structure of a given expression (or equation); after
that, they could be asked to select the property which serves a particular goal (e.g., producing an
equivalent expression without parentheses, or with a particular form, etc.); and finally, after
mastering each of these serialized tasks, they could progress to being asked to plan out the usage
of a sequence of properties necessary to accomplish some larger goal.

Conclusion
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In this theoretical paper we have aimed to identify and explore some necessary (but not
necessarily sufficient) types of knowledge that are essential for students to be able to transform
algebraic expressions and equations with understanding (by which we mean, to be able to reason
about and justify these transformations in mathematically valid ways). We have framed this
around the lens of substitution equivalence, with the aim of deconstructing complex knowledge
structures into simpler component subdomains which could be learned serially before being
reintegrated, to allow students with low prior knowledge in syntactic reasoning to build up this
knowledge in ways that do not overload working memory. Our hope in presenting this model is
to start a conversation about how we could more explicitly address reasoning and justification
when teaching, and assessing learners’ knowledge in, algebraic transformation.

References
Agoestanto, A., Sukestiyarno, Y. L., Isnarto, Rochmad, & Lestari, M. D. (2019). The position

and causes of students errors in algebraic thinking based on cognitive style. International
Journal of Instruction, 12(1), 1431-1444.
https://doi.org/https://files.eric.ed.gov/fulltext/EJ1201364.pdf

Aly, G. (2022). Benny, Barbara, and the Ethics of EdTech. Journal of Humanistic Mathematics,
12(2), 98-127.

Arán Filippetti, V. (2017). A structural equation modeling of executive functions, IQ and
mathematical skills in primary students: Differential effects on number production, mental
calculus and arithmetical problems. Child Neuropsychology, 23(7), 864-888.
https://doi.org/10.1080/09297049.2016.1199665

Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A
framework for research and curriculum development in undergraduate mathematics
education. MAA Notes, 37-54.

Attewell, P., Lavin, D., Domina, T., & Levey, T. (2006). New evidence on college remediation.
Journal of Higher Education, 77(5), 886-924. https://doi.org/10.1353/jhe.2006.0037

Bailey, T., Jeong, D. W., & Cho, S. W. (2010). Student progression through developmental
sequences in community colleges. Community College Research Center, Columbia
University, 45

Booth, L. R. (1989). A question of structure or a reaction to: “The early learning of algebra: A
structural perspective. In S. Wagner, & C. Kieran (Eds.), Research issues in the learning and
teaching of algebra: The research agenda for mathematics education, volume 4 (4th ed ed.,
pp. 56-59) The National Council of Teachers of Mathematics.
https://doi.org/10.4324/9781315044378-5

Brathwaite, J., Fay, M. P., & Moussa, A. (2020). Improving developmental and college-level
mathematics: Prominent reforms and the need to address equity. (CCRC Working Paper No.
124). Community College Research Center. Retrieved from
https://files.eric.ed.gov/fulltext/ED609226.pdf

Broadbent, D. E. (1958). Perception and communication. New York: Oxford University Press.
Campos, I. S., Almeida, L. S., Ferreira, A. I., Martinez, L. F., & Ramalho, G. (2013). Cognitive

processes and math performance: A study with children at third grade of basic education.
European Journal of Psychology of Education, 28(2), 421-436.
https://doi.org/10.1007/s10212-012-0121-x

Carlson, M., & Oehrtman, M. (2005). Research sampler 9: Key aspects of knowing and learning
the concept of function. Mathematical Association of America.

25th Annual Conference on Research in Undergraduate Mathematics Education 858

https://doi.org/
https://files.eric.ed.gov/fulltext/EJ1201364.pdf
https://doi.org/10.1080/09297049.2016.1199665
https://doi.org/10.1353/jhe.2006.0037
https://doi.org/10.4324/9781315044378-5
https://files.eric.ed.gov/fulltext/ED609226.pdf
https://doi.org/10.1007/s10212-012-0121-x


Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept assessment: A tool
for assessing students’ reasoning abilities and understandings. Cognition and Instruction,
28(2), 113-145. https://doi.org/10.1080/07370001003676587

Chomsky, N. (2013). 7. the logical basis of linguistic theory. In F. Kiefer, & P. van Sterkenburg
(Eds.), Eight decades of general linguistics (pp. 123-236) Brill.
https://doi.org/10.1163/9789004242050_009

Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., Tolias, G., &
Vidakovic, D. (1997). Constructing a schema: The chase of the chain rule? The Journal of
Mathematical Behavior, 16(4), 345-364.

Crisp, G., Taggart, A., & Nora, A. (2015). Undergraduate latina/o students: A systematic review
of research identifying factors contributing to academic success outcomes. Review of
Educational Research, 85(2), 249-274. https://doi.org/10.3102/0034654314551064

Cunningham, R.F., & Yacone. E. (2013). Algebra textbooks' and teachers' methods: Simplifying
rational expressions. International Journal of Research in Educational Methodology, 4(1),
457-468.

Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for
mathematics curriculum. Journal of Mathematical Behavior, 15(4), 375-402.

Desimone, L. M., & Long, D. (2010). Teacher effects and the achievement gap: Do teacher and
teaching quality influence the achievement gap between black and white and high- and
low-SES students in the early grades? Teachers College Record, 112(12), 3024-3073.

Dienes, Z. P. (1960). Building up mathematics. London: Hutchinson Educational.
Dienes, Z. P. (1969). Building up mathematics. Hutchinson Educational.
Dubinsky, E. (1991). Constructive aspects of reflective abstraction in advanced mathematics. In

L. P. Steffe (Ed.), Epistemological foundations of mathematical experience (pp. 160-202).
New York, NY: Springer. https://doi.org/10.1007/978-1-4612-3178-3_9

Dustin, D. L., & Coleman, M. (2012). Tapering timbers: Finding the volume of conical frustums.
Mathematics Teacher, 105(7), 500-505.

Edwards, B. S., & Ward, M. B. (2004). Surprises from mathematics education research: Student
(mis)use of mathematical definitions. The American Mathematical Monthly, 111(5),
411-424. https://doi.org/10.1080/00029890.2004.11920092

Engageny (2015). EUREKA MATH, New York state common core mathematics curriculum.
Retrieved from: https://www.engageny.org/common-core-curriculum

Erlwanger, S. H. (1973). Benny's conception of rules and answers in IPI mathematics. Journal of
Children's Mathematical Behavior, 1(2), 7-26.

Fischer, E. M. J. (2007). Settling into campus life: Differences by race/ethnicity in college
involvement and outcomes. The Journal of Higher Education, 78(2), 125-161.
https://doi.org/10.1080/00221546.2007.11780871

Gold, R. (1958). Roles in sociological field observations. Social Forces, 36(3), 217-223.
https://doi.org/10.2307/2573808

Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A" proceptual" view of
simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116-140.
https://doi.org/10.2307/749505

Haberman, M. (1991). The pedagogy of poverty versus good teaching. Phi Delta Kappan, 73(4),
290-294.

Hoch, M., & Dreyfus, T. (2004). Structure sense in high school algebra: The effect of brackets.
In M. J. Høines, & A. B. Fuglestad (Eds.), Proceedings of the 28th conference of the

25th Annual Conference on Research in Undergraduate Mathematics Education 859

https://doi.org/10.1080/07370001003676587
https://doi.org/10.1163/9789004242050_009
https://doi.org/10.3102/0034654314551064
https://doi.org/10.1007/978-1-4612-3178-3_9
https://doi.org/10.1080/00029890.2004.11920092
https://www.engageny.org/common-core-curriculum
https://doi.org/10.1080/00221546.2007.11780871
https://doi.org/10.2307/2573808
https://doi.org/10.2307/749505


international group for the psychology of mathematics education (3rd ed., pp. 49-56).
Bergen, Norway: PME.

Hoch, M., & Dreyfus, T. (2005). Students’ difficulties with applying a familiar formula in an
unfamiliar context. In H. L. Chick, & J. L. Vincent (Eds.), Proceedings of the 29th
conference of the international group for the psychology of mathematics education (3rd ed.,
pp. 145-152). Melbourne, Australia: PME.

Hoch, M. (2003). Structure sense. Paper presented at the Paper Presented at the Third
Conference for European Research in Mathematics Education, Bellaria, Italy.

Hoch, M., & Dreyfus, T. (2006). Structure sense versus manipulation skills: An unexpected
result. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings of the
30th conference of the international group for the psychology of mathematics education
(Vol. 3 ed., pp. 305-312). Czech Republic: Charles University Prague.

Hockett, C. F. (1958). A course in modern linguistics. Language Learning, 8(3-4), 73-75.
https://doi.org/10.1111/j.1467-1770.1958.tb00870.x

Kaput, J. J. (1979). Mathematics and learning: Roots of epistemological status. In J. Clement, &
J. Lochhead (Eds.), Cognitive process instruction (pp. 289-303). Philadelphia, PA.: Franklin
Institute Press.

Kaput, J. J. (1998). Transforming algebra from an engine of inequity to an engine of
mathematical power by "algebrafying" the K-12 curriculum. Paper presented at The Nature
and Role of Algebra in the K-14 Curriculum: Proceedings of a National Symposium, 25-26.

Kaput, J. J. (1991). Notations and representations as mediators of constructive processes. In E
von Glasersfeld (Ed.), Radical constructivism in mathematics education (Kluwer Academic
Publishers ed., pp. 53-74). https://doi.org/10.1007/0-306-47201-5_3

Kieran, C. (1989). The early learning of algebra: A structural perspective. In S. Wagner, & C.
Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 33-56). Reston,
VA: National Council of Teachers of Mathematics.

Kieran, C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick,
& M. Kendal (Eds.), The future of the teaching and learning of algebra: The 12th ICMI
study (pp. 23-33). Springer.

Kirshner, D., & Awtry, T. (2004). Visual salience of algebraic transformations. Journal for
Research in Mathematics Education, 35(4), 224-257. https://doi.org/10.2307/30034809

Knuth, E. J. (2000). Student understanding of the cartesian connection: An exploratory study.
Journal for Research in Mathematics Education, 31(4), 500-507.
https://doi.org/10.2307/749655

Knuth, E., Stephens, A., McNeil, N., & Alibali, M. (2006). Does understanding the equal sign
matter? evidence from solving equations. Journal for Research in Mathematics Education,
37(4), 297-312.

Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and
numerical contexts. Educational Studies in Mathematics, 40(2), 173-196.

Malle, G. (1993). Didakitsche probleme der elementaren algebra. Vieweg.
https://doi.org/10.1007/978-3-322-89561-5

Matz, M. (1982). Towards a process model for high school algebra errors. Intelligent tutoring
systems (pp. 25-50). London: Academic Press.

Mejia, M. C., Rodriguez, O., & Johnson, H. (2019). What happens when colleges broaden access
to transfer-level courses? evidence from California’s community colleges. Public Policy
Institute of California.

25th Annual Conference on Research in Undergraduate Mathematics Education 860

https://doi.org/10.1111/j.1467-1770.1958.tb00870.x
https://doi.org/10.1007/0-306-47201-5_3
https://doi.org/10.2307/30034809
https://doi.org/10.2307/749655
https://doi.org/10.1007/978-3-322-89561-5


Morgan, C., & Watson, A. (2002). The interpretative nature of teachers' assessment of students'
mathematics: Issues for equity. Journal for Research in Mathematics Education, 33, 78-110.
doi:10.2307/749645

Moschkovich, J., Schoenfeld, A. H., & Arcavi, A. (1993). Aspects of understanding: On multiple
perspectives and representaitons of linear relations and connections among them. In T. A.
Romberg, E. Fennema & T. P. Carpenter (Eds.), Integrating research on the graphical
representation of functions (pp. 69-100) Lawrence Erlbaum Associates.

Novotná, J., & Hoch, M. (2008). How structure sense for algebraic expressions or equations is
related to structure sense for abstract algebra. Mathematics Education Research Journal,
20(2), 93-104.

Novotná, J., Stehlíková, N., & Hoch, M. (2006). Structure sense for university algebra. In J.
Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings 30th Conference of
the international group for the psychology of mathematics education (4th ed., pp. 249-259).
Prague: PME.

Oehrtman, M., Carlson, M., & Thompson, P. W. (2008). Foundational reasoning abilities that
promote coherence in students’ function understanding. In M. P. Carlson, & C. Rasmussen
(Eds.), Making the connection: Research and teaching in undergraduate mathematics
education (pp. 27-42) Mathematical Association of America.
https://doi.org/10.5948/UPO9780883859759.004

Pearn, C., & Stephens, M. (2004, June). Why you have to probe to discover what year 8 students
really think about fractions. In Mathematics education for the third millennium: Towards
2010. Proceedings of the 27th Annual Conference of the Mathematics Education Research
Group of Australasia. Townsville, Australia (pp. 27-30).

Pilet, J. (2012). Parcours d'enseignement différencié appuyés sur un diagnostic en algèbre
élémentaire à la fin de la scolarité obligatoire: modélisation, implémentation dans une
plateforme en ligne et évaluation (Doctoral dissertation, Université Paris-Diderot-Paris VII).

Pilet, J. (2013). Implicit learning in the teaching of algebra: Designing a task to address the
equivalence of expressions. In Proceedings of the 8th congress of the European Society for
Research in mathematics education (pp. 510-519). Ankara, Turkey: Middle East Technical
University and ERME.

Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and
Instruction, 12, 61-86. https://doi.org/10.1016/S0959-4752(01)00016-0

Prediger, S., & Zwetzschler, L. (2013). Topic-specific design research with a focus on learning
processes: The case of understanding algebraic equivalence in grade 8. In T Plomp, & N
Nieveen (Eds.), Educational design research: Illustrative cases (pp. 407-424) SLO.

Sfard, A. (1991). On the dual nature of mathematical conceptions. Educational Studies in
Mathematics, 22(1), 1-36. https://doi.org/10.1007/BF00302715

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification-the
case of function. In G. Harel, & E. Dubinsky (Eds.), The concept of function: Aspects of
epistemology and pedagogy (Vol. 25 ed., pp. 59-84) Mathematical Association of America.

Sfard, A. (1995). The development of algebra: Confronting historical and psychological
perspectives. The Journal of Mathematical Behavior, 14(1), 15-39.
https://doi.org/10.1016/0732-3123(95)90022-5

Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective.
Journal for Research in Mathematics Education, 26(2), 114-145.
https://doi.org/10.2307/749205

25th Annual Conference on Research in Undergraduate Mathematics Education 861

https://doi.org/10.5948/UPO9780883859759.004
https://doi.org/10.1016/S0959-4752(01)00016-0
https://doi.org/10.1007/BF00302715
https://doi.org/10.1016/0732-3123(95)90022-5
https://doi.org/10.2307/749205


Simon, M., Saldanha, L., McClintock, E., Akar, G. K., Watanabe, T., & Zembat, I. O. (2010). A
developing approach to studying students’ learning through their mathematical activity,
28(1), 70-112. https://doi.org/10.1080/07370000903430566

Steffe, L. P., & Kieren, T. (1994). Radical constructivism and mathematics education. Journal for
Research in Mathematics Education, 25(6), 711-733.

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying
principles and essential elements. In R Lesh & A E Kelly (Ed.), Research design in
mathematics and science education (pp. 267–307). Hillsdale, NJ: Erlbaum.

Stephens, A. C., Knuth, E. J., Blanton, M. L., Isler, I., Gardiner, A. M., & Marum, T. (2013).
Equation structure and the meaning of the equal sign: The impact of task selection in
eliciting elementary students’ understandings. The Journal of Mathematical Behavior, 32(2),
173-182. https://doi.org/10.1016/j.jmathb.2013.02.001

Stigler, J. W., Givvin, K. B., & Thompson, B. J. (2010). What community college developmental
mathematics students understand about mathematics. MathAMATYC Educator, 1(3), 4-16.

Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (1999). What is the object of the
encapsulation of a process? The Journal of Mathematical Behavior, 18(2), 223-241.
https://doi.org/10.1016/S0732-3123(99)00029-2

Thompson, P. W. (1989). A cognitive model of quantity-based algebraic reasoning. Paper
presented at the Annual Meeting of the American Educational Research Association.

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the
foundation of mathematics education. Paper presented at the Annual Meeting of the
International Group for the Psychology of Mathematics Education.

Thompson, P. W. (2013). In the absence of meaning... In K Leatham (Ed.), Vital directions for
mathematics education research (pp. 57-90). New York, NY: Springer.
https://doi.org/10.1007/978-1-4614-6977-3_4

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational
ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics
education (1st ed., pp. 421-456) National Council of Teachers of Mathematics.

Towers, J., & Davis, B. (2002). Structuring occasions. Educational Studies in Mathematics,
49(3), 313-340. https://doi.org/10.1023/A:1020245320040

Treisman, A. (1964). Selective attention in man. British Medical Bulletin, 20(1), 12-16.
https://doi.org/10.1093/oxfordjournals.bmb.a070274

Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies
in Mathematics, 56(2-3), 209-234. https://doi.org/10.1023/B:EDUC.0000040410.57253.a1

Wladis, C., Sencindiver, B. and Offenholley, K. (2022a). What Do We Want Students to Learn
About Equivalence Beyond Equality? Prescriptive and Descriptive “Grundvorstellungen” of
Equivalence.

Wladis, C., Sencindiver, B. and Offenholley, K. (2022b). Analyzing students’ definitions of
generalized equivalence beyond equality: How do students conceptualize equivalent
equations?

Wladis, C., Sencindiver, B. and Offenholley, K. (2022c). A Framework for Analyzing Student
Thinking around Mathematical Syntax: Chunking, Subexpressions, and an Object View of
the Order of Operations.

Wladis, C., Sencindiver, B., Offenholley, K., Jaffe, E., & Taton, J. (2022d). A Model of How
Student Definitions of Substitution and Equivalence May Relate to Their Conceptualizations

25th Annual Conference on Research in Undergraduate Mathematics Education 862

https://doi.org/10.1080/07370000903430566
https://doi.org/10.1016/j.jmathb.2013.02.001
https://doi.org/10.1016/S0732-3123(99)00029-2
https://doi.org/10.1007/978-1-4614-6977-3_4
https://doi.org/10.1023/A:1020245320040
https://doi.org/10.1093/oxfordjournals.bmb.a070274
https://doi.org/10.1023/B:EDUC.0000040410.57253.a1


of Algebraic Transformation. Proceedings for the 12th Congress of the European Society for
Research in Mathematics Education (CERME12), Bolzano, Italy: ERME.

Wladis, C., Sencindiver, B., Offenholley, K., Jaffe, E., & Taton, J. (2022e). Modeling Student
Definitions of Equivalence: Operational vs. Structural Views and Extracted vs. Stipulated
Definitions. In Karunakaran, S. S., & Higgins, A. (Eds.). Proceedings for the 24th Annual
Conference on Research in Undergraduate Mathematics Education, (pp. 708-715). Boston,
MA.

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in
mathematics. Journal for Research in Mathematics Education, 27(4), 458-477.
https://doi.org/10.5951/jresematheduc.27.4.0458

Zwetzschler, L., & Prediger, S. (2013). Conceptual challenges for understanding the equivalence
of expressions – A case study In B. Ubuz, C. Haser & M. A. Mariotti (Eds.), Proceedings of
the 8th Congress of the Europea Society for Research in Mathematics Education (CERME 8
in antalya 2013) (Ankara, METU University ed., pp. 558-567)

25th Annual Conference on Research in Undergraduate Mathematics Education 863

https://doi.org/10.5951/jresematheduc.27.4.0458


Professional Obligations in Mathematics Courses for Teachers
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This theoretical contribution draws on earlier work by Herbst and Chazan (2012; also Chazan et
al., 2016) in which they describe the position of a mathematics teacher in an educational
institution as accountable to stakeholders who issue four types of professional obligations. We
propose an application and adaptation of that framework intended to address the case of
instructors who teach undergraduate mathematics courses to future teachers. Considerations of
not only the academic but also the professional ends of these courses are key in our application
of the theory of obligations.

Keywords: instruction, professional obligations, professional preparation, undergraduate
mathematics courses, mathematics courses for teachers

Understanding the work of teaching undergraduate mathematics courses for prospective
elementary and secondary teachers is of interest to the RUME community (e.g., Hauk et al.,
2017; Lai et al., 2019; Martin, et al., 2020; Yan et al., 2020). Separately, the professional
obligations framework (Herbst & Chazan, 2012) has been found useful for RUME researchers to
examine the decisions undergraduate mathematics instructors make (e.g., Bennett, 2022; Shultz,
2022; Shultz et al., 2022). In this theoretical contribution we offer an application and adaptation
of the professional obligation framework to account for specific demands on the position of
instructors of mathematics courses for teachers.

Improvement of Mathematics Courses for Teachers
Recommendations for improvement in the mathematical preparation of teachers, have

posited that mathematics courses for teachers should include what researchers have called
mathematical knowledge for teaching (e.g., AMTE, 2017; CBMS, 2012) for two reasons. First,
research in mathematics education has documented how the mathematics needed for teaching
includes types of knowledge that have not been commonly covered in university mathematics
courses, even in those dedicated to teachers (Ball et al., 2001). Second, research in mathematics
education has also documented that mathematical knowledge for teaching (MKT) can make a
difference in the mathematical quality of instruction and in students’ achievement (Hill et al.,
2005; 2008). Given the prevalence of university-based teacher preparation in the number of
entrants to the profession (Ronfeldt et al., 2014), it seems that if university mathematics courses
for teachers could increase the MKT of new teachers (see Laursen et al., 2016), the improvement
of mathematics courses for teachers could serve to improve the systemic capacity for
mathematics teaching in K-12.

But because mathematics courses for teachers have been taught for decades (Ferrini-Mundy
& Findell, 2010; Kilpatrick, 2019; Murray & Star, 2013), improvements in these courses need to

1 The writing of this paper has been supported in part by National Science Foundation grant DUE- 1725837. All
opinions are those of the authors and do not necessarily represent the views of the Foundation.
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consider and contend with extant curriculum, instruction, and assessment practices of those
courses, all of which are anchored in institutional practices. Accounts of how individual
instructors relate to such recommendations and how much they know about pedagogical content
knowledge and the knowledge needed to teach teachers are valuable (Lai, 2019; Superfine & Li,
2014), but to make sense of how improvement could go, we also need accounts of the system in
need of improvement (Bryk et al., 2015).

Some accounts of the system take the perspective of observers – for example noting the flow
of people into K-12 teaching coming from university teacher education programs versus
alternative certification (e.g., Ronfeldt et al., 2014) or charting the changes in MKT observed in
courses of mathematics for teachers (Laursen et al. 2016; Pape et al., 2015). These observer
accounts may help reformers understand what effects changes in university instruction may have
in K12 instructional capacity. But that information by itself is unlikely to address some of the
tensions instructors in these courses have to manage, which relate not only to their own
knowledge and experiences (Lai, 2019) but also to the environments in which they work and the
demands those environments place on them (Herbst et al., 2018). It is therefore important to
understand the position and the roles of instructors of those courses. This involves not only
understanding individuals in terms of what they are disposed to do but also the sets of systemic
relationships and intact practices in which they are involved and that likely enable them to be so
disposed (Bourdieu, 1990). To advance in this direction, the theoretical claim we make is that the
professional obligations framework (Herbst & Chazan, 2012) can be used to describe how
instructors of mathematics courses for teachers orient to their work.

The Professional Obligations of Mathematics Teaching

Chazan et al. (2016) describe the work of a teacher in terms of an institutional
position–defined in relation to institutional stakeholders–and the various roles the teacher plays
in the activities the institution expects them to engage. Mathematics instruction (narrowly
defined as helping students learn a course of study) is a particularly important activity in which
the teacher plays a role, but not the only such activity (e.g., mentoring youth is another such
activity). The stakeholders Chazan et al. (2016) identify include (a) the Client–individual
students and their advocates are stakeholders inasmuch as they are expected to benefit from
schooling; (b) Knowledge–the accumulated knowledge and knowledge-producing practices of
humankind, personified in scientific communities of knowledge producers, are stakeholders
inasmuch as knowledge is to be disseminated and preserved through schooling; (c)
Society–represented by community leaders, sponsors, and authority figures–is a stakeholder,
putting at stake shared values, customs, needs, and goals of a society, community, or nation
inasmuch as those stakes are to be interpreted, disseminated, and preserved for a new generation
through schooling; and (d) Organization–the administrative, economic, and legal aspects of an
organization are stakeholders inasmuch as school institutions need to abide by them. While these
stakeholders are stakeholders of schooling and thus make room for instruction as well as other
activities, they serve to specify the position of a teacher inside an educational institution,
providing sources of justification for decisions that an individual teacher might make in the
activities they engage in–particularly, in instruction. Chazan et al. (2016) identify these sources
of justification as professional obligations, and they name them (a) the individual obligation (to
students as individuals); (b) the disciplinary obligation (to the knowledge disciplines that are
sources of the content of instruction); (c) the interpersonal obligation (to the society in which the
class of students are to integrate themselves); and (d) the institutional obligation (to the various
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institutions that serve as environments for the activities in which the teacher plays a role). Those
stakeholders structure the institutional space in which (mathematics) instruction takes place and
individuals hired into teaching positions are socialized into roles in various activities in which it
becomes natural for them to feel obliged in the ways that the four obligations describe. The
obligations neither erase individual responsibility nor prevent individual agency; rather, they
identify resources and constraints available to individuals to publicly warrant actions and
decisions.

Those warrants for actions and decisions may be especially useful in the activity of
mathematics instruction, especially as our field concerns itself with instructional improvement.
Because instructors’ agency needs to be co-opted in order to make some such improvements, it is
important for improvement efforts not only to acknowledge the expectations teachers work under
but also to identify resources that may support their participation in institutional argumentation
around changes in practices. If instructional improvement requires instructors to act in ways that
deviate from the expectations they or their students have coming into class, justifications may be
needed. The professional obligations can help provide such justifications. Further, if
recommendations for instructional improvement may seem to push teachers beyond what feels
viable to them, the professional obligations may help practitioners negotiate those
recommendations.

Because practical rationality and the obligations framework describe the position in which
instructors are and the role they are expected to play in instruction (and because they are not a
theory of action for improvement along a particular direction), they can identify sources of
justification that instructors might use to argue both for and against change in any direction. As
such, this framework can help researchers understand reactions against reform and it can help
frame institutional discussions about improvement that acknowledge where different parties are
coming from. However, practical rationality was originally developed to examine the position
and the instructional role of mathematics teachers in academic contexts (that is, in the study of
mathematics, be that in K-12 schooling or in mathematics courses for mathematics majors). The
application of the framework to the mathematics instruction of professionals, who will use
mathematics to do professional work requires some adaptation.

Expanding the Theory of Practical Rationality to Account for the Experiences of
Instructors of Mathematics Courses for Teachers

We contend that in order to understand the position and the instructional role of those
who teach mathematics courses for teachers, it is worth describing the instructional practice in
which they are involved as contested by a tension between two different instances of the
instructional triangle (Cohen et al., 2003): Each instructor of undergraduate mathematics courses
for teachers is in a position from which they can be disposed to see the course they teach as both
an undergraduate mathematics course and as a mathematics teacher preparation course.

Much work in mathematics education that attends to the work of teaching implements this
attention by looking at the individual who does the teaching–for example, in terms of their
beliefs and knowledge. In the case of mathematics courses for teachers, an important distinction
among instructors runs along issues of academic preparation and professional identity: Individual
instructors may have doctoral degrees in mathematics or in mathematics education, and, in some
cases, they may not have doctorates; their professional identity may include having been teachers
or not, doing mathematical research, doing mathematics education research, doing both kinds of
research, or doing no research. Those contingencies may impact the way in which they take up
their position (e.g., hired to teach mathematics courses for teachers vs. hired for other reasons
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and assigned to teach such courses). While we do not deny the importance of attending to those
sources of individual differences, understanding how they matter in the way individuals play
their role in instruction and how they recognize the various obligations is beyond the scope of
this paper. In proposing an adaptation of the obligations framework from the theory of practical
rationality, we are deliberately bracketing out those sources of individual differences to describe
the set of resources and constraints that support the position in which all instructors of
mathematics courses for teachers are hypothesized to be and arguing that it is more complex than
that of instructors of mathematics courses for academic and scholarly preparation (e.g.,
mathematics courses for mathematics majors). We sketch this adaptation below and indicate
what further research could be done to gather evidence of how these obligations operate.

The Institutional Obligation on Instructors of Mathematics Courses for Teachers
The institutional environments in which one finds mathematics courses for teachers include

not only the mathematics departments that offer these courses and the colleges which employ the
instructors but also the teacher education programs that admit the students and require them to
take these courses. At least in the United States, these tend to be separate organizations within
universities. All those organizations hold the instructor accountable in some way. Some of those
mechanisms of accountability may be common across organizations, unspecific to the courses,
and inscribed in rules and policies (e.g., work contracts, class schedules). Mathematics
departments also hold instructors accountable (e.g., expectations for office hours and syllabi).
Teacher preparation programs are likely to exercise this accountability through expectations that
become visible when they are violated (e.g., education advisors letting teacher education students
fulfill alternative requirements when they fail mathematics courses for teachers, or students
themselves feeling empowered to confront mathematics instructors on matters of content choice
when they don’t see its relevance for future teachers). We contend that the location of
mathematics courses for teachers in institutional environments that include these various
organizations makes for instructors’ institutional obligation to be more complex than that of
instructors of mathematics courses for mathematics majors. We suggest that research could
endeavor to elicit from instructors narratives of episodes in which their instructional decisions
were shaped by explicit interactions with teacher education personnel or expectations they have
internalized from prior interactions with teacher education faculty or students. Research could
elicit from mathematics department chairs and from teacher education coordinators the
expectations their respective institutions have for these courses. What experiences do teacher
education programs expect these courses to provide their students and how do they convey these
expectations to mathematics instructors? Are those expectations different among mathematics
courses for elementary and secondary teacher preparation? How do those expectations play out
in recruiting and evaluating instructors of those courses?

One strategy that mathematics departments have employed to ensure attention to the needs of
teacher education programs is to employ individuals with degrees in mathematics education or
who participate in mathematics education professional communities to teach mathematics
courses for teachers. Research could document the diversity of episodes in which instructors with
different professional profiles are called to attend to the institutional obligation as well as how
the departmental discussions on curriculum, pedagogy, and assessment in mathematics courses
for teachers incorporate attention to the expectations from teacher education programs. Research
might also document how teacher education program discussions incorporate and process
information from instructors and students of mathematics courses for teachers (e.g., about the
quality of students’ mathematical work or the difficulty of courses). While it seems auspicious
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that mathematics departments might employ faculty interested in and prepared for mathematics
teacher education in teaching these courses, we cannot assume that a change of instructor will
eliminate any need for institutional accountability on the part of these instructors. Instead, it
seems important to describe how this institutional accountability is experienced by instructors
with different preparation and to gather case knowledge on how instructors handle institutional
influences on their instruction.

The Individual Obligation on Instructors of Mathematics Courses for Teachers
The obligations framework proposes that students, as the clients of education institutions,

hold teachers accountable to serve them as individuals. The case of students in mathematics
courses for teachers is similar insofar as they are undergraduate college students: Instructors are
obligated to attend to them as whole persons, with cognitive, emotional, and physical needs and
goals. As young adults, students are likely to be able to advocate for many of these needs
themselves rather than through their parents. But for instructors of mathematics courses for
teachers, the individual obligation seems more complicated. We suggest that the instructor may
also need to be accountable to their students as future professionals, attending to other aspects of
their individuality that the students themselves may not be as ready to advocate for. These
include aspects of the professional identity of a teacher that will be important for the individual
presentation of self of these novice teachers when they commence their professional life.
Instructors’ accountability to students as clients may compel them to see their students not only
as individuals with present needs and desires but also as future professionals with future needs.

Research could elicit instructors’ narratives to find out what aspects of students' future
professional identity emerge in the course of instruction as compelling opportunities for
instructors to make individual accommodations. Personal characteristics often part of moral
character (e.g., self-control or intellectual honesty), individual beliefs (e.g., about mathematical
ability), and skills (e.g., voice projection) might be included and that instructors may recognize
opportunities to build students' sense of professional identity when characteristics like those
emerge in the context of classroom work. Research should especially attend to how instructors
negotiate with prospective teachers the need for them to learn material that might seem difficult
or uninteresting to them at the moment (during college years) and whether and how instructors’
recognition of an obligation to students as future professionals serves them in such negotiation.

The Interpersonal Obligation on Instructors of Mathematics Courses for Teachers
The obligations framework proposes also that society is another stakeholder of the work of

teaching and the source of a professional obligation for instructors to conduct their classes in
ways that steward social values and goals. Insofar as an undergraduate class includes young
adults that have to interact with each other in socially productive ways and that will incorporate
themselves into the social world after college, it is likely that instructors will feel compelled to
steward some social values and expectations that apply to everybody (e.g., taking turns in
conversation, respecting the personal space and property of others). But insofar as the
undergraduates will be teachers, some of those values and expectations may concern the role that
teachers play in society. A salient one is a sense that society needs teachers for its children
(Beckmann, 2011) and that these teacher cadres need to represent the diversity of society (e.g.,
Bristol & Martin-Fernandez, 2019; Frank, 2019). This has implications for instructors with
regards to the ways that their courses and the grades they assign in those courses tend to serve as
a gateway not only for individual students to get their degrees but also, and especially, for society
to receive its teachers. Students’ interactions with instructors and their course material can also
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affect students' continued interest in the profession of teaching. The interpersonal obligation
suggests societal needs that should compel instructors not to alienate students from mathematics
or discourage their desire to teach mathematics in K-12 contexts.

We suggest that research could better unpack how instructors encounter and respond to
opportunities to attend to the interpersonal obligation. What are some ways in which instructors’
obligation to recruit and form teachers that can serve society is and can be displayed? How has it
been ignored?

The Disciplinary Obligation on Instructors of Mathematics Courses for Teachers
The disciplinary obligation as proposed by Herbst and Chazan (2012) alludes to mathematics

instructors' obligation to represent the discipline of mathematics when they teach in classrooms.
One could expect this disciplinary obligation to be present also for instructors of university
mathematics classes, including mathematics courses for teachers. For example, because
textbooks and lecture notes are presentations of course content rather than disciplinary
communications (as journal articles are), it is expected that this didactical transposition of
knowledge (Chevallard, 1991) may depart from the norm in mathematical communication (e.g.,
sometimes stating a proposition without providing proof or providing a definition that goes
beyond necessary and sufficient conditions). Instructors might show recognition of their
obligation to the discipline of mathematics if in the context of such pedagogical practices they
pointed out to students that the statement could be proved even if the proof is beyond the scope
of the course or that some of the stipulations of a definition are implied by others.

But in addition to an obligation to the discipline of mathematics, Knowledge as a stakeholder
can be expected to hold instructors of mathematics courses for teachers accountable in other
ways. The progress made by mathematics education research in the last few decades added to the
fact that this scholarship has become more widely known among and practiced by college
mathematics instructors (such as RUME participants), suggest that instructors might recognize a
disciplinary obligation toward the knowledge generated in mathematics education research. This
scholarship includes at least two types of knowledge worth noting, both contained within the
notion of mathematical knowledge for teaching and illustrating the interdisciplinary nature of
mathematics education research. The first is specialized knowledge of mathematics or
mathematically specific knowledge needed for teachers to engage in tasks of teaching
mathematics. As Ball et al. (2008) have argued and illustrated, this is purely mathematical
knowledge that reveals itself as needed in the context of tasks like creating problems for students
or analyzing the mathematical errors students make in problems. The second is empirical
knowledge about students’ understanding of mathematics and the ways in which students might
respond to instructional strategies; that is, elements of pedagogical content knowledge. We
distinguish these two types of knowledge because their truth status results from different types of
inquiry, one more deductive, founded on mathematical reasoning, and the other inductive,
founded on scientific reasoning. We suggest that research could elicit from instructors narratives
of episodes in which their awareness of research on mathematics teacher knowledge has
compelled them to deviate from, qualify, or add to the content they teach.

Furthermore, the professional practical knowledge of mathematics teachers, which is not
warranted solely by mathematical or scientific reasoning but also informed by policy and
educational politics, may contribute yet a third source of accountability to knowledge for
instructors of mathematics courses for future teachers. Documents such as the Common Core
Standards (National Governors Association, 2010), exercise a transdisciplinary accountability
similar to that of the disciplinary mathematical knowledge or the interdisciplinary knowledge
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from research in mathematics education. For example, while a mathematical concept (e.g.,
geometric transformations) might be well defined in different ways, a Standards document may
implement a particular choice of definition to be used in K-12 settings and that choice may serve
as a justification for the instructor of a geometry course for teachers to make instructional
decisions (e.g., not to adopt the definition provided in the textbook, but to change it to match that
of the Standards). Similarly, professional organizations such as NCTM have at times advocated
for including the history of mathematics with its teaching as means to show students that
mathematics is a human activity; such recommendations add transdisciplinary resources and
constraints to instructors. The investigation of the instructors’ position needs to account for the
various knowledge sources of the disciplinary obligation. Because these disciplinary sources
come from different origins and epistemologies, it seems important to inventory not only the
ways they present themselves as opportunities or as constraints to instructors, but also to
document how instructors handle them when they might not align with each other.

Conclusion
In their approach to improvement science, Bryk et al. (2015) argue that a needed step toward

improvement is to secure an understanding of the system in need of improvement–how the
system works–from the multiple perspectives that are called upon to work toward improvement.
Instructors are important in improvement not only because their agency can (and needs to) be
co-opted to realize improvement but also because their perspective on how the system works can
help anticipate what may happen with those improvement efforts (including their own).
Instructional improvement thus requires not only relying on instructors as agents of change but
also incorporating the rationality (in the sense of sensibility or sense-making) of instructors as a
vital component of improvement efforts. We contend that incorporating this rationality means
seeking ways to reconcile (a) what instructors are disposed to accept as part of their roles in
instruction and how they perceive their position in the higher education system and (b) how their
position in a system of power relations and institutional regulations conditions them to be so
disposed (Bourdieu, 1990). We argue that at the college level, where traditionally instructors of
record have had much authority to decide what to do, it is important to understand not only who
the instructors are and what they know or believe, but also how they see the system in which
their effort is inscribed and that avowedly needs to be improved. In our discussion of the
obligations as they apply to instructors of mathematics courses for teachers, we elaborate on how
each of these obligations might split into different branches. Better understanding empirically
how these various branches of professional obligations actually show up for instructors of
mathematics courses for teachers can help in the quest of improving the mathematical
preparation of teachers. Eventually, measures can be constructed to assess the extent to which
individual instructors recognize the different aspects of each obligation as hypothesized above.
Further, similar kind of layout for empirical inquiry could guide the study of instruction in
mathematics classes for other professionals (e.g., engineers, nurses).
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The role of derivatives across multivariable and vector calculus instruction using multivariational 
reasoning and students’ interpretations of matrix equations 

 
Zachary S. Bettersworth 
Arizona State University 

Multivariable and vector calculus (MVC) encompasses a wide array of different types of 
functions and the extension of numerous ideas from univariable calculus to MVC contexts. In 
this paper, I reflect on some of the more recent work on student thinking and learning of 
derivatives in MVC settings by leveraging some of the recent work on students’ multivariational 
reasoning and student thinking and learning of linear algebra topics. I conclude with examples 
of ways to conceptualize derivatives as linear transformations to support students in progressing 
towards a unified notion of the derivative concept throughout MVC instruction.  

Keywords: student thinking, multivariable calculus, derivatives, partial derivatives 

Students in the United States are first introduced to the notions of multivariable and vector-
valued functions in a multivariable and vector calculus (MVC) course. As a lead up to studying 
vector-valued functions the course introduces vectors, vector operations, graphing in three-
dimensional coordinate systems, partial and directional derivatives, multiple integration, line and 
surface integrals, vector fields, the gradient operator, and the fundamental theorems of vector 
calculus (Stewart, 2011). Each of these concepts is important, but I am concerned that students 
perceive MVC as a collection of disconnected ideas and shortcuts (Harel, 2021), as opposed to 
an interconnected web of meanings. I am curious about ways students’ understandings of MVC 
ideas are interconnected and how they extend their understanding of rate of change and 
accumulation functions (P. W. Thompson et al., 2019) to MVC contexts. In this paper, I want to 
reflect on ways to use current research in mathematics education to draw attention to how 
nuanced students’ ways of thinking about MVC topics can be. To demonstrate my intention, I 
isolate my focus to the various uses of partial derivatives detailed across recent math education 
literature and reflect on how to make connections between students’ reasoning about partial 
derivatives and their meanings for their symbolizations of linear approximations for different 
functions. I draw on co-variational and multivariational reasoning (Thompson & Carlson, 2017; 
Jones, 2022), in relation to an altered version of a theoretical framework from linear algebra 
(Andrews-Larson & Zandieh, 2013; Zandieh & Andrews-Larson, 2019).  

A Review of the Literature on the Teaching and Learning of Partial Derivatives 
Over the last five years, there has been an increase in mathematics education research 

investigating students’ understandings and ways of thinking about multivariable calculus topics. 
These topics include: multiple integration (Jones & Dorko, 2015), ways of thinking about scalar 
and vector line integrals (Jones, 2020), students’ treatments and conversions of graphical 
registers for gradient vectors (Moreno-Arotzena et al., 2021), manipulatives for supporting 
students in graphing surfaces (Kang et al., 2020; Wangberg, 2020; Wangberg et al., 2022), 
students’ covariational reasoning about partial derivatives (Mhkatshwa, 2021), and students’ 
multivariational reasoning (Jones, 2018, 2022). The various ways that partial derivatives are 
seemingly used by students and researchers are described in Fig. 1. Each use of partial derivative 
described in Fig. 1 is nuanced, but heavily emphasizes contexts of functions of two variables.  
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Fig. 1: Interpretations of partial derivatives across recent math education research literature 

Some of the earlier mathematics education research on MVC instructional design 
investigated students’ responses to tasks within cycles of a Genetic Decomposition from APOS 
(action, process, object, scheme) theory which also leveraged Duval’s theory of semiotic 
registers (Trigueros Gaisman & Martínez-Planell, 2013). The Genetic Decomposition for 
teaching partial derivatives of two-variable functions emerged from characterizing in-class 
activities for teaching two variable functions (Martínez-Planell & Trigueros Gaisman, 2019) and 
partial derivatives and directional derivatives through explicit lecture on 3D slopes (Martínez-
Planell et al., 2017). McGee’s tactile graphing manipulatives reinforced the notion that explicit 
attention to 3D slopes may provide students with a way to measure amounts of vertical change in 
terms of an amount of horizontal change, corresponding to the value of the directional derivative 
of a given two-variable function (McGee et al., 2012, 2015; McGee & Martínez-Planell, 2014; 
McGee & Moore-Russo, 2015). Students reasoning about 3D slopes (in the 𝑥𝑥 and 𝑦𝑦 direction 
respectively) and geometric conceptions of constant rate of change (as slopes) provided them 
with ways to reason about the values of partial derivatives graphically in 3D space. The research 
detailing the instructional implementations of the 3D acrylic surfaces of Wangberg and 
colleagues’ also supported the notion that students reasoning about multivariable rates of change 
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in graphical contexts require ways to envision measuring amounts of vertical in terms of the 
corresponding horizontal change to conceive of the values of directional derivatives as the slope 
of the surface in a given direction (Wangberg, 2020; Wangberg et al., 2022). Reasoning about 
surfaces as something to be traveled upon is extremely useful, however care should also be taken 
to ensure students make connections between tactile approaches to graphing surfaces and also 
reasoning about how the shape of the graph is a record of how the values of three quantities 
change together (Moore & Thompson, 2015; Weber & Thompson, 2014). 

There are fewer research articles investigating how students conceive of vector-valued 
amount and rate functions. Jones investigated how students think about scalar and vector line 
integrals (Jones, 2020). Researchers have also investigated the ways students think about vectors 
and vector operations in the context of linear algebra (Lee, 2022), or physics (Dray & Manogue, 
2006; Roche, 1997). However, there is a need for research experiments investigating how 
students think about and learn calculus ideas related to the derivatives of vector-valued functions, 
(i.e., divergence, curl, Green and Stokes’ theorem, etc.). The research literature in physics 
education has also addressed ways to support students in using partial derivatives, and the 
relevant notation, to reconstruct Maxwell’s equations of thermodynamics (Cannon, 2004; J. R. 
Thompson, 2006; J. R. Thompson et al., 2012). Some physics education researchers have 
leveraged Zandieh’s derivative framework to determine the efficacy of tasks and instructional 
interventions in thermodynamics courses (Bajracharya et al., 2019). Further, Roundy and 
colleagues discussed how instructional issues may emerge when different disciplinary practices 
impact students’ conceptions of the use of partial derivatives (Roundy et al., 2015). For instance, 
mathematicians and physicists appear to leverage partial derivatives in different ways in their 
disciplines. It would be prudent to continue the dialogue between math and physics instructors at 
each institution to determine ways to support students in shifting or extending their 
understanding of partial derivatives flexibly across the STEM disciplines.  

Theoretical perspective 
Before elaborating on various interpretations and uses of partial derivatives for different 

function types, I am going to discuss students’ conceptions of different types of functions. MVC 
courses encompass many different types of functions sorted into at least two groups: (1) 
functions with multiple independent quantities and (2) functions with multiple dependent 
quantities (including vector-valued outputs). When discussing functions with more than one 
independent quantity, I will say multivariable functions (i.e., 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦) or 𝑤𝑤 = 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) as 
opposed to univariable functions (i.e., 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)). To distinguish between functions with 
multiple dependent quantities and a single dependent quantity I will say vector-valued and 
scalar-valued respectively. It is highly unlikely that most students have encountered 
multivariable functions, or the corresponding notation, by the time they enroll in MVC. Some 
students may have encountered vectors and vector operations in the context of physics or linear 
algebra (LA). In Calculus I and II, most students have encountered univariable function notation, 
input/output tables, and memorized information about the graphs of various function families, 
along with a thorough introduction to derivative and integral techniques. However, it appears 
less likely that most student have been supported in reflecting on the idea of univariable 
functions (across various representational contexts) as sets of invariant relationships relating the 
values of two quantities whose values vary in tandem with the realization that, at any moment, 
the value of the independent quantity determines exactly one value of the dependent quantity (P. 
W. Thompson et al., 2017; P. W. Thompson & Carlson, 2017). 
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The literature reporting on researchers’ investigations and theories about student thinking 
related to the function concept encompasses several decades of experimental results and theory 
(Breidenbach et al., 1992; M. P. Carlson, 1998; Monk, 1994; Oehrtman et al., 2008; Sfard, 1992; 
Zandieh et al., 2017). While there have been some studies investigating student thinking about 
functions of two variables (Kabael, 2011; Martínez-Planell & Trigueros Gaisman, 2019; 
Yerushalmy, 1997), the math education theory of student thinking about multivariable and 
vector-valued functions is comparatively less developed (Rasmussen & Wawro, 2017). I am 
genuinely curious about how students make sense of the sheer number of different types of 
functions covered in a single semester of MVC instruction (i.e., multivariable functions, 
parametric equations, vector-valued functions, vector fields, linear and non-linear 
transformations), in relation to their understanding of calculus ideas related to each function type 
(e.g., the divergence and curl of multivariable vector-valued functions graphed as vector fields).  

Mathematics education researchers might ask research questions related to the various ways 
students conceive of different types of functions (e.g., action vs. process views of functions of 
two variables, a structural vs. operational views of linear transformations, covariational or 
multivariational views of parametric functions). Students’ conceptions of univariable functions 
likely impact their understanding of multivariable functions, and eventually more general 
mappings such as linear transformations (Trigueros Gaisman & Martínez-Planell, 2013; 
Yerushalmy, 1997; Zandieh et al., 2017). Addressing the ways students think about and 
generalize their understanding of the function concept across their undergraduate mathematics 
course sequence is an important consideration for research and instructional design. Zandieh, 
Ellis, and Rasmussen (2017) analyzed students’ conceptions the function concept cutting across 
the students experiences from high school algebra to linear transformations in linear algebra. I 
am curious about how students’ notion of function, unified or otherwise, interacts with their 
conception of derivatives across various MVC contexts. Investigating students’ stable ways of 
thinking about functions (P. W. Thompson et al., 2014) seems like a necessary first step to 
investigating how students conceptualize multivariable rate functions and partial derivatives 
more generally. Leveraging theories to investigate how students think, generalize, and symbolize 
their conceptions of functions, and their derivatives, is also worthwhile and relevant to the 
current trajectory of mathematics education research.  

To that end, Jones recently expanded his multivariational framework (Jones, 2018, 2022) 
based on some of the work emerging from Carlson et al.’s (2002) covariational reasoning 
framework and Thompson and Carlson’s (2017) variation and extended covariation frameworks. 
Jones described three types of multivariation as well as a framework describing students’ 
multivariational reasoning (MR) mental actions. Jones defined three types of multivariation: (1) 
independent multivariation (i.e., functions of the form 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦)), (2) dependent multivariation 
(i.e., situations like the ideal gas law 𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑘𝑘), and (3) nested multivariation (i.e., composite, or 
parametric functions 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) where 𝑥𝑥 = 𝑔𝑔(𝑡𝑡)). Jones’ multivariation and MR framework seem 
viable for building models of student thinking to determine how students engage in quantitative 
reasoning (P. W. Thompson, 1993, 2022) about multivariable and vector-valued functions. 
Further, modeling student thinking to determine how they coordinate the values of multiple 
quantities changing together is a viable lens for investigating how students conceptualize 
multivariable rates of change and, eventually, multivariable rate functions.  

For example, suppose a student possesses a process view of the function 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑦𝑦2 − 𝑥𝑥𝑦𝑦 
where 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦) (independent multivariation). The student mentally fixes the value of 𝑥𝑥 = 𝑎𝑎, 
through decomposing the situation into isolated covariations. By considering how the value of 𝑧𝑧 
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co-varies with 𝑦𝑦 as the value of 𝑦𝑦 varies from −2 to 2 (holding the value of 𝑥𝑥 fixed), the student 
can rely on previous ways of thinking about graphs of univariable functions. The student 
coordinates their mental image of the 2D graphs of 𝑧𝑧 = 𝑎𝑎𝑦𝑦2 − 𝑎𝑎𝑦𝑦 = 𝑎𝑎𝑦𝑦(𝑦𝑦 − 1) for particular 
values of 𝑎𝑎 with images of the various traces situated in the planes 𝑥𝑥 = 𝑎𝑎 pictured in ℝ3. The 
student may reconceive of the situation and anticipate the shape of the surface as an emergent 
process through mentally coordinating the changing shape of the traces as 𝑥𝑥 varies from −2 to 2. 
This is exactly the hypothetical learning trajectory (HLT) proposed by Thompson and Weber via 
the sweeping out metaphor (Weber & Thompson, 2014).  

Mentally fixing the value of 𝑥𝑥 = 𝑎𝑎 corresponds to the reducing into isolated covariations 
MR mental action and sequentially reconceiving of 𝑥𝑥 as a varying quantity corresponds to the 
coordination of multiple simultaneous changes MR mental action, and perhaps, eventually, 
smooth continuous multivariation. This series of Jones’ set of MR mental actions highlights one 
of the ways a student may come to graphically quantify the partial derivative of the function 
𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑦𝑦2 − 𝑥𝑥𝑦𝑦 with respect to 𝑦𝑦, holding the value of 𝑥𝑥 fixed at 𝑥𝑥 = 𝑎𝑎, by associating their 
images of each trace of the surface which emerged through their initial conception of how the 
values of 𝑦𝑦 and 𝑧𝑧 co-varied together. The linear approximation for this particular trace 
(corresponding to the intersection of the graph of 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦) and the plane 𝑥𝑥 = 𝑎𝑎) emerges by 
assuming a constant rate of change (specifically 𝑓𝑓𝑦𝑦(𝑎𝑎, 𝑏𝑏)) relating amounts of variation in the 
value of 𝑦𝑦 away from 𝑦𝑦 = 𝑏𝑏, and the corresponding amount of variation in the value of 𝑧𝑧 
emerges from pretending there is a constant rate of change relating amounts of variation in the 
values of 𝑦𝑦 and 𝑧𝑧, i.e., Δ𝑧𝑧 ≅ 𝑓𝑓𝑦𝑦(𝑎𝑎,𝑦𝑦)Δ𝑦𝑦 or 𝑧𝑧 − 𝑓𝑓(𝑎𝑎, 𝑏𝑏) ≅ 𝑓𝑓𝑦𝑦(𝑎𝑎, 𝑏𝑏)(𝑦𝑦 − 𝑏𝑏). Providing students 
with the opportunity to conceptualize partial derivatives as imagined constant rates of change 
due to variation in the value of 𝑦𝑦, holding the value of 𝑥𝑥 fixed, may undergird why explicit 
discussions 3D slopes have proven helpful to students when reasoning about the values of partial 
derivatives as the slopes of tangent lines to the trace of 𝑓𝑓 (Martínez-Planell et al., 2017).  

Zandieh’s (1997; 2000) derivative framework demonstrated how nuanced students’ 
conceptions of derivatives can be. Each of the three process-object layers (ratio, limit, and 
function) encapsulates the reification of a particular process into a more static, structural 
conception of that layer (Sfard, 1992). The columns of Zandieh’s framework encompass various 
contexts in which the framework can be used to depict the various aspects of a student’s 
conception of derivatives. As Zandieh (1997; 2000) noted in the articulation of her derivative 
framework, each of the process-object pairs (the rows of the framework) correspond to a 
particular component of the derivative concept. The ratio, limit, and function layer may have 
their uses in particular contexts, but each aspect of the derivative concept is important to the 
overall conceptual structure. Students may have conceived of aspects of the derivative concept as 
contextual, or comprising the entire concept (Zandieh & Knapp, 2006). For example, in 
graphical settings, students may claim derivatives are slopes of tangent lines, but in a related 
rates task, a student may claim derivatives are just rate of change functions, without recognizing 
an implicit graphical connection to their previous statements about slopes of tangent lines. 
Investigating the ways students extend their understanding of derivatives to multivariable 
contexts is non-trivial. However, Zandieh’s derivative framework is viable for articulating some 
of the nuanced aspects of the derivative concept in MVC. One such aspect of derivatives in 
MVC contexts, that is rarely discussed, is the conception of derivatives as linear 
transformations, as represented by the Jacobian matrix (Gravesen et al., 2017; Harel, 2021).  

Zandieh, Ellis, and Rasmussen addressed the ways that students interpret linear 
transformations in relation to their high-school conceptions of function (Zandieh et al., 2017). 
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Zandieh et al. (2017) noted that students’ concept images of function (from ℝ → ℝ) may be 
separate from their conception of linear transformations as matrix equations. However, as 
students progress through the semester, their concept images become more interwoven to shift 
towards a unified notion of the function concept. I hypothesize that direct discussions of linear 
transformations are necessary to support students in extending their understanding of derivatives, 
more generally, towards a unified notion of the derivative concept. Zandieh and Andrews-Larsen 
discussed the various ways students interpret matrix equations (Larson & Zandieh, 2013), and 
extended their framework to include more nuanced interpretations of systems of linear equations 
and matrix equations (Zandieh & Andrews-Larson, 2019). I have outlined theoretical students’ 
interpretations of the various roles that partial derivatives play in producing linear 
approximations for two types of functions in Fig. 2. Again, the various types of derivatives 
present in MVC may perpetuate students’ apparent conception that MVC topics are seemingly 
disjoint and highly contextual. I hypothesize that centering the idea of derivative as a linear 
function, or transformation, which produces the best local, linear approximation of any type of 
function will help support students in conceiving of a more unified notion of derivative and thus 
leading towards coherence of MVC instruction in the minds of students.  

 
Fig. 2: Theoretical student interpretations of linear approximations altered from Zandieh & Andrews-Larson 

(2019). The geometric context column has been omitted due to space limitations. 

Based on some of the uses of partial derivatives pictured in Fig. 1 and the relevant math 
education literature on student thinking about partial derivatives, I altered Zandieh and Andrews-

25th Annual Conference on Research in Undergraduate Mathematics Education 878



Larson’s framework for students’ interpretations of matrix equations to anticipate various ways 
students could interpret and symbolize derivatives in the context of constructing linear 
approximations for different types of functions. The table in Fig. 2 could be used to anticipate 
students’ conceptions and symbolization for scalar and vector-valued functions with more than 
two independent or dependent quantities (e.g., multivariable, scalar-valued functions with three 
or four independent quantities). While the table in Fig. 2 only elaborates on linear 
approximations for functions involving independent multivariation, the interpretations can be 
applied to situations involving nested multivariation through the chain rule and conceptualizing 
products of matrices as compositions of linear transformations (Harel, 2021). 

The MR mental action of reducing to isolated covariations seems necessary to conceive of 
linear approximations while coordinating the amount of variation in the value of the output 
vector or scalar-valued dependent quantity (𝑧𝑧) due to separate variations in the value of each pair 
of independent quantities (𝑥𝑥1 and 𝑦𝑦1 and 𝑥𝑥 and 𝑦𝑦 respectively). Coordinating the amount of total 
variation, or at least an approximation of this amount of variation, emerges from the 
coordination of multiple simultaneous changes MR mental action. The LC and SE interpretations 
more readily highlight the reducing to isolated covariations and coordination of simultaneous 
changes mental actions due to the emphasis on coordinating net changes in the values of the 
dependent quantities due to separate amounts of variation in the values of each independent 
quantity.  

Conclusion 
One way to continue to build on the current state of the mathematics education research 

literature on the teaching and learning of MVC topics is through coordinating research on student 
thinking about linear algebra concepts in conjunction with burgeoning theories about student 
thinking within the context of MVC instruction (Cobb, 2007). One approach is to leverage an 
altered version of Zandieh and Andrews-Larsen’s (2019) framework elaborating students’ 
interpretations of matrix equations in the context of constructing linear approximations for 
multivariable and vector-valued functions with Jones’ (2022) elaboration of MR to anticipate 
ways students can interpret and symbolize derivatives in MVC. The ways in which students 
conceive of multivariable and vector-valued rate of change functions necessarily depends on 
their conceptions of amount functions. Future research studies should seek to coordinate 
students’ symbolization activity with their associated meaning in graphical and non-graphical 
contexts (Tyburski et al., 2021). Triangulating students’ meanings and stable understandings of 
vector calculus ideas will help to extend the research field’s understanding of how students learn 
and interpret vector calculus ideas and notation.  

In this manuscript, I have summarized the recent work on the ways students use partial 
derivatives in MVC. It should be restated that there are different types of functions present in a 
MVC course, but there are also numerous ways students could conceptualize them; as one 
example is the diverse approaches to coordinating variation in the values of numerous quantities. 
As Zandieh, Rasmussen, and Ellis noted, students’ conceptions of the function concept may vary 
widely depending on the context. My hope is to gain insights into the nuanced ways students 
interpret, use, and symbolize partial derivatives when creating linear approximations.  

Future studies could extend the theory I have presented here by applying it to students’ 
written work in MVC contexts. This report is largely theoretical and based almost entirely on my 
experiences working with students enrolled in a conceptually oriented MVC course for two 
academic years in conjunction with my research with the IOLA research group.  
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Theoretical Considerations for Designing and Implementing Intellectual Need-Provoking Tasks 
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The idea of intellectual need (IN) has received much interest from instructors in trying to design 
tasks that engage students in impasse-driven learning. However, we argue that the literature on 
IN is currently insufficient for supporting the careful design and implementation of tasks meant 
to provoke IN. In this paper, we examine two shortcomings: (1) What exactly IN can be created 
for, and (2) How an instructor might support students in navigating the experience of resolving 
the confusion and constructing the targeted meanings. For the first of these, we describe the 
category error of thinking of producing IN for a “topic,” and use the idea of conceptual analysis 
to suggest a way to address this shortcoming. For the second, we bring in control-value theory to 
explain what an instructor might attend to in order to ensure that the disequilibrium stays 
productive and does not lead to frustration and disengagement. 

Keywords: Intellectual Need, Task Design, Constructivist Pedagogy, Epistemic Emotions 

Introduction and Literature Review 
Educators and researchers have long described the positive impact of “desirable difficulties” 

and “failure-driven scaffolding” on student learning (e.g., Dewey, 1938; Kapur, 2015; Sinha et 
al., 2020). Studies have shown that experiencing cognitive incongruities (e.g., Graesser et al., 
2005), working on problems prior to instruction (e.g., Kapur & Rummel, 2012), and 
experiencing impasses (e.g., VanLehn, 1988; Kapur, 2014) are associated with improved 
learning and constructive reasoning. Graesser and D’Mello (2012) proposed that these results 
align with Piaget’s (1971, 1985) work on cognitive development—specifically, the idea of 
disequilibrium, in which the impasses students encounter prompt them to revise their cognitive 
schemes or construct new ones to accommodate for novel stimuli and experiences. 

In the context of learning mathematics, Harel (e.g., 2013), described the role played by 
cognitive disequilibrium in the learning process in terms of the construct of the intellectual need, 
which is the perceived need to resolve “a perturbational state resulting from an individual’s 
encounter with a situation that is incompatible with, or presents a problem that is unsolvable by, 
his or her current knowledge” (p. 122). Since its introduction, intellectual need has been a 
widely-cited principle of instructional and curriculum design (e.g., Burger & Markin 2016; 
Caglayan, 2015; Foster & de Villers 2015; Koichu, 2012; Leatham et al., 2015; Rabin et al., 
2013; Zazkis & Kontorovich, 2016). The idea of intellectual need has been enthusiastically 
endorsed by some instructors. In their planning, these instructors begin with a target 
mathematical concept (“[x]”) and then begin their lesson planning by asking something like: “If 
[x] is aspirin, then how do I create the headache [i.e., the intellectual need]?” (Meyer, 2015). 

Despite its widespread use in the research literature, there is little guidance about how to 
design and implement effective intellectual need-provoking (IN-P) tasks. Weinberg and Jones 
(2020, 2022) proposed a theoretically-grounded framework for IN-P task design, but identified 
issues in need of further clarification, elaboration, or theoretical justification in both their own 
framework and the research literature on intellectual need generally. First, Weinberg and Jones 
(2020) noted that the research literature has not clarified what a student can experience 
intellectual need for, an issue that we believe is at the origin of subtle but significant 
epistemological contradictions in IN scholarship. Second, Weinberg and Jones (2022) 
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highlighted the importance of attending to the role played by students’ affective states as they 
engaged in mathematical activity, but their framework did not clarify how to account for these 
states in IN task design or implementation. 

On its face, it is possible for one to interpret the idea of IN as suggesting that an instructor 
need only design a task in which their students are required to confront a problem they do not yet 
possess the intellectual tools to solve. However, we believe this view orients instructors to 
develop tasks that might stimulate interest and motivation, but fall short of promoting students’ 
constructive mathematical reasoning. In this theoretical paper, we address these gaps in the 
research literature by presenting an example of a task designed to provoke intellectual need, 
highlighting some aspects that, upon further inspection, potentially fall short of engendering this 
cognitive state, and synthesizing additional theoretical perspectives to ameliorate these gaps. 

An Example 
We begin by presenting an example of a typical task, some variation of which is commonly 

included in curricula and instruction to motivate the concept of a derivative. For our example we 
chose to follow the presentations in some widely-used textbooks1, viewing textbook 
presentations as potentially reflecting the authors’ instructional intentions. This is supported by 
the authors’ descriptions of their texts as “a teaching tool for instructors and … a learning tool 
for students” (Stewart et al., 2021, p. xi). Suppose a calculus instructor expects their students to 
learn about the concept of a derivative and considers how to create an intellectual need for the 
topic. If they follow the exposition of some of the textbooks we examined (e.g., Larson & 
Edwards, 2018; Hughes-Hallet et al., 2017; Stewart et al., 2021), they will likely begin by posing 
either “the tangent problem” (i.e., how can we compute the slope of a tangent line?) or “the 
velocity problem” (i.e., how can we compute instantaneous velocity?). If an instructor adopted 
the later approach, they might facilitate an informal discussion of velocity and, typically, define 
“average velocity” as an arithmetic—as opposed to quantitative—operation (i.e., division of the 
change in position by corresponding elapsed time) (Thompson, 1990). Then, the instructor might 
pose a problem or example in which they demonstrate an inability to perform this computation, 
either due to insufficient information or an indeterminate form (i.e., “0/0”). The instructor using 
this approach might highlight the conundrum that “we are dealing with a single instant of time, 
so no time interval is involved” (Stewart et al., 2021, p. 81) and suggest computing the average 
velocity over successively smaller time intervals. Then, the instructor might represent the 
situation using a graph with a point representing the time of interest , and add a second point on 
the graph with arbitrary coordinates. The instructor then might propose that students imagine that 
the second point approaches the first point (e.g., Stewart et al., 2021; Hass et al., 2019). 
Alternatively, the instructor might follow slightly different presentations, such as suggesting that 
students choose points closer together (e.g., Larson & Edwards, 2018; Herman & Strang, 2020), 
or that they imagine “zooming in” (e.g., Boelkins et al., 2018; Hughes Hallett et al., 2017). 

When the instructor first proposes the problem with finding an instantaneous velocity, the 
students ostensibly do not possess the intellectual tools to solve this problem. Consequently, an 
instructor might be tempted to view this initial task as having provoked intellectual need (in their 
students) for the concept of instantaneous rate of change, and view the definition of the 
derivative at a point as having resolved this intellectual need. However, as we will argue below, 
there are additional considerations that are essential for understanding if IN was actually 

 
1 We examined Stewart et al. (2021), Larson & Edwards (2018), Hughes Hallet et al. (2017), Hass et al. (2018), 
Herman and Strang (2020), and Boelkins et al. (2018). 
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produced and what, exactly, it was produced for. Furthermore, the instructor might have only 
made their students experience confusion, without necessarily helping them navigate the 
experience of resolving this confusion, and constructing a justification for the necessity of 
derivative at a point.  

DNR-Based Instruction in Mathematics 
The concept of intellectual need is one of many theoretical constructs organized within an 

elaborate framework called DNR-based instruction in mathematics (Harel, 2008). The DNR 
theoretical framework is grounded in several constructs, the most germane of which (for the 
present paper) we report here. The triad of mental act, way of understanding, and way of 
thinking is central to the concepts domain of the DNR framework. Mental acts are the basic 
applications of cognition to our experiential world; they encompass behaviors such as 
interpreting, proving, conjecturing, inferring, justifying, explaining, generalizing, and predicting. 
Harel (2008) defined the cognitive constructs way of understanding and way of thinking and 
described their respective relations to mental acts: 

A person’s statements and actions may signify cognitive products of a mental act carried 
out by the person. Such a product is the person’s way of understanding associated with 
that mental act. Repeated observations of one’s ways of understanding may reveal that 
they share a common cognitive characteristic. Such a characteristic is referred to as a way 
of thinking associated with that mental act (p. 490). 

 
We regard an individual’s way of understanding a mathematical idea as synonymous with 

their meaning for the idea (Thompson et al., 2014). We interpret meanings in terms of Piaget’s 
notion of a scheme as an internalized organization of actions, images, and operations constructed 
and refined through distinct forms of abstraction (Tallman, 2021).  

Harel’s mathematics premise frames mathematical knowledge as a union of historically 
institutionalized ways of understanding and ways of thinking. Additionally, Harel (2008) 
expressed the the reciprocity between these distinct forms of mathematical knowledge in the 
duality principle, which states, “Students develop ways of thinking through the production of 
ways of understanding, and, conversely, the ways of understanding they produce are impacted by 
the ways of thinking they possess” (p. 899).  The knowing premise asserts,“Knowing is a 
developmental process that proceeds through a continual tension between assimilation and 
accommodation, directed toward a (temporary) equilibrium” (Harel, 2008, p. 894). Relatedly, the 
knowing-knowledge linkage premise states, “Any piece of knowledge humans know is an 
outcome of their resolution of a problematic situation” (Harel, 2008, p. 894). 

Commensurate with these theoretical premises, intellectual need (IN) is a psychological 
state–with cognitive and affective entailments–resulting from an individual’s interpretation of a 
problematic situation, the resolution of which requires the individual to extend, modify, or create 
knowledge structures. Unlike confusion, intellectual need results from an individual’s conception 
of a problematic situation in a way that orients them to engage in the constructive activity 
required to resolve the situation. IN is thus energetic in that it stimulates, rather than impedes, 
generative mathematical reasoning. 

Harel distinguished different categories of IN. A need for certainty motivates deductive 
reasoning; it is a need to prove, or remove doubts. A need for causality is a need to identify the 
cause of some phenomenon. A need for computation involves a desire for efficient 
quantification. A need for communication refers to an obligation to persuade others that an 
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assertion is true. Finally, a need for connection and structure entails a commitment to identify 
similarities and analogies and to abstract unifying principles. 

Issue #1: Intellectual Need for What? 
There is a subtle category error lurking behind a statement like, “I want students to 

experience an intellectual need for derivative.” Replace “derivative” in this sentence with 
“constant rate of change,” “radian measure,” “polynomial rings,” “Lyapunov functions,” and the 
category error remains. The issue is this: students cannot experience an intellectual need for a 
mathematical topic. A student can, however, experience an intellectual need to engage in the 
actions that form the experiential basis of a particular meaning, or way of understanding, that 
they expect might enable them to resolve a problem they have conceptualized.  

We previously described the experience of intellectual need as a stimulant for generative 
mathematical activity, not a state of confusion that paralyzes reasoning and induces an affective 
state of interest, analogous to the curiosity provoked by having witnessed a compelling magic 
trick. These affective states result in the student being receptive to absorbing (to use a term 
consistent with Meyer’s aspirin-headache metaphor) the mathematical concepts communicated 
to them, or the skills demonstrated for them, by a knowledgeable expert. This type of affective 
experience is nearer to how Harel described affective need, indisputably useful but certainly not 
identical in its affordances for supporting students’ learning as IN. So where exactly is the 
category error in aspiring to support students’ experience of IN for derivative (or any other 
mathematical “topic”)? Intellectual need cannot, on the one hand, be conceptualized in a manner 
consistent with Piaget’s idea of equilibration of cognitive structures–and radical constructivist 
epistemology generally–while on the other hand promote an exclusively affective state where 
learning is a product of a fundamentally empiricist process (i.e., perception). Theoretical 
coherence requires that both the inducement of IN and the learning afforded by its experience be 
a product of the actions, operations, abstractions, and generalizations of the learner.  

Intellectual need is thus a need to engage in the precise actions that must be internalized and 
organized to form targeted ways of understanding (i.e., cognitive schemes) through pseudo-
empirical and reflecting abstractions (Piaget, 2001). A meaning, or understanding, exists only in 
the mind of an individual, and thus consists of an elaborate organization of idiosyncratic images, 
actions, and operations (diSessa, 1988; Tall & Vinner, 1981; von Glasersfeld, 1995). 
Successfully engendering IN therefore requires an instructor to be cognizant of the mental 
actions and conceptual operations entailed in the meanings they want to support or necessitate 
(Tallman, 2021; Tallman & Frank, 2020). Without such awareness, an instructor cannot design 
problematic situations that require students to engage in, and abstract from, these actions.  

Solution to Issue #1: Conceptual Analysis. Thompson (2008) described conceptual analysis 
as the process by which an instructor or curriculum designer clarifies the ways of understanding 
they intend to support, and elucidates how these understandings depend on and contribute to 
developing particular ways of thinking. In other words, a conceptual analysis is an articulation of 
“what students might understand when they know a particular idea in various ways” (Thompson, 
2008, p. 43). Conducting a conceptual analysis involves (1) unpacking what it means to 
conceptualize a mathematical idea in a specific way, and (2) explicating the cognitive activity 
necessary to construct the targeted understanding. Conducting conceptual analyses is therefore 
essential to an instructor’s development of tasks that effectively necessitate the actions that form 
the basis of the ways of understanding (i.e., schemes) an instructor or curriculum designer 
expects students to construct. 

25th Annual Conference on Research in Undergraduate Mathematics Education 887



Applied to the archetypal tasks described above for motivating students’ learning of 
derivative at a point, a conceptual analysis would specify what it means to understand 
instantaneous rate of change and clarify how this understanding depends on particular 
conceptions of constant and average rate of change. Moreover, the role of quantitative and 
covariational reasoning in the structure and development of the targeted understanding would be 
made explicit. A conceptual analysis would highlight the distinction between two of the 
meanings that are implied in the example above. One such meaning—a quantitative meaning—
involves conceptualizing average rate of change as a proportional relationship between changes 
in the measures of distance and time and the successive approximation process as involving 
thinking of these quantities as continuously covarying and measuring this covariation. In 
contrast, a second meaning—a geometric meaning—involves thinking of the distance-time pairs 
as represented as points on a graph of the function, thinking of average speeds as the “slantiness” 
of lines connecting the two points, and then thinking of the “approaching” process as suggesting 
a pattern in the “slantiness.” These two meanings can be coordinated, but this coordination is 
automatic. Though it is far beyond the scope of this paper to provide an example of such a 
conceptual analysis we encourage the reader to reflect on the experiences that might be required 
to support these distinct students’ understanding of each of these meanings of instantaneous rate 
of change. 

Issue #2: Managing and Leveraging Students’ Experiences 
Suppose that the instructor was successful in provoking intellectual need for a particular 

meaning of the derivative at a point—for example, the quantitative meaning described above 
(i.e., the limiting value of successive approximations of instantaneous velocity by average 
velocities over successively smaller amounts of change in time). The research literature on 
intellectual need is largely silent on what the instructor needs to attend to and how they should 
act to guide students through the process of constructing the relevant schemes that will enable 
them to resolve the disequilibrium. In particular, the students are in a state of cognitive 
disequilibrium and might react negatively to the confusion that is associated with being in such a 
state. In this section, we adapt theoretical perspectives from the research literature on student 
affect to highlight these issues and propose aspects of the class’ activity that can guide 
instructors’ attention and action. 

Control-Value Theory and Epistemic Emotions. Numerous researchers (e.g., Mandler, 
1975; 1999; Morton, 2010; Stein & Levine, 1991; Tallman & Uscanga, 2020) have highlighted 
the critical relationship between the emotions students experience, their engagement with a task, 
and their subsequent cognitive activity. Pekrun (2000; 2006) proposed a theory of the emotions 
that students experience in academic settings: the students’ emotions are influenced by their 
perception of the extent of their control over their activity and its outcomes, and their emotions 
are also influenced by their values—their perception of the importance of the activity and 
outcomes. Muis et al. (2015) found that students’ experiences of emotions in mathematical 
settings were closely related to the extent to which they valued mathematics and the degree to 
which they felt a sense of agency over their engagement with the class’ pedagogical practices 
and of the mathematics they were learning. 

Pekrun and Stephens (2012) classified academic emotions into achievement emotions (such 
as anxiety and contentment); topic emotions (e.g., how the individual feels about the 
mathematical topics); social emotions (such as pride and shame); and epistemic emotions, which 
arise when “the object of their focus is on knowledge and learning” (Muis et al., 2015, p. 173). 
Epistemic emotions arise from “knowledge states involving discrepancy, incongruity, or conflict 
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between cognitive schemas” (Nerantzaki, 2021, p. 2). These emotions include surprise, curiosity, 
enjoyment, confusion, anxiety, frustration, and boredom (Pekrun et al., 2016) and have been 
explored by numerous researchers (e.g., Efklides, 2017; Loewenstein, 1994; Mandler, 1975, 
1984; Metcalfe et al., 2017; Touroutoglou & Efklides, 2010; Vogl et al., 2020).  

We anticipate that curiosity and confusion are the epistemic emotions most closely linked to 
experiences of intellectual need, though IN is not reduced to students’ experience of these 
emotions, as previously argued. Curiosity is “the complex feeling and cognition accompanying 
the desire to learn what is unknown” (Kang et al., 2009, p. 963) and it arises when a student 
experiences a gap in their knowledge (Loewenstein, 1994; Metcalfe et al., 2017); Litman (2008) 
proposed that epistemic curiosity motivates students to learn new ideas, and, thus, appears to be 
closely related to the role of intellectual need in the DNR framework. Similarly, confusion 
occurs when students are unable to assimilate new information into their cognitive schemas and 
must engage in accommodation (D’Mello et al., 2014); thus, confusion appears to play an 
important role in students’ experiences of intellectual need. However, while curiosity tends to 
uniformly support students’ participation and learning (e.g., Arguel et al., 2019), confusion can 
either support or hinder student engagement (e.g., Lodge et al., 2018), and D’Mello et al. (2014) 
distinguished between what they called “productive” and “unproductive” confusion. 

Solution to Issue #2: Monitoring and Leveraging Epistemic Emotions. To think about 
how an instructor can attend to students’ epistemic emotions, we can organize the students’ 
engagement with an activity through a model of affective dynamics, such as the one proposed by 
D’Mello and Graesser (2012) in Figure 1: 

 

 
Figure 1. D’Mello and Graesser’s (2012) model of affective dynamics 

When students begin working on the instantaneous velocity task, the teacher needs to 
understand the students’ perceptions of their roles in mathematics classrooms—a component of 
their values about mathematical ways of thinking—to help students experience an impasse. 
When the students recognize their inability to compute the instantaneous speed and can articulate 
the reason for this inability, they shift to a state of disequilibrium; as suggested by D’Mello and 
Graesser’s (2012) model, this shift corresponds with epistemic emotions of either curiosity or 
confusion (or both).  

At this point, as the instructor begins to help students begin the process of articulating and 
constructing meanings for the targeted schemas, they need to carefully monitor the students’ 
perception of control over their cognitive activity and the targeted outcomes, and also need to 
remain cognizant of the students’ values to help align the activity with those values. In particular, 
to prevent students from experiencing persistent failure that leads to boredom, the instructor 
needs the students to experience confusion productively by monitoring their experiences of 
failure and providing support to move students back into a productively confused state 
(unfortunately, D’Mello and Graesser (2012) were not able to identify the specific actions that 
stimulated this transition in affective states). 

After working within a state of disequilibrium, the instructor needs to help their students 
resolve their disequilibrium in a way that leads them to, by Harel’s (2008) knowing-knowledge 
linkage principle, generate the target mathematical meanings for instantaneous velocity. This 

25th Annual Conference on Research in Undergraduate Mathematics Education 889



requires that the teacher helps the students articulate the meanings they need to construct, 
thereby enabling them to believe that it is possible to resolve the impasses they are experiencing. 
In the case of instantaneous speed, this could entail helping students articulate the quantities of 
distance and time involved in the situation, focus on the amounts of change of these quantities, 
imagine these quantities as varying and co-varying, and then focus on the relationship between 
the quantities. During this process, the teacher needs to, first, continue to align the class activity 
with the students’ perception of their control over the outcomes of the activity and, second, to 
help align the act of constructing meaning for instantaneous velocity with the students’ values. 

Discussion 
In this paper, we set out to provide theoretical clarifications on key ideas in designing IN-

provoking tasks. In particular, we focused on what IN can be experienced for, what experiencing 
IN should lead to in terms of student actions, and how to guide students through the 
disequilibrium toward the resolution of the problem  

If the concept of intellectual need is to be consistent with its theoretical premises and 
epistemological foundations, students’ experience of it must induce the precise actions that are 
abstracted and internalized to form the substrate of cognitive schemes (i.e., ways of 
understanding). Intellectual need is a need for action–it sets in motion a constructive process by 
provoking the experiential basis of knowledge structures, in a manner consistent with Piaget’s 
notion of equilibration and, crucially, the cognitive mechanisms by which equilibrium is 
established. While affective needs are of value in mathematics education, experiencing them 
alone does not necessarily place students on a trajectory to constructing targeted ways of 
understanding. In this paper we distinguished intellectual need from other types of experiences 
that stimulate interest, provoke curiosity, or foster motivation. We clarified the relation between 
intellectual need and to constructivist epistemology so that mathematics educators might be 
better positioned to engender this productive experience through thoughtful task design and 
implementation. We proposed Thompson’s (2008) notion of conceptual analysis as the essential 
process that positions instructors and curriculum designers to effectively create intellectual need-
provoking tasks. 

Although the research literature includes numerous examples of tasks that are designed to 
provoke intellectual need, there has been little guidance or theoretical framing about how an 
instructor should engage their students after the task has been presented. The disequilibrium that 
results from the stimulation of intellectual need is associated with particular affective states, and 
there is a critical relationship between these states and the students’ activity. The perspective of 
control-value theory allows us to frame this activity to identify and help students manage these 
affective states by focusing on the students’ perceptions of control of their activity and 
coordinating this with the value students place on their activity and its outcomes. In particular, 
by focusing on epistemic emotions can help instructors identify particular affective states and 
their likely antecedents so that the instructor can help students articulate the meanings they need 
to construct, successfully resolve their disequilibrium, and leverage intellectual need to support 
student learning. 
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Making progress in justice, equity, and diversity in post-secondary teaching and learning 
requires systemic change. The development of novice instructor professional knowledge is a 
critical subsystem of the undergraduate mathematics education system. Novices play key roles in 
instruction and have the potential to play key roles in change efforts later in their careers. Yet, 
there is little in the way of theory to support research and development in this area. In other 
fields, professional development that engages novices in building skill at self-sustaining, 
generative change as professionals is the ground in which agency for change is seeded and 
nurtured. We describe two dimensions of professional skills for interacting with ideas and 
people: decentering and interconnecting. In this report, we explore and illustrate the role of 
these dimensions in professional development for novice college mathematics instructors.  
 
Keywords: professional development, novice instructors, TAs, decentering 
 

Research in the undergraduate mathematics education (RUME) community has generated 
findings, materials, and programs that have shaped today’s post-secondary mathematics 
instruction. Changes that leverage this research often occur as a result of efforts by “change 
agents”– people who notice and seize upon opportunities for improvement who work with others 
to enact change. Some things are known about the work and characteristics of change agents in 
undergraduate education (e.g., Froyd et al., 2008; Henderson et al., 2011). However, despite their 
key roles in undergraduate education, much remains to be learned about how someone becomes 
a change agent. The work of the RUME community has advanced the teaching and learning of 
undergraduate mathematics through curricula informed by research, innovations in assessment, 
programs to support instructors and many other things. For such efforts to reach more students, 
we need to ensure that future faculty have the knowledge, skills, and dispositions to be change 
agents and to successfully leverage the RUME work as they initiate and sustain change. 

Twenty-first century approaches in professional learning about college teaching have 
included opportunities for novices to imagine and build purposefully towards future-self goals – 
addressing questions like “How will I define my professional success as an instructor? How will 
I measure that and be accountable for it?” If we also want instructors to consider and answer the 
question, “How will I contribute to innovative change in my professional community?” this 
needs to be a focus of professional learning opportunities we offer. Thus, we need to consider 
how professional learning can support novices to become effective instructors now while also 
positioning them as the next generation of those who act as agents of positive change. 

Take any example where a department seeks to implement a program innovation and 
questions arise: What needs to be happening for new instructors so they can teach in the targeted 
ways? And, later, when a person graduates from Innovative U. and lands a job at Status Quo 
College, how does that person – who is a relative novice in college mathematics instruction and 
departmental politics – initiate and maintain productive exchanges with others to improve 
teaching and learning? The answers to both questions include building social and management 
skills for interacting with structures and power constraints in various ways (Elizondo et al., 
2020). For change that disrupts the academic mathematics status quo, skills must be grounded in 
an understanding of the norms and values of the status quo, how those are different from and 

25th Annual Conference on Research in Undergraduate Mathematics Education 895



 

 

similar to new norms and values (e.g., those anchored in justice and anti-racism), how to enact 
change from the former to the latter, and how to determine the nature of the success of the 
change (and start a new cycle of change based on it).  

Change requires non-linear, multi-dimensional, and context-sensitive efforts. To succeed as a 
change agent, one needs awareness and knowledge about subsystems, understanding and 
anticipation about how those subsystems connect, interact, and influence one another, and skill at 
seizing opportunities to generate new learning from each professional encounter. Creating 
equitable, inclusive mathematics learning opportunities for students requires an analogous set of 
skills and knowledge. As part of a larger effort (Hauk & Speer, forthcoming), this report presents 
two theory-driven dimensions of professional learning and illustrates how they apply to the 
design of professional development about teaching for novice instructors. We argue that these 
dimensions (decentering and interconnecting) serve today’s novice instructors both to be better 
equipped as instructors and to navigate future demands and function as change agents in 
tomorrow’s departments and universities1.   

Decentering as a Professional Skill 
Around the world, mathematics courses and programs in most post-secondary institutions are 

built on an instructor-centered model (PCAST, 2012). This approach has been effectively self-
sustaining for many decades. The practice of lecturing has been passed on from generation to 
generation of college teachers through personal classroom experiences and through graduate 
school training with curricula that preserve lecturing as the status quo. Now, however, it is clear 
that an instructor-centered approach is not universally effective or appropriate (see, e.g., Abell et 
al., 2018; Bressoud et al., 2015; Freeman et al., 2014; Laursen et al., 2014). That is, instructor-
DEcentered methods are needed.  

Research on instructor-decentered approaches has paralleled research about equity in post-
secondary teaching. Both point to the value of student-centered methods. It is worth noting that 
explicitly, at this moment in the educational research and practice communities (and more 
broadly) there is not a well-defined, crisp, and shared definition of equity (Aguirre, et al. 2017; 
Gutiérrez 2012). Beyond “fairness,” equity is evidenced by the absence of disparities: 
membership in a group that has been historically disadvantaged or oppressed is not correlated to 
access to opportunities, attainment of educational outcomes, or achievement of life goals. Our 
use of equity is in the spirit of this definition. 

The apprenticeship of observation is powerful. People tend to teach the way they were taught 
(Lortie, 1975). It is important for novice instructors to experience teaching that models and 
provides touchpoints in their efforts to teach differently (e.g., more equitably). For example, 
professional learning opportunities can be offered in ways that model instructor decentering. 
Thus, novices can refer to how they have recently been taught, in professional development, to 
contrast with the power-culture-driven, instructor-centered experiences that likely make up the 
bulk of their histories as learners. 

 
What is Decentering? 

Successful implementations of the kinds of instructional practices described as equitable call 
for teaching that elicits and utilizes student contributions and student choice (Jacobsen et al. 

 
1 Note: This report is not a primer on how to design professional learning about teaching for novice instructors (for 
that, see, e.g., Bragdon et al., 2017; College Mathematics Instructor Development Source [CoMInDS], 2021; 
Council of Graduate Schools, 2021; Deshler et al., 2015; Saichai & Theisen, 2020 and references therein).  
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2012). The expectation emerging from research and practice is that instructors facilitate 
discussions to which students contribute their thinking and voices. This kind of instructional 
decentering is, at its most basic, the act of seeing from someone else’s point of view and has 
historical roots in the work of Piaget (1955). It entails the instructor engaging with students as a 
participant in interaction, rather than as the center of interaction. 

In decentering, instructional attention is on uncovering, understanding, and expanding on 
what students know and do to include novel, non-standard, and standard mathematical ideas and 
methods (Carlson et al., 2007; Rahman, 2018; Teuscher et al., 2016). Being self-aware and 
facilitating self-aware learning by students are the focus (instead of attention and authority 
vested largely in the instructor). Decentering requires attention to other people as (potentially) 
different from oneself, noticing nuances in similarity and difference between one’s own views  
or experiences and those of others. In its most developed forms, decentered instructors bridge 
across similarities and differences in formulating in-the-moment responses to situations.  

An important step in building skill at noticing how the thinking of students is similar to or 
different from an instructor’s own is creating the opportunity in one’s classroom to hear and see 
student thinking. Decentering depends on a variety of individual instructor factors (e.g., self-
knowledge, goals, orientations, beliefs, psycho-social challenges).  

Novice instructors need to learn how to create, maintain, and manage classroom 
environments where undergraduates are participants in student-centered ways. This includes 
instructors learning about many things from a student-centered perspective, such as content, 
curriculum, and assessment (Bok, 2009), communication and interaction (e.g., related to 
classroom authority or socio-political factors, Gutiérrez, 2009, 2013; Winter & Yackel, 2000), as 
well as how to learn in and from instruction itself (Speer & Hald, 2008). Learning to elicit 
student thinking and learning how to shape instruction based on that thinking is the foundation 
on which generative change is built (Franke et al., 1998). 
 
Development of Decentering Skills 

Professional development can provide opportunities for instructors to build skill in 
decentering, along with other facets of cross- or intercultural competence. There is a 
developmental continuum for decentering: from an ethno-centric view that everyone is like me to 
an ethno-relative view, that any person (including me) is like and unlike every other person in 
identifiable and valuable ways (Bennett, 2004). 

Some common components in professional development create opportunities for instructors 
to experience and learn about decentering (e.g., have novice instructors attempt the mathematics 
tasks from the course and come together to discuss them). Current research and development in 
RUME continues to provide ideas for the professional preparation of novices that include 
opportunities to model decentered instruction, from the CoMInDS collection (2021) to specific 
professional guidance on particular practices (e.g., cooperative learning using group-worthy 
tasks; Reinholz, 2018). We contend that if novices develop and use skills in decentering (and 
interconnecting, discussed next) in their work as instructors of mathematics they will be better 
prepared to leverage those skills in their future work as change agents. 

Interconnecting as a Professional Skill  
While decentering is awareness from within the perspectives of others, interconnecting uses 

meta-awareness to make connections across perspectives and contexts. This can occur at many 
levels and grain sizes. Such linking is essential in developing and nurturing coalitions, an 
essential component of local and systemic change (Kotter, 2012). A mathematics class is a 
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foundational opportunity for coalition. Many other structures and groups rely on and influence it. 
Figure 1 offers one way of seeing the relationships among people and instructional structures.  

RUME reports describe many instructional practices, what happens inside the disk labeled 
INSTRUCTION in Figure 1. Some reports describe content aspects (Figure 1, MATH), others 
cognition by students (individually or jointly, as represented by the arrows in Figure 1). A few 
reports address what happens from the perspective of another layer in Figure 1, the region 
labeled PROFESSIONAL DEVELOPMENT. For those involved in providing professional 
development to new instructors, this report itself is a contribution to the outermost region in 
Figure 1, LEADERSHIP DEVELOPMENT. 

Figure 1. Model of the nested, self-similar systems of learning in mathematics (based on Carroll & Mumme, 2007). 
 

Interconnecting: Examples 
As an example, consider interconnecting rooted in the concept of derivative (MATH in 

Figure 1). If an instructor is aiming to help students learn about the idea of a derivative, 
instructional goals are influenced by what the instructor understands about students’ knowledge 
of slope, ratio, and change. Interconnecting by the instructor involves noticing how students’ 
conceptions may support or constrain the way learning progresses. That is, the instructor 
considers what is happening at the Students ←→ Students node in Figure 1, where the kind of 
thinking brought to mind for students might include m in y = mx + b, previous experience with 
unit rate, experiences that discretize change (e.g., compare slope at point A to slope at point B), 
or treating change as covariational. Instructors develop skill at interconnecting by knowing these 
student conceptions as well as the dynamics of communicating about them in a multi-contributor, 
student-centered, context (the arrows in INSTRUCTION). Instructors also consider and link to 
students’ thinking in selecting formats (e.g., group work on some problems, viewing a pre-class 
video for a topic). Instructors connect across and prioritize the mathematical and contextual 
factors, to decide what is instructionally useful. Novices learn about these interacting 
connections in and from their teaching and through professional development. 
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When someone embarks on providing professional development to support instructors to 
learn to teach, they are taking on the challenge of thinking at another layer out: a meta-meta- 
awareness of connections is required. Providers of professional development need to think about 
how to have novice instructors interact with ideas of mathematics teaching (and each other) in 
ways that will help those instructors think about how to support students to interact productively 
with mathematical ideas (and each other). Continuing the derivative example in the 
PROFESSIONAL DEVELOPMENT region of Figure 1, for the Provider there are additional 
considerations about what instructors will need to know and do if they are to create the desired 
learning opportunities for students. For example, identifying learning goals might occur in 
various professional activities (e.g., as a step in lesson design, or as a provided component in a 
set of curricular materials). Novice instructors also may need opportunities to learn about, have 
practice with, and connect across the mathematics of limit, limit quotient, and derivative along 
with instructional approaches that may be particularly effective (e.g., students working on a 
group-worthy task in which limits, rates, and limits of ratios are compared and contrasted). This, 
too, may occur through various professional learning tasks that are designed for use with novice 
college instructors (e.g., in an interactive activity, or in a teaching guide).  

Also needed by novice instructors– as they notice and structure their understanding of a web 
of interconnections – is guidance about how to orchestrate mathematical and instructional ideas 
while decentering. This includes building knowledge about working in racially, ethnically, and 
linguistically diverse classrooms (e.g., a reading about student funds of knowledge and how to 
leverage those in teaching; González, et al., 2011) as well as creating and maintaining socio-
mathematical and social norms in the classroom (e.g., a professional learning activity about what 
to do the first day of class to begin setting norms). These all make up the “content” of the 
professional development (in Figure 1, this includes the MATH, information about students and 
instructors as well as context knowledge from research and practice about the interaction arrows 
in INSTRUCTION back and forth among MATH, instructor, and students). Also part of the 
information that novice instructors interconnect is the learning about teaching they encounter in 
hallway conversations with colleagues and other informal interactions (Latulippe, 2009).  

In particular, interconnecting includes instructors thinking about students’ thinking about 
mathematics. In an analogous fashion, those who provide professional learning opportunities 
must concern themselves with an additional level of interconnecting: Providers think about how 
instructors are thinking about how students are thinking about mathematics.  

 
Development of Interconnecting Skills 

Like decentering, skill at interconnecting develops from an ethno-centric to ethno-relative 
orientation (Hauk et al., 2015). It may begin in a self-focused denial of differences (e.g., no 
connections are needed since it is only MATH that matters). Further development of skills for 
interconnecting will go through a phase characterized by a tendency to polarize, to focus on 
mathematics as disconnected from human interaction (e.g., there is one best or right way to solve 
every problem). From there, development moves to a search for universals, connections that are 
compressed into a single process, but not multiple interconnected processes (e.g., there are 
“objective” or “mastery based” ways that are universally applicable to assess all students, and 
grades become the essential element of interaction for instructor and student, disconnected from 
students’ mathematical funds of knowledge). With time and intentional development, one can 
learn more about mathematical ideas, contexts, and human interactions and reflect on teaching 
with greater attention to relational details (e.g., learning about implicit bias and suddenly 
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noticing it in every word problem in the text), but how to use this knowledge to improve 
opportunities to learn, classroom climate, and interactions with others remains elusive. At its 
most developed, interconnecting is adaptive— networks of people and their interactions can be 
anticipated (enough) that teaching serves the needs of the people, and networks of people, in and 
outside the room (Hauk et al., 2014).  

Interconnecting is important for change agents because they need to know how people, 
policies, and perspectives function in and across interacting systems (e.g., in and beyond those 
shown in Figure 1). The knowledge from that is extremely valuable when advocating for a 
change in one part of a (sub)system: one can anticipate how change in one place will cause or 
necessitate change in another.  

Data-Driven Interconnecting and Decentering 
It is clear from the variety in approach and the nature of successes in the research and 

practice literature that collecting and examining data for decision-making is valuable (Laursen, 
2019). One method for planning for and examining the success of change that has been used 
effectively in RUME is the four frames or “lenses” model (Bolman & Deal, 1991; Reinholz & 
Apkarian, 2018). This model is one way of describing what is interconnected in change efforts. It 
involves considering the evidence of change in terms of Structures: rules, policies, procedures, 
management; Power: resource allocation, formal and informal seats/sources/sinks of power; 
People: demographics, experiences, needs; Symbols: meaning and culture, rituals and habits, 
stories, sensemaking.  

End-of-term grades are only one form of readily accessible local data (like hearing from only 
one student in the classroom). In taking a systems approach to change, useful data for 
determining need and success are generated in intentional and inclusive ways, from across 
diverse stakeholder groups. Identifying stakeholder groups happens when change agents 
decenter, look outside themselves and the voices of the status quo.  

More can be learned from collecting and analyzing types of data that are largely absent in 
existing reports: instructor and implementation data. Now is the time to interconnect across 
contexts. Examples of how to do that as part of the professional development of novice 
instructors include activities in which novices and/or providers:  

● Gather observational data about the nature of classroom questions and answers 
(American Association for the Advancement of Science, 2013).  

● Data-mine learning management systems for evidence of equitable and inclusive 
instruction (e.g., an audit of time/contributions to discussion fora broken down by student 
demographics, or a review with feedback to instructors of course sites in learning 
management systems using a rubric; Baldwin et al., 2018).  

● Conduct surveys of instructors about practices and instructor interactional experiences of 
teaching – including experiences of racialized or sexualized or gendered interactions (Sue 
et al., 2011), repeat these types of data gathering, analysis, and reporting in and through 
the professional development experiences, where instructors are the learners.  

Some tools for such data collection exist already (e.g., Laursen, 2019). However, next steps 
include moving into data gathering at the broader levels in Figure 1 and a group-level 
decentering that includes identifying and inviting outside experts to support connected 
knowledge growth about each other as thinkers and doers of instruction (Henderson et al., 2011; 
Reinholz, Stone-Johnson, et al., 2020). Such expertise will help programs create professional 
learning opportunities that are informed by research on equitable and just teaching development 
(including ideas learned in other disciplines, e.g., in  biology, Gormally et al., 2016). 
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Generating the Future 
As in any field, organizational change requires a multi-threaded effort across personal 
reflections, development, cycles of professional preparation, implementation, evaluation, 
administrative-level accountability, within and across-institution continuous improvement work, 
and broad policy efforts to support large scale change within and across subsystems (Deszca et 
al., 2019). Although individual humans play key roles in change, some have found it productive 
to view organizational change focused on interaction, foregrounding relationships among people 
as they communicate with each other and interact with organizational structures, symbols, and 
power (Elizondo et al., 2020; Kotter, 2012; Reinholz, Rasmussen, et al., 2020; Slemp et al., 
2021). Students can only benefit from the efforts of the RUME community if people residing in 
mathematics departments can initiate and help sustain organizational change.  

Many members of the undergraduate mathematics community have taken on roles as change 
agents, responding to needs and shaping efforts to improve teaching and learning. There may be 
additional benefits to the community if, in parallel with these efforts, we aim to develop and 
refine theory. The history of mathematics education includes many examples of the productive 
interplay between empirical research and theory development (e.g., studies of problem-solving 
and theory about meta-cognition, studies of teachers and theory about mathematical knowledge 
for teaching). Having additional theory-development around the characteristics, roles, 
knowledge, and skills of effective change agents would certainly be welcomed. That can further 
inform the theory-building efforts we have begun to lay out in this report.  

We have asserted that decentering and interconnecting are key to success as a change agent. 
We based this assertion on examination of what organizational change entails. The research and 
practice communities will likely benefit if these claims are investigated in conjunction with 
organizational change efforts. Parallel efforts to create theory and enact change can lead to the 
accumulation of knowledge which can, in turn, inform the next cycle of efforts.  

It is worth noting that change efforts can fail because people do not know about, or do not 
know to, pay attention to interconnected-ness and the complexity that comes from decentering. 
For example, it can be fatal to a change effort to focus attention on one thing (e.g., “all that is 
needed to reform how this course is taught is changing the textbook” or “student-centered 
instruction will fix the problem” see, e.g., Henderson, 2011). If we design and test ways of 
helping novices develop skill at decentering and interconnecting in their mathematics 
classrooms, that creates a foundation for further design and theory development for analogous 
skills used more broadly to contribute to change efforts in their departments.  

As is true in the broader literature, collaboration by a group of change agents, not all of 
whom are mathematicians, is valuable (Laursen & Austin, 2020; McShannon & Hynes, 2005; 
Saichai & Theisen, 2020; Theobald et al., 2020). A corollary of acquiring skill at decentering is 
that it prepares one to be a participant in a collective effort (e.g., with a classroom full of 
students, with a department full of colleagues, with a cross-professions team). With attention to 
decentering and interconnecting, the next generation of change agents will be equipped to 
participate in the collective action required for future change.   
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Balancing the Unbalanceable: A Theoretical Perspective for Teaching and Learning in 
Undergraduate Mathematics Classrooms 

 
Candice M. Quinn 

University of North Alabama 
 
I propose a theoretical model for teaching, learning, and assessing mathematics learning in the 
undergraduate mathematics classroom combining participatory and acquisition views of 
learning. The model, Balanced Learning Needs Framework, was created from an organization of 
the 10 learning needs proposed by Sfard in 2003. I align the model with different forms of 
classroom instructional techniques used in an undergraduate Calculus I classroom. Included 
with the organization of the learning needs, this conceptualization has the potential to impact 
both teaching and assessment methods in undergraduate mathematics classrooms. 
 
Keywords: participatory learning, acquisition learning, Calculus I, assessment 
 

Many theories and frameworks exist to help researchers try to understand the phenomena 
of teaching, learning, and assessment within mathematics education (Radmehr & Drake, 2019). 
Dubinsky and McDonald (2001) stated how: “models and theories in mathematics education can 
support prediction, have explanatory power, be applicable to a broad range of phenomena, help 
organize one’s thinking about complex, interrelated phenomena, serve as a tool for analyzing 
data…” (p.275). In this paper I provide a framework designed for a larger study that was used to 
investigate learning in an undergraduate Calculus I course. This proposed framework helped to 
organize the researcher’s thinking about learning (Dubinsky & McDonald, 2001) in both social 
and individual classroom. Two main learning theories guided the construction of the proposed 
framework: situated and constructivist. Together, the theories and framework guided each aspect 
of construction of the Calculus course: setup, course design, classroom instruction, and 
assessment of learning.  

 
Theoretical Background 

Sfard (1998) metaphorically described students' development of knowledge under 
situated learning theory as participatory and under constructivist learning theory as acquisition. I 
consider a combination of the two learning theories (using their metaphors) along a continuum 
(Figure 1). This combination of situated theory as participatory learning and constructivist theory 
as acquisition learning is the theoretical foundation for proposed framework. Vygotsky’s 
sociocultural view of learning is placed in the middle of the continuum. Although this view of 
learning does place importance on the social process of learning, Vygotsky still considered the 
internalization of knowledge in the learner’s mind (Sfard, 2003).   

While creating the framework, I reflected on both metaphors for learning, and considered 
knowledge as something that is both acquired in the individual learner's mind and co-created 
from participation within a community of practice. The largest difference between the two 
perspectives is regarding the emphasis and need of social interaction and where knowledge is 
constructed (i.e., in the mind of the individual learner or in the community). The framework is 
created with the notion of holistic learning where an individual both acquires knowledge 
(cognitive-acquisition perspective; Cobb & Bowers, 1999; Sfard, 1998) and constructs 
knowledge through participation within a community of practice (situated-participatory 
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perspective; Cobb & Bowers, 1999; Sfard, 1998; Lave & Wenger, 1991).

 
Figure 1. Participatory-acquisition Learning Continuum. 

Alignment of Learning Needs  
Expanding upon Sfard’s (2003) presentation of the 10 needs of mathematics learners, I 

constructed an organized model to represent these learning needs (LN) within the situated 
(participatory) and constructivist (acquisition) learning theories. This organization is a 
representation of how the LN can be systematized to enhance teaching and learning for 
undergraduate mathematics, as well as focusing on equitable assessments of learning. Each of 
the 10 LN corresponds to knowledge creation either within the mind of the learner or within the 
community of learners. 

We can align the respective LN with the ideas of learning and knowledge to either an 
individual unit (i.e., acquisition) or a group unit (i.e., participatory). That is, each need may be 
internally driven (i.e., for internal knowledge construction) or socially driven (i.e., for 
participation within a community), or a combination of both. The majority of the needs as 
defined by Sfard (2003) are primarily driven either only by one or the other. I classify the LN 
into three main categories: internal needs, social needs, combination needs. 

 
Internal Needs  

There are four internal LN that each student has in order to construct mathematical 
knowledge: a need for meaning, structure, repetitive action, and difficulty. Constructivist views 
of learning attend to the internal needs of the learner and consider knowledge creation within the 
mind of the individual learner. Either Piagetian or Vygotskian, or both, perspectives of 
constructivism influence each of these needs.  

All learners have this need to make meaning of the world around them and communicate 
their meaning of the world to others (Bruner, 1997; Sfard, 2003; Vygotsky, 1962). The creation 
of meaning is an internal process used by all learners to understand and make sense of the world 
around them (Piaget, 1953; Sfard, 2003). This view of meaning as internally constructing 
knowledge about the world around them and assessing one’s internally constructed knowledge 
aligns with the acquisition view of learning. 

The need for structure incorporates both the Piagetian notion of reorganizing mental 
schemes when acquiring new information and Vygotsky’s hierarchical organization of new 
concepts (Bruner, 1997; Sfard, 2003). The need for structure incorporates what students already 
know (i.e., previous or prerequisite mathematical knowledge) and connects this knowledge with 
new ideas and concepts (Sfard, 2003). This view of structure is an extension of the need for 
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meaning and builds on one’s internally constructed knowledge, and therefore also aligns with the 
acquisition view of learning. 

Through the process of repetitive action with mathematical ideas learners can reorganize 
their internalized knowledge (i.e., structure) to add the new mathematical object into their current 
knowledge schema (Piaget, 1953). This view of repetitive action is an extension of the need for 
structure, as a way of organizing new meaning, and rectifying one’s understanding (Sfard, 2003) 
which considers knowledge to be something that is internally constructed. Therefore, repetitive 
action aligns with the acquisition view of learning. 

The final internal need is the need for difficulty. Sfard (2003) stated that “true learning 
implies difficulties” (p. 366), what these difficulties are, however, is not the same for all learners. 
Therefore, learning requires a level of difficulty unique to each learner depending on previous 
constructed mental schema (Piaget, 1953). This corresponds to Vygotsky’s Zone of Proximal 
Development (ZPD) in which each student has already built a certain level of ability and learning 
occurs inside of their ZPD with assistance (Vygotsky, 1978). This view of difficulty incorporates 
one’s internally constructed knowledge and cognitive abilities, which aligns with the acquisition 
view of learning.  
 
Social Needs 

There are four social LN that each student has in order to construct mathematical 
knowledge: a need for social interaction, verbal-symbolic interaction, well-defined discourse, 
and sense of belonging. As with the internal LN, the social needs may be met with different 
means for each learner, and each are further described below. 

Social interaction can be broadly defined as an exchange of ideas between an individual 
and another person via written or verbal communication (Sfard, 2003). Vygotsky (1962) 
suggested that social interaction is an essential part of learning especially for one to obtain a 
conceptual understanding of objects or ideas. Social interactions provide the space for students 
to challenge their preexisting notions about mathematical ideas. Lave and Wenger (1991) 
suggested that social interaction is essential for one to show knowing by doing within a 
community (i.e., situated learning theory). Therefore, the need for social interaction aligns with 
the participatory view of learning. 

Social interaction and being able to communicate one’s ideas and knowledge require 
learners to use both verbal (i.e., talking and listening) and symbolic (i.e., reading and writing) 
representations of knowledge and thoughts (Sfard, 2003). This idea that knowing comes from 
having a word or symbol is grounded in discursive psychology (e.g., Harre & Gillet, 1995). Sfard 
(2003) described the importance of either a verbal or symbolic use to give meaning as “one just 
cannot construct the meaning of a concept before introducing a word or a symbol with which one 
can think about that concept. The sense of understanding [emphasis added] then develops 
through the use of the word or symbol” (p. 374). Therefore, verbal and symbolic representations 
are a need of learning mathematics because these representations provide the tools for social 
interactions to occur, and aligns with the participatory view of learning. 

The need for well-defined discourse follows from the needs for social, verbal, and 
symbolic interactionism. Discourse in mathematics becomes well defined when 
sociomathematical norms centered around what is considered mathematical argumentation are 
established in the classroom (Yackel & Cobb, 1996). Engagement in mathematical 
argumentation requires students to have intellectual autonomy (Yackel & Cobb, 1996). 
Specifically, students would need to understand their own “mathematical capabilities” (Yackel & 
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Cobb, 1996, p. 473) as they judge and decide what constitutes a mathematical argument of 
another student. This notion of discourse in the classroom among students includes both social 
interaction and the use of verbal or symbolic representations of knowledge, and aligns with the 
participatory view of learning. 

A sense of belonging is a human need to feel valued as a member of a community. A 
student’s sense of belonging can be defined as their “sense of being accepted, valued, included, 
and encouraged by others (teachers and peers) in the academic classroom setting and of feeling 
oneself to be an important part of the life and activity of the class” (Goodenow, 1993, p. 25). 
Ultimately, if students do not feel they belong in a field of study, classroom, or group they are 
less likely to continue or engage with that group (Cheryan et al., 2009; Strayhorn, 2019), and 
thus makes this is an important need that must be addressed for all mathematics learners (Sfard, 
2003). This need to belong aligns with the participatory view of learning because it includes a 
community or members outside of oneself. 

 
Combination (Internal and/or Social) Needs 

The last two LN either fall in the middle of the proposed continuum between (i.e., 
significance and relevance) or span (i.e., balance) both the participatory and acquisition 
metaphors for learning. First, significance and relevance as one LN is placed in the middle of the 
continuum. This need is what can drive the motivation for the learner (Sfard, 2003). If we 
consider the ideas from Piaget where new knowledge can only grow out of existing knowledge, 
then learners must internalize the significance of what they are learning as they reorganize their 
mental schemes (Sfard, 2003). If we consider instead the importance of social interaction in 
learning, the significance and relevance of new knowledge can come through social interactions 
and participation within a community (Lave & Wenger, 1991). Because the significance and 
relevance can be formed/made either internally by one’s own drives and thoughts, or influenced 
by one’s peers in their learning community, this LN is placed in the between the internal and 
social needs.   

The last LN may seem obvious now and yet may be the hardest one to meet: the need for 
balance. This essential LN both corresponds to the requirement for the learning environment to 
maintain a balance between the participatory and acquisition metaphors for learning; as well as 
attempting to balance the other nine LN for each student. A further description of how the 
balance need is deciphered and represented is provided in the following section.  

 
Balanced Learning Needs Framework 

The framework presented (Figure 2) arranges the 10 LN along a continuum of two main 
metaphors for learning (i.e., participation and acquisition). This continuum is represented as a 
balance scale, where the balance need is represented as the lever, holding the remaining nine 
needs, placed upon a fulcrum that can pivot between the two learning metaphors.  I chose this 
representation to demonstrate the importance of both social and individual LN. The idea is that if 
only one side of the balance is met in the learning environment, then learning is hindered for the 
students. The arrangement of the needs toward the participatory or acquisition side was done 
meaningfully; the vertical placement, however, is not meant to imply any order among those 
needs placed on each side. The placement on the left (or right) only implies these constructs lean 
toward the participatory metaphor (or acquisition metaphor) for learning. 
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The author posits that the Balanced Learning Needs (BLN) framework presented here is a 
multidimensional construct with interrelated elements that impact student learning in either 
social or lecture settings. The framework can be utilized by academics to reflect upon the 
learning environment within their undergraduate mathematics courses and the implications for 
instructional and assessment practice. In the next section, I provide an example of how different 
classroom instructional methods from a Calculus I course that align with each learning need.   
 

BLN Framework with Classroom Instruction 
Sfard (2003) suggested “to meet learners’ multifarious needs, the pedagogy itself must be 

variegated and rich in possibilities. The learning individual is a complex creature with many 
needs that must all be satisfied if the learning is to be successful” (p. 384). Educators must help 
create learning environments that allow students the opportunity to meet each need through 
equitable instruction (Sfard, 2003). Therefore, equitable instruction refers to the instructional 
techniques used to support the development of the 10 needs for all students and promote a 
balance between the needs, the metaphors of learning, and the students. For instance, 
collaborative group work is an equitable instructional practice that, if implemented with fidelity, 
students are given opportunities to explain their thinking and justify their mathematics using both 
verbal and written methods (Perry, 2018).  

Often, it is difficult to connect theories of teaching and learning with the actual 
implementation of classroom activities and assessments. In Table 1, I provide an outline of how 
classroom activities and instructional practices meet each of the LN in the BLN framework. The 
course components described in Table 1 were implemented in a Calculus I classroom that also 
included individual and group testing methods. I provide a rationale for the assessment methods 
in the next section. Note, in the table below, lecture refers to instructor-centered classroom 
moves (i.e., instructor reviewing prerequisite material or concepts), without student-to-student 
engagement. Additionally, lecture may include whole class discussions and clarifications of 
mathematical language and symbols. 

Figure 2. Balanced Learning Needs Framework 
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Table 1. Learning Needs Matched to Course Instructional Techniques. 

Learning Need Course 
Component 

Description of how the component of the course was designed in an 
attempt to meet each learning need 

Meaning 
(Internal) 

Lecture and 
web-based 
homework 

Allows students to work through problems and build their own internal 
meaning. 

Structure 
(Internal) 

Lecture and 
web-based 
homework 

During lectures, instructor attempts to build structure in lecture by 
identifying connecting concepts from student’s previous knowledge. 
Homework allows students to extend and organize new information to 
their previous knowledge. 

Repetitive 
Action 
(Internal) 

Lecture and 
web-based 
homework 

Individual practice time in lecture and the homework time on the 
computer allow the students multiple problems to practice.  

Difficulty 
(Internal) 

Lecture and 
web-based 
homework 

Instructor designs lecture and homework problems with a certain level 
of difficulty to allow the students to productively struggle when 
building their knowledge.  

Social 
Interaction 
(Social) 

Group Setting 
and web-based 
homework 

Student-centered activities during group work require students to talk 
through problems and social interact to complete the learning activity. 
Students could choose to either work alone or with a peer on the 
homework allowing for more possible time for social interaction.  

Verbal and 
Symbolic 
(Social) 

Lecture 
and  
Group Setting  
 

During lecture, after students initially explored a concept during group 
work, instructor provides the students with the formal terminology and 
symbolic representations of the concepts. During group work, students 
needed to communicate with one another using both verbal and 
symbolic representations for the mathematics.  

Well-defined 
Discourse 
(Social)  

Lecture 
and  
Group Setting  

During lecture, the instructor sets the sociomathematical norms and 
models mathematical discourse that is needed for the students to 
engage in mathematical argumentation. During group work, the 
students establish the group's norms and engage in discourse. 

Sense of 
Belonging 
(Social) 

Lecture 
and  
Group Setting  

During the lectures, instructor attempts to encourage all students to 
participate in whole class discussions and feel that they could share 
any idea, thought, or question. During group work, instructor monitors 
each group to ensure each student felt comfortable: (1) with their group 
members, (2) to voice their ideas, and (3) encouraged to share their 
ideas with their group.  

Significance 
and Relevance 
(Combination) 

Lecture, Group 
Setting, and 
web-based 
homework 

Because this need is driven by the learner and can be met either while 
working alone or in a group setting, this need can be met for any 
learner within any one or all of the course components. 

Balance 
(Combination) 

The course as a 
whole 

The instructor attempts to maintain balance by providing equal 
opportunity for each need to be met in their designed course 
component.  
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An instructors view of where knowledge is constructed largely impacts the environment 
of the classroom and how information is presented to students. Although student-centered 
instruction has been shown to increase student learning outcomes (e.g., Bressoud, 2011; Freeman 
et. al, 2014), traditional lecture is still a prominent form of instruction in undergraduate calculus 
courses (Bressoud et al., 2015). Note in the table above, both lecture and student-centered 
activities were used in the classroom as instructional techniques. As both aspects of classroom 
instruction can help students construct their mathematical knowledge. Additionally, web-based 
homework was included as an instructional technique, as there has been a large increase in the 
use of web-based homework systems in undergraduate mathematics education (Serhan, 2019).  
 

Discussion 
The creation of the BLN framework came from both anecdotal and empirical evidence 

from students’ formative and summative assessments in Calculus I classrooms. Many tests in a 
mathematics classroom assess what is “easy” to measure and not what is “worth” measuring 
(National Research Council, 1993), especially at the undergraduate level. Consider the following 
four main purposes of assessments: an individual student’s proficiency of the subject matter in 
knowledge and skills; an individual student’s performance after working within a group; group 
effectiveness and productivity; and students’ interpersonal skills (Webb, 1995). In mathematics 
classrooms, however, students are usually formally tested only on individual expertise of the 
subject matter knowledge. The testing of individual knowledge and skills helps perpetuate the 
competitive nature of learning mathematics. Although competition can also be a motivation for 
learning, many women in mathematically intensive areas of study can feel isolated in 
competitively focused environments. Therefore, if a learning environment is created with an 
attempt to balance the LN of each student using the BLN framework, then a shift in assessment 
also needs to be considered. For instance, increased use of student-centered teaching strategies 
creates a mismatch between the learning and assessing contexts: students are asked to work in 
groups to learn together cooperatively, but are tested individually and potentially competitively. 
If we consider assessing knowledge in the space it is constructed (i.e., assessing the constructed 
knowledge on the lever at both sides of the fulcrum) then group testing may be a necessary 
addition to undergraduate mathematics courses.  
 

Limitations and Future Research 
I recognize that the proposed BLN framework being enacted in a classroom might differ 

depending on the pedagogical beliefs of the instructor. The framework was created from the 
perspective of one researcher, and still requires further empirical testing and validation. I have 
begun to explore this framework on the social side using group testing environments. 
Preliminary results did indicate how a lowered sense of belonging for female students impacted 
group performance on a group exam (Quinn, 2021). That is, their sense of belonging decreased 
and they underperformed in the group setting. Additionally, measuring the needs in a 
collaborative learning environment verses traditional lecture environments may help to show the 
balance needed between the pedagogy and learning environments in the classroom to help all 
students learn. Future testing of the framework will include individual and group testing methods 
to measure the internally constructed knowledge (i.e., individual exams) and socially constructed 
knowledge (i.e., group performance).  
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Building Instructional Capacity Across Difference: Analyzing Transdisciplinary Discourse in a
Faculty Learning Community focused on Geometry for Teachers Courses

Carolyn Hetrick Patricio Herbst
University of Michigan University of Michigan

Mike Ion Amanda Milewski
University of Michigan University of Michigan

In response to enduring methodological tensions in analyzing collaborative discourse, we detail
an assemblage of argumentation analytic methods that can support research about faculty
learning communities interacting across substantive differences. Drawing on our research with a
cross-institutional faculty online learning community, we use data to show how theories from
discourse analysis, systemic functional linguistics, and argumentation modeling can be
operationalized to support researchers in brooking methodological tensions, including framing
argumentation as the topic of or a resource for investigation and considerations of collaborative
discourse as both process and content. Our methodological findings illustrate an example of this
operationalization, highlighting analysis of transdisciplinary, collaborative discourse in a
community composed of instructors of college geometry courses required for pre-service
teachers. We share possible uses for this methodological approach vis-a-vis research about the
professional work of undergraduate mathematics education and pre-service teacher preparation.

Keywords: Geometry, Argumentation, Professional Development

In explaining the exigencies of continued research about discourse in mathematics education,
Sfard (2015) argued that researchers ought to investigate communication not merely as a means
for learning, but as “the centerpiece of the story—the very object of learning” (p. 249). Such is
our interest in faculty members’ collaboration around instructional improvement, in their
discourse is a product of their collaboration. However, as Sfard (2014) and others have detailed
extensively, research about discourse in mathematics education is theoretically and
methodologically diverse, and so does not rely on a common set of assumptions, conceptual
models, or analytical tools (Niss, 2007; Ryve, 2011). In our own research with a faculty online
learning community (FOLC) of college mathematics instructors, we encountered the need for
methodological resources to support analysis of instructors’ discourse—specifically, methods
that would align with our goal of understanding the nature of the arguments among a diverse
community of practitioners. This need is not unique to our research team. In an extensive review
of research about instructors’ collaborative discourse, Lefstein et al. (2020) found that “the field
would benefit from greater coherence between theoretical perspectives and research designs” (p.
11). In mathematics education research, we see evidence of such coherence from scholars using
argumentation theories and models to analyze classroom discourse (see, e.g., Conner et al., 2022)
and teachers’ knowledge and beliefs (see, e.g., Nardi et al., 2012). In turn, our methodological
approach contributes careful consideration and practical examples of analyzing argumentation in
undergraduate mathematics instructors’ collegial discourse.

In this paper, we detail a qualitative methodological approach that supports the investigation
of undergraduate mathematics instructors’ cross-disciplinary knowledge resources—including
synthetic geometry knowledge and mathematical knowledge for teaching geometry. We
demonstrate this approach in the context of analyzing faculty members’ collaborative discourse
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geared toward the development of a curricular resource for instructors of college geometry
courses required for pre-service secondary mathematics teachers. With attention to relevant
methodological disputes, we illustrate how an assemblage of social semiotic methods—guided
by Toulmin’s (2003) and Gilbert’s (1997) argumentation models—can support analysis of
instructors’ collaborative discourse across disciplinary and institutional differences.

Relation to the Literature: Argumentation Analysis in Mathematics Education
Discourse analytic research in mathematics education commonly adopts a fundamentally

social constructivist stance towards human thought and knowledge (Sfard et al., 2001). That is,
researchers assume that knowledge is socially and culturally, rather than individually,
constructed; is dynamic rather than static; and is inherently contextual (Palincsar, 1998, p. 354).
Unlike formal logic-based argumentation models, informal and quasi-logical argumentation
models and theories involve inductive or diffuse disputes in which participants can “explore
positions flexibly” (Nussbaum, 2008, p. 349) and in which different “ways of representing the
world” can become “premises” supporting (a potential plurality of) conclusions (Fairclough &
Fairclough, 2012, p. 86-87). In the data we share from our study with a FOLC, mathematics
instructors’ interactions are discursive activities situated in their development of a curricular
resource. In many ways, the group’s discourse represents their efforts to build a plane while they
fly it (so to speak)—with the destination being instructional improvement. A review of research
shows methodological challenges when conceptual fidelity requires researchers to consider this
kind of collaborative discourse in which argumentation is more exploratory in nature.

Taylor (2001) named key tensions that researchers face in discourse analysis work: (1)
investigating discourse as the topic of study versus analyzing discourse as a means of (or
resource for) investigating something else and (2) fore-fronting the process or content of
discourse. Conceptualizing discourse as process means focusing on the interactivity of discourse,
including questioning the functions or effects of talk. In contrast, conceptualizing discourse as
content typically focuses on the recurrence of themes, ideas, or other elements in the corpus of
text. While these tensions exist across discourse analytic approaches, we identified how they are
instantiated in argumentation analyses related to mathematics education research and research
about educators’ collaborative discourse.

Mathematics education research that analyzes argumentation often focuses on deliberate
classroom interactions, such as patterns of teacher and student participation in formal (logical)
argumentation. Such scholarship often frames argumentation as the topic of study. For instance,
Forman et al. (1998) described their aims in analyzing transcriptions from a mathematics lesson
as “understanding …the socialization of argumentation in her mathematics classroom…[and] to
provide teachers and teacher educators with a detailed picture of argumentation in this classroom
(p. 529). We also found several examples of researchers studying students’ argumentation in the
context of proof activities, illustrating further scholarly focus on argument as the main topic of
investigation (see Harel & Sowder, 1998; Knipping, 2003; Rodd, 2000; Weber & Alcock, 2005).
Still, many of these same researchers (and others) have related their findings to other
phenomena, suggesting argumentation is a resource for engaging concepts relevant to social
constructionist notions of learning. For instance, Krummheuer (2007) analyzed students’
argumentation and theorized that their contributions reflected their learning autonomy.

Research about teachers’ professional knowledge and learning communities has used
argumentation as a resource to investigate other educational phenomena—most notably,
teachers’ beliefs, values, and knowledge (e.g., Conner & Singletary, 2021). Scholarship like this
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has demonstrated the need for researchers to analyze argumentation as both topic and resource.
For instance, Nardi et al. (2012) showed that teachers’ arguments could be understood in terms
of mathematical accuracy and other professional concerns (including pedagogical, curricular, and
personal considerations).

Mathematics education research in our review often elided distinctions between
argumentation as content and process. We posit that the mathematical nature of logical
argumentation and the cultural diffusion of mathematical thought into more popular and informal
modes of argumentation (Keitel, 2006) mean that, in mathematics education research, the process
and content of argumentation can both be objects of study vis-a-vis the same phenomenon (e.g.,
students’ proving work in Hollebrands et al., 2010). Similarly, social constructionist frameworks
can complicate distinctions between the content and process of argumentation. Researchers who
have investigated the quality of collaborative discourse as a matter of process as much as content
have faced this challenge (Lefstein et al., 2020). For instance, scholars noted that facilitators can
help provide the content of expertise (Horn & Kane, 2015) and facilitate social processes (Kintz
et al., 2015). We conclude that field-specific conceptions of mathematics and learning must
inform these kinds of methodological distinctions.

Conceptual Framework & Operating Theories
Theoretical underpinnings of our research guide our attention to how and why undergraduate

mathematics instructors draw on diverse knowledge resources to engage in collaborative
argumentation. We discuss our study, including the community, its members, and its formation,
in this report’s research methodology section. We focus on the theories and models of
argumentation we have operationalized to facilitate analysis premised on treating discourse as
both topic and resource and content and process. In particular, we discuss Toulmin’s (2003)
six-part model of argumentation and Gilbert’s (1997) theory of coalescent argumentation.

Toulmin (2001) averred that analyzing argumentation should balance attention to the social
situation of the argument and attention to its artifacts (i.e., texts). Gilbert (1997) wrote that “we
need to shift the focus…from the artifacts that happen to be chosen for communicative purposes
to the situation in which those artifacts function as a component” (p. 46). In both views,
analyzing argumentation involves the particularities of the situation, including participants’
motivations, goals, and positioned relationships. In bringing these two theories together, we do
not want to reduce Toulmin’s and Gilbert’s robust bodies of work to narrow facets or conflate
shared theoretical implications with common theoretical assumptions. Instead, we consider how
their theories complement each other—allowing for dual-attention to argumentation as both (a)
topic and resource and (b) content and process.

Toulmin’s model includes six parts: claim (conclusion), data (evidence or grounds for the
claim), warrants (justifications explaining the relationship between the data and the claims),
backings (beliefs or evidence underlying warrants’ logic), qualifier (claim’s degree of certainty),
and rebuttals (conditions that would make the claim untenable). Not all arguments fit this
framework, as others have noted (Ellis, 2015; Schwarz, 2009). Still, as Inglis et al. (2007) wrote,
Toulmin’s framework is “less concerned with the logical validity of an argument, and more
worried about the semantic content and structure in which it fits” (p. 4). That is, the Toulmin
framework is useful for decomposing everyday reasoning, even if partially. On the other hand,
coalescent argumentation captures how participants may join their justifications to achieve
collaborative aims. Of note, Gilbert’s theory directs attention to multi-modal, goal-oriented, and
position-based argumentation (Gilbert, 1994; 1997; Godden, 2011)—a conceptualization
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compatible with Toulmin’s larger theory of argumentation. Extending Toulmin-esque theories of
informal argumentation, Gilbert suggested that models of argumentation could include warrants
of varying sources. Warrants from other sources (what Gilbert calls “multi-modal” participation),
include the emotional, the visceral (e.g., “That’s a sensitive subject for me”), and the kisceral1

(e.g., “It strikes me as the right thing to do”). Attention to multiple modes increases possibilities
for coalescence (e.g., two participants may not agree on the logical validity of a claim, but they
might find coalescence around a claim for which one finds logical warrant and the other finds
emotional warrant).  Gilbert (1997) also theorized that people engage in argumentation with
multiple goals, including task goals and face goals (see Gilbert, p. 67-68). Thus, we understand
resolution may be oriented toward a shared aim (e.g., the development of a curricular resource)
and that participants have various other goals and priorities (e.g., maintaining relationships).

Engaging in participants’ complex positions is a key to using the tools of coalescent
argumentation (Gilbert, 1997). So, beyond modeling individual micro-arguments, coalescent
argumentation can help us understand how participants relate micro-arguments to their diverse
knowledge resources, institutional contexts, and sustained community engagement. We draw on
Toulmin’s model to support investigation of the topic and content of FOLC members’ multiple
arguments. When argumentation does not resolve in a single conclusion or involves more diffuse
discursive engagement with elements of argumentation, we draw on Gilbert’s (1997) theory of
coalescent argumentation. Based primarily on these two theories, we developed an approach to
support our analysis of participants’ micro-arguments (argumentation as topic and content) and
situating those micro-arguments in disciplinary, institutional, and community-specific contexts
and relationships (argumentation as resource and process). This approach allows us to analyze
participants’ multiple, dynamic, and sometimes contradictory or unrelated positions and to
understand a mode of argumentation in which members of the FOLC neither invalidate
participants’ starting positions nor disengagement from reasoning together. In our methods and
results sections, we detail how we operationalized the theory of coalescent argumentation to
interpret argumentation that initially included two oppositional positions—and out of which a
third position emerged and coalesced them without invalidating their logic.

Research Methodology
Our research occurs in the context of an FOLC that focuses on “Geometry for Teachers”

(GeT) courses (i.e., college geometry courses required for prospective secondary mathematics
teachers). Within the FOLC, 15 GeT instructors formed a working group to discuss student
knowledge outcomes. Working group members’ exchanges have included argumentation
concerned with the state of the American college geometry course, which Grover and Connor
(2000) had identified as having a “wide diversity” of course elements and a lack of consistent
curriculum or instruction across institutions (p. 47).

While GeT courses are typically taught out of mathematics departments, these courses are
usually taught by mathematicians or mathematics educators. The 15 members of the FOLC
working group are a balance of instructors who identify as either mathematicians or mathematics
educators. Some GeT courses are exclusively taken by future teachers, while others are electives

1  Gilbert (1994) defined the kisceral mode as a “the mode of communication that relies on the intuitive, the
imaginative, the religious, the spiritual, and the mystical” (p. 10). People often draw upon kisceral reasons in their
everyday argumentation, and Gilbert noted (2011) that kisceral experiences can often be recast as strictly rational.
Elaborating on the kisceral mode of argumentation, Gilbert (2011) gave the example of Euclid’s Fifth postulate as a
subject of knowledge that has often elicited “a feeling about what was right, what made sense, and what fit” (2011,
p. 164).

25th Annual Conference on Research in Undergraduate Mathematics Education 918



for mathematics majors. In some cases, the GeT course is the only one that covers geometry
content. Unlike many other college mathematics courses (e.g., Calculus), there is no broad
consensus about what should be included in a GeT course, as there are many different types of
GeT courses (Grover & Connor, 2000; Venema et al., 2015). To improve secondary geometry
instruction, the FOLC working group realized it would be useful to identify a set of essential
student learning objectives (SLOs, hereafter) for inclusion in GeT courses. Essential means the
identifying content knowledge that all prospective secondary geometry teachers should learn in
the course. They created this list of SLOs to help other GeT course instructors, especially new
ones. The working group met monthly for the first year and a half and biweekly for the past six
months to develop, elaborate, and steward the SLOs. The instructors’ work is framed by their
shared commitment to developing consensus—and SLOs that reflect that consensus—while
navigating significant differences in their preparations, institutional and departmental affiliations,
and disciplinary orientations. Our study of this group’s work aims to understand the professional
reasoning that occurs across such a situational landscape.

Results: Operationalizing a Methodological Approach
In this section, we show how a methodological approach drawing on both Toulmin and

Gilbert provides a basis for conducting argumentation analysis without a single conclusion and
towards a common goal. The analytical process has two major parts: (1) modeling
micro-arguments and (2) mapping and analyzing position interactions, including coalescence.

Modeling Components of Micro-Arguments
One of the primary goals of the FOLC’s working group has been to write SLO narratives that

are detailed enough for GeT instructors outside the FOLC to use. The process of drafting these
narratives starts with a subgroup of two to three people writing an initial draft narrative for each
SLO and bringing it to the whole group for discussion and revision; this process repeats with the
second draft and so on. The data in this section comes from a one-hour whole group meeting in
March 2021, where the group reviewed a revised draft of the narrative of an SLO devoted to the
role of definitions in mathematical discourse. As context: In a previous meeting about the first
draft of the narrative, there had been a lively discussion about what constitutes non-Euclidean
geometry, and whether they needed to define Euclidean and non-Euclidean geometry for their
readers—as they themselves had varying definitions of these two types of geometries. Our
example highlights exchanges between three participants: Miriam2, Royce, and Michael. Over
the course of the discussion, Miriam, Royce, and Michael engage in argumentation around issues
related to teaching the nature of definitions in GeT courses.

To analyze the interactions and relationships between the arguments in the meeting(s), we
first applied Toulmin’s (2003) extended model of argumentation to meeting transcripts. We
coded participants’ turns of talk to identify claims (i.e., any conclusions they offered). Then, we
coded turns of talk for contributions to arguments in service of a claim (or counter-claim). Each
claim and its related elements (e.g., data, backing) represented a micro-argument that was
putatively connected to the arc of the group’s inquiry. Because we coded transcripts of verbal
conversations, this process also involved looking for linguistic indicators of argumentation (e.g.,
“because”), including the use of modal qualifiers (e.g., “probably”). One example
micro-argument consisted of the following elements, made by a participant called Miriam:
(claim) the SLO narrative text uses too many examples of non-Euclidean geometry; (data)

2 Pseudonyms are used for the participants in the study.
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examples from the SLO text; (qualifier) the issue is context-specific, given the group’s aims in
writing the SLOs; (warrants) explaining that too many non-Euclidean examples might seem to
promote a non-Euclidean approach to the course; and, finally, (backings) citing twice that she
feels worried (a kisceral justification) and that her GeT course would show the need for the text
to be less weighted toward non-Euclidean examples (a logical justification).

While completing the Toulmin (2003) diagramming of the transcript data helped us map the
(quasi-)logic of the micro-argumentation, we also wanted to understand connections to the
group’s larger processes and individual and shared contexts for their work. We understood the
group as sharing the goal of developing the SLOs. Gilbert (1997) detailed coalescent
argumentation beginning from identified opposing sides (e.g., pro, con) of an “avowed
disagreement” (p. 104). Thus, we identified disagreements participants had in direct relation to
the SLO narrative, allowing us to thematically group elements of micro-arguments according to
their indicated positions vis-a-vis a common dispute. Through this analysis, we identified three
positions (i.e., thematic clusters of arguments): (1) the SLO should use examples of Euclidean
geometry; (2) the SLO should use examples of non-Euclidean geometry; and (3) the SLO should
explain the relevance of teaching the nature of definitions to pre-service teachers.

Mapping & Analyzing Position Interactions, Including Coalescence
In Gilbert’s (1997) theory of coalescent argumentation, argumentation is not necessarily

dialectical, because dialectical exchanges resolve in affirming the validity of some arguments
and the invalidity of others. Toulmin’s (2003) model of argumentation is well-suited for
representing more dialectical exchanges, including collective participation (Krummheuer, 2007;
Nardi et al., 2012). Diagramming micro-arguments illuminates participants’ practical reasoning.
Analyzing coalescence across the arguments illuminates the multi-modal rationales disparately
maintained by various participants and that ultimately facilitate consensus. Figure 1 illustrates
three parts of the argumentation occurring between Miriam, Royce, and Michael.

Figure 1. Modeling Phases of Argumentation Leading Toward Coalescence
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Position 1 is constituted by micro-arguments advocating for using examples from Euclidean
geometry. It includes Miriam’s previously-described argumentation. It also includes two pieces
of data that Royce offered in response to Miriam. Royce also offered a warrant that would
support Position 2 (advocating for using non-Euclidean examples). However, he also gave a
warrant that could support Position 1 or Position 2: “…that's something that is an important skill
that would be directly related to this idea, regardless of if they're on the….” Here, Royce
amplified Miriam’s point that an example about defining a circle on the surface of a cone does
not necessarily communicate the same set of skills she is saying a Euclidean geometry example
might and offered justification for why non-Euclidean examples would still suffice. This warrant
serves as the first indication of potential coalescence. Miriam responds to Royce's warrant by
using it to agree with Royce's suggestion that they add additional text detailing the relevance of
teaching the nature of definitions for pre-service teachers. This suggestion—a claim that
represents Position 3—thus gains Miriam’s support and allows her to maintain the rationale she
employed in arguing Positions 1. It also allows Michael to accommodate his own rationale.
Specifically, Michael identifies that Royce's data—a reference to structuring the narrative of
examples in a way that would align with Van Hiele levels—is reason to support Royce's
suggestion. Notably, Miriam and Michael’s continued participation could align with the previous
arguments made vis-a-vis Position 1 and 2, but they built coalescence around a third position that
allowed them to maintain elements of the rationales underlying Positions 1 and 2.

Applications to/Implications for Teaching Practice or Further Research
Thus, we claim that Gilbert’s (1997) theory of coalescent argumentation is complementary to

Toulmin’s (2003) modelling of arguments. We identify coalescent argumentation’s suitability for
theoretical and empirical investigations of mathematics instructors’ professional discourse in
situations that support developing consensus without invalidating participants’ individual
rationales. We operationalize tenets of coalescent argumentation, including using the Toulmin
framework to model multi-modal argumentation, bounding arguments by identifying positions
(i.e., thematic clusters of micro-arguments), and analyzing interactions across positions to
identify possible coalescence. We suggest that the theoretical implications of the three principles
of coalescent argumentation—that argumentation is multi-modal, position-based, and
goal-oriented—may have wide-reaching applications in mathematics education research.

Scholars in the RUME community have advocated for qualitative researchers to align their
research questions and methods (Melhuish & Czocher, 2022), and for more research about
cross-disciplinary knowledge resources in undergraduate STEM instruction (Speer et al., 2020).
Lefcourt (2020) noted that, while there has been “increasing attention…on making
undergraduate courses for mathematics teachers relevant to the work of teaching,” it is uncertain
how such efforts can occur with larger degrees of “scope, scale and impact” (p. 830). Even
though we are explicit about our methodological approach’s conceptual boundaries and limits,
we share it to support conceptually-aligned research in undergraduate mathematics education that
examines questions about cross- and trans-disciplinary knowledge resources and instructors’
practical applications of these knowledge resources in their mathematics teaching.
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Investigating Student Perceptions towards Mastery-Based Grading in Precalculus 

Melissa Newell Michelle Rabideau 

Iona University University of Hartford 

In this study, mastery-based grading was implemented in three sections of precalculus taught at 

two institutions. We investigated student perceptions towards this grading system by analyzing 

math autobiographies written by the students at the beginning of the semester as well as 

responses to surveys that were distributed at three points in the semester. In this paper, we 

present our results and discuss the implications to help support students during mastery-based 

courses. 

Keywords: mastery-based grading, precalculus, standards-based grading 

Mastery-based grading is not new, but it has begun to receive more attention from 

undergraduate mathematics educators who are looking for a different way to assign grades that 

will both accurately reflect their students’ progress in the course and temper some of the anxiety 

and negative attitudes towards mathematics that their students may possess. In this study, we 

investigated students’ (N=21) perceptions of a mastery-based grading scheme being used in a 

semester-long precalculus course. The use of mastery-based grading is new for many students, so 

they may need more support to adapt to it. Our results give indications of where this support is 

needed and in what forms.  

Background 

Since there are many forms that mastery-based grading can take, we will begin by defining 

our method of mastery-based grading. We adapted the ideas of Nilson (2015), first developing a 

set of learning objectives for a precalculus course, then creating a direct link between the 

objectives in the course and a student’s overall grade. In general, students are graded based on 

how many of the course learning objectives they have mastered. Mastery of the learning 

objectives can be assessed in a variety of ways, for us this was done using tests, but a key feature 

of the system is that students do not receive partial credit for partial understanding, rather they 

must show the grader that they have full proficiency with the objective (Collins, et al., 2019). 

While students do not earn partial credit, a key element in mastery-based grading is that students 

are given multiple attempts to demonstrate proficiency on the learning objectives. In addition to 

the learning objectives, we also developed additional requirements including homework 

completion and projects to include in the criteria for each grade. 

The increase in implementation of mastery-based grading in undergraduate mathematics 

courses has brought with it an interest in studying the grading scheme and reporting on its effects 

and outcomes specifically in those contexts. Benefits have been noted in these settings, such as 

improving students’ attitudes towards mathematics, increasing students’ confidence in their 

mathematical abilities (Stange, 2018), and giving the students more control over their final grade 

(Williams, 2018). Additional benefits were seen by Harsy and Hoofnagle (2020), who found that 

students felt that their final grade more accurately reflected their knowledge as opposed to grades 

in a traditional grading environment. Since students know the requirements for each grade from 

the first day of class, they are able to set goals and make choices to study objectives they feel 

will allow them to achieve those goals. 
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There is also evidence that the emphasis that mastery-based grading often puts on 

reattempting mastery can alleviate stress associated with tests (Stange, 2018) since the reattempts 

give flexibility for students to continue working on an objective over time. However, there may 

also be drawbacks to this in terms of student motivation; for example, students may be tempted 

to put off learning objectives or not take first attempts as seriously as they would in a traditional 

environment (Weir, 2020). One traditional purpose of mastery-based grading and learning is to 

allow each student enough time to master the content for the course (Bloom,1968). However, a 

course typically has a set ending date, limiting the time available. Instructors will need to think 

deeply about how they can support their students to set appropriate goals and strategies for 

success. To do so, it would be useful to understand more about the students’ perspectives, which 

is the goal of this study. 

Research Question 

The results discussed in this paper are part of a larger study investigating mastery-based 

grading within college-level precalculus classes conducted by the authors. For the purposes of 

this paper, we will be discussing our findings related to the following research question: How do 

students’ opinions of mastery-based grading change throughout the semester?  

Methodology 

This study collected data from three sections of precalculus taught at two different 

institutions in the same semester. One section was offered as a 3-credit course at a small, private, 

liberal arts college in the northeast United States (Institution 1) while the other two sections were 

offered as 4-credit courses at a medium, private university in New England (Institution 2).  

Course Structure 

The grades for students in the three sections were based on their proficiency on 27 learning 

objectives as well as their homework completion and their completion of up to two projects. 

Proficiency on the learning objectives could be shown on five test days, four during a regular 

class period and one in place of a final exam. Within the 27 objectives were 7 core objectives, 

which needed to be mastered to pass the class. The questions used for the tests were common 

across the three sections, as were the homework questions and projects. The base letter grade 

depended solely on proficiency on objectives and project completion. Students needed to 

complete one or two projects to earn a B or A in the class, respectively. After the base letter 

grade was decided, homework scores impacted whether the letter grade would have a plus, 

minus, or neither attached to it.  

Data Collection 

The data for the larger study consists of both quantitative and qualitative data, collected 

through student responses to three surveys, math autobiographies written by the students at the 

beginning of the semester, homework scores, and test responses and scores. To address the 

research question above, we use the qualitative data from the surveys and math autobiographies. 

