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Preface 
 
As part of its on-going activities to foster research in undergraduate mathematics education and 
the dissemination of such research, the Special Interest Group of the Mathematics Association of 
America on Research in Undergraduate Mathematics Education (SIGMAA on RUME) held its 
twenty-sixth annual Conference on Research in Undergraduate Mathematics Education in 
Omaha, Nebraska from February 22 - February 24, 2024.  
 
The 26th RUME Conference enabled presenters and attendees the option to participate fully 
online such that travel was not a requirement, approximately 31% of participants were online. 
 
The program included plenary addresses by Dr. Yvonne Lai, Dr. Michelle Friend, and Dr. 
Estrella Johnson and the presentation of 154 contributed, preliminary, and theoretical research 
reports and 97 posters. The conference was organized around the following themes: results of 
current research, contemporary theoretical perspectives and research paradigms, and innovative 
methodologies and analytic approaches as they pertain to the study of undergraduate 
mathematics education. 
 
The proceedings include several types of papers that represent current work in undergraduate 
mathematics education, each underwent a rigorous review by three or more reviewers: 
 

- Contributed Research Reports describe completed research studies 
- Preliminary Research Reports describe ongoing research in early stages of analysis 
- Theoretical Research Reports describe new theoretical perspectives for research 
- Posters may fall into any of Contributed, Preliminary, or Theoretical and were presented 

in poster format. Authors contributed the poster itself, a summary of the work, or both. 
 
The conference was hosted by the University of Nebraska – Omaha’s Department of 
Mathematical and Statistical Sciences. Many members of the RUME community volunteered for 
the Program Committee where they reviewed many submissions such that every submission was 
reviewed by at least one member of the Program Committee. The Program Committee aided us 
in putting together this program and their hard work is greatly appreciated. The Local Organizing 
Committee were responsible for the smooth running of the presentations and on-site activities, 
which would not have been possible without the help of many volunteers, and we thank them for 
their tireless efforts to host a conference that runs smoothly. 
 
Thank you to all of the researchers who submitted such strong proposals and ultimately made the 
conference a fun and joyous event. 
 
 
Sam Cook, RUME Organizational Director and Conference Chair 
Nikki Infante, RUME Conference Local Organizing Chair 
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Learning in Pieces: Horizontal Décalage in Students’ Thinking on Homework Tasks

Allison Dorko
Oklahoma State University

This report (a) documents the phenomenon that student learning from online homework may
occur across a series of mathematical tasks and (b) provides a theoretical explanation for the
phenomenon by characterizing some of the cognitive mechanisms that underpin it. Specifically,
findings indicate one way students learn from online homework is by comparing similar tasks.
The results add to knowledge about what and how students learn from homework. They also have
implications both for practice and research in terms of how we define and measure learning. In
particular, the results support the need to consider and design for learning across multiple
mathematical tasks.

Keywords: assimilation, accommodation, online homework, equation solving

Rationale and Overview
Although many university students spend more time doing mathematics homework than

they do in class (Ellis et al., 2015; Krause & Putnam, 2016; Lew & Zazkis, 2019), there is a
paucity of research about student learning from homework. Research about what students learn
from homework and the mechanisms by which they learn it can inform the creation of more
effective homework assignments, which, given the amount of time students spend doing
homework, could greatly improve student learning. This report, which focuses on student
learning while doing online homework, makes several contributions. First, it documents what
Piaget called horizontal décalage, or the phenomenon that there is often a temporal delay in
learning. Specifically, the paper shows how some students’ learning from online homework
occurred across a series of mathematical tasks. Second, the paper characterizes some of the
cognitive mechanisms that supported students’ learning over the series of tasks.

Theoretical Perspective and Theoretical Literature
von Glasersfeld (1995) summarized Piaget’s definition of learning as follows: learning

“takes place when a scheme, instead of producing the expected result, leads to perturbation, and
perturbation, in turn, to an accommodation that maintains or re-establishes equilibrium” (p. 68).
A scheme is a construct describing how people organize knowledge. It consists of “(1)
recognition of a certain situation; (2) a specific activity associated with that specific situation;
and (3) the expectation that the activity produces a certain previously experienced result” (von
Glasersfeld, 1995, p.65). The framework was chosen for the study in part because of its clear
definition of learning, which afforded identifying when learning happened and what supported
that learning.

People employ, construct, and modify schemes via assimilation, perturbation,
equilibration, and accommodation. Consider a person engaging with a math task. Assimilation
occurs if the person “treats new material as an instance of something known… [the] cognizing
organism fits an experience into a conceptual structure it already has” (emphasis original; von
Glasersfeld, 1995, p. 62). If the person is unable to fit the experience into an existing conceptual
structure, they may be perturbed, meaning they recognize assimilation has failed. von
Glasersfeld (1995) gives disappointment or surprise as examples of indicators that a person is
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perturbed. Accommodation is the modification of a scheme to remove perturbation. Equilibration
describes the “construction process and [a] mechanism of change” by which a person
accommodates a scheme and resolves perturbation. One way accommodation could occur is
through the person reviewing the situation and identifying characteristics missed in the
assimilation attempt; the identified characteristics “may effect a change in the recognition pattern
and this in the conditions that will trigger the activity in the future” (von Glasersfeld, 1995, p.
65). A second way accommodation could occur is if the person creates a new recognition pattern
(and hence a new scheme).

An accommodation is a semipermanent state; Piaget notes “it can take a certain time for a
particular way of operating to spread to other contexts (horizontal décalage)” (von Glasersfeld,
1995, p. 71-72). Montangero and Maurice-Naville (1997) note that horizontal décalage
“illustrates the limits of the generalization of a mental structure” (p. 89). That is, horizontal
décalage can be thought of as the temporal delay in an individual’s capacity to apply a scheme to
a structurally-isomorphic task (i.e., engage in observer-oriented transfer). The idea that
accommodation (learning) takes place over time and across contexts instead of as a single
“lightbulb” moment, is the focus of this paper. The theory that learning occurs over time and
across contexts is neither new nor unique to Piaget. di Sessa (1993) proposed the knowledge in
pieces (KiP) framework, and Wagner (2006) characterized transfer as occurring in ‘pieces.’ KiP,
developed in the context of physics learning, has been employed in empirical mathematics
education work (e.g. Izsák, 2005).

Empirical Literature
The findings about student learning from homework indicate students’ affinity for

learning from examples (Dorko, 2021, 2020; Dorko, Cook, & DeHoyos, 2023; Aichele et al.,
2011; Bissel, 2012; Erickson, 2020; Kanwal, 2020; Krause & Putnam, 2016; Lithner, 2003;
Weinberg et al., 2012). Students appear to like examples in part because they provide an
opportunity to reason via viewing a similar problem. However, the extant literature also indicates
the learning from these problems tends to be procedural in nature, with students missing
conceptual insights the professor intended.

When learning from online homework, multiple researchers have found students employ
immediate feedback to inform their work (Dorko, 2020; Kontorovich & Locke, 2022). That is,
students tend to submit an answer to a part of a problem, see if it is correct, and then proceed to
the next part of the problem.

Methods
The data discussed are representative excerpts from video recorded sessions of five

precalculus students doing online homework. I collected data at a large, public US university
during fall 2022 and spring 2023. All five students had the same instructor. The entire data set
consists of 27 online homework assignments between the six students, collected over a
two-month period in each term. During the sessions, students were instructed to think aloud.
Students received immediate feedback on their answers from the homework platform and had
unlimited attempts for non-multiple choice problems.

During data collection, the researcher had observed that students might answer a problem
correctly, only to struggle with a subsequent problem about the same mathematical idea. This
was intriguing because it raised the question why the student did not employ the
previously-successful scheme in the new context. Hence the first step in analysis was isolating
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all series of problems that dealt with the same mathematical idea and taking from that set the
data in which a student struggled with some (but not all) of the problems. There were two goals
in analyzing the data. The first was to evaluate the extent to which horizontal décalage described
the students’ struggles over a series of problems. Having determined that it did, the researcher
then sought to characterize the mechanism of equilibration.

The criteria for evaluating if a student’s work across the series of problems was an
example of horizontal décalage was the student modifying a scheme over a series of problems,
with evidence for those modifications coming from students’ utterances and the answers they
submitted. This follows from Piaget’s characterization of accommodation as a semipermanent
state and the definition of horizontal décalage (above). Evidence that students were perturbed
came from their expressing confusion, disappointment, or surprise (von Glasersfeld, 1995). If
students approached and solve a problem without difficulty (either explicitly expressed difficulty,
or the researcher noticing activity like their writing/erasing in scratchwork), the students were
considered to be in an unperturbed state and assimilating the problem to an extant scheme.

To characterize the mechanisms of equilibration, the researcher performed an analysis
grounded in the data and informed by the theory. In terms of the theory, she sought evidence that
the student had (upon an assimilation failing) explored the context to seek characteristics the
assimilation had disregarded. This followed from von Glasersfeld’s (1995) description of one
way accommodation can occur. However, this explanation did not seem to fit the data under
consideration. The researcher did notice that Dylan, the first student whose data she analyzed,
made progress on a task in the middle of the series by re-examining his work on previous
problems that he identified as similar. In accordance with grounded methods of analysis, the
researcher evaluated data from other students to see if comparison appeared to be a cognitive
mechanism that supported equilibration for other students (it did). This work is ongoing, and
subsequent analysis will seek to identify other mechanisms of equilibration. The results shown
below provide examples of (a) horizontal décalage as explaining students’ difficulty on a series
of tasks that employed the same mathematical idea and (b) comparison as a cognitive mechanism
supporting equilibration. The illustrative excerpts correspond to the students’ work on the
following tasks1, which are given in the order they appeared in the students’ assignment. The
course coordinator chose the problems because they all focused on the “solve for” idea but had
variations in the formulas and task wording that might lead students to see them as different. For
example, the GDP and gas mileage part A problems did not involve any constants, while the
other tasks did. The gas mileage part B task differed from the other tasks because students had to
set a variable as constant. The wordings also differed from “solve for E” to include “solve for t
and express t as a function of V” to “to obtain a formula”. That is, in some wording, students
were told the answer was a function or a formula, while in others, they were not. Hence the tasks
had enough variation that students might have to engage in cognitive work to see them as similar.

Gross domestic product (GDP) task. The gross domestic product, P, is calculated as the sum
of personal consumption expenditures, C, gross private domestic investment, I, government
gross investment G, and net exports E of goods and services. All are measured in billions of
dollars. The formula is P = C + I + G + E. Solve the equation for E.

Boat task. The resale value, V, in thousands of dollars, of a boat is a function of the number
of years t since the start of 2011, and the formula is V = 12.5 – 1.5t. Solve for t in the formula to
obtain a formula expressing t as a function of V.

1 The tasks are from Crauder et al. (2018). The presentation here paraphrases wording and omits parts of the tasks
irrelevant to the report.
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Gas mileage task: The distance, d, in mi., that you can travel without stopping depends on
the number of gallons g of gas in your tank and the gas mileage, m, in mi/gal. The relationship is
d = gm. (A) Solve the equation for m. (B) An engineer wants to ensure the car she is designing
can go 415 miles on a full tank of gas. She does not yet know what gas mileage the car will get.
Solve the equation d = gm for g using 415 for the distance.

Ant task: A scientist observed that the speed S (cm/sec) at which ants run was a function of T,
the temperature (°C). He discovered the formula S = 0.2T – 2.7. Solve for T to obtain a formula
expressing the temperature as a function of the speed.

Illustrative Excerpts
Dylan

Dylan’s work on a series of three problems provides an example of horizontal décalage.
The course content included solving an equation for a particular variable and having the answer
be a formula instead of a number. That “solve for x” could result in an x = … expression in
which the right side of the equation contained variables was a new idea for Dylan. By ‘new
idea’, I mean he had been exposed to this meaning of “solve for” in lecture but was grappling
with it on his own for the first time during the homework session. Dylan solved the GDP and
boat tasks on the first try. On Gas Mileage part A, he solved d = gm for m correctly on his first
try. In part B, however, Dylan was perturbed by the fact that a “solve for…” answers was a
formula. Dylan’s facility with the boat task and part A of the gas mileage task, but perturbation
on part B of the gas mileage task, indicated to the researcher that Dylan was in the process of
accommodating his “solve for…” scheme. Specifically, the perturbation on part B of the gas
mileage task appeared to be an example of horizontal décalage because Dylan had just answered
two similar tasks unperturbed. Dylan’s thinking about part B of the gas mileage task is below. It
provides evidence of how he equilibrated by comparing the problem at hand to the previous
problems to remove his perturbation.

Dylan: I’m thinking, thinking I don’t have enough information but, because I’m missing,
missing m.

Interviewer: What do you mean [by] you don’t have enough information?
Dylan: I mean well right now I’m thinking I only have one, only have one variable and I

need two.
Int.: What makes you think you need two?
Dylan: That’s kind of how it works, right? You’re given, like you’re given a variable, you’re

given like an equation and then you put in all the numbers.
Int.: So you think the answer, you think it needs to be g equals some number.
Dylan: Yeah. Because it’s solving for the equation. But I guess I solved for the equation up

here [moves mouse to part A]. So I guess not… if it [Webassign] took this [m=d/g as
correct in part A] and it’s asking part B the same that it’s asking [in] this [part] I mean it’s
asking it in the same way. [Submits g=415/m, correct]

I take Dylan’s comments about not having enough information and needing two variables so he
could “put in all the numbers” as evidence of perturbation. I focus on how, following those
comments, Dylan reviewed his earlier, correct m=d/g. He noted that his present task was worded
the same way as that task; that is, he compared the wording of the tasks and employed the
answer from the previously-solved task to support his solution in the unsolved task. I use the
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word comparison to characterize the mechanism of change as Dylan equilibrated2. Dylan solved
the subsequent Ant Task without perturbation, which we take as evidence that accommodation to
his “solve for…” scheme had occurred:

Int.: You have a formula that’s got another variable and it’s not just like all numbers. You feel
okay about that?

Dylan: Yeah, yeah I do this time. Because I remember from up [above] that it worked.

Amy
Amy’s work on a series of 4 tasks provides an example of horizontal décalage. Amy

struggled with GDP task. She opened the e-book, located the answer to the problem, and said she
understood why the answer was correct. Amy copied the book answer, submitted it, and the
platform marked it correct. On the boat task, Amy noted the problem was “another ‘solve for’.”
She wrote t = V(t); note this is an equation in which t = … and the right side of the equation
contains only variables3. After submitting this answer and seeing it was wrong, Amy located the
problem’s answer in the e-book and commented she had never seen an answer like that before.
She said the solution “looked right”, though she did not understand why.

Amy: I don’t quite get what that’s asking for [opens the e-book].
Int.: What are you hoping to find there?
Amy: Something that explains this specific problem. [finds exact problem with answer key,

looks at answer] this [answer] is not what I would have thought of… like I would
think that you’d solve this equation for what E is, not in terms of variables. In my
mind whenever you say solve that means like get an answer for E.

Int.: Get an answer like a number?
Amy: Yes…. [looks over answer in e-book] I understand why that’s the answer.
Amy: [Boat task] It’s another “solve for”… like “solve for t in the formula, expressing t as a

function of V.” My mind goes to like this type of answer [types t = V(t)] but I don’t
know if that’s correct because given the past problem it probably isn’t. [opens e-book]
That’s what we’ve always used for like functions of, whenever you’re expressing t as
a function of V it’s like anything is a function of something else it’s always been like,
A, like B is a function of A it’s like A(B). [submits answer, incorrect] I don’t quite
understand why this is wrong. [looks at answer in book] I’ve never seen something
like this before. And I don’t know how I would get this answer.

Int.: Does anything in that [book answer] make sense?
Amy: I mean yeah because I mean given the whole picture like this [highlights formula

answer] does make sense and it is correct… Like looking at it, it looks right. Like if
someone showed me this and explained how to get to it I would understand more how
it was right.

3 As the interview excerpts indicate, Amy switched the independent and dependent variables here and in her generic
A(B); this is immaterial to the point that what she wrote was an equation in which the right-hand side was an
expression with variables, not a number.

2 A difference in Gas Mileage Parts A and B is that A had three variables while B directed students to use d = 415.
We do not have enough evidence to know if this difference caused Dylan’s perturbation. Similarly, von Glasersfeld
(1995) hypothesized a scheme could be modified to include new recognition criteria or the learner could create a
new scheme. It is impossible to know which is the case here (in part because of the difficulty defining the
boundaries of a scheme). These concerns are beyond the scope of this report; our goal is to (a) identify comparison
as the mechanism of change and (b) show an example of horizontal décalage.
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We take Amy’s “that’s what we’ve always used for like functions of, whenever you’re expressing
t as a function of V it’s like… like B is a function of A it’s like A(B)” as evidence that she
assimilated the boat task to a scheme for “function of” instead of a “solve for” scheme, though
she clearly knew (because she had stated) it was a “solve for” problem. We consider this an
example of horizontal décalage because she had indicated that she understood why the answer to
the previous GDP problem was correct, identified the boat problem as similar to the GDP
problem because they were both “solve for” tasks, but did not use her “solve for” scheme. That
is, the boat problem context was somehow different enough for there to be a time delay
(decalage) in terms of Amy’s scheme use. On the next task, Amy correctly solved the problem
and stated that while she thought “solves” meant to get a number, she was seeing in the problems
that these answers were not numbers. Amy described the answers in these tasks as
“rearrang[ing]” the equations. We take those statements as evidence that her “solve for” scheme
was being modified from her engagement in the tasks. Like Dylan, the mechanism in
equilibration was comparing. Amy compared the gas mileage task to the previous problems:

Amy: [Gas mileage tasks] [types m = d/g] Given like these previous problems I’m starting to
pick up that what I think would be the answer, like my original first thought, is not the
answer.

Int.: You said this is like, so so far these haven’t been what you thought it would be.
Amy: Yes.
Int.: So you still want that m to be some number, like that’s your initial instinct?
Amy: Yes.
Int.: But, you said based on the past couple problems, you feel like that’s not the way to go

on these.
Amy: Yes. I guess like looking at like “solve”, like I said “solves” to me means get a

number… but because of the previous problems and like the previous explanations
via the textbooks, the answers the textbooks have given, and also this thing down
here, it’s very obvious that like you’re not getting a number. This [highlights GDP
problem] is technically the same format that this [highlights b in current problem] is
asking this in [the “solve for…”], solve the given equation for a variable, I put a
number in here, it was not correct, and then it gave me basically this original formula,
rearranged, and then the same down here, this original formula, rearranged… that’s
how I’m getting this, it’s just this original formula that’s given to you, essentially
rearranged… Like solving the given equation for a variable means, I guess in like the
simplest form of like terms, like rearranging the original formula to put t on, like by
itself, and then all the other ones would be rearranged to equal t.

In the ant task, Amy answered the question correctly on the first answer. When asked how she
got the answer, Amy said, “rearranging this [given] formula.” We took this as more evidence that
she had accommodated her “solve for” scheme.

Discussion, Significance, and Implications for Instruction and Research
A limitation of this work is that it only analyzed data from five students completing

somewhat procedural problems. However, these preliminary results support extant classroom
practices (a legitimate way research can inform practice). For example, Dylan and Amy learned
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when “solving for” a variable, the answer can be a formula. This is an example of student
learning via online homework, which supports other evidence of online homework as efficacious
(e.g. Dorko, 2021, 2020; Ellis et al., 2015). Another implication is that instructors should
consider providing students with explicit opportunities to compare problems to identify
underlying mathematical structure, if they are not already doing so. This was the mental activity
that supported Dylan and Amy’s success on the task series in question. Specifically, it seems
important to provide students with multiple tasks that explore the same mathematical idea,
followed by an explicit reflection task engaging students in identifying the underlying similarity.

The results here extend prior work about student learning from similar examples in
homework (Dorko, 2021). While that work identified one way of learning as students following
steps of similar problems, this study found another way students learn from homework is by
identifying a series of tasks as similar, then comparing across them to identify an underlying
mathematical structure or meaning. That students here learned a new meaning for “solve for…”
is also a novel finding because it gives empirical evidence of conceptual learning from
homework, somewhat contrasting other findings that students’ learning from online homework is
primarily procedural in nature and that students often miss conceptual insights the professor
intended they learn (Dorko, 2019; Dorko, Cook, & DeHoyos, 2023). A limitation of the paper is
that the tasks were somewhat procedural practice problems. Future research could focus on
homework problems that are intended to extend what students might have seen in class.

Various features within the online homework platform supported students’ learning. For
example, Amy opened the e-book and made use of the solutions it provided to homework
problems. While printed textbooks tend to have solutions to some exercises in the back of the
book, the e-book in this course had direct links from some problems to their solutions. The
homework platform’s immediate feedback supported Dylan’s reasoning because he knew
something had “worked” in a previous problem that the platform marked as correct, and this
allowed him to compare subsequent tasks to correct solutions. This finding provides more
support for findings that students employ immediate feedback from online homework platforms
to guide their work (Dorko, 2020; Kontorovich & Locke, 2022).

The results have implications for how we define and measure learning in classroom and
research settings. The evidence shows that learning occurs over time, implying a need for
classroom practices that support this. This could include helping students form growth mindsets
so they come to see struggling as a necessary and acceptable part of the learning process.
Another way to acknowledge learning as happening over time could be extant practices such as
mastery-based grading (e.g., allowing a final exam grade to replace a lower preliminary exam
score). In terms of research, the horizontal décalage supports designs that examine student
thinking about a mathematical idea in multiple contexts because a student might struggle with
the idea in one context but not another. This is likely of particular importance in a study that
employs a single task-based interview with multiple students, because one question about a given
mathematical idea could yield an incomplete picture about the student’s understanding of the
idea.
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Metaphors in Discrete Math: Not All Sameness is the Same 
 

 Rachel Rupnow Cassandra Mohr 
 Northern Illinois University Northern Illinois University 

While sameness is a theme that appears throughout mathematics courses, limited work has 
examined how multiple types of sameness are understood within the same course. In this paper, 
we examine survey responses from 49 discrete mathematics students who characterized how they 
would explain equivalence relations, numerical congruence, and graph isomorphism to a child. 
Results include language conveying notions of sameness in response to all three prompts but 
variations in how the sameness was framed for the different concepts. Implications include the 
need for more work characterizing nuanced differences in students’ understandings of similar 
concepts within specific courses. 

Keywords: discrete mathematics, isomorphism, congruence, equivalence relation, sameness 

A variety of concepts conveying a notion of sameness have stipulated definitions throughout 
mathematics and serve purposes that suit their contexts (Rupnow et al., 2022). For instance, 
isomorphism in abstract algebra and homeomorphism in topology serve similar purposes in 
conveying structural sameness (in the form of maintaining how elements interact under the 
defined operations in isomorphism and maintaining continuity in topology). Nevertheless, their 
definitions differ in order to provide rigor with respect to the relevant objects and to attend to 
properties that are important to their contexts. However, while some research has examined 
students’ understandings of types of sameness across different courses (e.g., Rupnow et al, 
2023), limited work has examined how students attend to multiple types of sameness within the 
same course context. Thus, we seek to address two research questions:  

1. How are discrete mathematics students’ characterizations of equivalence relations, 
congruence, and isomorphism similar? 

2. How are discrete mathematics students’ characterizations of equivalence relations, 
congruence, and isomorphism different? 

Background Literature 
Historically, limited work in mathematics education has attended to sameness as a conceptual 

area of study; however, notions of sameness have received more attention recently. Students’ 
notions of sameness may impact their understanding of mathematical concepts in ways 
researchers do not expect, such as claiming multiplication and division are the same binary 
operation because the same numerical value can be obtained from related operations (Melhuish 
& Czocher, 2020) or not claiming that having the same graphs indicates having the same 
functions (Mirin, 2018; Mirin & Zazkis, 2020). However, mathematicians also treat sameness as 
an understandable concept, including characterizing relative levels of sameness conveyed by 
concepts (Rupnow & Sassman, 2022). Mathematicians have also highlighted multiple concepts 
conveying sameness across mathematics, including graph isomorphism, numerical equivalence, 
and equivalence relations (Rupnow et al., 2022). Much like sameness, equivalence has received 
more attention of late, including mathematicians’ evolving notions of equivalence (Asghari, 
2019), characterizations of students’ productive interpretations of equivalence (Cook et al., 2021; 
Cook et al., 2022), and conceptualizations of substitution equivalence (e.g., Wladis et al., 2022). 
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Moreover, many types of sameness, including equality and congruence, play central roles in 
the mathematics curriculum. Extensive research on students’ understanding of equality has 
highlighted the value of a relational understanding of equality, in which students understand both 
sides of the equal sign to have the same value, as this often assists students in understanding 
algebraic manipulations (e.g., Alibali et al., 2007; Jones et al., 2012; Knuth et al., 2006). Some 
research has connected students’ understanding of sameness to geometric congruence (e.g., 
Rahim & Olson, 1998; Zazkis & Leron, 1991) or group isomorphism (e.g., Rupnow et al., 2022). 
Nevertheless, no extant research appears to exist on students’ conceptions of equivalence 
relations, numerical congruence, or graph isomorphism in the context of discrete mathematics.  

Theoretical Perspective 
Conceptual metaphors is a theoretical perspective intended to provide insight into how 

individuals’ thinking is structured, using their language choices to guide that interpretation (e.g., 
Lakoff & Johnson, 1980; Lakoff & Núñez, 1997). Cross-domain conceptual mappings connect 
the cognitive structure of a target concept (e.g., congruence, isomorphism) to the more developed 
thoughts in source domains (e.g., same properties, classification mechanism). For instance, “An 
equivalence relation is a classification mechanism” is a conceptual metaphor that gives 
information about a target domain (equivalence relation) by relating it to a source domain that is 
already understood in some way (a classification mechanism). We acknowledge that this 
theoretical perspective imposes the researchers’ views on our participants’ statements, but 
believe this lens permits insight into ways of reasoning about our target concepts.  

Prior work using conceptual metaphors include examinations of mathematicians’ views of 
isomorphism and homomorphism in abstract algebra (Rupnow, 2021; Rupnow & Randazzo, 
2022; Rupnow & Sassman, 2022). Other work has examined undergraduate students’ 
understandings of bases and linear transformations in linear algebra (Zandieh et al., 2017; 
Adiredja & Zandieh, 2020) and of isomorphism and homomorphism in abstract algebra 
(Melhuish et al., 2020; Rupnow, 2017). Here we aim to extend the use of conceptual metaphors 
to other concepts conveying a type of sameness (Rupnow et al., 2022) in discrete mathematics. 
In particular, we build upon the metaphors identified in Rupnow (2021) and the metaphor 
clusters identified in Rupnow and Randazzo (2022). 

Methods 
Data was collected from surveys sent to the Fall 2022 and Spring 2023 sections of the first 

author’s discrete mathematics course. 21 students completed the survey in Fall 2022, and 28 
students completed the survey in Spring 2023. We did not observe major differences between the 
sections and thus combine our reporting into one dataset of 49 students’ responses. Students in 
this course were mostly computer science majors and included freshmen through seniors. Course 
topics included sets, equivalence relations, functions, modular arithmetic, combinatorics, graph 
theory, and coding theory. The course textbook was Dossey et al. (2005). Because the 
instructor’s research interests include understandings of sameness in mathematics, equivalence 
relations, congruence, and isomorphism were all highlighted as types of sameness when those 
concepts were discussed in class. The surveys were given the last week of classes in each 
semester, after students had taken in-term exams assessing equivalence relations, numerical 
congruence, and graph isomorphism. Initial questions on the survey asked about what it means to 
be the same in math and in discrete math specifically. However, the analysis here focuses on 
responses to three questions from the middle of the survey: 

1. How would you describe the concept of an equivalence relation to a ten-year-old?  
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2. How would you describe the concept of numerical congruence to a ten-year-old?  
3. How would you describe the concept of isomorphic/isomorphism to a ten-year-old?  
Data was analyzed by two researchers who coded independently, then discussed and came to 

consensus for each response. While students were prompted to provide explanations about 
concepts that could be understood by a child, which itself encourages providing comparative 
explanations, we (the researchers) sought to classify the underlying meanings conveyed by these 
explanations according to our interpretations of the participants’ responses. Thus, we used the 
metaphors for isomorphism (in abstract algebra) highlighted in Rupnow (2021) as an initial 
codebook but added new metaphors when necessary for our data set. This process aligns with 
codebook thematic analysis (Braun et al., 2019), in which existing codes are used as a basis for 
coding but new codes are permitted to be added to adequately capture the nuances in data.  

Results 
We organize the results of our coding into three distinct subsections separated by topic. The 

first subsection characterizes metaphors utilized to describe the concept of equivalence relation, 
the second examines metaphors used to describe congruence, and the third depicts metaphors 
describing isomorphism. In Table 1, we provide an initial overview of the frequencies of each 
metaphor divided by concept. Metaphors are organized by cluster, with some belonging to 
sameness-based clusters such as sameness (generic sameness, same properties, same but looks 
different, classification mechanism, same remainder/leftovers), sameness/mapping 
(renaming/relabeling, matching), and sameness/formal definition (structure-preservation) 
clusters. Other metaphors belong to the mapping cluster (generic mapping/relation, 
morphing/transformation, invertible), the formal definition cluster (literal formal definition, 
computation), or made no attempt/unclear. Within each cluster, metaphors are arranged by 
frequency. It should be noted that while 49 responses were examined, the sum of any single 
column may be greater than 49 due to some students having more than one code per response. 

 
Table 1. Frequencies of metaphors by concept out of 49 total responses. 
Metaphor 
Cluster 

Metaphor Code Equivalence 
Relation 

Congruence Isomorphism 

Sameness 

Generic sameness 15 6 9 
Same properties 2 2 19 
Same but looks different 3 3 19 
Same remainder/leftovers 0 20 0 
Classification mechanism 6 0 0 

Sameness/ 
mapping 

Matching 0 0 4 
Renaming/relabeling 0 0 1 

Sameness/formal 
definition 

Structure-preservation 0 0 2 

Mapping Generic mapping/relation 4 0 1 
Invertible 1 0 4 
Morphing/transformation 0 0 2 

Formal 
definition 

Literal formal definition 20 0 0 
Computation 0 8 0 

No attempt/ 
unclear 

Unclear/no attempt 6 13 5 
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Equivalence Relation 
The first metaphors we will examine relate to describing the concept of an equivalence 

relation. For reference, the definition of equivalence relation given in the course textbook was: 
“A relation on S that is reflexive, symmetric, and transitive is called an equivalence relation” 
(Dossey et al., 2005, p. 50) and that “A relation R on a set S may have any of the following 
special properties:  

(a) If for each 𝑥 ∈ 𝑆, x R x is true, then R is called reflexive. 
(b) If y R x is true whenever x R y is true, then R is called symmetric. 
(c) If x R z is true whenever x R y and y R z are both true, then R is called transitive.” (Dossey 

et al., 2005, p. 49) 
Overall, the most common metaphor was literal formal definition, followed by generic 

sameness and classification mechanism. Many responses invoked a mathematically precise 
definition when asked to describe equivalence relation to a child. The majority of these responses 
specifically discussed the necessity of being reflexive, symmetric, and transitive. Some achieved 
this through mathematically rigorous descriptions, such as the following student who used 
ordered pair notation: “An equivalence relation is a set of ordered pairs that is reflexive (for each 
x in the ordered pair, there should be (x,x)), symmetric(if (x,y) is in the set, then (y,x) has to be), 
and transitive(if (x,y) and (y,z) are in the set, then (x,z) must be as well).” Other students 
described these concepts in a less formal way, utilizing everyday objects and concepts: 

Equivalence relation is a concept that finds the relation between two sets and is reflexive, 
transitive, symmetric… Imagine reflexive like standing Infront of a mirror, the picture on 
mirror is the same as a reflection. Symmetric is like taking a paper and drawing a circle 
and folding it in the middle, now it is a half circle, but when you open it, the symmetric 
of the half circle is shown making a full circle. Transitive is like saying, Peter and Tom 
are friends … Tom and Jerry are friends …which will mean Peter and Jerry can be 
friends. 

This response emphasizes the underlying formal structure of an equivalence relation but 
utilizes visual descriptions, physical action, and common scenarios to convey the key 
properties involved instead of relying on formal vocabulary and notation. 

Other responses characterized equivalence relations using generic sameness language. Most 
of these responses made statements about finding similarity across objects or groups of items: 
“An equivalence relation is a way of comparing things to see if they are the same in a certain 
way” or “an equivalence relation is where you can measure the ‘sameness’ between 2 sets.” 
These metaphors emphasize commonality across elements or sets, while simultaneously 
conveying the possible variety in what it can mean to be the same. 

Another metaphor that many respondents utilized to describe equivalence relations is that of 
classification mechanism. This particular metaphor is unique to equivalence relation, as it 
describes how elements can be sorted or binned to form distinct groups within an equivalence 
relation. Many of the responses described grouping everyday objects by some defining 
characteristic such as color or shape: 

An equivalence relation is a way to group things together based on certain rules. For 
example, imagine you have a bunch of toys that you want to group based on their color. 
If you have a blue toy, a red toy, and a green toy, you can group the blue toy with other 
blue toys, the red toy with other red toys, and the green toy with other green toys. This is 
an example of an equivalence relation. 
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Several responses also depicted equivalence relation using generic relation. This metaphor was 
unique to equivalence relation and conveys a relation between elements or groups, such as “A 
relationship between two or more things that follows some rules.” Others provided an unclear/no 
attempt response, of which many simply stated that they were unsure of how to the explain the 
concept: “It took me a two whole lectures and a Youtube video to piece all of this together 
myself; tha[t] ten-year-old will leave that conversation more confused than they started.” 

Congruence 
The second group of metaphors relate to congruence. The definition for congruence given in 

the textbook was: “Let m be an integer greater than 1. If x and y are integers, we say that x is 
congruent to y modulo m if x – y is divisible by m. If x is congruent to y modulo m, we write 𝑥 ≡
𝑦 (𝑚𝑜𝑑 𝑚); otherwise, we write 𝑥 ≢ 𝑦 (𝑚𝑜𝑑 𝑚). We call this relation on the set of integers 
congruence modulo m” (Dossey et al., 2005, p. 100). Congruence was most frequently described 
using same remainder/leftovers, followed by computation and generic sameness. Over 25% of 
respondents provided an unclear response or made no attempt to depict congruence; this was by 
far the concept with the most responses not attempting to answer the question. 

Same remainder/leftovers was the most common metaphor. Many instances of this metaphor 
were contextless and directly defined congruence, such as “If one number and another number 
can both be divided by another third number, and they have the same left overs, they are 
congruent.” Other responses introduced context, such as using candy, specific numbers, or cake 
as in the following: “let's say you have 2 cakes and divide each cake by the same number each 
cake, if the number of slices left in each cake is the same, then they are congruent.” One 
respondent focused on the sameness of quotients rather than remainders, stating “If you divide 
both numbers by a single number, and get the same answer.” This response was included in the 
same remainder/leftovers category because we felt they intended to describe what was the same 
numerically, albeit inaccurately. 

Just as same remainder/leftovers was a metaphor unique to congruence, so too was 
computation. Respondents who conveyed congruence via computation often described the action 
of adding or subtracting a fixed number so as to maintain congruence. In some instances, this 
was done explicitly: “you take a number and then are able to either add or subtract by another 
number as many times as you want.” Other cases were more implicit, as below: 

Let’s say I have a bucket of apples which can only hold 12 apples; when I fill that bucket 
up, I have to go empty it somewhere (modulo 12). No matter how many apples I put in 
that “somewhere,” I can’t put more than 12 apples in my bucket, and I will never keep 12 
apples in the bucket (the number is between 0 and 11). So, if I grab 38 apples, there will 
be 2 apples left in the bucket at the end. 

In addition to metaphors unique to congruence, some responses also used generic sameness as a 
metaphor for congruence. Most of these responses discussed congruence in terms of some 
connection or flavor of sameness across numerical values: “Numerical congruence are the pairs 
of numbers that are the same as each other in the context of some dimension of numbers.”  

Isomorphism 
The final concept we discuss is isomorphism. The textbook’s definition for isomorphism 

was: “A graph G1 is isomorphic to a graph G2 when there is a one-to-one correspondence f 
between the vertices of G1 and G2 such that the vertices U and W are adjacent in G1 if and only if 
the vertices f(U) and f(W) are adjacent in G2. The function f is called an isomorphism of G1 with 
G2 (Dossey et al., 2005, p. 159).  Both same properties and same but looks different were 
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commonly used as a metaphor for isomorphism, as was generic sameness. It is notable that 
metaphors for isomorphism were more focused on appearance than our other two concepts. 
Isomorphism also had the greatest variety in metaphor codes. 

Many of the metaphors discussed shared properties across groups of objects. As isomorphism 
in Discrete Math is centered on graphs, a large number of these metaphors described graphs with 
the same properties: “two graphs will need the same number of points to be there, it will also 
need the same points to be put connected, finally it will need the same number of lines.” Other 
responses emphasized common properties across other 2D or 3D shapes: “imagine you have a 
shape made out of blue blocks, and another shape made out of red blocks. They look different, 
but they have the same number of blocks and the same angles between the blocks.” This 
response seems to emphasize notions of geometrical congruence that need not be present in 
isomorphic graphs (angle measures) as well as notions that apply to graph isomorphism (same 
number of vertices). 

Another commonly used metaphor for isomorphism was generic sameness. Focusing first on 
contexts regarding graphs, the majority of metaphors in this category emphasized the underlying 
sameness of two graphs: “isomorphic is being of identical or similar form, shape, or structure.” 
One response pulled from a Chemistry perspective, discussing isomorphism as occurring “When 
two or more crystals have similar chemical compositions exist in the same crystalline form.”  

Still another metaphor characterizing isomorphism was same but looks different. These types 
of instances might be viewed as a variation on generic sameness, but placed emphasis on the 
idea that while isomorphic objects have the same underlying structure or properties, they may 
appear different from a visual standpoint. The context of these metaphors varied; as with same 
properties, many discussed graphs: “for two graphs to be isomorphic they are pretty much the 
same but with a different shape.” Others emphasized the underlying action behind these surface 
differences through a variety of mediums, including play dough and stick figures: 

Let’s say you have a stickman, the vertices are the stickman joints such as the knees, 
elbows, and shoulders, you can pose the stickman to have his arms up, be sitting down, or 
running, but he will always be isomorphic to the stickman that is just standing in place, 
because the arms and legs and head are all still connected to the same points. 
While not as frequently utilized, there are several additional metaphors that were unique to 

isomorphism. The physical action of morphing or transforming from one shape to another was 
described as a way to demonstrate isomorphism, such as “if you have some play doh, even if you 
morph the play doh, you still have the same clump of play doh.” Others used matching language, 
emphasizing that elements in one object can be directly matched to elements of another: 

For example, imagine you have two puzzles. One puzzle is a picture of a dog and the 
other puzzle is a picture of a cat. Even though the pictures are different, the puzzles might 
have the same number of pieces and the same shape for each piece. If you were to switch 
the pieces between the two puzzles, you could still put them together in the same way. 
This means the puzzles are isomorphic[.] 

Still others described the structure-preservation of isomorphism: “an isomorphism is a structure-
preserving mapping between two structures of the same type that can be reversed by an inverse 
mapping.” Interestingly, both instances of this particular metaphor also included the metaphor 
invertible. There was also one mention of renaming/relabeling elements so as to demonstrate the 
concept of isomorphism, placing emphasis on the arbitrariness and interchangeability of labels in 
a graph: “If we have two graphs, and they look kinda similar, and we take the names of the 
points away, and can put them back to make the graphs looks the same, they are isomorphic.”  
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Discussion 
This study examined discrete mathematics students’ explanations of equivalence relations, 

congruence, and isomorphism. By using the conceptual metaphor lens, we observed that many 
explanations focused on sameness, including metaphors from the sameness, sameness/mapping, 
and sameness/formal definition clusters. Some explanations also highlighted metaphors from the 
mapping and formal definition clusters or made no attempt/unclear. We recognize that students 
using sameness-infused language is not surprising, given the context. The students were asked 
about notions of sameness earlier in the survey, and their instructor highlighted each concept as a 
type of sameness both in class and in the class notes. What we do find interesting is that students 
highlighted different metaphors for the three concepts. Sameness was salient but conveyed 
through different common metaphors (or non-attempts) for each concept: literal formal 
definition and generic sameness for equivalence relations, same remainder/leftovers and unclear/ 
no attempt for congruence, and same properties and same but looks different for isomorphism.  

Then again, perhaps this variation in metaphors should not be surprising, since the 
instructional emphasis varied in each unit. In the first unit, where equivalence relations were 
introduced, a key purpose was to familiarize students with the use of mathematical definitions, so 
extensive time was spent on understanding and verifying whether the reflexive, symmetric, and 
transitive properties held for each relation. It is possible that this instructional choice obscured 
the notion of an equivalence relation conveying sameness or serving a classification purpose for 
some students. For congruence, many students did note the sameness of the remainders, but this 
also was the concept for which the most students struggled to give a clear description. Perhaps 
the computation-heavy applications in subsequent lessons (i.e., in the RSA Method) obscured the 
meaning of congruence itself. Finally, isomorphism had the most variety in metaphors. Notions 
of sameness came through clearly in students’ language for isomorphism, but what was the same 
varied across lists of properties, a core sameness despite the difference in appearance, and being 
able to match aspects of different graphs. It is possible that the instructor’s more extensive 
experience in graph theory led to clearer instructional experiences. However, more research is 
needed on the differential impact of the instructional context versus the concepts themselves. 

Additionally, the underlying objects relevant for each concept vary widely in abstractness 
from almost anything (equivalence relations) to numbers (congruence) to graphs (isomorphism). 
While previous research has attended to the objects to which sameness-based concepts are 
applied (Rupnow et al., 2022; Rupnow & Sassman, 2022), this work raises new questions about 
the direction of the impact of objects and concepts. In particular, do the underlying objects (e.g., 
graphs) influence our conceptions of the concepts (e.g., isomorphism), the concepts influence our 
conceptions of the objects, or do the concepts and objects mutually impact each other? For 
students who later see isomorphism in other contexts (e.g., linear algebra), how might first seeing 
graph isomorphism impact how they interpret isomorphism of vector spaces? 

Finally, the students were prompted to explain in a manner understandable to a 10-year-old. 
Admittedly, this is an unusual prompt, especially to students who do not intend to teach, but our 
goal was not to assess the age appropriateness of the explanations. Rather, we believe this 
prompt permitted a different window into students’ understandings than just asking them to 
describe each concept, as it encouraged a distillation of key idea(s) each student took away. 
Moreover, it encouraged students to be creative, as displayed in the wide variety of contexts in 
which students chose to position their explanations (e.g., blocks, candies, Play Doh). Future 
work can further examine ways to build on the creative examples students highlighted while 
supporting students to integrate their intuitive understandings with those of the formal definition. 
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Affordances of Semantic and Syntactic Proof Approaches for Isomorphism and Homomorphism 

Rachel Rupnow Brooke Randazzo 
Northern Illinois University Augustana College 

Group isomorphism and homomorphism are core concepts in abstract algebra, but limited work 
has directly examined student conceptions of homomorphism or how students approach finding 
particular mappings. Based on interviews with two students, we contrast one student who used 
predominantly syntactic proof approaches for homomorphism with one who used semantic 
approaches, noting that both experienced success in finding homomorphisms in most cases.

Keywords: isomorphism, homomorphism, semantic, syntactic 

Introduction 
Students’ understandings of multiple areas of abstract algebra content have received 

attention, including binary operation (e.g., Melhuish & Fagan, 2018; Melhuish, Ellis, & Hicks, 
2020), inverses (e.g., Serbin, 2023; Wasserman, 2017), and functions (e.g., Melhuish, Lew, et al., 
2020; Uscanga & Cook, 2022). We build on the attention to functions, in particular the focus on 
student understanding of isomorphism (e.g., Weber & Alcock, 2004; Melhuish, 2018) and 
homomorphism (e.g., Melhuish, Lew, et al., 2020). Specifically, we examine students’ reasoning 
when creating isomorphisms and homomorphisms from a proof production perspective. We 
believe this work holds two contributions to the literature. First, this paper extends our currently 
limited knowledge of how students understand homomorphism and solve problems related to 
homomorphism. Second, this paper provides insight into the relationship between students’ 
success while problem solving and their proof approaches. 

Literature Review 
Isomorphism was one of the first abstract algebra topics studied in the undergraduate 

mathematics education community (e.g., Dubinsky et al., 1994; Leron et al., 1995). This early 
work characterized properties students attended to when assessing whether groups may be 
isomorphic, such as checking cardinality (Dubinsky et al., 1994), determining alignment between 
the orders of elements, and determining whether groups were abelian (Leron et al., 1995).  

Other work, whose primary aim was examinations of proof approaches, contrasted 
undergraduates’ and doctoral students’ (Weber, 2001; Weber & Alcock, 2004) or 
undergraduates’ and algebraists’ (Weber & Alcock, 2004) approaches to determining whether 
groups were isomorphic. Weber (2001) also examined approaches to proofs focused on 
homomorphism. Of note, doctoral students and algebraists relied more on semantic reasoning, 
wherein their knowledge of properties of groups and holistic understanding of theorems were 
key aspects of their reasoning and seemed to be important aspects in graduate students’ success. 
In contrast, undergraduates tended to reason syntactically, wherein they largely focused on 
symbol pushing with the formal definition, and experienced more struggles in proving more 
difficult statements. Moreover, semantic reasoning was linked to Skemp’s (1976) relational 
understanding construct, which emphasizes understanding both how and why notions work as 
well as what to do to solve a problem, whereas syntactic reasoning was linked to instrumental 
understanding, which only requires understanding what to do (i.e., procedural knowledge). More 
recently, in Melhuish’s (2018) replication study, undergraduates at times successfully used 
properties to reason about whether groups were isomorphic but seemed to check these properties 
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procedurally, suggesting the need for further research on connections between semantic 
reasoning, relational understanding, syntactic reasoning, and instrumental understanding. 

However, explicit discussion of students’ understandings of homomorphism has been more 
limited (e.g., Weber, 2001). Moreover, research on approaches to homomorphism have focused 
on students’ and instructors’ language (e.g., Melhuish, Lew, et al., 2020; Rupnow, 2021; 
Rupnow & Randazzo, 2022), rather than centering their approaches to proof, suggesting a need 
for a concentrated look at proof strategies with homomorphism. 

Methods and Theoretical Perspective 
This paper is grounded in a wider study examining instruction in introductory (junior level) 

abstract algebra at a land-grant university in the Mid-Atlantic United States. Here we focus on 
two participants, Bryce and Blake, who were in a section taught with a mixture of lecture and 
activity days. The students’ names are gender-neutral pseudonyms, and they/them pronouns are 
used throughout. Participants each engaged in a semi-structured interview (Fylan, 2005) lasting 
roughly one hour. The interview occurred after instruction and an exam on group isomorphism 
and homomorphism had been completed. Interviews were audio and video recorded and any 
written work was collected. The interview questions analyzed here focused on finding mappings 
between specific groups: ℤ3 and ℤ6, ℤ and 2ℤ, and two groups given in Cayley tables (one 
representing ℤ2 × ℤ2 and the other ℤ4). If students were able to determine one mapping, they 
were often asked to determine if another isomorphism or homomorphism could be formed.  