Each survey contained various closed- and open-response questions. In this paper, we focus 

on the analysis of responses to those questions relating to the students’ views on the grading used 

in the class. The first survey was completed in the first two weeks of the semester and students 

responded to the open-ended question, “What are your first impressions of the grading system in 

this class?” In the second survey, sent to students after they had taken two tests, the students 

responded to the open-ended question, “At this point in the semester, what are your impressions 
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of the grading system in this class?” A third and final survey was sent at the close of the 

semester, and students responded to four open-ended questions in which they discussed their 

ideas about the grading structure in the class, those questions being: 

1. In preparation for your tests, how did you choose which learning objectives to 

attempt?  

2. Do you believe the grade you will receive in this class accurately represents how 

much you have learned? Why or why not?   

3. Do you think your overall grade would have been better, worse, or the same in this 

class if you had been graded traditionally? Why?  

4. What are your impressions about the grading system used in this class?   

Math autobiographies were written by students at the beginning of the semester describing 

their past experiences with mathematics and their expectations for the current course.  

Participants 

Students in the three sections of Precalculus were emailed an invitation to participate in each 

survey. Participating in at least one survey indicated the student’s consent to being a participant 

in the study, as indicated by filling out a consent form on the survey. A total of 21 students 

agreed to participate in the study, twelve on Survey 1, thirteen on Survey 2, and ten on Survey 3. 

Out of the 21 participants, seventeen submitted math autobiographies but only eight of those 

referred to the grading used in the class. There were 8 participants from Institution 1 and 13 from 

Institution 2. To protect our participants’ identities, throughout this paper you will see 

participants referred to by code. Participants at Institution 1 are labeled using the letter N 

followed by two digits (ex. N20), whereas those at Institution 2 are labeled using the letter R 

followed by two digits (ex. R01). 

Data Analysis 

The math autobiographies and survey responses to open ended questions were analyzed using 

an inductive thematic analysis (Patton, 2002). To investigate the students’ opinions about 

mastery-based grading at different points in the semester we focused on the students’ initial 

perceptions, perceptions after taking two tests (midsemester), and their perceptions at the end of 

the semester. 

To analyze the initial impressions about the grading scheme we considered the responses 

from math autobiographies and from the first survey. To analyze the midsemester impressions 

that students had about the grading scheme, we analyzed their responses to the question from 

Survey 2 that was discussed above. Finally, to analyze the students’ opinions about the grading 

system at the end of the semester we considered the responses to the four open response 

questions on Survey 3.  

Discussion of Results 

This section will briefly describe the categories discovered through the analysis of initial 

impressions, midsemester impressions, and final impressions that students had about the grading 

scheme. 

Initial Impressions 

There were four categories that emerged during our analysis of the responses to Survey 1 and 

the math autobiographies.  
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Confusing. Responses showed that several students saw the grading system as confusing or 

strange to them. For example, N20 wrote the grading scheme was “confusing but might be 

beneficial”. These responses were not surprising since for many students this was the first class 

in which they had experienced mastery-based grading. 

Straight-forward. There were a few students who thought the grading was clear. N50 said, 

“I love how straight forward, and easy the grading is”. Similarly, R09 emphasized the clarity of 

the learning objectives, saying, “I think they are really helpful in keeping me focused. Nothing 

feels jumbled together, I can clearly see what path I need to take.” 

Retries. We also saw that students were excited about the ability to retry objectives that they 

had not shown proficiency on with their first attempt. R12 mentions, “I feel like it is way less 

stressful for us new incoming students who are use to just having to fail if we do bad on a test … 

with the way you grade our tests I get to redeem myself with questions I may get wrong which is 

very comforting.”  This was an aspect of the grading that students seemed to grab on to as a 

positive aspect of the method, although there was some hesitancy from R06 who said, “I think 

it’s cool that I can retry topics at my leisure but I hope I don’t mess up on a lot so it snowballs 

into a disaster.”  

Pacing. Students also mention that the grading scheme will give them more freedom and/or 

independence to complete objectives at their own pace and that there is less stress due to the 

pacing of the class. N50 says, “I see myself doing well in this class because I’ll be able to go at 

the pace I want … I’ll be able to complete [objectives] on my time.”  

Midsemester Impressions 

Through our analysis of the responses to Survey 2, three categories emerged. Two of the 

categories were similar to two found in the initial impressions, so we chose to use the same name 

and definition for them.  

Confusing. Even at the midsemester mark, after the students had taken two tests, there were 

still students who found the grading scheme confusing or strange. However, it seemed that there 

was some improvement in understanding. R10 said, “I’m very confused by it still, but looking at 

each individual grade I’ve received helps me calculate what my overall grade is.” 

Retries. Students continue to mention the benefit of being able to retry objectives. R10 says, 

“I love the fact that you can attempt each core objective until you receive the grade you want.” 

Stress. A new category that emerged spoke to the students’ perceived stress and anxiety 

levels in the course, with some students feeling that the level of stress was heightened by the 

grading scheme and some feeling that it was lessened. From R09, “It makes the class feel more 

intense, like we have less room for error, and over all, just a really stressful and weird 

experience.” With an opposing view, R11 says, “I really enjoy it. I think that because of how the 

tests work and how we’re able to retry problems, my anxiety is much lower for this class.”  

End of Semester Impressions 

Four categories emerged through our analysis of the four open-response questions from 

Survey 3. One of the categories, Stress, uses the same name and definition as was found in the 

midsemester analysis since the ideas were similar.  

Stress. A couple students mentioned opposing views on their perceived stress and anxiety 

levels due to the grading scheme. R01 said, “Objective based learning didn't help me change how 

I study, but rather gave me huge amounts of anxiety as my failings kept weighing on me” 

whereas R02 said, “I think it showed that it is up to us to work hard but also it is okay if not 

every day is our best day because we get another shot. It took a lot of the anxiety down.”  
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Strict. Students spoke more specifically about the requirements in the grading system, most 

likely due to the additional questions included in the final survey. Some students felt that the 

grading structure was too strict and that they were marked wrong for too small of errors along 

with not having enough opportunities or ways to show their understanding. R09 felt that “there 

were small mistakes [they] made from calculation or missing one step of a five part problem 

where in any other class [they] would have gotten some type of credit for it because [they] 

clearly understood how to do the problem.” Others mentioned they wanted the projects to count 

differently, such as R06 saying, “Through doing the projects and homework I have done so much 

more and the projects will not even be factored into my grade unless I have everything done [that 

is necessary for an A or B].”  

Effort. As we see in some of the examples for Strict, students also discussed that their effort 

in the class has affected their feelings toward the grading system. Several students felt that the 

effort they put in for the course was not reflected in their grade, as we saw from R06 above. 

However, there was also a student, N04, who mentioned that because they always felt they had 

more chances to complete objectives, they did not put in enough effort: “If it was graded 

traditionally I think my grade would’ve been higher, because more pressure levied upon me 

every week meant that I wouldn’t have procrastinated until the last minute to do everything.”  

Core. Several students mentioned the core objectives in their responses. This was often 

relating to how they chose which objectives to study for, stating that they focused on the core 

objectives first, but we also had students say that they believe the expectation of and focus on 

mastering the seven core objectives caused them to miss out on other objectives. R09 said, “Most 

of the class still needs core objectives on the final and are at a high risk of failing.” It is worth 

noting that of the 18 participants that did not withdraw from the course, only 7 had completed the 

core objectives prior to the final, so the concern about core has some merit for our sample. 

Implications 

We believe that investigating students’ perceptions of mastery-based grading is important to 

understanding how we can support them in our courses. By considering three different points in 

the semester, we were hoping to gain insight into how support can adapt to the changing 

concerns of students. Our results indicate that there are some concerns that remain present 

throughout the semester, while others may emerge later after the students have been able to 

experience more of the consequences of the grading. Understanding these concerns is useful in 

planning for a course, especially for instructors who are new to this grading style. 

For example, while emphasizing the opportunities for students to retry objectives can 

alleviate some of their concerns early in the semester, it may be beneficial to have specific 

recommendations about how to take advantage of these opportunities so that the pressure is not 

just pushed to the end of the course or due date. This agrees with findings by Matz, Derry, 

Bennett, LaRose, and Hayward (2022), who found that the use of behavioral nudges can lead to 

better outcomes for students. In their study, personalized email reminders were sent prior to 

assessment due dates. Other ideas could be to have class discussions about study strategies, hold 

individual meetings to plan for future assessments, or to structure the course with some 

intermediate deadlines. 

These results represent a portion of the data we collected. In addition to the math 

autobiographies and survey responses, we also collected tests, homework scores, projects, and 

grades. We hope the RUME community can provide insights on how to further explore these 

results and make connections to the other data sources. 
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Ongoing Efforts to Develop an Assessment Tool for Students’ Participation in Defining

Tenchita Alzaga Elizondo Kristen Vroom Adam Eide
Portland State University Michigan State University Oregon State University

There has been a push to develop curricula that engages students in various mathematical
practices (e.g., defining). As more curriculums of this type arise, there is a greater need for
assessment tools for students participating in these practices. We see Modeling Eliciting
Activities (MEAs) as one answer to this need. In this study we discuss how the six design
principles of MEAs can be used to (re)design an assessment tool for students’ defining activity.

Keywords: Modeling Eliciting Activities, Assessment, Defining, Classroom Practices

One common goal of many curriculum designers is to engage students in mathematical
practices such as defining, conjecturing, and proving. This engagement can be a means to
support students in learning about mathematical concepts (Larsen, 2013; Lockwood & Purdy,
2019; Oehrtman et al., 2014; Swinyard, 2011) and/or as a means to increase students’
participation in these practices themselves (Larsen et al., 2022; Rasmussen et al., 2005; Zandieh
& Rasmussen, 2010). We have engaged students in mathematical practices for both reasons in
our ongoing efforts to design inquiry-oriented curriculum for Introduction to Proof courses.

We have faced a practical problem in our efforts: the lack of an appropriate assessment
tool to reveal students’ participating in mathematical practices. While there are relevant concept
inventories (e.g., Melhuish, 2019; Mejía-Ramos et al., 2017), these take an acquisition lens on
learning (Sfard, 1998) to measure students’ understandings of important concepts or skills rather
than a participation lens. We also found relevant observational tools (Melhuish et al., 2021;
Melhuish & Thanhesier, 2017); yet, using these would require one to analyze classroom data to
get a sense of whether students’ participation changed overtime.

An assessment tool that measures students’ participation in mathematical practices would
be useful for us as researchers to measure the efficacy of our materials on student participatory
learning. Additionally, the need for an assessment tool has been echoed by the instructors who
use our curriculum materials; they want their tests and quizzes to reflect what they do/teach in
class. This study aims to make progress on this goal for the case of assessing students’
participation in defining - a practice that our curriculum materials are specifically engineered to
promote. In doing so, we hope to open the discussion about how such an assessment could be
adapted to assess students’ participation in other classroom mathematical practices (Cobb &
Yackel, 1996; Rasmussen et al., 2015). In what follows, we introduce Model Eliciting Activities
(MEAs), which informed our design and revisions of the assessment.

Conceptual Framework
Lesh and his colleagues (2000) describe MEAs as tasks designed so that students’ work

“reveal explicitly the development of constructs (conceptual models) that are significant from a
mathematical point of view” (p. 362). These tasks emphasize communication and reflection by
asking students to explain their reasoning, thinking, and strategies including revisions and
refinements. Teachers and researchers have used these artifacts to assess students’ conceptual
understanding (e.g., Carlson et al., 2003), problem-solving strategies (e.g., Chamberlin & Moon,
2005), and metacognition (e.g., Kim et al., 2013). In our study, we aim to add to this literature by
using MEAs as a tool to assess students’ participation in classroom practices, and specifically,
we are designing an assessment tool that elicits a model of students’ defining activity.
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The six principles to guide the creation of productive MEAs with guiding questions
(adapted from Carlson et al., 2003, pp. 472-473 to fit our defining context) are: (1) Model
Construction (Does the task immerse students in a situation in which they are likely to confront
the need to develop their defining activity?), (2) Construct Documentation (Will the task require
students to reveal their defining activity?, (3) Reality (Will students make sense of the situation
by extending their own knowledge and experiences?), (4) Model Shareability and Reusability
(Does the model provide a general model for analyzing this type of defining activity?) (5)
Effective Prototype (Is the situation simple?), (6) Self-Assessment (Does the task promote
self-evaluation on the part of the students?). This study aims to answer: How can the MEA
principles guide the design of an assessment tool for students' participation in defining?

Methods
Data for this study comes from an NSF-funded projected (ASPIRE in Math IUSE #1916490)

that aims to create modular inquiry-oriented introduction to proof curricular and instructor
support materials. One goal of the curriculum is to support students in participating in defining.
A typical defining task sequence first engages students in a situation in which an informal idea of
a concept emerges. Then students create and negotiate (non-)examples of the concept and then
the teacher and students work together to refine their informal idea into a formal definition (see
Vroom, 2020). We expected that our course would support students to strategically use
(non-)examples when creating and testing their definitions, and to use those (non-)examples to
strengthen their understanding of the concept to support them in formalizing their informal ideas.

Our primary goal with the assessment was to measure how students’ participated in the sort
of defining that our curriculum materials supported. The assessment had two main parts. First,
the students were asked to define two concepts in a similar manner as our curriculum materials.
To do so, students were asked to read an informal description of a concept, come up with
(non-)examples, and write a formal definition. The two made-up concepts on the assessment
were called Mirror-point Functions (described as “functions defined on a domain D that have at
least one input-value that is the same as the corresponding output-value”) and Repeat Functions
(described as “functions where no matter what input you consider, that input maps to the same
output value as the input that is one unit to the left of it”). We had no expectations for a “correct”
definition as our focus was on the students’ defining activity. The second part of the assessment
was a “strategy guide” task that asked students to reflect on and articulate how they engaged in
the previous defining tasks. We anticipated that the students’ responses would provide us insights
into how/if the students engaged in defining in such a way that was supported by the curriculum.

Creating and refining the assessment was a cyclic process in which we designed (or
redesigned) the assessment, tested it with students, and analyzed the students’ assessment
responses and conducted follow-up interviews. We administered our assessment in three
community college courses over the course of a year. For each course we administered the
assessment during the first week of the course and then again during the last week. After each
administration, we invited students to a follow-up semi-structured interview to discuss their
responses. This resulted in a total of 18 pre-assessments with 6 follow-up interviews and 16
post-assessments with 7 follow-up interviews. Our data analysis focused on how, if at all, the
assessment satisfied the six MEA principles based on what the students expressed on the
assessment and follow-up interviews. We used this analysis to redesign the assessment before the
next administration. In this report, we primarily focus on the second part of the assessment (the
strategy guide task) since it provided us the most insight into how students participated in
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defining activity. The most updated version of the task is given in Figure 1. We will refer to this
figure (and it’s labeled parts) in the next section.

Figure 1. Latest version of “how to write definitions” strategy guide prompt

Results
In this section we discuss how our assessment meets each of the six MEA principles and

describe refinements that were made to address issues we found during our implementations.

Model Construction Principle
Given that we wanted to assess students’ defining practice, designing a task in which they

would create a model of that practice was critical. We addressed that need (and this principle)
with the strategy guide task, where students were asked to create a guide for writing a formal
definition for any concept. To do so, the students had to generalize their defining activity and
thus, construct a model of their practice. In our first version of this task, students were informed
that the strategy guide would be used to prepare students to write definitions on their exam and
that “They will not know what they will be asked to define [...] in advance.” We found that this
prompt was confusing for students, especially about what we meant by a “strategy guide”. Some
students opted to skip the task altogether while one student attempted the task but adding the
note  “I’m still a little unclear about this portion”. To be more explicit about the desired model,
we refined the task by adding a sentence starter (see Figure 1a).

Construct Documentation Principle
Presenting students with the opportunity to create a model of their activity (by creating a

strategy guide to address the previous principle) was only part of the battle. We also needed to
design the strategy guide task in such a way that the students explicitly revealed their defining
activity. We wrote the strategy guide prompt in such a  way that would encourage students to
reflect back on their activity on the previous tasks to not only generalize it (as part of the Model
Construction Principle) but also to document that generalization (as part of the Construct
Documentation Principle). For instance, the first version of our prompt stated “This strategy
guide should explain what exactly the students should do (and how) to create the definition
requested in part B of the example exam items.” In the previous tasks, “Part B” was where
students were asked to create a formal definition of the concept. By directly pointing to that part
of their tasks, we hoped students would reflect on and document that aspect of their activity.

As part of the response to the students’ initial confusion described in the previous subsection,
we edited the prompt to make it clearer that we wanted students to create a guide that reflected
their activity in the previous tasks by expliciting stating to reflect on what they did as they
defined the two given concepts on the assignment, see Figure 1b. Not only did we see the refined
prompt as supporting students in creating a general model of defining activity (addressing the
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Model Construction Principle) but it also made it clearer that the model should reflect their
activity when completing the previous tasks. This edit appeared successful. For instance, one
student wrote for their first two steps in their guide “1) Look at the differences between examples
and non-examples, and 2) Look at the similarities between examples.” During the student’s
follow-up interview, they confirmed that this was reflected in what they did to create definitions,
saying “it did yeah, that's what I use here.”

Reality Principle
In our original design of the assessment, we framed the strategy guide as a guide for a friend

who would be taking an exam in which they would define some new concept. Students at this
stage of their mathematics career have substantial experience studying for and taking
mathematics exams. Thus, we felt that students could “make sense of the situation based on
extensions of their own personal knowledge and experience” (Lesh et al., 2000, p. 367). While
the revisions of the assessment described above showed promise, we kept running into a problem
that could often be tied back to the context of the task: students provided general test taking
strategies rather than strategies that reflected their defining activity. For instance, one students’
guide listed “1. remember the difference between for all there exists and there exists for all. 2.
practice defining familiar terms such as linear function. 3. become comfortable with making
mistakes, you probably won’t come up with your formal definition on your first try.” The fact
that this guide was written about preparing for an exam rather than defining was confirmed in a
follow-up interview where this student said in reference to his second point “That isn't so much a
thing I used here. It's a thing that I’d use if I was getting ready for a test….”

After encountering several responses similar to the one above, we reflect on how the exam
context failed to meet the reality principle and how we could refine it. We determined that
students might struggle to see the exam context as realistic for their defining activity since they
most likely have never been put in a position during an exam where they are asked to engage in
such an exploratory task. Instead, we realized that the task would be better suited in a
“homework” context as it aligns more closely with the situation in which students would be
doing this kind of activity. We reflected this context in Figure 1b as it suggests students will be in
a similar situation as them.

Model Shareability and Reusability Principle
In order to meet this principle, the model students are asked to develop needs to be general

enough that it can be used by someone other than the writer itself (i.e., shareable) for other
scenarios than the one that motivated its creation (i.e., reusable). Our assessment works to meet
these requirements by having students write a strategy guide for another student and by asking
that the strategy guide be written so that it can be used for any concept. We found that framing
the task as writing a guide for a peer seemed natural for students. This was perhaps unsurprising
since other scholars have successfully written Model Elicit Activities with a similar framing
(e.g., Carlson et al., 2003; Vroom, 2020). Additionally, we found that our previously discussed
edits to the prompt also were effective in supporting students to create a general model that can
be reused when defining other concepts (see Figure 1b and 1c).

Effective Prototype Principle
As mentioned, the assessments first engaged students in formally defining two concepts:

mirror-point functions and repeat functions. We saw these two tasks as “effective prototypes” of
defining activity since students would have knowledge of various function properties at this
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point and thus should be able to make sense of a new property.  Additionally, there is no one
“right answer”; we acknowledge students would likely have different interpretations of the given
informal descriptions. At the same time, we aimed to write the descriptions so that the different
interpretations would be rich enough that students would be able to come up with various
(non-)examples to support their defining activity. We encountered a problem when it came to our
initial description of mirror-point functions. Initially, we had not clarified the  “at least one”
property in the description, this led to various students interpreting the statement to mean all
input-values needed to equal the corresponding output value. With this interpretation only one
type of function fits the description (i.e., for all x in the domain) making the task𝑓(𝑥) = 𝑥
trivial. As such, we added the “at least one” note to enrich the context and encourage a wider
variety of (non-)examples.

Self-Assessment Principle
To create a rich model that reflects the descriptiveness and transparency that we are searching

for in an assessment, students need to be able to assess themselves whether their model was
adequate. One way we addressed this need was by asking students to create a strategy guide for
any concept. This provided criteria for which students could assess their model: can this guide be
used to any concept a student might encounter? More explicitly, we addressed this principle in
the follow-up interviews by asking students “How does your strategy guide reflect what you did
when you wrote your claims about mirror point functions and repeat functions?” With this
question, the students were encouraged to assess how/if their strategy guide reflected their
defining activity (another criteria of their guide). We found this question to be particularly
revealing as it often identified when there were discrepancies between the students actual
defining activity and what they had written in the guide. Given its revealing nature, we hope to
incorporate a similar question in future versions of the guide in hopes that it supports students to
refine their guide to more accurately reflect their activity.

Discussion
Through working with students we have found that MEAs seem to be a productive first step

for developing an assessment tool that documents the extent to which students participate in the
sort of mathematical practices that our curriculum materials aim to support. We found that the
MEA principles supported some effective refinements, including more explicitly articulating
what kind of model we expected the students to create and document in the strategy guide (i.e.,
with the use of sentence starters, emphasizing the need for generality, and being explicit about
reflecting on their activity) and by changing the context of the task from an exam to homework
so that the activity was more realistic to the students.

Our experience also generated a number of questions that we will pose to the audience for
discussion. Specifically, we encountered that one limitation of using MEAs is that rather than
assessing students’ activity directly, we are assessing their ability to reflect on and articulate their
activity, which is a higher-order task (Wheatley, 1992). With that, we wonder: 1) What kind of
insights might we gain from a “high bar” assessment of this type? What are ways we can
mitigate this challenging aspect of the assessment?
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Investigating Norms in a Professional Learning Community

Corinne Mitchell
Virginia Tech

Research has shown that support from collaborative professional development communities
benefits faculty introducing student-centered instruction to their classrooms (Henderson, Beach,
& Finkelstein, 2011; Speer & Wagner, 2009). While the RUME community has some
understanding of how professional development groups can be effectively formed to support
teachers (e.g., Kelley & Johnson, 2022), further research is needed. In this study, I investigate
the norms established within one such professional development community: an online working
group designed to support teachers’ implementation of an inquiry oriented abstract algebra
curriculum. Preliminary results indicate that participants established norms related to working
on tasks, contributing ideas and responding to each other’s contributions, and sharing authority.

Keywords: Instructional change, professional learning communities, sociopedagogical norms

In response to calls for reform in undergraduate mathematics education in the United States,
various modes of student-centered instruction have been developed. To support faculty in
implementing student-centered curricula, professional development resources like curricular
support materials (e.g., Larsen et al. 2013) and summer workshops (e.g., Andrews-Larson et al.
2016) have been developed. This study focuses on online working groups (OWG) that supported
mathematics faculty learning to teach inquiry-oriented abstract algebra (Larsen et al. 2016). Prior
research has suggested the importance of community building in professional development
groups (e.g., Clark et al. 2008, van Es, 2009, Kelley & Johnson, 2022), but the mechanisms by
which such communities develop need more exploration. Thus, this case study aims to answer
the research question: what community norms develop in online professional development
groups?

Literature Review and Theoretical Framework
Inquiry-oriented instruction (IOI) is a type of student-centered instruction aimed at

supporting students as they work individually and collaboratively on carefully designed
mathematical tasks (Rasmussen & Kwon, 2007). As students inquire into new mathematical
ideas, instructors inquire into students’ mathematical reasoning, seeking to reveal and leverage
students’ informal conceptions toward more formal mathematics. Because IOI emphasizes
classroom social interactions as grounds for the reinvention of mathematical concepts, it is
crucial for teachers and students to negotiate social and sociomathematical norms that foster
meaningful learning opportunities within the classroom community (Gravemeijer, 2020). While
there has been some research regarding norms in inquiry-oriented (IO) classrooms (e.g.
Rasmussen et al. 2005, 2009, 2010; Serbin et al. 2020), recent developments in instructional
support for IOI necessitate further investigation into normative behaviors in professional
development groups. Primarily, I am interested in understanding the social norms established by
Teaching Inquiry-Oriented Mathematics: Establishing Supports (TIMES; NSF Awards: #1431595,
#1431641, #1431393) online working group participants as they developed a professional learning
community in their online meetings.

A professional learning community (PLC), as defined by Kruse, Louis, and Bryk (1995), is
focused on cultivating peer interactions between teachers to improve teaching and learning. A
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PLC has five central characteristics: reflective dialogue, focus on student learning, interaction
among teacher colleagues, collaboration, and shared values and norms. Similar to Clark et al.
(2008), the emergence of OWG social norms was investigated, viewing the OWG as a PLC.
Social norms are defined by Cobb & Yackel (1996) as a person’s “beliefs about [their] own role,
others’ roles, and the general nature” of classroom activity (Cobb & Yackel, 1996, p. 178). These
beliefs are developed collaboratively between the instructor and students as they interact in the
classroom and “characterize regularities in communal or collective classroom activity” (Cobb &
Yackel, 1996, p.178). Serbin et al. (2020) documented norms related to working on mathematical
tasks, students sharing contributions, and students responding to others’ contributions in
inquiry-oriented abstract algebra (IOAA). Norms surrounding students contributing to group
discussions included sharing contributions, explaining their reasoning, and explaining difficulties
they experienced. Finally, norms about responding to others’ contributions in group discussions
involved asking clarifying questions, being nonjudgmental, and providing productive feedback.

Because professional development literature suggests that modeling the type of instruction
expected from participants is an effective strategy (Elmore, 2002), the focus here was on whether
norms documented in IO classrooms were present in the OWG. OWG participants often worked
through mathematical tasks, discussed their pedagogical reasoning, and provided feedback on
each other’s instructional practices, a clear parallel to the IO classroom activities documented by
Serbin et al. (2020). According to Clark et al. (2008), just as student behavioral norms can be
negotiated in a classroom, participant behavioral norms can be negotiated in a PLC. Dick et al.
(2018) termed established expectations for participation when teachers talk with their colleagues
about instruction sociopedagogical norms, taking direction from Cobb and Yackel’s (1996)
conceptualization of behavioral norms which are specific to the community’s content area.
Hence, such a conceptualization can be broadened to describe the rules and expectations for the
facilitator and participants’ behaviors within the OWG as they develop a community of practice,
drawing parallels between the social norms previously documented in IO classrooms and those
observed in this study.

Sharing authority has also become a central theme of discussion in research on
student-centered instruction (e.g. Ball, 1993; Cobb et al. 1992). Given that some classroom
activities parallel OWG activities, it is reasonable to suspect that norms surrounding sharing
authority may also arise. Because one of the primary goals of IO approaches to teaching and
learning is creating a community of mathematical discourse, instructors often avoid resting the
validity of claims on “teacherly authority”, rather aiming to use their authority in the classroom
community to encourage norms surrounding discussion, reasoning, and mathematical argument
(Ball, 1993). That is, teachers may take advantage of their ability to direct the future actions of
the class with the goal of encouraging students’ epistemic authority, which concerns how
participants treat themselves and others as more or less knowledgeable rather than concerning
the actual depth of individuals’ knowledge (Byun et al. 2020). Because the OWG was composed
of teachers with varying levels of expertise with implementation and had clear parallels to IO
classroom activities, the notion of sharing epistemic authority as a normative social behavior was
adopted.

Context and Methods
This investigation takes place within the context of a broader project, Teaching

Inquiry-Oriented Mathematics: Establishing Supports (TIMES; NSF Awards: #1431595,
#1431641, #1431393), a research and development project focused on supporting large-scale
implementation of several inquiry-oriented mathematics curricula at the undergraduate level. To
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investigate best practices in bringing IOI to scale, TIMES utilized three forms of instructional
supports: curricular support materials, summer workshops, and online working groups. The
curricular support materials provided additional online resources to teachers. The summer
workshops provided a three-day intensive session where participants became acquainted with the
instructional tasks and curricular resources. Finally, the online working groups met for one hour
each week during the semester following the summer workshop to work on instructional
practices and discuss implementation issues with the goal of providing ongoing, content-specific
support.

My primary focus is an online working group (OWG) that met for 14 weeks in the fall
semester of 2016. The members of the OWG were engaged in implementing the IOAA
curriculum designed by Larsen et al. (2016), a research-based, student-centered curriculum
designed to engage undergraduate students in reinventing fundamental concepts of group theory.
The group consisted of two instructors currently implementing the curriculum, one instructor
preparing to teach in the following academic quarter, and one facilitator with previous experience
teaching IOAA. The teachers were introduced to the curriculum materials in the summer
workshop and met synchronously online via Google Hangouts once per week to reflect on the
curriculum and implementation with a facilitator. Members of the OWG were regularly asked to
share reflections on their instruction and investigate the curriculum tasks from a mathematical
perspective. These online meetings were recorded and sections were transcribed for retrospective
analysis. Social norms were analyzed as they developed throughout these meetings, using a
priori codes developed by Serbin et al (2020) and emergent codes from the analysis related to
sharing authority. Taking direction from Clark et al.’s (2008) conditions for documenting the
development of norms, it was inferred that a behavior was normative to the OWG if it was
commonly enacted without prompting, participants did not challenge someone enacting that
behavior, and/or participants challenged someone when they did not comply with that behavior.

The OWG consisted of three instructors, Elena, Laura, and Roger, and one facilitator,
Mickey. Mickey facilitated the OWG as a former TIMES fellow, having participated in the
previous year as a new IOAA instructor. Elena, Laura, and Roger had experience teaching
abstract algebra, but had not used IOAA. Because Roger’s institution operated on a quarterly
schedule, he was unable to teach the course synchronously with Elena and Laura. It is worth
noting, however, that Roger was an active contributor in most discussions, and that the OWG
continued to meet with Roger after their fall semester classes concluded to support his instruction
during the winter quarter.

Results
Throughout the semester, Mickey indicates implicitly and explicitly that he is trying to model

IOI within the online working group, making comments like “I hope I’m modeling what I would
like to do in the classroom,” and even describing the function of the OWG using language
commonly applied in IO curricula design: “We're generating teacher thinking, building on
teacher thinking, and developing a shared understanding, and then bringing it into the formal
world.” This supports my investigation of documented classroom social norms developing within
the OWG. I found that participants enacted social norms related to working on tasks, sharing and
responding to others’ contributions, and sharing authority. Illustrative examples are presented
below.

Working individually first.
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Mickey explicitly stated the expectation for participants to work on tasks individually first
with phrases like, “Everybody, take a minute or two to think about it,” and “I want you to take a
few minutes before you answer this [question].” After this, participants thought to themselves
and worked quietly until prompted to share their thoughts. In one instance, after Mickey had
posed a question to the group, Elena began to respond immediately and Roger interjected, “I
thought we were thinking to ourselves.” Roger challenging Elena when she did not give others
time to think independently serves as evidence that this was an established social norm in the
OWG.

Explaining reasoning.
Mickey also encouraged the group to share their ideas, beginning most meetings by inquiring

into the teachers’ perspectives and continually asking for their contributions. He also positively
reinforced this expectation by emphasizing key ideas, repeating them to the group or saying
phrases like, “Can you say that again? We’re going to write it up here on the board.”
Encouraging each other’s contributions was commonly enacted by the rest of the group
throughout the semester. For instance, after Laura shared some thoughts on a clip of her teaching,
Elena responded, “Tell me a little bit more about your thought process.” This is also evidence for
the development of norms around participants explaining their thinking. Mickey explicitly stated
the expectation for participants to explain their reasoning, saying “I’m going to press my
teachers to give reasons for their teaching actions.” This behavior seemed normative, since it was
encouraged by the facilitator and enacted without prompting by the rest of the group.

Sharing difficulties.
A similar type of contribution involved participants sharing the difficulties they experienced

with curriculum tasks. Mickey would often open a meeting by saying, “So, tell us about your
week – what went well, what didn’t?” to encourage participants to share their struggles. For the
last 11 meetings, teachers regularly shared about their difficulties without being prompted. In
many instances, this contributed to rich conversations surrounding pedagogical moves and
inquiring into students’ thinking. After working on a curriculum task about group isomorphism
concepts, Roger shared that he “struggled with the additive notation,” explaining that he
switched to multiplicative notation with the goal of preventing students from being confused.
Elena and Laura then both shared their experiences with developing shared notation in the
classroom, which suggests that the norm of sharing difficulties often supported group discussion.

Showing support.
The fact that Elena and Laura responded to Roger by explaining their experiences is also

evidence of norms about providing productive feedback. In particular, the norm that participants
should be supportive and share their strategies was often enacted throughout the semester.
Responding to others’ struggles by sharing strategies was first encouraged by Mickey after Laura
described her difficulty with graded work, asking Elena and Roger to discuss their approach to
assessment in IOI. Later, it was evident that providing productive feedback was a norm when
Elena explained some difficulty she was having with a student during discussion, prompting the
group to respond by asking explicitly for their suggestions. It also became normative for
participants to encourage each other – when Roger explained that he was overwhelmed by the
pacing of the course, Laura responded, “You can do it, you can, you’ll get there!” and proceeded
to suggest different strategies to help Roger stay on track.
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Sharing epistemic authority.
Mickey also promoted participation by using his deontic authority to encourage participants’
epistemic authority. Often, when a participant asked Mickey a direct question, he would redirect
it to the entire group, saying phrases like, “So that [question] is for everybody, I can answer
later,” and “I think this [topic] merits at least a three-to-five-minute discussion. I’ll add a
disclaimer that I have no idea how to handle that situation.” Sharing epistemic authority became
a social norm throughout group discussions. On occasion, Mickey would get excited about a
topic and monologue for a few minutes. The group nearly always became quiet and tended to not
respond to Mickey’s monologues, which I view as evidence of participants challenging Mickey
for breaking the norm of sharing authority. Because Mickey was challenged for not enacting this
behavior, it can be thought of as a social norm within the OWG.

Table 1. A description of online working group norms.
Category Norm Name Description Prototypical Quote

working on tasks

working
individually first

participants engage with
content independently before
discussing with the group

“Take a few minutes
before you answer
this [question].”

explaining
reasoning

participants explain their
thinking

“Tell me a little bit
more about your
thought process.”

sharing and
responding to
contributions

sharing
difficulties

participants discuss their
teaching challenges

“I struggled with the
additive notation.”

showing support participants provide
encouraging feedback

“You can do it; you’ll
get there!”

sharing authority sharing epistemic
authority

facilitator redirects
discussions away from his
expertise toward group
discussion

“So that [question] is
for everybody, I can
answer later.”

Discussion and Questions
The fact that the OWG possesses the characteristics of a professional learning community

occurred mostly by design; teacher colleagues were expected to engage in reflective dialogue
focused on pedagogical strategies and student learning. The shared norms they established
around working on tasks, sharing and responding to each other’s ideas, and sharing authority are
relatively unsurprising in terms of professional development. However, the fact that these norms
parallel the norms documented in IO classroom communities is notable. One norm not
previously established in the literature that could be explored further was that of sharing
conversational space, since participants regularly noted that they wanted to avoid dominating a
discussion and prompting others to respond. In addition to further exploration of norms, this
research could provide a basis for designing facilitator training in how to support and
intentionally develop productive norms in PLCs.

Questions for the audience:
1. Are there other norms from professional development literature relevant to the OWG?
2. Other aspects of this community were not captured in these norms (e.g., comradery) –

how can these aspects be documented and analyzed?
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The Influence of an Experiential Learning Social Justice Class on
Undergraduate Students’ Beliefs About Mathematics and Mathematics Teaching

Linda C. Burks Kathy Liu Sun 

Santa Clara University Santa Clara University 

In this study, we explore the influence of an experiential learning social justice math class on 

undergraduate students’ beliefs about mathematics and mathematics teaching.  Twenty-three 

undergraduate students participated in this ten-week long class. Students reflected on their 

learning by responding to weekly journal prompts and designed a learning product for the high 

schools. Students’ journal entries and project design will be analyzed to answer three research 

questions.  How does the class influence students' beliefs about mathematics? How does the 

class influence students' perceptions about who does mathematics? How does the class influence 

students' understandings of how to teach math equitably? Preliminary results suggest the 

following: Students' views of mathematics expanded from a focus on application and problem 

solving to include intrinsic values of mathematics such as beauty and exploration. Students’ 

perception of mathematicians became more inclusive.  Students’ understanding of equitable 

teaching varied. 

Keywords: Experiential Learning, Social Justice, Reflection, Beliefs 

Introduction 
For over two decades, there has been a call for undergraduate mathematics to become a 

“gateway not a gatekeeper” (Douglas, 2017; Bryk & Treisman, 2010; Cooper, 1996). 

Mathematics educators have been identifying equitable teaching methods (Ching & Roberts, 

2022; Martin, 2019; Hand, 2012) and focusing on the teaching of mathematics for social justice 

(Branson & George, 2022; Su, 2020; Gutiérrez, R. 2018; Leonard et al., 2010). As equitable 

teaching practices are gradually being established, promoted, and practiced in undergraduate 

mathematics (Leyva et al., 2022), there is an opportunity for mathematics departments to go 

deeper. In particular, the authors designed an experiential learning class to delve directly into 

issues of mathematics education and social justice. 

In this study, we consider three research questions about the impact of this class on the 

undergraduate students who participated. 

1. How does the experiential learning social justice class influence undergraduate students'

beliefs about mathematics?

2. How does the experiential learning social justice class influence undergraduate students'

perceptions about who does mathematics?

3. How does the experiential learning social justice class influence undergraduate students'

understandings of how to teach math equitably?

Literature Review 
In this review, we first present literature related to beliefs about mathematics, beliefs about 

who does mathematics, and equitable math teaching. These correspond to three themes common 

to research on equitable mathematics teaching: positioning of mathematical power, 

psychological approaches to teaching, as well as specific pedagogical approaches (Yolcu, 2019). 
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We then highlight literature related to the role of experiential learning courses in deepening 

undergraduates’ understanding of social justice issues. 

Beliefs about mathematics 
Ernest (1989) and Muhtarom (2019) highlight three philosophies of mathematics which are 

prevalent in the teaching of mathematics: beliefs: instrumentalist, Platonist, and problem solving 

or constructivist.  At the lowest level, instrumentalist belief is that mathematics is a “useful, but 

unrelated collection of facts, rules, and skills” (Ernest, 1989, p.8). The Platonist view is that 

mathematics is an unchanging product of interconnected structures and truth which is invented, 

but not created. The problem solving or constructivist view is that mathematics is a dynamic 

field open to revision and connected to other disciplines.  

The shift of mathematics away from being a “gatekeeper” to a “gateway” into STEM fields 

represents a shift from a deficit orientation to asset orientation (DiGregorio & Hagman, 2021; 

McGee et al., 2021). This language shift also represents a change in thinking about mathematical 

power. Rather than demonstrating power in achievement to reduce the education gap, there is a 

movement to “rehumanize” mathematics in ways that empower all students to benefit from and 

contribute to mathematics (Gutiérrez, 2018; Ching & Roberts, 2022). A narrow view of 

mathematics limits the diversity of people who do mathematics.  In Mathematics for Human 

Flourishing, Francis Su (2020) argues that mathematics meets the intrinsic human desire to build 

virtues: virtues such as exploration, play, truth, beauty, justice, struggle, and power. 

Beliefs about who can do mathematics 
Representation is important for students to identify as someone who can do mathematics 

(Oyserman & Lewis, 2017; Boaler & Greeno, 2000). Productive learning mindsets are also key 

to helping students identify as someone who can do math (Casad et al., 2018). Having a mindset 

of relevance is related to the idea that mathematics is relevant to the individual learning it 

(Romero, 2019). A mindset of belonging is about learning mathematics within a welcoming 

community (Romero, 2015). Growth mindset is the idea that intelligence can be developed 

through effort rather than being an innate ability; in a classroom this means mistakes are 

opportunities to grow and asking questions deepens understanding (Latterell & Wilson, 2022; 

Sun, 2018; Dweck, 2014; Boaler, 2013). 

Equitable Math Teaching  

Equitable math teaching is student centered. Equitable teaching methods includes active 

learning (Burke et al., 2020), flexible structures (Levya et al., 2022) and grading systems 

(Fernandez, 2021), and a focus on high expectations (Jamar & Pitts, 2005) cultural relevance 

(Bartell et al., 2017), and student engagement in which problem solving is key (Samson, 2015; 

Hake et al, 2003; Suh & Fulginiti, 2011). Along with teaching in ways that promote social 

justice, equitable practice also involves math that teaches social justice (Gutstein & Peterson, 

2005). As we search for ways to teach math in ways that promote social justice, we consider five 

basic questions: Who, What, Where, Why and How we teach (Branson & George, 2022). 

Experiential Learning and Social Justice 

Experiential learning and reflection are critical components of deepening understanding of 

social justice. Experiential learning provides a tangible way for students to grapple with the 

abstract concepts of social justice (Pugh, 2014). Online service experiences have also been 

25th Annual Conference on Research in Undergraduate Mathematics Education 946



shown to contribute to students' understanding of social justice (Ahmad & Gul, 2021). Group 

discussions and individual reflections help students synthesize and analyze the issues within the 

context of their teaching experience (Jacob, 2006). It is also thought that reflection is a key piece 

of developing effective tutoring strategies (Johns & Burks, 2022). 

 

Context 
The authors designed an upper division undergraduate math class, Mathematics Education 

and Social Justice which examines issues of social justice surrounding mathematics education in 

U.S. public schools. Topics included problem solving, pedagogy, power, meaning, struggle, and 

freedom. Class time was split between student-led discussions of the readings and small group 

problem solving tasks. The immersive experience involved tutoring precalculus onsite at local 

high schools whose student body was an underrepresented population; due to the pandemic, 

seven of the twenty-three undergraduates tutored online through Zoom. The experiential learning 

social justice component cultivated social justice, civic life, civic perspective, and civic 

engagement. The tutoring component helped the undergraduate students grow in their ability to 

understand student thinking and developed ways to strengthen high school students’ 

understanding of precalculus content. Three overarching themes were presented.   

● What is math?  

● Who does math?   

● How can we teach math more equitably?  

Mathematics Education and Social Justice was first taught in the ten-week long spring 

quarter of 2022 at a mid-sized private university on the west coast. The twenty-three students 

enrolled in the class included math, computer science, engineering, finance and economics 

majors. Weekly readings included chapters from Mathematics for Human Flourishing (Su, 2020) 

supplemented by readings about pedagogy and equity in mathematics. Students responded to 

weekly journal prompts to reflect on their tutoring experiences within the context of the readings 

and discussion. For their final project, the undergraduate students designed a learning product 

which could be used by teachers in the local high schools where they tutored.   

 

Methods 
We will use the constant comparative process to analyze the journal entries (Yin, 

2009).  First, the authors will identify incidents, or idea threads, which demonstrate any of the 

three main ideas: “What is math?”, “Who does math?” and “How can we teach math more 

equitably?”  To reach an agreement on the incident, we will identify incidents together for two 

randomly selected transcripts and then do so independently for the remaining entries. We will 

then meet to assess agreement on the incidents. Note that a single incident may contain two main 

ideas. For example, the idea thread from Student 4, Journal 1 in Table 1 addresses both the ideas: 

“What is math” and “Who does math.” This thread illustrates the belief that math is useful for the 

student’s major; it also indicates the belief that some people have a natural talent for math and 

that effort can help a student succeed in school mathematics. 

Once the idea threads for the week one journal entries are identified, we will develop a code 

book using inductive and deductive processes.  In the idea thread from Student 4, Journal 1, the a 

priori code applied to “What is math” will be instrumentalist, because this student sees math as 

being useful to their major. We will also develop emergent codes if the “What is math” idea 

threads when one of the three a priori codes do not apply. For example, the idea thread from 

Student 3, Journal 1 in Table 1 indicates that the student thought of math as memorization. 

25th Annual Conference on Research in Undergraduate Mathematics Education 947



Table 1. Sample codes 

Parent Code Sub Code  Example 

What is 

math 

Instrumental  Once I got to high school, I started putting a little more effort 

into math, mostly because I knew my grades were going to 

matter for applying to colleges. The real switch, however, came 

about halfway through high school when I started looking at 

what major I wanted to pursue. From that point on, I realized 

the importance of math for my life and aspirations.   

(Student 4, Journal 1) 

 

Who does 

math 

Innate gift 

 

Effort for 

grades 

 

 

What is 

math 

 

Memorization 

 I felt like multiplication tables were too hard. I had a difficult 

time focusing in order to memorize them and it took a lot of 

effort from my parents and myself in order to work through that 

difficulty. (Student 3, Journal 1) 

 

We will follow a similar process to address the second research question.  A priori codes will 

be based on the beliefs that mathematics intelligence is an innate gift or achieved through 

effort.  In the incident above from Student 4, Journal 1, the a priori code applied will be an innate 

gift because they are “naturally good” at math. Emergent codes will be developed as different 

views of mathematicians arise in the idea threads. That same incident will have an emergent code 

describing “effort for grades” as that is different from effort for growing math intelligence.   

We will follow a similar protocol for the third research question.  A priori codes for teaching 

math will be developed around Su’s (2020) ideas to teach math for human flourishing through 

exploration, problem solving, and play. After coding journal entries, we will develop a rubric to 

analyze the final project in terms of those same equitable math teaching practices. 

Upon completion of the codebook, we will divide remaining journal entries between the 

authors to identify and re-code the idea threads. We will then engage in a two-step process to 

assess reliability. First 100% of each author’s journals will be given to the other author to ensure 

all idea threads in the journals were captured and identified accurately. We will then calculate the 

percent agreement between the authors. The second process of reliability assessment will be 

seeking agreement on codes that were applied to each idea thread. Again, 100% of each coder’s 

journals will be exchanged and the percent agreement calculated.   

To address the first research question, we will examine general trends across the beliefs 

about mathematics. To address the second research question, we will examine patterns across 

beliefs about who does math. To address the third research question, we will connect student’s 

understanding of equitable teaching with different student characteristics, such as college major. 

 

Preliminary Results 
While the full data analysis has yet to be completed, these are some preliminary findings 

related to each of the three research questions.   

How does the experiential learning social justice (ELSJ) class influence undergraduate 

students' beliefs about mathematics? Rather than change students’ beliefs about mathematics, the 

ELSJ learning experiences expanded students’ beliefs about mathematics. At the beginning of 

the quarter, most of the undergraduate students described mathematics as memorized facts, 
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procedures, or a tool; in contrast, the four mathematics majors tended to see math as problem 

solving and logical thinking.  By the end of the quarter, most students moved from seeing 

mathematics as a set of rules to a set of ideas and a way of thinking. In addition to seeing math as 

a toolkit, students became aware of the intrinsic value of mathematics and see mathematics as a 

way of “understanding the world.” Most students moved forward along the continuum from an 

instrumentalist to a problem-solving view of mathematics.   

How does the experiential learning social justice class influence undergraduate students' 

perceptions about who does mathematics?  Students’ experiences throughout the quarter also 

expanded their perception about who does mathematics. Undergraduate students, who saw 

themselves as innately good at math, grew to recognize that through persistence and effort, 

anyone can develop math skills. Students saw that invisible labels through ‘grouping’ could 

encourage or discourage that persistence and effort. Students began to see that all students have 

the potential to be mathematicians. In their last journal entry, one business major enthusiastically 

noted that anyone could be a mathematician, “even me!” 

How does the experiential learning social justice class influence undergraduate students' 

understandings of how to teach math equitably? Students’ journal entries gave evidence to their 

thoughts about teaching math equitably, such as high expectation, relationships, motivation and 

engagement, and such; the final projects revealed the depth of their understanding. Some groups 

were able to identify ways to provide higher order thinking and problem solving; this aligned 

with equitable teaching. Some other groups focused more on basic concepts and rote learning, 

which tend to perpetuate inequities. 

 

Implications and Future Research 
The reflections in this course influenced students’ thinking about what is math, who does 

math, and how to teach math equitably. In person tutoring gave undergraduate students a chance 

to get to know underrepresented high school students, to build a joint learning community with 

them, and to experiment with what types of teaching strategies helped the students learn.  

These undergraduate students scratched the surface of learning what equitable math 

education looks like. We need to continue to study equitable teaching practices at all levels: 

elementary through graduate school.  At the undergraduate level, we can cultivate an open 

mindset about mathematics, an awareness of the disparities that exist, and highlight equitable 

practices such as building learning communities among students from different backgrounds. 

The mathematics learning center is a natural place to cultivate that awareness (Reinholz et 

al., 2020). Tutors have a unique opportunity to develop a relationship with their students, to 

understand their students’ thinking, to encourage a growth mindset, to engage students and build 

on their individual mathematical strengths. Raising tutor awareness of social justice issues and 

having tutors try out different teaching methods is one way to build a diverse learning 

community. Creating a sense of belonging in the math learning center is a critical first 

step.  From there we can explore other teaching methods to promote equitable math teaching and 

make a difference in the mathematical future of the students who come. 

 

Questions for Audience 
1. Two key components of the class are the immersion experience and the reflection 

piece.  What questions do you have about either of these?   

2. What questions do you have about the specific reflection prompts? 

3. How do these preliminary results impact what you will do in your own classes? 
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A Literature Review Across Discipline-Based Education Research: What is a Theoretical 
Framework and How is it Used in Education Research?

Jon-Marc G. Rodriguez Jocelyn Elizabeth Nardo
University of Wisconsin - Milwaukee Stanford University

Extant literature has emphasized the importance of education research being theory-based. To
this end, many studies have an explicit “theoretical framework” section that describes the
theoretical assumptions that inform the research. Nevertheless, there is large variation in the
extent to which studies incorporate theory in the research process. This work describes a
literature review conducted across discipline-based education research, focusing on the role of
theory in research. We focus on a snapshot of theory use by analyzing studies published in 2021
(n=589) across biology, chemistry, engineering, mathematics, and physics education research
journals. Preliminary analysis focuses on trends related to the presence of a theoretical
framework and reflecting on how the theory is used in the research process. Our goal is not to
evaluate the quality of research, but rather describe how theory is used to inform future work and
open a cross-disciplinary dialogue about theory.

Keywords: theory; cross-disciplinary; research questions; methodologies

Research on teaching and learning within science, technology, engineering, and mathematics
(STEM) has increased considerably as a collection of fields called discipline-based education
research (Henderson et al., 2017; Singer et al., 2012; Talanquer, 2014; Trujillo & Long, 2018).
Discipline-based education research (DBER) fields each reflect an interdisciplinary agenda,
drawing from educational psychology, learning sciences, and STEM disciplinary fields to seek
evidence-based knowledge and practices that improve our understanding of teaching and
learning (Henderson et al., 2017; Slater, 2011). To this end, DBER consistently draws research
methodologies from educational psychology and the learning sciences, such as case study,
phenomenology, grounded approach (Charmaz, 2006; Denzin & Lincoln, 2008), and quantitative
analyses (Petscher et al., 2013). Nevertheless, each DBER field has their own discipline-based
perspectives with shared goals, norms, behaviors, and identity. The shared goals, norms,
behaviors, and identity of the DBER fields are what make them individual communities of
practice (Lave & Wenger, 2004; Rynearson, 2015; Wenger, 1998).

CoPs have boundary objects, understood as artifacts, documents, terms, and concepts that
serve as an interface between boundaries of domain knowledge (Lave & Wenger, 2004;
Pawlowski & Raven, 2000; Star & Griesemer, 1989). CoPs can communicate with one another
through brokering, which includes activities by individuals that facilitate transactions and flow of
domain knowledge (Lave & Wenger, 2004; Pawlowski & Raven, 2000; Star & Griesemer, 1989).
When brokers use boundary objects (i.e., boundary object brokering), different CoPs can achieve
convergence by creating shared information systems among different CoPs (Pawlowski &
Raven, 2000). As a CoP, the field of mathematics education has a shared mission of encouraging
quality research in undergraduate mathematics and its application to teaching practice (RUME
Charter, 2010). Practices that bound the community together include contributing and attending
conferences, publications in journals (e.g., Journal for Research in Mathematics Education and
Educational Studies in Mathematics), and creating evidence-based practices used for instruction
in K-12, undergraduate, and graduate spaces (Yığ, 2022).
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Researchers interested in finding unifying concepts across mathematics education have
explored how different epistemological perspectives have shaped emergent research (Hannula et
al., 2004; Lester, 2005). Here, epistemological perspectives are summarized as theoretical
frameworks, which use models for learning to define the constructs under investigation (Hannula
et al., 2004). Theoretical frameworks in practice shape how research is designed, collected,
analyzed, and shared (Lester, 2005). For example, recent literature reviews in mathematics
education reveal that theoretical frameworks that underpin emotion- and motivation-based
constructs are foundational for learning, but are currently undertheorized (Schukajlow et al.,
2017) and theories in general are heavily fragmented across mathematics education research
(Bikner-Ahsbahs & Prediger, 2014). Future themes for mathematics education research call for
an emphasis on understanding the role of theoretical frameworks that maintain the validity and
replicability of the field (Bakker et al., 2021).

In other DBER fields, theoretical frameworks are also inconsistently used and are often
undertheorized within studies (Bussey et al., 2020; Lohmann & Froyd, 2010; Reinholz &
Andrews, 2019). Thinking about how theoretical frameworks are organized across DBER fields
can act as a transformative force in STEM higher education (Reinholz & Andrews, 2019).
Importantly, theoretical frameworks can be used to connect multiple domains of knowledge that
enable needed connection amongst the currently siloed STEM higher education landscape
(Reinholz & Andrews, 2019). As DBER researchers, our role is to connect CoPs by using
theoretical frameworks to facilitate the flow of knowledge across STEM disciplinary domains.
Thus, we endeavor to understand how theoretical frameworks are used across DBER fields to
support researchers framing mathematics education research and STEM education research
broadly. The following project is a literature review study that draws on n=589 research articles
published in 2021 across DBER journals with the highest impact factors in math, physics,
chemistry, engineering, and biology. The project seeks to open a dialogue across DBER fields,
focusing on the general question: How do DBER research articles use theoretical frameworks in
their work?

Methods

Data Collection and Analysis
For the purposes of our literature review, we defined theoretical frameworks epistemically as,

“a system of ideas, aims, goals, theories and assumptions about knowledge; about how research
should be carried out; and about how research should be reported that influences what kind of
experiments can be varied out and the type of data that result from these experiments” (Bodner &
Orgill, 2007). We strategically chose this definition because (1) it was meant to cover the breadth
of DBER fields; (2) it allows for flexibility while maintaining shared understanding; and (3) it
emphasizes the role in overall research design.

The initial challenge with this literature review was to narrow the scope sufficiently to make
this project feasible. This work is part of a larger project intended to contextualize the use of
theory within the broader DBER landscape. For the purposes of this conference report, we focus
on a narrow timeframe to draw connections across discipline-based education research fields. In
particular, we report on education research studies published in 2021, with an emphasis on
discipline-specific research journals (biology, chemistry, engineering, mathematics, physics), as
opposed to journals that focus broadly on STEM education research. In the case where there
were multiple discipline-specific education research journals, the journals for our sample were
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selected based on journal impact factors, as well as input from the relevant community regarding
journal quality (Williams & Leatham, 2017). It is important to note there are limitations in using
journal impact factors to measure research quality (Cameron, 2005), but their prevalence in
academia provides a useful metric for gauging the likelihood that a community would be familiar
with the journal. Our sample focused on research studies, that is, papers that describe the
collection and analysis of data, contextualized within prior research; this excluded non-research
papers such as editorials and commentaries. The final sample was n=589 research studies,
collected from two journals for each community (except for physics). The journals sampled are
in summarized in Table 1.

Preliminary analysis involved characterizing whether each study in the final sample had an
explicit framework section (Framework vs. No Framework). Here, the unit of analysis was the
publication itself. In most cases, this was located toward the beginning of the manuscript with a
title heading involving some variation of phrases such as “theoretical framework”, “theoretical
perspectives”, “theoretical framing”, etc. Characterization first involved the two authors coding
all the chemistry papers in-tandem, requiring 100% agreement (Campbell et al., 2013). An
independent coding team of two researchers applied this analysis to the chemistry sample,
resulting in 93% agreement and a Cohen’s Kappa of 0.85. Following this, one researcher coded
the biology and engineering papers, and the other researcher coded the mathematics and physics
papers. Further analysis focused on analyzing the studies within the Framework category to note
how the theoretical framework was used throughout the different sections of the paper (i.e.,
research question; methods; findings; conclusions and implications); at the time of submission,
this process has been applied to the chemistry studies only, with the intention of scaling to the
remaining sample, with particular attention given to chemistry, physics, and mathematics trends
for the RUME community.

Preliminary Results

For this report, we focus on providing a general overview of how many studies across the
sample had an explicit theoretical framework, followed by providing an example of how a
framework was used across a single study. Summarized in Table 1, there was large variation in
whether studies had an explicit theoretical framework section, even within a specific discipline
(e.g., engineering – 57% of studies had a framework in Journal of Engineering Education, but
only 12% of studies had a framework in International Journal of Engineering Education).
Claims regarding the generalizability of these values are limited and it remains to be determined
how these values relate to the consensus of specific communities and the journal context.
Notably, the lack of journal guidelines related to the inclusion of a theoretical framework help
explain the low values for Biochemistry and Molecular Biology Education (3%) and
International Journal of Engineering Education (12%); however, Physical Review Physics
Education Research (37%) and Educational Studies in Mathematics (63%) have higher values
despite also not having journal guidelines related to the inclusion of a theoretical framework.

Table 1. How many discipline-based education research studies published in 2021 had an explicit theoretical
framework section?

DBER Field Journal Impact Factor Framework

Biology CBE-Life Sciences Education 3.365 25%
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N=128 N=68

Biochemistry and Molecular
Biology Education*
N=60

1.160 3%

Chemistry
N=110

Journal of Chemical Education
N=45

1.385 62%

Chemistry Education Research
and Practice
N=65

1.902 55%

Engineering
N=173

Journal of Engineering
Education
N=42

1.569 57%

International Journal of
Engineering Education*
N=131

1.280 12%

Mathematics
N=76

Journal for Research in
Mathematics Education
N=17

3.676 53%

Educational Studies in
Mathematics*
N=59

2.402 63%

Physics
N=102

Physical Review Physics
Education Research*
N=102

2.412 37%

*Indicates journal submission guidelines do not mention theoretical frameworks/theory.

In addition to characterizing whether or not a study had a framework, we are interested in
how studies use frameworks as part of the research process. Focusing on the chemistry papers,
we noted that 83% of the studies integrated the theoretical constructs throughout the different
sections of the manuscript, which is consistent with our framing of how theory should influence
study design (Bodner & Orgill, 2007). To illustrate, we provide an example research study
published in Chemistry Education Research and Practice (Parobek et al., 2021). The study
focused on students’ reasoning related to a representation used in chemistry, a reaction
coordinate diagram. Part of the challenge with this representation is that it looks like a graph
(y-axis is potential energy and x-axis is reaction coordinate), but it is only used as a quantitative
graph (i.e., a function) in upper-level physical chemistry courses. In most cases a reaction
coordinate diagram is used as a qualitative tool where the x-axis does not have a physical
meaning; see Parobek et al. (2021) for an in-depth discussion of reaction coordinate diagrams.
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Relevant to our literature review, Parobek et al. (2021) integrated multiple frameworks,
discussed in the “theoretical considerations” section of the manuscript: resources framework
(Hammer et al., 2005); actor-oriented model of transfer (Lobato, 2003); graphical forms
(Rodriguez et al., 2019); value-thinking and location-thinking (David et al., 2019); these
frameworks draw across learning sciences, chemical education, and math education. Moreover,
the theoretical constructs were well-integrated throughout each section of the paper, illustrating
the guiding nature of the frameworks. For example, the research question adopts the language of
the frameworks: “What mathematical resources do students transfer to make inferences about
the points and trends on a reaction coordinate diagram?” (p.699, emphasis added). As part of
this, the authors make it clear that the specific mathematical resources of interest are graphical
forms and location/value-thinking, which influenced prompt development and data analysis:

“These diagrams [representations used in interview prompts] were constructed with an
awareness of existing graphical reasoning frameworks that highlight the various ways
that students may interpret points and regions along a graphical trend … Iterative cycles
of inductive and deductive coding … Each graphical reasoning code … is first designated
according to the graphical reasoning frameworks that served as a lens for crafting these
categories in the unique context of RCDs.” p.701-702

Lastly, in the Findings and the Conclusions/Implications sections the authors contextualized the
data within the previously discussed theoretical frameworks and reflected on what the theory
suggests regarding how instructors can support students. In addition to exemplifying theory use,
we assert this paper is important because of how it illustrates the ways in which communities of
practice are connected through the theoretical framework, not only because of cross-cutting
concepts and skills (e.g., energy and graphical reasoning), but through the epistemological
assumptions reflected in theoretical frameworks used by different fields.

Conclusion
We assert theoretical frameworks currently act as boundary objects within mathematics

education research field as well as DBER fields broadly, which contribute to the existing
fragmentation and under-theorization characterized by scholars (Bikner-Ahsbahs & Prediger,
2014; Schukajlow et al., 2017). DBER researchers can participate in boundary object brokering
by acting as brokers to support the flow of interdisciplinary knowledge through their valid and
reliable use of frameworks. We are currently analyzing the data to elicit themes related to the
larger dataset, with the intention situating chemistry, physics, and mathematics within the
broader DBER context because of their relevance to the RUME community. Our goal is to use
these data and findings to initiate a broader conversation about theory and its use in education
research. For example, it is worth considering whether every study needs a framework and what
a framework might (or might not) contribute to a specific study. Moreover, we need to reflect on
the nature of different theoretical frameworks; in particular, the analytic power of frameworks –
it may be difficult to design a study and operationalize some frameworks. Lastly, it would be
helpful to discuss the process of developing a theoretical framework, especially in relation to
established approaches such as grounded theory (Charmaz, 2006).
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A Precalculus Student’s Use of Slope in Finding Linear Equations and Linear Approximations  
 

Kyunghee Moon 
University of West Georgia 

 
This article reports mathematical understanding of one of the precalculus students who 
participated in a teaching experiment. The experiment was designed to help students 
strengthen the understanding of the concept of rate of change and linear equations to prepare 
them for the calculus concepts: tangent line equation and linear approximation. Before the 
experiment, the student understood slope mostly as an algebraic ratio and could not use the 
slope to determine the y-intercept of the line. With the intervention, she strengthened her 
knowledge of slope as both algebraic and geometric ratios and used her knowledge to 
construct linear equations. In addition, she was able to use slope to determine linear 
approximations of function values in various functions. The results suggest that when provided 
with appropriate tasks and prompts, precalculus students can be better prepared for their 
upcoming calculus concepts.  
Keywords: Slope, Linear equation, Tangent line, Linear approximation 

Do precalculus students adequately understand linear equations for their upcoming calculus 
courses? In my teaching experience, I found that most calculus students struggled to find the 
equations of tangent lines or linear approximations. I initially thought that their struggles 
stemmed from their insufficient skills or understandings related to derivatives. However, after 
realizing that many students with correct derivatives could not construct tangent line equations, I 
speculated that their struggles were also due to their lack of understanding of linear equations. So 
I conducted a survey with precalculus students on two conversion problems from graph to 
equation and confirmed that students indeed had difficulty constructing a line equation unless the 
y-intercept could be easily observed from graph. Thus, in order to help them develop 
understanding of slope and linear equations, I designed and researched a teaching experiment 
(Steffe & Thompson, 2000) with a research question: How do precalculus students understand 
linear equations and in what ways understanding linear equations helps them construct equations 
of tangent lines or approximate function values? In this report, I share my preliminary findings 
and seek for suggestions and inputs for the future direction of research. 

Theoretical and Concept Background 
Slope as Algebraic and Geometric Representations 

Representations, especially algebraic and geometric, play a central role in mathematics 
curriculum and instruction. Yet many students do not understand mathematical concepts by 
connecting representations or have difficulty connecting representations in mathematical problem 
solving (Dufour-Janvier, 1987; Even, 1998). Among the concepts requiring the connections of 
representations, rate of change has attracted a lot of research (such as Carlson et al., 2002; Nagel 
et al., 2019; and Thompson & Carlson, 2017). I here describe the rate of change in linear 
equations—slope—, using the framework by Nagle, Martínez-Planell, and Moore-Russo (2019). 

Nagel et al. (2019) categorizes the concept of slope within the APOS framework (Arnon et al., 
2014). Slope as an algebraic ratio is the formula, !"#!$

%"#%$
. At an action stage of slope as an algebraic 

ratio, an individual knows the formula as a memorized fact and can compute the value with the 
ordered pairs provided. At the transition level (from action to process) of slope as an algebraic 
ratio, she understands that slope is independent of any two points and may also imagine obtaining 
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the equation y-y1 = m(x-x1) or y = mx+b  without explicitly doing it. Yet she may understand 
slope only in algebraic aspect and has no geometric referents to justify the formula, !"#!$

%"#%$
. 

In comparison, slope as a geometric ratio is the rise over the run in a geometric figure. At an 
action stage of slope as a geometric ratio, an individual may see slope as a static image and do a 
simple counting to find slope. At this stage, she has no understanding that the numerator changes 
as the denominator changes; as such, she may struggle with the sign of slope. At the transition 
level (from action to process) of slope as a geometric ratio, the individual knows that slope is 
independent of the size of the triangle being used. As such, she may use slope to determine 
relationships of properties or to describe the behaviors of a line, such as increasing or decreasing.  

When an individual reaches the transition level of slope as both algebraic and geometric ratio 
as well as understands slope as a parameter in y = mx+b  by freely moving between algebraic and 
geometric ratios, she reaches a process stage of understanding of slope. With a process 
conception, she could imagine conversions of slope among arithmetic, algebraic, and geometric 
representations, without explicitly doing the conversions (Nagle et al., 2019). 
Tangent Line and Linear Approximation 

When a function f is differentiable at a point, 𝑥 = 𝑥(, one can determine its tangent line to the 
curve with the formula, 𝑦 − 𝑓(𝑥() = 𝑓.(𝑥()(𝑥 − 𝑥().	Unfortunately, neither the derivative nor 
the tangent line equation itself involved in the formula is easy for students. Many students do not 
conceptually understand that 𝑓.(𝑥) is the limit of the average rate of change (Asiala et al., 1997; 
Orton, 1983; Thompson, 1994). Neither do they understand the structure or meaning of the 
tangent line, making errors such as claiming the slope of the tangent line as 𝑓(𝑥() (Orton, 1983) 
or the tangent line as the derivative of 𝑦 = 𝑓(𝑥) (Amit & Vinner, 1990). Further, many 
individuals may not be much familiar with point slope form in which the formula is presented. 
According to Nagel and Moore-Russo (2013), preservice secondary teachers rarely hold the 
point slope form in their concept map of slope. While 11 of 19 teachers included the slope 
intercept form, only 3 included the point slope form in their concept map.  

There are two common ways to find a linear approximation. The first is to find the tangent 
line equation using the formula 𝑦 − 𝑓(𝑥() = 𝑓.(𝑥()(𝑥 − 𝑥() and to determine y = 𝑓(𝑥1) by 
substituting x = x2 into the equation. The second is to find the slope of the tangent line at x = x1 , 
𝑓′(𝑥(), find 𝑑𝑦	as 𝑓′(𝑥()𝑑𝑥, and add 𝑑𝑦 to 𝑓(𝑥(), yielding 𝑓(𝑥() + 𝑑𝑦 (see Figure 1). The 
cognitive processes involved in the two ways are quite different, although they may be 
intrinsically the same—as 𝑦 − 𝑓(𝑥() = 𝑓.(𝑥()(𝑥 − 𝑥() can be converted to 𝑦 =
𝑓(𝑥()+𝑓.(𝑥()(𝑥 − 𝑥() = 𝑓(𝑥() + 𝑑𝑦.	 

 
 
 
 
 
 

 
 

Figure 1. Linear approximation.  

Methodology 
The participants of this study were three precalculus students at a small state university in the 

southeast region of the US. I asked precalculus instructors to recommend their students who are 
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active in classroom. I sent an invitation email to all 15 students recommended by their 
instructors. Three students responded to my email and participated in this study. Student 1 was a 
local high school student and had an Algebra 2 course at her high school prior to precalculus. 
Student 2 was a sophomore in biology and had a college algebra course at our university prior to 
precalculus. Student 3 was a freshman in computer science and had an advanced mathematics 
course at a high school in southeast Asia where English was the primary language of instruction. 

Each of the three students were interviewed for a total of 5-7 sessions, with each session 
lasting about one and a half hours. The interviews were conducted in two stages. At the first 
stage—for the first one or two sessions—I used a form of semi-structured clinical interview 
(Ginsburg, 1997) to assess their level of understanding. The interview questions were designed 
to investigate their understanding of various forms of linear functions and quadratic functions as 
well as their ability to use rate of change in constructing function equations. 

At the second stage—for the remaining sessions—I used a form of teaching experiment 
(Steffe & Thompson, 2000) to intervene their understanding, in particular, to strengthen their 
understanding of rate of change as well as to have them use slope in constructing equations and 
finding linear approximations. I began interviews with pre-designed tasks. As the interviews 
progressed, the tasks were modified and more tasks were created based on their responses.   

The analysis of data began at the onset of the interviews. After each interview, I viewed the 
video recordings and prepared a time-coded written record of the content, including rough 
transcriptions of interesting episodes. At the same time, I developed codes based on the research 
questions, the framework of the study, and students’ understandings observed in the data. During 
this initial stage of analysis, I came up with hypotheses on students’ understanding and difficulties 
described in this report. In the next stage, I plan to review data by constantly comparing and 
revising codes in the spirit of constant comparative method by Glaser and Strauss (1967), which 
will help me confirm, rebut, or revise the hypotheses I made at the first stage of analysis.  
 

 
 

 
 

 
 

Figure 2. Linear equation task in pre-intervention. 

Preliminary Findings 
The results presented here are for Student 1 mostly from the interview and written data on the 

problems in Figures 2 and 3. The first graph of Figure 2 shows an integer valued y-intercept, but 
the second and third graphs do not. Figure 3 is three linear approximation problems designed at 
the level of precalculus or algebra. The problem 2 was provided with graphs of the function and 
the tangent line. Problems 3 and 4 were not provided with any graphs. Before given these 
problems, students were explained that a tangent line is almost identical to a curve at a given 
point and that the tangent line can be used to approximate function values.  
Line Equations 

Slope as an algebraic ratio and the Cartesian Connection. When constructing an equation 
for line graphs in Figure 2 during the assessment (at the first stage of the interviews), Student 1 
chose two lattice points through which the line passes and found the slope of each line by 
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calculating !"#!$
%"#%$

 (action as an algebraic ratio). For the first graph, she read the y-intercept (0, -2) 
from the graph and successfully used the slope intercept form to determine the equation, 𝑦 =
(
5
𝑥 − 2. For the second and third graphs, she wrote 𝑦 = (

7
𝑥 + 𝑏 and y =  (

5
𝑥 + 𝑏, respectively, 

but incorrectly determined the value of b as -0.3 and 3.3, respectively. When asked how she 
determined b, she said she guessed the values based on the locations of the y-intercepts. 

 
 

 
 
 
 
 

 
 

Figure 3. An example of linearization problem in teaching experiment. 

During the intervention, I asked her if the y = 3x+1 graph passes through the point (2, 7). She 
answered yes because 3(2) + 1 = 7, showing her understanding of the Cartesian Connection—“a 
point is on the graph of the line L if and only if its coordinates satisfy the equation of L” 
(Moschkovich et al., 2013, p. 73). I also asked her what the value of h was when the point (4, 1) 
was on the 𝑦 = (

7
𝑥 + ℎ	graph. She wrote 1 = (

7
(4) + ℎ and successfully solved for h, confirming 

her understanding of the Cartesian Connection in the problem context. I then asked her to 
determine b in the third graph of Figure 2, which she struggled prior to the intervention. She 
wrote 2 = (

5
(−5) + 𝑏 by using the point (-5, 2) from the line graph and claimed that b = 13/4. 

This suggests that students may have difficulty activating their understanding of the Cartesian 
Connection when the whole graph is presented without a reference of a specific point.   

Transition level as algebraic and geometric ratios. When asked to find the value of b, with 
(3, b) on the graph in Figure 4a, she picked two points, (4, -1) and (0, -2), found the algebraic 
ratio, #1#(#()

=#5
, and simplified it to ¼ (action as an algebraic ratio). She then wrote >#(#()

7#5
= 1/4 

and solved for b, showing the understanding that slope between any two points on the line is 
constant (the transition level of slope as an algebraic ratio). When asked what the change in y is 
if 1 is the change in x, she said ¼ without any hesitancy or work, confirming her understanding 
of slope as an algebraic ratio in the transition level. When I asked her to use the idea on the graph 
to determine the value b, she drew a triangle using points, (4, -1) and (3, b), wrote -1 and -1/4 for 
the horizontal and vertical segments (Figure 4a), and found b as -5/4 after subtracting 1/4 from -
1, showing a transition level of slope as a geometric ratio. I then asked her to use her geometric 
strategy to find the equations of the second and third graphs in Figure 2. She successfully found 
equations for both. For the third graph, for example, she came up with 𝑦 = (

5
𝑥 + (7

5
 by writing b 

as 3+1/4 with no drawing, by increasing ∆𝑦 of ¼ to the y-coordinate of (-1, 3), hinting her 
understanding of slope as a process. 
Linear Approximation 

When asked to estimate √1.05 using the given tangent line (problem 2, Figure 3), she first 
determined the slope of 1/2 from the line graph and then the value of b based on the point (1, 1), 
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by thinking ∆𝑦 = − (
1
 when ∆𝑥 = −1, without drawing (the transition level of slope as an 

algebraic ratio). She then substituted x =1.05 into the tangent line equation, 𝑦 = (
1
𝑥 − (

1
	, and 

found the value of y for the approximation of √1.05 (the Cartesian Connections). When asked if 
there was any other way to find the estimate, she drew a triangle (see Figure 4b), found ∆𝑦 =
.025 by setting up ½ = ∆!

=.=D
,	and added 0.025 to 1, showing the transition level of slope as a 

geometric ratio and possibly a process stage of slope. 
 

 
 
 
 
 
 

 
 
(a)                                                       (b)            

Figure 4. Slope in linear equation and its use in approximation. 
 

For both problems 3 and 4 (in Figure 3), she first attempted to represent the functions in  
graphs. For y = 2x2+1, she correctly drew a graph and its tangent line (Figure 5a) and found an 
estimate of f(2.1) by performing a similar work to her work in the problem 2 in Figure 3. For 
problem 4, however, she asked for my help for the 𝑦 = √𝑥E   graph as she did not remember the 
graph. When asked if the shape of a curve mattered in the previous approximation problems, she 
said no and randomly drew a smooth curve along with its tangent line at x = 1 (Figure 5b). She 
then successfully estimated √1.05E  by doing a similar work to the previous problems. 

 
 
 
 
 
 
 

 
(a)  Estimate of 2(2.01)2+1                              (b) Estimate of √1.05E  

Figure 5. Use of slope in approximation. 

Discussion and Future Research  
As for the other two students, Student 2 showed at most an action conception of slope as both 

algebraic and geometric ratios throughout the intervention. Student 3 initially showed the 
transition level as an algebraic ratio, with little conception of slope as a geometric ratio. With the 
intervention, he developed a transition level as a geometric ratio. The results suggest that tasks 
such as those used in this study can strengthen student understanding of slope and linear 
equations that is necessary for the concepts of the tangent line and linear approximation. 
However, for students who profoundly lack the understanding of slope and linear equations, such 
as Student 2 who remained at the action stage despite intervention, more research is needed to 
investigate their underlying problems. 
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Learning Assistants: The Assets of Relationships in Mathematics Classrooms

Brinley Poulsen Stringer
San Diego State University

Near-peer mentor models to support students in mathematics are becoming increasingly used at
institutions across the United States. One model, the Learning Assistant model, has been
implemented at Crossroads State University. Using Yosso’s Community Cultural Wealth
framework, this paper discusses the qualitative impact this model has on students, learning
assistants, and the instructor of a College Algebra class. Based on findings, additional
qualitative research is suggested to further investigate the Learning Assistant model.

Keywords: Learning Assistants, Near-Peer Mentors, Departmental Change

The use of near-peer mentors has become more common among universities and colleges in
the US in the past 15 years (Otero et al., 2010b; Sellami et al., 2017). Many different efforts are
being used across the nation to combat STEM attrition at the college level, such as co-requisite
models, active learning initiatives, and curricular reform (Battersby et al., 2015; Dawson et al.,
2015; Estrada et al., 2016; Theobald et al., 2020). Near-peer mentors have been used as a way to
help implement active learning and curricular reform, while also seeming to offer some unique
benefits both socially and academically to support students. Near-peer mentors thus serve as a
topic of interest when considering systemic change within mathematics departments (Barrasso &
Spilios, 2021; Sellami et al., 2017). While near-peer is not a well-defined term, and different
schools use various models to implement the use of near-peer mentors, typically these near-peer
mentors are fellow undergraduate students who have demonstrated the skills to function as
mentors in certain classes to support other undergraduate students.

Crossroad State University, a four-year Hispanic serving institution (HSI) in the southwestern
United States, utilizes a variation of one such model, called the Learning Assistant (LA) model,
to support students in introductory mathematics courses. In this model started by CU Boulder,
students who have successfully passed a course can apply for a learning assistant position for
that course to serve as an additional resource to students in the classroom (Otero et al., 2010a;
Otero et al., 2010b; Top et al., 2018). These LAs receive pedagogical training and then work
with instructors in classrooms to help facilitate discussions and promote student learning.

A body of research shows several improvements to student performance related to the
implementation of the LA model. Studies have found that the LA model has helped increase the
implementation of cognitively demanding tasks in the classroom, as well as improved student
performance on higher order cognitive skills assessments (Sellami et al., 2017; Webb et al.,
2014). Other studies have demonstrated increases in active learning and improved collaboration
in the classroom, as well as improved student satisfaction in these STEM courses (Campbell et
al., 2019; Sellami et al., 2017). Additionally, studies have found that the implementation of the
LA model has helped to reduce DFW rates (i.e., the percentage of students who withdraw, or
receive a D or F grade in the course) and close performance gaps for under-represented minority
(URM) students (Alzen et al., 2018; Sellami et al., 2017). While many benefits have been
measured quantitatively with the LA model, there is sparse literature to qualitatively describe the
phenomena that are occurring from implementing this model.

Qualitative research is of interest to better understand how the LA model is making a
difference. For instance, while it is valuable to know that studies have found LAs useful in
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supporting URM students, further study to know why this is the case can serve to further improve
the model and support students. Where Crossroads State University’s student population is
composed of over ⅓ URM students, studying the qualitative impact of the LA model in
Crossroad State’s Mathematics and Statistics department is especially relevant. With this in
mind, in this pilot study I set out to address this question: What are the perceived assets of LAs as
described by the students and instructor who work with learning assistants, and the LAs
themselves?

Analytical Framework
Yosso (2005) outlines the framework of community cultural wealth, which takes a more

holistic look at the assets, or capital, that an individual brings with them into a given situation,
assets which are often overlooked by societal norms. She articulates why these assets are
overlooked through the lens of Critical Race Theory (CRT), explaining that Whiteness prescribes
the norms of cultural capital, thus overlooking other types of capital that individuals, and
especially those who are minoritized, carry. Yosso (2005) outlines six dimensions of community
cultural wealth, or six types of capital, that minoritized individuals especially use to “to survive
and resist macro and micro-forms of oppression” (p. 77). These six dimensions are 1)
aspirational capital— the ability to maintain hopes and dreams despite facing real barriers, 2)
linguistic capital—the communication skills gained through various uses of language and style,
3) familial capital— cultural knowledge nurtured from familia, 4) social capital— networks of
people and community resources, 5) navigational capital— the knowledge and skills to
maneuver various institutions, and 6) resistant capital— the skills fostered through opposition
which help challenge the status quo. Where mathematics has long been a space of oppression
(Kozol, 2005; Martin et al., 2010), Yosso’s (2005) community cultural wealth framework serves
as an appropriate lens to view some of the ways that students bring various assets with them into
mathematics classrooms to help themselves and others persist through the gate-kept field.
Especially from a qualitative research standpoint, this framework as the potential to bring to light
data which would likely be overlooked in quantitative studies, providing rich insight into the LA
model that so far has not really been explored.

Methods
Over the course of a semester, I conducted four class observations in two sections of a

College Algebra course. All names used are pseudonyms. Elena, a Hispanic female senior
studying mathematics, was the undergraduate learning assistant in one section, and Jesse, a white
male junior studying engineering, was the undergraduate learning assistant in the other section.
Both sections were taught by a graduate student with prior college mathematics teaching
experience named Megan, a white female studying mathematics. Based on observations, both
class sections were racially diverse, with a seemingly even distribution of male-presenting and
female-presenting students.

At the end of the semester, I conducted a semi-structured focus group interview with three
students (1 White female presenting student, 1 Asian male presenting student, and 1 Hispanic
male presenting student) from the College Algebra sections I had observed. Additionally, I
conducted a semi-structured interview with Elena (LA), Jesse (LA), and Megan (instructor). I
had three different protocols—for students, LAs, and the instructor—each of which asked
questions which allowed participants to elaborate their experiences working with (or being) an
LA during the semester. The observations I had conducted earlier allowed me to ask more
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personalized follow up questions during each interview based on interactions between students,
LAs, and the instructor I had seen during the semester. From these interviews, I generated
memos of the salient ideas shared in response to each question, and then used a priori coding of
Yosso’s (2005) community cultural wealth framework to analyze the memos.

Findings
I will now discuss the findings across each of the six dimensions of cultural capital wealth,

articulating how the experiences of working with (or being) LAs were perceived by students,
LAs, and the instructor.
Aspirational Capital

Aspirational capital was described both by LAs and the instructor in the form of supporting
the students and LAs, respectively, in their own trajectories as students. Jesse shared, “I might
not do the most, but I want to show students that I want them to succeed," recognizing that while
he might not be able to provide every support to help students, he wanted students to know that
he was indeed there to support them and help see them through to succeed in the class. Elena
described her love of helping students have “aha” moments in class, articulating her belief in
their capabilities to succeed through the class.

Megan talked about enjoying the opportunity of working with LAs because she recognized it
as a resource to help support these LAs in their own student careers. She expressed enjoying
being able to help them grow and succeed by providing this mentoring opportunity to students.
For both the LAs and the instructor, their recognition and belief in the students for whom they
were supporting was a form of aspirational capital that benefited the class.
Linguistic Capital

There was one instance discussed of linguistic capital by students. They shared how LAs in
the class could explain mathematical ideas in different language from the instructor, which was
something they benefited from. Where mathematics is often described as a language, having
various ways to discuss mathematical concepts is indeed a nod to linguistic capital. LAs are able
to bring different perspectives into the classroom and articulate them in ways that students relate
to, allowing for more opportunities for mathematical understanding.
Familial Capital

Familial capital was not discussed during the interviews, because the focus of the interviews
was about an academic setting. Thus, questions did not focus on outside community where
familial capital might have been mentioned.
Social Capital

Social capital was perhaps the most mentioned form of community cultural wealth during
interviews, being discussed by students, LAs and the instructor. Students discussed how LAs
would make small talk with them at the beginning of class, getting to know them on a more
social level. Students expressed that this helped them to feel more comfortable with the LAs,
giving them the courage to also approach them about mathematics questions during class. LAs
also were aware of this phenomenon, and noticed students being more comfortable to approach
them over the course of the semester.

LAs discussed specific examples of noticing how students at times seemed apprehensive to
ask questions to the instructor, but were willing to call the LA over to ask questions they had
about the math. As Jesse put it, he was aware that LAs “have a better influence on you as a
student.” Another form of social capital that LAs discussed had to do with the network that was
formed with other LAs. Elena and Jesse both described the support they received from their LA
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peers in their LA roles, as well as the social support as students in general navigating their own
courses.

The instructor was also aware of the connection that LAs had with students, being an easier
authority for students to approach during class. Megan articulated this social capital by saying,
“it’s valuable to have a second person [in the class] that is potentially in a little bit more of a
mediation kind of middle zone,” describing the power dynamics that students might feel when
approaching the instructor compared to a fellow undergraduate student. Megan also talked about
the LAs being a great support to her, and someone to bounce ideas off. LAs were also a support
and a network to the instructor, providing valuable insight about students and ideas for how to
navigate class.
Navigational Capital

Both the instructor and the LAs discussed the ways that LAs supported both students and
themselves in navigating the role of being a university student. The instructor discussed that
because she had not experienced being a student at the university, she did not have the insight to
provide her students related to questions regarding things like where to take an exam, where to
get accommodations, or where to go for study help. Megan discussed the LAs as a major strength
to the class because they were a few years ahead in their studies and were familiar with the
various university systems that younger students often had questions in navigating.

The LAs also discussed on an emotional level understanding what it was like being a student
at the university and being able to relate to students in this way while also giving them advice for
how to navigate the systems of the university. LAs also discussed how being in LA positions had
helped them to develop better skills to succeed in their own careers as students. Elena discussed
improved time management skills from balancing being an LA and a student, and Jesse
discussed developing more efficient study skills through helping model them to students he
supported as an LA. Additionally, Elena discussed how taking this job had connected her to
network of new faculty that were opening doors for her future career. Across these comments, it
is very clear that these LAs both provided and developed navigational capital.
Resistant Capital

One student and both LAs discussed forms of resistant capital that LA positions brought to
the classroom, and to the lives of the LAs, respectively. One student shared that this was his
second time taking College Algebra because he had failed the previous semester and struggled a
lot with the material. He happened to have Jesse as an LA both semesters. The student discussed
that he felt that Jesse was aware his unique circumstance and would regularly check in on him.
He described feeling grateful that Jesse wanted to help him persist and succeed this time around,
despite his struggles. These small efforts on Jesse’s part made a big impact on the student.

The LAs also talked about developing resistant capital in taking up these roles. Jesse talked
about having imposters syndrome when first starting as an LA, but that this job had helped him
learn how to make mistakes and learn from them—something he was not used to from his
engineering courses working with other upperclass students. Elena said that she has “worked
smarter” as a student from the skills she has gained being an LA. Both LAs discussed how taking
up these positions had helped them to develop more confidence in themselves as students, and
that they saw skills learned as an LA showing up in their own studies as students, helping them
to persist through higher level STEM courses.

Discussion
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These findings demonstrate a variety of assets that the LA model has afforded multiple
groups of people associated with mathematics classes at Crossroads State University. When
asked whether they would prefer to take a future math class with or without LAs, one student
said, “I would obviously take the one with the [LA]”, and the other students shared similar
sentiments. Megan said that given the choice, she would also choose to teach in the future with
LAs rather than without them. Elena and Jesse both expressed how being an LA has afforded
them both with meaningful personal growth and skills that continue to benefit them in their
journeys as students. The LA model, from these interviews, seems to have a qualitatively
positive impact on students, learning assistants, and instructors involved with the program.

Many of the assets described seem to relate to the relationships that are formed among LAs,
students, and instructors. Where traditionally introductory mathematics courses are often taught
as a lecture-style course (Webb et al., 2014) where an instructor relays information for students
to passively absorb, with less opportunities to form relationships during class time, the LA model
adds a more human element to the mathematics. While several studies have demonstrated
improved quantitative gains, these findings perhaps point towards a major reason for these
benefits—the opportunity for more personal relationships to be formed allows for additional
capital to be utilized while teaching and learning mathematics. These findings matter because
these are not the data that would necessarily be tracked to understand the value of implementing
roles like learning assistants within a department. Yosso’s (2005) framework reveals several
important assets that these LAs bring to the department that would not typically be measured.

Conclusion
This study demonstrates assets that LA roles can bring to a mathematics department, namely

social and navigational capital among others. Further research should study the implementation
of learning assistants within the department (i.e., professional learning and training models), and
to investigate how this system can be improved. Additionally, it would be of value to understand
the impact of learning assistants on STEM persistence by doing some type of ethnographic study
over time by following students who have engaged with learning assistants during their careers,
as well as following students who have taken up the role of LAs to see their trajectories. These
are a few of many potential angles of qualitative work to better understand the benefits of
near-peer learning models on the teaching and learning of mathematics.
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Levels of Reflection in Strength-Based and Weakness-Based STEM Faculty Peer-Observation 
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The Teaching TRIOS project aims to promote strength-based faculty peer-observation of 
teaching for professional development. In this project, we present preliminary work from a 
comparative case study of two teaching TRIOS groups, one largely strength-based and the other 
primarily weakness-based. We seek to understand the levels of reflection facilitated by a 
strength-based and weakness-based approach to observation through the lens of the Onion 
Model for levels of change (Korthagen, 2004). Preliminary results indicate that a strength-based 
approach may promote more frequent reflection upon deeper aspects of oneself, such as beliefs, 
identity, and mission.  

Keywords: Faculty Development, Peer Observation, Teaching TRIOS, Core Reflection 

Many of our RUME colleagues are working to understand how to impact university 
instruction, at the level of the faculty (e.g., Yoshinobu et al., 2022), graduate teaching assistant 
(e.g., Ellis et al., 2019; Reinholz, 2017; Rogers et al., 2020), or through broad departmental 
change (Reinholz et al., 2020; Smith et al., 2021). In our work, we contribute to and extend this 
literature by providing an in-depth look into the discourse between university faculty when they 
are reflecting together upon one another’s instruction, attending to the tone and content of their 
reflections. This research is in direct response to Esterhazy et al. (2021), who provided a call to 
action encouraging researchers to not only explore what works in collegial-level faculty 
development (CFD) but also how it works. In particular, they mentioned that the field is in need 
of greater understanding of “the actual interactions and the content of feedback provided during 
concrete [collegial faculty development] situations” (p. 255). Within this preliminary report, we 
explore the content of feedback provided during Teaching TRIOS debrief sessions, a Time-
Sensitive (T), Reciprocal (R), Inclusive (I), Operative (O), and Strength-Based (S) instantiation 
of CFD that utilizes peer observation and has been used within the mathematics department, and 
more broadly across various STEM departments, at Middle TN State University (Bleiler-Baxter 
et al., 2021).  

Within TRIOS teams, groups of three interdepartmental faculty observe one another’s 
instruction and then meet to debrief. The goal is to unpack the strengths of the instructor 
observed during that class session. Unlike many traditional forms of peer evaluation, where the 
observers are positioned as coaches, the TRIOS model is intended to position the instructor as 
the coach and as an expert in their classroom setting. What we have noticed, though, is that some 
teams are more effective than others at debriefing in a truly strength-based way (i.e., attending to 
and unpacking the strengths of the instructor rather than identifying weaknesses or offering areas 
for improvement). In this research, we explore two such TRIOS teams, one team of 
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mathematicians that tended toward weakness-based reflection, and one team of biologists that 
tended toward strength-based reflection. We ask the following research questions:  

1. In what ways and upon what content do undergraduate-level faculty reflect within TRIOS 
debrief sessions that utilize a strength-based approach? 

2. In what ways and upon what content do undergraduate-level faculty reflect within TRIOS 
debrief sessions that utilize a weakness-based approach? 

Theoretical and Analytical Framing 
Providing negative, yet honest, feedback on a teaching session can lead to uncomfortable 

moments and cause considerable anxiety (Esterhazy et al., 2021). Through this study, we offer a 
converse hypothesis rooted in positive psychology (Seligman & Csikszentmihalyi, 2000): 
focusing faculty feedback on the strengths of the instructor can facilitate a deeper, more 
vulnerable and positive level of reflection and promote professional development.  

The Onion Model for levels of change (Figure 1; Korthagen, 2004) describes six levels at 
which teachers may be influenced to change their classroom practices, and therefore provides us 
with a lens to qualitatively view instructor reflection. Within this model, reflection can range 
from the outer, external layers such as environment, behavior, and competencies to the deeper, 
core layers of beliefs, identity, and mission. Reflection centered on the core levels can create 
room for deeper introspection and learning (Korthagen & Vasalos, 2005).  

 
Figure 1. The Onion Model for levels of change, modified from Korthagen (2004). 

Methods 

Context and Data Collection 
The study presented here is part of a state-level grant, awarded during the 2020-2021 

academic year. The overarching objectives for the grant were to (1) support faculty in becoming 
more aware of and responsive to varied backgrounds, learning styles, and cultures of learners in 
STEM courses, (2) promote reflection among STEM faculty with respect to inclusive pedagogy, 
and (3) spark cultural change within STEM departments with respect to a focus on inclusion. We 
began the professional development (PD) program in Fall 2020 with nine faculty participants, 
three from Biology, three from Chemistry, and three from Mathematics. One of the faculty 
participants from the mathematics department was unable to participate in the program after the 
Fall semester due to a significantly increased teaching workload during Spring 2021, so the 
mathematics trio became a duo during the Spring 2021 semester.  
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One of the main levers of change in this program, especially with respect to goal 2, was a 
peer observation of classroom instruction initiative called Teaching TRIOS. In this manuscript 
we explore the Teaching TRIOS debrief sessions for the biology team (Betty, Bridget, and Brian) 
and the mathematics team (Margaret and Moby), which occurred during Spring 2021. We 
selected these two teams to highlight as cases in this manuscript because they illustrate clearly a 
strength-based approach (biology team) and a weakness-based approach (mathematics team) to 
debrief discussions, and hence provide us with insight into our research questions.  

As this project was conducted during the COVID-19 pandemic, all TRIOS debrief sessions 
were conducted and recorded via Zoom. We did not collect recordings of the participants' class 
sessions, which were the topic of observation and discussion during the TRIOS debriefs. The six 
TRIOS debrief transcripts (three from biology, B1, B2, and B3, and three from mathematics, M1, 
M2, and M3) were edited, cleaned, and separated into talk turns. We define a talk turn to be the 
duration of one participant speaking until another participant speaks a complete word (i.e., 
interjections such as “hmm” did not separate a talk turn, but “yes” or “no” did). Transcript files 
were uploaded into Google Sheets to organize, classify, and analyze data. 

Data Analysis 
Our data analysis employed two layers of qualitative coding by talk turn. First, we coded 

each transcript to determine a quantitative description of the use of strength- or weakness-based 
approaches by each TRIOS team. Then, to compare the levels of reflection present within each 
TRIOS team, we coded the transcripts through the lens of the Onion model (Korthagen, 2004).  

Strength-based and weakness-based reflections. Two members of the research team 
independently identified segments from the transcripts that demonstrated a strength or a 
weakness-based approach. After independently coding one transcript from each the biology and 
mathematics TRIOS teams, these researchers met to discuss their understanding of a strength-
based and weakness-based reflection and developed the following definitions. 

In a strength-based reflection, an asset perspective on instruction is offered, often paired 
with a genuine interest in learning about instruction. These reflections are typically educative in 
nature. For example, Brian (B2) commented on Betty’s risk-taking in the classroom,  

I applaud you for it, because what you did, I think, for some people would be considered 
risky. Where, it's like, it's easier just “tell them what they need to know, give them 
multiple choice exam don't take risks”, and it's like, but that is not the world of how we 
need to develop people, and so I really applaud you for what you're doing. Yeah, I mean, 
my notes are so much for myself of, like, “how can I adapt these?” Because this pushes 
me to go in ways I hadn't thought about so I'm, I really… overall just really well done. 
In a weakness-based reflection, a deficit perspective on instruction is offered, often paired 

with interest in offering an alternative approach to instruction. These reflections are typically 
evaluative in nature. For example, Moby (M1) commented on Margaret’s teaching, “Right there 
would have been another spot. Because you corrected [student] when maybe the class should 
have corrected [student].”  

The same two researchers coded each transcript independently for strength- and weakness-
based reflection and then met to discuss disagreements and reach consensus. Any talk turns 
where consensus could not be reached were reviewed by five team members and discussed to 
reach agreement. Each transcript finally received a sum total for the number of strength- and 
weakness-based reflections present in the transcript. In order to compare the transcripts, we then 
scaled the number of strength- and weakness-based codes each to the total number of strength- or 
weakness-based codes. 
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Levels of reflection: the Onion Model. We used the levels identified in the Onion model 
(Korthagen, 2004) to categorize faculty talk-turns as reflection upon environment, behavior, 
competencies, beliefs, identity, and/or mission. The entire research team coded two transcripts to 
refine our code descriptions for each of the six levels. The revised codebook was used by two 
researchers to evaluate the transcripts independently. Following the independent coding of each 
transcript, these two team members met to determine consensus. Any talk turns where consensus 
could not be reached were reviewed with five team members and discussed to reach agreement. 
Each transcript received a sum total for the number of codes from each category present. In order 
to compare the transcripts, we then scaled the number of codes per category to the total number 
of Onion Model codes.  

Preliminary Results 

Strength- and Weakness-Based Reflections 
As stated above, we calculated the proportion of codes within a single transcript that 

demonstrated either a strength- or weakness-based reflection during the TRIOS debriefs for the 
biology trio and mathematics duo (Figure 2). Confirming our original impression, the biology 
trio largely embraced the strength-based reflection approach to the TRIOS debrief sessions, and 
although the mathematics duo illustrated more weakness-based reflections than strength-based 
reflections in their first two debriefs, their third debrief demonstrated growth in the use of a 
strength-based perspective. 

 
Figure 2. Proportion of codes demonstrating a strength- or weakness-based reflection by TRIOS debrief 

manuscripts for the biology trio (B1, B2, and B3) and mathematics duo (M1, M2, and M3). 

This apparent change in approach is not surprising as all participants were reminded of the 
strength-based facet of the TRIOS program during whole-project faculty learning community 
sessions. It is also evident that the mathematics duo made fewer weakness-based reflections 
during each debrief. The third mathematics duo debrief (M3), in which 64% of coded talk turns 
included a strength-based reflection and 36% of coded talk turns included a weakness based 
reflection, was considerably shorter than other debriefs at 163 talk-turns compared to an average 
of 282 talk-turns across all six transcripts. Further, M3 still offered more weakness-based 
reflections than any of the biology team transcripts.  

This observation regarding M3 along with the aggregate proportions of types of reflections 
for both the biology trio (95.3% strength and 4.7% weakness) and the mathematics duo (33.6% 
strength and 66.4% weakness) led us to consider the biology trio as an example of a group using 
a largely strength-based perspective and the mathematics duo as an example of a group using a 

25th Annual Conference on Research in Undergraduate Mathematics Education 975



largely weakness-based perspective to frame our analysis of the levels of reflection present 
throughout the debrief sessions.  

Levels of Reflection in TRIOS Debriefs 
The analysis of the TRIOS debrief transcript revealed a slightly different distribution of 

levels of reflection present in the biology trio’s and mathematics duo’s discussions (Figure 3). 
Although for both teams, the largest area of reflection was behavior and the smallest area of 
reflection was mission, the strength-based biology trio had a higher proportion of reflections 
regarding their beliefs (18.31%), identity (4.92%), and mission (1.37%) than the weakness-based 
mathematics duo (12.19%, 1%, and 0.5%, respectively). This indicates that it is possible a 
strength-based perspective may lead to deeper conversations and facilitate safe environment that 
facilitates reflection upon the most core features of oneself.  

 
Figure 3. Proportion of levels of reflection across total Onion Model codes aggregated by biology (B1, B2, and B3) 

and mathematics (M1, M2, and M3) debrief transcripts. 

Continued Research Plans 
We have currently completed our coding and have explored the quantitative proportions of 

levels of reflection present in the two team debriefs, but we also plan to identify exemplary 
episodes for each level of reflection and consider the context of how a strength- or weakness-
based reflection framed the subsequent conversation. This continued work will qualitatively 
respond to our hypothesis that focusing faculty feedback on the strengths of the instructor can 
facilitate a deeper, more vulnerable and positive level of reflection to promote professional 
development.  

We also noted during our research team discussions a qualitative difference between certain 
strength-based and weakness-based reflections. Although we defined strength-based reflections 
to be typically educative in nature and weakness-based reflections to be typically evaluative in 
nature, we noted instances in which participants offered evaluative strength-based reflections. 
Future work distinguishing between evaluative and educative reflection may help us better 
respond to why a strength-based perspective alone may not promote deeper reflection.  
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Proof Without Claim: Problem Packaging
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We present a case study of a student engaging in “proof without claim” tasks. In these tasks,
students are presented with proofs in which the proposition being proven (its claim) is removed.
Students are asked to ascertain what this missing claim is. This brief report serves (1) to
illustrate how our novel proof without claim tasks can provide insight into how students engage
with proofs and (2) as an existence proof that some students conceive of proofs as packaging for
calculational math problems.

Keywords: Reasoning and proof, Undergraduate education, Preservice teacher education.

There is a significant body of research on the teaching and learning of proof-based
mathematics (Stylianides et al., 2017). A lot of this literature has taken a deficit approach by
highlighting various challenges that students face in proof-oriented content. This includes
difficulties with constructing proofs (Iannone & Inglis, 2010; Weber, 2001), reading proofs
(Dawkins & Zazkis, 2021, Inglis et al., 2012), translating novel arguments into proofs (Zazkis et
al., 2015, Zazkis & Mills, 2017), and determining whether a given proof is valid (Selden &
Selden, 2003, Alcock & Weber, 2005). Although it is useful to have a thorough list of challenges
that students face, it is also important to understand the roots of these challenges.

In undergraduate mathematics, there is a transition between calculation-based courses and
proof-based courses (Moore, 1994). A number of mathematics departments implement courses
specifically to ease this transition (David & Zazkis, 2020). So, given the differences between
proofs and calculations, the transition-to-proof courses also marks a transition in how students
interact with mathematics, and by extension, what they might believe mathematics is. Since
students have vastly more experience with calculation-based mathematics when they begin
proof-based courses, it is reasonable to make sense of some nuances in students’ approaches as
an extension of their experience in calculation-based coursework (Dawkins & Zazkis, 2021).
Importantly, such experiences might color students’ engagement with proofs. Studying these
conceptions has the potential to lead to meaningful improvements to proof education.

Through utilizing novel tasks, our work addresses the following question: How do students
understand the relationship between a proof and what is being proven (its claim)? Addressing
this question sheds light on how student thinking about proof might be influenced by past
experiences with calculation-based mathematics. In the particular case study discussed here, we
show evidence that at least some students view a proof as a container for a calculation problem.
That is, students view proofs as essentially the same kind of task they encountered in their
previous calculation-based classes, with its component sentences dressing up the calculation.
This single case study is insufficient for making causal claims about the relationship between
students’ conception and their prior experiences with calculation-based course work. However,
we do believe that conceptions transferred from those prior experiences are the most
straightforward explanation for this phenomenon.

Task Design, Subjects, and Methods
We investigate this topic by creating and implementing the novel idea of proof without claim

tasks. These tasks involve providing valid proofs while removing any explicit statements
(claims) about what is being proven. Immediately prior to the proof is a statement “We will
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prove that” followed by a blank space, whereas after the proof is a statement “We have proven
that” followed by another blank space. Students are prompted to fill in their interpretation of
what should be in these blank spaces (Figure 1).

We developed six of these tasks in order to give insight into how students read and interpret
proofs. This includes (1) how students determine what text goes in the blank spaces, and the
related issue of (2) whether what they write in one blank space differs from what they write in
the other. Our tasks included typical logical structures of claims, and they have employed basic
proof strategies, such as proofs of universal claims via arbitrary instantiations, proof by
counter-example, and constructive existence proofs.

The participant, Maria (pseudonym), was, at the time of the interview, an undergraduate
preservice secondary mathematics teacher. She had successfully completed a transition-to-proof
course. The interview lasted two and a half hours and can be categorized as an exploratory
task-based clinical interview (Clement, 2000).

Results
Our data indicate that Maria views a proof as a package for three different components: the

beginning (first blank), the middle (text provided between blanks), and the end (second blank).
She brings a calculational orientation (Thompson et al., 1994) toward each individual part; the
beginning describes what calculations or math problems are to be performed, the middle carries
them out and serves as a holder for the constituent computations and equations, and the end
presents the answer or result of these problems or computations. In other words, she appeared to
conceptualize proofs as records of answer-getting problems. See Figure 1 for a typical example
of Maria’s work. Although there were six tasks involved, we use Figure 1 heavily as a typical
example of Maria’s work (due to space limitations).

The First Blank Box
In filling in the blank “claim” boxes, Maria indicated that she viewed the proofs as math

problems where the “problem” is the first claim and the “solution” is the second claim. The
reason we write quotations around “claims” is that, with the exception of a single task out of six,
only once did Maria write in the first box what we would consider to be a claim. Her
understanding of the first “claim” box as a repository for putting a math problem or prompt is
evidenced by her writing of commands such as “find”, “find out”, and “prove”. In other words,
rather than writing propositions as her claims, she wrote instructions for what mathematical task

to perform. For example, in the task disproving the statement “ is prime for all natural22
𝑘

+ 1
numbers k” (see Figure 1), Maria wrote “find f(k)” within the box for the first claim. In one task,
she used the command “prove” in the first claim box. While “prove” is not the same as “find”,
we note that it shares the aspect of being a command; it is an instruction that might be given to a
student to solve a math problem. Interestingly, in two different tasks, she listed “given”
information in the first claim box. In one of these tasks, these “given” statements were listed in
isolation. We note that, despite not including explicit commands, there is a sense in which
writing the “given” information is similar to writing a command; both are pieces of information
or symbolic prompts to be operated on or worked with towards a “solution”. In other words,
something is “given” in that it is information with which one will perform a task of finding an
answer.
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Figure 1. A typical example of Maria’s work

The Second Blank Box
Interestingly, Maria did not write the same content in the second claim boxes as she did in the
first claim boxes. Instead, in the second claim boxes, she wrote what we would call propositions.
We can compare this with what she tended to do in the first claim box, which was to write an
instruction or a calculation problem. Despite ostensibly being a proposition, when viewed in
relation to the rest of the task (in particular the content of the first claim box), we understand
Maria to be presenting the answer to the “question” or “problem” posed in the first box.
Consider, for example, Maria’s response to the task shown in Figure 1. While she wrote a
command in the first claim box to “find ” and to “find if the solution is a prime number”, in𝑓(𝑘)
the second claim box she wrote what her “solution” to is and noted that it “has” two primes;𝑓(𝑘)
in other words, the first claim box is for a question or prompt, and the second claim box is for a
solution or answer. We see a similar structure in other tasks. For example, in a proof without
claim task that proves the upper half of the unit circle has area , Maria reports that theπ

2

“derivative [sic] for the function for is ” in response to her first𝑓 𝑥( ) = 1 − 𝑥2 − 1≤𝑥≤1 π
2

blank box command to “Given the function for , find the derivative𝑓 𝑥( ) = 1 − 𝑥2 − 1≤𝑥≤1
[sic] dx/dy”. Another example of this structure is seen in a task that proves the quadratic formula
(written with different symbols than the way it usually appears). In the first blank she inscribed
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the instruction “The equation has zeros, Please feel free to prove this how𝑥2 + 𝑝𝑥 + 𝑞 = 0
you think is best.” In reply, her second blank box read “The equation has two𝑥2 + 𝑝𝑥 + 𝑞 = 0
zeroes which are = [...].” Maria correctly interpreted the last line of the proof, where is𝑥 𝑥
isolated, as a statement of the zeroes of the function. Yet, taken together, the ways she inscribed
the first and second blank boxes supports the idea that Maria was thinking of proofs as records of
calculation problems.

The Middle
While Maria used the first claim box to write down the “problem” or command and the

second claim box the “answer” or result, the middle served as a location for the computations
leading to the answer. In the middle of the quadratic proof, Maria spent around five minutes
attempting to verify the two algebraic steps—completing the square and rearranging terms.
Throughout the study, Maria gave much attention to intermediary steps; her attention was on the
particulars of the calculation rather than on the claim.

Figure 2. Another typical example of Maria’s work

Figure 2 (above) shows some inscriptions Maria made on the calculus task. This attention
given to the intermediary steps is consistent with Maria’s overall view of a proof as packaging a
calculation problem; the middle part is what she saw as the work to solve the “problem” being
posed. Note that she circles the leftmost integral and inscribes below that it is “The set up to find
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the derivative [sic] of ”. In the first blank box she inscribed an instruction to find the𝑓(𝑥)
derivative, and in the middle she indicates that she demonstrates that the way to start such a
calculational-oriented problem is by writing the integral. In other words, her attention to
intermediary steps can be understood as her focusing on the “problem” (the computation)
instructed by the first box.

Figure 1 also supports our interpretation that the middle serves as a holder for the constituent
computations. In drawing three arrows to 4,294,967,297 and labeling it “ ”, Maria indicates𝑓 𝑘( )
that this is the the proof is having her “find”. Below that, she inscribes that “𝑓(𝑘)

” and that “ ”. Her other command from the first blank box, to𝑓 𝑘( ) = 22
𝑘

+ 1 𝑓 5( ) = 22
5

+ 1
“find out if the solution can be a prime number” is explored when she circles 641 and 6,700,417.
From the middle of the task she extracts the numerical value of : “ is 4,294,967,297”.𝑓(𝑘) 𝑓(𝑘)
This then allows her to present her finding as an “answer” in the second blank box and comment
on it (“it has two primes”). Yet, Maria was not satisfied with her response and stated that it “has
no meaning whatsoever” in relation to her transition-to-proof course. In reflecting on the task in
Figure 1, Maria remarked that the mathematics presented in that task was not at all relevant to
the mathematics she was learning in proof-based math—“I don’t know what this has to do with
proofs”. For Maria, the task was at the pre-algebra level, because it only involved addition,
multiplication, and a few exponents – she was attending only to the calculations when judging
the proof’s mathematical sophistication. Since this particular proof involved only pre-algebra
calculations, she held this in conflict with the notion that proofs are part of higher-level
mathematics. This supports our interpretation that what she saw as the mathematics of the proof
was the calculational content in the middle, further supporting our interpretation that Maria saw
the proofs as records of calculation problems.

Discussion and Future Directions
We reported exploratory findings on an undergraduate preservice teacher who recently

completed a transition-to-proof course. This particular student made sense of these tasks by
conceptualizing the first claim as a statement of a “problem” to be solved, the last claim as the
“answer”, and the middle as a location for calculations connecting top to bottom. Hence,
ascertaining the claim amounted to determining to which “problem” these calculations
correspond. This technique of proof without claim gave us insight into how this student
conceptualized proofs. We believe prior calculation-based coursework to be a reasonable
explanation for the phenomena highlighted in this preliminary work. Hence, future directions can
expand the use of these tasks to a larger audience and more systematically explore the
connections between such conceptions and students’ prior course work.

Furthermore, it may be worth expanding interviews to include comparison tasks, where
interviewees are presented with both a container for calculation-type response (e.g. Maria’s
work) and one for a normative response (e.g. a mathematician’s) to a proof without claim task.
Interviewees’ responses to these comparison tasks have the potential to reveal additional nuances
of students’ conceptions of proof. In particular, since there is no blank claim box that needs
filling, there is potential to confirm that some students truly believe the
problem-calculation-answer format to be a legitimate proof format and perhaps more desirable
than the normative response.
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“When are we ever going to need abstract algebra?” 

Kaitlyn Stephens Serbin Sthefania Espinosa 
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

Instructors who prepare prospective teachers should provide opportunities for them to make 
connections between Abstract Algebra and secondary mathematics. This study focuses on an 
instructor who guided prospective teachers to connect properties of algebraic structures with 
equation solving procedures by evoking their intellectual needs (Harel, 2013) for computation, 
structure, causality, and communication. The students resolved such intellectual needs by using 
ring properties as tools to justify their solutions to equations. We characterize the intellectual 
needs the instructor evoked, along with her pedagogical moves used to evoke them during class 
discussion. We discuss how we will extend this analysis and provide implications for teaching. 

Keywords: Abstract Algebra, Equation Solving, Prospective Teachers, Intellectual Need 

Understanding abstract algebra has the potential to support mathematics teachers in their 
various teaching practices (e.g., Baldinger, 2018; Murray & Baldinger, 2018; Murray et al., 
2017; Serbin, 2021; Wasserman & Stockton, 2013; Zazkis & Marmur, 2018; Zbiek & Heid, 
2018). However, this potential is often not realized (e.g., Cofer, 2015; Ticknor, 2012; 
Wasserman, 2017; Zazkis & Leikin, 2010). For teachers’ understanding of advanced 
mathematics to be useful in their teaching, they need to first make connections between the 
advanced and secondary mathematics that change their understandings of the content they teach 
(Wasserman, 2018). One content area in which prospective secondary mathematics teachers 
(PSMTs) can connect abstract and secondary algebra is equation solving (Wasserman, 2016). 
Understanding how the properties of algebraic structures are used while solving equations can 
help PSMTs develop a deeper structural understanding of the often-rote procedures used to solve 
equations (e.g., Murray & Baldinger, 2018; Serbin, 2020; 2021). This connection between 
algebraic structures and equations was the focus of a unit in a Mathematics for Secondary 
Teachers course, which is the unit of analysis for this study. The course instructor guided 
students to connect abstract and secondary algebra by evoking various types of intellectual need 
(Harel, 2013) that required students to find a new “tool” they could use to solve equations in ℤ!" 
and ℤ#. We investigate how the instructor evoked these intellectual needs, which led students to 
identify ring properties as “tools” to use to meet those needs. This study addresses these research 
questions: (a) What types of intellectual need did the instructor evoke as she implemented the 
equation solving task sequence during class? (b) Which pedagogical moves did the instructor 
use to make the need intrinsic to students? 

Literature Review 
Equation solving is a fruitful point of connection between abstract and secondary algebra 

(Wasserman, 2016). By the time PSMTs take an Abstract Algebra course, they are familiar with 
procedures used to solve equations, including canceling, simplifying, factoring, and using the 
zero-product property. Learning about the properties of algebraic structures can help PSMTs 
develop a deeper understanding of why those equation solving procedures work (e.g., Serbin, 
2021; 2022). Wasserman (2014) demonstrated how attending to the assumptions underlying 
algebraic manipulation used in equation solving helped teachers understand the axioms and 
properties of algebraic structures. Murray and Baldinger (2018) similarly showed how teachers 
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developed a deeper understanding of the properties used in equation solving and how they were 
connected to algebraic structures. Equation solving has also been used as a context for students 
to build formal reasoning about algebraic structures from their intuition. Cook (2015) showed 
how students could reinvent ring axioms by attending to properties that allow them to solve 
equations in ℤ5 and ℤ12.	Cook (2014) also showed how students discerned properties of integral 
domains and fields by reasoning about zero-divisors and multiplicative inverses while solving 
linear equations. Overall, equation solving has been documented as a useful context in which 
students can connect abstract algebra and secondary algebra. Guiding PSMTs to make these 
connections is a fruitful approach for helping them better understand the content they teach. 

Theoretical Background 
This study leverages Harel’s (2008) necessity principle, which suggests that students learn 

mathematics when they perceive an intellectual need for it. Harel (2020) defined an intellectual 
need as “A behavior that manifests itself internally with learners when they encounter an 
intrinsic problem—a problem they understand and appreciate” (p. 274). When students 
encounter a problem intrinsic to them, their intellectual need for something is evoked, which can 
be satisfied by finding a resolution. Harel gave teachers the responsibility of making intellectual 
needs intrinsic to the students. Harel (2013) found five categories of intellectual needs: (1) need 
for certainty, (2) need for causality, (3) need for computation, (4) need for communication, and 
(5) need for structure. The need for certainty refers to a person’s desire to prove whether a 
conjecture is true or false occurs when students are asked to write proofs. The need for causality 
is the need to explain the cause that makes an assertion to be true. The students’ need for 
computation can be evoked by the instructor when asking them to solve an equation, as it is 
described as an individual’s need to quantify. A teacher can evoke students’ need for 
communication by formulating spoken language into algebraic expressions and formalizing 
concepts. The need for structure is a need for organizing knowledge into a logical structure. 
Harel (2013) proposed the necessity principle can be used in instruction by teachers setting an 
intellectual need for a particular concept, translating this need into a set of questions, designing a 
task sequence that allows students to investigate these questions, and helping students identify 
the concept that is present in their solutions to these tasks. Our study focuses on an instructor’s 
implementation of a task sequence in which she evoked students’ various intellectual needs. 

Methods 
Study Context, Data Collection, and Data Analysis 

Data were collected in a senior-level undergraduate Mathematics for Secondary Teachers 
course at a large research university in the US. This course covered topics from secondary 
algebra and precalculus that were connected to group and ring axioms and properties. Data were 
collected in the second unit of the course, which addressed the ring properties used while 
simplifying expressions and solving linear and quadratic equations in ℤ,	ℤ5, and ℤ12. The data 
include video and audio recordings of the first three class days of the instructional unit on 
equation solving. Each class was 75 minutes long. The course was taught by Dr. Grey 
(pseudonym), a mathematics professor and mathematics education researcher. For each clip of a 
task implementation, we summarized the task discussion and identified the tools students needed 
to do the task. We used deductive coding (Miles et al., 2013) to classify the type of intellectual 
need that was evoked by the instructor, using an a priori list of codes based on Harel’s (2013) 
types of intellectual need: (a) need for structure, (b) need for computation, (c) need for causality, 
(d) need for communication, and (e) need for certainty. We also used inductive coding (Miles et  
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Figure 1. Summary of Intellectual Needs and Pedagogical Moves Used to Evoke These Needs on Tasks 

 
al., 2013) to code the instructor’s pedagogical moves used to make the intellectual need intrinsic 
to students in that video clip. We wrote analytic memos (Maxwell, 2013) that included 
justifications of our coding and explanations of how Dr. Grey’s pedagogical moves evoked an 
intellectual need and made the need intrinsic to the students. We compared the coded video 
segments to identify patterns and relationships among the various intellectual needs evoked and 
the instructor’s pedagogical moves used to evoke those intellectual needs. 
 
The Instructional Task Sequence 

Dr. Grey used an adaptation of Cook’s (2012; 2015) task sequence for the guided reinvention 
(Freudenthal, 1991) of rings, which leveraged student reasoning about ring properties used to 
solve equations. Dr. Grey introduced the task sequence (see Figure 1) by comparing sets with 
one operation to sets that have two operations. Having previously learned about groups,	the 
instructor began by evoking the students’ awareness of sets with two operations by asking about 
the properties of these ℤ#	and ℤ!". She restricted the operations students could use to solve 
equations in ℤ#	and ℤ!" to only addition and multiplication (mod 12 or mod 5), so the tools 
students needed to use to satisfy their evoked intellectual needs were group/ring axioms or 
properties. Dr. Grey asked students to justify the algebraic manipulations in their equation 
solutions by identifying each of the properties used at each step. Students identified properties of 
additive inverse, multiplicative inverse, and identity. The instructor used these equation tasks to 
show students that not all properties hold for all sets. As the tasks progressed, students 
recognized that they needed additional tools to solve equations, such as the distributive property, 
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cancellation rule, and zero-product property. Once they learned the properties in ℤ# and  ℤ!", the 
instructor presented equation solving tasks in ℤ	and 2ℤ. Students then completed a table where 
they listed the properties of ℤ#, ℤ!", ℤ and 2ℤ that they had found while solving equations. This 
led to the final task where they used the properties in the comparison table to define a ring. 

Results 
We identified four types of intellectual need evoked through the tasks: the need for structure, 

computation, causality, and communication. An overview of each task used during class, the 
tools needed for the task, the intellectual needs evoked by the instructor, and the instructor’s 
pedagogical moves used to evoke those intellectual needs is presented in Figure 1.  
 
How the Instructor Evoked Students’ Need for Structure 

Dr. Grey evoked students’ need for structure at both the beginning and end of the task 
sequence. She made this need for structure intrinsic to the students by juxtaposing different sets 
together and having students identify similarities and differences in their structure. She posed 
task 1 (see Figure 1), in which she juxtaposed sets with one operation to sets with two operations 
to have students recognize a difference in the properties of those two kinds of sets. The students 
were aware of the structure of groups, so this task led them to see a need to understand the 
structure of sets with more than one operation. Dr. Grey further used this pedagogical move of 
juxtaposing sets in task 7, which prompted students to compare the rules used to solve equations 
in the different sets, ℤ#, ℤ!", ℤ and 2ℤ. This task allowed students to organize the properties they 
have learned thus far into a table to visualize which properties held for each of the sets. Dr. 
Grey’s pedagogical move of juxtaposing sets evoked students’ intellectual need for structure by 
organizing/listing the axioms they found for algebraic structures ℤ#, ℤ!", ℤ and 2ℤ through 
equation solving. The students’ intellectual need for structure prompted them to identify the 
axioms/properties these sets have in common that they later used to define a ring. 
 
How the Instructor Evoked Students’ Need for Computation 

Dr. Grey’s goal for the equation solving tasks was to evoke students’ need for computation. 
She made this need intrinsic to them was by asking students to justify their work by using ring 
axioms. In Task 3, she asked students to find solutions to equations in ℤ!". She asked the 
students to write every property they had used to solve and why they used it. This pedagogical 
move allowed students to identify the properties needed to solve the equations. Once students 
had their solutions and explained their reasoning about them, the instructor evoked students’ 
need for computation by challenging a student’s idea to prompt them to revise their work by 
asking them follow-up questions. For example, in Task 3, the instructor prompted students’ 
thinking by asking “What would happen if we could only use addition and multiplication?”, 
when one of the students used division in their solution to an equation in ℤ!".	Dr. Grey also 
evoked this need for computation by revising students’ written work to make it more 
precise/explicit. In tasks 3d and 5d (see Figure 1), she provided a different approach to solving 
the equations that evoked students’ thinking about how to approach these problems and how they 
could reduce their steps. Lastly, the instructor made this need for computation intrinsic to the 
students by directing their attention to where properties can or cannot be used. She made sure 
students were aware of how some properties do not hold for all sets. In task 4c (see Figure 1), Dr. 
Grey explained how the zero-product property holds in ℤ#	but not in ℤ!".	Not being able to use 
this property evoked a need for students to find another way to perform the computation. 
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How the Instructor Evoked Students’ Need for Causality 
A need for causality was evoked by the instructor during several tasks. This intellectual need 

became intrinsic to the students by asking them to justify their work by using ring axioms. The 
task sequence consisted mostly of equation solving tasks, where students needed to show and 
justify their work in each step. These tasks evoked this intellectual need because students needed 
to explain why they could go from one line of the equation to the next. During Task 4c (see Fig. 
1), students needed to explain why −1(𝑥 + 1) = 0 → 𝑥 + 1 = 0		when solving equations in 
ℤ#.	This need for causality was met by introducing the name of the property they had implicitly 
used: the zero-product property. Dr. Grey then evoked students’ need for causality by directing 
students’ attention to where properties can or cannot be used by asking them if the zero-product 
property would hold in ℤ!". This directed students to reason about why or why not this property 
would hold in another algebraic structure. Altogether, the instructor evoked students’ intellectual 
need for causality, so students could explain why they could use certain ring axioms to solve an 
equation in a particular set and why some of the properties did not hold for other sets.  
 
How the Instructor Evoked Students’ Need for Communication 

Dr. Grey evoked a need for communication in students and made this need intrinsic to them 
by establishing a shared terminology of mathematical properties. She asked students to name the 
properties used to solve equations in ℤ#, ℤ!", ℤ and 2ℤ, which evoked students’ need to 
communicate the names of these properties. This need was satisfied by class’s establishment of a 
shared terminology. For example, Dr. Grey changed a student’s expression of “moving 8 to the 
other side” to use the language of “adding the additive inverse of 8 to each side of equation” in 
Task 5d (see Figure 1). This shared terminology helped students use precise mathematical 
language to communicate their justifications of their equation solutions and helped them create 
new definitions. The need for communication prompted students to give explicit names to the 
ring axioms they used to solve equations. Aggregating these named properties and comparing 
whether they held for ℤ#, ℤ!", ℤ and 2ℤ allowed the class to define a ring on Task 7b.  

Discussion and Conclusion 
Engaging PSMTs in reasoning about the properties of rings used in equation solving can help 

them better understand connections between secondary and abstract algebra. A Mathematics for 
Secondary Teachers course instructor led students to make this connection by evoking students’ 
intellectual needs (Harel, 2013) for structure, computation, communication, and causality on 
tasks involving equation solving in ℤ#, ℤ!", ℤ and 2ℤ. We identified the pedagogical moves that 
the instructor used to evoke students’ various intellectual needs, which included: (a) asking 
students to justify their work by using ring axioms, (b) directing students’ attention to what 
properties were involved in cancellation, (c) establishing shared terminology of mathematical 
properties, (d) juxtaposing different sets, and (e) revising students’ written work to make it more 
precise/explicit. These findings provide a pedagogical implication for mathematics instructors 
who prepare PSMTs. Instructors can use Dr. Grey’s pedagogical moves to make intellectual 
needs intrinsic to their students. Evoking students’ intellectual needs that can be met by using 
ring axioms seemed to be a beneficial way to guide students to connect abstract and secondary 
algebra in this study. We plan to continue this analysis by identifying the intellectual needs and 
pedagogical moves used by this instructor in subsequent class days as the class transitioned from 
solving linear and quadratic equations to solving equations involving function composition. We 
pose the following discussion question to the audience: How can we further explore the 
relationships between the intellectual needs and pedagogical practices used to evoke the needs?  
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“What makes it eigen-esque-ish?”: Eigentheory Development in a Quantum Mechanics Course 
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Eigentheory concepts are central in mathematics and physics; they serve multiple functions, such 

as symbolizing physical phenomena and facilitating mathematical computations. The words 

associated with eigentheory develop and vary over time (e.g., eigenvector, eigenstate), as do the 

associated symbols (e.g., Ax = λx, H|En> = En|En>). The focus of this study is how the concept of 

“eigen'' develops over time for a quantum mechanics classroom community. We analyze the 

public displays of form-function relations used in the classroom community (Saxe, 1999). In this 

preliminary report, we summarize the forms and functions identified in the first 19 class sessions 

and share progress on our analysis of shifts in the uses of forms and functions over time. 

 

Keywords: eigentheory, linear algebra, quantum mechanics, form-function, classroom analysis 

 

Eigentheory concepts are central in mathematics and physics. They serve multiple functions, 

such as symbolizing associated physical phenomena and facilitating mathematical computations. 

Physics students reason about eigentheory concepts in Linear Algebra courses where eigen-

equations often first look like 𝐴𝒙 = 𝜆𝒙, with 𝑛 × 𝑛 matrix 𝐴, 𝒙 in ℝ𝑛 or ℂ𝑛, and 𝜆 is a scalar; 

they may also encounter 𝑇(𝒗) = 𝜆𝒗, where 𝑇 is a linear operator on vector space 𝑉.  Students 

further reason about eigentheory in quantum mechanics, where eigenvalues of various Hermitian 

operators represent possible measured values of corresponding observables. Furthermore, 

physics students learn Dirac notation, in which eigenequations take on forms, such as  

𝑆𝑥|+⟩𝑥 = ℏ

2
|+⟩𝑥 and 𝐻|𝐸𝑛⟩ = 𝐸𝑛|𝐸𝑛⟩, and function to convey information related to spin and 

energy, respectively. In quantum mechanics, it is “eigen, eigen, eigen all the way” (Shankar, 

2012, p. 30). 

Several verbal, symbolic, and written forms can be associated with the same eigentheory 

concept, and many of these forms can serve different functions (Saxe, 1999) in both math and 

physics. These form-function relations can develop during class as the community’s common 

ground is negotiated through verbal or written communication. This development for eigentheory 

concepts in a Quantum Mechanics course is the focus of this study. We pursue the following 

research question: How does the concept of “eigen'' develop over time for a quantum mechanics 

classroom community? To do so, we leverage a form-function analysis (Saxe, 1999), analyzing 

the public displays of form-function relations used in the classroom community. We identify 

each form that was used during whole-class discussion and infer the function of the form. So far, 

we have identified forms and functions from the first 19 class sessions. Our current analysis 

involves examining how shifts in the uses of these forms and functions occurred over time. 

 

Literature Review 

There is a growing body of literature on student understanding of eigentheory and teaching 

innovations that support student reasoning about eigentheory (e.g., Altieri & Schirmer, 2019; 

Beltrán-Meneu et al., 2016; Bouhjar et al., 2018; Gol Tabaghi & Sinclair, 2013; Karakok, 2019; 

Manogue et al., 2001; Plaxco et al., 2018; Pollock et al., n.d.; Salgado & Trigueros, 2015; Serbin 

et al., 2020; Wawro et al., 2019b). There are many conceptually complex aspects to a deep 

understanding of eigentheory. For example, interpreting the symbols 𝐴𝒙 = 𝜆𝒙 can involve 
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recognizing the matrix-vector product 𝐴𝒙 as the same mathematical object as the scalar-vector 

product 𝜆𝒙 (Thomas & Stewart, 2011). It can also involve conceptualizing eigenvectors as those 

𝒙 which are stretched by matrix 𝐴 (e.g., Henderson et al., 2010; Sinclair & Gol Tabaghi, 2010). 

These correspond to a relational meaning of the equals sign (Knuth et al., 2006) and a functional 

interpretation of 𝐴𝒙 = 𝒃 (Larson & Zandieh, 2013), respectively, and have also been 

documented with quantum mechanics students (Wawro et al., 2019a; Wawro et al., 2020b).  

Physical science students face additional complexities in reasoning about eigentheory, given 

that the mathematical objects and symbols relate to physical referents (Rodriguez et al. (2018). 

Researchers have suggested that interpreting mathematical symbolic expressions in terms of 

physical phenomena is a nontrivial endeavor for students (e.g., Caballero et al., 2015; Her & 

Loverude, 2020; Serbin & Wawro, 2022). Physics students face challenges in interpreting 

eigentheory symbols because those symbols and their word forms take on additional meanings in 

quantum mechanics contexts (Dreyfus et al., 2017; Gire & Manogue, 2011; Pina et al., 2022; 

Wawro et al., 2020a). For example, Wawro et al. (2020a) found that as physics students 

interpreted the meaning of the symbols in the eigenequations 𝐴𝒙 = 𝜆𝒙 and 𝑆𝑥|+⟩𝑥 = ℏ

2
|+⟩𝑥, a 

student was unsure how to resolve the disconnect between their geometric interpretation of the 

first equation and their quantum mechanical interpretation of the latter equation. Pina et al. 

(2022) also demonstrated different meanings students had for an eigenequation. They identified 

three different symbolic forms (Sherin, 2001) that physics students had for a position operator 

eigenequation that share a symbol template but have different conceptual schemata: a 

transformation which reproduces the original, an operation taking a measurement of state, and a 

statement about the potential results of measurement. These studies illustrate the complexity 

associated with interpreting eigentheory symbols and the varied meanings these symbols convey.  

 

Theoretical Background 

Through his anthropological work on the cultural development of mathematical ideas, Saxe 

(1999) created a framework for investigating the form-function relations created by individuals 

and a community over time. A form is a verbal, symbolic, graphical, or physical representation 

that takes on mathematical meaning. As individuals engage in activity or communication, they 

tailor forms to serve certain functions in activity, thereby establishing form-function relations. 

Functions are defined as the “purposes for which forms are used as individuals structure and 

accomplish practice-linked goals” (Saxe, 1999, p. 20). Forms can be adapted to serve several 

different functions, and functions can be served by different forms. For example, the form 𝑦 =
5𝑥 can function to conveying a constant rate of change or exhibit covariation of two variables, 

and the forms e and 1 can both serve the function of symbolizing a group identity (Plaxco, 2015).  

Saxe and colleagues leverage this framework for analyzing the “reproduction and alteration 

of a common ground of talk and action over lessons in classroom communities” (Saxe et al., 

2015, p. 71). Common ground refers to “shared knowledge of word meanings and norms for 

communication” that “enables successful communication and coordinated action” (Saxe & Farid, 

2021, p. 8). Common ground is created as community members “produce and interpret displays 

of mathematical thinking, making use of representational forms (linguistic, graphical, gestural) to 

serve communicative and problem-solving functions” (Saxe et al., 2015, p. 4), is generated in 

interaction, and is at best taken-as-shared by community members. To identify how forms serve 

certain functions and how form-function relations shift over time, we perform microgenetic and 

ontogenetic analysis of the concept of “eigen” over a period of 19 class sessions. 

Microgenesis is the process by which individuals construct representations by tailoring forms 
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to serve functions that accomplish goal-directed activity (Saxe et al., 2015). This often occurs in 

public displays during class and contributes to the alteration of a common ground. Individuals 

are enabled and constrained by the common ground as they create new form-function relations. 

They can use familiar forms to serve new functions or recruit new forms to serve existing ones. 

Saxe et al. (2015) referred to the use of familiar forms or functions as continuity and the use of 

new forms or functions as discontinuity. Ontogenesis is characterized by shifts in microgenetic 

displays. An ontogenetic analysis involves an “analysis of continuities and discontinuities as 

individuals reproduce and alter form-function relations” (Saxe et al., 2015, p. 13).  

 

Methods 

The data analyzed in this paper come from an in-person, senior-level Quantum Mechanics 

course taught in a medium, public, research-active university in the northeast US. The semester-

long, 3-credit course met three times a week for 50 minutes per class. The first nine weeks (23 

days) of class sessions were video recorded, with a focus on capturing the professor and whole-

class discussions. The professor was an experienced quantum mechanics instructor and physics 

education researcher. The course had 17 students and used McIntyre et al. (2012) as its textbook. 

The data sources were video recordings and associated transcriptions. Only exchanges that 

occurred with the entire class (as compared to small groups) were analyzed. 

We imported transcripts into MaxQDA, which is a qualitative and mixed methods data 

analysis software (Kuckartz & Rädiker, 2019). We inductively coded (Miles et al., 2013) of both 

transcript and screen captures of slides and boardwork. We coded together while watching the 

videos, discussing our codes, and resolving inconsistencies as needed. We coded the instances in 

which “eigen” was explicitly used, as well as instances implicitly related to eigentheory. The 

implicit uses occurred when words such as state, value, or ℏ 2⁄  were used in ways compatible 

with eigen-related interpretations. Our coding system had a nested organization according to 

form. At the primary level, main forms were separated according to what was characterized by 

“eigen” (e.g., eigenstate, eigenbasis). The second organization level separated main forms into 

the specific forms that existed in the data. For instance, the form “eigenvector - verbal” was 

assigned when “eigenvector” was said, the form “eigenvector - written” when “eigenvector” was 

written on the board or on a slide, and the form “|+⟩ - symbolic” when the symbol |+⟩ was used 

to convey eigenvector meaning. The final level of coding corresponds to the function that we 

interpreted the form to have when the form-function relation was detected. For example, any of 

the aforementioned eigenvector forms could have associated functions such as being an element 

of a basis that diagonalizes a spin operator or being part of the computation for determining the 

probability of measuring a certain spin value. If an instance involved more than one form – for 

instance, both saying and writing “eigenvector” – the same function was assigned twice; this 

resulted in two form-function pairs for that instance. We started preliminary ontogenetic analysis 

by examining how forms, functions, or form-function pairs were used throughout the data. 

 

Preliminary Results 

At the time of this preliminary proposal submission, we have coded the whole-class 

discussions of 19 consecutive class sessions for a total of 576 instances in which a form-function 

relationship for the concept of “eigen” was communicated. See Figure 1a for the distribution of 

those instances over the days. We have a small amount of remaining refinement to do (codes 

from Day 6 and some of Day 9 need to be added, Day 10 needs a final confirmation). We will 

complete this refinement prior to the conference and will integrate it into our presentation.  
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(a)   (b)  
Figure 1. Bar chart indicating the frequency per day of the instances in which a form-function pair for the 

concept of “eigen” was communicated (a), and summary of the various types of form-function pairs (b). 

 

The form-function pairs are summarized in Figure 1b according to the six main forms of 

eigenvalue, eigenvector, eigenstate, eigenequation, eigenbasis, and miscellaneous uses (e.g., 

eigen-esque-ish, eigen math, eigen-ness). The numbers in the square brackets, which sum to 576, 

indicate the total number of times a form-function pair occurred in the data. The middle three 

columns organize unique form-function pairs with specificity regarding the form. For example, 

there were 32 different functions that were associated with a symbolic form accompanying 

“eigenvalue.” For instance, the symbol an could be the form used to symbolize the eigenvalue in 

an eigenequation, the eigenvalues along the diagonal of a diagonalized matrix, or the expectation 

value of a measurement corresponding to an eigenstate; these are three of the 32 functions for the 

form “an - symbolic” within the Eigenvalue row / Symbolic column. On the other hand, the form 

“En - symbolic” could also pair with these functions in the energy context, such as symbolizing 

the nonzero entries of a diagonal energy Hamiltonian; that form-function pair is a fourth of the 

aforementioned 32 form-function pairs. In total, there were 349 unique form-function pairs.  

 

 
Figure 2. The dispersion of forms with the same function of being the result of a measurement. 

 

Functions Associated with Several Different Forms 

We performed a preliminary ontogenetic analysis by documenting the instances that different 

forms were used to serve the same function and determining the dispersion of those forms over 

time throughout the 19 class days. For example, conveying the result of a measurement (Fig. 2) 

and a structure inherently tied to an operator (Fig. 3) were two commonly-used functions, each 

associated with several forms in our dataset. The dispersion of the forms that served the function 

of being the result of a measurement is shown in Figure 2, and the dispersion of the forms that 

served the function of being a structure inherently tied to an operator is in Figure 3. The width 

of the black bar conveys the number of times the form occurred on that day (e.g., in Figure 2, the 

𝑎𝑛 symbolic form occurred twice on day 5, once on day 8, and four times on day 10).  

We identified seven forms that were each associated with the function of being the result of a 

measurement (see Figure 2). This function was conveyed during ten of the class days, spread 

between days 1 and 15. Furthermore, in one class session (day 10), the class community used 

five of the seven different forms to serve this same function (see Figure 2). This illustrates how 

the class community associated the different eigenvalue forms of “𝑎𝑛 - symbolic,” “𝑎𝑛 - verbal,” 
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“ℏ 2⁄  - verbal,” and “eigenvalue – verbal,” and the eigenstate form of “up/down |±⟩ - verbal” 

with the same function all in the span of one class session. Furthermore, we identified 15 forms 

that were each associated with the function of being a structure inherently tied to an operator 

(see Figure 3). By this function, we mean that the speaker was conveying some sort of structural 

quality imbedded in or inextricable from the operator. For example, a student claimed that 

certain given states “are eigenstates of the operator.” This conveyed, in the “eigenstate – verbal” 

form, that eigenstates belong to or are a property operators, an inherent relationship between 

eigenstate and its operator. This function was conveyed in ten of the class days, spanning from 

day 5 to day 18, which illustrates a wide dispersion of the use of this function during class. On 

both day 7 and day 14, there were five different forms used that were all associated with this 

same function. Overall, these findings from the preliminary ontogenetic analysis illustrate how 

the class community used several different forms to convey the same function, even within the 

same class day. The recurrent use of the same functions over time demonstrates the continuity in 

the class community’s use of those functions. The varied forms associated with the same 

function gives evidence to discontinuities present in the community’s communicative displays 

over time. The class members altered existing form-function relations as they tailored different 

forms to serve the same function. Our remaining ontogenetic analysis will involve additional 

fine-grained examination of change over time; for instance, how the eigenequation itself changed 

form across contexts (e.g., abstract, spin, energy, position) but what threads of continuity exist 

and were leveraged throughout the semester as the classroom engaged with quantum mechanics. 

 

 
Figure 3. The dispersion of forms with the same function of being a structure inherently tied to an operator. 

 

Conclusion 

In this study, we are investigating a quantum mechanics class community’s development of 

eigentheory over a span of 19 class days. We performed microgenetic and preliminary onto-

genetic analyses (Saxe, 1999) of form-function pairs that the class used to communicate about 

eigentheory concepts. We plan to continue this analysis, as well as examine how these form-

function relations are reproduced and altered over the remaining class days in our data set that 

address content related to wave functions. At the conference, we will engage the audience with 

discussion questions related to the pros and cons for various axial coding choices and the grain 

size of our codes, as well as solicit feedback specific to working with longitudinal classroom data 

and communicating about data related to both mathematics and physics. 
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We report on experiences of two Calculus 1 instructors who implemented teaching practices 

geared towards fostering students’ mathematical creativity. While teaching a coordinated 

Calculus 1 course, these instructors participated in weekly professional development sessions on 

such teaching practices. Our preliminary analysis of participants’ experiences describes how 

they navigated between the coordinated course structure and the added teaching practices 

discussed in the professional development. We utilize a zone theory lens to gain insight into 

participants’ navigations in their professional environments, observing tensions between existing 

zone of proximal development and the zones of free movement and promoted action complex. 

Keywords: Calculus, coordination, instructional practices, mathematical creativity.  

The inclusion of mathematical creativity as a learning outcome in mathematics courses and 

programs has been discussed in numerous research studies and curriculum-standard documents 

(e.g., Askew, 2013; Levenson, 2013; Schumacher & Siegel, 2015; Silver, 1997; Sriraman, 2009). 

Despite these calls, the growth of explicit curricular work on creativity in mathematics courses, 

and professional development on teaching to include mathematical creativity at the tertiary level, 

has been slow. Recent work at the tertiary level has been limited to pre-service teachers (e.g., 

Bicer, 2021), mathematics majors in mathematics seminars (e.g., Mayes-Tang, 2020) or upper-

division courses beyond Calculus (e.g., Omar et al., 2019). Thus, our overarching goal is to 

challenge dominant ways of teaching undergraduate mathematics by adding a focus on students’ 

mathematical creativity and explicit teaching strategies to foster it. 

In this preliminary report, we first describe our work with Calculus instructors. We discussed 

strategies to implement Calculus tasks geared towards fostering mathematical creativity in a 

semester-long online Professional Development (we refer to this professional development as C-

PD here). Our project focused on Calculus 1 as this course plays a critical role in students’ 

persistence in science, technology, engineering, and mathematics (STEM) programs (Rasmussen 

et al., 2019) and creativity is often overlooked in this course (Ryals & Keene, 2017). We also 

share results of preliminary analysis of data from the qualitative case study designed to explore 

the lived experiences of Calculus 1 instructors’ implementation of creativity-based tasks (El 

Turkey et al., 2020) and teaching strategies to foster their students’ mathematical creativity 

within a coordinated Calculus course. Our focus on coordinated Calculus 1 course was 

intentional - course coordination is considered a driver for instructional change (Rasmussen et 

al., 2019), and we believe it is timely to explore individual instructors’ experiences within such 

structures. The research question of this study is: What are the experiences of Calculus 1 

instructors in a coordinated Calculus course when utilizing teaching strategies to foster 

mathematical creativity? 
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Conceptual Framework 

We situate our work on fostering students’ mathematical creativity within the Developmental 

theoretical perspective (Kozbelt et al., 2010). The primary assertion of this theory is that 

creativity develops over time, and the main focus of investigation is a person’s process and 

actions as opposed to the product created by them. Within this theoretical framing, we consider 

mathematical creativity as a process of offering new solutions or insights that are unexpected for 

the student with respect to their mathematics background or the problems they could have seen 

before (Savic et al., 2017). Fostering mathematical creativity with this conceptualization requires 

instructors to take intentional actions to engage students in the creative process of problem 

solving (Sriraman, 2005, Cilli-Turner et al., 2019).  

In Tang et al. (2022), we examined teaching actions that students reported as contributing to 

their sense of creativity in their Calculus 1 course during which the instructors participated in C-

PD. The student-reported teaching actions focused on designing and implementing creativity-

based tasks using inquiry-oriented actions, in addition to holistic actions attending to students’ 

affect. These teaching actions centered around students’ lived experiences in these Calculus 1 

courses, whereas in this paper, we shift our focus to the instructors’ lived experiences 

implementing creativity-based tasks and teaching strategies in a coordinated setting.  

We utilize a theoretical model proposed by Goos and colleagues (Goos, 2009, Goos et al., 

2007; Goos & Bennison, 2019) to examine teacher learning and development, which applied and 

adapted concepts from Valsiner’s (1997) zone theory. As this model centers its constructs in 

socio-cultural theory of teaching, it provides opportunities to examine our participants’ 

experiences in their context (i.e., one institution’s culture) and through their interactions with 

other C-PD participants while trying to utilize the C-PD materials.  

Goos et al. (2007) describe three zones, each of which focuses on different aspects of teacher 

learning and development: the Zone of Proximal Development, the Zone of Free Movement, and 

the Zone of Promoted Action. Adapted from Vygotsky’s (1978) work, the Zone of Proximal 

Development (ZPD) refers to the possibilities for developing new teacher knowledge and beliefs 

on content and pedagogy. The Zone of Free Movement (ZFM) focuses on “constraints and 

affordance within the professional context” (Goos et al., 2007, p. 26). It explores the 

environmental and contextual factors that allow or hinder certain actions. For example, teachers’ 

views of curriculum design and assessment methods, and their connections to institutional 

culture and so forth are part of the ZFM. The third zone, the Zone of Promoted Action (ZPA), 

“represents the activities, objects, or areas of the environment in respect of which an individual’s 

actions are promoted” (Goos & Bennison, 2019, p. 408). For example, in a department that 

focuses on active-learning strategies (i.e., institutional norm), an instructor may utilize teaching 

practices learned in a professional development on inquiry-based learning, which represents 

ZPA.  

Overall, Goos et al. (2007) observed that these zones complement each other in the effort to 

describe teacher’s learning and development. Goos et al. state, “For teacher learning to occur, 

professional development strategies [ZPA] must engage with teachers’ knowledge and beliefs 

[ZPD] and promote teaching approaches that the individual believes to be feasible with their 

professional context [ZFM]” (p. 26). Also, the ZFM and ZPA are stated to be “dynamic and 

inter-related and form a ZFM/ZPA complex” (Goos & Bennison, 2019, p. 408) which plays an 

important role on learning and development of teaching strategies. For our study, this zone 

theory approach provides a structure to better understand the experiences of participants’ 

teaching to foster mathematical creativity in a coordinated course environment.  

25th Annual Conference on Research in Undergraduate Mathematics Education 1000



Methods 

We report on two instructor-participants at a university in the Northeastern United States. 

This works falls within a larger research project investigating students’ mathematical creativity 

and the ways in which it can be fostered through teaching of Calculus I. Even though the larger 

research project consisted of 3 cohorts with 14 instructors total, we focused on only two 

participants, as they were in the same cohort and at the same institution in which the course was 

coordinated.  

The two instructors chose their pseudonyms, and we also report their self-identified 

pronouns, genders and race: Farah Nurhalizah (They, Male, Asian) and On the 1s and 2s (She, 

Female, Black). These instructors formed the case for this study. At the time of the C-PD, Farah 

was a full-time instructor and On the 1s and 2s was an assistant professor, and both were in their 

first year teaching at this particular institution. Both participants had taught Calculus 1 more than 

5 times previously with 6-10 years of teaching experiences.  

Both instructor participants attended weekly online professional development with members 

of the research team to discuss the different components of the project: creativity-based task 

design and implementation; implementation of a reflection tool for formative assessment 

(Karakok et al., 2020); pedagogical actions; and attending to students’ affect. All participants 

were asked to implement two common creativity-based tasks in their courses and design at least 

four additional tasks to implement. Participants could decide how to implement these tasks 

according to their setting. During the C-PD, they discussed implementation strategies with the 

research team and other instructor participants. We collected various data: Calculus teaching 

artifacts from prior semesters, video recordings of all C-PD sessions, participants’ entrance 

tickets to weekly C-PD, video recordings of teaching of creativity-based tasks, and end-of-

semester interview with participants. In this report, we share some of our initial analysis of 

video-recorded interview data from each participant. We started our data analysis with the 

interview data to gain insights into participants’ experiences to identify critical moments or 

experiences before engaging with other data sources. For this initial coding (Saldaña, 2013) as 

the first cycle in our analysis, the first two authors read through the interview transcripts to get 

analytic leads to explore the lived experiences of teaching Calculus while attending to the C-PD. 

From this coding, we started our second cycle with a deductive approach to structure the 

observed experiences through a zone theory with ZPD, ZFM, and ZPA constructs. By the time of 

the conference, we aim to complete interview data analysis and analyze participants’ entrance 

tickets and conversations during C-PD sessions with ZPD, ZFM, and ZPA constructs to describe 

their experiences.  

Preliminary Results 

We first note that both participants implemented only two creativity-based tasks, due to 

interruptions in teaching modality caused by the COVID-19 pandemic in the middle of the 

semester.  

Farah Nurhalizah (They, Male, Asian)  

Farah described their teaching Calculus 1 experience through its “highly coordinated” 

structure. They referred to this structure as a new experience for them in which “you have the 

same exams, the same homework, and the same worksheets even.” Coordination was the most 

significant feature of their environment (ZFM) and Farah seemed to believe that it hindered their 

access to their already-established ways of teaching Calculus. In addition, Farah thought “[i]t 
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took a while for me to get used to it… And I think students could feel that I wasn't like totally 

buying into the structure.” 

As we examined Farah’s reported experience, we noticed that their negotiation between the 

recommended focus on conceptual understanding from the coordinator (ZFM) and the newly 

added focus on creativity from C-PD (ZPA) created a tension with their existing beliefs on 

teaching Calculus (ZPD). When asked how they could have adjusted pre-designed worksheets to 

incorporate fostering creativity tasks, Farah stated they would have “underemphasized the 

conceptual understanding as much…And…sort of do more creativity instead of conceptual.” For 

Farah, conceptual understanding questions on worksheets required “theoretical foundation,” 

definitions, and some proofs, which the course did not design to deliver them. For their section 

of the course, Farah “snuck in…the epsilon-delta definition,” that they thought they were not 

supposed to do. The inclusion of definitions and some proofs for Farah was about being 

“intellectually honest,” and relates to their existing beliefs of mathematics and teaching 

mathematics (ZPD).   

As Farah tried to reconcile their existing teaching Calculus practices with these pre-designed 

worksheets and the coordination structure, they identified some aspects of the worksheets that 

could potentially foster mathematical creativity (ZPA). Incorporating their experience with C-PD 

on features of creativity-based tasks (El Turkey et al., 2020), they mentioned “some of the 

worksheet problems…had like some open-endedness” to them. Farah further noted that not all 

students got to these questions nor was there an emphasis to discuss or do these questions in 

class (ZFM). However, Farah thought that there was a possibility to foster creativity if they had a 

chance to discuss these questions. These observations highlight the dynamic and inter-related 

relationship of ZFM and ZPA in Farah’s experience (ZFM/ZPA complex) (Goos, 2009). 

Furthermore, Farah’s proposed method of using such worksheet problems through more flexible 

class discussion speaks to their developing ZPD on teaching Calculus 1 to foster mathematical 

creativity and navigation through the tension they experienced between their existing ZPD and 

the professional environment (ZFM).  

On the 1s and 2s (She, Female, Black) 

On the 1s and 2s’s experience teaching Calculus 1 in a coordinated Calculus to foster 

creativity highlights explicit aspects of the ZFM/ZPA complex. Speaking about her experience 

teaching coordinated calculus (ZFM) and participating in C-PD (ZPA), she thought her teaching 

did not necessarily change in the current course, but this C-PD experience changed “how I think 

about calculus and encouraged me to include more…creativity tasks” in her future courses.  

For On the 1s and 2s, one of the important differences between the coordinated worksheets 

(ZFM) and the creativity-based tasks (ZPA) was the goals of these tasks. She identified one of 

the goals of the creativity-based tasks as “what different ways can you think about this problem” 

or “what different ways can we as a group think about this problem” whereas the worksheet 

problems tended to have a goal of “can you get this answer?” With this noticing, and her 

interactions with Farah and other participants of the C-PD (ZPA), she was able to change some 

elements of the professional environment (ZFM). For example, they (all Calculus instructors, 

including Farah and the course coordinator) used one of the creativity-based tasks in their weekly 

check-in assessment. This task asked students to create a function where the limit exists at -1, but 

not continuous. Even though all instructors did this task in the same format on an assessment, On 

the 1s and 2s followed up with students, after the assessment, with a whole-class discussion on 

their solutions. As she believed her class “is a life that grows and changes and you have to 
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adjust,” explicit discussion in C-PD on how to design and implement creativity-based tasks 

provided her opportunities to envision how to navigate in her environment (ZFM).  

Even though she and Farah were teaching their own sections of the same coordinated 

Calculus 1 course, her experience with the worksheets or the coordinated structure 

(environmental constraints) mostly interacted with the ZPA to form a ZFM/ZPA complex that 

informed her evolving ZPD. These ZFM/ZPA negotiations played a role in On the 1s and 2s’s 

teaching experience for mathematical creativity.  

Conclusion and Questions 

Coordinated courses have opportunities to create coherent experience for students taking 

Calculus 1 and subsequent courses at the same institution. For instructors, coordinated structure 

could provide several opportunities: collaboration among faculty with shared objectives, 

professional development, and building of common tools and resources. Furthermore, Williams 

et al. (2022) claim that course coordination can be “a vehicle for shifting departmental culture” 

(p. 126). However, some instructors may feel loss of autonomy and flexibility in their teaching. 

This loss of autonomy relates to ‘coordinated independence’ construct, which is “intended to 

embrace how in-step elements of a calculus program work together with elements that allow for 

individual autonomy” (Rasmussen & Ellis, 2015 p. 114). As many institutions use or aim to use 

coordination for Calculus courses, it is important to explore the coordinated independence 

construct. This construct could allow us to understand the barriers and opportunities to create a 

coherent course design for students.  

In this study, we examined instructor’s experience of implementing teaching practices from a 

professional development in a coordinated structure. Our preliminary analysis results relate to 

how two instructors experienced “coordinated independence” in slightly different ways through a 

ZFM/ZPA complex. For Farah, this complex created a tension with their existing ZPD. Farah’s 

existing ZPD was more aligned with the ideas promoted in C-PD (ZPA) than the coordinated 

calculus structure (ZFM). On the other hand, On the 1s and 2s identified certain aspects of the C-

PD (ZPA) to make changes in her professional environment (ZFM) and had a vision to do more 

in her teaching practices (developing ZPD). These experiences, with their differing tensions and 

negotiations, may explain formally why it is difficult for teachers to incorporate creativity into 

their classrooms, particularly in a coordinated setting. We must acknowledge the unique nature 

of the setting in our analysis – COVID-19 forced many to use pedagogical tools that were not in 

their ZPD at all. In our future work, we will continue to explore these areas as they relate to the 

coordinated settings and instructors’ developing ZPD.  

We are interested to learn from audience:  

1- What strategies do instructors use when they experience tensions between their zones 

of development? 

2- What strategies do professional development facilitators need to adopt when 

instructor participants experience such tensions? 
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“Well, it’s obvious”: Students’ Experiences with Mathematical Microaggressions 
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Mathematical microaggressions (MM) refer to the subtle ways in which mathematical 

authorities use language, behavior, and assumptions that communicate negative messages to 

students that they do not belong in mathematics (Su, 2015). This study analyzes the reflections of 

173 undergraduate mathematics students who were asked to reflect on an article (Su, 2015) 

about MMs. Findings show that students experience different types of MMs, including 

microslights, microinsults, and environmental microaggressions. Our results indicate that female 

students were more likely to report experiences with MMs than male students. This research 

supports the need to investigate this phenomenon further and to develop initiatives at 

departmental and institutional levels to encourage more inclusive spaces in math classrooms. 

Keywords: Mathematical Microaggressions, Microslights, Microinsults, Sense of Belonging 

Microaggressions (MA) have been characterized as the intentional or unintentional 

indignities that communicate “hostile, derogatory, or negative” messages that target a person 

and/or their marginalized group (Sue, 2010). Within the realm of education, the prevalence and 

effects of MAs have been studied in relation to students’ sense of belonging. Sense of belonging, 

in a university context, refers to the perceived social support and the experience of mattering or 

feeling cared about, accepted, respected, valued by, and important to the classroom and campus 

community (Strayhorn, 2018). Recent scholarship has revealed that MAs are prevalent in 

classrooms and inhibit students’ sense of belonging, especially for students coming from 

marginalized groups (Solórzano et al. 2000; Yosso et al., 2009). As an example, Lewis et al. 

(2021) reported that a higher frequency of racial MAs significantly predicted lower overall sense 

of belonging for students of color, and similar connections between MAs and sense of belonging 

can be found in studies centered on women (McCabe, 2009).  

Microaggressions have been well reported as widespread in academic spaces and detrimental 

to student outcomes. Within STEM departments, which already face issues in representation 

from marginalized communities, reports of MAs are distinctive. Students of color, especially 

Black students, report racial MAs from STEM instructors, advisors, and peers (Lee et al., 2020). 

Further work shows that the effects of MAs can be magnified in STEM spaces. Leyva and his 

colleagues (2021) report how discouraging classroom practices, many of which can be 

characterized as MAs, had discriminatory impacts on women and students of color. Marshall et 

al. (2021) noted that in the context of STEM, MAs hinder students’ academic success and ability 

to participate in the academic pipeline, especially for students historically excluded from the 

sciences on the basis of race or ethnicity. MAs directly impact students’ sense of belonging in 

STEM, and more needs to be done at an institutional level to better support student retention and 

sense of belonging within STEM fields (Lee et al., 2020; Rainey et al., 2018).   

Our paper is framed through the subtle layers of microaggressions and how they can be 

received by mathematics students (Marshall et al., 2021; McKenna et al., 2021; Su, 2015). As an 

extension from discussions of racial microaggressions, Francis Su (2015) used the term 
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mathematical microaggression (hereby labeled as MM), which refers to the subtle ways that 

mathematical authorities (such as instructors, classmates, or textbook authors) communicate that 

one does not belong in mathematics. Su offered examples such as “It is obvious/clear/trivial 

that…”, “The rest is just algebra,” and “There’s a trick for doing this” and elaborates that such 

comments can convey negative messages towards students (e.g., their knowledge is lacking, their 

questions are unwelcome, their potential in mathematics is limited). In order to highlight the 

undeliberate intentions in which MMs are often exchanged in math classrooms, he used the term 

microslights, which are defined as unintentional comments or language in which the aggressor is 

often unaware could be exclusionary. Accounting for more intentional and/or aggressive MMs 

from instructors toward students, McKenna et al. (2021) define microinsults as “intentional, 

subtle snubs” that can “demean one’s racial heritage or identity,” which we extend in the case of 

MMs to cover abrasive exchanges that targets students’ mathematical identity and perception of 

ability. Marshall and her colleagues (2021) define environmental microaggressions (EM) as 

relating to MAs that exist in the environment in which a person exists, not directly received by 

an individual. We adapt Marshall et al.’s (2021) definition of EMs to include any MM that exists 

in the experience of learning but is not inflicted by any one person to another person directly. For 

example, an EM could be witnessing peers understand a topic quickly or a professor moving 

quickly through a mathematical explanation. Because a student understanding a topic quickly is 

not done purposely to harm another person, we categorize this MM as subtly different than 

microslights or microinsults, which are more directed towards individuals. 

Our study focuses on the MMs that mathematics students reflect on experiencing throughout 

their learning. This paper focuses on the following three research questions: 1) How do 

mathematics students describe experiencing MMs? 2) What types of MMs do students 

experience? 3) How do students’ experiences with MMs vary by gender? 

Methods 

This study took place at a large public university on the West Coast of the U.S., designated as 

a Hispanic-serving Institution. Data for this paper were collected between Fall 2019 and Spring 

2022. The sample included 173 participants enrolled in calculus I (47 students in two sections) or 

abstract algebra (126 students in four sections), taught by the same instructor (Author 4). Course 

modalities included both in-person and virtual instruction. These classes incorporated inquiry-

based learning and active learning and provided a significant amount of time for student 

collaboration and discussion during class instruction. Based on institutional data of the 173 

students, 42.8% were female and 57.2% were male. 50.9% of the students were Latine1, 3.5% 

were Black, 18.5% were AAPI, 13.3% were white, one student was Native American, 6.9% were 

undocumented2, 3.2% two or more races, and 4% where race was unknown. 

Throughout the course, students were asked to submit reflection assignments. In one of these 

assignments, students were asked to read Su’s (2015) article on MMs, to reflect on the paper, and 

to describe if they have ever been made to feel like they do not belong in mathematics. Students 

could reflect on any moments in their math experience. The instructor created this assignment as 

part of a series of assignments for the purpose of creating a more inclusive classroom space for 

collaborative learning. The 173 reflections form the data set for this study; each reflection was 

given an identifier that included the course and students’ gender, race/ethnicity, and major.  

 
1Latine is a gender-neutral replacement of the term Latino. It has been used as a more linguistically natural 

alternative to Latinx or Latin@ for Spanish-speakers (Celis Carbajal, 2020).  
2 We note that “undocumented” is not a race or ethnicity, however, the university uses this category.  
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The data were analyzed using constant comparative methods (Corbin & Strauss, 2008). The 

first round of coding utilized deductive coding. All de-identified reflections were initially coded 

by all authors to identify microaggressions that students experienced in STEM, specifically 

mathematical, racialized, and gendered microaggressions. For purposes of this paper we focused  

on MMs and therefore analyzed these data in the second round of coding. First, we coded for 

Who Received a MM with four sub-codes emerging: i) student has directly received/experienced 

an MM, ii) student has never received/experienced an MM, iii) student has not directly 

received/experienced an MM but can imagine how it could affect others, and iv) student has 

inflicted an MM on another person (reflections could be coded for more than one sub-code). 

Next, for those students who indicated directly receiving an MM, we coded for Type of MM 

discussed and Who/what inflicted the MM. Finally, we coded for Pushback to the concept of MM. 

Pushback could include a student stating that MMs were not real or a student explaining away 

the MM by claiming that they themselves lacked discipline or knowledge or should be a better 

student. A third round of coding commenced where authors grouped types of MM directly 

received and labeled each as a microslight (Su, 2015), a microinsult (Mckenna et al., 2021), or an 

EM (Marshall et al., 2021). After each round of coding, the authors cross-coded a subset to 

verify validity of application of codes. Authors met to discuss any disagreements of codes.   

Findings 

From the 173 student reflections, 69.9% indicated having directly received a MM, 4% have 

never directly received a MM, 20.8% could imagine how MMs can negatively affect others, and 

6.4% indicated that they have inflicted MMs on others. Students who directly received an MM 

(N=121) indicated 11 distinct types of MMs (see Table 1); 65.3% of students indicated a 

microslight, 16.5% indicated a microinsult, and 19.8% indicated an EM.  

From the 121 students who received an MM, most indicated having received microslights, 

with 40.5% of students indicating the MM “It’s obvious/trivial/easy”. Representative of other 

entries, Edwin, a Black male student in abstract algebra said, “I heard…a professor say that a 

proof to a lemma was obvious. I didn’t ask about it, although I didn’t understand it, because I 

didn’t want to look dumb in front of my peers for not seeing an obvious proof”. Other students 

described similar experiences. Subsequently, 14% of students reported being told “You should 

have learned this before”, and 9.9% reported hearing “The rest is just algebra” or not being given 

enough wait time. Typical of “No wait time” examples, Lianne, a white female student in 

abstract algebra described experiencing professors say, “Does anyone have any questions?” with 

a very short pause before moving on. “Sometimes it takes a few seconds to build up the courage 

to ask a question, but when the teacher moves on too quickly it makes you wonder, ‘How does 

everyone else understand but me?’”. The remaining three microslights represented less than 10% 

of student responses and will not be discussed here. 16.5% of the students reported hearing the 

microslights that Su (2015) wrote in his paper, but did not specify the type. 

Table 1: Frequencies by type of mathematical microaggression students reported directly receiving (N=121) 

Type of Mathematical Microaggression Frequency (%*) 

Microslight 79 (65.3%) 

It’s obvious, trivial, easy  49 (40.5%)  

You should have learned this before  17 (14%)  

“The rest is just algebra”  12 (9.9%)  

No wait time  12 (9.9%)  

Ignoring/dismissing questions, “see me after class” 8 (6.6%)  
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“The concept is not that bad”  6 (5%)  

There is no such thing as a dumb question  6 (5%)  

Microinsult 20 (16.5%) 

Belittle/shame student  12 (9.9%)  

Not believing in a student, “You’re not good enough” 8 (6.6%)  

Environmental 24 (19.8%) 

Seeing others get it quickly  18 (14.9%)  

Professor moves too quickly/Skips Steps  7 (5.8%)  

MM not specified 20 (16.5%)  

Other  11 (9.1%)  

*Note that totals are greater than 100% as some students reported more than one MM 

Students reported experiencing microinsults less often than microslights; 70% of microinsults 

were reported by students in abstract algebra. Students discussed instructors belittling them or 

shaming them (9.9%) or not having an instructor believing in their ability to do mathematics 

(6.6%). For example, Reese, a Latino male student, felt belittled during class when he wrote a 

problem that he struggled with on the board and recounted the instructor’s response. “When she 

got to the problem she said, ‘I’m not even going to do this problem because it’s so easy, and if 

you need help on this problem you’re in the wrong class’”. This made Reese feel embarrassed 

and less intelligent than the other students in his class. Students described two ways of 

experiencing EMs; 14.9% of students indicated feeling like they did not belong when they saw 

other students understanding the material quickly while 5.8% of students described feeling 

excluded when instructors skipped steps or moved too quickly through the material.   

Students who directly received a MM indicated receiving them from professors (63%), K-12 

teachers (11.5%), peers (16.5%), and the textbook (6.6%). Alice, a female Asian American 

calculus student, explained how she experienced receiving MMs during class group work:  

There were times where I was in group work settings and I would ask a question and all 

the members would know how to do it. They would say, this is “obvious” and teach me 

briefly. It made me think that I am not qualified enough to be in this class because I was 

not able to learn my basics well enough. 

Eleven students admitted to being a microaggressor toward a peer who was struggling with 

course material or students they were tutoring. All but two of these students were male. As an 

example, Douglas, a Latino male abstract algebra student mentioned, “I feel like [MMs are] very 

important as I’ve said some of these things to students I have tutored in the past. I didn’t 

personally consider the perspective of students who may be experiencing these same topics 

which I’ve been practicing for 3 to 4 years”. For most of these students, their reports of being 

microaggressors at a previous time were combined with reflections of their own teaching 

philosophy, newly informed by the potential negative effects of their previous comments.  

Of the 173 reflections, 17 students (9.8%) demonstrated pushback against the discussion of 

MMs. Reasons behind pushback varied but largely arose from three perspectives toward MMs: i) 

MAs are unintentional and do not warrant emotional response, ii) MAs are an opportunity to call 

out a student’s shortcomings, and iii) discourse regarding MAs is a politicized diversion from 

addressing lack of effort. An example provided by Garrett, a white male calculus student, 

exemplified how MMs are an excuse for students to maintain poor effort:  

I feel that the use of microaggressions as an excuse to why a student feels like they are 

failing a math class is concerning. I feel that too many students do not put in the effort to 
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learn how to do math and refuse to ask questions which results in students blaming so 

called "microaggressions" on their failure. 

All but one of the 17 students who demonstrated pushback to the idea of MMs were majors 

within the colleges of science and engineering. Five of the 17 students who displayed some 

pushback against MMs were female. We should note that these five students focused on the 

unintentional nature of MMs as a reason to push back and argued that they themselves may have 

been “too sensitive” when reacting to the MM.   

There is evidence to show other findings when comparing gender. Female students more 

frequently experienced MMs than male students; 78.4% of female students (N=74) reported 

experiencing an MM compared to 63.6% of male students (N=99). Female students indicated 

higher experiences with microslights and EMs. A notable discrepancy occurs specifically with 

reports of microslights, where 52.7% of the female students reported having experienced 

microslights, compared to the 40.4% of male students. Male and female students indicated 

receiving microinsults at similar rates (12.1% compared to 10.8%). It should be noted that all 

students who indicated that they had never experienced a MM were male; none were female. 

Discussion 

Our study showed that a large proportion of students have directly experienced a MM. Most 

students experienced the “It’s obvious/trivial/easy” microslight. This microslight may have been 

discussed more than others as Su (2015) lists this in his paper as the first example of a MM. It is 

particularly notable that female students reported experiencing MMs more than male students. 

We believe that it is important for instructors to attend to the way these microaggressions acutely 

affect women. Findings indicate that the nature of MMs are carried on through students in their 

interactions with others. Microinsults are more severe forms of MAs, and even though they were 

less frequently referenced by students in their reflections, we need to consider how microinsults 

affect all groups of students. While students reported experiencing most MMs from instructors, 

students did indicate receiving them from peers, which is an important factor to consider when 

attempting to create a safe and welcoming classroom climate while utilizing active learning 

teaching techniques.  

Types of MMs experienced align with previous findings, specifically that students do feel the 

impact of seemingly innocuous comments often found in mathematics classrooms (Leyva et al., 

2021; Su, 2015). These MMs can directly impact a student’s sense of belonging in STEM, and is 

very impactful on marginalized students (Rainey et al., 2018), specifically women. This study 

points out that more research is needed to understand the ways both students and instructors 

experience and internalize MMs. It also suggests potential for including MMs in professional 

development for college math instructors, specifically examples of MMs and how they are 

received by math learners. We hope to learn from the RUME community ways that they 

acknowledge MMs with their students to form a more inclusive learning environment, as well as 

different ways to interpret our data.  

While this study focused on understanding and categorizing the types of mathematical 

microaggressions students have experienced, we have begun preliminary analysis of the data in 

other ways. First, we continue to analyze the MM data for any differences by participant race and 

gender. While the Su (2015) paper focused on mathematical microaggressions, some student 

discussed racialized or gendered microaggressions within their reflections. Future analysis will 

explore the ways students talk about these important microaggressions and how they impact 

sense of belonging in math classrooms.   
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What Are Instructors Doing to Initiate Refinements of Students’ Definitions? 

Kristen Vroom Tenchita Alzaga Elizondo 
Michigan State University Portland State University 

A key feature of inquiry-based instruction is to develop formal mathematics by directly building 
on student thinking and contributions, which often requires engaging students in refining their 
work. In our experiences we have noticed that it is challenging for instructors to support this 
refining activity and so we see a need to better understand what instructors can do in-the-
moment to initiate refinements. In this study, we investigated how three instructors across four 
courses guided their students through the refinement of one definition. We identified three 
different moves that these instructors used to support the definition refinements: (1) suggest an 
edit with implicit mathematical reasoning, (2) suggest an edit with explicit mathematical 
reasoning, and (3) ask a question to create a problematic situation. The first two moves focused 
on the refinement itself whereas the third move focused on a problem to motivate a need for a 
refinement. We discuss future research directions and implications of our work.  

Keywords: Defining, intellectual need, teacher moves 

A key feature of inquiry-based instruction is to develop formal mathematics by directly 
building on student contributions (Kuster et al., 2018; Laursen & Rasmussen, 2019; Rasmussen 
& Kwon, 2007). For instance, in many inquiry-based classrooms students are guided to reinvent 
formal definitions. To work with the students’ contributions, the teacher supports students in 
refining their definition drafts so that their definition is equivalent to a standard definition given 
in textbooks. This is our intention with the curriculum materials that we are developing as part of 
a larger research project (ASPIRE in Math NSF IUSE #1916490). Our task sequences engage 
students in defining (Zandieh & Rasmussen, 2010) by first engaging them in a task that evokes a 
concept image (Tall & Vinner, 1981), then students and the instructor generate and negotiate 
examples and non-examples of the concept, and lastly they work together to refine an informal 
description of the concept towards a formal definition (see Vroom, 2020). 

It is documented in the research literature that it is challenging for teachers to build on 
student thinking in general (Andrews-Larson et al., 2019; Johnson & Larsen, 2012; Speer & 
Wagner, 2009) and we have noticed this to be especially the case when refining students’ 
definitions. In particular, students sometimes offer definition drafts that are inconsistent with 
mathematical norms and conventions since students are not only learning about the concept itself 
but also are in the midst of learning about formal mathematical language (Vroom, 2022). At the 
same time, formal mathematical language is highly technical and filled with nuances, but 
functions to articulate precise mathematical meanings (Halliday, 1978; Schleppegrell, 2007). 
Thus, we see that it is a non-trivial endeavor to support students to refine their definitions in such 
a way that they more effectively communicate the students’ ideas to a broader mathematical 
audience.    

This study focuses on investigating what instructors do to support students in refining their 
definitions in such a way that supports them to abide by mathematical norms. Such an 
investigation will directly support our ongoing research project by informing instructor support 
materials for using our curriculum. This study will also add to the research literature on inquiry-
based instruction by providing insights into how instructors can guide students to refine their 
drafts of definitions and potentially statements and proofs as well.   
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Theoretical Grounding 
Instructors who teach with the ASPIRE curriculum materials are positioned as brokers 

(Rasmussen et al., 2009; Vroom, 2020; Zandieh et al., 2017) holding membership in the 
classroom community as well as having relevant knowledge about mathematical norms and 
concepts. In earlier work, Vroom (2020) described the role of a broker as they engage students in 
mathematical activity (e.g., defining) in which they aim to construct some product (e.g., a 
definition). In the case of defining, the broker engages in a cyclic process in which they 
iteratively aim to (a) make sense of a students’ draft of a definition and its intended meaning in 
relation to how the mathematics community might interpret the draft and (b) support the students 
to edit the draft (in the case that it is not likely to be interpreted as the students intended). To 
support the edits, the broker can strategically share mathematical norms or build on the students’ 
thinking, often creating an intellectual need (Harel, 2008; 2013) for refinement.  

Harel claims that students should have an intellectual need to learn what we intend to teach 
them, where an intellectual need refers to a problematic situation that motivates the construction 
of the piece of knowledge (Harel, 2013). Thus, an instructor who aims to create intellectual 
needs for definition refinements would focus efforts on creating problematic situations for 
students. In the case of definition refinements, we see an intellectual need as referring to a 
problem with the draft that motivates both an edit and an understanding for why such an edit 
might resolve the problem. For example, the students in Vroom’s (2020) study offered Figure 1A 
as their definition for a sequence that had “no upper bound”. While explaining the meaning of 
the definition, the student described how it fit for the example in Figure 1B. To do so, he first 
sketched a horizontal line at k and then pointed out that he could find a sequence term that was 
greater than k (referring to the sixth term in Figure 1B). The teacher-researcher then attempted to 
create a problematic situation by pointing out that when the student described the definition with 
the example, he first introduced k but that his definition introduced n first and k last. Here, the 
teacher-researcher attempted to bring light to a problem: the structure of the definition did not 
match the structure of how he described his intended meaning with the picture. The teacher-
research then explained that the student’s meaning was clear when they explained it with the 
picture and suggested editing the definition so that it better fit his description. The student then 
altered the definition so that the variables were introduced in the same order as he introduced 
them with the picture, giving some evidence that the student experienced an intellectual need for 
refinement.  
 
A. 

 
𝑎! > 𝑘 for some n 
where k is any constant real number  

B. 

 
Figure 1. Students’ draft of “no upper bound” definition.  
 

Vroom’s (2020) conceptualization of the broker emerged from a successful case study of a 
broker with a pair of students in a teaching experiment setting. This case was successful in the 
sense that the teacher-researcher worked with the students to refine the students’ mathematical 
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statements so that (1) the statements could be interpreted by the larger mathematical community 
as the students’ intended and (2) the teacher-researcher seemed to create problematic situations 
that motivated definition refinements. Because the framework emerged in a laboratory setting, 
we were curious how (if at all) instructors in whole-class settings worked with students in a 
similar way. Specifically, in this study we aim to answer: what are instructors doing to initiate 
refinements of students’ definitions? 

Methods 
For this study we investigated how three instructors across four courses guided their students 

through the refinement of one definition. The three instructors taught Introduction to Proof 
courses using curricular materials developed as part of the ASPIRE in Math project. One lesson 
of this curriculum focuses on mathematical language where students are guided to define several 
concepts and learn about the formal mathematical language that they used to do so. For this 
study, we focused on the instructors’ moves during one of those defining tasks. In this task, 
students create a formal definition of a sequence they term “Eventually Constant”. Students 
typically describe this sort of sequence as one that at some point gets “stuck” or “becomes 
constant”. While this can be defined formally in several ways, one common formal definition is 
“A sequence 𝑥!is eventually constant if there exists an 𝑁 ∈ ℕ such that for all 𝑛 > 𝑁, 𝑥! = 𝑥".” 
After students develop a shared informal description of the concepts (e.g., a sequence that will 
get stuck at some point), students work in small groups to draft a definition. Then, students are 
guided to refine their draft(s) in a whole class setting. We use data from four courses, three of 
which were university courses and one a community college course. All four courses were 
conducted remotely with synchronous meetings over Zoom and with students using Google Docs 
during their group work. Data was collected using screen recordings of the class sessions, and 
small group work was captured by a researcher entering a breakout room to record the students’ 
work. The focus task occurred over one day of the classes.  

We began our analysis by watching the video of each of the defining sessions (four 
instructional days from the four classes). During this viewing we identified each moment that the 
instructor made some move to initiate a refinement of the definition. For each move we made 
note of the definition draft that was being refined and asked ourselves “What did the teacher 
do/say/ask during this time?” and “Do we see this as an attempt to create a problematic situation? 
Why or why not?”, documenting our answers. We then documented what (if at all) refinement 
was made as a result of this move. As we documented each move, we constantly compared to 
previous moves to make note of any similarities or differences. In total we identified 15 teacher 
moves from the three instructors and through this constant comparison we categorized the 15 
moves into three types: (1) Suggest an edit with implicit mathematical reasoning, (2) Suggest an 
edit with explicit mathematical reasoning, and (3) Ask a question to create a problematic 
situation.  

Results 
In what follows, we describe the three categories that we identified for what instructors were 

doing to motivate a refinement.  

Suggest an edit with implicit mathematical reasoning  
We identified instances from all three instructors where they suggested an edit with implicit 

mathematical reasoning (eight total instances). This type of move happened when the instructor 
highlighted a refinement that seemed (to us) to have mathematical value but the instructor did 
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not explicitly state its value to the students. For instance, in one whole class discussion, an 
instructor highlighted a group’s draft of their definition with the property: “there exists an a such 
that 𝑥# = 𝑥#$%	 for all 𝑏 ∈ ℕ”. She read the property out loud and asked “what type of number 
does a have to be?” and added “we should probably indicate what type of value a is”. After a 
student quickly responded “a natural number”, the instructor agreed and edited the property by 
replacing “there exists an a” with “there exists an 𝑎 ∈ ℕ”. We see this instance of the instructor 
suggesting a particular edit that communicated that a is a natural number presumably because it 
is normative to not only quantify variables but also indicate what set the variable belongs to. This 
reasoning was left implicit since the instructor only emphasized the edit (“indicate what type of 
value a is”) rather than also highlighting why this edit was advantageous.  
 
Suggest an edit with explicit mathematical reasoning  

We identified six instances (from two instructors) in which instructors suggested an edit with 
explicit mathematical reasoning. This type of move happened when the instructor highlighted a 
refinement and explained why the refinement had mathematical value. For example, one 
instructor was in a breakout room with two students who wrote the following draft definition in 
their Google Doc: “The sequence Xn is eventually constant if there exists X_m in X_n such that 
X_m=X_n for every n>m.” The instructor said: 

“so the one thing I would say is usually when you declare a variable with ‘there exists’ or 
‘for alls’ with sequences a lot of times you’ll just do the subscript only. Like when you 
have X_m in X_n. [...] Here you say X_m in X_n, usually we don’t do that, the reason 
why is that it sort of abuses the notation a little bit. On the one side you’re thinking of a 
specific term sequence and on the other side you're treating it as a set. So that’s a little bit 
of an icky way to do it.” 

We see this move as suggesting a particular edit (‘there exists m in N’ instead of ‘there exists 
X_m in X_n’) and the instructor explicitly shared the reasoning for that edit. In particular, the 
students’ draft used sequence notation in two different ways: X_m represented a sequence term 
and X_n represented the sequence itself.  

Ask a question to create a problematic situation  
We identified only one instance in which an instructor asked a question to create a 

problematic situation with the students’ drafts. In this instance, the students were in breakout 
rooms tasked with drafting a definition in a shared Google Doc. One group’s first attempt read: 
“The sequence Xn is eventually constant if, eventually, there is a number in the sequence that 
repeats itself infinitely many times.” The instructor added a comment to their definition that said: 
“Does this allow something like 1, 2, 1, 2, 1, 2, 1, 2… where 1 and 2 are repeated infinitely many 
times?” We see this as attempting to create a problematic situation because he highlighted a non-
example of a sequence for which the property was true. Specifically, the sequence 1, 2, 1, 2, 1, 2, 
1, 2… has two numbers (1 and 2) that repeat themselves infinitely many times but this sequence 
is not eventually constant since it never “gets stuck”. This problem could motivate a need to 
refine the property so that it does exclude all non-examples.  

Discussion 
We found that the instructors in our study implemented three different moves to support 

definition refinements for the case of Eventually Constant Sequences. Two of these moves 
focused on the refinement itself (suggest an edit with implicit mathematical reasoning and 
suggest an edit with explicit mathematical reasoning) whereas the third move focused on a 
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problem to motivate a need for a refinement (ask a question to create a problematic situation). 
We do not intend to claim that one move is always preferable. For instance, it might be 
appropriate for an instructor to suggest an edit with implicit mathematical reasoning when, for 
instance, the reasoning has been established and taken-as-shared within the classroom 
community. However, we conjecture creating problematic situations with drafts of students’ 
definitions to be advantageous in many cases. Guided by Harel’s (2008; 2013) theoretical 
perspective, we anticipate that focusing on the problem a refinement can solve rather than the 
solution itself could better support students in understanding the nuances of the formal 
mathematical language.  

This study is an ongoing project and our results here motivated some additional questions 
that we wish to further explore. To start, we wonder about the context of the task. In our 
experience we have seen that students often create an informal definition of the Eventually 
Constant Sequence concept that structurally parallels a formal definition. Thus it is often the case 
that any needed refinements are less substantial or more stylistic. This context could explain why 
we did not see many instances of the last category (ask a question to create a problematic 
situation) especially in comparison to Vroom’s (2020) case study. Hence, we wonder whether 
different defining situations afford more opportunities to create problematic situations. We are 
also aware that the type of move that an instructor might use to initiate a refinement could be 
influenced by previous classroom activities. For instance, as we mentioned above, an instructor 
could decide to keep the mathematical reasoning implicit since it had been established and taken-
as-shared within the classroom community. With that in mind, we think it is important to also 
pay attention to the order the instructors use the moves and what, if any, previous norms had 
been established. We plan to explore these questions in future research. 

Our results also suggest some practical implications. A majority of the instructor moves fell 
into the suggest an edit with implicit mathematical reasoning category. While we have discussed 
that this move could be appropriate in some cases, this should not be the only move instructors 
make. As such, when it comes to designing support materials for our curriculum, these results 
suggest to us that we need to better support instructors to have explicit discussion about the 
mathematical reasoning for edits. This will be particularly important in the defining tasks that 
occur early in the task sequence when relevant mathematical norms and conventions have not yet 
been discussed. We also see this ongoing work as contributing to efforts beyond our own 
materials, and in particular, we hope that this study will provide insights for inquiry-based 
instructors who aim to refine students’ definitions, conjectures, or proofs. 
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Developing Network Modeling and Analysis Methods for First-Year Mathematics and
STEM Student Course-Taking Sequences

Jennifer Nimtz Kimihiro Noguchi Jothi Ramesh
Western Washington U. Western Washington U. Western Washington U.

Student success is typically measured by grades in coursework and 6-year graduation rates
(York, Gibson, & Rankin, 2015). The purpose of this exploratory data analysis is to develop
statistical methods that will provide a deeper understanding of student success, specifically
success in first-year mathematics (FYM) prerequisite courses as well as the STEM courses they
serve. We consider the many possible student course-taking sequences (paths) as a complex
network system. We model the paths that students take with a network of vertices (courses) and
edges (links between courses) by using 10 years of registrar data to generate vertex and
adjacency matrices, and associated graphical representations (e.g., heat maps and network
graphs). We also will conduct relevant exploratory data analysis to determine the importance of
certain mathematics courses and transitions to overall student success.

Keywords: student success, mathematics prerequisites, modeling, statistics

Introduction
Student success is typically measured by grades in coursework and 6-year graduation rates

(York et al., 2015). Regarding the latter, we know that student placement and success in
mathematics courses are some of the primary factors that mitigate student time to degree (Aiken,
Bin, Hjorth-Jensen, & Caballero, 2020). In addition, students who have STEM interests and
place into lower-level mathematics courses take longer to complete their degrees. Furthermore,
they are more likely to change their majors or drop out completely (Klingbeil, 2013).

The long-term purpose of this research is to gain a deeper understanding of student success,
specifically success in first-year mathematics (FYM) prerequisites as well as the STEM course
they serve. To accomplish this, we consider the many possible student course-taking sequences
as a complex network system. We model student course-taking sequences as paths through a
network graph of vertices (courses) and edges (links between courses taken in consecutive
academic terms). Next, we generate a vertex matrix (courses) and adjacency matrix (edges that
link courses) from registrar data of student course taking and generate associated graphical
representations (e.g., heat maps and network graphs). Lastly, we will utilize statistical analysis of
networks to determine the importance of certain mathematics courses to overall student success.

In this paper, we first provide a brief background of network analysis followed by the prior
use of network representations to analyze the complex system of undergraduate coursework.
Second, we outline our long-term research goals and contrast our research with the prior research
about using networks to analyze undergraduate coursework. Third, we present our current
research results in relation to our long-term research goals. Lastly, we discuss our future research
agenda in more detail.

Background
In this background section, we define what a network is, provide a brief overview of the

history and uses of network analysis, and culminate with the use of networks to model
undergraduate courses. Networks, represented as graphs of vertices and edges, have emerged as
useful tools in the modeling and analysis of complex systems across a diverse range of
applications. Vertices represent the objects of study and are illustrated by the nodes on the graph.
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Edges are the links between two vertices and are illustrated by the lines or arrows connecting two
vertices. Edges represent the connection or flow between the objects of study.

Networks are useful tools in a wide range of research. Kolaczyk and Csardi (2014) discussed
the history and expanse of network analysis, summarized in this paragraph. Due to advances in
computer science in the 1950’s, the use of network analysis became prevalent in areas such as
transportation, allocation of resources, and distribution of products. In this initial phase, a few
sociologists also utilized networks to characterize interactions in social groups. Then, interest in
network modeling and analysis increased significantly in the 1990’s due to the expansion of the
internet and associated social media platforms. In addition, network modeling and analysis has
proved useful in research areas such as computational biology (Mason & Verwoerd, 2008),
engineering (Chen, 1997), finance (Abrams, Celaya-Alcala, Baldwin, Gonda, & Chen, 2016),
marketing (Webster & Morrison, 2004), neuroscience (Farahani, Karwowski, & Lighthall, 2019),
political science and public health (Goodin, Moran, & Rein, 2008). Two factors have contributed
to the proliferation of network modeling and analysis: the increased interest in the study of
complex systems, and the ability to collect, store, and maintain large data sets. These two factors
prompted the development of statistical methods to analyze large, complex, connected data sets.

Figure 1. Network graph, G=(V,E) with vertices, V={a,b,c,d,e,f,g,h} and edges, E, that link any two vertices.

Recently, network analysis has been utilized as a method to examine the complex system of
undergraduate coursework. For example, Aldrich (2015) and Ren et al. (2021) represented the
intended sequences of courses using a directed network of vertices and edges in which each
vertex represents a course and each edge represents a directional link between courses. To
generate the course networks, university course catalogues (Aldrich, 2015) and program guides
(Ren et al., 2021) can be used. In the context of undergraduate coursework network, the number
of vertices represented the number of courses, and the number of edges represented the number
of links between pairs of courses. They also discussed the general topology of the network by
outlining the number of vertices and edges.

Long-Term Research Goals
Here, we present our long-term research goals to provide a context for our current research

and results. In our research, we will utilize similar statistical methods as Aldrich (2015) and Ren
et al. (2021), but our generation of the coursework network differs significantly. We define the
undergraduate course networks presented in the referenced curriculum research as intended
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course sequences because those networks were generated by web-scraping data from a university
course catalogue (Aldrich, 2015) and from a dental school program guide (Ren et al., 2021). In
contrast, we define the undergraduate course-taking network we generate as the enacted course
sequences because the network is produced from student course-taking data from a university
registrar.

We currently have written a Python program to analyze registrar data of FYM course-taking,
and we will expand this program to include STEM courses and General University Requirement
Quantitative Reasoning courses. In our current research, we have generated a vertex matrix and
adjacency matrix. Our long-term goal is to use such a vertex matrix and adjacency matrix to
generate the undergraduate course-taking network, which will be a directed weighted network
graph. In this undergraduate course-taking network, each vertex will represent a course and each
edge will represent a directed link between a pair of courses. Each vertex will be weighted by the
number of students taking that course and will contain a pie graph of the grade distribution for
each course. Each edge will be weighted by the number of students who take linked pairs of
courses in a sequence of terms. After generating the undergraduate course-taking network, we
will conduct statistical analysis to determine different centrality measures of a network (e.g.,
degree centrality, out-degree centrality, betweenness centrality), which is discussed further in the
Future Research section.

Research
To produce the undergraduate course-taking network, we utilized the Python programming

language to generate a vertex matrix of the number of students who took each course (see Table
1) from student FYM course-taking data from a university registrar. Note that these courses are
not necessarily taken in numeric order (see Figure 2). In addition, we utilized the Python
programming language to generate an adjacency matrix in which each cell represents the number
of students who took the sequence of the pair of courses referenced in the row (course going
from) and column (course going to) (see Figures 3 & 4).

Research Questions
1. How can we represent the total number of students who take each course in a useful

and flexible representation?
2. How can we represent the sequence of student course-taking in a useful and flexible

representation?

Analysis
The analysis of the network of mathematics course-taking sequences is presented as follows:

1. Student course-taking is represented by a vertex matrix in which the total number of
student enrollments for each course is tallied. Additional student summary data may
be included in this matrix (e.g., grade distributions).

2. We generated an adjacency matrix from 10 years of registrar data. In the adjacency
matrix, each cell consists of the number of students who took the sequence of the pair
of courses referenced in the row (course going from) and column (course going to).

This adjacency matrix can be used in combination with the associated vertex matrix to generate a
directed weighted network graph of student course-taking sequences.
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Results
Our results thus far are represented in the Vertex Matrix (Table 1), Course Adjacency Matrix

with Heat Map (Figure 3), and the Log Transform Adjacency Matrix with Heat Map (Figure 4).
The log transform here is given by log10(n+1), where n is the original number. The vertex matrix
consists of a sample of FYM courses of interest and the student enrollment in those courses over
a 10-year period. Note that course numbers do not necessarily indicate the prerequisite sequence.
For example, a student who passes Math-90 can proceed to take Math-110 (Figure 2).

Table 1: Vertex Matrix.

Course
Numb

er

Course Name Enrollme
nt

090 Introductory
Algebra 679

100 Quantitative
Reasoning 3203

110
Functions and

Algebraic
Methods

5660

115 Precalculus 1 5750
116 Precalculus 2 2096
120 Calculus 1 3473

140 Business
Precalculus 2334

141 Business
Calculus 3270

200 Statistics 2008

Figure 2: Intended Course Sequence.
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Figure 3: Course Adjacency Matrix with Heat Map Figure 4: Log Transform of Adjacency Matrix with
Heat Map

In the adjacency matrix (Figure 3), each cell consists of the number of students who took the
sequence of the pair of courses referenced in the row (course going from) and column (course
going to). For example, from prior data, we know that Math-110 has a higher DFW rate, so we
may want to examine common course-taking sequences of those students. If we examine the row
of cells indicating pairs of courses beginning with Math-110, we can determine the highest
enrollment sequence pairs are [Math-110, Math-115] followed by [Math-110, Math-110]. In cell
[Math-110, Math-115], we can see that 1442 students followed the STEM sequence, taking
Math-110 as a prerequisite to Math-115. In cell [Math-110, Math-110], we can see that 571
students repeated Math-110, resulting in a loop in the network. Due to space limitations, we
leave further interpretation to the reader and for the conference presentation.

Discussion
Our study builds on prior research that analyzed undergraduate course networks of intended

course sequences generated from university course catalogues and programs of study. In
contrast, we are developing methods to analyze the undergraduate course-taking network of
enacted course sequences because the matrices that will be used to generate the network are
produced from student course-taking data from a university registrar. The methods for generating
and analyzing a directed weighted undergraduate course-taking network of enacted course
sequences from actual student course-taking are the major finding of this research. Thus far, this
study illustrates FYM course-taking as a vertex (course) matrix containing the number of
students enrolled in the course and is useful in identifying courses with the highest enrollment. In
addition, this study illustrates FYM course-taking as an adjacency matrix (transitions between
pairs of courses). The adjacency matrix is useful in determining the most common course pairs
taken in a sequence, which can be used to determine the emphasis of course content. The vertex
matrix and adjacency matrix are generated as a first step in creating the undergraduate
course-taking network.

Future Research
In our future research, we will conduct a network analysis on the undergraduate

course-taking network. We will employ statistical techniques utilized by Ren et al. (2021) and
Aldrich (2015) to produce the following measures of centrality: degree centrality, out-degree
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degree centrality, and betweenness centrality. In the context of an undergraduate course network,
these three measures of centrality signify the following: (i) degree centrality indicates the
importance of a course in relation to all courses to which it is connected, (ii) out-degree
centrality indicates the importance of courses in relation to those courses that follow, and (iii)
betweenness centrality indicates the importance of the course in relation to the flow of
information between other pairs of courses. For all three centrality measures, degree centrality,
out-degree centrality, and betweenness centrality, the higher the measure, the more important the
course is to an undergraduate coursework network. The degree centrality of vertices is calculated
by the number of both incoming and outgoing edges to each vertex (Ren et al., 2021). On the
other hand, the out-degree centrality of vertices is computed by the number of outgoing edges
from each vertex (Aldrich, 2015). Lastly, the betweenness centrality is given by the extent that a
vertex is situated between other pairs of vertices (Aldrich, 2015; Ren et al., 2021).

This ongoing network analysis will allow us to determine important courses in course
sequences, to analyze student success in courses, and to prioritize courses in need of reform.
These research techniques have the potential to apply across different departments, programs,
and colleges of the university, as well as the university as a whole.
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Establishing a Shared Vision of Effective Pedagogy to Sustain Networked Reform 
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In this preliminary report, we share results from an ongoing project related to the professional 

development of K-12 math and science teachers in Washington state. The goal of this work is to 

establish and sustain a network of STEM teacher leaders who can support teachers statewide in 

using effective STEM pedagogy. In the project’s first phase, we surveyed 290 stakeholders, 

including administrators, support specialists, teachers, and other community/industry partners, 

in order to identify attributes valued in a STEM teacher leader. Initial findings from this mixed-

methods study indicated that STEM stakeholders prioritize teacher leaders’ abilities to foster the 

incorporation of integrated, community-based STEM projects and culturally responsive 

pedagogy in theirs and their peers’ teaching. We seek input from the RUME community on the 

project’s second phase, in which we will study the efficacy of a particular change model in 

facilitating cross-institutional systemic change toward the adoption of STEM best practices. 

Keywords: STEM teacher leaders, network, professional development of K-12 teachers 

Networks are an established vehicle for effecting pedagogical change (Lewis, 2015). 

Networked communities exist in a variety of STEM education contexts; such diversity merits the 

investigation of a variety of network models that may contribute to large-scale pedagogical 

reform in STEM. For example, the Academy of Inquiry Based Learning provides a network for 

individual instructors seeking to adopt inquiry-based pedagogical practices in their classrooms 

(Yoshinobu et al., 2022), while the SEMINAL project established a network of university 

mathematics departments pursuing the implementation of active learning strategies in 

Precalculus through Calculus courses (Smith & Funk, 2021). The overarching goal of our WA-

STELLAR project (NSF DUE #1950332, #2150054) is to grow and support a sustainable 

network of K-12 STEM instructional change agents (teacher leaders) across Washington state. 

Through this project, we will support the development of teacher leaders to mentor other STEM 

teachers in using effective STEM pedagogy (Objective 1); we will then support the systemic 

change efforts of the teacher leaders via network activities that promote collaboration among a 

range of STEM stakeholders (Objective 2). 

Education networks vary in their motivations and goals, their participation and leadership 

structure, and their processes for catalyzing organizational change. Regardless of localized 

complexities, effective network collaboration is predicated on the following eight features: (1) 

focusing on ambitious student learning outcomes linked to effective pedagogy; (2) developing 

strong relationships of trust and internal accountability; (3) continuously improving practice and 

systems through cycles of collaborative inquiry; (4) using deliberate leadership and skilled 

facilitation within flat power structures; (5) frequently interacting and learning inwards; (6) 

connecting outwards to learn from others; (7) forming new partnership among students, teachers, 

families, and communities; and (8) securing adequate resources to sustain the work (Rincón-

Gallardo & Fullan, 2016). In this report, we share preliminary results identifying a stakeholder-

informed vision of “ambitious student learning outcomes linked to effective STEM pedagogy” 
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(Feature 1; Project Objective 1). In particular, we recognize that professional development 

associated with this project’s second phase will only be effective if the aforementioned vision is 

truly shared amongst the network’s constituents. Subsequently, we discuss implications for 

achieving project Objective 2 and conducting further research during this second project phase.  

Theoretical Framing 

This project is grounded in communities of practice theory (Wenger, 1998). Schools or 

districts form individual communities of practice. Through the WA-STELLAR network, we (the 

project leadership team) and teacher leaders act as brokers (Wenger, 1998) between these 

communities by translating, aligning, and facilitating coordination of perspectives, creating the 

possibility for collective meaning-making. Teachers’ instructional strategies are simultaneously 

influenced by obligations to the discipline, themselves, others, and the institution or school 

(Herbst & Chazan, 2012). As such, changing practice is operationalized as “both building on 

existing instructional situations and breaching with some of their norms” (p. 611). With teachers 

from schools and districts across Washington state, the WA-STELLAR network can serve as a 

tool to breach existing norms while accounting for existing conditions. The network can unify 

strategies for supporting student success by leveraging the strengths of all members. 

Methods 

Research Questions and Design 

The following research questions guided the first phase of this project (Objective 1) in order 

to determine what attributes WA-STELLAR network stakeholders value in a STEM teacher 

leader, and what program components the stakeholders view as likely to develop these attributes: 

RQ 1: What are principles and practices that advance STEM education and that a STEM 

Leadership program can support? 

RQ 2: Who is the target audience for a STEM Leadership program? 

RQ 3: What are the skills, certifications, and responsibilities necessary for an effective 

STEM leader, thus establishing guidelines for program curriculum? 

Utilizing a mixed-methods approach, we first surveyed 290 STEM stakeholders from four key 

groups: administrators, STEM support specialists, STEM teachers, and other STEM community 

and industry partners. Follow-up emails and phone interviews were conducted with seven survey 

participants, with four additional survey participants attending in a focus group. This report 

focuses on the first and a portion of the third research questions, as these results offer insight into 

how we might establish shared vision for “effective STEM pedagogy,” an essential feature 

(Rincón-Gallardo & Fullan, 2016) needed to sustain the work of the WA-STELLAR network. 

Participants and Sampling 

To answer the research questions from the perspective of STEM stakeholders in Washington 

state, we developed and administered a survey online via Qualtrics. Stratified convenience 

sampling was employed to collect survey data. Members of the Apple STEM network, members 

of the South Central Washington STEM network, members of the Washington state Science 

Teachers Association, and graduates of our undergraduate STEM teacher preparation program 

were contacted until a minimum of 100 responses were received from STEM teachers and at 

least ten responses were received for each of the three other subgroups of stakeholders. In total, 

290 participants consented to be part of the study and completed at least part of the survey. Their 

positions are summarized in Table 1. 
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Table 1. Summary of survey participants’ educational positions.  

Educational Position/Role Count 

Administration (District Superintendents, School Principals) 

STEM Support Specialists (Curriculum and STEM Specialists, Coaches) 

STEM Teachers (Math, Science, Technology, Computer Science) 

STEM Partners (STEM community and industry advisors, Other) 

13 

18 

208 

51 

Quantitative and Qualitative Data Sources 

The skills and responsibilities included in quantitative survey questions were based on the 

characteristics of effective STEM leaders identified in literature on the topic (The Aspen 

Institute, 2014; National Council of Supervisors of Mathematics, 2008; Sublette, 2013; 

Tanenbaum, 2016; Toncheff, 2020). Prior to administering the survey, we incorporated feedback 

from other STEM educators to establish face validity (Gravetter & Forzano, 2012). In this 

preliminary report, we focus on results from two questions pertaining to establishing a shared 

vision of effective STEM pedagogy.  

Qualitative data was collected to supplement and triangulate quantitative results from the 

survey and consisted of the following three data sources. At the end of the survey, participants 

were given an opportunity to share their thoughts in an open-ended question: What would you 

like to tell us about STEM education? You can explain responses, add new ideas, or ask 

questions. Follow-up phone and email interviews were conducted with seven survey respondents 

including representatives from all categories of stakeholders. Finally, we organized one focus 

group with four survey respondents including three STEM teachers and one STEM coordinator.  

Results 

Thematic Analysis of Qualitative Sources 

In addition to triangulation of three data sources, we used analyst triangulation methods to 

strengthen the credibility of inquiry (Patton, 2002). Two of the authors independently analyzed 

qualitative sources, identifying repeated themes within and across participant subgroups. The 

two researchers then met to compare findings and understand any inconsistencies, generating a 

final list of four themes; three are related to a shared vision of effective STEM pedagogy: 

1. All stakeholder subgroups stated STEM content needs to be integrated across disciplines. 

2. All stakeholder subgroups identified the importance of promoting equity and diversity in 

STEM education. Several responses suggested meaningful community partnerships and 

project-based learning might help address equity issues. 

3. From a curriculum standpoint, we need rich and engaging activities as well as meaningful 

applications connecting to industry.  

Participant responses related to these themes are integrated into the next results section. 

Quantitative Survey Results 

In question one of the survey, participants were asked to rank a list of statements in order of 

importance for advancing STEM education. Table 2 provides average rankings of each statement 

for each stakeholder subgroup of participants. To determine the overall ranking, each stakeholder 

subgroup was treated as equally weighting the overall ranking. Thus, the ranking provided in 

each row of the ‘Average’ column is an unweighted average of the four numbers to its right. 
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Table 2. Statement rankings in order of importance for advancing STEM education (1=most important, 5=least). 

Statement Rank Average Admin 
Support 

Specialists 
Teachers Partners 

A. STEM projects should be 

integrated into all STEM courses. 
1 1.89 1.85 1.71 2.14 1.86 

B. STEM education principles are 

best advanced by hiring effective 

math, science teachers. 
2 2.14 2.08 1.93 1.91 2.62 

C. STEM education should focus 

on Career and Technical Education. 
4 3.32 3.08 3.50 3.37 3.33 

D. STEM education principles are 

best advanced through programs 

with industry, community partners. 
3 3.15 3.46 3.29 3.13 2.71 

E. STEM education principles are 

best advanced through 

extracurricular programs. 
5 4.51 4.54 4.57 4.46 4.48 

For all stakeholders, the two most important principles/practices for advancing STEM 

education were integrating STEM projects into all STEM courses (Statement A) and hiring 

effective math and science teachers (Statement B). These findings were further triangulated with 

qualitative results, in that all stakeholder subgroups mentioned that STEM content needs to be 

integrated across disciplines. In particular, as one STEM coach/coordinator expressed, “The 

trend and long-standing practice of trying to do each one of these [disciplines] exclusive of the 

other is the biggest hurdle we face.” Community partners, CTE support, and extracurricular 

programs help foster and grow STEM learning experiences; however, effectively implemented, 

integrated STEM projects must be the foundation of STEM education. Any STEM program must 

have integrated, project-based learning at its center. Additionally, STEM partners advocated for 

‘integrating community projects, participatory science, and industry partners into schools.’ 

In question four of the survey, participants were asked: How important are the following 

responsibilities for a STEM leader? Table 3 provides a weighted average for each stakeholder 

subgroup and each responsibility. Each participant’s response was assigned one of the following 

weights: Extremely Important → 1; Moderately Important → 0.5; Not at all Important → 0. A 

score close to 0 indicates the subgroup views the feature as less important. A score closer to 1 

indicates the subgroup views the feature as more important.  

The most highly valued STEM leader responsibility was utilizing culturally responsive 

teaching practices. This finding was also substantiated in open-ended responses, where 

participants voiced a need for promoting diversity and equity in STEM education. For instance, 

one of the STEM coach/coordinator participants expressed “how important it is for students to 

see professionals they identify with in STEM professions. In order to draw more diversity into 

the STEM field, we need more STEM leaders with diverse backgrounds. Programs should 

promote diversity.” One STEM teacher felt that “STEM education that is hands-on problem 

solving has a better chance of bridging gaps with equity issues and schools that struggle with 

cultural responsiveness, better than most any other field.” 
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Table 3. Weighted averages for different stakeholder subgroups addressing question four. 

Responsibility Admin Support 

Specialists 

Teachers Partners 

Lead Professional Development in Designing 

and Teaching Problem-based Instruction 

0.78 0.76 0.67 0.72 

Initiate and Administrate Community-based 

STEM Projects 

0.73 0.71 0.62 0.73 

Coach colleagues in effective STEM Teaching 0.84 0.97 0.76 0.82 

Coordinate STEM education district curriculum 

and programs 

0.75 0.88 0.72 0.78 

Lead professional development in integrating 

engineering practices for STEM courses 

0.80 0.91 0.68 0.70 

Utilizing culturally responsive teaching practices 0.90 0.94 0.79 0.87 

Additionally, administrators, STEM support specialists, and community and industry partners 

identified initiating and administrating community-based STEM projects as an important 

responsibility of STEM leaders. However, STEM teachers felt support from their district and 

other STEM educators is essential to assist STEM leaders in both using STEM projects in their 

own classrooms and becoming STEM champions of district and community-wide projects. 

Discussion and Implications 

These results evidenced the need to redesign our (previously) traditional, content-focused 

master’s degree in mathematics to train teacher leaders (Objective 1) in a way that better aligns 

with the values of the larger collective of STEM stakeholders. In our talk, we plan to provide a 

brief overview of the novel graduate STEM Leadership program we designed to serve as a 

network hub (Bryk et al., 2015) for the WA-STELLAR network. 

As we move toward the next phase of our project (Objective 2), we will implement the 

Keck/PKAL change model (Elrod & Kezar, 2016) to facilitate the work of the WA-STELLAR 

network. This model has been used in higher education settings to coordinate multiple 

stakeholders and has eight stages, the first of which is: establishing a shared vision for improving 

STEM student learning outcomes and success. This next phase of our project will be guided by 

the research question: What is the efficacy of the Keck/PKAL model in facilitating cross-

institutional systemic change toward the adoption of STEM best practices? 

Our intended questions for the RUME audience concern ways in which we can leverage 

preliminary results to maintain a vision of effective pedagogy throughout implementation of 

network activities that is shared by all network stakeholders. We are interested in identifying 

potential opportunities/barriers to implementation that might impact the efficacy of our 

implementation of the Keck/PKAL model. 
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Introductory Calculus Instructional Practices Around Student Prior Knowledge 
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Calculus is a pivotal course for postsecondary students and serves as a gatekeeper to advanced 

mathematics courses and STEM majors. This study considers the frequency with which 

instructors report engaging in practices that may help to strengthen introductory calculus 

students’ prior knowledge. Using survey responses (N=136), this study reports on results from a 

set of questions that measures these practices. Results illustrate that instructors may use various 

practices to address students' prior knowledge in their introductory calculus classroom. 

Additionally, instructors provided examples of practices they use in response to student prior 

knowledge that are not explicitly considered in the literature. This implies that a closer look at 

what is happening in the classrooms may be key in understanding the current state of how 

instructors are dealing with student prior knowledge in introductory calculus.  

Keywords: Introductory Calculus, Instruction, Student Prior Knowledge 

Introductory calculus is an essential course for many students; it can bridge the secondary-

tertiary transition. As such, it is often a culmination of students’ K-12 knowledge and a 

gatekeeper to more advanced mathematics (Bressoud, 2015; Rasmussen et al., 2019). Despite its 

importance, students continue to struggle to make it through the course in postsecondary settings 

(Bressoud et al., 2013). One issue facing instructors at the postsecondary level, many of whom 

have been trained as mathematicians and not as teachers, is the varying levels of prior knowledge 

that students have when they enter the classroom. One reason for the difference in students’ prior 

knowledge might be the various paths to get to postsecondary introductory calculus (i.e., having 

seen calculus in high school or not) (Sadler & Sonnert, 2018; Schraeder et al., 2019). Research 

has shown that student understanding of prerequisite knowledge connects to student success in 

calculus (Rasmussen et al., 2019); therefore, it is important to understand how instructors engage 

in practices that support the development of students’ prior knowledge. Studying instructional 

practices that may strengthen student prior knowledge can help researchers understand more 

deeply practices that might be leveraged in the classroom to help more students succeed. 

Theoretical Background 

Introductory Calculus Instruction 

Despite research on the impacts of and barriers to success in postsecondary calculus, 

mathematics instruction at the postsecondary level remains comparatively unexamined (Speer et 

al., 2010). Some researchers have looked at the instructional format in calculus, finding that 

calculus classes typically feature lecture and demonstration (Biza et al., 2016; Larsen et al., 

2015). Other researchers have shown that instruction in introductory calculus classrooms may be 

more varied. For example, while lecture continues to be the most common mode of instruction 

for postsecondary mathematics, recent arguments suggest that this mode can help to model 

mathematical discourse (Viirman, 2021). In addition, Bressoud and Rasmussen (2015) found that 

while university instructors considered themselves fairly traditional (i.e., they thought that 

calculus students learned best from clear, organized lectures), they were open to trying other 
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instructional approaches. Finally, several studies have pointed towards instructional practices in 

calculus courses that move away from lecture; recent work in math and related STEM fields has 

shown that university faculty do attempt to combine content- and student-centered practices and 

that these practices increase student achievement (Bressoud & Rasmussen, 2015; Hovey et al., 

2019; Rasmussen et al., 2019; Tang & Titus, 2002).  

Prior Knowledge & Introductory Calculus  

In my dissertation study, I frame prior mathematics knowledge as the mathematical 

reasoning and skills students bring into the classroom from their previous mathematics classes or 

experiences. I draw here from Tobias’ (1994) definition of domain knowledge: “domain 

knowledge deals with familiarity with general information in an area, even though it may not be 

specifically referred to in a particular passage” (p.39). A key difference between my definition of 

prior mathematical knowledge and Tobias’ definition of domain knowledge is that I choose to 

include the idea of ‘mathematical experiences’ that may fall outside mathematics content. I 

borrow the concept of mathematical experiences as part of prior knowledge from Campbell et al. 

(2020), who put forth “how students understand core ideas based on their own lived and cultural 

experiences” (p. 68) as their definition of prior knowledge. By combining these definitions of 

prior knowledge, I can consider students' specific mathematics content exposure and how this 

exposure happened (e.g., procedural instruction in algebra courses). I also conceptualize prior 

mathematics knowledge as distinct from prerequisite knowledge because not all prior 

mathematics knowledge is important for calculus understanding.  

One reason that instructional support of student prior knowledge is important is that it allows 

students to connect old and new ideas, creating opportunities to make sense of them. Neumann 

(2014) argues that student prior knowledge is brought to the surface in encountering new ideas. 

Furthermore, learning occurs when this prior knowledge and new ideas are worked through 

together. One way to understand where opportunities for prior knowledge and new ideas to be 

worked together is to examine instructional practices. 

Building on Neumann’s (2014) claims, Campbell et al. (2017) developed a framework to 

study how postsecondary courses might cluster by pedagogies and included instructional 

attention to supporting prior knowledge in their pedagogical characterizations. They found that 

both lecture and active learning strategies can be used to support student prior knowledge. 

Campbell et al. (2020) explain that while strides have been made in postsecondary institutions to 

have student-centered classrooms (which may promote discussions and use of prior knowledge), 

instructor attention to prior knowledge in college classrooms is still uncommon. This line of 

inquiry provides evidence that support of prior knowledge (though perhaps rare) does occur in 

postsecondary classrooms and that there may be observable instructional practices among those 

who consider prior knowledge in their instruction. I further this line of inquiry by asking the 

following research question: How and to what extent do introductory calculus instructors report 

engaging in practices that promote students to make mathematical connections to their prior 

knowledge? Results that answer this question help us better understand if and how these 

practices are being put into use by introductory calculus instructors around the U.S.  

Methods 

Participants and Procedures 

The data for this study were collected using a survey distributed to postsecondary instructors 

at institutions across the United States in Spring 2022. The population of interest for this survey 
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included full-time instructors at 4-year universities with a Carnegie classification of R1, R2, 

Doctoral, or Arts & Sciences Focused Baccalaureate who have taught introductory calculus at 

least twice. The choice to sample full-time instructors at these types of institutions was informed 

by research on where most students take introductory calculus (Blair et al., 2015). After 

excluding responses that did not participate past questions about demographic information, there 

was an analytic sample of 142 respondents. I received 42 responses from R1 instructors, 32 

responses from R2 instructors, 39 responses from Doctoral institution instructors, and 29 

responses from instructors at Baccalaureate Arts & Sciences focused institutions. In addition, 61 

participants identified as female, 79 participants identified as male, 1 participant identified as 

non-binary, and 1 participant chose not to disclose gender identity. 13 participants identified as 

Asian, 3 participants identified as Black or African American, 117 participants identified as 

White, and 8 participants chose to not identify their race. In addition, 70 participants identified as 

Tenured Faculty, 15 as Tenure-Track Faculty, 57 participants as other full-time faculty. Finally, 

23 participants indicated that they had taught introductory calculus 2-5 times before the survey, 

32 had taught the course 6-10 times, and 87 had taught it more than 10 times.   

Survey Construction 

The survey data used here was intended to capture how often instructors engaged in practices 

that have been theorized to strengthen student prior knowledge. I developed a set of questions to 

measure this construct, drawing from the C-SAIL Mathematics Teacher Survey (California 

Version, 2017; Edgerton & Desimone, 2019). As written, this survey did not specifically 

measure practices that engage student prior knowledge. However, it was appropriate for this 

purpose because the questions were structured and validated to ask about instructional practices. 

I selected specific items based on theoretical grounding in prior literature. For example, I chose 

items asking about discourse in the classroom, teaching foundational skills, and presentation of 

multiple strategies (Chappell & Killpatrick, 2003). As the C-SAIL Mathematics Teacher Survey 

was written primarily for use in K-12 classrooms, I adjusted wording for the calculus and 

postsecondary contexts when necessary. It included 12 items measuring frequency on a 5-point 

Likert scale that indicated instructors engaged in these practices: Never, Once or Twice a 

Semester, Once or Twice a Month, Once a Week, or Almost Every Class Session. A higher score 

indicates that an instructor engages in the practice more often.  

Additionally, data presented here was gathered from a single open-ended question at the 

close of the survey, “How, if at all, is your instruction affected by the mathematical 

understanding students bring when they come into your class at the start of the semester?” This 

question was intended to gather information on any instructional practices that my survey 

questions may not have caught.  

Analysis 

Analysis for this set of survey data occurred along three lines. First, de-identified data from 

the participants was used to validate the survey. Second, the survey data were analyzed to 

understand which practices instructors used more frequently. For these analyses, only data from 

instructors who had completed the full set of questions was considered (N=136). Finally, 

qualitative data was open-coded (Corbin & Strauss, 2014), to understand additional practices 

espoused by instructors; 127 instructors responded to this question.  
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Results 

Reliability 

Internal consistency of the items was analyzed using a correlation matrix and Cronbach’s 

alpha. Inspection of the correlation matrix showed that all items except for one (“How often do 

you have students solve practice problems using explanations or solution strategies you have 

modeled in class?”)  had correlation coefficients greater than 0.3. The one item with no 

correlation coefficients greater than 0.3 was dropped from the analysis, leaving 11 items for 

analysis. These 11-items had a high level of internal consistency, as determined by Cronbach’s 

alpha of 0.81. 

Survey Response Instructional Practices 

Overall, participants in this sample reported that they engaged in some form of instructional 

practice that may strengthen student prior knowledge. I calculated a composite score for each 

participant by averaging their item scores. I then calculated the mean across the participant 

sample. The mean was 3.77, indicating instructors in my sample participate in some of these 

instructional practices between once or twice a month and once a week. Additionally, there were 

practices that instructors were engaging in less or more (see Table 1). For example, instructors 

reported assessing students in prerequisite skills the least, with a mean of 2.93 (nearly once or 

twice a month). They also reported most often building calculus knowledge by connecting it to 

prior knowledge, with a mean of 4.42 (between once a week and every class). 

Interestingly, the lower reported practices seem to align with a more procedural approach to 

strengthening student prior knowledge (e.g., reteaching or simplification of problems). In 

contrast, the higher reported practices involved a less procedural approach (e.g., engaging in 

discourse, connecting calculus content to students’ experiences). Interestingly a one-way 

ANOVA showed no significant difference between instructors at different institution types for 

each item or across items. This implies that regardless of institution type instructors are engaging 

in similar practices. 

Table 1. Means for Instructional Practices for Student Prior Knowledge. 

“On average, across the span of a semester, how often do you engage in the following 

practices in your introductory calculus course?” (N=136) 

Practice 

Build calculus content by connecting it to prior knowledge 

Correct or refine students’ use of language when they are 

presenting their ideas 

Provide opportunities for students to discuss their mathematical 

reasoning in class 

Assess students in procedural skills taught prior to calculus 

Reteach content using simpler numbers if students are 

struggling 

Teach foundational skills students have not yet mastered 

Have students apply prerequisite mathematics skills in the 

context of calculus concepts 

Simplify the context of word problems by re-writing them 

   Mean 

4.42 

4.14 

 

4.20 

 

2.93 

3.47 

 

3.29 

4.40 

 

    3.07 

Std. Deviation 

0.80 

0.91 

 

1.08 

 

1.26 

1.15 

 

1.01 

0.82 

 

           1.36 
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Present multiple solution strategies for a given problem or 

problem type 

When a problem can be solved multiple ways, use strategies 

that students most often use 

Connect calculus to students’ experiences 

    3.84 

 

    4.07 

   

    3.68 

           0.83 

 

           0.93 

 

           1.01 

 

Short Answer Responses 

During the open coding of the short-answer responses to the question, “How, if at all, is your 

instruction affected by the mathematical understanding students bring when they come into your 

class at the start of the semester?” several themes emerged about how introductory calculus 

instructors perceive changes to their instruction based on their understanding of students’ prior 

knowledge. Initially, this coding prompted me to divide the responses into five categories: 

instructors who said that their instruction was affected and gave me specific examples, 

instructors who said that their instruction was affected but gave me no or vague examples of 

instruction, instructors who said that it did not affect their instruction, instructors who gave an 

unclear response, and instructors who gave a student-focused response. Many (71 out of the 172 

responses), instructors provided examples of instruction they engaged in response to students’ 

prior mathematical knowledge. Although many of these align with the surveyed practices, a few 

new ideas came up. For example, explicit review was a common response. One respondent 

explains, “I assume most students need a "reminder" of the prerequisite topics. If they ask [or] 

seem to need more I do more review as part of my in-class explanations of problems.” In 

addition, many instructors seemed to anticipate and build review into their plans for the course. 

This indicates that instructors can articulate practices they engage in to activate and connect to 

student prior knowledge and that they may do so in different ways than the literature has 

previously noted.  

Discussion  

 

These results are emerging as part of a more extensive dissertation study but indicate that 

introductory calculus instructors are mindful of the need to activate students’ prior knowledge in 

the course. Additionally, they report engaging in practices that might help students strengthen 

their prior knowledge during introductory calculus instruction. Further, they might be engaging 

in more and less procedural instruction to support students (e.g., reteaching prerequisite skills 

versus engaging students in discourse). This finding is in line with previous research (Hovey et 

al., 2019; Rasmussen et al., 2019). Qualitative data supports the idea that instructors can identify 

and describe practices they engage in to respond to students’ prior knowledge. Future research is 

needed to understand exactly how these practices are implemented and which are most 

accessible or provide the best student outcomes. Work in this vein can help the field move 

towards an incremental improvement approach (e.g., Litke, 2020) to better support calculus 

students without asking current instructors to overhaul their entire instructional approaches to 

introductory calculus.  
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Characterizing College Instructors' Attention During Peer Observations

Emily Jones Stephen Lee
UT San Antonio UT San Antonio

Jessica Gehrtz Priya V. Prasad
UT San Antonio UT San Antonio

Research has highlighted that actively involving students during instruction can lead to positive
outcomes for students. However, college mathematics instructors may need support to develop
the knowledge and skills necessary to effectively implement this type of instruction. This study
looks at how college algebra instructors in a grant-supported professional learning community
(PLC) focus on different aspects of their own and others’ teaching. We leverage the instructional
triangle as an analytical framework to characterize the foci of participants’ observations. We
analyzed PLC meetings where participants reported on specific aspects of each other’s observed
classes. Our analysis revealed that instructors each had a primary focus that drove their
observations. We anticipate these different foci will inform future PLC meetings and lead to new
questions about instructor thinking, and to continued development of the instructional triangle.

Keywords: Instructional Triangle, Peer Observations, Professional Learning Community

Research has repeatedly emphasized that teaching that actively engages students can lead to
improved learning outcomes and conceptual understanding for students (e.g., Eddy & Hogan,
2014; Freeman et al., 2014; Kogan & Laursen, 2014; Laursen et al., 2014; Theobald et al., 2020).
However, lecture remains a common form of instruction in many college mathematics classes
(Apkarian et al., 2021; Stains et al., 2018). As such, it is important to support college
mathematics faculty in developing the knowledge and skills necessary for teaching in a way that
centers students and their thinking and moves beyond lecture.

This study is part of a larger ongoing funded project of collaborative instructional
improvement at the university level, aiming to support the implementation of evidence-based
instructional practices that actively engage students with the course content (funding information
blinded for proposal). The project is a professional development experience for the instructors of
all sections of a university-level college algebra course at a single institution. As part of this
project, instructors work as a group to implement Continuous Improvement cycles (Berk &
Hiebert, 2009) to develop and facilitate lessons on particular course topics. This process closely
mirrors Lesson Study in that instructors work together to develop lessons, observe each other’s
lesson facilitation by watching video recordings, and then reflect on and revise the lessons (Dick
et al., 2022). Instructors chose to create and use Desmos Classroom activities as a way to
incorporate active learning in their teaching. Although instructors differed in how they used these
activities (with some soliciting and leveraging student thinking more than others), they all gave
students time to work individually or in small groups before discussing the activities in class.
Notably, no instructors felt that they needed to lead students through the activities themselves.

This study centers on the discussions surrounding participants’ observations of their peers’
teaching. These observations were conducted in the style of a video club (e.g., Sherin & van Es,
2005), with each instructor watching the recording of another instructor’s class and choosing
clips to highlight for the whole group. Our research aims to answer the following question: What
do college mathematics instructors notice when observing each other’s teaching?
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Theoretical and Analytic Frameworks
Teacher noticing informed the conception, data collection and analysis of this study. Noticing

occurs when a teacher identifies important instances in a teaching situation, and then works to
make sense of them (Jacobs et al., 2010; Sherin & van Es, 2005). Research on teacher noticing
has highlighted that expert teachers tend to focus on noteworthy events, provide interpretive
comments, and make connections between student thinking and pedagogical moves. In contrast,
teachers with less developed noticing skills focus on general impressions and provide descriptive
or evaluative comments about what was observed (van Es, 2011).

For this study, we used the “instructional triangle” as our analytic framework to capture what
instructors were attending to as they observed one another’s classes. Cohen and Ball (2001)
argued that instruction consists of “interactions among teachers and students around content, in
environments” (p. 122). These three components (teacher, students, content) are often
represented as the vertices of the Instructional Triangle, with the edges of the triangle
representing the relationships between each of these elements.

Recent research examining instruction at the college level has leveraged the Instructional
Triangle to analyze instructors’ reflections and discussions during an online working group
centered on the teaching of Abstract Algebra using inquiry-oriented instruction (Kelley &
Johnson, 2022). Specifically, Kelley and Johnson (2022) categorized instructors’ comments as
focused on the instructor, students, or mathematical content, and then connected this to
instructors’ roles during discussion in the working group. They found that over the course of the
working group that individual instructor’s foci shifted in different ways, but both instructors
demonstrated a shift from a focus on content to a focus on the relationship between content and
students. Our research aims to characterize instructors’ foci when observing another instructor
teaching a target lesson that was collaboratively developed, and then to use what we learn to
inform how to support shifts in participant discussion for future observations.

Methods
The participants were four college algebra instructors at a large university who met weekly in

a professional learning community (PLC) to share and discuss video clips of classroom
observations and revise course curriculum for future semesters. For this study, we first recorded
each instructor teaching an online lesson on algebraic properties. The PLC facilitators (who are
the project’s principal investigators) then asked participants to watch the video-recording of
another participant teaching this lesson and select clips that caught their attention before the next
meeting. Participants were paired, each watching their partner’s recorded lecture in order to
highlight specific aspects of each other’s teaching. Participants were asked to consider things that
would help improve the lessons for future classes and to identify any other interesting aspects of
the teaching. At the next PLC meeting, participants showcased what they noticed from
recordings of each other teaching this lesson, following a video club format. We then repeated
this process for the lesson on fractions and the lesson on factoring. We recorded and transcribed
the PLC meetings for analysis.

We utilized the Instructional Triangle (Cohen & Ball, 2001) to generate and assign codes to
both the selected video clips and the participants’ observations immediately following each video
clip. Our aim was to gain insight into which aspects of a clip the participant was focusing on. We
coded segments for the participants’ focus on mathematical Content (C), Teachers (T), Students
(S), and the interactions between the three: Teacher-Content interactions (CT), Student-Content
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interactions (CS), and Teacher-Student interactions (TS). We also differentiated between
participant focus on teacher-student interactions about specific content, such as an instructor
answering a content-related question (Teacher-Student Content interactions; TSC), and
teacher-student interactions that were not explicitly related to content, such as discussions about
classroom procedure or the instructor validating a student’s contribution to the class discussion
(Teacher-Student Non-Content interactions; TSN). Another addition we made to our codebook
was creating the Content-Teacher-Student (CTS) code, which captured the participant tying all
three corners of the instructional triangle together at once. This code differs from TSC by
emphasizing the ways in which all three vertices interact at once, with each vertex engaging with
the other two equally, while TSC highlights interactions between students and teachers where
they are focusing on each other rather than engaging with the content individually.

The first and second author independently coded the transcripts, and then met to discuss all
coding decisions. After reconciling all coding decisions, we calculated the frequency of codes
that arose from each participant’s comments about the video clips. By analyzing these
frequencies and trends, we were able to identify focus profiles for each of the instructors.

Results: Participant Focus Profiles
Our data analysis allowed us to identify three distinct focus profiles demonstrated by the four

participants, including a profile focused on Non-Content Teacher-Student interactions, a profile
on Content-Teacher interactions, and a profile focused on Content interactions. In this paper, we
provide a brief summary of each of the three profiles based on the participants’ discussion from
the algebraic properties lesson. Table 1 shows the frequency of specific codes assigned to each
participants' discussion during the PLC meeting, highlighting what they noticed while observing
the algebraic properties lesson.

Table 1. Frequency of Codes for Each Participant’s Discussion on the Algebraic Properties Lesson

Participant C CS CT CTS S T TSC TSN Total

Alex n 0 2 0 2 1 3 0 15 23

% 0.0 8.7 0.0 8.7 4.4 13.0 0.0 65.2 100.0

Nicholas n 0 0 1 0 0 4 0 11 16

% 0.0 0.0 6.3 0.0 0.0 25.0 0.0 68.7 100.0

Ivy n 3 1 4 2 1 0 1 5 17

% 17.7 5.9 23.5 11.8 5.9 0.0 5.9 29.4 100.0

Shay n 0 0 10 1 1 1 0 4 17

% 0.0 0.0 58.8 5.9 5.9 5.9 0.0 23.5 100.0

Focus on Non-Content Teacher-Student Interactions
Two participants, Nicholas and Alex (pseudonyms), tended to focus on Non-Content

Teacher-Student interactions (TSN) as more than 65% of their discussion about the video clips
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were coded as such. Interestingly, both Nicholas and Alex appeared to have a secondary focus on
the Teacher category, with 25% of Nicholas’ and 13% of Alex’s contributions receiving Teacher
codes (T). Because of this, we characterized Nicholas and Alex as primarily concerned with the
ways in which teachers conduct themselves in the classroom, and the interactions they have with
students that are not related to specific pieces of content.

We find it interesting that these participants were so similar in their foci, because the other
participants had very different foci in their discussions about the observations. We hypothesize
that similar priorities and strategies between Alex and Nicholas’ teaching may have contributed
to the similarity of their foci during the video club meetings. For example, Alex spoke a lot about
Nicholas’ (and other participants’) approach to gathering buy-in from students, saying, “He said,
‘You know, no matter how we feel about the group work, there's a reason we're doing it.’ He's…
providing that… explanation of why we should do the group work [for students].” Alex also
responded to Shay’s comments about a clip of Ivy’s teaching, saying, “I kind of just agree with
everything that was said. I like, a lot the way that [Ivy] is kind of candid with her students. I
think that helps encourage the buy-in. She just tells it like it is.”

Similarly, Nicholas spoke about Alex’s (and others’) efforts to motivate students and the
response from students those efforts garnered. Responding to a clip of Alex’s teaching, Nicholas
commented, “I liked that he actually gets his students to talk and discuss.” Nicholas also
responded to a clip of Ivy’s teaching that Shay presented by saying:

I think in general, even if we feel like we were on rinse and repeat, the more we say, ‘This
is why we're doing this this way. This is what we're trying to accomplish.’ I think… it's
enough throughout the semester to get the buy-in from the students … I think [Ivy]
handled that perfectly - I always get the pushback of, ‘Well, you're not teaching, you're not
explaining something.’ Well, we are. We're interacting and we're doing it together.

This focus on the interactions between teachers and students, and how those interactions can
encourage students to participate fully in class, was a major component of Alex and Nicholas’
contributions to the discussion.

Although Nicholas and Alex tended to focus a similar amount on Non-Content
Teacher-Student interactions, we did identify some differences between Nicholas and Alex based
on what else they focused on during the discussion of video clips. Nicholas’ focus on
Non-Content Teacher-Student interactions and Teacher comments accounted for 93.75% of his
contributions, while Alex’s focus on the same two categories accounted for only 78.26% of his.
The remaining contributions from Nicholas fell under Teacher-Content Interactions (CT), while
Alex’s were spread between CS, CTS, and S. Note all of these codes involve interactions with
students, which highlights that Alex was also concerned with the students’ experience. This
difference between Nicholas and Alex may be influenced by their standing within their
instructional team. Nicholas is a course coordinator, so his primary focus on instructors may
follow from that. Alex is a younger instructor, with preparation in secondary mathematics
teaching and a graduate background in mathematics education research. We hypothesize that this
may contribute to his focus on the experience of the students.

Focus on Content-Teacher Interactions
The second profile we identified is demonstrated by Shay (pseudonym), who was primarily

focused on Content-Teacher interactions, with 59% of her observations focusing on the
relationship between the instructor and the content they presented. Shay was secondarily focused
on Non-Content Teacher-Student Interactions, with 24% of her contributions receiving that code.
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A large portion of Shay’s focus on Content-Teacher interactions was directed inward, reflecting
on her own teaching. For example, after observing Ivy teach the algebraic properties lesson,
Shay said:

That's something that I never thought of … I'm like, when was the last time I actually did
… teach the properties? And I'm like, it's been a really long time. So being able to see how
… [Ivy] talked about these two [properties] was really nice.

We characterized Shay as Content-Teacher Focused because of this emphasis on her own and
other instructors’ relationship or interaction with the content they teach.

Focus on Content Interactions
Our third profile that we identified was characterized by Ivy’s (pseudonym) primary focus on

content and the ways in which individuals in the classroom interacted with said content. In
particular, over 65% of Ivy’s contributions were anchored to content, with the Content code
consisting of 18% of her comments, Content-Teacher-Student interactions as 12% of her
comments, and the codes Teacher-Student Content interactions and Student-Content interactions
codes accounting for 6% each of her comments. Ivy’s focus can be illustrated by this quote:

Students got answers of 16, 8, 10, and 1, and [Shay] was asking for input … ‘Would you
mind sharing how you got your answer?’ And that was after they had already established
that 16 was the correct answer. So students actually did start answering and saying that
this is what they did.

Because Ivy’s focus is on the content in relation to both the instructor’s words - “Would you
mind sharing how you got your answer?” - and on the students’ engagement with the content -
“Students actually did start answering and saying this is what they did” - we characterize Ivy’s
contributions as being Content-Focused. We distinguish this from the Content-Teacher
Interactions profile described above because Shay was focused on content and instructors,
whereas Ivy was focused on both instructors’ and students’ relationship with the content.

Discussion
The diversity of participant foci in our results offers the opportunity to look into and pose

questions about why certain instructors had the focus they did. We saw Alex and Nicholas both
had a focus on Non-Content Teacher-Student interactions in their observations. This makes us
wonder if they may have taken this observation opportunity to look for ways to further develop
their pedagogical skills, specifically in relation to their interactions with students. This begs the
following questions for further study: 1) Does this focus come from a perceived lack of those
skills or from a perceived strength in those skills?, and 2) How does this impact the instructors’
approach to soliciting and leveraging student thinking in class?

Further, during our coding and analysis of the transcripts we noticed a consistent focus of
pedagogical observations relating to the use of technology, such as Desmos and Zoom. The
prevalence of these observations leads us to consider the potential of adding technology as a
fourth vertex to the instructional triangle in our analytic framework, especially for classes
conducted online. Further investigation on the interactions between the three elements of the
instructional triangle and technology could highlight how the mechanics within Desmos can be
used to elicit student thinking in different ways. Finally, we intend to explore further the ways
that instructors differ in their pedagogical and content priorities and their interactions in order to
better shape professional development opportunities within the project and better support PLC
interactions and discussions in the future.
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In the last decade there has been a concerted effort to improve the preparation of graduate
students for teaching undergraduate mathematics. Now, it is important to gauge the current state
of the national landscape of graduate teaching assistant (GTA) professional development for
teaching (PDT) and to assess the current needs of the community. To this end, a census survey
was conducted in Fall 2021 of Ph.D-granting mathematics departments in the US. The survey
followed up and extended a similar survey conducted in 2014. Some survey questions were
duplicated, while others probed more deeply into the depth and extent of the GTA PDT being
offered. In this paper we compare some results from the surveys, comment on how the landscape
of GTA PDT has changed, and highlight areas that deserve additional attention moving forward.

Keywords: teaching professional development; graduate student instructors; teaching assistants

The need to improve success, retention, and graduation rates of undergraduate students in
science, technology, engineering and mathematics (STEM) is clear (e.g., Holdren & Lander,
2012; Zorn et al., 2014). Efforts of education researchers have amassed evidence of the
significant roles that instructional practices play in shaping learning outcomes for such students
(e.g., Freeman et al., 2014; Laursen et al., 2014). Students’ experiences in undergraduate classes
also impact their views of mathematics, interest in persisting in their studies, and likelihood of
completing a STEM major (Hake, 1998; Seymour & Hewitt, 1997; Seymour & Hunter, 2019).
Moreover, findings from education research have illuminated disparities in how instruction can
impact students who arrive in our courses with different sets of experiences and backgrounds
(e.g., Ellis et al., 2016; Laursen et al., 2014; Reinholz et al., 2022).

Fortunately, the education research community has generated findings to guide improvement
in the teaching of undergraduate mathematics (e.g., Bressoud et al., 2015; Laursen, 2019). Of
note are impacts of active, engaged student learning approaches on achievement, retention, and
equity. Professional societies and other groups have amplified these findings and provided
guidance and resources for implementation (e.g., Abell et al., 2018; Laursen, 2019). However,
for students to benefit, instructors need professional development for teaching (PDT). It is now
quite common for departments to offer PDT to graduate teaching assistants (GTAs) (Ellis,
Deshler & Speer, 2016). Yet there is still much to learn about the PDT that is offered and how
programs have changed over time. To explore this, we focused on two research questions: 1)
What are the characteristics of current GTA PDT programs in Ph.D-granting mathematics
departments? And 2) Have those characteristics changed since 2014 and if so, in what ways?

Data Collection
Description of the 2014 Survey

In 2014, a survey was sent to all 341 graduate-degree granting mathematics departments in
the US. The survey was conducted jointly by two projects of the Mathematical Association of
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America (MAA). The first, College Mathematics Instructor Development Source (CoMInDS),
provides support to those who prepare GTAs for their teaching responsibilities, including
workshops and access to materials for instructor development. The second project, Progress
through Calculus (PtC) aimed to further understand characteristics associated with students’
success identified by the Characteristics of Successful Programs in College Calculus project.

The survey items related to GTA PDT were designed jointly by members of the PtC and
CoMInDS teams. The survey included both multiple-choice and open-ended items designed to
provide insights into characteristics of programs and to reveal the interests and needs related to
GTA PDT. Department chairs were encouraged to have local experts respond to portions of the
survey they were most knowledgeable about. Specifically, coordinators and providers of GTA
PDT were considered ideal respondents for survey questions related to GTA PDT. The survey
had a 75% response rate from Ph.D-granting institutions.

Results characterized GTA PDT programs offered in mathematics departments across the US
(see Apkarian et al. (2017) for a report of the full 2014 survey). A cluster analysis of these data
revealed nine models of GTA PDT that varied with respect to the activities included, and the
amount and timing of the PDT (Bragdon et al., 2017). Additional analysis indicated that only
19% of departments considered their GTA PDT programs to be preparing GTAs “very well,” and
33% of departments reported there was room for improvement in their programs (Ellis, Deshler,
et al., 2016; Rasmussen et al., 2019). One area that was identified as needing further attention
was program evaluation (Ellis, Deshler & Speer, 2016; Speer et al., 2017).

Description of the 2021 Survey
To understand how things have changed since 2014, and get additional information, a survey

specifically about GTA PDT (based on the 2014 design) was distributed in Fall 2021 to
Ph.D-granting institutions; the response rate was 69.5%. Again, department chairs were asked to
have local experts complete it. Some questions were identical or like the questions asked in 2014
while others probed more deeply to better understand the nature of the PDT. New questions were
added about the providers of PDT and how they are chosen for their positions. Mixed-methods
analysis of the data is ongoing.

Results: Understanding the current landscape of GTA PDT
Here we highlight some notable similarities and differences between findings from the 2014

and 2021 surveys based on our descriptive and qualitative analysis. Both surveys generated data
about roles GTAs play in undergraduate instruction and whether they participate in PDT. All
respondents to the 2021 survey reported that graduate students assisted with instruction and over
half reported that most, if not all, GTAs serve as instructors of record at some point in their
graduate education. GTAs’ roles in instruction have largely remained the same since 2014 (being
graders, tutors, recitation leaders, instructors of record, and assisting with in-class instruction).

There was, however, a substantial increase (from 77% in 2014 to 88% in 2021) in the
percentage of Ph.D-granting institutions that reported all of their GTAs participate in
department-based PDT. PDT may be offered in the department, outside the department within the
institution or outside of the institution. Currently, over half (57%) of responding institutions
reported that over 90% of the PDT was offered within the department and only 7% report that
less than half of the PDT is offered within the department.

There has been a notable change in the formats in which GTA PDT is offered. A majority of
departments now offer term-long courses or seminars, short workshops or orientations, and
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additional occasional workshops or seminars. Table 1 shows changes from 2014 to 2021. Open
responses indicate that some departments have changed their program’s structure to include
credit-bearing courses, regular teaching seminars, and have adjusted placement of GTAs in their
teaching roles. New in 2021, institutions were asked to choose from a list of topics GTAs
typically learn about in their formal preparation for teaching. Table 1 highlights the eight most
frequently selected topics addressed in the PDT.

Formats offered
2014

(n=111)
2021

(n=118) Most addressed topics
2021

(n=114)

Term-long course or seminar 60% 75% University and or dept. policies 86%

Multi-day workshop 34% 48% Grading strategies 78%
Short workshop or orientation
(1-4 hours) 24% 79% In-person classroom management 76%

Occasional seminars or
workshops 16% 73% Active learning 76%

One-day workshop 13% 39% University resources for students 70%

Online modules Not
asked 43% Equity and diversity in the

classroom 65%

Other 13% 16% Facilitating group work 64%

Academic integrity concerns 64%
Table 1: Findings from survey questions: Which of the following formats are typically included
in your GTA preparation program? Which of the following topics do GTAs typically learn about
in their formal preparation for teaching? (Mark all that apply.)

The 2021 data allow us to better describe the community of providers of GTA PDT than was
possible with the 2014 data. The providers are a mix of non-tenure track and tenure track faculty
where a majority are non-tenure track. When choosing or assigning providers of GTA PDT,
departments favored individuals who were willing to take on the role and were considered
excellent teachers. Answers from the non-required open response questions indicated that other
considerations included whether faculty work with GTAs in another capacity, like supervising or
coordinating courses (40% of responses) or are involved in the graduate program (20% of
responses). 25% of responses indicate that faculty were hired specifically with this responsibility.

Both surveys asked respondents to identify what additional supports are needed for providers
to improve GTA PDT. In the 2021 survey, we asked “What resources would be most helpful to
you, as a provider, in strengthening your GTA teaching preparation program, if desired?”
Respondents were given six choices and asked to mark all that apply. Some of the results from
Table 2 can be compared over time. One of the choices was “Tools for evaluating effectiveness
of GTA teaching preparation”; 67% of respondents identified this as a need in 2014 and 80% of
respondents checked that box in the 2021 survey. Respondents identified a critical need for the
community to develop models, instruments, and methods to better understand the extent to which
PDT efforts are effective and successful. This result suggests that a major effort in future work
needs to be in developing tools and protocols for effective assessment of GTA PDT programs.
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Most helpful to strengthen GTA PDT programs 2014
(n=91)

2021
(n=104)

Tools for evaluating effectiveness of TA teaching preparation 67% 80%

Research-based information about best practices in TA teaching preparation 74% 78%

Online library of tested resources 48% 72%

Professional development for TA teaching preparation staff 51% 53%

Online workshops for GTAs Not asked 45%
Table 2: Findings from question: What resources would be most helpful to you, as a provider, in
strengthening your GTA teaching preparation program, if desired? (Mark all that apply.)

The desire for the “Online library of tested resources” also stands out in Table 2. The
CoMInDS project has created just such a library of materials to use in facilitating PDT (available
via connect.maa.org). The CoMInDS Resources Suite contains materials for use in pre-term
orientation sessions, semester-long seminars, periodic workshops and more. Resources, including
assignments, activities, readings, syllabi, etc., are submitted and reviewed through an editorial
process as the repository continues to grow. Given the existence of these resources, one
interpretation of the survey finding is that the CoMInDS Resources Suite is being underutilized.
Another interpretation is that folks would like a larger or differently accessible online library, or
perhaps a different set of resources entirely.

Limitations and Future Directions
In the 2021 survey, 96% of institutions responded “yes” to the question “Do graduate

students in your department participate in any formal preparation for their teaching
responsibilities?” In any survey with less than a 100% response rate one should consider the
effects of unit nonresponse bias (Bose, 2001). A response rate of 69.5% for a survey of this kind
is very high. However, intuitively, one might suspect a higher response rate from departments
with programs than from those without. It is likely that fewer than 96% of the non-responding
institutions have a GTA PDT program, though it is difficult to quantify.

Another concern was whether there was a “CoMInDS summer workshop bias.” At these
multi-day workshops (running each summer 2016-2021) participants designed or revised GTA
PDT programs. The workshops have served 203 participants from almost half (87) of the
Ph.D-granting mathematics departments in the U.S., in addition to some masters-degree granting
institutions (Bookman & Speer, 2021). Institutions that sent participants to a CoMInDS summer
workshop might have been more likely to respond to the survey than those that did not. 73.6% of
workshop-participating institutions responded compared to 65.4% of non-participating
institutions. A 2x2 chi-square test revealed no statistically significant differences at the .05 level
in those response rates (p=0.223). In future work, we may examine effects of differences
between ‘early’ respondents to ‘late’ respondents and the effect of item non-response.

In both surveys, we collected data about the formative and summative feedback given to
GTAs about their teaching and about how well providers feel their program does at preparing
new GTAs. Analysis of these questions is ongoing, however the mixed-methods analysis of the
2014 survey data revealed that most programs used student evaluations of teaching (SETs) to
evaluate the teaching of graduate students in their department and there were limited efforts
undertaken to evaluate the effectiveness of the programming (Speer et al., 2017). From
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preliminary analysis of the 2021 survey data, it appears that SETs are still the most common
method of formally evaluating GTAs’ teaching (91% of institutions reported doing so).

As of 2021, graduate students in 88% of Ph.D-granting mathematics departments have
opportunities to participate in PDT that is offered by their department. Although that certainly
indicates that many GTAs are receiving preparation for their teaching-related responsibilities,
programs vary in terms of enrollment. As a result, we do not know what percentage of all
mathematics graduate students are participating in PDT. If the large Ph.D-granting programs are
represented in the 88% then person-level participation may be even higher. However, if the 88%
primarily includes small-enrollment programs, then the actual person-level participation rate may
be lower. Knowing more about the size of the programs represented in the response sample could
inform strategies used to increase the reach of efforts to departments that are currently not
offering programs. On-going analysis will further examine this issue via other data provided on
the survey as well as publicly available data from the CBMS survey of programs.

We anticipate that further analysis of responses to open-ended prompts will provide
additional insights. Several comments highlighted major changes that have been implemented to
GTA PDT programs, including hiring a GTA PDT provider and/or dedicated course coordinators.
Course coordinators may be well-positioned to take on the role of providing PDT for GTAs
(Martinez et al., 2021), and future analysis of the survey data could shed light on the ways
coordinators are complementing existing GTA PDT programs.

Conclusions
The mathematics community has responded to calls for increased attention on professional

development for those new to teaching. Now, 88% of departments offer PDT to graduate
students whereas in 2014 only 77% did so. The scope and content of those programs has also
changed and now better reflect what is known from research about effective design of PDT. The
K12 education community has recognized that development of teaching practices and knowledge
requires sustained engagement (Blank & de las Alas, 2009). In 2014, 60% of departments offered
a term-long course or seminar and today, 75% of departments do so. Such courses or seminars
may represent as little as 10-15 contact hours (for a 1-credit course) or as much as 30-45 contact
hours (for a 3-credit course). This falls short of the 100 hours that is regarded as necessary for
impact (Banilower et al., 2006), however, when taken together with other changes we see, the
shifts since 2014 are encouraging.

We also see that current programs are focusing on issues of importance to the broader
mathematics community (e.g., active learning, collaborative groupwork, and
diversity/equity/inclusion, see Table 1). We lack comparison data but the presence of such topics
in the majority of programs suggests that those involved in program design are well-informed
about current needs of the mathematics community and findings from education research.

Those involved in GTA PDT continue to request tools to better understand the impact of their
programs on teaching and learning. In 2014 this was expressed by a majority (67%) and today,
80% say this is something they need. While some of this increase may be a result of trends about
assessment and evaluation seen throughout the mathematics community, the finding points to the
need for ways of examining the impact of PDT on instructors (which also requires tools for
assessing and evaluating instructional practices). This creates opportunities for increased
collaboration among those with expertise in PDT programs for GTAs, research on the teaching
and learning of undergraduate mathematics, and program evaluation.
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It is known that teachers’ beliefs influence how they filter new knowledge and understanding of
pedagogies and can directly impact their classroom practices. Moreover, the context can shape
beliefs, and thus it is imperative to examine the beliefs of teaching assistants (TAs) of
introductory proof courses because they play important roles in supporting student learning at
this crucial mathematical junction. This preliminary study explored the professed beliefs of Lisa,
a second-year, mathematics doctoral student. We qualitatively analyzed her responses in a
semi-structured interview - with a particular emphasis on exploring her beliefs about teaching
and beliefs about introductory proof courses. Overall, she believed that introductory proof
courses pose new challenges and demands for undergraduate students. We saw connections to
her beliefs about how TAs should deliver content and support students. Critical examination of
TAs’ beliefs can inform how mathematics departments prepare graduate students to be teaching
assistants.

Keywords: Teaching Assistants, Beliefs, Introductory Proof Courses

Introduction
In the present preliminary study, we examined the professed beliefs (Speer, 2005) of a

teaching assistant (TA) of an introductory proof course. Introductory proof courses mark a
critical junction in the academic trajectories of many undergraduate students pursuing
mathematics degrees. Students are confronted with significant challenges in proof-construction
(e.g., Moore, 1994; Weber, 2001), because the demands associated with proof-construction are
unlike those of courses such as calculus and linear algebra. Graduate students who serve as TAs
play important roles in supporting student learning during this transition to upper division
mathematics courses that heavily rely on proof-construction competencies. It is imperative that
we better understand what mathematics TAs believe about students, learning, and teaching at this
important junction. These beliefs can not only impact their current instructional practices (e.g.,
Pajares, 1992; Goldin et al., 2009), but they can also filter how TAs learn about and develop their
pedagogies (Brousseua et al., 1988) to teach upper division coursework.

Prior work has illustrated how teachers of different domain areas (e.g., STEM, humanities,
etc.) have described and exhibited differences in beliefs about aspects of their instruction (e.g.
Patterson et al., 2016; Roothooft, 2019), and we posit that the specific content areas within the
mathematics discipline (e.g., calculus, linear algebra, etc.) can uniquely influence what TAs
believe. To date, there is limited work that is specific to examining the beliefs of TAs of
introductory proof courses. As we move forward, findings from studies of this nature can inform
how higher education institutions and mathematics departments can better support graduate
students’ professional development and teaching practices in proof-based courses. If we are to
positively develop these dimensions of teaching and instruction, it is important that we first
identify and examine the beliefs that graduate students bring into these courses and develop as
they serve as teaching assistants or early instructors of record. The research question that guided
this study was: How did a mathematics teaching assistant discuss their beliefs about teaching and
mathematics in an introductory proof course?
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Framework
We drew on a categorization of professed teacher beliefs (Calderhead, 1996; Carter &

Norwood, 2010; Torff, 2011) to frame the present exploratory study. Research on teaching and
educational psychology have previously described beliefs as being professed or attributed
(Calderhead, 1996; Putnam & Borko, 2000). Speer (2005) stated, “professed beliefs are defined
as those stated by teachers, while attributed beliefs are those that researchers infer based on
observational or other data” (p. 361). We consider the beliefs of the focal TA as primarily
professed beliefs because we as researchers did not observe their classroom practices nor
inferred beliefs from observed actions. We built upon the work of Speer (2001) who previously
connected teaching assistants’ beliefs to their teaching practices in reform-oriented calculus
courses. Speer described and categorized teaching assistants’ belief profiles to encompass 1)
what the teaching assistants believed about their students, 2) what they believed about teaching,
3) what they believed about learning, and 4) what they believed about mathematics.

Other scholars have similarly categorized beliefs as a way of identifying and assessing
teachers’ professed beliefs (e.g., Carter & Norwood, 2010; Voss et al., 2013). Although beliefs
are extremely interconnected, categorizing them is helpful in making sense of an individual’s
broader belief system. Voss et al. (2013) provided a rationale for why researchers often classify
and categorize teacher beliefs, writing: “These detailed taxonomies are helpful and necessary
when it comes to addressing theoretical questions about specific components or painting a
coherent picture of belief systems” (p. 252). In this preliminary study, we focus on two primary
dimensions: beliefs about teaching and beliefs about mathematics. More specifically, we sought
to identify how beliefs about teaching and mathematics are related to introductory proof courses
and the extent to which the focal TA’s beliefs about her teaching and mathematics is shaped by
the course content and her perceptions of the demands of introductory proof courses.

Method
Purposeful sampling (Miles et al., 2020) was used to recruit graduate students of an

introductory proof course at a Minority-Serving Institution in California. It was part of a larger
study about transfer students’ experiences in a department intervention involving a set of courses
to help transfer students transition to a four-year university. The focal introductory proof course,
Math A, was one of these courses. Participants were mathematics doctoral students who were
TAs for the course during the Fall 2020 quarter. We focus on Lisa (a pseudonym) as a case for
this preliminary study because she was revelatory (Yin, 2016) about nuanced professed beliefs
regarding teaching and mathematics that were also related to the context of the introductory
proof course. She self-identified as female and was a 2nd year doctoral student pursuing a degree
in mathematics. Moreover, at the time of data collection, Lisa had two quarters of experience as a
TA for the introductory proof course. The research team qualitatively analyzed her responses to a
semi-structured interview protocol (Rubin & Rubin, 2011). The following questions guided our
categorization, coding, and analysis of Lisa’s professed beliefs: (1) What does Lisa believe about
her teaching practices and role as a TA? (2) What does Lisa believe about mathematics and
introductory proof courses? We pair-coded the interview transcript, discussed our codes, and
wrote memos throughout this preliminary analysis of themes in her professed beliefs. Code
charting (Saldaña, 2021) using matrices was used to organize the categorization of her beliefs
and this afforded insight into themes across the various dimensions of her beliefs.

25th Annual Conference on Research in Undergraduate Mathematics Education 1052



Findings
We present initial findings highlighting themes in Lisa’s professed beliefs about introductory

proof courses and her role in teaching and supporting student learning. Lisa expressed some
beliefs unique to the context of and circumstances around introductory-proof courses (e.g., it is a
course mainly for mathematics majors, it is the gatekeeper to upper division courses, etc.). She
also expressed beliefs related to characteristics and key practices of what she believed makes a
successful TA of such courses.

Beliefs about Teaching
Lisa expressed beliefs related to her role as a content-deliverer and as someone who is a

supporter of her students. Regarding the dimension of her teaching related to content-delivery,
she recognized the constraints of her role as a teaching assistant and believed that she should
reinforce the material already presented by the professor - but make it more personable and
approachable for the students. She described the importance of being “less scary” than the
professor and recognized the impact that instructors’ demeanors can have on student learning
and engagement. She said:

I guess, I kind of view it as like I'm someone to reinforce the material that the professor is
doing. So just like it can be more personal, reinforce ideas, because they're very abstract
when they're first given to students. And then, just to be someone who is less scary than
the professor. My job is just to be approachable.

Lisa frequently returned to this notion of being personable. She reflected on how she
introduced herself to students at the beginning of the semester. Her goal was to convey the
message: “I care about you as a person and I’m going to take the time to try and show it.” She
believed TAs should be clear about their intentions to support students and that this should be
explicitly communicated. Another key belief associated with teaching and content delivery was
her belief that a TA should present material in a way that is digestible and understandable for
students, especially with material they had not seen before. She said, “I think knowing how to
present the material in a way that you know someone who's just seen upper division math for the
first time can do it, can understand it.” Lisa understood that many students struggle in making
sense of proof-construction and believed that TAs should strive to make material accessible and
understandable to all students. This included actions such as exhibiting patience, breaking down
complex concepts, and scaffolding students’ proof construction by first showing easy examples,
and moving to “hard interesting problems.” She recalled noticing a difference in students’
engagement and interactions when she expressed that she cares for them. She said, “I tried really
hard to like, start off being with like, ‘Okay, I care about you as a person and I'm going to take
the time to try and show it to you.’ and I think that worked well.” Overall, Lisa believed that a
TA needs to make the content relatable and accessible while also providing support and
demonstrating care for students.

Beliefs about Mathematics and Introductory-Proof Courses
In examining her beliefs about teaching, we saw that there were some connections to her

beliefs about the mathematical difficulties associated with introductory proof courses. Lisa
primarily expressed beliefs about the nature of these courses - specifically that they mark a
junction in the content, problem-solving, and sense-making demands that students encounter in
these courses and beyond. She believed that constructing mathematical proofs are unique from
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the mathematics that students have previously seen and that this poses challenges that many
students may not yet have faced. She said, “They’ve never been into, like a proof-writing, class
everything's really different.” Moreover, in reflecting on her position as a teaching assistant for
the Math A course, she expressed a concern and critique about the focus of introductory proof
courses. Lisa believed that the emphasis of such courses is on the correctness of the final proof,
rather than a deeper understanding of the conceptual and logical underpinnings of constructing
proofs. She commented,

I think my biggest thing about Math A is there's such, still such an emphasis on like the
correct answer in Math A. But like ideally, from my point of view, [the] Math A goal
should be: “Do you know how to write a proof?” So I think a lot more emphasis on like
writing proofs well, and like having students actually get graded feedback.

She suggested that providing students with feedback, rather than just a grade would help
attend to the concern and overemphasis on correct answers and proofs. Lisa believed that
introductory proof courses should better prepare students to construct proofs – not just in rote
and procedural ways, but rather with a deeper understanding that can support them as they
continue to more advanced mathematics.

Discussion
Overall, we observed that Lisa placed importance on being approachable as a TA and

engaging in practices that allow all students to access the mathematics content. Lisa believed that
TAs should make content digestible and understandable and that the emphasis of Math A should
be on supporting students’ deep and conceptual understanding of proof-construction. Altogether,
we can infer that she believed that affect-oriented practices that attend to students’ motivation
and fostering positive perceptions of TAs can support student learning in introductory proof
courses. Wiesman (2012) previously found that some teachers believed that students’ motivation
in the classroom are impacted by teacher actions and that demonstrating care can have positive
impacts on academic achievement. This idea is echoed in Lisa’s reflections on how she should
foster safe classroom environments where students feel supported and cared for. Also, Lisa’s
consideration of students’ perceptions of TAs and providing more socio-emotional support is
consistent with aspects of the work of Beijaard et al. (2000) who characterized some teachers as
pedagogical experts, or those who base their sense of selves as teachers on supporting students’
social and emotional development. Ultimately, our preliminary findings of Lisa’s beliefs are
consistent with existing research on how beliefs may be categorized (e.g., Ernest, 1989; Speer,
2001; Carter & Norwood, 2010; Voss et al., 2013) but are still interconnected and influence each
other (e.g., Pajares, 1992) to form larger belief systems.

We also recognized that some of the professed beliefs were explicitly connected to
introductory proof courses, which supports the notion that beliefs are informed by the
mathematical contexts and domains. For example, her belief that proof-construction poses
challenges and introduces a level of cognitive demand many students have not yet faced (i.e, a
belief directly related to the specific course she was a TA for) was a significant part of her
reflections on why she should be more personable and approachable to students. We also saw
preliminary findings illustrating how course contexts can impact beliefs. We may expect a TA in
a precalculus course and a TA in an introductory-proof course to have nuanced beliefs about
mathematics and teaching that are reflective of their different experiences and content areas.
Lastly, we also highlighted Lisa’s belief regarding the nature of introductory proof courses and
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their overemphasis on rote proof-construction and the correctness of the final answer. This belief
can have implications for how Lisa develops her own pedagogies and practices as a TA and a
potential faculty later in her career because it can serve as a lens through which she adopts or
rejects new pedagogies. She may make the effort to combat the traditional emphasis on
correctness and procedural understanding and make conscious effort to develop practices that
better support deeper learning.

Limitations and Implications
One limitation of the study is that we only focused on the beliefs of one TA, which did

not allow for a comparison of professed beliefs across multiple participants. Future work could
perhaps examine more participants (i.e., more TAs of introductory proof courses) or more TAs
across multiple courses (i.e., examine TAs of calculus, linear algebra, introductory proof courses,
etc.) Secondly, a key limitation of research on beliefs is the extent to which participants can
convey and articulate their beliefs. Future research should examine other dimensions of TAs’
beliefs (e.g., beliefs about how students learn) or observe how TAs facilitate their sections to
identify any connections between observed practices and their professed beliefs. A richer
understanding of TAs’ beliefs, uniquely situated in specific courses, has important implications
for practice and research. It can inform department-level training, coursework, and other
professional development opportunities for graduate students, and this can expand our
understanding of the belief systems of individuals involved in undergraduate mathematics
instruction.

Conclusion
We consider research on TAs’ beliefs an important, yet under-researched, dimension of

undergraduate mathematics education, especially in courses like introductory proof courses
which are foundational to students’ success in upper division coursework. Our preliminary
findings highlight connections between a TA’s beliefs about introductory proof courses and
mathematics and her beliefs about teaching, and this sheds light on the complexity and
interconnectedness of beliefs. A richer understanding of the beliefs of TAs of these courses can
also be resources for mathematics departments because they afford insight into students’
experiences from the perspective of those who often, more frequently, interact with students and
see firsthand the challenges they encounter. With many graduate students continuing on to
become faculty and may later teach proof-based courses, critically examining their beliefs when
they serve as teaching assistants can inform how institutions and mathematics departments
prepare them for careers as post-secondary educators.
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Student Confidence and Certainty in Comprehension of a Proof by Induction 
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Researchers typically utilize response correctness to interpret student proficiency in proof 
comprehension. However, metacognition has not been simultaneously analyzed alongside 
correctness to determine student competency in proof comprehension, yet it offers important 
information about performance behavior. The primary objective of this study is to investigate the 
accuracy of student confidence and certainty levels at local and holistic aspects of proof 
comprehension regarding a proof by induction. Students were given a three-factor proof 
comprehension assessment at the beginning and end of an undergraduate transition-to-proof 
course that collected student confidence, correctness, and certainty at each tier of an established 
proof comprehension framework. Results of this study highlight a critical distinction between 
high and low performers’ metacognition throughout the host course. One outlying assessment 
item especially illuminates additional considerations for future application of metacognition in 
proof comprehension research. 

Keywords: Proof comprehension, Proof by induction, Confidence and certainty, Metacognition, 
Multidimensional competency assessment 

1 Introduction 
The present study investigates the interplay between students’ confidence and certainty 

(states of metacognition) with response correctness within proof comprehension assessments. 
The discussions presented in this paper operate on the following definitions of confidence and 
certainty. Confidence refers to an individual’s level of belief that they can provide a correct 
response to an assessment item pertaining to a given set of clearly defined criteria, whereas 
certainty refers instead to an individual’s level of belief that they have provided a correct 
response to an assessment item. Confidence and certainty are differentiated by their context and 
timing at which they are measured. Confidence, measured prior to viewing assessment items, is a 
self-assessment for anticipated performance, while certainty is a self-assessment of past 
performance measured after providing a response to an assessment item. 

1.1 Metacognition and Multidimensional Knowledge Assessment 
Metacognition includes any way of monitoring of cognition (Kitchener, 1983) and thus the 

term has been applied with a wide variety of interpretations. Commonly, metacognition is 
categorized into two broad areas – metacognitive knowledge and metacognitive skills (Veenman 
& Spaans, 2005). Metacognitive knowledge involves one’s beliefs about the interactions of 
person, task, and strategy knowledge (Flavell, 1979), whereas metacognitive skills refer to the 
“procedural knowledge that is required for the actual regulation of and control over one’s 
learning activities” (Veenman & Spaans, 2005). Confidence and certainty as previously defined 
address a subcategory of metacognitive knowledge (relating person knowledge to task 
knowledge) wherein an individual self-monitors their cognitive performance.  

Knowledge is information which is both true and justified (Hunt, 2003). Student certainty has 
been well studied for providing response justification during assessment (Gardner-Medwin and 
Gahan, 2003; Ghadermarzi et al., 2015; Hunt, 2003; Snow, 2019). The authors of the present 
study have investigated simultaneous evaluation of confidence, certainty, and correctness (the 
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“3Cs”) within an undergraduate linear algebra course and established corresponding accuracy 
indices for identifying outlying student metacognitive behaviors and providing new insights for 
assessment item analysis (Preheim et al., 2022; Preheim et al., 2023). The 3C assessment 
structure and analysis has yet to be used to investigate student competency in proof 
comprehension. 

1.2 The Role of Confidence and Certainty in Proof Comprehension and Proof Writing 
An individual’s confidence and certainty in proof comprehension may impact decisions 

which occur throughout proof writing tasks wherein they must make strategic choices on how to 
proceed (e.g., deciding which method of proof to initially employ, which strategy to use to 
satisfy a particular case, etc.). For example, consider a student who does not feel confident in 
their comprehension of proof by contrapositive as a technique. When posed with the task of 
proving “if n2 - (n-1)2 is not divisible by 8, then n is even,” this student might shy away from a 
proof by contrapositive and be led to attempt a direct argument (which would be more tedious). 
Similarly, an individual’s certainty in their proof comprehension has the potential to influence 
their willingness to move to a next step in a proof-writing task or impact their conviction in the 
truth of the mathematical statement being proved. 

While the role of proof in establishing mathematical conviction (i.e., belief in the truth of a 
mathematical statement) has been discussed and investigated by researchers such as Weber or 
Mejía-Ramos (Weber & Mejía-Ramos, 2011; Weber et al., 2014; Weber & Mejía-Ramos, 2015; 
Weber et al., 2022), student confidence and certainty regarding proof comprehension has not 
been thoroughly investigated. Mejía-Ramos et al. (2011) developed a model by which to 
construct assessment items for proof comprehension assessments (PCAs) in undergraduate 
mathematics. This proof comprehension framework (PCF) identifies seven aspects of proof 
comprehension separated into two tiers: local and holistic (Mejía-Ramos et al., 2012). 
Assessment items at the local level are intended to assess an individual’s comprehension of a 
small number of statements contained within a proof. At the holistic level, items assess an 
individual’s understanding of the proof as a whole (Mejía-Ramos et al., 2012). Student 
metacognitive behavior at each level of the PCF has not been empirically investigated to measure 
student competency or assessment item validity. 

The objective of this study is to investigate students’ confidence and certainty levels and their 
accuracies at local and holistic aspects of proof comprehension regarding a proof by induction. 
Distinctions between high and low performers’ metacognitive behaviors from the beginning to 
end of the host course are also presented and discussed. 

2 Methods 

2.1 Course Information and Assessment Structure 
The introduction to abstract mathematics course which hosts the focused student population 

in the present study serves as the transition-to-proof course for undergraduate students at North 
Dakota State University. This course focuses on proof-writing tasks and proof comprehension 
amidst various topics in abstract mathematics. 3C data was collected via two assessments per 
section from 36 students in four sections of the course. 

The PCA used in this study assesses comprehension of a proof by induction that every third 
Fibonacci number is even. This multiple choice PCA developed by Mejía-Ramos et al. (2017) 
which adheres to the PCF (Mejía-Ramos et al., 2012) was adapted to include 3C assessment 
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methodology. This same 40-minute in-person assessment was administered near the start of the 
course (the initial assessment) as well as near the end of the course (the post assessment).  

Each assessment item from the PCA was mapped to one PCF subitem. Immediately 
preceding each assessment, student confidence levels were collected for pertinent PCF subitems. 
The prompt requested students to indicate their level of confidence in each PCF subitem (4=High 
confidence, 3=Somewhat high confidence, 2=Somewhat low confidence, and 1=Low 
confidence). In the first semester of collected data, students provided their confidence levels 
prior to viewing the proof or assessment items. During the second semester, students were given 
five minutes to read the proof prior to providing confidence levels.  

Once the confidence self-assessments were completed, students were given an assessment 
packet which contained the 12 multiple-choice questions. Following each multiple-choice 
question, a corresponding certainty prompt (similarly structured to the confidence prompt) 
instructed students to record their certainty in their response before moving on to the next item. 

2.2 Accuracy Indices and Metacognitive Accuracy Plots 
An individual student response yields the following three values: c1 = confidence level, c2 = 

correctness (1 for correct and 0 for incorrect), and c3 = certainty level. Two similarly defined 
functions were developed to measure the alignment of confidence with credit (AccConf) and the 
alignment of certainty with credit (AccCert). The formulas for each are shown in Figure 1. 

Figure 1. The metacognitive accuracy formulas AccConf and AccCert. A weighted average of these accuracy values 
produces the accuracy indices AIConf and AICert. 

Accuracy values of 1 indicate accurate confidence/certainty while accuracy values of -1 
indicate inaccurate confidence/certainty. A weighted average of accuracy values across 
responses was computed for each assessment to generate an accuracy index for confidence 
(AIConf) and an accuracy index for certainty (AICert). For this weighted average, responses 
reporting confidence/certainty levels 1 and 4 were weighted at three times the weight of those 
corresponding to levels 2 and 3. Metacognitive accuracy plots were produced to display the 
transitions in AIConf and AICert from the initial to post assessment among all students, high 
performers (students in the top 25th percentile of course standing), and low performers (students 
in the bottom 25th percentile of course standing). 

3 Results 
Among all students, AIConf increased from the initial assessment to the post assessment for 

all local items except item Q4 (Figure 2a). Among high performers, AIConf increased by more 
than 0.20 from the initial assessment to the post assessment for ten of the twelve items 
(excluding Q4 and one item with near maximum accuracy) (Figure 2b). Among low performers, 
AIConf and AICert decreased from the initial to post assessment for all holistic items (Figure 
2c). Furthermore, Q4 showed substantial decrease in both AIConf and AICert among low 
performers (Figure 2b) and substantial increase in AICert among high performers (Figure 2c). 
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Figure 2. The transitions of AIConf and AICert for each assessment item from the initial to the post assessment are 
plotted as arrows on a graph of AICert vs AIConf. Items addressing local aspects of the PCF are represented with 

gray dotted arrows while those addressing holistic aspects are represented by black solid arrows. 

Reported confidence and certainty levels demonstrated significant (α<0.05) increase from the 
initial to the post assessment for all and eleven of the twelve items, respectively. Certainty levels 
were higher than confidence levels on average among questions pertaining to local aspects of the 
PCF for both the initial assessment and the post assessment. However, certainty levels among 
questions pertaining to holistic aspects of the PCF were lower than confidence levels during the 
post assessment. On average AICert was higher than AIConf among both assessments for all 
items, local items, and holistic items. Average confidence and certainty levels as well as 
correctness scores increased from the initial assessment to the post assessment among all items, 
local items, and holistic items. Though average AIConf and AICert among questions addressing 
local aspects of the PCF increased from the initial to the post assessment, both decreased among 
questions addressing holistic aspects of the PCF (Table 1). 

 
Table 1. The average confidence level, certainty level, score (correctness), AIConf, and AICert on the initial and 
post assessments among all items, local items, and holistic items. 

  Confidence Certainty Score AIConf AICert 
All Initial 2.26 2.63 0.58 0.19 0.44 

 Post 3.07 3.14 0.67 0.37 0.50 
Local Initial 2.56 2.92 0.70 0.17 0.53 

 Post 3.26 3.40 0.75 0.53 0.67 
Holistic Initial 1.95 2.21 0.40 0.22 0.30 

 Post 2.88 2.77 0.54 0.15 0.25 
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4 Discussion 
Transitions from the initial to the post assessment highlight a critical distinction between 

questions addressing local aspects of the PCF and those addressing holistic aspects. Increased 
accuracy of confidence regarding local aspects of the PCF indicates that students’ increase of 
confidence levels at the local tier (Table 1) was accurate to their performance. Though questions 
at the holistic tier also saw an improvement of confidence levels and score (Table 1), the varying 
shifts in students’ accuracy of confidence (Figure 2a) suggest that the increase of confidence was 
not necessarily indicative of an increase in performance. This may suggest that students feel 
more comfortable reading mathematical proof by the end of the course, but it does not guarantee 
they are more competent in comprehending proof at the holistic level. 

A further distinction between local and holistic aspects is made when comparing the shifts of 
AIConf and AICert among high versus low performers. The results shown in Figure 2 (b and c) 
demonstrate that while high performers exhibited increased accuracy of confidence among 
holistic aspects of proof comprehension, low performers experienced a decrease in metacognitive 
accuracy among holistic aspects of the PCF. These preliminary findings suggest that training 
student metacognition with respect to proof comprehension may be beneficial for improving 
student performance in abstract mathematics. Further investigation of this idea is merited. 

3C data identified outlying metacognitive behavior on assessment item Q4 which would not 
have been detectable by correctness-only assessment methods. Qualitative evaluation of the 
question prompt and multiple-choice options indicates that while the prompt seems to address a 
local aspect of the PCF, the correct option requires holistic understanding of the proof. As these 
PCA items originated from open-response questions (Mejía-Ramos et al., 2017), this discrepancy 
is not particular to the multiple-choice structure. Moreover, the most selected incorrect option 
includes a correct description of the proof’s procedural structure followed by an incorrect 
conceptual justification for the final claim of the proof. This outlying behavior therefore supports 
an observation by Piatek-Jiminez (2004) that procedural knowledge and conceptual knowledge 
of proof by induction are not necessarily reliant upon each other.  

5 Conclusions, Future Directions, and Questions for the Audience 
The 3C assessment distinguished metacognitive behavior at the holistic level between high-

and low- performing students. Development and use of methods for enhancing students’ 
metacognitive accuracy in proof comprehension could improve student performance in abstract 
mathematics. Future directions of this research are focused on employing the 3C assessment 
methodology to improve students’ metacognitive accuracy among holistic aspects of proof.  

Adapting proof comprehension assessments to utilize 3C assessment methodology allows for 
the detection of interesting outlying metacognitive behavior. Investigating such outliers can aid 
in revising assessment items, generating new assessment items, and guiding directions for 
continued research. For example, the investigation of outlying behavior observed in this study 
made the distinction between conceptual and procedural knowledge observable. To more 
comprehensively analyze proof comprehension within the PCF, future studies might consider 
methods to further distinguish conceptual and procedural knowledge and study the 3C 
methodology in other related and unrelated domains. 

The authors conclude this proposal with some intended questions for the attending audience:  
1. How might 3C data be used to guide assessment item revision or PCA construction?
2. How might metacognitive behavior differ if PCAs utilized open-response questions?
3. Are there other methods of proof which you expect would generate critically different

metacognitive behavior than that demonstrated in the present study?
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Identifying Instructional Autonomy Approaches in Calculus and its Connection with Student’s
Perceived Classroom Climate

Sarah Otterbeck Tyler Sullivan
Clemson University Clemson University

Kaden Liles Matthew Voigt
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Calculus courses are an integral component for STEM degree attainment yet are historically
attributed to high attrition rates and lowering student confidence. Although prior research
identified coordination of instruction as a successful characteristic of Calculus programs, there
is a need to further examine the role of Instructor Autonomy (e.g., decision making on content
and instruction) and its potential impact on student perceptions of the climate. We analyzed data
from two national studies of introductory math courses focusing on instructor (N=321) reports of
course decision making and student (N=14,488) reports of climate. Preliminary results indicated
a great deal of variability in Instructor Autonomy across the Precalculus to Calculus 2 sequence
within our sample and even within a department. Narrowing our focus to Calculus 1, variability
in Instructor Autonomy persisted and student perception of climate was not unified; however,
courses that utilized team-based decision making promoted higher student perceptions of
climate.

Keywords: course coordination, calculus, instructor autonomy, student voice

Research indicates Calculus 1 is effective in lowering student’s confidence, their enjoyment
of mathematics, and their desire to continue in a discipline or future course where mathematics is
needed (Bressoud & Rasmussen, 2015). Globally, Calculus 1 courses are associated with high
failure rates and attrition (Cavalheiro & Grebot, 2021; Hagman et al., 2017). In the United States,
Calculus 1 averages a 22 percent DFW rate, the percentage of students who receive a grade of D,
receive a grade of an F, or withdraw from the course (Rasmussen et al., 2019)—about one out of
every five students. As such, efforts have increased towards the recruitment and retention of
students (Calleros & Zahner, 2021; Patrick & Borrego, 2016) through the improvement of
introductory math courses.

From 2009 to 2015, a national study of college Calculus 1 courses was conducted to measure
what characteristics of Calculus 1 influenced student success. The Characteristics of Successful
Programs in College Calculus (CSPCC) study aimed to improve retention rates for students in
Science, Technology, Engineering, and Mathematics (STEM) majors (Bressoud & Rasmussen,
2015). The CSPCC study launched a national survey (n=212) to two- and four-year institutions
and conducted case studies of 16 institutions identified as having successful programs in
Calculus. The study identified seven characteristics of successful Calculus programs: 1. Regular
use of curricular and structural modifications; 2. Attention to the effectiveness of placement
procedures; 3. Coordination of instruction, including building communities of practice; 4.
Construction of challenging and engaging courses; 5. Use of student-centered pedagogies and
active-learning strategies; 6. Effective training of graduate teaching assistants; 7. Proactive
student support services.

As identified by the CSPCC study, coordination of instruction is a characteristic of successful
Calculus programs. Course coordination, as defined by Rasmussen and Ellis (2015), consists of
two features, uniform course elements and regular instructor communication. Uniform course
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elements are elements of a course that are the same for every student across a multi-section
course (e.g., textbook, topics, common homework, common tests). Regular instructor
communication are moments when instructors contact and support each other regarding aspects
of the course. With these two features, course coordination aims to reduce variation across
multiple sections of a course by providing consistent experiences (Rasmussen & Ellis, 2015).
When it comes to the uniform elements implemented and the frequency of communication with
instructors, there is not one blueprint for implementation (Apkarian et al., 2019).

Methods
Data from this analysis comes from two national studies of college Calculus, the Progress

through Calculus (PtC) study and the Student Engagement in Mathematics through an
Institutional Network for Active Learning (SEMINAL) study. PtC cataloged departmental efforts
in improving student success and documenting the effectiveness of implementation efforts
(Rasmussen et al., 2019), while SEMINAL researched systematic change in mathematics
departments towards the use of active learning in introductory mathematics courses (Smith et al.,
2021). Both studies conducted in-depth case studies at 20 universities and implemented the
X-PIPS-M Survey suite (Apkarian et al., 2019) for instructor, student, and teaching assistants
(both graduate students and undergraduate students) across several academic terms.

Through a case study approach with constant comparative methods, we explored and
evaluated instructor autonomy and student reports of the perceived classroom climate. The PtC
and SEMINAL data sets have three categories of courses namely, Precalculus, Calculus 1, and
Calculus 2. All institutions were coded according to their institutional characteristic as a
Historically Black College or University (HBCU), as a Hispanic Serving Institution (HSI), or as
a Predominantly White Institution (PWI) to both anonymize the institution as well as provide
another way to compare institutions and trends. In total we had instructor and student data from
20 institutions with a total response of 321 instructors and 14,488 students. For the 9 institutions
that had teaching assistants there were a total of 328 responses.
Instructional Autonomy

To analyze instructor autonomy, we looked at the instructor responses to the Likert scale
questions on who was making the decisions about the course content and the instructional
approach. Specifically, instructors answered the questions;

1. “How are most decisions about course content (e.g., syllabi, exams, homework,
pacing, grading) made for the course? Clarify if you wish.” and

2. “How are most decisions about instructional approach (e.g., use of clickers, group
work, active learning) made for the course? Clarify if you wish.”

with answer options of 1 (“I make most decisions”), 2 (“I am part of a team that makes most
decisions''), or 3 (“Someone else makes most decisions”). To better help understand the data, we
developed a classification table to categorize the level of autonomy instructors had in their
course, see table 1 (Instructor Autonomy). To classify a site using the Instructor Autonomy table
we looked per site per instructor autonomy question. For the two questions we noted which
answer choice had the highest percentage of instructor response per site. Given the exploratory
nature of this analysis, categorization based on highest percentage allowed for further
exploration and reflected the lived reality of instructors but does fail to capture the level of
agreement between instructors. Then we combined the classification of the highest percentage of
responses for the approach and the content to get the overall instructor autonomy per site for the
course. For example, if HSI 1 had 60% of instructors say someone else decides content and 52%
of instructors say they are part of a team that decides the approach, the site would be classified as
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“Collective Approach Top Down Content”. Due to 1 institution having too much variability and
low response rates we chose to exclude PWI 14 from the analysis leaving us with 19 institutions.
For analysis, after determining the instructor autonomy classification we compared and
contrasted across sites, course levels, and within institutional characteristic groupings.

Student Classroom Climate
To evaluate the perceived classroom climate from the student’s perspective we looked at

three 5-scale Likert questions asking the student to describe the overall climate. Questions asked
about the intellectual engagement, academic rigor, and atmosphere the student perceived in the
Calculus courses as seen below,

“How would you describe the overall climate within [Calculus 1]?
1. Excluding and Hostile (1) _ _ _ _ _ Including and Friendly (5) [Atmosphere]
2. Intellectually boring (1) _ _ _ _ _ Intellectually Engaging (5) [Intellectual Engagement]
3. Academically Easy (1) _ _ _ _ _ Academically rigorous (5) [Academic Rigor]”

For analysis we compared and contrasted institutions across the average of the three climate
questions. We then looked for possible trends between the site's instructor autonomy
classification and the student’s perceived climate by use of the institutional characteristics.
Through grouping institutions by their institutional characteristics we also examined the student
data to note any trends within a particular group of institutions that could then be compared to
the other institutional characteristics groupings.

Preliminary Results
Initial analysis of looking across course level (Precalculus, Calculus 1, and Calculus 2)

revealed that as the sequence of Calculus progressed there was more instructor autonomy. 35%
of all Precalculus instructors stated they choose their content whereas 44% of Calculus 1
instructors and 49% of Calculus 2 instructors stated they choose their own content. With decision
on approach 67% of Precalculus instructors stated that they choose their own approach whereas
73% of Calculus 1 and 80% of Calculus 2 instructors stated they choose their own approach.
With this trend of seeing more individual choice as the Calculus sequence progressed, we still
witnessed variation within a course level on the type of instructor autonomy. Meaning that in our
data set, Precalculus courses had a larger variety of instructional autonomy approaches (10
variations), compared to Calculus 1 (8 variations) and Calculus 2 (8 variations). It is worth
noting that of the 19 analyzed institutions there are 16 institutions with Precalculus, 19
institutions with Calculus 1, and 18 institutions with Calculus 2 responses. Therefore, while
Precalculus had the fewest institutions represented, it had the largest number of different
instructor autonomy types.

Analysis of looking across courses within an institution determined that most institutions (15
of 19) have differing categories of instructor autonomy across their Calculus sequences. From
those 15 institutions, six institutions had the same categorization for two of their courses with
most of the same categorization being seen in the Calculus 1 and Calculus 2 courses -
highlighting how Precalculus can often be disconnected from the course sequence. The
remaining 9 institutions had no categorizations in common across their Calculus sequences. For
the remaining four institutions that have the same categorization of instructor autonomy, three of
those institutions only had data from two of the courses in the sequence, meaning only one
institution (HBCU 1) had the same level of instructional autonomy across the entire sequence.

Given the variation in instructor autonomy within an institution across course level we
decided to move forward with our analysis of just Calculus 1 courses across the 19 institutions.
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We began the deep dive into Calculus 1 by categorizing the instructor autonomy (see Table 1),
noting that there were many institutions that had a split highest percentage on who was deciding
the content in the department.

Table 1. Categorization of Instructor Autonomy Approaches of Calculus 1 Courses
Decision on Instructional Approach

I decide Team Decides Someone Else
Decides

D
e
c
i
s
i
o
n
o
n
C
o
u
r
s
e
C
o
n
t
e
n
t

I decide Full Individual Autonomy-
PWI 1, PWI 5, PWI 11, PWI
7, HSI 1, HSI 3, HBCU 1

Collective
Approach
Individual
Content- PWI 9

Split
Individual
and
Collective

Individual Approach Split
Individual and Collective
Content- PWI 4, PWI 12,
PWI 15

Team Decides Individual Approach
Collective Content- PWI 3,
PWI 8, HSI 2

Team Collective
Autonomy- HSI
4

Split
Collective
and Top
Down

Individual Approach Split
Collective and Top Down
Content- PWI 10

Someone Else
Decides

Individual Approach Top
Down Content- PWI 6, PWI
13

Top Down Highly
Coordinated- PWI
2

By organizing the institutions into the Instructor Autonomy table, we can see that the
majority of Calculus 1 instructors are getting to choose their own instructional approach but there
is a lot of variety in who is deciding the content of the course. We see that 11 of the 19
institutions are experiencing a form of coordination with who is deciding content as there is
another voice of a team or more of a top down coordination happening even within the split
categories. To better understand what was happening in these varied Calculus 1 courses we
analyzed student data about their perceived climate within the classroom.

For the climate questions on atmosphere, intellectual engagement, and academic rigor we
looked at the means and standard deviations for instructor autonomy categories. Recall these
climate questions are all based on a 5-scale Likert style question with 5 being representative of a
more friendly atmosphere, more intellectually engaging, and more academically rigorous. Notice
that the individual approaches seem to lead the student perception of the atmosphere to be lower
(i.e. less friendly) and are exacerbated by also having top down content, as seen in the Individual
Approach Top Down category. The highest ranking of the classroom atmosphere is in the Team
Collective Autonomy approach where instructors are working in a team to decide the content and
approaches in the classroom. We also see a similar pattern for the engagement question, highest
ranking of engagement in the Team Collective Autonomy and lower in the individual approaches
with an exacerbated effect when individual approach is paired with a top down content. Within
the rigor question there is a less clear pattern which may be a result of the student interpretations
of the questions and thus requires further analysis. It is noteworthy that we are not seeing a more
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unified student experience in the top down courses as the standard deviations are within the same
relative range across all categories of courses.