The interviews and videos were transcribed and coded in alignment with the definitions of 
semantic and syntactic proof production given in Weber and Alcock (2004). Semantic proof 
production is characterized by the use of “instantiation(s) of the mathematical object(s) to which 
the statement applies to suggest and guide the formal inferences” that are drawn whereas 
syntactic proof production is “written solely by manipulating correctly stated definitions and 
other relevant facts in a logically permissible way” or could be viewed as symbol-pushing 
(Weber & Alcock, 2004, p. 210). For instance, an isomorphism proof in which a student uses 
properties and theorems, especially by drawing on their knowledge of the groups involved, 
would be a semantic proof, whereas a proof in which a student directly uses the formal definition 
(i.e., for group isomorphism, show bijectivity and the homomorphism property) would be a 
syntactic proof. From this analysis, we address the following research question: What patterns 
exist between proof production approaches and success in creating isomorphisms and 
homomorphisms? 

Results 
We present vignettes of two students who were generally successful at the tasks, but one 

approached homomorphism tasks syntactically (Bryce) and the other semantically (Blake).  

Bryce 
ℤ𝟑 and ℤ𝟔. Bryce quickly said these groups were not isomorphic because they are different 

sizes: “Okay, so can’t be an isomorphism because this has order three and this is order six, so 
elements in ℤଷ would have to map to more than one element in ℤ, so it’s not one-to-one.” While 
Bryce attempted to explain this property, we note their explanation seems to conflate function 
and one-to-one definitions and does not focus on the groups’ structures. 

Regarding the homomorphism task, Bryce realized that nontrivial homomorphisms should 
exist because three divides six. They were initially unsuccessful in finding homomorphisms 
when trying to map individual elements. However, they found success when they created 
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formulas to describe maps rather than mapping elements, beginning with the map 𝑓([𝑥]ଷ) =
[2𝑥] from ℤଷ to ℤ. They started checking the homomorphism property element-by-element, 
but then realized that they could do this process generally (see Figure 1). Later, they also 
generalized their map to include “any multiple of 2… it could be like 2, 4, 6, any of those.” 

 

Figure 1. Bryce’s Homomorphism from ℤ𝟑 to ℤ𝟔.  

Going from ℤ to ℤଷ, Bryce was successful in finding all homomorphisms. In particular, they 
mentioned the identity map, the map 𝑓([𝑥]) = [2𝑥]ଷ (“2 times x… or any multiple of that”) and 
the trivial homomorphism, which they stumbled upon by considering odd multiples. 

B: I don’t know if an odd number would work too. So if you were just multiplying by 3 
instead… I guess if you multiply by 3 here, that would always work cuz that would 
always go to 0 mod 3, and any multiple of 3 would reduce down to 0 mod 3. So any 
multiple of 3 would work…  

I: So you’re mapping everything to 0. 
B: Mmhmm…that would be a group homomorphism. Because if you had 1 mod 6 and 4 mod 

6, they were both being mapped to 0. Then 0 mod 3 plus 0 mod 3 is still 0. 
Note Bryce was very successful in the syntactic approach of applying the definition to construct 
homomorphisms but did not appear to be thinking about the groups structurally. Interestingly, 
they did not explicitly acknowledge that the “multiple of 3” map they constructed is the trivial 
homomorphism and continued to check the homomorphism property for this map. 

ℤ and 𝟐ℤ. Bryce noticed that both of these groups are infinite but did not use that to say they 
were isomorphic. Instead, they set up a specific map and appeared to mentally verify that 
particular pairs of elements would satisfy the homomorphism property while creating their map. 

So they both have an infinite order to them, and I want to say that [2ℤ] has half the order 
that the other one does, but when you have infinite orders in your groups that doesn’t 
really matter, so I feel like it could be an isomorphism. I’m not sure how I would set it 
up, but…[rereading] you’d always have 0 mapped to 0, and then 1 would have to map to 
2, cuz that’s the next one, and 2 would have to go to 4, so if you just had 𝑓(𝑥) where 𝑥 is 
in ℤ, 𝑥 is an integer, if you map that to 2𝑥, then it’s always going to map to something in 
2ℤ. And then 3 would go to 6, so I think that would work for an isomorphism. 

Going the other direction, Bryce used 𝑓(𝑥) = 𝑥/2, noticing that this was the inverse of the map 
previously found. They again noted that “they’re infinite, they have the ‘same order’ [air quotes 
and sarcastic voice] sort of” and used this to say, “that would make it…one-to-one”. Here, they 
grudgingly accepted the standard mathematical claim that ℤ and 2ℤ have the same cardinality 
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and used this to say the map must be one-to-one, while being uncomfortable with this notion of 
infinity. This is consistent with their tendency to focus on syntactic verification of the existence 
of these maps, rather than claiming structural sameness between the groups based on theorems.  

For the homomorphism task, going from ℤ to 2ℤ, Bryce identified maps involving linear 
functions with even coefficients, noting that these will not be isomorphisms since they are not 
one-to-one. When asked to consider whether there would be other homomorphisms, Bryce said: 

I don’t think so, because… if you did like instead of 2𝑥 this was 4𝑥, then that leaves out 
2 and -2, -6, anything that’s not divisible by 4, but it has to be one-to-one. So I guess 
there’s no other isomorphisms, but there could be a homomorphism. If you had any other 
even integer here, then it would be a homomorphism, but it would fail to be one-to-one. 

Going from 2ℤ to ℤ, aside from the previously discovered isomorphism, they did not find any 
homomorphisms because “you can’t do any other even integer down here [in the denominator] 
because if you had like 4, then you’d run into problems where you’re not mapping to an integer.” 
They seemed to be focused on only using maps that were similar to their isomorphism. 

Cayley Tables. For the Cayley table task, Bryce made a comment about the tables needing to 
“match up” and initially said the groups could not be isomorphic because one group has all self-
inverses, and the other does not; but they were reluctant to use the term “inverse” and focused on 
whether the results of particular computations align with the homomorphism definition. 

So to show an isomorphism, usually the Cayley tables at least match up in a way…I 
mean they look similar. So everything in this one [the first group] is symmetrical around 
this diagonal. Everything over here is symmetrical around this diagonal. I don’t think it 
would be an isomorphism because over here every element operated on itself gives back 
the same thing, so that would be your, I don’t want to say inverse… And [in the second 
group] every element operated on itself doesn’t always give you the same element, so I 
don’t think they’re isomorphic. 

Later, they became unsure of this conclusion and proceeded to count the orders of the elements 
to check. During this process, they noted that one group was cyclic and the other was not. 

You have an order 4 over here and order 2 over here. So they can’t match up. Or you 
don’t have any order 4 over here, so that’s why they’re not an isomorphism. You could 
also say this one is cyclic, cuz 𝑐 would generate the whole group, and this one’s not 
cyclic. 
For the homomorphism aspect, they knew that “ultimately it has to respect the group 

operation” and wrote 𝑓(𝑥 ∗ 𝑦) = 𝑓(𝑥) + 𝑓(𝑦), but otherwise were unsure how to proceed. In 
this case, Bryce’s syntactic approach focused on definitions and maps was not productive, as 
they were unsure how to visualize setting up homomorphisms using the Cayley tables. 

Blake 
ℤ𝟑 and ℤ𝟔. Blake immediately said that these groups were not isomorphic without giving an 

explanation. We note this was the fourth of the original set of tasks the students were given, and 
Blake had previously used the justification of different sizes to explain a lack of isomorphism 
(for ℤହ to 5ℤ, and ℤହ to ℤ), so we assume they were using the same reasoning here. 

Unlike Bryce, Blake found homomorphisms here by considering subgroups: “There is a 
homomorphism because ℤ mod 6 has a three-element subgroup because three divides six so we 
can just set each element of ℤ mod 3 to those elements” [referencing the 0 to 0, 1 to 2, and 2 to 4 
mapping written on their paper]. When asked why this would be a homomorphism, Blake 
struggled to explain, saying “I guess I would have to do it out fully in order to fully convince 
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myself… I would just try to check the 𝑓(𝑎𝑏) = 𝑓(𝑎) ∗ 𝑓(𝑏)”. However, they never checked this, 
suggesting that they valued the use of theorems asserting existence more than specific mappings. 
They also noted the trivial homomorphism would be a homomorphism and believed they had 
found all homomorphisms “because of the divisors of six and three and matching up the 
subgroups and stuff.” Later in the interview, they were prompted to consider the 0 to 0, 1 to 4, 2 
to 2 mapping and reexamine their original map. When asked whether this new map was a 
homomorphism, Blake again responded with an answer highlighting the structure of the groups. 

B: Because 0, 2, and 4 form a subgroup within ℤ mod 6. [Long pause] Because this is 
isomorphic to ℤ mod 3, so yeah. This looks like it would work. If you add these two, you 
get the identity back… It looks like I had something along that train of thought before… 

I: So is it surprising or not surprising that both of those seem to form homomorphisms? 
B: [Blake thinking] I guess it’s not surprising because 0, 2, and 4 both form a three-element 

subgroup of ℤ mod 6 and because three is prime, each of those elements is going to be 
generators of the whole group, so they’re kinda gonna behave similarly. So it’s not 
surprising that you might be able to just switch them around like in this case.  

  

Figure 2. Blake’s Homomorphism from ℤ to ℤଷ. 

Going from ℤ to ℤଷ, Blake again used a semantic approach. They found a map, but when 
pressed to show it was a homomorphism, they were hesitant and struggled to do this syntactically 
(see Figure 2). Instead, they invoked the Fundamental Homomorphism Theorem (FHT). 

B: There’s the trivial homomorphism, there should be another homomorphism as well. 
Which is…taking the two elements which are order three and mapping it to 1 
bar…[writing and thinking] Yeah. I think there is one where you can find two elements in 
ℤ mod 6 and send them each to one element in ℤ mod 3, but I haven’t fully figured out 
which ones those are, but I think the multiple of 3 will go to 0 bar, and it can work out. 

I: Ok. If you can complete that mapping, I would appreciate it. 
B: Ok. [writing and thinking] Alright. [turns paper] I just sent all of the elements that are 

congruent mod 3 to what they’re congruent to. 
I: Ok. And how do you know that’s a homomorphism? 
B: Because I know, because of the way modular addition is defined. It should work out pretty 

nicely in the proof. 
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I: Just for the sake of doing that once, what would that proof look like? 
B: … For some reason, I’m having trouble with this way. But if you go back to the 

Fundamental Homomorphism Theorem… the kernel of this transformation is isomorphic 
to ℤ mod 2, and ℤ mod 6 mod ℤ mod 2 is isomorphic to ℤ mod 3 by that theorem. Which 
means that the function ℤ mod 6 to ℤ mod 3, which has this [air-circling 0 and 3] as its 
kernel, gives a homomorphism.  

The FHT as stated in Blake’s textbook is: “Let 𝑓: 𝐺 → 𝐻 be a homomorphism of 𝐺 onto 𝐻. If 𝐾 
is the kernel of 𝑓, then 𝐻 ≅ 𝐺/𝐾” (Pinter, 2010, p.151). This theorem is generally used to show 
the existence of isomorphisms and cannot be used to show a particular map is a homomorphism. 
Nevertheless, Blake seems to have used the requirements of the theorem to convince themselves 
that the map they had created would be a homomorphism and provide a kernel as described. 

ℤ and 𝟐ℤ. Blake said that these groups are isomorphic because they are both infinite and 
cyclic, remembering that these properties are sufficient to guarantee isomorphic groups: “I’ve 
seen the proof that any two cyclic groups of an infinite size are isomorphic, and then I can just 
find a generator in each one, and then feel reasonably confident in saying they’re isomorphic.”  
This is likely the reasoning they used to set up the map where “every integer 𝑘 will get sent to 
2𝑘” or “you could do negative 2𝑘”. When pressed, they successfully used the formal definition 
to check that their map satisfied the homomorphism property (see Figure 3). 

 

Figure 3. Blake’s Isomorphism from ℤ to 2ℤ. 

Regarding homomorphisms from ℤ to 2ℤ, they mentioned “you could probably send them to 
multiples of 4, or multiples of any other even [number].” Going the other way, they suggested 
the relation is invertible: “Isomorphism is symmetric so it is indeed isomorphic, I think. You can 
just take the inverse of that function.” They also realized the homomorphisms in this direction 
will be similar: “So you can construct a function like 2𝑥 again. You just get multiples of 4 which 
is again infinite and cyclic, but that should be a homomorphism.” Again, they used semantic 
approaches in setting up homomorphisms, as they mention the image will be infinite and cyclic. 

Cayley Tables. Blake, like Bryce, claimed that these groups were not isomorphic because the 
orders of elements did not align. However, they were different in pointing out the isomorphism 
class of these groups, stating that one is ℤସ and the other is likely the Klein four-group. From 
here, they began to look at subgroups in order to find homomorphisms and were generally 
successful going from ℤସ to the Klein four-group. Blake again attempted to use the FHT for 
justification, but they were not confident in their answer.  

B: So, one of these has to be ℤ mod 4 I think. 
I: Why is that? 
B: …I think that there are only two groups of order 4. I’m not completely certain about 
that but I think I’m gonna go with that… [writing and thinking] You might be able to 
map ℤ mod 4 onto a two element subgroup of this other one which might be the Klein, or 
something. I don’t really remember. But you could probably choose just a two element 
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subgroup. 𝑎 seems to be the identity here and each element squared returns 𝑎, so yeah. 
You could just choose like 𝑎, 𝑏 or 𝑎, 𝑐 or 𝑎, 𝑑 and map them [gesture] onto one another. 
I: Ok. So how do you know that would work? 
B: [Blake writing and thinking]…I’m not sure it’s going to work. Because I was going to 
say something about the Fundamental Homomorphism Theorem but then I remembered 
that this function then has to be onto. And if we’re doing anything like that, we’re gonna 
not hit every element in this group, so I’m not completely confident that’ll work. 

As we can see, Blake used the structure of the groups, focusing on order of elements and 
subgroups, to determine a homomorphism, despite their lack of confidence in the mapping. 

Discussion 
We focused on two students’ approaches to three tasks. For the isomorphism tasks, both 

students correctly applied their knowledge of the properties of the groups to identify whether or 
not the groups were isomorphic. For ℤଷ and ℤ, this amounted to noticing the groups had 
different sizes, though Bryce expanded to say that this means you cannot create a one-to-one 
map. For ℤ and 2ℤ, both students knew these groups are infinite and were able to set up at least 
one specific isomorphism in each direction. However, Blake used the fact that both groups are 
also cyclic to confirm that they should be isomorphic. For the Cayley table task, both students 
referenced the orders of the elements to justify a lack of isomorphism. However, the proof 
approaches on the homomorphism tasks were more different. In particular, both semantic and 
syntactic proof approaches were successfully employed to draw conclusions, and both were 
linked to struggles at times. Bryce used syntactic approaches to the homomorphism tasks and 
was both successful and comfortable working with generalized algebraic notation in the 
definition. In contrast, Blake mostly used semantic approaches to the homomorphism tasks, 
wherein they focused on the properties and structures of the relevant groups. 

While syntactic reasoning generally aligned with instrumental understanding, like Melhuish 
(2018), we note that semantic approaches did not always seem to suggest a relational 
understanding. In particular, both students used semantic approaches to finding isomorphisms, 
but Bryce appeared to be checking memorized properties, more in alignment with instrumental 
understanding, while Blake seemed perpetually attuned to structure, suggesting a relational 
understanding. For the homomorphism tasks, Bryce mostly used syntactic approaches in a 
manner demonstrating instrumental understanding. In contrast, Blake behaved more like the 
graduate students of Weber (2001) in their semantic approaches, displaying a relational 
understanding, wherein they intently considered the structures of groups.  

We note that the task of finding homomorphisms between groups presented in a Cayley table 
was particularly difficult. This was also the only task featuring a non-cyclic group. Moreover, 
while their course had engaged with isomorphism tasks where the groups were presented in 
Cayley tables, they had not done such a homomorphism task. Rather, this required the students to 
really understand what homomorphisms do structurally and use properties of the groups since 
they could not write an algebraic formula for the maps. Thus, instrumental understanding was 
less likely to be sufficient for this task, and this manifested in only Blake making headway on the 
homomorphism part of the task. Future research could examine how students’ reasoning as 
portrayed through language relates to their proof approaches and success on tasks, thus binding 
together Weber and Alcock (2004), Melhuish (2018), and this work with that of Melhuish, Lew, 
et al., (2020), Rupnow (2021), and Rupnow and Randazzo (2022). 
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A Teaching Experiment for U-Substitution Based on Quantitative Reasoning 
 

                     Leilani C. Fonbuena                                                   Steven R. Jones 
Brigham Young University                                     Brigham Young University 

Prior work has created approaches to calculus based on crucial quantitative reasoning. For 
integration, however, the major topic of u-substitution has generally not been fully detailed in 
these paradigms. This paper presents a study where students were taught u-substitution from a 
quantitative perspective based on a three-part quantitative structure: differential quantity, 
integrand quantity, bounds quantity. The students reasoned about the quantitative conversions in 
flexible ways, and used various quantitative relationship types in their reasoning. However, 
reasoning about the differential quantity was difficult, and a new type of “collapse” metaphor 
was identified. By the end, the students had all developed a good quantitative basis for u-sub. 

Keywords: calculus, integrals, u-substitution, quantitative reasoning, teaching experiment 

Research has strongly established quantities-based meanings for calculus concepts as 
essential for robust student understanding and for productive usage outside of math classes 
(Byerley, 2019; Jones & Ely, 2023; Oehrtman & Simmons, 2023; Thompson, 1994). For 
integrals, this means moving away from the purely “area under a curve” meaning in favor of a 
“sum of small bits” meaning (Ely, 2017; Jones, 2015; Sealey, 2006). Several studies have 
examined teaching integrals and students’ reasoning and modeling with integrals through this 
meaning (Bajracharya et al., 2023; Blomhøj & Kjeldsen, 2007; Chhetri & Oehrtman, 2015; Dray 
& Manogue, 2023; Sealey, 2014; Stevens & Jones, 2023; Von Korff & Rebello, 2012). However, 
the major “u-substitution” method has largely been absent from explicit research examination in 
these paradigms, despite its importance as the first in a long line of substitution techniques, and 
as a means in the sciences and engineering for converting between quantitative expressions (e.g., 
see Koretsky, 2012). Treating u-substitution quantitatively can allow students both to effectively 
use it and to understand the mechanisms for why it works. Very recent theoretical work has 
examined u-substitution through a quantitative paradigm (Jones & Fonbuena, 2024), and here we 
contribute by extending this theoretical work to an empirical examination of students learning u-
substitution in this way. Our research questions were: (1) In teaching u-substitution through this 
paradigm, what quantitative reasoning did students use? (2) What understandings did they 
construct for the individual parts of u-substitution and for the overall u-substitution process? 

Brief Review of Closely Related Literature 
Research work has put forward a quantitative structure for definite integrals called adding up 

pieces (AUP) (Jones, 2013; Jones & Ely, 2023). AUP is comprised of three parts: partition, 
target quantity, and sum (see also Dray & Manogue, 2023; Sealey, 2014; Von Korff & Rebello, 
2012). To explain these, consider the example of a solar panel generating energy (in kJ), where 
power is defined as the rate of energy generation (kJ/hr) over time (hr): ܧ = ܲ ή  If power is .ݐ
constant, Oehrtman and Simmons (2023) call this a basic model. If power varies over time, this 
basic product cannot be used to find the total energy. Rather, time must be partitioned into 
essentially infinitesimally small pieces, denoted by the differential dt (Ely, 2020). In other words, 
dt is a very WLQ\�ǻt (Ely & Ellis, 2018). While differentials can be rigorously formalized by limits 
or hyperreals (see Jones & Ely, 2023), the more loosely-defined “essentially infinitesimal” is 
quite common across the sciences and is the crucial idea for quantitative reasoning, even if no 
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VSHFLILF�WKUHVKROG�LV�GHILQHG�IRU�SDVVLQJ�IURP�³ǻ´�WR�³d” (Amos & Heckler, 2015; Hu & Rebello, 
2013; Pina & Loverude, 2019; Thompson & Dreyfus, 2016; Von Korff & Rebello, 2014). 

With infinitesimal partition pieces, power can be considered essentially constant over each dt 
piece, so the basic model can be applied to find the tiny bit of energy produced within each dt: 
ܧ݀ = ܲ ή  Here, energy is called the target quantity, and the application of the basic model to .ݐ݀
an infinitesimal piece is called the local model (Oehrtman & Simmons, 2023). While integrals in 
AUP can utilize any quantitative relationship (Simmons & Oehrtman, 2017), in this paper we 
primarily focus only on quantitative relationships defined through a product: ܳ3 = ܳ1 ή ܳ2. 

With a conceptualization of tiny bits of the target quantity in each infinitesimal partition 
piece, sum refers to the literal summation of these target quantity bits to obtain the total target 
quantity amount. AUP follows Leibniz’s convention (Katz, 2009) LQ�XVLQJ�WKH�LQWHJUDO�V\PERO�����
as a literal “sum” symbol. For example,  ௧ଶݐ݀(ݐ)ܲ

௧ଵ  is the sum of infinitesimal bits of energy 
(each produced by ܲ ή  .across the dt pieces between t = t1 and t = t2, yielding the total energy (ݐ݀

Finally, to introduce some terminology, because time is an input for the varying power, ܲ(ݐ), 
as well as for the target quantity, ܧ(ܲ,  ,we call it the main input quantity (Jones & Fonbuena ,(ݐ
2024). Because power becomes the integrand in the integral, we call it the integrand quantity. 

Theoretical Perspective: Quantitative Reasoning Applied to U-Substitution 
Thompson (Smith & Thompson, 2007; Thompson, 1990) defined quantitative reasoning as 

“the analysis of a situation into a quantitative structure” (1990, p. 12). Quantitative structures are 
based on quantitative relationships, defined as “the conception of three quantities, [any] two of 
which determine the third” (1990, p. 12) (Figure 1a, below). In particular, a product-based 
definite integral captures a quantitative relationship between an input quantity, an integrand 
quantity, and a target quantity (Figure 1b). Our previous work applied quantitative reasoning to 
u-substitution (Jones & Fonbuena, 2024), which we recap here through the solar panel example.  

Suppose the sun rises at 6am (t = 0) and reaches its zenith at 12pm (t = 6). A horizontal solar 
panel would have less power in the early morning, but power would increase to a maximum at 
noon. We use ܲ(ݐ) = 250 sin ቀ గ

ଵଶ
 ቁ kJ/hr as a reasonable model for this situation. Based on theݐ

explanations in the previous section, this means that for each dt interval, the local model would 
be ݀ܧ = 250 sin ቀ గ

ଵଶ
ቁݐ ή ܧ and the total energy would be given by ,ݐ݀ =  250 sin ቀ గ

ଵଶ
ቁݐ ݐ݀

 . 
To now move to u-substitution, note that while energy can be tracked over time, the power is 

mostly due to the sun’s angle with the panel, so it might make sense to switch from time as the 
input to the sun’s angle. This is exactly the quantitative question we claim u-substitution is built 
on: What if we want to track the target quantity in terms of a new input quantity (e.g., ș), rather 
than the original input (e.g., t)? To start the conversion, note there is a relationship from ݐ ՜ ߠ ՜
ܲ, or ܲ൫(ݐ)ߠ൯, which is called nested multivariation (MV) (Jones, 2022). In the “quantity 
triangle” (Figure 1c), this nested MV is located along the edge of the triangle between the 
original input and integrand quantity. Time and angle are related by ߠ = గ

ଵଶ
  meaning we can ,ݐ

      
Figure 1. A basic quantitative relationship (a); and u-substitution as the transformation of the original integral 

UHODWLRQVKLS��E���WKURXJK�WKH�QHVWHG�09�EHWZHHQ�W��ș��DQG�3��F���WR�D�QHZ�LQWHJUDO�relationship (d) 

Q1 Q2 

Q3 

t P 

E 

t P 

E 

ș t P 

E 

ș 

(a) (b) (c) (d) 
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convert ܲ൫(ݐ)ߠ൯ = 250 sin൫(ݐ)ߠ൯ to simply ܲ(ߠ) = 250 sin(ߠ). This relation also means that a 
change in angle is always 12/ߨ as big as the change in time, so ݀ߠ = గ

ଵଶ
ݐ݀ or ,ݐ݀ = ଵଶ

గ
 The .ߠ݀

local model can now be fully described in terms of ș: ݀ܧ = 250 sin(ߠ) ή ଵଶ
గ
 Finally, the sum .ߠ݀

over dt pieces from 0  ݐ  6 hr is equivalent to a sum over Gș pieces from 0  ߠ  గ
ଶ
 rad. 

Taken together, ܧ =  250 sin ቀ గ
ଵଶ
ቁݐ ௧ୀݐ݀

௧ୀ  transforms to ܧ =  250 sin(ߠ) ଵଶ
గ
ఏୀగ/ଶߠ݀

ఏୀ . Our 
previous theoretical work defined u-substitution quantitatively as transforming the original 
relationship by shifting the vertex from t to ș, to form a new relationship (Figure 1d). 

How is this transformation enacted? Our previous work also detailed a three-part process to 
do so: differential, integrand, and bounds (Jones & Fonbuena, 2024). These parts match the 
partition, target quantity, and sum structure of AUP. Differential means converting infinitesimal 
pieces of the original input to infinitesimal pieces of the new input (e.g., ݀ݐ ՜  .(ߠ݀[݊݅ݏݎ݁ݒ݊ܿ]
Integrand means using the nested MV structure to redefine the integrand quantity in terms of the 
new input (e.g., ܲ(ݐ) ՜  allowing the target quantity to be determined by the new input ,((ߠ)ܲ
(e.g., ܧ(ܲ, (ݐ ՜ ,ܲ)ܧ  Bounds means re-describing the sum over the original input pieces to a .((ߠ
sum over the new input pieces (e.g., a sum over 0  ݐ  6 hrs to a sum over 0  ߠ   .(2/ߨ

Methods 
For this study, we designed an experimental lesson consisting of two u-substitution tasks 

using real-world contexts (Figure 2). The first author was the researcher-instructor for the lesson. 
In Task 1, the goal was for students to construct an integral and then enact the u-substitution 
conversions outlined in our theoretical perspective section. In Task 2, the goal was similarly for 
students to identify the three-part transformation of (a) bounds: converting between the sum over 
25  ܶ  100 and the sum over 10  ݎ  15, (b) integrand: converting between 4ߨ൫ξܶ + 5൯

ଶ
 

and 4ݎߨଶ, and (c) differential: using the relation ݀ݎ = ଵ
ଶξ்

݀ܶ to convert between dr and dT. 
 

 

Task 1: A solar panel generates energy in joules, J. Power is the rate at which energy 
is produced (joules per hour, J/hr). Note that power depends on the location of the 
sun and is maximized when the sun is directly overhead (12 pm). We’ll use ܲ(ݐ) =
250 sin ቀ గ

ଵଶ
 ቁ as a reasonable model, because it is zero at 6 am (t = 0), increasesݐ

from 0  ݐ  6 hours, and is maximized at 12 pm (t = 6). 
(a) Construct an integral (in time) for the total energy generated over these 6 hours. 
(b) The sun’s angle is what really matters for power. What if we tracked the total 
energy produced with respect to angle instead? How does that change the integral? 

 

   

Task 2: The gas inside a spherical balloon is heated from the inside from T = 25 oC 
to T = 100 oC. As the gas expands, the sphere grows [a dynamic visual is provided]. 
Suppose the radius (in cm) is given by ݎ(ܶ) = ξܶ + 5. Note that at a given moment, 
for a tiny change in temperature, the tiny bit of increased volume is essentially the 
product of the current surface area and the corresponding tiny change in the radius. 
(a) Consider the following two integrals, and explain how they each find the total 
change in volume:  ൫ξܶߨ4 + 5൯

ଶ ଵ
ଶξ்

݀ܶ ்ୀଵ
்ୀଶହ  and  ୀଵହݎ݀ ଶݎߨ4

ୀଵ . 
(b) Explain how these two integrals are equivalent to each other. 

Figure 2. Abbreviated versions of the two interview lesson tasks 

To ensure participating students had the needed background, we recruited from a first-
semester calculus class (not taught by the authors) that incorporated quantitative meanings for 
calculus concepts. We recruited when the unit on integration had started, so they would have 

12 pm 
(t = 6) 

6 am 
(t = 0) 

T = 25 oC 

T = 100 oC 
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basic knowledge about definite integrals through an AUP perspective. We recruited six students 
and paired them into three groups of two students each: Luke and Liam, Matt and Mark, and 
Ruby and Rafael. We analyzed the data as follows. First, for quantitative reasoning, we coded 
excerpts according to whether they referred to (a) the quantities, (b) the units, (c) relationships 
between quantities, and (d) operations done on quantities. We also coded for contraindications of 
quantitative reasoning, such symbol manipulations without attention to quantities. Second, to 
connect their reasoning to u-substitution, we coded excerpts according to the three parts in our 
breakdown: (a) differentials, (b) integrand, and (c) bounds. We looked for connections between 
their quantitative reasoning and each of the parts. Finally, the researcher-instructor asked the 
students at times to recap what they understood about u-substitution and what it meant. We 
summarized these general understandings for each student about u-substitution. 

Results 

Research Question #1: Students’ Use of Quantity and Quantitative Relationships 
We first describe how our students used quantities and quantitative relationships. One 

important aspect was what Redish (2005) called loading meaning onto symbols, which means the 
students directly interpreted the symbols and expressions as referents to the quantities in a 
productive way. To illustrate, consider these excerpts from Matt and Ruby: 

Matt: This [points to sin(ʌ/12 t)], is showing how much joules you’re getting per hour. And this 
[points to dt] is showing small time, in hours. 

Ruby: That equation [i.e., expression, points to ଵ
ଶξ்

݀ܶ] is essentially equal to bits of radius. 

Next, recall that Thompson’s (1990) definition of quantitative relationships is of three 
quantities, where any two determine the third. Our students certainly used this type of 
relationship across the interviews for time-power-energy, angle-power-energy, temperature-area-
volume, and radius-area-volume. However, our students also exhibited different types of 
relationships outside of this classic definition. The first type was “two-quantity relationships.” 

Rafael (Task 2, after converting to radius): Well, it’s just a much more direct relationship between 
radius and volume. The relationship between temperature and volume isn’t as direct. 

Liam (Task 1, in converting the differential): We also want the relationship between dt and Gș. 

In fact, these two-quantity covariational relationships (Carlson et al., 2002) were a key part of the 
students’ work. While each context held four quantities (e.g., time, angle, power, energy), 
decomposing into two-quantity relationships helped them track the conversions (cf. Jones, 2022).  

Also, some three-quantity relationships the students imagined did not have Thompson’s 
triangle format (Figure 1). Rather, some relationships followed the nested MV structure instead. 

Liam: At that time… The angle of the sun at a certain time, and like the amount of energy produced. 

Mark: Our tiny change in temperature… how this temperature affects the radius at that specific 
temperature and all that stuff we’re adding up… we’re adding up different volumes. 

Liam described a relationship of WLPH�ĺ�DQJOH�ĺ�energy. Mark described a relationship of 
WHPSHUDWXUH�ĺ�UDGLXV�ĺ�YROXPH. Importantly, though, note that the students’ descriptions go 
from RULJLQDO�LQSXW�ĺ�QHZ�LQSXW�ĺ�target quantity, skipping the integrand quantity. This result 
conflicts with the study’s intended LQSXW�ĺ�QHZ�LQSXW�ĺ�integrand quantity, suggesting the 
lesson did not properly scaffold this particular nested MV relationship entailed in u-substitution. 
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Research Question #2: Students’ Quantitative Conversions 
We now explain the results pertinent to each of the three parts in the u-substitution structure: 

differential, integrand, and bounds. First, the integrand and bounds were mostly unproblematic 
for the students. The students readily converted the summation bounds from one quantity to the 
other and demonstrated understanding the quantitative equivalence. For example Matt explained, 

Matt: Your degree Celsius is going to start at 25 degrees and going to 100 degrees… It’s kind of the 
same thing as radius… We’re both [i.e., temperature and radius] changing at the same time. It’s 
just you calling this one in terms of temperature instead of radius, even though they both happen 
at the same time… It’s the same thing as showing when your radius is changing from 10 to 15. 

The students also readily converted the integrand quantity from a dependence on the original 
input to the new input. These conversions, though, tended to be based on symbolic appearance at 
first, and were only later justified through quantities. Yet, we view this symbolic work as fine, so 
long as the quantitative relationships were understood, as demonstrated in these excerpts: 

Mark: Basically, because this is [emphasis in original] the angle right here [points to గ
ଵଶ
 Like, that’s .[ݐ

the sine of theta [sin(ߠ)], it’s our power output and this [again points to గ
ଵଶ
 would be what ș [ݐ

would be equal to. 

Luke: [We have] the relationship between r and T [i.e., the function ݎ(ܶ) = ξܶ + 5], so we know 
that, like, for whatever T we put in there [i.e., into “4ߨ൫ξܶ + 5൯

ଶ
”], it’s gonna come up to the 

right r to get the same result as this one [points to the integral with “4ݎߨଶ”]. 

While differential and integrand were fairly unproblematic, one of the more important results 
was that the differential quantitative conversion was particularly cognitively demanding. The 
students spent significant time there and needed to carefully reason about the relationships. The 
first big difficulty was assuming that the differentials, such as dt and Gș, could be directly 
substituted. In fact, all three groups initially did so in Task 1 (Figure 3). It seemed based on the 
idea that all “infinitesimals” must be equivalent, since they are all so small. This idea is similar 
to Oehrtman’s (2009) “collapse” metaphor, though it is different in that instead of collapsing to 
“nothing”, these infinitesimals seem to all collapse to a single “infinitesimal sameness.” 

(a)   (b)   (c)  
Figure 3. Evidence from each group of initially equating GW�DQG�Gș 

To help, the interviewer pointed out this implicit assumption and asked if the differentials were 
actually equal. The students reasoned about the quantities in order to realize they were not. 

Luke: I think they’d be proportional, but I don’t know if they’d be exactly the same… One hour is 
equal to ʌ/12, but in my mind they don’t mean the same thing [dt and Gș]. Because ʌ/12 is a ratio. 

The interviewer followed up by asking if 1/100th of an hour was equal to 1/100th of a radian. This 
helped the students see and resolve the issue. This excerpt shows how one group began to do so: 

Rafael: dt is infinitesimal, getter smaller over a period of 6 hours. Where that’s, where Gș is getting 
infinitely smaller over the range of ʌ/2 [i.e., 0 to ʌ/2]. 

Based on this reasoning, Rafael set up a proportion: ௗ௧


= ௗఏ
గ/ଶ

. He rearranged this relation to 
produce ݀ߠ =  We note that once this issue was resolved in Task 1, it did not reappear .ݐ݀  12/ߨ
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in Task 2. The students referred back to Task 1, now explaining that the differentials might be 
different sizes, and that some comparative relation between them needed to be identified. 

A separate issue with differentials was interpreting “d” to just mean “derivative.” This is 
sensible because the derivative was the other major concept they had experienced that used the 
differential notation “d”, as in dy/dx. When interpreting d in this way, the students operated 
computationally and lost sight of the quantities. For example, in Task 2, Ruby interpreted “dr” as 
the derivative of the function ݎ(ܶ) = ξܶ + 5, leading her to assert that ݀ݎ = ଵ

ଶξ்
. She then 

created the differential-less integral:  ൫ξܶߨ4 + 5൯
ଶ
ቀξ்
ଶ்
ቁଵ

ଶହ . When asked about it, Rafael 
realized there was essentially no “local model” in the integral because of the absence of a dT. 

Rafael: This isn’t, this is just for one temperature. It’s not ‘as we’re getting smaller.’ 

This realization helped the students see the need to think of dr and dT as representing quantities. 
Of course, using derivatives was not always a problem and was sometimes necessary and 

useful. The students needed to derive ݎ(ܶ) = ξܶ + 5 to find the relationship ݀ݎ = 1/(2ξܶ) ݀ܶ. 
Even so, they still tended to lose sight of the quantities within that computation and had to 
reconceptualize the quantitative relationship in the differential equation after the fact. 

Our last result to highlight here is that the students successfully enacted the three parts of u-
substitution (differential, integrand, bounds) in different orders, suggesting that these do not 
need to be enacted in a specific order. Table 1 shows the orders the groups used for each task.  
Table 1. The three-part u-substitution conversion enacted in different orders by the groups across the tasks 

 Task 1: Solar panel Task 2: Sphere volume 
Group 1 ERXQGV�ĺ�LQWHJUDQG�ĺ�GLIIHUHQWLDO LQWHJUDQG�ĺ�ERXQGV�ĺ�GLIIHUHQWLDO 
Group 2 LQWHJUDQG�ĺ�GLIIHUHQWLDO�ĺ�ERXQGV LQWHJUDQG�ĺ�GLIIHUHQWLDO�ĺ�ERXQGV 
Group 3 LQWHJUDQG�ĺ�bounds ĺ�differential LQWHJUDQG�ĺ�GLIIHUHQWLDO�ĺ�ERXQGV 

Research Question #2: General Understanding of U-Substitution 
By the end of the interview lesson, all of the students had developed an understanding of the 

three-part structure of u-substitution: differential, integrand, bounds. They expressed the need for 
the two integrals to be equivalent in all aspects, as seen in Mark’s representative explanation. 

Mark: If we’re going to go from one relationship to the other, like radius to temperature, or from, you 
know, time to degrees or I guess radians, we had to change our function, bounds, and our 
differential. We had to make sure that they were still equivalent statements. 

The students also understood the need to find a relationship between the original input and the 
new input. As stated before, though, the nested MV relationship from these to the integrand 
quantity was somewhat blurred and pointed to a needed revision in the lessons. 

We thus claim that this lesson was generally successful in helping the students (a) to reason 
about the quantitative nature of converting from one input quantity to another, and (b) to develop 
a personal understanding of the differential-integrand-bounds structure for u-substitution. 
However, we describe here one other unanticipated issue that cropped up during the lesson that 
points to a needed revision. While the students were reasoning quantitatively and understanding 
the u-substitution process, a couple of students (Ruby in particular) occasionally expressed 
confusion about what the point of doing these conversions would be. 

Ruby: Well, I feel like, I mean, there must be a reason that we’re doing it [converting from time to 
angle], but it seems like a lot of work, um, for not really anything. 
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After the completed process, though, Ruby had some recognition why it might be useful. 
Ruby: I think that this [seeing the two completed integrals] solves my problem, that this [the integral 

in time] is harder than this [the integral in angle]… Over here [the integral in angle] we have, we 
have the numbers plugged in in a way that will solve that for us [i.e., an easier antiderivative]. 

While Ruby began to the see the computational benefits of u-substitution, the lesson still did not 
help the students see possible scientific motivation for converting between quantities. For 
example, in Task 2, radius information might be easier to come by than temperature information. 

Discussion 
The major contribution of this study is to help induct u-substitution within a quantitative 

reasoning paradigm for calculus. This study extended prior theoretical work (Jones & Fonbuena, 
2024) to an empirical analysis of students learning u-substitution in this way, which provided 
several insights into a quantitative u-substitution. First, the students used several distinct 
quantitative relationships, including classic three-quantity relationships (Smith & Thompson, 
2007; Thompson, 1990), two-quantity covariational relationships (Carlson et al., 2002), and 
nested MV relationships (Jones, 2022). However, interestingly, the identified nested relationship 
was not the intended RULJLQDO�LQSXW�ĺ�QHZ�LQSXW�ĺ�LQWHJUDQG�TXDQWLW\. This result suggests the 
need to scaffold this particular MV relationship to make it more salient in the lesson. 

In the three-part structure of u-substitution (differential, integrand, bounds), the quantitative 
treatment of the differential was the most cognitively demanding. Crucially, we observed a new 
type of “collapse” distinct from Oehrtman’s (2009). Rather than collapsing to “nothing,” the 
differentials seemed to collapse, in the students’ minds, to a single infinitesimal “sameness.” It 
took careful work to consider the relationship between changes in the original input versus the 
new input to identify that even at very small scales there is a conversion factor between an 
infinitesimal bit in one quantity versus an infinitesimal bit of another. This strengthens the case 
that gaining the ability to reason about increasingly small increments of a quantity in calculus is 
important for quantitative reasoning (Ellis et al., 2020; Ely & Ellis, 2018). 

Another implication from our study for teaching u-substitution is the need to ensure a 
motivating “why” for doing it (Harel, 2013). A couple students were unsure of the benefit of 
converting from time to angle, or from temperature to radius. One motivation, of course is the 
computationally practical “easier antiderivative” used in typical pure-math approaches. But we 
believe it is important to also weave in the scientific reasons for converting between quantities at 
times (e.g., see Koretsky, 2012). For example, it is possible that certain data is more available, or 
easier to obtain, which would definitely be the case for radius versus temperature in Task 2.  

Overall, we believe this study to be a proof-of-concept of teaching u-substitution through a 
quantitative paradigm and teaching it in a way that illuminates the quantitative structures 
inherent in it. We believe that doing so can help students construct the differential-integrand-
bounds structure that would allow flexibility in using u-substitution. However, beyond simply 
enacting the substitutions, our students also came to understand the mechanisms for why the 
substitutions work, and could reason about the conversions in context. Further, we believe that 
understanding u-substitution in this way can provide a strong basis for understanding future 
substitution techniques, such as trigonometric substitution or multivariable change of variables. 
For example, trigonometric substitution uses a different nested MV relationship where the new 
input (sin(ߠ)) precedes the original input (x), as in sin(ߠ) ՜ ݔ ՜  Thus, we claim that .(ݔ)݂
understanding these relationships can help students in future math learning and science usage. 
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Physics Students’ Challenges Coordinating Multiplication with the Definite Integral Concept 
 

 Olha Sus Andrew Izsák 
 Tufts University Tufts University 

Integration plays a significant role in applied problems, including those set in a wide range of 
physical phenomena. Past research has shown that students often experience difficulties 
applying calculus knowledge to physics, engineering, and other subjects. More specifically, 
recent research has identified students’ difficulties constructing the “product layer,” 𝑓(𝑥) ∙ 𝑑𝑥, 
as a core part of the definite integral. In this study, we extend research on students’ 
understandings of the definite integral by focusing on how they reason about multiplication with 
quantities, physical units, and the construction of the “product layer.”   

Keywords: Calculus, Integration, Product layer, Knowledge-in-Pieces 

Introduction and Literature Review 
Research on the teaching and learning of calculus has focused primarily on limits and 

differentiation (e.g., Larsen et al., 2017; Rasmussen et al., 2014), but there is an emerging body 
of literature on integration. Among other things, research on integration has observed that the 
“product layer,” 𝑓(𝑥) ∙ 𝑑𝑥, can pose particular challenges for students. This same literature has 
not examined closely how students coordinate reasoning about multiplication with quantities and 
reasoning about integrals. This gap limits our ability to help students develop more robust 
understandings of the “product layer” and of the definite integral.   

We emphasize three themes in the literature on definite integrals. First, students often 
interpret the definite integral as “area under the curve,” as a “derivative/antiderivative” 
relationship, or as “adding up pieces/multiplicatively-based summation” (e.g., Jones, 2015a, 
2015b; Ely & Jones, 2023; Jones & Ely, 2023). These researchers have argued that first two 
interpretations provide limited help to students when making sense of the definite integral in 
problem situations and that the third interpretation is more helpful when applying the integral to 
problems in physics, engineering, and other fields.   

Second, students often have difficulties interpreting the “product layer,” 𝑓(𝑥) ∙ 𝑑𝑥, as 
expressing multiplication (e.g., Ely, 2017; Jones, 2013; Sealey, 2014). Sealey (2014) presented 
the most direct framework for characterizing student understanding of Riemann sums and 
definite integrals. This framework consists of five layers: orienting, product, summation, limit, 
function. She reported that conceptualizing the “product layer” was the most complex part of 
constructing definite integrals to model problem situations. She concluded that students had 
trouble not with calculations but with “understanding what is being multiplied together and what 
quantity is produced from that multiplication” (p. 240). 

Third, students often have difficulties with modeling quantities such as distance and work 
with rectangular areas (e.g., Thompson et al., 2013; Nguyen & Rebello, 2011; Christensen & 
Thompson, 2010). Thompson and Silverman (2008) pointed out that for students to perceive the 
area under a curve as representing a quantity other than area (e.g., velocity, force), it is important 
for students to consider the quantity being accumulated as a sum of infinitesimal elements 
formed multiplicatively. As a result, they proposed a model which emphasizes two “layers” of 
integration: the multiplicative layer when the bits are formed and the summation layer when the 
bits are accumulated. 
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In the present study, we examined how students construct the “product layer,” which can be 
used to relate quantities and to build new quantities in the given problem situation. In addition, 
we focused on knowledge resources students used in the process of forming the “product layer.” 
We asked the following two research questions: 

1. How do students use/construct the “product layer” to relate quantities and form new 
quantities in problem situations? 

2. What knowledge resources do students apply when using/constructing the “product 
layer” to relate quantities and form new quantities in problem situations? 

Theoretical Framework 
In this section we present the theoretical framework which best spans the results obtained in 

the study. It combines mathematical structure (as perceived by experts) with cognitive 
components evidenced by students. 

Vergnaud (1983, 1988) analyzed mathematical structures for multiplication with quantities 
and distinguished two subtypes of multiplication situations. Each component in a product is 
associated with a measure space and the relation between the components is either an 
isomorphism-of-measure-spaces situation (I-O-M) or a product-of-measure-spaces situation (P-
O-M). The former means that the product structure consists of a simple direct proportion 
between two measure spaces 𝑀ଵ and 𝑀ଶ (1983, p. 129). An example is the product structure 
which has the form  ௧௦

௦ௗ
∙ 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The latter means the product structure consists of the 

Cartesian composition of two measure spaces, 𝑀ଵ and 𝑀ଶ, into a third, 𝑀ଷ (1983, p. 134). An 
example is the product structure which has the form 𝑎𝑟𝑒𝑎 (𝑐𝑚ଶ) ∙ ℎ𝑒𝑖𝑔ℎ𝑡 (𝑐𝑚). These 
subcategorization of problem situations helps us delineate definite integral problems which 
possess two different product structures.  

For the cognitive component, we draw from the knowledge-in-pieces epistemological 
perspective. The perspective was first developed in science education research on conceptual 
change (e.g., diSessa, 1993, 2006). It has since been applied to various topics in mathematics, 
including whole-number multiplication (Izsák, 2005), functions (e.g., Izsák, 2004; Moschkovich, 
1998), and integrals (Jones, 2013). From this perspective reasoning is supported by diverse, fine-
grained knowledge resources and more novice knowledge evolves into more expert knowledge 
through processes such as the construction of knowledge resources that are sensitive to context 
for activation, refinement of contexts in which resources are applied, and reorganization that can 
involve forming new connections among some recourses and loosing connections among others. 
In the present study, we were particularly interested in knowledge resources students evidenced 
when reasoning about multiplication in the context of definite integrals and across both I-O-M 
and P-O-M situations. 

Methods 
We conducted three one-to-one, semi-structured, think-aloud interviews to assess how five 

students enrolled in the first-semester calculus-based physics course at the selective university 
reasoned about the integral concept in different problem situations, with particular attention to 
whether and how they constructed the product layer. Each interview lasted approximately 1 hour.  

The first interview examined physics students’ reasoning about multiplication in I-O-M and 
P-O-M problem situations. This interview consisted of three situations. None of the tasks 
mentioned integrals, but for each situation one could first multiply and then add to construct a 
total. We paid close attention to how students assigned units of measurement to the quantities 
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and how they used the later to identify unknown quantities in each problem situation. The second 
interview examined physics students’ reasoning when connecting definite integrals to I-O-M and 
P-O-M problem situations. In addition, we examined how students identified multiplicative 
structures and related them to graphical representations. The third interview intended to examine 
how students reasoned about the definite integral concept in I-O-M and P-O-M situations, but we 
were only able to pursue the I-O-M situations in the allotted time. Again, we paid close attention 
to how students reasoned about multiplicative structures and graphical representations as a part 
of the definite integral concept. 