Table 2. Student Perceptions of Climate by Instructional Autonomy Approaches
Instructional Autonomy
Classification

Number of
institutions

Atmosphere Engagement Rigor

Mean (SD) Mean (SD) Mean (SD)

Full Individual Autonomy 7 4.13 (1.01) 3.57 (1.24) 4.07 (.99)

Individual Approach Split
Individual and Collective Content

3 4.24 (.91) 3.59 (1.17) 3.93 (.96)

Individual Approach Collective
Content

3 4.23 (.92) 3.61 (1.21) 3.62 (1.14)

Individual Approach Split
Collective and Top Down Content

1 4.15 (.99) 3.59 (1.20) 3.90 (.99)

Individual Approach Top Down
Content

2 3.95 (1.02) 3.49 (1.16) 4.11 (.98)

Collective Approach Individual
Content

1 4.03 (.95) 3.57 (1.18) 4.03 (.955)

Team Collective Autonomy 1 4.48 (.80) 4.07 (1.05) 3.70 (1.04)

Top Down Highly Coordinated 1 4.06 (1.06) 3.40 (1.24) 3.74 (.99)

Discussion
From our investigation we found that when looking across the Calculus sequence there is a

great deal of variation happening across the 19 institutions, with greater variability in
Precalculus, and variability within an institution. It was seen in the student data that there was the
same level of variability of reported climate even within the top down courses, but team
collective approaches may support the highest levels of reported climate. These findings seem to
support prior research on the efficacy of course coordination as a successful characteristic of
Calculus programs (Rasmussen & Ellis, 2015). Additional analysis is needed to examine the
perceptions of the students who are moving through an institution’s Calculus sequence where
each level of course has a different category of instructor autonomy. Lastly, we would like to
examine institutions that do have the same level of instructor autonomy throughout to explore the
instructor perceptions as well as the student experience.
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Student Reasoning about Definite Integrals on a Calculus Concepts Assessment

Toni Hall Beth Cory
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Assessing student understanding of calculus concepts is of interest to RUME researchers and
practitioners alike. This paper details the initiation of the development phase of a new instrument
to assess student understanding of the central concepts in the introductory collegiate calculus
course. We discuss a framework for defining “conceptual understanding” and make transparent
our process for selecting and refining robust tasks to measure it. We provide discussion on
interview responses that reveal how students may attempt to rely on memorized procedure and,
as a result, discredit productive conclusions. Finally, we outline and seek discussion on future
work to continue development of valid and reliable questions to assess the broad range of
productive understandings in calculus.

Keywords: calculus, conceptual understanding, assessment

Introduction
Although notable strides have been made by researchers such as Epstein (2007) who

created the Calculus Concept Instrument (CCI), no curriculum-independent concept inventory
for Calculus I has been validated and found to conform to accepted standards of educational
testing (Gleason, Thomas, Bagley, Rice, White, & Clements, 2015; American Educational
Research Association, 2014). The purpose of our study is to initiate the development of a valid
and reliable instrument to assess students’ understanding of central concepts in an introductory
college calculus course for Science, Technology, Engineering, and Mathematics (STEM) majors.
Our goal is to make our process and criteria transparent so that (a) researchers and educators can
make informed choices about what portions they want to include in their research and (b) others
in the community can contribute to the instrument in a modular way. Our initial research focuses
on interpretations of accumulation and area for definite integrals.

Literature Review and Theoretical Framing
Graphical representations of definite integrals as signed area under a graph are ubiquitous in

introductory calculus courses. Research on students’ understanding of integrals shows that while
area interpretations are widely adopted by students, they are often misapplied and hinder further
productive quantitative reasoning (Jones, 2015; Sealey, 2006). Past research has also shown that
an adding-up-pieces conception of a definite integral is critical for successfully modeling and
interpretation especially in STEM applications (Meredith & Marrongelle, 2008; Von Korff &
Rebello, 2012; Jones, 2015; Oehrtman & Chhetri, 2015). Sealey (2014) documented the nature
of such student understanding paralleling the mathematical structures of products, sums, and
limits in the formal definition, and Jones (2015) labeled the application of such reasoning as a
Multiplicatively-Based Summation (MBS). Simmons and Oehrtman (2017) extended this
analysis to Quantitatively-Based Summation (QBS) in which the basic models used to construct
the parts to be added in the definite integral are not necessarily conceived as a product of the
integrand and change in input.

Tallman, Reed, Oehrtman, & Carlson (2021) found that the productive meanings assessed on
calculus exams at colleges and universities in the U.S. are sparse. The concept of a definite
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integral as area is not always supported by quantitative reasoning. Students often approach
integration as simply finding the area of a planar region without considering an underlying
meaning of accumulating a quantity. Tallman et al. (2021) identified key features of assessment
tasks that improve their potential to assess students’ productive understandings including that the
items should require students to (a) coordinate interpretations, (b) provide explanations or
justifications, (c) make comparisons, or (d) draw inferences. Such features require students to
make strategic decisions in the problem-solving process rather than only select and apply a
memorized procedure.

Methods
After reviewing the literature on student understanding and learning of definite integrals, we

identified clusters of particularly consequential meanings and reasoning, based on comments in
the literature and our own judgment as teachers and researchers. We selected those involving
accumulation and area for our first round of developing assessment items. We collected
variations of conceptual questions from the literature and available homework and exams then
selected and refined seven of these questions that we felt best addressed the meanings and
reasoning identified in the literature. We then developed interview protocols which included
contingencies for anticipated student responses.

We conducted and video-recorded one-on-one interviews with 12 students at three
institutions. These students were either completing a first-semester calculus course or currently
enrolled in a second-semester calculus course. The interviews were approximately 90 minutes in
duration and consisted of the seven open-ended questions with ample space for students to show
their work. Each interviewer followed the protocols and encouraged students to elaborate their
meanings and reasoning. In cases with unexpected responses, the interviewer probed for
additional reasoning or allowed the student’s reasoning to take its course then provided
additional information or suggestions to see how they would proceed. We created detailed
summaries of the students’ work with notes about potential underlying meanings and reasoning.
The entire research team then met to discuss the notes and create a model of productive
understandings and the meanings with substantial evidence in the data.

Results
In this paper we discuss and contrast two pairs of tasks. The first pair (Tasks 1 and 2)

requires an MBS and a QBS conception of the definite integral, respectively. The second pair
(Tasks 3 and 5) illustrates students’ conceptions and reasonings about area when interpreting
integrals given a graphical representation.

Task 1
Carl was driving on the highway when he saw a sign that said ROAD ENDS 250 FEET. He
slammed on his brakes and came to a stop in 4 seconds. Below is a table of data from his
truck’s computer while he was braking.
Time (seconds) 0 0.5 1 1.5 2 2.5 3 3.5 4
Speed (ft/s) 98 96 92 84 74 60 43 23 0
Given the table, what is your best estimate for the total distance Carl traveled before coming to
a stop?
Most students approached this problem heuristically, drawing the graph of a function and

finding the area under it. They often reached a correct conclusion using memorized procedures
and associations rather than expressing any meaningful quantitative reasoning. Some applied a
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simple unit analysis to verify their computations but did not support this analysis with associated
quantitative reasoning. Others, with prompting, did eventually invoke some quantitative
meanings, which however did not alter their approach or answer.

Student 1: Multiply…feet per second…times one second. How much the area is underneath
that [graph]…that’s how many…feet.

Student 2: The speed, feet per second times second is just feet. All of this times .5.
Student 3: Speed is feet a second and time is just measured in seconds, so if I multiply time

times speed, it can obviously give me a distance. Then obviously, the value under the
curve is the entire…estimate.

Task 2
A train travels along the monorail at a theme park and is programmed to change speed
according to where it is on the track, to make turns, stops, etc. The train passes a sign that says
the next stop will be in 30 meters. The speed of the train is v(x) meters per second at a point x
meters along the track from the sign. As it approaches one stop, its speeds at 5-meter
increments are given in the table below.
Distance from sign (m) 0 5 10 15 20 25 30
Speed (m/s) 8 6 5 4 3 2 0
Given the table, what is your best estimate for how long it takes the train to stop from 30
meters out?
Some students guessed the correct integral using unit analysis. Without the underlying

quantitative reasoning that is necessary in a problem such as this, however, they were unable to
make accurate associations and generate the appropriate Riemann sum. This discrepancy is
partly due to their perception that the answer should be the area under whatever curve they have.

Student 1: [manipulates formula and tries switching axes and using slope] Slope is rise over
run. You could take the integral and put it under 1. You can just set distance as the y..

Student 2: [using non-quantitative unit analysis and manipulating ratios]: I’m multiplying
distance times speed and that’s meters times m/s…but distance times speed does not
equal…time. If 8 is to 1, then what is that to 5 over x.

Task 1 vs. Task 2
Most students approached Task 1 procedurally without any quantitative reasoning about (a)

the distance-velocity-time relationship or (b) the structure of a definite integral. This type of
problem invoked an instant association with computing a Δt, multiplying by function values,
adding the results, areas of rectangles on a graph, area under the graph, and an integral
representing area and/or distance. However, there was no connection between these associations
and meaningful quantitative reasoning. In contrast, Task 2 required students to reason
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quantitatively in the context of the problem rather than simply use formula manipulation and/or
unit analysis. Those who successfully completed the task, developed a QBS interpretation that
enabled them to break up the scenario into pieces of time and create an appropriate Riemann
sum. Further, these correct answers differed from their initial procedural approach.

Task 3
Assume that the graph of v(t) shown below represents the velocity of a car (in meters per
second) that is traveling along a straight road. Positive velocity corresponds to traveling
straight north.

1. How far is the car from its starting point
after 15 seconds? Explain.

2. How far does the car travel over the
15-second interval? Explain.

3. Write down integrals that correspond to
the numerical answers for #1 and #2.

4. Compute .
0

15

∫ 𝑣 𝑡( )𝑑𝑡

5. Is there an interval on which If so, where, and what does it mean in
0

15

∫ 𝑣 𝑡( )𝑑𝑡
𝑎

𝑏

∫ 𝑣(𝑡)𝑑𝑡 = 0?

terms of the context of the car?
Draw a graph of position vs. time and relate it to each interval of the velocity vs. time graph.
Most students were able to interpret the movement of the car correctly. However, when

finding displacement or distance traveled, many relied on memorized procedures with no
productive understanding of the situation.

Student 1: I’m not even really reading the words. I’m just seeing graphs. Find area.
Interviewer: Does it matter that velocity is the y-axis and time is the x-axis?
Student 1: No. That helped, I suppose.
Student 2:Why would I set up an integral when I could just like use shapes?
Student 3: I just found the difference of those areas.
Interviewer:What led you to compute areas?
Student 3: That was just my go-to…start finding the areas. I just remembered doing it

from other problems.

Task 5
Use the graph below for this item. For each pair below, determine which one is larger or if the
quantities are equal. Explain how you know.

a) _____ (fill in the blank with <, >, or =)
0

2

∫ 𝑓 𝑥( )𝑑𝑥 
0

4

∫ 𝑓 𝑥( )𝑑𝑥

b) _____ (fill in the blank with <, >, or =)
3

4

∫ 𝑓 𝑥( )𝑑𝑥 
4

6

∫ 𝑓 𝑥( )𝑑𝑥

c) _____ A left-hand Riemann sum on the interval
0

4

∫ 𝑓 𝑥( )𝑑𝑥

from x=0 to x=4. (fill in the blank with <, >, or =)
Determine if each expression below is positive, negative, or zero. You do not need to evaluate
the expression. Explain how you know.
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d) e) f)
−4

4

∫ 𝑓 𝑥( )𝑑𝑥
−3

3

∫ 𝑓' 𝑥( )𝑑𝑥
3

1

∫ 𝑓 𝑥( )𝑑𝑥

This question revealed flawed reasoning that can result when students lack a meaningful
basis for their understandings. Imagistic reasoning led some students to misinterpretations.

Student 1: [explaining his correct answer (>) on part (b)] 4 to 6 isn’t even above the x-axis, I
don’t think it makes it negative. It’s still area. I just put that because since 3 to 4 was
above the x-axis, it’d be positive, and this 4 to 6 wouldn’t really count in my mind…so I
just discredited it. If you do think about if it keeps going below the x-axis, it would
be…infinite. If you’re just thinking about it being below this graph, it keeps going down.

Student 2: [explaining his incorrect answer of “0” on part (d)] Assuming it’s a symmetrical
parabola, the negative area [points to left of y-axis] is equal to the positive area [points to
right of y-axis], so they cancel each other out.

Task 3 vs. Task 5
The use of imagistic and associative reasoning enabled some students to answer question 3

correctly but caused serious interpretive problems in question 5. For example, student 1 (above)
conceptualized the area below the curve extending to negative infinity yet obtained the correct
answer to question 3 (with bounded regions). Student 1 seemed to think that all area is positive
and “discredited” the area that was below the x-axis.

Discussion
Although we may be tempted to be complacent about students’ memorized associations and

procedures, these questions reveal that when not backed by productive understandings of the
underlying mathematical concepts, they are merely arbitrary rules. Without a meaningful basis,
students are likely to invoke highly inappropriate variations of these procedures alongside or
even displacing appropriate ones.

We reviewed Tallman et al.’s (2021) analysis of productive meanings assessed on calculus
exams in the United States. Results showed that the exams generally required low levels of
cognitive demand and students were rarely required to demonstrate or apply their understanding
of concepts. Therefore, the need arises for exams to contain discerning questions to assess
students’ quantitative conceptions. To facilitate this assessment, students must be required to
model the accumulation of quantities using a localized adaptation of a basic model relating the
multiple relevant quantities. They must also explicitly connect definite integrals with the
approximations generated from the resulting Riemann sums.

Ultimately, we aim to develop an instrument that will (a) identify aspects of productive
understandings that are both broadly and effectively adopted by students to make sense of
calculus content, (b) evaluate broad-scale interventions which seek to identify instructional
practices that lead to productive understandings of calculus content, and (c) convey important
characteristics of productive understandings to the general mathematics faculty in order to
illuminate effective and ineffective instructional practices in calculus.
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Examining the Interplay Between Self-Efficacy Beliefs, Emotions, Stress Mindset and 
Achievement in Different Assessments in University Mathematics

Kaitlin Riegel Tanya Evans
University of Auckland University of Auckland

There is currently little research that examines the interplay between various affective constructs,
particularly within the context of mathematics assessment. This longitudinal study seeks to
understand how student assessment-related affect changes across a university mathematics
course and seeks to identify latent or explicit factors that play a role. We collected data on
achievement emotions, self-efficacy, stress, and stress mindset across three time points, in
addition to measures of academic performance, specifically on different forms of assessment.
Without accounting for interactions, preliminary results considering the constructs individually
demonstrate an increase in negative and decrease in positive affect. However, incorporating path
analysis suggests that engagement on low-risk summative assessment has the potential to
promote self-efficacy. As a consequence of this research, we hope to pinpoint suitable
interventions that may have a positive influence on affect and achievement. The disentangling of
these relationships will have practical implications for course design and assessment structure.

Keywords: assessment, affect, higher education

Social-cognitive theory (SCT) posits that personal affective factors, such as beliefs and
emotions, have reciprocal relationships with learning behaviors and educational environments
(Bandura, 1997). From this perspective, understanding assessment-related affect is critical to the
design and delivery of assessments conducive to student achievement. Based on findings that
different assessments elicit different affective responses (Riegel & Evans, 2021) and that
frequent, low-risk assessment may enhance self-efficacy (Evans et al., 2020), we identified two
broad research objectives: (1) To gain a deeper understanding of assessment-specific affective
constructs, including why and how they change during a mathematics course, and (2) To gain a
holistic view of the relationship between affect and assessment through examining students’
assessment-related affective field, defined as, “the bundles of affective factors involved in
particular situations in their intraplay” (Schindler & Bakker, 2020). This research particularly
seeks to consider relationships between student assessment self-efficacy, emotions, and stress
mindset in both an online quiz and final exam, amongst other measures, such as gender and
achievement. We chose these affective variables as their relationships and interplay have been
underexplored in the context of mathematics assessment. We hope to formulate generalizable
implications for assessment practice.

Literature Review

Achievement Emotions in Assessment
Achievement emotions are emotions experienced by learners pertaining to achievement

activities and outcomes (Pekrun, 2006). Positive emotions have generally been shown to
correlate positively with engagement, attention, motivation, and performance, while negative
emotions correlate negatively with these constructs (Mega et al., 2014; Peixoto et al., 2017;
Pekrun et al., 2002; Reeve et al., 2014; Schukajlow & Rakoczy, 2016). Most research on
achievement emotions with respect to assessment has focused on test-anxiety, with studies
generally demonstrating a negative correlation between test-anxiety and achievement (e.g., Lang
& Lang, 2010; Steinmayr, et al., 2016; Zeidner 2014). Little attention has been paid to other
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emotions in this context. When considering online assessment, studies have generally indicated
that students experience less stress and anxiety (Cassady & Gridley, 2005; Dermo, 2009;
Engelbrecht & Harding, 2004; Stowell & Bennett, 2010), as well as more positive and fewer
negative emotions (Daniels & Gierl, 2017; Riegel & Evans, 2021). In line with SCT, Pekrun
(2000) argues that repeated experiences of emotion in recurring scenarios, such as assessment,
can cause cognitive appraisals to be bypassed and lead to the emotion becoming habitualized.
Research has shown there are reciprocal effects between emotions and achievement (Ahmed et
al., 2013; Pekrun et al., 2017; Pekrun et al., 2019). More studies are needed to understand how
emotions in assessment change and interact with other affective constructs over time.

Assessment Self-Efficacy
Self-efficacy is a construct in SCT defined as, "the beliefs in one's capabilities to organize

and execute the courses of action required to produce given attainments" (Bandura, 1997, p. 3)
and is a known predictor of achievement (Pajares & Graham, 1999; Zimmerman, 2000).
Experiences of success support the development of self-efficacy while experiences of failure
hinder it (Usher & Pajares, 2009), indicating that success or failure in one assessment may
impact students’ beliefs about future assessments. Few studies consider assessment-related
self-efficacy, despite Bandura’s (1997) proposal that self-efficacy measures must be both context
and content specific. Since summative assessment is the foremost way tertiary institutions gauge
students’ progress (Iannone & Simpson, 2011), it is vital for research to understand and
operationalize student assessment-related self-efficacy.

Stress Mindset
Crum et al. (2013) present a new construct of stress mindset, defined to be the extent of one's

beliefs that stress has enhancing or debilitating consequences. The few existing studies in
education indicate significant relationships with student affect and performance (Jenkins et al.,
2021; Keech et al., 2018; Kilby & Sherman, 2016; Riegel et al., 2021). A further study by Crum
et al. (2017) concluded that adopting an enhancing view of stress may be beneficial by altering
how individuals respond in stressful scenarios over time. Research demonstrates that
self-efficacy associates positively with positive emotions and negatively with negative emotions
(Luo, et al., 2016; Pekrun et al., 2004; Pekrun, et al., 2011; Usher & Pajares, 2009). No studies
have yet incorporated stress-mindset as a moderator for these relationships.

Methods

Setting and participants
The participants in this study were students enrolled in semester two of 2020 at a major New

Zealand university in a second-year service mathematics course. The course featured frequent
online quizzes to be completed any time between each lecture. These were designed to be
low-risk through the use of multiple-choice questions, 30 minute completion windows, two
attempts with instant feedback, and keeping best 27 out of 31 quizzes throughout the 12 weeks
term. They amounted to 13 percent of the final grade. The course also had a test and a two-hour,
invigilated, 50 percent final exam. After data cleaning, 277 of the 410 students enrolled at the
start of the semester had consented to their data use and completed all three surveys. This study
was approved by the University of Auckland Ethics Committee (approval number 024710).
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Data collection and analysis
The research design is a repeated measures design with no control group. As part of the

coursework, there were three ten-minute questionnaires administered online (via Qualitrics),
each worth 0.1% of the final grade. During the twelve-week semester they were administered in
week one (Q1: before any assessments), seven (Q2: after the mid-semester test), and eleven (Q3:
before the final exam), and student achievement measures were collected throughout the
semester. Participants were removed from the analysis if their responses demonstrated sufficient
evidence of straight-lining or the survey was less than 50% completed. Missing data was inserted
using EM-imputation. All analyses used version 27 of SPSS and its AMOS programme.

Measures
Achievement Emotions Questionnaire (AEQ). All three questionnaires included an

adapted version of the test-related section of the AEQ (Pekrun et al., 2011), with statements
pertaining to achievement emotions experienced before (χ2/df = 2.09, CFI = .92, RMSEA = .06,
n = 18) and during an exam (χ2/df = 2.72, CFI = .90, RMSEA = .08, n = 18). Our adapted version
consists of statements measuring anxiety, enjoyment, hope, and hopelessness on a Likert scale
from 1 (Strongly Disagree) to 5 (Strongly Agree).

Measure of Assessment Self-Efficacy for Quiz (MASE-Q) and Exam (MASE-E). All
three questionnaires included the newly developed MASE-Q (χ2/df = 2.38, CFI = .99, RMSEA =
.07, n = 7) and MASE-E (χ2/df = 1.47, CFI = .99, RMSEA = .04, n = 7) (Riegel et al., 2022),
designed to assess the participant’s beliefs in their comprehension and execution and emotional
regulation abilities while studying and during an assessment. Responses to statements were
measured using a slider scale from 1 (Cannot do at all) to 100 (Highly certain can do). The
participants were randomly presented with two assessment scenarios, a low-stakes online quiz
and a high-stakes final exam to respond to the MASE-Q and MASE-E, respectively.

Stress and Stress Mindset Measure (SMM). To measure assessment stress, participants
were asked “How stressful do you perceive this mathematics QUIZ/EXAM to be?” following
each scenario. They responded on a nine-point scale from Not stressful at all to Extremely
stressful. Using the scales developed by Crum et al. (2013), we included an adapted general
version of the SMM in the first questionnaire (χ2/df = 2.67, CFI = .97, RMSEA = .08, n = 7) to
obtain an overall measure of students’ perception of stress. Additionally, an adapted SMM was
designed to measure participant stress mindset in relation to the quiz (measured in Q2 and Q3)
and exam scenarios (measured in Q1 and Q3). The scales consist of three stress-is-enhancing
statements and four stress-is-debilitating statements. Participants responded on a five-point scale
(Strongly Disagree to Strongly Agree).

Achievement. Student prior achievement was recorded as a self-reported prerequisite grade.
We also collected performance results, which contributed to their final grade (quizzes, tutorial
participation, assignments, test, and exam).

Demographic Information. We collected self-reported gender, ethnicity, and major.

Preliminary Results and Discussion
Several analyses have already been conducted using this data, including the validation of the

MASE-Q and MASE-E (Riegel et al., 2022). Riegel et al. (2021) found stress mindset to be
significant and achievement emotions dominant in predicting exam self-efficacy. As
understanding the consequences of the pandemic became crucial, Riegel and Evans (2022)
included new variables and found engagement with online quizzes, prior achievement, positive
affect, and wellbeing were predictors of how students evaluated the impact to their learning.
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We now seek to use the longitudinal data to understand how different affective constructs
interact and individually change over time for students, as well as investigate students’ affective
fields in assessment. To address the first part of this goal we ran repeated measures ANOVAs and
t-tests, which largely suggested a significant increase in negative and decrease in positive affect
across the semester (Table 1). This raises interesting questions around ‘trait’ affect, which we
hope to unpack, but also fails to illuminate why these constructs change. To investigate further,
we employed path analysis. We first examined the unexplored construct of assessment
self-efficacy, incorporating the effects between and within assessment and self-efficacy.

Table 1. Repeated measures ANOVAs and t-tests for affective variables.
  1 2 3
 Range Mean (SD) Mean (SD) Mean (SD) df F η2 t d
Self-Efficacy
Quiz (CE) (0,100

)
71.81 (15.42) 68.33 (18.22) 66.23 (19.43) 1.87 18.28** .06 - -

Quiz (ER) (0,100
)

69.56 (18.95) 65.81(20.42) 64.77 (20.00) 1.83 11.00** .04 - -

Exam (CE) (0,100
)

66.69 (15.98) 63.46 (18.31) 59.14 (18.84) 1.98 38.02** .12 - -

Exam (ER) (0,100
)

65.09 (18.44) 62.27 (20.32) 58.63 (20.04) 1.92 20.87** .07 - -

Emotions (Before)
Anxiety (1,5) 3.37 (0.75) 3.41 (0.78) 3.43 (0.76) 1.95 1.40 .01 - -
Enjoyment (1,5) 2.93 (0.74) 2.92 (0.77) 2.82 (0.77) 1.92 4.51* .02 - -
Hope (1,5) 3.30 (0.65) 3.17 (0.70) 3.07 (0.71) 1.96 19.3** .07 - -
Hopelessness (1,5) 2.36 (0.78) 2.62 (0.87) 2.78 (0.85) 1.99 47.62** .15 - -
Emotions (During)
Anxiety (1,5) 2.89 (0.90) 3.02 (0.89) 3.15 (0.88) 1.97 18.75** .06 - -
Enjoyment (1,5) 2.97 (0.73) 2.91 (0.79) 2.87 (0.76) 1.99 3.11* .01 - -
Hope (1,5) 3.28 (0.67) 3.14 (0.75) 3.09 (0.76) 1.96 12.41** .04 - -
Hopelessness (1,5) 2.39 (0.67) 2.59 (0.80) 2.80 (0.88) 1.98 53.10** .16 - -
Stress
Exam (1,9) 6.48 (1.70) - 6.87 (1.58) - - - -3.69** .22
Quiz (1,9) - 5.02 (2.08) 4.94 (2.02) - - - 0.63 .04
Stress Mindset
Exam (Debilitating) (1,5) 3.10 (0.68) - 3.19 (0.70) - - - -1.96* .12
Exam (Enhancing) (1,5) 3.12 (0.79) - 3.02 (0.76) - - - 1.96* .12
Quiz (Debilitating) (1,5) - 2.95 (0.76) 2.98 (0.74) - - - -0.59 .04
Quiz (Enhancing) (1,5) - 3.18 (0.81) 3.14 (0.76) - - - 0.81 .05

*Note. **p <.001, *<.05; CE = comprehension and execution, ER = emotional regulation.

Acceptable models are presented in Figure 1. Anticipated reciprocal effects between exam
self-efficacy with a similarly high-stakes test are seen. However, quiz comprehension and
execution self-efficacy does not demonstrate a reciprocal relationship with quiz achievement
following the test. Moreover, for quiz emotional regulation self-efficacy, there is no reciprocal
relationship with performance. These findings may suggest that the relationship between
self-efficacy and performance is weaker in low-risk assessments, which elicit less of an
emotional response, and the effects are overwhelmed by the affective influence of a high-stakes
assessment.

Generally, we see simultaneous effects between different forms of assessment self-efficacy,
suggesting performance in one assessment may indirectly influence self-efficacy in another. In
the first half of semester, exam self-efficacy more strongly predicts quiz self-efficacy. However,
in the second half of the semester (after the mid-semester test) quiz self-efficacy is a stronger
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predictor of exam self-efficacy. This in part indicates that repeated experiences on low-risk
assessments can influence the efficacy of students going into an exam, though high-stakes
assessments during the semester can overwhelm these effects. The quizzes were designed so
participating students were likely to receive full marks, meaning performance on quizzes largely
reflects student engagement. Thus, it is plausible to suggest that through incorporating the
intervention of regular quizzes, educators can indirectly promote exam self-efficacy and
achievement. To further support this hypothesis, we intend to conduct a cross-lagged panel
analysis so to determine directions of influence between the types of assessment self-efficacies.

Questions
We have presented some of the results of our preliminary analyses and seek to discuss with

the attendees of RUME the following questions:
● We can perform similar path analyses to the ones presented here for other variables

collected to look at affective relationships with achievement, but how might we retain
the interplay between affective variables with our limited sample size?

● Certain affective constructs (e.g., beliefs) are considered slow to change. How can we
use our data to provide insight into our understanding of “trait” or “global” affect?
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Figure 1. Path analyses of comprehension and execution (top) and emotional regulation (bottom) self-efficacy.
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Changing the Conversation: Building Success in a Community College Mathematics Classroom

Megan Selbach-Allen
Stanford University

Calculus remains a major barrier of entry into STEM for students without strong mathematics
backgrounds. This study looks at one implementation of the STEM Core model, which provides
an accelerated pathway through developmental math classes along with extensive support to get
students calculus ready in one year. Viewing this program as a community of practice around
math learning I examined course completion data and conducted interviews to understand how
the model is impacting student success. Furthermore, I seek to understand what aspects of the
model matter most to the students. Initial results of student success rates in the course sequence
show significant positive outcomes, with nearly 65% of STEM Core students reaching Calculus I
in one year. Interviews with students reveal how their success goes beyond course completion
and the importance of the relationships they built with their instructors and one another.

Keywords: Community College, STEM pathways, Developmental Mathematics, Calculus

Within the context of science, technology, engineering, and mathematics (STEM) many
studies have shown the reality of the “leaky pipeline” with students dropping out of STEM
majors along the way to completing a degree or dropping out of school (Flynn, 2016).
Historically, many faculty in these disciplines promoted this culture as they thought it was a filter
removing students who would not be capable of succeeding, but this is not the case (Seymour &
Hewitt, 1997). Unfortunately, the students who drop are not weaker academically but do have
backgrounds already underrepresented in STEM fields and cite the realities of a “chilly climate”
as a significant factor in why they step away from finishing their STEM degrees (Jorstad et al,
2017). Addressing the issues creating the leaky pipeline and students not persisting in STEM
degrees is crucial to improving broader issues of diversity in STEM.

Research has shown the importance of teachers and effective teaching in students’ academic
outcomes (Burroughs et al., 2019; Christe, 2013; Goe, 2007; Goh & Fraser, 1998; Sonnert et al.,
2015). This research spans grades K-16 and all subject areas. Unfortunately, undergraduate
mathematics often serves as a barrier for students attempting to pursue STEM degrees (Bressoud
et al., 2015). Improving mathematics instruction and classroom environments is an important
part of addressing the leaky pipeline and equity in STEM (Boaler & Selling, 2017).

Public two-year colleges educate roughly 35% of undergraduate students in the United States
(Community College Research Center, 2022). They educate a disproportionate share of
minority, first generation and low-income students. Community colleges are an important
starting point for many students entering the college pipeline and 49% of students completing
bachelor’s degrees had attended community college at some point in the previous 10 years
(National Student Clearinghouse Research Center, 2017). While this is an important context of
study because of its large share of the undergraduate student population in the US, it is also an
understudied context (Mesa et al., 2014a; Fletcher & Carter, 2010).

To work on improving the environment of STEM classrooms in community colleges we need
to know both what effective teachers are doing in their classrooms and how students are
responding to their instruction. Related to that it is necessary to understand the social
environment of these classrooms and what students are learning.

Theoretical Framework
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Of greatest interest for this work is understanding the mathematics classroom learning
environment in this school. The environment is impacted by broader structures of the NSF
funded STEM Core program of which it is a part, but it is also uniquely shaped by the
instructors, staff and environment of this particular school.

This work is situated in the idea of learning as a community of practice (Wenger, 1999). The
STEM Core model changes the mathematics learning environment for the students to engage
them not only in the classroom as an individual, but in all aspects of their life and as a part of a
community. With a cohort model, students spend a full year with consistent instructors who
know them and each other. The student cohorts become a community with genuine relationships
forming among the students themselves and the teachers and staff who support them. With the
funding provided by STEM Core students also have access to a dedicated student support
specialist.

This study is conducted in partnership with the mathematics course instructor and seeks to
better understand what is working with this implementation of the STEM Core model. The
research questions for this work are:

RQ1: How is this implementation of the STEM Core model affecting student success rates?
RQ2: What do student interviews reveal about the most impactful aspects of the program

over time?
Success is defined by the institution as obtaining a C or better in a course. This definition in

assessing the impact of STEM Core on academic outcomes for students aligns with requirements
for taking follow-on courses and meeting transfer requirements. However, in this work success is
also defined more broadly. Student persistence in the face of failure or adversity along with
taking up identities as knowers and doers of mathematics, engineering or computer science are
also markers of success for this researcher and the administrators of the program.

Literature Review
In 2012, Ann Sitomer and colleagues (2012) laid out a research agenda for mathematics

education researchers specifically focused on community colleges. They acknowledged that
there is much overlap with the long history of mathematics education research in K-12
classrooms and with the more recent research in undergraduate mathematics education (RUME)
work, but they also note ways in which community colleges and the math learning they
encompass are distinct. In a research commentary written a few years later Mesa and colleagues
(2014a) also called for the need to expand research specifically in the math classrooms of
community colleges. They note the difficulty and limitations of transferring the findings of work
done in one setting (ie K-12 classrooms or 4-year colleges) to another (ie community colleges) as
while there may be some similar characteristics there will also be many differences. In their
commentary they also explicitly note the lack of research conducted specifically within
classrooms and focusing on instruction. The research in classrooms that did exist tended to be
conducted by practitioners and focused on particular interventions and more in line with sharing
“what works” with other practitioners and not producing generalizable knowledge. They
described the state of math education research in this setting as having, “the same feel of
disorganized guerrilla warfare” (Mesa et al., 2014a, p. 179). Community colleges are constantly
under pressure to improve student outcomes and are often looking for a quick fix. While
instructors want to do better for their students, there is a lack of an organized research agenda to
help them know the best ways to do so. In laying out their research agenda they reiterated the
same four areas highlighted earlier by Sitomer and colleagues (2012).
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Since the writing of these two commentaries additional important work in understanding
community college mathematics instruction and learning has been done. A large video study of
community college instructors sought to connect how they talked about instruction to their actual
instructional practices in the classroom (Mesa et al., 2014b). While this study provided a
significant amount of insight into instruction the authors note the need for more studies focusing
on what students are learning, “what do students learn and understand as they experience
particular teaching approaches” (Mesa et al., 2014b, p. 146). A further study of community
college faculty teaching developmental math that sought to apply the framework of mathematical
knowledge for teaching resulted in a proposal for the need to add an amendment of “the Caring
Map” to make sense of the concept at the community college level (Nabb & Murawska, 2019).
Studies using quantitative longitudinal methods have considered the variance of students’
pathways through developmental mathematics and what drives varied student outcomes (Howell
& Walkington, 2022). However, community college mathematics students themselves, especially
their individual experiences, remain understudied.

Methods and Data Sources
This study uses past-performance data from 2015-2019 on student success rates in Algebra II

through Calculus III, success is defined as obtaining a C or better in the course. It should be
noted all course completion data is from before the implementation of AB705 in California
which dis-incentivized colleges from offering developmental mathematics classes and led to a
restructuring of the course sequence at this college along with changing the placement system for
students. Updated course completion data is not yet available.

These course records are supplemented with student interviews (n=10) to understand what
students viewed as the most salient aspects of their experience with the program. The students
interviewed were alumni of STEM Core who had completed the one-year program up to four
years prior. Volunteers were sought through messages on a facebook group for alumni in the
program. Due to this sampling methodology the views expressed by students in the interviews
may be biased but they still provide useful insight into what mechanisms might be driving the
program success rates revealed by institutional data. Student demographic characteristics
matched roughly with the overall demographics of the program, 8 students were male identifying
and 2 were female identifying. The students also held a diversity of racial and ethnic identities.
Further details of students’ demographic characteristics are not included to protect student
privacy and confidentiality.

During the roughly 30-minute interviews students were asked about many different aspects
of the program. By interviewing students from multiple cohorts of students the researcher sought
to better understand the longitudinal impact of this program for students after their first year of
classes and when the intensive support structures of the program were no longer present.

Preliminary Results

Research Question 1
The first 5-years of the STEM Core program at this institution has produced results that show

significant increases in student success in the courses from developmental math through
calculus. Table 1 shows the results for cohorts of students in the program from four cohorts. As
stated earlier in this paper success is defined as passing the course with a C or better. The number
of enrolled students for a given course may exceed prior course numbers because students may
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take the course multiple times before obtaining a C or better and students are able to join the
STEM Core cohort at any point in the pathway as long as they have met the prerequisite. Of
students who start the STEM Core program with Algebra II 64% complete Calculus within one
year compared to only 16% percent of students statewide (Mejia, Rodriguez, & Johnson, 2016).

Additionally, preliminary data shows that students in the STEM Core have higher success
rates in English courses 77% versus 71% for the institution, even though English is not a part of
the program. This difference indicates that the impact of the STEM Core model goes beyond
helping students perform better in their STEM classes but may be helping them become better
students overall.

Preliminary data also shows that success rates, while still high, decrease for courses that
come after the program. Specifically, Calculus II success rates are significantly lower for
students in their first attempt at the course but data shows that students who are not successful in
their first attempt are taking the course again. The overall success rate for Calculus II for STEM
Core students was 40% versus the overall institutional rate of 64%. However, a deeper look at
the data revealed an interesting pattern. The results for one cohort show the success rate listed as
48% because 22 students passed in 46 attempts. However, this STEM Core cohort only included
29 students who had completed Calculus I, thus 76% of the STEM Core students who completed
Calculus I also completed Calculus II, but some required multiple attempts.

Table 1: Shows student success rates in math courses in the institution as a whole and in the
STEM Core cohort.
Course Typical success rates (3-year average) STEM Core students

Algebra II 56.4% (n=3311) 93.8% (n=145)

Trigonometry 60.9% (n=1542) 95.7% (n=164)

Precalculus 75.7% (n=1209) 89.7% (n=156)

Calculus I 65.8% (n=1376) 79.4% (n=136)

Research Question 2
Interviews with students revealed that nine of the students identified as still being involved in

STEM either in their educational or career trajectory. Nine of the students had attempted calculus
II with eight completing the course. One student dropped the course the first time and intends to
retake again in the future and four of the eight who completed the course required more than one
attempt to do so.

Students’ discussion of their various experiences in calculus II shared a common theme of
the drastic drop in the support they felt from their prior year taking calculus as a part of the
STEM Core program. One student shared how her STEM Core instructors had warned their
class not to expect the same level of support in future classes and worked to prepare them. Three
of the students mentioned going back to their STEM Core instructor to seek advice and support.
He encouraged them that failure was okay and that they would ultimately succeed.

The importance of the community they had found in the STEM Core program was a common
theme among interviewees. They talked about how they trusted the faculty and staff in the
program and built relationships with their classmates that extended beyond the classroom. One
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student mentioned that he was currently at a 4-year university and rooming with friends from the
STEM Core program.

Another common theme in the interviews was how the program helped students connect with
internships that helped lead to other jobs. These students who generally came from low-income
families and were the first in their family to attend college appreciated how the STEM Core
program provided guidance on the importance of internships and how to apply to them. They
shared how these real-world connections have helped set them up with practical experiences and
networks that they can leverage as they move forward in their careers.

Discussion
For students entering college at a developmental mathematics level the research says their

chances of succeeding in a STEM major are very small (Bullock et al., 2017), but this work
interrogates that ‘truth.’ It reveals through the success of students in one program how a model
that supports students as whole people and builds community can lay the groundwork for long
term success.

An important point to note about this program is that it is not ‘remedial.’ Any student who
has an interest in pursuing a STEM degree can be admitted into the program. The main, initial
appeal of the program to most of the students interviewed was that it would help them complete
their math courses faster. This program leverages students’ motivation and desire to succeed
instead of labeling them as in need of remediation.

The instructors and staff of the STEM Core program studied in this work are incredibly
dedicated and experienced. Their work may not be possible to replicate in all circumstances, but
this work should lead institutions to consider whether implementing cohort models, emphasizing
community building and considering wider supports for students might lead to higher success
rates.

Finally, from a theoretical perspective this work could be seen as an empirical example of the
mathematical knowledge for teaching (MKT) revised framework offered by Nabb & Murawska
in their 2020 paper. They shared how understudied the domain of community college classrooms
is and looked at the MKT framework that had arisen from K-12 instructional research, but they
added one important area based on interviews with instructors: caring. The instructors and staff
in this program care deeply for their students and that care is clear to the students in the program.
While the students did learn content, the much more important messages they received was about
their capabilities as students and that while they might struggle along the way they had a path to
success.

Questions and Points for Audience Discussion
This work has served as a pre-study to a more in-depth study that will be undertaken during

the upcoming 2022-23 academic year. I will be conducting a full ethnographic study of a cohort
participating in this program and will attend and observe the mathematics classroom throughout
the program. I am interested in what questions this work raises for audience members that I can
consider in more detail in the longer study and what additional insights could be gleaned from
further analysis of the interview data already collected.
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We address the transformation of instruction in entry-level college mathematics courses, such as 

College Algebra. Our research question is: What do instructors view as benefits and challenges 

when implementing novel digital graphing activities in College Algebra? We report on a case 

study of two instructors who implemented the activities during both semesters of one academic 

year, drawing on instructors’ individual interviews at the end of each semester. The instructors 

viewed it as beneficial to implement these activities as part of a community. They also found the 

activities’ focus on reasoning helpful for their students. They found integrating the new activities 

with existing online learning management systems challenging at times, and they wished their 

students were more engaged when implementing activities asynchronously. Overall, the 

challenges were not roadblocks, and the benefits outweighed the challenges. We conclude with 

discussion and implications for research and practice. 

Keywords: undergraduate education, instructional activities, communities of practice, technology 

The transformation of instructional practices in introductory college math courses, such as 

College Algebra, is important for students’ persistence in Science, Technology, Engineering, and 

Mathematics (STEM) degrees (e.g., Freeman et al., 2014; Henderson et al., 2011; Herriott & 

Dunbar, 2009). Yet, instructional materials in such courses tend to privilege a status quo of 

finding numeric answers at the expense of promoting reasoning (Mesa et al., 2012). When 

instructors implement digital activities designed to press against a status quo of answer finding, 

there can be tension regarding the status of the activities within the course (Olson & Johnson, 

2022). For this preliminary report, we investigate the question: What do instructors view as 

benefits and challenges when implementing novel digital graphing activities in College Algebra? 

We report on a case study of two instructors, Riya and Carol (pseudonyms), who implemented 

activities in both semesters of one academic year in conjunction with their participation in a 

faculty learning community (FLC) (Cox, 2016). 

College Algebra is an entry-level undergraduate course at many U.S. institutions. The 

Committee on Undergraduate Programs in Mathematics (2015) has recommended revisions to 

College Algebra, including rethinking the class to better support students as logical and 

quantitative thinkers. However, change has been slow to develop (Tunstall, 2018). Working with 

innovative digital activities can make room for instructors to question conventions in their 

curricular materials (Sinclair et al., 2020) and deepen their understanding of mathematical 

relationships (Moore et al., 2019). By incorporating novel digital graphing activities into College 

Algebra, we work to affect change in the course. Our case study provides insight into instructors’ 

views on the benefits and challenges of implementing such activities while discussing 

implications for research and practice. 
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Background 

To explain how instructors may make changes to their instruction via implementing novel 

digital activities while participating in an FLC, we draw on Wenger’s (1998) Community of 

Practice (CoP) theory. From this perspective, practice is not something people hand down from 

one group to another; it is ongoing and continually evolving. One way to engage instructors in 

new practices is to make room for negotiation between the core members of a community and 

those along the periphery (Wenger, 1998). This way, instructors can “dip their toes” into practice 

without demanding full participation. For example, instructors may participate by listening to 

others implement the activities or trying out a new digital activity in their class.  

FLCs are common in higher education (Cox, 2016; Kezar et al., 2018). They can form when 

instructors connect through a common scope of practice and come together to learn and share 

about a concept or process over time. Communities of Transformation (CoTs) are a special type 

of FLC. Kezar et al. (2018) define CoTs as “communities that create and foster innovative spaces 

that envision and embody a new paradigm of practice” (p. 833). CoTs include three aspects: an 

idea to challenge the status quo, the space to carry out practices, and a group with which to 

sustain those practices (Kezar et al., 2018). For example, focusing on reasoning rather than 

finding answers is one way to challenge the status quo in early undergraduate mathematics 

courses. Interacting with CoTs allows instructors to have space to conduct new practices with 

colleague collaboration and support. 

Methods 

Our case study (Yin, 2016) stems from a larger, National Science Foundation-funded project 

spanning multiple institutions. The project intends to address the overemphasis on finding the 

correct answer in U.S. undergraduate mathematics education by prioritizing mathematics 

reasoning. The project aims to transform instruction in College Algebra via instructors’ 

implementation of digital graphing activities, techtivities, that emphasize students’ reasoning 

over answer-finding. We report on a case of two College Algebra instructors, Riya and Carol, 

who participated in the project for one academic year. 

Techtivities 

The techtivities are digital graphing activities developed in the free, Desmos platform 

(Desmos, n.d.). Each techtivity starts with animation, such as a “Cannon Man” propelled out of a 

cannon and then parachuting back to the ground. Students explore the change in two attributes 

identified in the situation (e.g., height from the ground and total distance traveled) and create a 

Cartesian graph relating the attributes. They compare their graph to a computer-drawn image and 

graphs generated by their classmates and reflect on their observations. Then, students sketch 

another Cartesian graph representing the same relationship between attributes but with the 

attributes on different axes. 

Data Collection 

Instructors participated in the project while receiving stipends on a semester-by-semester 

basis. In their first semester of implementing the techtivities in their College Algebra courses, 

instructors attended four professional development (PD) sessions via videoconference to 

accommodate participants from multiple institutions. During these sessions, participants 

explored features of the techtivities, discussed strategies for implementation, and reflected on the 

role the techtivities played in their instruction. Co-investigators of the larger project held PDs 
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roughly once per month. After the first semester, instructors met in small group CoT meetings at 

their institution to debrief their implementation of the techtivities and share related ideas. 

At the end of each semester, instructors participated in 30-minute, individual, semi-structured 

interviews conducted by video conference. In an instructor’s first semester of participation, the 

interview had four topics: benefits and challenges of teaching College Algebra, benefits and 

challenges of participating in the project, instructors’ views of students’ interactions with the 

techtivities, and the instructors’ perceived impact of the techtivities on their teaching. In 

subsequent semesters, the interview revisited benefits and challenges and student interactions, as 

well as three additional topics: instructors’ views on what constitutes a techtivity and how the 

techtivities fit within their course, instructors’ collaborations with others about the techtivities, 

and instructors’ takeaways from working on the project. Graduate research assistants produced 

verbatim transcripts for each of the instructor interviews. 

Analysis 

Instructor interviews were our source of data, analyzed using a modified form of open coding 

(Corbin & Strauss, 2008). We entered the analysis process with two broad codes, “benefits” and 

“challenges.” By a benefit, we meant something an instructor perceived to be good, helpful, or 

enjoyable. By a challenge, we meant something an instructor perceived to require thought, skill, 

or innovation to address. 

Whitmore and Knurek led the coding and data analysis. They began by reading the 

transcripts and watching the videos. Then, they identified excerpts (uninterrupted speech turns 

from instructors), which they coded as benefits or challenges for the instructor. For each excerpt, 

they wrote a short field note explaining how they viewed the excerpt to represent a benefit or 

challenge. To vet the codes, they met in pairs to agree and brought the codes to the larger author 

team, who weighed the codes against the evidence in the interview and refined the themes 

emerging from the excerpts and codes. 

Results 

Our analysis revealed four themes related to benefits and challenges. Instructors' views of the 

benefits related to the techtivities outweighed the challenges they faced. Benefits included their 

participation in an instructor community and the value of focus on reasoning. Challenges 

included integrating the new activities with existing learning management systems and 

engendering student participation in asynchronous settings. 

Benefits 

Participating in an Instructor Community. Riya and Carol acknowledged the value of 

meeting regularly with other instructors while implementing the techtivities. In her second 

interview, Riya described structuring their small group CoT meetings around discussions about 

instruction. 

Riya: In terms of me as a faculty, we’ve been doing something different this year by like 

visiting each other's classes to check how these go with other instructors. And our 

schedules were in conflict, so we really didn’t get the chance, but we all recorded and met 

after that. We discussed the recording and giving kinds of answers also about the set of 

questions, what was our challenges, what we like, what we faced, how things were going. 
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And also, you see like the same video from a different instructor perspective, that was 

really helpful. 

Carol found the CoT meetings to be a space where she saw other instructors’ practice. She stated, 

“It was nice to see how other instructors, well, it was just Riya so far, but it's nice to see how 

they implement this.” Their comments pointed to the ongoing nature of developing new 

practices, as put forward by Wenger (1998). Their implementation of the techtivities was 

something that continued to develop, not something the research team handed down for them to 

replicate. 

Focusing on Students’ Reasoning. Riya and Carol saw benefits for their students as well as 

themselves. In their view, the focus on reasoning over answer-finding was a positive aspect, 

which Carol stated that she appreciated in both interviews. In her second interview, Carol shared 

that this focus was something she wanted to expand in her teaching. 

Carol: I really liked the techtivities, and I would try to continue to have the students focus 

more on the reasoning and what they think rather than whether they get the right answer, 

so I'm hoping to maybe do this longer, um, incorporate this into my course, to get them to 

think versus just trying to find the right answer. 

Riya and Carol felt that the techtivities impacted their students’ mathematical thinking. In the 

first interview, Riya described how her students’ responses gave her evidence of their learning 

and engagement. 

Interviewer: Do you think that the techtivities impacted your students’ math thinking? 

Riya: Yeah, sure. I am sure about that one. Most of the answers they were saying that they 

“didn't think about that.” Y’know, or “We didn't know that there is such a relation.” or 

“That's very nice.” So, so they were likely engaged with what they have learned from the 

new skills. 

Riya and Carol’s comments provided evidence that they were comfortable making room for 

students to think and hear each other’s insights from their work on the techtivities. Notably, their 

comments suggested that the broader project’s focus on reasoning is something that they valued 

as part of their instruction. 

Challenges 

Navigating multiple online platforms. Implementing the new activities meant that 

instructors needed to navigate both the Desmos platform and their learning management system, 

Canvas. Sometimes the challenges were specific to the platform, and sometimes they involved 

integration within the system. During her second interview, Riya talked about difficulties she 

experienced when trying to switch between techtivities on the Desmos platform. She stated: 

“Sometimes it’s very hard to go back to, to go back it takes a while to go back to the techtivity 

you want, because I was doing two techtivities. So I cannot go from one to another quickly.” 

Both instructors were new to using the Desmos platform, and the research team worked to help 

them navigate the online venues, both with facilitation guides and online modules. 

The research team created a Canvas module for instructors to support different delivery 

formats. The first semester, Carol had a major challenge integrating the module into her Canvas 

course. Her upload inadvertently overwrote her course settings. She was quite frustrated and 

thought about quitting the project. Yet, she appreciated the research team’s help troubleshooting 

the problem and decided to stay on with the project. She reflected on this in her second 

interview, stating, “Well, the challenge is initially, you know, that I had problems with, with the 

Canvas site. There was just a technical problem that I had, but it was something that I had last 

semester.” Carol’s and Riya’s challenges pointed to the complexities of implementing new 
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digital activities. Not only had they needed to learn the activities, but they also needed to learn to 

navigate and connect within different online platforms. 

Encouraging student participation with asynchronous implementation. Both instructors 

had autonomy in implementing the techtivities in their courses. When the activities were 

asynchronous, even in face-to-face courses, instructors found it challenging to encourage student 

participation. During her second interview, Carol talked about decreased student participation 

when she assigned the techtivities asynchronously through Canvas. 

Carol: They were always lower for the ones that I assigned through Canvas, where I just 

tell them, here, this is what you need to do. And I'm just wondering whether there's 

anything I can do to get them to actually do the ones through Canvas. 

Riya’s comments also supported her value of synchronously implementing the techtivities 

when possible. She said in her second interview, “They worked really good this semester, better 

than last semester. I think the plan is to have the time for all of them to be implemented in the 

class so we can discuss them in more detail with the students.” Riya and Carol’s comments 

spoke to the utility of having the techtivities be something more than an “add-on” to the course, 

as recommended by Olson and Johnson (2022). 

Discussion/Conclusion 

We investigated a case of two instructors’ views of benefits and challenges when 

implementing the novel techtivities in their College Algebra classrooms. While the instructors 

encountered challenges, they were not roadblocks to their implementation. A key benefit was 

instructors’ participation in small group CoT meetings, in which they could discuss and reflect 

on their practices. 

Our case study aims to illuminate how implementing novel digital activities can engender 

instructional transformation in College Algebra. We offer three emerging contributions. First, 

instructors’ participation in a community, beyond just a researcher-led PD, is crucial for 

instructors to develop agency in their practice and to allow for new approaches to take hold. 

When the community is also a CoT (Kezar et al., 2018), instructors have a space to develop new 

practices to push back against the status quo of answer-finding and to promote students’ 

reasoning in courses such as College Algebra. Second, the status of the new activities makes a 

difference in students’ participation (Olson & Johnson, 2022).  Riya and Carol found it difficult 

to encourage student participation when implementing the activities asynchronously within a 

synchronous course. Third, implementing new digital activities involves navigating new online 

platforms, and instructors need to have space to learn that navigation. 

Our analysis is ongoing. To further develop the case of Carol and Riya, we will analyze their 

small group CoT meetings to learn more about how their interactions support their evolving 

practices. Then, we will triangulate those analyses with evidence from their classroom practices. 

Questions for Audience 

1. What are your experiences implementing digital activities (or active learning elements) 

into early undergraduate mathematics courses? What were the benefits and challenges?  

2. How do you see FLCs, specifically CoTs, contributing to instructional transformation in 

undergraduate mathematics? 
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Physics Student Understanding of Divergence and Curl and Their Constituent Partial Derivatives 

Zeynep Topdemir Michael E. Loverude John R. Thompson 

University of Maine California State University - Fullerton University of Maine 

This work is part of a broader project to investigate student understanding of mathematical 

ideas used in upper-division physics. This study in particular probes students’ understanding of 

the divergence and curl operators as applied to vector field diagrams. We examined how 

students reason with partial derivatives that constitute divergence and curl of the vector field 

diagrams. Students’ written responses to a task on derivatives, divergence, and curl of a 2D 

vector field were collected and coded. Students were generally successful in determining the sign 

of some of the constituent derivatives of div and curl, but struggled in one case in which 

components were negative. Analysis of written explanations showed confusion between the sign, 

direction, and change in the magnitude of vector field components. 

Keywords: Partial Derivatives, Divergence, Curl, Vector Field Diagrams 

Introduction 

Many physical quantities, such as force and momentum, are represented with vectors. For 

several topics in physics, e.g., interactions in gravitation and electricity and magnetism, it is 

useful to define a vector field: a vector quantity is assigned to every point of a subset of space. 

Vector fields can be represented in different ways, with field lines, an array of arrows, or a 

symbolic expression like �̂� = 𝑎𝑦𝑖̂ + 𝑏𝑥𝑗̂. Students are introduced to vector fields in introductory 

courses, typically in the contexts of electric and magnetic fields. These vector fields vary in 

space, and vector calculus provides several ways to describe this variation, including the 

gradient, divergence, and curl of the vector field. Several significant physical quantities are 

associated with vector derivatives: Maxwell’s equations for electromagnetism describe 

relationships between the divergence or curl of electric or magnetic fields and other physical 

quantities, and the fields themselves can be expressed in terms of derivatives of scalar and/or 

vector potentials. While most students have not encountered vector calculus the first time they 

study vector fields, those who go on to major in physics and electrical engineering will use these 

ideas extensively in a junior-level course in electricity and magnetism. Students encounter vector 

field representations for electric and magnetic fields in an electromagnetism course, and research 

involves electric and magnetic fields and even gravitational fields. Students are expected to 

reason with symbolic equations but also with vector field representations of divergence (▽. �⃗� =

𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
) and curl (▽× �⃗� = 𝑑𝑒𝑡 |

𝑖̂ 𝑗̂ �̂�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑉𝑥 𝑉𝑦 𝑉𝑧

|). We expect students to look at the vector field 

and find the appropriate components and see how the proper components are changing as we 

move to certain directions. 

Several previous studies in physics education research (PER) have examined student 

understanding of divergence and curl in post-introductory courses (Baily & Astolfi, 2014; Bollen 

et al., 2015; Gire & Price, 2012; Singh & Maries, 2013). Generally these studies have involved a 

two-dimensional representation of a field as an array of vectors. Singh and Maries (2013) 

reported that even though graduate students successfully calculated divergence and curl of the 
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vector fields, they were unable to interpret the div and curl of vector field plots. Baily and Astolfi 

(2014) and Bollen et al. (2015) repeated the previous study with different diagrams, reporting 

that around 50% of their students could correctly determine divergence and curl given the vector 

field diagrams. Bollen et al. (2015) also qualitatively studied students’ responses, categorizing 

them into three approaches: description based, concept based, and formula based. For example, 

determining div or curl based on a description of its meaning was categorized as description 

based. If students used concepts like flux or the “paddle wheel” to determine div or curl, 

respectively, it was categorized as concept based.  

While previous studies have focused on the divergence and curl, the classroom experience of 

one author of this study suggested that reasoning with the partial derivatives that constitute these 

operations, e.g., 
𝜕𝑉𝑥

𝜕𝑥
and 

𝜕𝑉𝑦

𝜕𝑦
for divergence or 

𝜕𝑉𝑥

𝜕𝑦
and 

𝜕𝑉𝑦

𝜕𝑥
 for curl in Cartesian coordinates, might 

be one element of the challenges faced by students. Previous studies have asked students to 

determine the sign or value of the divergence and/or curl for a given field diagram, but there has 

not been as much focus on their constituent derivatives.  

Prior PER studies have documented student difficulties with partial derivatives, often in 

thermal physics contexts (Bajracharya & Thompson, 2016; Thompson et al., 2006). Student 

understanding of derivatives is studied widely in RUME. Zandieh (2000) developed a theoretical 

framework for student understanding of derivatives, which was extended by Roundy et al. (2015) 

to include partial derivatives. Wangberg and Gire (2019) investigated student understanding of 

partial derivatives of scalar fields represented as surfaces using Zandieh’s framework.  

The derivatives in the expressions for divergence and curl have the additional complication 

that they are derivatives of vector components. In these partial derivatives, 𝑉𝑥 refers to the 𝑥-

component of the vector field, so 
𝜕𝑉𝑥

𝜕𝑥
 is the partial derivative with respect to 𝑥 of the 𝑥-

component of the vector 𝑉. Extracting information about the derivatives from a vector field 

diagram involves multiple steps. Existing frameworks are restricted to derivatives of scalar 

functions, and need to be extended to deal with the derivatives of vector quantities. While prior 

frameworks have offered insights into student reasoning, they do not account for functions of 

multiple variables, nor for the vector nature of the derivatives. 

We set out to develop and implement tasks that used similar questions to prior studies 

investigating div and curl for vector field diagrams, but with added explicit questions about the 

constituent partial derivatives. The goal is to begin to answer the following research questions: 

• To what extent can students determine the sign of the constituent derivatives of

divergence and curl given a vector field diagram?

• To what extent are student responses to tasks focused on the signs of constituent

derivatives related to success in determining the sign of divergence and curl?

Methods 

Written data were collected at two universities in sections of Mathematical Methods for 

Physics, post-introductory courses for physics and engineering physics majors and minors that 

are intended to cover the advanced mathematics students will encounter in upper-level theory 

core courses like Electricity and Magnetism or Quantum Mechanics. All students (N=32) had 

completed introductory sequences in both physics and calculus, and the data were collected in 

the course after instruction on vector calculus. One campus serves a diverse student population in 

the southwest, the other is a predominantly white institution in the northeast. Responses from the 

two universities were similar and are thus combined and reported together in this paper. 
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In each course, the students had considered similar representations of vector fields in class 

and answered questions relating the features of a field to its divergence and curl. In one 

university, students had completed a research-based instructional tutorial; in the other, these 

questions were presented as a whole-class discussion. After instruction, the questions shown in 

Fig. 1a were posed on a course midterm exam. Students are shown a 2-d field representation and 

asked to determine the signs first of the divergence and curl, then of the constituent derivatives. 

In the broader study, different versions of this task were used. In this report, students 

responded to a task asking first about the derivatives and then about div and curl. With this 

sequence, we hoped to see whether the reasoning for div/curl included derivatives or if other 

reasoning would emerge. 

The coding process began with general codes for both correctness of the sign and the 

correctness of reasoning provided by students. After the lead author generated the initial codes, 

other members of the team independently coded several student responses to refine the coding 

scheme. Answers without explanations (i.e., “
𝜕𝑉𝑥

𝜕𝑥
 is zero”) or explanations that were not clear 

enough to be understood were coded as unclear reasoning. 

Figure 1b (not given to students) shows which components students are expected to use to 

determine the sign of  
𝜕𝑉𝑥

𝜕𝑥
. 

 
Figure 1. (a) The research task asked to probe students’ reasoning about div and curl. (b) The figure for the task, 

with components of the vector field students are expected to examine to determine 
𝜕𝑉𝑥

𝜕𝑥
.

Results and Discussion 

The numbers of students that correctly determined the constituent derivatives and the 

distribution of correctness of student reasoning are shown in Table 1.  

Only 4 of 32 (13%) students answered all parts of the question (all derivatives, divergence, 

and curl) correctly, suggesting that the set of questions was especially challenging. Most students 

successfully identified the constituent derivatives in three out of four cases: for 
𝜕𝑉y

𝜕y
, 
𝜕𝑉𝑥

𝜕y
, and 

𝜕𝑉y

𝜕𝑥
, 

success rates were over 75%. For two of these derivatives the vector field component was not 

changing in the indicated direction, and for the third it was positive and decreasing. 

In contrast, only 21% of the students correctly determined that 
𝜕𝑉𝑥

𝜕𝑥
 was positive with correct 

reasoning. Because this derivative was the most challenging, we examined the reasoning 

required in some detail. The first step was identifying the appropriate components; Figure 1b 

a b 
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shows the components that students were expected to examine to determine 
𝜕𝑉𝑥

𝜕𝑥
. Analysis of 

student responses showed that most (<90%) used the correct components to determine 
𝜕𝑉𝑥

𝜕𝑥
. For 

the given vector field diagram, the absolute value of 𝑉𝑥 is getting smaller with respect to the 𝑥-

axis, but due to the direction of 𝑉, the change in 𝑉𝑥 (𝜕𝑉𝑥) is positive. Written responses did not 

show evidence of explicitly attending to subtracting the two components. Instead, students wrote 

about the trends in the magnitude of the components, whether that component was increasing, 

decreasing, or staying constant when you move in a certain direction. In one incorrect student 

responses, shown in Figure 2a, the student wrote “arrows getting smaller” and seemed to 

associate this with the resulting negative value for 
𝜕𝑉𝑥

𝜕𝑥
. This response, while incorrect, included 

some correct reasoning. Responses that associated the component with the appropriate direction 

but reversed the sign were coded as correct reasoning with a sign mistake. However, this student 

wrote about change in magnitude rather than change in component. 

Table 1. Performances and distribution of student reasoning for 
𝜕𝑉𝑥

𝜕𝑥
, 
𝜕𝑉𝑦

𝜕𝑦
, 
𝜕𝑉𝑥

𝜕𝑦
, and 

𝜕𝑉𝑦

𝜕𝑥
 of the diagram. Correct 

answers for the derivatives are given in parentheses. (C: Correct, I: Incorrect). 

Constituent derivatives 

for divergence 

Constituent derivatives 

for curl 

N=32 𝜕𝑉𝑥

𝜕𝑥
 (+) 

𝜕𝑉y

𝜕y
 (0) 

𝜕𝑉𝑥

𝜕y
 (0) 

𝜕𝑉y

𝜕𝑥
(−) 

Reasoning C I C I C I C I 

Correct  7 17 21 2 18 2 19 1 

Incorrect  1 4 0 1 1 3 3 2 

Unclear or none 3 0 4 4 6 2 1 6 

Figure 2. (a) Incorrect response to 
𝜕𝑉𝑥

𝜕𝑥
, reasoning about the decreasing arrow length to justify the response. (b) and 

(c) Example responses of students relating derivatives with the direction of the vector field component.

Previous studies conducted in introductory physics courses reported student difficulties in 

subtracting negative vectors when given as a graphical representation, even though students were 

very successful enacting the procedure of subtracting when vectors are provided in an equation 

with coordinates (Barniol & Zavala, 2014; Susac et al., 2018). Our results suggest similar 

difficulty among students in this more advanced context.  

While students had good success with many of the constituent derivative tasks, only 38% of 

students determined the correct signs for divergence and curl with correct reasoning, as shown in 

Table 2. For the divergence, most of the responses coded as incorrect signs with correct 

reasoning stem from finding 
𝜕𝑉𝑥

𝜕𝑥
 as negative, as described above. Student responses included 

several alternative forms of reasoning for divergence, such as inferring flux from the vector field 

diagram, or identifying changes relative to a perceived “source” of the arrows. 

a b c 
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There was also no clear relationship between success on derivative task and on the curl task. 

Many of the students coded with incorrect reasoning for curl answered that the 𝑧 component of 

curl was zero and referred to the problem statement that the vector field had no 𝑧 component. 

This may reflect a misinterpretation of the question or a misunderstanding of the relationship 

between components of the vector field and those of the curl. A previous version of this question 

did not include this text and more students did find the curl correctly for the diagram.  

Table 2. Student performances for divergence and curl of the diagram (C: Correct, I: Incorrect). 

N=32 Divergence Curl 

Reasoning C I C I 

Correct  12 10 12 3 

Incorrect  1 6 1 13 

Unclear or none 2 1 1 2 

Another small set of student responses show confusion between the direction of the vector 

field component and the change of the vector field component, as shown in Figure 2b and 2c. 

Similar confusion between a quantity and its change or rate of change has been widely reported 

in both mathematics and physics contexts at the introductory level (Meltzer, 2004; Trowbridge & 

McDermott, 1981). Our data show examples in a more advanced population, suggesting the 

persistence of this confusion. 

Conclusions and Future Work 

Our results were consistent with previous studies that reported that divergence and curl are 

challenging for students. For this task and population, students were largely successful in 

determining the sign of the constituent derivatives of div and curl. Incorrect responses showed 

confusion between the sign, direction, and change in the magnitude of vector field components; 

this confusion seems reminiscent of previous findings in both introductory physics and 

mathematics classes. 

Determining the constituent derivative incorrectly did result in an incorrect divergence sign, 

but correct responses on constituent derivatives were not sufficient for success on divergence and 

curl. Students seemed to confuse components of curl with components of the field itself.   

Explicit attention to the derivatives in expressions for divergence and curl seems to be a 

fruitful direction for future research and curriculum development. We plan to collect additional 

data, including student interviews, to further investigate the understanding of these derivatives as 

well as of divergence and curl, including relationships between quantities. We also intend to re-

examine existing data through the lens of covariation (Carlson et al., 2002) and to examine 

whether it is possible to extend existing frameworks to vector derivatives.   
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Why Mathematicians ‘Fully Understand’: An Exploration of Influences on Their Understanding 

Kyle Flanagan 

Virginia Tech 

One of the primary mathematical practices of many professional research mathematicians is 

engaging with highly advanced mathematical concepts in their research. As mathematicians 

engage with these concepts in their work, they may or may not ‘fully understand’ them, which 

could include not being able to deduce why each step in a proof logically follows from the next. 

This preliminary study investigates what reasons professional mathematicians give for not ‘fully 

understanding’ mathematical concepts in their own work. One mathematician researching 

coding theory was interviewed, which utilized one of the participant’s own research journal 

articles as a launching point for discussion. Various reasons for the participant’s conceived 

amount of understanding were observed, including authoritative reasoning and academic 

pressures. Implications for future research on professional mathematicians are discussed. 

Keywords: Advanced Mathematical Thinking, Professional Mathematician, Understanding 

Introduction 

Professional research mathematicians are constantly engaging with highly-abstract, advanced 

mathematical concepts in their academic endeavors, especially if they study pure mathematics. 

Nevertheless, even with the heavily abstract nature of the mathematics, mathematicians are 

successful at answering mathematical problems and publishing new research. Therefore, it is 

worth investigating how professional mathematicians engage with and understand highly-

abstract, advanced mathematical concepts. Some research has investigated how mathematicians 

understand mathematical concepts (e.g., Flanagan, 2022; Shepherd & van de Sande, 2014; 

Sinclair & Gol Tabaghi, 2010; Soto-Johnson et al., 2016; Wilkerson-Jerde & Wilensky, 2011). 

Despite this, there is certainly a need to further analyze the intricacies of how mathematicians 

understand these concepts, and specifically what factors influence how mathematicians engage in 

this understanding. This preliminary research study aims to address this need. 

Literature Review and Conceptual Framework 

The study of mathematical understanding has been addressed in a variety of ways, including 

procedural versus conceptual understanding (Hiebert and Lefevre, 1986), intuitive, relational, 

symbolic, and logical understanding (Byers & Herscovics, 1977; Skemp, 1976, 1987), and the 

Pirie-Kieren dynamical theory of understanding centered on how one experiences growth in 

understanding mathematical concepts (Pirie & Kieren, 1989, 1994). Additionally, distinguishing 

between different types or levels of understanding has appeared in the research on proof, such as 

the distinction between semantic and syntactic proof productions (Weber & Alcock, 2004) and 

the need for strategic knowledge (Weber, 2001). Furthermore, research has demonstrated that 

professional mathematicians sometimes choose to not ‘fully understand’ all the mathematics they 

work closely with. Fully understanding a mathematical concept is impossible to define precisely, 

but a demonstration of a lack of full understanding could include choosing to use a theorem in a 

proof without knowing why the theorem is true, or accepting a proof is valid without being able 

to deduce why each step logically proceeds from the previous one. 

In the context of proof-reading and validation, there is strong evidence that professional 

mathematicians will accept a proof as true or valid without using deductive reasoning (e.g., 
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Weber et al., 2014; Weber et al., 2022). For example, Weber (2021) provided evidence that even 

set theorists, who work closely with the building blocks of mathematics, are sometimes content 

without being able to construct certain details of their derivations. In addition, professional 

mathematicians have demonstrated that they sometimes use authoritative reasoning when reading 

and validating proofs (e.g., Inglis & Mejía-Ramos, 2009; Mejía-Ramos & Weber, 2014; Weber, 

2008; Weber & Mejía-Ramos, 2011). Harel and Sowder (1998) defined an authoritarian proof 

scheme to be when the source of an individual’s truth claims come from a place such as a teacher 

or a textbook. Instead of teachers or textbooks, mathematicians sometimes appeal to the 

authority of reputable journals and famous mathematicians. 

Research Questions 

Two primary research questions guided this research study. The first question captures the 

broad purpose of the research, while the second pertains to the specific goals of this study. 

1. (Broadly) How do mathematicians successfully work with and understand highly-

abstract, advanced mathematical concepts? 

2. (Specifically) What reasons do professional mathematicians give for why they believe 

they ‘fully understand’ or do not ‘fully understand’ the mathematical concepts they use in 

their own work?  

Methodology 

To address the above research questions, a one-hour, semi-structured Zoom interview was 

conducted with one professional research mathematician. This mathematician, Callie 

(pseudonym), was a female algebraist who specializes in coding theory. She was specifically 

chosen for this study because her area of research was tangentially related to my own 

mathematical expertise, which would allow for me to better understand the mathematics she 

discussed in the interview. This interview was video-recorded, and the audio was transcribed for 

data analysis. Furthermore, this interview consisted of three phases. Callie was first asked some 

basic questions to better understand her mathematical background. Afterwards, we discussed 

specific components of one of her own research journal publications. Questions were centered 

around aspects of the article where she referenced mathematics from other sources, to help assess 

whether she believed that she understood the mathematics she was using from other sources that 

she did not publish herself. The final phase consisted of questions directly pertaining to the 

research questions, two of which are provided below for reference. 

1. Are there any times where you believe that you have encountered a new advanced or 

highly-abstract mathematical concept where you were able to successfully work with it, 

but did not ‘truly understand’ the concept? 

2. Have there been any incidents where you read a research paper relevant to your own 

research where you utilized some of the mathematics in the paper, but did not understand 

why it was true? 

The interview transcript data was subsequently coded in two phases. The initial phase of 

coding looked for general codes pertaining to the research questions. These initial codes were 

then refined and grouped together into more precise codes, which were applied to the transcript 

in a second phase of coding. After final adjustments were made, these codes were organized into 

four themes, which will be discussed in the following section. 
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Results 

The results from the data analysis will be presented as a thematic analysis (Braun & Clarke, 

2012) of the reasons that Callie provided for having certain levels of understanding for the 

mathematical concepts she uses in her own work. The coding process revealed four major 

themes, which are (1) authoritative reasoning, (2) external pressures, (3) academic influences, 

and (4) intellectual factors. Each of these themes will be addressed individually, with supporting 

evidence provided from the interview. 

Authoritative Reasoning 

One pattern that appeared frequently in the data was authoritative reasoning. This consists of 

when Callie stated that she believed or accepted something was true because it came from a 

trustworthy or authoritative source, such as a reputable journal. In the case of appealing to the 

authority of journal articles, Callie stated that “I also think that because of the peer review 

process, and all of that, typically I feel confident that results that have appeared in the literature 

are correct. You know sometimes that’s based on journal reputation, right?” Moreover, in 

addition to the peer review process providing Callie with confidence in the validity of results, she 

expressed that if a result is important, then likely enough people have looked over the result to 

verify its correctness. Regarding a particularly important result in her field, she mentioned, “And 

so it’s had lots and lots of eyes on it, so there’s something that comes from people believing that 

this is true and knowing that other people have checked it…it’s received a lot of attention.” 

Another facet of authoritative reasoning came in the form of believing results were true because 

certain people were involved. When discussing an area of her own field of research where she 

did not understand all of the results, she stated that this is “an example of where we’re looking to 

use something and we trust that the people who have done the work have done it correctly.” 

External Pressures 

Another theme that came out of the interview data with Callie was external pressures. This 

theme consists of when her choice to try to understand a mathematical concept was directly 

influenced by external factors, such as time constraints due to academic duties. The most 

common type of external pressure was time constraints. Callie’s busy schedule and its influence 

on her ability to take time to deeply understand all the mathematical concepts in her work was 

summed up when she stated: 

And you know now, there’s just not the time to do that. I mean I have my own students I 

have to worry about. I also have an administrative role that’s practically a full-time job, 

in addition to the faculty member role. And so, so that’s part of it, it’s the time. 

Moreover, she emphasized that “it’d be hard to confirm every single thing that we use and 

actually create something new ourselves at the same time.” In actuality, highly advanced 

mathematics can take time to understand, and there is a lot of it being produced. According to 

Callie, this makes it unrealistic to produce new results and ‘fully understand’ all related results. 

Another type of external pressure is the natural influence of what the current research 

community believes is important. For example, Callie described how she and her colleagues 

were looking to find a sufficient condition for a mathematical result, even though they were not 

entirely sure what they were looking for. However, they did that because they “knew it would be 

well-received by the research community” if they could find it. Additionally, she mentioned that 

her research pursuits have shifted because she wants to “stay current.” Specifically, she stated: 

The field has moved a bit, and so I kind of like to move a little bit too in order to stay 

current, you know, in terms of applications and things that people actually care about, 
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like for funding agencies or journals...because I'm having to pivot. I shouldn't say having 

to; I'm choosing to pivot based on some internal motivation to follow external factors. 

Even though these are reasons why a mathematician might choose to pursue certain research 

questions, they also demonstrate that there are academic pressures that influence what one 

chooses to focus on and try to better understand. 

Lastly, Callie shared how her level of understanding on certain mathematical concepts has 

likely been affected by the availability of resources now versus when she was starting her career. 

In particular, now there are a whole host of relevant journal articles that we can access on the 

internet with minimal effort. However, twenty years ago, Callie described in contrast to having 

twenty-five online articles, “If I had gone to the library and I only have two papers related to a 

subject…I’m going to really pour into those in ways that I wouldn’t do with the twenty-five.” 

This comment is especially interesting because it highlights that the extent to which 

mathematicians choose to understand mathematical concepts for their own research may be 

changing due to technological advancements, which would need further research to verify. 

Academic Influences 

A third pattern that emerged from the data is academic influences. This consisted of when 

Callie discussed anything influenced how the actual mathematical results would be used or the 

nature of the mathematical content itself, including what field of study that the mathematical 

content came from. Callie explained how the field of study influences what she chooses to ‘fully 

understand’ by stating, “And in order to follow all that reason, I mean it might be a series of 

many many papers, you know, traversing other fields. So, it might be outside of what would be 

easily doable without help.” This means that sometimes it may be difficult to understand the 

mathematics you are using, if you need to use advanced concepts that are outside of your area of 

expertise. Moreover, it is also possible that the field of research you engage in might influence 

the breadth of what you are able to understand, as suggested by Callie. She stated that “Different 

research areas are different as well…Coding theory’s evolved a lot in the last twenty years. And 

so that means lots of different types of things go into my research program.” She contrasted this 

with a mathematician who focused deeply on one idea for the entirety of his career, where he 

may deeply understand everything that he uses in his own work. 

Another factor that appeared in the data was the influence of one’s stage of career or current 

mathematical experience. Callie described how she believes she is “more comfortable now not 

knowing things than she once was,” and questioned whether that is a “natural career 

progression” or not. Lastly, Callie expressed instances where the mathematical purpose of a 

concept for a journal article influenced how much effort she put into understanding it. Generally, 

she stated, “I use material from the literature and assume that it’s correct, and I think that how far 

down that we go into that depends on what we’re trying to do with the material." In the context 

of the journal article from the interview, she mentioned: 

You know there are times when you know, maybe you need to reference something and, 

you know, the results are there or you can see them, but you don't have full awareness of 

the supporting evidence. It certainly happens a lot, but in this case, you know we were 

trying to really nail down this value, and so I had spent some time with the techniques in 

that paper. 

This sentiment was reoccurring in our discussion of her journal article, because she said that she 

understood the important references well but did not fully read or understand some of the 

references that were only provided for context or background. 
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Intellectual Factors 

The final theme from the interview data was intellectual factors, which were any mentions of 

mental or intellectual influences on one’s understanding, including Callie’s mental capacity and 

how reasonable a mathematical statement appears. For instance, Callie expressed how the 

reasonability of a mathematical statement influences how much effort she needs to put into 

deeply understanding the mathematics. 

So sometimes my knowledge and awareness might come from hearing a talk about it and 

feeling like “Okay those techniques make sense; it seems reasonable; that’s all I need.” 

Other times, you know, it might be deeper confirmation if you feel like “Well that sounds 

surprising. I didn’t think something like that could be true.” 

It is possible that when a mathematical statement appears reasonable, that this is influenced from 

other mathematics you know. In this case, one might believe that the statement is probably true 

based on other mathematical expertise or intuition. In addition to reasonability, Callie mentioned 

how she only has so much mental capacity to understand mathematical facts. She discussed this 

phenomenon by stating that most mathematicians cannot know everything in their field, and 

verbalized, “But to know the whole field is just not, at least for me, possible. I don’t think it’s 

possible for most people.” These remarks provide support that mathematicians may not be able 

to ‘fully understand’ everything they work with, even if they would like to. 

Discussion 

The above thematic analysis provided supporting evidence that professional mathematicians 

do not always ‘fully understand’ the mathematical concepts they use in their work. Moreover, 

there are a plethora of reasons for why mathematicians have certain levels of understanding for 

these concepts. However, despite this, this study was preliminary in many ways and has some 

limitations. Most noticeably, this study only consisted of one mathematician researching coding 

theory. To further support these claims, it is important to research other mathematicians in 

similar ways, to see if Callie’s experiences are shared among other mathematicians. A second 

limitation was that the chosen journal article was written over fifteen years before the interview. 

Due to this, some of Callie’s remarks may have been misremembered, and she was not able to 

share as much detail about aspects of her producing the paper. In turn, much of the data came 

from the third phase of the interview. I believe that utilizing mathematicians’ journal articles for 

interview data collection is valuable, but further data collection is certainly needed. 

Moreover, the results from the analysis support the claims of the aforementioned literature 

that mathematicians appeal to authoritative reasoning and have reasons for not ‘fully 

understanding’ certain mathematical concepts they use (e.g., Inglis & Mejía-Ramos, 2009; 

Weber, 2008). In addition, this study contributed a concrete example of a mathematician who 

demonstrated numerous reasons for the understanding she had. However, further research is 

needed to delineate these various reasons why mathematicians do not ‘fully understand’ 

concepts. Is it mostly because of external and academic factors? Or is it also due to mathematical 

factors, such as using the concept in rich, mathematical “inventising” (Pirie & Kieren, 1994; see 

also Hadamard, 1945) or that the concept is too advanced or abstract for the individual? The 

above analysis provided some evidence that these could all be at work, but further research needs 

to be conducted. Lastly, the evidence in this study has implications for the teaching of advanced 

mathematics to students. If professional mathematicians are influenced in various ways on what 

they choose to ‘fully understand,’ we should not be surprised when students are similarly 

influenced. Instead, focus should be given to helping students learn to navigate what 

mathematical concepts should be ‘fully understood’ and what could be postponed until later. 
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Student Strategies Playing Vector Unknown Echelon Seas, a 3D IOLA Videogame 
 

 David Plaxco Matthew Mauntel Michelle Zandieh 
 Clayton State University University of New Hampshire Arizona State University 

We present preliminary results of students’ strategies playing Vector Unknown: Echelon Seas 
[VUES], a 3D videogame intended to support student reasoning about vectors. Our team 
designed VUES by drawing on theories from Inquiry-Oriented Instruction (IOI), Game-Based 
Learning [GBL] and Realistic Mathematics Education [RME]. VUES builds from a prior 2D 
game by giving players vectors with 1, 2, or 3 components, depending on the level. We use codes 
from our team’s prior analysis (Mauntel et al, 2020) to analyze strategies in the 3D game. Early 
results show that students develop similar strategies during 3D gameplay as other students 
developed while playing the 2D game. However, we have also found new strategies that we did 
not witness with 2D gameplay, requiring us to extend our coding scheme. Further, early results 
emphasized the need for design changes to the 3D game to better support players’ progress. 

Keywords: Linear Algebra; Mathematical Play; Inquiry-Oriented Instruction; Game-Based 
Learning; Realistic Mathematics Education 

The importance of Linear Algebra in undergraduate STEM students’ degree progression is 
well-established (Stewart et al, in press). In this on-going design-research project, we have 
iteratively implemented and re-designed a browser-based video game intended to support student 
experiences with vectors before entering (and early during) a first course in Linear Algebra. Our 
team has drawn on a combination of design principles from Game-Based Learning (Gee, 2003; 
Gee, 2005; Gresalfi & Barnes, 2016; Williams-Pierce & Thevenow-Harrison, 2021), Inquiry-
Oriented Instruction (Rasmussen & Kwon, 2007; Kuster et al, 2018), and Realistic Mathematics 
Education (RME; Freudenthal, 1991; Gravemeijer, 1994) to iteratively refine and develop the 
videogame (Zandieh et al, 2018; Mauntel et al, 2019; Mauntel et al, 2020; Mauntel et al, 2021). 
We have iteratively re-designed this video game to better support players’ algebraic and 
geometric understanding of linear combinations of vectors and vector equations. In this paper, 
we present the newest iteration of the video game, discuss early results of clinical interviews 
with undergraduates playing the video game, and discuss what implications these results have for 
future iterations of this game and educational game design more generally.  

Literature Review and Theoretical Framing 
Game-Based Learning (GBL) is a growing area of education research that shows promise for 

supporting meaningful gains in student thinking outside of high-stakes classroom environments 
(Gee, 2003; Gee, 2005; Gresalfi & Barnes, 2016). With this project, our team set out to blend 
best practices from GBL and mathematical curriculum design theory to create a video game 
based on the Inquiry-Oriented Linear Algebra curriculum (IOLA; Wawro et al, 2013). Our game 
design leverages the key idea of using vectors as modes of transportation in the Magic Carpet 
Ride task from the IOLA curricular materials, which use the curriculum design theory of RME 
(Gravemeijer, 1994; Freudenthal, 1991). Using vectors as modes of transportation provides 
students and, now, video game players with an experientially real setting for using and 
understanding linear combinations of vectors. Our team has also incorporated theoretical framing 
from the Inquiry-Oriented Instruction (IOI) literature (Rasmussen & Kwon, 2007; Zandieh et al, 
2017) to inform how student/instructor roles translate into designing a video game interaction.   

25th Annual Conference on Research in Undergraduate Mathematics Education 1111



The current version of the video game, Vector Unknown: Echelon Seas [VUES], takes place 
in a 3-dimensional environment with the player controlling a pirate avatar who runs between 
stages and puzzles. In this paper, we focus on Stage 4 of VUES, which we designed as an 
extension of the original 2-dimensional Vector Unknown game (VU). VUES Stage 4 is 
subdivided into three different difficulty levels, all of which are played via the same controls and 
format, but differ based on the number of components in the vectors used (i.e., whether the 
vectors in the level have 1, 2, or 3 components) and each difficulty level consists of 6 puzzles in 
which the player helps the pirate aim a grappling hook at an anchor. The player uses the vectors 
to create a linear combination equal to a goal location by dragging vectors (represented as 
column vectors in a given collection of cards) into a vector equation and using sliders to adjust 
scalars in front of each vector. To provide just-in-time feedback (Gresalfi & Barnes, 2016; 
Williams-Pierce, 2019), the game calculates the appropriate linear combination of those vectors, 
shows (1) a geometric representation of that linear combination consistent with a “tip-to-tail” 
representation of linear combinations and (2) a numeric representation of the vector equation 
with the calculation on the right of the equal sign, labeled as “Answer”. 

 
Figure 1. Images of gameplay in Vector Unknown Echelon Seas. 

Using the earlier iteration of the game, Vector Unknown, we characterized the strategies that 
participants used to play the game (Mauntel et al, 2020, 2021). These strategies focused on two 
main components of the game, geometric and numeric. Geometric strategies related to the 
generated geometric display of the linear combination of two vectors. Numeric strategies 
involved focusing on a vector equation. There were four core strategies each with a numeric and 
geometric variant. Focus on one vector involved selecting a vector, scaling it to be as close to 
the goal location as possible, and then choosing another vector to reach the goal. Focus on one 
coordinate involved choosing an x- or y-coordinate in the goal vector and adjusting the scalars 
on each of the two vectors to first match one coordinate, and then adjusting as necessary to reach 
the goal. When a student employed quadrant-based reasoning they chose vectors to reach the 
goal based upon the quadrant of the goal (geometric) or by the signs of the goal (numeric). 
Button-pushing was characterized by adjusting scalars and switching vectors rapidly as a trial-
and-error strategy. While not officially characterized as a strategy, participants also tended to 
choose vectors that had a zero to help them solve the puzzles. Our current work seeks to identify 
whether and how these identified strategies might emerge as students play the newer version of 
the game and also what new strategies we might encounter students using. 

Methods 
One member of our team conducted clinical interviews with five students from a small, four-

year undergraduate university in the American Southeast. Each interview lasted between 60 and 
120 minutes and consisted of the participant playing at least four puzzles in each difficulty 
setting as time allowed. Three of the participants had completed an introductory course in linear 
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algebra, but had not yet played any version of the video game. Two participants had. Recently 
completed a Calculus I course and had not yet taken any course in Linear Algebra. Interviews 
occurred virtually over Microsoft Teams. Players shared their screens and maximized the 
window in which they played the game. Each interview was recorded and transcribed using the 
embedded features of MS Teams. The interviewer guided the participants through gameplay with 
written prompts and asked follow-up questions to encourage participants to explain their 
reasoning and to clarify strategies and rationale as they played the game. After data collection, 
the authors met to discuss analysis methods and narrowed our focus on using one participant’s 
video for an initial coding pass. Our initial analysis is driven by the research question: How 
might student strategies while playing VUES be similar or different from the strategies we 
identified with students playing VU? 

In the next section, we will discuss some of the results from our data collection, exemplifying 
them with key excerpts from our interview with Kyah (pseudonym, pronounced “KAI–yuh”; a 
woman, who is African American, majoring in mathematics). We will first briefly discuss some 
of Kyah’s responses during gameplay on Level 2 and explain how we use the codes from prior 
analysis (Mauntel et al, 2021) to categorize her activity. We then provide examples from Kyah’s 
Level 3 gameplay to highlight how some of her 2-D strategies persisted into her 3-D gameplay. 
We will then highlight aspects of her 3-D gameplay that did not fall into our existing categories. 
We expected such strategies would exist and, thus, will necessarily extend our existing taxonomy 
to include new types of activity that students engage in in the newer iteration of our game. 

Results 
Kyah spent the first 22 minutes of the interview working through five puzzles of Level 1, 

which uses vectors from ℝ1. Across these levels, Kyah correctly articulated numeric strategies 
for using multiplication and addition to reach the goal and described a general solution for how 
she could find more than one possible correct solution when asked. When Kyah moved on to 
Level 2, the 2-dimensional version of Stage 4, the interviewer prompted her to notice the visual 
aspect of the game which they referred to as blue, red, and green lasers. Kyah at first was 
surprised that “a whole three different lasers” appeared. She added, “We just need one, right.” 
The interviewer confirmed that "the green is the same as the Final Answer." Kyah then realized 
“oh, so the green needs to be on the white line.” Although Kyah primarily used numeric methods 
in five puzzles of Level 2, she did explicitly return to the idea of matching the green line to the 
white line later when playing Level 3. 

The majority of Kyah's Level 2 (vectors from ℝ2) gameplay involved the strategy focus on 
one coordinate. This worked especially well for her when she had a vector with a 0 in the second 
coordinate. In this case she could scale a vector with a non-zero second coordinate until its 
second coordinate matched the second coordinate of the “Goal” vector. Then she could add the 
vector with the 0 in its second coordinate and scale it until the first coordinate of the “Answer” 
vector matched the “Goal” as well. For example, Kyah solved Level 2, Puzzle 4 using the linear 
combination (4)<-1,3> + (-5)<1,0> = <-9,12> by first scaling <-1,3> to get <-4, 12> and then 
adjusting the scalar on the <1,0> vector. This is consistent with the focus on one coordinate 
strategy we identified from analyzing student gameplay in VU (Mauntel et al, 2021). In Puzzle 5, 
where no vector choice had a 0, Kyah was unable to implement this exact strategy, though she 
did attempt to modify it. She articulated this clearly when asked, “I’m looking at the Final 
Answer. I always aim to go for the bottom number first for some reason. Try to get the bottom 
number … [then] adjust to match the top.” It was not until the interviewer said, “I’m looking at 
the lasers,” that she changed her focus, “Oh! I forget about the lasers. … I wasn’t even thinking 
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about the lasers.” She did agree that the lasers could help. She and the interviewer then worked 
together, combining geometric and numeric strategies to solve Level 2, Puzzle 5.  

When Kyah transitioned to Level 3 (vectors from ℝ3), she was presented with the vectors: 
<1,3,1>, <-1,1,1>, <-3,-2,0>, and <-1,2,2> to reach a goal of <-7, 7, 5>. Similar to level 2, we 
coded Kyah’s initial strategy as Numerical Focus on One Coordinate. She moved the vector 
<1,3,1> into the equation and adjusted the scalar to 1, stating “I was looking at 7s first. I was 
thinking…oh wait. Actually, I think I should look at the bottom first. I’m going to go with the 5 
first.” She adjusted the scalar to 5*<1,3,1> to match the z-coordinate of the “Goal”. Kyah then 
said, “[I] need the top number to be negative,” and chose the vector <-1,1,1> matching the sign 
with -7 in the x-coordinate. We coded this as Numerical Quadrant-Based Reasoning because she 
chose a prospective vector based upon the sign of the location she wanted to travel. She adjusted 
the scalar on <-1,1,1>, but was unable to get the first pair of vectors to work.  

After this, the interviewer suggested that Kyah rotate the camera. Once she tried this, Kyah 
focused more on the geometric aspects of the game, especially the “lasers” that represented the 
scaled vectors and their linear combinations. She then adapted the strategy that she used in Level 
2 and described her goal by saying “the green line is supposed to go on the white line”. Because 
the prior version of the videogame did not include geometric representation of the resulting 
linear combination, we did not have a code for this strategy. After describing her intentions,  
Kyah adjusted the scalars until the green line looked like it overlapped the white line (Figure 2, 
left). She then rotated the camera view and discovered that the view “can be very misleading” 
(Figure 2, right). This highlights an important difference between Levels 2 and 3. Solving a 
puzzle on Level 3 with a geometric strategy requires viewing the vectors from a variety of 
viewpoints and coordinating these viewpoints to make sense of the linear combination. In this 
moment, Kyah used this to determine if it was possible to find a solution with these two vectors. 

 

       
Figure 2. Kyah’s “close” linear combination on Level 3 (left) and the same combination with camera moved (right). 

Kyah adjusted the scalars several more times and then switched vectors repeatedly with the 
other two in the list. She arrived at the vectors <1,3,1> as the red vector and <-1,1,1> as the blue 
vector she tried to figure out how the red and blue vectors affected the green vector. After 
playing her conclusion was that “the red one is just shifting left and right” and “the blue, that is 
going to shrink it [the green vector].” From this we can infer that the Kyah’s strategy is to try to 
shift and shrink [or expand] the green line until it lands along the white line. We call this new 
strategy geometric shrinking and shifting. Kyah experimented with this strategy, but was unable 
to find a solution and returned to a more numeric strategy.  

Kyah had the vector <-3,-2,0> as the red vector and tried several vectors for the blue 
coordinate. The interviewer asked asked how having a zero in z-coordinate for the red vector 
affected the coordinate choice for the blue vector. Kyah realized that the scalar for the blue 
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vector had to result in a 5 for the z-coordinate since the red vector contributed nothing to z-
coordinate. Kyah tried multiple vectors setting the blue scalar to 5 for the vector <-1,1,1> and 
then adjusted the scalar on <-3,-2,0> to see if it would work. After trying several scalars for <-3,-
2,0> she kept the vector <-3,-2,0>, swapped <-1,1,1> for <1,3,1>, adjusted the scalar for <1,3,1> 
to 5 so the z-coordinate would work, and finally adjusted the scalar on <-3, -2, 0> to -10 and then 
increased it to 4 and found that number worked. While Kyah explored geometrically, her final 
solution was the result of returning to a focus on one coordinate and combining it with a vector 
with a zero entry in the final coordinate. In the next level there was a vector with two zeros in it, 
and Kyah employed a similar strategy to reach the goal position by selecting the vector with two 
zeros, selecting another vector, adjust it to reach the z-coordinate, and then adjusting the vector 
with two zeros to get the final solution. Thus by this point, Kyah was employing a strategy 
similar to using vectors with zeros in several coordinates. 

Discussion 
First, we note that Kyah used several strategies consistent with those we observed students 

using with previous versions of the game, including Quadrant-Based Reasoning and choosing 
vectors with zeros in order to Focus on One Coordinate (Mauntel et al, 2021). Further, Kyah 
extended strategies from Level 2 to Level 3. However, when prompted to notice the geometric 
aspects of the game, she employed a new strategy, Green Line on White Line, but needed to 
develop a sense of how to assess whether this strategy was successful and how to manipulate the 
vectors to achieve this goal. Rotating the camera view allowed her to determine if the strategy 
was working. This points to a core difference between VU and VUES: adjusting the camera 
allows a player to solve puzzles in Level 3 of VUES geometrically that was not necessary for 
players to solve levels in VU because the earlier game only used vectors in ℝ2. Kyah also found 
the most success using numeric strategies. We hypothesize this may be due to a key difference 
between VU and VUES, specifically how the game generates the vectors on any given level. In 
VU, players could always reach the goal as long as they selected a pair of vectors that were not 
scalar multiples of each other. In VUES, four vectors are provided and the player is only 
guaranteed that one pair of the vectors can reach the goal. This means that players could choose 
linearly independent vectors that do not reach the goal with the available integer scalars. This 
makes geometric strategies that were employed frequently during VU less effective in VUES.  

Questions 
We will continue to analyze Kyah’s and the other student’s gameplay. During the conference 

presentation, we anticipate presenting more robust findings from these data, including analysis of 
other participants’ strategies and more focused coding of 3-D game strategies. We expect that the 
presentation will prepare audience members to engage with the following questions: 

1. How might these results inform our game design and GBL design theory? 
2. What theoretical and methodological approaches could help us analyze how players 

move the camera and interact with the computer program’s 3-D environment? 
3. How does the shift from vectors in ℝ2 to vectors in ℝ3 within VUES inform how 

students use the camera? 
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Creativity and Subjectivity: Two Researchers’ Poetic Re-Presentations of Critical Student
Perspectives of Mathematical Success

Rachel Tremaine Jessica Ellis Hagman
Colorado State University Colorado State University

Dismantling notions of objectivity in the qualitative research process necessitates engaging
research subjectivity in meaningful and explicit ways. Poetic transcription methodology allows
for an entry point into conversations around research subjectivity. In the context of a critical
exploration into students’ definitions of their own mathematical success, the poetic transcription
results of two researchers are comparatively analyzed to highlight structural and thematic
(mis)alignments in researchers’ poetic interpretations of students’ definitions of mathematical
success. We emphasize both the scholarly value and uncertainty that the results of such a
comparison produce and discuss how future work might build on these comparisons and on our
understanding of what poetic transcription can bring to mathematics education.

Keywords: Methodology, Student Success, Subjectivity

Within qualitative research processes, researchers themselves are the “primary research
instrument” (Corley, 2020, p. 1023). This positioning makes clear that researchers and their
collection, framing, analysis, and presentation of qualitative data are deeply intertwined. One
way this manifests is in recent academic discussions on how identity impacts mathematics
education scholarship, and the acknowledgement that mathematics education is not culture-free
nor is the knowledge it produces disjoint from socio-cultural and socio-political notions of power
and oppression (Gutiérrez, 2013; Ladson-Billings, 1997; Martin et al. 2010).

By resting on the research axiom that neutrality is fundamentally nonexistent within
qualitative mathematics education research, space is opened to explore ways to make explicit the
discussion of subjectivity. Corley (2020) writes that “the goal for researchers should be to write
in such a way that challenges mainstream knowledge claims and that values the subjective,
contextual, relational nature of both reality and inquiry” (p. 1024). In this work, we aim toward
this goal through comparatively analyzing the results produced by our independent engagement
with poetic transcription methodology.

Poetic transcription draws from the literary tradition of a found poem, in which excerpts from
existing written media are juxtaposed to create poetry with distilled meaning. In poetic
transcription, participants' words from interview or focus group transcripts are pulled in such a
way as to honor and reflect the participant’s meaning and narrative style (Glesne, 2007).
Prendergrast (2009) emphasizes that these poetic transcriptions are built from the participants'
words but filtered and “re-presented” through the lens of the researcher by referring to these
poems as “participant-voiced poems.” Via the artistic embodiment of experiential knowledge,
poetic transcription can present nuances of qualitative data in a way that the quoting and analysis
of traditional prose may not, particularly when viewed through a lens of feminist theory
(Faulkner, 2018) and critical, justice-oriented qualitative research (Fernández-Giménez et al.,
2019; Keith & Endsley, 2020).

Poetic transcription is utilized in meaningful ways in educational spheres (see, for example,
Thunig & Jones, 2020; West & Bloomquist, 2015; Mercer-Mapstone et al., 2019; Vannini &
Gladue, 2008). It has a particularly rich history in regards to re-presenting the narratives of
Indigenous participants through its existence as an “embodied meaning-making practice that is
consistent with more holistic Indigenous approaches to teaching and learning which engage the
heart, mind, body, and spirit” (Madden et al., 2013, p. 215; see also Ambo, 2018; Thunig &
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Jones, 2020). In mathematics education spaces specifically, poetic transcription has been used to
understand the structure of students’ mathematical thinking (Staats, 2008), interrogate the
intersection of theological beliefs and beliefs about mathematics (Norton, 2001), and examine
mathematical identity in the face of “low attainment” labels (Helme, 2022). The poems
constructed in the context of this work centered around re-presenting narratives of mathematical
success shared with us by three first-year undergraduate women students who also identified as
first-generation students, Pell-grant eligible students, and/or women of color.

Poetic transcription as a methodology lends itself well to a critical exploration of
marginalized students’ experiences of mathematical success because it (a) promotes “evocative
critique and resistance of the status quo” (Faulkner, 2018, p. 23) and (b) lends itself to “topics
that lead into the affective experiential domain” (Prendergast, 2009, p. 546). Students’ own
conceptualizations of their mathematical success align with both attributes; centering students’
voices in the defining of their own mathematical success both provides critique of traditional
neoliberal measures through implicit or explicit misalignment (Tremaine, 2021), and student
definitions and narratives of student success are deeply affective in that they are evidentially
embodied and emotional (O’Shea & Delahunty, 2018).

The two authors of this work engaged independently in a parallel poetic transcription process
using the transcript data from three participants, resulting in three pairs of poems. In an
investigation into both the use of the methodology and how it allows for rich conversation
regarding the student participants’ experiences and definitions of mathematical success, we pose
the following research question: In what ways do the poetic interpretations of two researchers,
when constructed through a prescribed poetic transcription methodology, align and misalign, and
what do these (mis)alignments teach us about this data analysis method?

Methods
The data used in this analysis are three sets of two poems, each set containing one poem

constructed by Tremaine and one poem constructed by Hagman through the poetic transcription
process depicted in Figure 1. As poetic transcription is inherently a creative process, there is no
one right way to engage in this methodology– the methodology illustrated by Figure 1 draws
from the work of Prendergast (2009) and Glesne (1997), as well as Burdick (2011)’s notion of
tandem poetic transcription, and is intended not as a definite guide to poetic transcription, but as
a description of process undertaken by the authors. This particular method of poetic transcription
consisted of three phases: Phase 1 (Initial Parsing of the Data), Phase 2 (Poetic Juxtaposition),
and Phase 3 (Member Checking).

Poems were constructed using qualitative interview data from three participants- Ada, Isabel,
and Kenzie- as collected and transcribed by the authors in January 2021. Ada, Isabel, and Kenzie
are first-year, Pell-grant eligible women students and were asked in an interview context to (a)
describe an experience in which they felt successful in mathematics and (b) define what student
success in mathematics meant to them, with conversational room to elaborate on responses. 

The analysis below, as it is preliminary, identifies themes in both meaning and style that align
and misalign between the two researchers’ poems. We then discuss the significance of this
alignment and misalignment as it relates to poetic transcription as a methodology and in research
more broadly, with the intent of bringing others into this conversation as this methodology (and
what it means to do research) is continually refined.
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Figure 1. The poetic transcription process engaged in by both Tremaine and Hagman.

Analysis
In Table 1, we present the poems constructed by Tremaine and Hagman from each

participant’s data and invite the reader to contemplate what they tell us about the participants’
definitions of mathematical success. We then follow the poems with a comparative analysis,
diving more deeply into the analysis of Kenzie’s poem and providing brief overviews of the
others to account for succinctness in submission.

Table 1. Poems written by Tremaine and Hagman which draw from each participant’s data.

Kenzie

Tremaine
They determine success:
your grades matter a lot.
That’s what I’m aiming for.
Having studied,
internalizing the materials,
I worked at my dues.
Feeling proud after all that work-
that’s where I want to be,
that’s what I was reaching for:
a breath of fresh air.
Here I am.

Hagman
Every summer I took a math course,
that’s what I was reaching for:
being a level ahead,
feeling proud,
like a breath of fresh air.
I did it.

Just grades is how they determine
success.
Your grades matter a lot.
It is heavy:
your degree,
your career,
your career path,
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everything.

Isabel

Tremaine
It’s two different intelligences:
being able to do well in school
and being able to actually use what you’ve
learned.
Some people just enjoy doing math
for the sake of math;
I really enjoyed being able to
know how much fabric to get.
Being able to practically apply your math
skills-
this is what math was meant to be used for.

Hagman
It’s two different intelligences there:
There’s being able to do well in school
and there’s being able to actually use
what you’ve learned in school.
Some people just enjoy doing math for
the sake of math…

I really like it when I can use math to do
something:
I have math skills to know how much
fabric to get.
To be able to calculate how much fabric
you need-
it’s successful because you’re using it
for something.

Ada

Tremaine
I’ve had a lot of struggles in math.
I’ve also had a lot of successes.
We all fail,
we’ve all been there.
I had to take a step back and
be resilient;
work around it;
put in the effort;
learn critical thinking;
I could pull through.
I know how to do this.
Cross it off a checklist?
That’s not what college is.
Further your education,
get something positive out of the
experience.
I was still successful because I didn’t give
up.

Hagman
I was killing it.
Getting nineties on my tests,
I did so good on their finals.
Running home to my parents-
bragging to my friends-
Hey, look, look at my scores, hahaha.

Grades are important,
but at the end of the day
I’ve learned from college
that grades aren’t everything.

In a college math classroom,
it’s more about learning something
and getting something out of it.

I need to get something out of it
and still care about my grade,
but not let that grade define me as much.

At the end of the day, it’s not all about
grades.
Now it’s like, okay, I’m growing up.
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As the reader is no doubt aware of after reading the poems, the set contains a myriad of
alignment and misalignment, both in phrase, theme, style, and structure. In each pair of poems,
we see stylistic differences between the authors’ poems which emphasize different aspects of the
students’ interviews: a key distinction we see is the use of more abstract descriptions of student
success versus more concrete descriptions of moments of success. The impact of this stylistic
difference varies by set of poems, with the least differences for Isabel and most for Ada. Here we
analyze Kenzie’s poems to exemplify these differences and provide brief additional analyses of
Isabel’s and Ada’s poems. 

We see that several phrases from Kenzie’s transcript were poetically juxtaposed in both
authors’ poems, such as the highlighting of how “they determine success”, as well Kenzie’s
“feeling proud” and experiencing “a breath of fresh air” upon achieving her goals. However, one
can see thematically that Hagman attends more closely to Kenzie’s concrete experiences that led
to mathematical success (in this case, taking a math course every summer), while Tremaine
utilized more abstract imagery to illustrate how Kenzie discussed her experience of success. The
reader may have also noticed Hagman’s use of two stanzas, versus the single stanza used by
Tremaine. In Tremaine’s poem, this “they” entity is presented as having more influence on
Kenzie’s own perspectives and experiences by nature of being a part of a unified poetic
narrative; the two stanzas utilized by Hagman present this entity as something which Kenzie
discusses but perhaps does not have as direct an influence on her own experiences, as the
experience of working hard to get “a level ahead” in mathematics is separate from what “they”
define success as. Further, Tremaine and Hagman both highlight structural parallelism in
Kenzie’s narrative; Tremaine juxtaposes “that’s where I want to be / that’s what I was reaching
for” and Hagman juxtaposes “your degree / your career / your career path.” Thematically, both
center on Kenzie’s hard work in mathematics as central to her definition of success, while
simultaneously painting nuanced interpretations of her transcript via poetic style and structure.

We see similar phrase and structure (mis)alignments in Isabel’s set of poems. Interestingly,
lines 1-6 in both poems draw from the same components of the transcript. Hagman splits their
poem into two stanzas, allowing for a clear distinction between the two intelligences alluded to
by Isabel, while Tremaine maintains a single stanza, reinforcing continuity of the overall theme
found in both poems of the exaltation of mathematical applications as a means of mathematical
success. Meanwhile, the most notably different set of poems are those constructed from Ada’s
narrative. Both in theme and in phrase choices, these two poems paint two different (albeit
complementary) pictures of Ada’s ideas of success. Tremaine’s poem focused on the imagery
and action phrases Ada used to describe her perseverance, attributing this perseverance as
immensely relevant to how she was describing success. Hagman attended more to Ada’s concrete
experiences in mathematics, including “getting nineties on her tests.” Both authors emphasize in
their poems the salience of Ada’s acknowledgement that she “needed to get something out of
[her mathematics courses]”–something more than a good grade–to feel successful. We are left
pondering these differences in what they tell us about students’ own definitions of student
success, and welcome this as a discussion point during the presentation. 

Discussion
The comparison of two researchers’ results when engaging with poetic transcription

methodology enables multiple perspectives on how these students defined their mathematical
success. A multitude of poetic interpretations of the data provides opportunity for nuance that
could not have been captured by a singular poem. Further, it makes space for discussion around
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the ways in which participant data can be varyingly interpreted, necessarily incorporating
discussion of the researchers’ perspectives on data presentation. This is especially evident with
the poetic interpretations present in Ada’s poetry, in which each poem emphasizes differing
components of her narrative of mathematical success. Glesne (1997) describes the creation of a
third voice when engaging in poetic transcription—one which is constructed from both the
participant’s and researcher’s experiences. Future work would more closely and critically
interrogate our own third voices—how our experiences and identities as researchers, and what of
the participant’s own experience we drew from, enabled these two irreplicable poetic
interpretations.

We also acknowledge the tensions brought forth in our experiences as researcher-poets; while
poetic transcription offers an opportunity to work toward “healing wounds of scientific
categorization and technological dehumanization” (Glesne, 1997, p. 214), it also maintains the
hegemonic power of the researcher, and thus the potential to privilege perspectives that are
already dominant in research spaces. In addition to explicit acknowledgement of this tension,
other poet-researchers have illustrated ways in which to centralize participants’ poetic voices in
the process, either through researcher-participant co-construction of poetry (Levinson, 2020),
tandem research poetry (Burdick, 2011), or with the researchers’ own transcripts as data from
which to engage in poetic transcription (Mercer-Mapstone et al., 2019). While not a possibility in
the context of this study, future work with poetic transcription could entail comparison of
multiple researchers’ poetic interpretations with poetic interpretations written by the participants
themselves to further highlight the subjective nature of research and deepen understanding of the
research topic at hand.

We also find it important to emphasize the joy that engaging in this particular methodology
brought to us as researchers; seldom is the researcher’s experience of researching brought into
academic discussion, but we find it particularly relevant here due to the inherent emotional
nature of poetic transcription, and its evidenced potential to grow our own research practices
(Romero, 2020). We find ourselves excited to discuss implications of the comparison of poetry
and appreciative of the opportunity to deeply engage with our participants’ perspectives in a
poetic, artful way.

In addition, future work with this data will employ computational analysis to rigorously
compare the poems, attending to differences in style, affect, and the use of concrete imagery
(Kao & Jurafsky, 2012). This analysis will add to our understanding of the application of poetic
analysis as a qualitative methodology for research in undergraduate math education, as well as
the potential benefit of creating multiple poems by multiple authors to gain a richer analysis. In
engaging in this comparison, we build upon prior scholarly work which challenges the notion of
objectivity in mathematics education research and invite others to join the discussion of both the
value of subjectivity and arts-based research to our field.
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Connections Pre-Service Teachers Make Between Social Justice and Mathematics 

Zareen G. Aga (Rahman) 
James Madison University 

This study explored pre-service teachers’ (PSTs’) initial experience connecting mathematics and 
social justice. This work is part of an on-going action research project on improving 
mathematics PSTs’ experiences in their methods courses, specifically focusing on culturally 
responsive mathematics teaching. Research stresses the need to prepare teachers who can teach 
a diverse student body, are mindful of differences in student backgrounds and, are cognizant of 
their own biases (Mark & Id-Deen, 2020; Brown et al., 2019; Gallard, Mensah, & Pitts, 2014; 
Johnson & Atwater, 2014; Lemons-Smith, 2013; Leonard, 2008; Lewis, Pitt, & Collins, 2002). 
PSTs developed lesson plans balancing both mathematics and social justice goals. Lesson plans 
were analyzed to find initial connections PSTs made between mathematics and social justice. 

Keywords: Pre-service teachers, mathematics for social justice, mathematics teacher education. 

A focus on equity and social justice is needed in mathematics education (NCSM, 2019; 
AMTE, 2020; Kokka, 2020). Research stresses the need to prepare teachers who can teach a 
diverse student body, are mindful of differences in student backgrounds and are cognizant of 
their own biases (Mark & Id-Deen, 2020; Brown et al., 2019; Gallard, Mensah, & Pitts, 2014; 
Johnson & Atwater, 2014; Lemons-Smith, 2013; Leonard, 2008; Lewis, Pitt, & Collins, 2002). 
Teachers must be able to look beyond their classrooms and see their role as a teacher in a wider 
context. They must recognize their responsibility to prepare responsible citizens who can use 
mathematics to change the world (Aguirre & Zavala, 2013). 

Existing frameworks can help mathematics teachers develop practices in line with this call. 
Examples of these frameworks include standards-based mathematics instruction (National 
Council of Teachers of Mathematics, 2000), complex instruction (Cohen, 1994; Cohen & Lotan, 
1995; Lotan, 2006), culturally relevant pedagogy (Ladson-Billings, 1994, 1995a, 1995b), and 
teaching mathematics for social justice (TMSJ; Gutstein, 2003, 2006). All these frameworks 
build on each other and emphasize teaching for understanding (Rubel, 2017). However, even 
with the existence of these frameworks it is challenging to teach novice teachers about pedagogy 
that connects social justice, culture, and mathematics (Gutstein, 2018). Teachers need to be 
proficient in making connections between mathematics and community, as well as developing 
their students’ awareness of the world (Gutstein, 2018; Freire, 1970). To prepare such teachers it 
is necessary to determine what skills they would need, and develop ways to cultivate these skills 
(Gutstein, 2018). To fill this need, the study focused on pre-service teachers’ (PSTs’) experience 
in a mathematics methods course. The guiding research question was: What initial connections 
do mathematics PSTs make between social justice and mathematics? 

Theoretical Perspective 
Teaching Mathematics for Social Justice (Bartell, 2013; Gutstein, 2006) or Critical 

Mathematics (Frankenstein, 1983; Gutierrez, 2002) is pedagogy that seeks to develop students’ 
conscientização (Freire, 1970). This means helping students understand content and become 
academically proficient, develop an awareness of inequities around them and begin to take action 
(Ayers, 2009; Kokka, 2019). This kind of teaching requires teachers to set two kind of goals, 
mathematics pedagogical goals and social justice pedagogical goals (Gutstein, 2006).  
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Teachers need to be mindful of both these goals as they work together to guide their students’ 
development of conscientização (Gutstein, 2006). Mathematics pedagogical goals include, 
reading the mathematical world, traditional mathematics success, and conceptual understanding 
of mathematics/learning how to use mathematics as a tool (Gutstein, 2006). To achieve the 
mathematics pedagogical goals, teachers can seek guidance from standards frameworks (e.g., 
national or state standards), textbooks or standardized assessments (Gutiérrez, 2002; Kokka, 
2020). On the other hand, social justice pedagogical goals focus on, grasping sociopolitical 
situations, taking action towards change, and developing positive identities (Gutstein, 2006). 
These identities include both cultural and social identities and are of particular importance for 
students who are not part of the dominant culture (Gutstein, 2006; Kokka, 2020). 

In addition to goals, teachers must develop and implement tasks that help students use 
mathematics to learn about their cultural context, such as, a task comparing students’ own 
neighborhood to those with different socio-economic status (Kokka, 2019). When implemented 
well, such tasks allow students to see the power of mathematics to learn about local social issues 
(Yang, 2009). While powerful, these tasks are employed in tandem with a district/textbook 
curriculum, and are used only 15% to 20% of the time (Gutstein, 2006). It is challenging for 
teachers to develop and implement mathematics tasks that develop students’ conscientização 
(Bartell, 2013; Gregson, 2013; Brantlinger, 2013; Rubel et al., 2016; Kokka, 2020), and as 
mentioned earlier, it is crucial to develop supports for them (Gutstein, 2018). 

The goal of this study was to learn from mathematics PSTs’ experience developing lesson 
plans that balanced both mathematics and social justice goals. PSTs’ developed lesson plans and 
made videos implementing them. Their lesson plans were analyzed to find the initial connections 
they made between mathematics and social justice. 

Research Methodology 
This study employs action research (Sagor, 2000) methodology to develop supports for PSTs 

inside mathematics methods courses. In particular, the goal of this project is to develop PSTs’ 
teaching philosophy and teaching practice connected to culturally responsive mathematics 
teaching (CRMT) and TMSJ. The study took place at a mid-sized university in the Mid-Atlantic 
region of the United States. Participants in the study were twenty-three PSTs enrolled in a middle 
school mathematics methods course during Fall 2021 and Spring 2022 semesters.  

PSTs were asked to develop lesson plans guided by the CRMT lesson analysis tool (Aguirre 
& Zavala, 2013). The CRMT tool was developed to help PSTs contextualize the mathematics 
they teach and to help them see their role as teachers who prepare their students to engage in the 
society (Aguirre & Zavala, 2013). It includes 8 dimensions: (1) intellectual support; (2) depth of 
student knowledge and understanding; (3) mathematical analysis; (4) mathematical discourse; (5) 
communication and student engagement; (6a) academic language support for ELL; (6b) use of 
ESL scaffolding strategies; (7) funds of knowledge/culture/community; and (8) social justice. 
The PSTs were required to include both mathematics and social justice standards (Learning for 
Justice, 2016). Open coding (Strauss & Corbin, 1998) was used to analyze the lesson plans and 
learn about the connections PSTs made between mathematics and social justice.  

Results 
PSTs favored some social justice standards in their lesson plans over others (please see table 

1). For example, standard 12 was used most frequently, students will recognize unfairness on the 
individual level (e.g., biased speech) and injustice at the institutional or systemic level (e.g., 
discrimination) (Learning for Justice, 2016). This standard was connected to the following 
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mathematics topics, evaluating and simplifying algebraic expressions, equivalent fractions, 
graphing linear functions and identifying the slope and y-intercept of a linear function, 
identifying the components of the coordinate plane, histograms, rational numbers, and solving 
linear equations. In general, students favored Probability and Statistics over other content 
strands. This was followed by Patterns Functions and Algebra, Numbers and Number Sense, 
Measurement and Geometry, Computation and Estimation, and Expressions and Operations. 

 
Table 1. The most commonly used social justice standards 
Standard  count SJ Standard 

12 7 Students will recognize unfairness on the individual level and injustice at 
the institutional or systemic level. 

6 6 Students will express comfort with people who are both similar to and 
different from them and engage respectfully with all people. 

9 6 Students will respond to diversity by building empathy, respect, 
understanding and connection. 

1 2 Students will develop positive social identities based on their membership 
in multiple groups in society. 

8 2 Students will respectfully express curiosity about the history and lived 
experiences of others and will exchange ideas and beliefs in an open-

minded way. 
10 2 Students will examine diversity in social, cultural, political, and historical 

contexts rather than in ways that are superficial or oversimplified. 
 
Here, I share examples to show connections that PSTs made between social justice standards and 
mathematics. In a 6th grade lesson, one PST connected, Measurement and Geometry to social 
justice standard 12. The lesson focused on identifying the coordinates of a point, and graphing 
ordered pairs in a coordinate plane. The PST planned to have students graph sets of ordered 
pairs. Each ordered pair would represent a residential unit, with the origin of the coordinate plane 
representing a hospital. Students would analyze the location of the housing units and their 
proximity to the hospital. They had prepared to ask questions such as: Compare and contrast the 
consequences of living closest to the hospital and furthest from the hospital? and If you could 
move the hospital anywhere on the coordinate plane, where would you move it and why?  

The PST stated that they wanted their students to discuss, the various advantages and 
disadvantages of living in a specific location. Standard 12 focuses on recognizing unfairness 
either on a personal or a systemic level and the PST had planned for their students to investigate 
the map of their local area to find essential resources (i.e., hospital, police station, school) with 
the goal to discuss systemic injustice and raise students’ awareness.  

Another PST developed a 7th grade lesson plan, using social justice standard 6, students will 
express comfort with people who are both similar to and different from them and engage 
respectfully with all people (Learning for Justice, 2016). The PST connected this standard to 
solving two-step linear equations. They started the lesson with a problem frequently found in 
standard mathematics textbooks (please see figure 1). Following this problem, they planned to 
ask questions to foster discussion focusing on both mathematics and accessibility. Their 
questions for the mathematics discussion were, What is the cost dependent on? How is this 
different for members vs. non-members? How does the membership fee affect the total cost? How 
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can we represent this problem using algebraic terms? What does each part of the equation tell 
us? How will we know when having a membership is a better deal? These questions would foster  
 
 
 
 
 
 

 

 

 

Figure 1. A Problem about student recreational activities. 

discussion about what the algebraic equations represent and the meaning of each part of the 
equation. In addition to the mathematics discussion question, they had prepared questions for 
what they called an “accessibility and implications discussion.” These questions were, Are 
amusement parks widely accessible? What determines who is able to go to amusement parks and 
who isn’t? What are other forms of entertainment/recreation that are not widely accessible? Why 
is this? What forms of entertainment/recreation are widely accessible? How do these differ from 
those that are not widely accessible? The PST explained that their goal was for their students to 
study and explore the accessibility of different forms of recreation. They shared that students 
should become aware that some students might be able to spend more time and money on 
recreational activities than others. Their lesson focused on awareness of similarities and 
differences between peers. 

In the last example, a PST developed a 7th grade lesson plan using social justice standard 9, 
students will respond to diversity by building empathy, respect, understanding and connection 
(Learning for Justice, 2016). They connected standard 9 to histograms, stem-and-leaf plots, line 
plots, and circle graphs. The goal of their lesson was for students to learn, How do histograms 
allow us to interpret data? How can you use intervals, tables, and graphs to organize data? Why 
do refugees flee their own country? What opportunities do refugees receive when they come to 
the United States? What age are the majority of refugees? At the beginning of the lesson, the  

 
Figure 2. A graph depicting refugee data. 

PST had planned to ask the students if they had any pre-existing knowledge on refugees and why 
refugees flee to other countries, and to have a class discussion. After the initial discussion, the 
PST had planned to show a video to the class on, What does it mean to be a refugee? (TED-Ed, 
2016) followed by asking the following questions: Why do refugees leave their home/country? 

The local amusement park sells summer memberships for $50 each. Normal 
admission to the park costs $25; admission for members costs $15. 

a) If Darren wants to spend no more than $100 on trips to the amusement 
park this summer, how many visits can he make if he buys a 
membership with part of that money? 

b) How many visits can he make if he does not? 
c) If he increases his budget to $160, how many visits can he make as a 

member? 
d) And how many as a non-member? 
e) Based on what you found above, after how many trips would having a 

membership be a better deal? Why? 
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What is the difference between migrants and refugees? What is a refugee camp? What data 
could be used on refugees to make a histogram? If I wanted to create a histogram on the age 
ranges of refugees, what would I label my x and y axis? 

Following a discussion, the PST had planned to share graphs depicting state data on refugee 
children (please see figure 2 for one such graph). The PST had prepared the following questions 
for their students to answer, using data from the graphs: Based on the histogram data what is the 
highest age range of refugees and what is the lowest? Why do you think so many refugees are 
young? How do histograms show the differences in distributions of data? List a couple of 
challenges that refugees could encounter at school? What are some actionable steps that you 
could take to help refugees in your local community? What is something new you learned today 
about refugees? This lesson plan had the potential to have the students learn about mathematics 
as well as develop awareness. It is noteworthy that lessons such as these that focus on statistics 
lend themselves well to connections between mathematics and social justice.  

Implications for teaching practice and future research 
The process of developing lesson plans allowed the PSTs to research social justice topics that 

would connect to a middle school population, and they began to make connections between 
specific contexts and mathematics. PSTs also challenged themselves to develop questions that 
would lead to discussions in their classrooms. Such discussions would focus on unpacking the 
mathematics content and helping students become aware of the world around them. This exercise 
had the potential to help PSTs develop their own awareness of the world, potentially leading to 
their development of conscientização (Freire, 1970).  

It was a challenging task for the PSTs to balance mathematics and social justice goals in a 
lesson. This finding is in line with existing research, as learning to balance mathematical and 
social justice goals is difficult and a long term pursuit (Harper, 2019; Bartell, 2013). Successfully 
balancing the two goals means being mindful during planning so that a focus on social justice 
does not take away from students’ development of mathematical proficiency (Moses & Cobb, 
2001; Harper, 2019). The PSTs began to experience this tension and would need further support 
to develop their own understanding of social justice in a mathematics classroom.  

Teaching for social justice is a long journey that requires teachers to connect their teaching to 
contexts that are relevant to them and their students (Cochran-Smith, 1999). This process takes 
time, perseverance, and reflection (Darling-Hammond, 2002; Bartell, 2013). Teachers who begin 
this journey must understand that it is not a short-term goal (Gutiérrez, 2009), as their thinking 
and practice will develop and grow with practice and reflection (Bartell, 2013). As teachers 
develop an understanding of teaching mathematics for social justice, the changes are reflected in 
their teaching goals and teaching practice (Bartell, 2013). For PSTs it is particularly important to 
reflect on their teaching experience to develop a sense of who they are as teachers, this identity is 
necessary for them to employ pedagogies that connect culture, social justice, and mathematics 
(de Freitas, 2008, Leonard et al., 2010). Experiencing the challenge of connecting mathematics 
and social justice goals, allowed the PSTs to start thinking about teaching for social justice. At 
this early stage, most of their lessons aimed to have their students become aware of their selected 
context. The PSTs did not plan to have deep conversations about why the issues existed or to 
discuss actionable steps that can be taken to address the issues. With continued support PSTs can 
not only focus on awareness but also learn to discuss possible solutions so their students can take 
action and feel empowered. Such practice is necessary for PSTs to engage in repeatedly, for 
them to become experts (Nasir et al., 2008). Future research will focus on guiding PSTs to 
develop their identity as teachers who connect culture, mathematics, and social justice.  
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Physics Students’ Interpretation of Matrix Multiplication 

 
 Pachi Her Michael Loverude 
 Oregon State University / CSU Fullerton  California State University Fullerton 

Most upper-division physics courses use mathematics beyond that encountered in the calculus 
sequence.  Matrix multiplication and eigentheory are used by physics students in courses 
including classical mechanics, optics, and quantum mechanics. While there have been recent 
investigations of student use of linear algebra in quantum mechanics, no prior work has 
examined how physics students approach this mathematics in other contexts. In this paper, we 
investigated the extent to which student interpretations of matrix multiplication could be 
characterized by those from Larson and Zandieh (2013): linear combination, system of 
equations, and transformations. We have examined student responses to written questions and 
used the results to develop an interview protocol to examine how physics students interpret 
matrix equations using the three interpretations to classify their responses. Results are shown 
from an interview sample of six undergraduate physics majors. 

Keywords: Linear Algebra, Mathematical Reasoning, Physics 

Introduction 
It is well established that upper-division physics courses have increased mathematical 

difficulty and that students in these courses encounter a variety of mathematical topics beyond 
calculus, including linear algebra and ordinary and partial differential equations. From linear 
algebra, matrix multiplication and eigentheory are used most in physics. The most well-known 
application is in quantum mechanics, but matrices are also used in other courses including 
classical mechanics and optics. Prior work on student knowledge of linear algebra in physics 
contexts has primarily focused on quantum mechanics (e.g, Wawro et al., 2020), which brings 
into play a set of conceptual and representational issues that may or may not reflect student 
understanding of the underlying mathematics. For this project, we have chosen to look at student 
interpretation of matrix multiplication in a broader array of topics, including some acontextual 
mathematical tasks as well as contexts drawn from classical mechanics and optics.  

 
Theoretical Framework 

Several models have been proposed to describe student use of mathematics in physics. In 
each, successfully executing the mathematical procedure in question is only one element of 
success. Redish and Kuo (2015) proposed a framework for student usage of mathematics in 
science courses describing stages of modeling, processing, interpreting, and evaluating. For the 
specific case of upper-division physics courses, Wilcox et al. (2013) proposed the ACER 
framework ‘to guide and structure investigations of students’ difficulties with the sophisticated 
mathematical tools used in their physics classes.’ In this framework, students activate the 
appropriate mathematical tool in addition to constructing a model, executing the math, and then 
reflecting on results. For earlier work, we were guided by the physical-mathematical model 
developed by Uhden et al. (2012). This model describes three skills used at the boundary of math 
and physics: mathematization (converting a model into mathematical expressions), technical 
operation (executing relevant mathematical procedures), and interpretation (translating a 
mathematical result into physical interpretations and implications). In a previous study, we 
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characterized student written responses to a number of tasks, and coded responses for each. 
Technical operation was seldom the most challenging for students; rather, more than half of the 
students had difficulty in converting a physical model into a matrix equation (mathematization) 
and relating eigenvalues to system behavior (interpretation) (Her & Loverude 2020). 

Given that interpretation of matrix multiplication is both a critical skill and a source of 
student difficulty, we focused the next portion of the study on how students interpret matrix 
multiplication. Larson and Zandieh (2013) described three mathematical interpretations of the 
matrix equation Ax=b among students in linear algebra courses: Linear Combination (LC), 
System of Equations (SOE) and Transformations (T). In previous work, Larson (2010) described 
two mathematical procedures to matrix multiplication, ‘Matrix Acting on a Vector’ (MAOV) and 
‘Vector Acting on a Matrix’ (VAOM) which can be connected to (T) and (LC), respectively. The 
three interpretations have distinct conceptual and procedural interpretations [see Table 1].  

Table 1. A brief description of each interpretation from Larson & Zandieh (2013) for the matrix equation, Ax = b.  

Linear Combination (LC) System of Equations (SOE) Transformations (T) 

• Vector x components act as 
weights that modify the column 
vectors of matrix A 

• Associated with ‘Vector Acting 
on a Matrix’ (VAOM) 

• x is a solution that coordinates the 
values for b with matrix A as 
coefficient entries 

• Matrix A operates on input vector 
x where vector b is the modified 
output vector  

• Associated with ‘Matrix Acting 
on a Vector’ (MAOV) 

 
Their work in the context of mathematics courses led us to consider the usage of these 

interpretations among physics students applying matrix multiplication in upper-division physics. 
In informal conversations with physics instructors, most expressed a strong preference for a 
transformation perspective, perhaps due to the use of matrix multiplication in quantum 
mechanics. This guided the formation of the following research questions, the first of which is 
addressed in this preliminary report: 

To what extent do physics students use each of the three interpretations from Larson & 
Zandieh, and do they express preference for any of the three? 

What relationship, if any, does the preference for interpretations have to solutions to physics 
tasks using matrix multiplication and eigentheory?  
 

Methodology and Data Analysis  
This project involves qualitative research on student learning. Data collection involved 

individual interviews with undergraduate physics students (N = 6) at a public university serving a 
diverse student population. All students were physics majors; one was a double major (computer 
engineering) and one had switched from engineering to physics. Their math and physics 
backgrounds were similar with some variations; in particular, three of the six students had taken 
a linear algebra course. All of the students had previously taken a course titled ‘mathematical 
methods in physics,’ intended to provide support in more advanced mathematics for later upper-
level physics core courses. The mathematical methods course included a brief (2-3 week) 
introduction to matrix multiplication and eigentheory. Four of six student had subsequently 
completed a quantum mechanics course in which matrix multiplication and eigentheory were 
used frequently. The interview sample included three men and three women; three were white, 
two Latinx, one Asian. 
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Due to COVID-19, our standard routine of conducting interviews in-person had to be 
modified for an online setting. The first three interviews were recorded and conducted through 
Zoom, and the remaining three were in person. The interview protocol was designed to collect 
information on how physics students think about matrix multiplication and analyze the bridge 
between their mathematical interpretations and their physical interpretations. The interview 
consisted of nine questions that were separated into three sets. The first set were acontextual 
tasks intended to explore how students interpreted matrix multiplication without any physical 
context [see Figure 1] and were influenced by prior RUME studies (Henderson et al., 2010). The 
second set focused on reflection and rotation matrices along with the eigenequation. The last set 
of questions included three different physics concepts that used matrix multiplication and the 
eigenequation (optics, coupled blocks on springs, and a quantum spin operator), though some 
students did not complete all of these tasks. The first set of tasks was used to probe which of the 
interpretations, if any, were articulated by students Questions 1 and 2 provided examples of 
matrix multiplication and a matrix equation and asked students for their interpretation; question 3 
provided three expressions associated with (LC), (T), and (SOE), respectively, and asked 
students to describe how, if at all, each expression represented the matrix equation.  

Portions of the interview transcripts were coded iteratively by two members of the research 
team. Interview coding was in part emergent and in part driven by prior research. The primary 
focus of our analysis procedure was to investigate the students’ interpretation  

 
Figure 1. The first set of interview tasks.  

rather than assessing ‘correctness’. The initial analysis was based on the interpretations described 
by Larson and Zandieh (2013); student utterances were coded as (LC), (T), or (SOE).  The 
grammar of student utterances was part of the analysis; e.g., transformation interpretations were 
often characterized by transitive verbs like ‘manipulated,’ ‘changed,’ or ‘rotated.’ MAOV and 
VAOM were coded and associated with (T) and (LC), respectively. The transcripts were also 
examined for evidence of interpretations that were not accounted for by any of these codes. 

Initial analysis suggested that additional refinements would be required. Some student 
responses seemed to shift depending on whether they were primarily procedural or conceptual.  
This led to creating a parallel set of codes in which responses were identified as being procedural 
(relating to the method used to evaluate the mathematical expression, e.g., ‘the first row with the 
column of the second matrix’), conceptual (how they make sense or meaning of the expression or 
outcome, e.g., ‘change a vector from one initial state to a final state’), graphical, or none of these. 
An utterance might be coded as, say, both procedural and LC. These distinctions mirrored 
analysis in Larson and Zandieh (2013) as well as other recent work (Serbin et al., 2020). The 
researchers worked to resolve differences in coding and adjusted the codes appropriately; one 
example of this process is described in the Results section. The analysis process consisted of 
grouping terms and sections of the interview transcripts and examining the resulting data set for 
trends and patterns. Responses were further examined for either, on one hand, consistency of 
interpretation or, on the other, fluid, changing interpretations across different tasks. 
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Results 
Table 2 presents a summary of our analysis. Student descriptions of matrix multiplication 

were generally consistent with the three descriptions (T), (LC) and (SOE). Nearly all student 
statements were readily aligned to one of the three. 

There was some degree of preference for the Transformation interpretation (T), with some 
variation. All six students incorporated the (T) interpretation at some point. Three of the six 
students consistently interpreted matrix multiplication, in a variety of tasks, in terms of the 
transformation interpretation and the associated MAOV description, with few or no codes for 
(LC) or (SOE). This was a clear signal throughout these three interviews, and was often 
accompanied by explicit rejection of, or confusion with, equations in Question 3 associated with 
other interpretations. Three of the six students showed signs of more fluid interpretations, with 
all articulating (LC) and/or (SOE) interpretations, though again all shifted to (T) at some point 
during the interview. Most of the students offered both procedural and conceptual support for 
their preferred explanations, but one of the six remained focused on procedural knowedge and 
offered little in the way of conceptual interpretation. 

Below we present extended examples of responses given by students in different categories: 
student A, a consistent user of T interpretations, and student C, whose responses were coded as 
supporting all three of the interpretations at various parts of the interview.  

Table 2. A summary of student backgrounds and responses. LA/QM refers to whether students had completed 
linear algebra and quantum mechanics, respectively. Conc/Proc = conceptual and procedural. 

Student A B C D E F 
Major(s) Physics Physics Physics 

(formerEng) 
Physics Physics 

+CompEng 
Physics 

LA / QM Y/Y Y/Y Y/N Y/Y Y/Y Y/N 
Initial / Final 
Interpretation 

T / T T / T LC / T T / T SOE / T LC / T 

Stable/Fluid Stable Stable Fluid Stable Fluid Fluid 
Conc/Proc Both Proc Both Both Both Both 

 
Student A 

Student A was coded as consistently using a (T) interpretation throughout the interview. For 
the first two questions, Student A immediately described characteristics (T) interpretations, e.g., 
using terms ‘manipulated’ and ‘transformation matrix’: “So uh I see this as we got some of 
vector quantity here and it’s being manipulated by some sort of transformation matrix.” 

Student A’s responses further suggested a strong association of the (T) interpretation with the 
procedure of matrix multiplication. On question 3 he immediately chose the second equation and 
commented that choices (i) and (iii) were difficult to parse conceptually. He was unsure whether 
these were even mathematically equivalent, stating that (iii) was ‘divorced from the whole 
process of matrix multiplication.’ After some discussion, student A performed procedures to 
reproduce the expressions, and once he was satisfied that all three were representations of the 
matrix equation, he reversed course somewhat and stated that choice (i), the (LC) interpretation, 
was the best representation. However, his conceptual description in support of choice (i) was 
coded as a (T) interpretation as he referred to ‘transforming’ the elements of the vector and ‘what 
the matrix is doing,’ rather than the weighting of column vectors associated with (LC). Indeed, 
he interpreted all three expressions in terms of (T), though the intent was that each expression 
mapped to one of the three interpretations. 
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Student A: “…number (i) seems like it is more representative…it represents what the matrix 
is doing more than the other two. So the fact that this [points to first column of matrix A] is 
transforming that [points at x] and this [points to second column of matrix A] is transforming 
that [points at y] kind of represents the idea of the matrix multiplication a bit more than—a 
lot more than this [option (ii)] and more than this [option (iii)] I would say. Because we see a 
component of the matrix acting on sort of a scalar.” 

 
Student C 

Coding student C’s responses could be challenging, in part because she used unconventional 
terminology. For example, in her response to question 1, she explained that while the knew the 
accepted terminology, she preferred to refer a 2 by 2 matrix as a “2 by 4.”  She gave responses 
consistent with each of the three interpretations at different moments in the interview, offering 
both procedural and conceptual explanations. In her initial procedural response, she showed 
multiplying the rows of the matrix with the column vector, consistent with MAOV. However, 
her subsequent conceptual description was coded as being consistent with VAOM and thus (LC). 
In question 2, she described the matrix equation as: “�

𝑥𝑥
𝑦𝑦� is modifying �3 5

2 7� where �
𝑥𝑥
𝑦𝑦� would 

be some arbitrary modification being performed to get an arbitrary outcome �𝑎𝑎𝑏𝑏�.” The vector 
‘modifying’ the matrix suggests VAOM, but written work was consistent with MAOV.  

Ultimately, Student C concluded that choices (i) and (iii) were possible representations of the 
matrix equation but was ambivalent because she could not fully track their procedures. She 
identified choice (ii) as ‘no representation’ and rejected its validity altogether. 

 
Conclusion and Implications for Future Work 

Analysis reveals some patterns that may have implications for instruction as well as future 
research efforts. Three of the six subjects showed a strong and consistent preference for the (T) 
interpretation. While each of the choices in task 3 was intended to support one interpretation, 
these students provided (T) interpretations for all three. The other students all used (T) at some 
point but offered more fluid responses, shifting among the interpretations. The preference for (T) 
interpretations may reflect a difference in disciplinary usage, as recent experiences with matrix 
multiplication came in physics courses that likely emphasized the (T) interpretation above others. 

While the sample is small, two additional patterns are of note. First, the three students who 
had the most consistent (T) interpretations had all completed two semesters of quantum 
mechanics, and two of the three who shifted among interpretations had not yet completed the 
course. Quantum mechanics instructors and texts frequently use language like ‘the operator acts 
on the vector’, which seems to be consistent with the (T) interpretation. Second, the two students 
with engineering backgrounds were both among those who used other interpretations; this may 
suggest additional disciplinary influences.  

Analysis is ongoing and later publications will include analysis of later parts of the 
interviews including physical contexts, as well as written problems developed based on these 
interview tasks. Informal discussions with instructors for relevant physics courses suggest a 
marked preference among at least these physics instructors for the (T) interpretation, possibly 
suggesting a further avenue of inquiry. 
 

Acknowledgements  
Supported in part by NSF grant PHYS-1912660 and the Black Family Foundation.  

25th Annual Conference on Research in Undergraduate Mathematics Education 1137



References 
Andrews-Larson, Christine. (2010). Conceptualizing Matrix Multiplication: A Framework for 

Student Thinking, an Historical Analysis, and a Modeling Perspective. ProQuest LLC. 
Henderson, F., Rasmussen, C., Sweeney, G., Wawro, M, & Zandieh, M. (2010). Symbol sense in 

linear algebra. Proceedings of the 13th Annual Conference on Research in Undergraduate 
Mathematics Education, Raleigh, NC.  

Her, P., & Loverude, M. (2020). Examining student understanding of matrix algebra and 
eigentheory. In S. Wolf, M. B. Bennett, & B. W. Frank (Eds.), Proceedings of the 2020 
physics education research conference (pp. 210–215). American Association of Physics 
Teachers.  

Larson, C., Zandieh, M., Rasmussen, C., & Henderson, F. (2009). Student interpretations of the 
equals sign in matrix equations: The case of Ax=2x. In 12th Annual Conference on Research 
in Undergraduate Mathematics Education. Raleigh, North Carolina. Retrieved from 
http://sigmaa.maa.org/rume/crume2009/ 

Larson, C., & Zandieh, M. (2013). Three Interpretations of the Matrix Equation Ax=b. For the 
Learning of Mathematics, 33 (2), 11–17.  

Redish, E. & Kuo, E. (2014). Language of Physics, Language of Math: Disciplinary Culture and 
Dynamic Epistemology. Science & Education 24.  

Serbin, K.S., Robayo, B.J.S., Truman, J.V., Watson, K.L., & Wawro, M. (2020). Characterizing 
quantum physics students’ conceptual and procedural knowledge of the characteristic 
equation, Journal of Mathematical Behavior 58, 100777. 

Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2011). Modelling Mathematical 
Reasoning in Physics Education. Science & Education, 21(4), 485–506. 

Wawro, M., Watson, K., & Christensen, W. (2020). Students’ metarepresentational competence 
with matrix notation and Dirac notation in quantum mechanics. Physical Review Physics 
Education Research, 16(2), 020112. 

Wilcox, B. R., Caballero, M. D., Rehn, D. A., & Pollock, S. J. (2013). Analytic framework for & 
students’ use of mathematics in upper-division physics. Physical Review Special Topics - 
Physics Education Research, 9(2). 

 
 
 
 
 

 
 

25th Annual Conference on Research in Undergraduate Mathematics Education 1138

http://sigmaa.maa.org/rume/crume2009/


   
 

   
 

 

“Hey, I am doing it!” Developing the Mathematics Identity of  
Latin* Students in a Specifications Grading Calculus Course 
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Calculus courses should embrace innovative pedagogies that promote Latin* students’ 
mathematics identity development. One such pedagogy is specifications grading, which might 
foster students’ growth-mindset and perseverance in mathematics. In this study, we examine the 
mathematics identity development of two Latin* students’ in Calculus courses with specifications 
grading, and we compare this development to that of a student not enrolled in a specifications 
grading course. We compare the changes in the students’ mathematical competence and the 
changes in their sense of recognition as a doer of mathematics. We discuss how aspects of the 
specifications grading pedagogy can contribute to students’ mathematics identity development.  

Keywords: Alternative Grading, Specifications Grading, Mathematics Identity, Calculus  

For many, mathematics is a formidable academic challenge, especially at the college 
level (Roska et al., 2009; Weisburst et al., 2017). Indeed, despite recent significant gains in 
Latin* students pursuing mathematically-oriented degrees (Crisp & Nora, 2012), still remaining 
is a significant underperformance of Latin* students in entry-level mathematics college courses 
(Otero et al., 2007; Solórzano et al., 2013; Sparks & Malkus, 2013). Even though Latin* students 
have the capability of succeeding in college-level mathematics (Cole & Espinoza, 2008; Crisp & 
Nora, 2010), the mathematical under-preparedness experienced by many Latin* college students 
has even led researchers to designate Calculus as a gatekeeper course (Norton et al., 2017; 
Pyzdrowski et al., 2013; Suresh, 2006), or a course that (un)intentionally impede many Latin* 
and other underserved students from pursuing mathematically-oriented degrees and careers 
(Convertino et al., 2022). Despite these hindrances, however, research has demonstrated that 
fostering mathematics educational spaces in which students develop a stronger sense of self, or 
mathematics identity, significantly impacts their mathematics perseverance and success (e.g., 
Authors, in press; Matthews, 2020; Miller-Cotto et al., 2020; Morales & DiNapoli, 2018).  

To contribute to the ongoing efforts for more equitable educational experiences for 
undergraduate Latin* students, especially in gatekeeper mathematics courses, we must shy away 
from pedagogies that rely on archaic dispositions about how people learn. Instead, we must opt 
for pedagogies that foster stronger mathematical identities by adopting an asset-based orientation 
towards all learners, including Latin* students. For that reason, we report our pilot efforts in 
implementing specifications grading Calculus I courses in Spring 2022, a pedagogy based on the 
idea of viewing learning as a process achievable by everyone rather than a result obtained only 
by a few (Nilson, 2015). This study was guided as follows:  

1. How does the mathematics identity development of Latin* students enrolled in a 
specifications grading Calculus I course compare to the mathematics identity 
development of Latin* students enrolled in a non-specifications grading course? 

2. What aspects of specifications grading foster students’ mathematics identity 
development? 
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Literature Review and Theoretical Background 

 
Mathematics Identity and its Constructs 

Adams (2018) gives a clear definition of mathematics identity as “the dispositions and 
deeply held beliefs that students develop about their ability to participate and perform effectively 
in mathematical contexts and to use mathematics in powerful ways across the context of our 
lives” (p. 121). Furthermore, Cribbs et al. (2015) offer an explanatory model for mathematics 
identity by focusing on students’ self-perceptions in three constructs, namely mathematics 
interest (i.e., how a student perceives their interest in mathematics), recognition (i.e., how a 
student perceives their external recognition, or lack thereof, as mathematics doers), and 
competence/performance (i.e., how students perceive their comprehension and performance of 
mathematics). As shared by Cribs and colleagues (2015), self-perceptions about these three 
constructs significantly informs students’ mathematics identity, and this has the capacity to 
influence students’ goals and participation in mathematics, including the degree of choosing, or 
not, their future careers in STEM. Therefore, it is crucial for educators to understand and 
empower students’ mathematics identity, especially among marginalized student populations, 
and let that guide their classroom interactions and practices so that students’ self-perceptions in 
relation to mathematics can be positively impacted (Boaler & Greeno, 2000; Cribbs, et al., 
2015). 
 
Specifications Grading 

We argue that specifications grading as a pedagogical framework provides us with an 
educational space that can foster stronger mathematical identities. For instance, instead of 
awarding points for assessments, students are given specifications on assignments, or learning 
objectives, and these are assessed via a more asset-oriented process that measures progress rather 
than correctness. Students are also provided with ample opportunities to revise their work based 
on instructor feedback and resubmit it until they meet the learning objective at a satisfactory 
level. In other words, specifications grading adopts a growth-mindset orientation towards 
learners, believing that all learners have the capacity to overcome setbacks in their learning 
trajectories. As a result, specifications grading has been shown to provide students with a sense 
of agency as they obtain a greater control over their mathematical trajectories, not to mention 
with a more authentic and equitable reflection of their proficiency in their respective courses 
(Boesdorfer, et al., 2018; Katzman et al., 2021; Stange, 2016; Talbert, 2017; Tsoi et al., 2019). 
Empirical research in this regard, however, remains scarce (Beatty, 2013; Post, 2017; Toledo & 
Dubas, 2017;). The gap is even more notorious when we consider the positive impact that a 
specifications grading pedagogy can have on Latin* students’ mathematical identity 
development. For that reason, we aimed to explore the effects that a specifications grading-
Calculus I course could have on Latin* students’ mathematical identities. 

 
Methods 

We collected data at a Hispanic-Serving Institution in the southwest.  In Spring 2022, our 
institution had 14 sections of Calculus I with approximately 500 students. We implemented the 
specifications grading course design to 9 sections with approximately 300 students. We divided 
the content of the course into 29 learning objectives that were assessed throughout the semester. 
Our assessments consisted of group worksheets, exams, and online homework. The mastery of 
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every learning objective was tested on both a worksheet and an exam. If a student failed to show 
mastery of a learning objective on a worksheet on the initial submission, we allowed the student 
to resubmit. If a student failed to show mastery of a learning objective on an exam, the student 
was provided with opportunities to retest. Retesting sessions were available weekly after the first 
exam until the end of the semester. In our traditionally-graded Calculus I sections, a student’s 
grade was based on quizzes, group work, exams, and homework with no opportunities for re-
assessments. All 14 sections were expected to teach the same content.  

To compare the mathematics identities among our Latin* students, we adapted Cribbs et al.’s 
(2015) well-established, 12-item mathematics identity survey instrument. Following a 5-point 
Likert-scale, it not only quantifies the mathematics identity of an individual, but also the three 
subconstructs of mathematics identity: self-perceived interest, recognition, and competence/ 
performance in mathematics). Additionally, all individual scores were scaled between one (1) 
and (5) to facilitate its comparisons within and across students. This meant that each student who 
took the survey had four different scores representing each construct, all within a 1 – 5 scale. The 
surveys were given during the second week of classes and on the third-to-the-last week of 
classes, respectively. In all, the survey was taken by 218, mostly Latin*, students enrolled in 
Calculus I. Out of the total, 119 enrolled in one of the 9 courses that were implementing 
specifications grading. These students were mostly 1st generation college students pursuing an 
Engineering, Biology, or health professional-related major.  

Eight survey participants volunteered to participate in an individual follow-up interview. We 
focus on three of these participants for this preliminary report. To exemplify the most diverse 
types of cases studies, a common methodology in case study research design (Seawright & 
Gerring, 2008), we selected three cases of Latin* students, Katie, Oscar, and Carlos 
(pseudonyms) who demonstrated low to mid-range mathematics identity scores in the pre-
survey. Katie and Oscar were enrolled in a Calculus I course using specifications grading, while 
Carlos was enrolled in a Calculus I course without specifications grading. Individual semi-
structured interviews (Bernard, 1988) were conducted virtually with each of the three 
participants. The interview protocol was designed according to the components of Cribbs et al.’s 
(2015) model for mathematics identity. Follow-up questions were asked as needed for 
clarification and elaboration. These interviews were recorded and transcribed. 

We analyzed the interview transcripts by using inductive coding (Miles et al., 2013) to 
classify the themes present in the participants’ interview responses. We performed axial coding 
to organize our codes according to the constructs of interest, competence, and recognition. We 
then considered the results of the overall survey responses to inform our decision regarding the 
focus of further qualitative analysis. In doing so, we found that students in classes with 
specifications grading had higher scores on competence/performance and recognition than those 
not enrolled in such courses. Therefore, we chose to focus our qualitative analysis on the three 
students’ perceptions of their competence/ performance and recognition in doing mathematics.  

 
Results 

Spider-web charts of the participants’ mathematics identity scores measured on the surveys 
are in Figure 1, with mathematics identity, competence/performance, interest, and recognition 
scores plotted on each of the four axes. The grey region on the charts represents the students’ 
pre-survey scores and the teal region the post-survey scores. These charts illustrate the change in 
Katie’s, Oscar’s, and Carlos’s scores on the pre- and post-surveys. Katie and Oscar, who 
participated in a specifications grading course, both demonstrated large increases of one to three 

25th Annual Conference on Research in Undergraduate Mathematics Education 1141



   
 

   
 

 

points in every measured score of mathematics identity and its subcomponents. Carlos, who did 
not participate in specifications grading, had small increases in his mathematics identity, 
competence, and interest scores, but his recognition score did not change. In what follows, we 
discuss the results from the qualitative analysis of participant’s interview responses, focusing on 
their perceptions of their competence and recognition in being a doer of mathematics. 
 

   
 

   (a)     (b) (c) 
Figure 1. Spider charts demonstrating changes in Katie’s (a), Oscar’s (b), and Carlos’s (c) pre- and post-survey 

scores on measures of mathematics identity, competence, interest, and recognition. 
 
Students’ Competence/Performance in Doing Mathematics 

Katie and Oscar reported struggling in their prior mathematics courses:  “I [Katie] had an 
overwhelming plate on my workload, and so I would either fall behind or just keep struggling 
with that part of the work. I kinda felt alone, I guess, back then… I had to drop the class.” 
Similarly, Oscar referenced his prior Calculus course experience as “a dooming failure,” sharing 
the negative feelings that failing had on him,  

“You’re just like, ‘Well I’m never going to finish. This is not working,’ and you know, all 
those red X's and stuff like that, it's just puts you down man. It puts you down. You're like 
‘No I don't want to do this anymore. It's not worth it.’”  

In all, they reported feeling overwhelmed and unmotivated to “deal with” their failures. 
Furthermore, Oscar referred to traditional grading as “either you pass or you don’t pass,” 
highlighting how traditional grading acts as gatekeepers for many.  

Once in the specifications grading Calculus I course, however, Katie and Oscar demonstrated 
higher confidence in their competence in doing mathematics in their post-course-survey scores 
and during the interviews. As shared by Katie, “I am confident with myself…I know what not to 
do and what I’m capable of doing on my own.” Oscar also described his change in confidence as, 
“You know I thought…I’m never going to pass Calculus. Yes, you can. You can pass it if we put 
hard work and dedication to it. It is reachable.” To this, Oscar attributed his change in confidence 
to seeing his progression of passed learning objectives: “You start seeing that you're making 
progress. That motivates you, and that amplifies your performance and gives you more 
confidence…it gives me confidence like ‘Hey, I’m doing it!’…It’s a boost to your confidence in 
your performance to do math.” Carlos, on the other hand, self-reported a decrease in his 
confidence from high school to his traditionally-graded Calculus I: “I’m doing these college 
courses, and they're more difficult, and there's not that much time… I’m struggling more to 
really grasp at it… specifically in math where I've been struggling the most.” 

Overall, Katie and Oscar, who were in a specifications grading course, demonstrated 
increased confidence in their competence in doing mathematics. Oscar, for example, attributed 
this change to aspects of specifications grading. On the other hand, Carlos, who was not in a 
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specifications grading course, self-reported a decrease in confidence, which he attributed to his 
struggle with the fast-paced Calculus course that moved on to the next topic before he grasped 
the prior one. 
 
Students’ Recognition as a Math Person 

Katie and Oscar both increased their measured recognition scores between the pre- and the 
post-survey, while Carlos showed no change in his recognition score. In the interviews, we 
further investigated their perceptions of whether their family, friends, and mathematics 
instructors recognized them as a math person. All three participants claimed that their friends and 
family recognized them as a math person, and they gave anecdotal evidence about helping their 
friends with doing mathematics problems. Carlos expressed frustration that his family and 
friends “definitely” perceived him as a math person: “It's frustrating because… I know that I'm 
not that much. But unfortunately, they keep this illusion, and I’m forced to be pushed down this 
path that they think I am on, but I’m not.” Carlos did not perceive himself as a math person and 
was frustrated that others did because he thought he could not meet their expectations.  

After taking the course with specifications grading, Katie and Oscar reported that their 
instructors recognized them as a math person. Katie explained, “I think [my instructor] gives me 
praise for things I do correct and asks me if I'm getting it correct, so I think she does.” She 
referenced the feedback she obtained from the instructor, which is part of the specifications 
grading process that informs students’ revisions. The instructor’s positive feedback seemed to 
give Katie a sense of the instructor’s recognition of her as a math person. Carlos, who was not 
enrolled in a specifications grading course, reported that his instructor saw him as a math person 
“no more than anyone else.” This interview response aligns with Carlos’s low score for 
recognition from the survey. Overall, Katie and Oscar reported that their instructors recognized 
them as a math person, but Carlos did not. The use of instructor feedback in specifications 
grading may allow students to perceive their instructor’s recognition of them as a competent doer 
of mathematics. 

 
Discussion 

Implementing innovative pedagogies, such as specifications grading, has the potential to 
foster students’ mathematics identity development. Specifications grading realizes this by 
adopting a growth-mindset that provides students with multiple opportunities to meet their 
mathematics learning objectives. However, preliminary evidence suggests that specifications 
grading may also provide Latin* students with educational spaces that may take advantage of 
Latin* students’ cultural wealth (Yosso, 2005), or the idea that Students of Color possess a 
plethora of capital that, when channeled into their education, can serve as critical factors that 
contribute to students’ success in STEM (Samuelson & Litzler, 2016). Because of this, future 
studies should also explore to what extend do Latin* students’ aspirational capital (Yosso, 
2005), or their ability to maintain hopes and dreams for the future despite the challenges faced as 
marginalized populations, may be catapulted when they are provided with low-stakes educational 
spaces in which they feel more in control of their academic trajectories. Furthermore, their 
navigational capital, or their abilities to traverse White-dominated social constructs, like 
traditional Calculus curricula, could allow them to traverse their specifications grading Calculus 
I course with more ease given that the learning space values persistence, yet another critical 
characteristic of many Students of Color. Combined, these two forms of capital could also have 
the capacity to bolster Latin* students’ success in Calculus and STEM in general; however, 
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further studies are necessary. We propose the following discussion question for the audience: 
What further analyses can help us explore the connection between specifications grading and 
Latin* students’ mathematics identity development? Also, it seems that specifications grading 
may also take advantage of Latin* students’ cultural wealth. If so, what specific characteristics of 
specifications grading accomplishes this?   
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Implementing and Scaling-Up of Research-Based Precalculus Curriculum 
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Small-scale teaching experiments focused on how students reason about exponential functions 
provide an incredibly useful foundation when thinking about the design of classroom tasks. 
However, scaling-up certain critical features of these experiments such as focused and 
prolonged instruction on a single topic is unrealistic for those teaching at the university level. 
Drawing on research on covariational reasoning, exponential functions, and design-based 
research methodology, we developed and implemented two interactive lessons with the goal of 
enhancing students’ understanding of exponentiation and covariational reasoning. In particular, 
we sought to identify the quantities and relationships that students focused on during classroom 
tasks and the ways in which the tasks could be refined to support students’ understanding of 
exponential covariation. From this analysis, revisions made to the curricular materials and other 
implications for research and teaching are discussed.  

Keywords: Precalculus, Covariational Reasoning, Exponential Functions  

Researchers in undergraduate mathematics have paved the way for the rise in conceptually 
oriented undergraduate mathematics courses throughout universities in the United States (e.g., 
Thompson & Carlson, 2017). For many universities, however, implementation of these courses is 
constrained by several factors such as large class sizes, lack of research-based curriculum 
materials, and lack of professional development and support for instructors (e.g., Deshler et al., 
2015). While many theories exist about instructional means of supporting conceptually oriented 
undergraduate mathematics learning, there is still a gap in the knowledge of how to scale-up the 
research findings from these small-scale teaching experiments to instruction and curriculum 
design in large university courses. This study seeks to fill this gap in the literature by developing 
and modifying classroom tasks from small-scale teaching experiments to support students’ 
reasoning about exponential covariation in the scaled-up setting of a large undergraduate 
precalculus course. In particular, we sought to identify the quantities and relationships that 
students focused on during the classroom tasks and the ways in which the tasks could be refined 
to support students’ understanding of exponential covariation in this scaled-up context.   

Literature Review   

Quantitative and Covariational Reasoning  
Quantitative and covariational reasoning have been shown to be foundational reasoning 

abilities important for learning about functions and other related mathematical concepts (e.g., 
Carlson et al., 2002; Oehrtman et al., 2008; Thompson & Carlson, 2017). When students reason 
quantitatively, they are able to “conceptualize measurable attributes of some object or situation” 
(Madison et al., 2015, p. 56) and the relationships between these attributes. This reasoning serves 
as a basis for covariation which entails coordinating how two quantities change in relationship 
with each other (Thompson & Carlson, 2017). Instruction aimed at the development of 
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quantitative and covariational reasoning has been shown to improve student learning outcomes in 
undergraduate precalculus and prepare students for success in future mathematics courses such 
as calculus I (Carlson et al., 2010; Carlson et al., 2015).  

 
Exponential Functions  

Historically, instruction on exponential and logarithmic functions has been based on the ideas 
of exponentiation as repeated multiplication and as logarithms as either repeated division or 
simply as the inverse to exponentiation (Ellis et al., 2012; 2015; Kuper & Carlson, 2020). Recent 
studies (e.g., Kuper & Carlson, 2020) have found that students’ understanding of exponential and 
logarithmic functions is greatly improved when they are given opportunities to reason 
quantitatively and covariationally.   

Ellis et al. (2012; 2015) analyzed three 8th grade students’ reasoning while working in the 
context of a magical growing cactus named the Jactus to explore the conceptual shifts that 
students made to reason productively about exponential growth. These shifts included moving 
from a repeated multiplicative view of exponentiation to the coordination of constant 
multiplicative ratios between consecutive output values with constant additive changes in 
consecutive input values. An example of this is students’ coordination of the ratio between the 
Jactus’ heights at different times and the elapsed growth time. In other words, when given the 
Jactus’ height at weeks 1, 2, and 3, students were able to divide the successive heights and 
coordinate this multiplicative ratio with the elapsed growth time of 1 week to come to the 
conclusion that the Jactus’ height doubles every week. Ellis and collaborators observed students’ 
levels of correspondence and covariational reasoning for repeated consecutive input values 
greater than a one-unit change preceded their productive reasoning with non-natural exponents. 
For example, students had to understand how to reason about the ratio between the Jactus’ 
heights at 2 or 3 week intervals (i.e., the Jactus triples every 2 weeks as opposed to every week) 
before they were able to productively reason about the ratio of heights at 1 day intervals. For 
example, the students were told the Jactus doubles in height every week and were asked to find 
its height at 0.25 weeks. Productive covariational reasoning about these non-natural exponents 
occurred after students were familiar with natural numbers larger than 1 as the exponent.     

Methodology 
The analysis presented here is part of a broader study aimed at identifying and analyzing the 

key features of task design and classroom instruction that are beneficial for student learning 
when attempting to scale-up teaching experiments to whole classroom settings. We begin this 
work by developing and modifying classroom tasks used in prior teaching experiments (i.e., Ellis 
et al., 2012; 2015) to support students’ reasoning about exponential and logarithmic covariation 
in the scaled-up setting of a large undergraduate precalculus course. We used design-based 
research methodology because its purpose is to simultaneously “develop a class of theories about 
both the process of learning and the means that are designed to support that learning” (Cobb et 
al., 2003, p. 10). The strength of this methodology for the purpose of scaling up curriculum and 
instruction is that we are able to utilize the empirical evidence from studies such as those 
described in the literature review to analyze and test which features are most crucial for students 
learning when in the new setting of a large undergraduate precalculus course.  

Setting 
This study took place at a large research university in the Southeast United States. The 

participants were 30 undergraduate precalculus students enrolled in a six-week course which 
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included both lecture and lab or recitation sessions. Due to the accelerated nature of a six-week 
course, students met daily for lectures and twice weekly for lab sessions. During one lab meeting 
students took a weekly quiz in lieu of unit tests. In the other lab, students worked in small groups 
of 3–4 on assignments created by the research team which drew on literature such as that 
described above. The purpose of these labs was to support development of quantitative and 
covariational reasoning as well as deepen their understanding of key mathematical concepts. For 
this study, the constraints of this course structure were a crucial part of the design of lab tasks. 
For example, lab sessions were limited to 60 minutes and the only assistance that students 
received outside of their small peer group were from their instructor, a graduate teaching 
assistant, and the first author of this report. Unlike small-scale teaching experiments where one 
teacher works consistently with 2–3 students, our design needed to account for having two to 
three instructors working with 30 students during a single lab section. 

 
Data Sources 

Students’ anonymized written work from the labs were used as the primary source of data 
analyzed for this study. In total there were six groups of 3–4 students who worked through 6 lab 
activities. Each lab consisted of a brief pre-lab assignment, a lab activity, and an exit ticket. 
Additional data that informed our lab revision process and analysis came from field notes taken 
by the first author during labs and from debrief meetings with the instructor for the course and 
the research team. Since the focus of this particular study was primarily on students’ 
understanding of exponential functions with an additional emphasis on quantitative and 
covariational reasoning, we decided to limit our analysis to the lab which introduced these 
concepts.  

The Mathematics. The problem context of the lab was Alice in Wonderland. In the pre-lab 
activity, students were expected to find the number of sips of potion needed for Alice to fit 
through the door when given information about her original height and how a potion changes her 
height as she takes sips. During the lab, students worked through tasks which asked them to 
calculate the first and second differences in her heights as she sips the potion and to plot the data 
on a graph. Following this, students had to consider how Alice’s height changes when half sips 
are taken and estimated her height at half-sip values. The second portion of the lab focuses on 
Alice eating a cake which makes her grow. Students are given a partially-filled table with her 
height after a number of bites of cake and are asked to fill in the missing height data. Then they 
are asked to graph their data and to again consider how Alice’s height changes when taking half-
bites of cake. For this report, we drew on data from two questions (See Table 1) which we felt 
had the highest potential for supporting students’ covariational reasoning.  

Table 1. Alice in Wonderland Lab Questions  

Problem 2e 
Students have the following information: (1) Alice shrinks to ⅔ her current size 
each time she takes one sip, and one sip is 0.5 oz. (2) Alice was 51 inches tall before 
drinking any potion, and 34 inches after 1 sip (or ½ oz) of potion. 
Students are asked this question: We know that after her first sip of potion Alice’s 
height decreased by 17 inches. If Alice had instead only taken half a sip of potion 
(0.25 oz) what is a reasonable expectation for the decrease in her height? Would it 
have been more than, less than, or equal to 8.5 inches? Explain your reasoning.  
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Problem 3d 
Students have the following information: Alice has eaten 8 bites of cake and we 
know Alice’s height after various bites of cake (e.g., 0 bites, 4.5 inches tall; 2 bites, 
8.85 inches; 6 bites, 33.88 inches).  
Students have to find the following information: Alice’s height after 5 and 8 bites 
Students are asked this question: Based on our table of data we know that after 
two bites of cake, Alice’s height increased by 4.32 inches. If Alice had eaten each 
bite of cake separately would each growth spurt be a 2.16 inch increase in height? 
Why or why not? 

 
Analysis 

Tyburski et al. (2021) argue that covariational reasoning is clearly delineated into levels with 
associated mental actions involved, but in practice there is little guidance for deciding what 
moment-to-moment student words or actions are evidence of their level of covariational 
reasoning. They offer lessons from their work to researchers who want to analyze and make 
claims about students’ covariational reasoning. In the spirit of their work, we began our analysis 
by drawing on students’ written work to identify the quantities that students attended to and 
evidence of the ways in which they coordinated those quantities. We used this along with the 
field notes and observations made by the research team to group students’ responses into 
categories we felt were indicative of the types of quantities and covariational reasoning observed.  

Findings 
The intention of the lab was to support students’ reasoning and foundational conceptions 

about the exponential covariation of quantities. We wanted students to coordinate additive 
changes in bites/sips with multiplicative changes of Alice’s height. Additionally, we wanted 
students to understand that Alice’s height would decrease (or increase) by smaller and smaller 
amounts (or larger and larger) as she continued to sip potion (or eat cake). In order to get 
students to think about this, we asked them to consider whether or not Alice’s difference in 
height would be halved when she took a half sip instead of a full sip (i.e., Problem 2e). We 
anticipated that students would reason about this by noticing that when you multiply by ⅔ (the 
shrinking rate), that the number shrinks more when you begin with a larger number. In other 
words, Alice shrinks by larger amounts when she is taller, but her changes in height decreases as 
she gets shorter. However, we found that the resources embedded in the design of the lab leading 
up to problem 2e did not provide students with adequate resources to appropriately coordinate 
Alice’s heights and the successive changes in heights with each sip of potion. Indeed, five of the 
six groups responded incorrected to problem 2e by reasoning in ways such as “In order [for] a 
full ⅔ decrease, she would have to take a full 0.5 oz sip, but she only took half; therefore the ⅔ 
decrease would be ½ [as] effective, so she decrease[d] by ⅓, so her height decrease[d] would be 
5.66 [inches],” or that “Alice’s height [would] decrease by 8.5 inches because 17 divided by 2 
equals 8.5.” The only group who responded correctly used a previously learned formula (which 
was not our intention). 

In examining student responses to question 3d, however, we found that students had far more 
ways to reasoning productively about the quantitative relationships involved. Additionally, every 
group correctly answered that Alice’s growth would not be in two equal spurts of 2.16 inches. 
We grouped the ways of reasoning about this into three (often overlapping) categories as shown 
in Table 2.  
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Table 2. Examples of Student Work on Question 3d 

Reasoning 
Change is not constant 

Groups 
2, 3, 6 

Response 
“It would not be constant, so she would 

not grow 2.16 each time, instead the 
second time would be greater.”  

Change is multiplicative 2, 5 “No, because we're not adding, we are 
multiplying.” 

Change is exponential 1, 4, 6 “No, the rate of change is defined as 
exponential growth. This means each bite 
stimulated a greater change in height than 

the preceding bite.”  
 

Discussion 
Our findings support those from Ellis et al. (2015) in documenting the conceptual difficulty 

of reasoning covariationally with exponential functions. We observed a pattern in students’ 
reasoning (and our own when designing and planning the learning trajectory) where one wants to 
use linear relationships when partitioning both quantities rather than coordinating additive and 
multiplicative changes. We found that students frequently described changes in height in terms 
of linear relationships in question 2e (when they had to reason about a partition of a single pair of 
values). In contrast, students more frequently conceptualized the relationship in question 3d 
multiplicatively (when they had to reason about successive changes of sips and heights). While it 
was our intent that both questions supported the coordination of additive changes in one variable 
with multiplicative changes in the other, students did not reason in the way we intended until 
they were forced to reason about iterative or successive changes.   

In examining other features of the task design, we also noted that the resources available to 
the students at the time of each problem were starkly different. Prior to question 2e, students 
were told that Alice’s height was 51 inches and that she would shrink to ⅔ of her original height 
with each sip of potion. Then students were given a table of values filled in with her height at 
one sip intervals from 0 to 10. In contrast, prior to question 3d students were given Alice’s initial 
height and a partially filled table of values (See Table 1). The students were tasked with figuring 
out Alice’s height given only the information from this table before being asked question 3d. 
When students had to reason about the quantities and their relationships to fill in the table, it 
appeared to also support their ability to reason productively in question 3d (where every group 
answered correctly).  

 Based on our observations, we refined the content of the lab so that students would have the 
opportunity to engage in reasoning about the coordination of quantities earlier. We also set up 
tasks that specifically brought out some of the reasoning from their responses in order to 
challenge their thinking about constant versus non-constant rates of change. This preliminary 
report offers one way that researchers might use the findings of small-scale teaching experiments 
to inform task design in larger classroom settings. Additionally, we can use these findings to 
further our understanding of when and how conceptual shifts occur for students when learning 
about exponential functions from the frame of quantitative and covariational reasoning. 
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Highlighting Student Voices: Perspectives on Active Learning Advanced Math Courses 
and Implications on Equity

Elizabeth Wrightsman 
Texas State University 

The relationship between active learning and equity is a prominent discussion within 
mathematics education, as it should be. There are conflicting findings on whether active learning 
promotes or detracts from equitable outcomes. This study aims to highlight student voices in 
describing the student experience in active learning advanced mathematics classrooms. This 
preliminary report outlines key themes that surfaced from a cursory analysis of the data; quiet 
students were seen as less confident or less competent by their peers during whole class 
discussions, and students were keenly aware of the knowledge distribution within small group 
discussions. It is important to understand the implications of the sociocultural dynamics that may 
be emphasized in active learning classrooms, thus being better equipped to attend to equity. 

Keywords: active learning, inquiry-based learning, equity, advanced mathematics 

It is understandable why advocates of student-centered, active learning instruction (e.g., 
inquiry-based learning) might purport active learning as means to achieve equity in mathematics 
education (Tang, 2017). Generally defined, active learning occurs in student-centered classrooms 
where students are actively engaged in doing mathematics during whole class discussions and 
collaborate with peers during small group discussions with the goal of building their own 
mathematical understanding; the instructor merely mediates student learning rather than acting as 
the sole intermediary of knowledge as is the case in traditional, lecture-based classrooms. As 
defined, active learning classrooms sound like idyllic classrooms in which equitable student 
outcomes are bound to occur. Clearly, if the best-case active learning classroom scenario were 
easy to employ and the norm, the answer to how to achieve equity in math classrooms would be 
more evident –simply implement active learning approaches. However, that is not the case. For 
the purposes of this preliminary report, my conception of equity focuses on how students 
position themselves and others in terms of equal access to participate in and with the 
mathematics, which is related to the assignment of competence (or power) and one’s identity as a 
capable doer of mathematics (Gutiérrez 2002, 2013). Equity is an ideal that postsecondary 
mathematics educators strive for, but how we achieve this goal is elusive. There are some that 
report findings that active learning leads to equitable results, particularly for women (Freeman, 
2014; Kogan and Laursen 2014; Laursen, 2014) and marginalized student populations (Fullilove 
and Treisman, 1990). On the other hand, others are more apprehensive or critical of the claim 
(Johnson et al., 2020; Ernest, 2019; Evans, 2022). These conflicting findings (and opinions) on 
the extent to which active learning achieves equitable student outcomes imply that more research 
is needed. The aim of this study is to highlight those most impacted by dramatic changes in 
teaching and learning practices, the students who experience learning in active learning 
classrooms. Much of the existing research on equitable implications of active learning centers 
around achievement results or learning outcomes, which are important when considering 
equitable outcomes. However, I believe that undergraduate students are equipped to articulate 
their perceptions of what works and what does not work for them in an active learning 
classroom. Furthermore, by highlighting student voices, the author answers the call to deepen our 
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field’s understanding of the impact of active learning approaches on equity within undergraduate 
mathematics (Laursen & Rasmussen, 2019; Melhuish et al., 2022). In this preliminary report, I 
outline the methods used to conduct this qualitative study, describe a couple of significant 
connections between student responses that have equity implications, and discuss the equity 
implications. 

Methods 
 The data in this study are comprised of semi-structured interviews (approximately an 

hour in length) with students who completed an advanced math course taught using an active 
learning approach. To provide readers with a basic context in interpreting the preliminary results, 
the self-reported demographics collected from each of the ten participants are presented in Table 
1. Six participants were from an abstract algebra (Fall 2021) course and the remaining four 
participants were from an introduction to proof (Spring 2022) course. Both courses were offered 
at the same large, public Hispanic-serving university in the southern United States. The selection 
of the two different advanced math courses was intentional. It was discovered through the first 
round of interviews with the students from the abstract algebra course, that many of them had 
previously taken an active learning course. Therefore, the decision to recruit from an advanced 
math course earlier in the math course sequence seemed appropriate. As hoped, for variety, none 
of the four students from the introduction to proof course had previously taken an active learning 
course. Since the interviews took place after the end of the semester, interview questions were 
provided one to two days prior to the interview to allow adequate time for students to reflect on 
their experiences. The interview transcripts were generated using an electronic transcription 
service. Transcripts were verified for accuracy and any repeated words and filler utterances (e.g., 
uh, um). For preliminary analysis, a single coder open-coded broad interpretations of students’ 
descriptions of firsthand and secondhand experiences in students’ respective classes. Codes were 
then grouped by theme and relationships between the themes were identified. In total, there were 
20 questions asked during each interview. For the purposes of this preliminary report, the focus 
will be on the following subset of questions that are strongly relevant to equity: Do you believe 
you had equal access to participate in the course during whole class discussion as your fellow 
peers? Why or why not?; Do you believe each student (other than yourself) had equal access to 
participate in the course during whole class discussion? Why or why not?; Do you believe you 
had equal access to participate in the course during groupwork as your fellow peers? Why or 
why not?; Do you believe each student (other than yourself) had equal access to participate in 
the course during groupwork? Why or why not? 

 
 

Table 1. Self-reported student demographics 
Identifier Gender Race/Ethnicity Degree Program 
Rosie Female White Applied Mathematics 
Tyler Male White Education; MS Certification 
Stephen Male White Mathematics 
Nathan Male Caucasian Manufacturing Engineering 
Ivan Male Hispanic Applied Mathematics 
Jon Male Southeast Asian Computer Science & Mathematics 
Nora Female White/Hispanic Mathematics with Teaching Certification 
Mary Female White/Cuban Mathematics 
Lamar Male White Mathematics 
Carlos Male Hispanic Economics 
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Preliminary Results 
The presentation of the preliminary results will be segmented into two broad categories, 

Whole Class Discussion and Small Group Discussion, which were derived from the foci 
questions, as listed above. Relationships between codes surfaced from the interview questions 
related to whole class discussion and small group discussion. I briefly summarize a relationship 
finding within each broad category and provide support from the data. 
 
Whole Class Discussion: “You Gotta Be Strong” 

It is not unusual to have quiet students in any given mathematics classroom. In a lecture-
based classroom, they may go unnoticed. However, it is more challenging to hide in an active-
learning classroom due to whole class discussions being a focal mode of learning. In analyzing 
the data, the characteristics of shyness/quietness arose on multiple occasions whether it was 
someone acknowledging they were the quiet one in class (projected as a deficit), or someone 
stating that it was easy to identify the shy ones (also considered a deficit). How might this pertain 
to equity? A student’s disposition for shyness was a reason for peers to redraw mathematical 
competence, or conversely, outspoken students were interpreted as having more competence. 
The following series of interview excerpts illustrate some social dynamics of vocal and less 
vocal students within an active learning environment. When Mary was asked whether she 
believed she had equal access to participate in the course during whole class discussion as fellow 
peers, she responded as such: 

Yeah, pretty much. I've never been a super talkative person in class. Um, like when it comes 
to talking to other people in the class one-on-one, I love doing that and I love working in 
groups where we're all just kind of putting our heads down, thinking about stuff. But then if 
you were talking about the part where [the instructor] would like ask for sort of ideas on 
what to do, I would let other people talk and usually I just watched them battle it out. Um, 
‘cause that was fun for me, but you know, I don't like to be the loudest person in the class or 
anything, but I do think I had equal access to participate. I just chose not to sometimes. 

Participation in whole class discussions may take on different forms. Although instructors ought 
to challenge and encourage students to vocally contribute to whole class discussions, ultimately, 
students should have the autonomy to participate in ways that are comfortable to them. However, 
one trend that surfaced was the tendency to interpret shyness or quietness, a trait often attributed 
to women, as an indication of mathematical inability or lack of confidence. 

Jon: There tended to be those people who were bad at math, and I don't wanna say bad at 
math like that, but they weren't good at proofs. Like, they said it, it was relatively clear, you 
know, and those type of people tended to not talk as much. 

Jon describes making a connection between math ability and quietness. However, Mary was 
content engaging, albeit quietly, in whole class discussions while actively participating in small 
group discussions. Her identity encapsulated a quiet demeanor, which is not a reflection of her 
mathematical ability as she suggests in the following excerpt. 

Mary: Um, I'm just comfortable not saying anything. I actually ended up talking to my 
really good friend that I made [from class] about this ‘cause he said at some point during the 
semester.” It's obvious that you know what's going on and you just prefer not to speak.’ 
Yeah, that's true. It wasn't like, I was feeling like I didn't have equal access. I just kind of 
was like, I was chilling, you know? 

Mary implies that there is a level of assertiveness and strength needed to participate in whole 
class discussion when she admits, “I didn't talk because I knew someone else was gonna answer, 
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but you know, you gotta be strong. You gotta stand up for yourself if you wanna. If you really 
want to talk, like you can just do it.” 

Many of the participants mentioned being able to identify the talkers from the non-talkers, 
and in fact, stated there were more non-talkers than talkers. In contrast to the negative labels non-
talkers were ascribed, the more vocal students were assigned competence. Rosie admits being 
nervous to talk when there were outspoken people in class, whom she attributed competence due 
to their perceived confidence. This led her to doubt herself and her potential mathematical 
contribution. 

Rosie: Yeah. I feel like if I wanted to talk, like I definitely had like the opportunity and 
chance to. It was hard sometimes because we definitely had some more outspoken people in 
the class and it always made me nervous ‘cause sometimes I got different answers than them 
on stuff, right? And they were very like sure in like what they were saying. So, it kind of 
made me like a little bit more hesitant to talk sometimes even though I was like, mmm, I 
don't know. But I'm also just a little bit more shy like that. 

When asked a follow-up question related to whether the vocal student referred to earlier in the 
interview affected Nora’s learning, Nora explained that it was helpful to have a different 
perspective than the professor. 

Nora: Not at all. Because I think we all also like learned from him like ‘cause he was very 
vocal about like things that were going through his mind. Like um, if there was like a 
pattern going on through like a proof that we were learning, he would kind of vocalize it. 
So, I think it also at points like helped the class learn a little bit more and to see his point of 
view, like a little bit different than the professor's, because then we're getting kind of like 
multiple points of view. And so, at times it really helped. 

The more vocal students have ascribed competence in contrast to less vocal students who have 
their mathematical proficiency questioned. Due to the focus on peer-to-peer interactions in 
active-learning classes, this is important to note. The perceptions of peer competence affect how 
students work together in small groups, which are prominent in active learning classrooms. 

 
Small Group Discussion: “There was clearly a knowledge disparity” 

As a characteristic of active learning classrooms, small group discussions were paramount 
in both courses within this study. In response to the series of questions asking about equal access 
to participate in the course during group work, Mario described an obvious “knowledge 
disparity” between the groups. When the interviewer asked Mario what he meant by “knowledge 
disparity,” he responds: 

The best way I could put it is that you could tell that there's like a team that just really 
understood everything. And there were other teams that were just kinda like struggling. 
There were some groups that were kind of like in the middle, they kind of understood 
some of the stuff, and then there were some teams that were just like… ‘I need outside 
help essentially.’ The group assignment remained the same for this course the entire 
semester. Mario described how frustrating it was to be in a group where everyone was 
lost, and they had to wait for the professor to make it to their group to offer assistance. 

He goes on to explain how difficult it was to get assistance if the entire group was lost due to 
“knowledge disparity.”  

Mario: If you had questions or you were stuck, you're just like waiting for the professor to 
just kind of like come and help you. So, you know, if every team is like, kind of like 
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needing help on a part, you're kind of just like in this queue trying to solve it, you know, you 
kind of stall. 

By design, active learning is meant to distribute mathematical authority more evenly rather than 
being solely held by the instructor. However, if an entire group is unable to make progress on a 
problem or proof, the group may have to rely on the instructor, as was the case described by 
Mario. Thus, the knowledge disparity persists. If you were fortunate to be with group members 
who had a stronger understanding of a concept, there were sentiments related to the uneven 
distribution of knowledge within a group. 

Ivan: There would be cases in which some of our other group members, they didn't really do 
as much because they were confused, or they were lost within the proof itself. So from 
there, what we would do is we would essentially guide one another and as to the right 
direction. And just to essentially give them the baby steps of other proofs to show them as a 
way to kind of help them to learn that proof per se, or topic. 

But the consequences of leveraging your group members for instruction may lead to fellow 
group members feeling as Jon describes. 

Jon: There was an effort, but I mean at a certain point you kind of have to stop so that you 
can actually get the work done. So yeah. I mean, there's a limited time to finish. We had 
probably, I think at the entire semester, there was like a hundred proofs or something. So, I 
mean, there was quite a bit to do, and we cannot like hold back because of somebody. 

Group members may feel as though they are being held back due to the time it takes to explain 
mathematics concepts to peers. This shift in authority that occurs in active learning environments 
is powerful as long as there is an accommodation made for situations as described by the 
students within this study. 

Discussion 
This study is a direct response to the call by many (e.g., Adiredja, 2017) for additional 

research on issues of equity in postsecondary education and, particularly, research that 
investigates student perceptions of their active learning experiences. The findings from this 
preliminary analysis indicate that competence may be assigned to students based on their 
perceived level of participation in whole class discussions. Furthermore, that assigned 
competence is likely to transfer into small group discussions and affect peer interactions. 
Additionally, students are perceptive to the unequal distribution of collective knowledge between 
and within small groups. As was stated, it was obvious whether someone was in a group that 
possessed “less” knowledge. These groups would have to wait around for the professor’s 
assistance. In the case where there were more knowledgeable students in a group, the more 
knowledgeable students felt like they were being slowed by having to explain concepts to peers. 
It is speculated (Brown, 2018; Ernest et al., 2019; Johnson et al., 2020) that since active learning 
classes increase personal interactions through whole class and small group discussions, student 
beliefs and peer perceptions may play a more significant role in learning than in traditional 
lecture-based classrooms. Although instructors cannot eradicate stereotypes and beliefs students 
possess, instructors can take steps to mitigate the influence of these beliefs as long as we identify 
common student perceptions. It is imperative to understand the challenges of implementing 
active learning approaches to make necessary modifications or accommodations to 
simultaneously and consistently achieve equitable results. 
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Student Goals and Motivations in their Undergraduate Abstract Algebra Course 
 

 Megumi Asada Keith Weber Tim Fukawa-Connelly 
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Mathematics educators assign important learning outcomes to abstract algebra classes. 
However, it is unclear whether students share these goals or whether they have different 
motivations entirely. Using the framework of expectancy-value theory, we highlight preliminary 
results from semi-structured entrance and exit interviews with six undergraduates enrolled in 
abstract algebra. This report centers around the following research question: What are students’ 
expectations, motivations, and goals for their undergraduate abstract algebra course? 

Keywords: abstract algebra, motivation, goals, expectations 

Introduction 
Abstract algebra is a foundational course in advanced undergraduate mathematics in which 

students are expected to learn proof technique and abstraction alongside content-specific material 
(e.g. group theory, field theory) (e.g. Dubinsky et al., 1994). However, it is unclear what 
students’ own goals and motivations are. While there have been many studies on the role of 
motivation in mathematics courses, there have been comparatively few studies on motivation in 
advanced proof-based courses like abstract algebra. This distinction is important, as mathematics 
educators have noted that the content and style of advanced proof-based courses differs from 
previous courses such as calculus (e.g. Alcock & Simpson, 2002).  

We highlight preliminary results from semi-structured entrance and exit interviews with six 
undergraduates enrolled in abstract algebra. Our central research questions are: What are 
students’ expectations, motivations, and goals for their undergraduate abstract algebra course?  
And how do students’ motivations contribute to how they approach the course?  

Theoretical Constructs 
We adopt the framework of Situated Expectancy Value Theory (SEVT), (Eccles & Wigfield, 

2020) to elucidate the relationship between students’ expectations, motivations, and perceived 
task value of abstract algebra. A key assertion of Situated Expectancy Value Theory is that 
achievement on a task is mediated both by students’ expectations for success as well as the task’s 
perceived value (Eccles & Wigfield, 2020; Rosenzweig et al., 2019). Task value is then further 
separated into the constructs of attainment value, intrinsic value, utility value, and cost.   

Eccles et al. (1983) define attainment value as the personal or identity-based importance of 
doing a task. Intrinsic value (also referred to as interest value) refers to the students’ enjoyment 
of the task and shares similarities to the constructs of interest (Hidi & Renninger, 2006) and 
intrinsic motivation (Ryan & Deci, 2016). Within this study, a task is intrinsically valuable when 
it is enjoyable or helps procure future enjoyment. However, the concepts have different 
theoretical traditions and focuses. For instance, intrinsic motivation emphasizes the rationale 
behind an activity as opposed to what makes it valuable (Eccles, 2005). Utility value refers to the 
degree to which a task would be beneficial for a students’ present or future plans. For the 
purpose of this study, we specify that utility value accomplish tasks for reasons other than for 
one’s enjoyment, such as credentialing or seeking employment. Finally, cost refers to what an 
individual must give up in order to accomplish a task. We define success as the student’s 
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realization of their goals and is not necessarily based external metrics such as performance on an 
exam, and is thus a student-centered relative construct.  

Literature Review 
While motivation has been studied within math education literature (Hannula et al., 2016), 

and in scholarship on undergraduate STEM education (Cromley et al., 2016), we found no 
studies attending to motivation in proof-oriented mathematics classrooms. Existing motivation 
literature has largely consisted of studies drawing correlates between motivation and related 
constructs like self-efficacy, achievement, and interest (Cromley et al., 2016; Jones et al., 2010). 
There has been a recent emergence of scholarship on EVT interventions intended to increase 
student motivation (Rosenzweig & Wigfield, 2016). Much of the interventional scholarship has 
focused on utility value interventions as it is perceived to be the most easily modifiable task 
value (Harackiewicz et al., 2014) (i.e., the interventions have focused on increasing students’ 
perceived utility of the tasks on which they work). While there is extensive literature on the 
statistical relationships between students’ self-efficacy, motivation and performance in 
mathematics courses (for a review, see Wigfield & Eccles, 2020), there is relatively little work 
on how these factors operate qualitatively.  

Eccles and Wigfield adopted SEVT from Eccles and colleague’s Expectancy Value Theory 
(Eccles, 1984; Eccles et al., 1983) as part of a call to attend more closely to the situatedness of 
motivation. Situatedness, for Eccles and Wigfield, refers not only in the macro sense to the 
student’s sociocultural environment but also to their interpersonal context. We believe our work 
provides a contribution to SEVT by situating our understanding of our participants motivation 
within their specific context of undergraduate abstract algebra. Accordingly, previous studies of 
elementary schoolers point to the domain-specificity of situated task values and academic self-
concept. 

Methods 
Our study consisted of two semi-structured interviews with six participants on their 

motivation and associated study habits halfway through and at the end of the semester.  Our 
interview protocol contained questions of the form:  

1. Why do you think it might be important to study math? 
2. What do you expect to get out of studying math in college? 
3. What do you expect to get out of Abstract Algebra? 
4. In a perfect world what would you want to get out of Abstract Algebra? 

The first question asked participants for their perceived task values of studying math while 
the second and third question ask for participants’ expectancies for both math and abstract 
algebra. The fourth question draws a distinction between participants’ expectations and what 
they perceive they could optimally get out of abstract algebra.  

In the second interview, we asked students to reflect on their responses in the first interview 
and to comment on whether they felt their expectations and/or ideal (“perfect world”) goals were 
achieved. Students were also asked for their perceived task value of abstract algebra. We used 
thematic coding (Braun & Clarke, 2006) to identify key themes from the interviews.  

Results 
We present preliminary results from our ongoing analysis. One emergent theme is that some 

students desired intrinsic value, had utility value, and appreciated but did not require utility value 
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in the form of real world applications. When asked what he expected to get out of abstract 
algebra, Participant 1 stated: 

It does seem like you know, at least for group theory, that that comes up a lot in things so 
I'll have an understanding, very foundational conceptual understanding and in a field that 
does have applications to these, this theoretical work. Um, hopefully, I'll come out of it. 
Part of the anticipation is also I don’t really know where it might be useful, but hopefully, 
the expectation is, a useful thing will present itself to me. And also, you know, everybody 
I've talked to has been like, "oh, wow, Galois Theory is really awesome”. […] I think it's 
one of those subjects which is, I'm very good at when I have an intuition of it, but 
sometimes something will happen I'm like, "why is that? Why does that work?" Or like 
"what does that work and this not work" Actually, that's the worst thing. It's not "why 
does this work?" But usually, ‘why does this work and that doesn’t’ 

 The student remarks that he is unsure in what ways abstract algebra would be useful for 
him but that he expected that “a useful thing will present itself.” We interpret this as the 
student expecting a utility value even though he does not know what it is yet. Even in the 
absence of a concrete utility value, the participant still anticipates the class will be 
intrinsically valuable to him. The expectation of intrinsic value seems sufficient motivation 
for Participant 1. A different participant, however, anticipated he would struggle with the 
course in the absence of intrinsic value. When asked what he could get out of abstract algebra 
under ideal circumstances, he answered: 

Yeah, I'm not too sure. I mean, I think...I don't know. I mean, I think most importantly, 
for me even more than like having real life application and would be just to find 
something I'm interested in, because like I said, I have to pass the course. And I think 
courses are a lot easier for me when I can find myself getting really interested in them. 
So for me even more important than having a real life application, just be to have an 
interest in it because I think it would just kind of be easy to pass the class with an 
interest in it, but it's kind of going in the direction where it's, it's like I don't have an 
interest in it. So I'm expecting to be pretty difficult for me to kind of fully understand 
everything and get myself to study for it. And prepare myself for exams and other things. 
But I, I guess, like you know, like I said, like, I mean, I don't know that anything off the 
top of my head in the class so far that would have a realistic you know, real life 
application for me, but I do think that would be very nice. That would be very cool if I 
could kind of get something because I think that would motivate me in itself to know 
that like okay, this is going to be something you have to know and have to understand 
versus right now I'm kind of in the like, my mind, I'm just like, "Okay, I literally just 
have to pass this class. And that's it. 
Like Participant 1, Participant 2 desired intrinsic value in the course. While  “real life 

application[s]” would be a plus for Participant 2,  the participant stressed that, “even more 
important than having a real-life application [is] to have an interest in” abstract algebra. An 
interesting topic would make it “easy to pass the class;” without it, he would find it difficult 
to “get [himself] to study.” We interpreted this to mean that even though Participant 2 desired 
utility value, it was intrinsic value (i.e., personal interest) that was crucial. It is notable that 
Participant 2 had a high personal utility value for the course—he required it to graduate— 
but thought that this would not be sufficient motivation for him to do the work to study the 
material. Later in the interview, Participant 2 described how the effort required to pass would 
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be substantial, requiring frequent personal meetings with the course professor for extra help. 
The intrinsic motivation seemed necessary for Participant 2 to put in this effort. 

Participant 3 noted utility that advanced mathematics had, but found this to be an 
unattractive reason to pursue the discipline.  

I study it, in part because I like it. Which is a huge motivation factor. But, you know, 
there's always that question of like, 'what is the real world application of what I'm 
doing?' and and I did struggle with that for quite a while, especially in that like transition 
from community college to [university]. Because [in university], a lot of the recruiting 
programs that you know, try to try to hire students out of the math program, they are 
government based or like Lockheed Martin, or, you know, all of those other programs 
and I don't like that very much. You know, and so a lot of times at this higher level, the 
application of math is based on those kinds of programs. And so, okay, I can name that 
as an application but I don't like that as an application. 
Participant 3 later clarified that while much mathematics is used for a military focus, one 

can use mathematics for a “community-based focus and to do good things” and learning 
“flexible thinking and critical reasoning”, so mathematics could potentially have high utility. 
Nonetheless, Participant 3 stated that this is not why they studied mathematics: 

I think at some point, I just determined that I do math because I like it. And I enjoy it. 
Just like, I don't have to have a real world application for doing like arts or poetry, or 
whatever. So personally, I like it. 

Discussion and Conclusion 
Our analysis is preliminary and speculative at this stage. The data require verification 

with closer analysis. Our data indicate so far that for some students, attainment value is 
critical. Participants 1 and 3 were confident they would find attainment value and were 
optimistic about their ability to succeed. Participant 2, however, anticipated he would 
struggle in the course due to the absence of intrinsic value. Furthermore, our data suggest a 
connection between student motivation and the way students approach abstract algebra. 
Utility value appears to be the least important construct; the students included in this 
preliminary analysis neither expected it nor needed it. Indeed, Participant 3 thought the utility 
of mathematics for military use was a negative feature of the discipline. One student, 
Participant 2, was worried he would be unable to pass the class without finding intrinsic 
value and stated that he needed to go to office hours. Participant 1 and Participant 3 cited 
enjoyment as a reason to pursue mathematics. 

Much scholarship in undergraduate math education has focused on achieving the 
instructor’s goals without addressing whether this aligns with student goals. Our work 
demonstrates that for some students, intrinsic value is the most important factor among 
intrinsic value, utility value, and attainment value. We suggest more research on how 
intrinsic value can be fostered in students and, more generally, how students can experience 
the joy that mathematicians experience in doing mathematics. 
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Investigating Student Use of Representation in Quantum Mechanics Change of Basis Problems 

 

 Idris Malik Warren Christensen 

 The Ohio State University North Dakota State University  

Meta-Representational Competence (MRC), first theorized by Andrea diSessa, has been used 

widely in Math Education studies. It has been recently used in Physics Education Research in the 

domain of Quantum Mechanics. Specific problems within Quantum Mechanics have a foundation 

in Linear Algebra, and may be approached or perceived differently based on the notation used 

(either Dirac, Matrix, or Spinor notation). Semi-structured interviews were conducted to present 

physics students with content questions and then ask them about MRC concepts directly, as it 

related to the content questions or other situations in Physics or Math. Student statements were 

coded to indicate both previously identified and novel facets of MRC in the context of change of 

basis problems in Quantum Mechanics. The preliminary analysis of two student interviews 

demonstrates each student’s distinct utility of MRC concepts, and suggests extending the Wawro, 

Watson, & Christensen (2020) MRC statement codes. 

Keywords:  Quantum Mechanics, Meta-Representational Competence, Physics, Linear Algebra, 

Representation. 

Literature Review 

Notions involving representation and notation in Quantum Mechanics have often been 

investigated in Physics Education Research (PER). Fredlund, Airey & Linder (2012) noted that 

“the affordances of different representations determine the role they can play in communication, 

and thus in the sharing of knowledge.” These affordances, or the “inherent potential of that 

representation to provide access to disciplinary knowledge”, are said to “enable certain 

representations to become legitimate within a discipline such as physics. Physics learning then, 

involves coming to appreciate the disciplinary affordances of representations.” (Fredlund, Airey 

& Linder, 2012). Additionally, Gire & Price (2015) identified the terms “individuation, degree of 

externalization, compactness, and symbolic support” as “structural features of quantum 

notations”. This structural features framework was adapted by Schermerhorn et al. (2019) into a 

“Computational Features Framework”, in order to “answer questions regarding how and why 

students use different methods”. While PER literature has examined representations in Quantum 

Mechanics in the past decade, it often did so without leveraging diSessa’s Meta-Representational 

Competence (MRC) Theoretical Framework (2002), (2004). 

Investigations using MRC have been recently conducted in the context of Quantum 

Mechanics, specifically in units involving “spin” which tend to use Eigentheory concepts. 

In a 2020 study, Wawro et al. enumerated the different MRC concept-related codes that arose in 

their interviews which were structured around Eigentheory concepts. These codes were in part 

informed by the “Computational Features Framework” developed by Schermerhorn et al (2019), 

along with additional codes that were organized and explained through the MRC framework. 

The Wawro et al. (2020) study has been cited in a recent paper by Corsiglia et al. (2022), 

which focused on QM Change of Basis problems. However, the Corsiglia study focused on a 

phenomenographical approach and did not implement the MRC theoretical framework used in 

the Wawro study. This current research seeks to incorporate MRC at a boundary between realms 

of RUME and PER in the specific context of QM Change of Basis problems. This is done 

through the coding of MRC concept statements that involve codes listed in Wawro et al. (2020) 
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and novel codes that were not found in this earlier study. We define “MRC concept/statement” 

here as a concept/statement that could be analyzed by the MRC Theoretical Framework. 

Theoretical Framework 

The work presented is attempting to make direct measures of Andrea diSessa’s theoretical 

framework, Meta-Representational Competence (diSessa, 2002). Meta-Representational 

Competence (MRC) “...[describes] the full range of capabilities that students (and others) have 

concerning the constructions and use of external representations” (diSessa & Sherin, 2000). Iszák 

Iszák, Çağlayan & Olive (2009) mention regarding a diSessa paper (2002), “[diSessa] observed 

that students’ criteria usually emerge in reaction to particular examples.” Iszák also noted, “he 

reported that different students can make systematically different judgments about external 

representations.” 

This framework has seen significant use in the Research in Undergraduate Math Education 

community (Hillel, 2000; Arcavi, 2003; Iszák, 2003; Iszák, Çağlayan & Olive, 2009) but has 

seen little use in Physics Education Research. Notions involving representation and notation in 

Quantum Mechanics have been often investigated in Physics Education Research (PER), but 

only one paper incorporated Meta-Representational Competence as a framework, Wawro et al. 

(2020). In Wawro et al. (2020), MRC statement codes were created based on the data observed 

(see Fig. 1) and proved to be very fruitful in parsing the data observed. However, the theoretical 

framework was applied post-hoc. This work aims to use an interview protocol designed 

specifically to parse out student statements regarding MRC in the context of Quantum Spin 

states.  

 

 
Figure 1. Table of MRC categories and codes from Wawro et al. (2020) 

Background 

In Quantum Mechanics, spin is a property of some particles, often described as “when a 

particle behaves like it has angular momentum (is ‘spinning’), even though the particle is not 

physically spinning”. This often confusing concept is better understood mathematically through 

the use of Eigentheory. Spin states of a particle or system are represented by Kets (|Psi>), which 

function similarly to vectors. For Spin-½ particles, the most common type in Intro-Quantum 

Mechanics situations, applying a directional Spin Operator can only result in one of the two 

possible eigenvalues and its corresponding eigenvector. The result is either “spin-up” (a “+” 

eigenvector with a corresponding eigenvalue of +
ℏ

2
) or “spin-down” (with a “-” eigenvector with 

eigenvalue of −
ℏ

2
). In a certain coordinate direction (namely 𝑧, 𝑥, or 𝑦), a spin-½ particle’s spin 

state can be described as a linear combination of these |+> “spin-up” and “spin-down”|−> kets.  

These state vector kets, defined as linear combinations of eigenvector kets, can also be 

written in terms of 2 by 1 matrices. Here, the first entry represents the |+> ket (usually in the z-
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direction), and the second entry represents the |−> ket. Introductory units of instruction may 

present the same information in both Dirac and Matrix form, so that students can see how one 

notation is translated to the other. Additionally, “Spinor” notation is sometimes used to write 

statements without explicitly using a Dirac ket or a column vector for the eigenvectors. 

In any notation, the relations of the eigenvector kets, the spin operators, and the eigenvalue 

kets can be written in eigenequation form: �̂�𝑧 |+> =  
ℏ

2
|+>. Figure 2 (below) includes an 

example of the 3 notations used in the context of a state vector equation: 

 
Figure 2: Equivalent state vectors, or wavefunction kets, written in different notations 

Methods 

A semi-structured interview was designed to provide participants with content questions and 

ask them about MRC concepts directly (Browner et al., 1988). Content questions were adapted 

from questions from the Corsiglia et al. (2022) study, which focused on Change of Basis, 

including concept-focused and computational-focused questions. The questions were adapted to 

provide a context for discussing MRC statements, rather than pure tests of conceptual 

understanding. For some of these content questions, multiple versions were made with different 

representations in the questions (See Fig. 2). After each set of content questions, a verbal follow-

up question was asked. The follow-up questions were intended to target MRC concepts directly. 

At first, these follow-ups treaded lightly on MRC concepts and focused more on content, but as 

the interview progressed, the follow-ups were directly aimed at MRC concepts.  

This interview structure was selected to organically ease students into talking about MRC 

concepts without directly explaining the MRC theoretical framework. To avoid dead-ends due to 

content issues, hints were structured into the content questions, or ready to be provided by the 

interviewer. The structure of the interview questions was meant to guide students through the 

most efficient path (Corsiglia et al., 2022) through answering the questions.  

Three student interviews were conducted at a midwestern, land-grant research university, 

each lasting about one hour long. Of these 3 interviews, we elected to focus the preliminary 

analysis on the interviews of participants PS and CG, as their interviews were the most unlike 

each other. After the interviews were transcribed, one of the authors reviewed the transcriptions 

to code mentions of MRC statements, guided by the codes delineated in Wawro et al. (2020).  

Preliminary Results 

The depth and amount of MRC statements made by student participants with relatively little 

direct prompting were surprising and encouraging. While physics students may unknowingly 

make MRC-related statements with their peers (e.g., preferences for notation, etc.) while 

working on group assignments, there is little evidence that they are instructed or directly graded 

on MRC concepts within physics courses. However, the interview participants all had some form 

of vocabulary for expressing some MRC concepts, to varying degrees, without being explicitly 

introduced to the terminology. Additionally, interview participants seemed to accept and use 

vocabulary that was explicitly introduced during the interview with good facility.  

We focused our preliminary study on Student Participants PS and CG, as they had distinct 

interview experiences from an MRC concept standpoint. They performed differently on the 

tougher content questions. They also articulated different preferences in notation. We share some 

preliminary analyses of each interview separately to best highlight the most prominent features 
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of each participant's interview experience. Future work will aim to synthesize these and other 

interviews we’ve performed.   

 

PS Interview: PS is a Physics Undergraduate student, who had taken two semesters of 

undergraduate Quantum Mechanics from a midwestern land-grant research university. PS 

identifies as a white, cis-gendered man. PS made fewer MRC comments in total, and it took 

them longer to ‘warm up’ to speaking freely about MRC in depth. PS was effective in 

elaborating on their thought process while working on content questions when prompted. 

Additionally, most of the MRC statements PS made were “Value-based preferences” (Fig. 1). 

Within the first 10 minutes of the interview, PS made statements involving their belief in a 

“Hierarchy” of notations. PS stated that Dirac (and maybe Spinor as well) notation is just a 

“shorthand” for the Matrix notation. There was no existing code from Wawro et al (2020), so we 

defined a new code to encapsulate this. Much later in the interview, PS made a similar remark 

regarding the Spinor notation in Question 5 (“Q5”), after being given Question 7 (“Q7”), 

(emphasis added in bold): 

PS: There's a reason that I already like this notation way better, I got to be honest. 

Interviewer: Why do you like it better? 

PS: But again, you know, it's like, hey, spin up -- 1 0, spin down -- 0 1, and like, like I said 

before, I just I like the given - what exactly given values for just like shorthand [points 

at Q5] like Psi, Psi plus that's the spin-up, and you know, I kinda get, like all screwed up 

in my mind, like - how do I do this again? 

PS: Where I can actually, like… work out the numbers? Like, [points at Q5 page] can one 

over square root of three be multiplied times Chi spin up? Whereas here [Q7] it's like, I 

know I can, you know? 

It’s possible that PS views this hierarchy of Matrix notation as being the ‘real’ notation, with 

Dirac and Spinor notation as ‘shorthands’ because they prefer doing change of basis 

computations in Matrix notation. Additionally, PS made many MRC statements about “Clarity”, 

where Matrix notation was often ‘more clear’, and Dirac notation was ‘less clear’. They also 

mentioned “Likeability” often: liking Matrix notation, and disliking Dirac notation.  

PS spent significant time on Q5 but was not able to complete it. They expressed that they did 

not have enough equations to solve for the constants they wanted. When given Q7, which was a 

Matrix notation focused instead of Spinor notation focused, PS responded with the reaction in 

the interview transcript above. Even though the problems were similar, PS was able to complete 

Q7. Afterwards, PS made conflicting statements regarding their success in Q7 compared to Q5. 

Initially, they made statements indicating that they understood the question better after they saw 

it presented in Matrix notation (Q7). However, a couple minutes later, they said that they 

couldn’t be sure that the different notation made it easier. In their opinion, their success may 

have been due to just seeing the same question a second time. A goal of future work is to 

investigate the connection between struggling to answer problems and a person’s understanding 

of concepts that fall under Meta-representational Competence.  

 

CG Interview: CG, a current Physics graduate student, has taken Quantum Mechanics at both an 

Undergraduate level at a small, private college in the midwest, and at the Graduate level at a 

midwestern land-grant research university. CG identifies as a white, cis-gendered man. CG, who 

performed extremely well on content questions, spoke fluently about how they represented their 

work verbally, on the page through equations, and using hand gestures.  Relative to PS, CG made 
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MRC statements earlier and more often over the course of their interview. Many of these 

statements involved a preference for Dirac notation. “Value-based preferences” MRC statement 

codes (Wawro et al. 2020) such as “Speed”, “Familarity”, “Likeability”, and “Ease of Writing” 

were often made by CG in support of Dirac notation and against Matrix notation. CG also made 

“Problem-based Preference” statements, noting Dirac notation was “useful in calculations” 

because it had “tons of tricks.”  

While PS made few statements regarding “Purpose and Utility Awareness” (See Fig. 1), CG 

made many (at least 10) distinct statements in this category; the first one coming during an early 

follow-up question. Most frequent were statements that would fall under “Aware of one’s own 

progress in notation use”, which encompassed Dirac, Matrix, and Spinor notation. CG also made 

statements consistent with the “Able to ‘step back, and weigh options to decide which notation 

system is best” code after one of the verbal follow-up questions and while considering how to 

begin working on Q5. 

CG made many statements involving concepts of “Abstractability” and “Visualizability.” To 

CG, Matrix notation was very visible. They used hand gestures to set up a 3-dimensional 

coordinate system to communicate state vectors. CG then mentioned understanding Matrix 

notation as applying a linear transform to a vector, to change the direction of the state vector. In 

contrast, CG viewed Dirac notation as being more “abstract” in nature. They stated that the Dirac 

Kets could represent anything, or be written as “smiley faces” or “frowny faces” without any loss 

of meaning. Because of CG’s focus on these statements, and that they emphasized the wording, 

we believe “Abstractability” and “Visualizability” may be identified as new codes for extending 

the Wawro, Watson & Christensen (2020) MRC codes related to expectation values (See Fig. 1).   

Discussion / Conclusion 

MRC concepts, which involve the capability to use external representations (diSessa & 

Sherin 2000), are likely related to skills developed by individuals by the time they are considered 

an ‘expert’ in a particular type of problem. Interviewee CG, who performed extremely well on 

content questions, successfully represented their work verbally, on the page through equations, 

and using hand gestures. Interviewee PS struggled with several content questions and did not 

demonstrate many MRC statements outside of the Value-based Preference category. How and 

when MRC concepts are developed and the role it plays alongside content understanding in 

Upper-division Physics is still unclear. Future research may shed additional light onto the 

relationship between students’ understanding of their thinking of how to use different 

representations and their performance on content questions in Upper-division Physics. 

Questions for Audience 

If students are not directly taught or coached regarding MRC concepts, how do they develop 

it in a Quantum Mechanics spins context which draws heavily on Eigentheory concepts? 

Would directly instructing students on understanding their thinking of how to use different 

representations help students become adept at this and content understanding? 

At what points throughout a mathematics or physics curriculum could instruction be initiated 

and subsequently revisited to support MRC concept development across a curriculum? 
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Exploring the Connection Between Women of Color’s Values and Mathematical Identity in 

Undergraduate Mathematics 
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The growing call for more equitable and just mathematics classrooms includes supporting and 

strengthening students’ mathematical identity. Recent scholarship proposes a connection 

between students’ mathematical identities and their values (Kalogeropoulos & Clarkson, 2019). 

However, limited research acknowledges and explores mathematics identity at the intersection of 

gender and race (Leyva, 2021; McGee, 2016). Furthermore, undergraduate mathematics in the 

United States often does not reflect the cultural values of women or students of color (Fong et 

al., 2019; Leyva, 2016, 2021). Informed by sociopolitical theory and an intersection lens, this 

study explores women of color’s mathematics education values and the connections between 

those values and their mathematical identity. Through interviews and mathematical 

autobiographies, participant examples indicate various values, including those related to 

learning from mistakes and social support. Preliminary results suggest that the presence of these 

values in mathematics environments may support women of color’s mathematical identity. 

Keywords: Equity, Mathematical Identity, Values, Gender, Race 

In the growing call from research and professional organizations within mathematics 

education to create more equitable and just mathematics classrooms (e.g., Mathematical 

Association of Mathematics Instructional Practices Guide, 2018; National Council of Teachers of 

Mathematics, 2014), one area of interest focuses on supporting and strengthening students’ 

mathematical identities. Mathematical identity encapsulates students’ relationship with 

mathematics and their perceptions of themselves as a doer of mathematics, including their beliefs 

about ability and participation, sense of belonging, and institutional and interpersonal supports 

(Voigt, 2020). Research suggests that gendered and racialized mathematical discourses play an 

important role in students’ development of their mathematical identity, however, limited 

scholarship exists that acknowledges and explores mathematics identity at the intersection of 

gender and race (Leyva, 2016, 2021; McGee, 2016).  

Recent scholarship proposes a connection between identity and values, such as mathematics 

teachers’ professional identities and their values and students’ mathematical identities and their 

values (Kalogeropoulos & Clarkson, 2019; Mandt & Afdal, 2022). There is general consensus 

that values are sociocultural in nature, embodying cultural norms about what is bad or good, or 

worth avoiding or doing (Hill et al., 2021; Schwartz et al., 2011). Thus, values in mathematics 

education includes one’s belief about what is important and worth doing in mathematics, as well 

as what drives one course of action over another (Hill et al., 2021; Seah, 2019). Given that “what 

we value reflect years of learning and influence from our historical experiences and social 

interactions as members of the culture we belong,” (Seah, 2018, p. 564) I argue that the 

relationship between identity and values in mathematics must be similarly influenced by 

gendered and racialized mathematical discourses. To this point, undergraduate mathematics in 

the United States often does not reflect the cultural values of women or students of color 

(Abrams et al., 2013; Fong et al., 2019; Leyva, 2016, 2021). Various scholars recognize how 

mathematical discourses in the US often align with, and thus give power to, dominant masculine 

and white values such as competition, risk, and individualism (Bullock, 2019; Jaremus et al., 
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2020; Leyva, 2016, 2021; Martin, 2006). Thus, unique and possibly additional tensions within 

mathematical spaces emerge at the intersection of race and gender for women of color as they 

develop their mathematical identity while negotiating their values with dominant mathematics 

values (Carlone & Johnson, 2007; Leyva, 2017; Rodd & Bartholomew, 2006). Supporting and 

incorporating women of color’s cultural values within undergraduate mathematics may help 

reduce these tensions and better support women of color’s mathematical identity development 

(Battey & Leyva, 2016; Hunter, 2021; Seah et al., 2016). Thus, this research engages critical 

frameworks at the intersections of gender and race to challenge exclusionary adherence to 

dominant values and encourage counternarratives to white, masculine mathematical discourses. 

In this research I ask, (1) What do women of color STEM majors describe as valuable/important 

to their undergraduate mathematics education? And (2) In what ways, if any, are these 

valued/important components connected to their mathematical identity? 

Theoretical Perspective 

I utilize sociopolitical theory and an intersectional lens to inform this work (Adiredja & 

Andrews-Larson, 2017; Crenshaw, 1991). This decision stems from the sensitivity of 

mathematics educational values to both the culture of the learner and societal influences (Hunter, 

2021; Lee & Seah, 2015; Zhang, 2019). Given the white, patriarchal discourses within 

undergraduate mathematics, an intersectional lens helps describe the ways in which interactions 

between race, gender, class, and other social constructs account for overlapping discrimination 

imposed on people with multiple marginalized identities within societal systems (Crenshaw, 

1991). Within the cultural system of mathematics, we recognize that the values women of color 

hold are both individually unique as well as shaped by societal influences related to gender and 

race. In particular, sociopolitical theory emphasizes the ways in which knowledge, power, and 

identity emerge and are often constrained by the values and norms of the mathematics 

environment. This theory challenges the currently “accepted” values and norms within the 

culture of mathematics, which often inequitably affect students’ perceptions of themselves as 

doers of mathematics (Adiredja & Andrews-Larson, 2017). Sociopolitical theory rejects student 

assimilation into the current dominant culture and instead promotes a system that considers, 

supports, and affords space to various backgrounds and identities. Thus, I chose to center women 

of color in this analysis to provide counternarratives to the white, patriarchal mathematical 

context without comparisons to the dominant group. Instead, I highlight the often submerged and 

undervalued variety of experiences of women of color related to mathematical identity and 

values. 

Methods 

Data Context and Participants 

The data for this study include transcripts of follow-up interviews and mathematics 

autobiographies from participants who completed the S-PIPS-M survey instrument administered 

by the Progress through Calculus (PtC) project in 2017-2018. This survey collected information 

about undergraduate students’ experiences in precalculus and calculus, including mathematical 

activities, interactions, and affect (Street et al., 2021). To recruit participants for this study, I sent 

out an interest survey in Spring 2022 to all women of color from the survey who consented to 

future contact (n = 1121). Women of color within this dataset includes any participant who 

selected at least woman from the following select-all response options related to gender: Man, 

Transgender, Woman, Not listed (please specify) and who selected at least one of the following 
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select-all response options related to race and/or ethnicity: Alaskan Native or Native American, 

Black or African American, Central Asian, Hispanic or Latinx, Middle Eastern or North African, 

Native Hawaiian or Pacific Islander, Southeast Asian, South Asian. The recruitment email 

described the study as an exploration of women of color STEM majors’ experiences in 

undergraduate mathematics and thus participants self-selected as a woman of color to participate 

in this follow-up study. The interest survey included questions about demographics, various 

experiences and feelings related to undergraduate mathematics, and how those experiences and 

feelings related to race and/or gender, if at all.  

Of those who responded to the interest survey, I selected participants based on results from a 

previous analysis as well as aiming to diversify the sample in terms of gender, race/ethnicity, 

university, and major. Previous analysis using this dataset grouped the full S-PIPS-M survey 

sample of women of color into clusters based on components of mathematics identity. Thus, I 

selected 12 participants to interview that span across these clusters while attending to the 

characteristics listed above. For this analysis, I focus on two participants, Lyka and Callie. Brief 

descriptions of Lyka and Callie are presented in Table 1. The participants self-described their 

gender and racial identities through an open-ended question on the interest survey. 

Table 1. Description of participants. 

Lyka Callie 

Lyka (she/her) is a Filipino and white cisgender 

woman. She recently graduated with degrees in 

Biomedical Engineering and Multidisciplinary 

Studies from a public university in the Eastern 

half of the United States. Within the 

mathematics department at her university, she 

completed College Algebra, Trigonometry, 

Calculus I, Calculus II, Multivariable Calculus, 

and Ordinary Differential Equations. 

Callie (she/her) is a Hispanic/Latino 

cisgender woman. She recently graduated 

with a degree in Biology from a public 

university on the East coast. Within the 

mathematics department at her university, she 

completed College Algebra, Precalculus, 

Trigonometry, Statistics, and Calculus I. 

Data Collection 

In Spring 2022, I conducted 60 - 90 minute, semi-structured virtual interviews with each 

participant. The interview protocol included questions about participants’ experiences and 

feelings related to undergraduate mathematics, including their perceptions of themselves as doers 

of math and what they found to be supportive and valuable in mathematics spaces. I divided the 

interview questions into four categories, three of which were informed by Voigt’s definition of 

mathematical identity and one focused specifically on the potential connections to gender and/or 

race. This categorization intended to bring forth participants’ narratives around their 

mathematical identity as well as components they felt were important and valuable in their 

mathematics education. I also asked participants to write a brief mathematics autobiography 

using an open-ended prompt. The prompt encouraged participants to highlight memorable and 

influential moments in their life related to mathematics up to and including college, along with 

any ways in which race and/or gender interacted with these moments. I asked participants to 

complete the mathematics autobiography prior to their interview. 
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Data Analysis 

To analyze the transcripts, I used Saldaña’s (2013) pre-coding, first cycle, and second cycle 

coding methods. Pre-coding occurred during the interviews and during the transcription process, 

whereby I noted particularly interesting or powerful statements. During the first cycle I utilized 

open coding to label any statements related to the research questions, including statements 

related to cultural values, mathematics education values, and the components of mathematical 

identity. These codes became the basis of the second cycle coding process which involved 

categorizing the initial codes into theoretical codes to help describe the overall story connecting 

the data to the research questions. The coding process is still in progress and thus the results 

section that follows includes preliminary findings and developing themes. 

Results 

Initial findings suggest mathematics education values associated with learning from 

mistakes, connecting to the real-world and future careers, clarity in mathematical explanations, 

and social relationships, such as with their instructor and peers. There also appears connections 

between these mathematics education values and their mathematical identity. Intertwined within 

these mathematics education values and connections to mathematical identity, I also note the role 

of cultural values, especially related to gender and race. I present here two examples, one from 

each participant, to exemplify some of these points. Future analysis will provide more detailed 

and potentially addition results and overarching themes. 

Lyka’s Example 

In her mathematics autobiography, Lyka describes a stigma she perceives in STEM, where 

“if you mess up that’s not only reflective of you as a person, but women as well, the same goes 

for race.” However, she describes how much she valued and enjoyed her mastery-based upper-

level calculus courses where she felt that having the opportunity to work through her mistakes 

made the process “less stressful and made me enjoy doing math. I was able to focus on the 

meaning of the content.” She attributes those courses as the reason she decided to pursue a 

mathematics minor. This suggests that seeing her mathematics education values reflected in her 

math courses improved how she felt about math and herself as a doer of math. In Lyka’s 

experience, we see how cultural values around making mistakes in mathematics, and how those 

interacted with being a woman of color in STEM, were challenged within her mastery-based 

math courses. When instead the value of making mistakes aligned with her values around 

learning and improvement, she added a mathematics minor, suggesting a strengthened 

mathematics identity. 

Callie’s Example 

Callie describes both positive and negative experiences within undergraduate mathematics. 

She acknowledges how her performance often related to her feelings toward the courses. 

However, how she describes the importance of social support emerges across these experiences. 

When detailing her math courses, she recognizes that for most part “you were kinda on your 

own, and it was up to me… I was really good at forming friends within those classes so we could 

study together.” The role of social support also influenced her perceptions of herself within 

mathematics and her major. When describing a fellowship she engaged in during college 

specifically geared toward marginalized students in STEM, she emphasizes how “that fellowship 

that I had is like a very big reason why I continued to do so well in all these [math] classes… I 

probably would have changed my major completely if I wasn’t in this fellowship.” She continues 
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to talk about how the importance of this social support intertwined with her gender and race, 

“because they did help me a lot with just like the reassurance of like, listen, this isn’t a common 

thing like, you’re a woman, you’re a minority.” Even though Callie describes overall having a 

negative feeling toward mathematics, having a space that reflected her values around social 

support and made her feel less alone as a woman of color in STEM provided a positive 

connection with mathematics and her major. 

Discussion 

The above preliminary results suggest various values women of color relate to their 

experiences in mathematics. These include social relationships, such as the importance of peer 

support and organizational support for Callie, learning from mistakes, such as Lyka described in 

her mastery-based math courses, connections to the real-world and future careers, and clarity in 

mathematical explanations. Additional values may emerge as I complete the analysis. There also 

appears to be a connection between these women of color’s values and their mathematical 

identity. In particular, they both mention the importance of a value-related component in their 

STEM degree considerations. Future analyses will explore this connection in more detail, 

including when and in what way values relate to students’ mathematical identity. These results 

also support the use of sociopolitical theory and an intersectional lens given the inclusion of 

statements regarding the influence of gender and race on their experiences. Once the findings 

and overall themes are established, I will more robustly consider in what ways these women of 

color’s values connect with previous literature about women and people of color’s values and 

mathematical identity and how these results intertwine with gender, race, and the tensions often 

present within dominant mathematical systems. The implications of this work aim to consider 

how women of color’s values emerge in mathematical spaces and the role of the university to 

incorporate those values to better support women of color in undergraduate mathematics. 
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The Role of Language in Undergraduate Mathematics: Linear Independence and Limit 
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As English is increasingly seen as the language of mathematics instruction in the United States 

and the world, it becomes important to interrogate the role of the English language in 

mathematical understanding. This article investigates this question in relation to linear 

(in)dependence and limit through clinical interviews with undergraduate students. Preliminary 

results indicated a relationship between students’ conceptual understanding of linear 

(in)dependence and their ability to connect their mathematical and non-mathematical uses of the 

term (in)dependent. Moreover, students’ unproductive conceptions of limit appeared to be 

influenced by non-mathematical meanings of limit.  

Keywords: Linear Algebra, Calculus, Language, Student Thinking, Undergraduate Education  

As English is increasingly seen as the language of mathematics instruction in the United 

States and the world (e.g., Gerber et al., 2005; Planas, 2018), it is crucial to interrogate the role 

of the English language in mathematical understanding. Prior research suggests that the structure 

of the English language may be less effective than some other languages, say the Chinese 

language, for facilitating mathematical performance at primary and secondary school levels (e.g., 

Han & Ginsburg, 2001). This paper investigates the role of the English language at the 

undergraduate level in the context of limits and linear independence, as these are two central 

topics of study in mathematics education (e.g., Larsen et al., 2017; Rasmussen & Wawro, 2017). 

Literature Review 

Most English mathematics words at the K-12 levels have been created from Greek or Latin 

(Milligan & Milligan, 1983). For example, the term quadrilateral comes from two Latin words: 

quadri which means “four” and latus which means “side.” Unfortunately, most English-speaking 

students are not taught Latin or Greek, so many of them may come to see math terms as random 

combinations of letters with no inherent meaning (Johnston-Wilder et al., 2016). In contrast, 

Chinese math words appear to have been created as descriptive and conceptually clear compound 

phrases (Han & Ginsburg, 2001). For example, the Chinese term for quadrilateral literally 

translates into English as four sides shape, which clearly depicts the concept of quadrilateral. 

Yet, many undergraduate math terms in English such as linearly independent already seem 

conceptually clear to the expert’s eye. But are such terms also conceptually clear to the 

undergraduate learner? Research on linear (in)dependence and limit documents a diversity of 

student conceptions of these topics. For example, Plaxco and Wawro (2015) analyzed data from 

clinical interviews with students from a linear algebra course that used a travel-oriented 

curriculum (Wawro et al., 2012). They identified four student conception categories of linear 

(in)dependence: travel, geometric, vector algebraic, and matrix algebraic. The travel conception 

described linear (in)dependence in terms of movement. The geometric conception used language 

about spatial reasoning or graphical representations. The last two conceptions focused on 

operations on algebraic representations of vectors and matrices, respectively. 

Williams (1991) investigated the following student models of limits: (a) dynamic-practical, 

(b) acting as a boundary, (c) formal, (d) unreachable, (e) acting as an approximation, and (f) 

dynamic-practical. He found that it was common for students to exhibit a dynamic view of limit 

25th Annual Conference on Research in Undergraduate Mathematics Education 1179



and organized this view into three variants: squeezing a value from both sides, finding 

approximations, and coordinating changes in x with changes in y. Building on William’s (1991) 

work, Oehrtman (2009) characterized students’ spontaneous metaphors for limits and identified 

five often used student metaphors of limit: as physical limitation, with infinity as number, as 

proximity, as collapse, and as approximation. He also identified three less often used student 

metaphors of limit: as motion, as zooming, and as informal version of correct definition. Of all 

these metaphors, Oehrtman found limit as an approximation to be the most productive. 

My study investigates the uses of the terms limit and (in)dependent in relation to student 

understanding of limits and linear (in)dependence. Here, student understanding is conceptualized 

as any or all of the following elements of mathematical knowledge: meanings, images, ideas, 

connections, ways of comprehending situations, and explanations (Lobato, 2014). With this 

framework in mind, the research question is: What is the role of language in student 

understanding of linear (in)dependence and limits? 

Methods 

To gather background information on student understanding of linear (in)dependence and 

limits, the research team conducted clinical interviews (Ginsburg, 1997) with two groups of 

undergraduate students across two universities in the southwest of the United States. One group 

consisted of 4 students who had recently taken linear algebra and was asked questions about their 

understanding of linear (in)dependence. The second group had 6 students who were enrolled in 

Calculus II or III and were asked about their understanding of limits. Student interview responses 

were transcribed and analyzed. Students’ linear (in)dependence conceptions were inferred from 

the data using open coding from grounded theory (Strauss, 1987). To infer students’ conceptions 

of limits, we used a list of a priori codes from prior research (e.g., Williams, 1991), while 

allowing room for other codes to emerge from the data within a grounded theory approach 

(Strauss & Corbin, 1990). 

Next, we analyzed the previously identified student understandings of limits and linear 

(in)dependence, considering the role of language. First, we determined which, if any, student 

model of limit related to the non-mathematical meaning of limit. Then, we analyzed student 

responses to the interview question regarding why the words independent and dependent are 

used for linear (in)dependence. In each response, we determined if the student used meanings of 

(in)dependence from outside linear algebra to interpret linear (in)dependence. Finally, we 

analyzed the relationship between each student understanding of linear (in)dependence and their 

use of outside meanings of (in)dependence. 

Results 

Background Findings: Student Understanding of Linear (In)dependence and Limits 

Three student models of linear (in)dependence emerged: (a) A set of vectors (viewed as a 

matrix) is linearly independent if and only if it is reducible to the identity matrix; (b) A set of 

vectors is linearly independent if and only if no two vectors in the set are scalar multiples of each 

other; and (c) A set of vectors is linearly independent if and only if at least one vector is a scalar 

multiple of another vector in the set. Student models (a) and (c) were used by one student each 

(Marco and Arletta, respectively), whereas student model (b) was used by two students (Edward 

and Alana). While none of these student models was completely correct mathematically, some 

were more correct and conceptually oriented than others. Student model (a) was more 

computationally oriented, focused on reducing a matrix through row or column operations. On 
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the other hand, models (b) and (c) highlighted connections between linear (in)dependence and 

the idea of scalar multiples, with model (b) being more logically correct than (c). 

Regarding the limit analysis, each student had multiple conceptions of limit in calculus. We 

identified eight student models of a function’s limit: Coordinating x and y (n=6 students), 

approaching from both sides (n=5), function value (n=5), continuity (n=3), boundary (n=4), 

unreachable (n=6), exception (n=2), and stopping point (n=1). The model of limit coordinating x 

and y described a limit in terms of how the function value changes as x approaches a certain 

value. Approaching from both sides described ‘limit as x approaches a’ as the common y-value 

the graph approaches from the left and from the right of a. Function value treated the limit value 

and the function value as the same. Continuity viewed the limit’s existence as equivalent to the 

function’s continuity. Boundary conceptualized a limit as a number or point past which the 

function cannot go. Unreachable conceived of a limit as a number or point that cannot be 

reached by the function graph. Exception viewed the limit as something that does not follow a 

rule. Finally, stopping point conceptualized the function as motion along a graph and viewed the 

limit as the place where the function is constrained. 

The Role of English on Student Understanding of Linear (In)dependence 

The results indicated that Edward and Alana, the two students with model (b) of linear 

(in)dependence, connected their non-mathematical understandings of the terms independent and 

dependent to their understanding of linear (in)dependence, whereas the other students (Arletta 

and Marco) failed to make such a connection.  

For example, when I asked Edward, “We’ve been talking about linearly independent sets of 

vectors…Why do you think the words ‘independent’ and ‘dependent’ are used?,” he responded, 

“Well, dependent means they’re related to each other. Right? Independent means they’re not.” 

Then, when I asked him to elaborate, he said, “Well, dependent means it’s related to or reliant 

upon each other. So, if you have a dependent set of vectors, you can make one vector from 

another by scaling it. So, they’re interconnected, I guess.” Based on this excerpt, it appears 

Edward connected his understanding of the term dependent as used outside linear algebra (i.e., 

“related to or reliant”) to his interpretation of that term in linear algebra (i.e., “make a vector 

from another by scaling it”).  

Similarly, when Alana was asked the same question, she said: 

Okay, I like that the words are the words they are, because they help me remember the 

definition. So, when it’s dependent– just like, in general the definition of dependence, to 

me, is when you need something else, or, like, you rely on someone else. So, if you just, 

like, rely on something or someone– so then, thinking about it mathematically, like– I’ll 

just use this example I’ve been using. Oops. This [vector] times two gives you this 

[vector], and so there’s that, like, relationship. And then independence, to me, in general 

means completely on your own. So, like, there’s no way that these two [vectors] can ever, 

like, work together and be the same or look the same. 

Thus, she used her general knowledge from outside of mathematics that “dependence…is…when 

you need… or rely on someone else” and that independence means “completely on your own” to 

help create mathematical interpretations or examples of linear (in)dependence (e.g., “this [vector] 

times two give you this [vectors]” for dependence and “no way these two [vectors] can ever look 

the same” for independence). 

In contrast, Marco did not leverage his understanding of the words independent and 

dependent from outside of mathematics for interpreting linear (in)dependence. When asked the 

same question above, he responded: 
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Yeah, honestly, I’ve been going through the whole… linear algebra course. I didn’t know 

why it was called independent and dependent. I just thought, well, if it reduces to identity 

matrix, it’s independent. That’s all the correlation I got from that.  

Hence, Marco claimed that, in interacting with the concept of linear (in)dependence, he had not 

attended to the meanings of independent and dependent outside linear algebra. Not connecting 

his non-mathematical and mathematical understandings of independent and dependent might 

have led Marco away from attending to scalar multiples (for interpreting linear (in)dependence) 

and instead into rote learning.  

Like Marco, Arletta initially claimed never connecting her prior linguistic understanding of 

(in)dependence to linear (in)dependence. However, when I later presented her with a traditional 

textbook definition of linear (in)dependence, she forcedly made a connection: “The words 

independent and dependent [are used] because they’re depending on whether or not the input 

values are zero to get a[n] output of zero.” Moreover, when I pressed her to exemplify this 

connection, Arletta responded: 

Um, I guess, just going back to the definition. Like if c1x1— Like if c1, c2 [the 

coefficients] were to equal 0, then that means they’re [the vectors x1, x2] independent… 

and... in dependent ones [vectors], these values [the coefficients] can be anything, but 

they don’t all have to be zeros. 

Although Arletta made an interesting connection between the formal definition of linear 

(in)dependence and her prior understandings of terms (in)dependent, this connection was 

superficially (not conceptually) aligned with the topic of linear (in)dependence. This is not 

surprising, given that she admitted not connecting the formal definition to her understanding of 

linear (in)dependence. This may help explain why, in her model of linear (in)dependence, she 

labeled a set with at least two vectors which are scalar multiples of each other as linearly 

independent and a set with no scalar multiples as linearly dependent (which is mathematically 

reversed).  

These results indicate that the students with the strongest conceptual understanding of linear 

(in)dependence (those with model (b)) were precisely those who connected their mathematical 

and non-mathematical understandings of the words (in)dependent in terms of a relationship 

between vectors. 

The Role of English on Student Understanding of Limit 

All six students appeared to connect their mathematical and non-mathematical conceptions of 

limit. All students had at least one mathematical conception of limit that related to the non-

mathematical definition of limit as a restraint or limitation – “a measure or condition that keeps 

something under control or within limits” (2019, n.p.). This non-mathematical definition aligns 

with the following (mathematically incomplete or incorrect) student models of limit inferred 

from the data: boundary (n=4), unreachable (n=6), exception (n=2), and stopping point (n=1).  

To illustrate the connection between the non-mathematical meaning of limit and student 

mathematical understanding of limit, consider one student, Joyce, who had a boundary model of 

limit. When Joyce was asked what came to mind when she heard the word limit, she said, “When 

something cannot be something anymore like ‘I’m at my limit.’” Then, to elaborate, she sketched 

a graph and its highest point while saying, “Here’s a dot… and there’s like a function… and it’s 

like a maximum, but I guess like, that’s as high as it goes. Like that’s what I’m picturing like it’s 

the limit… like the dot [the highest point on the graph] is the limit.” Thus, Joyce related her non-

mathematical conception of limit as a limitation (e.g., “like I’m at my limit”) to her mathematical 

understanding of limit as a function’s “maximum” value (which is mathematically incorrect). 
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Discussion 

Overall, the results indicated that students’ non-mathematical language can play an important 

role in students’ mathematical understanding of linear (in)dependence and limits. In particular, it 

may be that connecting the non-mathematical use of (in)dependence as a relationship to the 

mathematical meaning of linear independence afforded students a deeper understanding of this 

topic. However, not all students in the study who had taken linear algebra made such a 

connection, suggesting that there is still room for making the English term linearly (in)dependent 

conceptually clearer to students. On the other hand, the analysis of student understanding of 

limits suggested that extending non-mathematical understandings of the term limit to 

mathematical interpretations of this term without reflection may also direct students’ 

mathematical understandings astray.  

These results highlight the importance for teachers to help students reflect on the terminology 

used to describe the concepts they are studying. This reflection may encourage students to 

compare the mathematical and non-mathematical meanings of certain terms. Leading students to 

see conceptual similarities (when they exist) can allow students to build on their own linguistic 

resources, whereas encouraging them to see differences can re-direct students away from 

unproductive mathematical conceptions rooted in limitations of non-mathematical meanings. 

For example, a linear algebra instructor could facilitate discussions about the non-

mathematical meaning of dependent and its connections, not only to the idea of scalar multiples 

of vectors, but more generally to the concept of linear combinations. This could help students 

interpret the idea of “a vector being expressible as a linear combination of other vectors” as a 

relationship in which that vector “depends” or “relies” on the other vectors. Likewise, a calculus 

instructor could facilitate discussions about the similarities and differences between 

mathematical and non-mathematical meanings of the term limit, so students may confront 

potentially unproductive conceptions and build productive models of limit. 

To prompt or enrich such reflections, features of other languages, such as Chinese, could be 

leveraged. For example, if linear algebra students don’t bring up the idea of a “relationship” on 

their own in class discussion, the instructor could promote such idea by asking students to 

consider the literal translation of the Chinese term for linearly dependent (线性相关: linearly 

related to each other), which explicitly invokes the idea of a relationship. Similarly, to enhance 

the discussion about limits in a calculus class, students might be asked to reflect on the 

constrains of the literal translation of the Chinese name for limit (极限: maximum magnitude 

limit). This literal translation appears to reinforce the mathematically incorrect idea (held by 

students like Joyce above) that a limit is the maximum value of a function. 

Ultimately, whether the multiple meanings embedded in certain mathematical terms support 

or hinder student mathematical understanding may lie on how students and instructors leverage 

these meanings. One promising way is for instructors to promote student reflection over the 

similarities and differences between multiple meanings of important mathematical terms. More 

research in language and undergraduate mathematics may shed more light on this promise. 
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Calculus I Instructors’ Use of Representations in Instructional Tasks: Introducing Derivatives 
with Inquiry  

 
Saba Gerami 

University of Michigan 

I present preliminary results from my dissertation research that investigates how eight college 
Calculus I instructors used representations in an instructional task intended for introducing 
derivatives with inquiry. Using Zandieh’s (2000) framework, the instructors were asked to 
propose and sequence eight tasks for introducing derivatives to their students. This paper 
focuses on the instructors’ utilization of various representations of derivatives in the first task 
they proposed in the sequence. The findings show how all instructors found graphical and 
physical representations appropriate for introducing derivatives, with some of them also 
reaching out to other representations (symbolic, numerical, and verbal) simultaneously. 

Keywords: Instructional tasks, derivatives, representations, inquiry, calculus teaching 

Research on the impacts of inquiry teaching suggests positive student outcomes, such as 
learning and persistence in STEM (Freeman et al., 2014; Kogan & Laursen, 2014; Laursen et al., 
2014; Johnson et al., 2019; Rasmussen & Ellis, 2013). It is also known that the implementation 
of inquiry methods varies considerably among instructors (Laursen & Rasmussen, 2019). 
Research on the variability of inquiry-oriented teaching in undergraduate mathematics has 
mostly focused on characterizing and measuring how instructors and students interact in the 
classroom (e.g., Laursen et al., 2011; Mesa et al., 2020; Shultz, 2020). While showing the range 
of pedagogical variability in these classrooms is necessary for understanding inquiry teaching, 
this strand of research overlooks the content instructors and students interact with. 

In my dissertation study, I investigate how college calculus I instructors, who use inquiry in 
their teaching, shape students’ mathematical work during instruction of one specific piece of 
content: derivatives. As one of the basic and core concepts in calculus, derivatives’ multiple 
representations and conceptualizations make its teaching a rich area for investigation. I bring my 
attention to the content during instruction by looking into the instructional tasks and their 
sequencing that instructors use to introduce derivatives to their students. For this preliminary 
report, I focus on instructors’ use of mathematical representations, specifically addressing the 
following research questions: 

1. Which representations do college Calculus I instructors, who teach with various 
inquiry approaches, use within instructional tasks to introduce derivatives with? 

2. What patterns exist, if any, in their use of representations in instructional tasks for 
introducing derivatives? 

Research on Representations of the Concept of Derivative 
Research on representations of the concept of derivative has mostly attended to student 

understanding via using various representations, making connections among representations, and 
extending student understanding to applications of derivatives in other contexts (e.g., Feudel & 
Biehler, 2021; Jones & Watson, 2018; Maharaj, 2013; Roorda et al., 2007; Siyepu, 2013). 
Despite this enduring research on students’ understandings of the derivative, there is less 
research on the teaching of derivatives through using representations. The scarce research in this 
area focuses on the student outcomes of instructional treatments. Kendal and Stacy (2000) 
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compared high school students’ competency in derivative representations from two classes. 
Although both teachers used identical curricular materials, students from the two classes became 
proficient in different representations (graphical versus symbolic) based on their respective 
teachers’ emphasis on one representation. The authors claimed that “students had different 
cognitive experiences and acquired different differentiation competencies which related directly 
to the ways they were taught” (p. 133). Similarly, Hähkiöniemi (2006) carried out a teaching 
period based on the APOS theory, during which he emphasized visual and symbolic 
representations. He agreed with Kendal and Stacy’s (2000) claim, as he found that students could 
recognize derivative visually early on and calculate derivative at a point symbolically. 
Hähkiöniemi (2006) concluded that visual representations are a good fit for introducing and 
developing understanding of derivatives. Also using the APOS theory, Borji et al. (2018) 
designed a teaching intervention focused on graphical representations. While both the 
experiment and the control groups spent equal time on the concept of derivative, the students in 
the experiment group spent some time using a programming software with graphing facilities, 
and later performed better on a written tests on derivatives. In another study, instead of 
emphasizing visual and symbolic representations, Dwirahayu et al. (2017) prioritized physical 
representations, specifically analogies to the speed of a vehicle, to introduce derivatives to 
students. Compared to the control group, the authors showed that teaching with analogies 
resulted in higher student understanding of other representations of the derivative. 

These interventions are promising in explicating the relationship between teaching and 
learning of derivatives using different representations. However, the research has yet to 
investigate how instructors, outside of interventions, think about their use of representations for 
teaching derivatives and how they design and sequence their instructional tasks based on their 
insights about student conceptions of derivatives. 

Theoretical Framework 
In this study, I use Zandieh’s (2000) framework (Table 1) to: 1) ground instructors in both 

the knowledge at stake and students’ conceptions of derivative; and 2) organize instructors’ use 
of representations when proposing tasks for teaching derivatives with inquiry. 
Table 1. Zandieh’s (2000) adapted framework for the concepts of derivative. 
  Representations 
  Graphical 

(Slope) 
Verbal  
(Rate) 

Physical 
(Velocity) 

Symbolic 
(Difference Quotient) 

Pr
oc

es
s-

O
bj

ec
t 

La
ye

r 

Ratio Slope of the 
secant line 

Average rate of 
change 

Average 
velocity Difference quotient 

Limit Slope of the 
tangent line 

Instantaneous 
rate of change 

Instantaneous 
velocity 

Limit of the 
difference quotient 

Function 
Graph of the 

derivative 
function 

Rate of change 
of a function 

Velocity as a 
function of time 

Derivative as a 
function 

Zandieh (2000) organized students’ conceptions by representation (graphical, verbal, 
physical, symbolic) and process-object layers (ratio, limit, function). The process-object layers 
are hierarchical, as each layer is found by taking the process of that layer over the previous layer 
as an object. For example, the limit layer is found by the process of finding the limit of the ratio 
as an object. Although not originally captured in the framework, Likwambe and Christiansen 
(2008) and Roundy et al. (2015) added two new representations: numerical and instrumental. 
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The numerical representation of the derivative corresponds to the ratio of change (𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

) is 
written with values, often with a table. The limit layer corresponds to when the denominator 
approaches zero; the function layer is presented as an array of numbers or set of ordered pairs of 
differences. The instrumental representation of the derivative is the rules of differentiation and 
lives only at the function layer. 

Methods 
This qualitative study uses data collected through interviews with eight college calculus 

instructors who were purposefully selected. To select the interviewees, I administered a survey, 
including the INQUIRE instrument (The INQUiry-Oriented Instructor REview; Shultz, 2020), to 
48 college instructors who teach Calculus I with inquiry. I then used INQUIRE to purposefully 
select eight interviewees with different patterns of inquiry-oriented practices in the classroom. 
The final interview sample included eight participants (all pseudonyms): Justin, Adrian, Barry, 
Matthew, Gopher (he/him pronouns); Monica (she/her pronouns); Max (they/them pronouns); 
and Alex (all pronouns). All participants were tenured with more than four semesters experience 
teaching Calculus I with inquiry. I conducted four remote semi-structured interviews (1-2 hour 
long each; Figure 1) with each instructor, as they proposed up to eight tasks. Instructors could 
use their teaching materials to choose tasks they had used or to create new ones. 

Using Zandieh’s (2000) framework, I dedicated an interview to each representation. During 
each interview, the instructors were given two prompts and were asked to propose a task for each 
prompt that would transition students’ conceptions from one layer (as pre-conception) to the next 
(as post-conception, see Figure 1). For example, as Prompt 1, participants were asked to propose 
a task situated within the physical representation of derivative that would help transition 
students’ conceptions from the ratio to the limit layer (without the framework’s language): 

Assume that you have already taught students about average velocity and want students 
to learn about instantaneous velocity at a point. Propose a task with the position of an 
object varying as a function of time, where students figure out the velocity of the object 
at a given moment. 

 
Figure 1. Structure of the interviews using Zandieh’s (2000) framework. The code under a prompt, XA→B, gives: the 

representation X (P = Physical, G = Graphical, V = Verbal, and S = Symbolic), and the process-object layers A 
and B (R = Ratio, L = Limit, and F = Function). The arrow between the layers indicates the layer’s precedence. 

At the end of the final interview, I presented each instructor with all their proposed tasks and 
asked them to order them for introducing derivatives using inquiry. For the analysis reported 
here, I identified the representations and layers used within the proposed tasks without looking at 
the prompts’ representation/layer code (those in Figure 1). I also coded representations of the 
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derivative not in Zandieh’s (2000) original framework. After coding, I listened to the interviews 
and read the transcripts to identify representations/layers that were mentioned but not written 
down in the task, as many instructors did not have enough time to write down all task details. 

Findings 
Due to space limitations, I present the representations used in the instructional task that 

instructors chose to use first when introducing derivatives to their students with inquiry. Because 
at the end of the final interview and after proposing eight tasks, the instructors re-arranged their 
proposed tasks in their preferred sequence for teaching derivatives, each instructor’s first task is 
not necessarily the product of the first prompt. Figure 2 shows the prompts that generated each 
instructor’s first task and the representations and layers identified in each. As their first task, the 
instructors chose to either use the task proposed for Prompt 1 (physical representation from the 
ratio to the limit layer) or Prompt 3 (graphical representation from the ratio to the limit layer). As 
shown in Figure 2’s “Other reps/layers row”, Gopher, Max, Barry, and Matthew reached out to 
representations and layers not mentioned in the prompts.  

Pr
om

pt
 

Prompt(s) with 
reps/layers given 

Prompt 1 
P: R → L 

Prompt 3 
G: R → L 

Prompts 1 and 3 
P + G: R → L 

Fi
rs

t T
as

k Task’s 
reps/layers used 

from prompt 
PR/L PR GR/L GL PR/L + GR/L 

Other reps/layers  GR/L NR/L + SL   GF + 
SR/L VR/L + SR/L 

 Participants  Alex 
Monica Gopher Max Adrian Justin Barry Matthew 

Figure 2. Derivative’s representations and layers in the prompt that generated each instructor’s first task, and 
representations and layers identified in their first tasks. Reps/layer is short for representations and layers. Each task 
has rep/layer codes similar to those in Figure 1. The task’s layers are separated with slash (/) instead of arrows (→) 

here because I do not claim that the tasks necessarily transfer students’ conception from one layer to another. 

Alex, Monica, and Gopher provided similar tasks with tables of data for the position of a 
falling objects at various times and asked students to find the average velocity for various 
intervals. They then asked their students to find an estimate for the velocity at somewhere 
arbitrary between the existing data points. Gopher also used the graphical representation by 
defining secant and tangent lines, asking students to draw them on the curve of best fit for the 
data in Excel and finding connections between the lines’ slopes and the velocities. 

While Adrian and Max started their tasks similarly by providing the equation of the position 
of an object as a function of time, Adrian’s task stayed within the ratio layer, as it asked students 
to only explain the physical meaning of some ratios (e.g., 𝑅𝑅(5)−𝑅𝑅(3)

5−3
 ). Max however provided 

multiple tables with times approaching t = 5 (e.g., 4.5, 4.75, 4.875) and asked students to 
complete the tables with average speed between the given times and t = 5. Max then asked 
students to estimate and write a formula for the object’s speed at t = 5, thus using the limit layer 
of multiple representations (numerical and symbolic).  

Looking at all representations used by instructors in their first task, everyone, except Justin, 
used the physical representation for introducing derivatives to their students, either encouraged 
by the prompt or by choice. Staying within the graphical representation only, Justin used an 
interactive GeoGebra applet to ask his students to find the slope of a secant line between two 
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points on 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, as the distance between the points decreased. He then asked students to 
calculate the slope if ∆𝑥𝑥 is zero, see what happens, and think about what the calculations 
reminded them of. Being cognizant of not using the physical representation, Justin explained that 
he does not use velocity “as the gateway application to move to calculus” because students get 
trapped in thinking that “a derivative is always a velocity rather than a velocity is always a 
derivative” (Interview 1). 

Like Justin, Barry also chose the task he proposed for prompt 3 as his first task. Using a 
variety of functions and without mentioning secants, Barry asked students to find slope of 
tangent lines at various points. He then asked students to consider 2𝑥𝑥 and plot 2

𝑥𝑥+ℎ−2𝑥𝑥

ℎ
 in 

Mathematica with h getting smaller, ending the task by providing the limit definition of the 
derivative. As the only instructor to do so, Barry did not include the ratio layer in his task, but 
used the function layer. 

Lastly, Matthew was a special case in the sense that he proposed the same task for both 
Prompt 1 and Prompt 3, saying that he wants students to “associate graphical representations to 
various parts of their work in the context of distance, velocity, time” early on (Interview 2). He 
also was the only instructor that used all four original representations (within ratio and limit 
layers) in his first task. Starting the task with the equation of the height of a bolt fired from a 
crossbow as a function of time, Matthew proposed a series of subtasks that asked students to: 
approximate the speed for a specific t, explain their approximation “using words only” (verbal), 
use the limit notation to write their findings, and identify secant and tangent lines on the graph of 
the function and find their slopes. Wanting students to become aware of the four main 
representations of the derivative, Matthew said that the task makes them “repeat the same set of 
questions over and over in different representations” (Interview 1). 

Discussion 
The findings show that the instructors in this study found graphical and physical 

representations, within ratio and limit layers, appropriate for introducing derivatives. These 
results align with Hähkiöniemi’s (2006) and Dwirahayu et al.’s (2017) suggestions of using these 
representations early on. Nonetheless, half of the instructors also used other representations 
simultaneously. Moreover, while most instructor’s use of the representations reflected the 
hierarchical order of layers in Zandieh’s (2000) framework, one instructor (Barry) chose to not 
teach in that order. Further inquiry is needed to understand the ways in which calculus instructors 
utilize representations, separately and in connection to one another, at various conceptual levels 
to teach derivatives. 

The study extends our understanding of inquiry teaching by attending to the content, as 
opposed to pedagogy, through their use of instructional tasks. As more mathematics faculty 
implement inquiry-based methods, it is essential that we understand their decision-making at the 
content level so that their specific needs can be met through curriculum or professional 
development initiatives. By attending to instructional tasks, we also gain a better understanding 
of what is actually offered to students during instruction and how it might impact their learning. 
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How Do Postsecondary Linear Algebra Instructors Implementing Inquiry-Oriented Approaches 
Address Goals of Instruction in an Online Work Group? 

 
         Minah Kim                                                             Shelby McCrackin          

     Florida State University                                       Florida State University            

Postsecondary instructors interested in inquiry-oriented instruction of Linear Algebra 
participated in a sequence of eight one-hour online work group meetings with other experienced 
inquiry-oriented linear algebra facilitators and teachers. Recordings from three meetings were 
analyzed for how two participants referenced goals of instruction in preparation for teaching a 
new instructional unit on subspaces. We identified four goals of instruction of teaching 
subspaces. We discuss the intersections of several goals of instruction and possible implications 
for those who want to transition to inquiry oriented instructional approaches.  

Keywords: goals of instruction, inquiry-oriented instruction, online work group 

Linear Algebra is a postsecondary mathematics course that is typically required of all 
mathematics and many STEM (Science, Technology, Engineering, and Mathematics) majors. 
The topics learned in this course are foundational for many other math courses. Tucker (1993) 
and Carlson et al. (1993) point out the importance of linear algebra in addressing not only the 
theoretical and practical aspects but also its applicability in modern computation in industrial 
science, technology, computer science, engineering, and economics.  

The number of students required to take Linear Algebra provides motivation to search for 
ways to improve instruction. Active learning in undergraduate STEM education is linked to 
increased student performance, and some literature suggests it may be linked to more equitable 
outcomes (Burke et al., 2020; Freeman et al., 2014; Haak et al., 2011; Kogan & Larsen, 2014). 
Inquiry-oriented Linear Algebra (IOLA) is one approach to active learning in undergraduate 
mathematics education. Inquiry-oriented instruction derives from Realistic Mathematics 
Education (RME) with the intent to support students in reinventing key mathematical concepts 
(Freudenthal, 1991; Kelley & Johnson, 2022). To support the students in these courses with an 
engaging learning experience, teachers need to be supported (Andrews-Larson et al., 2019) 
because changing instructional approaches is difficult and long-lasting change requires shifts in 
instructional practice (Cohen, 1996; Henderson et al., 2011). Therefore, there is “a need for 
professional development programs that foster the development of undergraduate mathematics 
instructors’ pedagogical reasoning” (Andrews-Larson et al., 2019, p. 129) 

Thus, an online work group (OWG) created as part of a larger project to support college 
mathematics instructors teaching Linear Algebra, gave instructors an opportunity to collaborate 
with others interested in continuing their pursuit to enact reform-oriented instructional practices.  
In the OWG of this study, participants with inquiry-oriented instruction (IOI) experience work 
on implementation of a newly developed set of IOLA tasks and discuss their teaching practices 
with researchers and facilitators of the OWG.  

In this analysis, we focus on the two undergraduate instructors who are not researchers or 
facilitators of the larger project because this enables us to examine how experienced IOI 
instructors discuss content and related pedagogical decisions they make before and during 
instruction. Their discussions can highlight how teachers’ knowledge shapes teachers’ practices 
(Borko & Putnam, 1996), in particular practices related to the preparation of a lesson. One of 
those practices is attending to goals of instruction (Wagner et al., 2007) which is the focus of our 
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study. The practical goal (Maxwell, 2013) of this research is to continue the conversation 
initiated by Wagner and colleagues, whose focus was on a novice instructor’s experience with 
the inquiry-oriented instructional tools, and extend this to a discussion including experienced 
IOLA instructors. This research will aid in understanding the reasoning of experienced IOLA 
instructors, particularly regarding their instructional goals and the challenges of IOLA 
curriculum implementation. Our research question is “What is the nature of the goals of 
instruction articulated by experienced Inquiry-Oriented Linear Algebra (IOLA) instructors as 
they work to implement a new instructional IOLA unit in the context of the Online Work Group 
(OWG)?” 

 
Theoretical Framework 

Wagner et al. (2007) identified four categories related to instructional goals in the context of 
inquiry-oriented instruction at the undergraduate level: classroom orchestration goals, 
cognitive/learning goals, assessment goals, and content goals. The four goals emerged as a result 
of continuous work on studying teacher knowledge, such as pedagogical content knowledge 
(Shulman, 1986) done by Wagner et al. (2007) that focused on teacher knowledge shaping 
teacher practices through analyzing data from a novice inquiry-oriented instructor. The goals of 
instruction are signified through questions that instructors ask in their “transition” to teaching in 
reform-oriented ways. While instructors are in transition, each goal is evidenced by the, but not 
limited to, following questions: 

1. Classroom orchestration goals: “How does mathematics emerge in the classroom? What 
is the instructor’s role or students’ role?” (p. 257) 

2. Cognitive/Learning goals: “What supports learning? Is there a correspondence between 
what students are learning and what the teachers want them to learn?” (p. 259) 

3. Assessment goals: “What is evidence of learning? What determines pace?” (p. 261) 
4. Content goals: “Specifically what mathematics ought to be covered?” (p. 263) 
Using the work from Wagner and colleagues as a priori scheme, this proposal will work to 

identify the ways in which these kinds of goals were conceptualized by experienced IOLA 
instructors in the online work group. 

Study Context: Inquiry-Oriented Linear Algebra and Online Work Group 
Inquiry-Oriented Linear Algebra (IOLA) is a design-based research project in linear algebra 

education as one approach to active learning (Freeman et al., 2014) and inquiry-based 
mathematics education (Laursen & Rasmussen, 2019). Laursen and Rasmussen (2019) describe 
inquiry-based mathematics education as “student engagement in meaningful mathematics, 
student collaboration for sensemaking, instructor inquiry into student thinking, and equitable 
instructional practice to include all in rigorous mathematical learning and mathematical identity-
building” (p. 140). Specifically, the IOLA-X project focuses on developing student materials 
composed of challenging and coherent task sequences that facilitate an inquiry-oriented approach 
to the teaching and learning of linear algebra (Wawro et al., 2013). There are five main phases in 
the Design Research Spiral: Design, Paired Teaching Experiment (PTE), Classroom Teaching 
Experiment (CTE), Online Work Group (OWG), and Web (Wawro et al., in press). The 
participants of our study come from the OWG in phase 4 of the research project.  

The main purpose of the OWG for the IOLA research team is to learn from instructors how 
IOLA is implemented in various classrooms with various student populations and to gain 
insights to develop instructor notes and revise tasks (Wawro et al., in press). At the center of the 
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OWG for this study was the discussion of a unit of tasks about subspaces; the tasks were 
contextualized in a problem about students walking in one-way hallways past cameras 
monitoring their traffic (See Figure 1). To draw out the feedback from the instructors, the 
facilitators manage mathematical discussions about the tasks as well as facilitate discourse about 
the preparation and implementation of the tasks. Through examining discussion and input from 
the experienced undergraduate instructors participating in the OWG, questions and thoughts 
about the goals of instruction and challenges with implementation naturally arise.   

Figure 1. The inquiry-oriented linear algebra tasks in the subspaces unit  

Methods 
Our primary data source was the recorded videos of the OWG meetings (held and recorded 

via Zoom); group artifacts such as Google Slides and Jamboards served as secondary data 
sources. The OWG meetings were held in the Spring 2022 semester. During the first three 
meetings, participants worked through and discussed the mathematical progression of a new 
IOLA unit comprised of three tasks. The subspaces unit focused primarily on notions of closure 
of sets of vectors under vector addition and scalar multiplication, and on null and column spaces. 
Participants worked on the mathematical problems as a group, then discussed mathematical 
goals, approaches, and links to other ideas and topics. The remainder of the meetings took place 
throughout participants’ implementation of the sequence, with each participant reporting on how 
the implementation went, what they liked, how their students reasoned about tasks, what they 
would change, and what they would do differently. 

In the OWG meetings, there were six members. In this proposal, the members are coded as 
F1 and F2 (facilitators), R1 and R2 (IOLA researchers), and I1 and I2 (“pure” participants who 
are experienced inquiry-based instructors but not IOLA researchers). This team involved one 
graduate student (F2), one instructor (I2), three associate professors (F1, R1, and I1), and one full 
professor (R2). I2 taught linear algebra at a large public university in the Northeastern United 
States at the time of the OWG; and I1 taught the same course at a small private college in the 
Northwestern United States. The participation and contributions of I1 and I2 serve as the focus of 
our study. 

Eight hours total of OWG meetings were conducted and recorded over several days. We 
analyzed transcripts of the first three videos. Narrowing these three videos allowed us to examine 
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the ways in which participants worked through the mathematical tasks and identify the 
instructional issues that participants anticipated in their implementation. The videos were 
transcribed by Otter, an online artificially intelligent transcription application. Both authors 
separately coded all three videos for the four goals of instruction for all the participants of the 
OWG using Nvivo software. While coding, we assigned four codes, which mean four goals, at 
the level of a single turn of talk. Then, we compared codes to reach agreements to build inter-
rater reliability. We identified common themes within each code in terms of broad questions and 
agendas that the set of codes seemed to address. Our findings highlight the themes in which each 
goal of instruction emerged from the two “pure” participants in our data set. Figure 2 
summarizes these findings. Each goal of instruction is, not necessarily, but preferably described 
in question form in order to follow the original form of goals of our theoretical framework.  

Findings 
Generally, in the OWG meetings, the pure participants discussed classroom orchestration 

goals involving how to manage discussions of contextualized tasks about “closure”. Also, 
cognitive/learning goals discussed in the OWG meetings are contextualized goals in subspaces 
and communication in engaging in IOLA tasks. Assessment goals are discussed in terms of 
pacing, timing, and grading of inquiry-based teaching. Lastly, content goals include curricular 
trajectories and mathematical content relevant to subspaces reorganized by instructors.  

The participants talked about how to orchestrate the discussion of closure under scalar 
multiplication, considering irrational and complex scalars in the context of the IOLA task. 

I1: We had a conversation we were talking about... here's a bunch of examples, what's the 
span of each of these sets? And, and I thought it was superfluous, but it turned out not to 
be. The last one I asked was span of the vector, <e, pi squared>. And that really freaked  

      them out. And I was glad that I included [it] because we had already talked about magic 
carpet ride. Any real scalars are fine. If you want complex scalars, that's a different class, 
but any real numbers, great. And they seemed okay with that. But no, it was clear, we're 
going to have that conversation again. 

From this excerpt, the instructor is unpacking a class interaction they have had before this 
OWG meeting where they introduce complex components of vectors in another IOLA task 
(magic carpet ride). I1 determined that interaction was relevant to the future implementation of 
the subspaces task because the idea of complex scalars will spark “that conversation again”. That 
demonstrates the instructor’s reference to orchestration goals, but also content and 
cognitive/learning goals. The instructor is connecting mathematical concepts across the IOLA 
tasks and using the tasks as an opportunity for elaboration beyond the initial exploration. 

Furthermore, the participants shared their thoughts on student reasoning that may happen in 
class discussions and the contextualized goals in subspaces and sets of scalars, coded as 
cognitive/learning goals. 

I2: And, but I think S2 is closed. […] Is it closed under scalars? Scalar multiplication of non-
integer or negative scalars? I guess [it] depends on, do we require this to be walkable by 
number of persons? Right? Or does it just have to fit set description? 

As Figure 1 illustrates, S2 is a set of camera vectors that pass through hallways from room C 
to room C. In this context, scalars mean the number of loops one person creates through one big 
square loop (through rooms A-B-C-D) and one small triangle loop (through rooms A-B-C). In 
the contextualized ways, S2 is closed under scalar multiplication but as I2 mentioned, the scalars 
depend on how much we address that real-life context. The non-integers or negative scalars 
cannot be defined in the contextualized goals, but this should be clarified to move on to the 

25th Annual Conference on Research in Undergraduate Mathematics Education 1195



purely abstract mathematical definition of closure. During this conversation, participants 
discussed how they manage their trajectories of teaching linear algebra, how to address 
contextualized mathematical goals with IOLA tasks, and how they orchestrate discussions. 

 
Figure 2. Goals of instruction in inquiry-oriented linear algebra online work group 

 
Discussion 

The two participants of our study asked questions and made comments in reference to all 
four goals of instruction introduced by Wagner et al. (2007). However, some dialogue from the 
participants were coded as referencing two or more goals. That made clear a separation of 
assessment goals from the other three goals. The results from the three goals - content, classroom 
orchestration, and cognitive/learning goals - show an overlap exposed by the instructors. The 
intersection of those goals may exist due to the contextualized nature of the IOLA tasks that the 
instructors work through in the OWG. In the task, scalars are constrained due to the context. 
Therefore, the scalars in the task would not be defined as scalars abstractly because other real 
numbers (like negative integers) could not be included. The instructors recognized the scope of 
the tasks and made plans to use the tasks as an opportunity to launch into more (abstract?) 
concepts chosen by the instructor and guided by student contributions. 

On top of referencing goals of instruction as the novice IO instructor did in Wagner and 
colleagues' (2007) investigation, the experienced IOLA instructors of the OWG were able to 
expose tensions in instruction and mathematics that goes beyond attending to goals of 
instruction. The IOLA instructors addressed challenges of teasing through the tension between 
the aim of Realistic Mathematics Education (RME) and what mathematics is pursued in 
traditional linear algebra classrooms. This tension can be something to consider for new and 
transitioning inquiry oriented mathematical instructors. 
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Successes and Challenges in Supporting Calculus Students to Conceptualize and Express 
Distance on Graphs 

 
 Erika David Parr Samuel Lippe Jana Turner 
 Rhodes College Rhodes College Rhodes College 

Conceptualizing and expressing distances on graphs of functions are central to understanding 
why integrals afford measuring areas and volumes in calculus. In this preliminary report, we 
share the results of implementing an intervention designed to support these skills with 31 
Integral Calculus students. Initial results show that the activity did support some students in 
learning to accurately expressing the horizontal distance between two functions. However, a 
closer look at students’ work revealed that the tasks may not have supported all of the ways of 
reasoning we intended. We discuss the instance of two students who successfully completed the 
activity yet displayed evidence of treating symbols as labels or parameters and following a 
pattern to complete the tasks rather than conceptualizing distance. We close with a discussion of 
how to improve the next iteration of the intervention.  

Keywords: Graphical Representations, Calculus, Distance, Cartesian Coordinate System 

One of the key results of Integral Calculus is the ability to find the area of curved regions and 
volumes of solids of revolution. In order for students to understand conceptually why the integral 
affords finding the value of such areas and volumes, students must be able to: 1) conceptualize 
distances within coordinate systems and 2) describe these distances with algebraic expressions 
from relevant functions. Prior research suggests that students, even at the undergraduate level, 
often struggle with one or both of these skills (David, 2019; Knuth, 2000; Parr, 2021), and may 
benefit from targeted interventions in these areas.  

Previously, Parr et al. (2021) described the results of a small teaching experiment (Steffe & 
Thompson, 2000) that utilized a sequence of tasks designed to support students in 
conceptualizing and expressing distances algebraically, as part of a hypothetical learning 
trajectory (Simon & Tzur, 2004). Parr et al. (2021) reported that the tasks showed promise at 
supporting students and also clarified ways of reasoning that students may use when describing 
distances of segments. One of these interpretations is what Parr et al. (2021) refer to as a 
composed magnitude interpretation of distances on number lines. This interpretation involves 
conceptualizing a difference of the form b–a (where b≥a) as representing the distance in one-
dimension between a and b. The interpretation of the difference b–a is one of a magnitude, or 
amount of distance, within a graphical representation (Parr, 2021). The interpretation is 
composed as it includes the understanding that b and a themselves are magnitudes of distance. 
Thus, the difference b–a yields the distance between a and b as a result of finding the difference 
between the distance between b and the origin, and the distance between a and the origin. 

The current study is part of an ongoing effort to learn how to support students in 
conceptualizing and expressing distances for calculus. In this study, we investigate the 
effectiveness of implementing a revised set of these tasks in a classroom setting. The research 
questions this study seeks to answer are:  
(1) To what extent do these tasks support students in learning to conceptualize and express 
distances on graphs of functions in calculus in terms of the input and output variables?  
(2) What are the affordances and limitations of these tasks in supporting students to develop a 
composed magnitude interpretation of distances?  
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Methods 
The data in this study were collected in Spring 2022 from 31 students enrolled in one of two 

sections of Integral Calculus taught by the lead author. The Integral Calculus course met three 
times a week and students participated in the study during two consecutive course meetings, 
ahead of the unit on Areas and Volumes. At this point in the course, students had been 
introduced to integrals through an accumulation model, without graphical applications. At the 
end of the first day of the study, students were given ten minutes to complete the pre-test item 
(Figure 1) individually. The next class meeting, students were instructed to work in groups of 
two or three to complete the Interpreting Graphs for Calculus Activity over the 50-minute 
meeting time, which included the same pre-test item as the final task. The instructor circulated 
groups answering clarification questions about the tasks as needed. Students recorded their 
group’s activity via Zoom. Of the 31 students who consented to have their written work included 
in the study, 26 also consented to include their group’s video recording in the data set.  

Pre-Test Item & Interpreting Graphs for Calculus Activity 
The pre-test item and the tasks comprising the Interpreting Graphs for Calculus Activity used 

in this study were a revised version of the tasks first described in Parr et al. (2021). The pre-test 
item (Figure 1) asked students to represent the length of the horizontal segment extending from a 
point labeled (x, y) on the function 𝑦 = √𝑥 − 1	to the vertical line 𝑥  =  2	in terms of x, in terms of 
y, and to explain their reasoning for each response. 
 

 
Figure 1. Pre-test item asking students to represent horizontal segment's length (black) in terms of x and y. 

The three main goals of the Interpreting Graphs for Calculus Activity are to support students in 
(a) conceptualizing horizontal and vertical distances on number lines and the Cartesian plane, (b) 
representing these distances with difference expressions, and (c) using algebraic relationships 
among input and output variables to express distances flexibly in terms of either x or y. In this 
study, we focus on the first two goals and associated tasks. The first task asked students to use a 
ruler to mark specified distances from 0 on a provided number line, as well as distances between 
two values. The next set of tasks asked students to represent various difference expressions as 
segments, involving whole numbers, integers, rational numbers, and variables as distances on 
both horizontal (Task 2-Figure 2) and vertical number lines (Task 3).  

 
Figure 2. Portion of Task 2 from Interpreting Graphs for Calculus Activity. 
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Task 4 reversed this and provided students with horizontal or vertical segments, asking students 
to express the length of the given segment as a difference. Finally, Task 8, which we refer to as 
the post-test item, included the same items as the pre-test item to serve as a comparison for 
student responses before and after completing the activity.  

Preliminary Data Analysis  
To analyze our results, we first recorded students’ responses to the pre-test and post-test 

items and developed basic categories for these responses, including correct responses, blank/I 
don’t know, or other expressions. Based upon a student’s response to the pre-test and post-test 
items, each research member selected 3-4 students who did not initially answer the pre-test item 
correctly and developed initial content logs and analytic memos of students’ responses to the 
Interpreting Graphs for Calculus Activity and group videos of the students completing the 
activity. The goals of this initial analysis of students’ work on the activity was to determine if we 
could identify shifts in the student’s thinking about the tasks that may have supported or 
hindered them in responding to the post-test item correctly, especially related to their 
development of a composed magnitude interpretation of distances.  

Results 
The number of students who correctly represented the segment’s length in terms of x and y 

increased significantly from the pre-test to the post-test item on the graphing activity (Table 1). 
 

Table 1. Number of correct responses on the pre-test and post-test item. 
 
Represent segment’s length Pre-Test Post-Test 
in terms of x: 2–x 12/31 (38.7%) 24/31 (77.4%) 
in terms of y: 2–(y2+1) 10/31 (32.3%) 20/31 (64.5%) 
Both x and y correct 7/31 (22.5%) 20/31 (64.5%) 

 
While the activity appears to be generally effective in its goal, our ongoing data analysis revealed 
that some students were limited in their use of variables to express lengths of segments, or may 
have avoided conceptualizing difference expressions as finding distances, even when they gave 
correct responses on the post-test items. (We note also that the post-test item was completed in 
groups and may not reflect each individual’s understanding). These findings suggest that the 
activity may not promote some of the central ways of reasoning that we intended for students to 
develop and use. We illustrate these two issues using the case of two students who were partners 
for the in-class activity, Kevin and Amir. Kevin and Amir both incorrectly responded to the pre-
test item but correctly expressed the horizontal distance in terms of x and y on the post-test item. 
 
Symbols as Labels or Parameters 

Both sets of responses from Kevin and Amir indicate that they tended to use symbols (such 
as x, y, and z) as either labels or parameters, rather than as variables to represent varying values. 
We found evidence of this tendency beginning with Amir’s work on Task 1 in which he labeled 
segments with symbols x, y, and z that he introduced himself. This tendency was most apparent 
when it created some hesitation for Amir on Task 2i. Kevin asked Amir about this task and their 
discussion reveals the limitations of Amir’s use of x. We provide their conversation below and 
Amir’s work in Figure 3. 

Amir: (reading 2i) Oh, so like place a value for x and just draw it, x equals 2… 
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Kevin: What is it asking, again? 
Amir: Place another value of x, like 1, 2, 0, why did I put 0?... It doesn’t make sense to place 

another value of x. I mean even if you put x over here, so x0 equals x1, it’s the same thing. 
Kevin: Ah (leaning back) 
Amir: I mean, I like the zero thing. 
Kevin: So, wait, what are you doing? (looking at Amir’s work) 
Amir: I’m saying x equals 0, I’m setting  
Kevin: Okay 
Amir: the segment from 0  
Kevin: Yeah 
Amir: I don’t know. 
 

 
Figure 3. Amir’s work, in which he wrote “x= 0,” and then labeled “0–(–3)” on a segment below the number line. 

Amir explained his interpretation of the directions to “place another value of x” as choosing a 
value for x, when he listed values “like 1, 2, 0.” He goes as far to say that “it doesn’t make sense 
to place another value of x” and continues to then describe different possible x’s as “x0” and “x1.” 
We infer from these comments that Amir is interpreting x as a parameter (Thompson & Carlson, 
2017), in which x may take on different values in different settings, but may not take on different 
values in the same setting. This interpretation is distinct from interpreting x as a variable in 
which x may take on multiple varying values in the same context. Amir’s interpretation of x as a 
parameter may help to explain why he thought that it didn’t “make sense to place another value 
of x.” Amir’s interpretation of x as a parameter is also supported by his written work on this task, 
in which he sets x to 0, but then he labels the new segment as “0–(–3)” rather than “x–(–3)” as 
directed, not comfortable with using x to take on two different values in the same number line.  

Following a Pattern for Expressing Distances 
In addition to treating symbols as labels and parameters, Kevin and Amir also indicate that 

they may be simply following a pattern in order to express the indicated distances, rather than 
using a composed magnitude interpretation of distances. Specifically, this pattern involved using 
a minus sign because previous answers they found were also difference expressions. This issue 
came to light as Kevin suggested an alternative answer to 4c (Figure 4), a task which asked 
students to represent the distance between 5 and y on a vertical number line. 

 
Amir: See directions matter. So now like, this above, 5 minus y and this is y minus 
Kevin: Yeah. (pause) I guess you could say that it’s also y plus 5.  
Amir: y plus 5 (slowly, thinking). Well, yeah, you can say that, too. But because it’s 

differences. Here it doesn’t say differences, here it does.  
Kevin: I’m just going to use minus for consistency.  
Amir: Yeah 
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Figure 4. Kevin’s work on Task 4c and 4d. 

When working on Task 4c, Amir seemed to indicate that the ordering of the symbols 
mattered. In this case, whether 5 or y were on top indicated which was to be first in the 
expression. At this point, it is unclear whether Amir’s distinction about the direction or order of 
the terms mattering was the result of a composed magnitude interpretation. However, Kevin’s 
suggestion of “y+5” as an alternative expression, and Amir’s agreement, indicates that they were 
not interpreting y as a distance from 0 to y and 5 as a distance between 0 and 5. Instead, they 
justify their decision to use the correct answer, 5–y, “for consistency,” rather than with any 
reference to distances. This justification suggests that Kevin and Amir may have been learning to 
use a rule or pattern of “top minus bottom,” since they could have just as readily used the 
expression y+5 to represent the distance between y and 5, and may have, if previous expressions 
had included sums rather than differences. We note that Kevin and Amir provided correct 
responses to the remaining tasks. 

Discussion & Future Plans 
At first glance, the Interpreting Graphs for Calculus Activity appears promising as an 
intervention to support students in expressing distances, based on the results of the pre-test and 
post-test items. However, as designed, they may be limited in the ways of reasoning they can 
promote. Kevin’s and Amir’s use of symbols as labels and parameters suggests that the tasks as 
designed may not effectively support students in conceiving of difference expressions involving 
symbols as representing varying values of distances. Kevin’s and Amir’s rule for using a minus 
sign in their expression to represent distances, to the avoidance of conceptualizing distance 
measurements given by the expression, may work in many contexts for which a “right minus 
left” or “top minus bottom” formula yields the correct answer. Yet, we anticipate this rule may 
not support students in expressing distances in coordinate systems beyond the Cartesian 
coordinate system. In our future work, we plan to conduct more teaching experiments with 
students with a next iteration of revised tasks designed to support students in conceptualizing 
distances more effectively. We hypothesize that it could benefit students to include more 
reflective prompts throughout the tasks, such as “what does this value represent?” after students 
calculate the length of each segment and to include some dynamic distances rather than only 
static distances for students to express with differences. We hope to further discuss with the 
audience ways to improve the task design to address the two issues we highlight in this study. 
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The Role of Ritual and Personalization in Students’ Exploration of Subgroup Generation 
 

 Cody L. Patterson Kathleen Melhuish Michael D. Hicks 
 Texas State University Texas State University Virginia Tech  

We share preliminary results of a commognitive analysis of the participation of twelve 
undergraduate students in an exploratory subgroup generation activity in an abstract algebra 
class. We find that while students’ collaborative activity contains markers of both ritualized and 
explorative participation, their appeals to ritual and personalized formulations of inferences and 
insights about subgroups serve to broaden access to the conceptual substance of the activity. We 
discuss a possible asset-oriented interpretation of students’ ritualized activity as an aid to 
exploration and reflective of the disciplinary activity of professional mathematicians. 

Keywords: Discourse, Inquiry-Oriented Instruction, Abstract Algebra 

Advanced mathematical courses such as abstract algebra provide a space where students are 
apprenticed into the norms and activity of mathematicians. These classroom spaces involve a 
complex interaction between student reasoning and activity and norms deriving from the 
professional mathematician community. Frequently, scholars have analyzed student activity in 
this setting from a deficit point of view, illustrating ways that students may engage in non-
normative activity and fail to meet standards of communication associated with norms of formal 
proving (see Styliandies et al., 2017 for an overview). 

To both illustrate this trend and contextualize our study, we use literature about students and 
subgroups. Subgroups are one of the fundamental topics in group theory (Melhuish, 2019) and 
have received considerable attention in literature. Some students have been shown to attend to 
subset properties but not operation. For example, students may suggest that “odds” are a 
subgroup of the integers (Brown et al., 1997; Titova, 2013). Similarly, several studies have 
shown students identify {0,1,2} as a subgroup of Z6 (e.g., Dubinsky et al., 1994; Melhuish, 
2018) because they unintentionally switch operation from addition mod 6 to addition mod 3. In 
contrast, Findell (2002) illustrated how a Cayley table could focus a student on the relevant 
operation, although generating subgroups from that table proved to be a significant challenge. 
There have also been some studies that pointed to specific issues with applying subgroup test 
requirements including production of proofs (Ioannou, 2018) or checking closure by only 
considering combinations of distinct elements (Hazzan, 1994). In general, we can state that the 
field has characterized a number of “errors” related to subgroups.  

In this report, we attempt to re-examine student activity with subgroups through a more 
asset-based lens. We share analysis from one open-ended task designed to engage students in 
generating subgroups for a given, known group. We leverage the framework of Lavie, Steiner, 
and Sfard (2019) to characterize students’ activity as exploratory or ritualistic, noting ways that 
students engaged productively with the task and identifying dilemmas students needed to 
resolve. We found that our students negotiated many issues reflective of the literature, but 
productively drew on personalization and ritual as they engaged in open-ended exploration. 
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Theoretical Framework 
In this study we take a commognitive view of mathematics learning, in which thinking is 

conceptualized in terms of acts and processes of communication (Sfard, 2008). Central to the 
commognitive perspective is the notion of routine, a repetitive pattern of action that retains some 
invariant features across different performers and implementations (Lavie et al., 2019). Lavie 
and colleagues distinguish two types of routines: rituals, which are process-oriented and require 
performance of a rigid sequence of actions; and explorations, discursive routines guided by the 
performer’s motivation to communicate an idea or pursue a line of inquiry. According to Lavie et 
al., students initially can only participate in mathematical activity in ritualized ways, because 
they must first familiarize themselves with the norms and meta-rules of disciplinary discourse. 
As they gain familiarity, they may begin to participate in “explorative” ways, generating new 
truths and pursuing inquiries borne of their own motivation and curiosity. Coles and Sinclair 
(2019) challenge the notion of ritualized activity as meaningless, arguing that participation in 
ritual can engender meaning for learners and is not mutually exclusive with exploration. 

One specific discursive feature that has been associated with ritualized activity in 
mathematics is personalization, in which operations are presented as human actions on mediators 
rather than in terms of structural relations among mathematical objects (Ben-Yehuda et al., 
2005). Personalization in mathematical talk has been associated with lower achievement in 
empirical studies of children’s mathematical activity (Bills, 2002). Our study aims to challenge 
narratives of personalization as a marker of less sophisticated or less robust mathematical 
activity by exploring ways in which personalization can help students access algebraic concepts. 

Guided by this theoretical framework, we address the research questions: 
1. In what ways might collaborative student work on an open-ended task in an abstract 

algebra course resemble ritualized or explorative mathematical activity? 
2. In what ways might ritual and personalization support students’ explorative engagement 

in such a task? 

Context and Method of Study 
In this report, we analyze an activity on Lagrange’s theorem developed by the Orchestrating 

Discussion Around Proof project which designed and field-tested abstract algebra lessons that 
engage students in authentic mathematical proof activity (Melhuish et al., 2022). The first 
activity in the task sequence involved students generating subgroups in order to anticipate the 
relationship between the order of a group and its subgroups. The participants in our study are 
twelve undergraduate mathematics majors who worked on the lesson in four teams (Table 1). 

 
Table 1. Teams and group assignments for the subgroup generation activity. 

Team  Group  Students  Team  Group  Students  

1  Z10  Carlos, Romiax  3  D4  Brad, Fernando, Mona  
2  Z12  Diego, Jake, Paolo, Quinn  4  S3  Alan, Eric, Nathan 

 
Each team worked for 20 minutes to create a list of subgroups of their assigned group. In the 
previous class session, the instructor (Author 1) had demonstrated a possible approach for 
generating a subgroup of the group Z8: choose an element to place in a subset, and then use the 
closure and inverse properties to identify other elements that must be in the subset if it is a 
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subgroup. Although he modeled how to identify elements that must be included in a subgroup, 
he did not demonstrate any systematic approach for generating all subgroups of a group. 

We audio recorded each team’s discussion and photographed all board work, then generated 
a transcript. To investigate the interplay between ritual and exploration in students’ discussions, 
we analyzed all four team transcripts, noting any talk turns that contained instances of 
personalization or possible indicators of ritualized or explorative activity (see Table 2). For each 
instance we further described the problem-solving context, developing analytic descriptions of 
how personalization, exploration, and ritual supported the group’s problem-solving process. 

Table 2. Discursive indicators of personalization and ritualized and explorative activity. 

 Indicator Example 

Personalization Talk about human involvement with 
objects or symbols 

“Yeah, we would need 1 and then 
we would need 11.” 

Ritualized 
activity 

Description of subgroup generation 
routine as rigid algorithm with 
fixed, prescribed steps 
 
Settling conceptual/procedural 
questions by appeal to authority or 
analogy with instructor-led example 

“So you do have to add [an 
element to] itself?” 
 
 
“Last time over here, [Instructor] 
adds them, he adds the same 
element by themselves” 

Explorative 
activity 

Exploration of hypotheticals, as 
evidenced by “if-then” language 
 
 
Settling conceptual/procedural 
questions by definition or deduction 

“If you compose [a transposition] 
by itself it just goes back to the 
identity?” 
 
“Does 0 always have to be in 
here?” “Yes. Because it always has 
to contain the identity.” 

Preliminary Results 
We found that each team’s discussion contained some instances of personalization, though 

different teams used personalization in different ways. Each team’s discussion contained some 
indicators of ritualized mathematical activity, but was largely reflective of explorative activity, 
with multiple members engaging together in exploration of hypotheticals. For this report, we 
present analyses of two cases chosen based on the contrast in their discursive features. 

Team 1: A Progression from Ritual to Exploration 
Team 1 first identified the singleton {0} and the entire group as subgroups of Z10. They then 

attempted to resolve the question of which operation (addition or multiplication) was the group 
operation by referring to the instructor’s previously worked example. When this failed to clarify 
the issue, they asked the instructor, who specified that the operation was addition. We interpret 
this as pointing toward a ritualized form of participation; while it is possible to determine that 
Z10 is a group under addition but not under multiplication, the group considered the operation to 
be indeterminate without external specification (“Yeah, well, it could be any binary operation”). 
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As they proceeded with subgroup generation, Team 1 used personalization to generate 
informal descriptions of subgroup properties, interpreting closure as follows: “So closed means 
whenever you’re adding, whenever you get another element that’s also in that set.” Throughout 
the activity, the team frequently referred to a generic “you” operating on elements of subgroups 
to generate additional required elements. 

At one point, Team 1 grappled with whether one should add an element of a subgroup to 
itself in order to generate additional subgroup elements. Rather than consult the definition of 
subgroup, Romiax attempted to resolve the issue by referring to the Z8 example: “Last time over 
here, he adds them, he adds the same element by themselves.” Carlos appears to accept this as a 
warrant, then recalls an instance of this himself: “And then he did eight plus eight or something.” 
It is possible that for Team 1 the ritual of subgroup generation had not yet fully fused with the 
team’s understanding of the definition of subgroup. This is not to say that the team was 
inattentive to this definition; on the contrary, the team refers repeatedly to the properties that 
define a subgroup. We hypothesize that for this team, fluency in the application of the definition 
of subgroup was a work in progress, and the sense of a subgroup generation ritual or “game” (a 
descriptor used by the instructor and subsequently by some students) supported their exploratory 
efforts. After settling these procedural issues, Team 1 went on to fluently explore other subgroup 
possibilities, determining that the set of even elements of Z10 would form a subgroup, but 
deducing that the set of odd elements would not satisfy the closure property. 