We recorded the interviews using two cameras, one to capture the student (body movements, 
hand gestures, etc.) and the interviewer and one to capture the student’s written work. We 
collected all written work at the end of each interview. We used a computer to synchronize the 
two video recordings into a single file and transcribed the interviews verbatim. 

We watched videos for all five students side-by-side with the transcripts, checking the 
transcripts for accuracy. All students had trouble at one point or another coordinating 
multiplication with the “product layer” and definite integrals. After multiple viewings of the 
interview data, it became clear that Iliana’s data was particularly useful for our research 
questions because she first struggled to reason about multiplication in the context of the 
integration tasks, but then constructed the product layer appropriately. Her case is all the more 
noteworthy because she self-reported strong performance in calculus (Calculus, A+; AP Calculus 
AB, 5; AP Calculus BC, 5). We generated summaries of the Iliana’s reasoning that attended to 
her spoken language, hand gestures, and drawings as she worked on each task.  

Results 

Iliana’s Work 
Due to space limits, we focus on Interview 3. During Interview 1, Iliana relied on recalled 

formulas for transforming units when determining what to multiply –– for instance, she recalled 
that 𝑓𝑡/𝑠𝑒𝑐 ∙ sec = 𝑓𝑡 and that 𝑐𝑚ଶ ∙ 𝑐𝑚 = 𝑐𝑚ଷ. The main additional result from Interview 2 
was that, in the context of a problem that provided equally-spaced, cross-sectional areas of a 
liver and asked for an approximate volume, Iliana multiplied cross-sectional areas by lengths to 
construct small pieces of volume which she then added, appropriately. At the same time, when 
using integral notation to express her reasoning, she included both Δ𝑥 to denote small lengths 
and 𝑑𝑥 (Figure 2). When asked to interpret 𝑑𝑥, she explained:  

Iliana: I think maybe that just like everything’s like in respect to 𝑥, I don’t know, honestly, 
like that’s always like added at the end and it’s like I, we’ve definitely like gone over 
exactly why.  

 
Figure 2. Iliana’s definite integral representation (Interview 2) 

Thus, in the Liver task Iliana perceived products in terms consistent with normatively correct 
Riemann sums and integrals but, for her, the 𝑑𝑥 notation did not indicate a factor to multiply. 
Interview 3 would reveal additional challenges experienced by Iliana.  

Data. Task 1 from Interview 3 asked Iliana to approximate the total force from water 
pressure on a tank wall. The task included a picture of the 3ft-by-4ft wall and stated that the 
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pressure on the wall varied with the depth, x, according to 𝑃(𝑥) = 15𝑥. A normatively correct 
integral would be ∫ 4 • 15𝑥𝑑𝑥ଷ

 . The physics course had yet to cover the relationship between 
pressure and force, and we anticipated that the context would be novel for Iliana. Indeed, she 
said she had to think about how pressure relates to force. She then integrated 15𝑥 “on the bounds 
from zero to 𝑥, 𝑥 being whatever the depth is” to calculate the “sum of all the surface areas.” 
Finally, she explained that she thought the pressure pointed down to the bottom of the tank 
(Figure 3). For this reason, she did not “feel the 4 feet of the width has anything to do with that.”  

 

    .     
 

Figure 3. Iliana’s work on calculating the total force (Task 1) 

When the interviewer asked about force acting in another direction, Iliana continued to view 
pressure vertically. At the same time, she was not confident and reported that she did not know if 
force and pressure were related through a derivative/antiderivative, where the width of the wall 
would come in, and how to interpret the phrase “pressure across a surface area.” Finally, Iliana 
sketched an appropriate graph for 𝑃(𝑥) = 15𝑥 but did not discuss area under the curve.  

Analysis. Iliana’s work on Task 1 provided access to how she approached integration in a 
novel situation, not in one where she recalled certain multiplicative relationships or formulae. An 
interconnected set of ideas (i.e., uncertainty about the pressure and force relationship, downward 
pressure) impeded her construction of products used in normatively correct Riemann sums and 
definite integrals. First, although the problem statement asked explicitly about pressure on the 
wall, Iliana consistently focused on downward pressure. This orientation side-stepped the need to 
consider small pieces of wall area, 4𝑑𝑥, as one factor in a product. Second, similar to her work in 
Task 2 summarized above, Iliana did not view multiplication by 𝑑𝑥 as transforming units. 
Rather, she integrated the pressure function, 𝑃(𝑥) = 15𝑥, to get a total pressure. Third, similar to 
her work on the Liver task discussed above, she did not treat 𝑑𝑥 as a conceptually essential piece 
of the definite integral. In fact, she omitted the notation. Thus, how she oriented pressure in the 
situation directed her attention away from multiplying small areas of the wall (4𝑑𝑥) with 
pressures (15x), and it was unclear whether she noticed the absence of unit transformation 
through multiplication. If transformation of units through multiplication were central to her 
understanding of definite integrals, integrating a pressure function to get total pressure might 
have indicated to her that something was off. 

Data. Task 2 asked Iliana to consider an automobile accelerating at 𝑎(𝑡) (𝑚/𝑠𝑒𝑐ଶ) for 9 
seconds and to find the velocity after 9 seconds. First, Iliana recalled an appropriate velocity 
formula, 𝑣 = 𝑣 + 𝑎𝑡. She substituted 0 for 𝑣 and 9 for both 𝑎 and t, arriving at 81 m/s. She 
then wrote 𝑣 = 9𝑎 (Figure 4). When asked how she knew to multiply, Iliana responded:  

Iliana: 𝑎 is the acceleration, which is just equal to, over here, like the amount that the, the 
amount that the, the like velocity is changing like per second, which in terms of units is 
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meters per second second. Because meters per second is the unit for velocity, and then 
you add an extra second in the denominator because it’s the change of velocity per 
second. So then when you multiply by time, which is just seconds, it cancels out and you 
have this, the unit for velocity again. 

 

 
 

Figure 4. Iliana’s work on calculating the velocity value for 9 seconds (Task 2) 

Finally, Iliana mentioned the derivative/antiderivative relation between the acceleration and 
velocity quantities: “velocity is the antiderivative of acceleration”, that is, “given like 
acceleration, let’s say, 8𝑥, you can think that integral of acceleration evaluated on the time 
period zero to 𝑡, where 𝑡 is the number of seconds that the system did.” 

Analysis. Iliana’s work, including her discussion of anti-derivatives, suggested prior 
experience with problems relating velocities and acceleration. She introduced multiplication 
through a recalled formula and formal cancellation of units. From her discussion, it appeared that 
she recalled appropriate units for acceleration and for velocity and then reasoned about how to 
get from one to the other by cancelling units of time. Given that at one point she substituted 9 for 
both 𝑎 and 𝑡, it is likely that she presumed 𝑎 to be constant. This could explain why she did not 
use multiplication to construct small changes in velocities which could then be added, in contrast 
to the way she did use multiplication to construct small pieces of liver volume.  

Data. Task 3 asked Iliana to explain the meaning of the definite integral and its interpretation 
in Task 1 and 2. Iliana stated that “it’s harder than I thought to quantify what [the integral] 
exactly means.” She then explained that the integral means “the sum of like a function per like 
change” and that “𝑑 just means like the change.” (Figure 5). She added that “from a to b” means 
the summation of “those like areas of 𝑓(𝑥) per each change, like 𝑑 of 𝑥.” She concluded by 
saying “you are thinking of each small area and then adding them up.” An exchange later she 
added, “Like change for each 𝑥, like per 𝑥, that’s the change.” 

 

 
 

Figure 5. Iliana’s definition of the definite integral and graphical representation of 𝑓(𝑥) ∙ 𝑑𝑥 (Task 3) 
 

The interviewer then asked Iliana to explain her understanding of areas. Iliana graphed a 
function, shaded the area below it, and said “the summation kind of means like, you want to find 
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what's under here, right?” When interviewer then asked Iliana where she saw 𝑑x and the product 
𝑓(𝑥)𝑑𝑥, Iliana drew horizontal brackets to indicate instances of 𝑑𝑥 and a large point on her 
graph to indicate 𝑓(𝑥)𝑑𝑥 (Figure 5).  

Analysis. Iliana demonstrated several ideas relevant to explaining definite integrals. These 
included summation of pieces, attending to changes in x, and areas. At the same time, there was 
no evidence that products were central for her. Similar to her work on the Water Pressure task, 
she talked about summing the function 𝑓(𝑥), not 𝑓(𝑥) • 𝑑𝑥, and her discussion of change for 
each x and change per 𝑥 suggested that she thought more in terms of a correspondence between 
values of 𝑓(𝑥) and instances of 𝑑𝑥 than a product of the two. Her plots of 𝑑𝑥 and 𝑓(𝑥)𝑑𝑥 
provided further evidence that she did not connect this notation to products and small areas.  

Data. Next, Iliana interpreted the definite integral in the context of the acceleration task. 
First, she wrote appropriate integral notation and stated: “It's actually really the same thing, a of t 
per change in time. And then you’re summing for, to evaluate the change of velocity per the 
amount of time done basically.” Then she produced a graph corresponding to her explanation 
and drew the large point to indicate where she saw the expression 𝑎(𝑡)𝑑𝑡 (Figure 6, middle). 

 

.                     
 

Figure 6. Iliana’s meaning of the definite integral (Task 3) 
 

Right after this answer, Iliana expressed some confusion about the 𝑑𝑡 term in her expression: 
Iliana: Now, I’m confused what 𝑑𝑡 exactly is like representing. Because like sometimes it 

just feels like it’s just there and doesn’t really represent something. But like, obviously I 
know it does…. it's just like something that's kind of there, I don't know. 

When the interviewer asked “What are you indicating when you add the squiggly lines?”, Iliana 
responded the “area under the line” which was the “change in velocity for that time period.”  

Then the interviewer asked the following question, which made multiplication explicit: 
Interviewer: Does this area that you indicated here (points to the squiggly lines, Figure 6, 

middle), and that expression 𝑎(𝑡) multiplied by 𝑑𝑡 has any relation or no for you?  
After thinking for few seconds, Iliana changed her reasoning:  

Iliana: Well, that is the area. Okay. Maybe this is making a little more sense now actually. Dt 
multiplied by a(t) gives you this area because it's just a box and you know that like to find 
an area of a rectangle is just like the base times height or whatever, you know. So, when 
you multiply those together, that gives you an area and the summation is just saying the 
sum of each of those areas for one, some time period. So, this isn’t a point (points to 
𝑎(𝑡)𝑑𝑡). This is all of this, (points to shaded region) the 𝑎 of 𝑡 𝑑 of 𝑡 is the squiggly lines. 

Iliana shifted her reasoning and produced a new rectangular area picture (Figure 6, right), where 
she indicated 𝑎(𝑡) to be the height of the rectangle and 𝑑𝑡 its width. She reported that connecting 
𝑎(𝑡)𝑑𝑡 to an area was new to her. Finally, Iliana stated that integration will give her the velocity 
quantity and pointed to the sum of areas under the curve as the total velocity value on that time 
interval determined by the bounds in the integral notation. There was not time to return to the 
Water Pressure problem. 
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Analysis. Initially, Iliana interpreted the integral of 𝑎(𝑡)𝑑𝑡 in ways similar to her 
interpretation of 𝑓(𝑥)𝑑𝑥. She thought of a summation of pieces that corresponded to instances of 
𝑑𝑡 but that did not think of those pieces as products for which 𝑑𝑡 was a factor. Just as she 
interpreted 𝑓(𝑥)𝑑𝑥 as point, so again did she interpret 𝑎(𝑡)𝑑𝑡 as a point. In both cases, 
associating 𝑑𝑥 and 𝑑𝑡 with intervals on the horizontal axis was insufficient to cue multiplication 
for Iliana. Once the interviewer introduced interpreting 𝑎(𝑡)𝑑𝑡 as a product, Iliana generated a 
normatively correct interpretation that coordinated multiplication with the definite integral for 
the first time during the interviews. 

Remaining Four Students. The remaining four students also demonstrated a range of 
resources for reasoning about multiplication––including formal unit cancelation manipulations––
and evidenced a range of challenges reasoning about multiplication in the context of definite 
integrals. For the Water Pressure task, a second student integrated 15x, one student considered 
integrating P/A, one student considered the product 15x • 4x, and one student avoided integrals 
altogether and reasoned instead about average pressure. We also observed further instances in 
which students did not associate dx notation with small horizontal lengths.  

Discussion and Conclusion 
The present study extends prior reports (e.g., Sealy, 2014) that students have trouble with the 

“product layer” when constructing definite integrals. In particular, we considered the possibility 
that students’ difficulties might reflect where and how they use knowledge resources related to 
multiplication, as well as how they understand integral notation. Data on Iliana provided 
particularly good access to knowledge resources used by one high-achieving student. We found 
that Iliana had a range of resources for modeling problem situations with multiplication––
including recalled formulas and strategies for transforming units––as well as a range of 
understandings about integrals––including thinking of areas under curves and derivative/anti-
derivate relationships. We are not claiming that this is an exhaustive list of Iliana’s resources 
related to multiplication and integration, only that they were ones central to her progress by the 
end of Interview 3. Iliana’s work on the Liver problem demonstrated a case where she drew on 
prior knowledge about multiplication to form small pieces of volume that she then added. Thus, 
in some contexts she reasoned in ways consistent with Riemann sums but was not able to 
connect this reasoning to normatively correct integral notation. A main issue was her uncertainty 
about the meaning of the 𝑑𝑥 notation. Iliana’s work on the Water Pressure problem demonstrated 
a case where the way she perceived novel quantities (i.e., downward pressure) directed her 
attention away from products. Her challenge was compounded by the fact that she did not 
perceive a product in the integrand that transformed units, in this case units of pressure. Finally, 
at the end of Interview 3, and in response to some direct suggestions by the interviewer, Iliana 
perceived 𝑑𝑡 for the first time as a factor in a product and combined thinking about products, 
transformation of acceleration into bits of velocity, and integral notation appropriately. Such 
complex coordination provides new evidence for why forming the “product layer” can be 
challenging for students. Our results are based on a small sample, but they do suggest that 
research on integration should pay more explicit attention to the knowledge resources students 
have for modeling situations with multiplication and how those combine with understandings of 
the definite integral. 
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What is the Correct Amount of Change? A Case Study on Kala’s Covariational Reasoning 
 

 Irma E. Stevens Jess Tolchinsky Megan Robillard 
 University of Rhode Island University of Rhode Island Coventry High School 

Students’ understanding of the mathematics of change has been a crucial topic in the teaching 
and learning of precalculus. Various studies have indicated that covariational reasoning – 
reasoning about two quantities changing together—is critical for constructing productive 
meanings for rate of change. The Bottle Problem is one way teachers have supported students’ 
covariational reasoning. We report on a case study of one student – Kala – an Applied 
Precalculus student. Through analysis of her work on the Precalculus Content Assessment 
(PCA), course assignments, and a cognitive interview, we report on her reasoning with amounts 
of change—a level of covariational reasoning. As a result, we highlight the importance of using 
appropriate amounts of change to analyze situations covariationally. This study contributes to 
literature on students’ development of productive amounts of change reasoning.   

Keywords: Covariational Reasoning, Precalculus, Cognition, Bottle Problem 

Supporting students in constructing productive meanings for rates of change has been an aim 
for researchers for decades (Thomspon & Carlson, 2017). From middle school on, various 
materials aim to support students in reasoning with rates (e.g., Carlson, Jacobs, Coe, Larsen, & 
Hsu, 2002; Ellis et al., 2015; Johnson, 2015; Tasova, 2021; Yu, 2022). The Bottle Problem (e.g., 
Carlson et al, 2002) is one well known example. Nevertheless, students still enter their post-
secondary courses struggling with ideas of rates of change (Carlson, Oehrtman, & Engelke, 
2010). The Precalculus Content Assessment (PCA) is one assessment that not only helps identify 
students’ precalculus content knowledge, but also attends specifically to students’ covariational 
reasoning—reasoning about two quantities changing in tandem (Carlson et al., 2002) (heretofore 
CR). Our research topic was to explore students’ ways of reasoning when they attempt to reason 
about changing quantities quantitatively but struggle to construct or interpret representations. 
This interest led us to explore Kala’s reasoning via her and her classmates’ results on the PCA 
and the Bottle Problem. Our results provide insights into the importance of selecting appropriate 
amounts of change—one of the levels of covariational reasoning. We conclude by discussing the 
implications of her reasoning to the research on CR.   

Background and Theoretical Framework 

Covariational Reasoning and the Bottle Problem 
Carlson et al. (2002) illustrated their framework for covariational reasoning with the Bottle 

Problem, a problem used and adapted in several settings with various populations. In Carlson et 
al.’s (2002) version of the Bottle Problem, students receive an image of a cross-section of a 
spherical bottle with a cap and asked to imagine the bottle filling with water and to “sketch a 
graph of the height as a function of the amount of water in the bottle.” Their resulting framework 
consisted of five mental actions: coordination of change, directional change, amounts of change, 
average rate of change, and instantaneous rate of change. For example, students who 
coordinated the quantities might say that the height is changing as the amount of water is 
changing. Students with directional reasoning might say that the height is increasing as the 
amount of water is increasing. Students with amounts of change reasoning might say that for 
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equal changes in the amount of water added, the water is increasing by increasing amounts. From 
these descriptions, we can recognize increasing precision about how the quantities change. 

In this study, we were interested in exploring more in depth about how students develop CR. 
Johnson, Castillo-Garsow, Moore and colleagues (e.g., Castillo-Garsow, Moore, & Johnson, 
2013; Johnson, 2015; Moore et al, 2019) have already done work in this area, reporting how 
students visualize quantities changing (such as the speed of the change or considering discrete 
vs. continuous change) and how their meanings for graphs can impact their reasoning. Another 
relevant result is from Stevens (2023), in which students compared the steepness of lines on a 
graph (i.e., the slope) to determine increasing rates of change. 

Precalculus Content Assessment (PCA) 
The goal of the Precalculus Content Assessment (PCA) is to provide a means to evaluate 

how effective a curriculum and its instruction are in setting students up to be successful in 
calculus (e.g., effectiveness of College Algebra (Carlson, 2010)) and link between AP Calculus 
and PCA (Meylani, 2011). In Carlson’s (2010) study of 902 precalculus students, the average 
score on the PCA was 41% with a reliability coefficient of 0.73. The average score on the PCA 
for the covariation reasoning abilities was 50% with a reliability coefficient of 0.46. Though 
these reports pull out students’ covariational reasoning problems (which we also do in this 
study), it is important to note that a factor analysis on the PCA indicated the use of a single total 
score on the PCA may be the “most psychometrically defensible method of scoring the 
instrument” (Jones, 2021, p. 78).  

Intellectual Need 
Because this study is attempting to explore in depth a student’s CR, Harel’s (2008) 

intellectual need became a key idea in the analysis of the data in identifying reasons a student 
might engage in covariational reasoning. Harel (2008) defined intellectual need as the need to 
reach an equilibrium (i.e., no state of perturbation) by learning a new piece of knowledge. For 
instance, when choosing to graph a straight line or a curve, a student may recognize a need to 
attend to the rate at which quantities are changing in the situation to reach a state of equilibrium.  

Methods 

Subjects and Setting 
This study was conducted with an Applied Precalculus class of 39 students at a medium-

sized university in the northeastern US. The coordinated course had students with various majors 
(but not Mathematics or Engineering). The students were assigned four different assignments 
throughout the semester, one of which included an extended version of the Bottle Problem from 
Moore’s Advancing Reasoning NSF project (see results for details) and a prompt to submit a 
video explaining their reasoning. 25 of the students completed the optional PCA in class at the 
end of the semester. One student, Kala, volunteered to be part of a semi-structured clinical 
interview (Clement, 2000) after the semester ended in which she, once again and with no 
advance knowledge, went through a subset of the problems from the four classroom assignments. 

Analysis 
We recorded PCA responses and scanned student work, we downloaded the classroom 

assignments from the course’s LMS where students had uploaded pdfs and video files, and we 
video-recorded and transcribed the interview (camera and screen recording of iPad). We 
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analyzed the PCA results by question (correctness, summary data, distribution of responses), and 
then focused on the problems Carlson, Oehrtman, & Engelke (2010) identified as relevant to CR 
(heretofore PCA CR problems). We used Carlson et al.’s (2002) CR framework to analyze the 
student work on those problems, and we then compared student’s work with Kala’s work. We 
then analyzed Kala’s student work and video associated with the Bottle Problem assignment, 
coding her amounts of change reasoning, which we analyzed further using Kala’s interview on 
the Bottle Problem.  

Results 

Kala’s Overall PCA Results Compared with Classmates 
 

 
 

(a) (b) 
 

 Total PCA 
by problem 

PCA CR 
by problem 

Total PCA  
by student 

PCA CR 
by student 

max. 76% 72% 60% 100% 
min. 0% 28% 12% 0% 
average 31.2% 40% 31.2% 42.8% 
mode 32% 28% 44% 40% 
median 32% 32% 28% 40% 
var. 0.0496 0.0344 0.016 0.0610 
st.dev. 0.2227 0.1854 0.1264 0.2470 

 

Problem Non-CR categorizations 

15 rate of change, general non-linear, 
graphical, contextual 

18 algebraic, contextual 

19 rate of change, general non-linear, 
graphical 

24 general non-linear, graphical 

25 rational, algebraic 
(c) (d) 

Figure 1: (a) Total PCA scores with course grade (b) % correct for PCA CR problems (c) Summary statistics by 
problem/student for the total PCA and for PCA CR problems and (d) non-CR categories for PCA CR problems. 

The PCA results from the 25 students’ scores are summarized in Figure 1a. Kala was one of 
four students who scored 4 points (out of 25) and received a B+ in the course. Figure 1b shows 
the results of the student responses on the PCA CR problems. Kala was one of the 7 students 
(i.e., 28% of the class) who got Problem 15 (P15) correct on the PCA, but all her other PCA CR 
problem responses were incorrect. Problem 15 was the most like the Bottle Problem, because it 
involved choosing a geometric 3D shape that could represent a given height vs. volume graph 
(other PCA CR classifications in Figure 1d). Figure 1c provides PCA summary statistics. In the 
first two columns, we see 76% of students answered the most correctly answered PCA problem 
correctly, while it was 72% for the max PCA CR problem. Also, students performed better on 
average on the PCA CR problems than the total PCA assessment (31.2% vs 42.8%). Kala scored 
a 16% on the PCA and a 20% on the PCA CR problems alone, both below average scores.   
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Kala’s PCA CR Problems Results Compared with Classmates  
Kala only got one of the five PCA CR problems correct (P15). In this section, I (i) state how 

she answered the problems (ii) compare her responses to her peers’ responses, and (iii) report on 
whether (and how) the content was covered in the Applied Precalculus course she took.  

On P15, students chose a shape that represented a given volume-height graph. Most students 
chose shapes that had the opposite rate of change as what was represented in a given volume-
height graph. Kala (no written work) was part of the 28% of students who answered correctly. In 
class, students did a very similar task (i.e., the Bottle Problem). 

On P18, students needed to determine the direction of change and an extreme function value 
from given formula. P18 was the second most correctly answered PCA problem. Most students 
substituted values to solve this problem. Kala (no written work) got P18 incorrect. For P19, 40% 
of students correctly described the behavior of a function when given a graph. Only one student 
(not Kala) incorrectly identified the directional change, but the most common response included 
the opposite rate of change. Kala and one other student identified a constant rate. In class, 
students determined directional change.  

For P24 and P25, students described the end behavior of a function given a graph and a 
rational function definition, respectively. 28% and 32% of students correctly identified end 
behavior, respectively. Kala did not correctly identify any end behavior statements for either 
problem. End behavior was not explicitly taught in the course.  

From Kala’s work on these problems, we identify the following characteristics. Kala did not 
demonstrate a way to reason about the direction of change when given a function definition 
(P18), but she could when given a graph (P19). Kala did not demonstrate a way to reason about 
the end behavior of a function when given a graph or a function definition (P24/P25). Kala 
inconsistently reasoned about rates of change when given a graph (P15/P19). To gain more 
insight into Kala’s reasoning, we turn to her work on Assignment 3 and her cognitive interview.  

Assignment 3 (The Bottle Problem) Results 
 

 
              

1a.       1b.  

 

2a. 2b.  

Figure 2: (top) Assignment 3: Part 1 and (bottom) Kala’s solutions.   
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1a. Height-Volume graph with corresponding cross section of bottle.  
1b. Height-Volume graph; the water doubles in volume for each additional inch of height.  
1c. Height-Volume graph; for each inch in height the bottle increases, the volume of the bottle increases by two 
more inches cubed in volume that the previous increase. 
2. Cross section of bottle with corresponding Height-Volume graph. 

  
Figure 3:  Kala’s Assignment 3: Part 2 solutions with summary of problem statements in top row. 

During the semester, students worked on a modified version of the Bottle Problem. Part 1 
(Figure 2) is above with Kala’s solutions. For 1a, her cross section of the bottle is a normative 
solution. For 1b, there is extra curvature in her bottle not represented in the given graph. For 2a 
and 2b, her graphs are potentially missing curvature in her graph to represent the inward 
curvature underneath the cap of the bottle. We return to 2b, as does Kala, in her interview. 

In analyzing Kala’s submitted work (Figure 3) and video from Part 2, we note three aspects. 
First, in Part 2: Problem 1a, Kala highlights a single upward curvature in her graph with a 
corresponding pink cross section of her bottle in which the height has both an increasing and 
decreasing rate of height with respect to volume. In describing the pink section in her graph, she 
stated it is “dip[ping] down” and “the volume is decreasing, while the height is still increasing.” 
When relating that to the pink section in her bottle, she stated “because the volume is decreasing, 
so the bottle gets skinnier at that part”. Similar work is in Part 2: Problem 2 (e.g., green section). 
Thus, we infer Kala associated a thinner portion of a bottle with a “dip” in her graph.  

Second, Kala uses unit squares to represent equal unit cubes of volume. For example, in Part 
2: Problem 1c, in which the volume of the bottle increases by two units for each additional inch 
in height, Kala created a table of volume values and then drew a corresponding unit cube sketch 
using her table values. She described her construction of this “cube diagram” as follows: “So we 
start with two, we do for our one inch of height, we have two blocks of volume. And then two 
inches, we have a total of six.” The two and six correspond to the volume values in her table for 
a height of one and two inches, respectively. Similar work is in Part 2: Problem 2. 

Third, after plotting points and creating sketches using unit squares using tables she 
constructed, she inconsistently connects the points and creates final bottles. For instance, Part 2: 
Problem 1b does not have a smooth curve in her graph, whereas Part 2: 1c does. Similarly, Part 
2: Problem 1b does not have a smooth curve in her final bottle, whereas Part 2: 1c does. Her 
interview provides more details on how she chose to connect points on her graph.   

Kala’s Interview on the Bottle Problem 
Figure 4 is Kala’s final work on the Bottle Problem (left) and her additional work done 

throughout the interview on the Bottle Problem (right). Note that the bottle is the same one from 
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Part 1: Problem 2b (Figure 1) and that the resulting graphs are very similar. However, new for 
the interview was her use of a “cube diagram”, a table of values, and plotted points (methods she 
used during Part II (Figure 3)). In this section, we focus explicitly on Kala’s CR given (i) we 
have insights into her methods for constructing graphs from the Bottle Problem assignment and 
(ii) the interview enabled more in-depth questioning given its semi-structured nature.  

 

 
Figure 4: Kala’s final work on the Bottle Problem during her cognitive interview. 

First, we note Kala’s quantification of volume and height using a diagram of the cross section 
of the bottle. Her use of her “cube” method to quantify volume enables her to draw a diagram in 
which she can measure volume via counting the cubes. She also defines “layers” of cubes, each 
layer corresponding to one inch of height. In the green “cube diagram” in Figure 3, Kala uses 
this diagram to measure the volume in the bottle for each additional inch of height (e.g., “1-3” 
indicates at 1 inch of height, the volume is 3 unit cubes, and then 2-6, 3-9, 4-12, 5-14, and so on).   

Second, we note that Kala attempts to describe how her two quantities, height and volume, 
are changing together in her graph. For instance, she describes the initial straight segment 
emanating from the origin (in all her graphs, but her final graph, specifically) the following way: 
“what this is kind of showing that it’s increasing at the same time, as the height is increasing, the 
volume is increasing at the same time”. This corresponds to the second level of CR. 

Third, we note that Kala recognizes that the “dips” in the cross section of the bottle impact 
how much volume can fit within a single layer. For instance, when describing what happens after 
the straight section of the bottle, she states “the height of the water is gonna increase, and the 
volume-there’s less room for water.” She uses that observation to justify why her graph should 
not continue to be straight at these “dips”. She states, “the height is staying the same but the 
volume is gonna decrease, because there’s less room so we kind of dip-kind of like dip a little bit 
and then come back up.” Here, although she states the volume is going to decrease, she is 
referencing her layers in her bottle, noting that the layers are going from three unit cubes down to 
two unit cubes. She also clarifies later that it was the one inch increment that “is staying the 
same” for the height and that “the height is still increasing as we go up, since we’re moving up 
the bottle since we are filling it up.” Thus, though not explicitly using amounts of change 
language, we see Kala attending to and comparing changes in height and changes in volume.  

Lastly, we note the perturbation Kala experienced when trying justify straight segments 
versus curved segments. To discuss this perturbation, we focus on when Kala is referencing the 
bottle from four to six inches, which corresponded to the pink region labeled on the given cross 
section of the bottle (i.e., the “dip”). In her cube diagram, this region corresponded to two layers 
of two unit cubes each. In her graph, this corresponded to the curve immediately after the straight 
portion of her graph (see bolded region and the three curves she considered in Figure 4 (right)). 
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When considering using straight lines in her graph, her reasoning is as follows:  
Kala: So we’re at five inches, which is where that fifth layer shrinks to two, and then I have 

fourteen cubic whatever is of volume, and then the volume, the height is still increasing, 
so we jump to six, but it’s only fourteen units of volume. 

From this quote, we see that Kala identified that there is less volume gained per inch of 
height in the layers (that each have two cubes) than the first four layers (that each have three 
cubes). She concluded that the line segment corresponding to that “dip” in the bottle has a 
steeper slope than the line segment corresponding to the first section. This use of “increasing 
rate” implying “steeper” straight line segment is what Stevens (in press) described.  

When considering curved lines, she hesitated to associate it only with the curve of the bottle, 
referencing her bottle from Assignment 3: Part 1 2a (Figure 2), where the curvy bottle still 
resulted in a graph with a straight line. She stated she felt like the bottle was “trying to trick me 
and make me want it [the graph] to be curvy” because “the bottle is curvy”. In the end, she chose 
her final graph to have a curved segment in that region vs. a straight segment, though admitting, 
“So I honestly don’t know which is the move-but let’s go curvy”. 

In summary, Kala wanted to justify a “curvy” graph, but given her reasoning with the bottle’s 
cross section, she could not. In the discussion, we discuss why Kala’s reasoning with the diagram 
was both quantitative and limited, and its implications for students’ amounts of change CR.  

Discussion and Implications 
Across Kala’s work, we noted ways of reasoning about directional change but a struggle to 

reason about rates of change relative to her peers. From her PCA results and assignment, there 
was not much evidence about how she determined rates of change, only that she seemed to 
connect the idea to “dips” in the bottle in the Bottle Problem. However, in her interview, where 
she used her quantitatively appropriate “cube diagram” method, we find Kala’s amounts of 
change reasoning had one major limitation: she chose height intervals that spanned across two 
different rates of change (i.e., decreasing rate then increasing rate). This decision resulted in 
equal changes in volume for a successive change in height in her cube diagram given the 
symmetry of the dip in the bottle. Because this constant change matched the constant changes in 
volume she identified for successive changes in height for the straight segment of the bottle, and 
because that constant change in volume is how she justified a straight line segment in her graph, 
she concluded that the “dip” should do the same (but steeper to accommodate less volume 
added). However, this conclusion perturbed Kala, who still drew a curve on her graph.  

To justify appropriate curvature, Kala would have needed to identify smaller amounts of 
change in height, successive changes in height that started at the beginning of the inward 
curvature of the bottle and symmetric with the outer curve of the bottle (e.g., Figure 5). 
Understanding the necessity of this careful construction of amounts of change is crucial for 
making appropriate quantitative conclusions about the CR of the quantities. From Kala’s work, 
we see the importance of supporting this intellectual need for the careful construction of amounts 
of change. This need goes beyond a need to compare amounts of change in one quantity for 
equal successive changes in another quantity, because as Kala illustrated, she had that goal.  

 

    
Figure 5: Equal changes in height resulting in (left) equal vs (right) decreasing/increasing changes in volume. 
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Whiteness-at-work in Mathematics Department Initiatives to Ameliorate Racialized Gatekeeping 
in Calculus 

 
 R. Taylor McNeill Melissa Gresalfi Luis A. Leyva 
 Vanderbilt University Vanderbilt University Vanderbilt University 

Racialized gatekeeping in calculus courses is a national, systemic concern. However, research 
on equitable calculus instruction has focused on classroom-level changes, providing limited 
guidance for department-level reforms necessary to implement change in large calculus 
programs. To extend such work, we present a case study of a mathematics department at a large 
university engaged in improving its calculus program to better serve Black and Latin* students. 
Informed by critical whiteness studies, we explore how whiteness was maintained amidst this 
equity-oriented initiative. Findings exhibit disciplinary-specific forms of whiteness that stymied 
departmental reform. Implications are provided for equity-oriented, department-level change. 

Keywords: whiteness, mathematics faculty, calculus, testing 

Study Purpose & Background 
Across the nation, undergraduate calculus serves as a source of racialized attrition from 

STEM majors (Chen, 2013). In response, mathematics education research has increasingly 
explored racialized aspects of undergraduate mathematics to offer guidance for advancing equity 
through instruction (Larnell, 2016; Leyva et al., 2021). However, disciplinary and departmental 
factors can hinder the implementation of such antiracist instructional recommendations (Ching & 
Roberts, 2022). The prevalence of faculty’s colorblind beliefs that mathematics is a neutral space 
(McNeill et al., 2022) can impede sociopolitical noticing in the classroom (Louie et al., 2021), 
making it difficult for instructors to enact equitable instruction. Furthermore, racially-conscious 
instructors can find their agency to implement instructional changes limited by the coordination 
of calculus courses across multiple sections. Prior research has explored department-level change 
efforts in coordinated calculus courses, but such interventions have largely focused on 
implementing generally supportive practices (e.g., incorporating active learning pedagogies; 
Williams et al., 2022). Such practices leave the racialization of undergraduate mathematics 
uninterrogated, including the role of calculus as a gatekeeper to STEM majors, and therefore fall 
short in improving course experiences among racially minoritized students (Leyva et al., 2022). 

Higher education research shows that departmental changes are mediated by faculty’s racial 
beliefs as well as historically white institutional structures and policies. During equity-oriented 
systemic change efforts, these manifestations of whiteness can contribute to internal 
contradictions that can cause interventions to fall short of their antiracist aims (Dowd & 
Bensimon, 2015). Critical analysis of race in such research has been reserved for student 
experiences, leaving little guidance about how to counteract whiteness in faculty politics. Such 
analyses are necessary in undergraduate mathematics where disciplinary values, which reflect the 
values of white, male elites who historically codified academic mathematics (McNeill & 
Jefferson, in press), also mediate departmental change. Systemic solutions to address racialized 
gatekeeping in calculus must anticipate and counter ideological forces of whiteness in both the 
discipline and educational structures to actualize equity-oriented aims. This requires 
understanding the functions of whiteness in disciplinary values and institutional structures. 

This paper presents a case study of a mathematics department at Wesselman University 
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(pseudonym), an institution engaged in reforming its calculus program to better serve Black and 
Latin* students. Informed by critical whiteness studies, we assume that whiteness is omnipresent 
and explore its workings in this change initiative through the following research questions: (1) 
How is whiteness functioning in the mathematics department’s initiatives to ameliorate racial 
inequities in calculus courses?; and (2) What role does mathematics, as a discipline, play in the 
reproduction and disruption of whiteness within calculus courses and the department? 

Theoretical Perspectives on Whiteness 
Whiteness is a set of ideologies that reinforce white supremacy, antiblackness, and systemic 

racism (Bonilla-Silva, 2006). For example, of particular relevance to the present analysis is the 
ideology of “quantity over quality” (Jones & Okun, 2001), which describes placing a high value 
on outputs, especially those counted or quantified. This ideology is prevalent in mathematics as a 
quantitative field, privileging abstract and generalizable approaches to produce expedient 
solutions over problem-solving approaches that attend to social context and purpose. 
Consequently, mathematical procedures are leveraged in situations like warfare with limited 
ethical consideration (Ernest, 2018) and, furthermore, dehumanize mathematics students by 
prioritizing the productivity of their labor over the learning experience (Ladson-Billings, 1997). 
Characteristics of whiteness such as these structure norms in undergraduate mathematics classes 
that reinforce racialized access to participation and recognition (Leyva et al., 2021).  

We engage two theories of whiteness to guide our analysis. First, the theory of white 
institutional space (Moore, 2008) characterizes how organizations and institutions, such as law 
schools (the context in which the theory was developed), enact whiteness to maintain racial 
inequity. Moore characterized white institutional spaces as having four features: 

(1) Racist exclusion of people of color from elite law schools and positions of power in legal 
institutions, which results in the accumulation of white economic and political power, (2) 
The development of a white frame that organizes the logic of these institutions and 
normalizes white racial superiority, (3) The historical construction of a curricular model 
based on the thinking of white elites, and (4) The assertion of law as a neutral and impartial 
body of doctrine unconnected to power relations. (p. 27) 

A white frame can be understood as a set of perspectives, shaped by ideologies of whiteness, that 
are used to make sense of everyday situations and shape individuals’ inclinations to action.  

Historically, whiteness has flexibly adapted to maintain dominance in a dynamic U.S. racial 
context (e.g. Bonilla-Silva, 2006). Whiteness-at-work (Yoon, 2012), the second guiding 
perspective for our analysis, characterizes these adaptations. Whiteness-at-work describes how 
individuals ascribe to ideologies that embody contradictions and paradoxes, thus creating the 
appearance of having progressive racial values while reinforcing racial oppression. For example, 
a white teacher expressing a desire to ‘call out’ colleagues on their racially- oppressive beliefs 
while simultaneously avoiding workplace conflict demonstrates whiteness-at-work (Yoon, 
2012).  

Together, whiteness-at-work and white institutional space complemented each other to guide 
our analysis of whiteness in the Wesselman mathematics department. Namely, we examined how 
whiteness-at-work among faculty gives rise to contradictions that impede equity-oriented reform 
and thus maintain workings of the mathematics department as a white institutional space. An 
illustrative example of whiteness-at-work maintaining a white institutional space in a 
mathematics department is a predominantly white faculty ensuring a short list of job candidates 
is racially diverse and then eliminating a Black candidate because her job talk used mathematics 
to interrogate racialized policing (McNeill & Jefferson, in press). 
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Methods 
Research Context and Participants 

 Wesselman University is a large, elite, predominantly white, research-intensive university 
in the southern U.S. During the 2022-2023 academic year, the mathematics department had 
approximately 30 tenure-track faculty, 20 postdoctoral faculty, 10 senior lecturers, and 25 
doctoral students. The demographics of the entire teaching staff were approximately 70% white 
and 85% male. During the same year, the domestic undergraduate population was roughly 40% 
white, 20% Asian American, 10% Black, 10% Latin*, 5% multiracial, and 5% unknown race.  

In 2020, the department and university identified a need to improve the calculus program, 
particularly to ameliorate racial disparities in calculus grades and attrition from STEM majors. 
Before changes were initiated, weekly course meetings consisted of three lectures taught by the 
instructor (a graduate student, postdoc, or lecturer) in groups of 40 students, and a discussion 
taught by a graduate teaching assistant in groups of 20 students. All class meetings, including 
discussions, were led in a lecture-based format. Assessment structures included four midterm 
exams and a final exam. Exams took place in large lecture halls that held multiple sections of the 
course. Hats, backpacks, and other items were not allowed. Instructors were directed to “actively 
proctor” exams. Questions were not permitted. Students experienced exams as high-stress 
environments and frequently reported that they did not have enough time for the exam. 

The research team (the three authors) began a collaboration with the Wesselman mathematics 
department in Spring 2021. Our partnership was structured in three phases: (1) Documenting 
Black and Latin* students’ experiences in calculus; (2) Exploring instructor and stakeholder 
sensemaking about racial equity in calculus courses and related interventions, and (3) Facilitating 
professional development with calculus staff. The present analysis is based on data from the 
second phase, during which several interventions were being piloted. These included some 
implementation of active learning, the introduction of undergraduate course assistants who led 
small study groups outside of class, and replacing the fourth midterm with a “redemption test” 
that could replace a midterm grade. Indicators suggested that these interventions improved, but 
did not eliminate, racial disparities in grades. The mathematics department continued to function 
as a white institutional space despite these interventions. Corresponding to Moore’s 
characteristics of white institutional spaces, this is demonstrated by: (1) A mathematics faculty 
that is approximately 70% white; (2) Shared departmental values that reflect whiteness, such as 
wanting to treat all students the same; (3) A curriculum supported by textbooks written almost 
entirely by white men; and (4) A shared perception of mathematics as socially-neutral.  

Prior to the beginning of the Fall 2022 semester, instructors teaching calculus I courses were 
invited to participate in the study at an in-person meeting of calculus staff, and again through 
email. Faculty who were stakeholders in calculus reform efforts, such as the department chair, 
the coordinator for calculus courses, the director of undergraduate studies, and members of the 
“rethinking calculus” committee, were also invited to participate through email. All who 
expressed interest participated. In this report, we describe participants in aggregate to preserve 
anonymity given the unique departmental context. The 22 participants consisted of 11 calculus 
instructors (five lecturers and six doctoral students) and 13 stakeholders (seven tenure-track 
faculty members, five lecturers, and a postdoctoral scholar), with two participants serving in both 
instructor and stakeholder roles. Participants were majority white and men. 
Data Collection & Researcher Positionality 

Data consists of interviews with instructors and stakeholders as well as class observations 
and departmental artifacts. All interviews were semi-structured, audio recorded, and transcribed 
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verbatim. Interview questions solicited instructor and stakeholder perspectives on: (1) the role of 
race in students’ experiences and instructors’ decisionmaking; (2) traditions in and changes to 
the calculus program; and (3) participants’ role and agency in the mathematics department. 

Interviews averaged one hour in length, with stakeholders participating in one interview and 
instructors participating in four. While the topics discussed with instructors and stakeholders 
were similar, interviews with instructors were more oriented towards instructional sensemaking. 
For example, the third interview asked instructors to read excerpts from interviews with Black 
and Latin* students from the first phase of the study, and consider to what extent students in their 
course(s) might have similar experiences. One abbreviated excerpt is presented below. 

When I'm under [test] time pressure stress, I just start making stupid mistakes. But then when 
I do take my time, I don't finish my problems on time… When I just saw that [exam] grade, I 
was like, “Oh…that's really going to hurt my GPA.”... That was what compelled me to drop 
the class... It was just a matter of weighing what was going to push me farther in life… I 
don’t want to be another Black kid just growing up to be nothing. I feel like breaking those 
social norms or those social views of being Black, that just pushes me to be successful… 
And so me not doing well in calculus wasn’t really an option, per se. 

Interviews with stakeholders had a more expansive focus beyond the classroom and into the 
departmental context. For example, stakeholder participants explored connections between 
interview topics and their involvement with the calculus program (e.g., as a member of the 
“rethinking calculus” committee). 

Secondary data sources included classroom observations and departmental artifacts. Each 
instructor was observed four times. Observations were documented with field notes and audio 
recordings. Departmental artifacts included course syllabi, instructional policy documents, and 
reports produced by department members that proposed or evaluated interventions. 

Two authors collaborated with the mathematics department to build rapport with participants 
and enhance our understanding of the research context. The second author, a white woman, 
participated on a search committee. The first author, a white transgender person, taught a 
calculus course and served as an instructor participant in the present study. The first author 
conducted all data collection for which they were not a participant, allowing them to provide 
instructional feedback and raise topics from informal collegial conversation during interviews. 
The third author, a Latino man, provided an outside lens for analysis informed by his research 
expertise on equity issues in undergraduate mathematics education. Collectively, we were 
reflective about how our respective experiences of privilege and oppression shaped our 
perceptions of whiteness in mathematics. The team resisted deficit interpretations of participants’ 
reflections while maintaining critical awareness that participants served as representatives of a 
discipline and institution that are historically entrenched in racism. 

 
Data Analysis 

Theoretical perspectives of whiteness-at-work and white institutional space guided data 
analysis that followed an open, axial, and selective coding scheme (Strauss & Corbin, 1998). We 
used three sets of open codes. One set of open codes captured white racial frames (Moore, 2008), 
such as paternalism and individualism (Jones & Okun, 2001), used in participants’ sensemaking 
about race, change initiatives, and their role in the calculus reform. This set of open codes 
contributed to answering our first research question about how whiteness influenced reform 
initiatives. Another set of open codes flagged organizational tensions. These included collegial 
conflicts or lack of support, organizational barriers that impede change, and mixed messaging 
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from faculty leadership. The focus on organizational tensions highlights contradictions and 
paradoxes that exemplify whiteness-at-work (Yoon, 2012), also addressing our first research 
question. An additional set of open codes flagged instances where the mathematics discipline 
shaped participant sensemaking about racial equity and related change initiatives in calculus. 
This included using mathematical language, applying quantitative or formal logic, and appealing 
to mathematics epistemological values (e.g., abstraction, generalizability; McNeill & Jefferson, 
in press). This set of open codes supported our exploration of the second research question about 
how white frames and organizational actions are shaped by the mathematics discipline. 

We used two sets of axial codes. One set flagged connections between white racial frames 
and organizational tensions to address our first research question about whiteness-at-work. 
Another flagged connections between white racial frames and mathematics, addressing our 
second research question about mathematical influences on departmental reform in calculus. 
Selective codes extracted contradictions that exemplify departmental whiteness-at-work. 

Findings 
For brevity, this report presents one form of whiteness, “quantity over quality,” through two 

contradictions that exemplify whiteness-at-work in calculus reform. We use testing as a focal 
context to illustrate the maintenance of whiteness amidst equity-oriented reform.  

The department privileged quantitative evaluations of student performance through testing 
over qualitative aspects of learning despite little inquiry into the validity of quantitative 
evaluation measures. Such valorizing of quantitative evaluations was based on the departmental 
beliefs that quantities provided a neutral measure of merit. Since evaluation structures were 
constructed to ensure some failure, this departmental practice functioned as a meritocratic 
mechanism for denying resources (e.g., access to more advanced courses) among those deemed 
unfit and therefore reproduced racialized gatekeeping in calculus.  

Contradiction 1: Trying to Reduce DFW Rates While Maintaining Historical GPAs 
Whiteness-at-work was evident in the department’s effort to maintain the historical GPAs 

while expressing a desire to improve student success in calculus. As one stakeholder articulated, 
If we define success as getting… a C or higher… pretty reliably, 80% of students succeed in 
calculus. Then there's the 20% who aren't succeeding and we want to figure out why, so that 
we can propose solutions to help those students succeed. We don't expect everybody to 
succeed… but 20% seems like a high number. 

Improving the proportion of students who receive a C or higher in the course would require that 
students receive higher grades on tests, given that test scores constituted 85% of a student’s 
grade. Thus, maintaining historical GPAs conflicted with commitments to improving success 
rates. 