Team 4: Ritual Embedded in Explorative Activity 
Team 4 began by identifying the trivial subgroup of the symmetric group S3. Alan then 

asked, “Where do we start with the–?” Eric responded, “Yeah, just pick any couple of them and 
see what they generate.” Eric thus explicitly frames his envisioned approach to the activity as an 
exploration, where they “pick” group elements and “see” what subgroup they generate. This 
explorative framing is consistent throughout Eric’s portion of the transcript: “So if you include 
these ones, you need the whole group, is what we discovered.” (emphasis ours). 

However, Team 4’s discussion is not without indicators of ritualized activity. At one point, 
Alan asks, “Dude, just a question, when we’re composing, do we have to do it the other way 
too?” This question implicitly frames composition as a part of a prescribed routine that must be 
performed in a specific way. Assuming Alan’s question is about whether closure requires one to 
be able to compose subgroup elements in different orders, this is a novel dilemma for the team: 
the instructor’s prior example involved an abelian group. The team avoids the dilemma by 
discovering that the two permutations they used as starter elements generate the entire group, at 
which point the question is dropped; this suggests that the team’s successful exploration 
supersedes the need to clarify procedural aspects of the subgroup generation “game.” 

In terms of personalization, we observe that while both Team 1 and Team 4 talk about the 
subgroup generation routine in terms of human actors performing operations on elements, Team 
4 uses personalized language more often to refer to elements they “need”: for example, “if we do 
this with all of them are we going to end up needing (1 3)?  What if we did?” We hypothesize 
that the language of “needing” elements supports the team’s communication about elements that 
must be in a subgroup without the use of conditional statements. 

Discussion and Implications 
In all four discussions, we see moments when team members are uncertain or disagree about 

the rules of the subgroup “game.”  We note two features in how students engage in the game. 
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Teams often attempted to resolve dilemmas by consulting a prior instantiation of the game, as 
one might when participating in a ritual whose rules are determined by an external authority. One 
might consider this antithetical to authentic mathematical activity: one powerful disciplinary 
norm in mathematics is that we resolve dilemmas by consulting foundational definitions and 
using deductive reasoning (see Dawkins & Weber, 2017). Second, we observed students 
engaging in personalization: rather than using abstract mathematical language, they introduce 
themselves or objects as acting agents. Again, this in some ways defies norms of valued activity 
in advanced mathematics. Further, literature on how students engage in abstract algebra content 
often suggests personalization as a deficit or lower level of reasoning (Hazzan, 1999). Others 
have suggested that using an “I” statement in reference to a quantified statement (in this case 
related to isomorphism) reflects the lowest level of development related to a quantified statement 
(Leron et al., 1995).  If we were to use the standards of proof communication and disciplinary 
norms, we might view the student activity as lacking valued disciplinary qualities.  

We wish to suggest an alternative, asset-based framing (cf., Adiredja, 2019) that interprets 
students’ personalization and ritualized activity during an exploratory task not as evidence of a 
deficit with respect to acquisition of formal mathematics, but as resources that facilitate students’ 
fluent participation in the task. We find that the students’ personalization of the necessity of an 
element belonging to a subgroup due to the closure or inverse property (e.g., “You would need at 
least the two [3-cycles] because they are inverses of each other”; emphasis ours) allows students 
to follow implications of hypotheticals without getting bogged down in the more demanding 
structure of conditional statements. Similarly, ritualization of the rules of the subgroup 
generation “game,” and the opportunity to discern these rules from a worked example, offers 
students an alternative pathway to access the task even if, due to uncertainty about a definition or 
convention, they are unsure whether a certain “move” is permitted or required. This advances 
one of the goals of [blinded project]: to broaden access to mathematical activity beyond those 
students who quickly master the much more complex “game” of formal mathematics, whose 
rules are intricate and often difficult to decode. Further, we suggest that personalization and 
ritualized activity are reflective of disciplinary activity in meaningful ways. Weber and Melhuish 
(2022) argued that personalization is a key part of how mathematicians understand ideas 
highlighting metaphors and connection to their lives. Additionally, mathematicians also defer to 
outside sources of authority and have been shown to find arguments more convincing if written 
by respected authors (Inglis & Mejia-Ramos, 2009) and will defer to authoritative sources to 
assume validity (Weber & Mejia-Ramos, 2011). One of the main reasons mathematicians read 
proofs is to find ideas to transfer to their own research (Mejia-Ramos et al., 2012; Weber & 
Mejia-Ramos, 2011), which is also reflective of much of the students’ ritualized activity.  

 Finally, we note that the instructor’s choices of words in introducing the activity (e.g., 
“game”, action verbs such as “generate”) likely had some influence on students’ participation 
and discourse. We note that these word choices were reflected in student talk, and envision 
future work exploring ways in which careful orchestration of a task launch can invite students 
into exploration of open-ended problems with ritual playing a strategic and productive role.  
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Connecting Instructor Mathematical Knowledge for Teaching, Intercultural Competence, and 
Undergraduate Learning 

 
 Shandy Hauk Billy Jackson JenqJong Tsay 
San Francisco State University University of Wisconsin University of Texas  

We report on work to explore instructor intercultural competence and its relationship with the 
effectiveness of mathematics teaching in post-secondary settings. Results are from quantitative 
and qualitative inquiry into the mathematical knowledge for teaching and intercultural 
orientations of 15 instructors and 476 of their undergraduate students. Instructors participated 
to varying degrees in a professional short-course for faculty learning to teach mathematics for 
future grade school teachers. The greatest learning gains among undergraduates were in the 
classes of those instructor-participants who completed short-course activities about 
interculturally responsive mathematical knowledge for teaching future teachers.   

Keywords: teacher preparation, intercultural competence, professional development, equity 

Lee Shulman (1998), in reviewing the education of professionals (e.g., doctors, lawyers, 
teachers, clergy), noted six defining characteristics of a profession:  

1.  the obligations of service to others, as in a “calling”;  
2.  understanding of a scholarly or theoretical kind [e.g., mathematics, pedagogy];  
3.  a domain of skilled performance or practice;  
4.  the exercise of judgment under conditions of unavoidable uncertainty [e.g., 

instructional decision-making in classroom contexts];  
5.  the need for learning from experience as theory and practice interact; and  
6.  a professional community to monitor quality and aggregate knowledge. (p. 516)  

These characteristics play out in a variety of ways. Item #1 includes the fact that: 
The professional educator’s challenge is to help future professionals develop and shape a 
robust moral vision that will guide their practice and provide a prism of justice, 
responsibility, and virtue through which to reflect on their actions. Medicine’s 
Hippocratic Oath, therefore, is a central manifestation of the moral foundations of a 
profession. (Shulman, 1998, p. 516) 

Now, consider the current state of the art in the professional education of college mathematics 
instructors. What is clearly and explicitly offered to instructors for how to make morally and 
contextually complex judgment calls? Not much, yet (Braley & Bookman, 2022). Certainly 
characteristic #2 is accepted as essential (Herman, 2011) while #3, and how to measure it, has 
had increasing attention in the recent past (e.g., Castro Superfine & Li, 2014). If characteristic #4 
is not well addressed early on, then the alternative is #5: Learn it from experience. Learning from 
experience requires a multifaceted mirror of reflective practice, one that instructors can use to 
see encounters with others as opportunities for professional learning about mathematics teaching. 
Both #5 and #6 are emerging as areas for research and development (e.g., among graduate 
students and novice faculty in their early teaching experiences).  

 
Theoretical Perspectives 

Professional growth is shaped by professional and personal cultures: dynamic social systems 
of values, beliefs, behaviors, and norms for a group, organization, or other collectivity in which 
the shared values, beliefs, behaviors, and norms are learned, internalized, and changeable by 
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members of the group (McGrath et al., 1995). Many reports indicate that culture is a significant 
factor in the inequities of persistence and disparities in achievement in mathematics (e.g., Greer 
et al., 2009; Laursen & Rasmussen, 2019). University programs are responding (e.g., see Equity 
Alliance, equityalliance.stanford.edu). From anti-racism training to culturally responsive 
pedagogies, post-secondary instructor professional development efforts have emerged largely 
from the same arena as K-12 teacher education: psychology. Yet there is another area of the 
academy from which professional educators can draw insight: anthropology (Ladson-Billings, 
2001). Psychology tackles professional education through an approach based in a teacher’s 
disposition, attempting to change it through focused reflection on behavior; social anthropology 
offers the idea of movement along a developmental continuum of orientation to differences 
through focus on relationships and communication. In particular, healthcare and international 
relations professions offer theories of intercultural development and conflict resolution that are 
now being applied in education (e.g., Bennett, 2004; Hammer, 2009; Hauk et al., 2021; Hauk & 
Speer, 2022; Leininger, 2002; Wolfel, 2008). The core of intercultural orientation development is 
building skill at establishing and maintaining relationships in culturally complex situations.  

Though some instructors have largely monocultural classrooms – in the sense that most 
students share experience of a particular set of cultural-general norms and practices – the nature 
of diversity in the U.S. is shifting from such segregated monocultural circumstances to cultural 
heterogeneity (Aud et al., 2010). We argue that intercultural competence is an essential 
component in the shift from teacher-centered to student-centered approaches to instruction. 
Knowing one’s orientation, or the normative orientation of a group, can inform instruction. In 
particular, the authors are researchers in a project that has created professional learning for 
faculty new to teaching future K-8 teachers. Here we report on a small exploration into the 
results of infusing intercultural competence development into professional development.  

Research Question: What evidence is there that intercultural orientation is part of the 
mathematical knowledge for teaching needed by post-secondary instructors to be effective in 
teaching future teachers?  
 
Mathematical Knowledge for Teaching (MKT) and teaching future K-8 teachers 

There are particular understandings and skills associated with effectively teaching children, a 
sociological synergy of mathematics and mathematics education called mathematical knowledge 
for teaching that encompasses types of subject matter knowledge and pedagogical content 
knowledge (MKT; Ball et al., 2008). Subareas of these include knowledge of the intended 
curriculum (Herbel-Eisenmann, 2007), “content knowledge intertwined with knowledge of how 
students think about, know, or learn this particular content” (Hill et al., 2008, p. 375); and 
knowledge about teaching actions and decision-making (e.g., productive ways to respond in-the-
moment to students to support learning). All of the components of MKT are situated in a seventh 
aspect, knowledge of discourses, about communication in/with/through mathematics among 
people in and outside of the classroom (Hauk et al., 2014; Scheiner, 2019).  

A related idea at the post-secondary level is mathematical knowledge for teaching future 
teachers (MKT-FT; Castro Superfine et al., 2013, 2014). A deep MKT-FT is vital in the student-
centered and inquiry-oriented approaches to teaching shown to improve learning, increase 
persistence, and reduce inequities (Bressoud et al., 2015; Laursen et al., 2014). Generally, 
instructors build MKT-FT by learning from experience and professional community: grading, 
examining their own learning, observing and interacting with students or colleagues, reflecting 
on and discussing their own practice and the practices known to be effective in teaching (Kung, 
2010; Speer & Wagner, 2009). Those with advanced degrees in mathematics who teach future 

25th Annual Conference on Research in Undergraduate Mathematics Education 1213



 

teachers are faced with a need to connect mathematical learning by their future-teacher-students 
to the special mathematical knowledge needed for working with children as well (Castro 
Superfine & Li, 2014). 
 
Model of Intercultural Competence Development 

Our effort in applying the ideas of intercultural competence development to mathematics 
teaching and learning is based in the developmental model of intercultural sensitivity (Bennett & 
Bennett, 2004). The model ranges from a monocultural, ethno-centric view to an ethno-relative, 
intercultural view. Figure 1 is a schematic of the five benchmark orientations and developmental 
processes that support intermediate transitions.  

 

 
 Figure 1. Milestones and processes for the intercultural development continuum.   

 
The starting point of the continuum of orientations towards cultural difference, denial, is a 

lens for perceiving the world based on denying difference and assuming “Everybody is like me.” 
A person with this orientation will avoid or express disinterest in cultural difference. The 
transition to the next benchmark, polarization, comes with the recognition of self as distinct from 
“other” through a noticing of difference. A polarization orientation can be driven by the 
assimilative assumption “Everybody should be like me/my group” where cultural differences is 
viewed in terms of “us” and “them.” Transitioning minimization involves noticing commonalities 
beneath the surface differences, in particular a growing awareness of norms. This middle 
orientation is a minimization of difference, a lens for experience based on the idea, “Despite 
some differences, we really are all the same, deep down” and focuses on similarity and 
universals (e.g., biological similarities – we all have to eat and sleep; and presumed universal 
values). A minimization orientation will, however, ignore recognition and appreciation of subtle 
difference. Through increased attention to nuance in the differences that exist within noticed 
commonalities, one begins the transition to an acceptance orientation. Here, “accept” is used in 
its socio-cultural sense – the action or process of consenting to receive (rather than its 
psychological one – believe or come to recognize as valid or correct). Someone with an 
acceptance orientation has both some mindfulness of self as having a culture and awareness of 
moving among multiple cultures (plural). However, the importance of relative context, how to 
respond and what to respond in-the-moment of interaction with others is underdeveloped. The 
transition to adaptation involves developing culture-general frameworks for perception and 
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behavioral shifts that are responsive to a full spectrum of detail in an intercultural interaction 
along with a concomitant awareness that one’s own perceptions are limited and the whole picture 
is bigger than what is perceived. Adaptation is an orientation wherein one bridges cultural 
perspectives, without losing or violating one’s authentic self, and adjusts communication and 
behavior in ways viewed as appropriate by each cultural group involved.  

In the particular context of post-secondary mathematics teaching and learning, the continuum 
from ethno-centric to ethno-relative orientation may begin in a denial of difference (e.g., 
mathematics is acultural). Further development will go through a phase characterized by a 
tendency to polarize (e.g., there is one best or right way to solve every problem). From there, 
development can progress to a minimizing search for universals (e.g., there are “objective” or 
“mastery based” ways that are universally applicable to assess all students, and grades become 
the essential element of interaction for instructor and student, disconnected from students’ 
mathematical funds of knowledge). With time and intentional development, one can learn more 
about mathematical ideas, contexts, and human interactions and reflect on teaching with greater 
attention to relational details (e.g., learning about implicit bias and suddenly noticing it in every 
word problem in the text), but how to use this knowledge to improve opportunities to learn, 
classroom climate, and interactions with others remains elusive. At its most developed, 
adaptation in mathematics teaching and learning involves networks of people and ideas; 
interactions can be anticipated (enough) that teaching responds to the needs of those involved 
(Hauk et al., 2014). Development along the continuum is not direct or linear. Folding back to 
previous orientations (particularly in times of stress) is common. Also, the time spent in learning 
about self and others during transitions and folding back hold value in developing more variety 
in the ways in which one perceives, makes sense of, and enacts culturally-informed relationships. 

Methods 
The Professional Resources & Inquiry in Mathematics Education (PRIMED) for K-8 Teacher 
Education project field-tested a 15-hour, 10-week online short-course for college instructors new 
to teaching future K-8 teachers. This online professional development (PD) experience covered 
topics such as mathematical knowledge for teaching, inquiry- and task-based learning, and tools 
for equitable instruction. The PRIMED experience was hybrid: Modules 2 and 5 included both 
asynchronous and live online activity-based work; the other three modules were sets of 
asynchronous web-based activities completed by instructors individually and in teams (see 
Figure 2). Participant teams rarely met in real-time and tended to check-in with each other by 
email or through online discussion boards.  

 

 
Figure 2. Overview of the PRIMED short-course for instructors new to teaching future teachers. 
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The short-course included consideration of MKT and MKT-FT in interculturally rich 
discourse contexts (e.g., examining a scenario where students are learning mathematics while 
also learning English as an additional language). Instructors had opportunities to learn about, 
witness (though video-clip-based activities) and practice (through lesson experiments) how to 
deal with the realities of negotiating the multiple experiences and relationships in a math-for-
teachers classroom (see Jackson et al., 2020 for more on short-course development).  

Each participating instructor agreed to complete research tasks and to include assignments in 
their course through which undergraduate students completed assessments of MKT. Instructors 
(n=15) and undergraduates (n=476) providing data for the study were from 12 different 
institutions of higher education (2 public community colleges, 7 master’s granting universities [6 
public, 1 private], and 3 doctorate-granting universities [2 public, 1 private]).  

One of the project’s main measures was the valid and reliable elementary grades number and 
operations Learning Mathematics for Teaching (LMT) assessment (Hill et al., 2008). Items on 
the LMT capture whether respondents correctly solve primary school mathematics problems as 
well as how they address teaching tasks (e.g., evaluating unusual solution methods, representing 
content to students, identifying adequate mathematical explanation). Instructors and their future-
teacher-students completed the LMT at both the beginning and end of the semester in which 
instructors participated in PRIMED. Matched pre-post data were available for 12 instructors and 
226 undergraduates. All also completed the Intercultural Development Inventory (IDI), a 
validated and reliable measure of intercultural development (instructor-participants did the IDI 
pre- and post-short-course, the undergraduates once, at the beginning). Also, each instructor had 
a PD involvement index (low, substantial, high) based on three characteristics: count of 
contributions to course online discussions, number of course tasks completed, and self-
evaluation of effort. Though limited, these data allowed initial investigation of the relationships 
among PD, instructor and undergraduate MKT, and intercultural competence development. 

 
Results 

According to the LMT, faculty and their students gained MKT. The overall mean gain for 
instructors on the LMT was 0.5 standard deviations (sd) and for undergraduates was 0.29sd (see 
Figure 3, next page). Other research on prospective teacher learning has indicated that one 
semester of instruction in a course carefully designed and taught by an experienced teacher 
educator can lead to gains of up to 1sd (Castro Superfine et al., 2013). However, far smaller 
changes are usual (Phelps et al., 2016). When faculty have PD to strengthen their teaching, LMT 
gains among their students have been reported at about 0.25sd (Laursen et al., 2016). In the 
PRIMED study, when involvement-index is considered, average undergraduate learning gains 
were highest in the classes taught by instructors who participated most consistently in the short-
course (student gain of 0.35sd), lower for those who skipped lesson experiments or modules 
(gain of 0.28sd for substantial participation group), and lowest for those who did only a few 
activities (0.13sd for this group).  

The distribution of intercultural orientations for students was similar to that in previous 
research among pre- and in-service K-8 teachers (the majority at or before polarization). Figure 4 
illustrates this along with the fact that the distribution of orientations for instructors was different 
from that of students (the majority at or after minimization) – which also is similar to results in 
other studies, (see Hauk et al., 2017 and references therein). That is, the distribution for students 
is rooted in polarization (seeing difference) while that for instructors is heaviest in minimization 
(minimizing difference and focusing on similarity). We have reported elsewhere on the 
challenges posed by the distinction (e.g., Hauk et al., 2015). 
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Figure 3. Comparison of LMT scores among future teachers           
             

      
Figure 4. Pre-course IDI results as % of group for undergraduate students and instructor-participants. 

 
Juxtaposing the two data sets, Figure 5 (next page) is a visualization of undergraduate student 

LMT average gains (horizontal) plotted according to the difference between the instructor and 
class average IDI orientations (vertical). The central boxed values indicate where the instructor 
and class (on average) had statistically insignificant differences in IDI score. Away from the 
central box the differences in IDI were statistically significant (p<0.5). For example, the dot 
furthest to the lower right is for a high-participation instructor (blue dot) whose class’ 
polarization orientation was more interculturally developed than his denial orientation.  
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Figure 5. Scatterplot of student LMT gain by difference in IDI score. Dot colors indicate instructor level of 

participation in PRIMED (blue=high, yellow=substantial, orange=partial). 
 

The research question driving the analysis sought insight into whether and how faculty 
intercultural competence development and MKT-FT development might be related to changes in 
undergraduate MKT. As indicated in Figure 5, instructors with high participation in the 
interculturally explicit PRIMED project had classes with the largest measured learning gains, 
even when there were significant differences between their own intercultural orientations and 
those of students. Figure 5 also suggests that PRIMED supported at least one instructor with a 
highly ethno-centric view to be effective with a diverse class group (rightmost dot in Figure 5).  
 

Discussion and Conclusion  
This study echoes, on a small scale, recent work on PD for inquiry-based learning in college 

settings that demonstrated an instructors’ perceptions of their ability to enact behavior which 
they can control was positively associated with instructional practice aligned with PD aims 
(Archie et al., 2022). Our group continues to explore the relationships among intercultural 
competence, professional learning, and classroom practice (Hauk et al., 2017; Jackson et al., 
2020). Finally, on a practical note, at the end of the short-course semester, three common goals 
for future professional learning emerged from participants, each related to interconnecting MKT 
and orientation:   

(1) build awareness of self as having a cultural lens for viewing the world in a post-secondary 
mathematics/department culture that is distinct from the culture of K-12 teaching; 

(2) find guidance in the transitions from minimization and into acceptance, particularly how to 
be mindful of one’s cultural filter(s) for interacting with the world; 

(3) engage in building a knowledge base about equity, including knowledge about culturally 
normative values and distinguishing these from essentializing or stereotyping approaches.  
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Visualizing Conceptual Change: Using Lakatosian Conflict Maps to Analyze Problem 
Solvers’ Structures of Calculus Definite Integral Tasks 

William Hall Serena Peterson 
Washington State University Washington State University 

The work of Imre Lakatos has been influential in the philosophy of science and mathematics. His 
writings on how science and mathematics progress as fields have been utilized in mathematics 
and science education. In this study, we apply Lakatosian theory in analyzing task-based 
interviews. We use conflict diagrams to center the discrepant events participants experience 
while solving calculus tasks. In so doing, we illustrate how problem context plays a vital role in 
the evolution of problem-solver's structures in problem situations. 

Keywords: Lakatos, Conceptual Change, Data Analysis 

Qualitative data is rich. Researchers can present complex, nuanced perspectives on 
mathematical reasoning with interview data. However, rich data is often also dense and difficult 
to understand and/or overwhelming in scope. We present conflict maps as a tool for analyzing 
task-based interview data rooted in the Lakatosian theory of scientific and mathematical progress 
that illustrates the rich problem-solving that evolves over the course of a task-based interview. 
As an analytic tool applied to interview data, conflict maps present problem-solving strategies as 
they emerge and how they change. This highlights and makes evident moments of cognitive 
conflict.  

Lakatosian conflict maps exist independently as pedagogical tools in science education (Tsai, 
2000). In utilizing such maps, lessons are designed so that learners engage with discrepant 
events, moments where they perceive and must respond to a discrepancy between expectations 
and results. Specific discrepant events are regarded as critical events when alternative 
conceptions of science are engaged and evolve into traditional scientific conceptions. These 
critical events are identified by the instructor ahead of the lesson and result from the experiences 
of instructor and/or research on student thinking. Our research goal is to explore the usefulness 
of Lakatosian conflict maps as analytic tools for task-based interviews. In the current study, we 
illustrate their use in analyzing how undergraduate students solved calculus accumulation tasks. 
Our research question is what discrepant events emerge in the solving processes of individuals 
while solving calculus definite integral tasks?  

Literature Review 

Lakatosian Theory 
In this study, we draw from the perspectives of Lakatos (1970). Lakatos claims that scientific 

theories do not progress linearly matching objective reality better as time goes on. Instead, 
Lakatos states that theories either progress or degenerate over time. Theory falsification does not 
happen immediately upon identifying a contradiction for Lakatos. Lakatos describes scientific 
theories as having both a “hard core” of central assumptions and a “protective belt” of auxiliary 
hypotheses (p. 133). Seemingly contradictory evidence can be redirected towards the protective 
belt instead of instantly disproving the theory outright. The hard core can be altered, but only 
after accumulating significant contradictory evidence that leads to the development of a new 
hard core and protective belt that explains the observations and makes new predictions. Within 
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the domain of mathematics education, there have been several  works to emerge utilizing 
Lakatosian principles. Larsen and Zandieh (2008) explore guided reinvention in abstract algebra 
using processes rooted in Lakatos’ Proofs and Refutations methodology. Nunokawa applied 
Lakatos’ theory to mathematical problem solving in many of their studies, specifically 
examining the “solver’s structures of a problem situation” (Nunokawa, 1996, p. 274).    

Enhanced Conflict Maps  
Several researchers in science education have made explicit use of Lakatosian principles in 

their work. Specifically, they have connected these ideas with students’ conceptual change and 
developed what are called (enhanced) conflict maps (Tsai, 2000; Oh, 2011, 2014). These maps 
serve as pedagogical tools for building effective science lessons. See Figure 1 for the template 
for an enhanced conflict map.  

 
Figure 1. Enhanced Lakatosian conflict map Oh (2014)  

Conflict maps have been utilized as pedagogical tools rather than analytical ones. These 
approaches map out how students are expected to move from one naïve or alternate conceptions 
to a scientific or mathematical one and include the planned events that (hypothetically) move 
students from one conception to the other. Ogbonnaya & Dimitriou-Hadjichristou (2022) 
illustrate such as approach in mathematics education, specifically for a student learning about 
surface area of a cone. We claim these diagrams can be used for the purpose of data analysis in 
research. Whereas discrepant and critical events have been presented intentionally by the 
instructor to move students through the various conceptions, we map these events as they 
occurred naturally during a task-based interview. This approach offers an alternative way to 
analyze qualitative data and provides an opportunity to reflect on analytic techniques in 
qualitative research based in visualization of data at several levels simultaneously, which may 
serve a researcher with neurodivergence better than traditional text-based techniques.  
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Theoretical Perspective  

Problem Solving  
Nunokawa (1994) defines problem solvers’ structures as “structures given by the solver to 

the problem situation” and that “a solving process is described as a sequence of changes in the 
problem solver’s representation structures” (p. 276). Nunokawa (1992) illustrated that the 
“sense” a problem-solver generates for a problem situation impacts the problem-solver’s 
thinking during problem-solving. We use problem situation as Nunokawa does, to describe the in 
situ problem-solving environment as perceived by the participant. 

Knowledge as an Adaptive Function 
A view of knowledge as an adaptive function played a key role in the data analysis in this 

study. von Glasersfeld (1982) claims “knowledge for Piaget is never (and can never be) a 
‘representation’ of the real world. Instead it is the collection of conceptual structures that turn out 
to be adapted, or as I would say, viable within the knowing subject’s range of experiences” (p. 
4). Viability is the crucial idea. Just as with the evolution of an organism in an ecosystem, what 
students learn is not driven by matching some objectively true reality, but what the student finds 
viable. For this study, the personal ecosystem is what Nunokawa calls the problem situation, and 
the problem-solver's structures exist (and thrive or perish) within that ecosystem. von Glasersfeld 
states that “in the sphere of cognition, though indirectly linked to survival, equilibrium refers to a 
state in which an epistemic agent's cognitive structures have yielded and continue to yield 
expected results, without bringing to the surface conceptual conflicts or contradictions” (p. 5). 
This is the heart of the concept of viability in constructivism, that learning is the development 
and application of stable cognitive structures. 

 
Methods 

This study concerns data from a broader study of the ways students reason in calculus 
accumulation tasks. In the broader study, twelve (12) undergraduate students participated in task-
based interviews lasting approximately one hour. Participants in the study were undergraduate 
students from a large research university in the United States. All had majors or intended majors 
in the biological or life sciences and were solicited from across various upper and lower division 
undergraduate courses. Participants solved five calculus tasks concerning accumulation and rate 
of change set within contexts relevant for biological and life science students. In this study, we 
focus on one of the tasks and how students processed moments of conflict in their problem-
solving work.  

Interview Task: The greenhouse effect is the rise in temperature that the Earth 
experiences because certain gases prevent heat from escaping the atmosphere. According 
to one study, the temperature is rising at the rate of 𝑅𝑅(𝑡𝑡)=0.014𝑡𝑡0.4 degrees Fahrenheit per 
year, where t is the number of years since 2000. Given that the average surface 
temperature of the Earth was 57.8 degrees Fahrenheit in the year 2000, predict the 
temperature in 2200. 

Diagramming the evolution of problem structures 
Diagrams were created to visualize the evolution of problem solvers’ structures during their 

work. Each diagram represents a student’s full solution strategy for one interview task. Each 
diagram illustrates the central assumptions problem solvers made about the given rate of change 
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function, this is referred to as the hard core of their problem structure. The hard core is 
surrounded by a belt of supporting concepts, assumptions, and calculations that the participant 
accepts as viable given their current assumptions. When contradictions arise, these are visualized 
externally to the current structure in the diagram. These are discrepant events for the participant. 
Each idea within the belt is presented chronologically how it appeared within the interview, read 
from top to bottom. The diagrams were first sketched by hand and then they were transferred to 
PowerPoint. The diagrams were validated using external checks, other expert researchers 
reviewing and providing feedback comparing the diagrams to the interview transcripts.  

 
Figure 2. Theoretical problem structure diagram 

In this report, we describe the discrepant events for eight of the participants. We focus on 
only those diagrams with discrepant events and identify the nature of those events and 
whether/how they were resolved. Figure 3 shows a theoretical problem structure diagram.  

Results 
We present the problem structure diagrams for two participants, Jake and Brenda. These 

visualizations capture the participants’ full work on the task and what they recognized as viable 
and what discrepant events they experienced. 

  
Figure 3. Problem structures diagram for Jake 

In Jake’s first problem structure, he claims the output of the function for t=200 will be the 
average surface temperature for the Earth in the year 2200. Jake’s observation that R(200) is too 
small to the be average surface temperature is a discrepant event, similar to the case of Brenda. 
Jake formulates a new assumption about the values of the function R(t), namely that the outputs 
are rates of change. While this is accurate, his calculations lead him astray and new discrepant 
events result.  
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Figure 4. Problem structures diagram for Brenda 

Table 1 contains a summary of the discrepant events observed in the eight participants under 
consideration. Each of the participants reasoned about the size of the value they calculated in 
relation to their expectations for climate change and the initial given temperature.  Several others 
utilized the setting of the interview in reflecting on discrepant events or their work on other task. 

 
Table 1. Summary of discrepant events 
Participant Discrepant event description 

Jane Value is too low for AST(2200)  
R(0) not 57.3 R(2000) very small 

Anne R(200) too small for AST(2200)  
Interviewer direction Work on Task 5 

Shauna R(200) too small for AST(2200)  

Andy 
R(200) too small for change in temperature  

Computed value too large for AST(2200) Computed value too small 
for AST(2200) 

Ron R(200) too small for AST(2200)  
R(200) too small for change in temperature Work on Task 5 

Jake R(200) too small for AST(2200)  
 Computed value not close to 57.3  
Brenda R(200) too small to be AST(2200)  
Gina R(200) too small to be AST(2200)  

Discussion and Questions 
Our research question is: what discrepant events emerge in the solving processes of 

individuals while solving calculus definite integral tasks? Most of the discrepant events observed 
involved the context of the task. Participants assessed the viability of their assumptions by using 
their expectations and knowledge of the context. The calculated values being either unreasonably 
low or high for the context of average surface temperature of the Earth was often a key indicator 
that assumptions were not viable. Questions for discussion: What are the benefits of adopting 
this analytical approach in mathematics education research? How can Lakatosian conflict maps 
benefit us in analyzing student thinking as they work through a task or broader concept? We feel 
visualizing interview data on problem solving math tasks leads to greater accessibility. We also 
believe the diagrams preserve the participants’ voice, their authentic ideas as opposed to solely 
the researchers’ perspective of the work.  
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A Genre Analysis of Mathematical Remarks 

 

Valentin A. B. Küchle 

Auburn University 

This report describes the preliminary results of a genre analysis of mathematical remarks, which 

was conducted using Bhatia’s (1993) seven-step genre analysis model. As part of the analysis, 

discussion threads on Mathematics Stack Exchange about mathematical remarks were analyzed 

as well as a corpus of remarks from first-year mathematics lecture notes of a British university. 

An overarching communicative purpose and seven non-mutually exclusive “mini communicative 

purposes” (Hyon, 2018, p. 30) of the genre of mathematical remarks are identified. 

Keywords: Discourse, Genre Analysis, Mathematical Remarks  

The American Mathematical Society’s (AMS) Publications Technical Group (2017) 

observed:  

In mathematical research articles and books, theorems and proofs are among the most 

common elements, but authors also use many others that fall in the same general class: 

lemmas, propositions, axioms, corollaries, conjectures, definitions, remarks, cases, steps, 

and so forth […] (p. 2) 

To account for differences between elements of this list, the amsthm package supports three 

theorem styles: plain (e.g., for theorems and lemmas), definition (e.g., for definitions and 

axioms), and remark (e.g., for remarks and notes). By being named alongside theorems and 

proofs as well as receiving their own theorem style by the AMS, “remarks” hold a privileged 

place in the writing of research mathematicians. The purpose of the study outlined in this report 

is to describe the genre of mathematical remarks using genre analysis, in particular by using 

Bhatia’s (1993) seven-step genre analysis model.  

As my work is of preliminary nature, I will only elaborate on a subset of the seven steps 

(i.e., steps 1, 2, 4, and 6). Further, in the interest of space, I will only report on findings regarding 

the communicative purposes of the genre of mathematical remarks, that is, I omit my findings 

regarding the form of the genre. This choice is motivated by the definition of genre I draw on 

(i.e., Swales’s [1990] definition), which places communicative purpose at the center of a genre. 

Thus, this report’s overarching question, which also guides much of the genre analysis, is: What 

are the communicative purposes of mathematical remarks? 

Background Literature 

As discussed by Hyon (1996) as well as Bhatia and Salmani Nodoushan (2015), researchers 

from three different (Anglophone) research traditions have sought to study genre: (a) New 

Rhetoric studies, (b) systemic functional linguistics (SFL), and (c) English for Specific Purposes 

(ESP). But, as Bhatia (2012) remarked, “[g]enre theory, in spite of these seemingly different 

orientations, covers a lot of common ground” (p. 241). For an in-depth comparison of the three 

traditions, see Hyon (1996) and Hyon (2018). In short, differences between the traditions that 

were more pronounced in the 1980s and 1990s have begun to fade in recent times with 

particularly the New Rhetoric and ESP traditions having ever-greater overlap (Hyon, 2018). I 

draw on the ESP tradition and provide a few brief remarks on this tradition below.  
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English for Specific Purposes 

The ESP tradition of genre theory draws on Swales’s (1990) definition of genre, which—in 

abbreviated form—reads:  

A genre comprises a class of communicative events, the members of which share some 

set of communicative purposes. […] In addition to purpose, exemplars of a genre exhibit 

various patterns of similarity in terms of structure, style, content and intended audience.  

(p. 58) 

Building on Swales’s (1990) definition of genre, Bhatia (1993) developed a seven-step genre 

analysis model attending to purpose and form: (a) placing the given genre-text in a situational 

context, (b) surveying existing literature, (c) refining the situational/contextual analysis, 

(d) selecting corpus, (e) studying the institutional context, (f) levels of linguistic analysis, and 

(g) specialist information in genre analysis. As Bhatia (1993) explained about these seven steps:  

These steps have been artificially separated for the sake of convenient formalization and 

systematic discussion. Moreover, it is not the intention to suggest that in all such 

investigations, the analyst must go through all the stages listed above and certainly not in 

that order. (p. 40) 

For an application of Bhatia’s (1993) model, see Singh et al. (2012). For four reviews of Bhatia 

(1993)—as well as his response to these reviews—see Nielsen et al. (2017). 

Method 

Data Collection 

I collected two sets of data, each for a different step of Bhatia’s (1993) seven-step genre 

analysis. For step 2 (i.e., surveying existing literature), I compiled all discussion threads related 

to mathematical remarks I could find on Mathematics Stack Exchange (MSE). The search was 

conducted on August 29, 2022 and consisted of searching for “remark” using the MSE search 

function. The top 500 results (sorted by “relevance”) were then examined to determine whether 

the question asked pertained to conventions about writing mathematical remarks. I then 

inspected each discussion thread’s “related” section to find any additional remark-related 

questions but found none. All ten relevant discussion threads were downloaded. 

For step 4 (i.e., selecting a corpus), I compiled all remarks from the PDF lecture notes of all 

mandatory courses for first-year mathematics majors at my British undergraduate institution. 

These eight courses are: Foundations, Differential Equations, Analysis 1 & 2, Introduction to 

Abstract Algebra, Linear Algebra, Mathematics by Computer, and Geometry & Motion. These 

PDF files were written by the lecturers of these classes and uploaded or sold (in printed form) by 

the mathematics department (before or after the semester) for a small fee (£1–3). During the 

compilation process, three situations occurred: (a) remarks were the notes’ only labeled 

exposition (in which case the remarks were included), (b) remarks were not the notes’ only 

labeled exposition (in which case only the remarks were included), or (c) the notes contained no 

exposition labeled as remarks, only exposition labeled as “note” (in which case the “note”s were 

included). “Note”s were excluded (case b) or included (case c) to account for some authors 

possibly using the term synonymously with remarks, whereas others may have chosen to make a 

distinction. I ended up with a corpus of 31 remarks.  

Given the preliminary nature of this work, rather than trying to create a large representative 

corpus of remarks (e.g., by compiling remarks from talks, lecture notes, textbooks, and research 

papers), I chose to focus on remarks from first-year lecture notes because this corpus was of a 

manageable size. Further, I suspected that this corpus might emphasize different communicative 
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purposes than the discussion threads on MSE—a difference of pedagogical interest to me. Thus, 

for step 6, I am studying the communicative purpose(s) of a sub-genre of mathematical remarks: 

the remarks made to first-year British mathematics majors in lecture notes.  

Data Analysis  

To analyze the genre of mathematical remarks, I am using Bhatia’s (1993) seven-step genre 

analysis model. The four steps I detail in this report are steps 1, 2, 4, and 6. For step 1 (i.e., 

placing the given genre-text in a situational context), I drew on my knowledge and experience. 

Step 4 (i.e., selecting corpus) has already been described in the Data Collection.  

For step 2 (i.e., surveying existing literature), I analyzed the MSE discussion threads by using 

structural coding (Saldaña, 2009) to identify segments of the data that: (a) asked a question (or 

made an assertion) about the form of mathematical remarks (e.g., “Can I have a ‘remark’ after a 

‘lemma’ before its ‘proof’?”), or (b) asked a question (or made an assertion) about the purpose of 

mathematical remarks (e.g., “Remarks may also be used to provide motivation”). As described in 

the introduction, I will only report on the latter analysis in this report.  

For step 6 (i.e., levels of linguistic analysis), Bhatia (1993) outlined three levels of linguistic 

analysis for analyzing one’s corpus. I report on my level 3 analysis (i.e., the largest grain size), 

which Bhatia (1993) referred to as structural interpretation of the text-genre. Such an analysis 

may break down a genre into different moves, each of which has its own “mini communicative 

purposes” (Hyon, 2018, p. 30). Given that remarks are typically short texts of only a few 

sentences, I considered it unlikely to find a series of moves the genre follows. Nevertheless, I 

used the idea of “mini communicative purposes” to identify different sub-purposes that remarks 

can have. To identify these purposes, I process coded (Saldaña, 2009) the remarks in my corpus. 

Preliminary Results 

As Bhatia (1993) specified, researchers need neither follow all his steps nor follow them 

linearly. With this in mind, I share my preliminary results for steps 1, 2, and 6 below.  

Step 1: Placing the Given Genre-Text in a Situational Context  

To place the given genre-text in a situational context, Bhatia (1993) encouraged analysts who 

come from the relevant speech community to draw on their own experience and background 

knowledge. As a mathematics education researcher with a background in mathematics, I am 

familiar with the communication of proof-based mathematics and consider myself a member of 

the relevant speech community. Thus, in this section, I share experience-based observations I 

made before beginning my analysis. For the purposes of this report, I include only my 

observations about the communicative purpose(s) of mathematical remarks.  

Context. Most of my relevant experience comes from studying mathematics at a British 

university. Lectures at the university consisted of a chain of labeled “blocks” (e.g., definition, 

theorem, proof, remark). These blocks—including remarks—were both spoken and written. 

Remarks were announced in spoken discourse (e.g., “Let me make a remark.”) and written 

discourse (e.g., “Remark: The function …”). The only spoken discourse not recorded on the 

boards was unlabeled exposition, whose purpose it typically was to motivate material.  

Communicative purpose. A remark’s purpose is to highlight a piece of information that 

does not fit into the mathematical quartet of definition, statement-to-be-proved, proof, and 

example but is too important to be left as unlabeled exposition. Remarks can, for instance, relate 

one theorem/proposition/lemma to another (e.g., one being a special case of another), warn the 
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reader about a potential confusion, indicate an alternative proof, highlight an idea or nuance that 

may have been lost amid mathematical notation, or share an alternative notation. 

I suspect that the distribution of communicative purposes of remarks in a text depends on the 

intended audience. For instance, “highlighting an idea or nuance that may have been lost amid 

mathematical notation” might be a more prevalent purpose for remarks aimed at newcomers to 

proof-based mathematics, whereas remarks “relating one theorem/proposition/lemma to another” 

might be more prevalent when the audience is research mathematicians.  

Step 2: Surveying Existing Literature 

In his call to survey existing literature, Bhatia (1993) took an expansive view of possibly 

pertinent literature. Particularly relevant to this study is the inclusion of practitioner advice. 

Thus, as described under “Data Collection,” I searched MSE for “remark” and found ten relevant 

discussion threads. After analyzing the discussion threads, I identified the following purposes of 

mathematical remarks: 

1. to be able to refer to some piece of exposition (this requires that the remarks are 

numbered);  

2. to draw attention to a piece of exposition;  

3. to isolate (important or noteworthy) exposition tangential to the main exposition;  

4. to give the reader a break (e.g., with an historical anecdote);  

5. to provide motivation;  

6. to state why some hypotheses are necessary or natural;  

7. to state why one cannot hope to get stronger results;  

8. to justify a seemingly unnecessarily circuitous route; 

9. to address a potential distraction in the reader’s mind;  

10. to point out pitfalls; and 

11. to point out (and possibly explain) the following of a certain convention. 

Step 6: Levels of Linguistic Analysis 

Analyzing my corpus of mathematical remarks, I identified the following non-mutually 

exclusive (mini) communicative purposes of remarks:  

1. justify the author’s choices on a meta-level (e.g., why they made a particular choice); 

2. respond to a possible reader assumption or reaction (e.g., pointing out a pitfall);  

3. point out something the reader may have overlooked (e.g., pointing out a border case, 

pointing out an additional implication);  

4. introduce new or different notation and terminology;   

5. point out an alternative (e.g., to a definition, an equation);  

6. give advice; and  

7. share background or additional context (e.g., historical anecdote, practical application, 

related concept). 

As aforementioned, these “mini-purposes” of remarks are not mutually exclusive and, while 

studying their intersections, one combination of moves stood out due its frequency and structure: 

purpose 2 followed by purpose 7. That is, around half the time, in addition to responding to a 

possible reader assumption or reaction, authors chose to share background or additional context.   

Discussion 

Synthesizing across steps 1, 2, and 6, I observe that there are different grain sizes of 

communicative purposes of mathematical remarks. The overarching communicative purpose 
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appears to be to separate some exposition from the main exposition—either for elevation or 

isolation. For example, whereas some remarks warn of a pitfall and are numbered to be able to 

refer to them more easily (i.e., elevated exposition), other remarks isolate exposition tangential to 

the main exposition to the extent that they can be skipped—one of the analyzed remarks even 

included the phrase “feel free to ignore this remark.” Discounting the possibility of reverse 

psychology, mathematical remarks are thus sometimes (almost) integral (elevated exposition) 

and at other times skippable (isolated exposition). I suspect this duality may leave novice readers 

of proof-based mathematical texts wondering whether remarks can be skipped or not.  

Moving to the mini purposes (or sub-purposes) of mathematical remarks, I offer the 

following synthesized list of mini purposes from steps 1, 2, and 6 of my genre analysis:  

1. justify the author’s choices on a meta-level (e.g., why some hypotheses are necessary or 

natural, why one cannot hope to get a stronger result, why one took a seemingly 

circuitous route, why one made a particular choice);   

2. respond to a possible reader assumption or reaction (e.g., pointing out a pitfall, 

addressing a possible distraction in the reader’s mind);  

3. point out something the reader may have overlooked (e.g., pointing out a border case, 

pointing out an additional implication, pointing out that B is a special case of A);  

4. introduce new or different notation and terminology;  

5. point out an alternative (e.g., to a definition, an equation, a proof);  

6. give advice; and 

7. share background or additional context (e.g., historical anecdote, practical application, 

related concept). 

As the step 6 analysis showed, these purposes are not mutually exclusive and there may be 

some that combine more frequently (e.g., purpose 2 followed by purpose 7). As aforementioned, 

I also hypothesize that some purposes (e.g., sharing background or additional context) may lead 

to remarks which authors consider more ignorable than remarks with other purposes 

(e.g., responding to a possible reader assumption or reaction).  

During the analysis, I also observed three differences between the mini communicative 

purposes identified in steps 2 and 6. First, the discussion threads seemed to emphasize purpose 

1—a purpose only seen once in the lecture notes. Second, purpose 6 appeared in the lecture notes 

but did not explicitly appear in the discussion threads. Third, purpose 3 appeared in the notes but 

not in the discussion threads. (This last observation is partially in line with my suspicion voiced 

in pre-analysis step 1.) I am left wondering to what extent these differences are due to a 

difference in intended audience.  

Compiling the corpus, I encountered a large variety of labeled exposition: “advice,” “aside,” 

“comments,” “digression,” “notation,” “note,” “observation,” and “warning.” Comparing these 

to the mini purposes, some similarities appear: warning (purpose 2), observation (purpose 3), 

notation (purpose 4), advice (purpose 6), and digression and aside (purpose 7).  

Finally, I wish to share with the reader two of my wonderings: (a) What are the pedagogical 

ramifications of the mini purposes and the duality of the central purpose(s) of remarks? and 

(b) What possibilities would applying genre analysis to other mathematical genres offer? 
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The Algebra Instruction at Community Colleges: Validating Measures of Quality Instruction 
project (VMQI) developed an instrument to measure mathematical knowledge for teaching 
community college algebra (MKT-CCA) and conducted cognitive interviews with 12 community 
college instructors of College Algebra. Thirty-six drafted MKT-CCA test items were reviewed 
with each item being reviewed by two instructors. This paper presents the lessons learned from 
this preliminary analysis of the cognitive interview transcripts.  

Keywords: Cognitive interviews, mathematical knowledge for teaching, community college, 
college algebra 

Introduction 
The Algebra Instruction at Community Colleges: Validating Measures of Quality Instruction 

(VMQI) is a National Science Foundation-funded project that is developing an instrument to (1) 
measure mathematical knowledge for teaching community college algebra (MKT-CCA) and (2) 
identify the dimensionality of this knowledge. We began by situating our conceptualization of 
mathematical knowledge for teaching vis-a-vis one of the most common conceptualizations 
produced by Deborah Ball and colleagues (Ball et al., 2008; Hill et al., 2008). Ko and Herbst 
(2020) further proposed organizing the subject matter knowledge in Ball et al.’s framework by 
tasks of teaching. To move this work further in community colleges (CC), we have hypothesized 
to measure two main constructors, Tasks of Teaching (Choosing Problems and Understanding 
Student Work) and Function Types (linear, exponential, and rational functions that are 
foundational for advanced work in calculus) (see Figure 1). This conceptualization of algebra 
knowledge for teaching framed the instrument’s development. Cohen and Swerdlik (2009) 
outline the development of an instrument in five main stages: conceptualization, construction, 
tryout, analysis, and revision. In the construction stage, cognitive interviews (CIs) play a 
significant role. 

Cognitive interviews are an important qualitative method used by researchers to discern 
interviewees' understanding of survey items (Meadows, 2021; Willis, 2005). As part of the 
development of our MKT-CCA instrument, we conducted CIs with CC college algebra 
instructors to understand whether the items we developed to assess the dimensions (see Figure 1) 
are interpreted by respondents as intended and whether the participants used the intended 
knowledge (Mesa et al., 2020-2023). We used the following research questions to guide the 
analysis. 

1. How do CC college algebra instructors interpret our developed items in relation to the 
dimensions of our blueprint? 

2. What knowledge do CC college algebra instructors use to respond to the MKT-CCA 
instrument?  
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Figure 1. MKT-CCA blueprint showing its six dimensions. 

Method 

Materials and Procedures 
Research on CIs suggest conducting “rounds” that consist of 5 to 15 interviews, which are 

ideally repeated following efforts to revise questions and eliminate problems (McColl, 2001; 
Willis, 1994, 2005). After the initial instrument construction and before piloting the instrument, 
CIs provide information to evaluate whether the items proposed uses the knowledge that is 
intended. Typically, CIs are planned to take a 3:1 ratio (Willis, 2015) of time (three times more 
than it would take to answer the item without think-aloud or probing). As a team, we decided to 
limit interviews to at most 90 minutes to eliminate fatigue (D'Ardenne, 2015). For this reason, 
we sent two items out of six planned for each respondent, ahead of time so that respondents 
could think about them and take notes beforehand. By doing this, we anticipated that we could 
average 12 minutes per item during the CIs. At the time of our CIs, our item pool consisted of 60 
draft items that we had deemed ready for review. The 36 items selected (six items per 
dimension) would provide us with the information to understand whether the draft items were 
interpreted by respondents as intended, used the knowledge we thought was needed, and targeted 
the dimensions of the MKT-CCA blueprint. 

We developed a protocol that we agreed to use for all interviews. Three teams of two 
researchers each performed the interviews (one person would be asking the questions, whereas 
the other was in charge of taking field notes and managing technical aspects). Each team 
interviewed four participants. We selected 36 items with the goal of having each item be 
reviewed by two participants. All interviews were conducted online in the last week of July 2021 
using Zoom with screen sharing, and audio and video recording with transcription. We used 
Jamboard to present the items one at a time since it allows for real time documenting the 
participants’ item solving process. We gave each participant two items to work on ahead of the 
interview and asked them to send us the documentation of their work before the scheduled 
interview. We asked them to keep track of how long it took them to complete each item. The 
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interview protocol asked for their impressions of the content of the item, whether the content was 
relevant to their work, the answer they chose and their reasoning, and the reason(s) for 
eliminating other options. 

Analysis 
In this paper, we use the interview response from a respondent on an item as our unit of 

analysis. This gave us a total of 72 (one missing data point due to time restraint) interviews on 36 
items. All the interviews were fully transcribed and summarized. The field notes were also 
coded. Analysis was done in two phases. The first phase focused broadly on answering whether 
respondents (a) choose the correct answer, (b) use correct reasoning in choosing the answer, (c) 
choose an incorrect option with correct reasoning, and (d) refer to the dimensions of the 
blueprint. This phase of coding was done by five members of the research team.  

The second phase involved adapting Conrad and Blair’s (1996) cognitive coding scheme and 
was done by the three authors. The coding scheme proposed attending to three categories: 
Understanding the Intent, Performing the Primary Task, and Formatting the Response. Conrad 
and Blair used Understanding the Intent to code the respondents’ comprehension and 
appreciation of the researcher's objectives; Performing the Primary Task was used to code how 
well the respondents were able to retrieve information from memory, do mental arithmetic and 
evaluate a response. Formatting the Response was used to map how respondents responded to 
prespecified answer options. We adapted this coding scheme for our purposes as follows: 

Understanding the Intent. This category examined whether the respondent was able to 
place the item in a dimension of our blueprint. Did the respondent recognize both the task of 
teaching and the function type? We coded a yes if the respondent recognized both the function 
type and the task of teaching, a partial if only one was identified and a no if neither was present. 

Using Knowledge. This category examined whether the respondent understood the 
instructional goal embedded in the stem. Did the respondent reason about the stem in ways that 
conformed with our reasoning? Did the respondent use mathematical knowledge to make sense 
of the stem? Did the respondent’s response indicate whether the stem was clear? Did the 
respondent give any indication of confusion of the stem? Did the respondent understand the 
context presented in the stem? This included instances where the wording was not clear but did 
not include situations in which the respondent did not understand the mathematical ideas or 
terminology in the stem. We coded the response as yes if it indicated a clear understanding of the 
stem, partial if the understanding was not clear and no if the response indicated that the 
respondent did not understand the stem. 

The stem is the part of the item that defines the mathematical task. It is followed by possible 
solutions (optional answers).  

Formatting the Response. This category examined whether the respondent’s reasoning on 
the options was mathematically correct or aligned with our template. Was the respondent’s 
correct or incorrect selection of options and elimination of distractors expected? We coded the 
formatting as expected if the justification matched our template intent or was found to be 
mathematically reasonable. It was coded as problematic when the respondent gave a correct 
answer or eliminated an option for the wrong reasons, when the reasons could not be 
mathematically justified, or when the justification given did not conform to our intent. It was 
coded as partial if the response was a mix of expected and problematic. 
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Findings 
We present the preliminary findings of our analysis in this section. Table 1 shows the 

summary of the analysis using the three categories. Overall, 88.73% of participants' responses 
showed a recognition of the function type and task of teaching, 85.92% of responses showed an 
understanding of the stem and 61.97% of participants responses to the items had mathematically 
appropriate justifications. 

Table 1: Percentage of Responses to the Individual Items (N=72*). 

Dimension of 
Blueprint 

Understanding the 
Intent 

Using Knowledge Formatting the Response 

 Yes Partial No Yes Partial No Expected Partial Problematic 

EC (n=12) 100.0 0.0 0.0 91.7 0.0 8.3 66.7 8.3 25.0 

EU (n=12) 91.7 8.3 0.0 91.7 8.3 0.0 66.7 0.0 33.3 

LC (n=11*) 100.0 0.0 0.0 90.9 9.1 0.0 45.5 0.0 54.5 

LU (n=12) 83.3 16.7 0.0 91.7 0.0 8.3 100.0 0.0 0.0 

RC (n=12) 66.7 25.0 8.3 83.3 8.3 8.3 41.7 0.0 58.3 

RU (n=12) 91.7 8.3 0.0 91.7 0.0 8.3 50.0 8.3 41.7 
*One data point is missing. One participant only responded to five items. 

Research Question One 
Research question one sought to answer how CC college algebra instructors interpret our 

developed items in relation to the dimensions of our blueprint. This will be addressed using the 
Understanding the Intent code.  

Understanding the Intent. As expected, preliminary analysis shows that participants mostly 
indicated a recognition of the function type of the items with only one exception. However, it 
was noted that the function type was mentioned in the stem of the item and is likely to be the 
reason the participant did not mention it in the interview. One main observation noted is that 
participants mostly were able to identify the task of teaching except in the case of choosing 
problems for rational functions where we observe a 33.3% of responses not indicating the task of 
teaching.  

Research Question Two 
We wanted to know what knowledge CC college algebra instructors will use to respond to 

the MKT-CCA instrument for research question two. We will apply the Using Knowledge and 
Formatting the Response codes for this research question. 

Using Knowledge. Participants demonstrated an understanding of the instructional goal in 
the stem for most of the items. With the exception of choosing an exponential function problem, 
we recorded high percentages for this category. We observed that the participants were distracted 
from the objectives of the items by the context of the item. For example, on an item to introduce 
students to interpreting the meaning of vertical asymptotes in a real world applied context, 
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Justina (pseudo) stated, “I did not get where those numbers are coming from, 0.5 and 6380. I did 
not get . . . those assumptions being made about the surface or something”. Justina was clearly 
focused on the context rather than the mathematics in the item and was distracted by the source 
of numbers and assumptions.  

Formatting the Response. Only a little over half the reasons given for the choice of options 
were expected or mathematically justified. This was concerning since we had recorded high 
percentages for the Understanding the Intent and Using Knowledge codes. Further analysis 
revealed that out of the 25 problematic codes recorded, 12 (about half) of them involved rational 
functions. About 39% of the reasons (involving 17 items) given were deemed problematic for 
varied reasons. The top reasons were (1) lack of knowledge needed to correctly answer items 
(especially with rational functions), (2) selecting familiar options over mathematically sound 
options, and (3) some also were distracted by multiple contexts in one item and tend not to 
reason through such items mathematically. Additionally, a few items were noted to be 
complicated.  

Emmanuel (pseudo) gave the following reason for selecting an option: “I go with [option] A 
only because I already do it with my students. And it's one that they enjoy and it's one that I have 
expanded on over time.” Emmanuel does not offer a mathematical justification for his choice. 

Conclusion 
We learned some lessons from conducting these CIs. Respondents comprehend an item better 

when the item contains fewer applied contexts and confusions associated with parts of an item 
distract respondents from the objective. Additionally, items need to have more precise language 
when describing the stem and options. 

Based on the feedback received from the CIs, four complicated items were discarded, the 
stems of seven items were revised, and the options of 14 items were revised to make them more 
focused, independent from each other, reasonable for the context, and possible to assess 
mathematically. Ideas collected from the respondents were also used to create new items and 
revise items that were not part of the cognitive interviews. 

Questions for Discussion 
1. Based on our review of the literature, isolating factors of mathematical knowledge for 

teaching has been elusive? What affordances or limitations do you see in our design to 
isolate two tasks of teaching? What else should be considered? 

2. Is there another cognitive interview coding scheme that you have used to extract useful, 
reliable, objective, and quantifiable data from Cognitive Interviews? We may be doing 
cognitive interviews after our next version of the instrument. Any advice?  
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Co-Construction of Course-Taking Narratives in Undergraduate Mathematics Advising 
 
 Claudine Margolis Elena Crosley Maisie Gholson 
 University of Michigan University of Michigan University of Michigan 

This study explores a mathematics department’s advising process for incoming, first-year 
undergraduate students. Through the analysis of video-recorded advising sessions, the 
interactional dynamics of an undergraduate mathematics advising program are explored. In 
particular, we describe how student-advisor interactions co-construct students’ course-taking 
narratives in ways that shape their mathematical opportunities. 

Keywords: Advising, Discourse Analysis, Gender 

Introduction 
Mathematics coursework plays a crucial role for undergraduate students as a prerequisite for 

many programs of study, particularly in STEM fields. The continued underrepresentation of 
women in mathematically demanding STEM fields (Watt et al., 2017) has been attributed to 
attrition of women at various points between participation in early education and persistence in 
STEM careers (Blickenstaff, 2005). While research has linked women’s attrition from the STEM 
pipeline to a variety of causes such as discrimination, societal gender inequality, gendered 
differences in academic interests, and differential high school academic preparation (Watt et al., 
2017, p. 255), it has rarely demonstrated how these factors operate to impact academic and 
career choices for individual women at the timescale of moments (i.e., seconds to minutes). In 
this paper, we explore mathematics advising for incoming undergraduates as an undertheorized 
site of attrition along the STEM pipeline and illustrate how interactions at a small timescale can 
shape students’ mathematical trajectories. Although we do not extend our analysis to examine 
the influence of gendered discourses or gender performances, we see this work as a necessary 
first step to learning more about the experience of women moving through the STEM pipeline. 
Our preliminary analysis of the impact of gender performance can be found in the poster sessions 
for this conference. 

The Context of Mathematics Advising 
Academic advising serves a critical purpose in the process of welcoming new undergraduates 

to the complex system of course offerings and institutional requirements at any university. While 
academic advising programs serve similar purposes across universities, they are uniquely 
structured to fit the needs of a particular institutional context. We use the term mathematics 
advising to describe academic advising programs for incoming undergraduates and offered by 
mathematics departments for the sole purpose of guiding students toward a decision about which 
mathematics course(s) to register for.  

The mathematics advising sessions we examine take place over a very short timescale (five 
to ten minutes) and occur between an advisor and student who have no knowledge of each other. 
In this brief interaction, the advisor needs to learn something about the student and provide 
relevant information about available courses. At the same time, the student must share something 
about themselves and gather the information they deem relevant to the decision-making process. 
Course registration typically occurs within days of the advising session, so students have limited 
opportunities to seek out additional information or support before making a decision.  

25th Annual Conference on Research in Undergraduate Mathematics Education 1240



Mathematics Advising as Genre 
We take a discursive approach in which written representations of advising sessions 

(transcripts) are thought of as texts that fit within a particular genre. The genre of a text is 
defined as “a staged, goal-oriented social process” (Martin & Rose, 2003, p. 7), meaning that 
instantiations of a particular genre generally follow the same steps to accomplish a specific goal 
and are enacted in social contexts. The genre of a text, and the stages that comprise that genre, 
constrain the range of discursive acts that are possible (or likely) to occur at various points within 
the text. Genre analysis provides a way of justifying the reader’s context-specific interpretations 
of discursive acts within a text. For example, the question What do you think? can be interpreted 
as referring to what the student is considering for an academic major or for a math course 
depending on when in the advising session it is spoken. 

The genre of mathematics advising follows a particular logic in the pursuit of a clear goal. 
Namely, the purpose of an advising session in this study’s context is for the student to decide 
which course they will register for. To accomplish this goal, the advisor and student engage in a 
conversation that consists of three stages: Opening, Deliberation, and Closing. In the Opening, 
the advisor solicits information from the student about their prior mathematics experiences as 
well as academic and career goals. During the Deliberation, the advisor and student evaluate 
available course offerings in relation to the information shared during the Opening. Finally, the 
student and advisor arrive at a consensus during the Closing. The outcome of a mathematics 
advising session is an informal agreement between the advisor and student about which math 
course(s) the student will register for. 

Mathematics Advising by Co-Constructing Narratives 
We conceptualize mathematics advising sessions as sites in which the student and advisor co-

construct a narrative about the set of courses that are appropriate for the student to take. The goal 
of a mathematics advising session is for the student to decide which math course to take, given 
the set of options made available by this co-constructed narrative. The act of registering for 
courses can then function as a collapse of students’ potential mathematical futures, particularly 
when they elect not to take a math course or to take a course that will not support their entry into 
a mathematically demanding field of study. 

Stories told about the self by oneself are likely to have the most immediate impact on an 
individual’s actions (Sfard & Prusak, 2005). The stories that students tell about themselves 
during the math advising sessions that we observed are particularly likely to have an impact on 
their actions because students registered for classes within a day or two of their math advising 
sessions. Given that the explicit goal of advising sessions is to influence students’ action with 
respect to course registration, the stories that students tell about themselves in this context are 
very likely to influence their mathematical trajectories. Although students are narrating stories 
about themselves, they are doing so through interaction with an advisor. Advisors may ask 
questions that surface aspects of a student’s narrative that wouldn’t have otherwise entered the 
discursive space. Even seemingly innocuous utterances have the potential to shift the way a 
student’s narrative unfolds. In this study, we are trying to learn how the advisor-student 
interactions shape the narratives about students’ mathematical potentialities by influencing their 
actions with respect to course registration. 

Theoretical Framework 
Following Sfard and Prusak (2005), we take a narrative theory of identity that equates 

“identities with stories about persons” (p. 14), told by the self or others, each of which can exist 
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simultaneously and change dynamically in response to contextual factors. In this view, the 
discursive construction of narratives comprise the identity of an individual rather than 
functioning as a window into some “true” sense of self that is represented by the narratives. Not 
all narratives about an individual count as identities, however. Sfard and Prusak (2005) define 
identities as collections of stories about a person that are reifying (they describe properties of the 
individual), endorsable (the narrator believes the story to be a faithful reflection of how things 
are in the world), and significant (changing some aspect of the story is likely to impact the 
narrator’s feelings about the identified person). Identity-narratives are important in the context of 
mathematics advising because the goal of each session is to determine which course, out of a 
large number of options, is most appropriate for the students given who they are. In our 
conceptualization, who the student is is the collection of stories about the student that have been 
co-constructed within the advising session. In this study, we focus on the mechanisms through 
which students and advisors co-construct reifying narratives about the student during 
mathematics advising sessions. 

Narratives have reifying qualities when utterances are about being or having (e.g., I am a 
mathematician or I have a math brain) rather than doing (e.g., I do math). Sfard and Prusak 
(2005) identify use of the is-sentence (e.g., she is an able student) as a particularly effective 
mechanism for reifying identity because it turns “properties of actions into properties of actors” 
(p. 16). In addition, they note that identity narratives can be analyzed for reifying qualities by 
looking for “verbs such as be, have, or can rather than do, and with the adverbs always, never, 
usually, and so forth, that stress repetitiveness of action” (p. 16). Additionally, given that the 
context of the interaction is an advising meeting where the information provided by the student is 
used to set an academic trajectory, sentences utilizing sensing processes like love, hate, and want 
also result in the reification of identities. For example, the statement I hate math functions like I 
am not a person who likes math which is a being process.  

Given the potential impact of the reifying narratives co-constructed in mathematics advising 
sessions, this study seeks to address the following questions:  

1. How are reifying narratives co-constructed through student-advisor interactions in 
mathematics advising sessions? 

2. How do reifying narratives shape students’ mathematical opportunities? 

Method 

Context & Participants 
This study is part of a larger project exploring the mathematics advising program situated 

across three sites at Midwestern University (a pseudonym): the general student body in the 
liberal arts college, the honors program in the liberal arts college, and the engineering school. 
The participants included mathematics advisors consisting of faculty, lecturers, postdoctoral 
fellows, and doctoral students in the mathematics department, as well as incoming 
undergraduates. The data was collected over several weeks at these sites during the summer of 
2019. In this study, we narrow our focus to examine 32 advising sessions from the honors 
program conducted by one man and one woman advisor. 

Data Sources 
The data corpus for the larger project consists of several sources: video-recordings of 100 

advising sessions across six advisors at three sites, 100 web-based surveys from undergraduate 
students after their advising session, 1 video-recording and fieldnotes of the training session, and 
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4 audio-recordings of interviews with mathematics advisors after the advising sessions. For this 
study, we draw on video-recordings of the advising sessions as well as transcriptions constructed 
by our research team (Hammersley, 2010). 

Analysis of the Co-Construction of Reifying Narratives 
 After applying stage and timeline codes to each transcript, we looked at the student’s 

turns of talk and marked instances where reifying narratives were being constructed. In 
particular, we looked for markers of reification such as the first person equivalents of is-
sentences, I am and I was; use of verbs such as be, have, or can; adverbs that stress repetitiveness 
of action such as always, never, and usually; and sentences utilizing sensing processes like love, 
hate, and want. After marking the reifying narratives constructed through the student’s talk, we 
looked at the advisor’s talk preceding each instance of reification to determine what the narrative 
was in response to. Looking ahead from each instance of reification, we created memos about 
how the advisor’s talk took up (or did not take up) aspects of the student’s narratives. For each 
session, we generated a diagram depicting the co-construction of narratives and indicated 
whether each utterance was a bid to move the student toward or away from mathematics 
coursework. Lastly, each session was placed in a two-dimensional matrix based on whether the 
student and advisor co-construction was cooperative (both moving toward or both moving away 
from math) or competing (moving in opposite directions), and whether the student was 
ultimately moved toward or away from mathematics. 

Researcher Positionality 
This analysis was carried out by a multi-ethnic, multi-racial (Black, White, and Latinx) 

research team, who identify as women. Each team member has an academic background in 
mathematics and is now focused on mathematics education. We use Black feminist perspectives 
to acknowledge the relationships between gender, race, and class within this analysis and draw 
on our own experiences as women working in and through mathematics spaces to inform our 
questions and interpretations of the data. Therefore, gender and gendered dynamics are taken as 
ubiquitous within social interactions and, thus, ground our analytical focus for the present study. 

 
Preliminary Analysis & Discussion 

Given constraints on space, we present an excerpt from one transcript and the 
accompanying diagram in Table 1. In the diagram, circles represent reifying narratives spoken by 
the student and squares represent responses to, and elicitations of, reifying narratives by the 
advisor. Arrows pointing left indicate narratives that move the student away from math, and 
arrows to the right represent narratives that move the student toward math. Shading is used to 
track particular narratives; white indicates I plan to be a psychology major, light gray indicates I 
plan to take a math course, and dark gray indicates I plan to take a statistics course. 

In this session, the student repeatedly states that she enjoys math and would like to take 
calculus. The advisor, taking up the narrative of the student as a psychology major, repeatedly 
points out that math is not required and points the student toward statistics courses as more 
relevant. The student ultimately concedes that she may not take a calculus course, so we 
characterized this session as Away From Math. The co-construction in this session was classified 
as Competing to reflect the push and pull between the student’s narrative of mathematical 
interest and the advisor’s narrative of mathematics not being necessary.  
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Text Narrative Diagram 

Advisor: Well you don't need any math for 
psychology. Did you want to take a math 
class or do you want to avoid math? 

Psych majors don’t need 
math 

Do you want to avoid math? 
 

Student: I did. I– I do enjoy math even 
though it's not really a part of psychology, 
but I still really enjoy math. Like I am 
thinking of taking statistics, but I wanted 
to. I'm thinking also of including calculus 
if I have enough room for it. 

I enjoy math. 
I really enjoy math. 
I’m thinking of taking 

statistics. 
I’m thinking about taking 

calc. 

 

Advisor: So stats and math are two different 
departments here and I agree that if you're 
going into psych you're probably gonna 
have to take some stats and that's probably 
more relevant. But if you want to take math 
that certainly. (I encourage you to do that). 

Stats isn’t math. 
Stats is more relevant for 

psych. 
If you want to take math, I 

encourage that. 

 

Student: Yeah, I really enjoy it.  […] I really enjoy math.  
Advisor: [your AP score] means that you 

don't have to take calc one. So if you're 
going to take calculus, it would make sense 
to start with calc two. But you don't need 
that for psych. So, th- the only reason you 
should take calculus is if you really want to 
take more calculus. 

You placed into Calc 2 
You don’t need Calc 2 for 

psych 
The only reason to take Calc 

2 is if you really want to 
take more calc. 

 

Student: Okay. Yeah. I- I'm pretty 
interested in taking it, but I think I'm 
actually going to talk to my advisor first 

I’m pretty interested in taking 
calc  

I may not take calc 
 

Advisor: I think that makes sense. Not taking calc might make 
sense 

 

Figure 1. A transcript excerpt from a math advising session, reifying narratives, and diagram of co-
constructed narratives. 

This preliminary analysis included eight (of 32) randomly selected sessions from the 
honors college. Of those sessions, three were characterized as Cooperative/Toward Math and one 
was characterized as a Competing/Toward Math. All four of those sessions were with students 
who identify as men. Of the four sessions characterized as Away From Math, one was 
Cooperative (with a Woman student) and the other three were Competing (two women and one 
man). Although we expect to find variability as we analyze more sessions, it is notable that all 
three randomly selected sessions that have women students featured co-constructed narratives 
that moved these women away from further mathematics study. While there are many reasons 
for women to not pursue the study of advanced mathematics, that decision has long-term 
implications for the range of academic majors and careers that remain viable options. The results 
of this study illustrate how interactions at the timescale of seconds and minutes can impact the 
mathematical trajectories of students and act as a site of attrition for women in STEM. 
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Examining A Network of Communities Focused on Transforming Mathematics Instruction

Paula Jakopovic Kelly Gomez Johnson
University of Nebraska at Omaha University of Nebraska at Omaha

Chrstine von Renesse Patrick Rault Nina White
Westfield University Idaho State University University of Michigan

Communities of practice (CoPs) offer a structure for individuals with common goals to engage in
collective learning (Wenger-Trayner & Wenger-Trayner, 2015). The CoMMIT Network was
developed to support regional Math CoPs of undergraduate mathematics faculty interested in
using active learning and inquiry teaching approaches in their courses. This study utilized the
value framework (Wenger et al., (2011) to interrogate the value participating in the CoPs and
COMMIT Network provides participants.

Key Words: communities of practice, active learning, inquiry teaching

Mathematics courses at institutions of higher education often act as “gatekeeper courses,”
leaving many students with minimal access to or interest in pursuing STEM careers. One
strategy for increasing success is to use evidence-based teaching methods, like active learning
(Freeman et al, 2014; Theobald et al, 2020). Despite research that supports this approach,
traditional lecture-style teaching is still the predominant method of instruction in many college
mathematics courses (Jaworski & Gellert, 2011; Laursen et al., 2019). Using networks and
communities of practices (CoPs) to initiate, promote, and sustain change is one method shown to
overcome these barriers to instructional change (Austin, 2011; Gehrke & Kezar, 2017). The
COMMIT Network provides a flexible structure to support regional CoPs of undergraduate
mathematics faculty in their mission to influence instructional change and improve student
learning outcomes. 

Methods
This study focused on two research questions: 1) To what extent does the COMMIT Network

create value for the regional CoPs? 2) What aspects of the COMMIT Network model are most
valuable to individual faculty participants, CoP leaders, and the Network? We utilized the value
creation framework (Wenger et al., 2011) and descriptive analysis to qualitatively examine the
layers of value identified by both faculty participants and CoP leaders to understand how the
COMMIT Network can best support the sustained, systemic implementation of evidence-based
teaching practices in institutions of higher education. 

Results and Implications
Faculty participants shared finding immediate value in the ability to network with

like-minded peers and share resources and ideas across their CoPs. CoP leaders expressed the
importance of the COMMIT Network in providing a structure that supports: 1) regularly
scheduled activities, 2) opportunities for networking, 3) structured channels of communication,
4) distribution of leadership, and 5) mentoring, which helps the CoPs within the Network to
develop a sense of collective identity and legitimacy.
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The 21st century workforce needs highly qualified STEM professionals. 
It is projected that STEM jobs will grow 8% over the next ten years 
(Seitz, 2021). Mathematics courses at institutions of higher education 
(IHEs) often act as “gatekeepers,” leaving many students with minimal 
access to or interest in pursuing STEM careers. One strategy for 
increasing success, including for students from historically under-
represented groups, is to use evidence-based teaching methods, such as 
active learning (Freeman et al, 2014; Theobald et al, 2020). Despite 
research supporting this approach, traditional lecture-style teaching is 
still the predominant method of instruction in many college mathematics 
courses (Jaworski & Gellert, 2011; Laursen et al., 2019; Nolan, 2006, 
2010). Using networks and communities of practices to initiate, promote, 
and sustain change is one method shown to overcome these barriers to 
instructional change (Austin, 2011; Gehrke & Kezar, 2017) and is the 
focus and exploration of this project. Communities of practice (CoP) are 
groups of people with common interests who engage in shared learning 
via ongoing, regular interactions and collaborate toward a common 
goal(Lave & Wenger, 1991; Wenger-Trayner & Wenger-Trayner, 2015).

Introduction

Context

1) To what extent does the COMMIT Network create value for the 
regional COMMITS?
2) What aspects of the COMMIT model are most valuable to individual 
faculty participants, COMMIT leaders, and the broader network? 

Research Questions
Regional COMMIT leaders identified the role that the Network plays in 
fostering a sense of collective identity around utilizing teaching with 
inquiry practices. Leaders noted the importance of this in developing a 
sense of purpose and support to “change the way we think about effective 
teaching” in their CoPs and at their individual institutions. “Having the 
general CoP Network in the background helps us generate some 
legitimacy,” explained a leader. “It is not something we are making up 
because it is fashionable...that support from the back is helpful. We have 
a more defined structure to what we were trying to do more organically.”

Finding Value in the COMMIT Network Model

CoPs are often ephemeral—they develop organically out of shared need, 
but often dissolve, particularly when they do not exist within a formal 
organization. One of the goals of the COMMIT Network project has been 
to examine the structures and supports that individual CoPs need to 
sustain over time in order to facilitate long term, systemic change in 
mathematics education. As such, it is important to understand the aspects 
of the Network model itself that leaders and participants view as being 
integral to the health of their COMMIT.

• Regularly scheduled, ongoing events
• Formal and informal opportunities for faculty to network and 

share ideas/resources
• Structured channels of communication within CoPs and across 

the Network
• Distributing leadership by recruiting and training new and 

upcoming leaders in each CoP
• Mentoring support for individual participants, workshop and 

activity facilitators, and COMMIT leaders provided by 
COMMIT members and the Network

These forward-looking insights aligned with our consistent evidence of 
the value both individuals and regions find in the strong community 
connections within the network. When looking at the future goals of each 
region, it is often about engaging within the network in addition to 
continuing to expand the reach of the network and its regions.

Findings (Continued) Quick Facts About the Network

13 current regional COMMITs (8 included in 
the study), which expanded from the original 4 
regions funded in 2019.

438 documented participants engaged in one 
or more COMMIT Network activities over the 
past 3 years (e.g. book clubs, teas, workshops, 
classroom observations).

213 mini-grants awarded to faculty to 
support their participation in activities such as 
peer classroom observations, course 
collaborations, and workshop 
planning/facilitation.

78.5% of surveyed participants indicated 
expanding their COMMIT Network with math 
faculty peers by engaging in at least one inquiry 
teaching activity

Connect with us & learn more about our work:

CoMathinquiry.org

COMMIT Products 
tinyurl.com/COMMIT-IUSE-2022

The COMMIT (COMmunities for Mathematics Inquiry in Teaching) 
Network provides a common infrastructure and flexible structure to 
support regional communities of practice in their mission to influence 
instructional change, address faculty isolation, and ultimately, improve 
student learning outcomes. The COMMIT Network collectively spans 
over half of the United States, with over 800 educators actively involved. 
Each regional COMMIT brings high quality professional development to 
their local members, focused on infusing active learning, equity, and 
inquiry into college mathematics classrooms.

A regional COMmunity for Mathematics Inquiry in Teaching 
(COMMIT) is a local group of college mathematics educators interested 
in practicing and disseminating teaching and learning techniques centered 
on student inquiry.

COMMIT Members center their classrooms on the Four Pillars of 
inquiry that include: (1)  ability for instructors to foster equity in their 
design and facilitation choices , (2) deep student engagement with 
coherent and meaningful mathematical tasks, (3) opportunities for 
students to collaboratively process mathematical ideas with peers, and (4)
opportunities for instructors to inquire into student thinking (Laursen & 
Rasmussen, 2019).

The highlighted areas below are where current COMMIT communities are located. 
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The Value of COMMIT-ing to Teaching with Inquiry: Examining a Network 
of Communities Focused on Transforming Mathematics Education
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Utilizing Wenger et al.’s value framework (Wenger et al., 2011), we 
examine the multiple layers of value identified by both faculty members 
and leaders as we seek to understand how the COMMIT Network can 
best support the sustained and systemic implementation of evidence-
based teaching practices in IHEs. The framework incorporates five cycles 
of value creation - immediate (in the moment resources, information, 
connections), potential (for the future), applied (tested implementation), 
realized (actualized implementation), and transformative (broader 
dissemination to others). In addition to the cycles, value at the CoP level 
is also supported by strategic value (clarity of the context and vision, 
ability to engage in strategic conversations) and enabling value (support 
processes that make network life possible).

Adaptation of Wenger et al. (2011) Value Framework for Communities of Practice

Theoretical Framing

The Value the COMMIT Network Creates for Regional COMMITs

Interviews of COMMIT regional leaders in Year 2 of the project indicate 
that the ability to share resources and ideas and to develop interpersonal 
connections as the most prominent “in the moment” Immediate Value 
aspects of engaging in COMMITs. One CoP leader explained, 

Leaders shared that it was important to “...have access to the leadership 
teams and a shared voice” as they developed processes and events for 
their region and having access to other faculty and CoPs allowed them to 
build strong interpersonal relationships with colleagues, not only within 
their own COMMIT but also from across the network.

Findings

“We have been trying to learn from others and what 
they are doing…it has been inspiring for us.” The 
opportunities to connect with like minded peer 

groups also surfaced as important to CoPs.”

“It’s nice… our community has been around for 
awhile. We have a history of things we have done 
and tried, we could give that experience and share 

that history with new CoPs to help out.”

“There is something powerful about the regional 
anchoring of things but there is enough connection 
that regions can inform each other. There are many 
similarities to having a network where we can learn 

together what works well.”
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The Story of Sunny: Consequences of Faculty Mentoring for Perception of Mathematics Career
Pathways

Seyda Uysal Kathleen Michelle Clark
Florida State University Florida State University

Keywords: pure mathematics majors, faculty mentorship, women in mathematics, perception of
career pathways, mode of belonging

Numerous studies have underlined the persistent gender gap in mathematics related fields as
a potential focus to be explored further with respect to learner identity, self-concept, stereotype
threat, and sense of belonging in the discipline (Blackburn, 2017; Lahdenperä & Nieminen,
2020). The notion of belonging was cited as an important construct to investigate and understand
factors in women’s decision to pursue a career in mathematics (Good et al., 2012). Therefore, we
investigated the “mode of belonging” of women with regard to engagement, alignment, and
imagination components using Wenger’s (1998) framework. For the purposes of this poster, we
emphasize the imagination component of mode of belonging to address women’s perception of
career pathways in pure mathematics and its link to faculty mentorship.

We adopted narrative inquiry to examine women and underrepresented students’ experiences
in various mathematics environments (Clandinin & Rosiek, 2007). For the purposes of the study,
we selected Sunny as the focus case among five participants. The study has longitudinal
characteristics since Sunny participated in one-hour interview and weekly seminar discussions in
Spring 2020. She also participated in three interviews and eleven weekly reflections in Spring
2022. Sunny graduated in Spring 2022. We focus on the case of Sunny, who began as a pure
mathematics major, and then later pursued a career path in actuarial science. We concentrated on
the aspects that led Sunny to switch from pure mathematics to actuarial science. Sunny’s case
was intriguing because she expressed a passion in pure mathematics and stated that up until her
third year, she was interested in pursuing a research career in pure mathematics. Sunny changed
her mind, though, after being discouraged by her Topology professor in her pursuit of research
opportunities. Instead, she decided to pursue a career in actuarial science, which does not involve
the pure mathematics and proofs that she most appreciated in her studies. Sunny remarked that
this professor made it seem as though she lacked the ability to involve in research as an
undergraduate student and was unhelpful in helping her find a suitable research topic for her
directed independent study. Although Sunny had taken for granted a career in academia up until
her third year, she considered this particular moment as a tipping point in which she realized she
needed to shift her attention away from pursuing graduate-level study in pure mathematics.

It is worthwhile to examine the shift in Sunny’s intentions: her initial plan to attend graduate
school to pursue research, which morphed into a career path in actuarial science after an
undesirable outcome from consulting with her Topology professor. We focused on Sunny’s story
because, despite her outstanding success in her major, Sunny’s experiences revealed potential
aspects of women’s experiences in the mathematics major that could impact women’s decisions
not to pursue a career in pure mathematics. Despite earning a degree in pure mathematics, Sunny
claimed that she did not feel valued or accepted in her program since she did not feel as a
contributor to pure mathematics research. Our research indicates that faculty mentoring impacted
women’s decisions to pursue careers that are (or are not) in line with their academic background
because women in STEM are more prone to social and institutional influences (Xu, 2017).
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Gamification and a Leaderboard-Based Mathematics Game 
 

 Kimberly Cervello Rogers Fei Gao Camryn Grey 
Bowling Green State University BGSU BGSU 
 

One of the most used game design elements in gamification design is leaderboard, a scoreboard 
showing participants’ current scores and rankings. Though many studies suggest the positive 
effects of leaderboard on participants’ learning and motivation (Kalogiannakis, Papadakis, & 
Zourmpakis, 2021), research also shows that not all students benefit from the use of leaderboard 
(Andrade, Mizoguchi, & Isotani, 2016; Nicholson, 2013). Based on self-determination theory 
(SDT) (Ryan & Deci, 2017), we designed a study where undergraduate math students completed 
a leaderboard-based review, and addressed two questions: (RQ1) How are students’ perceived 
autonomy and competence associated with their enjoyment and intention of continued 
participation? (RQ2) How is student actual competence associated with their enjoyment and 
intention of continued participation?  

Method 
In an undergrad math course, Real World Math Skills, we created a gamified quiz (Quizalize, 

n.d.) to review content that focused broadly on Contending with Change (e.g., linear & exponential 
modeling, & rates of change). During class, 47 students answered 24 Quizalize problems, while a 
leaderboard was projected in real time. Finally, students completed a survey with 19 Likert 
questions (1: strongly disagree to 7: strongly agree). These survey items also aligned with a specific 
sub-category (Competence, Autonomy, Enjoyment, & Intention of continued participation) and 
we considered the mean of students’ ratings on survey items in each sub-category. We used student 
performance data (i.e., total number correct on quiz) to represent student actual competence.  

Findings 
Considering the correlations among variables, student actual competence was not correlated 

with either enjoyment or intention of future participation. Instead, student perceived competence 
was significantly correlated with both. We also found strong correlations (r > = +.70) (Creswell & 
Guetterman, 2019) between perceived autonomy and both enjoyment and intention of future use. 
Based on these correlations, we ran linear regressions to understand how well perceived 
competence and perceived autonomy predict student enjoyment and intention of future 
participation, respectively. The findings showed that perceived competence and perceived 
autonomy significantly predict student enjoyment and intention of future participation. 

Significance of the Study 
Our findings suggest that effects of leaderboard-based math practice on student enjoyment and 

intention for future participation are varied. These variations were not related to student actual 
competence. Instead, they were related to students’ perceived competence and autonomy as 
predicted by SDT. Regarding Math Education and gamification implications, findings helped 
researchers and educators understand why and how students responded to gamified activities 
differently. Thereby offering a way to explain inconsistent findings in leaderboard research and 
providing insights about how to tailor leaderboard-based activities to optimize effects of 
intervention on all students.  
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SYLLABUS 2.0: Using video to 
make the math syllabus active

There is a widely held view that a college course syllabus serves as a contract for students rather than a teaching and learning opportunity (Fornaciari & Lund, 
2014). Earlier studies on syllabus development have focused on necessary components to include in the syllabus, such as professor information, course 
information, disability information, student support services, grading, and technology requirements (Doolittle & Siudzinski, 2010; Garavalia et al., 1999; Jenkins et 
al., 2014; Perrine et al., 1995).  A second wave of studies focused on how the syllabus is presented in terms of professor tone (Harnish & Bridges, 2011) and 
length and use of images (Harrington & Gabert-Quillen, 2015; Nilson, 2002). More recent research on syllabus development has expanded on previous design 
considerations and has focused on accessibility and universal design for learning (Womack, 2017), the infusion of diversity, equity, and inclusion across the 
various components of the syllabus (Fuentes et al., 2021), and the inclusion of social justice elements across sections (Taylor et al., 2019). Given the wealth of 
research available on what components to include in a syllabus and possibly how that affects instructor perception, there is a lack of research on how to 
present the syllabus in a way that engages students in learning about the course. Our study examined the implementation of two multimedia syllabi developed 
for large lecture math courses: a graphic syllabus and a video version.

Introduction

1)   Which components of a video 
syllabus do students access the 
most frequently?

2)   What are students’ attitudes 
toward an undergraduate math 
course after reviewing its syllabi?

3)   How does the syllabus modality 
(graphic or video) impact students’ 
posttest performance on syllabus 
content?

Research 
Questions

Two sections of students in Precalculus 
College Mathematics (N=172) participated 
in the study. All students were first- 
semester School of Engineering students 
in a one-semester Precalculus course. 

One section was assigned a graphic 
syllabus, whereas the other was assigned 
a video syllabus. After engaging with the 
syllabus, 107 students consented to take 
the syllabus survey, which represents 62% 
of the 172 students enrolled in the class. 
Sixty-one (57% of the sample) of these 
students had been assigned the graphic 
syllabus and 46 (43% of the sample) the 
video syllabus. 

CONTEXT/METHOD ANALYSIS

 Findings indicate no significant difference 
between students' syllabus quiz performance and 
overall survey responses between groups. 

Students responded favorably to the survey 
regardless of syllabus type (100% positive on 
graphic syllabus, 91% positive on video).

Last, there was no observed relationship between 
the length of each syllabus segment video and the 
frequency at which students watched each 
segment. 

Results

The results of our study indicate that first-semester 
college students may need additional explicit 
instruction on what a syllabus is, how to use it, and 
why it is important. Through our data analysis, we 
uncovered that there could be more effective ways 
of engaging students with the syllabus. When 
looking at this data coupled with some students’ 
desire for a paper-based syllabus, we suggest
offering students the option of viewing a graphic 
syllabus or video syllabus to accommodate learning 
preferences. To increase implementation fidelity 
and ensure students engage with the syllabus, we 
offer two suggestions for implementing a video 
syllabus and a graphic syllabus: a video-based 
syllabus quiz with embedded prompts and socially 
annotating the syllabus. Our next study will 
investigate this implementation. 

IMPLICATIONS

John Kerrigan, Ed.D.
Rutgers University

Christina Bifulco, Ed.D.
Rutgers University
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Meritocrats, Wallflowers, and More: Characterizing Obstacles to DEI Engagement 
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Keywords: diversity, equity, inclusion, post-secondary STEM education 
 

There is a pressing and continuing need to bolster equity and inclusion for marginalized 
people in all aspects of American society, including undergraduate STEM education. This paper 
draws on data from a broader study (Johnson et al., 2022) which collected survey data from 
postsecondary STEM instructors regarding their attitudes toward diversity, equity, and inclusion 
(DEI) efforts and how those views changed as a result of the events of 2020 (e.g., the onset of the 
COVID-19 pandemic, nationwide protests in support of racial justice). While many participants 
reported changes in their views, this report focuses on those who stated that their views were 
unchanged. In particular, we present profiles of the attitudes of 21 people who were not 
previously invested in social justice, and did not change their views in 2020. From these data, we 
identified archetypes of those who hinder DEI efforts in hopes of elucidating their motivations. 
 

Theoretical Perspective 
 Both the original study (Johnson et al., 2022) and this one are informed by critical race 
theory (CRT), specifically where this framework intersects with education (Ladson-Billings, 
1998). CRT posits that American educational structures are inherently beholden to a “White 
supremacist master script” (p. 18) under which minoritized students are seen as deficient. In 
particular, our study reports on the perceived differences in talent, opportunities, and interest in 
STEM fields among racial groups. 
 

Data Reduction, Collection, and Analysis 
 Approximately 1300 post-secondary mathematics instructors were originally surveyed 
(Apkarian et al, 2022), 305 of whom responded to a follow-up survey. Of these respondents, 21 
indicated that they had no DEI engagement prior to 2020 or thereafter. For these individuals, we 
compiled their race, gender, and beliefs on racial differences in STEM. We also captured their 
free responses which elaborated on their lack of engagement. In the spirit of grounded theory 
(Corbin & Strauss, 1998), these responses were coded to find themes to their motivations. 

 
Results and Discussion 

 Of the 21 respondents in our data set, 18 were white men, perhaps suggesting that a 
privileged position obscures the need for DEI advancements. Five archetypes emerged from 
analyses of their responses – opponents who actively resist DEI efforts, meritocrats who believe 
that STEM is inherently neutral (e.g., Alvarado, 2010; Au, 2013; Liu, 2011), good apples who 
suggest that respect for all is sufficient (Martin, 2003), wallflowers who cite higher priorities 
elsewhere, and exceptionalists who posit that DEI engagement is only needed elsewhere. 
Understanding the motivations behind DEI hesitance is essential in order to overcome them. 
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Background and Original Study
• Data taken from Evaluating the Uptake of Research-Based 

Instructional Strategies in Undergraduate Chemistry, 
Mathematics, & Physics, an NSF-funded study.

• Approximately 1300 post-secondary math instructors were 
surveyed

• Respondents asked how events of 2020 affected views and 
actions with respect to diversity, equity, and inclusion.

• Apkarian et al., 2022 focused on changes reported by those 
surveyed.

Framing of Current Study
• Now focused on those who were not previously invested in 

DEI efforts and indicated no change following 2020.
• Goal was to characterize those who might present resistance 

to DEI efforts and progress.

Data Reduction
• 305 respondents completed follow-up survey.
• 199 of these provided free responses
• 21 self-reported as having no prior investment in DEI efforts 

and no changes following 2020

• Demographic information and free responses gathered for 
this subset of 21 respondents. 

Data Analysis
• Open coding (Corbin & Strauss, 1990) performed on free 

responses to identify reasons given for lack of DEI 
engagement

• Axial coding revealed five categories with common themes or 
motivations.

• Categories reframed as character archetypes.

• Opposition
• DEI efforts are inherently wrong.

• Meritocrats
• STEM fields are inherently neutral.

• Good Apples
• I’m not a part of the problem.

• Wallflowers
• Higher priorities exist elsewhere

• Exceptionalists
• The problem may exist, but it doesn’t exist here.

• Note: Some respondents classified as multiple archetypes.

Discussion and Key Takeaways
• Majority of data set is white, perhaps suggesting that privilege 

conceals the need for DEI advancements.
• In this study, most obstacles to DEI are moderate, as 

opposed to vehemently opposed to DEI efforts.
• This study corroborates prior research on belief in 

meritocracy (e.g., Alvarado, 2010; Au, 2013; Liu, 2011).
• Good Ones archetype are consistent with “for all” rhetoric 

(Martin, 2003).
• Understanding the motivations behind people’s reticence to 

embrace DEI efforts may facilitate engagement with them.

Summary of Reduced Data Set

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

White

White Men

All Post-Secondary Instructors Current Data

12

9

Do Certain Groups Have 
More Advantages?

13

8

Are Certain Groups More 
Interested?

4

17

Are Certain Groups More 
Talented?

7

14

Are You Responsible for 
DEI Efforts?

Overview of ArchetypesArchetype Detail and Example Responses
Opposition (n = 2)

• Both respondents are white men.
• Neither believes they are personally responsible for DEI.

• Example Responses
• “It is actually annoying to see how this agenda gets pushed down people’s 

throats.”
• “Affirmative action has gone too far and should be eliminated.”

Meritocrats (n = 6)
• All men (5 white, 1 Hispanic)
• 4/6 believe that DEI is beneficial to STEM

• Example Responses
• “Mathematics is inclusive for every race…This has nothing to do with equity 

issues.”
• “Personal equity issues are a bit like…disabilities such as autism or dyslexia 

or depression…Success is the best cure and so empowering.”
Good Apples (n = 6)

• All white (5 men, 1 woman)
• All agree that students from different groups have equal aptitudes

• Example Responses
• “I would just like to teach, treating each person as infinitely precious in the eyes of 

God.”
• “Both before and during 2020, I have tried to maintain a principled, fair, 

conservative position on diversity.”
• “I support diversity and opportunities for all.”

Wallflowers (n = 5)
• 3/5 believe they have a personal responsibility to DEI engagement

• Example Responses
• “We are teaching online right now. That is the focus of my teaching.”
• “I am not on campus and do not have opportunities to participate in diversity events.”
• “My views continue to be the same: less focused on equity and more on the overall 

unfair treatment of adjunct teachers.”

Exceptionalists (n = 7)
• 6 men, 1 woman
• 6 white, 1 declined to identify their race

• Example Responses
• “While the return of overt personal racism in recent years is dismaying, I just don’t 

see it in math and science.”
• “There isn’t an issue with [DEI] in any of the department I’ve worked in. I’ve never 

witnessed such issues in the workplace.”
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Research on Mathematical Proof: A Review of RUME Conference Proceedings 2020-2022 

 

 Rosina Andrews Amanda Lake Heath 

 Middle Tennessee State University Middle Tennessee State University  

Keywords: Proof, literature review, methodology 

 

Mathematical proof is one of the major topics of research in the RUME community. In recent 

years, we have anecdotally noticed a trend in RUME that proof research is often conducted in 

laboratory settings rather than within authentic classrooms. Further, we, along with our 

collaborators, have special interest in researching proof as a collaborative activity (Bleiler-Baxter 

et al., 2021, 2023; Heath, 2022; Heath & Bleiler-Baxter, under review; Heath et al., 2022) 

because of our conviction that proof is a “communal, negotiated, and sense-making process” (Ko 

et al., 2016, p. 618). Yet, research on collaborative proving is still considered a new direction for 

proof research (Heath & Bleiler-Baxter, under review). In this project, we seek to review recent 

literature produced in the RUME conference proceedings to identify trends in up-and-coming 

research on proof and proving at the undergraduate level. We seek to answer the question: What 

kinds of research are being conducted on proof and proving in the RUME community?  

Methods 

In a methodical search of RUME conference proceedings (Karunakaran & Higgins, 2021, 

2022; Karunakaran et al., 2020) during the period 2020-2022, we included contributed, 

preliminary, and theoretical reports containing the words “proof” or “proving” in their title. Two 

researchers developed and revised categories of interest for the reports, separately coded all 

reports according to these categories, and resolved any disagreements. The coding categories 

included: research conducted in real classrooms, survey research, interview research (non-task-

based), task-based interview research, artifact analysis, assessment/inventory measures, 

text/document analysis, collaborative proof research, and early-career scholar first authorship. 

Findings 

A total of 30 reports qualified for inclusion in the review: 11 out of 148 reports (7.4%) in 

2020, 4 out of 49 reports (8.1%) in 2021, and 15 out of 145 reports (10.3%) in 2022. Notable 

findings include the strong presence of interview research on proof (17/30 reports, 56.7%). 

Moreover, an overwhelming majority of interview-based research involved task-based interviews 

(13/17 reports, 76.5%). Our suspicions of a lack of research in authentic classroom contexts were 

confirmed, as only 6 reports (20%) used data collected from a real classroom. The number of 

reports concerning collaborative proving has slowly grown, with 2 reports in 2020, 3 reports in 

2021, and 4 reports in 2022 concerning collaborative proving. Although this is still a minority of 

proof research at RUME in the last three years (9/30 reports, 30%), we noticed an overwhelming 

majority of RUME reports on collaborative proving had early-career first authorship (8/9 reports, 

88.9%) compared to the presence of early-career scholarship in the reports included (22/30 

reports, 73.3%). We will include a complete summary of the findings in our poster presentation, 

including trends in proof research in RUME over the past three years.  

This review of literature can help the RUME community identify trends in proof research and 

identify ways in which the research base can grow. During the poster session, we will solicit 

feedback for how to continue this investigation and questions about trends in proof research the 

RUME community would like to see answered.   
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Mathematical proof is one of the major topics of
research in the community of Research in Undergraduate
Mathematics Education (RUME). We aimed to review
literature produced in the RUME conference proceedings
from the past three years to identify trends in up-and-
coming research on proof and proving at the
undergraduate level.
Research Question: What kinds of research are
being conducted on proof and proving in the RUME
community?

Focus of Review ResultsTrends Among Early-Career Scholars in Proof Research

Method and Procedure

This review discovered three trends in undergraduate
proof research in recent RUME conference proceedings:

Data in Current Proof Research

REPLACE THIS BOX WITH 
YOUR ORGANIZATION’S

HIGH RESOLUTION LOGO

Why Conference Proceedings?
We chose to first look at the RUME conference
proceedings because these best reflect the current
research happening in undergraduate mathematics
education research, as the process of publishing in a
peer-reviewed journal may take an extended period of
time and not best reflect current endeavors.

Future Directions
As we recognize some proof research may have been
overlooked due to our search methods, we intend to
expand this search in the future to more systematically
identify research related to proof. This may occur either
within the RUME proceedings by attending to the
primary and secondary categories listed in accepted
RUME submissions, or by expanding our keyword search
in reputable research journals.

Questions
• When we expand the search to journal publications,

what journals should we consider in order to get a
broad representation of the field?

• What kinds of questions do you have about the proof
research being conducted in RUME?

Discussion

Populations of Interest

In a methodical search of RUME conference proceedings
during the period 2020-2022, we included contributed,
preliminary, and theoretical reports related to proof
research containing the keywords “proof” or “proving” in
their title. A total of 30 reports qualified for inclusion in
the review: 11 out of 148 reports (7.4%) in 2020, 4 out of
49 reports (8.1%) in 2021*, and 15 out of 145 reports
(10.3%) in 2022.
Two researchers developed and revised categories of
interest for the proceedings papers and separately coded
all reports according to these categories.

01
The RUME Proceedings Reports concerning proof are 
dominated by early-career scholars, but there may be a 
new wave of interest in research on collaborative proving 
from and conducting research in real classrooms among 
early-career scholars in RUME.

02

Research was most often conducted in laboratory settings, 
with frequent use of task-based interviews

03

Research was most often focused on undergraduate math 
students. 
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Code Definitions
Code Description
Real Classroom 
Research

The study employed data collected from an instructional space, either physical or virtual, shared by instructor(s) and 
students, which mimics as closely as possible the naturalistic setting of their class meetings on any given day. This does 
not include classroom lessons of pre-service teachers delivering lessons as a course assignment. 

Survey Research The study employed data collected through a survey of opinions or experiences of participants. 
Assessment/Inventory 
Measure(s) Research

The study employed data collected through an assessment or inventory, which assigned a score of some kind (e.g., 
pre-test/post-test, self-efficacy inventory). 

Interview Research
(Non-Task-Based)

The study employed data collected through a general interview not rooted in a think-aloud mathematical task. 

Task-Based Interview 
Research

The study employed data collected through an interview rooted in having participants narrate their thoughts and 
actions while completing a mathematical task. 

Artifact Analysis The study employed data from classroom or course artifacts such as homework, classwork, or written reflections. 
Text/Document 
Analysis

The study analyzed written resources (textbooks, exams, research publications, etc.) in order to answer a research 
question about the state of available resources. 

Collaborative Proving 
Research

The study employed data from the context of collaborative proving (whether in a classroom or in an interview setting) 
or the study aimed to investigate collaborative proving as a primary goal. It is not enough for the course context to 
involve collaborative proving or collaboration without it being an element of the research.

Research Subject A categorical variable describing the population of interest in the report. 
Pre-Service Teacher, In-Service Teacher, Undergraduate Mathematics Instructor, Mathematician, Multiple of these, or 
Other/NA. 

Authorship of RUME Proof Reports 
2020-2022 (All Authors)

Adopting the definition of "early-career scholar" from the 2021 RUME Reports request for proposals:
• Current graduate or undergraduate student
• Post-doctoral scholar
• Pre-tenure faculty members
• Faculty who are not in a tenure-track position, but are at most 6 years removed from their graduate degree

7/22

0/8

2/22

0/8

1/22

2/8

11/22

2/8

5/22

1/8

2/22

0/8

2/22

3/8

8/22

1/8

Early-Career Scholars

Established Scholars

Types of Research Being First-Authored by Established and Early-Career Scholars in RUME
Real Classroom Survey Interview (Non-TB) TB Interview
Artifact Assessment/Inventory Text/Document Analysis Collaborative Proving

(8 Reports)

(22 Reports)

*There was no RUME Conference in 2021 due to COVID-19. In lieu of a face-to-face 
conference, the organization published a set of research reports open only to early-career 

scholars as lead authors. 
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How one GTA used Data to Promote Student Engagement 
 

 Katie Taylor Derek Williams 
 University of Alabama Montana State University 
 
Keywords: student engagement; social engagement; GTA development; group work 

Student engagement is essential for rich learning (Middleton et al., 2017). Research shows 
that student engagement consists of emotional, social, cognitive, and behavioral components 
(Middleton et al., 2017); tends to decline in mathematics classrooms over any time interval (e.g., 
Martin et al., 2015), in-the-moment states fluctuate (e.g., Williams, 2022); and that classroom 
environments can be designed to promote engagement (Fredricks et al., 2004). Given research on 
college instructors attending to engagement is rare, the purpose of this study is to investigate how 
one GTA reflected on student self-reports of engagement during a precalculus course to promote 
engagement. We also discuss whether and how students responded to the GTA’s strategies. 

Theoretical Framework 
Classrooms are dynamic environments influenced by a myriad of factors. We draw on 

dynamic systems theory (Vauras et al., 2013) to attend to the interpersonal back-and-forth 
between instructors’ pedagogical strategies and students’ reactions. 

Methods 
We address the questions: (1) How did a GTA use student engagement data to make 

pedagogical decisions?, and (2) How did students respond to the GTA’s implementation?. 
We collected self-reported information about student engagement using the experience 

sampling method (Nakamura & Csikszentmihalyi, 2009). The survey instrument was informed 
by flow theory, and has been used in college mathematics classrooms (e.g., Williams, 2022). 
These data were then aggregated and visualizations were shared with the GTA during virtually 
conducted and recorded meetings. We also recorded classroom observations. We used qualitative 
analysis methods and state space grids (e.g., Turner et al., 2014) to produce results. 

Results and Conclusions 
The GTA’s primary strategy to promote engagement was group work, and the students’ self-

reported engagement, on aggregate, improved when group work was implemented. However, the 
GTA could rationalize when and why group work would either not be appropriate or would 
potentially not influence student engagement with hypotheses that included activity length and 
problem difficulty. Classroom observations also revealed patterns in student-teacher 
conversations and group work activity. The GTA’s location in the classroom was related to 
whether students asked the GTA questions versus asking their peers. The amount of visible 
interaction between group members was based on the details and instructions provided by the 
GTA’s when introducing activities. Our results show a link between the GTA’s expected student 
involvement in groups with the self-reported levels of engagement and data to offer potential 
explanations for these relationships. Thus, we propose GTAs can attend to student engagement 
in ways that support students’ growth and instructors’ pedagogical goals during a single semester 
in a mathematics course. 
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How one GTA used Data to Promote Student Engagement
Katie Taylor, The University of Alabama

Derek Williams, Montana State University

PURPOSE & MOTIVATION

THEORETICAL FRAMEWORKS

METHODS
•Research shows that student engagement

• is a complex meta-construct consisting of behavioral, social, 
emotional/affective, and cognitive components (Fredricks, Blumenfeld, & Paris, 

2004; Middleton, Jansen, & Goldin, 2017)

• tends to decline in mathematics classrooms over any time interval 
(e.g., Martin et al., 2015)

• in-the-moment states fluctuate (e.g., Williams, 2022)

• and that classroom environments can be designed to promote 
engagement (Fredricks et al., 2004). 

•Given research on college instructors attending to engagement 
is rare, the purpose of this study is to investigate how one GTA 
reflected on student self-reports of engagement during a 
precalculus course to promote engagement. 

•We also discuss whether and how students responded to the 
GTA’s strategies.

RESEARCH QUESTIONS
CONCLUSION

REFERENCES

RESULTS

1. How did a GTA use student engagement data to make 
pedagogical decisions?

2. How did students respond to the GTA’s implementation?
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Classrooms are dynamic environments influenced by a myriad of 
factors. We draw on dynamic systems theory (Vauras et al., 2013) 
to attend to the interpersonal back-and-forth between instructors’ 
pedagogical strategies and students’ reactions.

METHODS
Facilitating Discussions/Reflections

Analyzing Video Data

• The GTA’s primary strategy to promote engagement was group 
work

• The students’ self-reported engagement, on aggregate, 
improved when group work was implemented

• However, the GTA could rationalize when and why 
group work would either not be appropriate or would 
potentially not influence student engagement with 
hypotheses that included activity length and problem 
difficulty. 

• Classroom observations also revealed patterns in student-teacher 
conversations and group work activity. 

• The GTA’s location in the classroom was related to 
whether students asked the GTA questions versus 
asking their peers. 

• The amount of visible interaction between group 
members was based on the details and instructions 
provided by the GTA when introducing activities. 

• Our results show a link between the GTA’s expected student 
involvement in groups with the self-reported levels of engagement 
and data to offer potential explanations for these relationships.

• Thus, we propose GTAs can attend to student engagement in ways 
that support students’ growth and instructors’ pedagogical goals 
during a single semester in a mathematics course.

RESULTS
GTA Statements

During Discussions/Reflections

“Admittedly, today was 
more of a lecture format 
because I wanted to get 
a lot of stuff out of the 

way, so I expected those 
on the right to be way 

lower.”

“I had them working 
together on the end but 

through the whole like first 
part it was like I had some 

questions where it was 
supposed to just be like 
alright them themselves 

think about it.”

“On Friday, it is supposed to be all 
group work…I think that will be 

good. Maybe even more so than on 
Monday…or maybe group work 

goes too far sometimes.”
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Network-Based Trajectory Analysis and Framework Development of Precalculus Curricula

Cristina Flores              Vlad Nita              John O’Meara              Ashwin Vaidya

Montclair State University

Keywords: network theory, curriculum, identity, complexity science, connectivity, precalculus

This synthesis of previous work and ongoing research efforts calls for a network theory
mediated analysis to investigate the affordances of curriculum and, in particular, its alignment
with student learning processes. The three factors that are identified and considered in this study
are the student, curricular materials, and the respective environments from which these members
arise and how these act as determinants of curriculum development and design. There are three
primary research questions addressed here: (1) How does the development of connections
between topics within a specific precalculus course’s curricular materials (textbook and online
learning platform) over the course of a semester influence and/or align with the development of
students’ connections? (2) How does the development of connections between precalculus topics
as perceived by students with respect to average path length (APL), clustering coefficient (CC),
and the distribution of highly connected topics (Hubs) correlate with their performance in the
course? (3) To what extent do equitable and identity-based curricular supplements (having
students provide specific personal connections to the material, as well as draft problem sessions
based on student interests) have an impact on student performance and/or perceived connectivity
of precalculus topics?

A network theoretic perspective of various precalculus curricula (O’Meara & Vaidya, 2021)
proves helpful in identifying and motivating key features of the subject as they appear in course
texts. Based on this framework, an undirected network representation of a specific precalculus
course’s materials is constructed in which nodes represent topics introduced throughout the
materials, and edges represent explicit connections formed between topics. Edges are weighted
based on frequency of relation between two given topics, and nodes are weighted based on
overall degree distribution. Students are administered an IRB-approved survey on a biweekly
basis in which they are provided with sets of topics covered in the course up to a given point.
They are then asked to form any connections they see fit, and these self-reported connections are
stored as undirected networks whose properties and relevant metrics are analyzed upon each
submission period through the end of the semester to gain insight into student learning
trajectories. The corresponding poster will display the dynamic nature of the evolution of
students’ networks, as well as insights into how course performance can be correlated with both
features of the students’ networks and the course’s ‘ideal’ network structure. This project aims to
lay the foundation for meaningful intervention and predictive analytical tools that instructors can
make use of in order to identify which students are likely to struggle in the course, and with what
particular topics they are failing to fully comprehend. Such an extension is mitigated by a
qualitative analysis of identity-based surveys and collaboratively constructed problem sets where
the presence of personal connections in this medium are compared and correlated to the students’
connected network structures and their overall performance in the course.

The implications of this work seek to assist in the optimization of the complex system
synthesizing various feedback-based designs within educator roles, student response, and the
interactions between the two as they pertain to various stages of the curriculum development
process. The results of this study aim to provide a deeper understanding of the extent to which
the components of an andragogical system can be refined via regulated and personalized learning
methods.
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Figure 2: Representation of prominent precalculus topics as 
an informational exchange between precalculus taxonomy, 
course textbook, and calculus taxonomy principles. 
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Mathematical Modeling of Student Learning 
Network 

Keywords
network theory, curriculum, identity, complexity science, 
connectivity, precalculus

Introduction 
This synthesis  employs a network theory mediated analysis to 
investigate the affordances of curriculum and, in particular, its 
alignment with student learning processes. Via the utilization of 
various lenses of network theory, ‘connected curriculum’ design 
(Fung, 2017), and modern learning curve theory (Thurstone, 
1918; MacLellan et al, 2015), we collectively postulate that 
education is inherently a complex system at various scales and 
stages of the learning and teaching process. A network 
perspective of precalculus curricula (O’Meara and Vaidya, 2021) 
proves helpful in identifying and motivating key features of the 
subject as they appear in course texts. Of these, hubs and 
time-series developments of relevant computed metrics have 
been particularly useful in mapping the alignment between the 
preset goals of the precalculus course, as identified in previous 
literature, and its execution. At the same time, this analysis has 
also been valuable in identifying the trajectory of the textbook 
curricula in adequately preparing precalculus students for 
success in calculus and beyond. 

Research Questions
(1) How does the development of connections between topics
within a specific precalculus course’s curricular materials
(textbook and online learning platform) over the course of a
semester influence and/or align with the development of
students’ connections?
(2) How does the development of connections between
precalculus topics as perceived by students with respect to
average path length (APL), clustering coefficient (CC), and the
distribution of highly connected topics (Hubs) correlate with
their performance in the course?
(3) What affordances do the alignment between research-based
curricular taxonomy and course materials provide? How do
observations in precalculus influence the transition for students
into calculus and beyond?
(4) To what extent do equitable and identity-based curricular
supplements (having students provide specific personal
connections to the material, as well as draft problem sessions
based on student interests) have an impact on student
performance and/or perceived connectivity of precalculus topics?

Research Design
Students are administered an IRB-approved survey 
(FY21-22-2488) on a biweekly basis in which they are provided 
with sets of topics covered in the course up to a given point. They 
are then asked to form any connections they see fit, and these 
self-reported connections are stored as undirected networks 
whose properties and relevant metrics are analyzed upon each 
submission period through the end of the semester to gain 
insight into student learning trajectories. This acts as an  
intervention and predictive analytical tools that instructors can 
make use of in order to identify which students are likely to 
struggle in the course, and with what particular topics they are 
failing to fully comprehend. Such an extension is mitigated by a 
qualitative analysis of identity-based surveys and collaboratively 
constructed problem sets where the presence of personal 
connections in this medium are compared and correlated to the 
students’ connected network structures and their overall 
performance in the course. 

Findings
Highly successful texts have been found to display a power law 
with respect to frequency distribution of connected topic 
inclusion (𝜶 = 0.05), among consideration of other theoretical
distributions, to assess whether or not meaningful learning 
patterns retain consistent underlying patterns and/or 
distributions. The most well-connected topics (Hubs) are 
regarded as necessary markers of classroom discourse, and the 
extent to which they are considered in taxonomical goals was 
measured with respect to the empirical distributions of both the 
intended curriculum and enacted curriculum. 

The results of this study aim to not only provide a deeper 
understanding of how intended and enacted curriculums interact 
with each other, but also considers to what extent the 
components of an andragogical system can be refined via the 
magnitude of their presence in both course materials and 
feedback provided directly by active participants in the learning 
environment.

Figure 1: Aggregate results of student concept maps / self-reported networks 
in which individual perceived connections are formed amongst course topics. 
Pictured above are histograms displaying relevant network metrics with 
respect to final grade distribution (left), and the union of all student 
networks with node size adjusted for degree/span of connectivity (right).
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Figure 3: A schematic of the logistic learning curve (left), in which I indicates 
the phase of slow growth until critical knowledge is reached, II is the phase of 
rapid learning phase, and III is the phase at which saturation of knowledge is 
approached, with critical transition points between phases. This is 
accompanied by a model of an anonymous student’s clustering of precalculus 
concepts over time (right). 
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Faculty involved in education research have highly varied backgrounds. Some have received 
formal training through graduate programs in discipline-based education research (DBER),others 
may begin as a postdoctoral researcher, still others may not have begun until they were 
established faculty at an institution.  Some are hired because of their education specialities (Bush 
et al., 2017), while others grow into this role as part of their engagement with the pedagogical 
mission of their unit. 

Researchers who complete graduate programs or post-doctoral programs in education 
research are prepared for research. Those who become involved with education research as 
faculty have limited options for formal learning and guidance. The Professional development for 
Emerging Education Researchers (PEER) program was established to support these emerging 
DBER practitioners (Franklin et al., 2018). PEER offers workshops and mentoring to support 
emerging DBER practitioners in developing their education research skills.  

PEER is strongly grounded in two theoretical perspectives: responsive teaching, and 
communities of practice. Responsive teaching is a model of teaching in STEM education that 
places high importance on centering and responding to the ideas of students and the connections 
they are making (Robertson et al., 2015).  PEER workshops also seek to develop a local 
community of practice among participants (Wenger, 1999). Many emerging practitioners are still 
developing their identity as education researchers, and a community of fellow practitioners is 
critical to supporting that development.  

    The challenges posed by the COVID-19 pandemic led to changes to PEER’s structure as 
we pivoted to an online format. PEER has returned to offering in person workshops, but lessons 
learned during the pandemic have had lasting effects on how we assess and respond to the needs 
and interests of participants. Notably the existence of new hybrid and online formats, and the 
addition of an online “kickoff” meeting which is now held before most PEER workshops. 

    In this poster we present lessons learned during the pandemic, and the impacts on PEER. 
We discuss implications for professional development initiatives, focusing on integrating online 
sessions for community building and pre-workshop preparation. Pre-workshop online meetings 
can serve as tools for informing both participants and facilitators about the structure of the 
workshop, and identifying adjustments that may need to be made to the program.  
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We present a case study of how one student, Aubrey, utilized ideas from biology, 

mathematics, and chemistry to make sense of a graph common to introductory chemistry: a 

titration curve. Via multidisciplinary analysis, we found that Aubrey exhibited shape thinking 

activated by biology resources. However, while she also activated math resources, her 

interpretation was bound by treating the graph as a static object. Furthermore, Aubrey activated 

chemistry resources to 'read beyond the data,' but her inferences appeared to be influenced by 

biology resources. With the current findings, we argue that students may memorize graph 

features without understanding what is happening conceptually or mathematically and then 

transfer these learned facts to other disciplinary contexts. Therefore, instructors should be aware 

of the knowledge and reasoning skills a student may bring from other introductory STEM 

courses when interpreting graphs. 

While previous literature has explored graphical interpretation generally and from specific 

disciplinary perspectives (e.g., Roth et al., 1999; Rodriguez et al., 2019), there is limited 

multidisciplinary work. This poster fills that gap by presenting a unique case study of a graphical 

interpretation task from chemical, biological, and mathematical points of view. Participants 

(n=15) were recruited from introductory biology and chemistry courses. Data include semi-

structured, hour-long interviews involving three tasks. We present only the results of one task: 

Aubrey's graphical interpretation of a titration curve (Figure 1). A multidisciplinary analysis was 

conducted using Corbin and Strauss's (2008) constant comparison method.   

 

 

Task 1: In a titration experiment, a base is added to an acidic solution at a 

constant rate. The graph (Figure 1) shows how the pH of the solution changes 

with the amount of base added. Using the graph, explain the relationship 

between the pH of the solution and the amount of base added to the solution.  

Figure 1. The Titration Curve Task.  

Aubrey employed resources from each discipline to interpret the titration curve, but her 

sense-making was bound to her understanding of a biology graph with a similar S-shape. This 

suggests students may memorize and transfer learned facts about graph features to other 

disciplinary contexts. However, to engage in authentic interpretation across disciplines, students 

need to be able to make sense of all curvature and critical points on a graph and understand how 

they emerge from simultaneous changes in quantities. Therefore, it may be valuable to prompt 

science students to think through mathematically meaningful critical points or graph features in 

the context of the physical phenomenon they represent. In conducting a multidisciplinary 

analysis, we discovered tensions between each discipline's interpretation and expectations. Thus, 

while this poster presents data and conclusions from a unique case study, it also provides 

pedagogical insights from adopting a multidisciplinary approach. 
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Problem Statement 
How do students reason about quantities and 
quantitative relationships as part of interpreting and 
making inferences about graphs commonly 
discussed in introductory biology and chemistry 
courses?

Theoretical Orientation 

Data Collection

Titration Task

Analytical Method
• Three disciplinary-based education experts 

(mathematics, biology, and chemistry) analyzed 
Aubrey’s response from their disciplinary 
perspective

• Knowledge-in-pieces
• Open Coding
• Constant comparison

Background

Supported by the 
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• Instructors should be aware of the knowledge and reasoning skills a student may bring from other introductory STEM courses when interpreting 
graphs
o Students may be viewing graphs as disconnected chunks, instead of a continuous set of data
o Students may also be missing important mathematical features of the graph, such as the inflection point

• Graph features matter differently across disciplines, which may impact the type and sophistication of reasoning used
o In science, it may be sufficient to associate concepts with chunks or shapes as part of focusing on interpretation and “reading beyond the data” 

o However, this may promote students to think of graphs as objects composed of shapes, rather than as emerging through covariation
o Therefore, it may be valuable for science instructors to prompt students to engage with graphs from a more mathematical perspective
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resources that are rooted in viewing 

the graph as a static object
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resources to ‘read beyond the data,’ 

but her inferences appear influenced 
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resources, but her interpretation is 

bound by treating the graph as a static 

object
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All: Audrey did not identify the 
inflection point, which limited her 
ability to conceptualize shape
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“linear” with a “constant”, 
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Chem: Audrey only discusses 2 
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Bio: Recognizes S-
shape from biology 
course, but doesn’t 

understand concept
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Lectures and homework both provide opportunities for students to learn mathematics. 
Researchers have focused on learning from lectures (e.g.,Krupnik et al., 2018; Lew et al., 2016; 
Lew & Zazkis, 2019) and learning from homework (e.g., Dorko, 2021; 2020a, 2020b; 2019; Ellis 
et al., 2015; Glass & Sue, 2008; Kanwal, 2020; Krause & Putnam, 2016; Lithner, 2003; Rupnow 
et al., 2021). Dorko and Cook (under review; 2022) propose attending to learning across the two 
settings is crucial to improving student learning in both settings. To that end, our study addresses 
the questions (1) What did two developmental mathematics students learn in lecture and what 
did they learn from homework? and (2) How can we explain why they learn particular things in 
a particular context? 

The data collected spanned eight 75-minute lectures, three written homework assignments, 
six online homework assignments, and one exam from a developmental math class at a large US 
university. This constituted the material from the class period following the first exam to the 
class period directly prior to the second exam, and the exam itself. The content included creating 
graphs on a graphing calculator, using the graphs to solve inequality and optimization problems, 
solving linear equations by hand, and using slope to find horizontal or vertical changes in right 
triangle problems. The data corpus includes videos of the lectures, videos of each student doing 
the homework, and an interview with each student about their graded exam. In the homework 
sessions, the interviewer asked students to “think aloud”, asked where they had learned particular 
ideas, and showed students clips from the lecture video and asked what sense they had made of 
that portion of the lecture. In the post-exam interview, the interviewer and student discussed 
where the student felt they had learned the material tested in each question.  

Because the course is a developmental math class, our theoretical perspective is that of 
relearning, which Amman and Mejia Ramos (2022) define as “learning about content that one 
has tried to learn before in a previous math course” (p. 752). Relearning is a suitable perspective 
for our work because it allows us to look at student learning in the context of homework and 
lecture in terms of the outcomes that are occurring and how the circumstances of the contexts 
support or limit those outcomes (Amman & Mejia Ramos, 2022). Data analysis is ongoing, 
following a thematic analysis method (Braun & Clark, 2020). Preliminary findings indicate 
students learned (a) how to identify independent and dependent quantities; how to use the 
calculator to make graphs, (b) how to interpret graphs, (c) how solving an inequality is different 
from solving an equation and how to do both on the calculator; (d) how to optimize functions on 
the calculator. Students commented that getting answers wrong in the online homework helped 
them understand how to solve inequalities and optimization problems.  

For most of the items above, the students said they learned the ideas both in lecture and 
homework. Their comments indicated lecture exposed them to ideas and homework afforded an 
opportunity to “have to like remember and go back over how to do it” (Student 3) and have ideas 
“cemented in my brain” (Student 3).  
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Preliminary Findings Regarding Student Learning from 
Lecture and Homework

Hadlee Shields Allison Dorko
Oklahoma State University Oklahoma State University

Lectures and homework both provide opportunities for
students to learn mathematics. Researchers have focused
on learning from lectures (e.g., Krupnik et al., 2018; Lew et al.,
2016; Lew & Zazkis, 2019) and from homework (e.g., Dorko,
2021; 2020a, 2020b; 2019; Ellis et al., 2015; Glass & Sue, 2008;
Kanwal, 2020; Krause & Putnam, 2016; Lithner, 2003;
Rupnow et al., 2021). However, these studies have focused on
each milieu individually. Dorko and Cook (R&R, 2022)
propose attending to learning across the two settings is
critical for improving student learning in both settings. To
that end, our study addresses the questions (1) What did
two developmental mathematics students learn in lecture
and what did they learn from homework? and (2) How can
we explain why they learn particular things in a particular
context?

Abstract

Course context
We collected data from a developmental math class at a
large US university. The content was from the class period
following the first exam to the class period directly prior to
the second exam, and the exam itself. The content included
creating graphs on a graphing calculator, using the graphs
to solve inequality and optimization problems, solving linear
equations by hand, and using slope to find horizontal or
vertical changes in right triangle problems.

The data collected include
• Videos of eight 75-minute lectures,
• Videos of interviews with students as they completed
• three written homework assignments
• six online homework assignments

• The students’ exam responses
• An interview with the students about their exams

Data Collection Methods

Preliminary findings indicate students learned (a) how to identify
independent and dependent quantities; how to use the
calculator to make graphs, (b) how to interpret graphs, (c) how
solving an inequality is different from solving an equation, and
how to do both on the calculator; (d) how to optimize functions
on the calculator. Students commented that getting answers
wrong in the online homework helped them understand how to
solve inequalities and optimization problems.

Results

Though student learning from online homework is a
relatively new focus for undergraduate mathematics
education researchers, studies have shown:
• Online homework is as effective as paper-and-pencil

homework (Dorko, 2020).
• Most successful US college calculus programs have an

online homework component (Ellis et al., 2015).
• Students commonly rely on example problems to

complete homework.
o In one study, 84.7% of students reported using

worked examples while doing homework.
When completing online homework students used
reasoning that included (Dorko 2021, 2020)
• Mathematical thinking
• Guessing
• Copying answers from various sources
• Mimicking the steps of a similar problem
• Reasoning based on expectations from experience

Students learn the procedures from online homework
problems, but rarely develop the conceptual insights
professors hope some problems might promote (Dorko,
2020, 2021, 2019)

Issues that professors face
• Students worry more about the procedure than the

concept itself (Lew et al., 2016; Thompson, 2013;
Thompson et al., 1994)

• Students only write what the professor writes (Lew et
al., 2016)

• Students may miss verbal-only comments (Lew et al.,
2016)

Literature

Our work is broadly framed with the instructional triangle, 
and we make sense of an individual’s learning through 
Piagetian learning theory. 

• Instructional triangle (Cohen et al., 2005; Dorko, 2021; 
Herbst & Chazan, 2012): instruction is the interactions 
among teachers and students around content, in 
environments
• Milieu: a space in which interactions around 

mathematical tasks occur
o Lecture is one milieu; HW is another 

Theoretical Perspective

• We think students’ learning frommistakes can be explained by
Piagetian learning theory: seeing an “incorrect” mark perturbs
them

• Lecture appears to give students tools, (e.g. features of the calc
menu) but they often go through a trial-and-error process in
homework figuring out when to use each tool

• Students notice similar problem contexts, as well as
abstracting underlying similarities in mathematical structure
(e.g. concavity) .

Discussion & Conclusion
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Data Analysis Methods

Data analysis is ongoing, following a thematic analysis
method (Braun & Clark, 2020).

1. Read lecture transcript, make list of the knowledge at
stake (e.g. when/how/why to use CALC, INTERSECT on
graphing calculator)

2. .Read transcript of HW that covered that content
• Looked for influences of lecture on HW activity (e.g.

doing something that was done in lecture, like using
the TI-83 to find an intersection on a graph; using a
word/phrase the instructor used, like “isolate” the
variable)

3. In HW, identified instances student had to attempt
problem multiple times, and sought to unpack how they
worked their way to a correct answer

4. Repeat 1-3 for all lecture/HW pairs
5. For exam work and interview, looked at HW problems

that covered same content as exam problem and what
the student’s activity looked like on that problem (e.g.
multiple attempts, influences from lecture - see (1))

Example: Student 4 learned… 

• Influence of lecture on HW activity
o Taking time to make sense of given information: Like the

instructor, S1 took time to make sense of and employ given
information
§ Identifying independent/dependent variables
§ Units
§ Labeling graph

o Using words the instructor used (e.g. “isolate” a variable,
“assign a variable”)

o Problem contexts
§ Remembered similar problem contexts from lecture and
used this similarity to solve HW problems

§ Connected different problem contexts that both had
concave up, decreasing graphs

o Use of skills: table to set graphing window, table to select
correct graph, CALC menu features, using graph instead of
table to solve problems

o Ways of looking at graphs (steepness for concavity, identifying
increasing/decreasing as ways to justify use of procedures)

o Applying definitions (recognized an equation as linear based
on class definition)

• Learning from HW activity
o “Trial and error”, “mastery,” “putting stuff into practice”:
student’s description of what and how she learned from
homework
§ She primarily went through CALC menu features via trial
and error, taking several problems to sort out what to use
when

o Solution to one problem influencing solution method to next
problem (e.g., generalizing the practical meaning of an
increasing, concave up function)

o Quantitative meaning for concavity: computing AROC over
different intervals helped her see the changing rate of change
and how it influences the shape of the graph
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• Piagetian learning theory (von Glasersfeld, 1995)
• Students’ schemes entail (among other things) an 

expected result of applying the scheme. 
• Perturbation occurs when an outcome differs from the 

expected result.
• Perturbation may or may not result in 

accommodation to achieve equilibration. 
• We define learning as accommodation to a 

scheme.

Online homework task: 𝐵 𝑤 = !"#$
%#

gives the body surface area, B, in m2, for 
a 210 cm tall man who weighs w 
pounds. Would weight gain have a 
greater effect on surface area for a 
lighter man or for a heavier man? 
(multiple choice)

Theoretical 
tenet

Data excerpt Notes / explanation

Scheme “I think that it’s as someone gets heavier, their 
surface area increases, so would the weight gain 
have a greater effect on surface area for a lighter 
man or a heavier man, I think that means it’s 
going to be heavier.”

In S4’s scheme for 
interpreting graphs, the 
only thing that matters is 
whether the graph is 
increasing or decreasing. 

Expectation of 
scheme’s 
outcome

That ‘heavier’ is correct

Outcome ‘Lighter’ is correct 

Evidence of 
perturbation

[expresses surprise that actual outcome did not 
match expected outcome

Evidence of 
equilibration via 
accommodation 
(evidence of 
learning) 

“From 0 to 20 there’s a sharper increase than up 
here…. Because it’ll kind of level off 
somewhere… I think that it’s asking more about 
like the slope and not, not just about the surface 
area. So I think that’s why I got that wrong.” 

Getting the answer wrong 
resulted in S4 attending to 
the graph’s rate of change. 
He modified his scheme to 
include rate of change as 
relevant to interpreting 
graphs.
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Above we present the first task and GD used to analyze (Asiala et. al., (1997) on the left side and second above and the triad model used 
to analyze that data on the table above.

Results & Discussion
All participants remarked that the tasks looked very different from the type of problems that they had done in-class or for homework in 
Calculus I. None of the participants had difficulty with using the online tools and Maxine appreciated constructing graphs online. Sergio 
notes that “...on the [usual] homework you can just find a pattern and knock’em out pretty quick…” but explains that for the novel tasks 
“ … you can’t cheat it if it’s a conceptual problem, you have to actually think about it.” Results suggest that students continue to have 
difficulties in going from just “taking derivatives” to conceptual understanding. 

We identified components of the genetic decomposition and their critical role in student understanding of derivatives. We also found 
evidence of Baker's (2000) two dimensions of student understanding of derivatives (property & interval). Vilma was the only student at 
trans-trans dimension. We found that using certain prompts like “What is a derivative” or “what’s slope elsewhere?” via online 
environments could also be helpful, but there is a need to investigate this further.
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Analyzing Student Understanding of Derivatives Through 
Tasks Presented Online
Enes Akbuga, Ph.D.1, Annika Hurd2, Zachary Benton Hurdle3

1enes.akbuga@drake.edu, Drake University, 2Drake University, 3Utah Valley University

Introduction
Calculus plays a crucial role in STEM (Bressoud 2021) and studies have indicated that 
derivate is a complex concept to learn (Park, 2015; Zandieh, 2000). Researchers have 
unpacked student cognitive processes and existing mental structures when doing 
mathematical tasks involving derivatives (Baker, 2000; Asiala, et al., 1997). The COVID-19 
pandemic caused disruptions in mathematics courses and more instructors are using online 
tools like Desmos or WebAssign. We investigate research questions: 
(1) To what extent are derivative tasks facilitated with prompting in an online environment 

helpful for student learning?
(2) What mental structures and connections exist in the student process of doing online 

derivative tasks?

Framework & Research Questions
APOS theory (Arnon et al., 2014; Dubinsky & McDonald, 2001) is utilized to study student 
understanding of derivatives. Examinations through APOS theory generally begins with the 
development of a genetic decomposition (GD) and following the GD for derivatives (Asiala
et al., 1997), we explored student interpretation of derivatives. To unpack students' mental 
structures and processes involved, we focused on a Baker et al. (2000)’s graphing schema
for derivatives which includes the interval schema and the property schema. Aligned with 
that, the triad (intra-, inter-, and trans) for schema development is used in the context of 
APOS theory.

Methodology
We conducted semi-structured clinical interviews with five students who had taken Calculus 
I at a college level. Sergio (white male) and Maxine (female of color) are incoming freshmen 
at state midwestern universities who had completed AP Calculus AB. Amber (white female) 
and Trisha (white female) completed while Vilma (female of color) was enrolled in Calculus 
I at a liberal arts midwestern university in the United States. All the interviews were 
conducted via Zoom while the students interacted with Desmos. Students described their 
thought processes as they worked on the two tasks related to derivatives. The first task
pushes students to think critically about the conceptual understanding of the derivative as the 
instantaneous slope or slope of the tangent line while the second task requires creating a 
graph of f(x) solely based on given conditions and no equations. During the interviews, the 
researchers used prompts including “what is a derivative?” or asking students to evaluate 
f’(x) where x is an arbitrary point.
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Connecting Modern Algebra with Secondary Math Content 

 

Violeta Vasilevska 

Utah Valley University 

Keywords: modern algebra, in-service teachers, connections with secondary curricula. 

The 2010 report of the Conference Board of the Mathematical Sciences states that among 

four-year institutions with secondary pre-service teaching certification programs, 89% of the 

math departments require students to take abstract/modern algebra (Blair, Kirkman, & Maxwell, 

2013). In addition, this requirement is advocated by many mathematical societies. However, 

there is a continued interest in and need for research on how knowledge of mathematical content 

is employed in teaching practice, as well as how secondary teachers view the relevance of their 

post-secondary courses in teaching (Zazkis & Leikin, 2010). In May 2019, the presenter attended 

Connecting Advanced and Secondary Mathematics conference, that brought together researchers, 

mathematicians, and teacher educators to explore these connections and develop plans for further 

research and/or professional development on these topics (Murray et al., 2017). 

In fall 2019, the presenter taught a modern algebra class (covering topics of ring and field 

theory) for the Graduate Certificate in Mathematics for secondary level math in-service teachers. 

They implemented ideas from the conference by making intentional connections between the 

material taught and the secondary math curriculum. The presenter was interested in researching 

how these intentional teaching interjections changed the in-service teacher’s opinion about the 

relevance of the advanced material covered with respect to the secondary math content the in-

service teacher taught as well as the connections they see between the two curricula.  

The students in the class (10 in-service teachers) were given pre- and post-surveys, that 

contained quantitative opinion questions about the relevance and connections between the 

advanced and secondary content in the curricula. The feedback obtained confirmed the advanced 

algebra material could be meaningful to teachers by connecting the material with the secondary 

mathematics and could also support teachers to re-conceptualize, re-structure, and re-understand 

their knowledge of secondary mathematics (Wasserman, 2016). The pre- and post-survey results 

showed the students’ opinions changed significantly about the relevance and connections of the 

advanced algebra to secondary math content and about recognizing connections in their own 

classes.  

In addition, students were asked to provide reflective feedback on the exam and the class 

projects about advanced topics they learned in the class that were the most useful/meaningful for 

them as well as sharing their opinions and suggestions on these topics. Almost all the advanced 

topics chosen by students as their favorites/most meaningful/useful, were the ones that were the 

most applicable in their high school classroom settings. In their comments, students expressed 

confidence that the advanced class material and connections made in class helped them 

understand the majority of topics that were covered in the course. As a result, they were now 

familiar to them on a deeper level. The in-service teachers expressed confidence in better 

understanding and being able to explain many seemingly true statements (taken for granted) they 

had been using in their own classes and making their students see relevance in mathematics.  

Moreover, the presenter will discuss the questions of the pre- and post-survey results, which 

show a small increase in change of the students’ opinions and brainstorm further (follow up) 

research questions.  
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Implementation

➢ Fall 2019:
❖ Class: Modern Algebra (Ring and Field Theory) 
❖ Program: Graduate Certificate in Mathematics
❖ 10 Students: Secondary-level math in-service 

teachers

➢ Proof-based class - hence very demanding and hard for students
To address:

❖ Why taking this class?
❖ How to make the class relevant for students?
❖ What is the connection to the material they teach at 

the high schools?

Connecting Modern Algebra with Secondary Math Content
Dr. Violeta Vasilevska (College of Science – Department of Mathematics)

violeta.vasilevska@uvu.edu

Connecting Advanced and Secondary Mathematics

(CASM) Conference (http://casmconference.org/)

Held in Minneapolis, MN, May 20-22, 2019
NSF Funded (53 participants)

➢ “The conference will bring together researchers, mathematicians, and 
teacher educators interested in exploring connections between advanced 
and secondary mathematics. The CASM Conference has three main 
objectives:

I. To develop plans for research and/or professional 
development to expand current knowledge on connections 
between advanced and school mathematics, so that 
attendees can take concrete steps to move projects forward.

II. To provide a space for mathematicians, mathematics 
educators, and other stakeholders to discuss their work and 
develop a common vision for future directions.

III. To share current research on mathematical connections 
between advanced and secondary mathematics, focusing 
specifically on abstract algebra.” 

❖ Murray, Eileen; Baldinger, Erin; Wasserman, Nicholas; Broderick, Shawn; 
White, Diana. Connecting Advanced and Secondary Mathematics. Issues in 
the Undergraduate Mathematics Preparation of School Teachers, v1 Aug 
2017 (https://files.eric.ed.gov/fulltext/EJ1151024.pdf) 

Motivation / Literature Review

➢ Every five years, the Conference Board of the Mathematical 
Sciences(CBMS) executes a national survey of undergraduate 
mathematical and statistical sciences in two- and four-year colleges 
and universities.

➢ The 2010 report states that among four-year institutions with secondary
pre-service teaching certification programs, 89% of mathematics
departments require students to take abstract/modern algebra (Blair,
Kirkman, & Maxwell, 2013).

❖ Blair, R., Kirkman, E. E., & Maxwell, J. W. (2013).
Statistical abstract of undergraduate programs in the

mathematical sciences in the United States: Fall 2010

CBMS survey. American Mathematical Society.

➢ The Mathematics Association of America along with other professional
mathematics societies also advocate for advanced courses such as
these to be taken by future secondary mathematics teachers.

➢ Despite this requirement and advocacy, there continues to be a need
for research on how knowledge of mathematical content is employed in
teaching practice, as well as how secondary teachers view the
relevance of their post-secondary courses to teaching (Zazkis & Leikin,
2010).

❖ Zazkis, R., & Leikin, R. (2010). Advanced mathematical

knowledge in teaching practice: Perceptions of

secondary mathematics teachers. Mathematical
Thinking and Learning, 12(4), 263–281.

Student Feedback – Reflections 

I. Exam question – reflection: 
Describe your favorite part (or topic) of Modern Algebra class this semester. Explain why 

that part (or topic) was your favorite. 

II. Project question – Reflections on the course material

❑ address the topics covered;

❑ which topic(s)/concept(s) was/were most meaningful and useful for you;

❑ which topic(s)/concept(s) was/were the most exciting and new to you;

❑ which connections you see with this material and the high school curriculum;

❑ what would you change or leave the same in terms of the course content; etc.

➢ Almost all the topics chosen by students as their favorites/most 
meaningful/useful, were the ones that

✓ were most applicable in their high school classroom settings
✓ provided connections to the secondary math content
✓ were familiar to the students 

➢ In their comments, teachers expressed confidence that the class material and 
connections made helped:

✓ them understand the majority of topics that were covered in the course and were familiar to 
them on a deeper level;

✓ them to understand and explain many seemingly true statements (taken for granted) they 
use in their classes;

✓ them communicate mathematics to their students by connecting concepts;
✓ their students see relevance in mathematics.

Survey Questions

IRB Protocol #s 349; 350 

Pre 

Survey

Post 

Survey

# of surveys 10 10
The Abstract Algebra material is relevant to 

secondary math content. 2.6 3.9

The Abstract Algebra provide connections to 
secondary math content. 2.5 4.3

The Abstract Algebra material equips the pre-
service teachers to better teach secondary 

math content.
2.9 3.4

I have used Abstract Algebra material/concepts 
when teaching my secondary math classes. 2.3 3.9

I believe that Abstract Algebra

material/concepts should be taught to pre-
service teachers.

3.1 3.6

Conclusion

➢ The feedback above confirms that the Abstract Algebra material 
❖ can be meaningful to teachers by connecting it with the secondary 

mathematics;
❖ can support teachers to re-conceptualize, re-structure, and re-

understand their knowledge of secondary mathematics. 
(Wasserman, N. (2016). Abstract algebra for algebra teaching: Influencing school mathematics 
instruction. Canadian Journal of Science Mathematics and Technology Education, 16(1), 28-47).

➢ The pre- and post-survey results show that students’ opinions changed 

significantly about
✓ the relevance of the Abstract Algebra to the secondary math 

content;
✓ connections of the Abstract Algebra to the secondary math 

content;
✓ recognizing these connections in their own classes.

➢ Why the small increase in change of the opinion of the students about the last 
question on the survey? Few conjectures:

✓ the proof-based classes are difficult, demanding, and time 
consuming;

✓ most of the in-service teachers have taken the needed 
prerequisite (Abstract Algebra course (Graph Theory)) long time 
ago;

✓ lucking of good proof writing skills.

➢ Further research questions:

❖ What connections of Abstract Algebra can impact teacher 
instructions?

❖ How can Variation Theory be implemented in Abstract Algebra 

classes with goal to impact teacher instructions?
5 – strongly agree 4- agree 3 – neither agree nor disagree

2 – disagree 1 – strongly disagree

CASM Conference

➢ Five theme groups formed
❖ Curriculum
❖ Educator Knowledge
❖ Item Development
❖ Professional Development for Teachers (I was 

part of this group)
❖ Project Design

Research Project

➢Collecting data from the in-service teachers (pre- and post-surveys) 
about the material/topics covered; 
❖ What is the relevance of this material with respect to the 

secondary math content they teach?
❖ How to better equip them in teaching secondary math topics?
❖ Which topics will prepare math education students better for 

understanding secondary mathematics?
❖ What are in-service teachers’ opinions and suggestions on the 

topics?
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Prospective Secondary Mathematics Teachers Integrating Reasoning and Proving in their 
Teaching 

 
 Rebecca Butler Sophia Brisard 
 University of New Hampshire University of New Hampshire 
 
 Merav Weingarden Orly Buchbinder 
 University of New Hampshire University of New Hampshire 

Keywords: Reasoning and Proof, Secondary Teachers, Beginning Teachers, Teacher Education  

Transitioning from teacher preparation programs to teaching in school is fraught with 
challenges (Smagorinsky et al., 2004; Thompson et al., 2013). Specifically, beginning teachers 
struggle to implement reasoning and proving in real classrooms and recontextualize what they 
learned in their teacher preparation programs (Gomez Marchant et al., 2021; Stylianides et al., 
2013). In this study, we investigate how prospective secondary mathematics teachers (PSTs) who 
participated in a capstone course Mathematical Reasoning and Proving for Secondary Teachers 
(Buchbinder & McCrone, 2020), envision and enact what they learned in the course in their 
student teaching experience and first year of teaching their own class.  