Test design was a central context that contributed to whiteness-at-work, wherein whiteness in 
the form of “quantity over quality” framed the department’s underemphasis on qualitative 
aspects of learning. The appropriateness of a test was determined primarily by the range of 
scores it produced, with less oversight given, for example, to the alignment of test questions with 
course learning goals. As one stakeholder shared, 

There were no TA meetings, there was no emphasis or monitoring, mentoring of first-time 
instructors. There were no discussions about where everybody was in the course… It was this 
idea that the principle of academic freedom meant that you could teach whatever you wanted, 
however you wanted, as long as the average of a test exam was X. And nobody really 
monitored... What was the validity of X? How do we get X? How do we design a test?  
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A focus on exam averages rather than content supported reductionist views of tests as either easy 
or hard. To produce tests that were the desired difficulty, instructors described constructing test 
questions from textbook problems beyond those assigned for homework. One instructor shared 
that “some problems… are super similar to the problem set, which will be more easier ones,” and 
“If you go to every section… to the 60s and 70s, although those ones aren't [assigned], I do look 
at some of those to try to see about slightly harder ones to turn into a more harder exam 
problem.” The same instructor described receiving feedback from students that “people wanted 
to see… more exam-type problems in class,” suggesting that students perceived that class did not 
prepare them for the exams. Such test-design strategies reflected the sentiment that a stakeholder 
perceived as common on student evaluations: “assessments are harder or different than what is 
being taught in the class or what is being practiced on out-of-class assignments.” 

Adherence to historical averages was a central priority, despite the department’s professed 
commitment to advancing equity and the qualitative misalignments between presented, practiced, 
and tested content. Following the first midterm, one instructor was advised to produce lower test 
scores on subsequent exams. In a later discussion with a stakeholder about implementing this 
advice, the impact on STEM persistence among Black students, who had received lower test 
averages as a group, was framed as a lesser concern than reproducing historical averages. 

Instructor: In terms of test writing for the next time… I'm imagining what the score 
distribution might have been if I had just made a harder test, and I'm imagining that 
[racial] gap between 83 and 70 moving to 75 and 62, or something like that… given that 
[Calculus I] is a prerequisite and a required class for so many students' majors, it feels 
like shifting the test average for Black students in my class down to a 62 potentially could 
have some real ramifications on their careers. 

Stakeholder: Given the fact that the Black students are getting lower averages than the white 
kids, then if you make your exam… harder… to lower your average, then you're going to 
put these kids in dangerous territory. On the other hand, I think that you probably don't 
want to be in a position where we are just starting tweaking with how we teach calculus 
in your course. I don't think it would be a problem if your course has an average 85 or 
whatever, but from the point of view of how things are currently set up in the math 
department that would spark a lot of probably unpleasant conversations. Right? You don't 
want to be there. It's not up to you to be tackling this problem right now. 

Whiteness in the form of “quantity over quality” was visible in the department’s adherence to 
historical GPAs. This prevented addressing testing structures that were an established source of 
STEM attrition among Black and Latin* students, thus reflecting whiteness-at-work in the 
contradictions between faculty’s commitments to equity and the reproduction of DFW rates that 
the department wished to address. 

Contradiction 2: Teaching and Learning Priorities Disincentivized by Evaluation Practices 
Instructors and stakeholders expressed beliefs that students motivated by test scores would 

engage in rote learning. This was misaligned with desires for students to engage in collaborative 
mathematical sensemaking. The department’s evaluation practices strongly emphasized scores. 
At the same time, reducing the percentage of students’ grades that were determined by tests or 
redesigning tests to better incentivize desired forms of learning were not widely-considered 
interventions. Instead, instructors and stakeholders described a need for students to hone test-
taking skills, in some cases advocating for more class time devoted to test-taking strategies. 
Whiteness in the form of “quantity over quality” can be seen in the department’s loyalty to 
traditional quantitative assessment strategies, even when such assessments were at odds with 
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qualitative aspects of their teaching goals as well as Black and Latin* students’ wellbeing. 
When responding to the interview prompt about testing, GPAs, and racialized pressure (see 

“Methods” section), an instructor claimed that prioritizing test scores hindered student learning. 
Instructor: This always makes me cringe. It [the interview prompt] was just like “This is 

really going to hurt my GPA.” 
Interviewer: What’s cringey about that to you? 
Instructor: Oh, I guess it's the fixation on grades, just this shows that this is in many students' 

eyes, and maybe rationally... “It’s my job here to be the good grade getter.” 
Interviewer: You feel like it gets in the way of learning? 
Instructor: I think so. 

Simultaneously, preparation for tests often included instructional messages like the following: 
You have to put your economics hat on when you take tests and do a cost-benefit analysis… 
Time is currency that you have, the good that you are going to get back is points. Don’t 
invest too much of your currency into a not-valuable commodity. 

In emphasizing test-taking strategies in these ways, the department explicitly directed students to 
focus on aspects of the course that were viewed as unproductive for learning. 

The misalignment between learning goals and the emphasis on testing limited the efficacy of 
an intervention designed to better support Black and Latin* students. Structured study groups led 
by undergraduate course assistants were implemented to foster peer support and a sense of 
belonging, particularly for racially minoritized students. A report on the efficacy of the piloted 
course assistant program found it to be successful in achieving these goals. However, attendance 
waned because students did not perceive that attending study groups helped them with exams. 
Commenting on this pattern, the report stated, “We believe that it would be a dereliction of our 
duty as instructors to teach our students that the only calculus problems that are worth thinking 
about and doing are the ones that could appear on an exam.” In response, the report suggested 
calculus staff should “step up our messaging to the students about the purpose of the [study 
group] tasks” rather than consider how assessment structures could better incentivize the 
socially-supportive study group learning. In this way, this intervention embodied a paradox: 
aiming to ameliorate racial disparities in grades by encouraging Black and Latin* students to 
engage in mathematical work that students perceived to not significantly influence their grade. 

Discussion & Implications 
Our analysis highlighted two contradictions depicting whiteness-at-work. Whiteness 

functioned through a focus on quantitative measurables (i.e., grades), and a de-emphasis of 
qualitative aspects of calculus teaching and learning. While interventions introduced did improve 
calculus courses and reduce racial disparities in grades, such improvements were incremental 
and preserved functions of the mathematics department as a white institutional space. Such 
incremental changes reflect how institutions of mathematics education appear to be progressive, 
and at the same time, reflect forms of self-correction that reproduce racism (Martin, 2019). 

Critical analysis of local data is important to produce change within mathematics 
departments (Bressoud & Rasmussen, 2015; Felix et al., 2015). Although student evaluations, 
test scores, and overall GPAs can serve as such local data, faculty must approach these data with 
equity-mindedness (Dowd & Bensimon, 2015) to mitigate possibilities for white racial frames, 
such as values around quantitative evaluation, to drive reform efforts and, thus, stymie their 
equity-oriented goals. Institutions invested in department-level equity reform should consider 
ways to integrate support and accountability for faculty within mathematics departments to 
ensure that implemented interventions are aligned with broader equity goals. 
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How Students Reconcile Incongruous Mathematics Self-Efficacy 
 

Bridgette Russell Christine M. Phelps-Gregory 
Lake Superior State University Central Michigan University 

Incongruous mathematics self-efficacy (IMSE) is when a student’s self-efficacy does not match 
their performance. We present a subset of results from a larger qualitative study examining 
IMSE in collegiate intermediate algebra. We used qualitative interviews and surveys to 
longitudinally follow students for their entire semester in intermediate algebra and present the 
cases of three students with IMSE (over confidence). We show that participants’ over confidence 
seemed to stem from them doubting their performance would be predictive of their future 
success; participants did eventually lower their self-efficacy in response to repeated low 
performance. Results have implications for college mathematics instructors and for the study of 
self-efficacy. 

Keywords: Beliefs, College algebra, Incongruous mathematics self-efficacy, Mathematics self-
efficacy 
 

In this paper, we present a subset of the results from a larger study that sought to examine 
and describe instances of incongruous mathematics self-efficacy (when students’ mathematics 
confidence does not match their mathematics performance). For this paper, we present the cases 
of three students who had incongruous mathematics self-efficacy in their college intermediate 
algebra class, and we describe how, throughout the course of the semester, the students 
reconciled their self-efficacy to their actual performance. Previous research on incongruous 
mathematics self-efficacy is limited and no previous research has examined how students 
reconcile their self-efficacy with their performance. This work has important implications for 
self-efficacy theory at the undergraduate level as well as for college instructors who teach 
introductory classes and want to help their students better calibrate their work and effort to be 
successful in their college mathematics classes.   

 
Conceptual Framework and Literature Review 

Mathematics self-efficacy (MSE) is defined as a person’s beliefs about their ability to learn 
or perform mathematics (Bandura, 1986). MSE is individualized to the student. That is, a student 
might make the statement “I am good at math” and this could mean that they are good at 
algebraic computations or Calculus, depending on the level of mathematics they have taken. A 
person’s self-efficacy is an individual judgement that only they can make; it is a belief about 
themselves constructed from their perceptions and experiences. These beliefs are subjective. In 
spite of this, MSE is a reliable predictor of performance and perseverance, suggesting that a large 
percent of the time students’ MSE judgements are probably aligned with their abilities (Hackett, 
1985; Hackett & Betz, 1982; Hackett & Betz, 1989; Hutchison et al., 2006; MacPhee et al., 
2013; Marra et al., 2009; Multon et al., 1991). However, previous research has found that 
sometimes self-efficacy beliefs and external measures of ability do not match (Chen, 2006; 
Dassa & Nichols, 2019; Pajares & Miller, 1994; Schraw, 1995; Sheldrake, 2016; Stolp & 
Zabrucky, 2009). This has been called the “feeling-of- knowing accuracy” (Schraw, 1995, p. 
401), a student’s calibration (Pajares & Miller, 1994), or incongruous mathematics self-efficacy 
(IMSE) (Russell & Phelps-Gregory, 2022), the term we will use in this paper. 
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Students who have IMSE can either be “under confident” (their self-efficacy is lower than 
their external performance would suggest) or “over confident” (their self-efficacy is higher than 
their external performance would suggest). Confidence and self-efficacy are not the same 
(confidence is a broader domain general feeling and self-efficacy is a person’s specific subject-
based beliefs in their performance) (Morony et al., 2013). However, for ease of communication, 
we will use these terms instead of under-efficacious and over-efficacious. IMSE can have 
multiple drawbacks on students’ learning. For example, over confidence might lead to students 
not studying or asking for help (Bandura, 1986).  

Previous research on IMSE is lacking but does suggest that it exists. Several studies of 
incongruous self-efficacy (not in mathematics) have been conducted with prospective teachers. 
These studies have found that many prospective teachers demonstrate over confidence in their 
teaching efficacy, rating their teaching ability as higher than outside observers rate it (Dassa & 
Nichols, 2019; Wyatt, 2014). In terms of mathematics, previous research has shown evidence 
IMSE exists (Champion, 2010; Chen, 2006; Labuhn et al., 2010; Lopez & Lent, 1992; Russell & 
Phelps-Gregory, 2022; Sheldrake, 2016; Tellhed et al., 2017). However, this research is often 
limited in sample size and, in many cases, did not set out to identify IMSE. For example, Chen 
(2006) examined seventh graders’ MSE assessments and their teachers’ assessments of their 
abilities in mathematics problem solving. Chen found that students’ judgements were less 
aligned with their performance than their teachers’ judgements, suggesting at least some of the 
students had IMSE (but describing IMSE no further).  

Why might IMSE develop and how might students hold these beliefs in spite of their 
performance? Previous research has confirmed Bandura’s (1986) theory that MSE develops 
based on four sources: (1) mastery experiences (performance on assessments and in mathematics 
courses), (2) vicarious experiences (judgements based on comparison with peers or colleagues), 
(3) social persuasions (verbal encouragement or discouragement from parents or teachers), and 
(4) affective or physiological state (a physical response, like crying during a mathematics test) 
(see, e.g., Hackett and Betz, 1982; Lopez and Lent, 1992; Zeldin et al., 2008). It is likely that 
these four sources also influence the development of IMSE though little research has examined 
this. One study, Sheldrake (2016), found that students with congruous self-efficacy appeared to 
have mostly based their self-efficacy on past performance. In contrast, Sheldrake found that 
under confident students appeared to have based their MSE on perceived peer comparison, 
perceived teacher encouragement, and interests in mathematics. The over confident students 
appeared to base their beliefs on their high perceived belief in the utility of mathematics. This 
work suggests that students may use different sources to form their MSE and which source they 
use may determine if they develop IMSE or not. However, further work is needed to examine 
this relationship. In addition, no work has examined how students continue to hold these beliefs 
in spite of their performance (or adjust their beliefs in response to continued performance 
measures that run contrary with their beliefs). In this paper, we sought to examine this. Our 
research question was: 

How do undergraduate intermediate algebra students who have IMSE (over confidence) 
reconcile their self-efficacy beliefs with their performance during the semester? 
 

Methods 
To identify students with IMSE, we conducted a larger study. Participants in the larger study 

were undergraduate students enrolled in one of many intermediate algebra courses at a 
Midwestern public university. Students in this course who consented were given a survey to 
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identify their MSE and then students with high and low MSE were invited to participate in two 
interviews and to complete two additional surveys, administered at various points throughout the 
semester. Fifteen participants were invited to interviews in the larger study, 11 identified as 
women and 4 identified as male, non-binary, or transgender. To protect the identities of the 
participants, we have given them all pseudonyms (using female or non-binary pseudonyms), and 
we will use non-binary pronouns (they/them) for all participants.  

Interview 1 included questions designed to better understand students’ self-efficacy generally 
and their self-efficacy for intermediate algebra in particular. In it, we asked the students 
questions such as “How would you describe yourself as a math student?” and “On your [first] 
survey you responded by saying [paraphrase], can you tell me why you feel that way?” Survey 2 
was an online survey administered immediately after the first exam, before students received 
their grades for the exam. In it, participants were asked about how they thought they had 
performed on the first exam and how they expected to perform in the course overall. Interview 2 
occurred after students had received their exam grades and before the next exam; we again asked 
participants about their MSE beliefs as related to their experience with the first exam and about 
their MSE for the course overall. There was overlap in what the interviews covered because they 
were designed to examine changes in participants’ MSE throughout the semester. Finally, survey 
3 was administered electronically at the end of the semester once the students had received their 
final grades. This survey included questions about the participants’ final grades as well as how 
they felt about their MSE after the course was over and how it compared to their experiences 
during the semester. The final survey also asked students questions about how their second and 
third exams went, including questions for students to describe how they felt leading up to, 
during, and after each exam compared to the grade they received. Having these final pieces of 
data enabled us to compare students’ MSE beliefs longitudinally throughout the course and to 
compare how those beliefs relate to their final grade. 

The interviews were transcribed and coded for analysis. The codes were based on a pilot 
study with additional codes developed inductively based on the data (Lichtman, 2012). To ensure 
trustworthiness, we used peer debriefing, member checks, and a coding reliability check with a 
third (non-author) researcher (Campbell et al., 2013; Lincoln and Guba, 1985). Once coding was 
complete, we developed emergent themes based on the coding. We defined cases of IMSE as 
when a participant’s predicted grade was at least one full letter grade (10 percentage points) apart 
from their actual grade. That is, a student who predicted they would receive a B- but received a 
C- or lower would be identified as having IMSE. For this paper, we focus specifically on three 
participants who demonstrated IMSE for the course. The three participants were over confident, 
expecting to perform better in the course than they actually performed. We will describe how, 
over the course of the semester, these three participants reconciled their MSE with their ongoing 
lower than expected performance with the larger goal of better understanding IMSE and how 
MSE develops and changes as a result of repeated performance measures. 

 
Results 

Michelle, Lisa, and Adrian were all over confident in their ability to succeed in intermediate 
algebra. Michelle predicted (at the start of the semester) they would receive an A in the course 
but their final grade was a B. Lisa predicted they would receive an A- but received a C. And 
Adrian predicted they would receive a low B but failed the course with an F. We will examine 
each case individually with the goal of examining how each participant reconciled their MSE 
with their performance in the course. Across all three cases, we will see that participants did 
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lower their MSE during the semester, though not always in line with their actual performance. 
And participants did use their algebra performance to judge their MSE; however, they often had 
reasons to doubt their performance would be predictive of their future success which may 
explain why they maintained their over confidence.  

 
Michelle 

When describing why they felt confident about their math work, Michelle said it was because 
they felt the material was mostly review. They said, “[I feel] pretty confident, especially in the 
class I am in now because the stuff we’re doing, I have already done.” When asked about 
understanding the material Michelle said, “Just from my academic background, I feel that I’ll be 
able to get through the course fairly easy because I’ve done math similar to this before.” In spite 
of this, by the end of the course, Michelle’s performance was lower than they initially predicted.  

We can see their grade predictions throughout the course in Table 1. They initially predicted 
they would receive an A, changed to an A or B after exam 1, to a B or A (with the B first) in 
interview 2, and ended the semester with a B. In interviews, Michelle remained confident even 
after exam 1 because they attributed their low score on exam 1 to them forgetting their 
calculator. That is, they said, “I didn’t get as good as the grade I would have gotten I believe with 
a calculator.” They also said, “I thought I would have done way better and like looking at the 
exam doing it… it’s just little tedious mistakes, which I believe from not having a calculator kind 
of screwed me over.” However, as the course went on, Michelle continued to perform lower than 
they expected. After the first exam, when asked what they would do differently, Michelle said “I 
would bring a calculator, and maybe go slower… maybe some of the mistakes I could have 
prevented but I honestly think most of them were from the calculator.” After the third exam they 
stated, “I was nervous about this exam and ended up making dumb mistakes. So, I was 
disappointed with this score (71%) because it was low, because of little mistakes and not actually 
because I don’t know the concepts.”  

 
Table 1. Over Confident Grade Predictions Over the Semester. 

Participant 
First 

Prediction 
(before exam 1) 

Survey 2 
Prediction 

(before grade 
for exam 1) 

Interview 2 
Prediction 

(after exam 1 
grade) 

Final Grade 

Lisa A- A B or C C 
Michelle A A or B B or A B 
Adrian Low B High C, Low B C F 
 
In general, Michelle initially seemed to be over confident because they believed the material 

was review. However, they then seemed to maintain their overconfidence because they blamed 
their lower performance on what they termed “little mistakes” and forgetting a calculator. This 
type of reasoning, blaming something external like a calculator, is often called an external 
attribution (Kelley & Michela, 1980).  In the end, Michelle did reconcile their performance with 
their MSE by slowly lowering their MSE (suggesting a B was possible by Interview 2) but they 
never entirely gave up their prediction of receiving an A. That is, Michelle seems to be a case of 
remaining slightly over confident throughout the semester, with some reconciliation happening 
around Interview 2. 
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Lisa 
Like Michelle, Lisa also believed the math in the intermediate algebra course was review. 

Lisa said “I’ve noticed, especially in [intermediate algebra], I feel like it’s the same stuff I 
learned in Algebra 2 [High School]. So, I feel like I’m reviewing a lot of the time.” And “It kind 
of just feels like I’ve been reviewing, I mean I know it’s only like four weeks in… So, I don’t 
really know what to expect in the future, but as of right now, I feel like it’s all review.” Based on 
this initial belief, Lisa predicted they would receive an A- in the course. Table 1 shows their 
grade predictions throughout the course of the semester. We see that after exam 1 (before they 
received their score) their MSE had increased, and they believed they would receive an A. 
However, by Interview 2, they had lowered their MSE closer to their actual final grade. In 
Interview 1, they said they felt “pretty confident” in the course but, when asked how they felt in 
the second interview, they said “not very confident.” Despite this, Lisa continued to be 
somewhat surprised by their exam scores throughout the semester; for example, regarding the 
third exam Lisa said, “I thought I’d do better on this exam.”  

Lisa’s initial over confidence seemed to stem from their belief that the course was review and 
this over confidence seemed initially reinforced by the exam. In addition, like Michelle, Lisa also 
demonstrated an external attribution for her lower performance, and this seemed to help maintain 
her over confidence. In particular, Lisa partially blamed the instructor for their lower-than-
expected scores. Lisa said, “[My professor] doesn't teach in a way that I have normally been 
taught to do math and this unit is something that I've never done before like rational expressions 
and equations. So, I’ve been struggling.” Lisa also stated of their instructor “I don’t really think 
my teacher has covered enough of [the material] for me to understand.” As the semester went on, 
Lisa also felt the material became more difficult, which may be why they lowered their MSE. 
These lower-than-expected scores were motivating to them, causing them to study harder which 
helped them sustain higher MSE (believing the extra studying would raise their performance). 
Regarding the final exam they stated, “I definitely studied a lot more leading up to the final after 
I received my previous test grades.” Despite this, Lisa received a C in the course and, in the final 
survey, expressed not understanding the material as well as they thought. 

In the end, Lisa did not reconcile their performance with their MSE until Interview 2, where 
they predicted a C was possible and described themselves as not very confident. Lisa seems to be 
a case of being over confident in the beginning but, as the difficulty of the material increased and 
they continued to perform poorly, reconciling their MSE and performance by lowering their 
MSE. In addition, we also see that external attributions for poor performance helped Lisa 
maintain their over confidence.  

 
Adrian 

Adrian demonstrates a different reason for over confidence than Michelle and Lisa. Adrian 
had actually taken the course before, referencing that this was their third or fourth time through 
this same material. From the beginning, they expressed a lot of doubt in their abilities to succeed 
in math courses in general; they specifically said that they were not confident, yet were hopeful, 
that they would pass intermediate algebra at the college level. Adrian initially predicted they 
would receive a low B in the course.  

As shown in Table 1, between Interview 1 and Interview 2, Adrian’s MSE did fall but did not 
align with their final course performance. In fact, Adrian’s MSE never fully aligned with their 
performance. There seemed to be several reasons for this. First, Adrian responded to lower-than-
expected performance by working more and getting help. They said, “I attempted to study more, 
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by working out more problems and getting help from others in the class.” Overall, Adrian 
seemed to believe working out more problems and working with classmates would result in 
better performance though, sadly, it did not. Adrian also believed that their homework and quiz 
scores could make up for poor exam performance, leading them to believe they could still 
perform well in the course. They said, “I know that I absolutely will not ace any exams, but I can 
probably still pass [the course] with the quizzes and homework.” Unfortunately, this is not true 
with the grade calculations of the course.  

Finally, one other reason for Adrian’s high MSE seemed to be that, during the course, they 
were diagnosed with ADHD for the first time. In the second interview, Adrian seemed more 
hopeful that the course would go well because they finally felt like they could learn to navigate 
having ADHD and then do better in the class. Adrian said, “Currently I'm trying to find a 
medication that works for my ADHD and getting accommodations... So that may help once I 
find the right medication [and] actually get the accommodations.” Adrian seemed to attribute 
their past low performance externally, to ADHD, and seemed to believe that fixing this ADHD 
would help them succeed. However, in the end, Adrian was not able to pass the course. 

 
Across the Cases 

Looking across the three cases, two themes emerge. First, all three students did lower their 
MSE during the semester. That is, their continued lower than expected performance did lead to 
lower confidence in their ability to be successful in intermediate algebra. However, this 
reconciliation was slow (happening around interview 2 and not always ever fully aligning with 
their final grade). Second, the reason this reconciliation was slow varied by participant but 
included students externally attributing their poor performance (it was the teacher, the lack of a 
calculator, or ADHD) as well as believing that changes (studying more or getting ADHD 
treatment) would raise their future performance. Overall, we see that all participants doubted that 
their initial exam scores were predictive of future performance (allowing them to maintain over 
confidence). Their MSE only started to lower once they had repeated lower performance. 

 
Discussion 

Previous research has shown IMSE can exist though this research often lacked detail, was not 
at the collegiate level, or was not in mathematics (Chen, 2006; Dassa & Nichols, 2019; Wyatt, 
2014). Our work shows that IMSE does exist in collegiate mathematics and describes 
qualitatively what that IMSE can look like. In addition, no previous research had examined how 
IMSE was reconciled with performance. Our study shows that over confident students do slowly 
reconcile their IMSE with their performance by lowering their MSE. However, this can be slow 
because students externally attribute their low scores and have reasons to doubt their 
performance scores will be predictive (because they are changing their behavior).  

Recall that Sheldrake (2016) found that students with IMSE may base their MSE on sources 
other than mastery experiences (performance). Sheldrake found, in particular, that over confident 
students based their MSE beliefs on the perceived utility of mathematics. Unlike in Sheldrake’s 
study, our participants never mentioned the utility of mathematics as a reason for their MSE; 
however, given they were taking a mathematics course required for graduation, they were 
presumably aware of the utility for their degree. Also in contrast with Sheldrake, we did not find 
that participants were basing their MSE on sources other than performance; that is, they were not 
basing their MSE on social comparison, vicarious experience, or affective/ physiological state. 
Instead, we found that participants with IMSE were using performance as a source of MSE but 
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had reasons to doubt their performance measures were predictive of the future because they 
externally attributed their low performance and changed their behavior. However, these external 
attributions and behavior changes did not lead to them being more successful. 

 
Limitations and Future Work 

The first limitation of this study is the small sample size. Having only fifteen participants, all 
from the same university, limits our ability to extrapolate results. The choice of a small sample 
size allowed us to collect detailed qualitative data at five points in time throughout the semester. 
However, while we were able to identify three cases of over confidence, we were unable to 
identify cases of under confidence. It is unclear if this is because this is rare or if participants 
with under confidence simply did not participate in the study. This could be a topic for future 
research where larger sample sizes might help better identify such participants. 

An additional limitation is the self-reporting nature of the surveys. Self-reporting is necessary 
to capture the MSE beliefs of students at a point in time and is common in previous research on 
MSE (Dassa & Nichols, 2019; Hackett, 1985; Pajares & Miller, 1995). However, one issue that 
can arise is students’ desire to give the “correct” answer, how they think they “should” feel. To 
account for this, in the interviews, we asked students to describe and elaborate on their MSE 
beliefs multiple times and then used member checking to ensure trustworthiness. However, it is 
always possible that students did not share the full truth with us as researchers. 

 
Implications for Practice 

The findings in this study indicate that instructors should be aware of students who are under 
or over confident and potentially take measures to help students calibrate their MSE beliefs with 
their performances. This is not to say that we need to go around lowering or raising students’ 
MSE beliefs, but rather that we should try to help students become aware of their own abilities in 
realistic ways. Perhaps we can design instructional material that includes components of 
introspection alongside the content. Such introspection could increase the likelihood that students 
will adjust their MSE beliefs accordingly.  

Another aspect of this study that is informative for instructors is that MSE beliefs can change 
over the course of the semester. What this means for instructors is the need to “keep a pulse” on 
their students and their MSE beliefs. This is especially true with repeated performances that are 
not what the student initially expected. Instructors could help students by encouraging them to 
have a personal meeting with the instructor after the first or each exam. This session would not 
have to be very long, but it would be a time to address the student’s performance on the exam, 
any questions they missed, and the long-term effects of the exam and their current homework or 
quiz performances on their grade. This counseling session could help students to have a better 
understanding of the situation they are in and calibrate their MSE and performance better. 

Overall, our results show that IMSE exists, is a result of specific reasons from the students’ 
course (e.g., initially seeming easy), and is based on factors similar to MSE but with students 
perhaps interpreting these factors differently than instructors. Learning about IMSE serves as an 
opportunity for instructors to better understand their students and help their students better 
understand themselves and what leads to their success. If we can continue the pursuit of helping 
students achieve their goals and learn about themselves, we can increase student success in 
mathematics. 
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Knowledge Resources for Multiplication and Challenges Reasoning About the Product Layer 
 

 Andrew Izsák Olha Sus 
 Tufts University Tufts University 

Research on students’ construction and interpretation of integrals has grown significantly over 
the past decade. Some work has identified classes of interpretation for definite integral notation 
that include areas under curves, antiderivatives, and adding up pieces. The present study 
contributes to recent research on challenges students experience with the “product layer,” 
!(#) ∙ &#, when reasoning about adding up pieces. In particular, we present a case study in 
which 1 college student in a first-semester, calculus-based physics course drew on multiple 
knowledge resources associated with multiplication as she tried to construct a definite integral 
in a situation that for her was novel. Our results suggest that students’ understandings of 
multiplication with quantities is understudied in the literature on integration and an important 
direction for further research.  

Keywords: Calculus, Integration, Product layer, Knowledge-in-Pieces 

Introduction  
An earlier generation of research on the teaching and learning of calculus focused primarily 

on limits and differentiation (e.g., Larsen et al., 2017; Rasmussen et al., 2014). Although 
research on integration goes back several decades (e.g., Orton, 1983), research on the topic has 
accelerated considerably in the last decade (e.g., Jones & Ely, 2023). We concur with Oehrtman 
and Simmons’ (2023) recent observation that research to date has focused on “students’ 
meanings associated to components and relationships within the standard definition of a limit of 
Riemann sums” (p. 36). Less research exists on students’ moment-to-moment reasoning when 
constructing integrals to model problem situations. Furthermore, in our reading, existing 
literature has hinted at challenges students can experience coordinating multiplicative 
relationships between quantities with understandings of integration. This same literature, 
however, has stopped short of examining such challenges closely. 

In the present study, we analyze in detail the reasoning of Larisa, one college student drawn 
from a larger study in which we examined how first-semester, calculus-based physics students 
coordinated reasoning about multiplication with quantities with reasoning about definite 
integrals. The analysis provides an existence proof that such coordination can be complex and, 
thus, suggests that inattention to students’ reasoning about multiplication with quantities is 
understudied in the literature on integration and an important direction for further research. We 
asked the following research questions:  

1. What knowledge resources did Larisa evidence when reasoning about multiplication with 
quantities?  

2. How did Larisa coordinate her multiplication resources with understandings of definite 
integrals to solve what was for her a novel problem? 

The first question asks about resources related to multiplication broadly and independently of 
integration. The second question avoids situations where Larisa might simply recall previously 
learned relationships––for instance, that velocity is the integral of acceleration. 
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Literature Review 
Although definite integrals are defined as limits of Riemann sums, researchers have debated 

the role of these sums in students’ reasoning. Jones (2013, 2015a) drew on Sherin’s (2001) 
symbolic forms to classify how nine college students interpretated definite integral notation. He 
reported three primary forms. For the perimeter and area form students interpreted the integrand, 
the limits of integration, and the x-axis as boundaries of an enclosed region not partitioned 
further or approximated. For the function matching form, students interpreted the differential, dx, 
as indicating that the function to be integrated, f(x), is the derivative of some other function that 
is yet to be determined. For the adding up pieces form, students interpreted the !(#)&# notation 
as indicating small amounts of a target quantity that are then added. Finally, if one interprets 
!(#)&# as a product, then one can think of a multiplicatively-based summation (e.g., Jones 
2015a). Thus, this last form is well-aligned with the definition of a Riemann sum. (Thompson & 
Silverman, 2008, developed an alternative approach to integration based on accumulation from 
rate.) 

We highlight four themes related to the adding up pieces form. First, even after instruction, 
Riemann sums often remain peripheral to students’ understanding of definite integrals (e.g., 
Jones, 2015a, 2015b; Jones et al., 2017; Rasslan & Tall, 2002). Second, students can be confused 
by using rectangular areas to model other quantities, such as distances (Thompson et al., 2013). 
Third, within the traditional ∫ !(#)&#!

"  notation students can have trouble interpreting !(#)&# as 
expressing multiplication (e.g., Ely, 2017; Jones, 2013; Sealey, 2014). Sealey provided the most 
direct result: She decomposed reasoning about definite integrals into five layers––orientation, 
product, summation, limit, and function––and reported that college calculus students had the 
most difficulty reasoning about !(#)&# in the product layer. She concluded that students had 
trouble not with calculations but with “understanding what is being multiplied together and 
what quantity is produced from that multiplication” (p. 240). Fourth, there is debate over the 
range of situations to which the multiplicatively-based summation and Riemann sum 
interpretations can apply. Meredith and Marrongelle (2008) claimed that (a) multiplicatively-
based summation only makes sense when the quantity being integrated can be conceived of as a 
rate and (b) thinking about the electric field at a point, (#, due to a bar charge is better thought of 
as summation of small effects. We question whether this really is a counter-example: The small 
effects in this linear situation can be thought of as the accumulation of the rate of field strength 
per unit of charge, $%!, multiplied by the charge in small segment of the bar, Dq, a distance r from 
(#.Thus, conceiving of the quantity being integrated as a rate applies more broadly than 
previously acknowledged.  

The present study builds most directly on Oehrtman and Simmons’ (2023) recent discussion 
of Emergent Quantitative Models for definite integrals, which consists in turn of three primary 
models. A basic model is based on constant values for quantities. A local model is an adaptation 
of a basic model to a small portion of an object or event in which quantities may be 
approximated as constant. A global model is derived from the accumulation of local models. 
These researchers presented examples to demonstrate that student reasoning can involve varied 
interactions among basic, local, and global models. Examples include making different choices 
for (a) which factor in a product to treat as infinitesimal and (b) partitioning. At the same time, 
they stopped short of considering students’ ecology of knowledge resources for multiplication.  
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Theoretical Framework 
Our theoretical frame combines mathematical structure (as perceived by experts) with 

cognitive components evidenced by students. Vergnaud (1983, 1988) analyzed mathematical 
structures for multiplication with quantities and distinguished two subtypes of multiplication 
situations. In an isomorphism-of-measure-spaces situation (I-O-M) the multiplicative structure 
consists of a simple direct proportion between two measure spaces )# and )& (1983, p. 129). An 
example is a measure space for time in seconds, a measure space for distances in meters, and the 
relationship  '()(%**(+,-. ∙ *+,-.&*. In a product-of-measure-spaces situation (P-O-M) the 
multiplicative structure consists of the Cartesian composition of two measure spaces, )# and )&, 
into a third, )/ (1983, p. 134). An example is a measure space for area in ,/&, a measure space 
for height in	,/, and the relationship 23+2	(,/&) ∙ ℎ+56ℎ7	(,/). The distinction between I-O-M 
and P-O-M situations highlights two different ways one might interpret A • B as a basic model.  

For the cognitive component, we draw from the knowledge-in-pieces epistemological 
perspective. The perspective was first developed in science education research on conceptual 
change (e.g., diSessa, 1993, 2006) and has been applied to various topics in mathematics, 
including multiplication (Izsák, 2005; Izsák et al., 2021), functions (e.g., Moschkovich, 1998), 
and integrals (Jones, 2013). From this perspective, reasoning is supported by diverse, fine-
grained knowledge resources and novice knowledge evolves into expert knowledge through 
processes such as the construction of new knowledge resources that are sensitive to context for 
activation, refinement of contexts in which resources are applied, and reorganization that can 
involve forming new connections among some resources and loosing connections among others. 
In the present study, we examined knowledge resources Larisa cued and evidenced when 
reasoning about multiplication with quantities in the context of definite integrals.  

Methods 
We conducted one-to-one, semi-structured interviews (e.g., Bernard, 1994; Ginsburg, 1997) 

to assess how physics students reason about multiplication with quantities and the integral 
concept in both I-O-M and P-O-M situations. In Spring 2023, we recruited five students enrolled 
in first-semester, calculus-based physics at a selective university. Each participant completed 
three, 1-hour interviews spaced a few weeks apart.  

The first interview asked students to reason about three situations––two I-O-M situations  
about estimating distance from varying velocity and one P-O-M situation about estimating 
volume from varying cross-sectional areas. The tasks were ones for which one could first 
multiply and then add to construct a total, but there was no mention of integration. We paid close 
attention to how students assigned units of measurement to quantities when multiplying. The 
second interview asked students to reason about two P-O-M problem situations (one estimating 
volume from cross-sectional areas and one about person-hours) and then to interpret the 
∫ !(#)&#!
"  notation in the context of each. We paid close attention to how students reasoned 

about units and graphical representations when interpreting integrals. The third interview asked 
students to reason about two I-O-M situations (one about water pressure on wall and one about 
acceleration from rest) and then to interpret the ∫ !(#)&#!

"  notation in the context of each. Again, 
we paid close attention to how students reasoned about units and graphical representations when 
interpreting integrals.  

We recorded the interviews using two cameras, one to capture the student (body movements, 
hand gestures, etc.) and the interviewer and one to capture close ups of the student’s written 
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work. We collected all written work for later analysis at the end of each interview. We used a 
computer to synchronize and combine the two video recordings file into a single file. In addition, 
we transcribed the interviews verbatim. 

We watched videos for all five students side-by-side with the transcripts. After multiple 
viewings of the interview data, we narrowed our attention to Larisa and studied her as a 
particularly good case for our research questions. She provided evidence for several resources 
related to multiplication with quantities but, at the same time, coordinating those resources with 
her understandings of definite integrals was not straight forward, particularly when working on 
the Water Pressure task in Interview 3. We then traced Larisa’s spoken language, hand gestures, 
and drawings in more detail to make sense of her reasoning.  

Results 
Larisa was majoring in engineering and self-reported good grades (B range) in her prior 

precalculus and calculus courses and on the calculus AB exam. We summarize a few key points 
from Interview 1 and Interview 2 before discussing in detail her performance in Interview 3.  

In Interview 1, Larisa used the trapezoid method on a velocity graph to estimate distance 
traveled and focused on computations––for instance, when asked where she saw distance in her 
work, she canceled units in 0(()

*(+,-. ∙ *+,-.&*. She appeared to understand such cancelation as a 
formal method for determining units for the product, but she did not connect her symbol 
manipulation to her graph. She also gave a fluent explanation for how to estimate the volume of 
liver when given cross-sectional areas in cm2 and spaced 2 cm apart. In particular, she recalled 
multiplication from the formula “length times width times height gives you volume.” In 
Interview 2, Larisa considered a similar liver problem when given cross-sectional areas in cm2 
and spaced 1/3 inches apart. This time, she discussed the integral as giving the area under a 
curve; but, her explanation for the role of multiplication was imprecise. At one point she 
commented “if you multiply the x axis by the y axis….you get the whole area under [the graph].” 
At another point, she commented “I just kind of know you have to write the dx. I kind of, like I 
haven’t done integrals in a while, so I kind of forget why it’s exactly that way, but it’s like this 
means integral. So this means area under the curve.” Finally, she mentioned “the integral is the 
opposing, I guess the inverse of the derivative.” Thus, in Interview 1 and Interview 2, Larisa 
articulated two meanings for integrals (areas under curves and anti-derivatives) and recalled how 
multiplication related quantities in familiar situations; but, she did not provide evidence for 
interpreting !(#)&# as a product.  

For Interview 3, we adapted the Water Pressure task (Figure 1) from prior studies (e.g., 
Oehrtman & Simmons, 2023; Sealy, 2014). In so doing, we deliberately omitted direct references 
to multiplication and integration because we wanted to see how students would reason about 
these spontaneously in what for them was a novel task. We also omitted units for pressure and 
for force, because we did not want students to rely on formal cancelation of units. Using 
Oehrtman and Simmons’ (2023) terms, the basic model would be pressure • area = force, or P • 
A = F, and the corresponding local model would be 15x • 4Dx. Larisa did not produce a complete 
correct solution, but the multiplication knowledge resources she cued could play a central role in 
one or another of at least three different correct solutions. The first solution follows Oehrtman 
and Simmons’ local model and computes ∫ 15# • 4&#/

1 	= 270. The second solution considers the 
average pressure on the wall. Because the pressure varies linearly with respect to depth, the total 
force on the wall is the pressure at the average depth multiplied by the area of the wall. In this 
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case, 22.5 • 12 = 270. The third solution considers the force per 1-foot width of wall multiplied 
by the width of the wall in feet. In this case, ∫ 15#&#/

1  • 4 = 67.5 • 4 = 270. 
 
 
 
 
 
 
 

 
  
 
 
 
 

 
Figure 1. The Water Pressure task 

Data 
Upon reading the task aloud, Larisa reported that she did not recall working similar tasks in 

her prior experience. She graphed pressure as a function of depth, shaded the area under her 
graph, and stated that “taking like the integral of this bottom piece here would probably get you 
the total force kind of applied throughout” (Figure 2). She then computed the area of the triangle, 
!•#$
%  = 45 + 

#$
% =	67.5, and stated she was not sure what units to attach to force. Finally, she 

computed the area of the wall and multiplied 67.5 • 12, stating that 67.5 was the “average 
pressure.” She concluded with the following explanation for how she saw multiplication in the 
situation:  

Larisa: Some pressure applied across a surface area creates a total force. That sounds like a 
very English way of saying like P times A equals F. Um, I think I would definitely like 
think you need to take the average in order to at least have it be an easier problem, 
because I don’t know how you would do it if you were just kind of going like piece-by-
piece as the pressure is increasing. That seems difficult and weird.  

Analysis 
Larisa relied on the text to cue multiplication in a novel situation and articulated an 

appropriate basic model, P • A = F. She also introduced both holistic and local approaches to the 
task. She initiated the holistic approach by cuing the notion of an average value, which she 
incorrectly associated with the integral or area under her graph of the pressure function. She then 
multiplied what she took to be the average pressure, 67.5, and multiplied by the area of the wall. 
This reasoning overlapped with the second solution discussed above when she multiplied by 12 
and with the third solution discussed above when integrating the pressure function from 0 to 3.  

When reasoning that integrating a pressure function would give an average pressure, Larisa 
did not seem aware that the units for the region under her graph would be different than those for 
pressure. This complemented the data from Interview 2 that multiplication with quantities was 
not well-coordinated with reasoning about integrals. At the same time, Larisa’s discussion of 

Pressure, P, applied across a surface area, A, creates a total force, F. Consider a 
vertical side wall of a tank with a width of 4 feet and a maximum depth of 3 feet (see 
picture below). Assume that the tank is full of water. The pressure on the tank wall 
increases with the depth of the water according to the following law: < = 15#, where 
# is the depth of the water (the deeper the water, the greater the pressure). Given this 
information, describe a method for approximating the total force from the water 
pressure on the wall. 

 

x 3 ft 

4 ft 
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“going like piece-by-piece” suggested that she gave initial consideration to a solution based on 
adding up pieces but predicted that this approach would be “difficult and weird.”  

           
Figure 2. Larisa’s work on Water Pressure task (converted to grayscale) 

Data 
Larisa continued to compare her approach based on averages to an approach based on adding 

up pieces. On the one hand, she recalled how the meaning of the integral was explained in her 
past calculus classes: “That’s like how they explain integrals in class. They’ll explain it as like a 
ton of really small sections, and then you just add them all up.” At the same time, she remained 
skeptical: “I think if you were to do the force on like one of those really, really, really small 
sections, it would just be really small, because the surface area would be basically nothing. So 
you kind of need it to be a larger scale thing.” At the interviewer’s request, Larisa drew a 
horizontal line on the wall to indicate what she meant by a “small section” and wrote an 
appropriate multiplicative expression (i.e., the local model) for the force: 15 * .04 = .6 N (Figure 
2). She explained:  

Larisa: Like at 1 foot, and it’s 0.01 part of a section. So it would be 15, which is the pressure 
at that depth, and then times .01 times 4, so like .04, and then that would equal .6 
Newtons. And that’s like just a really small amount. And like you can go smaller than 
that, and you like, it like just infinitely gets smaller to the point where like it doesn’t 
matter, nobody’s going to ask you that question. Because like you’re asking about just 
like the pressure on like a crack in the glass, and that’s not, that’s not helpful.” 

Analysis 
Larisa clearly recalled from past instruction the adding up pieces interpretation of the definite 

integral, and she gave a clear explanation for a normatively correct local model where she 
assumed a constant pressure over a thin, rectangular area. At the same time, even though she 
knew such reasoning would be encouraged in class, she rejected it in favor of “a larger scale 
thing.” Thus, Larisa’s appropriate local model was in tension with her sense of what could 
contribute to a consequential effect. Part of the issue may have been lack of experience 
accumulating many small contributions into a larger effect. 

Data  
An exchange later, the interviewer recalled Larisa’s comment about an English way of 

indicating multiplication and asked for more detail. Larisa responded:  
Larisa: Multiplication makes sense because I don’t, because addition doesn’t because, and I 

don’t know the units, but like in order to get a new unit, it would need to be 
multiplication or division. Because addition would just be like, you can’t add pressure 
and surface area. It’s not like terms. You would need to multiply them to create a new 
term, which would be force. 

She reiterated that “total” cued multiplication and explained that division would be for a 
“specific point.” A few exchanges later, she restated that the area under her graph for the 
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pressure function gave an average pressure and provided another example analogous to her 67.5 
• 12 calculation––she considered 1 foot of water depth and multiplied the triangular area under 
the pressure graph by the area of a 1 ft-by-4 ft section of wall, 7.5 • 4.  

Finally, after working for a while on another task, Larisa returned to the Water Pressure task, 
wrote “∫-!	<”, computed #23

!

& , and explained that she was trying to see if this would also solve 
the problem. She evaluated her expression at x = 3 and got 67.5 once more.  

Analysis 
Similar to her work in Interview 1, Larisa demonstrated connections between multiplication 

and transformation of units when she said, “You would need to multiply them to create a new 
term, which would be force.” We think it likely she was thinking about “new terms” when she 
performed her 67.5 • 12 and 7.5 • 4 calculations, even if she was unsure which units to use for 
pressure and for force. At the same time, she did not reference transformation of units when 
thinking about area under her graph of the pressure function. She characterized this area as the 
average pressure early on in her work and restated this interpretation after discussing 
multiplication to create a “new term.” Somehow notions of area under a curve did not cue for 
Larisa a similar transformation of units.  

Conclusion  
To answer our first research question, Larisa demonstrated a variety of knowledge resources 

associated with multiplication, including some specific results (e.g., recalled speed • time = 
distance and area • height = volume relationships) and some general associations with finding 
totals, transforming units, and taking averages. She used these resources to distinguish 
multiplication situations from those calling for addition, subtraction, or division. Because each of 
these multiplication resources could support one or another of the three solutions we mapped for 
the Water Pressure task, none was inherently correct or incorrect. What mattered was how she 
employed subsets of the these resources when reasoning. To answer our second research 
question, Larisa mentioned antiderivatives in passing when working on the Water Pressure task, 
and discussed antiderivatives to a greater extent when working on further tasks about 
relationships among distance, velocity, and acceleration. More often, she attended to areas under 
curves, but did so in different ways. In Interview 1, she clearly broke up areas into trapezoidal 
pieces and added, but in Interview 3 she did not partition the area under her graph for the 
pressure function. Instead, motivated by what she perceived to be an efficient solution, she 
computed integrals as areas of triangles. From our perspective, when interpreting these areas as 
averages, Larisa combined using the total area of the wall from the second solution we mapped 
with the force per 1-foot width from the third solution we mapped. Again, using averages was 
not inherently correct or incorrect. Most striking was her use of multiplication to construct the 
normatively correct local model which she then rejected as less useful than a holistic approach. 
Larisa’ use of relevant resources in combinations that do quite work and competition between a 
normatively correct local model with others of her resources underscore the complexity of 
coordinating reasoning about multiplication with reasoning about integration. 

Acknowledgments 
This work was supported by the Graduate Student Research Competition Funding at Tufts 

University, Graduate School of Arts and Sciences. 

26th Annual Conference on Research in Undergraduate Mathematics Education 78



References 
Bernard, H. (1994). Research methods in anthropology (2nd ed.). Sage. 
diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2/3), 

105–225. doi: 10.1080/07370008.1985.9649008 
diSessa, A. A. (2006). A history of conceptual change research: Treads and fault lines. In R. K. 

Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 265–282). Cambridge 
University. doi: http://dx.doi.org/10.1017/CBO9780511816833.017 

Ely, R. (2017). Definite integral registers using infinitesimals. The Journal of Mathematical 
Behavior, 48, 152–167. 

Ginsburg, H. (1997). Entering the child’s mind: The clinical interview in psychological research 
and practice. Cambridge University Press. 

Izsák, A. (2005). “You have to count the squares”: Applying knowledge in pieces to learning 
rectangular area. The Journal of the Learning Sciences, 14(3), 361–403. doi: 
10.1207/s15327809jls1403_2 

Izsák, A., Beckmann, S., & Stark, J. (2021). Seeking coherence in the multiplicative conceptual 
field: A knowledge-in-pieces account. Cognition and Instruction, 40(3), 305–350. 

Jones, S.R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of 
Mathematical Behavior, 32(2), 122–141. 

Jones, S.R. (2015a). Areas, anti-derivatives, and adding up pieces: Integrals in pure mathematics 
and applied contexts. The Journal of Mathematical Behavior, 38, 9–28. 
https://doi.org/10.1016/j.jmathb.2015.01.001  

Jones, S.R. (2015b). The prevalence of area-under-a-curve and anti-derivative conceptions over 
Riemann-sum based conceptions in students' explanations of definite integrals. International 
Journal of Mathematics Education in Science and Technology, 46(5), 721–736. 
https://doi.org/10.1080/0020739X.2014.1001454 

Jones, S., Lim, Y., & Chandler, K. (2017). Teaching integration: How certain instructional 
moves may undermine the potential conceptual value of the Riemann sum and the Riemann 
integral. International Journal of Science and Mathematics Education, 15, 1075–1095.  

Jones, S.R., & Ely, R. (2023). Approaches to integration based on quantitative reasoning: Adding 
up pieces and accumulation from rate. International Journal of Research in Undergraduate 
Mathematics Education, 9(1), 8–35.   

Larsen, S., Marrongelle, K., Bressoud, D., & Graham, K. (2017). Understanding the concepts of 
calculus: Frameworks and roadmaps from educational research. In J. Cai (Ed.), Compendium 
for research in mathematics education (pp. 526–550). National Council of Teachers of 
Mathematics. 

Meredith, D., & Marrongelle, K. (2008). How students use mathematical resources in an 
electrostatics context. American Journal of Physics, 76, 570–578.  

Moschkovich, J. (1998). Resources for refining mathematical conceptions: Case studies in 
learning about linear functions. The Journal of the Learning Sciences, 7(2), 209–237. doi: 
10.1207/s15327809jls0702_3 

Oehrtman, M., & Simmons, C. (2023). Emergent models for definite integrals. International 
Journal of Research in Undergraduate Mathematics Education, 9(1), 36–61. 

Orton, A. (1983). Students’ understanding of integration. Educational Studies in Mathematics, 
14(1), 1–18. 

Rasmussen, C., Marrongelle, K., & Borba, M. (2014). Research on calculus: What do we know 
and where do we need to go? ZDM–Mathematics Education, 46, 507–515. 

26th Annual Conference on Research in Undergraduate Mathematics Education 79



Rasslan, S., & Tall, D. (2002). Definition and images for the definite integral concept. In A. 
Cockburn & E. Nardi (Eds.). Proceedings of the 26th annual meeting of the International 
Group for the Psychology of Mathematics Education. PME.  

Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and 
definite integrals. The Journal of Mathematical Behavior, 33, 230–245.  

Sherin, B. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 
479–541.  

Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. In M. P. 
Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in 
undergraduate mathematics (pp. 43–52). Mathematical Association of America. http://pat-
thompson.net/PDFversions/2008MAA Accum.pdf.  

Thompson, P., Byerley, C., & Hatfield, N. (2013). A conceptual approach to calculus made 
possible by technology. Computers in the Schools, 30(1–2), 124–147. 

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of 
mathematics concepts and processes (pp. 127–174). Academic Press. 

Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & M. Behr (Eds.), Number concepts 
and operations in middle grades (pp. 141–161). National Council of Teachers of 
Mathematics; Erlbaum.  

26th Annual Conference on Research in Undergraduate Mathematics Education 80



Moving Between Abstraction Levels by Linking Recursion and Induction 
 

 L. Marizza A. Bailey Dov Zazkis Alison Mirin 
 Arizona State University Arizona State University University of Arizona 

The relationship between mathematical induction (MI) and recursion compels us to ask how we 
could leverage recursive functions to bolster students’ understanding of MI. We describe task-
based interviews that utilized concurrent interactions with MI tasks and recursive functions that 
mirrored those induction tasks via a character-based user-interface. To gain insights into how 
students’ conceptions of MI and recursion co-evolved as they interacted with these tasks, it was 
necessary to accommodate these multiple concurrent contexts by extending Hazzan's (1999) 
Reducing Abstraction framework. Our extended framework, called the Navigating Abstraction 
framework, documents ascending, descending, and transferring abstraction levels across 
contexts. Viewing the data through this lens allowed us to illustrate the way in which these three 
mechanisms together play a crucial role in students joint development of their understandings of 
both recursion and induction.  

Keywords: Mathematical Induction, Recursion, Proof, Reducing Abstraction 

In this paper, we study how students cope with the abstraction required to understand both 
mathematical induction (MI) and recursion by leveraging the link between them. Accordingly, 
we designed and implemented an instructional sequence of parallel recursion-MI tasks. In order 
to determine the abstraction level at which students understood recursion and MI, it was 
necessary to extend the Reducing Abstraction framework (Hazzan, 1999, 2003). Our extended 
framework, called the Navigating Abstraction framework, provided a lens for examining how 
students’ understanding of recursion and induction co-evolved as they ascended and descended 
levels of abstraction as well as transferred levels of abstraction across contexts. We use the term 
recursive program to describe a computer program whose primary purpose is educational, but 
whose primary mechanism is recursion. Our study addresses the two research questions:  

1. How does interaction with a recursive program (which mirrors an MI task) affect 
students’ conception of MI? 

2. How does concurrent interaction with both a recursive program and MI task affect 
student's understanding of the relationship between them? 

Literature and Framework 
Mathematical Induction involves a logical statement which is applied as a technique for 

proving statements involving countably infinite sets. In fact, taken separately, the abstract nature 
of proofs (Davis et al., 2009; Healy & Hoyles, 2000; Knuth et al., 2009), complex logical 
statements (Durand-Guerrier, 2003; Roh, 2010; Stylianides et al., 2004), and infinity (Davis et 
al., 2009; Wijeratne & Zazkis, 2015; Dubinsky et al., 2005) have all been shown to entail 
conceptual hurdles, resulting in a substantial body of literature on MI highlighting obstacles to its 
conceptualization (Baker, 1996; Brown, 2008; Dubinsky, 1989; Harel & Sowder, 1998). 
Research on students’ understanding of MI (Brown, 2008; Davis et al., 2009; Harel, 2002) 
suggests that the inductive step may pose an obstacle to understanding MI. Furthermore, findings 
from these studies indicate that understanding the inductive step of MI requires a transition from 
perceiving MI as a process relating finitely many cases to interpreting MI as an infinite iterative 
process (Brown, 2008). Additionally, the statement of MI is a complex conditional statement 
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regarding the truth value of a predicate function defined on the positive integers, and studies 
have found that conditional statements are often misinterpreted (Hoyles & Küchemann, 2002; 
Stylianides et al., 2004).   

Given that the Reducing Abstraction framework (Hazzan, 1999, 2003) has been effectively 
used in both computer science education research (Hazzan & Hadar, 2005; Rich & Yadav, 2020; 
Sakhnini & Hazzan, 2008) and in mathematics education research (Hazzan, 1999; Hazzan & 
Zazkis, 2003; Raychaudhuri, 2014), we felt it was well suited for our Computer 
Science/Mathematics context. 

Hazzan’s (1999, 2003) framework is built on a variety of interpretations of abstraction that 
collectively form the basis of the framework. Each interpretation can be applied to examine 
students’ understanding of concepts in pure mathematics, applied mathematics, computation, and 
data structures. We summarize the characterizations of each of her interpretations of abstraction 
below: 

1. Abstraction level as the quality of the relationship (QR) between the object of thought 
and the thinking person (Hazzan, 1999) refers to the interpretation that abstraction is not 
an inherent property of a concept, but rather the relationship between the person thinking 
about the concept and the concept itself. For example, when students are confronted with 
a problem and are “fumbling in the dark without any mental object to hang onto” 
(Hazzan, 2003, p. 107), they may subconsciously reduce the level of abstraction by 
turning to a familiar concept, experience, or object. 

2. Abstraction level as reflection of the process-object duality (POD) (Hazzan, 1999) is 
built on earlier work on the process object distinction (Dubinsky, 1991; Sfard, 1991). 
This construct refers to the interpretation that conceiving a mathematical concept as a 
process is at a lower level of abstraction than examining it as a mathematical object. 
When a concept is understood as an object, one can examine the relationships between 
two concepts. However, if it is perceived as a process, the concept is expressed using 
canonical procedures (Hazzan, 2003).   

3. Abstraction level as the degree of complexity (DC) of the mathematical concept (Hazzan, 
1999) refers to the interpretation that the more complex an idea is, the more abstract it is. 
One may reduce the level of abstraction of an object by reducing its complexity. For 
example, a student may replace a set with an element of the set. 

To demonstrate the utility of Hazzan’s framework, we view the following results from 
existing MI literature through the interpretations the framework provides. (1) We could interpret 
Harel and Sowder’s (1998) findings that students viewed MI as generalizing a conclusion by 
computing a few cases as reducing the abstraction level as the quality of the relationship (QR) 
because they were choosing to rely on more familiar computations of concrete examples rather 
than the unfamiliar concept of MI. (2) We can interpret Brown’s (2008) observation that students 
had ignored some aspects of an MI task and “reduced the task to an algebraic” (p.13) process as 
reducing abstraction as a reflection of process-object duality (POD). Finally, (3) interpreting the 
results of Baker (1996) through the lens of reducing abstraction, we can conclude that by 
omitting the base case, students removed a conjunction from the hypothesis of MI. This rendered 
the complex statement comprising MI, which is of the form “ if [P and (Q implies R)] then S” to 
a simpler statement “If [Q implies R], then S”, thereby reducing the abstraction level of MI as 
the degree of complexity (DC). The above three examples demonstrate established results from 
MI literature can be viewed through the lens that the reducing abstraction framework provides. 
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During our analyses of students working on parallel MI-recursion tasks, it became clear that 
(a) students sometimes engage with recursion and MI at different levels of abstraction and (b) as 
students used parallel contexts, their movement between levels of abstraction was not limited to 
reducing levels of abstraction. These observations catalyzed our expansion of the framework. We 
call this expanded framework the Navigating Abstraction framework. The expanded framework 
utilizes constructs not included in Hazzans (1999) framework. More specifically, we say that one 
ascends levels of abstraction when they move from a lower to a higher level of abstraction and 
descends levels of abstraction when they move from a higher to a lower level of abstraction. 
Additionally, we identify instances when a student navigates through different aspects of the task 
but remains on the same level of abstraction. When such a phenomenon occurs, we say that the 
student has transferred abstraction levels from one aspect to another. Therefore, our framework 
provides a lens through which we can make sense of the interplay between a student’s movement 
between levels of abstraction and between the MI and recursion aspects of our tasks. This allows 
us to document how interacting with the tasks in this study facilitates the development of 
students’ understandings of MI and recursion and the connection between them. 

The framework for analyzing the level of abstraction as QR with respect to each aspect of a 
task is shown in Figure 1. There are analogous figures for navigating abstraction via the other 
interpretations in the framework, but they are too large to fit within the margins of this paper. 

 
Figure 1. Framework for analyzing abstraction levels as QR with respect to the three aspects of each task. 

Methods 
Mario, Harry, and Sarah were senior math majors at a public university who took part in a 

90-minute, semi-structured, task-based interview study, based on the exploratory teaching 
experiment methodology (Steffe & Thompson, 2000). The first author of this manuscript 
functioned as the teacher/researcher and performed the interviews.  

The interviews consisted of tasks where MI was presented along with a user-interface and the 
source code for the corresponding recursive program, to which students could attend at their own 
pace. Students were prompted to think aloud while they worked, especially if the direction of 

26th Annual Conference on Research in Undergraduate Mathematics Education 83



their gaze changed from screen to paper, or vice-versa. While we found that the Navigating 
Abstraction framework was productive for accounting for our entire data set, due to space 
constraints, we limit ourselves to discussing Mario’s work on Task 1 (The sum of the first n 
integers is (ାଵ)

ଶ
 ) and Task 4 (Every positive integer can be written as a sum of powers of 2).  

Results 
To identify movement between abstraction levels, we focused on the utterances and 

inscriptions that indicated the participants were directing attention to mathematical induction 
(MI), the source code (RS), or the output of the recursive program (RP). We focus on two 
episodes that illustrate how Mario both transferred and navigated between abstraction levels. 
These examples simultaneously illustrate our Navigating Abstraction framework and provide 
insights into how a student might leverage the connections between MI and recursion to 
strengthen their understanding of both.  

Mario Ascends Abstraction Levels  
When Mario worked on Task 1 before accessing its corresponding recursive program, he 

only spoke about the computation required to validate the equation on which induction was to be 
performed. Mario’s work, which can be seen in Figure 2, does not include explanations or 
justifications. Later in this manuscript, we will see that Mario understood MI the full logical 
complexity of its statement, but there was no indication that he was evaluating the validity or 
truth of any statement; therefore, he did not understand that MI involved a predicate. As seen in 
Figure 2, Mario considered the entire hypothesis of MI from his written work, but never states 
the conclusion of MI to finish the proof. We interpret this interaction as working at a lower level 
of abstraction as POD while working at a higher level of abstraction as DC.  

 
Figure 2. Marco’s work on Task 1 before (left) and after (right) working with the recursive program. 

The excerpt below highlights how he first makes sense of the MI task: 
Mario: What I want to show is that the sum from 1 to n + 1 is n times n(n +1)/2. If I can 

show that this (the sum from 1 to n is n(n +1)/2 ) implies this (the sum from 1 to n +1 is 
(n+1)(n +2)/2). I have the sum that looks like the thing that I’m assuming I know what it 
is, and if I manipulate it, I should get the thing that I want.  

While engaging with the RP aspect of Task 1, Mario first interpreted P(n) not as a predicate, 
but as the partial sum from 1 to n, and then corrected himself: “Oh. It (the program) defines the 
statement (P(n)) to mean that those two things (left and right side of the equation) are equal. 
That’s not the same thing.” Mario expressed a shift in his thinking from P(n) as an algebraic 
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expression in n, to an algebraic statement in n which is either true or false. In other words, Mario 
was starting to conceptualize P(n) as a predicate which indicates that he ascended levels of 
abstraction as POD with respect to the RP aspect of Task 1. 

Mario chose to re-attempt the MI aspect of Task 1 and defined P(n) as a function of n at the 
onset of the task, shown in Figure 2. After verifying the base case, he wrote “P(1) is true”, 
indicating that he now thought of P(n) as a Boolean-valued function. Mario had transferred his 
perception of P(n) as a predicate from the RP aspect of the task to the MI aspect of the task. 

Furthermore, as seen at the bottom right of Figure 2, Mario finished the proof by writing the 
entire statement of MI, which was not included in the program’s output or source code. Now that 
Mario is considering the entire conditional statement when working with the MI aspect of Task 
1, we can deduce that he has ascended levels of abstraction as DC. 

Mario navigates between abstraction levels 
When attending to Task 4, Mario asked a question that he had not asked during any of the 

other tasks. 
Mario: What’s my P(n) statement? My first thought is maybe I don’t want to use induction 

on n, but maybe I do. I guess I’ll try induction on n and see if that’s the right thing. So 
what’s my P(n) statement? n is equal to a sum (pause) is equal to the sum over i  equals 
something to something else.  

Although Mario had not hesitated to define the predicate during the other tasks, his work in 
Figure 3 exhibits his indecision. In the previous tasks, MI was applied to a single-variable 
equation, but the equation generated by the statement in Task 4 had three unknowns. Mario’s 
question demonstrates an unfamiliarity with the type of MI statement in Task 4. His discomfort 
with this new type of problem may explain his decision to work out some examples, as shown in 
Figure 3. Computing examples requires substituting variables with numerical values, 
consequently decreasing the number of variables. Thus, we could interpret Mario’s decision to 
compute examples as working at a lower level of abstraction as QR with respect to the MI aspect 
of Task 4.  

 
Figure 3. Mario’s work prior to interacting with the recursive program. 

To see more examples, Mario decided to use the recursive program for Task 4. By delegating 
the calculation of examples to the RP aspect of Task 4, Mario transferred the level of abstraction 
as QR from the MI aspect to the RP aspect of Task 4.  

Mario: Okay, so we start, I guess an interesting case might be 15 because that’s when we 
overflow the ones into a bunch of zeros.  

Mario fluidly transitioned between the MI task and the recursive program’s user-interface 
and source code. After each interaction with the program, Mario progressed further with the MI 
task. The excerpt below exemplifies the connections Mario was making between the MI aspect 
of Task 4 and the recursive function, Power2, located in the source code. 

Mario: PowerTwo returns the string, which is yeah, the, the sum of powers of two that equal 
the number that you give it. So, how does it know to stop when n is greater or equal to 
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0?.. Oh, I have an idea. So, it recursively divides your, the integer by two. Okay and so I 
can do that too. 

Interviewer: So, what gave you that idea? 
Mario: Yeah, the PowerTwo. As long as we have a positive integer. Okay, it recursively 

divides by two and looks at it whether it’s zero or one. So, I guess that is how you get the 
binary decomposition of a number. You keep dividing by two and you see if the thing 
you get is even or odd. So yeah, and this method uses that recursive loop to construct the 
sequence.  

After connecting Power2 to a proof strategy, Mario resumed writing his proof. Note that 
Mario interpreted the code in Power2 in terms of its function as a program, indicating that he was 
working at a higher level of abstraction as QR with respect to RS aspect of Task 4.  

 
Figure 4. Mario’s Proof of the Inductive Step of Task 4. 

 In his proof, shown in Figure 4, Mario divides 1n �  by 2, then uses strong induction to 
represent ( 1) / 2n �  as a sum of powers of 2. The sophistication of using two cases along with 
strong induction indicates an increase of rigor in his proof, suggesting that Mario transferred the 
higher level of abstraction as QR from the RS aspect to the MI aspect of Task 4. Hence, Mario 
ascended levels of abstraction as QR with respect to the MI aspect of Task 4.  

During the final segment of the interview, the interviewer asked Mario how he conceived of 
mathematical induction. His response indicates that completing the tasks allowed him to make 
connections between recursion and induction that shifted his perception of MI. 

Mario: Something I noticed. Instead of starting with n and going to n +1, you are 
decomposing n +1 into n…which reminds me a lot of recursion. Then induction is still 
P(n) implies P(n+1), but the way to do it is decompose P(n+1) into P(n) and that 
reminds me a lot of recursion. 

To Mario, making the link between induction and recursion provided him with an additional 
strategy when approaching MI tasks. Specifically, he explains “if you know how to do an easy 
problem and you know how to decompose a hard problem into an easy problem, then you know 
how to do the hard problem.” 

Summary 
During Task 1, Mario ascended abstraction as POD from the MI aspect of the task to the RP 

aspect of the task and then transferred the higher abstraction level from the RP aspect of Task 1 
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to the MI aspect of Task 1. Additionally, as shown in Figure 5, after interacting with the 
program, Mario ascended abstraction levels as DC with respect to the MI aspect of the task.   

 
Figure 5. The Navigating Abstraction Framework applied to Mario’s work on Task 1 

During Task 4, Mario found it necessary to reduce the abstraction level as QR before 
ascending abstraction levels with respect to the MI aspect of the task. As shown in Figure 6, 
Mario transferred the lower level of abstraction as QR with respect to MI by interacting with the 
user-interface of the program and leveraged the source code to ascend levels of abstraction. 

 
Figure 5. The Navigating Abstraction Framework applied to Mario’s work on Task 4.. 

Discussion 
Modifying the reducing abstraction framework to highlight the link between a proof by 

mathematical induction and a recursive program allowed us to recognize instances in which 
students transferred an abstraction level from their mathematical proof-work to their interaction 
with the recursive programs. Whereas Hazzan’s (1999)  Reducing Abstraction framework was a 
useful lens in determining when students reduced the abstraction level to cope with a concept, it 
did not provide the tools to account for how students moved between levels of abstraction or 
contexts. By extending the Reducing Abstraction framework to our Navigating Abstraction 
framework, we were able to recognize and examine how students navigated between abstraction 
levels and transferred abstraction levels to better understand both recursion and MI.  

This framework provided a lens to interpret how students leveraged the back-and-forth 
navigation between induction/recursion and lower/higher levels of abstraction to ascend levels of 
abstraction, thereby allowing us to gain insights into how students understanding of induction 
and recursion co-evolved. This, in turn, helps demonstrate both the educational potential of using 
recursive programs to reinforce students’ understanding of induction as well as the potential for 
using induction to enforce their understanding of recursion. Hence, the Navigating Abstraction 
framework is itself a research contribution in that it characterizes the movement between 
abstraction levels while simultaneously providing a bridge between mathematical and 
computational levels of abstraction.  
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Towards Systematically Examining Students’ Epistemic Grounds of
Developing Mathematical Generalization: A Preliminary Framework

Siqi Huang
UC Berkeley

The practice of generalization is a fundamental aspect of mathematics that requires further
investigation, particularly in advanced contexts. This paper has sought to address the research
gap by presenting a preliminary framework that captures how and on what basis undergraduate
students develop and evaluate mathematical generalization. I illustrate each aspect of the
framework using examples from two focal students’ generalization of the concept of a group in
Abstract Algebra, uncovering important mechanisms and thinking behind their emergent
generalizing ideas. The framework has potential to be used more broadly in other mathematical
contexts and to inform instructional designs aimed at promoting students’ generalization skills.
Key takeaways and potential directions for future research are discussed.

Keywords: Student Thinking/Cognition, Abstract Algebra, Generalization

Generalization is a fundamental practice of the mathematics community (e.g., Aigner, 2003;
National Council of Teachers of Mathematics, 2014). While a significant amount of research has
investigated younger students’ generalizing activities (Carraher, Martinez & Schliemann, 2008;
Radford, 2006), much remains to be understood about how undergraduate students generalize
formal, axiomatic mathematics concepts (Reed, 2018). In addition, despite the fact that
frameworks exist for distinguishing different types of generalization (e.g., Radford, 2003) and
for characterizing generalization processes (Ellis et al., 2017), many aspects on how and on what
basis students develop and evaluate the logical validity of mathematical generalization are still
incomplete. This paper seeks to contribute to the generalization literature by providing a
preliminary framework on the epistemic grounds upon which students develop and evaluate
mathematical generalization in advanced settings. For the purpose of this paper, I define
epistemic grounds to be the foundation or basis upon which knowledge and beliefs are justified
or supported. Some examples of epistemic grounds include evidence from empirical data, logical
arguments, personal experience, and testimony from reliable sources.

Given that Abstract Algebra is a natural extension of arithmetic and generalization naturally
manifests itself in its content (Fraleigh, 2003), I intentionally situate my work in this area.
Widely acknowledged as challenging (Melhuish, 2015), Abstract Algebra demands a significant
leap to formalism and axiomatization that many mathematics majors find intimidating (Huang,
2022). It is my hope that by investigating students’ generalization of a fundamental Group-theory
concept, this work can contribute to a more solid understanding of generalization and the ways in
which students reason about axiomatic constructs in Abstract Algebra and beyond.

Theoretical Background
Studies have drawn attention to how generalization is vital in fundamental areas such as

algebraic reasoning (Amit & Neria, 2008; Stacey, 1989), problem solving (Sriraman 2003), and
functional thinking (Ellis 2011; Rivera & Becker 2007). Radford’s (2003) categorization of
factual, contextual, and symbolic generalization reflects the broader trend among researchers to
classify forms of generalization. According to Radford (2003), factual generalization is
abstracted from “actions undertaken on objects at the concrete level” (p. 47); contextual
generalization occurs when students manage to objectify an “operational scheme that acts on
abstract — although contextually situated — objects” (p. 54); and symbolic generalization

26th Annual Conference on Research in Undergraduate Mathematics Education 90



capitalizes on symbols in the generalizing activity. At the undergraduate level, Harel and Tall
(1991) categorized three types of generalization: expansive generalization involves expanding
the scope of an existing schema without reconstructing it; reconstructive generalization entails
reconstructing relevant schema to adapt to the expansion; disjunctive generalization occurs when
students create a new, “disjoint” schema to cope with new problems (Harel & Tall, 1991, p. 39).

In contrast with the common approach of evaluating students’ generalization with respect to
certain predetermined benchmarks (e.g., see above), Ellis (2007) proposed to understand
generalization from an actor-oriented perspective. This perspective foregrounds actions that
students take in the generalization process and views these actions from the perspective of the
students (Reed, 2018). According to Ellis (2007), there are three major categories of generalizing
actions: relating, searching, and extending. Relating involves recognizing and creating
mathematical relationships between objects or situations; searching is an active investigation of
whether certain mathematical properties persist across different cases; and extending entails
expanding a “pattern or relationship into a more general structure” (Ellis, 2007, p. 241). While
Ellis’ (2007) taxonomy originated from observations of middle-school students’ generalizing
activities, it has been applied to the undergraduate level (e.g., Reed & Lockwood, 2018) and it
lays the foundation for the Relating, Forming, Extending (R-F-E) framework (Ellis et al., 2017).

The R-F-E framework draws from both cognitive and sociocultural research to create a more
fine-grained model of students’ generalizing activities (Reed, 2018). This framework
distinguishes inter-contextual generalization from intra-contextual generalization, submitting that
the former involves establishing similarities across situations and the latter entails forming and
extending similarities within one task (Ellis et al., 2017, p. 680). As the primary form of
inter-contextual generalization, relating centers on developing meaningful mathematical
relations and it can be further divided into three subcategories: relating situations, relating ideas
or strategies, and recursive embedding (Ellis et al., 2017). As a major form of intra-contextual
generalization, forming is about perceiving regularities across one’s own activity and it consists
of four subcategories: associating objects, searching for similarities, isolating constancy, and
identifying a regularity. Extending is another form of intra-contextual generalization, which
involves applying established patterns and regularities (e.g., those from relating or forming) to
novel contexts. According to Ellis et al. (2017), extending includes continuing an existing pattern
beyond familiar contexts, operating on an identified relationship, transforming a generalization,
and removing particular details so as to express an identified regularity more generally.

While the above perspectives and frameworks offer insights into characterizing
generalization, they fall short in addressing the underlying mechanisms that drive students’
generalization process and a majority of the existing frameworks are too broad to meaningfully
inform instruction. Indeed, Radford’s (2003) and Harel and Tall’s (1991) works are valuable in
distinguishing different forms of generalization, but their broad categorizations obscure students’
actions and fail to shed light on the essential skills or practices required of developing robust
mathematical generalization. Ellis’ (2007) taxonomy foregrounds students’ generalizing actions
and the later R-F-E framework (Ellis et. al., 2017) provides fine-grained analysis; yet they do not
capture the details or nuances in students’ reasoning nor do they provide insights into why or on
what basis students spontaneously think or behave in a certain way in the generalization process.

A Preliminary Framework on the Epistemic Grounds of Mathematical Generalization
Through extensive micro-level analysis of undergraduate students’ generalization of the

concept of a Group in Abstract Algebra, I developed a preliminary framework that aimed to
capture how and on what basis students developed and evaluated their emergent generalizing
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ideas. The framework was created in the context of design-based research (Bakker, 2018), where
I iteratively conducted four design-enactment-reflection-refinement cycles (Lewis et al., 2020)
with volunteer participants recruited among undergraduates at UC Berkeley. I integrated Ellis’
(2007) actor-oriented perspective with my observer-researcher lens in the data analysis process: I
carefully analyzed video-recordings of the students’ generalization, envisioned myself in the
students’ positions, and made informed hypotheses about how and why the students used certain
strategies to develop or justify their emergent ideas. The resulting hypotheses became the initial
draft of the framework shown in Figure 1, which was later revised according to results from a
bottom-up approach in analyzing the video-recordings as well as students’ written works. The
fact that I have similar undergraduate mathematics experience as those of my research
participants (as I earned a B.S. in Mathematics from a similar institution) and a relative expertise
in the content (as demonstrated by my recent A in a graduate-level Abstract Algebra course)
positions my data analysis and the creation of the framework as accounting for both students’
and experts’ perspectives. More information about the design and methods can be found in
Huang (2022). For the sake of consistency and due to space constraints, I will illustrate the
proposed framework using examples from two focal undergraduate participants only. Eden and
Jane (pseudonym) participated in this study as a pair for two hours in 2022, and I had been a
teaching assistant for their Calculus course for 13 weeks prior to their participation.

Figure 1. A preliminary framework on the epistemic grounds of developing mathematical generalization

Order and Harmony in Thoughts. This fundamental ground for developing generalization
is closely related to the notion of equilibrium in Gestalt psychology (Koffka, 2013) and the
common attribution of understanding to structured, harmonious mental organization (e.g.,
Sierpinska, 1994). According to Piaget (1976), the equilibrium of cognitive structures can be
achieved through mental operations of assimilation and accommodation, which will then lead to
order and harmony in people’s minds. In a similar vein, Sierpinska (1994) proposes that
understanding entails “finding a unifying principle, a relation that ‘founds’ what we want to
understand” (p. 33), and that order and harmony as well as the feeling that “it fits” constitute the
“most obvious criterion” of understanding (p. 32). In the process of zooming in and out of
different algebraic systems and formulating similarities across different cases, Eden and Jane
bounced ideas off of each other and made multiple utterances that conveyed similar meanings as
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“Oh, it makes sense”. I believe these utterances signify moments when they felt a sense of order,
harmony, and coherence in their thoughts, and thus accepted their emergent mathematical ideas.

Manipulation of Mathematical Objects. This epistemic ground of generalization centers on
an important epistemological practice of generating and validating mathematical knowledge by
means of doing mathematics. The (manual and mental) manipulation of mathematical objects
can involve a variety of techniques and tools, including physically manipulating artifacts,
performing algebraic operations, constructing geometric figures, visualizing abstract properties,
applying analytic techniques, and many more. Overall, the manipulation of mathematical objects
is a crucial epistemic ground for developing generalization, as it allows students to generate and
justify new insights, techniques, and results, providing a solid foundation for students to explore
mathematical structures and relationships. It is important to note that besides attending to
students’ “mental math”, I intentionally leveraged the embodied aspect of mathematical
manipulation (which is often overlooked in undergraduate math classrooms). More specifically, I
provided physical artifacts to invite rotation and reflection of geometric figures as a means to
explore example Groups (e.g., Dihedral Groups), and scaffolded with semiotic tools such as
tables to support students’ reflexive abstraction (Vygotsky, 1978) of defining Group properties.

Formation & Application of Emerging Rules (Naïve Empiricism). This epistemic ground
for developing generalization involves discerning an emerging mathematical rule from a limited
number of empirical cases and utilizing it without rigorous justification. Historically, humans
have made extensive use of this approach, due to various constraints such as limited access to
data, insufficient analytical tools, and cost and time constraints (Gibson, & Papafragou, 2016). In
the context of abstracting properties of multiplication in number systems (and later operations
across example Groups), Eden and Jane concluded that “for three numbers in multiplication,
order doesn’t matter [or more precisely, it is associative]” after randomly picking some set of
integers and checking that and(3 × 4) × 5 = 3 × (4 × 5) (7 × 9) × 100 = 7 × (9 ×

. As another example, Eden used (marked blue in Fig. 2) to challenge Jane’s100) 2 ♡ 6 = 5
result of (marked red in Fig. 2) in the Symmetry Group of an equilateral triangle,6 ♡ 2 = 4
based on their established observation that “order doesn’t matter [or more precisely, operation is
commutative]” for previous example Groups. But making raised another6 ♡ 2 = 6 ♡ 2 = 5
problem, as Jane quickly noticed that there was already a 5 in the same row of the operation table
(marked green in Fig. 2). Jane’s refutation was supported by their agreed-upon observation that
each element appears exactly once in each row and each column of an operation table. Note that

Figure 2. Formation and application of emerging rules: the case of 6♡2
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the three emerging rules (i.e., multiplication is associative, commutativity is a defining similarity,
operation table satisfies the “Sudoku property”) played a crucial role in Eden and Jane’s
generalization of a Group, although they made no attempts to justify or refine these rules. Since
students tend to search for similarities across their mathematical activities and generalize
inductively from concrete cases, this epistemic ground is closely related to the idea of forming in
the R-F-E framework (Ellis et al., 2017), Radford’s (2003) notion of factual generalization, as
well as Pólya’s (1945) heuristics of “consider special cases” and “look for patterns”. Despite its
common usage, however, relying on naïve empiricism can lead to over-generalization or
underestimation of the underlying mathematical structures, resulting in incorrect conclusions
(Bollen et al., 2015). Thus, more sophisticated approaches (e.g., see below) are recommended to
extend empirical findings to more generalizable and robust mathematical principles.

Variation of Conditions & Exploration of Constraints. This epistemic ground foregrounds
an essential aspect of developing mathematical generalization, that of exploring conditions under
which a generalization holds true and identifying any constraints that may apply. This is similar
to Pólya’s (1945) “variation of problems” heuristic in that both involve changing conditions; yet
Pólya’s (1945) heuristic focuses on generating new problems to help solve the original problem,
while this epistemic ground aims to support the creation of more precise, powerful generalization
by specifying its scope and constraints. During Eden and Jane’s investigation of “order” (a
student-generated vocabulary that bootstrapped their later differentiation between commutativity
and associativity), I as their researcher-tutor probed: “We agree that ‘order doesn’t matter’ for
two elements in the first few examples, but what about three elements? Will adding parentheses
in any way we want affect the result of operations?” In a swift response, Eden bounced back with
an unanticipated question: “Does it have to be a set of three elements?” In retrospect, I realize
that Eden’s question was intended to vary the condition and facilitate an exploration of relevant
constraints within their domain of investigation. After knowing that they could certainly
investigate more than three elements at the same time (which broadened the scope of my original
question), Eden and Jane went on to test operations with three and then four elements, creating a
richer foundation for them to unpack underlying principles (e.g., associativity for three elements
implies associativity for more elements) and generalize defining properties for Groups. Note that
by varying conditions and exploring constraints, students not only generalize actions taken for
specific numbers but also abstract the actions themselves. This suggests that they move beyond
the realm of concrete examples and consider a broader set of possibilities; in the words of
Radford (2003), students are engaged in contextual (and possibly symbolic) generalization.

Comprehensive Examination of Possibilities. In developing generalization, this epistemic
ground concerns rigorously examining different situations as a means to assess the validity and
soundness of an emerging generalizing idea, which is in mutual reinforcement with the previous
epistemic ground. For example, when Eden and Jane tried to test whether “order matters” (or
more precisely, whether associativity holds) for more than three numbers in multiplication, they
attempted to exhaust all possible ways of adding parentheses in their randomly chosen
expression . As a summary, they examined4 × 2 × 3 × 5 (4 × 2) × 3 × 5, 4 × (2 × 3)

, and , which all turned out to be . It is important to note that the first× 5 4 × 2 × (3 × 5) 120
attempt was equivalent to and that those were all the(4 × 2) × 3 × 5 (4 × 2 × 3) × 5
possibilities they could thought of at the moment, despite the fact that advanced thinkers may
find another possibility of left untested. Through comprehensive analysis of4 × (2 × 3 × 5)
all possible cases, students can identify patterns and connections that may not be immediately
apparent, contributing to their more robust understanding of the underlying principles. Since both
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comprehensive examination of possibilities and variation of conditions & exploration of
constraints demand active investigation of whether certain emerging mathematical properties
persist across different situations, the two epistemic grounds are inseparably linked to the idea of
searching in Ellis’ (2007) taxonomy. Moreover, as students often use logic to systematically
exhaust all possibilities, it naturally leads to the next epistemic ground.

Justification with Established Observations & Reasoning. This epistemic ground
highlights the importance of justification and proofs in developing mathematical generalization
(or more generally in any mathematical activity). With the help of existing observations and
logical reasoning, mathematics students learn to justify conjectures by showing that it is a logical
consequence of certain principles and assumptions. As a standard practice in mathematics,
justification involves higher-order thinking skills such as deductive reasoning, analyzing, and
critical thinking, providing a rigorous and reliable way to establish the truth of mathematical
statements. An example of this could be found in Eden and Jane’s scrutiny of “order” in the
modulo 5 system under addition. Knowing that “order doesn’t matter” when they add integers,
Jane argued that “order doesn’t matter” in the modulo 5 system either because “You can mod 5
with like any number, and if you are gonna be adding something to it, order does not matter.”
Jane managed to extend her understanding of the set of integers to the new context of the modulo
5 system, and it is clear that her use of logic was mathematically correct. Note that Eden and
Jane had not successfully distinguished commutativity and associativity at this point; the
reasoning was valid regardless of the specific “order” they referred to. This example illustrates
how justification is closely intertwined with the notion of extending in the R-F-E framework
(Ellis et al., 2017), as it operates to establish a universal structure that transcends specific cases,
personal viewpoints, and historical eras. Moreover, this epistemic ground bears resemblances to
Pólya’s (1945) heuristics of “using direct reasoning” as well as Radford’s (2003) contextual and
symbolic generalization in that all four prioritize logical reasoning in mathematical pursuits.

Inferential Parity. This epistemic ground is taken from Abrahamson (2014) to allow for a
more detailed elaboration on how students reconcile their intuitive generalization with formal
mathematics concepts. According to Abrahamson, inferential parity refers to the idea that
students perceive a formal structure as “bearing the same information about the target property of
the source phenomenon as their informal judgment” (2014, p. 13). Through the lens of inferential
parity, researchers can capture moments when students recognize a connection between their
informal knowledge and the established mathematical ideas, shedding light on how students
utilize their intuitive generalization to navigate through formal mathematics. An illustrative
example could be found when Eden and Jane compared their generalized concept with the formal
definition of a Group. “A Group is an ordered pair where G is a set and★ is a binary operation
on G,” read Eden, “that’s kind of what we have here, right?” Jane nodded, pointing to the first
row of their similarity table (marked blue in Fig. 3). Moments later, they skimmed through the
defining properties of identity and inverse in the formal definition, prompting Eden to exclaimed:
“Ohhh! That’s cool! We are doing that!” They stared at their self-generated terminologies of
“prime” (see Fig. 3, which bears the same meaning as identity or “e”) and “undoing #s” (see Fig.
3, which bears the same meaning as inverse or “ ”), turned to each other, and then laughed. 𝑎−1

In the meantime, Jane copied “e” and “ ” from the formal definition to the left of their 𝑎−1

corresponding terminologies (marked red in Fig. 3). A later reflective interview revealed that the
experience of struggling through unfamiliar mathematics (with support) and eventually
uncovering how their intuitive generalization connected to (or more precisely, encapsulated) the
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formal, textbook definition was a valuable learning experience, leading to Eden and Jane’s
renewed sense of agency and ownership in their mathematical learning.

Figure 3: Inferential parity: connections between the formal and the informal

Concluding Remarks
While a fair amount of research has investigated younger students’ generalizing activities,

existing frameworks and perspectives often fall short in more advanced contexts and they fail to
address the specific grounds upon which students develop mathematical generalization. This
paper has sought to address the research gap by presenting a preliminary framework that captures
how and on what basis students develop and evaluate their emergent generalizing ideas at the
undergraduate level. The seven epistemic grounds highlighted by the framework are: Order &
Harmony in Thoughts, Manipulation of Mathematical Objects, Formation & Application of
Emerging Rules (Naïve Empiricism), Variation of Conditions & Exploration of Constraints,
Comprehensive Examination of Possibilities, Justification with Established Observations &
Reasoning, and Inferential Parity. I provided illustrations of each epistemic ground with
examples from two undergraduate students’ generalization of the concept of a Group in Abstract
Algebra. It is important to note that this paper not only uncovers important mechanisms and
thinking behind students’ emergent generalizing ideas in Abstract Algebra, but also develops
theoretical constructs that characterize students’ generalization of axiomatic mathematics
concepts and that hold potential to be applied more broadly to other mathematical contexts.

In addition to the framework presented in this paper, there are several key takeaways and
potential directions for future research. First, while the proposed framework is grounded in
literature and my observations in students’ generalization of an Abstract Algebra concept, it is
preliminary in nature and it requires refinement and empirical validation from other advanced
content areas (e.g., Real Analysis). It is hoped that this paper can inspire further investigation
into mathematical generalizations that are of a formal, axiomatic nature. Second, I do not claim
that the identified epistemic grounds are mutually exclusive; further research is needed to better
understand the interrelations among them for different students and different contexts. Third, the
framework identifies important generalization-related mechanisms that could potentially inform
or even guide instructional designs; future research could explore the framework’s effectiveness
in facilitating students’ critical reflection upon and the development of their generalization-
related skills and practices. Finally, it is worth emphasizing that mathematical generalization is a
complex and multifaceted practice that demands students to engage in knowledge integration,
problem solving, and critical thinking. By enhancing our understanding of the epistemic grounds
that underpin this practice, we can better support students in developing the essential skills and
knowledge needed for success in (both formal and informal) mathematics and beyond.
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Faculty Perceptions of Making Connections: A Story of Obligations and Constraints 
 

 Rachel Rupnow Alexandra Hill 
 Northern Illinois University Northern Illinois University 

Mathematics is central to STEM coursework, yet limited research has examined how instructors 
in math and other STEM courses facilitate connections between courses for their students. Based 
on four focus group meetings with ten faculty members, we characterize factors that assist or 
hinder making connections between courses and examine their relationship to professional 
obligations. Results include the largely negative impact of institutional obligations on faculty’s 
willingness and ability to make connections. Implications include the need for institutions to give 
opportunities to make personal connections across departments and incentivize the development 
of connections. 

Keywords: interdisciplinary connections, professional obligations, instructor decision-making 

Introduction and Background Literature 
Faculty in science, technology, engineering, and mathematics (STEM) disciplines recognize 

that math is relevant to their students and their teaching, as evidenced by requirements for 
students to take specific math classes for their major and the related role of math as gatekeeper to 
STEM (e.g., Bressoud et al., 2015). Nevertheless, while examinations of better ways to connect 
math and science or engineering have occurred at administrative or departmental levels (e.g., 
Robayo et al., 2022; Vroom et al., 2022), limited work has directly attended to individual faculty 
members’ experiences. We thus seek to address the following research question: What factors 
assist or hinder connections that faculty can make between courses/content areas?  

Meaningfully connecting content between disciplines is challenging, as jargon forms barriers 
to non-members of those communities of practice (Wenger, 1999). Separations exist between 
STEM faculty members and, by extension, their courses. Thus, research has begun examining 
how content like definite integrals and bases are communicated and used in different disciplines 
and how differences impact students’ understanding (e.g., Jones, 2015; Serbin & Wawro, 2022). 

Furthermore, STEM educators have placed increasing emphasis on math skills or concepts 
undergirding scientific content and ways instruction can better relate these content areas. Foci 
include interpretations of graphs in math and science (e.g., Christensen & Thompson, 2012; 
Rodriguez et al., 2018; 2019) and connections between content in particular courses, such as 
calculus and biology or chemistry (e.g., Jones, 2019a; 2019b; Williams et al., 2021), calculus or 
differential equations and physics (e.g., Jones, 2015; Roundy et al., 2015; Schermerhorn & 
Thompson, 2019a; 2019b; Smith et al., 2013), and linear algebra and physics (e.g., Schermerhorn 
et al., 2022; Serbin et al., 2020; Wawro et al., 2020). Some work also seeks to connect higher 
level math to science, including relating discrete math or abstract algebra to chemistry (e.g., 
Bergman & French, 2019; Bergman, 2020) and biology (Robeva et al., 2010). Considering the 
many interfaces of math and science, it is understandable that STEM majors may struggle to 
draw on appropriate math coursework in their science and engineering courses and that math 
faculty may be unaware of how their content is used in other courses. This paper builds on these 
cross-disciplinary efforts by examining how the use of focus groups centered on connections 
between courses’ content could be used to illuminate current connections made between courses 
and gain insight into faculty’s perspectives on what could support making connections in future. 
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Theoretical Perspective 
To conceptualize factors that impact making connections between content areas, we draw on 

professional obligations as characterized by Herbst and Chazan (2011). This perspective is 
grounded in the theory of practical rationality, wherein mathematics teachers’ instructional 
actions are taken to be sensible based on the norms and obligations that motivate them and 
theorizes what norms and obligations are impactful to teachers’ decision making in different 
contexts. Whereas norms characterize the typical roles a teacher would play in instruction, 
professional obligations are characterized as “justifications (or refutations) that participants 
might give to actions that depart from a situational (or contractual) norm” (p.450). They also 
characterized four categories of professional obligations: disciplinary, individual, interpersonal, 
and institutional. Disciplinary obligations relate to providing a valid representation of 
mathematics as an area of knowledge and a practice. Individual obligations include the need to 
attend to students’ identities and needs. Interpersonal obligations relate to shaping interactions 
and classroom discourse. Institutional obligations relate to attending to the broader aspects of 
schooling as an institution, including policies, exams, and curriculum. 

While these obligations were originally characterized in the context of K-12 mathematics 
teaching, here we modify these obligations slightly to attend to teaching in a university setting 
and do not limit ourselves to the perspective of math teachers. We believe this is appropriate for 
examining obligations attended to when making connections between one’s own course and 
other courses, because knowing the perspective of both math and non-math teachers is important 
for symmetric connections to be built. This changed emphasis leads us to slightly reframe the 
interpersonal obligations as interpersonal and personal obligations to emphasize any 
interpersonal contexts, including those outside the classroom with colleagues and self-reflection 
on one’s obligations to one’s own work-life balance and mental health needs. 

Methods 
Data was collected from four focus group meetings of ten faculty at one regional university 

in Spring 2023. Two meetings were held in February and two in April. Each participant was 
intended to participate in one February and one April meeting, but two participants were unable 
to attend in April. Gender-neutral pseudonyms, departments, and which meetings were attended 
are in Table 1. Faculty were solicited from those who completed a survey on their background 
and perceptions of connections between their courses and mathematics. In the focus groups, each 
question was asked to the group and each participant was given an opportunity to respond. After 
everyone had responded, everyone was given an additional opportunity to respond to what others 
had said. Questions focused on perceived connections between their course and other courses, 
supports used and desired for making connections, the connections between their courses and 
math, and supports they suggested or desired for helping students struggling with math content 
or skills. The focus groups were audio and video recorded and transcribed prior to analysis.  

 
Table 1. Participants’ backgrounds and meetings attended. 
Pseudonym Department February Meeting April Meeting 
Addison Earth, Atmosphere, and Environment B B 
Bergen Curriculum and Instruction A A 
Carey Physics A A 
Darien Mathematics B A 
Elliot Earth, Atmosphere, and Environment B A 
Freddie Mathematics A A 
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Gayle Mathematics B none 
Harper Computer Science B B 
Indigo Leadership, Educational Psychology, 

and Foundations 
A B 

Jun Mechanical Engineering B none 
 
Data was analyzed by two researchers who coded independently, then discussed and came to 

consensus on each section of the transcript. We did not enter analysis with a codebook, but used 
the notion of obligations to guide what we attended to. Both researchers open coded the two 
February meetings in alignment with descriptive coding (Saldaña, 2016), came to consensus on a 
codebook, recoded transcripts in alignment with the new codes, and came to consensus on 
coding. We then, after minor adjustment, coded the two April meetings, added new codes as 
needed, and came to consensus. Finally, we classified the codes into obligation categories, using 
three of the obligations of Herbst and Chazan (2011) directly and a modified version of the 
fourth. This process aligns with codebook thematic analysis (Braun et al., 2019), as we had some 
sense of the categories but not the particular codes we would use when entering analysis, and had 
the flexibility to add codes and categories to capture new ideas as analysis progressed. 