We followed two PSTs, Olive and Diane, through the course, student teaching, and first year 
of teaching. Data included, for each teacher, six video-recorded lessons and six post-lesson 
interviews, which invited reflection on integrating reasoning and proof in the lesson. Data were 
analyzed through open coding (Patton, 2002) inspired by activity theory (Ellis et al., 2019; 
Engeström, 1987) with attention toward aspects that enable or inhibit enactment of reasoning and 
proof, such as their cooperating teacher, the school and classroom norms, and set curriculum.  

As PSTs, Olive and Diane developed knowledge and skills for teaching reasoning and proof 
in secondary classrooms. As student teachers, they expressed a deep desire to integrate reasoning 
and proof into their teaching but encountered challenges which hindered their enactment of this 
vision. They felt obliged to conform to the norms of teaching established by their cooperating 
teachers; mostly notetaking and computational practice. Nevertheless, as student teachers 
working with a cooperating teacher, they still found ways to engage students with reasoning and 
proof by pushing for student explanations and designing short proof-related activities. As time 
progressed, they stepped into teaching their own classrooms. They embraced their independence 
and carved out unique paths to engage students with reasoning and proof. They devoted class 
time to group work, exploration-based activities, and invited reasoning and justifying.  

This inquiry aims to provide an increased understanding of prospective teacher education 
with respect to mathematical reasoning and proof and how PSTs’ knowledge and practices 
continue to develop during their cooperative and independent early-career teaching experiences. 
Notably, the proof-related practices learned in the course reemerged as the PSTs taught their own 
classes, despite facing pressures to teach in more traditional ways during student teaching. Our 
study contributes to a better understanding of the PSTs’ development as mathematics teachers in 
their university programs and beyond. 
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Students' Voice in an Active Calculus Learning Environment: How Do Students Perceive 

Purposeful Design Learning Environments 
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Previous studies emphasized the advantages of student-centered over instructor-centered 

teaching and learning of Calculus (Ely, 2021). In addition, collaborative group work in calculus 

classrooms has been shown beneficial to meaningful student engagement with calculus problems 

(Hitt & Dufour, 2021) and greater students' success compared to traditional classrooms (Code et 

al., 2014). Yet, some studies observed students' resistance to active learning (Tharayil et al., 

(2018). Thus, it is important to continue investigating students' perceptions of active learning 

environments in Calculus courses.   

This study was conducted at a four-year R1 university in the northeastern United States. 

Participants were students in a Calculus course, which runs in a large lecture (3 times a week) 

and recitation (twice a week) format. In Spring 2022, we introduced active learning into 

recitations and activities that focus on Scientific, Mathematical, and Metacognitive Processes 

(SMMPs). The students worked on SMMP activities in groups and presented their solutions in 

class. The recitation sections were facilitated by graduate teaching assistants and undergraduate 

learning assistants. At the end of the semester, we collected survey data on students' perceptions 

of their learning experiences in Calculus recitations. Data include surveys (n=150) with 7 Likert-

scale questions and 3 open questions. We also collected students' classroom work, related home 

assignments and test items on the topics of SMMPs. The current analysis focuses on Students' 

perceptions of the active learning environment structure of the recitations and how it affected 

their learning experiences.   

We found that 73% of the students indicated that communicating with their peers in the 

recitations helped them to clarify their mathematical thinking,  71% of the students stated that 

Calculus concepts became clearer after they heard explanations from other students in their 

group, 80% of the students stated that they would recommend group work for Calculus 

recitations to other students, and 72% of the students stated that they would like other courses to 

offer opportunities of group work. Student-written comments supported these results. One 

typical comment was: "I think that being in a group where we all have different levels of 

understanding or ways of understanding the class concept is helpful because it allows me to think 

through my thought process and explain it to my other group members."  

Our results show that most students perceive small collaborative group works to provide 

meaningful learning experiences for them. These results echo previous studies (e.g., Hitt & 

Dufour, 2021) and extend them by identifying students' justifications underlying their views of 

the benefits of group work in Calculus recitations to their learning. These results, along with the 

analysis of students' achievement contribute to the growing body of knowledge on reforming the 

teaching of Calculus.   
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Summary of Justifications
➢Groupwork improved students' articulation of their thoughts.

➢Groupwork helped students understanding of the content on a deeper level. 

Discussion
➢Our results show that most students perceive that small group work provides them with 

meaningful learning experiences.

➢These results echo previous studies (e.g., Hitt & Dufour, 2021) and extend them by 

identifying students' justifications underlying their views of the benefits of group work to 

their learning in Calculus recitations.

➢These results, along with the analysis of students' achievement, contribute to the growing 

body of knowledge on reforming the teaching of Calculus. 
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Background 
Previous studies emphasized the advantages of student-centered 

over instructor-centered teaching and learning of Calculus (Hitt & 

Dufour, 2021). In addition, collaborative group work in calculus 

classrooms has been shown to be beneficial to meaningful student 

engagement with calculus and lead to greater students' success 

compared to traditional classrooms (Code et al., 2014). Yet, some 

studies observed students' resistance to active learning (Tharayil et 

al., 2018). Thus, it is important to continue investigating students' 

perceptions of active learning environments in Calculus courses.

Aim of the Project   
We aim to support students meaningful learning experiences in 

Calculus via designing active learning environments. This 

study is focused on exploring students' perceptions of active 

learning environments in Calculus courses.

Research Question
How do students perceive purposefully designed active learning 

environments? 

Method 

Research Site: This research is conducted at a four-year R1 

university in the northeastern United States. Participants were 

students in a Calculus course, which runs in a large lecture (3 times 

a week) and recitation (twice a week) format. 

Data Collection and Participants: Data include 

surveys (n=150) with 7 Likert-scale questions and 3 open 

questions. Participants were undergraduate students enrolled first 

Calculus course at the university.

Design of the Study: We introduced active learning into 

recitations and activities that focus on Scientific, Mathematical, 

and Metacognitive Processes (SMMPs). The students worked on 

SMMP activities in groups and presented their solutions in class. 

The recitation sections were facilitated by graduate teaching 

assistants and undergraduate learning assistants. At the end of the 

semester, we collected survey data on students' perceptions of their 

learning experiences in Calculus recitations.

Students' Voice in an Active Calculus Learning Environment: How Do Students 

Perceive Purposeful Design Learning Environments 

Nigar Altindis, Orly Buchbinder, & Karen Graham

University of New Hampshire

Survey ResultsAn Example of SMMP Activity

NSF Transforming Undergraduate 
STEM Gateway Teaching and Learning 
by Emphasizing Core, Interdisciplinary 
STEM Practices (DUE # 2013427)

Design of Active Learning 

Environment 

SMMP Activities Topics 

Continuity 

Implicit Differentiation

Derivative of Logarithmic 

Functions

Optimization Problems

Graphing

Antiderivatives

Instructional Routines

Launch the Activity

Small Group Exploration 

Whole Class Discussion

Wrap-up/Closure

Small Group 

Exploration 

Whole Class 

Discussion 

72% of students stated that they would agree or strongly agree with the statement: “I would recommend 

group work at Calculus recitation to other students.” 

71% of students stated that they would agree or strongly agree with the statement: “ When I spoke up 

in the recitation, it helped me to clarify my thinking.” 

70% of students stated that they would agree or strongly agree with the statement:  “Ideas in this course 

become clear after I heard other students in my small group explain them.” 

73% of students stated that they would agree or strongly agree with the statement: “I would like other 

courses to have small group work available as an option.” 

Survey Results
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Novice Calculus Learning Assistants’ Learning to Notice 
 
 Rebecca Butler  Orly Buchbinder  
 University of New Hampshire  University of New Hampshire  

Keywords: Learning Assistants, Teacher Education, Near-Peer Tutoring, Calculus 

Learning Assistants (LAs) are undergraduate near-peer tutors who aid in the instruction of 
large lecture STEM courses (Otero et al., 2010). While many LAs do not pursue a career in 
teaching, they assume a para-professional role in classrooms. This experience has been shown to 
be transformative for students in these courses and for LAs themselves (Schick, 2018); however, 
the precise mode of LAs’ development is not well understood. This study extends prior research 
on LAs as potential future teachers (Fineus & Fernandez, 2012; Gray et al., 2012; Vandegrift et 
al., 2020) by asking how the professional noticing of novice LAs develops over their first 
semester in a calculus classroom. Noticing refers to what teachers attend to and interpret in their 
instruction. Noticing is widely recognized as an important element of mathematics teacher 
development (van Ess & Sherin, 2008).  

 This study is a part of a multi-disciplinary project for reforming introductory STEM courses 
at a large, public, northeastern university. The four LAs participating in this study were in their 
first semester of teaching in a calculus course. The course follows a format of a large lecture 
(approx. 160 students) and recitations (approx. 20 students) led by a graduate teaching assistant. 
LAs were only present in recitations, helping small groups work through conceptually rich 
activities. The LAs also attended a weekly meeting on pedagogical topics, e.g., metacognition, 
types of questions, student ideas and content preparation. Data includes beginning and end of 
semester interviews, four written reflections throughout the semester, and video of recitations. In 
the interviews, LAs were asked to analyze samples of student work, reflect on clips of their 
teaching, and share their thoughts on the social dynamics in class. Interviews were coded on 
Stockero’s (2008) five dimensions of noticing: actor, topic, stance, specificity, and artifact focus. 

In their first interviews, LAs’ comments were fairly general – discussing mathematics 
without relation to teaching or learning, and often evaluative in nature – LAs judged their 
pedagogical ability to provide students with clear, correct mathematical explanations. Comments 
about student thinking the classroom environment lacked detail, using the labels “good” or “not 
as good”. This changed in their final interviews as LAs discussed specifics of student thinking 
and offered conjectures and explanations on classroom events. The focus of their comments 
shifted toward how the mathematics of a task created space for student learning. LAs also talked 
at length about specific students’ ideas in relation to social dynamics of their classroom. LAs 
largely dropped their evaluative stance for making more assertions about teaching and learning.  

Undergraduate peer tutoring is a growing phenomenon in introductory STEM courses, which 
provides unique teaching and learning experience. By characterizing how LAs professional 
noticing evolves, our study will advance understanding of LAs’ growth as mathematics teachers 
and of their interactions with students. This will also provide greater insight into how LAs 
function within and contribute to undergraduate mathematics classrooms. 
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Prematriculation Interventions using ALEKS: Common Lessons-learned in two Programs 
 

Caroline Junkins     Emily Braley 
        McMaster University                 Johns Hopkins University 

 
Keywords: Math Intervention, Precalculus through Calc II (P2C2), Student Success.  
 

Students who enter university level calculus without a strong mathematical foundation in 
algebra and functions often struggle to succeed: repeating courses, leaving STEM, or dropping 
out entirely (Chen, 2013). Students from traditionally underrepresented groups are at particularly 
high risk of STEM attrition (Alexander et al., 2009). Here we describe student behavior in two 
interventions designed to provide a prematriculation experience for first-year university students. 
Each summer intervention paired content preparation with evidence-based learning strategies in 
an effort to reduce STEM attrition and increase success in gateway mathematics courses.  

In Canada and the United States, the COVID-19 pandemic has had a large impact on K-
12 students, with a major concern being mathematical preparation. Evidence indicates that 
current and future incoming university students are less prepared than their pre-pandemic 
counterparts (NEAP, 2022; EQAO, 2022). We know that high school teachers were forced to 
make curricular decisions that did not have in mind calculus preparation; for example, omitting 
logarithmic functions from the curriculum (Sacka, 2021). To shore up the mathematical skills of 
incoming students in an efficient way, the programs described here make use of a popular online 
intelligent tutoring system called Assessment and Learning in Knowledge Spaces (ALEKS). 
Within ALEKS, the curriculum for each program was shaped to be closely aligned with the local 
context and curricula, ensuring that student engagement with the material will be served in their 
upcoming courses. This alignment was directly communicated to students, instructors, advisors 
and administrators in each program.  

Despite differences in local context and format of the “non-mathematical” components of 
each program, we found common experiences with respect to student engagement with ALEKS: 

1. ALEKS can be offered as a stand-alone product, but ALEKS alone was not sufficient to 
motivate student engagement or open lines of communication with faculty or peers.  

2. Synchronous support for ALEKS (e.g. office hours) were underutilized, with the majority 
of participants in one program reporting that they were able to find answers to their 
questions within ALEKS. Students in both programs instead used office hours to ask 
questions related to placement and course selection. 

3. While students in both programs retained access to ALEKS into the start of the Fall 
semester, very few students remained active in the platform once classes started. This 
result could be attributed to lack of time during this busy transitional period, and/or 
decrease in motivation as seen in previous applications of ALEKS (Fang et al., 2019) 

 
In addition to these shared insights, we will also report on differences between ALEKS 

use across the two programs, including learning gains, time spent on ALEKS and the distribution 
of topics mastered. Through this poster presentation, we aim to: 

● learn more about experiences with ALEKS at other institutions,  
● hone in on strategies for better student engagement with the tool, and  
● gauge community interest for support in analyzing the local data needed to 

establish and evaluate similar interventions.  
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Prematriculation interventions using ALEKS:
Common lessons-learned in two programs

Caroline Junkins, McMaster University       Emily Braley, Johns Hopkins University
Keywords: Math Intervention, Precalculus through Calc II (P2C2), Student success

Why provide early support for STEM students?

Students are much more likely to succeed in university-

level calculus when equipped with a strong foundation in 

algebra and pre-calculus. Success in Calculus is crucial 

for students who intend to pursue a degree in STEM. 

Literature suggests that without early success in college 

STEM courses, students may struggle to succeed: 

repeating courses, leaving STEM, or dropping out entirely 

(Chen, 2013). Students from traditionally 

underrepresented groups are at particularly high risk of 

STEM attrition (Alexander et al., 2009). 

Here we describe student behavior in two summer 

interventions designed to provide a prematriculation

experience for first-year university students.

Each summer intervention paired mathematical content 

with evidence-based learning strategies in an effort 

increase success in calculus. 
We hope to learn more about:

McMaster’s Peer-Run Inclusive Math Experience (MacPrime)

• Experiences with ALEKS products at other 

institutions (courses/programs, placement, etc.)

• Strategies for better student 

engagement with ALEKS

• Community interest for support in 

• analyzing data needed to evaluate 

programs using ALEKS

Student Engagement with ALEKS

• ALEKS alone was not sufficient to motivate student engagement or open lines of communication with faculty or peers. 

• Synchronous support for ALEKS (e.g., office hours) were underutilized, participants at McMaster reporting that they were able to find answers to 

their questions within ALEKS. Students in both programs instead used office hours to ask questions related to placement and course selection.

• Time spent in ALEKS (time active in the system) was weakly to moderately correlated with progress through either program’s curriculum (number of 

topics mastered after Initial Knowledge Check): Pearson 𝑟 = 0.30 (McMaster) and 𝑟 = 0.43 (Johns Hopkins),

• Very few students remained active in the platform once classes started. This result could be attributed to lack of time during this busy transitional 

period, and/or decrease in motivation as seen in previous applications of ALEKS (Fang et al., 2019) 

In Canada and the United States, attempts to measure 

impact of the COVID-19 pandemic indicate that current 

and future incoming university students may be less 

prepared than their pre-pandemic counterparts, with a 

major concern being mathematical preparation. (NEAP, 

2022; EQAO, 2022). 

Not all students were able to interact with the full high 

school curriculum; for example, some classes omitted 

exponential and/or logarithmic functions from the pre-

calculus curriculum (Sacka, 2021). 

As a result, we may see a higher degree of heterogeneity 

in terms of preparedness of incoming students.

Has the pandemic affected STEM-preparedness?

To target relevant mathematical skills in an efficient way, 

the programs described here make use of an online 

intelligent tutoring system called Assessment and 

Learning in Knowledge Spaces (ALEKS). 

Within ALEKS, the curriculum for each program was 

shaped to be closely aligned with the local context and 

curricula, ensuring that student engagement with the 

material will be served in their upcoming courses. 

This alignment was directly communicated to students, 

instructors, advisors and administrators in each program. 

How can the intervention be customized?

Alexander, C., Chen, E., & Grumbach, K. (2009). How leaky is the health career 

pipeline? Minority student achievement in college gateway courses. Academic 

Medicine: Journal of the Association of American Medical Colleges, 84(6), 797–802.
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Kornelson, Moore-Russo and Reeder (2020) identified 

six categories of algebraic errors commonly exhibited by 

calculus students, found in Modules 1-3 of each program:

• Simplifying 

• Distributive property 

• Variable isolation

• Operations with rational expressions

• Operations with radicals

• Composition of functions

The authors suggest that even when mastery of these

skills is demonstrated in ALEKS, instructors should 

consider a just-in-time approach, as well as mitigating 

factors that could be causing mistakes. Data collected 

from these programs could provide guidance for aligning 

additional interventions for a given cohort of students. 

Can we use program data to better “Mind the Gaps”?Johns Hopkins’ Student Success Programs

Take our survey:
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Longitudinal Study of Women’s Sense of Belonging in Undergraduate Calculus 

 

Casey Griffin 

University of Delaware 

Keywords: sense of belonging, gender, undergraduate calculus 

Undergraduate women leave STEM majors at a higher rate than men – especially after taking 

Calculus I (Chen et al., 2013; Seymour & Hunter, 2019). Research identifies low sense of 

belonging as a major reason why women leave STEM majors (Seymour & Hunter, 2019; Shapiro 

& Sax, 2011). One feels a sense of belonging (SB) when they feel valued or accepted in an 

academic community, and that their contributions are valued (Good et al., 2012). Studies have 

shown that students’ SB can be attributed to their social connectedness (SC) with the people in 

their class and their perceived competence (PC) in the course material (Rainey et al., 2018). 

Further, Rainey et al. (2019) found that students who experienced active learning reported a 

stronger SB. However, few quantitative studies have investigated students’ SB in relation to its 

influencing factors. This study examines undergraduate women’s SB over the course of one 

semester in an active learning Calculus course. I address the research questions: For undergraduate 

women enrolled in an active learning Calculus course, (1) How do SC and PC contribute to their 

SB?, (2) In what ways do their SB, SC, and PC change over the course of the semester? 

This study takes place at a Mid-Atlantic research university during the Fall 2022 semester. 

Two sections of the active learning Calculus course were offered, with a total enrollment of 127 

students. These students are typically freshmen intending to major in STEM and do not know upon 

enrolling that the course provides substantial active learning opportunities (primarily small-group 

work and whole-class discussions). To measure students’ SB, SC, and PC, a survey was designed 

and administered to all students during Weeks 1, 7, and 14 of the semester. The survey consisted 

of Good et al.’s (2012) Mathematical Sense of Belonging scale, items from several scales 

measuring SC (Frisby & Martin, 2010; Hoffman et al., 2003; Maloney & Matthews, 2000; 

Wanders et al., 2019), and items from Wigfield and Eccles’ (2000) Expectancy-Value scale and 

Cribbs et al.’s (2015) FICSMath scale to measure PC. The data set was reduced to only include 

participants who self-identified as women (e.g., women and trans women). 

Findings indicate that both SC and PC have a significant effect on women’s SB. A regression 

of SB on SC and PC accounted for 47% of the variance in SB at Week 1 (F[2,46]=20.684, 

MSE=.374, p< .001), 67% at Week 7 (F[2,43]=44.145, MSE=.235, p<.001), and 69% at Week 14 

(F[2,40]=44.522, MSE=.259, p<.001). Interestingly, PC held greater influence at Week 1 

(βSC=.379, pSC=.001; βPC=.492, pPC<.001), while SC held greater influence at Week 7 (βSC=.641, 

pSC<.001; βPC=.305, pPC=.003) and Week 14 (βSC=.655, pSC<.001; βPC=.328, pPC=.001). 

Additionally, students’ SB, SC, and PC each increased significantly between Week 1 and Week 7 

and plateaued from Week 7 to Week 14 (Table 1). Results from this study confirm that SC and PC 

hold a significant influence over women’s SB. Further, women in an active learning Calculus class 

can experience positive changes in their SB that align with changes in their SC and PC. 

 
Table 1. Women’s Sense of Belonging, Social Connectedness, and Perceived Competence Means. 

 Week 1 Week 7 Week 14 p1 p2 

Sense of Belonging 3.9312 4.5488 4.6159 <.001 .517 

Social Connectedness 4.3676 4.7735 4.8537 .001 .444 

Perceived Competence 3.7591 4.0335 4.0518 .008 .855 
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1. Sense of belonging, social connectedness, and 

perceived competence…

a) All increased between Week 1 and Week 7

b) All plateaued between Week 7 and Week 14.

2. Social connectedness and perceived 

competence significantly contributed to

students’ sense of belonging throughout the 

semester.

a) Perceived competence held greater influence

at Week 1

b) Social connectedness held greater influence

at Weeks 7 & 14

Data were collected during Fall 2022 from women 

enrolled in active learning Calculus using online 

surveys.

Regression was used to analyze data at each time 

point.

Repeated Measures ANOVA was used to analyze data 

across time.

For undergraduate women enrolled in a year-long 

active learning Calculus course,

1. In what ways, if any, do their sense of belonging, 

social connectedness, and perceived competence 

change over the course of the first semester?

2. How do social connectedness and perceived 

competence contribute to their sense of 

belonging at the beginning, middle, and end of the 

first semester?

_____________________________________________________

Sense of Belonging: feeling accepted in an academic 

community, and that your presence and contributions 

are valued

Social Connectedness: feeling socially connected or 

similar to those around them

Perceived Competence: feeling like they understand 

the material or received good grades

Research Questions & Definitions

• Setting: Undergraduate Calculus course with 

frequent opportunities for students to engage in 

active learning via group work and whole-class 

discussion; 2 sections offered with 127 students total

• Participants: Women enrolled in active learning 

Calculus; mostly first-year students intending to 

major in STEM

Context

Data Collection & Analysis

Related Tables

Longitudinal Study of Women’s Sense of Belonging

in Undergraduate Calculus
Casey Griffin

• Social connectedness and perceived competence 

do in fact significantly influence women’s sense of 

belonging in mathematics. 

• The amount of influence each contributor had on 

sense of belonging was different at different time 

points.

• Women in an active learning Calculus class can 

experience positive changes in their sense of 
belonging over time.

Conclusions

Major Findings

Table 3.

Regression coefficients.

Unstandardized 

coefficients

Standardized 

coefficients

B Std. error Beta t Sig.

W
e
e
k

 1

N
=

4
9

Constant

Social Connectedness

Perceived Competence

-.214

.510

.514

.685

.148

.115

.379

.492

-.312

3.438

4.467

.756

.001

<.001

W
e
e
k

 7

N
=

4
6

Constant

Social Connectedness

Perceived Competence

-.086

.702

.326

.500

.106

.104

.641

.305

-.172

6.632

.3152

.864

<.001

.003

W
e
e
k

 1
4

N
=

4
3

Constant

Social Connectedness

Perceived Competence

-.304

.759

.302

.525

.109

.087

.655

.328

-.580

6.955

3.480

.565

<.001

.001

Table 2.

Regression of Sense of Belonging on Social Connectedness and Perceived 

Competence.

Sum of 

Squares
df

Mean 

Square
F Sig.

W
e
e
k

 1

N
=

4
9

Regression

Residual

Total

15.472

17.204

32.676

2

46

48

7.736

.374

20.684 <.001

W
e
e
k

 7

N
=

4
6

Regression

Residual

Total

20.788

10.125

30.913

2

43

45

10.394

.235

44.145 <.001

W
e
e
k

 1
4

N
=

4
3

Regression

Residual

Total

23.037

10.349

33.385

2

40

42

11.518

.259

44.522 <.001

Note. Sample sizes at each week differ here because each regression was run without regard 

for how many participants completed multiple surveys.

Take a picture to

download the full paper.

Table 1.

Women’s Sense of Belonging, Social Connectedness, and Perceived Competence Means.

Week 1 Week 7 Week 14

Sense of Belonging 3.9312 4.5488*** 4.6159

Social Connectedness 4.3676 4.7735*** 4.8537

Perceived Competence 3.7591 4.0335*** 4.0518

Note. These results are based on students who completed all three surveys, so N=41. Asterisks are used 

to denote the p-values (* for p<.05, ** for p<.01, *** for p<.001 significance levels) corresponding to the 

significance of the difference between that time-point and the previous time-point.
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Instructor Perceptions of Student Example-Use 
 

Jordan E. Kirby 
Middle Tennessee State University 

Keywords: Proof, Example-Use, Mathematical Knowledge for Teaching 

Researchers have commonly found students from K-16 struggle to understand the 
purpose of a proof and how to construct proofs (e.g., Harel & Sowder, 2007; Healy & Hoyles, 
2000; Stylianides, 2007). One component leading to this struggle is the difficulty in 
understanding the purpose of examples in a proof context (Aricha-Metzer & Zaslavsky, 2019; 
Ellis et al., 2019; Epp, 2003). Few studies in the field of example-use in proof investigate the 
mathematical knowledge for teaching (MKT) that would support instructors of these proof 
classes to effectively build upon and communicate strategies of using examples to their students 
(Zaslavsky & Knuth, 2019). In particular, mathematical knowledge for teaching proof (MKT-P) 
is a promising framework to investigate instructors’ knowledge of the example-use subdomain of 
proof. I will use MKT-P to further describe the sub-domains of knowledge for content and 
students (KCS) and knowledge for content and teaching (KCT). This study applies the MKT-P 
framework to answer the following research question:  

1. How do instructors of introductory proof classes perceive students’ understanding and 
use of examples? 

This study is part of the author’s dissertation. Instructors of introductory proof courses across 
the southeastern United States were interviewed from September 2022 to November 2022. 
During the interviews, participants were asked to respond to six sample student responses to two 
questions adapted from Balacheff (1987) regarding example-use in proofs. Later in the interview, 
the participants sorted and ranked the six responses. Interviews were coded according to the 
MKT framework outlined by Ball and colleagues (2008) and further coded with a lens of MKT-P 
outlined by Stylianides and Ball (2008), Steele and Rogers (2012), and Lesseig (2016).  

One of the main findings of this study includes the variety in ways instructors value the role 
of example use in their students. Some instructors held a strong stance that any example used to 
aid understanding by the student should be fully excluded in the written product. Other 
instructors instead said they wanted to see more reasoning in the written product by their 
students and to include more examples. For instance, Steven noted when reflecting on a student 
submission from Gina, “I mean, it's reasoning by example, which is always rough.” This starkly 
contrasts with Mark who responded to the same instance from Gina with, “She is arguing from 
the picture, which I appreciate.” The field of example use in proof would benefit from more 
explanation as to the roles of examples for practicing instructors of introduction to proof classes. 
Aricha-Metzer and Zaslavsky (2019) argued productive instances of example-use aided student 
understanding and proof production. There is a potential disconnect between the state of the 
literature of example-use in proof and the practice of practitioners of proof courses. Presenting 
this in a poster format will allow me to share quotes from my interviews and detailed information 
about my participants. I hope to gather insight from attendees for future directions with this work 
and how to disseminate information to practitioners hesitant to include examples in their proving. 
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• Understanding the purpose of examples in a proof 

context can help students develop proving skills 

(e.g., Harel & Sowder, 2007; Healy & Hoyles, 

2000). 

• Although work has been done understanding the 

student side of examples, far less work has been 

done on understanding how to aid instructors to 

help their students use examples more efficiently 

(Zaslavsky & Knuth, 2019).

Introduction

Research Question

Methods

• 1-hour semi-structured interviews with 11 

professors of Introduction to proof classes across 

the SE US.

• Instructors were presented with sample student 

answers to basic proof tasks.

• Instructors responded to these tasks and gave 

feedback about their understanding of the student 

and how they would respond to the student in 

their class.

• Then, instructors were asked to organize the 

responses in whatever manner they deemed 

necessary.

• Finally, the 6 student work samples were ranked 

from “best progress toward a proof to least 

progress toward a proof.”

Discussion

• As a field, researchers have argued that examples, 

when used productively, aid student 

understanding and production of proofs (Aricha-

Metzer & Zaslavsky, 2019).

• There seems to be a disconnect between what 

researchers believe, and what we believe in 

practice.

• Should students be expected to write textbook 

proofs in introduction to proof classes for all 

assignments?

• How do instructors of Introduction to Proof 

courses perceive students’ understanding and use 

of examples?

Do it, but don’t show me

Jordan E. Kirby

Middle Tennessee State University

Data Analysis

• Almost even split of instructors who wanted to 

see the students written example in their final 

product (HW).

• No difference based on PhD, time at university, 

self-identified teaching style.

• Slight difference on if the instructor was at an 

R1/R2 institution versus anything else.

• Almost all participants asked students to show 

their thinking through examples when asked how 

to respond to students.

Instructor Perceptions 

of Student Example-Use

R1/R2 Masters Baccalaureate

Math 2 2 2

Math 

Ed

2 1 2

Results

• Data was first coded by episode looking for 

instances of knowledge of content and teaching 

(KCT) or knowledge of content and students 

(KCS) using the mathematical knowledge for 

teaching framework (Ball et al. 2008). 

• Then, a thematic analysis was conducted across 

episodes looking for themes within KCS and 

KCT.

jek3b@mtmail.mtsu.edu
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Evan (Assistant Professor at Private 

Baccalaureate/ Math Ed/ 4 years 

experience/Lecture):

“So she has a nice little example here, of 

when if n is equal to five, so for this case, 

you notice the step five, the inside part 

formed a four by six rectangle, the area 

inside is 24, plus the two outside squares 

for 26 Total squares. This is one more than 

five squared. Okay, that's great for that 

particular example. So it kind of shows me 

how she came up with that formula.”

Steven (Professor at Public R1/ Math/ 22 

years experience/Lecture):

“I mean, it's, it's reasoning by example, 

which is, which is always rough.”

“I would say that the n minus one n plus 

one could have helped me early on.”

Barry (Associate Professor at Public M1, 

Math, 7 years experience/ Lecture):

“So, I do like the, I guess, kind of started 

out with, you know, thinking of a fixed 

number, just to kind of get an idea of what 

to do with it.”

Lisa (Assistant Professor at Public R1, 

Math Ed, 4 years experience/ IBL):

“Okay, so it's interesting, because like, I 

think Jacob is thinking about seven-sided 

figure, right? And he's taking it as like a 

generic example. But then the seven is 

actually never important. Like in his work. 

Like, he could have, you know, thought 

about seven and then gone through and 

replaced all the seven with an M, and now 

think would have been enough.”

Howard (Professor at Public M1, Math Ed, 17 years experience, lecture)

“But as an educator in a first course, I want to see the example, right? And if you’re leaving 

the example out, you’re actually leaving out a step in the learning.”

25th Annual Conference on Research in Undergraduate Mathematics Education 1295

https://doi.org/10.1016/j.jmathb.2017.09.002
https://doi.org/10.2307/749651


Online Undergraduate Mathematics Classes Impact on Student Perceptions 

 

 Mikayla Dokos Dr. Valerie Long Dr. Yuliya Melnikova 

 Indiana University of PA Indiana University of PA Western Governors University 

Keywords: online learning, student perceptions, undergraduate mathematics, challenges 

Background 

Online learning has been present in universities and other post-secondary institutions since 

the introduction of internet access in the 1990s (Johnson & Seaman, 2022). The COVID-19 

pandemic has since caused higher demand for online learning and remote instruction to assist 

with mitigation efforts of the global pandemic (Barlow et al., 2020; Ramadhani et al., 2021). 

Specifically in mathematics courses, online platforms such as Desmos, GeoGebra, MyMathLab, 

and WeBWorK are used to supplement learning and teaching (Hauk & Segalla, 2005; Oates et 

al., 2014). A research study by Serhan and Almeqdadi (2020) on student perceptions of 

MyMathLab and WebAssign found advantages of using online platforms to be immediate 

feedback and flexibility of access. Another study by Valdez and Maderal (2021) indicated 

students preferred online homework over pen-and-paper traditional methods due to the 

accessibility of lecture notes and math software. Despite the possibilities that online learning 

offers, there are possible challenges for students in undergraduate math classes. Issues with 

technology, internet difficulties, and ease of forgetting assignments were challenges students 

faced in undergraduate online math classes (Serhan & Almeqdadi, 2020). Furthermore, if 

students were not trained on given technology, they faced difficulty with using online tools and 

technology effectively. Other challenges are how time-consuming and non-user friendly various 

online tools can be (Hauk & Segalla, 2005; Naidoo, 2020). With these challenges in mind, the 

aim of this research is to explore student perceptions in online undergraduate math classes. 

Methodology and Results 

This study was conducted at a public university in the northeast region of the United States. 

In spring 2021, 19 online sections of Probability and Statistics were included in the study with 39 

out of 464 students consenting to participate. Face-to-face courses were not an option due to the 

worldwide pandemic. The study participants completed a 17-item survey measuring their 

perceptions of learning mathematics online. Data was analyzed quantitatively using descriptive 

statistics.  

Despite the small response rate, this study yielded some interesting preliminary findings. 

Some results included 41% of the students stated they were motivated to complete assignments, 

39% were not confident in succeeding, and 59% believed they would perform better had the 

course been offered in person. These findings mirror those from Serhan and Almeqdadi (2020). 

When students were asked about the challenges they were facing, motivation was selected with 

the highest frequency (64%), and 51% of students stated they struggled with understanding 

course material. The pandemic forced universities to move courses online, and students had no 

choice in their course delivery. Many participants shared common suggestions and concerns to 

make online learning better. They requested live meetings (face-to-face or video conference), 

more accessible content, and the inclusion of clear explanations. Further results and areas for 

future research will be presented in the poster.  
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Results and Discussion Cont’d
Students shared their opinions about challenges 
they faced while learning statistics online. The 
top 5 challenges were staying motivated, 
understanding the material, asking for help 
when struggling, time management, and 
technology difficulties.

Some general themes emerged when students 
were asked “what could make this course 
better?”. The themes were 

• the request to have live meetings (face-to-face 
or video conference)

• need more access to the content, and

• include more clear explanations/instructions.

Student statements specifically addressed 
technology, such as WeBWorK not being user-
friendly, asking for lectures to be posted online, 
and having specific instructions and training for 
how to use course software (R Studio).

Citations
Hauk, S. & Segalla, A. (2005). Student Perceptions of the Web-Based Homework Program WeBWorK in 
Moderate Enrollment College Algebra Classes. Journal of Computers in Mathematics and Science 
Teaching. 24(3), 229-253. 
Ramadhani, R. et. al. (2021). Undergraduate students’ difficulties in following distance learning in 
mathematics based on e-learning during the covid-19 pandemic. TEM Journal. 10(3), 1239-1247. 
Serhan, D. & Almeqdadi, F. (2020). Students’ perceptions of using MyMathLab and WebAssign in 
mathematics classroom. International Journal of Technology in Education and Science (IJTES). 4(1), 12-17.

Methodology and Procedures

Due to the variety of majors represented 
amongst statistics classes, the perceptions of 
students from three undergraduate statistics 
courses were examined in this study; 
Probability and Statistics, Probability and 
Statistics for Business Majors, and 
Probability and Statistics for Natural 
Science. 

A 17-question online survey was distributed 
among 464 students across 19 sections of 
these courses, of which 39 responded 
yielding a response rate of 8.41%. Data was 
analyzed using descriptive statistics.

Abstract

The mode of instruction, online versus face-to-
face classes, may be a positive or a negative 
experience. During the spring 2021 semester, data 
was collected from three online statistics courses 
to measure student perceptions. This poster 
presentation will discuss the impact of online 
undergraduate mathematics classes on student 
perceptions.

Background

While online learning has played an important 
part of curriculum and teaching in universities, it 
has become more prominent due to the need for 
distance education to help mitigate the spread of 
COVID-19 (Ramadhani, 2021). Online platforms 
like Zoom, OER (open educational resources), 
and Blackboard allow for learning to be flexible, 
adaptable, and accessible to students. However, 
with online learning comes unforeseen 
challenges. Researchers have found difficulties in 
communication (Ramadhani, 2020), issues with 
technology, and ease of forgetting assignments 
(Serhan & Almeqdadi, 2020). Other researchers 
found that online platforms such as WeBWorK
were not user-friendly (Hauk & Segalla, 2005). 
Research is needed to understand the influence 
of online classes on student perceptions. 

Research Question

What are the impacts of an online undergraduate 
mathematics class on student perceptions? 

Impact of Online Undergraduate Mathematics Courses on Student Perceptions
Mikayla Dokos, Valerie Long, Yuliya Melnikova

IUP Department of Mathematical and Computer Sciences

Motivation to Complete Assignments

Very Unmotivated Unmotivated Neutral Motivated Very Motivated

0 5 10 15 20 25 30

Motivation

Understanding Material

Asking for Help

Time Management

Technology Issues

Top 5 Challenges in Online Learning

Results and Discussion

41% of the students from this sample stated 
they were motivated to complete 
assignments. Approximately 39% of 
students were not confident in succeeding 
in their statistics course. However, about 
59% stated they would perform better had 
the course been offered in person. 
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The purpose of this study was to explore preservice and novice secondary mathematics 
teachers’ proof-writing abilities and beliefs about geometry (particularly proofs), in order to 
propose ideas about how to improve the teaching and learning of geometric proofs. This study 
contributed to the pre-existing research on Shulman’s (1986) categories of teachers’ knowledge. 
Although many studies distinctly examined subject matter content knowledge, pedagogical 
content knowledge, or curricular knowledge, the present study began to examine these factors in 
conjunction. Moreover, the researcher did not find pre-existing studies focusing solely on the 
beliefs, attitudes, and content knowledge of pre-service and novice secondary mathematics 
teachers with regard to geometric proof. 

I created a five-item content assessment (eMATHinstruction, 2017, 2018a, 2018b; The 
University of the State of New York, 2015, 2016) to administer to preservice and novice 
secondary mathematics teachers. Each content assessment item was taken from end-of-year 
assessments for high school students. I met with 29 participants to administer the assessment 
while asking questions regarding their feelings, beliefs, and confidence in regard to teaching 
proof in high school geometry. The administrations of these content assessments and 
simultaneous interviews were audio-recorded and transcribed, and subsequently analyzed for 
trends in the participants’ responses using five qualitative codes: Beliefs and Attitudes (BAA), 
Issues of Correspondence Between Substance and Notation (ICSN), Expressing Understanding 
and Self-Doubt (EUSD), Mathematical Language (ML), and Pure Mathematical Issues (PMI).  

The results of the study showed that the majority of the preservice and novice secondary 
mathematics teacher participants do not currently feel prepared to teach proof in high school 
geometry, from standpoints of both mathematical content knowledge and confidence. The 
participants with no geometry teaching experience mainly drew on their own experiences from 
high school, and tried to remember specific rules and standards that their particular teachers tried 
to instill. This finding supports the ideas of Schoenfeld (1985) and Battista (2009), who also 
found that most secondary school students see proof-writing as nothing more than following a set 
of prescribed rules. This study, however, also illuminated issues within participants’ 
Mathematical Knowledge for Teaching (MKT). Specifically, participants did not connect the 
ideas of rigid motions and equality of measures to congruence, used circular reasoning, and made 
incorrect visual assumptions when considering diagrams. In response to the interview questions 
that addressed participants’ beliefs and feelings about proof and proving, the participants overall 
voiced preferences to teach other courses over geometry. Many participants gave up without 
attempting one or more content assessment items, displaying the need for stronger beliefs in their 
own abilities. Although participants were not told that the assessment items were high-school 
level problems, many of them expressed that they knew that from previous exposure via tutoring 
or student teaching. 

Since teachers’ attitudes are so easily transferrable to the students in their charge, it is 
important to continue to conduct research in this area so that the state of the teaching and 
learning of geometric proof can be improved. 
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Peer mentoring programs can provide instructional support for graduate teaching assistants 
(GTAs) (Rogers & Yee, 2018; Yee & Rogers, 2017) through more specialized and detailed 
discussions than just working with faculty (Speer et al., 2015; Yee & Rogers, 2016). Lanius et al. 
(2022) explored how mentees and mentors participating in a comprehensive multi-component 
GTA pedagogical training program, Promoting Success in Undergraduate Mathematics Through 
Graduate Teacher Training (Harrell-Williams et al., 2020), at three universities at the start of an 
academic year conceptualized the role of an effective mentor. In this poster, we explore whether 
this conceptualization of the mentor role changed over the course of the academic year after 
participation in components of the training program: a GTA Teaching Seminar, Critical Issues 
Seminar, and peer mentoring (including mentor training). 

Forty GTAs across three universities completed online surveys in August 2020 and May 
2021, answering the same items both times. Two Likert-type items asked about their view of the 
mentor role in a mentor-mentee relationship. For the first item, a score of “1” indicated viewing 
the role of mentor as an authority figure whereas a score of “5” indicated more of a collaborative 
relationship. For the second item, a score of “1” indicated the mentor is a problem-solver and “5” 
indicated being an empowerer. Mentors also answered two items rating themselves on these 
continuums. All GTAs were asked to describe the characteristics of an effective mentor.  

The related samples Wilcoxon signed-rank tests indicated that there were no statistically 
significant changes for mentees or mentors for the Likert-type items from August to May. 
Specifically, six mentees of 23 mentees and five of 17 mentors did not “change” on either of the 
role conceptualization items. Five of 11 mentors did not “change” on the self-as-mentor items. 
However, Spearman correlations across timepoints only ranged from .20 to .56, indicating some 
individual change which was also supported by the qualitative data. The poster will also report 
results from a psycholinguistic analysis of the responses to the open-ended items. Future work 
will explore changes in role conceptualization as mentees become mentors. 
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There is ample evidence that peer mentorship among graduate 
students benefits their academic, professional, psychological, and 
social learning (Lorenzetti et al., 2019). Specifically,  peer teaching 
mentorship supports graduate teaching assistants’ (GTAs) 
instructional effectiveness, leadership, and confidence (Belnap, 
2005; Lorenzetti et al., 2019; Funkhouser et al.,2021; Yee & Rogers, 
2017). Views on what makes an “effective” mentor vary throughout 
literature (NASEM, 2019). Based on the social theory of learning, 
mentors and mentees tend to conceptualize the mentor role as an 
authority figure or collaborator, and a problem solver or empowerer 
(Lanius et al., 2022). In this poster, we examine how GTAs’ 
conceptualization of a peer-mentor’s role changes over time as they 
engage in the peer-mentoring component of the PSUM-GTT 
program.  

Background

Data Context: About PSUM-GTT

● Neither the repeated samples tests nor the “problem 
solver/empowerer” correlations were  significant.

● The four Transition Diagrams provide insight into 
interesting cases for further qualitative analysis.

● Both mentees and mentors increased their mentioning of 
“good listener” as important for effective mentors.

● Mentors increased their mentions of effective mentors as 
“knowledgeable” while mentees were unchanged.

● Mentees prioritized the “availability” of mentors more in 
May whereas mentors were unchanged.

● “Constructive feedback” mentions increased over time for 
mentees but decreased significantly for mentors.

● “Relevant experience” of mentors decreased in mentions 
for both mentees and mentors over time.

The Promoting Success in Undergraduate Mathematics 
through Graduate Teaching Assistant Training 
(PSUM-GTT) program employs a multi-component 
approach to training.
➔ Seminar on teaching with a focus on equity and 

inclusion
➔ Critical Issues in STEM Education seminar series
➔ One-to-one peer mentoring
➔ Support from a peer TA coach
➔ Visits to K-12 mathematics classrooms and 

enrichment experiences 

More information is available on 
the project ResearchGate page, 

accessible by using the QR code. 

2016

Program launched at University of 
Colorado – Denver  (NSF# 1539602)

2019

Program introduced at Auburn University 
and University of Memphis 

(NSF# 1821454, 1821460, 1821619)

Now

Program leaders from all three universities 
work together to coordinate program 
implementation and refinement as well as 
research on program experiences and 
outcomes

Methods Take-aways

Results

● Research Question: How did mentees and mentors’ conceptualizations of 
peer teaching mentorship change?

● Sample: Start-of-year survey completed in August 2020 and May 2021 by 
23 mentees and 17 mentors.

● Survey items: 
○ 2 Likert-type items about mentors’ roles (see box to the right)
○ 1 open-ended question: 

        “What do you believe are the characteristics of an effective mentor?”
● Analysis:

○ Related samples Wilcoxon signed-rank tests & Spearman’s correlation 
to assess change over time

○ Qualitative coding analysis to organize and group descriptive terms 
for characterizing an effective mentor obtained from the open-ended
survey question. 

Items about Mentors’ Roles

Mentees 
in August

Mentees 
in May

others, 
interested, 

constructive, 
approachable, 

happy

listening, 
caring

good, willing, listener, helpful, 
available, effective, giving, 
feedback, teaching, kind, 

someone, believe, mentees, 
open, advice

What are the characteristics
 of an Effective Mentor?

Mentors 
in August

Mentors 
in May

good, listener, feedback, help, 
ideas, ability, provide, constructive, 
able, criticism, available, positive, 

willing, mentees, needs   

helps, 
helpful, 
patient 

knowledge, 
attitude 

What are the characteristics
 of an Effective Mentor?

repeated samples Wilcoxon signed rank test: z = -0.51, p=.61
Spearman’s rho: r = .25

repeated samples Wilcoxon signed rank test: z = -0.68, p= .50
Spearman’s rho: r = .20

repeated samples Wilcoxon signed rank test: z =  1.73, p=.08
Spearman’s rho: r = .44*

repeated samples Wilcoxon signed rank test: z =  -0.28, p=.78
Spearman’s rho: r = .56*

Mentees Relevant 
Experience

Knowledgeable/ 
Know what 

to do

Good 
Communicator

Good Listener Approachable Constructive 
Feedback

Helpful Available Uplifting

August 10 4 10 5 5 8 7 1 3

May 6 4 8 11 8 12 8 7 5

Mentors

August 13 2 4 10 6 14 9 9 5

May 8 9 2 15 8 4 3 9 5

Table summarizing frequency counts for qualitative codes of open-ended question

QUANTITATIVE RESULTS

QUALITATIVE RESULTS
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Students’ Justifications and Their Proofs by Mathematical Induction 
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Mathematical induction has proven to be difficult for students to understand (Ernest, 1984) 
and, more broadly, the purpose of proof; often remaining unfulfilled as to the certainty of P(n) 
for values of n for which the statement is proven (Avital & Libeskind, 1978; Harel, 2002). The 
research perspective in this paper is the proving-as-convincing research paradigm (Stylianides et 
al., 2017). 

Some studies have focused on students’ convictions with how they develop or shift (Brown, 
2014) and how students convictions may be understood (Weber & Mejia-Ramos, 2015). Others 
have studied how mathematical arguments may be convincing (Stylianides & Stylianides, 2009). 
Generally, students may show evidence of this with their justifications regarding proofs.  

As part of a larger study, we had students complete a task asking to produce a proof by 
mathematical induction and provide justifications for the truth value of P(n) for certain values of 
n. The purpose of this study is to examine the relationship between students’ abilities to construct 
a proof by mathematical induction and their types of justifications based on their written 
responses to the task. In this study, 59 undergraduate STEM majors across two semesters were 
given the following task: 

a) Prove the statement P(n) by mathematical induction for n ϵ ℕ, n ≥ 6, 
P(n): 17 + 20 + 23 + … + (3n – 1) = n(3n + 1)/2 – 40. 
b) Is the statement true for n = 10? Justify your answer. 
c) Is the statement true for n = 5? Justify your answer.  
d) Comment on your difficulties, if any. 
For a preliminary analysis, a framework has been developed loosely based on work by Harel 

and Sowder (1998) who described the act of justifying as “how students ascertain for themselves 
or persuade others of the truth of a mathematical observation” (p. 243). We have incorporated 
the domain of discourse (Stylianides et al., 2007) and domain of validity (Healy & Hoyles, 2000) 
into a framework to help define these terms. 

For proof justification, a student provides justification using his or her proof of the statement. 
For P(10), it is inferred that the student understands the associated domain of validity for his or 
her proof. For P(5), it is inferred that the student is convinced that for any value not within the 
domain of validity (but in the domain of discourse), the statement is false. For empirical 
justification, the student does not use his or her proof for justification. However, a student may 
feel the need to provide an additional verification, such as a calculation, that is different from his 
or her proof after having already proven the statement.  

We found that students often relied on empirical justifications (53%), as reported in the 
literature. However, we also found interesting results. Some students (17%) relied on the proof 
for both cases, and a few (7%) used proof justification for P(5) and empirical justification for 
P(10), a result found only to be reported once in the literature (Stylianides et al., 2007). These 
findings contribute to the field by showing that students may use different sources for justifying 
statements depending on where the value in question lies. Educators may use these results to 
attend to how students may operate in the domain of validity and domain of discourse when 
understanding the purpose of proof. 
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(Top Right) Empirical Justification for P(10) and Proof Justification for P(5).

Poster Template B
Students’ Justifications and Their Proofs by Mathematical Induction

Mario A. Gonzalez and Valentina Postelnicu
Department of Mathematics in the College of Science and Engineering at Texas State University

Rationale
Mathematical induction has proven to be difficult for 

students to understand (Ernest, 1984) and, more 
broadly, the purpose of proof; often remaining 
unfulfilled as to the certainty of P(n) for values of n for 
which the statement is proven (Avital & Libeskind, 
1978; Harel, 2002). 

The research perspective in this paper is the proving 
as convincing research paradigm (Stylianides et al., 
2017). Stylianides et al. (2017) stated that this research 
paradigm on proof revolves around studying students’ 
convictions with evidence (i.e., mathematical arguments 
and proofs) and how it is related to the mathematics 
community’s accepted forms of proof. 

In this proving as convincing research paradigm, 
deductive arguments, such as proofs by mathematical 
induction, convince mathematicians while arguments 
relying on specific calculations or having the 
appearance of proof remain unconvincing (Stylianides et 
al., 2017). 
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Purpose
As part of a larger study, we had students complete a task 

asking to produce a proof by mathematical induction and 
provide justifications for the truth value of P(n) for certain 
values of n. For these values, we investigated students’ 
responses for which source, either their proofs or non-proof 
related reason(s), was used to determine the truth of the 
statement. 

The purpose of this study is to examine the relationship 
between students’ abilities to construct a proof by 
mathematical induction and their types of justifications based 
on their responses to the task. 

(Bottom Right) Empirical Justification for both P(5) and P(10).

Findings
Note that students’ written comments on part d) of 

the task are included in the figures. Some students 
declined to respond to part d).

We found that students often relied on empirical 
justifications (53%), as reported in the literature. 
However, we also found interesting results. Some 
students (17%) relied on the proof for both cases, and a 
few (7%) used proof justification for P(5) and empirical 
justification for P(10), a result found only to be reported 
once in the literature (Stylianides et al., 2007). 

Some students responded to part d) by writing that 
they did not experience difficulties. This is interpreted 
that students may not perceive the relationship between 
a proof and the domains of discourse and validity.

These findings contribute to the field by showing that 
students may use different sources for justifying 
statements depending on where the value in question 
lies. Educators may use these results to attend to how 
students may operate in the domains of discourse and 
validity when understanding the purpose(s) of proof. 

(Bottom Left) Proof Justification for P(10) and Empirical Justification for P(5).

Next Steps
We plan to use these findings to help develop tasks 

to better understand how students’ justifications 
change based on the domains of discourse and validity. 

Future research investigations may include these 
constructs and the relationship with students’ 
convictions with mathematical statements and 
arguments.

Theoretical Background
Ernest (1984) described the necessary steps to prove 

a statement by mathematical induction which grounds 
itself in modus ponens, a deductive argument, and the 
Principle of Mathematical Induction (PMI). 

For mathematical statements, the domain for finding 
whether a statement is true is called the domain of 
discourse (Stylianides et al., 2007). The domain of 
discourse for proofs by mathematical induction is any 
natural number, n, greater than the basis step, 𝑛0 (n ≥ 
𝑛0). In Healy and Hoyles (2000), they called the domain 
for which a statement is known to be true the domain of 
validity. The domain of discourse for P(n) in the task for 
this study is n ≥ 5 where n is a natural number, 
however, the domain of validity is n ≥ 6.

For this study, the term justification describes how a 
student determines the validity of a mathematical 
statement for a value (Harel & Sowder, 1998). Students 
provide these justifications with written responses to 
the task. Note that the proofs with which students 
interact are their own proofs by mathematical induction.

We have incorporated the domain of discourse 
(Stylianides et al., 2007) and domain of validity (Healy 
& Hoyles, 2000) into a framework to help define these 
terms.
Categories

For proof justification, a student provides justification 
using his or her proof of the statement. For P(10), it is 
inferred that the student understands the associated 
domain of validity for his or her proof. For P(5), it is 
inferred that the student is convinced that for any value 
not within the domain of validity (but in the domain of 
discourse), the statement is false. 

For empirical justification, the student does not use 
his or her proof for justification. However, a student may 
feel the need to provide an additional verification, such 
as a calculation, that is different from his or her proof 
after having already proven the statement.

(Top Left) Proof Justification for P(10) and Proof Justification for P(5).

The Task
In this study, 59 undergraduate STEM majors were given the 

task below. With the students’ responses, we performed 
preliminary analyses of the justifications, and we discuss these 
students’ justifications.
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Samuel Waters 

University of Northern Colorado 

Keywords: Transition, University Mathematics, College Algebra, Phenomenology 

Early experiences in undergraduate mathematics contribute to student persistence STEM 

majors (Courturier & Cullinane, 2015). The transition from high school to undergraduate 

mathematics remains problematic for both students and instructors despite increased attention on 

the issue (O’Shea & Breen, 2021). Motivated by the need to understand STEM-specific issues 

related to student transitions to college, this study investigated two research questions: (a) What 

is the essence of the lived-experiences of first-year undergraduate students transitioning to their 

first post-secondary mathematics course? and (b) How do students view their transition after 

their first undergraduate mathematics course? 

Previous research on transition to college found when students do not feel like they belong at 

their institution or in a classroom, there is less academic engagement and lower achievement 

(Bowman et al., 2019). While many researchers have investigated the transition to collegiate 

mathematics, most are focused on specific aspects of the mathematics courses such as content, 

instruction, or classroom environment (Blackmore, 2021; Chuene, 2011; O’Shea & Breen, 

2021). This study enhanced existing research by taking a more holistic view of transitions 

including factors in and out of the mathematics classroom. 

Through a constructivist lens, this study focused on the meaning that students construct while 

experiencing their transition to undergraduate mathematics and their reflections on these 

experiences. As the qualitative approach of the study, an interpretative phenomenological 

analysis (IPA) centered the study on individual experiences and the meaning-making of both 

participant and the researcher (Smith & Shinebourne, 2012). Goodman et al.’s (2006) transition 

theory served as an analytical framework. Participants were three first-year students who were 

enrolled in College Algebra during their first semester at a mid-sized university. The first 

interview occurred at week ten of the first mathematics course. One participant was selected for a 

follow-up interview at the start of their second semester. Each interview was transcribed and 

coded using In Vivo coding followed by pattern coding to identify themes. 

Three overarching themes were: (a) adjusting to new course expectations, (b) navigating 

challenges outside the classroom, and (c) changes in mindset and motivation. All participants 

shared experiences adjusting to new expectations for participation and working with others, 

which two participants noted helped them learn and made them more comfortable in the 

classroom. Participants described an emerging independence which contributed to changing 

mindsets in the mathematics classroom. One participant shared that since he was in college now, 

“I had to think differently… I had to change the mindset of what I needed to do.” Another spoke 

about how her experiences in College Algebra provided an outlet to explore a new sense of self, 

stating “I felt more in my own skin.” Findings from this study point to several implications for 

instructors including setting and communicating clear expectations to assist students in 

understanding their new environment. Encouraging group work early in courses can help 

students build connections and develop a sense of belonging both socially and academically 

within the classroom. Further research can explore how students’ mathematical identities change 

during the transition to college mathematics. 
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Exploration of Students’ Experiences Transitioning from 

Secondary to Tertiary Mathematics

Motivation

• High dropout rates at universities linked to failure in mathematics 
point to a remarkable subject-specific challenges for students 
transitioning from secondary to tertiary educational environments 
(Rach & Heinze, 2017).

• Understanding student experiences provides institutions and 
faculty with needed information to set up supports and 
interventions to promote student success in mathematics 
(Blackmore et al., 2021). 

Purpose

The purpose of this longitudinal phenomenological study was to 
describe first-year undergraduate students’ experiences transitioning 

from high school to undergraduate mathematics classrooms.

Research Questions

• Q1 What is the essence of the lived-experiences of first-year 
undergraduate students transitioning to their first post-secondary 
mathematics course?

• Q2 How do students view their transition after their first 
undergraduate mathematics course?

Motivation, Purpose, Research Questions

Research Design and Methods

“when I walked into college my first day, I didn’t really see myself [how I do] now.” - Sela
“I feel like it [College Algebra] just made the semester a bit more better, I guess. I felt more in my own skin than I 
did…a class that I actually felt motivated doing, felt pretty good in.” - Sela

“I guess the thing that changed was having a new mindset since it was college now. I had to think differently… I 

had to change the mindset of what I needed to do and what I needed to change about myself.” – Solus

“During the year I'd been really good about sticking to a sleep schedule and just overall I was doing a lot better with 

mental health and physical health and a lot of that stuff. So a lot of the reasons I really loved that math class 

weren't exactly about the math class. There was other contributing things.”  - Dan

Students’ Voices

Adjusting to New Course Expectations

Navigating Challenges Outside the Classroom

Changes in Mindset and Motivation

Reflections on the Transition

Results

Trustworthiness and Limitations

Trustworthiness
• Research journal, reflexivity, and bracketing
• External checks from peers and other researchers 
• Member checks during and after interviews

Limitations
• Sample: size; same course at same institution; enrolled in 

mathematics in first semester right after high school
• Dan and Solus were only interviewed once

Implications and Future Research

Implications for Practice

• Undergraduate instructors can reflect on how they communicate 
course expectations to help students assess their new situations.

• Consider how to incorporate group work early in the course to 
assist students with their academic and social transitions.

• Be understanding of factors outside of class that might be 
contributing to academic challenges.

• Build structured peer supports to take advantage of lessons 
learned by students who have gone through the transition.

Recommendations for Future Research

• Examine secondary-to-tertiary mathematics transitions in other 
settings (e.g., institutions, courses, etc.)

• Investigate how transitions are impacted by recent and ongoing 
educational experiences related to COVID-19

• Further explore the potential of group work to facilitate student 
transitions in mathematics. 

• Research how students’ mathematical identities change during 

transition.

References

Schlossberg et al.’s (1995) Transition Theory

Research Paradigm: Constructivism
The central tenant of constructivism is that meaning is constructed by 
human beings as they interact with the world; reality cannot exist 
separate from the knower’s experiences (Crotty, 1998). 

Methodology: Interpretive Phenomenological Analysis (IPA)
Phenomenological studies attempt to describe a phenomenon by 
focusing on the common meanings that individuals have towards a 
shared experience (Creswell & Poth, 2018).

Setting: mid-sized, regional university in the Rocky Mountain Region

Participants: Participants were three undergraduate student 
volunteers enrolled in College Algebra during Fall 2021, their first 
semester of college after graduating high school in Spring 2022.

Data Collection: Each participant partook in an interview ten to 
twelve weeks into their first semester. One participant, Sela, was 
selected for follow-up and was interviewed two additional times 
during Spring 2022.

Data Analysis: Interview transcripts were reviewed and coded using 
in vivo and descriptive codes. Codes were also initially categorized 
based on Schlossberg’s 4S components. Pattern coding was then 

used to identify main themes.

Samuel Waters, Graduate Student, Educational Mathematics Ph.D. and Advisor Dr. Gulden Karakok

Dan (he/him)
Caucasian; majoring in English Education; enjoys 
fantasy and board games

Sela (she/her)
Hispanic; majoring in Psychology; oldest of five; first-
generation college student; “quiet and chill”

Solus (he/him)
Hispanic; majoring in Business Marketing; out-of-state 
student; “shy”

Note: Pseudonyms, pronouns, and all personal descriptors were selected and provided by 
the participants

Description Example

Differences in perceived 
instructor support “A lot of professors aren’t really there to teach.” – Dan

Greater focus on process and 
conceptual understanding.

In high school math class, “I didn’t have to explain a lot of it and you just had to 

get the answer.” - Solus

Access to peer supports and 
multiple solution strategies

“I got to learn more about how the other peers did math, like how they solved 
their problems. They would explain it and it taught me a new way than the original 
way I learned and so it’s a new strategy to put in the books.” –Sela

Description Example

Other 
responsibilities

“I started working this semester my first job because I never really worked before, so it's 

something new that I've been trying to get used to and then also [getting] used to making time 
around it. I get less time to complete it [homework] and so I think I'm rushed to do it 
[homework].” - Sela

Difficulty in making 
friends “I’ve been really slow to meet new people and make friends.” – Dan

Outside stress 
interacting with 
mathematics

“it’s getting to the point where I’m just like, I need to ask for an extension time because there’s 

too many things to do. And so, when I do have time, it’s usually for more work.” - Solus

Description Example

Growing sense of 
independence “It’s just adjusting to living on my own.” – Dan

Independence related to 
mindset

Solus made a conscious decision to adopt a new mindset when entering college 
(quoted above). 
“Not having to rely too much on others.” – Solus

Independence related to 
motivation

Dan took ownership of his own learning and  did not rely on others for motivation in 
mathematics.

Description Example

Assessing support and strategies “teaching them was teaching myself” – Sela

Developing independent identity Sela was able to see herself as an individual instead of just as a member of her family. The interactions Sela 
had in her mathematics course provided an outlet to explore this new sense of self (quoted above).

Applying lessons learned moving 
forward

“Because of that previous group work I had in College Algebra… I didn’t feel pressure…I felt easily able to 

really speak with them and share my opinion as well…I know that if it were younger me, I wouldn’t have 

been able to do that.” - Sela

Analytical Framework

Situation

Strategies

Self

Support

What 
Happened

Coping 
Responses

Characteristics 
and Perceptions

Social 
Supports
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Embodiment as Evidence for Student Engagement in an Inquiry-Based Mathematics Classroom 

 

 Kaylee Fantin-Hardesty Rachel Tremaine 

 Colorado State University Colorado State University 

 

 Jocelyn Rios Hortensia Soto 

 Colorado State University Colorado State University 

 

Keywords: Embodiment, inquiry, engagement 

The multi-dimensional construct of student engagement is an important aspect of students’ 

experiences with mathematics, and increased levels of engagement support students’ academic 

achievement (Carini et. al, 2006; Pilotti et al., 2017) and positive mathematics identity (Voigt et 

al., 2022). We propose that embodiment is a useful lens for exploring evidence of such 

engagement. Embodiment is the notion that “thinking does not occur solely in the head but also 

in and through a sophisticated semiotic coordination of speech, body, gestures, symbols and 

tools” (Radford, 2009, p. 111). While scholars have studied student engagement in the context of 

specific embodied tasks through self-reporting instruments (Georgiou & Iannou, 2020; Lindgren 

et. al, 2016), there is a gap in the literature regarding how embodiment might provide evidence 

of students’ engagement. As student engagement with meaningful mathematical tasks is one of 

four pillars of Inquiry-Based Mathematics Education (IBME) (Laursen & Rasmussen, 2019), the 

IBME classroom is an ideal setting to study observable, embodied student engagement. In this 

poster, we present a microanalysis of three episodes of embodied engagement between two 

students (Rebecca and Lauren) in an IBME Discrete Mathematics classroom. 

We draw on Fredericks et al.’s (2004) summaries of behavioral (on-task, participatory 

classroom actions), affective (emotional response or investment to the task at hand and its 

associated discoveries), and cognitive (students’ self-regulation of learning) engagement to 

assess whether embodiment captures classroom engagement. These categories of engagement are 

not disparate, and thus we consider them as “dynamically interrelated” (Fredericks et al., 2004, 

p. 61). We also leverage definitions of embodiment that draw from Nemirovsky et. al (2012) in 

which mathematics is framed as a perception-action cycle and is evidenced by bodily activities 

including gesture, gaze, and body position to address our research question: In what ways can 

embodiment provide evidence for students’ engagement with meaningful mathematical tasks?  

Our three selected episodes support the notion that all three categories of student engagement 

are observable, embodied phenomena in the IBME mathematics classroom. For example, in one 

episode Rebecca’s body positioning, gesture, and use of materials, without verbiage, illustrates 

her behavioral and cognitive engagement as the professor and Lauren converse. An embodied 

lens enabled attention to Rebecca’s rich engagement that otherwise may have gone unnoticed. 

Thus, we assert that leveraging embodiment to study student engagement provides new insights 

into how students engage with meaningful tasks in an IBME classroom. This perspective can be 

utilized by both researchers and instructors in constructing a more nuanced understanding of how 

students engage with mathematics tasks. 
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Motivation
Engagement in the math classroom is an important component 
of student experience and achievement. (Carini et al., 2006; 
Pilotti et al., 2017; Voigt et al., 2022)
“Developing valid and reliable measures [for student 
engagement] is especially important in math and science 
because engagement in these subjects is so critical to academic 
achievement and career choices related to STEM.” (Fredericks et 
al., 2016)
Measuring student engagement is often limited to self-reporting 
or observation scales which privilege verbal participation. 
(Fredericks & McColskey, 2012; Hodgson et al., 2010)

We propose embodiment as a lens through which to observe 
student engagement in the classroom,

Research Question: In what ways can embodiment 
provide evidence for students’ engagement with 

meaningful mathematical tasks?

Embodiment as Evidence for Student Engagement in an 
Inquiry-Oriented Mathematics Classroom

Embodiment can and does provide evidence of student 
engagement in all three domains!

Embodiment provides evidence for students’ engagement in 
ways which…

1. …illuminate engagement which may have gone unnoticed 
under observational scales which privilege verbalization

• Episode 1 - Rebecca responds non-verbally to Dr. A’s 
guidance

2. …account for the multimodal nature of both utterances and 
engagement as constructs (Fredericks et al., 2004; 
Nemirovsky & Ferrara, 2009)

• Episode 2 - Rebecca laughs, claps her hands, and points 
to Lauren, indicating emotional and cognitive 
engagement

3. …consider the broader classroom context in which the 
students are engaging with the task (Hodgson et al., 2017; 
Kahn, 2014; Keith, 2016)

• Episode 3 - Rebecca and Lauren’s cognitive engagement 
is largely impacted by Anthony’s conjecture in the 
classroom environment

Using embodiment to learn about students’ classroom 
engagement broadens the definition of what it means to be a 
classroom participator, and captures engagement that might 
otherwise go unnoticed. Embodiment has strong potential to help 
educators notice, understand, and empower non-verbal 
participation. Further, embodiment offers an additional lens 
through which researchers may assess engagement.

Future Work
• Triangulating observations with self-assessment data 

(particularly with relevance to the students’ cognitive 
engagement)

• Examining what a microanalysis of engagement would look 
like under different teaching paradigms

Findings & Discussion

Embodied Cognition
Embodied cognition asserts that “...thinking does not occur 
solely in the head but also in and through a sophisticated 
semiotic coordination of speech, body, gestures, symbols and 
tools.” (Radford, 2009, p. 111)

Embodiment can enhance student engagement with tasks. 
(Georgiou & Iannou, 2020; Lindgren et al., 2016)

We categorized the embodiment of our participants using 
Nemirovsky and Ferrara’s (2009) notion of multimodal 
utterances.

Participants:

• Students of an undergraduate Discrete 
Mathematics course

• An experienced instructor (Dr. A) who 
follows an Inquiry-Based Mathematics 
Education (IBME) teaching paradigm

Results
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Data Collection and Selection:

• Videotaped a total of 2.5 hours of classroom footage

• Narrowed our focus to a meaningful mathematical task that the students worked on the 
“Locker Problem” (physical copy of worksheet available for viewing)

• Analyzed the engagement of two students, Rebecca and Lauren, who utilized two-colored 
counters and worked both individually and together to solve the Locker Problem

Methodology

Rebecca interacted with 
her two-colored counters 
in direct response to the 
conversation she heard 
Lauren and Dr. A having.

Episode 1: 
Responsive Resetting

Kaylee Fantin-Hardesty
Colorado State University

Rachel Tremaine
Colorado State University

Dr. Jocelyn Rios
Colorado State University

Dr. Hortensia Soto
Colorado State University

Student Engagement
Fredericks et al. (2004) provide three categories of student 
engagement:
• Behavioral Engagement: on-task, participatory classroom 

actions

• Affective Engagement: emotional response and investment in 
the task

• Cognitive Engagement: students’ self-regulation of learning, 
thoughts, and perseverance

Student engagement with meaningful mathematics tasks is one 
of four pillars of Inquiry-Based Mathematics Education (IBME). 
(Laursen & Rasmussen, 2019)

Nemirovsky & 
Ferrara (2009)
Figure 2: The 
multimodality of 
an utterance

Analysis:

• Microanalysis (Garcez, 1997): second-by-second transcription and 
description

• 2x Thematic Analysis (Braun & Clarke, 2006) – a priori coding according 
to Nemirovsky & Ferrara’s (2009) multimodality of utterances and 
Fredericks et al.’s (2004) three domains of engagement.

Screenshot of Full Microanalysis and Coding for Episode 2

Lauren and Rebecca 
discovered a pattern in their 

counters, and expressed 
excitement when the pattern 

continued.

Episode 2: 
Collaborative Conjecturing

Lauren and Rebecca both 
expressed deep confusion 
when they overheard Dr. A 

validate a classmate’s 
conjecture, which did not 

match their materials. 

Episode 3: 
Second-guessing Squares

2.5 hours of 
videotaped 

classroom data 
of Dr. A’s IBME 
Discrete course

Students 
working on 
the “Locker 
Problem”

Rebecca, 
Lauren, and two 
other students

Rebecca & 
Lauren

Episode 1: 27 seconds

Episode 2: 15 seconds

Episode 3: 11 seconds

Meaningful 
mathematics 

task

Use of two-
color counters

Richness of dual 
and individual 
embodiment

Rich embodiment // 
Rebecca and Lauren 
“reflexively making 

sense of each others’ 
actions as they act” 

(Garcez, 1997) through 
their embodiment

Process through which Episodes were Selected

Rebecca pushed additional counters towards 
her original line of counters, while Dr. A and 
Lauren continued discussing Lauren’s 
worksheet.

Rebecca (right) leaned towards her counters 
and began resetting them to their original 
“closed” position when Dr. A (center) 
prompted Lauren to reconsider the problem.

Lauren and Rebecca nonverbally and excitedly 
acknowledged each other, demonstrating a 
shared understanding of the pattern they 
both noticed, without ever verbalizing the 
pattern itself.

Rebecca laughed, clapped, and pointed to 
Lauren in a continued display of 
excitement. This exchange was 
demonstrative of affect, cognitive, and 
behavioral engagement by both students.

Both students looked towards Dr. A 
and a fellow classmate, while listening 
to their discussion. Lauren adopted a 
confused expression in response to a 
statement made by Dr. A that seemed 
contradictory to the pattern 
discovered in Episode 2.

Lauren shook her head in a continued state of 
confusion. Rebecca stared intently at the counters 
in front of her. Both students remained silent, 
seemingly attempting to reconcile Dr. A’s 
statements with their own discovered pattern.
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How Calculus Students Describe and Use Volume in Calculus and Non-Calculus Tasks 

 
Ian West 

University of Maine 

Existing research indicates that some learning challenges Calculus students face may not be 

related to the Calculus-specific content, but rather from issues related to prerequisite knowledge. 

Several Calculus topics such as volume by slicing and volumes of revolution have a prerequisite 

topic of volume. These Calculus topics tend to be challenging for students in various ways. 

Better understanding how these students describe and use volume may help inform instructors as 

well as potential reforms to practices to better support student learning of these Calculus topics. 

Keywords: calculus, volume, integration, student description 

Existing literature documents the influence of prerequisite knowledge on the learning of 
limits and differentiation (e.g., Dorko, 2012; Ferrini-Mundy & Graham, 1994; Orton, 1983). It is 
possible that these issues could also extend to other Calculus topics. In particular, could student 
understanding of volume influence thinking on volume by slicing or volumes of revolution 
problems? A 2012 study indicated that, on tasks prompting Calculus students to find the volume 
of prisms, issues arose with conceptions and calculations, including some students making 
calculations more suggestive of surface area than volume (Dorko, 2012). Building on findings 
about understanding of integration (e.g., Jones, 2015; Sealey, 2014), we replicated Dorko’s 
study’s design with a focus on volume-related topics found in second-semester Calculus. 

Approached from a cognitive perspective, data were collected via written response to surveys 

distributed to second-semester Calculus students from a large public university. Three questions 

were prompts to find the volume of a rectangular, a circular, and a triangular prism. Data was 

also collected in the form of follow up interviews to the survey task. During the interviews, 

students were asked to solve two volume of revolution tasks, similar to those typically presented 

in their Calculus class. Students were asked to describe their solutions, as well as why they think 

their solutions are or are not accurate. Data included what was recorded on paper, as well as 

video and audio interview recordings. We collected 97 responses to the survey task and have 

conducted 7 interviews. Of the students who completed the survey, 20% of students used an 

incorrect formula to calculate the volume of the cylinder and 11% for the triangular prism. These 

findings are similar to those of Dorko (2012). Analysis of interview data indicates some issues 

with volume in Calculus tasks as well as uncertainty about the volume ideas. One student stated, 

“it’s the basic geometry that’s gonna get me.” While this student ultimately correctly completed 

each task, the student was consistently unsure of the volume formula they were using for both 

the disk and shell method when setting up each problem. The student was also unable to 

sufficiently justify the volume formula.   

These findings suggest that volume-related ideas are influencing thinking about calculations 

done in second-semester Calculus. The poster will display student-generated volume sketches 

and will expand on these findings as well as others from the larger study. This will include 

findings from additional interviews and discussion of implications.  
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How Calculus Students Describe and Use Volume in Calculus 
and Non-Calculus Tasks

Ian West
Center for Research in STEM Education, The University of Maine

Background and Purpose Integral Conceptions

Volume Conceptions

Methods

Findings and Implications

References

Existing literature documents the influence of prerequisite knowledge on the learning of limits and differentiation (e.g., Dorko, 2012; Ferrini-Mundy & Graham, 
1994; Orton, 1983; Stewart & Reeder, 2019). It is possible that this is the case for other Calculus topics. In particular, could students' conceptions of volume 
influence their thinking on volume by slicing or volumes of revolution problems? Based on the interview data, we contend that Calculus students draw on both 
their conceptions of the integral and their conceptions of volume when solving these types of problems.

Jones (2013, 2015) investigated how Calculus students conceptualize the integral. Three of the student conceptions of the integral are highlighted in this study.

Battista and Clements (1998) investigated how Elementary students conceptualized volume through three-dimensional cube arrays. The categories presented 
in this study are supported by Dorko (2012) and survey data gathered as part of the larger study of this research. 

● Adding up slices
The integral represents the volume 
of the solid formed by revolving the 
region around the axis of rotation, 
with the solid partitioned into 
infinitely many slices, where the 
function represents the radius of the 
disk and the differential represents 
the thickness of the slice.

● Adding up circles
The integral represents the volume 
of the solid formed by revolving the 
region around the axis of rotation, 
with the solid partitioned into 
infinitely many two-dimensional 
slices, where the function 
represents the radius of the circle 
and the differential represents the 
infinitesimal difference between 
each slice. 

● Revolution of plane
The integral represents the volume 
of the solid formed by revolving the 
region around the axis of rotation. 
The area under the curve is a 
singular unit of area and the integral 
"does the work" of revolving it 
around the axis. 

● Antiderivative
The integral is the inverse process 
of differentiation. 

● Partitioning
Volume is the summation of infinitely 
many infinitesimally thin 
three-dimensional slices.

● Accumulation of area
Volume is the summation of infinitely 
many two-dimensional regions of 
area. 

● Extrusion of area
Volume is a region of area multiplied 
by some depth.

● 3D Container
Volume is the space inside of a 
container, bounded by planes. 

● Survey tasks (n=97)
○ distributed to second and third semester Calculus students
○ prompted students to find the volume of three prisms
○ supports literature on student conceptions of volume

● Follow-up interviews (n=7)
○ conducted after students completed summative 

assessment on volumes of revolution
○ included two volumes of revolution tasks

■ revolving a region around the x-axis (disks)
■ revolving a region around the y-axis (shells)

○ students were asked to explain their process

● For instruction
Our data suggests that students recall their prior conceptions 
related to volume when solving volumes of revolution or volume by 
slicing tasks. We contend that students use both their 
conceptions of the integral and of volume when solving these 
tasks. We suggest that instructors of Calculus should care about 
their students' understanding of volume. Presenting Calculus 
students with integration by slicing of simple prism tasks may help 
reveal students' conceptions of volume and how their conceptions 
do or do not align with their conceptions of integration. 
● For further research
The research presented in this poster is part of a larger study 
investigating student conceptions of the integral and volume. 
Jones (2015) quantitatively analyzed the productivity of the 
integral concepts they identified in both the mathematics and 
applied contexts. It is beyond the scope of this research to 
quantitatively analyze the conceptions identified in this poster. We 
suggest further research to investigate these conceptions of 
integral and volume to help determine if the productivity of 
some concepts over others remains the case in the context of 
applied Calculus problems.

Battista, M. T., & Clements, D. H. (1998). Students’ Understanding of Three-Dimensional Cube Arrays: 
Findings from a Research and Curriculum Development Project. In R. Lehrer & D. Chazan (Eds.), 
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[Master's Thesis, University of Maine].
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and Integrals. In J. J. Kaput; E. Dubinsky (Eds.), Research Issues in Undergraduate Mathematics 
Learning: Preliminary Analysis and Results (Vol. 33, pp. 29–45). The Mathematical Association of America.

Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. Journal of Mathematical Behavior, 
32(2), 122–141. https://doi.org/10.1016/j.jmathb.2012.12.004

Jones, S. R. (2015). Areas, anti-derivatives, and adding up pieces: Definite integrals in pure mathematics and 
applied science contexts. Journal of Mathematical Behavior, 38, 9–28. 
https://doi.org/10.1016/j.jmathb.2015.01.001

Orton, A. (1983). Students’ Understanding of Integration. Educational Studies in Mathematics, 14(1), 1–18. 
https://www.jstor.org/stable/3482303

Schunk, D. H. (2012). Learning Theories : An Educational Perspective. Pearson.
Stewart, S., & Reeder, S. (2019). Examining unresolved difficulties with school algebra in calculus. In J. 

Monaghan, E. Nardi, & T. Dreyfus (Eds.), Calculus in upper secondary and beginning university 
mathematics (pp. 151–154). University of Agder.

Student Conceptions of Volume Students Conceptions of Integral

Volumes of Revolution
Array of Layers

Space Filling

Array in terms of sides or faces

Formula Application

Adding up pieces

Perimeter & Area

Antiderivative

F(x) = ∫ f(x) dx

dx

f(x)

dx

f(x)

L x W x H

Adding up slices

Adding up circles

Revolution of plane

Partitioning

Accumulation of area

Extrusion of Area

3D Container Antiderivative

"It would just be, you 
know, looking at the 
problem and then applying 
the differentiation rules, 
you know, in reverse."

"So we can find the 
circumference of the 
circle, which would be the 
value four, cause you 
have negative two to two . 
. . so you have four pi and 
then we multiply that by, 
um, the area under a 
curve."

"Alright, so you could 
imagine that, if you wanted 
to revolve it around the 
axis, you could imagine a 
bunch of little circles, going 
around the x-axis. You 
could like slice it up into a 
bunch of little circles . . . 
and if you sum them up 
using an integral, that will 
give you a volume. . . . but 
it's technically gonna be 
little disks."

"We're finding the areas 
between zero to two, so 
that's the integral you 
have. You are forming a 
bunch of circles with 
rotating it around the 
x-axis. . . . they're like 
slices. . . . it wouldn't be 
any width."

"You can think about volume of 
something as first smaller 
volumes. . . . So if you have a big 
rectangle, you can first think 
about it as maybe not like a 
rectangle, but maybe like a few 
boxes on top of each other."

"What you could imagine it's 
volume as turns into it's area as 
you keep making it's height much 
much thinner, and if you stack a 
ton of these essential areas- what 
are essentially areas- on top of 
each other, you can effectively 
get a volume."

"A disk being a circle that's 
kind of raised up."

"to describe volume, I'd say 
it's like the amount of water a 
closed container could hold."

● Adding up pieces
The integral as the area under a curve partitioned 
into infinitely many rectangular pieces that are 
summed up. A representative rectangle indicates 
the multiplication of the function and the differential 
and applies to all other rectangular pieces. The 
bounds of integration indicate where the pieces 
start and stop. 

● Perimeter and Area
The integral is the area under a curve, but as a 
singular unit rather than partitioned into pieces. The 
multiplication inside the integrand is given by the 
perimeter of the region bounded, with the function 
being the top curve, the differential being the bottom 
base, and the bounds of integration being the left 
and right sides. 

● Antiderivative
The integral is the inverse process of differentiation. 
Students use "function matching," where the 
function inside of the integral must have some 
original function for which it is the derivative of. 

● Array of Layers
Volume is the summation of finitely 
many three-dimensional unit slices. 

● Space Filling
Volume is the amount something can 
hold. This conception can take the 
form of three-dimensional unit cubes 
or as the filling of a whole unit.

● Array in terms of sides or faces
Volume is bounded by the perimeter or 
surface area. In this conception, the 
student measures volume only using 
the exterior of the shape. 

● Formula Application
Volume as simply a formula, such as 
length times width times height, to be 
plugged in and evaluated. 

Using a grounded theory 
inspired approach, segments 
of the transcribed interviews 
were coded into emerging 
categories for both 
conceptions of the integral 
and conceptions of volume.
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Student Engagement in Online Calculus 1: Cognitive and Social Dimensions 
 

 Emmanuel Barton Odro  Derek Williams  
 University of Nebraska Lincoln Montana State University 

Keywords: affect and cognition; argumentation model; online calculus; student engagement 

At the university level and in STEM fields students’ drop out in part due to not being able to 
pass mathematics courses, particularly Calculus I. According to the Mathematical Association of 
America (MAA), Calculus I occupies a unique position as a gateway course to STEM degrees. 
Almost all STEM majors need to take at least the first course in Calculus. Hence, there is the 
need to understand how to create successful Calculus courses, particularly in online settings. 
This study examines the ways students engage with the mathematical content, each other and the 
course while learning about the concept of derivative in an asynchronous online Calculus I 
course. The purpose of this research is to investigate the nature of students’ cognitive and social 
engagement in an asynchronous online Calculus I course. 

Methods 
In this qualitative study, we investigate the question, What is the nature of students’ (a) 

cognitive, and (b) social engagement as they learn about limits and derivatives in an interactive 
asynchronous online calculus 1 course? 

We analyzed weekly discussion posts from 23 participants for evidence of argumentation 
(Toulmin, 1958) and social presence (Swan & Shih, 2005) to learn about students’ cognitive 
investment with mathematical content and ways of interacting with each other, respectively. We 
also drew on features of the learning management system used to facilitate the course to 
understand students’ behaviors. Additionally, transcripts from interviews with six students were 
analyzed to further understand student engagement during the course.  

Results & Conclusion 
In general, students’ initial posts to discussion boards almost always contained evidence of 

cognitive engagement in the form of components of mathematical arguments; however, dramatic 
differences in whether replies to initial posts contained components of mathematical arguments 
occurred. We found that the cognitive demand (Smith & Stein, 1998) of the prompt influenced 
whether reply posts contained evidence of cognitive engagement. Specifically, high-demand 
tasks tended to yield replies with components of mathematical argumentation more often than 
low-demand tasks. Regarding social engagement, students tended to participate in more back-
and-forth interactions when they were assigned to small discussion groups. We also noted that 
the composition of initial posts could influence whether other students replied. Specifically, 
when initial posts involved a level of uncertainty from the original author, classmates tended to 
reply more often. Results from this study demonstrate the importance of conceptualizing student 
engagement as a multidimensional construct, and indicate that pedagogical practices such as 
using high-cognitive demand tasks, promoting rough draft thinking (Jansen, 2020), and grouping 
students for online discussions will promote student engagement and learning in asynchronous 
online courses. 
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Comparing Student and Instructor Perspectives of Teaching Actions to Foster Creativity 
 

 Cory Wilson Miloš Savić 
 University of Oklahoma University of Oklahoma 

Keywords: Creativity, Student-Teacher Perception, Teacher Actions 

Research Question/Background Literature/Methods 
Do students and instructors perceive teacher actions to foster creativity in the same way? 

Zepke et al. (2013) found that tertiary students and teachers similarly valued particular teacher 
classroom behaviors such as providing feedback, enthusiasm, and encouraging critical thinking, 
while Fitzgerald et al. (2020) noted that teachers’ perceptions of teaching tend to be more 
positive than students’ perceptions of teaching or teaching actions. We define teacher actions to 
foster creativity to include acknowledged actions (in or out of class) from the teacher that made a 
student feel creative (Satyam et al., 2022; Tang et al., 2022). These actions may be intended by 
the instructor, but may not be perceived as such - this is the impetus of our study.  

Structured interviews were conducted via Zoom with two groups of Calculus 1 instructors: 
those who participated in a professional development series focusing on fostering creativity in 
the classroom (PD) and a group who received no such direction (Non-PD). Instructors were 
asked questions regarding their approach to teaching through the lens of fostering creativity, 
reflections on specific classroom interactions, and the effectiveness of their approaches. 
Interviews were also conducted with students from the instructors’ classes. Students were asked 
about creativity in the classroom and the instructor’s actions in fostering creativity. Transcripts 
were coded for instances of teacher actions reported to foster creativity identified in Satyam et. al 
(2022). Transcripts received multiple coding passes in order to reach agreement. Once coding 
was complete, counts were aggregated and organized by individual instructor for analysis. 

Results/Discussion/Acknowledgments 
Instructors from PD and Non-PD cohorts reported a similar number of creativity-fostering 

teaching actions (an average of 20.29 for PD instructors and 19 for Non-PD instructors), but 
students of PD instructors reported higher actions (8.83) than their Non-PD counterparts (5.92). 
Standard deviation in responses from PD students was higher (7.08) than the standard deviation 
from the Non-PD students (5.31). 

We believe the findings suggest two pertinent things: that instructors and students do 
perceive creativity-fostering teacher actions differently; and that when instructors are intentional 
about creativity practices, students acknowledge and recognize the attempts through the higher 
total actions. However, the difference in standard deviations suggests that students who 
experience intentionally creative practices from the PD instructors perceive a larger range of 
creativity-fostering actions than those students who see similar but unintentionally creativity-
fostering practices from Non-PD instructors. This is consistent with the findings of Lew et al. 
(2016) - without cues, students have trouble identifying the key elements that teachers intend to 
convey. Future research might focus on persistence of students’ perceptions of creativity in 
future math classes. 

This material is based upon work supported by the National Science Foundation under DUE 
Grant #1836369, 1836371. Any opinions, findings, conclusions, or recommendations expressed 
in this material are those of the author(s) and do not necessarily reflect the views of the NSF. We 
also thank the Creativity Research Group for their input and support. 
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Comparing Student and Instructor Perspectives of 
Teaching Actions to Foster Creativity

Introduction
Zepke et al. (2013) found that tertiary students and teachers similarly 
valued specific teacher classroom behaviors such as providing 
feedback, enthusiasm, and encouraging critical thinking, while 
Fitzgerald et al. (2020) noted that teachers’ perceptions of teaching 
tend to be more positive than students’ perceptions of teaching or 
teaching actions.

We define teacher actions to foster creativity to include 
acknowledged actions (in or out of class) from the teacher that made 
a student feel creative (Satyam et al., 2022; Tang et al., 2022). 
These actions may be intended by the instructor, but may not be 
perceived as such.

Results
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Data Collection/Methods

Discussion and Future Work

We situate creativity following Satyam et al. (2022): “if any item 
(process or product) is new to the student then that is an act of 
creativity.” We believe creativity to be relative to the student rather 
than oriented toward the mathematical community and that 
creativity can be developed and fostered.

Satyam et al. (2022) grouped teaching actions which foster creativity into 
four themes. An action is coded as:

Teacher Actions

Structured interviews were conducted via Zoom with two groups of 
Calculus 1 instructors: those who participated in a professional 
development series focusing on fostering creativity in the classroom 
(PD) and a group who received no such direction (Non-PD). 
Instructors were asked questions regarding their approach to 
teaching through the lens of fostering creativity, reflections on 
specific classroom interactions, and the effectiveness of their 
approaches. 

Interviews were also conducted with students from the instructors’ 
classes. Students were asked about creativity in the classroom and 
the instructor’s actions in fostering creativity. Transcripts were coded 
for instances of teacher actions reported to foster creativity identified 
in Satyam et. al (2022). Transcripts received multiple coding passes 
in order to reach agreement. Once coding was complete, counts 
were aggregated and organized by individual instructor for analysis.

Average Code Counts for 
Teachers and Students

We conclude that students and instructors do perceive teacher 
actions to foster creativity differently, and the difference is 
independent of participation in PD.

Standard Deviation of Code Counts 
for Teachers and Students

Task-Related
Properties of a mathematical 

content task that were 
(re)designed, evaluated, or 
assessed by the instructor

Active Learning
action that is student-

centered, including inquiry-
oriented (or -based) 

instruction (Kuster et al., 
2018; Shultz & Herbst, 2020)

Holistic Teaching
actions that do not require a 
response from students, yet 

psychologically build an 
environment for fostering 

creativity

Teacher-Centered
action that involves instructor 
input with little to no student 

feedback, whether it be 
verifying correctness or 

connecting topics

Research Question
Do students and instructors perceive 
teacher actions to foster creativity in 
the same way?

PD Teacher Codes (by Action Type)
Task-Related

(n=52)
Teacher-Centered

(n=12)
Inquiry Teaching

(n=35)
Holistic Teaching

(n=43)

Average 7.43 1.71 5 6.14
PD Student Codes (by Action Type)

Task-Related
(n=74)

Teacher-Centered
(n=12)

Inquiry Teaching
(n=59)

Holistic Teaching
(n=65)

Average 3.08 0.5 2.46 2.71

Non-PD Teacher Codes (by Action Type)
Task-Related

(n=20)
Teacher-Centered

(n=9)
Inquiry Teaching

(n=22)
Holistic Teaching

(n=25)

Average 5 2.25 5.5 6.25
Non-PD Student Codes (by Action Type)

Task-Related
(n=17)

Teacher-Centered
(n=9)

Inquiry Teaching
(n=21)

Holistic Teaching
(n=31)

Average 1.31 0.69 1.62 2.38

• When instructors are intentional about creativity practices, 
students acknowledge and recognize the instructor’s attempts.

Future work might investigate:

• PD students perceive a larger range of creativity-fostering actions 
than Non-PD students. This is consistent with the findings of Lew 
et al. (2016) - without cues, students have trouble identifying the 
key elements that teachers intend to convey.

• Persistence of student perceptions of creativity in future classes
• Differences in perceptions of teaching actions between 

instructors at different stages of their careers or between 
contingent/non-contingent faculty

• Longitudinal data on math attitude beliefs for students whose 
mathematical creativity is encouraged and fostered
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Opportunities to Learn Provided by a Commonly Used Business Calculus Textbook 

Thembinkosi P. Mkhatshwa 

Miami University 

Contributing to the growing body of research on opportunities to learn provided by 

undergraduate mathematics textbooks, this study reports on the analysis of optimization 

examples given in a commonly used business calculus textbook in the United States. Findings of 

this analysis indicate that the textbook consistently encourages students to interpret critical 

numbers and extrema, in addition to encouraging students to verify whether or not critical 

numbers produced minimum/maximum values of the objective functions from which they were 

determined. The analysis further revealed that the textbook rarely encourages students to include 

units of extrema, provides limited opportunities for students to reason about objective functions 

that have more than one critical number, and provides minimal opportunities for students to 

reason about absolute extrema problems, respectively. Recommendations for different 

stakeholders, including business calculus textbook authors and business calculus instructors, are 

included. 

Key words: Opportunity to learn, optimization problems, business calculus, textbook analysis 

Textbooks play an important role in students’ learning of mathematics at all levels. In fact, 

according to Reys et al. (2004), “… the choice of textbooks often determines what teachers will 

teach, how they will teach it, and how their students will learn” (p. 61), a sentiment that is shared 

by several other researchers (cf. Alajmi, 2012; Begle, 1973; Kolovou et al., 2009). Although 

much research as reported on opportunities to learn about various mathematical topics at the K-

12 level (cf. Alajmi, 2012; Charalambous et al., 2010; Dole & Shield, 2008; Jones & Tarr, 2007; 

Pickle, 2012; Stacey & Vincent, 2009; Stylianides, 2009; Thompson et al., 2012), there is a 

paucity of similar research at the undergraduate level, which is the motivation for the present 

study. 

The study reported in this paper is part of a larger study (Mkhatshwa, 2016b) that examined: 

(1) students’ reasoning about optimization problems, (2) opportunities to learn about 

optimization problems via two course lectures each of which was attended by approximately 300 

students, and (3) opportunities to learn about optimization problems provided by a course 

textbook. The current study reports on opportunities to learn about optimization problems via 

examples provided by the course textbook (Haeussler et al., 2011), a widely used textbook in the 

teaching of business calculus in the United States (Mkhatshwa & Doerr, 2016a). 

Consistent with findings reported by other researchers (cf. Reys et al., 2004), one major 

finding of the larger study is that the presentation of optimization problems during course 

lectures closely followed the presentation of optimization problems in the textbook. Findings of 

the present study suggests that the textbook encourages students to interpret critical numbers and 

extrema, and to verify extrema using various methods such as the first or second derivative test, 

respectively. In addition, the textbook rarely encourages students to include units of extrema, 

provides limited opportunities for students to reason about objective functions that have more 

than one critical number, and provides minimal opportunities for students to reason about 

absolute extrema problems. In light of the findings of the present study, we recommend, among 

other things, that business calculus textbook authors provide more opportunities for students to 

reason about units of extrema, objective functions that have at least two positive critical 

numbers, and absolute extrema problems (Mkhatshwa, 2019) in economic contexts.  
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Foregrounding Inversely Proportional Relationships in Integration by Substitution 
Andrew Izsák, Tufts University

Foci of Past Calculus Research1

• Co-variation
• Functions
• Limits
• Derivatives
• Integrals

Significant Omission
• Students’ understandings of 

multiplication and division with 
quantities in the context of 
calculus topics

Why it Matters
• College students often have limited 

understandings of multiplication and 
division with quantities

• Multiplication and division with 
quantities foundational for derivatives, 
integrals, families of functions central 
to calculus

• Studying formulae alone unlikely to 
help students understand quantitative 
foundations for calculus

The StudyBackground
Developed Novel, Semester-Long Course
• Introduced an explicit meaning for 

multiplication based in measurement
N         • M       =        P

# of units       # of groups        # of units
in 1 group     in 1 product    in 1 product

amount           amount
• Emphasized drawings of lengths and areas
• Worked only with piecewise linear functions 

and step functions. (No discussion of  limits)
• Strand 1:Division, prop. relationships, slopes 

of lines, function composition, chain rule
• Strand 2: Multiplication, areas, inversely 

prop. relationships, integration by substitution

Data Collection
• 18 undergrad. students, Fall 2021
o 15 completed at least 1 calculus course
oNo STEM majors

• In-class group work on sets of word problems 
• Whole-class discussion focused on how the 

N • M =  P structure fit problem situations
• Collected written homework and exams

Results

One Student’s Solution

• A special case of integration by substitution, stated as

!
!(#)

!(%)
𝑓′ 𝑢 𝑑𝑢 = !

#

%
𝑓&(𝑔 𝑥 ) • 𝑔′(𝑥)𝑑𝑥

• This formulation treats integrand as rate-of-change, consistent with the FTC.
• Justifies equation by explaining that each rectangle in a Riemann sum for the left-

hand side has the same area as the corresponding rectangle in a Riemann sum for 
the right-hand side

“Area 1 correlates to the distance driven by 
Steve…. N • M = P ….
60 miles in a column • 4 column = 240 miles 
….The new function is drawn with a dotted 
line….the distance traveled is still represented 
by the area underneath the function….Area 1 
= Area 4….
40 miles in a column • 6 column = 240 miles”

1. Frank, K., & Thompson, P. (2021). School students' preparation for calculus in the United States. ZDM-
Mathematics Education, 53, 549–562. 
Larsen, S., Marrongelle, K., Bressoud, D., & Graham, K. (2017). Understanding the concepts of calculus: 
Frameworks and roadmaps emerging from educational research. In J. Cai (Ed.), Compendium of research in 
mathematics education (pp. 526–550). National Council of Teachers of Mathematics.

Strand 2
• Students debated whether rectangular areas could represent products other than 

areas. For instance, can areas represent distances (e.g., rate • time = distance) or 
volumes (e.g., area • height = volume)? This is NOT obvious to all students.

• Students were able to reason appropriately about situations in which P was fixed. 
• One final exam 13 students gave appropriate solutions to the following problem:
o Three friends on a road trip.  Steve drives 60 mph for 4 hrs. They rest 1 hr. 

Chara drives 72 mph for 4 hrs. They rest 1 hr. Zawadi drives 54 mph for 4 hrs.
oGraph speed vs. time. Explain how the graph shows distance each friend drives.
oConsider same situation but time is measured in playlists; 1 playlist is 40-min.

Comments
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Math Placement and Academic Achievement: An Internal Analysis 
 

Sean Gruber           Emily Braley    Richard Brown 
Johns Hopkins University             Johns Hopkins University      Johns Hopkins University 
 
The results presented here offer preliminary insights into the course patterns and academic 
achievement of students taking entry-level math courses at Johns Hopkins University (JHU) from 
Fall 2017 through Fall 2021. First, we used students’ math placement exam results and end-of-
semester grades in their first math course to predict academic achievement when considering 
whether students followed their placement recommendation. Second, we compared trends in 
placement data and academic achievement of students taking math courses at JHU before and 
during the COVID-19 pandemic. 
 
Keywords: Math Placement, Contradictory Recommendations, Entry-Level Courses 
 

Empirical evidence suggests undergraduates’ persistence and interest in majoring in 
STEM fields are associated with their achievement (Chen, 2013) and experiences in entry-level 
and first-year STEM courses (Bressoud et al., 2013; Crisp et al., 2009; Gainen, 1995, Seymour & 
Hewitt, 1997). Considering many students must take the recommendations of a math department 
(Apkarian et al., 2017), it is important that departments review their math placement processes 
and recommendations to students on a regular basis, a common practice of successful calculus 
programs (Bressoud & Rasmussen, 2015). 

The Math Placement Exam (MPE) at Johns Hopkins University (JHU) is broken into two 
parts, MPE1 and MPE2, which provide unique course recommendations. Aggregating data from 
Fall 2017 through Fall 2021, we conducted a binary logistic regression using students’ first-
semester course grades as the outcome variable. The placement recommendation and the course 
a student took served as the independent, nominal variables. Our study focused on students who 
were recommended to take precalculus, calculus I, or calculus II. 

Many students at JHU taking calculus courses are on a pre-medical track and, thus, aim 
to earn a relatively high GPA in preparation for applying to medical school. As a result, it was 
important for us to choose a grade threshold for our binary outcome variable that reflected our 
Department’s efforts to “prepare students to be numerate citizens and productive employees” 
while conducting this internal review of the MPE (American Mathematical Association of Two-
Year Colleges, p. 14). In turn, we chose a grade of B- or above as the grade threshold. 

Preliminary results suggested that students who were recommended to take precalculus or 
calculus I on MPE2 were statistically significantly less likely to earn a grade of a B- or better if 
they took the course they were recommended for when compared to students who ‘jumped’ one 
course above their recommendation (e.g., were recommended for precalculus and took calculus 
I). Students recommended to take calculus I by MPE1 or MPE2 who took precalculus were less 
likely to earn a B- or better when compared to those recommended for calculus I who took 
calculus I. A similar pattern held for students recommended to take calculus II on MPE2 but who 
took calculus I. Finally, only for the 2020 and 2021 cohorts did students receive contradictory 
recommendations to take calculus I (on MPE1) and precalculus (on MPE2). The preliminary 
findings presented here may be used to inform other institutions in their review of how students 
are placed into calculus-sequence courses while considering how to measure the mathematical 
preparedness of students affected by the pandemic who are now entering college. 
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Math Placement and Academic Achievement: An Internal Analysis
Sean Gruber, Emily Braley, and Richard Brown - Johns Hopkins University (JHU)

The Math Placement Exam (MPE) at Johns 

Hopkins University (JHU) is broken into 

two parts, MPE1 and MPE2, which 

provide unique course recommendations:

• Students with no prior calculus 

experience take MPE1 (makes 

recommendations for precalculus 

or calculus I).

• Students with some calculus experience, 

then take MPE2 (makes 

recommendations for precalculus, 

calculus I, calculus II, or one of calculus 

III, linear algebra or 

differential equations).

• If MPE2 recommends precalculus, then 

students go back and take MPE1.

Math Placement Exam

Context

Many students at JHU taking calculus 

courses are on a pre-medical track.

• Only 9 (2%) did not make the grade 

satisfaction of a C- or better.

• 1,746 of 5,534 (31.6%) students 

between 2017 and 2021 did not meet the 

grade satisfaction cutoff of a B- or 

better.

1. Aggregating data between Fall 2017 

and Fall 2022, where are students 

ending up after their placement 

recommendation results?

2. Are placement recommendations 

indicative of performance in the math 

class they first take?

Research Questions Model

Binary Logistic Regression:

• Outcome variable: First-semester course 

grades categorized into two groups 

using a threshold of B- or better.

• Independent variables: Placement 

recommendation and the course a 

student took.

where is the probability student 

earns a B- or better considering they are 

recommended for course and take 

course (could be different from 

recommended course).

Background and Motivation

Undergraduates’ persistence and interest in 

majoring in STEM fields are associated 

with their achievement (Chen, 2013) and 

experiences in entry-level and first-year 

STEM courses (Bressoud et al., 2013; 

Crisp et al., 2009; Gainen, 1995, Seymour 

& Hewitt, 1997).

Considering many students must take the 

recommendations of a math department 

(Apkarian et al., 2017), departments 

should review their math placement 

processes and recommendations to grow 

successful calculus programs (Bressoud & 

Rasmussen, 2015).

Results

Red - less likely to earn at least a B-

Green - more likely to earn at least a B-

We report on students who were 

recommended to take precalculus, 

calculus I, or calculus II. 

Contradicting recommendations

(MPE1 recommends calculus I, MPE2 

recommends precalculus):

This impacts a small (n=69) group of students and 

only occurred in the 2020 (n=39) and 2021 

(n=30) cohorts.

Conclusions and Next Steps

1. Update the placement tests based on what we 

have learned and STEM-preparedness literature 

from ALEKS and "Minding the Gaps" 

(Kornelson et al., 2020).

2. Connect with advising (broadly) and admissions 

to inform changes and share outcomes.

3. Discuss a path for those 

who receive contradicting recommendations .

4. Continue to build peer-to-

peer networks, mentoring relationships 

with faculty, and other outside-of-class supports 

found to help female and students of color 

remain and succeed in STEM fields of 

study (Ellington & Frederick, 2010; Griffin 

et al., 2010; Palmer et al., 

2011; Seymour & Hewitt, 1997).

5. Track changes and continue tracking efficacy of 

recommendations from the tests.

References: tinyurl.com/jhuReferences
1.
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Provider Motivation for Working with Novice College Mathematics Instructors

Jonathan Farley
San Francisco State University

Keywords: novice college instructor professional learning, Provider, TA

A Provider is a person who offers opportunities for professional learning to novice college
instructors (e.g., new faculty, graduate student teaching assistants and associates [GTAs])
Motivation theory has been studied in a variety of work contexts, including higher education
(Daumiller et al., 2020). However, there is no existing research specific to the motivation of
Providers of professional development much less about those who work in college mathematics
contexts. Knowledge of Provider motivation would be valuable for at least two reasons: (1)
knowing the motivations of people who become providers has implications for employers to
attract and retain Providers and (2) understanding Provider motivation can inform the
identification and development of new Providers (i.e., moving the field to purposeful
development and away from the accidental Provider, who “fell into” it).

The research question is the following: What do Providers report as motivating them to
choose to be a Provider of professional learning for novice college mathematics instructors? The
framework for answering this question relies on motivation theories, change theory about people,
power, structures, symbols in departments (Reinholz & Apkarian, 2018), and research on
Provider professional orientations (Martinez et al., 2021). These interact to shape Provider work.
In particular, structures include the interrelationships of people and roles like Course
Coordinator, instructor, GTA, seminar leader.

Data were from surveys and interviews among people who had participated in a Provider
workshop. Of the ten people who did the survey five agreed to interviews.  For data analysis, I
transcribed the interviews and did open coding for each interview, then cross-interview thematic
coding, then case story development that used existing frameworks for motivation, professional
orientation, and change theory to structure each story. I wrote case stories for each interviewee
and contacted them for feedback. The poster will present a cross-case analysis of similarities and
differences among interviewees, including charts documenting sources and enactments of
motivations.

Implications for research include the need for investigation of the relationship between
Provider motivation and Provider effectiveness in supporting professional learning by novice
instructors. Participants’ reflections and stories also connect to the emerging need for research on
what motivates Providers to do scholarly work related to being a Provider.

My goals in sharing the poster and having conversations with RUME attendees are for both
feedback and thinking about future reporting. In particular, I wonder how attendees at the
conference would talk about their own motivations for doing academic research, including
RUME. Conversations about this would be useful for me to refine how I report on the motivation
of Providers who do academic research about professional development of novice college
instructors.
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Reasoning Students Employed When Mathematizing During a Disease Transmission Modeling 
Task 

 Elizabeth Roan Jennifer A. Czocher 
 Texas State University Texas State University 

Keywords: mathematical modeling, differential equations, student reasoning  

Few studies explicitly focus on students’ understanding of differential equations for 
representing real-world phenomena (Lozada et al., 2021). Rowland and Jovanoski (2004) studied 
the meanings students have for the terms of an already constructed differential equation and 
found that across contexts, students tend to conflate amount with rates of change of amounts. 
Our goal is to document students’ reasoning while constructing differential equations that 
represent real-world phenomena (called mathematization) in a way that helps instructors connect 
their students’ emergent models with normatively correct models. We frame students’ reasoning 
while mathematizing using theories of quantitative, co-variational, and multi-variational 
reasoning (Carlson et al., 2002; Jones, 2018; Thompson, 2011). Using this lens builds on 
previous findings that the operations students use on quantities reflect the quantitative 
relationships perceived by the student, (Larson, 2013), and that the models that students could 
potentially make depend on (and are constrained by), the quantities the student imposes onto the 
situation (Czocher et al., 2022). 

The purpose of this study was to (1) catalog the quantities students impute while modeling a 
disease transmission scenario from first principles and (2) document students’ rationales when 
combining those quantities. We wanted to know: What are participants’ existing ways of 
reasoning when writing equations to model of the spread of a disease throughout a community? 
To answer this question, we present work from STEM undergraduates who participated in a set 
of individual cognitive task-based interviews via Zoom. Data were analyzed by first identifying 
the quantities participants imposed onto the task scenario and then documenting the participants’ 
(inferred) reason for using specific arithmetic operations e. g. , , , ,  on quantities.  

Our results reveal the rationales for using arithmetic operations to depict specific aspects of 
the dynamics of spread of disease throughout a community. All three participants constructed 
models for the instantaneous rate of change of the sick and healthy populations, though at times 
using unconventional notation. All three participants constructed a model for the change in the 
healthy population by covarying healthy people and sick people. They did this by noting that the 
decrease in the healthy population is equal in magnitude to the increase in sick population. Two 
participants depicted this relationship using the arithmetic operation , while one participant, 
Rua, chose not to use any notation to depict this relationship. We infer that Rua was covarying 
the number of sick people and the number of healthy people, but not multi-varying sick, healthy 
and time. Our contribution extends what is known about students understanding of differential 
equations by reporting on how covariational and multivariational reasoning played a role in 
students' construction of a differential equation that models disease transmission. We infer that 
covariational and multivariational reasoning were observable because our participants were 
working on differential equations modeling task focused on disease transmission. 

Acknowledgments 
Research that will be reported in this paper is supported by National Science Foundation Grant 
No. 1750813 with Jennifer Czocher as principal investigator, and by Doctoral Research Support 
Fellowship given by Texas State University.  
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Reasoning Students Employed When Mathematizing During a Disease Transmission 
Modeling Task

Elizabeth Roan, Dr. Jennifer A. Czocher

Introduction
• Few studies exist on students’ understanding of differential

equations for representing real-world phenomena (Lozada et al.,
2021).

• Students tend to conflate amounts of change and rates of
change of amounts in many different contexts that require
differential equations (Rasmussen & King, 2000; Rasmussen & Marrongelle,
2006; Rowland & Jovanoski, 2004; Mkhatshwa, 2018).

• Goal: document students’ reasoning while constructing
differential equations that represent real-world phenomena
(called mathematization) in a way that can inform
instructors about how to connect their students’ emergent
models with normatively correct models.

Research reported in this poster is supported by National Science Foundation Grant No. 1750813 with Dr. 
Jennifer Czocher as principal investigator and Doctoral Research Support Fellowship given by Texas 
State University

Acknowledgements 

RQ: What are participants’ existing ways of 
reasoning when writing equations to model the 
spread of a disease throughout a community? 

Mathematical model - a conceptual system consisting of 
elements, rules governing interactions, the relationships 
between elements, and operations. Expressed into the world 
through different representations (Lesh & Doerr, 2003)

Elements are: 
• Quantitates - triple of an object, attribute, quantification

(Thompson, 2011).
• Ex attributes: length, volume, cardinality, speed, and

density (Ellis, 2007).
• A quantity is cognitively distinct from (mathematical)

variables.
Relationships between elements and operations are described 
by

• Covariational reasoning - cognitive activities for
coordinating two varying quantities (Carlson et al., 2002)

• Multivariational reasoning - the cognitive activities for
coordinating more than two varying quantities (Jones, 2018)

Theoretical Perspective

• 3 participants constructed a model for the change in the healthy 
population by covarying healthy people and sick people.

• All noted that the decrease in the healthy population is equal in
magnitude, and inversely related to, the increase in sick
population.

• 2 depicted this relationship as 

• 1 depicted this relationship as
• We infer that the decision to use/not use the symbol is rooted in the

participants multivariation of sick, healthy and time.

Results

• We extend what is known about students’ understanding of
differential equations by reporting on how covariational and
multivariational reasoning played a role in students' construction of a
differential equation that models disease transmission.

• We infer that covariational and multivariational reasoning were
observable because our participants were working on modeling
disease transmission using differential equations.

Discussion

Data collection
• Cognitive task-based interviews with 20 STEM majors who

completed or were enrolled in differential equations
• Report 3 computer Science majors on a Disease Transmission (SI

compartment model) task. 

Analysis
• Identify quantities participant imposes onto task
• Note arithmetic operations used on quantities
• Document participants’ reason for using that arithmetic operation

• quantitative, covariational, and multivariational reasoning.

Methods

Winnow:

Winnow: That would show the rate of change of healthy people, so I guess it would be 
a negative number because the healthy people would be-- the number of healthy 
people would be decreasing. Later says: We got was minus 5 healthy people because 
we had 5 new sick people

Roion:

Roion: OK. So for this one (referring to , it'd pretty much be the same (as ) but in 
the negative direction, as the amount of well people would be decreasing as more 
infected…

ER: OK. So are you saying that is the same as but negative? 

Roion: Yes. 

ER: OK. And what tells you that that's the case? 

Roion: It's because as more people are infected, that means less people in the 
community are actually well. So it's decreasing as time goes on, as more of the 
infected people interact with the well people. 

Winnow & Roion

Rua: It’s (referring to ) the same (as ). Um, I think there was one of the equations 
that we were working through, where I believe the aspect of negativity or positivity 
was something I was kind of trying to internalize or view, probably, where I think this is 
a similar outlook just depending on how you're looking at it. Uh, it would either-- you 
know, if that rate is something that's representative of decay or growth with regards to 
sick, then it should be the opposite for healthy, and vice versa. If it was growth or 
decay for healthy, then it should be the opposite-- I guess that's because they're 
inversely related-- for the sick. 

Rua
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Data Scientists’ Use of Embodied Ideational Mathematics in Conveying Concepts Rooted in 
Linear Algebra 

Ashley Armbruster Kelsey Brown 
Colorado State University Colorado State University 

Sarah Lutz Hortensia Soto 
Colorado State University Colorado State University 

Keywords: Embodiment, data science, ideational mathematics, linear algebra 

Embodied cognition is the theory that learning is influenced by the body through a 
variety of modalities. Nathan (2022) summarizes literature indicating that forms of embodiment 
such as body form, gesture, simulation, and materialist epistemology can support student 
learning. Other studies in embodied cognition focus on ways in which people’s perceptions and 
ways of thinking about a topic can impact teaching and learning and place a high level of 
emphasis on ideational mathematics. Ideational mathematics is defined as an individual’s 
perception of formal ideas (Schiralli & Sinclair, 2003; Sinclair & Gol Tabaghi, 2010). While 
previous studies centered on mathematicians, our work centers specifically on the emerging field 
of data science. Despite the significant amount of literature on embodiment in mathematics 
(Alibali & Nathan, 2012; Hall & Nemirovsky, 2012; Sinclair & Gol Tabaghi, 2010), there exists 
a gap in the literature on the impact of embodiment as it relates to data science. Thus, we wish to 
better understand how instructors use ideational mathematics regarding concepts they present in 
their classrooms. In conducting this investigation, we leverage Nathan’s (2022) summary of 
various forms of embodiment to address our research question: In what ways do mathematicians 
use embodiment to convey ideational mathematics when discussing data science concepts rooted 
in linear algebra? 

We conducted one-hour audio and videotaped interviews with two data scientists (Hunter 
and Elizabeth) with varying backgrounds. Hunter’s area of expertise is topology, and Elizabeth’s 
expertise is in harmonic analysis. In this poster, we present an analysis of two episodes from 
these interviews. The selected episodes provide evidence of Nathan’s (2022) summary of the 
four forms of embodiment. The two data scientists primarily discussed concepts ideationally, and 
used representational gestures, materials, and simulation that accompanied personified verbiage. 
For example, Elizabeth explained an activity that she uses with students in her capstone course to 
teach cosine similarity within natural language processing. Her activity, which she referenced as 
a “Bag of Ingredients” model, uses grounded, real world examples of recipes to clarify the 
broader, more complex “Bag of Words” model. She related comparing ingredients in recipes to 
comparing words in documents of various length to discuss the comparison of common words 
and synonyms. Hunter integrated various tools and materials such as drawings on a whiteboard 
and a model of a molecule to explain principal component analysis, a key concept in the field of 
data science. The concepts discussed in both episodes are rooted in linear algebra, a mathematics 
subject which both participants identified as an area of struggle for students. The implications of 
the insights offered through analysis of these episodes is particularly relevant as data science 
programs become increasingly predominant and institutions search for the best ways to convey 
material. 
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Participants: Two data scientists working in a mathematics department at a research 
university in the Rocky Mountain area.
● Hunter - Topologist
● Elizabeth - Harmonic Analyst

Hicks and Irizarry (2018)

Data Scientists’ Use of Embodied Ideational Mathematics in Conveying Concepts Rooted in 
Linear Algebra

Ashley Armbruster, Kelsey Brown, Sarah Lutz, Hortensia Soto
  Colorado State University

Data Collection and  Analysis: 
● Videotaped approximately hour-long interview with each participant.
● Open coded entire interview for embodiment (Nathan, 2022).
● One episode was selected from each interview, approximately 10 to 15 minutes in length, after the first

round of coding.

Motivation
• Existence of outlines of introductory data science

courses (Baumer, 2015; Hicks & Irizarry, 2018)
• Studies exploring mathematicians’ ideational

mathematics (Sinclair & Gol Tabaghi, 2010;
Soto-Johnson et al., 2016) and embodiment (Marghetis
et al., 2014).

• Linear algebra in the formal, symbolic, and embodied
worlds of thinking (Stewart, 2018).

• Minimal research on the teaching and learning of data
science.

Research Question: In what ways do data scientists use 
embodiment to convey their ideational mathematics when 
discussing concepts rooted in linear algebra? 

Discussion and Implications

Theoretical Framing
Embodied cognition: The theory that learning is influenced 
by the body through a variety of modalities.

(Nathan, 2022)

Participant Embodiment Type Transcliptions

Hunter

Use of relatable 
PCA example 

through 
gesture, 

simulation, 
& materials

Gesture - metaphoric
● Uses hands to represent familiar

shapes to describe data

Simulation
● Relatable PCA example: data

represents medical characteristics of a
doctor’s patients

Materialist Epistemology
● Molecule represents 24-dimensional

data set
● Annulus represents the 24D data

“living” in two dimensions

Elizabeth

Use of relatable 
and immersive 
simulations 
& gesture

Gesture - metaphoric
● Returns to established “location” of

nullspace for song decomposition
● Collided hands together representing

orthogonality

Simulations
Rank-Nullity Theorem Demo
● Decomposition of various songs based

on frequencies
● Used songs familiar to students
Bag-of-Ingredients Model
● Modified Bag-of-Words model using

recipes and ingredients instead of
random words

● Baumer, B. (2015) A data science course for undergraduates: Thinking with data. The 
American Statistician, 69(4), 334-342. https://doi.org/10.1080/00031305.2015.1081105

● Hicks, S. C., & Irizarry, R. A. (2018). A guide to teaching data science. The American 
Statistician, 74(4), 382-391. https://doi.org/10.1080/00031305.2017.1346747

● Marghetis, T., Edwards, Laurie D., & Núñez, R. (2014). More than mere handwaving:
Gesture and embodiment in expert mathematical proof. In Laurie D. Edwards, F. Ferrara,
& D. Moore-Russo. (Eds.) Emerging perspectives on gesture and embodiment in 
mathematics. (pp. 227-246). Charlotte, NC: Information Age Publishers. Mcneill, David.
(1994). Hand and Mind: What Gestures Reveal About Thought. Bibliovault OAI
Repository, the University of Chicago Press. 27. 10.2307/1576015.

● Nathan, M.  (2022). Forms of Embodiment and Embodied Learning. In Foundations of 
Embodied Learning: A paradigm for Education (pp. 87–110). essay, Routledge, Taylor &
Francis Group.

● National Academies of Sciences, Engineering, and Medicine. (2018). Data Science for 
Undergraduates: Opportunities and Options. Washington, DC: The National Academies
Press. https://doi.org/10.17226/25104

● Schiralli, M., & Sinclair, N. (2003). A constructive response to where mathematics comes
from. Educational Studies in Mathematics, 52(1), 79–91. 

● Sinclair, N., & Gol Tabaghi, S. (2010). Drawing space: Mathematicians’ kinetic
conceptions of eigenvectors. Educational Studies in Mathematics, 74(3), 223–240.
https://doi.org/10.1007/s10649-010-9235-8

● Soto-Johnson, H., Hancock, B., & Oehrtman, M. (2016). The interplay between
mathematicians’ conceptual and ideational mathematics about continuity of
complex-valued functions. International Journal of Research in Undergraduate 
Mathematics Education, 2(3),362–389. https://doi.org/10.1007/s40753-016-0035-0

Selected References

Principles of Teaching 
Data Science 

Organize around Case Studies

Integrate Computing

Minimize Notation

Mimic Experience

Demonstrate Critical Thinking

Methodology

Conceptual  Mathematics

• Formal, public
representations

• Examples
• Textbook definition of

Principal Component
Analysis (PCA) :
dimensionality reduction
method which transforms a
large data set into a smaller
one that still contains most
of the information

Ideational Mathematics

• An individual’s perception of
formal ideas

• Examples
• PCA produces the best

view in 2-D or 3-D space
for physical, geometric
intuition

• Matrix multiplication as
gobbling up a vector, 
throwing information away, 
and spitting out a vector

Type of 
Embodiment

Definition Examples

Body Form Use of body and the 
environment

Tracing a circle on 
hand

Gesture Spontaneous 
Movements of 
hands, arms, and 
other body parts

Indexical (pointing), 
Representational 
(iconic and 
metaphoric), Beat

Simulation Using imagination to 
extend ideas

Use of MATLAB or 
other technologies

Materialist 
Epistemology

Use of materials 
and manipulatives

Annulus, water 
wheel, blocks

(Schiralli & Sinclair, 2003; Sinclair and Gol Tabaghi, 2010)

Expertise Influence in Embodiment:
● Both participants utilized gesture,
● Hunter used physical materials and Elizabeth used

imagined materials
● Need faculty with varied expertise to effectively teach all

students while keeping the plethora of approaches to data
science in mind (National Academies of Science,
Engineering, and Medicine, 2018).

Relatable Explanations:
● Opens up “multiple pathways for students of different

backgrounds to engage at levels ranging from basic to 
expert” (National Academies of Science, Engineering, and 
Medicine, 2018, p. 64) 

Results

Participant Embodiment Type Transcliptions

Hunter

Focused on visual 
& geometric 

representations 
through body 

form, gesture, & 
materials

Movement, Body Form, Perception
● Used body to represent data science and

mathematics as vast fields, and
topology’s role in each

Gesture - metaphoric
● Topology a “pretty big area” (left) of the

“vast landscape” of mathematics (right)
● Described how to formalize geometric

representation of data

Materialist Epistemology
● Whiteboard inscriptions visually

represented a high-dimensional data set
as:
○ Chart of numbers
○ 5D and Cartesian planes
○ Points arranged in circular formation

Elizabeth

Represented 
physical & abstract 

objects through 
body form, 
gesture & 
simulation

Movement, Body Form, Perception
● Utilized environment to fix “locations” of

abstract mathematical objects

Gesture - metaphoric
● Established “locations” of null space and

column space on either side of her

Simulation
● Described matrix multiplication as

“gobbling up” and “spitting out” vectors,
and “throwing away” information

● Nullspace fixed to her right
● Column space fixed to her left

1  Mathematical areas of expertise influence ideational mathematics and 
forms of embodiment

2  Data science can be explained using relatable materials and simulations, 
reducing need to rely heavily on symbolism

➢ Matrix multiplication
“gobbles up vector”
and “throws away”
information”

➢ Measured by nullity

➢ A vector is “spit out”,
measured by rank

➢ “We formalize
blurring one’s vision
by maybe growing a
ball around each data
point”

➢ “Maybe the data set is arranged among
a sphere, and maybe there’s a good
reason why the data is well-modeled by
a sphere

Connections 
to Principles

Minimize 
Notation

PCA Body Form

Rank Nullity 
Theorem Gesture

Mimic 
Experience Hunter's use 

of medical 
data Simulation

Demonstrate 
Critical 

Thinking

Elizabeth's bag-
of-ingredients 

model
Materials

While discussing the linear algebra concepts they thought were important in data science, 
the participants explained their ideational mathematics with varied embodiment reflective of 
their backgrounds.

➢ Bag-of-ingredients didn’t
recognize that two different
cookies were both sweet
because they used different
sugars, so “those two parts of
the vectors were orthogonal”

➢ In the outputs of the
decomposed songs, the
“stuff that was thrown away
was all the low frequency
things”

➢“Inside of data science,
topology is a very small
part, on the order of 1%
of all data science”

➢ “It can stretch
and bend in
fold in different
ways. . .you
have many
different points
in 24-D space”

➢ “Turns out, this molecule lives on a
very lower-dimensional, 2D space
inside of 24 dimensions”
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Adapting the TRU Framework: 
Tracking Changes in MGTAs’ Instructional Practices

▪ Lecture-based teaching continues to dominate
undergraduate mathematics, despite its negative
impact on student success in STEM.

▪ Mathematics graduate teaching assistants
(MGTAs) make up significant portion of the
undergraduate teaching force.

▪ However, MGTAs are often not adequately
prepared to teach in engaging, inclusive, and
equitable ways.

▪ Without robust professional development (PD)
for teaching that focuses on active, engaged
teaching practices, MGTAs often replicate the
lecture-based teaching practices that they have
experienced.

▪ Consequently, the lecture-based teaching culture
is perpetuated, and undergraduate students do
not receive the benefits of evidence-based
teaching.

Background

Research Questions

RQ1. How does the ELITE PD program support 
MGTAs to transform their teaching practices to be 
more engaged, inclusive, and equitable? 

RQ2. What are undergraduate students’ 
experiences and perceptions of MGTAs’ teaching 
practices and how do these change over time?

RQ3. How do the teaching practices of MGTAs in 
the ELITE PD program compare to MGTAs who do 
not participate in the program, both within the 
same graduate program as well at different 
institutions?

RQ4. What identifiable aspects of individual, 
institutional, and departmental cultures inhibit or 
support sustainable change? 

Data & Methods

Theoretical Framework: TRU
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Discussion
Why TRU?
■ Captures aspects of equity and inclusivity not

captured by other instruments, as well as
identity and agency

■ Other instruments did not capture the
mathematics and the content element, nor did it
capture the interactions between students.

What is different?
● TRU

○ Created for use in K-12 classrooms under
Common Core

○ Focus is on the materials themselves in
addition to the implementation of them

○ Teachers have more control over the
materials they use in the classroom

○ Teachers are the ones introducing the topics
and reinforcing them

● ELITE PD
○ Courses are focused on building on past

material
○ Focus is on the facilitation of engagement

with the prepared materials rather than the
materials themselves

○ MGTAs often do not have control over the
materials/activities used in their classrooms

○ Often, MGTAs are not introducing the topic to
the students for the first time; rather they are
reinforcing it

Observation 1
● The first observation of each MGTA indicates

where they are in their teaching.
● Initial results indicate that there is room for

growth for the MGTAs
○ One particular area for growth is in their

understanding of group work versus
individual work

Future Work
● How do undergraduate student perceptions

align with what the framework helps to capture?
○ If they do align, this is an opportunity to use

these reports as a way to gauge what is
happening in the classroom, which is more
sustainable

Our Team

Mary
Beisiegel

David
Fifty

Rebecca 
Segal

Franklin 
Yu

Rani 
Satyam

Mary
Pilgrim

Sloan 
Hill-Lindsay

Hayley 
Milbourne

Classroom observations of MGTAs’ teaching in 
their first year:

The Mathematics Cognitive Demand Access to 
Mathematical Content

Agency, Authority, 
and Identity Uses of Assessment

The extent to which the 
mathematics discussed 
in the observed lesson is 
focused and coherent, 
and to which 
connections between 
procedures, concepts 
and contexts (when 
appropriate) are 
addressed and 
explained.

The extent to which 
classroom interactions 
create and maintain an 
environment of 
productive intellectual 
challenge that is 
conducive to students’ 
mathematical 
development.

The extent to which 
classroom activity 
structures invite and 
support the active 
engagement of all of 
the students in the 
classroom with the core 
mathematics being 
addressed by the class.

The extent to which 
students have 
opportunities to 
conjecture, explain, 
make mathematical 
arguments, and build 
on one another’s ideas, 
in ways that contribute to 
students’ development of 
agency, authority, and 
their identities as doers 
of mathematics

The extent to which the 
teacher solicits student 
thinking and subsequent 
instruction response to 
those ideas, by building 
on  productive beginnings 
or addressing emerging 
misunderstandings.

The Mathematics

Cognitive Demand

Small 
Group 
Work

Individual 
Work

TRU ELITE PD

The focus is on 
the grade level 
mathematics with 
the role of the 
teacher focused 
on supporting 
students 
exploring and 
justifying

The focus is on a 
particular 
mathematical 
idea or concept 
where the role of 
the role of the 
GTA is to support 
students 
exploring and 
justifying, with a 
focus on 
conceptual 
understanding

TRU ELITE PD

The focus is on 
the designed 
lesson and 
materials as well 
as the teacher 
interactions.

The focus is on 
the delivery of the 
lesson and 
materials as well 
as the GTA 
interactions.

TRU ELITE PD
The focus is on 
the designed 
lesson and 
materials.

The focus is on 
the delivery of 
content rather 
than the structure 
of the designed 
lesson.

TRU ELITE PD
The focus is on 
the grade level 
mathematics and 
its development.

The focus is on 
helping students 
understand 
concepts 
introduced.

Hayley Milbourne1, Sloan Hill-Lindsay2, Mary E. Pilgrim2, Mary Beisiegel3, Elite PD Research Group
1University of San Diego, 2San Diego State University, 3Oregon State University

Original TRU 
Framework

Blue 
Taylor
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Effects of Representations in Complex Analysis on Student Understanding in Real Analysis 

Aubrey Kemp Brian Ryals Jonathan Troup 
CSU, Bakersfield CSU, Bakersfield CSU, Bakersfield 

Research suggests that providing students opportunities to learn about concepts in a 

different context can deepen their understanding of these concepts (Kemp & Vidakovic, 2022; 

Troup et al, 2022; Baker et al. 2000, Dreiling, 2012; Hollebrands et al., 2010). Additionally, 

recent research has suggested that students reasoning about mappings from ℝ → ℝ rather than 

graphs in  ℝ2 may open new affordances for students in their reasoning about mappings from

ℂ → ℂ, as they attempt to generalize from graphs in ℝ2 rather than mappings from ℝ → ℝ (e.g.,

Soto & Hancock, 2019; Troup et al., 2017). The proposed intervention investigated in this study 

represents a potential converse to Troup et al.’s observation in that learning about concepts in 

Complex Analysis may offer opportunities for student understanding of concepts in Real 

Analysis to deepen. This study was conceived due to students in one of the researcher’s Complex 

Analysis class expressing that learning about sets and neighborhoods in the Complex plane made 

aspects of real analysis, such as the 𝜖 − 𝛿 definition of a limit, more understandable. The 

researchers’ intent for this pilot study was to determine more precisely the possible ways in 

which this realization can occur. We hoped to identify, (1) In what ways is student understanding 

of concepts (such as sets and neighborhoods) in Real Analysis affected by being introduced to 

these concepts in the Complex space?, and (2) What pedagogical implications emerge from 

obstacles students may face seeing different representations of these concepts? 

In this poster, we outline an ongoing study intended to characterize, through the lens of 

APOS (Action, Process, Object, and Schema) Theory, ways in which learning concepts in 

Complex Analysis might render concepts in Real Analysis more approachable for a student. 

Baseline data was collected via a Real Analysis class assignment in Spring 2022 at a Western 

Hispanic Serving Institution. We then introduced the students to an 18-minute video mini-lecture 

covering geometric representations of 𝜖 and 𝛿 neighborhoods in the complex plane and a 

corresponding definition of limit. We collected data afterward with another class assignment and 

compared this to our baseline data to determine what, if anything, changed in students’ reasoning 

and responses after watching the video. Our findings from this pilot study revealed some easily 

correctable limitations of the current methodology, including the format and timing of data 

collection. Despite these limitations, initial results suggest a common perspective the researchers 

named range-axis entanglement where the student had a strong tendency to believe the inputs 

and outputs of a function must be graphically represented on an 𝑥y-plane. We believe this may 

be a consequence of an early coordination of Processes within the Limit schema.  

We hoped that exposure to these concepts in a different context could offer affordances 

for students to overcome obstacles and better reason abstractly. In future data collection, we plan 

to adjust the presentation of the relevant concepts in the context of Complex Analysis as an 

activity in class instead of a video. We also plan to collect data through interviews to target 

student understanding in both Complex and Real Analysis. Particularly, that as students become 

proficient with mappings ℂ → ℂ, and in so doing disentangle the range and axis concepts, they 

might become more proficient with mappings ℝ → ℝ as a resultant side effect. For this poster, 

we present these preliminary findings, including examples of the range-axis entanglement, from 

the first stage of our study. We also provide future research plans, including ways we intend to 

refine the methodology for future stages of our larger project. 
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Literature Review

Providing students opportunities to learn about concepts  in a different context 
can deepen their understanding of these concepts (Kemp & Vidakovic, 2022; 
Troup et al., 2022; Baker et al. 2000, Dreiling, 2012; Hollebrands et al., 2010)
Limits:
• Students rely heavily upon graphs and formulas in understanding the

limit concept (Williams, 1991)
• Obstacle of formalism: the tendency for students to view the formal

representation of a mathematical object as if the representation was itself
the object (Sierpinska, 2000)

• In addition to relying on a formal definition of limit, students can benefit
from dynamic/geometric ideas and representations of limits (Tall & Vinner,
1981)

• Reasoning about mappings from ℝ → ℝ rather than graphs in ℝ2 may
open new affordances for students in their reasoning about mappings
fromℂ → ℂ, as they attempt to generalize from graphs inℝ2 rather than
mappings fromℝ → ℝ (e.g., Soto & Hancock, 2019; Troup et al., 2017)

APOS (Action-Process-Object-Schema) Theory (Dubinksy, 2002; Arnon et al., 
2014):
• Action – can transform objects with external stimuli or by performing steps
Ex: For lim

𝑥→𝑎
𝑓 𝑥 = 𝐿 - may evaluate 𝑓 at a single point 𝑥 that is close to or

equal to 𝑎.
• Process – can imagine performing these Actions without necessarily doing

so; can coordinate Processes with others to form connections between
concepts

Ex: May evaluate the function at more than one point, each point getting 
nearer to 𝑎, interiorize this action, and construct a domain process in which 
𝑥 approaches 𝑎. They also may construct a range process in 
which 𝑓(𝑥) approaches 𝐿, and coordinate these processes by applying the 
function f to both processes

• Object – can think of a Process as a totality to which Actions or Processes
may be applied

Ex: Considering limits at a point of combinations or compositions of functions

Research Questions
1. In what ways is student understanding of concepts (such as sets and

neighborhoods) in Real Analysis affected by being introduced to these

concepts in the Complex space?

2. What pedagogical implications emerge from obstacles students may face

seeing different representations of these concepts?

Future Directions
• As students become proficient with mappings ℂ → ℂ, and in

so doing disentangle the range and axis concepts, do they
become more proficient with mappings ℝ → ℝ?

• Continuing investigating this idea and range-axis
entanglement

• Student understanding of absolute value in relation to the
limit definition

• How does replacing the notation |𝑥 − 𝑦| with 𝑑(𝑥, 𝑦), where
𝑑 stands for distance, affects student conceptions.

Abstract: Research suggests that providing students opportunities to learn about concepts in a in a different context can deepen their understanding of these concepts. Additionally, recent research has suggested that students reasoning about mappings from ℝ → ℝ rather than graphs in ℝ2 may open new affordances for 

students in their reasoning about mappings from ℂ → ℂ, as they attempt to generalize from graphs in ℝ2 rather than mappings from ℝ → ℝ . The proposed intervention investigated in this study represents a potential converse to this observation that the lack of opportunities for students to engage with ℝ → ℝ in comparison 

with ℝ2 leads to difficulty with mappings ℂ → ℂ. In this poster, we outline an ongoing study intended to characterize, through the lens of APOS (Action, Process, Object, and Schema) Theory, ways in which learning concepts in Complex Analysis might render concepts in Real Analysis more approachable for a student. We 

present preliminary findings from the first stage of our study. We also provide future research plans, including ways we intend to refine the methodology for future stages of our larger project.

Key words: Limits, 휀 − 𝛿 proofs, APOS Theory, Visualization, Complex Numbers

*Effects of Representations in Complex Analysis on Student Understanding in Real Analysis

Aubrey Kemp Brian Ryals Jonathan Troup

Visualizations

Typical geometric picture in ℝ
(focus on pre-image and 

image as one graph)

Typical geometric picture in ℂ
(focus on pre-image and 

image as two graphs)

Methodology
• 13 volunteers from a Real Analysis course at a western university (out of 20 students enrolled)
• Coursework (homework, assessments) collected for analysis
• Participants:
o Saw traditional classroom algebraic and geometric treatment of one dimensional 휀 − 𝛿 limits in ℝ
o Watched short lecture on the algebraic and geometric treatment of one dimensional 휀 − 𝛿 limits in ℂ.
o Were asked to draw “before” and “after” pictures that correspond to the pre-image and image and to elaborate

on their thinking
• Using APOS Theory, analyzed whether there were then any changes in their geometric understanding in ℝ.

“Why Complex?”

• Symbolically, the definitions of a limit in the Real and Complex
space are nearly identical, though the visual interpretation is
different

• Promotes thinking of neighborhoods and their images as sets
• Detangles the function 𝑓 from the 𝑦-axis
• Visual generalizes to more abstract setting (traditional visual

doesn’t!)
• Complex still uses same notation as ℝ (unlike ℝ2)
• Offer affordances for a better comprehension in ℝ?

Before Exposure to ℂ

“The limit of the polynomial 
𝑔(𝑥) = 𝑥 is precisely 𝑔(𝑐) for 𝑐 in 
ℝ, since if 0 < 𝑥 − 𝑐 < 휀 →
x − c < 휀. In other words, as we 

approach the 𝒄 value, we also 
approach the 𝒈(𝒄) value.”

“If an infinite amount of points is 
in the 휀 −neighborhood of 𝑐, then 
there also [is] an infinite number 
of points in the 𝛿 −neighborhood 
of 𝑐. So the number 𝒈(𝒙)
approaches as x approaches 𝒄 is 
also 𝒄.”

“Could be that 𝑐 is the same 
distance as epsilon, not sure. 
Cannot write a full explanation as I 
don’t know where 𝑐 is.

After Exposure to ℂ

“The function 3𝑥 stretches the 
real number line by a factor of 
3. Since dim(ℝ) = 1, our
pictures only have one
dimension, whereas dim(ℂ) =
2 as seen as ℂ = ℝ × ℝ.”

“In this function 𝒇(𝒙) is our 
output and 𝒙 is our input. So we 
can have 𝑓(𝑥) be our after image 
and 𝑥 be our before image. So if 
we have an 휀-neighborhood 
around 𝑦0 = 6 then we know 
there must be a corresponding 
𝛿-neighborhood around 𝑥0 = 2.” 

“For the before graphs, I choose 
the 𝒙 values with 𝑥 ∈ ℤ. I stopped 
at 𝑥 = 2 because 𝑐 = 2. All of these 
points remain on the 𝑥-axis. For 
the after graphs, I used the points 
from the 𝒙-axis and plugged into 
𝒚 = 𝟑𝒙. My 𝒚 values only stuck to 
the 𝒚-axis.”

Preliminary Results
• Did not clearly affect understanding
• Possibly allowed for coordination reversal for some students
• Illuminated schema development and obstacles within
• Range-Axis Entanglement: Strong tendency to believe the inputs

and outputs of a function must be graphically represented on
an 𝑥y-plane (face an obstacle in “separating” pre-image and
image)
• Consequence of early coordination of Processes within the

Limit schema?
• How can we effectively guide students?

Limitations of Present Study

• Format of data collection
• No interviews to probe for understanding
• Questions in prompts did not target understanding

in both ℝ and ℂ as well as they could
• Video was 18 minutes → In class activity next time

• Timing of data collection
• Collect after semester or at least not during finals
• Introduce concepts ℂ in class before this video

Analysis Highlights

• Before: Process conception
(“approach”)

• After: Process conception (if
prompted may show
evidence of Object)

• Limit schema – Evidence of
successful coordination
between image and pre-
image processes

• No evidence of Range-axis
entanglement

• Before: Process conception
(relating neighborhoods as
processes)

• After: Process conception
(relating the neighborhoods
as objects)

• Limit schema – Object
conception of Function;
May need to de-encapsulate
Function object to
strengthen the coordination
of Range and Graphing
processes

• Range-Axis Entanglement

• Before: Pre-Action
conception (could refine
understanding of cluster
point)

• After: Action conception
(picking specific points to
relate)

• Limit schema – Action
conception of Function;
May need to work on
coordination of Pre-Image
and Image processes to
interiorize

Desired geometric picture in ℝ
(focus on pre-image and 

image as two graphs)
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Definition Given in Class
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Designing Tasks to Teach Mathematical Induction 

Valentina Postelnicu             Mario Gonzalez 

Governors State University Texas State University 

We conducted a study on the teaching and learning of mathematical induction, based on the 

principles of didactical engineering, with undergraduate students enrolled in a Discrete 

Mathematics course at a four-year university. Students’ performance on induction tasks 

improved. We focus here on designing tasks with the potential to foster inductive reasoning and 

give meaning to the Principle of Mathematical Induction. 

Keywords: Mathematical Induction Tasks, Didactical Engineering, Undergraduate Students 

 The recent research on mathematical proofs is rich, but not many studies specifically address 

mathematical induction. A proof by mathematical induction may be used whenever we have a 

statement P(n), where n is a natural number. According to Ernest’s (1984) framework, the steps 

of a mathematical induction proof are:  

• basis step, checking that P(n0) is true (n0 is the smallest value for which P(n) is true),

• inductive step (checking that P(k)→P(k+1),  0k n ), and 

• invocation of the Principle of Mathematical Induction (PMI).

We report on a study on the teaching and learning of proofs by mathematical induction, with 

undergraduate students enrolled in a Discrete Mathematics course taught by the first author at a 

four-year university. We focus on the  application of the principles of didactical engineering 

(Artigue, 1994) to design tasks with the potential to foster inductive reasoning and give meaning  

to the PMI. Figure 1 illustrates the phases of the didactical engineering process. 

Figure 1. The didactical engineering process adapted after Artigue (1994) 

At the beginning of the fourth iteration, the a priori analysis revealed that our students had 

difficulty giving meaning to mathematical induction as a method of proof. Although our 

students’ performance improved with each iteration, the induction step remained procedural in 

nature. Ernest (1984) drew our attention to the usefulness of analogies to the PMI. Harel (2001) 

used tasks that defined sequences recursively and fostered inductive reasoning, thus giving 

meaning to the PMI.  Other studies highlighted the importance of visual representations 

(Stylianou and Silver, 2004) and gestures used during the teaching and learning process 

(Kokushkin, 2020).  Based on research and our own experience with the teaching and learning of 

mathematical induction, we designed, implemented, and refined tasks with the potential to foster 

inductive reasoning and give meaning to the PMI. One such task asked the students to create 

their own analogy to the PMI (Postelnicu and Gonzalez, 2020), while another task used visual 

representations. We discuss the use of visual representations, intended to help the students define 

a sequence recursively and find the general term of the sequence and the formula for the sum. 

A priori 
analysis of 
the target 
knowledge 

and 
constraints

Planning Implementation

A posteriori 
analysis of 
the target 
knowledge

Comparison 
between the 
a priori and 
a posteriori 

analysis

New 
iteration:

A priori  
analysis, 

etc.
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In response to national movements for social justice in education, there has been an increase 

in efforts to develop institutional structures to support diversity, equity, and inclusion (DEI) in 

the classroom. Teachers are tasked with supporting diverse groups of students from varied 

backgrounds (Ameny-Dixon, 2004). However, research indicates that there is a lack of support to 

empower practitioners to create equitable learning environments (Perez et al., 2020). 

One significant portion of the teaching force in undergraduate mathematics is Mathematics 

Graduate Teaching Assistants (MGTAs). Iverson (2012) noted that current graduate education is 

insufficient for developing MGTAs’ skills and knowledge for fostering social change. While 

there is scant literature on teachers’ conceptions of DEI - the little that exists indicates that many 

practitioners have varied understandings of these concepts (Bell et al., 2007; Fifty et al., 2022; 

Garmon, 2005). Therefore, there is a need to explore how to support MGTAs in developing 

equitable and inclusive teaching practices. 

In this study, we investigate MGTAs’ initial conceptions of equitable teaching practices. 

Additionally, we report our initial observations on how the MGTAs interacted with specific 

activities throughout a teaching seminar focused on active learning and DEI topics. This work is 

part of a larger project that aims to design and implement a multi-stage, MGTA professional 

development program centered on equity and inclusion in a range of academic institutions. 

In our initial findings through semi-structured interviews and post-class surveys, we noticed 

that MGTAs’ conceptions of equity generally referred to a deficit in students’ content 

knowledge. For example, a significant portion of our subjects thought that equitable teaching 

involved providing extra office hours or spending more time with students in the classroom 

based on how well they understood the material. Few MGTAs demonstrated an awareness of 

differences in student backgrounds and identities that may have impacted their schooling. 

We observed that directly discussing the diverse populations that take undergraduate 

mathematics courses supported the MGTAs in expanding their conception of equitable teaching 

practices. In particular, providing these MGTAs with descriptions and illustrations of students’ 

access needs, mathematical backgrounds, and classroom experiences aided the MGTAs in 

discussing ways in which they could create a more equitable teaching environment. 

Acknowledgments 

This work was funded by the National Science Foundation: awards EHR #2013590, 

2013653, and 2013422. We also thank the other members of the ELITE PD team: David Fifty, 

Mary E. Pilgrim, Sloan Hill-Lindsay, Stacey Zimmerman, and Hayley Milbourne. 

25th Annual Conference on Research in Undergraduate Mathematics Education 1341



References 

Ameny-Dixon, G. M. (2004). Why multicultural education is more important in higher education 

now than ever: A global perspective. International Journal of Scholarly Academic 

Intellectual Diversity, 8(1), 1-9. 

Bell, C. A., Horn, B. R., & Roxas, K. C. (2007). We know its service, but what are they 

learning? Preservice teachers’ understandings of diversity. Equity & Excellence in Education, 

40(2), 123-133. 

Fifty, D., Beisiegel, M., & Zimmerman, S. (2022). Investigating mathematics department 

leaders’ experiences and understandings of equity. In Proceedings of the 44th Meeting of the 

North American Chapter of the International Group for the Psychology of Mathematics 

Education, Nashville, TN 

Garmon, M. A. (2005). Six key factors for changing preservice teachers' attitudes/beliefs about 

diversity. Educational Studies, 38(3), 275-286. 

Iverson, S. V. (2012). Multicultural competence for doing social justice: Expanding our 

awareness, knowledge, and skills. Journal of Critical Thought and Praxis, 1(1). 

Perez, R. J., Robbins, C. K., Harris Jr., L., & Montgomery, C. (2020). Exploring graduate 

students’ socialization to equity, diversity, and inclusion. Journal of Diversity in Higher 

Education, 13(2), 133. 

25th Annual Conference on Research in Undergraduate Mathematics Education 1342



“What is Equitable Teaching?”: Graduate Teaching 
Assistants’ Perceptions of Equity

Franklin Yu1, Blue Taylor2, V. Rani Satyam1, Rebecca Segal1, Mary Beisiegel3, Elite PD Research Group
1Virginia Commonwealth University, 2San Diego State University, 3Oregon State University

1. Iverson, S. V. (2012). Multicultural competence for doing social justice: Expanding our awareness,
knowledge, and skills. Journal of Critical Thought and Praxis, 1(1).

2. Su, F. E. (2015). Mathematical microaggressions. MAA FOCUS, 36-37.
3. Brown, S. (2018). E-IBL: An exploration of theoretical relationships between equity-oriented instruction

and inquiry-based learning. In Proceedings of the 21st Annual Conference on Research in Undergraduate
Mathematics Education (pp. 1-15).

4. Dasgupta, N., Scircle, M. M., & Hunsinger, M. (2015). Female peers in small work groups enhance
women's motivation, verbal participation, and career aspirations in engineering. In Proceedings of the
National Academy of Sciences, 112(16), 4988-4993.

5. Mathematical Association of America. (2018). MAA Instructional Practices Guide. Washington, DC:
Mathematical Association of America

6. Reinholz, D. L. (2018). A primer on small group instruction in undergraduate mathematics. Primus, 28(10),
904-919.

References

Context, Research Questions, & 
Methodology

Working Definition of “Equitable 
Teaching”

“How would you describe equitable teaching at the post-secondary level or college level?”

• Overall, the MGTAs had varying ideas on what “equitable teaching” entailed. Coding revealed overlapping themes.
• Besides “helping students”, there was no one theme that appeared in more than 50% of MGTAs’ responses.

Equitable Teaching as…

MGTA Conceptions of Equitable Teaching
➢ Few MGTAs explicitly mentioned an awareness of

how students’ identities impact their classroom
experience:

“Each student has individual experiences that
they’re bringing to the classroom and that, if we
can acknowledge those different identities and
those different backgrounds, that we can help
students have access to the material in a better
way.”

➢ While many MGTAs explained equitable teaching
as “giving according to needs”, most of these
MGTAs associated this with different learning
styles (Audio/Visual/Kinesthetic) or helping
students who are behind on content knowledge.

Discussion

Context:
• There has been an increase in efforts to develop

institutional structures to support diversity, equity,
and inclusion (DEI) in the classroom

• Current graduate education is insufficient for
developing Mathematics Graduate Teaching
Assistants’ (MGTAs) skills and knowledge for
fostering social change (Iverson, 2012)

Research Questions
• What are MGTAs’ conceptions of equitable

teaching?
Data Sources
• 31 Clinical Interviews with MGTAs at 3 institutions
• Clinical Interview consisted of questions asking

about MGTAs teaching experience and ideas about
equitable and inclusive teaching

▪ We designed a professional development (PD)
program for MGTAs focused on engaged learning,
inclusive teaching, and equity (ELITE PD).

▪ The ELITE PD program spans 2-3 years and will be
implemented at three collaborating institutions
with differing contexts.

▪ MGTAs who participate in the program will be
supported in making incremental changes to
transform their teaching and broaden their
understanding of equity and inclusion.

▪ Cohorts will be recruited from each institution and
progress through a sequence of PD workshops,
classes, and peer mentoring

The Elite PD Program

This work is supported by the National Science Foundation 
under Grant Nos. 2013422, 2013563, and 2013590. Any 
opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do 
not necessarily reflect the views of the National Science 
Foundation.

Equitable Teaching refers to focusing on the needs of 
every individual and ensuring the right conditions are 
in place for each person to achieve their full potential. 
An equitable classroom values the unique 
contributions that students of all backgrounds bring to 
the classroom and allows diverse groups to grow side 
by side, to the benefit of all. 

Teaching practices include attending to:
● student identity, addressing stereotypes and bias
● intentional language use (e.g., Su, 2015 )
● small-group structure and roles (e.g., Brown, 2018;

Dasgupta et al., 2015; MAA, 2018; Reinholz, 2018)
● addressing needs of current-day students, including

access and resources

What does “Equitable Teaching” mean 
to you?

Acknowledgements

Using multiple/diverse teaching styles

“Equitable teaching is a way of designing teaching 
methodologies that allow for multiple methods of 

learning from students”

“I think having a diverse set of ways that you present 
material. Some students may be more visual. Some 

students really like to just hear what you’re saying. So 
yeah, providing all the students with the best change to 

do well in your class I guess.”

“So like explaining things a different way, playing a 
video, and doing something that’s more quiet 

individual work”

“Split it up so there’s a little of everything for each type 
of student… like for example if I’m speaking a lecture

to you, I’m also trying to write down what I’m saying on 
the whiteboard so that students can get both audio 

and visual there”

Helping students who are behind

“Trying to figure out if there are students who are 
falling behind and figure out how to get them back on 

pace”

“To be equitable you want to make sure, like focus on 
students that might not have the material down and 
come back to them more often and engage with them 

more often”

“So students with different backgrounds like there’s a 
lot of students with gaps in their mathematical 

content knowledge from prior courses and so being 
able to help fill those”

“So equity for me it’s more like I give everybody what 
they need. So, for example, if I have office hours, and 

as they come in, if one student, I notice they have 
more gaps, they might need more time to spend with 
me vs. somebody who has just one or two questions 

that might be more of like a clarifying question.”

Equal access/provision to resources and learning

“Equity is every student has equal access to a laptop 
and reliable internet access or something like that”

“Equity, to me, probably implies a lot of free available 
resources. Things like that are kind of open door 

policies to allow students to try and seek out as much 
support as they can.”

Being accessible and available to students

“Equitable teaching would be providing all of the 
students with equal access to a teacher or TA. So office 
hours that are accessible to everyone. Maybe someone 

has a job on the side or is on a team or, you know, in 
the choir, something like that. And making sure you 
have office hours or a way to reach you even when 

everyone has all these different schedules.”

“I want everyone to be able to have that opportunity 
to come and study or ask questions, or whatever they 

need to do. So I’ve definitely pushed myself to, if 
someone can’t make it to office hours, then I schedule 

other times”

Involving Active Learning

“Of all of the class, like most of the time where it’s the 
most equitable is the active learning process, because 
those are designed to be smaller group work activities, 

working together, and getting questions answered”

“Like interactive with group work, or you know, 
they’re like creative and exploratory ways to engage 

with the material and those things are helpful for 
equity and inclusion. Having students work together 

and talk to each other and collaborate.”

“It’s most equitable when we’re kind of in a discussion 
mode. When it’s not me standing up there giving them 
information. More when it’s students asking questions 

or working on problems in smaller groups.”
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Mathematics professors’ goals through an integrated lens of guided reinvention and creation 
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Guided reinvention or the guidance principle (Realistic Mathematics Education) 
examines how teachers can provide opportunities for students through “realistic” contexts to 
facilitate them to reinvent “higher” level formal concepts. (Gravemeijer, 2008; Van den 
Heuvel-Panhuizen, & Drijvers, 2020). Guided reinvention acknowledges collaborative 
students' work like whole group discussions. We assume that students can show or develop 
multiple understandings and even non-traditional knowledge in such discussions. Therefore, 
we consider the creation dimension (Rehumanizing Mathematics) which acknowledges 
students’ conceptions and diverse forms of expressing mathematics (Gutiérrez, 2018) as a 
way of expanding guided reinvention. Being able to stray from traditional knowledge 
forms/representations can feel humanizing for students and help transform their relationship 
with mathematics as authors/creators of mathematics. By way of illustration of diverse forms, 
there can be sense-making alternative axiomatic models of a concept, which are different 
from the traditional ones. Moreover, students might show “proofs” that are non-deductive, 
non-symbolic, or visual. Creation privileges Nepantla moments of tensions within multiple 
perspectives (Gutiérrez, 2012); however, Gravemeijer’s mathematization in guided 
reinvention process focuses on developing standard procedures, “limiting interpretations,” 
and validations (Gravemeijer, 2000). This encourages us to identify how guided reinvention 
and creation can interact with and expand each other’s use. 

To obtain empirical evidence, we recruited five mathematics professors in India for our 
ongoing qualitative case study to explore how their views of their teaching roles might 
influence their interest/propensity to use guided reinvention and creation. One out of three 
interviews for each participant centers guided reinvention, another interview centers creation, 
and the final interview centers both concepts. “Member checking” is conducted in the last 
interviews by summarizing interpretations of the first two interviews to the participants. With 
a lens of guided reinvention and creation, we seek responses to our research questions on 
mathematics professors’ perceptions of their role in facilitating students for abstract concepts, 
students’ alternative conceptions (Fujii, 2020), students making conjectures, and students’ 
participation. The findings can potentially exemplify and guide us on how guided reinvention 
and creation can be developed as an integrated framework, which can be used in later studies 
and support a more humanizing experience for students studying mathematics. 

The poster presents the study's preliminary results, participants’ quotes, future steps, and 
a Venn diagram depicting how guided reinvention and creation potentially interact. Among 
other results, we focused on one professor and noticed he finds it essential to provide realistic 
scenarios but thinks it becomes difficult to find such scenarios at “higher” abstraction levels. 
We identified that, for this professor, he finds it important to alert his students about informal 
writing so that they can avoid “errors,” which might prevent guided reinvention or creation. 
We look forward to discussions with conference attendees about more results mentioned in 
the poster. 
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Students in introductory physics courses are often asked to use familiar mathematics in novel 
ways. Improving students’ quantitative literacy within physics contexts (i.e. physics quantitative 
literacy, or PQL) is a goal for many physics instructors. A challenge in assessing PQL is the 
blended relationship between students’ general mathematical reasoning and conceptual 
understanding of physics. A recently developed multiple-choice instrument for measuring PQL 
includes several multiple-choice-multiple-response (MCMR) items for which students may 
select as many responses as they think are correct (White Brahmia, et al., 2021). The MCMR 
item format provides an opportunity to see the interaction between students’ quantitative literacy 
and conceptual physics understanding. 

Previous approaches to analyzing data from MCMR items fall into three categories: scoring 
response combinations as either completely correct or incorrect (Kubinger & Gottschall, 2007; 
Smith, et al., 2020; White Brahmia, et al., 2021), defining an a priori partial credit score for each 
response combination based on expert opinions (Wilcox & Pollock, 2014), or avoiding item 
scores by treating responses as categorical variables (Smith, et al., 2019; Vlach & Plašil, 2006). 

In this poster we present a novel approach to defining a data-driven partial credit score for 
each combination of responses to MCMR items based on item response theory (IRT) analyses. 
We seek to address three research questions: 1) What score is assigned to each combination of 
responses based on IRT parameters? 2) How do correct and incorrect responses impact these 
scores? 3) How do scores based on IRT parameters relate to traditional dichotomous scores? 

Data come from 3424 introductory physics students at a large research university. We apply 
IRT methods to MCMR data by treating each item as a combination of individual dichotomous 
response-items and grouped nominal response-items (Smith, et al., 2022). IRT parameters are 
used to define a score for each response combination (Smith & Bendjilali, 2022). 

Our results show that the correct response combination for each item always has the highest 
IRT-defined score, even though the correct responses are not specified in the model. Correct 
individual responses have positive scores, and incorrect responses have negative scores. Total 
IRT-defined test scores strongly correlate with dichotomous test scores (r = 0.8). This supports 
the interpretation of IRT parameters as indicating levels of correctness and understanding.  

Some analyses of grouped responses yielded counterintuitive results: we identified one item 
for which certain incorrect responses corresponded to positive parameters, and another item for 
which selecting two (out of three) correct responses was scored lower than selecting only one. 

Our overall results indicate a strong potential for using IRT analyses to inform partial credit 
scores for MCMR items used to measure students’ PQL; however, more consideration is needed 
to define the transformation from IRT parameters to partial credit scores. 
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Introduction
• Improving students’ physics quantitative literacy (PQL) is a goal for many
physics instructors.

• PQL is the blended relationship between students’ general mathematical
reasoning and conceptual understanding of physics.

• The Physics Inventory of Quantitative Literacy (PIQL), includes multiple-
choice-multiple-response (MCMR) items; students may select as many
responses as they think are correct (White Brahmia et al., 2021).

• The MCMR items can show the interaction between students’ quantitative
literacy and conceptual physics understanding.

• Previous approaches to analyzing data from MCMR items fall into three
categories:
– scoring response combinations as either completely correct or incor-

rect (Kubinger and Gottschall, 2007; Smith et al., 2020; White Brahmia
et al., 2021),

– defining partial credit score based on expert opinions (Wilcox and Pol-
lock, 2014),

– treating responses as categorical variables without scores (Smith et al.,
2019; Vlach and Plašil, 2006).

Methods
• PIQL response data analyzed using item response theory (IRT).
• Data come from 3424 introductory physics students.
• Each item is a combination of individual dichotomous response-items and
grouped nominal response-items (Smith et al., 2022). See Table 1

• IRT parameters are used to define a score for each response combination
(Smith and Bendjilali, 2022).

Item Response Theory
The probability of choosing a particular response k , given the student’s
overall physics quantitative literacy θ.
Dichotomous Two-parameter Logistic Model (2PL): A response option is
either chosen or not chosen, e.g., response “A” to item 17.

P2pl (k |θ) =
eakθ+dk

1 + eakθ+dk

Nominal Response Model (NRM): A response option is a set of related
responses or combinations of responses, e.g., responses “D”, “E”, “both
D& E”, or “neither D nor E” to item 18

Pnrm(k |θ) = eakθ+dk∑
i
eaiθ+di

Joint probability of selecting a particular combination of responses is the
product of individual functions.

P16(A,C ,F |θ) = P2pl (C |θ)P2pl (D
′|θ)Pnrm(A ∩ F |θ)Pnrm(B ′ ∩ E ′|θ)

=

(
eaC θ+dC

1 + eaC θ+dC

)(
1

1 + eaDθ+dD

)eaAFθ+dAF∑
i
eaiθ+di


 1∑

j
eaj θ+dj


=

exp [(aC + aAF ) θ + dC + dAF ]

Z16(θ)

where i = {0,A,F ,AF} and j = {0,B ,E ,BE}. Z16(θ) is a summation
including one term for every possible combination of responses.
The “ak ” parameters indicate level of PQL (Smith and Bendjilali, 2022), and
a0 = 0. We use these to define partial credit scores.

For the dichotomous 2PL model, a negative ak value indicates that the
probability of selecting response k is a monotonically decreasing function
of θ. But for the nominal model, positive or negative ak values indicate
higher or lower PQL than not selecting any of the responses, respectively.
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Enriching Assessment of Physics Quantitative Literacy:
IRT with Multiple-Response Items

Trevor I. Smith1, Philip Eaton2, Alexis Olsho3, Suzanne White Brahmia4

Goal: Define partial credit for response combinations using both dichotomous
and nominal IRT models to analyze data from MCMR items

Important: The remainder of the questions on this survey may have more than one correct answer. Select
ALL ANSWERS you believe are correct.

15. The internal energy of a system can be increased by doing positive work on the system or by heating
it, and it can be decreased by cooling the system or if the system does work. Which if the following
equations represent(s) this relationship (U is the internal energy of the system, Q is positive when energy
flows into the system, and W is positive when work is done on the system)? Choose all that apply.

a. �U = Q � W

b. �U = �Q + W

c. �U = Q + W

d. ��U = Q + W

e. ��U = Q � W

f. ��U = �Q + W

16. Consider the following statement about subatomic particles:

“There are three times as many quarks as nucleons.”

Some students were asked to write an equation to represent this statement, using Q for the number of
quarks and N for the number of nucleons. Which of the following are correct?
Choose all that apply.

a. 3Q/N b. 3Q = N c. 3Q + N d. Q = 3N e. None of these are correct.

17. Shown at right is a picture of a small flag of the Kingdom
of Bhutan, which has a dragon along its diagonal. A second
version of the flag, not shown, is 1.5 times taller than the
smaller flag and is also 1.5 time wider.
Which of the quantities below are larger by a factor of 1.5
for the larger flag compared to the smaller flag? Choose all
that apply.

a. The distance around the edge of the flag.

b. The amount of cloth needed to make the flag.

c. The length of the curve forming the dragon’s backbone.

d. The diagonal of the flag.

e. None of these quantities are larger by a factor of 1.5.

18. The following problem is constrained to one dimension. A hand exerts a constant, horizontal force on a
block as the block moves along a frictionless, horizontal surface. No other objects do work on the block.
For a particular interval of the motion, the hand does W = �2.7 J of work on the block. Recall that for
a constant force F , and displacement �s, W = ~F • �~s.

Consider the following statements about this situation. Select the statement(s) that must be true.
Choose all that apply.

a. The work done by the hand is in the negative direction.

b. The force exerted by the hand is in the negative direction.

c. The displacement of the block is in the negative direction.

d. The force exerted by the hand is in the opposite direction as the block’s displacement.

e. The force exerted by the hand is in the same direction as the block’s displacement.

f. Energy was added to the block system.

g. Energy was taken away from the block system.

19. Recall that the electric field is a vector quantity. At a location on the x-axis, the x-component of the
electric field is measured to be Ex = �10 N/C, and the y and z -components of the field are measured
to be zero.

Consider the following statements about this situation. Select the statement(s) that must be true.
Choose all that apply.

a. The source of the field is a negative charge.

b. At that location of the x-axis, the field is in the negative x-direction.

c. In this field, the motion of any charged particle is opposite to the direction of the field.

d. The magnitude of the electric field is decreasing.

e. The magnitude of the electric field at that location is 10 N/C less than it is at the origin.

20. Two objects can move in either direction along the x-axis. The two objects collide. As a result of the
collision, object 1’s velocity vector changes, �vx = �10 m/s.

Consider the following statements about this situation. Select all statement(s) that must be true.
Choose all that apply.

a. Object 1 is moving faster after the collision than it was before the collision.

b. Object 1 is moving slower after the collision than it was before the collision.

c. Whether object 1 is moving faster or slower after the collision than it was before the collision
cannot be determined using only the information given.

d. Object 1 moved in the positive direction before the collision, and in the negative direction after
the collision.

e. Object 1 moved in the negative direction before the collision and in the positive direction after
the collision.

f. Object 1 moved in the negative direction both before and after the collision.

Figure 1. MCMR items on the PIQL

Dichotomous and Nominal Response-items
Independent Grouped
Dichotomous Nominal

Item Responses Responses

15 C, D A+F, B+E
16 A, C B+D
17 A, B, C, D –

Independent Grouped
Dichotomous Nominal

Item Responses Responses

18 A, B, C D+E, F+D
19 A, B, C, D, E –
20 D, E, F A+B+C

Table 1. Strongly correlated response options are grouped and analyzed
using the nominal response model (Smith et al., 2022).

IRT Parameter Results

Expected IRT Expected IRT
Ranking Score Ranking Score

Item C∗ +0.67 Item DG∗ +1.39
15 AF -0.20 18 D† +0.04

BE -0.53 G† +1.35
D -0.74 EF +0.07
A -1.08 E; F -0.46; +0.53
F -0.50 A; B; C -0.20; -0.36; -0.57

AC‡ -0.40 DE‡; FG‡ -0.48; -0.20

Item D∗ +2.27 Item B∗ +0.49
16 B +1.54 19 A 0.00

A -0.41 C -0.51
AB +1.13 D -0.84
AD‡ +1.86 E -0.38

Item ACD∗ +1.48 Item C +1.76
17 A†D† +1.11 20 C†D +0.90

A†C† +1.17 D -0.86
A† +0.77 A +0.23

C†; D† +0.37; +0.34 B +0.99
B -0.89 AB‡ -0.23

ABC‡ -0.10
E -1.22

Table 2. Expected rankings of responses to MCMR items (higher on top),
and associated partial credit “scores” defined from IRT parameters. Aster-
isks (∗) indicate completely correct responses. Daggers (†) indicate partially
correct responses. Double daggers (‡) indicate contradictory response com-
binations.

Takeaways

• Choosing mathematically equivalent responses indicates higher understanding than just choosing one of a pair. Example
from item 15: aAF > aA + aF and aBE > aB + aE .

• Incorrect independent (dichotomous) responses always have negative parameter values. Incorrect responses that are
part of a nominal group may have positive or negative IRT parameter values. This suggests that any response from some
groups indicates higher physics quantitative literacy (PQL) than not choosing any from the group.

• The order of the IRT parameter “scores” matches the expected ranking for most items, but there are some discrepancies.
For example: choosing the two incorrect responses “E” and “F” on item 18 has a higher score than choosing the single
correct response “D”. More work is needed to reconcile these results.

3

4 DUE-1832836
DUE-1832880
DUE-2214765
DUE-2214283

Research Questions and Results
RQ1: What score is assigned to each combination of responses based
on IRT parameters?
• See Table 2

RQ2: How do correct and incorrect responses impact these scores?

• All correct response scores are positive.
• All incorrect dichotomous response scores are negative.
• Incorrect nominal responses may be positive or negative, but all are lower
than correct.

RQ3: How do scores based on IRT parameters relate to traditional di-
chotomous scores?
• IRT parameters used as scores give a range of total test scores from about
52 to 82 (compared with [0,20] for dichotomous scoring)

• When partial credit scores are scaled to have a range of [0,20], most (but
not all) students have higher total scores when including partial credit.

Partial Credit vs. Dichotomous Scores
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Figure 2. Partial credit scores have been scaled to have the same range
as dichotomous scores: [0,20]. Points above the dashed blue line indicate
higher partial credit scores, and vice versa. Histograms show the overall
distribution for each score.

Conclusion

• The correct response combination for each item always has the highest
IRT-defined score, even though the correct responses are not specified in
the model.

• Correct individual responses have positive scores, and incorrect re-
sponses have negative scores.

• Total IRT-defined test scores strongly correlate with dichotomous test
scores (r ≈ 0.8). This supports the interpretation of IRT parameters as
indicating levels of correctness and understanding.

• Some analyses of grouped responses yielded counterintuitive results: we
identified one item for which certain incorrect responses corresponded to
positive parameters.

• Our overall results indicate a strong potential for using IRT analyses to
inform partial credit scores for MCMR items used to measure students’
PQL; however, more consideration is needed to define the transformation
from IRT parameters to partial credit scores.

• IRT parameters indicate how much knowledge or understanding is indi-
cated by each response. Translating this into a partial credit score is not
entirely straightforward.

1
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Pre-Calculus Students' Mathematics and Art Cognitions in Making and Testing Conjectures
About the Fibonacci Spiral and the Great Wave of Kanagawa

Tuto LopezGonzalez
San Francisco State University

Keywords: Cognition, Pirie-Kieren Model, Pre-Calculus

There are many forms of thinking and sense-making through artistic expression (e.g.,
painting, music, dance, and emotion). Similarly, there are many forms of thinking and
sensemaking through mathematical expression (e.g., quantities, symbols, diagrams, logic). In
mathematics, the Pirie-Kieren (P-K) framework has been useful for exploring the development
of mathematical understanding (Pirie & Kieren, 1994). According to the P-K framework, a
learner goes back and forth among eight cognitive layers when working on a mathematical task
(primitive knowing, image making, image having, property noticing, formalizing, observing,
structuring, inventizing). No similar framework exists for the development of artistic
understanding. Research has suggested that bringing arts into a mathematics classroom can be
viewed as a rich way of engaging learners (Baird, 2015). A growing interest in cognitive
development at the intersection of mathematics and arts offers an opportunity to explore how it
might be modeled as a non-linear dynamical recursive process as in the P-K framework.

Thinking about art can inform/shape thinking about mathematics and vice versa. The poster
presents research exploring the nature of pre-calculus students' mathematics and art cognitions in
making and testing conjectures about recursive relationships. The work examines the potential of
using the P-K model for documenting students’ mathematics and art understanding and how this
understanding develops while including attention to responses such as gesturing and body
language. I developed and conducted interviews with four pairs of college precalculus students.
The interview task used the Fibonacci spiral and an Edo-period woodblock print, the Great Wave
by Hokusai, as spurs for student thinking and interaction about mathematics and art. Qualitative
inductive analysis examined the audio- and video-recorded interviews using the P-K framework
to identify and describe the mathematical and art-centered/visual thinking by students as they
made sense of and responded to aspects of the task.

This poster will illustrate the findings on how the Pirie-Kieren framework is useful in
unpacking the math-rich and diagram/visual-rich aspects of cognition by pre-calculus students.
This poster aims to provide a space for RUME participants to share and discuss how art (song,
painting, poem, etc) can support thinking about an idea/concept in mathematics. Additionally, it
is a goal of this poster’s graduate student author to talk with visitors about existing research
about or near to mathematics and arts cognition, both to learn what they suggest as related
readings and what more or different they would hope to see in a long report about this research.

The implications of the research include the value of (1) revisiting existing research at the
intersection of art and mathematics with multiple P-K diagrams in hand (one for art, one for
mathematics, and one for both) to make better/different sense of cognition involving both
mathematics and art and (2) designing new curriculum and related research on how to combine
art and mathematics that is better informed by the ways the combining may influence
mathematical understanding.
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The P&K framework 
was extended to 
track the learner’s 
development of 
fulfillment/understa
nding of both the 
GWK and the FS 
(# indicates prompt)

The P&K framework  
for the development 
of mathematical 
understanding was 
used to draft the 
map on the second 
part of the 
experience 
(# indicates prompt)

Pre-Calculus Students' Mathematics and Art Cognitions in Making and Testing 
Conjectures About the Fibonacci Spiral and the Great Wave of Kanagawa
Tuto Lopez Gonzalez, San Francisco State University 

Maps of Development of Understanding

Let’s talk  arts and math in research :) 

Project Overview

I created an experience completed by 3 pairs of 
pre-calculus students. Each pair interacted with 
The Great Wave off Kanagawa (GWK) (1831) by 
artist Katsushika Hokusai. Participants were asked 
to analyze the GWK. Then, pairs completed a 
mathematical task with the Fibonacci Spiral (FS). 
Finally they interacted with the GWK using the FS.

Part 1: Analyzing The GWK 
using the  the 4-step art 
analysis framework i.e., 
Description, Analysis, 
Interpretation, and 
Evaluation.

Part 2: Building the 
Fibonacci Spiral by making 
and testing conjectures 
about its patterns. 

Developing a framework for the development of 
artistic fulfillment/understanding

Research has suggested that bringing arts into a 
mathematics classroom can be viewed as a rich way 
of engaging learners (Baird, 2015). A growing 
interest in cognitive development at the intersection 
of mathematics and arts offers an opportunity to 
explore how it might be modeled as a non-linear 
dynamical recursive process as in the P&K 
framework.

● Baird, D. (2015). Integrating the arts in mathematics teaching.
(Master’s thesis). University of Toronto. https://bit.ly/3xET4hT

● Meel, D. E. (2003). Models and theories of mathematical
understanding: Comparing Pirie and Kieren's model of the
growth of mathematical understanding and APOS theory. In A.
Selden, E. Dubinsky, G. Harel, & F. Hitt (Eds.), Research in
Collegiate Mathematics Education. IV. (pp. 132–181). American
Mathematical Society.

● Pirie, S., & Kieren, T. (1994). Growth in mathematical
understanding: How can we characterise it and how can we
represent it? Educational Studies in Mathematics, 26(2/3),
165–190.

● Pirie, S., & Kieren, T. (1989). A recursive theory of mathematical
understanding. For the Learning of Mathematics, 9(3), 7–11.

In studying the nature of pre-calculus students' 
mathematics and art cognitions based on the 
experience, the following observations were done:

● P&K is useful for understanding mathematical
cognition about the FS and documenting
student’s sense making.

● P&K is useful for exploring student’s sense
making and fulfillment of arts.

● A multi dimensional version of the P&K
framework is proving useful in documenting how
students use visual and mathematical
information together to make sense of
mathematical ideas related to the FS.
○ In analyzing art (Part 1) learners come up to

the boundary (Meel, 2003) of formalizing.
○ When interacting with both the GWK and the

FS (Part 3), learners crossed the boundary and
entered mathematical formalizing.

● Preliminary analysis indicates gesturing when
interacting with artwork is a form of embodied
cognition that supports formalizing concepts
beyond noticing.

● Testing different Machine Learning algorithms
such as decision trees, regressions and neural
networks to help identify the cognitive level of
sophistication a learner is in for a given
mathematical task. Such algorithms can be useful
for assessment, personalized learning, curriculum
development, and future research.

● Extending the P&K map to a 3-dimensional map
where the axis represent art fulfillment growing,
mathematics understanding growing and time.

Findings

The Pirie-Kieren (P&K) framework 

The Pirie and Kieren (P&K) framework (Pirie & Kieren, 
1989; 1994) provides a way to explore the 
development of mathematical understanding by 
suggesting that a learner move through eight 
cognitive levels of sophistication as they go through a 
learning situation. 

1. Primitive knowing: Learner’s information brought
to the learning situation.

2. Image making: The learner acts (mentally or
physically) to gain an idea about a concept.

3. Image having: Single-activity associated images are
replaced by a mental picture.

4. Property noticing: Notice properties and
connections between mental pictures.

5. Formalizing: Description of class-like mental objects
to produce full mathematical definitions.

6. Observing:  Question formal statements verbalize
cognitions about the formalized concept.

7. Structuring: Determine if formal observations are
true by an axiomatic system (proof)

8. Inventizing: Complete understanding of a concept
and pose questions that lead to new concepts

Future Work

Self-similar nature - Encapsulated Idea A becomes Primitive Knowing for Idea B

The P&K framework 
was extended to 
track the learner’s 
development of 
fulfillment/understa
nding of the GWK.
(# indicates prompt of 27 
questions total)

Part 2, Pair 1: Building the Fibonacci 
spiral

Idea A

Part 3: Fitting the FS within the 
GWK and communicating art and 
math  with math key words

What do you 
recommend 

reading?

Post-its 
notes area

How do you think arts can 
support thinking about 
mathematical concepts? 

What more or different 
would you hope to see in a 
long report about this 
research? 

Idea B

The Experience: Interacting with the Great Wave off Kanagawa

Part 1, Pair 1: Analyzing the GWK. 

Part 3, Pair 1: Fitting the spiral

Sharing

References

Idea A
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Engaging an Industrial Advisory Board for Curriculum Development 
 

 David Jacobson Rikki Wagstrom Wei Wei 
 Metropolitan State University Metropolitan State University Metropolitan State University 

Keywords: Data Science, Industrial and Applied Mathematics, Curriculum Development, 
Industrial Advisory Board, Technical and Non-technical Skills 

With rapid changes in STEM careers, gaps still exist between skills required by industry and 
learning objectives created by colleges and universities. Even well-designed curriculum must be 
constantly reevaluated and adjusted. Data Science and Industrial & Applied Mathematics are 
fast-evolving programs whose graduates are highly sought by industry.  Prior research has 
provided valuable general insight into skills valued by industry and pedagogy effective for 
teaching these skills (Ferns et al., 2021; Jang, 2016; Lamancusa et al., 2008; Schwab-McCoy et 
al., 2021; SIAM and COMAP, 2016). 

In this poster, we will describe how we engaged our Industrial Advisory Board to provide 
external input for our newly developed Data Science and Industrial & Applied Mathematics 
programs. We will then show how we have applied that feedback and made changes to our 
curriculum and pedagogies.  Our Industrial Advisory Board consists of nine volunteer members 
representing multi-national companies with headquarters or having a large presence in the local 
metropolitan area. This includes several Fortune 500 companies.  Specifically, Industrial 
Advisory Board members were queried for their open-ended responses on topics such as:  What 
do you look for when you hire? What is the appropriate balance between developing technical 
and nontechnical skills, in terms of preparing students for careers in industry? What computer 
applications and programming languages are beneficial to integrate into an undergraduate 
mathematics and statistics curriculum? For which career paths? 

There was strong agreement among our board members on the importance of the following 
technical skills:  Multiple linear regression, logistic regression, machine learning techniques, 
model formulation and model building (choosing the appropriate model and communicating why 
a specific model is chosen) and being able to interpret and explain results.  Familiarity with an 
object-oriented programming language is typically required for all industries represented by the 
board members. Most importantly, students need to have the ability and drive to learn different 
applications as they will likely have to learn multiple new programming languages, modeling 
techniques and business practices throughout their careers. 

The primary focus of non-technical skills is on communication. Specifically, our board 
members stressed the importance of students learning to communicate technical details to both 
technical and non-technical audiences.  Another essential non-technical skill is the ability to 
work in teams and have project experience.  

We describe how the recommendations have been incorporated into the Data Science and 
Industrial & Applied Mathematics programs.  Initial feedback from students and the Industrial 
Advisory Board members to both programs has been positive. In particular, the students like 
working on the open-ended problems and enjoy working on projects in teams.  We identify areas 
we would like to further emphasize or add to our curricula. They include additional model 
formulation activities, more PowerPoint presentations (emphasis on summarization of results), 
code documentation, asking questions of clients and importance of continuous education and 
learning of new skills.  The Advisory Board has also provided guidance on several career-
readiness items such as resumes, networking and interviewing which we are expanding on.   

25th Annual Conference on Research in Undergraduate Mathematics Education 1352



References 
Ferns, S., Phatak, A., Benson, S., & Kumagai, N. (2021).  Building employability capabilities in 

data science students:  An interdisciplinary, industry-focused approach.  Teaching Statistics, 
43(S1), S216-S225.  

Jang, H. (2016).  Identifying 21st century STEM competencies using workplace data.  Journal of 
Science Education and Technology, 25(2), 284-301. 

Lamancusa, J.S., Zayas, J.L., Soyster, A.L., Morell, L., & Jorgensen, J. (2008).  The learning 
factory:  Industry-partnered active learning.  Journal of Engineering Education, 97(1), 5-11. 

Schwab-McCoy, A., Baker, C.M., & Gasper, R.E. (2021).  Data science in 2020:  Computing, 
curricula, and challenges for the next 10 years.  Journal of Statistics and Data Science 
Education, 29(S1), S40-S50. 

Society for Industrial and Applied Mathematics [SIAM] & Consortium for Mathematics and Its 
Applications [COMAP] (2016).  GAIMME:  Guidelines for Assessment & Instruction in 
Mathematical Modeling Education.  Philadelphia:  Society for Industrial and Applied 
Mathematics. 

25th Annual Conference on Research in Undergraduate Mathematics Education 1353



RESEARCH POSTER PRESENTATION DESIGN © 2022

www.PosterPresentations.com

• About Metro State University:
 Mathematics and Statistics Department

historically offered an Applied Mathematics
BS degree

 Students are frequently location-bound adult
learners

 Financial factors frequently require students
to seek employment in the corporate sector
after graduation

 Key theme of 2017 survey of Applied Mathematics
alumni working in the corporate sector:

 Mathematical skills are valuable, but
 Increased background in statistics and

computing would have improved
marketability and preparation

 Actions taken by Mathematics and Statistics
Department:

 Creation of a Data Science BS and Industrial
& Applied Mathematics BS

 Creation of Industrial Advisory Board to
provide curricular guidance and learning
experiences for the two new programs

Introduction

Industrial Advisory Board Members

Industrial Advisory Board Survey Questions and Summary of Responses

• Technical Skills
 Academic background must include multiple linear regression – what it is and when it works well
 Knowledge of logistic regression and machine learning techniques are plusses
 Model formulation is critical
 Training versus validation versus test data
 Be able to understand and translate business problems into a math / stat problem
 Interpret and explain results

 Non-technical Skills
 Communicating technical details to technical and non-technical audiences
 Ability to work in teams and have project experience
 Time/project management skills
 Ability to lean new things (programming languages, modeling techniques, and business practices)

 Overall
 Include project-based or inquiry-based classes
 Open-ended problems which require practical skills, especially formulating and selecting models
 Present results of projects in non-technical industry terms
 Embed mini-projects into the curriculum
 Emphasize code documentation

Industrial Advisory Board Recommendations

Implemented Recommendations 

• Industrial & Applied Mathematics
 Four-course sequence in modeling focused

on formulating models and problem-solving
 Incorporation of a team-based investigation

of a large open-ended real-world problem
 Instruction in technical communication
 Communication of analyses, results, and

recommendations to both technical and
non-technical audiences

 Completion of a statistics or mathematics
internship, a Statistical Consulting course or a
Mathematics Capstone

• Data Science
• Project-based interdisciplinary focus with

courses in Math/Stat, Computer Science,
and Management Information Systems

• Programming courses in R, Python, Java,
SQL, and Tableau

• Integrative experience through a statistics or
data science  internship, Statistical
Consulting or a Data Science Capstone

• Both Industrial & Applied Math and Data Science
• Regression Analysis course with a focus on

model formulation
• Career Center presentation on career

opportunities
• Courses with team- based projects with data

analysis in R and presentations to both
technical and non-technical audiences

• Creation of student portfolios

Future Work
Initial feedback has been positive.  Students like working 
on open-ended problems and team-based projects.

Areas of further curriculum emphasis:

• Model formulation activities
• More PowerPoint presentations with an emphasis on

summarization of results
• Code documentation
• Asking pertinent questions of clients
• Importance of continuous education and learning of

new skills

Work with the Industrial Advisory Board on expanding 
career-readiness guidance:

• Resume construction
• Importance of networking
• Job interviewing skills

Regular surveys of recent alumni for ongoing evaluation

• Role of Industry Advisory Boards
 Assist university departments in ensuring that

academic programs prepare students with
the skills and capacities currently valued and
expected by industry.

 Provide external input on additional ways to
enhance the student learning experience,
such as providing data sets, guest lectures
for courses, and real time experiences such
as internships, capstone design projects, and
mentoring opportunities

 Serve as external reviewers to evaluate and
adjust specific curriculum

• Our industrial Advisory Board consists of nine
volunteer members representing multi-national
companies with headquarters or having a large
presence in the Twin Cities metropolitan area.

 Best Buy
• Target (2 members)
• Traveler’s Insurance
• General Mills
• US Bank
• SPS Commerce
• Cargill
• CH Robinson

• Board members were queried for their open-ended 
responses on several topics.

David Jacobson, Rikki Wagstrom, Wei Wei

Metropolitan State University, St. Paul, MN

Engaging an Industrial Advisory Board for Curriculum Development

Question Responses
What do you look for when you hire? • Soft skills:  Strong communication skills, effectively work in teams, time/project

management skills
• Programming experience:  Python, R, Pearl, Java, SQL
• Ability to learn; interest in learning; ambition
• Experience working on projects:  Want them to be able to effectively

communicate their train of thought as they discuss prior work that they’ve done
• Problem solving:  Perseverance, willingness and ability to ask questions
• Work with vendors effectively
• Understanding of models:  Being able to choose appropriate models and

communicate rationale, understand advantages and disadvantages of different
models

What is the appropriate balance 
between developing technical and 
nontechnical skills, in terms of 
preparing students for careers in 
industry?

• Individuals need both
• Communicating technical details to technical and non-technical audiences is

difficult but essential
• Being able to make a clean, concise PowerPoint presentation is essential
• Need to be interested in taking ownership for projects and have the drive to do it

as well as possible
• It’s important to be able to ask (the right) questions
• Problem solving strategies are important:  (One board member asks the following

of her employees:  If a problem is not clearly stated, what could you do?  What
are some other strategies you can try?)

What computer applications and 
programming languages are 
beneficial to integrate into an 
undergraduate mathematics and 
statistics curriculum?

• Python and R:  Most widely used; May or may not be a deal-breaker for hiring
• SQL:  Not a deal-breaker for hiring, but definitely helpful for database queries
• Java:  Helpful, but not essential
• SAS and Excel VBA:  Used at one company
• Excel:  Familiarity with spreadsheets is essential; VBA is helpful, but not essential
• MATLAB:  Not essential, used primarily in engineering applications
• In general, familiarity with an object-oriented programming language is important
• Data visualization software (Tableau, Power BI):  Used at several of the companies

represented, but not essential
• Amazon Web Service (AWS):  Helpful
• If employees have the ability and drive to learn different applications, they can

generally pick up what they need to know
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Novice College Mathematics Instructor Communication About Cognitive Demand 
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San Francisco State University 
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Many incoming graduate students become novice instructors with little to no experience 
teaching at the college level. Such novices may take part in professional learning opportunities 
from general workshops on teaching to specific work to prepare for teaching with a particular 
curriculum (e.g., course coordination). One aspect of preparing to teach is developing skill in 
supporting students to “successfully engage with a mathematical task” (Stein et al., 2009). To do 
so, novice instructors must consider the context of the student learning experience as well as the 
level of cognitive demand for the mathematical task (Smith & Stein, 1998). A curriculum may 
have a wealth of mathematical tasks available to assign to students, requiring varying levels of 
cognitive demand (e.g., recalling and applying memorized facts, using procedures with and 
without connection to other knowledge, and the most cognitively demanding work of doing 
mathematics in a novel situation). Though research exists on cognitive demand and the 
preparation of teachers to attend to it for K-12 mathematics, little research has focused on the 
needs of novice college mathematics instructors. In this poster, the focus is on addressing the 
research question: How are novice instructors’ instructional decisions informed and shaped by 
consideration of cognitive demand?  

Previous research on cognitive demand in the preparation of novice instructors focused on 
how they interpreted and transformed the definitions of “cognitive demand” and “scaffolding” of 
student learning (Milbourne, 2018). The poster builds on this, focusing on how novice instructors 
make sense of and communicate with colleagues about cognitive demand in the context of a 
weekly teaching workshop. The data collected included nine novice instructors’ responses within 
asynchronous online activities and live audio and video of three consecutive workshop 
discussions about cognitive demand in various college mathematics classroom examples (e.g., 
video case materials, Hauk et al., 2013). The inductive qualitative analysis uses van de Pol’s 
(2010) framework for scaffolding, involving contingency, fading, and transfer of responsibility. 
Initial analysis indicates novice instructors described various “benefits” from lowering cognitive 
demand that expand on the collection reported by Milbourne. As in previous work, novices 
talked about “getting through more material”. New “benefits” voiced by novices in this study 
included improving student confidence and self-efficacy. The new findings are related to 
consideration of the student’s perspective.  

The goal at the poster is to engage RUME conference participants in discussing novice 
instructor decisions on how to set cognitive demand goals and why they might set those goals. 
Poster-side conversation can inform the ultimate reporting of study findings. Results of the 
research can be used in (re)development of professional learning opportunities offered to novice 
college mathematics instructors and can shape future research on how novices improve their 
instructional skills in task-level decision-making. 
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1) In the context of a particular classroom activity
and associated assessment, what is the nature
of GTA communication about and use of
cognitive demand?

2) How are curriculum and assessment decisions
for scaffolding student learning
informed/shaped by GTA consideration of
cognitive demand?

Data Collection:
Audio and video was recorded over 
three consecutive days during the 
synchronous workshop (~30 min 
recording each period). Participants 
completed portions of the 
asynchronous work in the previous 
week and some concurrently.

Project Objective:
Understanding how are novice instructors’ 
instructional decisions informed and shaped by 
consideration of cognitive demand.

Background:
Many incoming graduate students become novice 
instructors with little to no experience teaching at 
the college level. Such novices may take part in 
professional learning opportunities from general 
workshops on teaching to specific work to prepare 
for teaching with a particular curriculum (e.g., 
course coordination). One aspect of preparing to 
teach is developing skill in supporting students in 
successfully engaging with mathematical tasks. To 
do so, novice instructors must consider the context 
of the student learning experience as well as the 
level of cognitive demand for the mathematical task 
(Smith & Stein, 1998). Though research exists on 
cognitive demand and the preparation of teachers 
to attend to it for K-12 mathematics, little research 
has focused on the needs of novice college 
mathematics instructors. 

Framework:
This project uses van de Pol’s (2010) framework 
for scaffolding student learning. The characteristics 
of scaffolding included contingency, fading and 
transfer of responsibility.

GTAs described various “benefits” from lowering 
cognitive demand that expand on the collection 
reported by Milbourne. New “benefits” voiced by 
novices in this study included improving student 
confidence and self-efficacy. The new findings 
are related to consideration of the student’s 
perspective. 
GTAs described practices that they thought would 
maintain cognitive demand of Procedures With 
Connections. Some would, some might not:

Given a conversation among Kristen, Brad, 
and Ted, (video & 29 lines of transcript), 
plot the cognitive demand across time/lines 
of transcript. GTAs agreed the interaction 
started at 4 (Doing Math) and ended at 1 
(Memorization). But plots differed.

Later, individual GTAs described their 
decision-making. That communication 
highlighted their sense-making in trying to 
understand “level” of cognitive demand. 

Context

Novice College Mathematics Instructor Communication About Cognitive Demand
Helena Almassy | San Francisco State University

Poster Purpose: To collect ideas while discussing novice instructor decisions on how to set cognitive demand goals and why they might set those goals.

Mini-Course Embedded within a Teaching Workshop
Setting: Nine graduate students 
pursuing masters’ in mathematics 
enrolled in a 3-credit Graduate 
Teaching Workshop. Each was a 
new graduate teaching associate 
(GTA) – instructor of record for 
undergraduate math courses for 
the first time. A 2-week section of 
the workshop was dedicated to 
noticing and responding to 
cognitive demand. 
Asynchronous Activities:
GTAs did a mini-lesson that was 
organized as exploration, 
discussion boards, and self-quiz in 
classifying cognitive demand.
Synchronous Class:
Included small and whole group 
discussion of portions of the 
mini-course and readings related to 
student group work and classroom 
management techniques.

Results

● How might novice instructors set cognitive
demand goals?

● Why would the particular cognitive demand goal
be set by a novice instructor?

● How and why might the goals set by novice
instructors about cognitive demand differ from
experienced instructors?

● Other questions? Comments?
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Discussion

Posterside ConversationTracking Cognitive Demand

Emerging Awareness of Cognitive Demand

“I was thinking that each of those is sort of mapped to one assignment like, 
one assignment is the level of doing math, or one assignment is the level of 
memorization. But then … two students could look at the same problem 

and be at different levels [of cognitive demand]. “

Personally, I believe that the learning shift should be continuous and that 
there exist sub-levels in between the 4 main cognitive demand levels 
that were indicated because even in those 4 basic levels, there are already 

some overlapping characteristics.

Changes in Cognitive Demand

I also think in the parts when the cognitive demand keeps constant it is 
because the question the instructor was proposing gave the student the 

opportunity to continue thinking and using their knowledge to try to 
solve the problem. 

She does say "cancel" and it is telling a student exactly what to do.  
That is the exact point where the cognitive demand drops.

Brad answered by memory (he knows the rule). Then … the [cognitive 
demand] level increased because Ted found that it doesn’t match up, they 
found a problem and now they need to make some connections to solve 

it.

Levels of Cognitive Demand
Lower-level demands (memorization)
● Involve either reproducing previously learned facts, rules, formulas, or definitions or

committing facts, rules formulas or definitions to memory
● Cannot be solved using procedures because a procedure does not exist or because

the time frame in which the task is being completed is too short to use a procedure
● Are not ambiguous. Such tasks involve the exact reproduction of previously seen

material, and what is to be reproduced is clearly and directly stated

Lower-level demands (procedures without connections)
● Are algorithmic. Use of the procedure either is specifically called for or is evident from

prior instruction, experience, or placement of the task.
● Little ambiguity exists about what needs to be done and how to do it.
● Have no connection to the concepts or meaning that underlie procedures being used
● Are focused on producing correct answers instead of developing understanding
● Require no explanations or explanations only describing the procedure that was used

Higher-level demands (procedures with connections)
● Focus student’s attention on the use of procedures for the purpose of developing

deeper levels of understanding of mathematical concepts and ideas
● Suggest explicitly or implicitly pathways to follow that are broad general procedures

that have close connections to underlying conceptual ideas as opposed to narrow 
algorithms that are opaque with respect to underlying concepts

● Usually are represented in multiple ways, such as visual diagrams, manipulatives,
symbols, and problem situations.

● Although general procedures may be followed, they cannot be followed mindlessly

Higher-level demands (doing mathematics)
● Require complex and nonalgorithmic thinking – no predictable, well-rehearsed

approach or pathway is explicitly suggested by the task, task instructions, or a
worked-out example.

● Require students to explore and understand the nature of mathematical concepts,
processes, or relationships

● Demand self-monitoring or self-regulation of one’s own cognitive processes
● Require students to access relevant knowledge and experiences and make

appropriate use of them in working through the task
● Required students to analyze the task and actively examine task constraints that may

limit possible solution strategies and solutions
● Require considerable cognitive effort and may involve some level of anxiety for the

student because of the unpredictable nature of the solution process required

Based on Smith and Stein (1998)
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Line # in Transcript

Line # in Transcript

GTA suggestion # of 
GTAs

Likely Cognitive 
Demand Result

Ask the student: 
What do we know about 
sides and angles?

4 Maintain 
cognitive 
demand

Direct the student: 
Think about concepts 
related to trigonometry.

2 Reduce 
cognitive 
demand

Redirect the student: Look 
at your notes and see what 
might be a useful procedure.

1 Maintain 
cognitive 
demand

Conceptual Model of Scaffolding from van de Pol (2010)

Research Questions
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A Calculus Student's Relative Size Reasoning 

Kayla Lock  
Arizona State University  

Keywords: relative size reasoning, relative size, precalculus, rational functions 

The ideas of measurement and measurement comparisons (e.g., fractions, ratios, quotient) are 
introduced to students in elementary school and understanding these ideas as relative size 
comparisons (Faulkner, 2013, Joshua et al., 2022) are a part of the Common Core State 
Standards for Mathematics. Researchers have also reported how conceptual (Thompson et 
al.,1994) meanings for ideas in calculus such as the difference quotient (Byerley & Thompson, 
2014), derivative (Byerley et al., 2012; Zandieh, 2000), and the fundamental theorem of calculus 
(Thompson,1994) involve a multiplicative comparison of two quantities.  

Someone who engages in relative size reasoning would conceptualize comparing two 
quantities’ values in a static or dynamic context as measuring one quantity’s magnitude in units 
of the other quantity’s magnitude (Lock, 2021). For instance, suppose a student engaged in 
relative size reasoning to compare two girls’ heights. In this context, both quantities are of the 
same unit of measurement. Thus, the student, when comparing Lyndsey’s height to Darien’s 
height, would imagine Darien’s height as the unit of measure used to determine how many times 
as tall Lyndsey’s height is in relation to Darien’s height. Therefore, she might say Lyndsey is 5/4 
times as tall as Darien.  

When the two quantities’ values are not measured using the same unit, engaging in relative 
size reasoning will involve imagining the measure of one quantity’s value in multiples of the 
other quantity’s value. For example, speed is a multiplicative relationship between an amount of 
distance and an amount of time. If someone is traveling at a constant speed and travels 8 feet per 
3 seconds, one would imagine that the number of feet one travels will always be 8/3rd times as 
large as the number of seconds it takes to travel that distance. Relative size reasoning is a way of 
thinking that a person has developed when conceptualizing the comparison of two quantities’ 
values multiplicatively in static and dynamic contexts (Lock, 2021). The purpose of this poster 
investigates the questions: 

What mental actions do beginning calculus students engage in when responding to tasks 
designed to assess students’ relative size reasoning? 

Radical constructivism (Glasersfeld, 1995) is the lens used in this study which takes on the 
perspective that every individual has their own reality and knowledge is constructed based on 
previous personal experiences. For this study I conducted 4 clinical interviews (Clements, 2000) 
where 5 calculus students from a large southwestern university worked on 22 tasks associated 
with different topics (fractions, rational functions, concavity, trigonometry, etc.) that were 
designed to elicit students’ relative size reasoning. In this poster, I characterize a student’s 
thinking by determining what meanings the student had in the moment while working through 
two tasks. Future research will aim refine my current framework that describes the mental
operations involved in relative size reasoning as well as refine my current multiple-choice 
assessment based on my analysis of my data.  
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Results

• If he continues to reason similarly in other tasks and if other students reason similarly.
• What is the role of relative size reasoning in understanding key ideas of precalculus and calculus.

Future Research

• This interview suggests that Gabriel’s fraction schemes include to partition a quantity into equal parts, and iterating it repeatedly based on the reference length he chooses.
o This way of thinking appeared to support him in coordinating several units at the same time in task 1 in order to determine the angle measure Paul swept out as he skied 27miles.

• Gabriel’s language and drawings suggest he reasoned similarly while considering the ratio of flavoring to water as the number of gallons of water increased without bound. Gabriel coordinated the varying
number of gallons of total volume, water, and a constant amount of liquid flavoring, while determining the relative size of flavoring to water.

• I argue that Gabriel was engaging in relative size reasoning in task 1 (static context) as well as a in task 2 (dynamic context).

Conclusion

• Common Core State Standards for Mathematics asks that
students understand fractions as comparisons of relative size
(Faulker, 2013, Joshua et al., 2022).

• This way of thinking supports students in understanding
proportional relationships, rates, growth patterns, and
derivatives (Byerley 2019; Joshua et al., 2022; Thompson and
Thompson 1996, Zandieh 2000).
• Researchers have documented that students in university

mathematics courses have difficulties comparing two quantities
in terms of their relative size (e.g. Byerley, 2019; Tallman, 
2015). 

Research Questions:
• What mental actions do beginning calculus students engage in

when responding to tasks designed to assess students’ relative
size reasoning?

● Radical constructivism (Glasersfeld, 1995) is the lens used in
this study which takes on the perspective that knowledge is
constructed based on one’s previous personal experiences, and
knowledge lies in the mind of the individual.

● Quantitative reasoning is the analysis of a situation into a
network of quantities (measurable attributes of objects) and
quantitative relationships (Thompson, 1994, 2012).

● Covariational reasoning refers to the mental actions involved in
coordinating the value of two varying quantities and how the
values vary in relation to each other (Carlson Jacobs, Coe,
Larson, & Hsu, 2002; Saldanha & Thompson, 1998; Thompson &
Carlson, 2017)

● This work draws on theories of students’ understanding in the
moment and communicating mathematics:
o Students explained their meanings in the moment for each

response they had to the questions. Each question posed
was used as a point to characterize the students’ meanings
(Thompson, 2013).

● I report on 2 tasks from conducting five 1.5hr long clinical
interviews (Clements, 2000) with 1 calculus student from a large
southwestern university worked on 22 tasks from different topics
(measurement, exponential growth, rational functions, and
concavity) designed to elicit students’ relative size reasoning.

Theoretical Perspective & Methodology 

Motivation and Research Question
Task 1: Paul is Skiing 

Suppose Paul is skiing on a circular trail and he skied 27 miles. If one blip is 14 miles and the entire trail is 9 blips, what angle measure (in degrees) did Paul sweep out as he skied 27 miles 
on the circular trail? 

Task 2: Gatorade Problem 
5gallons of liquid flavoring are poured into a vat. Water will be added to the vat and mixed with the flavoring to produce a drink that will be bottled and sold. The ratio of flavoring to water in 

the mixture to the total volume of the mixture, 𝒙, can be defined as 𝒇 𝒙 = 𝟓
𝒙#𝟓

. As the total number of gallons of liquid increases, explain how the value of 𝒇 varies.

• Someone who engages in relative size reasoning would
conceptualize comparing two quantities’ values in a static or
dynamic context as measuring one quantity’s magnitude in
units of the other quantity’s magnitude.

• When the two quantities’ values are not of the same type of unit
of measure (e.g., speed-relationship between an amount of
distance and an amount of time), engaging in relative size
reasoning will involve imagining the measure of one quantity’s
value in multiples of the other quantity’s value (Lock, 2021).

• Relative size reasoning is a way of thinking
(Thompson et al. 2014) that a person has
Developed when conceptualizing the comparison
of two quantities’ values multiplicatively.

Example: Constant speed of 8 feet per 3 seconds
the change in the number of feet one travels 
will always be !

"
rd times as large as the 

number of seconds it takes to travel that 
distance. 

Relative Size Reasoning 

constant speed of 𝟖
𝟑

feet per second 

Δ𝑑
Δ𝑡 =

8
3

After reading the problem Gabriel stated, “we know there are 9 blips so that would be split into 9 
pieces and each curvature would be 14 miles” and then explained that since Paul skied 27 miles, 
“that would be like almost two full blips.” In this excerpt below, Gabriel’s statements and drawings 
suggest that he coordinated the 3 units of measure: blips, miles, and the circumference of the circular 
trail. 

Excerpt 1
Gabriel: Since the, since the trail is circular and he is going through the, the trail, like in that circle, 

when you draw out the circle, you could kind of see that the, he is going to like traveling through or by 
the circumference of the circle.

Interviewer: So would you relate your idea of circumference in this question with what you said earlier 
about how he skied almost “2 full” <blips>. 

Gabriel: Well the almost two full parts of like the split I did of the circle. Since we know that the trail is 
made up of 9, equal blips, and each blip is 14 miles, we could kind of split the whole trail into 
9 different equal pieces. And since we know that each blip is 14 miles, we know that each 
piece is also going to equal 14 miles. So when it comes to like something like 27, It's not quite 
two full pieces since two full pieces is 28, but it's pretty close. 

Interviewer: So how does that relate to what you talked about with circumference? 
Gabriel: Since you can also split the circumference into 9 equal pieces and since he is traveling, on 

the circumference, then the measure of the circumference is also equal to the 9 blips in total.
Interviewer: So how would you compare the amount that Paul swept out in comparison to what you 

just talked about with circumference? 
Gabriel: Oh, it was about it was about two ninths of the whole circumference.
Interviewer: How did you think about two and 9 and like, what is that two divided by 9 represent?  
Gabriel: The 9 represents the entirety of the circumference since it is split into 9 equal pieces. 

And the two is how much of those 9 pieces he was able to actually like get through.

Gabriel then explains how Paul skiing 2/9 of the circumference is related to the angle measure in 
degrees that Paul swept out while skiing 27 miles (Excerpt 2)

Excerpt 2
Interviewer: What if we change this question to degrees (instead of measured in radians) how would 

you imagine going about that? 
Gabriel: We divide the 360 by 9 in order to get what the measurement of one of those slices is, 

and then we would be able to kind of find what the angle is of like the, the 27 or at least close 
to that.

Interviewer: So would you be able to go through that process and kind of walk me through that? 
Gabriel: So 360 divided by 9 is 40, which means that each angle is about 40 degrees. And since 

it takes up two of those, this angle right here, or 27 takes up about 80 degrees.
Interviewer: How did you know it was about 80 degrees?
Gabriel: Oh, because of dividing the whole, uh, the whole circle. Since the circle is going to be 360 

degrees, no matter what if I divided that by 9, I got 40 degrees, which meant that every section 
of this would be also 40. Since 27 takes up about two of those sections, then I'd just add 
another 40 to that and it would be 80.

This statement indicates that Gabriel leveraged his understanding of the length of the trail, which is 9 
blips, and a full rotation in degree, which he stated is 360 degrees, in order to partition a full rotation 
into 9 parts and determine the angle measure swept out for each blip. Then he leveraged his thinking 
about skiing 2 chunks of the circumference to determine Paul swept out 80degrees as he skied 27 
miles

Initially Gabriel read the problem aloud and substituted different values for 𝑥 as he attempted to make 
sense of what the rational function conveyed about the context. As an example, Gabriel followed by 
explaining what the rational function represents when 5 is substituted for 3 (Excerpt 3).  

Excerpt 3
Gabriel: So the number of gallons has to be over 5 in order to produce anything because if it’s 5 

or lower, it would just make either zero or a negative number for the denominator, which 
would mean that there is no like mixture at all.

Interviewer: What do you mean by that? 
Gabriel: There will be less, right? Because the denominator is the thing that is increasing, and the 

numerator seems to be constant at a constant state of five. Let's say we have 6 minus 5 down 
here. This is the variable. We would have 5 over 1, so that would be equal to 5. If we have like, let's 
say like 100 down here, minus 5, that would be like 95, which is a number that's a lot smaller. 

Interviewer: So, in the first calculation you did where you did 6 minus 5, …what does that 5 represent 
and what does the 6 represent? 

Gabriel: Oh, The five represents five gallons of liquid flavoring are poured into a vat. It doesn't 
really say how many units of the mixture there is. It just kinda says total volume of mixture. I'm 
assuming it's gallons so I would assume that this (6) is like how many gallons of the mixture 
in total there are. How many gallons of well, like ratio of mixture there is when six gallons of the 
liquid is put into the mixture. 

This suggests Gabriel understood that the function represents the relationship between the total 
volume of the mixture and the liquid flavoring. In the next excerpt, Gabriel discussed the variation of the 
function 𝑓 in the problem context. 

Excerpt 4
Interviewer: So here as the number of gallons of liquid varies from 10 to 15, how does the comparison 

of flavoring to water vary? 
Gabriel: So it's kinda like the same thing like from over here where the flavoring is overpowered by 

the amount of liquid that there is. Since the amount of flavoring isn't really changed, it 
remains at a constant five. If you keep on adding liquid without adding any more of the, the 
flavoring, then eventually there will be more liquid than the flavoring instead of having like a 
good, like equal ratio or a constant ratio between the two.

Interviewer: So, what do you mean by a ratio? 
Gabriel: So how much liquid(water) there is in comparison to how much flavoring there is. 
Interviewer: When you say comparison and ratio what do you imagine?
Gabriel: So if there's five mixture or, or five parts of the 

mixture or of the flavoring, then there's five of the liquid. 
So as the amount of liquid increases, the flavoring 
doesn't also increase meaning that eventually instead 
of it being like a equal one to one, the ratio isn't a 
one-to-one ratio. It's this, 17 to 5, which is what I 
meant earlier by the liquid overpowering the 
flavoring. The amount or the proper ratio of the 
liquid to flavoring decreases… like the more liquid 
that's added, the more of a smaller fraction the 
whole equation becomes.
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How Groupwork Influences Students’ Sense of Belonging in 
The Mathematics Classroom
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Current STEM education research has shown that a low sense of belonging in STEM leads to lower 
academic achievement (Stachl & Baranger, 2020). There have been several studies that have 
explored how shifting to an inquiry-based learning model helps increase student understanding 
(Connors, 1990; Coopers et al., 2015; Studies et al., 2015), but few have gone into whether this 
change also leads to an increased sense of student belonging (De Corte et al., 2008).

The word to stress here is value. The idea of value is what belonging is framed as in this study; if 
someone can express that they add value, it gives insight into the fact that they feel they belong. 
Prior studies (Stachl & Baranger, 2020) have characterized belonging through perceived peer and 
faculty support, class comfort in sharing ideas, social connectedness, and empathy from 
instructors.

The goal of this study is to begin to explore the link between groupwork and a sense of belonging.

In what ways do students report 
an increased sense of belonging in a precalculus course 

with a groupwork-based learning norm? 

Pre-survey results showed most students’ conceptions of groupwork entailed only 
sharing answers. Less than a quarter of students believed groupwork meant working 
together during the entire problem solving process. (n = 136)

In the pre-survey, interviewed Students 2, 3, and 4 all expressed the view of working 
alone and only sharing answers. Student 1 expressed the view of preparing together 
and working separately. Thus the interviews showed growth in their belongingness, 
because all students reported working together to execute plans of action.

• All four students valued their participation in groupwork, increasing belonging.

• Students 1, 2, and 3 expressed evidence of emotional support (Student 1 example) 
as well as content support (Student 2 example) in increasing belonging.

• Only Student 3 expressed evidence of reinterpreting the social norms of groupwork 
through their own social norms as a sign of belonging.

Survey
A pre- and post-survey was administered to all three lectures. The survey was 
given to collect initial and final student opinions concerning belongingness and 
mathematics. It was also utilized to source students for further interviews (below). 
Because of low response rates in the post-survey, only pre-survey data is shown in 
the results (right).

Interview
Interviews (between 20 and 45 minutes) were conducted with four students to gain 
more insight concerning their experience in the class.

Example questions:
• What has your learning experience been in this class so far?
• What value do you feel you get out of groupwork?
• How comfortable do you feel sharing with your groupmates?
• How valuable is your input to the groupwork taking place?
• How do you feel about math and groupwork?

Demographics:
• 3 students solicited from survey responses, 1 volunteered
• 2 male, 2 female
• 1 student retaking the course
• 1 non-traditional student (outside 18–22-year-old demographic)

Preliminary Results
The initial finding for the survey and four unique case studies show that, by the end of the 
course, they felt a sense of belonging. The students interviewed were able to talk about 
multiple ways they added value to the class or to the group they worked with. Majority of 
the interviewees also stressed how much groupwork was utilized to further their 
understanding of the course material. 

Further Research
More data is currently being collected (Spring 2023), as the class is offered every semester. 
The initial results provide a strong case for continued data collection, as the preliminary data 
shows evidence of increased belongingness on the class and individual levels. 
• Are there other impacts on belongingness from groupwork that have yet to be observed?
• What are the mechanisms that cause in-class groupwork norms to be reinterpreted by 

students into their own social norms of belongingness? 
• What differentiates students for whom groupwork creates an increased sense of 

belongingness, and for those where groupwork doesn’t increase belongingness?
Belongingness in mathematics has not been widely explored in undergraduate mathematics 
education, but its potential effects on success and retention deserve further study.
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Examples of Types of Belonging Evidence  — Student Quotes and Analysis

Setting
The University of Maine Precalculus course utilizes the Pathways to Calculus curriculum from 
Arizona State University. This curriculum focuses on introducing function types through the lens of 
covariation: how one quantity varies with another quantity. Forgoing a traditional textbook, students 
complete a workbook of problems to learn key concepts in the course.

On “lecture” days, the instructor does very little lecturing in the traditional sense. Students are 
tasked with working in their groups to solve the problems assigned that often allow them to produce 
the mathematical idea themselves. The whiteboards around the room provide a space for students 
to write out their work and solutions. When in the room, you can often see other groups checking 
their work with that produced by other groups. Most “lecture” days often have at least one cycle of 
the instructor introducing a problem context, students working in groups and displaying their 
solutions, and a subsequent whole-class discussion of the results.

Precalculus meets five days a week for 
the whole semester. In Fall 2022, the 
three, 75-student student sections met 
three days per week in active learning 
classrooms on “lecture” days. These 
rooms (example at right) help to facilitate 
groupwork and establish it as a class 
norm. The other two days of class meet 
in smaller breakout groups (recitations) 
lead by teaching assistants. All class 
meetings also were aided by learning 
assistants, undergraduates who had 
previously taken the course.

Belonging
the extent to which the undergraduate precalculus student believes that they 

are accepted and included as a valuable part of the of the learning community
adapted from (Stachl & Baranger, 2020)

“I like the like group dynamic and all. And it 
makes it a little bit less scary to like ask 

questions or give like an opinion, because 
you’re not like sitting there in like a quiet 
room, with like all eyes on you. You just 

have the like five or six other people at your 
table”

“Just if someone gets it, they can explain it  
[to the group] in a way that the teacher 

hadn’t. Um, so that’s always really valuable. 
and then just like emotional support in 

general”

“Um, and there have been plenty of times 
where we have come to the wrong consensus 
and our group’s…reasoning was wrong. But 

we were wrong confidently together.”.

“I don’t have to strain myself so hard on, 
what honestly is, a like simple aspect I am 

getting hung up on…. Uh, when I can 
discuss that with my group, and their like 
‘oh this.’ I’m like ‘ohhhh, okay’ and then 
we continue on and if they hit a roadblock 
maybe I’m farther along then them and its 

that. So, its kinda like distributed thinking, 
but we are all still getting something out of 

it.” 

“As a person with like, [mental heath issues], speaking in 
front of the whole class…. can make me pretty anxious… 
But like I’m just sitting with like 4, like really nice girls… 
like asking questions isn’t as anxious, it takes some of the 

pressure and anxiety off.”

“For like chem, where [teacher] has like the whole 
structured lecture set up, I think it is still slightly important, 
but its more important in a like, in like that detail moves the 

story along kind of.”

“We made…a little Snapchat group chat. And if you 
are struggling with one of the questions on the 

homework… you can like… send a picture and its like, 
um, someone will usually get back to you and be like ‘oh 

this is how I did it’ [and] kinda explain it a little bit, or
show what they did to do it or get it correct and stuff….. I 
have tried, I made group chats in like other classes that 

haven’t really gone as well. Like everyone usually 
forgets about them and all. Like I tried making like a 

chem chat, like a chem group chat with some people and 
I think like no one has ever really used it”

“When I’m right, its really valuable, but I kinda said it again 
earlier, [only] if I have something of value I will share it”

“[I am] still not very [comfortable sharing], I’m not the 
most open person most of the time, so I think like I said 

earlier the layout of the room really helps me to be a little 
bit more open about it”

Student 1 – Evidence of Emotional Support

• Lessens the pressure of sharing out
The norm of sharing with their individual group allows the student to feel 
less intimidated about discussing their own thinking.

• General emotional support
The student can lean on their group members to get a new explanation 
and the moral support they need to get through the problem.

The presence of emotional support implies a sense of belonging. 
Being able to emotionally lean on groupmates is evidence that they feel like 
they belong.

Student 2 – Evidence of Content Support, Distributed Thinking

• Remembering prior concepts and fixing errors
Completing problems together allows the student to rely on their 
groupmates to help them remember the ‘basic’ math concepts they may 
have forgotten. They can utilize their group members to help them catch 
algebraic errors so the group can focus on new concepts.

• Distributed thinking
Mixing of ideas allows everyone to get something out of group 
discussion, with each member brining something to the work. 
Talking through solutions is beneficial for everyone, no matter the math 
background they possess. 

• Group confidence
Groupwork gives them a sense of confidence when sharing, even if it is 
false confidence. 

The presence of content support implies a sense of belonging. 
Being able to be confident together about the mathematical content means 
one must feel a sense of belonging within the group.

Student 3 – Evidence of Reinterpreting Social Norms of Groupwork

• Comparison of groupwork norms to other courses
This student contrasted their experience in precalculus with another course they 
were taking concurrently (chemistry). What they shared and how they shared 
impacted their learning of the material between the two courses.

• Transcending classroom social norms
Continuing the groupwork-based norms outside of class time through the Snapchat 
group chat allowed the student to get or provide help anytime. This shows a 
reinterpretation of the classroom norms of groupwork through the students’ own 
social norms. The student unsuccessfully attempted to carry this over to another 
class where there is not a groupwork-based learning norm. 

• Reinterpreting social norms as emotional and content support
The group chat provided both emotional support through the relief of anxiety, and 
content support through students helping each other with content.

The presence of reinterpreting classroom social norms through everyday social norms 
(establishing an active group chat) implies a sense of belonging.
Being able to take the class-based social norms around groupwork and reinterpret them 
through the students’ own social norms is evidence that they feel like they belong.

Student 4 – Evidence of Value of Participation

• Importance of setting for groupwork
Being placed at tables where students are forced to look at seatmates enabled this 
person to share when they felt comfortable. They embraced groupwork partly 
because of the room they were in. This student did not enjoy the course but was still 
able to get something out of it

This student did share, but only when they had something they felt was valuable. 
If this student had an increased sense of belonging, they would feel comfortable 
sharing even when they weren’t sure it was the correct answer.

Working alone 
and then coming together 

to share your answers
58%21%

21%

Reading the question together,
coming up with a way to solve together
and then executing that plan together

Reading the question together, 
coming up with a way to solve together, 

and then solving separately

Which of the following best describes how you work on math in groups?
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                     San Diego State University & University of California San Diego                  
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While there is consensus that inquiry-oriented (IO) instruction is a better alternative overall 

to lecturing (e.g., Laursen & Rasmussen, 2019), IO approaches may not be equitable for students 

from certain demographics (e.g., gender inequities in Reinholz et al., 2022). This analysis 

explores a question related to equity considering linguistic diversity: What linguistic challenges 

and resources do linguistically diverse undergraduate students experience in IOLA tasks? 

Grounded in a sociocultural theory (e.g., Moschkovich, 2015), I constructed a framework 

that captures linguistic challenges and resources along three interrelated dimensions: (a) lexical – 

words and phrases in a task (e.g., Spanos et al., 1988), (b) situational – material, activity, 

semiotic, and sociocultural aspects of a task (e.g., Gee & Green, 1998), and (c) normative – 

social and sociomathematical norms engendered across tasks (e.g., Yackel et al., 2000).  

The data analyzed were one-on-one semi-structured interviews (each lasting about 30-60 

minutes) with 5 male linguistically diverse students from one IOLA course. The 5 students 

spanned a diverse range of cultural backgrounds (Korean, Vietnamese, Malaysian, Hispanic, and 

White) and comfort levels with English. In the interviews, each student was asked to arrange the 

first 12 mathematical tasks from their class from most to least challenging linguistically and to 

explain their ranking of each task. The tasks came from an expanded version of Wawro et al.’s 

(2013) IOLA curriculum. Each interview was analyzed task by task using the constant 

comparative method (Miles et al., 2020), allowing for both a priori codes and emergent codes.  

Below are some of the main linguistic challenges and resources that students reported: 

1. Lexical: Challenges included unfamiliar/unintended meanings of words in problem 

contexts, unfamiliar/unintended meanings of vector notation, and new mathematical 

terms; Resources included familiar words as well as translations and informal 

definitions of unfamiliar words and notation. 

2. Situational: Challenges included high numbers of words and sub-questions, the 

exclusive use of English, the formality of definitions, symbolizing problem contexts, 

and algorithmatizing; Resources included low numbers of words and sub-questions, 

students’ primary language(s), translation tools, visuals, and symbolic mathematical 

language that prompted specific procedures.  

3. Normative: Challenges included violated expectations about the mathematical 

complexity level, a single “right” way to solve a task, and the prescription of 

generalized procedures.  

In the presentation, further details will be provided about these findings, which suggest the 

need for pedagogical linguistic supports in task design and implementation that address and 

leverage the identified challenges and resources. 
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Proof is central to mathematics, but proofs are notoriously difficult (Alcock & Weber, 2010; 
Britton & Henderson, 2009; Caglayan, 2018; Dorier et al., 2000; Epp, 2003; Moore, 1994; 
Stavrou, 2014; Weber, 2001). Generic example proofs are thought to be effective ways of 
developing and understanding proofs because they reveal the structure of a proof while providing 
the prover something concrete to focus on (Leron & Zaslavsky, 2013; Rowland, 2002). When 
linear algebra students need help writing a proof, they perform better on subsequent tasks if 
given a generic example proof rather than a formal proof (Malek & Movshovitz-Hadar, 2011). 
Researchers also recommend emphasizing geometry to develop students’ understandings 
(Dogan, 2018; Ertekin et al., 2010; Hannah et al., 2013; Stewart & Thomas, 2010).  

Through this study, I aim to add to the knowledge of linear algebra students’ ways of 
thinking and working with proof constructions by examining the tools and strategies (e.g., 
generic examples) students use when encouraged to think about linear algebra concepts in 
different ways (e.g., geometrically). Tall (2013) describes mathematical thinking as occurring in 
three worlds. The embodied world consists of objects, graphs, diagrams, and their properties. 
The symbolic world contains symbols, operations, formulas, and calculations. The formal world 
consists of formal definitions, axioms, and proofs made up of logical deductions from axioms 
and definitions. My research question was: What tools and strategies do students choose to use 
when working on proofs in the embodied, symbolic, or formal world of mathematics?  

To answer this, I conducted a multi-case study with four students enrolled in linear algebra: 
Rap, Advik, Jun, and Min (pseudonyms). In task-based interviews, I encouraged participants to 
use a given world of mathematics as they worked on proving or disproving a given statement. I 
used open coding (Corbin & Strauss, 1990; Strauss & Corbin, 1990) to detail the mathematical 
tools and strategies students used, and I coded the worlds of mathematics they used. To ensure 
that my coding was systematic and rigorous, I continually updated a master list of codes, keeping 
notes on the individual codes and how they were applied. I also performed member checks 
(Creswell & Miller, 2000; Merriam & Tisdell, 2016). 

Comparing tools and strategies across constructions, some were used regardless of the world 
I encouraged participants to use. For example, Jun used cases and examples. Other strategies and 
tools were only used when I prompted participants to use a specific world. For example, Rap 
attempted to work directly from the hypotheses to the conclusion when creating symbolic proofs, 
but he worked backwards from the conclusion when using formal logic. 

All participants used generic examples when asked to use the embodied world and chose 
other strategies when asked to use the symbolic or formal worlds (with a few exceptions). One 
interesting task was to prove or disprove the statement: Let 𝑆 = {𝑈 , 𝑈 ,… , 𝑈 } be a set of two or 
more vectors. If S is linearly dependent, then there is a subset of S that is linearly independent 
and has the same span as S. In their embodied generic examples, Rap and Advik began with 
linearly independent vectors and considered other vectors afterwards.  However, their symbolic 
proofs began with a set of dependent vectors, and they removed vectors until they reached an 
independent set. This shows that one potential strength of the embodied world is to prompt 
students to create generic examples and to find different ways of structuring an argument.  
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Linear Algebra Proof Constructions & Tall’s Worlds of Mathematics
Kelsey Walters
Purdue University

Introduction
Proof is central to mathematics, but proofs are notoriously
difficult.1-8 Generic example proofs are thought to be effec-
tive ways of developing and understanding proofs because
they reveal the structure of a proof while providing the
prover something concrete to focus on.9-10 When linear alge-
bra students need help writing a proof, they perform better
on subsequent tasks if given a generic example proof rather
than a formal proof.11 Researchers also recommend empha-
sizing geometry to develop students’ understandings.12-15

Through this study, I aim to add to the knowledge of lin-
ear algebra students’ ways of thinking and working with
proof constructions by examining the tools and strategies
(e.g., generic examples) students use when encouraged to
think about linear algebra concepts in different ways (e.g.,
geometrically).

My research question was: What tools and strate-
gies do students choose to use when working
on proofs in the embodied, symbolic, or formal
world of mathematics?

Methods
I conducted a multi-case study with four students enrolled
in linear algebra: Rap, Advik, Jun, and Min. In task-
based interviews, I asked participants to use a given world
of mathematics as they worked on proving or disproving a
given statement.

I used open coding16-17 to detail the mathematical tools
and strategies students used, and I coded the worlds of
mathematics they used. To ensure that my coding was
systematic and rigorous, I continually updated a master
list of codes, keeping notes on the individual codes and
how they were applied. I regularly discussed codes with a
senior researcher. I also performed member checks.18-19
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Tall’s Worlds
Tall describes mathematical thinking as occurring in three worlds.20 The embodied world consists of objects, graphs, diagrams,
and their properties. The symbolic world contains symbols, operations, formulas, and calculations. The formal world consists
of formal definitions, axioms, and proofs made up of logical deductions from axioms and definitions. Table 1 gives examples of
linear algebra concepts in the three worlds.

Embodied World Symbolic World Formal World
Linear
Independence

x

y

z

a



1
0
0


+ b



1
1
0


= 0

c1v1 + c2v2 + . . . + cnvn = 0
implies c1 = c2 = . . . = cn = 0

a + b = 0, b = 0
a = 0, b = 0

Span

x

y

z

c1v1 + c2v2 + . . . + cnvn

is in span{v1, v2, . . . , vn}
span{v1, v2, . . . , vn} is the set of all
linear combinations of v1, v2, . . . , vn

Table 1: Linear Algebra Concepts in the Three Worlds of Mathematics

Findings
Comparing tools and strategies across constructions, some were used regardless of the world I asked participants to use. For
example, Jun used cases and examples. Other strategies and tools were only used when I prompted participants to use a specific
world. For example, Rap attempted to work directly from the hypotheses to the conclusion when creating symbolic proofs, but
he worked backwards from the conclusion when using formal logic.

All participants used generic examples when asked to use the embodied world and chose other strategies when asked to use the
symbolic or formal worlds (with a few exceptions). In their work on the task in Table 2, Rap and Advik began with linearly
independent vectors and considered other vectors afterwards when creating embodied generic examples. However, their symbolic
proofs began with a set of dependent vectors, and they removed vectors until they reached an independent set. Table 2 shows
parts of Rap’s symbolic and embodied work.

Prove or disprove the following statement.
Let S = {U1, U2, . . . , Up} be a set of two or more vectors. If S is linearly dependent, then there is a subset of S that is
linearly independent and has the same span as S.

Rap’s Symbolic Proof Rap’s Embodied Argument
x1U1 + x2U2 . . . xpUp = 0

xk ̸= 0

Uk = x1U1 . . . + xpUp

−xk

“which means that the other n − 1 vectors is a subset of
S, which may or may not be linearly independent. But it
has the same span"

“you have V1 and V2. V3 is, in this case, for now, it’s
linearly independent. Then V1, V2, V3 span the entire
space. . . . V4 is a part of that space."

Table 2: Portions of Rap’s Symbolic and Embodied Work

Discussion & Further Research
Participants used generic examples when asked to use the
embodied world, whereas other tools and strategies were
used regardless of the world I asked participants to use.
Further research could determine why students choose par-
ticular strategies and how educators can best support their
use of various strategies across the mathematical worlds.

One potential strength of using the worlds of mathematics
in the classroom is to aid students in thinking about dif-
ferent ways of structuring an argument. Participants also
said the three-world framework was helpful for organizing
their thoughts.

Through this study, I became interested in how students
structure arguments when working in different worlds of
mathematics. At times, Rap and Advik structured their
arguments differently when reasoning in different worlds. I
am interested in studying this further and, if this is a com-
mon phenomenon, finding ways to support students’ use
of various argument structures to develop student under-
standing of concepts and proofs.
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Using Refutation to Address a Graphical Misconception in Calculus
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x

Background 
Refutation
• Refutation texts have been shown to repair

misconceptions held by students in science contexts.6

• Students have shown greater gains in multimedia learning
environments when misconceptions are addressed.5

• Students prefer expository refutation over expository text
and view refutation as more efficient.3

• There is less research reflecting the use of refutation in
mathematics contexts and there is little, if any, research
exploring refutation with the use of graphical
representations.

Connecting f and f’
• Students have difficulty coordinating multiple graph

features at once (e.g., how can a graph be decreasing and 
concave up?)1

• Students also struggle to interpret the derivative of a
function when it is presented graphically.4

• Sketching the graph of f based on a graph of f’ involves
coordinating the properties of each and representing that
graphically.

Design & Procedure

x
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Research Questions
1. What is the effect of refutation videos and graphs

on student performance?

2. Is there potential value in using refutation in a
mathematics education setting?

Expository
Target n=50

Pre-test

Post-test

Refutation
Target n=50

Spatial Reasoning Test

x

Results

Discussion

Pre-test

Post-test

Expository Video
n=96

Pilot Study Experiment

Refutation
Some students think that the behavior of ‘ matches the 
behavior of f. That is
• When f is positive, f’ is positive
• When f is negative, f’ is negative
• When f is 0, f’ is 0

For example, students might match the following graphs 
of a function f and its derivative f’…

Notice that the graph on the right matches the behavior 
of the graph on the left. However, the idea that the 
behavior f matches the behavior of f’ is not true!

Exposition
Since the derivative value represents the slop of the tangent 
line the relationship is characterized as follows:
• When f is increasing the slope is positive, so f’ is positive
• When f is decreasing the slope is negative, so f’ is negative
• When f attains a maxima or minima, the slope is flat so f’ is 0

Exposition 
(see right)

Pretest: 5 items
• 2 true/false
• 3 multiple choice

Example item:

The graph of f’, the derivative of f, is shown 
to the right. Decide if the following 
statement is true or false: 
The graph of f is increasing for 4 < x <5
a) True
b) False

Post-test: 11 items
• 4 true/false
• 6 multiple choice
• 1 free response

Example item:

The graph of f’, the derivative of f, is shown to the 
right. For -2<x<4 what are all the intervals in which 
the graph of f is increasing?
The graph of f is increasing for 4 < x <5
a) -1 < x < 1 and 3 < x ≤ 4
b) -2 < x < 0 only
c) -1 < x < 0 and 3 < x < 4
d) -2 < x < 0 and 2 < x ≤ 4
e) 3 < x ≤ 4 only

Spatial Reasoning Test:

Spatial Reasoning has been shown to 
influence Calculus learning (Cromley et 
al., 2017). 

       Example item:

 Saw increases in
learning overall

 No significant
differences in
conditions were
observed

 Grouping by
question type
(T/F, Multiple
Choice (MC))
yielded similar
results

Expository Refutation

39.3% 40.3%

Condition Example
Expository “I decided based on where the graph was decreasing” 
Refutation “From the video it stated that f and f’ mirror each other” 

 Same prevalence
of misconception

 Differed in nature

Pre/Post 
Test Overall

Post Test 
Score 

Comparison

Question 
Type Score 

Comparison

Analysis of 
FR Question

• Results suggest that our lessons improved learning overall
• Refutation failed to improve learning when compared to

expository, and some cases reinforced the misconception
• The misconception was prevalent (40% of incorrect

responses)

Implications
We interpret the results in several ways: 
1) Acknowledging limitations of refutation (see Zengilowski et

al., 2021)
2) Additional instructional supports are needed for building

robust conceptions related to this topic
3) Using refutation in this way may reinforce existing prior

conceptions about f and f’
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Students’ Solution Routines in a Nonstandard Problem on the Existence and Uniqueness 
Theorem for First Order Linear Differential Equations 

Svitlana Rogovchenko Yuriy Rogovchenko 
University of Agder, Norway University of Agder, Norway 

Keywords: differential equation, existence and uniqueness theorems, conceptual 
understanding, commognition theory 

University training of modern engineers should prepare them for the solution of applied 
problems, many of which are described by differential equations (DEs). Recent shift towards 
computer-led solution of engineering problems undermines the role of advanced 
mathematical thinking in the education of future engineers negatively affecting their 
conceptual understanding of mathematical subjects, including DEs. Teaching and learning of 
DEs at the university level is a relatively new area of education research. Recent empirical 
studies indicate that students tend to concentrate attention on specific solution techniques and 
“often fail to relate them to other concepts or ideas” (Camacho-Machín et al., 2012, p. 76).  

We continue the research in (Rogovchenko & Rogovchenko, 2022; Rogovchenko et al., 
2020; Treffert-Thomas et al., 2018) analyzing the work of students in mechatronics in their 
fourth year of studies on a set of non-routine problems on Existence and Uniqueness 
Theorems for linear DEs. For a graded assignment, we designed “tasks and projects that 
stimulate to ask questions, pose problems, and set goals” whereas students “must learn to 
inquire systematically” and “must actively construct their own knowledge” (Richards, 1991, 
p. 38).  The data include students' written work (three scripts), answers to pre- and post- 
questionnaires, and transcribed audio recordings of small group discussions and class
presentations.

We analyze the development of students’ discourse in one of the assessment problems 
using the constructs of narrative and routine from the commognitive theory (Sfard, 2008). 
Mathematical narratives are endorsed with the help of routines. The routine is performed by a 
person P in a task-situation TS and consists of a pair task-procedure. The same procedure 
may become a basis for different types of routines, depending on the performer’s vision of 
the task. Expert participants of mathematical discourse interpret most task-situations as 
requiring a (re)formulation and endorsement of a particular type of mathematical narrative. 
Such outcome-oriented routines can be called explorations (Lavie et al., 2018). Solution 
routines were coded, and students’ scripts were classified. Based on the data analysis we 
conclude that the students were able to participate in an explorative routine and produce 
solution procedures depending on their vision of the task.  
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analysis 

Differential equations find numerous real-life applications in natural and social 
sciences, economics. Teaching of differential equations to undergraduate students in 
mathematics, physics, engineering has a long history, and the content of the courses did not 
change much, paying attention primarily to the use of analytic techniques for finding closed 
form solutions. Recent advances in technology prompted changes to the syllabus of the courses 
in differential equations at many universities with a shift towards graphical and numerical 
approaches for the analysis of differential equations and understanding of the behavior of 
solutions, “the move away from a “cookbook” course to one that emphasizes modeling, 
qualitative, graphical and numerical methods of analysis” (Rasmussen & Wawro, 2017, p. 
555). However, the research on teaching and learning of differential equations is scarce, 
“researchers are just beginning to form models of students’ learning of differential equations” 
(Stephan & Rasmussen, 2002, p. 460). 

Recent empirical research indicates that students face difficulties with the 
understanding of the concept of a differential equation itself and to the concepts of the general 
and particular solutions (Arslan, 2010; Camacho-Machín et al., 2012; Raychaudhuri, 2014). 
The authors analyzed tasks suggested in the literature for assessing conceptual understanding 
of solutions to differential equations, concluding that only one task out of five was stimulating 
students’ reflections about the concept (Rogovchenko & Rogovchenko, 2022). Our analysis of 
students’ work on non-routine problems that required understanding of several important 
theorems and notions including that of the general solution suggested that the explanation of 
the concept and its use in the course textbook could be one of the reasons for student 
difficulties.   

The research question we address in the paper is: How was the concept of the general 
solution introduced in the textbooks on differential equations during the last hundred and fifty 
years? 
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Professional development (PD) has the potential to improve teaching in STEM by helping 
educators gain knowledge and skills in research-based instructional strategies (RBIS). Instructor 
use of RBIS has been shown to improve student performance and support equity among students 
(Freeman et al., 2014; Laursen et al., 2014), and effective PD can help educators implement 
more RBIS in their classrooms. There has been a lot of research about what practices contribute 
to effective PD (e.g., Kennedy, 2016; Archie et al., 2022), but as more PD opportunities move 
online, new tools are needed to describe its characteristics. For instance, spontaneous group work 
may be quick to coordinate in person, but the same task would require a different set of tools and 
skills to be executed online. As a way to identify and describe some of these online 
characteristics, we have developed a rubric called the Online Professional Development 
Observation Checklist (OPDOC). 

The OPDOC was created as an evaluative tool for a series of online PD workshops meant to 
improve the teaching of undergraduate mathematics instructors. The rubric is designed to be 
broad enough that it could be applied to a wide variety of online PD programs. It includes 19 
items that are based on literature about effective PD practices, including strong logistics (Gaumer 
Erickson et al., 2017), interactivity among participants (Elliot, 2017; Gaumer Erickson et al., 
2017), and support for implementation (Elliot, 2017; Ritzmann et al., 2013). The rubric also 
includes items that measure equity and inclusiveness, which were drawn from anti-racist rubrics 
(Blonder et al., 2022) to promote a supportive and collaborative PD environment. 

The rubric was used in summer 2022 for both synchronous and asynchronous observation for 
over 156 hours of total observation of 8 different workshops on varied topics relevant to teaching 
college mathematics, each 24-30 hours long. There were two workshop models: an intensive 
model spanning 6 hours a day for 4 days, and a minicourse model spanning 3 meetings a week 
for 3 weeks. The content of the workshops, the facilitation teams, and the participants were also 
variable. The OPDOC was used to collect observations of the workshops based on four general 
categories: logistics, educative content, interactivity, and community-building. For each item 
within the categories, a numerical 3-point rating scale was used to indicate the strength of 
evidence for each item. 

These numerical scores were then compared to survey responses from participants who 
attended the workshops. Results showed that the numerical distinctions among workshops were 
minimal in the logistics and interactivity categories, which could suggest a need for item revision 
or differential weighting of items. It is also possible that some of the lack of deviation in the 
OPDOC scores can be attributed to the training that workshop leaders attended beforehand, 
designed to support leaders in creating organized and interactive workshops. Additionally, as 
every workshop leader already had some PD experience, it is not unexpected that the workshops 
were highly rated on average. In future research, we hope to link workshop characteristics with 
instructor outcomes, so participant survey responses will be used to further identify central 
components of effective PD and the rubric will be refined to identify variations in greater detail 
for future workshop iterations. 
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Based on the data collected at summer 2022 workshops, 
feedback has already been given to the upcoming 
summer 2023 workshop teams to emphasize participants’ 
needs for:
• Longer breaks 
• More implementation strategies
• Follow-up support

The revised OPDOC will be used for workshops planned 
for summer 2023 and will be further revised as new 
observations and survey data are collected. Our intention 
is to develop a rubric that captures qualitative information 
to describe workshop features and that also provides 
quantitative scores, which together can predict or explain 
short-term outcomes (satisfaction, learning) and long-term 
outcomes (implementation of new practices).

Conclusions and Future Work

The OPDOC rubric was first used in the summer of 2022 
to evaluate online workshops for a PD program. The 
observations included:
• 8 workshops on various topics about teaching college 

mathematics
• Over 156 hours of synchronous and asynchronous 

observation
• Variable workshop content, models, facilitations teams, 

and participants

Observations were then compared to post-survey 
feedback from participants who attended the workshops. 
Based on these comparisons, we made the following 
modifications: 
• Revised broad categories to emphasize 

implementation of new practices learned in workshops
• Included new items based on frequently stated 

participant feedback
• Eliminated repetitive items
• Changed Strength of Evidence from a 3-point scale to 

5-point to allow for greater nuance in coding

Professional development (PD) can help STEM educators 
gain knowledge and skills in research-based instructional 
strategies. A few dimensions of effective PD include:
• Strong logistics1

• Interactivity among participants2

• Support for implementation3

As more PD moves online, however, new tools are 
needed to describe its characteristics. This rubric was 
developed to evaluate online PD workshops meant to 
improve the teaching of undergraduate mathematics 
instructors. 

Instrument Development

Need

What’s OPDOC? A Rubric for Characterizing Online Professional Development
Kyra Gallion, Tim Archie, & Sandra Laursen

The Rubric

Acknowledgements
We thank the MAA OPEN Math leadership team and all the 
workshop leaders and participants who shared their work and 
thinking. This work is supported by the National Science 
Foundation award DUE-2111273. The opinions, findings, and 
conclusions expressed here are those of the authors and do not 
necessarily reflect the views of the National Science Foundation.

The	Professional	Development	Provider: Strength	of	
Evidence

Logistics
1. Follows	a	schedule	that	is	comfortably	paced	and	honors	
breaks None	(1)

2. Uses	technology	that	is	clear	and	accessible	to	
participants None	(1)

3. Organizes	information	so	that	participants	can	easily	find	
agendas,	links,	resources,	etc. None	(1)

Content

4. Provides	activities	that	are	relevant	to	the	workshop	
content,	well-paced,	and	worthy	of	participant	time	and	
conversation

None	(1)

5. Describes	learning	activities	clearly	and	their	function	
within	the	workshop None	(1)

6. Includes	the	empirical	research	foundation	of	the	content	
(e.g.,	citations,	verbal	references	to	research	literature,	key	
researchers)

None	(1)

7. Provides	information	about	effective	teaching	practices	
within	the	context	of	the	topic None	(1)

8. Provides	information	about	inclusive	and	equitable	
teaching	practices	within	the	context	of	the	topic None	(1)

Interactions

9. Incorporates	opportunities	for	participants	to	interact	
with	each	other	related	to	training	content None	(1)

10. Provides	guidance	during	activities	to	ensure	all	
participants	understand	the	task	and	are	being	treated	
equitably

None	(1)

11. Invites	participants	to	express	personal	perspectives	
(e.g.,	experiences,	thoughts	on	concept) None	(1)

12. Includes	opportunities	for	participants	to	safely	ask	
questions	and	communicate	their	needs	to	facilitators None	(1)

13. Fosters	an	environment	of	community,	rapport,	and	
openness	among	the	participants None	(1)

Implementation
14. Provides	examples	of	the	content/practice	in	use	(e.g.,	
case	study,	vignette) None	(1)

15. Connects	the	topic	to	participants’	context	(e.g.,	course,	
department,	institution)	and	addresses	potential	barriers	to	
implementation

None	(1)

16.Conveys	an	expectation	that	participants	are	to	
implement	workshop	lessons	or	material	into	their	own	
contexts

None	(1)

17.Includes	opportunities	for	participants	to	consider	
and/or	practice	implementation	within	their	own	contexts None	(1)

18.Offers	continued	support	after	the	workshop	(e.g.
resources,	check-ins,	communities	of	practice) None	(1)

“Frequent breakout rooms and 
breaks helped to make the long 
days work well.”

“I was *slaughtered* mentally 
and physically most days... 

could use longer breaks [...]”

“I loved the interactivity and 
random group work to meet 
colleagues and hear fresh 

ideas."

“As a group we unfortunately 
fell into the habit of not 

responding to open prompts for 
volunteering comments. We 
needed to be prodded a little 

more […]”

“I think it would be helpful to 
maintain an online space for 

those of us in this workshop so 
we could share our 

experiences with implementing 
our tasks in the future."

“The workshop gave me a 
wealth of resources I can 

consult if I need help and a 
network of colleagues that I can 

reach out to!"

“The organizers did an 
excellent job of teaching how to 
do active learning by explicitly 

using active learning 
techniques.”

“Giving us practical examples
we can take directly to the 
classroom was wonderful."

“The workshop descriptions 
doesn't seem to match the 

actual workshop.”

Quantitative Survey ResponsesQualitative Survey Responses

A comparison of post-survey responses from participants in two 
example workshops that ranked high and low within the initial 
sample of eight. The contrasts between the scores suggest 
participants are perceptive about differences in workshop design 
and facilitation that reflect elements we seek to document in 
OPDOC.
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Having an experienced, well-prepared teacher makes a difference to student outcomes 

(Cardichon, et al., 2020) and retaining teachers in high-needs schools is even more challenging. 

In particular, teachers of students in high needs schools need to transform content knowledge 

into a form appropriate for the diverse interests and abilities of students by drawing on culturally 

and linguistically appropriate instructional strategies and by building supportive and productive 

classroom practices. We operationalize components of Pedagogical Content Knowledge (PCK) 

(Shulman, 1987,1986) and Pedagogical Ways of Knowing (Cochran, et al, 1993) using the 

coding framework proposed by Meir et. al (2020) which draws from the mathematical practices 

(National Governors Association, 2010) and sets of instructional strategies for supporting 

students’ mathematical literacy. The purpose is to understand in particular, how participants 

develop and utilize PCK that speaks to teaching diverse students in high needs schools. 

A mixed methods sequential case study design (Creswell & Plano Clarke, 2018) was used, 

and participants are five Noyce scholars who have graduated from the program and transitioned 

to teaching in high-needs schools. We use longitudinal evaluation data collected from these 

participants during their sophomore and senior years in the integrated mathematics credential 

program as sources, in particular beginning teacher assessment data (TAD), open-ended 

interview transcripts and responses to closed and open-ended questionnaires.  

Our result shows that participant average scores on the Beginning Teacher Assessment were 

higher than campus averages and that the Noyce mentoring program increases retention of 

integrated mathematics credential students in the major. In addition, thematic analysis of their 

TAD lessons and interviews evidenced the ways in which Noyce activities supported them as 

they integrated understanding of student characteristics and learning context, of mathematics 

specific pedagogy with their strong mathematical knowledge acquired in the Integrated 

Mathematics Credential Program. While an integrated Math Credential program is well 

positioned to foster in prospective teachers’ connections between subject matter expertise and 

pedagogical competence our results suggest that the additional opportunities offered in the 

Noyce mentoring program are critical in order to develop the types of pedagogical content 

knowledge necessary to teach in high-needs schools.  
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Having an experienced, well-prepared teacher makes a difference to student 
outcomes (Cardichon, et al., 2020) and retaining teachers in high-needs schools is 
even more challenging. In particular, teachers of students in high needs schools 
need to transform content knowledge into a form appropriate for the diverse 
interests and abilities of students by drawing on culturally and linguistically 
appropriate instructional strategies and by building supportive and productive 
classroom practices. This study, set in the context of a Noyce-funded mentoring 
program where participants are underrepresented and talented integrated 
mathematics credential majors, addresses how prospective teachers can be 
concurrently supported in a rigorous mathematics program as they develop the 
deep pedagogical knowing so necessary for teaching students in high needs 
settings.

Introduction
Participant average scores on the Beginning Teacher Assessment were 
higher than campus averages and our analysis of their TAD evidenced 
the ways that participants used anticipatory and implementation 
thinking as they drew from their strong mathematical backgrounds with 
and understanding of students and teachings to provide opportunities 
for their students to participate in mathematical discourse. In particular 
students in scholar classrooms were given opportunities to construct 
viable arguments and critique the arguments of others (MP3), use 
appropriate tools strategically (MP5), make sense of problems and 
persevere in solving them (MP1), look for and make use of structure 
(MP7) and/or make use of repeated reasoning (MP8) while learning 
important content standards.Framework for Pedagogical Content knowledge

A mixed methods sequential case study design (Creswell & Plano Clarke, 2018)
was used. Participants are five Noyce scholars who have graduated from the 
program and transitioned to teaching in high-needs schools. We use:
Longitudinal evaluation data collected during  sophomore and senior years in the 
GotMATH program sources:
● Beginning teacher assessment data (TAD)
● Open-ended interview transcripts
● Responses to closed and open-ended questionnaires
● Reflections from teaching and learning seminars.

Methods

Themes from our stage II analyses show that students in the mentoring 
program:
1. Valued multiple opportunities during Noyce seminars to experience 

and reflect on practices and strategies learned during credential 
courses within the specific context of teaching mathematics.

2. Learned about pedagogical issues specific to students living in poverty 
from experienced teachers working in local high-needs schools 
through the Noyce seminars.

3. Gained knowledge of students and content as well as knowledge of 
content and pedagogy from concurrent opportunities to work as 
instructional assistants on campus and tutors in elementary settings 
while themselves learning higher level mathematics content in major 
coursework (offered through Noyce)

Our result shows that participant average scores on the Beginning Teacher 
Assessment were higher than campus averages and that the Noyce mentoring 
program increases retention of integrated mathematics credential students in the 
major.
● In addition, thematic analysis of their TAD lessons and interviews evidenced the 

ways in which Noyce activities supported them as they integrated understanding 
of student characteristics and learning context, of mathematics specific pedagogy 
with their strong mathematical knowledge acquired in the Integrated Mathematics 
Credential Program.

While an integrated Math Credential program is well positioned to foster in 
prospective teachers’ connections between subject matter expertise and pedagogical 
competence our results suggest that the additional opportunities offered in the Noyce 
mentoring program are critical in order to develop the types of pedagogical content 
knowledge necessary to teach in high-needs schools.

Conclusions

Results and Discussion

Table 1. Mathematical Literacy Strategies to Engage in Mathematics Discourse Used by Noyce 
Beginning Teachers.

Figure 1. Tetrahedron - vertices, edges, and surfaces - as a way to visualize PCK components and 
relationships adapted from Hauk et al. (2019).

Category

Code Example of instance Lorry Jacob Nathan Bella Nadine

Creating a 
meaningful 
context for 
instruction

KCS Using a jeopardy game context for math exam 
review.

X X

KCT Group work with small white boards/game format. X X X X X

Helping 
students 
produce 
discourse

Anticipatory Thinking Asking questions to promote focus on math problem 
solving, strategies and argument.

X X X X X

Implementation thinking
Using sentence frames 
and/or sentence starters 
to support mathematical 
oral and written 
discourse.

Student answers to strategic questions were 
scaffolded with sentence frames to help them justify 
their reasoning about a problem.

X X X X X

Implementation thinking
Using word walls

Teacher creates written strategy bank as they are 
discussed in groups (for later use)

X X

Anticipatory Thinking 
Using multiple modes for 
language (speaking, 
listening, reading, writing)

White boards/notebooks/ posters/exit tickets verbally 
expressing solutions to near peers and whole 
group/using visual aids

X
X X X

Making 
input 
comprehe
nsible

Implementation thinking
Vocabulary and/or syntax support X X X X

Implementation thinking
Using visuals, drawings, gestures, or realia

X X X

Organizing 
instruction

Anticipatory thinking
Strategically placing 
students in small groups 
based on needs

Group members are given responsibilities for 
ensuring all students understand how to solve the 
equations, so students with stronger understanding 
are instructed how to give helpful hints and explain 
their thinking.

X X X X

Anticipatory thinking Monitoring student work during small group work to 
select groups to present.

X X

Socio
mathematical norm

Students self-select level of difficulty of problem type 
and progress upward.

X X X X

KCS Working in teacher led small groups for extra instruction X X X
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The practice of generalizing, identifying a relationship to describe multiple examples or 
instances of a phenomenon, engages students in algebraic thinking and allows them to identify, 
investigate, and represent relationships (Blanton et al., 2011; Kieran et al., 2016). Generalizing is 
fundamental to learning mathematics (Carraher & Schliemann, 2002; Kaput, 1999), yet students 
often have trouble developing (Lannin, 2005) and justifying generalizations (Breiteig & 
Grevholm, 2006). To first build their understanding of generalizing as a mathematical practice, 
we introduced a cohort of preservice secondary teachers (PSTs) to two frameworks for 
generalizing and asked them to use these frameworks to analyze others’ teaching. Then we 
designed a teaching activity embedded in their methods course to help them promote 
generalizing among their grades 7-12 students. Ellis’s (2011) generalizing promoting actions 
(GPAs) are teacher actions that foster the development or refinement of a generalization. 
Strachota’s (2020) priming actions (PAs) usually precede GPAs and set the stage for more 
explicit attention to generalizing and prepare students to build on an idea.  

We provided an outline for a lesson focused on generalizing and asked three PSTs to 
customize the lesson for a high school audience and to plan questions to elicit student 
generalizations. All PSTs used a pattern task, a visual representation of a series of objects where 
the number of objects changes based on a rule, as the focus of their lesson. The goal of a pattern 
task is to use the structure of the presented images (e.g., objects organized in arrays) to develop 
multiple ways of representing the rule. We chose pattern task as the focus for the potential of the 
tasks to promote generalizing because we believed it served as an accessible entry point for our 
novice PSTs.  

We video-recorded each PST’s teaching and asked them to watch their video and analyze the 
effectiveness of their practice. We coded video data for GPAs (Ellis, 2011), PAs (Strachota, 
2020), and student generalizations to identify teacher actions that promoted and hindered 
students in generalizing. Through our analysis, we sought to understand the patterns of 
generalizing actions that supported students in articulating the generalizations and determine 
how teacher educators can support PSTs in promoting student-created generalizations. 

Patterns of interactions that promoted generalizing included using multiple GPAs in a short 
span of time and following student-created generalizations with a new GPA to prompt them to 
expand or deepen their contribution. Additionally, using PAs and GPAs together helped support 
students in generalizing more so than using GPAs alone. The PA of naming a critical tool proved 
especially useful when students invented and described their own strategies. Patterns of 
interaction that hindered students in generalizing included using GPAs when the actions were 
centered on a teacher strategy instead of a student strategy or when the teacher was not able to 
use repeated GPAs in a series. There was not a one-to-one link between GPAs or PAs and 
students’ generalizations, which demonstrates the complexity of generalizing. Enacting the 
pattern task revealed much about the shortcomings and strengths of teachers’ understandings of 
generalizations; future research will explore how to better support preservice teachers in 
promoting generalizing.   
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The Implications of Perspectives on MKT for the Examination of Teacher Noticing 

Erin Wood 

University of Georgia 

Keywords: Mathematical Knowledge for Teaching, Teacher Education, Decentering 

Mathematical knowledge for teaching (MKT) has been widely used in mathematics 

education research, with many researchers developing varying definitions. The categorization of 

MKT developed by Ball et al. (2008) has been influential in the study of teachers’ mathematical 

knowledge. Their framework differentiates between pedagogical content knowledge and subject 

matter knowledge, and breaks these categories into subcategories that describe what the 

knowledge is of. While this categorization is helpful for characterizing the existence of 

knowledge it does not provide a mechanism for its development. The framework for MKT 

introduced by Silverman and Thompson  (2008) does not categorize knowledge, but it does 

propose a potential mechanism for the development of MKT. The framework posits that MKT 

first begins with a personal understanding of a concept and then can be transformed into 

knowledge with pedagogical power via decentering. To transform their knowledge, a teacher 

must imagine how students might understand the content, and how students might be supported 

in developing an understanding consistent with that of the teacher.  

While the use of student thinking in teaching has been examined in multiple ways, one 

particularly influential construct is professional noticing as defined by Jacobs and colleagues’ 

(2010). They defined noticing to consist of attending to strategies, interpreting student 

understanding, and deciding how to respond on the basis of these understandings. A related idea 

is using decentering as a lens to analyze classroom practice (Bas-Ader & Carlson, 2021). When a 

teacher decenters they intentionally put aside their mathematical perspective and attempt to adopt 

the perspective of a student. They develop a mental model of their student’s mathematics which 

informs their response to their student’s thinking (Bas-Ader & Carlson, 2021). 

Supporting graduate student instructors and new faculty in developing MKT and using 

student thinking is an important aspect of designing professional development programs. This 

poster will explore the affordances and constraints of using combinations of MKT frameworks 

and frameworks for the use of student thinking to study the relationship between MKT and 

teachers’ use of student thinking. Using Ball, Hill, and colleagues’ characterization of MKT 

could allow one to study relationships between teachers’ knowledge in particular domains and 

their use of student thinking. One could map knowledge used when interpreting and responding 

to student thinking to domains of knowledge within the framework to understand how different 

domains support teachers in using student thinking. A teacher might draw on Knowledge of 

Content and Students to recognize a student understanding, and Knowledge of Content and 

Teaching to decide how to move that understanding forward. The use of Silverman and 

Thompson’s framework aligns well with the use of decentering as a lens to examine teachers’ 

use of student thinking. A teacher decenters to develop MKT, which supports them in 

decentering in the classroom. If a teacher has constructed ways that a student might understand 

an idea, they might assimilate a student’s thinking to one of these ways. If a teacher encounters 

student thinking for which they do not have a viable pre-constructed model, they develop MKT 

as they decenter to build a model of their student’s understanding. Thus, development of MKT 

and attention to student thinking can be seen as a reciprocal process, in which MKT supports 

teachers in making use of student thinking, and attending to student thinking can develop MKT. 
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Affordances and Challenges Associated with Euler Diagrams as Representations of Logical 
Implications 

 
 Joseph Antonides Anderson Norton Rachel Arnold 
 Virginia Tech Virginia Tech Virginia Tech 

Keywords: Euler diagrams, logical implication, proof, spatial representations 

Research in mathematics education has begun to capture students’ epistemic experiences 
with logic and proof in general, and with logical implications in particular (e.g., Antonini, 2004; 
Dawkins, 2017; Durand-Guerrier, 2003; Durand-Guerrier et al., 2012; Epp, 2003; Roh & Lee, 
2018; Stylianides et al., 2004; Yopp, 2017). However, much is still unknown about how 
instruction can support student reasoning and learning about logical implication. Some 
researchers have explored the use of Euler diagrams for representing relations between sets and, 
in particular, truth sets of open statements (e.g., Bronkorst et al., 2021; Dawkins & Roh, 2022; 
Hub & Dawkins, 2018). In our ongoing research (the Proofs Project), we use Euler diagrams in 
introduction-to-proofs courses as one way to represent logical implications and their 
transformations. We have been conducting clinical interviews with students in which we 
investigate their conceptual mappings between logical implications and Euler diagrams. We 
share preliminary findings from our initial analyses of interview data to address the following 
question: What affordances and challenges do Euler diagrams present as visual-spatial 
representations of logical statements? 

One affordance of Euler diagrams comes from their spatial nature: they provide a means to 
visualize relationships between two truth sets. One student (Carmen) explained, “I think with the 
if-then statements, it helps me to think of the Euler diagrams… and thinking of a circle within a 
circle.” Another student (Kai) commented that, while he preferred to use symbolic logic over 
Euler diagrams, especially for representing more complex statements, he added, “Otherwise, I 
think [an Euler diagram] shows relationships very clearly if you have the initial setup correct.” 

The spatial nature of Euler diagrams also presents particular challenges for students. For 
instance, ideally, the statement P → Q is mapped to an Euler diagram in which the truth set of P 
is a subset of the truth set of Q. Some students in our study represented this implication with P as 
a superset of Q. As Carmen explained, “The P engulfs the entire space of Q, so that if I have the 
statement P, then I’m definitely going to have the statement Q.” Additionally, for contrapositive 
statements (e.g., ~Q → ~P), visualizing the truth set of ~Q as a subset of ~P in a 2D Euler 
diagram in which the truth sets of P and Q are depicted first may be difficult as it requires first 
visualizing the complements of the truth sets for P and Q as closed regions in 2D Euclidean 
space. Furthermore, the containment of ~Q within ~P may be obscured for students because the 
resulting depiction of ~Q → ~P is not homeomorphic to the original. We note that, ideally, Euler 
diagrams for two logically equivalent statements would be homeomorphic to each other. Because 
these spaces are homeomorphic when visualized on a sphere (rather than 2D Euclidean space), 
we discuss potential affordances and challenges of such a representation, and how Peircian 
diagrams on a sphere may provide alternative spatial representations (cf. Pietarinen, 2016). 
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Purpose & Motivation
Goals of the Proofs Project
• Identify and address students’ epistemological obstacles in 

introductory proofs courses
• Support teachers by suggesting instructional interactions 

that may provide students with opportunities to identify, 
reflect on, and overcome these obstacles

Research Questions Regarding Euler Diagrams
• How do students interpret, construct, and make sense of 

Euler diagrams as representations of logical implications?
• What epistemological affordances and challenges may be 

associated with this mode of representation?

What are Euler Diagrams?
• Visual-spatial representations showing relationships 

between sets
• Statement 𝑝 → 𝑞 represented as 𝑃 ⊆ 𝑄, where 𝑃 and 𝑄 are 

the truth sets of statements 𝑝 and 𝑞, respectively
• 𝑈 represents the universal set, or the domain of objects 

under consideration

Challenges

Size Matters Not
• Qualitative nature of Euler diagrams may hide 

quantification from students
• Canonically, the size of a space within an Euler diagram is 

not an indicator of the cardinality of the set that it 
represents

• A circle may be used to represent a singleton set, whereas 
another circle (perhaps smaller than the original) could be 
used to represent an infinite collection

Empty or Not Empty? 
• Generally, the existence of a closed space in an Euler 

diagram implies the space represents a non-empty set
• Not always the case: in the Euler diagram for 𝑝 → 𝑞, the 

space 𝑄 − 𝑃 may be empty if 𝑞 → 𝑝 also holds (see Fig. 2a), 
or the space 𝑃 may be empty (vacuous case)

• By contrast, in the Euler diagram shown in Fig. 2b, 𝑃 ∩ 𝑄 is 
presumed to be non-empty

Affordances
Visual Representation of an Abstract Relationship

References

Methods
• Classroom data from an introductory proofs course, taught 

in the Fall 2022 semester
• Three clinical interviews with each of four students in the 

course: (1) Logical Implication, (2) Quantification, and (3) 
Mathematical Induction and Stimulated Recall

Figure 3: Transforming Euler diagram for 𝑝→ 𝑞 on a sphere to show equivalence to its contrapositive

Different Interpretation of Subset Relation
• Carmen: “So, if 𝑝, then 𝑞. The 𝑃 engulfs the entire space of 𝑄 so 

that if I have the statement 𝑝, then I’m definitely going to have the 
statement 𝑞.”

• Some students interpreted the containment of 𝑃 in 𝑄 as 
suggesting that, if you have the space 𝑃 (or statement 𝑝), then 
you have the space 𝑄 (or statement 𝑞)

• As Kai noted in excerpt above, Euler diagrams can be useful, but 
they require 
– structuring spatial representations of logical information in a 

meaningful way, along with
– shared understanding of what set containment within an Euler 

diagram represents

U

P
Q

Figure 1: Euler diagram representations of (a) 𝑝 → 𝑞 and 
(b) ~𝑞 → ~𝑝

~Q
~P

(a) (b)

U

• Carmen: “I think with the if-then statements, it helps me to 
think of the Euler diagram… and thinking of a circle within a 
circle.”

• Kai: Stated that he prefers symbolic representations, but 
also said, “I think [an Euler diagram] shows relationships 
very clearly if you have the initial setup correct.”

• Allows students to offload cognitive demands of 
maintaining relationships between logical structures by 
establishing a spatial representation

U P Q

Figure 2: (a) 𝑄 − 𝑃 may be empty, but (b) 𝑃 ∩ 𝑄 is 
assumed to be non-empty

U

P
Q

(a) (b)
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Why Euler Diagrams?
• Hub and Dawkins (2018) suggest students 

can abstract the logic of conditionals by 
populating sets with familiar mathematical 
objects.

• Conditionals describe a relationship 
between properties. If students populate 
sets with those properties, they can 
represent the relationship spatially, as a 
relationship between sets. 

• Dawkins and Roh (2021) have employed 
this instructional approach, relying heavily 
on the use of Euler diagrams, within their 
own research project.

Representing the Contrapositive
• Euler diagram for 𝑝 → 𝑞 not topologically equivalent to Euler 

diagram for ~𝑞 → ~𝑝 (compare Fig. 1a and Fig. 1b)
• One potential remedy: construct and transform Euler 

diagrams on a sphere (see Fig. 3)
• Starting with 𝑃 ⊆ 𝑄, dilate 𝑃 and 𝑄, reaching to the back 

side of the sphere, until only a small region not contained in 
𝑄 is remaining, then invert relationship to show ~𝑄 ⊆ ~𝑃

• Unclear what additional obstacles this may introduce

Proofs Project

Visual Facilitation of Transformations
• Provide students with a visual aid in interpreting 

transformations of logical implications (e.g., negation)



Metacognition in Proof Construction: Connecting and Extending a Problem-Solving Framework 

Sarah Sparks Gulden Karakok 

University of Northern Colorado University of Northern Colorado 

Keywords: Metacognition, Problem Solving, Proof 

Mathematical proofs are an integral component of undergraduate mathematics education. 

Providing students opportunities to develop the necessary writing technique, and deductive 

reasoning skills to communicate mathematical ideas via proof is a central goal of undergraduate 

mathematics programs (Committee on the Undergraduate Programs in Mathematics [CUPM], 

2015). For undergraduate students, developing these skills and utilizing them appropriately can 

be an arduous feat and has implications for their success in a mathematics course or program 

(Alcock & Simpson, 2002). Due to the difficulty and importance of proof, the mathematics 

education community has contributed to a varied body of research related to the teaching, 

learning, and cognitive skills relevant to mathematical proof.   

Research in the cognitive processes related to proof construction have provided insight into 

how undergraduate students, graduate students, and mathematicians interact with the proof 

construction process. Inglis and Alcock (2012) demonstrated that the processes with which each 

of these three groups construct proofs varies and that proof construction is not uniform even 

within a group. Their participants also showed inconsistency between how they said they 

approach proofs and the actual processes they implemented when given a proof construction 

task. To address these different approaches and their implications for the teaching and learning 

of proofs, we need to know more about what beliefs and judgements individuals have about their 

own cognitive processes during proof construction, and how these impact the choices they make 

during this process. Metacognition, defined to be “any knowledge or cognitive activity that takes 

as its object, or monitors, or regulates any aspect of cognitive activity; that is, knowledge about, 

and thinking about one’s own thinking” (Lerman, 2020, pp. 608-609) captures exactly this aspect 

of an individual’s thinking. 

Existing metacognition research in mathematics education has focused on the relevant 

metacognitive processes that occur during mathematical problem solving more broadly. Proof 

related tasks can be a subset of mathematical problem solving, and therefore many of the 

findings from problem-solving based metacognition research may be applicable to proof. 

However, research shows that there are aspects of the proof construction process that may not be 

addressed in other problem-solving research (e.g., Savic, 2015). The language, structure, and 

reasoning required in proof constructions can be viewed to be unique to mathematical proofs and 

form a special writing genre (Selden & Selden, 2013). Savic (2015) also found that when the 

multi-dimensional, problem-solving framework developed by Carlson and Bloom (2005) is 

utilized in context of a proof task, adjustments of the framework are needed for the proof 

processes; in particular, there is a need to study metacognitive processes in proof more directly.  

In this poster, we discuss the research that aims to explore the phenomenon of individuals’ 

metacognitive processes during the construction of mathematical proofs. We identify the areas of 

the Carlson and Bloom framework in which metacognitive processes could potentially be 

important for proof construction, and we will demonstrate these with active engagement during 

poster presentation with the audience. During this interactive poster presentation, participants 

will be asked to share their thinking processes on proof tasks while we highlight the aspects of 

their metacognitive processes.  
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Active Learning Professional Development Series for Both Experienced and Inexperienced 

Instructors 
 
 Michael Tepper Rachael Eriksen Brown 
 Penn State Abington Penn State Abington 

The poster describes a pilot study following the outcome of a three-part professional 
development workshop to promote active learning in STEM classrooms for instructors with a 
wide range of teaching experience.  The series introduced strategies and benefits of active 
learning and had participants workshop their own strategies.  We share the results of an exit 
survey given to participants and additional observations.  The survey seeks to find what kinds of 
faculty participate and whether the professional development series motivated instructors to use 
more active learning in their classroom. 

Keywords: Active Learning, Professional Development, Post-Secondary Education, STEM 

How do we design professional development opportunities, including those that are 
discipline specific and promote active learning in STEM for an audience of both experienced and 
inexperienced instructors?  We share observations and survey results from a pilot study 
following a three-part professional development workshop to promote active learning in STEM 
classes at a university in the Northeastern United States. 

The three-session workshop took place over the course of 6 weeks.  In order to be flexible, 
each session included information and activities that built on the previous meeting but were 
presented in an independent way so that instructors weren’t required to attend each session.  The 
College Mathematics Instructor Development Source (CoMInDS) Library on MAA Connect was 
used to generate activities, including the classroom practices found in (Yee, 2021).  An article 
about shifting the focus from the teacher to student (Webel, 2010) was used for a discussion. 

Information for this study was collected though post workshop observations and participant 
survey questions.  There were 16 participants in the three sessions, with no participant attending 
all three.  The six-question survey asked participants about their teaching experience, their 
professional development experience, and their experience using active learning. 

Six faculty members responded to the survey.  A majority of the respondents had 6 or more 
years of teaching experience.  While most respondents attend professional development sessions 
more than once per year, the majority of professional development attended was not designed 
specifically for teaching in STEM fields.  After the workshop, most instructors said they would 
likely use active learning in their classrooms.  Teaching responsibilities was an obstacle to 
participating, with many instructors arriving late or leaving early due to class schedules.  While 
the sessions were offered in a hybrid format, most instructors preferred the online option.  We 
found that many instructors had trouble working on open ended projects to develop their own 
active learning examples during the workshop. 

From these results, we consider the following future questions.  What scheduling incentives, 
and structure could be implemented to improve attendance?  What improvements in the 
workshop structure could be implemented to improve engagement and better promote active 
learning?  In addition, we would like to investigate ways to better integrate the different 
experiences, backgrounds, and variety of fields represented by the participants to improve 
professional development for a wide audience. 
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Active Learning Professional Development Series for Both Experienced and 
Inexperienced Instructors

Purpose
Share observations and survey results from a pilot three part professional 
development workshop to promote active learning in STEM classes.  The workshop 
was designed to be flexible, for both novice instructors and veterans, as well as 
instructors with varying levels of experience using active learning. 

Resources and Literature
• College Mathematics Instructor Development Source (CoMInDS) Library on MAA 

Connect.
• Active Learning Instructional Resource: Classroom Practices from the CoMInDS

Library (Yee, 2021)
• Group Reading: “Shifting Mathematical Authority from Teacher to Community.” 

(Webel, 2010)

Research Question
How do we design professional development opportunities, including those that 
promote active learning in STEM classes, for an audience of both experienced and 
inexperienced instructors?

Methods
• Survey Questions
• Post Workshop Observations

Workshop
The workshop had three sessions which took place over the course of 6 weeks.  
Instructors were encouraged to attend as many sessions as possible.  While each 
session included information and activities that built on the previous meeting, they 
where presented in an independent way so that instructors weren’t required to attend 
each session.

Survey Questions
Survey questions asked about the following:
• Teaching Experience
• Professional Development Experience
• Experience using active learning.

Particpants
There were 16 participants in the three professional development sessions. No 
participants attended all three sessions, with several attending two sessions.  Many 
participants only participated for parts of sessions due to teaching schedules.  

Survey Questions and Results

Question 1: How many years have you taught?
Question 2: Before becoming the instructor of record of a course, did you have 

any experience being a graduate or teaching assistant?

Question 3: Approximately how much professional development in teaching do 
you participate in?

Question 4: Which of the following describes the professional development you 
participate in?

Question 5: Have you used active learning in your classes before? 
Question 6: How likely are you use active learning in your classes in the future?

Findings & Discussions
Survey
• A majority of instructors attending these development sessions had 6 or more years 

of teaching experience.
• A majority of participating instructors did not have experience as a graduate or 

teaching assistant.
• Most instructors participate in professional development more than once per year.
• The majority of the professional development that the instructors attend is not 

designed primarily for teaching in STEM fields.
• Most instructors believe they will likely use active learning in the future.

Observations
• Teaching schedule was an obstruction to participating.  Multiple instructors either 

could not participate or could only participate for part of the sessions due to this 
obstacle.

• While the sessions were available in a hybrid format, both in-person and online, 
most instructors participated online.

• Instructors had trouble working on open ended projects to develop their own active 
learning classroom activities during the workshop.  

Future Research
• What scheduling, incentives, and structure could be implemented to improve 

attendance?
• What are improvements in the workshop structure that could be implemented to 

improve participation and better promote active learning?
• Investigate ways to better integrate the different experiences, backgrounds, and 

variety of fields represented by the participants to improve this type of professional 
development in STEM fields.
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Confidence-to-Certainty Metacognitive Shifts for Students in Undergraduate Linear Algebra  

 

 Ethan Snow Michael Preheim Josef Dorfmeister 

 University of Nebraska North Dakota State University North Dakota State University 

Assessing students’ metacognition can help educators better understand student learning. In the 

present study, the authors evaluated students’ pre-assessment confidence, response correctness, 

and post-response certainty during routine examinations in an undergraduate linear algebra 

course to investigate the magnitude and direction of students’ metacognitive shifts ( meta) from 

mean confidence to mean certainty as compared to response correctness. Results of this study 

provide insights to student perceptions of their knowledge during examination performances in 

linear algebra and can inform efforts to improve mathematics teaching and learning. 

Keywords: confidence, certainty, correctness, metacognition, metacognitive shift, correlation 

Motivation and Study Objectives 

Scholars have studied the alignment of confidence and certainty to response correctness 

(Gardner-Medwin & Curtin, 2007; Hunt, 2003; Preheim, Dorfmeister, & Snow, 2022), but  

meta has not been empirically compared to overall correctness or performances on different 

types of questions (e.g., multiple choice vs. process-based questions). The objective of this study 

is to investigate this gap in knowledge within an undergraduate linear algebra student population. 

Methods and Preliminary Results 

Students’  meta was ordered and evaluated for correlation with performance. Interestingly, 

five students demonstrated no overall  meta (boxed), and one student stood out on either end of 

the ordered  meta (Fig. 1A). Preliminary analyses show a correlation (r = 0.43, p < 0.001) of  

meta to overall score (Fig. 1B). Confidence and certainty were separately examined with respect 

to ordered  meta (Fig. 1C). Only certainty showed positive correlation to  meta (r = 0.57, p < 

0.001). The presentation will further describe these correlations, the five students who 

demonstrated no  meta, and the comparison of  meta between question types. 

 
Figure 1. Correctness (B), confidence (C), and certainty (C) correlations to  meta (A).  

Discussion and Conclusions 

This study demonstrates how examining  meta can provide mathematics educators with a 

deeper understanding of student metacognition, learning, and performance, especially regarding 

undergraduate linear algebra and multiple choice vs. process-based examination questions. 

25th Annual Conference on Research in Undergraduate Mathematics Education 1393



References 

Gardner-Medwin, A., & Curtin, N. (2007). Certainty-Based Marking (CBM) for reflective 

learning and proper knowledge assessment. Re-Engineering Assessment Practices (REAP) 

Int. Online Conference on Assessment Design for Learner Responsibility, Proceedings for 

Raising Students’ Meta-Cognition (Self-Assessment) Abilities. Retrieved from 

http://discovery.ucl.ac.uk/178612/ 

Hunt, D. P. (2003). The concept of knowledge and how to measure it. Journal of Intellectual 

Capital, 4(1), 100–113. https://doi.org/10.1108/14691930310455414 

Preheim, M., Dorfmeister, J., & Snow, E. (2023). Assessing Confidence and Certainty of 

Students in an Undergraduate Linear Algebra Course. Journal for STEM Education 

Research. https://doi.org/10.1007/s41979-022-00082-6 

 

25th Annual Conference on Research in Undergraduate Mathematics Education 1394



STEM Students’ Views on the Meta-Roles that Function Plays  

Across the Mathematics Curriculum 

 

Brady A. Tyburski 

Michigan State University 

Keywords: Function, Curricular Coherence, Narrative Learning Theory, Multivariable Calculus 

One of the purported goals of undergraduate mathematics is to encourage students to draw 

connections between the various mathematical subfields (Zorn, 2015, p. 11). The function 

concept—which is crucial in almost every area of mathematics—could serve a primary role in 

forming these connections, yet this role often goes unnoticed by students (e.g., Melhuish et al., 

2020). Indeed, function is a critical recurring theme throughout undergraduate mathematics 

(Zandieh et al., 2017) that could be leveraged by students to increase their sense of curricular 

coherence across courses. This theme recurs implicitly and even explicitly in most mathematics 

courses, but research reminds us that students do not always take up course ideas and themes in 

the ways instructors intend (Clift & Brady, 2005; Lew et al., 2016). Despite this, there are few 

studies that speak to the ways that students leverage function as a theme to organize and make 

sense of their curricular experiences both within and across courses. In particular, there is much 

research on the metaphors students use for the concept of function across contexts (e.g., Lakoff 

& Núñez, 2000; Melhuish et al., 2020; Zandieh et al., 2017), but much less research on the meta-

roles that students view function as serving in organizing the mathematics curriculum.  

In this poster, I address two questions: (1) What do students’ stories about functions reveal 

about the meta-roles that the function concept plays for them in organizing the mathematics 

curriculum? (2) In what ways do these general meta-roles appear (or not) in students’ stories for 

functions in a specific course context? I answer these questions by analyzing the stories of three 

STEM students pursuing different majors who were enrolled in multivariable calculus (MVC). 

These stories were told during a sequence of four, 1.5-hour, task-based interviews spread 

throughout a semester—the first concerned the role of function across mathematics and STEM 

courses and the remaining interviews focused on single-variable; multivariable, real-valued; and 

multivariable, vector-valued functions, respectively. Using narrative learning theory and 

Dietiker's (2015) analytic framework for viewing the mathematics curriculum as a story, I 

juxtapose students’ stories about the meta-role of function across the undergraduate curriculum 

with the stories they tell about different types of multivariable functions they encountered 

throughout MVC. I attend to students’ stories because, as Clark and Rossiter (2008) put it, 

“Every day we are bombarded with a dizzying variety of experiences and we make sense of 

those by storying them, by constructing narratives that make things cohere. Coherence creates 

sense out of chaos by establishing connections between and among these experiences” (p. 62). In 

other words, stories are a primary representation of students’ sense of curricular coherence. 

Based on this preliminary, exploratory analysis, I find that students’ general stories reveal 

developed, idiosyncratic views of the meta-role that function plays as an organizing, cross-

curricular theme (e.g., “functions are like the ABCs of mathematics”, “functions are kind of like 

canvases, and we’re being trained as painters”). On the other hand, students’ specific stories 

about functions in MVC did not explicitly leverage the same meta-roles or thematic structures 

that were present in their general stories. This suggests that if we want students to use function as 

a productive, organizing curricular theme, we must provide further reflective opportunities for 

students to coherently organize their course experiences with respect to this theme. 
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A Coordinate System Framework 
 

Inyoung Lee 
Arizona State University 

Coordinate systems underlie many important topics in undergraduate mathematics, such as 
functions, equations, and graphs. By providing a framework that describes the aspects of 
coordinate system thinking, it offers a foundational framing to examine a wide range of 
characterizations of student reasoning in undergraduate mathematics. This proposal introduces 
a conceptual framework that emphasizes how one engages with an object viewed in a single 
coordinate system and multiple coordinate systems. The framework consists of four sub-parts: 
Naming, Locating, Re-Naming, and Re-Locating. 

Keywords: linear algebra, calculus, coordinate system, change of coordinate system, framework 

A coordinate system promotes student spatial thinking by imposing a visual aspect to 
undergraduate mathematics that may be abstract and computational. Many researchers have 
investigated how undergraduate students reason about coordinate systems when transitioning 
from one system to another in the context of precalculus, calculus, and linear algebra (Hillel & 
Sierpinska, 1993; Arcavi, 2003; Montiel, Vidakovic, & Tangul, 2008; Sayre & Wittmann 2008; 
Montiel et al., 2009, 2012; Lee et al., 2020; Moore et al., 2014; Hillel, 2000; Selby, 2016; 
Wawro et al., 2013; Zandieh et al., 2017). Despite these studies, there is no overarching 
framework for interpreting student reasoning across a variety of mathematical contexts. 
Therefore, this paper proposes a framework to provide a foundation for interpreting a wide range 
of undergraduate students’ thinking with coordinate systems. 

The coordinate system framework encompasses two fundamental processes for representing 
objects within a single coordinate system: Naming and Locating. (1) Naming involves assigning 
numbers and symbols to spatial and geometric objects, such as points, vectors, lines, and curves 
in accordance with conventions established by a coordinate system. For example, (2,3), <7,5>, 
and y=-3x!+5x-1 are all examples of objects represented through the naming process. On the 
other hand, (2) Locating is the process of plotting symbolic expressions into visual 
representations, such as dots or graphs in space, using a coordinate system. An example of this 
process is graphing the function y = x" − 10x. These two processes can be extended to include 
reasoning about an object in the context of multiple coordinate systems: Re-Naming and Re-
Locating. (3) Re-Naming involves describing the coordinates of a spatial object using a new 
coordinate system that is laid atop the object without moving it. In other words, the object does 
not receive a new name until a new coordinate system is imposed over its location. An example 
of Re-Naming would be taking a point (1,1) in the Cartesian coordinates renaming it as (√2, #$) in 
the Polar coordinates. (4) Re-Locating involves plotting a symbolic expression that does not 
change into different spaces and transforming the shape of an object into a different shape by 
mapping points in the first coordinate system to points in the second coordinate system. 
Although the transformed location may appear different from the original, the two shapes are 
images of each other. 

By using an overarching lens, researchers can better analyze student reasoning by focusing on 
how students think about each part of a problem, and how they leverage their understanding of 
coordinate systems to reason about multiple coordinate systems. This approach can also serve as a 
useful framework for teachers and researchers when designing tasks that involve coordinate systems. 
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I do enjoy math even
though it's not really a

part of psychology

but I still really enjoy
math. 

Like I am thinking about
taking statistics. 

I'm thinking also of
including calculus if I

have room for it.

I did. I-I- do enjoy math even though it's not really a part of psychology, 
but I still really enjoy math. Like I am thinking of taking statistics, but I wanted

to. I'm thinking also of including calculus if I have enough room for it.

So stats and math are two different depts here and I agree that if you're going 
into psych you're probably gonna have to take some stats and that's probably

more relevant. But if you want to take math .. I encourage you to do that.

Yeah, I really enjoy it. So I do want to try like, uh [more challen—

//How far did you go in high school?

I just took AP calc AB. Um, I want to know what [classes—
//Did you take the exam?

Yes. Do I have to show you the scores? {pulls out paper} Uh. I got a 5.

Okay. Any idea what you want to study?

Um, yeah, actually that's what I was gonna talk to you about because 
of the math requirement. Um, (..) I hate math {laugh}. [And—

//Ok. Honesty.
I went up to calc BC in high school. Got A's in the classes, did poorly on 

the exam cause I hate math and I just did it for the A w/o studying {laugh}

What did you get on the BC test?

A one, but I didn't try [Oh, ok.] Yeah, but I got an A in the class {both laugh}. So,
um, uh, I want to go either premed or go to law school myself. I'm [leaning—

//Well good news is that doesn't require so much math.

Okay good. Well you don't need any math for psychology. Did 
you want to take a math class or do you want to avoid math?

Narratives of math affect and math utility are co-constructed during advising
sessions through talk & embodiment. Advisors take up narratives inconsistently,
resulting in students being "cooled out" from pursuing mathematics.

Elena Crosley 

Natalie Drobny

Emma Thomas

Claudine Margolis

Maisie Gholson

Orienting Details
Research Question: 
What aspects of talk and
embodiment influence
the co-construction of
narratives about women
students in advising
sessions with a man
advisor?

What is Math Advising?
A 5-10 minute optional
conversation between a
member of the math
department and an
incoming undergraduate
who is unsure of which
math class to take. The
session results in a non-
binding agreement that
guides the student’s
registration decision. The
advisor and student have
had no prior interaction.

Our Positionality:
We are math education
researchers and trained
advisors. We use Black
feminist perspectives and
our own experiences to
inform our questions &
interpretations of data.

Narratives of math affect are taken up inconsistently
across sessions. We illustrate with two sessions with
women students and the same man advisor. 
Session 1: The advisor ignores the student's bids to construct a narrative
of positive math affect. Narratives of math utility are used to cool out the
student.

Session 2: The advisor repeatedly takes up the narrative of negative math affect to
cool out the student. The student uses math utility to resist those efforts.

R&GMER&GMER&GME
Lab for the study of

Race & Gender in Math Education

Theory of Self-Authorship: Higher Education practitioners should encourage 
  students to explore and design their own educational journey instead of 
    assigning them pre-determined paths. 

Next Steps: Incorporating Embodiment into our Analysis

Yeah, actually that's
what I was gonna talk to

you about

because of the math
requirement

um (...) I hate math

uh, and—{LAUGH}{LAUGH}
S
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si

o
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 1
S

es
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o
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Narratives & Math Advising: We conceptualize math advising as a genre of interaction in 
   which students and advisors co-construct narratives about the set of courses that are 
      appropriate for the student to take. Narratives are co-constructed by the advisor and 
         student through verbal and non-verbal interactions.

 Narratives of Math Affect & Math Utility:  A math affect narrative is how the student 
   feels about math. A math utility narrative is how well math fits into a student's 
      possible educational career. 

Why is this important? Students often change paths from orientation to 
 graduation. Decisions that are made during summer orientation can severely 
  limit their options in future semesters, particularly if they opt out of math.

The narrative of math affect is not taken up by the advisor in Session 1, 
but is taken up in Session 2. Why might the advisor be taking up one
narrative of math affect and not the other?

Yeah. So I want to get like, absolute minimum of math.

Well you do have to satisfy a quantitative reasoning
requirement, but you don't have to use math for that. 

So the requirement.. is that different than how a grad
school will look upon your transcript? Because—Oh that's an entirely different

question.
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