Results 
We present results according to alignment with each of the obligations: Disciplinary, 

Individual, Interpersonal and Personal, and Institutional. Codes are italicized. 

Disciplinary Obligations 
Disciplinary obligations in this study manifested as participants’ desire to teach the content 

of their discipline, though this could hinder or assist making connections to other courses. The 
instructors agreed on the importance of connections across content. For example, Bergen stated, 
“I think it really behooves us as professors, as instructors to make those connections, because if 
we don’t, then we’re really not making it relevant to our students…. all the different topics, the 
fields connect.” The instructors also discussed the importance of showing students connections, 
as students can struggle with finding the connections on their own. For instance, Freddie noted: 

…they don’t see the connections. They’ve seen that trig; they’ve seen the quadratics. But 
outside of maybe a question at the end of a section, at the end of a unit....in math 
class…they’re focused more on the math rather than the physics. And then when they get 
to you, it’s like “Oh, wait. I know the math. I just got to figure out that physics equation 
that my math teacher gave me. Where does that come from?” 

In addition, Addison recalled student feedback about examples that stated, “I wish those types of 
examples were in calculus. It didn’t make sense why I was learning this”.  

Instructors also noted hindrances in terms of student knowledge. One issue was that students 
had not seen content required for their course. As Freddie noted, “The problem with the students 
who are taking that class, they’ve never seen parametric equations. They’ve never seen the idea 
that time controls this, the horizontal and vertical. No clue about it.” Another perceived issue was 
that students do not retain knowledge from previous courses. Carey noted: “You can tell there’s a 
light that’s like ‘Oh, yeah. I’ve seen that. I remember trig functions at some point.’ But how 
much they remember about trig functions and inverse trig function[s] and that sort of thing is 
another question.” Relatedly, participants perceived students as not having conceptual mastery of 
the skills required from previous courses. In an algebra-based physics course that Carey teaches, 
they noticed, “So in principle, it’s stuff that they should have been exposed to, at least in high 
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school, but it’s really nothing new…. I think one of the challenges I’m having is that they don’t 
have the mastery, so they’re – in a company of mathematicians, I hate to say that math is a 
distraction. But it’s kind of a distraction from the physics.” Instructors also stated actions they 
take to help combat these issues, such as helping students review. Harper shared: 

And so it’s never the case, where you walked into a class and everybody knows every 
single thing from every single prerequisite. And sometimes you have to take a little 
detour. But you can’t spend a lot of time there, simply because that’s not the course.…If 
they’re really largely, all of them, wholesale not getting it… then there’s no point in 
going on with the lecture. You have to take a detour in real time and try to give them a 
week’s worth of whatever math in about 15 minutes, hopefully, as a refresher.  

Individual Obligations 
We classified as individual obligations anything that pertains to the student’s mathematical 

identity and their needs going into their classes. Many aspects related to affective considerations, 
such as students being anxious about math. Bergen said of their students, “They are still terrified 
of math, oftentimes more so after taking the math classes.” Relatedly, Elliot claimed that helping 
students reduce anxiety should be a goal of math courses: “So on the philosophical side, I think 
that one of the goals of the math classes should be to help students get over their fear of math, 
because many of them come in with that fear and they are disinclined to pursue occupations, 
majors, whatever, that have any kind of quantitative aspect to them.” Others, like Darien, taught 
particular tools to reduce anxiety: “We go over developing growing mindset, trying to get them 
to know that math is for everyone and there is not people that are good or bad at mathematics.” 
Darien also relayed a time that focused on community building and motivated their students: 

I had an intervention…So instead of going into content that day, we just sat.…And I just 
told them, ‘What do you want from me?’ ... Because I am not going to be your teacher 
this whole time, during these four years….And they were like, ‘Oh yeah. If we tell you to 
change something, it’s not going to affect us directly.…We have to learn how to move to 
other courses. We have to improve our skills. We have to study more.’ So they were… 
brainstorming of what they could do to just be better at math. And I’ve been having good 
outputs off that: attendance was better, and they were more motivated…after that. 
Other aspects related to knowledge of students. Addison noted student backgrounds are 

sometimes unknown based on students transferring and lack of knowledge of courses in other 
disciplines: “I learned from googling precalc, so I thought it was all algebra, but I was wrong. 
There’s some precalc in there too. Yeah but it is hard when we have transfers and not everyone 
has to take the full calculus sequence because we don’t require everyone to take it.” Others, like 
Indigo, built on their knowledge of students’ backgrounds: “because most of my teachers in 
training are not statisticians and not trained in that, I take that as my job to inform them.” 

Finally, some topics related affect and content, such as the need for students to be motivated 
to do the work. Elliot said, “And I feel like they get a lot of, they’re told that this is a 
mathematical relationship between variables, but they don’t grasp, like, ‘What are the variables 
that I might actually work with, and why do I care about all this?’” Darien seemed to suggest that 
student motivation is misdirected at procedural rather than conceptual understanding: “We are 
trying to help them understand concepts, but they don’t want to because they think that that’s not 
important…it’s like, ‘Tell me what I need for those skills that I need so I can pass my next calc 
courses.’” Elliot suggested building community with alumni to impact motivation: 

Whatever discipline you’re in, having students exposed to people who actually use math 
in a career… I do think there are more than a few who don’t think it’s important for 
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where they see themselves going.…the more they can see people that they can model and 
see ‘I could be like that. That person is like and was like me.’ Because when employers 
come in, a lot of time, they’re alumni. They will literally say, ‘I was in that chair. I sat in 
that chair in this class, and I felt exactly the same way you do…this is where I am now.’ 

Interpersonal and Personal Obligations 
We characterized interpersonal and personal obligations as shaping classroom discourse and 

interactions outside the classroom as well as one’s own views. When instructors are not familiar 
with other course content, that can impact assumptions. For example, Addison states:  

My hydrogeology class is a math class and that’s how I start my class, by saying it is. 
And I’m a little embarrassed to say, yeah, I’ve never really spoken to math teachers about 
what I teach in it. And to the point when I did your survey, I google[d] to find out what 
classes some of those concepts were taught in because I couldn’t remember.  
Additionally, Addison noted the impact of their personal experiences with course material 

and a career outside academia on their teaching: “I had to take through Calc 3 when I was an 
undergrad and forgot it, a lot of it going on. And I didn’t really need it in the sense of knowing 
those foundations. I worked after my bachelor's degree and most students are just going to go out 
and work. They don’t need to know all that specifics.” Based on Addison’s experience of not 
using advanced math in their career, they saw limited value in their students having that 
knowledge. Instructors’ limited time affects how much they can put into a course. Darien shared 
their experience with a new course: “I don’t feel I’m doing a great job, especially because I’m 
always running out of time…So I come up with examples that are similar to a textbook…, just to 
explain the concept and continue with the next class.” Freddie noted a lack of familiarity with 
colleagues: “I guess I’m still the newbie here. I don’t know much of anybody.” Not knowing 
colleagues meant they did not know who to talk to about connecting content. 

However, instructors did not exclusively note challenges. Freddie was familiar with math and 
science K-12 content and stated, “I do the proportions that they’re going to mostly see in the 
book, but I also make sure I fold in some of the gas laws…Charles’s law or Boyle’s laws.” In 
some cases, like Freddie’s, instructors may already know other course information. For those that 
do not, Elliot recommended ways to gain information about other courses: “I’ve thought for 
years that mathematicians should maybe come into our classes and say, ‘All right, here’s the nuts 
and bolts of this,’ or the people who do the applied math should provide examples for the people 
who are teaching the math and say, ‘This is how we do this.’” Others noted positive ways their 
personal experiences of courses impacted instruction, such as Carey:  

For introductory physics, one of the things I try to do…is to try and use math terminology 
that I think they would be familiar with from a math class…so the slope of your position- 
versus-time graph is the velocity. So we look at our position-versus-time graph and we 
start, ‘Oh, if I want to calculate the average velocity, how do I do that?’ Then I look at 
this and it’s like, ‘Oh, we measure how much this way. Oh, this is like a rise. And now 
we measure how much this way. And this is like a run. And, oh, if we take the rise over 
the run, right, oh, that’s the slope, right?’ And with some of the trig stuff…I specifically 
use term opposite and adjacent and hypotenuse and similar sort of terms that hopefully 
they’ll be familiar with from math and might start to engage their memory a little bit. 
Instructors also noted time saving strategies they can use. One of the most common strategies 

was looking online for resources. Carey had knowledge of a research field that would be likely to 
have resources: “Physics for the Life Sciences basically is this whole thing, and there’s people 
out there who’ve had curricula and how they set things up.” Additionally, Bergen shared advice 
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on how to build relationships with colleagues to encourage collaboration: 
It’s interesting that the advice I was given when I first got here 13 years ago. Department 
chair at the time, he said, ‘I want you to join [committee].’…And that was one of the best 
decisions or… the best voluntelling…Because then I got to…meet people from all over 
campus...and that’s the best way to make you feel like you belong some place. 

Institutional Obligations 
We characterized institutional obligations as attention to institutional policies impacting 

promotion and curriculum; most of these obligations hindered making connections across 
courses. Many instructors noted that finding others who want to collaborate was difficult and in 
many ways the university did not seem to value the need for connections. Addison emphasized 
the need for working with others to be incentivized: “I have to not get dinged for taking the time 
to reach out to people because, yeah, unfortunately, research is really the key.” Similarly, Elliot 
stated, “Until I see or feel that there’s a lot of incentives to do that, and that would also 
require…changing the whole structure, not of departments but how the university sees these 
classes.” Others also need to value collaboration for connections to be built, as Carey 
experienced: “Several of us in the physics department tried to have this conversation with the 
biology folks.…they sent over their advisor, and basically, he said, ‘Oh, they just need to take 
the MCAT,’ which wasn’t very helpful for us.…at least based on what he said, physics has no 
relevance to biology other than doing well on the MCAT.” University policies also seemed to 
encourage competition rather than cooperation. This was especially impactful in course design 
and credit hour requirements. For example, Darien and Addison discussed whether a new or 
different calculus course should be a prerequisite for Addison’s course: 

Addison: If I didn’t let students who either were co-taking calculus or had failed and they’re 
going to retake it, take my class, I wouldn’t have a lot of students.…So I have to show 
the applied and I’m not sure I would be good at teaching those foundational things 
beyond… “Don’t you remember this? It’s okay if you don’t. We’re going to keep going.” 

Darien: Do you think that an applied calculus class will help with that as a prerequisite? 
Because we don’t have an applied class right now. We just have a business and social 
science class. 

Addison: In principle, yes. Do I want to make them take another class? No. 
In addition to limiting prerequisites from other disciplines to save space for major courses, 
starting new courses could be extremely competitive. Harper shared:  

The single most impactful thing that the university could do in order to help the issue you 
raised is to change the manner in which new courses are being developed or proposed. 
It’s not designed as such but what it actually is is a land rush. It’s the first one to market 
gets to claim the course…That’s not thoughtful, it’s competitive. 

Finally, when creating requirements for courses, instructors build on their own personal 
experience, but courses change over time. For example, consider the following conversation: 

Harper: Okay. Do they do proofs in Calc? Calc 1 and Calc 2? 
Interviewer: No. 
Harper: Things have changed since I took Calc 1 and Calc 2. 
Gayle: Depends on who teaches Calc a little bit. 
Harper: Which is to say that a lot of time has passed since I took Calc 1 and Calc 2, but 

things have definitely changed. 
On the somewhat positive side, Gayle noted they had collaborated with Carey on a co-

requisite course, but also acknowledged some challenges: “For freshman engineering students… 

26th Annual Conference on Research in Undergraduate Mathematics Education 104



 

usually like the Calc schedule gets all wonky because we’ll end up doing either Rolls 
[Theorem]… in week 2 or something just so that they have it and like they can then use that for 
kinematics … so they apply it and do physics labs and things like that.” Gayle noted that this 
arrangement between physics and calculus could lead to an unusual calculus schedule, where 
applications that typically follow differentiation techniques instead are addressed early in the 
semester, though this was done to benefit students’ understanding in their physics course.  

Discussion 
This study examined disciplinary, individual, interpersonal and personal, and institutional 

obligations as perceived by faculty, especially as they support or hinder making connections 
between courses. Participants highlighted disciplinary obligations as motivation for them to 
make connections but noted obstacles like a perceived lack of student knowledge or mastery, 
preventing students from fully understanding the connection or preventing faculty from 
attempting to make connections. Individual obligations manifested through faculty’s attention to 
students’ content backgrounds and affective needs. The supports and hindrances in this case 
mirrored each other, as faculty highlighted anxiety as a common issue but also shared ways to 
address this; similarly, they highlighted both a lack of knowledge about students’ backgrounds 
and ways this knowledge could be leveraged if known. Interpersonal and personal obligations 
emphasized the instructors’ knowledge and relationships and their impact on making connections 
between courses. In these obligations also, supports and hindrances mirrored each other, with 
some participants extolling the power of connecting with colleagues while others wondered how 
to make those personal connections; similarly, faculty’s prior experiences with courses could 
either incentivize or prevent making connections. Finally, institutional obligations highlighted 
the need to attend to existing policies. In most cases, these obligations served as hindrances to 
making connections, as making connections is not valued for tenure and promotion and policies 
fostered competition between departments over course design and maximizing credit hours. 

We believe applying the lens of professional obligations (Herbst & Chazan, 2011) to our data 
provides three useful insights. First, our participants were likely a best-case scenario for making 
connections between math and other areas; they were willing to take time to attend focus groups 
and saw value in making connections. However, even they highlighted hindrances to connections 
across all four types of professional obligations, especially institutional obligations. Second, 
multiple instances arose where faculty did not see the purpose of having certain prerequisites, 
whether because they viewed the information as irrelevant for their students, likely to drive 
students away from their own courses, or unlikely to be remembered when needed in subsequent 
courses. Considering calculus’s current role as the gateway to STEM (Bressoud et al., 2015) and 
other studies with faculty questioning the importance of math courses for learning STEM content 
(e.g., Rupnow et al., 2023), such perceptions from other disciplines are important to consider to 
ensure math courses are performing their expected role in the curriculum and valued by other 
disciplines. Finally, our participants had almost exclusively negative things to say about the 
impact of the institution on the making of connections. Some policies may be difficult to change 
(e.g., activities valued for tenure, budgetary formulas) whereas others would require less effort 
(e.g., providing collaboration spaces for likeminded faculty). We encourage future work on the 
impact of these policies and how they could be changed to support connections across courses. 
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“Close but not Exact”: An Alternative to Introducing Derivatives 
 

Franklin Yu 
Arizona State University 

In this paper, I report on the findings of two students engaged in a teaching experiment on 
instantaneous rate of change (derivatives). While derivatives are a quantification of how two 
quantities covary, many students tend to have static images of the derivative (Zandieh, 2000). 
This teaching experiment was designed to support the students in building a meaning for 
instantaneous rate of change based in quantitative and covariational reasoning. The results of 
this study provide empirical evidence of the benefit of alternative teaching methods to the current 
standard curriculum.  

Keywords: Derivative, Quantitative Reasoning, Teaching Experiment 

Research on Calculus education has been extensive and covers many topics. In particular, 
there is a large body of research on the learning and teaching of derivatives and instantaneous 
rate of change (e.g., Orton, 1983; Ferrini-Mundy & Graham, 1991; Zandieh, 2000; Yu, 2020). 
One typical method of introducing the derivative concept involves sliding secant lines towards 
one of the endpoints to get continuously better approximations of a tangent line, the slope of 
which represents a quantity we call instantaneous rate of change. However, researchers have 
indicated that students often struggle with connecting this sliding secant line imagery with rate of 
change (Ferrini-Mundy & Graham, 1991; Zandieh, 2000; Ubuz, 2007). This idea of quantities 
changing continuously and covarationally is central to the idea of derivative, yet the research is 
clear that students often do not associate quantities as covarying when they think about 
derivatives (Zandieh, 2000; Byerley et al., 2012; Yu, 2020). Due to these issues, this manuscript 
reports on the results of a teaching experiment designed to support students in developing a 
productive understanding of instantaneous rate of change. 

Theoretical Background 
If we examine the limit definition of derivative, 𝑓ᇱ(𝑥) = lim

∆௫→

(௫ା∆௫)ି(௫)
(௫ା∆௫)ି௫

, the derivative 

involves an average rate of change between the input values 𝑥 and 𝑥 + ∆𝑥 ((௫ା∆௫)ି(௫)(௫ା∆௫)ି௫
) where 

the variation in the value of 𝑥 gets smaller and smaller ( lim
∆௫→

). In the standard presentation, 
where a sliding secant line converges to a tangent line, students need not attend to what the 
average rate of change describes about a given context. This is evident in the literature (Zandieh, 
2000; Byerley et al., 2012) when students interpret the value of a derivative (e.g., 𝑓ᇱ(3) = 7), as 
being only associated with the slope of a tangent line and not necessarily attending to how 
quantities may be covarying. Therefore, it stands to reason that students should simultaneously 
attend to 𝑥 and 𝑓(𝑥) covarying and how choosing smaller and smaller input intervals can net us 
what we call an instantaneous rate of change. 

Relevant Literature 
Ely and Ellis (2018) proposed that leveraging what they call scaling-continuous 

covariational reasoning could support Calculus students in developing productive ways of 
thinking. Building off this, Ely and Samuels (2019) provide empirical evidence of alternative 
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ways of teaching the idea of derivative with their “Zoom in Infinitely” method. These studies 
indicate that supporting students in reasoning about how two quantities’ values covary together 
can help them better understand the derivative concept. This study provides another example of 
teaching one aspect of the derivative (the limiting portion) using an alternative method that 
deliberately focuses on supporting students in reasoning quantitatively. Compared to the works 
of Ely and Samuels, the students are not zooming in on an existing graph of a function. Instead, 
the students create a piecewise linear function and continually choose smaller and smaller 
intervals to model an object’s movement. This study’s research question is: What understanding 
of the derivative concept do individual students develop during an instructional sequence 
designed to support students’ quantitative and covariational reasoning? 

Methodology 
This study was part of a larger study conducted by engaging students in individual teaching 

experiments (Steffe & Thompson, 2000). The students selected were enrolled in a Calculus 1 for 
Engineers course before learning about secant lines and instantaneous rate of change. The 
teaching experiment involved six sessions (1 pre-interview and 5 teaching sessions) that focused 
on characterizing and advancing students’ ways of thinking about rate of change. This document 
reports on two students in the fourth teaching session, where the teacher worked with the 
students to develop a basis for a productive understanding of instantaneous rate of change. In this 
session, the way of thinking that the instructor wanted students to develop was the idea that “One 
can obtain better approximations of the (instantaneous) rate of change at a given value of the 
input variable by determining average rates ((௫ା∆௫)ି(௫)(௫ା∆௫)ି௫

) of change on smaller and smaller 
intervals ( lim

∆௫→
) that include that value of the input variable.” 

Background 
Before the fourth teaching session, the third session involved having the students program 

(writing a piecewise linear position function) to model the movement of a runner by choosing 
smaller and smaller intervals (Yu, 2023). That session was primarily focused on developing a 
productive meaning for average rate of change as an imagined constant rate of change that would 
provide the same net changes in the output quantity over the same input interval. Additionally, it 
also seeded the fundamental idea of this paper by providing an animation of their programmed 
function that showed their model’s movements as getting more accurate to the actual runner 
(Figure 1).   

Figure 1: Example of Programming the Bottom Runner using the Average Speed of the Top Runner 
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In the fourth session, students worked through a Desmos Applet and were tasked with modeling 
the motion of a camera to match a car’s motion (Figure 2). While this task is similar to the third 
teaching session, one important note is that the Desmos Applet provided no indication to 
construct a piecewise linear function using average rates of change. Instead, students were 
prompted to discuss their thinking and how they would attempt to mirror the car’s movement. 
Later in the session were questions on how they might determine the speed at a particular time 
value and approximate future values of a function using that speed. 

Teaching Session 4 – Scott 

The camera problem prompted students to program a camera’s movement on a track to 
mirror the movement of a car on a parallel track. Scott initially stated that he wanted to 
determine the equation of the line that would create the same path the camera was on. In other 
words, Scott wanted a function where the physical shape of that function’s graph matched the 

Figure 2: The Camera Task 

Figure 3: The Camera Problem and Scott's initial ideas 
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shape of the track he saw on the Desmos applet. However, he realized that having the function 
whose graph matched the physical shape of the track path would not model how the camera’s 
distance traveled would vary as time varied. Scott then suggested using the given distance 
function of the car, 𝐷, but soon recognized he could not do this since he did not have the 
function definition for 𝐷 (Figure 3). Scott then decided that we could “find the average rate of 
change in really small intervals where it would be pretty close but not exact.” As Scott started to 
define a function, 𝐶, where he used the car’s average speed and multiplied it by an amount of 
time, he verbalized that he wanted to use the same method as the Runner Task (Figure 1) by 
using average rates of change. Scott’s choice to utilize average rates of change is essential to 
note since the questions accompanying the Desmos applet did not have any prompts to define 
piecewise linear functions or use average rates of change to model the camera’s motion. Scott 
broke up the 30-second interval into one-second intervals (Figure 4). As he defined his piecewise 
linear function, he checked his work by playing the animation to ensure that the camera moved 
according to his expectations.  

After programming the function to model the camera’s distance traveled along the track with 
respect to time elapsed, Scott was asked a series of questions on determining the car’s speed at a 
particular value of time (Figure 5). Scott stated that he would “find the change in distance 
between 2 really small intervals of time and divide it by the change in time.” He later generalized 
this statement: “I would just take 2 values very close to that time, and I would calculate the rate 
of change between them.” There are several aspects of Scott’s worth response worth 
highlighting: 

1. The sizes of the time intervals he chose to determine the speed at 𝑡 = 30 (Figure 5) were 
different from the size he used to program the camera’s motion (Figure 4). For 

Figure 4: Scott programming the camera's distance traveled 
over time using the car's average speed in each one-second 

interval 

Figure 5: Scott's response to finding the speed of the car at a 
given input value 
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programming the camera’s distance traveled, he used the car’s average speed in 1-second 
intervals, and for the speed at 𝑡 = 30, he used the car’s average speed in a 0.1-second 
interval. This suggests that Scott’s choice in the “2 values very close to that time” was 
arbitrary and that no specific interval size was needed. 

2. Scott verbalized that using average rates of change over a small time interval “would be 
pretty close but not exact” to modeling the car’s motion as time passed. As he answered 
each of the prompts about determining the car’s speed at a particular time, he never 
verbalized a need to justify that they were close approximations. It is likely that because 
the animation displayed the motion of the camera and the car was essentially the same; he 
might have believed that his approximations were good enough and that the difference 
between the actual and the approximated distance functions was insignificant. 

Teaching Session 4 – Hans 

Like Scott, Hans’ initial approach to the camera problem was to determine the equation of 
the line whose graph matched the path of the road. He then suggested finding “the constant rate 
of change of the car.” However, after playing the animation, Hans recognized that the car was 
moving at varying speeds, so he proposed that we “cut the car into sections and make secant 
lines” (Figure 6). Hans verbalized that this was similar to the third teaching session, and he 
wanted to build a piecewise linear function using the car’s average speed over small time 
intervals to model the camera’s motion. 

Hans employed 3-second intervals (Figure 7) and did not play the animation until he finished 
defining the piecewise function. After playing the animation, he noticed that the camera and the 
car’s movements did not align adequately in the first few seconds. He then suggested, “we could 
do better if I made it like 1 second [the interval size] instead.” Rather than having Hans rewrite 
his piecewise function, the interviewer asked hypothetical questions such as “suppose we wanted 
to do 1-second intervals, what would we need to change?”. Hans replied that he would have to 
change everything since “you wouldn’t be able to use like 3 seconds…like how these are done. I 
would have to re-do them to resize these rates of change.” After this round of questioning, Hans 
demonstrated that he could obtain better approximations of the car’s distance traveled with 
respect to time elapsed by using average rates of change over a smaller time interval. 

Figure 6: The Camera Problem and Hans' Initial Ideas 
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The interviewer then asked Hans how he might determine the speed at 𝑡 = 30. Hans initially 
stated “(ଷ)

ଷ
 since it is the rate of change for 30… err… it’s just a rate, not a rate of change.” He 

later clarified that (ଷ)
ଷ

  “is a rate [and not a rate of change] because it remains a constant value 

of 0.878 like it would be the constant rate at 30.” The interviewer then wrote (ଷ)
ଷ

 as (ଷ)ି
ଷି

 and 

asked what (ଷ)ି
ଷି

 would represent in this context. Hans identified that (ଷ)ି
ଷି

 would be the 

car’s average speed between 0 and 30 seconds, and then quickly realized that (ଷ)
ଷ

 would not be 
the car’s speed at 30 seconds. Afterward, he suggested we could determine the average speed 
between 29 and 30 seconds since “it’s in the region that we want it in like 30, so it’s close 
enough to the speed” (Figure 8). On the other tasks that prompted Hans to determine the speed at 
a given time value, Hans’ responses indicated that he would determine the average rate of change 
over a small interval near the requested time (Figure 9). 

Several aspects of Hans’ responses are important to discuss. 
1. Hans thought about (ଷ)

ଷ
 as a “rate not a rate of change.” His expression, (ଷ)

ଷ
, suggested 

that a fraction with a singular distance divided by a singular time would determine a 

Figure 7: Hans’ programming the camera's 
distance traveled over time using the car's 

average speed in each three-second interval 

Figure 8: Hans moving from (ଷ)
ଷ

 to  (ଷ)ି(ଶଽ)
ଷିଶଽ

 

Figure 9: Hans’ explanation of how to find a speed at a given input value 
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“rate,” and something of the form ௬మି௬భ
௫మି௫భ

 would determine a “rate of change” since the 
numerator and denominator represented a change in one quantity’s value. It was likely 
through reconceiving (ଷ)

ଷ
 as being equivalent to (ଷ)ି()

ଷି
 (which he identified as the 

car’s average speed between 0 and 30 seconds) that supported Hans in conceiving (ଷ)
ଷ

 
as the car’s average speed over 30 seconds. 

2. Another possibility for his response of (ଷ)
ଷ

 as the car’s speed at 30 seconds is that he 
considered that a rate was “distance over time,” and so he used the distance at 30 
seconds, 𝐷(30) and divided it by the time value of 30 seconds. In either case, what 
supported Hans in shifting his conception of (ଷ)

ଷ
 was the prompting to explain what 

each portion of his expression represented. Additionally, writing an equivalent expression 
in the form that he was familiar with (e.g., recognizing that (ଷ)ି()

ଷି
 would represent an 

average speed) aided him in reflecting on the quantities he attempted to represent. 
Like Scott, Hans also demonstrated an understanding of the arbitrariness of choosing how 

small an interval had to be when determining the speed at a given input value. When determining 
how he might determine the speed at 𝑡 = 10, Hans initially wrote (ଵ)ି(ଽ.ଽଽ)

ଵିଽ.ଽଽ
 but also noted that 

he could choose other sized intervals like the subsequent ones he wrote in Figure 9. 

Discussion 
The findings of this study present a possible alternative to how Calculus instructors can 

introduce the idea of instantaneous rate of change compared to the traditional sliding secant line 
methods used by popular textbooks (e.g., Stewart). In this study, both students benefitted from 
connecting their mathematical expressions with an applet to model their mathematics. 
Additionally, the applet provided a medium for the students to visualize how choosing small 
enough input intervals could be useful in approximating an instantaneous rate of change. 
Compared to the standard receding-secant line method, where the secant lines converge to one 
single point (in other words, a demonstration of approximating the instantaneous rate of change 
at only one particular value), the students in this study were engaged with developing an entire 
rate of change function as they constructed their piecewise linear functions. As a result, both 
students in this study demonstrated that they likely internalized this process of approximating an 
instantaneous rate of change since they described the process as involving an average rate of 
change over a small enough input interval. 

While motion-based contexts should not be the only examples Calculus students should 
interact with, they can provide a tangible situation that students can associate their mathematical 
understandings with (Berry & Nyman, 2003). This study builds off the existing literature (Ely & 
Samuels, 2019) of alternative ways to introduce the idea of derivatives to support students in 
quantitative reasoning. 

Limitations and Future Directions 
While the results of this study show promising results for alternative teaching methods, the 

results can only be known to be true for the students in the study. Future studies can continue to 
investigate how we can support students in reasoning covariationally in Calculus and how to 
implement these alternative methods in the classroom. 
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Bridging the Mathematical and Social Dimensions of Undergraduate Calculus:
Students’ Perspectives on a Program of Weekly Guided Collaborative Problems Solving

Nadav Ehrenfeld Alice Mark
Weizmann Institute of Science Vanderbilt University

This study explores undergraduate Calculus students’ perspectives on the Course Assistants (CA)
program at a southern US university, where upper-class undergraduates guide weekly Math Lab
sessions of collaborative problem-solving. Using sociocultural theories and qualitative methods
the research investigates what aspects of Math Lab students and CAs found useful or not.
Students' interviews and CAs’ weekly reflections indicate that, on the one hand, students by and
large appreciate the experiences of collaborating over the weekly problems with their peers and
the CAs, the social networking it provided, and the mathematical confidence it helped build. In
our own words, students appreciated how the academic and social dimensions of math learning
came together. However, many students and CAs are skeptical about the connections between the
weekly tasks and success in the course exams. Relatedly, students often complained about Math
Lab being another structured hour in an already time-consuming course and about varying
student engagement.

Keywords: undergraduate calculus; collaborative problem solving; course assistants

Research and professional reports of undergraduate mathematics education often state the
promises and challenges of shifting learning towards more active approaches (where active
learning is conceived broadly and inclusively). For example, research reports in the proceedings
of the 2022 Research of Undergraduate Mathematics Education conference (RUME 2022)
addressed a variety of issues around active learning including instructors’ workshops (Archie et
al., 2022), instructors’ dispositions (Ireland et al., 2022), online active learning (Kerrigan et al.,
2022), linguistic diversity (Rios, 2022), and more. Such RUME research reports often cite as a
starting point The Common Vision (Saxe & Braddy, 2015) and empirical evidence about the
impact of active learning in undergraduate STEM courses (Freeman et al., 2014; Laursen, 2019;
Laursen et al., 2014; Theobald et al., 2020). Side by side with these encouraging outcomes, we
also know that K-16 efforts to implement collaborative math learning approaches (the specific
type of active learning which is the focus here) are complex to incorporate and facilitate,
sometimes fall short, and might even amplify exclusionary dynamics (Ehrenfeld & Horn, 2020;
Louie, 2017; Reinholz et al., 2022; Rios, 2022; Shah & Lewis, 2019). In this paper we explore
such tensions in the context of a Course Assistants (CA) program, in which upper class
undergraduate students facilitated weekly collaborative problem solving sessions (known as
Math Lab) in Calculus courses at a private southern US university. First, we provide a general
overview of the program. Then, we share our sociocultural theoretical perspective, an overview
of the data and methods of analysis we used, and finally, the main themes that emerged from the
data. The overall question we address in this report are What aspects of Math Lab students and
CAs found more or less useful, how, and why?

Research Context: The CA Program
The overarching goal of the CA program was to support undergraduate Calculus students

mathematically and socially during this transition to college. Students worked in small groups of
3-9 with a CA in weekly Math Lab sessions on calculus problems which were longer and more
conceptual in nature than typical homework and exam questions. Those problems were written
collaboratively by the course instructors, with direct relation to the weekly materials. Socially

26th Annual Conference on Research in Undergraduate Mathematics Education 116



and mathematically, we hoped that students’ experiences in the Math Lab would support them in
developing collaborative study skills, conceptual understanding, and a sense of community and
belonging in the course. After a pilot semester in Spring 2022, the Fall 2022 program started in
one course with 20 course assistants (CAs) who facilitated 40 Math Lab groups which served
~250 students. The Spring 2023 program expanded to three courses with 20 CAs (17 returning
and 3 new) who facilitated 40 Math Lab groups which served ~250 students. Math Lab was
required only for students in the first Calculus course of their sequence. The rationale behind not
requiring it in the following course was that by the time students are taking a second semester
course, they have more practice in figuring out what kind of support they need and should have
more agency to decide that for themselves.

Theoretical Framework: Sociocultural Theories of Mathematics Learning
Sociocultural theories of mathematics learning extend a cognitive focus on individual

learners, instead focusing on the participation of learners in social practices within a particular
context (Danish & Gresalfi, 2018; Sfard, 1998). They inform our work by providing core
assumptions about students’ mathematical competencies and identities as constructed through
interactions within context rather than predetermined, acontextual, and act as individuals’ static
traits (Ehrenfeld & Heyd-Metzuyanim, 2019; Gresalfi et al., 2009; Gresalfi & Hand, 2019).
These theoretical assumptions often imply a tendency towards qualitative methodologies that
allow a deeper look at how participants engage within their learning environments, navigating
and reconciling the mathematical and social aspects of learning.

Methodology
In this section we describe the data we collected along the year, including students’

interviews and recordings of the CA training across two semesters (see Table 1 for a summary).
We then describe how we reviewed and interpreted the data, with students’ interviews being the
primary data for this report.

Data Collection
In Fall 2022, the study was approved by the IRB around week 7 of the semester. At this point

we started to video record the last 7 weekly CA training sessions. In Spring 2023, we video
recorded 13 of the 14 weekly CA training meetings in the Department of Mathematics. Finally,
we interviewed nine students about their Math Lab experiences. The students were not chosen by
us individually but rather answered our general call for interviews. Some of the students
participated in the program in Fall 2022 and decided to register or not in Spring 2023 as well.
Some of the students repeated their course with Math Lab at their second round and spoke about
their experience in the same course with and without Math Lab. One student simply took both
the course and the Math Lab for the first time in Spring 2023

Table 1. Summary of data collected for this study.

Data for this study

Semester
Fall 2022
Spring 2023
Spring 2023

Data
7 (of 14) weekly CA meetings
13 (of 14) weekly CA meetings

Including…
Video + groups audio
Video + groups audio
Zoom interviews
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End of semester interviews with 9
students

(primary data for this paper)

Data Analysis
For the purposes of this paper we primarily reviewed the end of Spring 2023 semester

interviews with the nine students. As secondary data we also used recordings of the weekly CA
meetings where students reflected on their Math Lab facilitation. We collected codes and then
themes (e.g., Charmaz, 2006; Strauss & Corbin, 1990), allowing our reading of the data to
suggest the themes, rather than searching for themes identified a priori. In practice, this meant
assigning initial codes to episodes where students and CAs were talking about aspects of Math
Lab as more or less useful for the students. Note that after reviewing all interviews and about
half of the CA training data we reached a point of saturation where codes repeated, and we
almost did not encounter new ones. At this point we had an initial set of 10 codes under
Strengths describing participant-identified dimensions of utility of the MathLab, and a set of 10
codes under Weaknesses describing less useful participant-identified aspects of Math Lab. In the
final phase we merged and reduced each category of codes into three themes that were common
in the data, significant for the students, and provoked generative points for this discussion.

Themes Emerging From the Data
In this section we first describe and illustrate three strengths of the program from the

students’ and CAs’ perspectives: the social support and network that Math Lab provided, the
opportunities to develop mathematical competence and confidence through conversations about
math problems, and the affordances of near-peer math support. These repeating themes sketch a
collective image of what was found conducive to success in Calculus by the interviewed
participants. All three themes illustrate how students found useful bringing together the social
and academic dimension of mathematics learning. Some also contrast this interrelatedness with
typical mathematics lectures and university life. Then, we describe and illustrate three problems,
areas for revision, or less useful aspects of the program, from the students’ and CAs’
perspectives: The fact that it requires extra time in courses that are already dense and demanding,
that students and CAs are not seeing the weekly Math Lab assignment as directly connected to
the tests, and that for some, fully participating within the group was a challenge. Finally, we
briefly discuss the implications of these themes, how they add to a collective image of needs,
pressures, and valued support for success.

Strengths of the Program and Things Students and CAs Found More Useful
Social support and networks.Many students and CAs described their Math Lab groups as a

friendly and fun environment, where positive relationships were established. For some, these
relationships stayed within the scope of the Math Lab meetings. For example, Student 3 said that
“our group like even though we didn't really talk outside of Math Lab we always had the really
like friendly funny conversations during math lab we were always cracking jokes and
everything.” For others, those relationships extended onto the general course, or more broadly to
social life on campus. For example, when asked what the highlight of Math Lab was for her,
Student 4 said:

[The highlight is] the people that you meet. Especially first semester just because like you
know during that time everything is so stressful and especially if you don't know people
in the class. And like maybe you are someone that struggles, [...] or like just like have
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questions sometimes. I think that like being in the Math Lab group is important because
you have like just a few- handful people you know you can reach out to like if you need
help. And I feel like that is better because sometimes being like in a class with 30
students is little intimidating when you like want to speak to other people and ask where
they are at, but the Math Lab group kind of makes it a little bit more like a social- like
add a social aspect which I think is important especially when you are a first semester
freshman...
All in all, often students and CAs saw their Math Lab groups as a friendly and welcoming

environment, where positive bonds were created (sometimes contrasting it with other courses
without Math Lab). These relations were of different type and scope: with some being more local
in nature, just within Math Lab (as Student 1 described), some extended to the course classroom
(as Student 6 described), and for some (like Student 4) those relations continued to students'
ongoing academic and social campus life. Importantly, we know from the data and the literature
that improvements in sense of belonging and deeper social connections in turn translate to better
learning outcomes. The next theme further illustrates how students experienced the convergence
of the social and the mathematical.

Communicating about math and developing competence & confidence.When we asked
students what their Math Lab looked like, they often described positive experiences of doing
math together, communicating and reasoning collaboratively about the content. Sometimes they
also connected this type of math to their sense of confidence and competence, or to the
advantages of explaining math out loud or being exposed to the ways other students are thinking
about the weekly problems. For example, Student 2, who described herself as someone who
“hates math” and wished she wouldn’t have to take any math courses, told us that the best thing
about Math Lab was “I think the most beneficial thing for me in Math Lab was like knowing that
I can do these sort of problems, this is a good confidence thing...” In another example, Student 6
shared:

we would just go problem by problem and a lot of- we would be like “hmm: what did
people like get for solutions on problem 1.” And if there was like difference in opinions
we would hmmm like go to the whiteboard and work out our work or show our work on
paper or ipad and discuss and like discuss collaboratively about different methods for this
solutions and what do we think we should put on the group doc we submitted.
Similarly, Student 8 shared how they were “talking it through” and her insight that “going

through your line of reasoning could help you better understand how you look at math and how
others look at math, and that can inform a more solid foundation…” as well as how sharing her
thinking with the group and being validated by the CA was gave her a “confidence boost.”
Finally, Student 9 concluded his Math Lab experience with the insight that it is really good to
have a dedicated time for groupwork because “sometimes you can learn more from your fellow
students in a way that you can't from your instructor or the TA.”

Near-peer support.While many students appreciated the opportunities to do math with their
peers, the Math Lab experiences were different from a regular student learning group at least in
one significant way: having their near-peer support. Near-peer support was discussed both in
terms of the CAs, and sometimes also in terms of their upper-level Math Lab friends (e.g.,
freshmen and sophomores in the same groups). In addition, near-peer support was mostly
discussed in terms of math support during Math Lab, but it also extended to other aspects of
students’ life like choosing courses and applying for summer jobs. Near-peers were also
mentioned in contrast to TAs and to instructors, as being more approachable and as allowing to
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form closer mentoring relationships. The CAs reflections pointed out similar narratives.
Capturing nicely the near-peer theme, Student 6 articulated the experience of being with a
near-peer CA as being both “formal and informal,” She said: “My CA did a really good job
about making it like formal but also informal at the same time. Kind of like just a different
setting than the actual class which I think was helpful.” Describing the work with the same CA,
student 8 explained the importance of the CA being someone who took this class recently:

[The CA] was awesome she was really [unclear] and she understood the importance of
the emotional support aspects, and like, someone who took the course and she is
sophomore so she is like close to our age actually one of the kids in our lab group is older
than her, and it felt like a peer relationship and she was very open if you guys need
anything at all i'm always here for advice.
Others often mentioned their CAs for their math support (Student 1), their ability to get to

know students and how they feel (Student 4), and their support with academic issues beyond
math content (Student 3). Student 3, who is a student of color who had in the Fall semester a CA
of color, described how the two are still in touch one semester after the course ended. She
particularly appreciated how beyond the math assignments, the CA “loved to like… she was
always talking about, like, doing internships and encouraging us to, like, apply ourselves outside
the math lab and do different programs and stuff and so, um, yeah. She was awesome and we all
realized that very early on.”

In sum, the near-peer support was a recurring motif in students’ and CAs’ descriptions of
Math Lab, and this position seemed to offer some affordances that are different from the support
typically provided by same-level peers, by TAs, and by instructors.

Weaknesses of the Program: Things Students and CAs Found Problematic, Less Useful, or
Requiring Revision

Math Lab takes extra time in already time-demanding courses.With the Math Lab (and
its weekly problems), the TA discussions, and the daily homework, Calculus students at the
university have a relatively extended set of obligations. For example, the first thing that Student
1 told us about, was that she was surprised by the time demands of the calculus sequence. In the
context of an already-demanding course, the Math Lab could seem like an added burden to
students having an experience like that of Student 1. Similarly, Student 6 explained that “for
some students it can be hard to justify like showing up somewhere for another extra hour a week
especially when we are all kind of like busy.” For Student 3, who was generally happy with her
Math Lab experience in the Fall, time constraints were the main reason she decided not to
continue with Math Lab for the Spring when it was not required. Just as Student 1, she explained
at the very start of the interview that “math is a lot of work here, it's a lot of homework and I feel
like I have math every single day with the math lab and lecture and discussion....” Then, when
we asked why she decided on not going to Math Lab on MATH 1201 she added:

Math is basically like everyday here with the lectures and discussions so I thought like if
I didn't have to sign up for Math Lab to begin with, so maybe it would help my schedule
just a little bit. Because I just remember last semester like trying to balance Math Lab
with like clubs and everything was a lot of work so I thought like it would be better to
allocate that time to something else, some organization or something else on campus.
As we illustrate in the next section, others questioned the usefulness of Math Lab because

they did not see the direct connections between the weekly problems and the exams.
Students and CAs are not seeing connectedness to exams. The concern that the weekly

Math Lab problems are not useful for students because they are not similar in nature to the daily
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homework question nor to the exam (e.g., longer, more conceptual, open ended, use tech like
Desmos), came up across students’ interviews and CAs’ discussions. For example, when we
discussed metacognition in the CA training, we asked the CAs when and how they were noticing
students’ frustration with the weekly problems. One CAs answered as follows.

I feel like where I see the peak of frustration so like- my group they work on their
homework as well, so like they go through the problem set and the homework because it
is due the same day. And so their frustration is often times the weekly [Math Lab
problem] is different than the [non Math Lab] homework, like significantly different. So
in their minds it’s like how is this benefiting me because I have to worry about my
homework right now which is like my grade that has like a higher grade [weight], I see
more of the correlation from this to my exam vs. like some of the... [...] they wouldn't be
writing something like that [on the exam]. I guess it’s gonna be more you're given a
function and then you write the derivative something like that. So they get frustrated
because they are comparing both of them [non Math Lab homework and weekly Math
Lab problem] because they are doing it at the same time. I don't know how to explain like
why the dynamic should be different because you don't do the same thing. That's not
gonna benefit you.
These conversations were typical in the CA training where CAs described their students’

perspective about the tasks, their own perspectives, and their concerns with regards to
responding to students complaints. And while in some interviews with students we did hear some
appreciation to the conceptual nature of the weekly assignments, students mostly expressed
dismay with not seeing connectedness to exams. For example, when asked to elaborate on
different aspects of Math Lab, Student 1 said:

I feel like the actual Math Lab tasks were very- they felt very like disconnected at times
from what we were actually learning. Because none of the stuff we did in Math Lab was
never on any test like I feel like it always required some outside knowledge [...]
In sum, many MATH 1200, 1201 students and their CAs identified and struggled with the

incoherence between the Math Lab and other course activities, including those who appreciated
the opportunity to do math with peers and the CA and generally enjoyed their Math Lab. It is
worthwhile to note that MATH 1300 students generally responded better to the open and
conceptual nature of the problems, and more easily saw the connections between the Math Lab
assignments and the course.

Limited student engagement within the Math Lab group.While we aspired to provide
students with productive and inclusive mathematical work in small groups, this was not always
exactly what played out in practice. Students and CAs often described less effective ways of
working together (and not together) and encountered different forms of disengagement.
Interpretations of disengagement ranged from deficit-oriented (e.g., a student described some
students as “piggybacking” the group submission) to acknowledging that it is challenging to
learn how to do math together, and it might require time and support for students to “put
themselves out there.”

We start by illustrating how students themselves pointed out certain group dynamics as
troubling. Some students described them as a constant concern across the semester, and others as
growth pains at the beginning of the semester. For example, when Student 2 was asked what
makes a good Math Lab, she mentioned having regular attendance and that it should be clear that
“if you are in a group you participate in doing the work.” She then elaborated, expressing
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frustration that some students were “piggybacking” on the submission, showing up but not really
participating. Student 8 shared a similar feeling. However in her case group dynamics shifted
after the first 2-3 weeks:

I was worried in the beginning like not everyone putting in effort but as we went on I
think everyone started to see how valuable the assignments were and how like talking it
through and going through your line of reasoning could help you [...] The first like two or
three meetings it was kind of mostly 2 other girls and me sort of carrying stuff and
everyone else were kind of silent. I don't know exactly why it changed but it did. And
then everyone started contributing very equally and I felt more comfortable coming in
with questions rather than answers.
The narrative of group growth across the semester towards more effective and inclusive

participation repeated in interviews with the CAs at the end of Fall semester and in their end of
year feedback. These accounts were typical in the CA training, and we encouraged CAs not to
share just “success stories” but also everyday problems. Our hope was that they will develop
sensitivity to notice non-productive and exclusionary patterns of student engagement, and will
improve their capacity to respond to them.

Conclusions and Implications
Students and CAs found several aspects in this program useful, including the development

of social support networks, enhanced mathematical competence and confidence through
collaborative problem-solving, and the value of near-peer support from CAs. These strengths
illustrate that students found important the convergence of the social and academic dimensions of
mathematics learning, which they often noted as missing in their undergraduate math journey.
With regards to areas of revision, students felt that Math Lab added to the time demands of an
already challenging course, and they struggled to see direct connections between Math Lab
assignments and course exams. These themes could be interpreted either from the CA program
perspective or from a general Calculus program perspective. From the CA program perspective,
one attempt we made in the Spring to bridge for students the Math Lab weekly tasks with other
course activities for students was to include some related homework/exam-like exercises with
each conceptual lab problem that are rooted in the same mathematical concepts but are not for
submission. From a general program perspective, if conceptual understanding is a goal of
Calculus programs overall, building coherence across component of the course might also imply
broader changes in the course. In that sense, the themes we presented are not only addressing
students’ perspective on this specific CA program, but they also direct us to the general needs of
undergraduate Calculus students. These findings highlight the value and complexities of
implementing undergraduate Calculus collaborative math learning approaches that bridge the
academic and social dimensions of mathematics learning.
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This contributed report describes the development and validation of a new measure—the College 
Mathematics Beliefs and Belonging (CMBB) survey. The CMBB provides a contemporary 
measurement of undergraduate students’ perceptions of their mathematical proficiency and 
reasoning, beliefs about mathematics, and sense of belonging in mathematics. Primarily first- 
and second-year undergraduate students in five courses at a large public university in the United 
States completed multiple surveys to provide the data used for survey development. Confirmatory 
factor analysis (N = 935) and a reliability analysis indicate that the CMBB is a survey with 
fifteen factors that adequately measure various aspects of perceived mathematical proficiency 
and reasoning, beliefs, and sense of belonging. The CMBB survey is intended for use by both 
researchers and instructors to assess undergraduate students’ perceptions across these three 
domains with the aim of improving students’ experiences in college mathematics courses. 

Keywords: proficiency, mathematical reasoning, beliefs, belonging, factor analysis 

For decades, mathematicians, mathematics educators, and psychologists have explored 
individual differences and instructional factors that affect students’ achievement and motivation 
in postsecondary mathematics. There is a long tradition of postsecondary mathematics instructors 
identifying habits, beliefs, and abilities that are viewed as critical for effective mathematical 
practice. This collection of habits, beliefs, and abilities is sometimes referred to collectively as 
“mathematical maturity” (Faulkner et al., 2019; Garrity, 2011; Lew, 2019; Steen, 1983). In a first 
step toward delineating specific key habits, abilities, and beliefs, mathematicians engaged in 
scholarly teaching have produced practitioner-focused reports documenting developmental goals 
for postsecondary mathematics students, often through the work of professional societies such as 
the Mathematical Association of America (MAA). The MAA Committee for the Undergraduate 
Program in Mathematics has long been active in this work, producing the series of Curriculum 
Guides to Majors in the Mathematical Sciences (MAA, 2015) and The Curriculum Foundations 
Project (Ganter & Barker, 2004), created by the Curriculum Renewal Across the First Two Years 
subcommittee. This work has been complemented by a growing body of research in 
undergraduate mathematics education involving a range of themes including student thinking, 
student-instructor interaction, and effective pedagogy, among others (e.g., Bressoud et al., 2015; 
Carlson & Rasmussen, 2008; Laursen & Rasmussen, 2019). 

Psychologists have also pursued parallel lines of investigation. Psychological research has 
revealed that students' persistence in STEM courses is highly influenced by their beliefs about 
math, perceptions of their own learning, and their academic motivation more broadly (e.g., 
Hulleman & Harackiewicz, 2009; see Eccles & Wigfield, 2020, for a review). However, many 
existing measures of students’ beliefs, motivation, and sense of belonging in mathematics based 
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on psychological research have paid insufficient attention to how mathematicians and 
mathematics educators conceptualize student learning in the context of college mathematics.  

The goal of the current investigation was to develop an instrument to measure college 
students’ beliefs about mathematics, and beliefs about their own mathematics learning, that have 
been identified as effective for mathematics practice by scholarship, research, and theory from 
multiple communities of practice. The College Mathematics Beliefs and Belonging (CMBB) 
survey can be used by researchers and instructors to assess student attitudes and beliefs in 
undergraduate mathematics courses, including students’ views about their own mathematical 
proficiency, their beliefs about the nature of mathematics, aspects of what motivates them in 
mathematics learning, and multiple facets of their sense of belonging in mathematics. By 
considering the contributions of multiple communities of practice, we believe that the CMBB 
survey is representative of a wide range of perspectives that reflect the increasing diversity of 
undergraduate students taking introductory mathematics courses at the postsecondary level.  

Theoretical Frameworks 

Mathematical Proficiency and Reasoning 
First, we sought to capture student individual differences in theoretically meaningful aspects 

of their mathematical proficiency and reasoning. One influential framework is the 5-strand 
model from the National Research Council’s (NRC) “Adding It Up: Helping Children Learn 
Mathematics” report (Kilpatrick et al., 2001). The 5-strand model is comprised of five 
theoretically unique, but related, aspects of students’ knowledge: Conceptual Understanding, 
Procedural Fluency, Strategic Competence, Adaptive Reasoning, and Productive Disposition.  
The NRC Committee proposes that these five strands of mathematical proficiency and reasoning 
are separable yet interwoven constructs, with each supporting the others and productive 
disposition bringing together all strands. This view is also aligned by psychological research on 
conceptual and procedural understanding in mathematics (e.g., Rittle-Johnson & Siegler, 2021) 
and academic motivation (e.g., Eccles & Wigfield, 2020). 

In addition to these five strands, we reintroduce Gray and Tall’s (1994) conceptualization of 
proceptual thinking, a separate construct that focuses on the fundamental integration between 
understanding a procedural process and understanding conceptual mathematical relationships. 
Proceptual thinking reflects a key aspect of how mathematicians perceive mathematical symbols. 
Gray and Tall argue that mathematicians’ perception of symbols includes understanding 
processes that a symbol represents, the mathematical object a process produces, and an 
understanding of the symbol flexible enough to include both the processes and object.  

Beliefs About Mathematics 
Postsecondary students enter college with a range of beliefs about the nature of mathematics 

(see Philipp, 2007). For example, some students think of mathematics as a collection of 
relatively independent rules and procedures (Schifter, 1990). Another common belief is that 
mathematics is fundamentally a form of logical thinking (Dossey, 1992). Finally, some students 
consider efficiency to be a key characteristic of doing mathematics (Boaler et al., 2015). Many of 
these beliefs held by students do not accurately reflect mathematicians’ conceptions of 
mathematics (Gold et al., 2017; Hersh & John-Steiner, 2010). Thus, we aimed for our 
contemporary scale to reliably assess how undergraduate students conceptualize the nature of 
mathematics.  
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Students also possess motivational beliefs about mathematics (Kloosterman, 2002; Royster et 
al., 1999), including the usefulness of mathematics (utility value; Eccles & Wigfield, 2020), 
confidence in their own mathematical proficiency (self-efficacy; Bandura, 1997), and their own 
and others’ abilities to learn and understand mathematics (growth mindset; Yeager et al., 2019). 
Importantly, motivational beliefs often uniquely predict academic outcomes, over and above 
mere content knowledge. For example, classroom-based experimental studies reveal that when 
students can see the utility of their college STEM classes, they are more likely to persist in 
STEM majors years later (Asher et al., 2023). Additionally, mathematical confidence is a driving 
factor in persistence in college mathematics, especially among women (Ellis et al., 2016). 
Finally, students who understand that mistakes are a part of learning are more likely to persist in 
advanced mathematics and earn higher grades in mathematics courses (Yeager et al., 2019).  

Given these considerations, our view is that understanding the multidimensional nature of 
student beliefs of mathematics is pivotal to fostering student learning, understanding differences 
between groups of students (e.g., gender differences) within a course, and assessing the impact of 
different pedagogical approaches. Thus, we aimed to include a broad range of belief-oriented 
items—encompassing both beliefs about the nature of mathematics and motivational beliefs 
about mathematics—in our survey. 

Centering Equity and Inclusion through Sense of Belonging  
A growing body of work has adopted sociocultural frameworks that acknowledge the 

importance of the broader learning context—such as belonging—in shaping student learning and 
engagement (Allen et al., 2016). Sense of belonging is defined as “the feeling that a member fits 
in, belongs to, or is a member of the academic community in question” (Good et al., 2012, p. 
700). Among college students, sense of belonging affects mathematics motivation differently for 
different students. For example, Good and colleagues (2012) found that when women 
experienced a decline in sense of belonging across the academic year, they were less likely to 
intend to enroll in additional courses in mathematics.  

There is also substantial overlap between sense of belonging and research regarding inclusive 
and equitable teaching practices and the development of supportive learning communities. Leyva 
et al. (2022) analyzed Black and Latine students’ perceptions of practices in calculus instruction 
intended to be supportive for all students, finding that these were generally perceived as 
necessary but insufficient to create equitable opportunities and content access. Following 
reflection and re-evaluation of data from the MAA’s National Studies of College Calculus, 
Hagman (2019) articulated that diversity, inclusion, and equity practices constituted a critical 
factor for student success; this factor was not considered explicitly in the original findings of the 
MAA studies. Further, many mathematicians and mathematics educators have reported on their 
efforts to build inclusive and welcoming communities within mathematical contexts 
(Cunningham et al., 2021; Hardin & Shahriari, 2022; Karaali, 2022). 

Initial Instrument Development 
Our instrument development process unfolded in two distinct stages. First, we developed a 

set of preliminary survey items based on an extensive literature review, piloted the survey with a 
small sample of students, and conducted a preliminary analysis to assess the factor structure of 
these survey items. Second, based on results of our preliminary analysis, we revised the survey 
items and collected data to assess the validity and reliability of the measures. 
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Item Development and Pilot Data Analysis 
The 5-strand model combined with proceptual reasoning combine to provide six strands of 

proficiency: Conceptual Understanding, Procedural Fluency, Strategic Competence, Adaptive 
Reasoning, Productive Disposition, and Proceptual Thinking. For each of these strands, the two 
lead authors wrote specific items guided by both the construct definitions and the specific 
content knowledge that students in undergraduate mathematics courses should master, with a 
focus on courses taken by first-year students. All items were designed as Likert-type items on a 
1–6 scale (strongly disagree to strongly agree, with no neutral option). All items in the initial 
version of the survey are available on our Open Science Framework (OSF) page 
https://osf.io/683ek/?view_only=cadf80e3935d41caa88699d9f1f3e4a8.  

We also sought to characterize students’ feelings of belonging, membership, and acceptance 
in the mathematics community (Good et al., 2012). Items in this section were modeled after 
Good et al.’s (2012) scale of sense of belonging in mathematics, questions asked by Piatek-
Jimenez (2008) in their interviews of women in mathematical careers, and themes described in 
Oppland-Cordell and Martin (2015). The remaining items were written by the two lead authors 
to capture students’ feelings of belonging and community when working with peers in the 
classroom and students’ own identification with mathematics. 

In Summer 2022, we conducted an Exploratory Factor Analysis (EFA) on the initial survey 
data. The EFA showed that we should remove most reverse-coded items and clarify the item 
questions regarding beliefs about mathematics. The EFA for the first version of our survey did 
show that there were two factors clearly loading on proficiency/beliefs and belonging; thus, we 
determined it was appropriate to revise the survey and collect new data. The final survey items 
are available on our OSF page. 

Reliability and Validity Study on Final Survey Items  
To establish reliability and validity, we adopted the approach set forth in the Standards for 

Educational and Psychological Measurement in Education (AERA, APA, & NCME, 2014) in 
which the importance is placed on gathering multiple sources of validity evidence relevant to the 
interpretation of an instrument. The Standards recommend considering five types of validity 
evidence: test content, response processes, internal structure, relation to other variables, and 
consequences of testing. Validity evidence from item content was addressed by drawing on 
literature in the content domains of interest and by the composition of a multidisciplinary team of 
content experts. Our multidisciplinary team of mathematicians, cognitive developmental 
psychologists, mathematics educators, and an engineer required several discussions about test 
content as we aimed to have a shared understanding of how the items informed each scale and 
the overall purpose of the survey from our multiple perspectives. 

Validity Evidence: Response Process and Test Content 
Six undergraduate college students were recruited for 30- to 45-minute cognitive interviews 

in Fall 2022. A cognitive interview is an interview procedure meant to explore a participant’s 
comprehension of an item or task (Leighton, 2017). When participants articulate their thoughts in 
response to an item survey (i.e., a “talk-aloud” concurrent verbal report; see Ericsson & Simon, 
1993), researchers can determine if their interpretation of an item matches the construct it was 
designed to measure. The interviews indicated that college students interpreted most of the items 
as they were intentionally designed. 
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Reliability and Validity Evidence: Internal Structure 
To provide validity evidence for internal structure, we conducted independent analyses on 

the data we collected at the beginning and at the end of the Fall 2022 semester. In one dataset, 
we conducted an exploratory factor analysis (EFA). The EFA was used to guide a confirmatory 
factor analysis (CFA) on a second dataset.  

Revised survey administration. We administered the CMBB survey to students in five 
university mathematics courses (Contemporary Mathematics, College Algebra, Precalculus, 
Calculus I, Calculus III) that primarily serve first- and second-year undergraduates. The surveys 
were administered using an online survey software (Qualtrics); they were advertised and 
distributed by course instructors on our behalf. 

Participants. After removing participants who did not pass an attention check item or had 
less than 30% survey response completion, our analytic sample included 1,135 students who 
completed the pre-survey and 935 students who completed the post-survey. Approximately half 
of the students in the pre-survey (49%) and the post-survey (53%) reported currently being in a 
mathematics-intensive major. More women than men completed the survey: 56–57% women, 
34% men, 0.2–0.4% transgender, 1% nonbinary, and 5–6% other. In both the pre-survey and 
post-survey, the racial and ethnic distribution of the data was highly similar with 80–82% 
reporting as White, 8–10% Black/African American, 1% American Indian or Alaskan Native, 
5% Asian, 0.5% Native Hawaiian and Other Pacific Islander, and 5% reporting as other. In both 
the pre-survey and post-survey, the first-generation student composition is representative of the 
university at which the data were collected, with 26–27% of the students reporting that their 
parents do not hold at least a 4-year college degree. 

Exploratory factor analysis. First, we carried out a parallel analysis leading to an EFA on 
the pre-survey data. Computations were done in RStudio version 2022.07.1+554 using the base 
R package. The parallel analysis suggested an 18-factor model, where this large number of 
factors aligned with the design of the instrument, therefore orthogonal (varimax) rotation was 
used in the EFA to minimize correlations between factors. In the resulting EFA with 18 factors, 
two of the factors had no items load above .3, and one of the factors had only one item load at 
.31. Combining the EFA results with validity evidence considerations, we proceeded with a 15-
factor model on 56 items. The loading matrix and item correlations for the EFA analysis are 
available on our OSF page. 

Confirmatory factor analysis. Next, to confirm that our hypothesized 15-factor model fit 
the data, we conducted a CFA on the post-data using maximum likelihood estimation with the 
lavaan package version 0.6-12. The CFA model is represented in Figure 1. To interpret our 
goodness-of-fit indicators, CFI and RMSEA, we used equivalence testing to establish 
comparison and cutoff values (Marcoulides & Yuan, 2016). Using equivalence-testing based 
cutoffs, we find that an RMSEA of .047 is identified as a “Close” fit while a CFI of .92 is 
identified as a “Fair” fit (our T-size RMSEA and CFI values were .048 and .91, respectively). 
Thus, we conclude from our equivalence testing that our 15-factor model is a good fit for the 
data. Note that the subscales within each factor are also aligned with the constructs in our 
literature review.  

Reliability and relationships among factor scores. To assess reliability, we examined 
Cronbach’s alpha for items within each subscale (factor). Alpha scores ranged from .74–.95 with 
one scale having an alpha of .66. Thus, most subscales had high internal consistency. To provide 
additional validity evidence, we calculated correlations between the item subscales associated 
with each factor (see Figure 2).  
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Figure 1. This graphic presents our CFA model, including the 15 factors and the items that load onto them. 

 
Figure 2. Correlation matrix for factor subscales. All correlations are significant at the alpha = .05 level except 

those indicated with an X. 
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Importantly, our analysis reveals strong correlations among items tapping components of 
belonging (Community, Individual, Classroom, Collaborative), suggesting that these subscales 
do, indeed, measure interrelated aspects of students’ sense of belonging in mathematics. In 
contrast, belonging subscales are less strongly correlated with students’ beliefs about the nature 
of mathematics and their self-perceived proficiency. Likewise, subscales that measure students’ 
self-perceived proficiency (Conceptual, Procedural, Strategic, Adaptive, Proceptual) are strongly 
related to each other as well as the Self-Efficacy subscale and the Logic beliefs subscale. In sum, 
the general pattern of correlations across subscales reflects our expected theoretical structure. 

Discussion and Conclusions 
Researchers and educators interested in understanding how instructional factors in 

postsecondary mathematics education shape students’ beliefs about mathematics and their own 
approaches to mathematics need a valid and reliable tool for measuring these beliefs. Our team 
successfully developed a contemporary instrument, the College Mathematics Beliefs and 
Belonging (CMBB) survey, to assess a variety of related theoretically meaningful constructs that 
capture various students’ experiences in college mathematics courses. The survey assesses 
students’ self-perceived proficiency in a way that is aligned with theory and prior research 
delineating the multiple facets of student reasoning that are crucial for engaging in college 
mathematics. The survey also measures a variety of beliefs, including students’ beliefs about the 
nature of mathematics, the utility of the mathematics they are learning, their own abilities to 
learn mathematics, and the possibilities for growth in mathematical knowledge. In sum, the 
College Mathematics Beliefs and Belonging (CMBB) survey captures meaningful variability in 
students’ beliefs and is a valid tool for gathering information about college students' beliefs and 
sense of belonging in mathematics. It is our hope that postsecondary mathematics instructors and 
education researchers can use this tool to examine and improve students’ experiences in 
mathematics courses. 
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How do calculus instructors frame tasks for introducing derivatives symbolically? Identifying 
Calculus-specific instructional situations  

 
Saba Gerami 

University of Michigan 

In this study, I describe how seven U.S. college calculus instructors framed instructional tasks 
for introducing derivatives symbolically to students. During one-on-one interviews, the 
instructors were presented with before and after student conceptions and were asked to propose 
tasks for introducing derivatives symbolically using the limit definition of derivative, both at a 
point and as a function. The instructors’ task framings reveal the types of mathematical 
problems students are expected to work on with respect to the content at stake: symbolic 
definitions of derivatives. Although the instructors heavily relied on calculating situations to 
introduce derivatives symbolically, some also used graphing, exploring, installing, and proving 
situations, which shows the high variability of task framing in calculus even when student 
conceptions before and after working on the tasks are predetermined.  

Keywords: Calculus teaching, instructional tasks, derivatives, instructional situations 

Despite the continuing research on students’ understandings of calculus concepts, there is 
less research on the teaching of calculus (Larsen et al., 2017). The scarce research in this area 
focuses on the student outcomes of instructional treatments (e.g., Borji et al., 2018; Hähkiöniemi, 
2006) or tasks that instructors use in their assignments, textbooks, and exams (e.g., Tallman et 
al., 2016; White & Mesa, 2014). I focus on teaching of calculus by investigating instructional 
tasks, or activities that are used during instruction “to focus students’ attention on a particular 
mathematical idea” (Stein et al., 1996, p. 460). As basic units of instruction and “objects of 
students’ activity” in mathematics classrooms (Ni et al., 2018; Sullivan et al., 2009, p. 859), 
instructional tasks are often seen as the conceptual bridge between teaching and learning 
(Christiansen & Walther, 1986; Stein & Lane, 1996). 

I contribute to this line of research by focusing on the ways college Calculus I instructors 
shape, or frame, students’ mathematical work during instruction of one specific piece of content: 
derivatives. By focusing on these subject-specific framings in tasks, we learn about the learning 
opportunities that are offered to students during instruction (Herbst et al., 2018). Here, I address 
the following research question: How do college Calculus I instructors frame instructional tasks 
to introduce derivatives symbolically? 

Theoretical Frameworks 

Framing 
The concept of framing originates from the work of social scientists and sociologists Gregory 

Bateson (1904-1980) and Erving Goffman (1922-1982). Bateson (1974/2003) referred to 
framings as definitions of reality, determined by the culture, that allow people to interpret and 
respond to objects and events during social interactions. For Goffman, framing is simply one’s 
answer to the question “What is it that’s going on here?”; the answer, implicitly or explicitly, 
informs the person about acceptable and unacceptable (re)actions and behaviors during a social 
event (1974/1986, p. 8). To unpack college calculus instructors’ framing of instructional tasks for 
teaching derivatives, I divide Goffman’s question of ‘what is it that is going on here’ into two 
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questions: 1) What is it that is going on here with respect to the content presented in the task? 
and 2) What is it that is going on with respect to interaction with other actors? I refer to the 
answers to these questions as Framing for Interaction with Content and Framing for Social 
Interaction. Although students make sense of what they should and should not do during a lesson 
by answering both questions, I only focus on the former here due to space reasons.  

To answer the question about framing of a task for interaction with the content, I rely on 
Herbst and colleagues’ (2020) notion of instructional situations (or situations in short) within the 
notion of didactical contract that govern the teacher-student relationship in the teaching and 
learning of mathematics (Brousseau, 1984). Instructional situations, as subject-specific types of 
mathematical problems in a course of studies, communicate teacher’s and students’ appropriate 
and customary units of work regarding the knowledge at stake (Herbst et al., 2020, p. 5). Given 
an instructional situation (e.g., finding the equation of a line in an algebra task), students know 
what kind of problem they are presented with and what kind of mathematical work and 
interactions they should prototype (Herbst & Chazan, 2012). The eight generic types of problems 
they have identified so far in geometry and algebra include: graphing; calculation; 
exploration/conjecturing; doing proofs; generating a new definition or installing a new concept; 
installing a new theorem, property, or formula; solving equations with known methods; and 
solving word problems (see Herbst et al., 2010). 

Conceptions of Derivatives 
To ground instructors in the students’ conceptions of derivatives, I used Zandieh’s (2000) 

framework for the concepts of derivative (Table 1). Zandieh (2000) organized students’ 
conceptions by representation (graphical, verbal, physical, symbolic) and process-object layers 
(ratio, limit, function). The process-object layers are hierarchical, as each layer is found by 
taking the process of that layer over the previous layer as an object. For example, the limit layer 
is found by the process of finding the limit of the ratio as an object. Here, I focus on instructors’ 
tasks that were proposed to introduce derivatives symbolically at the limit layer and at the 
function layer. 

 
Table 1. Zandieh’s (2000) adapted framework for the concepts of derivative. 
  Representations 
  Graphical Verbal Physical Symbolic 

Pr
oc

es
s-

O
bj

ec
t L

ay
er

 

Ratio Slope of the secant 
line 

Average rate of 
change 

Average 
velocity 

Difference 
quotient 

Limit Slope of the 
tangent line 

Instantaneous 
rate of change 

Instantaneous 
velocity 

Limit of the 
difference quotient 

Function Graph of the 
derivative function 

Rate of change 
of a function 

Velocity as a 
function of time 

Derivative as a 
function 

Methods 
Using an in-take survey of 48 calculus instructors, I purposefully selected eight interviewees 

with different patterns of inquiry (see Gerami, 2023 for details): Adrian, Barry, Gopher, Justin, 
Matthew (He/Him pronouns), Monica (She/Her pronouns), Max (They/Them pronouns), and 
Alex (all pronouns). The participants were tenured and had more than four semesters of 
experience teaching Calculus I with inquiry. My focus on teaching experience and using inquiry 
was intentional; as my aim was to have instructors suggest diverse instructional tasks based on 
targeted students’ conceptions of derivatives during the interviews, I assumed that experienced 
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instructors who employ inquiry-based teaching methods for calculus are more likely to know of 
and consider student thinking when proposing tasks, and that they would propose a broader 
range of instructional tasks compared to those who teach calculus more traditionally (e.g., 
following conventional textbooks, lecturing). I conducted four semi-structured interviews (1-2 
hour long each) with each instructor, as they proposed up to eight instructional tasks for 
introducing derivatives. I structured the interviews based on Zandieh’s (2000) framework. 
During each interview, the instructors were asked to propose two tasks that targeted students’ 
conception at the limit and the function layer within one representation. They could use their 
teaching materials to propose already used tasks or design new tasks for the future. Here, I report 
the findings based on the tasks proposed in response to Prompt 7 and 8: 

Prompt 7: Assume that you have already taught about the difference quotient 
((௫)ି(௫బ)

௫ି௫బ
 or (௫ା)ି(௫)


) and want students to learn about the derivative of a function 

at a point (݂ᇱ(ݔ) = ݈݅݉
௫՜௫బ

(௫)ି(௫బ)
௫ି௫బ

 or ݂ᇱ(ݔ) = ݈݅݉
՜

(௫బା)ି(௫బ)


). Propose a task 

where students have to figure out the derivative of a function at a point. 
Prompt 8: Assume that you have already taught about the derivative of a function at 
a point (݂ᇱ(ݔ) = ݈݅݉

௫՜௫బ

(௫)ି(௫బ)
௫ି௫బ

 or ݂ᇱ(ݔ) = ݈݅݉
՜

(௫బା)ି(௫బ)


 ) and want students to 

learn about the derivative function (݂ᇱ(ݔ) = ݈݅݉
՜

(௫ା)ି(௫)


). Propose a task where 
students have to represent the derivative function. 

Because calculus-specific instructional situations have not been identified in the literature, I 
used inductive/deductive hybrid thematic analysis (Proudfoot, 2022) to identify them. The 
analysis entailed using pre-ordinate themes “through the application of an explicit theoretical 
framework developed through engagement with the literature” (the deductive element) to 
generate themes from the data (the inductive element; Proudfoot, 2022, p. 1). For the deductive 
portion, I used the generic types of problems: graphing; calculation; exploration/conjecturing; 
doing proofs; generating a new definition or installing a new concept; installing a new theorem, 
property, or formula; solving equations with known methods; and solving word problems (Herbst 
et al., 2010). For the inductive portion, I identified the emerging instructional situations by 
focusing on the mathematical work that instructors expected of their students would do within a 
generic type of problem. I also listened to the interviews and read the transcripts to find relevant 
information that instructors mentioned but did not include in the task description. After three 
rounds of coding, I identified 36 calculus-specific instructional situations across all eight tasks.  

Findings 
Figure 1 lists the 12 calculus-specific instructional situations that instructors used in their two 

tasks proposed for teaching derivatives symbolically at a point and as a function (Prompt 7 an 
8).1 All seven instructors who proposed tasks used one or two specific calculating situations to 
frame their tasks: Calculating derivative at a point using a limit definition (C6) and Calculating 
derivative function ݂’(ݔ) using a limit definition (C11). Four instructors utilized other types of 
situations to frame their tasks. Alex, Max, and Adrian used graphing situations at different layers 

1 Each instructional situation is identified by a letter representing the generic situation type (C for Calculating, E for 
Exploring/Conjecturing, G for Graphing, I for Installing, and P for Proving), and a number to differentiate it from 
other situations in the same category. Although Figure 1 only includes the situations that appeared in the tasks for 
introducing derivatives symbolically, I kept the original numbering system to keep my findings across research 
reports consistent.  
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(secant line [ratio, G1], tangent line [limit, G2], derivative function by plotting [function, G3]). 
Alex, Max, and Monica used the tasks to install ideas and formulas (e.g., power rule, I7). Finally, 
Max was the only instructor who used exploring and proving situations (E11 and P1). 

 

Figure 1. Identified instructional situations for introducing derivatives symbolically at a point and as a function and 
instructors who used them. Situations are organized by layer and generic type. 

Justin did not propose any tasks for Prompt 7 and 8 (he stated that he does not explicitly talk 
about the difference quotient in the notation proposed by the prompts or the limit definition of 
derivative). Monica and Matthew did not propose tasks for Prompt 7, as they did not teach about 
derivative symbolically as a point, but they did propose tasks for Prompt 8. Next, I provide an 
overview of how the instructional situations were used in the tasks proposed for each prompt.  

Tasks Proposed for Prompt 7��5DWLR�ĺ�/LPLW 
Figure 2a shows the instructional situations that five instructors used to frame their tasks in the 
order they used them. 

 
(a) 
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(b) 

Figure 2. Calculus-specific instructional situations in the order they appeared in the tasks proposed for (a) Prompt 
7 and (b) Prompt 8. The arrows show the order in which the situations were used by each instructor. A situation is 

explicit if students know what type of problem they are working on after being presented with a task, whereas a 
situation is embedded within an explicit (larger) situation if, while working on the explicit problem, students find out 

that they must solve another problem in order to solve the explicit situation. 

Max and Gopher started their tasks at the ratio layer, before the limit/target layer, by asking 
students to: calculate difference quotients between two points, ݔଵ and ݔଶ, or ݔ and ݔ + ݄ (C1). 
Gopher ended his with the situation of calculating the derivative at a given point ݔ at the limit 
layer (C6), which was the situation that Barry started and ended his task with. Barry, Gopher, 
and Max expected their students to use formal limit notation to calculate ݂’(ݔ) at a given point 
 (limݔ

՜

(௫బା)ି(௫బ)


 ). Max continued their task with four more situations after calculating 
difference quotients between two points (ݔ and ݔ + ౹, with decreasing ݄, the ratio layer; C1). 
First, Max installed the limit definition of derivative at a point (݈݅݉

՜

(௫బା)ି(௫బ)


 ; I3). While 
other instructors installed the limit definition of derivative at a point themselves before the tasks 
(most probably via lecture), Max expected students to come up with the definition as part of the 
task by asking them: “What we can do to determine a value at ݔ = 0? What concept from 
calculus helps us analyze questions about arbitrarily small sizes?”. Next, they asked their 
students to: 1) use their newly defined derivatives to calculate ݂’(ݔ) at some given points (C6), 
and 2) to show an inequality ݂Ԣ(ݔ) < ݔ)’݂ + ݄) for ݄ > 0 (P1. Proving an inequality is true for a 
specific function). The proving situation has embedded calculating situations—calculating ݂’(ݔ) 
and ݂’(ݔ + ݄) using the limit definition of derivative (C11).  

Alex started their task at the target/limit layer with the same situation that Barry, Gopher, and 
Max also used in their tasks: calculating ݂’(ݔ) at some given points (C6). However, unlike the 
other instructors, they did not use formal limit notation; instead, they expected their students to 
assume the denominator goes to zero when calculating the difference quotient (௫బାο௫)ି(௫బ)

ο௫
. 

Alex explained that, at this point in their course, the limits are replaced with arrows (՜) instead 
of equal signs ((௫బାο௫)ି(௫బ)

ο௫
՜ ܿ as οݔ ՜ 0, instead of lim

ο௫՜

(௫బାο௫)ି(௫బ)
ο௫

= ܿ). To assist 
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students with confirming the value of the difference quotient with οݔ going to zero, Alex then 
asked students to “Describe what happens to the secant lines as οݔ gets closer to zero?”, which is 
a situation at the ratio layer: graphing secant lines οݔ-units distanced to the right side of a fixed 
point ݔ, assuming οݔ gets closer to zero (G1). 

Adrian approached the task differently than the rest of the instructors by starting his task at 
the function layer (the layer after the target/limit layer): calculating ݂’(ݔ) using the limit 
definition of derivative ݈݅݉

՜

(௫ା)ି(௫)


 (C11). He then asked his students to graph a tangent line 
at a given point (ݔ,݂(ݔ)) (G2) and find its slope (i.e., the derivative at a point or ݂Ԣ(ݔ); C7), 
which are two situations at the limit/target layer. I capture the latter situation C7 separately than 
those used by Barry, Gopher, Max and Alex (C6. Calculating ݂’(ݔ) at a given point ݔ using 
the limit definition of derivative at a point or Calculating the difference quotient assuming the 
denominator goes to zero) because Adrian expected his students to substitute ݔ in the formula 
of ݂’(ݔ) found in his task’s initial situation, instead of using the limit definition to calculate 
derivative at the point. 

Tasks Proposed for Prompt 8��/LPLW�ĺ�Function 
Figure 2b shows the instructional situations that the seven instructors used to frame their 

tasks in the order they used them. At the function/target layer, calculating ݂’(ݔ) using the limit 
definition of derivative (C11) was the most common situation, used by four instructors—Barry, 
Gopher, Adrian, and Monica—with Barry and Gopher solely using this situation to frame their 
tasks. In Adrian’s task, the situation was embedded within another—calculating slope of a 
tangent line at a point ݔ (C7), as students were expected to calculate and use the formula for 
 by (ݔ)’݂ . Monica asked her students findݔ to find the slope of the tangent line at (ݔ)’݂
calculating the difference quotient, (௫ା)ି(௫)


, and assuming that h goes to zero. After finding 

݂ for (ݔ)’݂ = ݂ ,ݔ = ݂ ଶ, andݔ =  ଷ, she used an installing situation, expecting students toݔ
install the power rule using patterns of derivatives of ݂ = ݊  forݔ  1 (I7): “What is the 
general formula for the derivative of ݔ?” 

Matthew and Alex started their tasks with a situation within the limit layer, where students 
were expected to calculate ݂’(ܽ) for a generic variable (a) either using the limit definition of 
derivative at a point using the formal or informal definition of derivative with limit of difference 
quotient (݈݅݉

௫՜

(௫)ି()
௫ି

 for Matthew, and (௫బାο௫)ି(௫బ)
ο௫

՜ ܿ as οݔ ՜ 0 for Alex; C6). Although 
the instructors were prompted to introduce students to the derivative symbolically as a function, 
Matthew only used the situation of calculating ݂’(ܽ) for a generic value of ܽ at the limit layer, 
not ݂’(ݔ). Because Matthew used a linear function in the task—݂(ݔ) = ݔ5 െ 3, with ݂ᇱ(ݔ) =
5 for all values of ݔ, it is possible that he equated finding ݂’(ܽ) to ݂’(ݔ), which, mathematically, 
is true. However, from the task’s description, it is not obvious whether students would conclude 
that the “derivative 5” is in fact a function. Alex continued their task like Monica’s by installing 
the power rule using patterns of derivatives of ݂ = ݊  forݔ  1 (I7). 

To frame their task, Max used five explicit situations across all three layers. Max started the 
task by asking students to review their work for Task 7, in which students found the derivative at 
various points. They then encouraged students to install that derivative of a function is a function 
(I5) by asking: “Because we have a derivative value at every function input value, what do we 
have?”. Next, Max asked students to graph ݂’ by plotting derivative values at different points 
and finding a curve of best fit (G3). Although students used the derivative values they found at 
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various points in Task 7, I captured calculating ݂’(ݔ) using the limit definition of derivative 
݈݅݉
՜

(௫ା)ି(௫)


 (C6) as an embedded situation before the graphing situation to count for the work 
students should have done to complete this part. Next, Max used a situation at the ratio layer by 
asking students to calculate the difference quotient (௫బା)ି(௫బ)


 (C1) for various values of ݔ, 

which was immediately followed by asking students to calculate ݂’(ݔ) using the limit definition 
of derivative ݈݅݉

՜

(௫బା)ି(௫బ)


 (C6) for their chosen ݔ values. Max ended his task at the 
function/target layer with an exploring/conjecturing situation: guessing ݂’(ݔ) using patterns of 
 .(E11) … ,(ଶݔ)’݂ ,(ଵݔ)’݂,(ݔ)’݂

Discussion 
In this report, I identify the ways seven college Calculus I instructors framed their instructional 
tasks to introduce the symbolic representations of the derivative at a point and as a function, that 
is the limit definitions of derivative. While all instructors used calculating derivative at a point 
and/or calculating ݂’(ݔ) using a limit definition, four instructors also relied on other types of 
situations: graphing, exploring/conjecturing, installing, and proving. Although I did not review 
the findings from the rest of their tasks in this report, the proving situation (P1), the installation 
of power rule (I7) and installation of the limit definition of derivative at a point (I3) were only 
used to frame tasks for Prompt 7 and 8. Moreover, the proving situation was the only proving 
situation used across all tasks, which suggests that the instructors avoided using proving 
situations when introducing derivatives. More specifically, regarding the installation of power 
rule (I7), it is noteworthy that two instructors (Alex and Monica) used the symbolic 
representations to install one specific derivative rule—the power rule. Lastly, although some 
instructors used similar calculus-specific instructional situations within the three generic problem 
types, only two instructors proposed the same task consisting of all the same instructional 
situations (Barry and Gopher for their second tasks). This illustrates instructors’ varied ways of 
shaping students’ work when introducing derivatives, which shows that inquiry methods are 
implemented considerably differently among instructors. Nonetheless, most instructors relied on 
explicit, rather than implicit situations, which shows their inclinations towards scaffolded 
inquiry, rather than open-problem or discovery-based inquiry.  
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Student Reasoning and Cooperative Learning while using a Dynamic Geometry Environment in 
Taxicab Geometry: An APOS Perspective 

 
Aubrey Kemp 

California State University, Bakersfield 

The goal of this research is to investigate ways a dynamic geometry environment (DGE) and 
interactions during cooperative learning can leverage student understanding in geometry. Data 
from 18 students enrolled in a College Geometry course were collected by video recording in-
class group work while students explored concepts in Taxicab geometry in a DGE. The textbook 
from this course and its activities are based on Action-Process-Object-Schema (APOS) Theory. 
As such, APOS Theory was used as a theoretical framework to analyze student reasoning during 
these activities. For this report, results are presented for one group of students and their 
discussion while working on an activity which encouraged the exploration of the mathematical 
definition of a circle in Taxicab geometry in a DGE. Trends emerged about how group structure 
while working in DGEs may influence interactions and outcomes for students. Some pedagogical 
suggestions are provided based on the results of this study. 

Keywords: Geometry, Taxicab, Dynamic Geometry Software, Circle, Definitions 

Introduction 
By exploring concepts and definitions in non-Euclidean geometry, students can better 

understand Euclidean geometry (Dreiling, 2012; Hollebrands et al., 2010; Jenkins, 1968). One 
example of a non-Euclidean geometry in which students can explore concepts is Taxicab 
geometry, which is the geometry that is the result of measuring distance as defined by the 𝐿ଵ 
norm. Siegal et al. (1998) and Dreiling (2012) encourage the introduction to Taxicab geometry 
before other non-Euclidean geometries since the simpler space makes it more accessible for 
students to reason and abstract concepts. Further, the use of a dynamic geometry environment 
(DGE) for the teaching and learning of geometry is encouraged (Liljedahl, P., 2020; Hollebrands 
2003; Hollebrands et al., 2010; Glass & Deckert, 2001; Contreras, 2013; Kemp, 2018). Since 
properties of geometric figures are derived from definitions within an axiomatic system, it is 
important to note that a figure is “controlled by its definition” (Fischbein, 1993, p.  141), rather 
than a geometric representation influencing the definition. As DGEs offer opportunities for 
students to interact with accurate constructions rather than drawings on paper, students can 
explore and focus on relationships between concepts and their definitions. This can guide 
students to differentiate between drawings and constructions, abstract properties and 
relationships, and develop a higher level of geometric reasoning and understanding. Cooperative 
learning, which involves students working in groups to complete a common goal, can help 
students to maximize their own and each other’s learning (Johnson & Johnson, 1999). In 
cooperative learning settings, students are also more likely to reflect on the procedures they 
perform (Vidakovic, 1993). Researchers also emphasize the importance of cooperative learning 
on psychological health and social competence, as this can encourage students to value 
themselves and increase independence (Johnson & Johnson, 1999).  

For this report, results are presented on the following research questions: (a) How do students 
in a College Geometry course develop their understanding of the definition of a circle in Taxicab 
geometry using a DGE? (b) How does the use of cooperative learning and DGEs help students to 
construct knowledge in geometry? 
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Theoretical Framework 
Action-Process-Object-Schema (APOS) Theory is a constructivist framework based on 

Piaget’s reflective abstraction. According to this framework, there are four different stages of 
cognitive development (Action, Process, Object, and Schema) and mechanisms to move between 
these levels (e.g., interiorization, encapsulation) (Arnon et al., 2014; Dubinsky, 2002; Asiala et 
al., 1996). In APOS Theory, an Action is an externally driven transformation of a mathematical 
object. For example, an action conception of Circle may be exhibited by a student being 
prompted to identify a point on a circle when given a specific center and radius. Once an 
individual performs an Action enough and reflects on this, they can interiorize this Action into a 
Process. That is, a student demonstrating a process conception of Circle can imagine how to 
draw a circle given any center and radius, understanding that the circle is made up of an infinite 
number of points that satisfy a property. A Process is encapsulated into an Object once the 
individual is aware of it as a totality on which other actions can be performed. As an example of 
this for Circle, a student may exhibit this level of cognitive development when they construct a 
perpendicular bisector using circles, generally understanding how properties of circles justify 
why this creates a set of points equidistant from the endpoints of a segment. Once a student 
constructs an object in APOS Theory, it may be necessary to de-encapsulate it. For example, 
Kemp and Vidakovic (2019) present results of students de-encapsulating their object conception 
of Distance to coordinate their Euclidean distance and Taxicab distance processes.  The entire 
collection of Actions, Processes, Objects, and other Schemas that are connected to the original 
concept that form a coherent understanding in the mind of the individual is called a Schema and 
is uniquely formed based on experiences (Dubinsky, 2002). The concepts involved with the 
circle schema are identified to be Distance, Radius, Center, and Locus of points (Kemp, 2018; 
Kemp & Vidakovic, 2018, 2019, 2021b, 2023). As a part of these students’ developing circle 
schemas, we analyze their conception of the definitions of these concepts as they emerged during 
a class activity. Detailed descriptions of the levels of cognitive development in APOS Theory 
associated with these and other concepts in Euclidean and Taxicab geometry are provided in 
Kemp (2018) and Kemp and Vidakovic (2018, 2019, 2021a, 2021b, 2023). 

There is some research that utilize APOS Theory in relation to DGEs (Hollebrands, 2003; 
Patsiomitou, 2019; Trigueros et al., 2022; Kemp, 2018), but a search in the literature implies a 
need for more. Further, the vast majority of this research focuses on Euclidean geometry. As 
exploration in non-Euclidean geometry can offer opportunities for students to refine their 
understanding of concepts, it is important to investigate how exploration in non-Euclidean 
geometries in DGEs can also contribute to this refinement. Results presented in Hollebrands 
(2003), where high schoolers’ use of a DGE and how these students reasoned about 
transformations in geometry was investigated using APOS Theory, is used as a model in this 
report as the author provides a framework based in APOS Theory for student understanding as it 
evolves while using DGEs. The author indicated student understanding of the domain of a 
transformation may have been influenced by their interactions with the computer as the students 
interiorized the actions they performed on the computer, which contributed to their ability to 
form explanations of the transformations. Without the opportunity to use a DGE, students in the 
control group of this study were only able to examine and perform transformations on the limited 
number of samples provided to them and did not develop as dynamic of an understanding of 
these transformations. Adapted from Hollebrands (2003) for the context of this study, an action 
conception of circle in Taxicab geometry in a DGE may be exhibited by a student counting units 
to find a point on a circle given a specific center and radius. Once a student interiorizes this 
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action, they can consider all points on the circle and operate with the theoretical definition of a 
point on a circle, rather than particular points on the screen. They can also imagine drawing a 
circle given any center and radius. An object conception of circle in Taxicab geometry in a DGE 
may be demonstrated by a student considering general properties and behaviors of circles in 
Taxicab geometry without relying on the specific examples in their DGE. As a note from 
Hollebrands (2003), students with a process conception of a transformation can anticipate the 
results of a transformation without having to perform the actual transformation on the computer. 

 
Methodology 

This study was conducted in a College Geometry course at a large university. There was a 
prerequisite for the class of an introduction to proofs course, and the enrollment in the class was 
comprised of seven undergraduate math majors and eleven graduate students who were pre-
service or in-service secondary teachers. The textbook used for the course was College Geometry 
Using the Geometer’s Sketchpad (Fenton & Reynolds, 2011) and is based on APOS Theory and 
the Activities, Classroom discussions, and Exercises (ACE) Teaching Cycle (Asiala et al., 1996). 
It is noted the course utilized Geometer’s Sketchpad (GSP), which is a platform no longer 
supported for use. As GSP is a DGE and operates similarly to other DGEs, the methodology and 
results of this study can be transferrable to other DGEs. Concepts learned throughout the course 
in Euclidean geometry were introduced in Taxicab geometry during the last four 75-minute 
classes of the semester. All 18 students enrolled in the course volunteered to participate in this 
study, and audio and video recordings from in-class group work, work completed in GSP, and 
written work or notes during these class sessions for all 18 students were collected as data. The 
activity corresponding to the results presented in the current report was intended to guide 
students through the construction of a circle in Taxicab geometry in GSP and generalize this 
construction. Examples of a circle in Euclidean geometry and a circle in Taxicab geometry are 
illustrated in Figure 1. The activity is described below: 

1. Plot points at 𝑃(3,4),  𝐴(2,2),  𝐵(3,7),  𝐶(2,5), and 𝐷(5,5). By counting the number 
of blocks from 𝑃 to 𝐴, we find that the taxi-distance 𝑃𝐴 is 3 units. Find the taxi-
distances 𝑃𝐵,  𝑃𝐶, and 𝑃𝐷. Two of these points are the same taxi-distance from 𝑃 
as 𝐴 is. Which two? 

2. The set of all points that are at the same taxi-distance from 𝑃 form a taxi-circle 
centered at 𝑃. In part (a), three of the points lie on a taxi-circle of radius 3 centered at 
𝑃. Find several additional points on this taxi-circle. Describe the set of all points that 
are at a taxi-distance of 3 units from a fixed point 𝑃. How is the shape of a taxi-circle 
different from (or similar to) the shape of an ordinary Euclidean circle? 

3. If you are given a point 𝑄(𝑥, 𝑦) and a radius 𝑟, how could you quickly sketch a taxi-
circle of radius 𝑟 centered at 𝑄? 

Figure 1. Geometric representations of a Euclidean and Taxicab circle each with center 𝑃(3,4) and radius 3. 
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The design of this activity guides students through performing actions by prompting them to 
calculate the distance between points in Taxicab geometry to find examples and non-examples of 
points lying on a circle centered at (3,4) with radius 3. The students are prompted to find 
additional points that are 3 units away from the center and describe the set of all points that make 
up this circle. This is intended to guide students to interiorize the actions performed previously in 
the DGE into a process by focusing on the theoretical definition of a circle rather than the points 
on their screen. Students are then asked to compare their geometric understanding of a circle in 
Taxicab geometry to a circle in Euclidean geometry to aid in generalizing properties of a circle 
(i.e., all points are equidistant from the center, a circle looks different in Taxicab and Euclidean 
geometry based on how distance is defined), indicative of an object conception of circle. 

The 18 students enrolled in the course were divided into six groups of three prior to this 
activity and had already worked through several activities about distance in Taxicab geometry. 
Students were used to working in groups and in GSP as these were regular and integral parts of 
the course. The students had access to a class set of laptops that had GSP installed on them and 
were at liberty to either each use their own laptop or share a laptop to work on the DGE activities 
in their groups. The classroom was set up with six square tables with two seats on two of the 
sides opposite one another, and students were free to move chairs around to work together in 
different ways in their groups. Using the adapted framework from Hollebrands (2003), data was 
analyzed from each group to investigate their individual understanding in terms of APOS 
Theory, their use of the DGE, and how their interactions within the group influenced both of 
these things. This report focuses on data collected from one of the groups, comprised of one 
undergraduate student, Ally, and two graduate students who were pre-service secondary teachers, 
Amy and Brianna, during the activity described above. This group was chosen in this report as 
they were representative of groups that worked cooperatively towards a shared goal and 
demonstrated various levels of cognitive development of the concept of Circle.  

 
Results 

As the prompts for this activity were intended to guide students through various levels of 
cognitive development, the data collected during this activity provided a rich understanding of 
how these levels can be exhibited by students while working in a group in a DGE. Ally, Amy, 
and Brianna all worked on their own laptops while communicating regularly with one another 
and often talking out loud to themselves to try and articulate their thinking. Ally’s work in GSP 
for this activity is shown in Figure 2 below as a representative of the group. It is noted that 
students had access to a tool in GSP that was designed to measure the distance between two 
points in Taxicab geometry. This tool would also display the algebraic representation of the 
Taxicab distance between two points, seen in the top left of Figure 2. 

Figure 2. Work in GSP submitted by Ally. 
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After they read part (2) of the problem which asked students to plot several other points that 
are three units away from P, Brianna was looking at her graphical representation of the problem 
and said, “wait, why is 𝑃𝐵 the same?... Just cause it’s three straight up?” to which Amy replied, 
“’Cause it’s like the radius, yeah... of that circle.” Shortly after this exchange, Amy began to 
investigate why the distance from 𝑃 to 𝐴 was three and the following interaction occurred: 

Amy: ’Cause if that was a triangle, then the length of that hypotenuse be… wait, because 𝑃𝐴 
is like… sides one and two.   

Brianna: But we’re just finding other like… how many points?  
Ally: So, we just need to form like a taxi-circle. 
Brianna: But I think we’re trying to find other points that we think lie on the taxi-circle. 
Ally: (4, 6), umm… 
Brianna: Wouldn’t (3,1)? ‘Cause it’s the same as 𝑃𝐵, just the opposite direction? Like that’s 

the radius, right? 
Here, Amy had imagined a right triangle with 𝑃𝐴 as a hypotenuse and was expressing a 
comparison between the distance between 𝑃 and 𝐴 in Euclidean geometry (“hypotenuse”) and in 
Taxicab geometry (“sides one and two”). This is evidence that Amy was exhibited a process 
conception of Distance by imagining this triangle and comparing the geometric representations 
of Euclidean and Taxicab distance between 𝑃 and 𝐴, consistent with Kemp and Vidakovic 
(2023). Ally seemed to indicate she understood they were constructing a circle (“just need to 
form…a taxi-circle”) and used this theoretical definition to anticipate all the points they were 
finding on the circle they were constructing, indicative of a process conception of Circle based 
on our framework adapted from Hollebrands (2003). Ally also seemed to recognize Brianna was 
not processing her comment that they are forming a circle and began to list specific points to 
help the group move into this reasoning. Brianna visualized the vertical distance 𝑃𝐵 as a radius 
and essentially reflected this distance (“the opposite direction”) over the horizontal line through 
(3,4) to obtain the point (3,1). Aligning with Hollebrands (2003), since she anticipated the 
results and implications of a transformation on this radius without having to perform the actual 
transformation, we interpret this as her exhibiting evidence of a process conception of Distance 
and Radius.  

As the group continued to explore in GSP while working on the activity, they began to 
anticipate the shape of the object they were constructing. 

Ally: It forms a diamond. 
Amy: So, it’s not a circle. 
Ally: This radius is the same…Well, an ordinary circle is round…I mean they’re similar 

because… the radius is always the same.  
Brianna: It’s like the distance from…they’re all the same distance from the center?  
Amy: Well, this is the same distance too, but it’s the same taxi-distance.  
Brianna: But they’re like a different type of distance cause you can go like up, you can move 

different ways, it’s not like straight to it… like a clock. 
Ally: They’re similar cause its…the radius is all the way around [makes a circular motion  

 with pointer finger]. 
Brianna: But it’s like different.  
Amy: They all are like… the same distance.  
Brianna: The same distance, but it’s like a different type of distance. I’m going to say it’s  

 a different type of distance than the radius of a circle. 
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In this cooperative learning exchange, the group seemed to be maximizing their own and 
each other’s learning as described by Johnson and Johnson (1999) and were all reflecting on the 
procedures they had performed, consistent with Vidakovic (1993). All three students were 
working to articulate their thinking, bouncing phrasing and ideas off one another. At first, Amy 
implied that because this object was a “diamond” [instead of round as in Euclidean geometry], it 
was not a circle. As the conversation progressed, she heard what her groupmates said and 
indicated she processed their comments by referring to “the same taxi-distance” in her 
construction in the DGE. Brianna used a metaphor to explain that a circle in Euclidean geometry 
is round as a result of using a radius that is a straight segment, like the hand of a round clock. 
This is evidence Brianna was operating at a process conception of Circle, at least within 
Euclidean geometry, as she was able to generalize properties of the construction of a circle. Amy 
and Brianna ended up writing extremely similar responses in GSP for this prompt. Seen in Figure 
3, Amy [and Brianna] wrote “they are all the same distance from the center, but it’s a different 
type of distance than the radius of a circle.” In other words, they seemed to agree that the way 
distance is measured is the cause of the difference in appearance of a circle in Euclidean 
geometry and in Taxicab geometry, but indicated they equated the radius of a circle with its 
representation as distance between two points in Euclidean geometry and that the distance 
between the same two points in Taxicab geometry is different than a radius. 

Ally explained that a Euclidean and Taxicab circle were similar in the way they are 
constructed and compared these constructions across geometries (“they’re similar because…the 
radius is the same…the radius is all the way around.”) As she motioned with her pointer finger in 
a smooth, circular motion it is possible she was imagining a continuous, dynamic procedure 
defining the locus of points of a generalized circle by rotating a radius 360 degrees. Note she was 
speaking about an arbitrary circle in both Euclidean and Taxicab geometry at the same time. This 
is reiterated in her GSP work in Figure 2, where she writes, “All of the points are the same 
distance from the center point, just like a euclidean circle except you must go around the blocks 
instead of throught (sic) them.” It is interpreted that by “go around the blocks,” Ally was talking 
about distance in Taxicab geometry and by “through them,” she was talking about distance in 
Euclidean geometry. As Hollebrands (2003) describes an object conception as a student 
considering general properties and behaviors rather than relying on the images on their screen, 
Ally demonstrated here she was exhibiting an object conception of Circle.  

Figure 3. Work in GSP submitted by Amy. 
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In the third prompt which asked students how they might quickly sketch an arbitrary circle in 
Taxicab geometry, the group began discussing geometrically how they would do so. While 
attempting to articulate this, they shifted over to attempting to write an algebraic explanation for 
this process. Specifically, for a circle in Taxicab geometry centered at 𝑄(𝑥, 𝑦) with radius 𝑟, 
they determined the points ൫𝑟, 𝑦൯, ൫𝑥, 𝑟൯, ൫−𝑟, 𝑦൯ and  (𝑥, −𝑟) would be on the circle and by 
connecting these points, they will have constructed the entire circle. Brianna wrote in GSP, “I 
would find the 4 vertices (or points that are a straight/direct distance from the center) and then 
connect them to find the other points that lie on the taxi-circle.” Brianna indicated here that she 
could imagine and understood all the points she would draw would be on the circle, indicating 
she was operating with at least a process conception of Circle. Amy wrote, “find all the vertices 
of the tiled square…and connect these points.” This is notable because it may be the case that 
Amy was uncomfortable with calling the object a circle, perhaps an example of the tendency to 
neglect the definition of a concept under the pressure of [assumed] figural constraints, described 
by Fischbein (1993). Although the procedure determined by the group would only be true for a 
circle centered at the origin, this indicates a conceptual understanding in terms of identifying the 
intended points. Right after they wrote these coordinates, the class period ended. If they had 
more time, it is possible that they would have been able to test their conjecture of these 
coordinates and adjust them. 
 

Discussion 
As they worked to abstract properties, Amy, Brianna, and Ally bounced reasoning off one 

another. Ally demonstrated operating at a variety of levels of conception of Circle, moving 
between these levels during conversations to either explain a concept to a group member or try 
and abstract an idea. Brianna and Amy both provided evidence of operating at the action and 
process levels of conception of Circle and made connections through their conversation and 
explorations in the DGE. In this cooperative learning setting, all three students provided 
evidence that they were working toward a shared goal. They leveraged their exploration 
individually on their own laptops in their discussion and used comments from one another to 
help guide their exploration. When one group member was confused, they tended to try and 
clarify or help explain something. In this way, the group seemed to support the notion that the 
activity encouraged them to help one another as it would also benefit themselves, maximizing 
their own and each other’s learning, while increasing their independence (Johnson & Johnson, 
1999). As this group all explored on their own laptops, they often were not looking at the same 
screen while referencing the same objects. While this did not seem to hinder their conversation, 
it is possible this could deter some groups from conversing meaningfully about the activity. 
Some pedagogical suggestions based on this research include structuring DGE work in groups to 
encourage individual exploration while explicitly working toward a shared goal. By doing this, it 
is possible students will leverage their understanding to help explain concepts to one another and 
maximize the entire group’s understanding, as the participants in this study did. Further, offering 
more opportunities for students in College Geometry courses to explore non-Euclidean geometry 
earlier in the course and in DGEs may be beneficial to their understanding of Euclidean concepts 
as they study them. Future research may investigate different types of structure in DGE group 
work and how this affects individual understanding. For example, what affordances or 
hindrances might arise if students all shared one laptop and were looking at the same screen 
rather than exploring individually? As this study utilized APOS Theory, DGEs, and cooperative 
learning, it may help fill a gap in the literature of undergraduate mathematics education.  
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Instructors’ Grounding Metaphors for Quotient Groups

Holly Zolt Kate Melhuish
Texas State University Texas State University

In this report, we examine the use of grounding metaphors across three abstract algebra
instructors in their discussion of quotient group instruction. We identified three primary
categories: construction metaphors, equivalence metaphors, and positional metaphors. The
construct metaphors were further refined into building metaphors and demolition metaphors. In
this paper, we provide an overview of the types of grounding metaphors in usage and provide
insight into how the different instructors took on these metaphors when describing quotient
groups and their instruction. We conclude with some considerations as to how these metaphors
provide insight into quotient structure and considerations for future research.

Keywords: Metaphorical Thinking, Abstract Algebra, Instruction, Quotient Groups

Quotient groups have been identified as one of the most important, but also one of the most
difficult topics in Abstract Algebra (Melhuish, 2019). Most of the research conducted regarding
quotient groups has focused on how students think about quotient groups (e.g., Asiala et al.,
1997; Melhuish et al., 2023). This literature base suggests students might develop only partial
understandings such as relying on coset generation procedures (Hazzan, 1999) or seeing
elements of quotient groups as sets and elements but not both (Asiala et al., 1997; Siebert &
Williams, 2003). Some researchers have suggested that meanings related to partitioning are more
productive as they are compatible with viewing quotient groups as the preimage of a
homomorphism (Melhuish et al., 2023) and can support a richer understanding of why only
certain subgroups can form quotient groups (Larsen & Lockwood, 2013). This work suggests
that partitioning might serve as one important grounding metaphor for quotient groups. However,
there is significantly less known about the way in which instructors conceptualize quotient
group, what other metaphors may exist, and how they are taught. The goal of this proposal is to
contribute to the literature on the teaching of quotient groups by addressing the use of metaphors
in instruction. The research questions being addressed is:

What grounding metaphors about quotient groups are used during abstract algebra
instructors’ descriptions of their teaching?

Literature Review
There is a great deal of consistency in the teaching of proof-based courses with the genre of

chalk-talk dominating the way in which most of the courses are taught (Melhuish et al., 2022).
That is, instructors lecture, writing formal mathematics on the boards, verbalize what is written
and provide additional, often informal, insights, and ask students some form of questions (e.g.,
Artemeva & Fox, 2011; Paoletti et al., 2018). This consistency may mask important variations in
instruction. For example, Pinto (2019) compared two mathematicians teaching a real analysis
course using the same lesson plans. Despite this common material, they differed in the general
enactment of the lesson including the timing of when parts were enacted and relevant to this
paper, with their use of metaphorical imagery.

Pinto (2019) discussed how one of the mathematicians, Amit, used metaphorical language
and imagery to unpack the definition of the derivative. It was stated that Amit wanted to help the
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students “obtain a picture of it” (p. 10). Thus, there was use of visual images and colloquial
language including phrases such as “line”, “swing,” and “trap.” This contrasted with Yoav, who,
rather than using imagery-based language approached the definition of a derivative term by term.

Rupnow (2021) similarly found a range of conceptual metaphors used by the mathematicians
in their discussion of homomorphisms and isomorphisms. These metaphors spanned ideas of
sameness and mappings and specific metaphors used by the mathematicians varied both in when
and how often they occurred. Olsen et al. (2020) identified that instructors also use a number of
metaphors conveying ideas of what it is to do mathematics during lectures. Oehrtman’s (2009)
analysis of students’ calculus metaphors indicated that their experiences likely shaped their
metaphors. Works such as Oehrtman (2009), Pinto (2019), and Rupnow (2021) would suggest
that as instructors teach similar content – quotient groups in this case – it should be expected that
there is variation in the types of metaphors being used. Furthermore, students understanding of
concepts can be conjectured to be tied to the metaphors provided during instruction. Although,
we caution that the exact mechanism of this link at the undergraduate level is currently
understudied.

Theoretical Perspective
In consideration of metaphors, it is often taught that a metaphor is a comparison between two

things without using the word that like or as. However, modern linguistics considers this to be an
antiquated and incomplete view of metaphor as it treats metaphor as a consequence of language.
Rather, they take the view that metaphors involve more than language, but rather are tied to
meaning and cognition. Despite disagreement among linguists in what constitutes a metaphor,
they tend to agree that metaphor more broadly is a way of viewing one construct or object
through the lens of another (Cameron, 1999). For the purposes of this study, in order to
understand the concept of metaphor, we are drawing on the work of Lakoff and Núñez (1997,
2000) defining a metaphor to be a “cross-domain conceptual mapping” (Lakoff & Núñez, 1997,
p. 32). Additionally, Lakoff & Núñez define two types of conceptual metaphors: grounding
metaphors and linking metaphors. In this report, we focus on grounding metaphors. When using
a grounding metaphor, a person is taking an experience from everyday life and mapping or
projecting the experience onto the concept they are attempting to understand or communicate.
We will be using this construct as a means to discuss the types of metaphors being used in
teaching quotient groups and examining how quotient groups are understood from a
metaphorical point of view.

Methods
The results of this study are a part of a larger dissertation study aimed at exploring quotient

group instruction. Data collection took place across seven universities in the United States. The
data examined here came from the first of a series of two semi-structured interviews in which the
goal of the interview was to examine instructional practices surrounding the teaching and
learning of quotient groups. A subset of the participants was purposefully chosen for this
analysis based on their professed methods of teaching. Of the instructors selected, one utilized a
research-based inquiry curriculum emphasizing partitioning, one primarily lectured and relied on
physical manipulates and built up from ideas of cosets, while the last instructor primarily
lectured and built quotient groups from more general ideas of equivalence classes.
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Data Collection Methods
The goal of the initial interview was to examine instructional practices of those who teach

abstract algebra with respect to their instruction on quotient groups. Prior to the discussion of
teaching practice, each of the instructors were asked two questions about how they themselves
conceptualized quotient groups and how they wanted their students to conceptualize quotient
groups. The rest of the questions were focused on how they conducted instruction including
questions regarding typical lessons, examples, proofs, assessments, and their view of their role in
the learning process. Each of the interviews lasted approximately one hour and was
videorecorded and transcribed. These responses were in turn used to inform the design of a
follow up interview designed to illicit further discussion on decision making.

Data Analysis Methods
The first research open coded the transcripts (Braun & Clarke, 2006) identifying grounding

metaphors. These metaphors were identified based on the participants’ the use of “actionable
words” or words that evoke a sense of action (i.e., the use of action verbs, gerunds, or participles)
or physical classroom experiences that occurred. Once the initial list of grounding metaphors was
generated, a second researcher read through each of the transcripts to offer critiques, pushback,
and additional metaphors that may have been missed. Any disagreements were discussed
between the researchers and worked through. The list of metaphors found in the results section
reflects a subset of the agreed upon metaphors.

Results
We identified three overarching categories of metaphors. The first major class was

quotient groups through the lens of construction-based metaphors. This metaphor class was
further divided into building and demolition metaphors. Additionally, there were
equivalence-based metaphors and positional metaphors. Table 1 provides a summary and
definition of these metaphors. In the first column the metaphor class is listed along with
examples of key phrases that fell into that class. A definition and example of each class is also
provided in Table 1.

Table 1. Summary of Grounding Metaphors Class Used to Understand Quotient Groups
Metaphor Class Class Definition Class Example
Building Metaphors

● Building
● Clumping
● Sticking Together
● Partitioning*

A class of metaphors that
describes the creation of
quotient groups through
building ideas

“we're doing these things and
building these, these subsets”

Demolition Metaphors
● Partitioning*
● Collapsing
● Breaking/ Splitting
● Subdividing

A class of metaphors that
describes the creation of
quotient groups through
demolition-based building
ideas.

“…think about collapsing
every one of those parallel
lines on to this intersection
point.”

Equivalence Based
Metaphors

● Setting equal to;
setting to

A class of metaphors that
grounds ideas of treating
elements as if they are the
same

“you’re factoring out by Z
mod 3, then you're looking at
integers, and you can ignore.
You can ignore multiples of
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● Ignoring
● Regarding as

three. Any things that differ
by a multiple of three are
essentially the same thing
when you're looking at a
quotient group.”

Positional Metaphors
● Becoming
● Going Around
● Lying

A class of metaphors rooted
in the idea of appearance or
location. Often involve type
of movement, but it is not
necessary

“you think what would
happen if you were to
collapse every one of those
circles to a point, what would
you get each of those circles,
is going to become one
point.”

In the remainder of the results, we share some examples from three instructors to illustrate
how these metaphors are used in their instruction descriptions and how the different types of
metaphors support each other in grounding ideas of quotient structures.

Dr. A: Clumping and Collapsing
When explicitly asked how Dr. A wanted their students to think about quotient groups, they

stated that they wanted them to understand quotient groups as “clumping.” In their explanation
of what they meant by clumping, Dr. A stated

So, this is a clock. So, this is going to be like you start with 0,1,2,3, 4, … ,11 and then𝑍
12

you go 12, 1,2,3,4,5 so let's look at a quotient group of Mod four times . So, I start𝑍
12

𝑍
12

with and then, when I have four, I am back to zero. Go around again when I get to eight𝑍
12

if I cut my string correctly to get back to zero. And so, then I’ve got , but I can see that all𝑍
4

of these things, one I yeah and all of these are one item, and all of these are these are one.
[…] okay so I'm grouping or clumping, and I'm setting to zero.

During this illustration, Dr. A conveyed a building metaphor through the use of the word
clumping. In this activity, they physically constructed piles of numbers (cosets) through this
clumping or gathering action. To further explain this metaphor, they also drew on the positional
metaphor of “going around” and equivalence-based metaphors in the use of the language such as
“setting to zero” and “these are all one.”

As Dr. A continued to explain how they wanted their students to understand quotient groups
and the ideas of clumping, they turned to another example and rather than using a building
metaphor they instead used, “collapsing”, which is a demolition metaphor. Dr. A drew the image
that is seen in Figure 1 and stated:
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We’ll take the cosets of and it's always fun to watch them try to figure out what a𝑦 = 𝑥
coset is but they usually eventually get to the parallel lines which is correct. And so, all
the cosets are parallel lines and now, when you think of this every one of those parallel
lines is going to get clumped to one point, and so you can draw the counter diagonal and
think about collapsing every one of those parallel lines on to this intersection point, and
so you can see that if I take R cross R and mod by the diagonal, or, I guess, we do 𝑥, 𝑦( ) 
such that equals . That you get something that is isomorphic to R.𝑥 𝑦

Figure 1

The main imagery that Dr. A utilized in this example is the idea that each of the parallel lines
will fall or collapse. However, in this second except, we see that the collapsing is to a specific
point thus furthering the metaphor of collapsing by giving a directionality of where the
collapsing is going. It is worth noting that in this excerpt, the phrase clumped is used. However,
unlike in the previous excerpt, “clumped” appears to describe the state of the parallel lines after
they were collapsed rather than the action being applied to the parallel lines. Thus, this metaphor
contrasts with the previous example as the mental imagery involved invoked different actions. In
the first example, Dr. A invoked imagery of creating piles (and maintaining the subset structure
with elements) whereas in this second example the collapsing moves from cosets as collections
of elements to their role as single element losing the set structure through the act of setting to
zero (emphasizing the representative element).

Dr. B: Partitioning to Build and to Deconstruct
Dr. B was similarly asked how they wanted their students conceptualize quotient groups and

they explained that they wanted their students to understand quotient groups as “partitioning”
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stating “... so this idea of partitioning I think is powerful for thinking about the structure where
you're building this, these weird things that are sets and elements kind of at the same time.” In
this explanation of partitioning, Dr. B communicated that partitioning was a way of building.
This class of building continued in their explanation as they made statements such as “building
up cosets” and “understanding the machinery involved in building.”

In a similar manner to Dr. A, Dr. B also made a transition from building metaphors to
demolition construction metaphors. However, unlike Dr. A, the demolition metaphor connected
to the same action metaphor: partitioning. While explaining an activity regarding the partitioning
of D4, Dr. B stated

Is there a way that we could partition up this D4 table into something that acts like evens
and odds, right? […] I always expect that the students are going to just break it up into
like the rotations and the flips. […] I always have groups of students who break it up in
other ways, but. They always break up in ways that that work. They're doing something
really reasonable, and how they're subdividing these up, and it's now kind of laying this
foundation that like one of these subsets has to act kind of like an identity type of thing,
like the evens did. We're seeing every element end up somewhere […] This is kind of
emphasizing the partitioning into new elements. And that physical color gives you
something that you can think of this all as like one object over altogether. So, we spent a
lot of time doing that.

In this explanation, Dr. B is described the creation of quotient groups through actions such as
“subdividing” or breaking up. However, this is still describing the understanding of
partitioning because they first posed the task of partitioning the group D4, yet they hold the
expectation that students will break things up. Thus, this explanation yielded partitioning as a
demolition metaphor in this case, but ultimately as both a demolition and building metaphor
as it had previously been described as building. Additionally, within this explanation, Dr. B
drew on the use of a positional metaphor through the use of the phrase “end up somewhere”
as they are discussing this transformation of the elements within the original group structure.
In this positional metaphor elements are moving from the original group to their assigned
coset.

Dr. K: Equivalence-Based Metaphors
Dr. K emphasized quotient groups as an extension of equivalence classes. In looking at Dr.

K’s conception of quotient groups, he stated:
It's when you're factoring out by something. It's that's a factor you can ignore. So simplest
examples of course, are modular arithmetic. So, if you're factoring out by mod 3, then𝑍 
you're looking at integers, and you can ignore -- you can ignore multiples of three. Any
things that differ by a multiple of three are essentially the same thing when you're looking
at a quotient group.

Within this explanation, Dr. K used primary metaphorical expression: ignore. This expression is
used to convey the mathematical idea of equivalence and that “you have a set of objects” in
which things are regarded as the same. Dr. K further elaborated on these ideas as they explained
one of the examples they liked to use in their practice.

I do use examples which are not which are not finite examples. Things like the fact that
the nonzero complex numbers are a group under multiplication. S1 is a subgroup, so then
what is S1 this time? Meaning the unit circle, of course. And what is the nonzero complex
numbers mod S1, right? And what is? And also, the positive reals are a subgroup, so
what's the nonzero complex numbers mod the positive? These are very geometric things
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for them to think about. And modding out by S1 really mean it also reinforces this idea.
Well, now we're regarding two nonzero complex numbers as the same if they lie on the
same circle about the origin and your quotient group, then is effectively the positive risk,
so I like to talk about those examples somewhat.

Additionally, in this example, sameness was used in conjunction with the positional metaphor
“lie.” Unlike the previous positional metaphors, lie takes on a more static nature in that it
lacks any type of movement. However, it is an important metaphor to note in that it serves as
a justification for how Dr. K judged sameness in this example in that two points were
considered to be the same if they were on (lie) on the same circle.

Discussion
We shared data from these three instructors because during their description of their teaching

of quotient groups, they each seemed to emphasize a different aspect of quotient group
understanding. During our analysis, there were four primary classes that emerged as instructors
discussed quotient groups: building, demolition, equivalence, and position. As we considered
these metaphors and the use of them, we hypothesize that each type of metaphor may reflect
different ways of thinking about quotient groups. Dr. A emphasized clumping and collapsing.
These types of actions emphasize an outcome where elements are clumped into sets then
collapsed into a single element. These actions may reflect the duality between elements and sets.
Dr. B’s metaphors were rooted in partitioning from original group to quotient group traversing
the duality between elements being members of the original (subdividing) and these elements
now being cosets in the quotient group (building). Finally, Dr. K leveraged ideas of equivalence
to emphasize ignoring which may reflect the way that a coset can be thought of in terms of its
representative element. In some ways these differences may emphasize the different ways of
conceptualizing Zn elements as subsets, set with representative element, and representative
element only.

For the scope of this paper, we focused on the primary metaphors shared by these instructors.
In all three cases the primary metaphors focused on the element and set relationships rather than
the group operation. We also note that positional metaphors could be found in all three
instructors’ language but did not appear as prevalent. Other metaphor classes that appeared in the
data but that are not discussed in this report include the personification of normality and its role
in “breaking” or “busting” groups or maintaining “machinery.” Future research will involve
testing this taxonomy with other instructional interviews and expanding classifications to include
other elements of quotient groups such as normality. Additionally, future work will also examine
the use of a second type of metaphor - linking metaphors - that instructors use as they discuss
quotient groups as these were at times used in tandem with some of the grounding metaphors that
the instructors were using. Both aspects of this future work will be carried out with the remaining
thirteen participants within the larger dissertation study.

At this point, we conjecture that during quotient group instruction there is a lot of imagery
that is at play due to the language that instructors use. However, students may or may not be
influenced by their instructor’s metaphor. Finally, we note that it is unlikely that quotient groups
can be conveyed fully with any particular metaphor or class of metaphors. The language used by
these instructors reflects attention to a number of salient dualities and therefore grounding
metaphors for quotient groups are likely needed in clusters to fully account for the concept.
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Instructor-Student Interactions in Geometry Courses for Secondary Teachers:  
Results from A National Survey 

 
 Patricio G. Herbst Soobin Jeon Inah Ko 
 University of Michigan University of Michigan University of Michigan 

We report preliminary results of selected questions from a national survey of instructors of 
geometry courses for secondary teachers about the nature of instructor-student interactions. 
Survey responses (n= 118) are used to indicate six latent constructs describing aspects of 
instructor-student interaction that in turn quantify hypothesized characteristics of two didactical 
contracts, which we call inquiry in geometry and study of geometry. We found that instructors 
whose highest degree is in mathematics education are less likely to rely on a study of geometry 
contract than instructors whose highest degree is in mathematics. Also, instructors who have 
previously taught high school geometry are less likely to lecture.  

Keywords: geometry, secondary teacher education, survey, didactical contract, instruction 

Objectives  
The work reported contributes to describing instruction in undergraduate mathematics 

education. Based on the responses from 118 instructors to 24 survey items, we describe how 
instructors relate to students in geometry courses taken by prospective secondary mathematics 
teachers (GeT courses, hereafter), including whether and how they incorporate students’ input in 
lectures, how they handle student difficulties, and how they handle student contributions. After 
testing a measurement model of constructs that inform the extent to which instructors lead 
students in the study of geometry or in inquiry in geometry, we report on how indicators of these 
constructs relate to each other, and whether characteristics of the instructors (including whether 
their highest degrees are in mathematics or in mathematics education, and whether they have 
taught high school geometry in the past) predict scores in any of those latent variables.  

Literature Review 
The mathematical preparation of prospective secondary teachers (PST, hereafter) is an 

important area for investigation in the RUME community (e.g., Lai et al., 2023; Serbin & Bae, 
2023). Whereas scholars and practitioners have written about the mathematics curriculum of 
teacher preparation for more than a century (Schubring, 1989), the empirical study of 
mathematics instruction in those courses has lagged for most of our field’s history, along with 
the lag in the study of mathematics instruction at the undergraduate level. Speer et al. (2010) had 
noted how limited scholarship on mathematics instruction at the undergraduate level had been. 
Yet, a more recent review by Melhuish et al. (2022) updated that assertion, noting that the study 
of instruction at the undergraduate level has captured much more interest between 2010 and 
2020. A variety of methods have been used in these studies, including, in particular, some 
instructor surveys of instructional practices (e.g., Johnson, et al., 2018, 2019). Though a main 
interest in the analysis has been to report on the incidence of lecture in instruction, researchers 
have also cautioned that the incidence of lecture is not necessarily an indicator of the absence of 
student-centered instruction (Smith et al., 2014). In advanced mathematics classes such as 
abstract algebra, however, studies of instructors’ beliefs have suggested that mathematicians 
value lecture as an instructional method to prepare future mathematicians (Melhuish et al, 2022).  
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For the specific case of the preparation of PST, one might expect instruction could be 
different, especially considering the emphasis that has been given to inquiry-oriented instruction 
in the last couple of decades (Abell et al., 2018; Mahavier, 1999). Yoshinobu and Jones (2011) 
had singled out preservice teachers among those who could benefit the most from inquiry-based 
learning; and Laursen et al. (2016) documented important gains for PST who had learned 
mathematics through inquiry. Important questions to ask include: But to what extent do 
prospective secondary mathematics teachers participate in inquiry-oriented instruction? 

GeT courses are salient locations where the incidence of lecture as well as of student-
centered instructional practices could be inspected to answer that question. Though small-scale 
research has been done in GeT classes (e.g., Blanton, 2002), little research has looked at 
undergraduate geometry instruction at scale thus far. Wong (1970) was an early survey of 
institutions and the curriculum offered in GeT courses. Grover and Connor (2000) reported on a 
survey of ~100 GeT course instructors and included one question aimed at pedagogical practices. 
The responses showed that though only 7.1% of instructors described their courses as consisting 
of only lectures, only up to 34.3% included classroom discussions facilitated by instructor. 
Though responses to just one survey question are hardly enough to describe instruction, no other 
instructor survey has been conducted after Grover and Connor (2000) to expand or update what 
we know about instructional practice in GeT courses since. The answers from that one question, 
however, suggested that to understand instructional practice in more detail, we could use an 
analysis of the components of lecture and inquiry to develop an instrument that more accurately 
served for instructors to describe what they do in their classrooms. 

An important precursor of the work reported here was Shultz’s (2020) INQUIRE survey, 
which explored the extent to which undergraduate mathematics instructors engaged in practices 
that could be used to describe inquiry. Shultz’s (2020) INQUIRE instrument defined latent 
constructs that could indicate various components of inquiry-oriented instruction described in the 
literature on inquiry-based learning. Shultz (2020) organized those constructs using the edges of 
the instructional triangle (Cohen et al., 2003). For example, interactive lecture and hinting 
without telling were two constructs identified to measure the extent to which instructor-student 
relationships (the instructor-student edge of the instructional triangle) were inquiry-oriented. 
Rather than relying on single questions to indicate a construct, the INQUIRE instrument included 
5 items to indicate interactive lecture and 3 to indicate hinting without telling. Among important 
findings from Shultz (2020) are that the various constructs that can be associated with inquiry-
based instruction portray a more complex distribution across instructors who claim to engage in 
inquiry. Shultz found evidence that lower-division undergraduate mathematics instructors might 
cluster in four different groups, depending on the scores on various of those constructs. Our GeT 
Instructor survey also used the instructional triangle to organize various aspects of instruction as 
latent constructs to be indicated by survey items. In this study we focus on the instructor-student 
edge of the instructional triangle, and we inquire on the incidence of constructs characteristic of 
inquiry as well as those which are characteristic of traditional study of geometry.  

Theoretical Framework 
We build on a theoretical framework about mathematics instruction that combines Cohen et 

al.’s (2003) instructional triangle and Brousseau’s (1997) didactical contract. Specifically, Cohen 
et al. (2003) conceptualize instruction as a system of relationships among instructor, students, 
and content that take place in environments. The latter are institutional environments, namely 
mathematics departments and teacher education programs in colleges and universities. Herbst et 
al. (2023) further elaborate the content vertex of the instructional triangle to account for the fact 
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that whereas students mainly relate to the content in terms of the work they are asked to do, 
instructors also relate to the content in terms of the instructional goals that such work is designed 
to support the acquisition of (Figure 1). This distinction is especially important in inquiry 
classrooms as the work students are asked to do may not too obviously disclose what the 
knowledge at stake is (e.g., Hitchman, 2017). 

 
Figure 1. Elaboration of the instructional triangle 

The specific ways in which those relationships are entertained call for the use of the notion of 
didactical contract. The literature has often used holistic names such as “school mathematics” 
and “inquiry classrooms” (Cobb et al., 1992) or “lecture-based” or “student-centered” to 
distinguish between types of teaching (Mesa et al., 2020). The notion of didactical contract 
(Brousseau, 1997), which Herbst et al. (2023) interpret as a system of norms that underpin how 
relationships among instructor, students, and content take place, serves us to operationalize those 
nominal distinctions into sets of possible norms that might characterize those relationships. 
Leading to the development of a survey that could help us elicit descriptive information about 
GeT instruction, we hypothesized that features of inquiry-oriented instruction could be 
considered possible norms of a didactical contract (inquiry in geometry) and that features of what 
often is called traditional or lecture-based instruction could also be identified to characterize a 
different didactical contract (the study of geometry). We did not expect that the didactical 
contract in any individual GeT class could be simply classified as either inquiry or study, but 
rather designed the survey so that we could measure instructors’ recognition of each of the 
various norms that describe instructor-student relationship in both contracts. The present study 
reports on instructors’ recognition of the various norms that characterize study and inquiry 
contracts. We hypothesized that the study contract would rely on norms such as LECTURE (the 
instructor is expected to introduce any new content), RIGHTANS (the instructor is expected to 
provide the right answers to students who have difficulties), and STALKTOINS (the instructor is 
expected to take students’ public comments as directed to the instructor). And we hypothesized 
that inquiry contracts might rely on other norms including INTLECTURE (students are expected 
to participate in lectures), HINTNOTELL (the instructor is expected to hint without telling when 
students have difficulties, and STALKTOCLASS (the instructor is expected to take students 
public contributions as directed to the whole class). These norms were used to create the items in 
the survey with which we expected to answer three questions: (1) How likely is it that students 
participate when new knowledge is being installed? (2) How do instructors respond to individual 
student difficulties with class work? and (3) How do instructors make use of individual student 
contributions to the whole class? Further, we expected that constructs that describe a study 
contract would correlate with each other and the same would happen with variables that describe 
an inquiry contract. And we wondered the extent to which responses to those questions were 
predicted by individual characteristics of the instructors, specifically whether their highest degree 
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was in mathematics or mathematics education and whether they had prior experience teaching 
high school geometry. 

Methods  

The GeT Instructor Survey 
The GeT Instructor survey was designed to describe instruction across geometry courses for 

secondary teachers taught in mathematics departments across universities in the US. Broadly 
conceived, it aims to measure the incidence of various instructor-centered and student-centered 
practices as well as various types of students’ engagement with content, including geometry and 
geometry knowledge for teaching. Some of those items ask instructors to report the extent to 
which they engage students in tasks of teaching geometry (such as providing feedback on 
students’ written work). Data collection has been ongoing; the present report provides initial 
gleanings from the analysis of some of the constructs being measured.  

Herbst et al. (2024) analyzed the GeT Instructor survey responses concerning students’ 
interaction with content. In that analysis, we estimated the relationship among four factors that 
capture instructors’ descriptions of the nature of their students engagement with content: (1) 
students study geometry (Study), (2) students inquire into geometry (Inquiry), (3) students 
engage in tasks of teaching geometry (ETT), and (4) students engage with dynamic geometry 
software (DGS). Analysis showed significant correlations between Inquiry and ETT, between 
Inquiry and DGS, and between ETT and DGS. A structural equation model showed that DGS 
fully mediates the relationship between Inquiry and ETT. The present report concentrates on 
another of the instructional triangle’s edges: The instructor-student relationship. 

In its initial design, the GeT Instructor survey included 24 items to indicate 7 constructs 
which could be used to describe the instructor-student relationship in the instructional triangle. 
Each of those items asked participants to indicate their level of agreement using a 6-point Likert 
scale (ranging from Strongly Disagree to Strongly Agree) in response to provided sets of 
statements that could describe the respondents’ practice in the GeT class. For example, item 
811204 presented the statement “While introducing new material, I called upon the students to 
ask questions about the material being covered” which we hypothesized would indicate the 
construct interactive lecture (INTLECTURE). Of the seven hypothesized constructs, only six 
could be measured with the designed items (items for the seventh construct did not meet standard 
requirements in a confirmatory factor analysis). The six constructs helped provide answers to the 
three first research questions. Besides, we expected that correlations among the six constructs 
might align with the different contracts: Study (constructs LECTURE, RIGHTANS and 
STALKTOINS) and Inquiry (constructs INTLECTURE, HINTNOTELL, and 
STALKTOCLASS). The GeT Instructor survey hypothesized other constructs as useful to 
answer questions about the other relationships represented in Cohen et al.’s (2003) instructional 
triangle. We do not report on those questions and constructs in the present report.   

Sample 
To reach widely across GeT Instructors in the US, we obtained lists of all the universities and 

colleges across the US and checked whether they had a secondary teacher preparation program 
and whether their mathematics departments offered a GeT course required for prospective 
teachers. This canvassing yielded (n=670) mathematics departments; emails were sent to 
department heads (or their secretaries) asking them to forward a link to the survey to the 
instructor who had taught the course last. By the time of this analysis, our effective sample size 
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consisted of 118 GeT instructors who completed all items of a Qualtrics survey, including the 
GeT Instructor survey and a background questionnaire. Our sample participants confirmed they 
had taught a geometry course required for secondary mathematics teachers in the last ten years. 
The participants comprised approximately 55.9% male instructors and 39.8% female instructors. 
Approximately 72% had their highest degree in mathematics, while 25.4% had their highest 
degree in mathematics education. And 30.5% had prior teaching experience in high school 
geometry. A significant 85.6% of participants held either tenure or tenure-track faculty positions, 
while 10.2% occupied non-tenure roles including lecturers and graduate students.  

Results  
Descriptives of the raw scores for the seven hypothesized constructs are provided in Table 1. 

We performed a Confirmatory Factor Analysis (CFA) to evaluate how well the observed items 
measure each of the seven hypothesized constructs. Notably, items designed to indicate one 
construct, that instructor functions as an older peer (OLDERPEER), exhibited low correlations 
among them and small item loadings which we took as evidence that the items did not represent 
a single latent construct. After excluding these items, we re-evaluated CFA with the remaining 
items that had item loadings above the threshold of approximately 0.3 onto the six hypothesized 
constructs. The results indicate an acceptable model fit, with the Root Mean Square Error of 
Approximation (RMSEA) at 0.080, the Comparative Fit Index (CFI) at 0.854, and the Tucker-
Lewis Index (TLI) at 0.818. 

 
Table 1: Descriptive Statistics of the Seven Hypothesized Constructs 

 N Mean Median Min. Max. Std. Dev. 

LECTURE 118 3.997 4.2 1 6 1.287 

INTLECTURE 118 4.883 4.8 2.6 6 0.711 

OLDERPEER 118 3.547 3.5 1.75 5.75 0.824 

RIGHTANS 118 3.031 3 1 6 1.021 

HINTNOTELL 118 3.723 3.7 1 6 0.925 

STALKTOINS 118 2.989 3 1 4.7 0.879 

STALKTOCLASS 118 4.381 4.5 1 6 1.039 
 
The CFA analysis revealed notable patterns of correlation among the constructs, primarily 

distinguishing between constructs hypothesized as characteristic of the Study contract 
(LECTURE, RIGHTANS, and STALKTOINS) and those hypothesized as characteristic of the 
Inquiry contract (INTLECTURE, HINTNOTELL, and STALKTOCLASS). The highest 
correlations were observed between LECTURE and RIGHTANS (.550), RIGHTANS and 
STALKTOINS (.240), as well as LECTURE and STALKTOINS (.229). These findings suggest 
a strong connection between presenting traditional lectures, providing correct answers when 
students have difficulties, and taking student contributions as a dialogue between the student and 
the instructor. Conversely, in the realm of the inquiry contract, we observed significant 
correlations between HINTNOTELL and STALKTOCLASS (.207), and between 
INTLECTURE and STALKTOCLASS (.119) (see Table 2). These findings indicate 
relationships among delivering interactive lectures, fostering classroom discussions, and 
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affording students opportunities to solve their own problems. Additionally, the correlation 
between LECTURE and INTLECTURE was significant (.161, p < 0.05). This may indicate 
instructors’ inclination towards utilizing lectures, regardless of the specific type of lecture. 

 
Table 2: Correlation Matrix of the Six Factors in CFA 

 811100 811200 812100 812200 813100 

811100      

811200  .161*     

812100  .550*** .037    

812200 -.111 .037 -.013   

813100  .229* .004  .240** -.054  

813200 -.198 .119* -.177  .207* -.069 
* p < 0.05, **p<0.01, ***p<0.001 

 
We also conducted a comparative analysis of latent variable means (LVM) among instructors 

from various demographic backgrounds to explore the potential association between these 
demographics and scores on specific constructs. Specifically, we focused on instructors’ highest 
degree to answer whether having a highest degree in either mathematics (M) or mathematics 
education (ME) could predict whether the instructor’s GeT class might follow more of a study or 
inquiry contract. To express the between-group differences, we set the LVM in the first group 
(mathematics) to zero and estimated the LVM in the mathematics education group (see Table 3).  

 
Table 3: Latent Variable Mean (LVM) Difference -Between Demographics Groups 

 

Highest Degree in Mathematics 
(M) (N=85) or Mathematics 
Education (ME) (N=30)  

Did Not Teach HS Geometry (N) 
(N=82) or Taught HS Geometry 
(Y) (N=36) 

 LVM Difference (LVM in 
ME after setting M to 0)  p-value  LVM Difference (LVM 

in Y after setting N to 0)  p-value 

LECTURE - .755*** .0009  -.462* .04 

INTLECTURE .133 .18  .121 .19 

RIGHTANS -.543** .002  -.285 .15 

HINTNOTELL .312 .08  .182 .25 

STALKTOINS -.334* .02  -.171 .10 

STALKTOCLASS .390* .04  -.054 .81 
* p-value < 0.05, **p<0.01, ***p<0.001 

A Wald test and chi-square difference test revealed significant differences in latent variable 
means between groups of instructors according to highest degree for constructs LECTURE, 
RIGHTANS, and STALKTOINS. Thus, instructors holding their highest degrees in mathematics 
education are less likely to manage a Study contract, in which traditional lectures are given, 
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correct solutions are offered when students encounter difficulties, and student contributions are 
seen as one-on-one dialogues with the instructor, as compared to instructors with highest degrees 
in mathematics. There is some, but not enough evidence to say that instructors whose highest 
degree is in mathematics education are more likely than instructors with degrees in mathematics 
to engage in practices aligned with Inquiry. Furthermore, we examined instructors who had or 
had not taught high school geometry. After setting the LVM in the second group (had not taught 
high school geometry) to zero and estimating the LVM in the first (had taught) which represent 
between-group differences, we observed a significant mean difference in the LECTURE 
construct. Instructors with prior experience teaching high school geometry seem to be less prone 
to employing traditional lectures in their instruction. 

Conclusion 
A few observations about the contracts that we call Study and Inquiry can be made as regards 

how these contracts characterize the instructor-student relationship. The survey successfully 
deconstructs Study and Inquiry into six constructs (3 for study and 3 for inquiry) that are well 
indicated by several items. It thus can provide a more nuanced image of what the study and 
inquiry contracts mean. In particular, as related to the popular conflation of inquiry with no 
lecturing and the defense that some instructors have offered of the possibility to combine 
lecturing with inquiry (e.g., Alcock, 2018), the survey provides other well-indicated constructs 
that can be used to inspect the incidence of inquiry practices. Though the full survey is designed 
specifically for GeT courses, the specific constructs used to understand the instructor-student 
relationship are indicated with items that depend very little on the nature of the content being 
transacted (though they are about mathematics instruction); thus, researchers investigating 
instruction in other courses of study might be able to use same survey items. 
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Exploring Graphical Reasoning from Revised Responses to Function Composition Tasks 
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Students learn about function composition, (𝑔 ∘ 𝑓)(𝑥), in secondary school. From two given 
equations, one might identify the composite function algebraically via substitution, 𝑔(𝑓(𝑥)). But 
what about when functions are given as graphs? This study aims to explore how students 
reasoned graphically with their revised responses to function composition tasks. We previously 
identified common types of resultant graphs participants generated in trying to sketch – in a 
short time period – the composition of various graphically-depicted functions. This paper 
specifically examines the ways in which students revised their graphs, when given more time to 
do so and after having engaged in trying to compose functions in a wider variety of contexts, and 
the reasoning that they provided for these changes. As such, we extend prior work by exploring 
how students reason about function composition when provided unlimited time constraints on 
their activity. 

Keywords: function composition; graphical reasoning 

Students are exposed to function composition in secondary school (cf., CCSSM, 2010). 
Primarily, they are taught that (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) – meaning, for two functions defined by 
equations, one can procedurally determine the composite function via algebraic substitution. Yet, 
such algebraic approaches are limited in their ability to develop sufficiently deep mathematical 
understandings of function composition (e.g., Ayers et al., 1988; Moore & Bowling, 2008). For 
example, in our prior work we showed how, when given 30 seconds to sketch a graph of the 
composite of two graphed functions, students did. In this study, we extend our prior work by 
exploring the ways students reason graphically about the composition of two functions when 
given time to revise their original sketched graphs, after having sketched graphs to represent the 
composition of functions represented graphically, algebraically, and tabularly. 

Research Question, Background, and Framework 
In this study, we seek to answer the following research question: After having several 

experiences thinking about function composition, how and why do students revise their responses 
to graphical function composition tasks? 

Function and Function Composition in Extant Literature 
Much literature in mathematics education has been devoted to the function concept (e.g., 

Breidenbach et al., 1992; Freudenthal, 1983; McCallum, 2019; Mirin et al., 2021; Paoletti et al., 
2018). This has included exploring students’ conceptions about real-valued functions (from ℝ to 
ℝ) through the notion of covariational reasoning (e.g., Paoletti & Moore, 2017). In this context, a 
deep understanding of function demands students understand how quantities co-vary together – 
meaning, how changes in one quantity correspond to changes in the other quantity. Studies have 
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shown that students can experience difficulties in understanding the relationship between co-
varying quantities and their graphs (e.g., Carlson et al., 2002; Schoenfeld, 1985). More broadly, 
Dreyfus and Eisenberg (1983) pointed out that without a formula, the graphical representation of 
function has very little meaning for most students entering calculus.   

Yet when it comes to function composition, very little research exists – and what does exist 
primarily uses algebraic perspectives (e.g., Ayers et al., 1988; Clark et al., 1997; Moore & 
Bowling, 2008). There is a dearth of literature on function composition, especially through a 
graphical lens. To address this gap, in a prior analysis (Chen et al., 2023), we identified common 
types of resultant composite function graphs participants generated in 30 seconds when given 
graphs, equations, and tables. Although we recognize that students primarily have difficulty with 
sketching graphs of composite functions given two graphs, in this analysis, we aim to gain 
further insight into students’ reasoning about graphical representations of composite functions. 
This was done by examining the ways in which students revised their graphs after having further 
experiences with function composition via equations and tables – which are more familiar ways 
of thinking about function composition.  

Graphical and Algebraic reasoning 
A key premise underlying this research is that algebraic and graphical reasonings are 

different, where each provide distinct conceptions that are complementary for developing deep 
mathematical meanings. Broadly speaking, algebra is a mathematical field that examines 
particular structures, based on a set of objects (e.g., ℝ), and a binary operation(s) defined on 
them (e.g., +). Whereas geometry explores spaces that are related with distance, shape, and size 
(e.g., the Euclidean plane). To highlight this difference, a function, algebraically, is often 
characterized by its equation, e.g., f(x) = 2x + 1 (i.e., the structure of the set of points included in 
the relation); whereas, graphically, we depict a function with a graph (typically in the Euclidean 
plane), e.g., 𝑓(𝑥) is a line. Moreover, not only do these fields explore different things, but key 
ways of reasoning differ between them. Driscoll et al. (1999; 2007), for example, differentiated 
algebraic from geometric “habits of mind.” In our context, for simplistic purposes, we use 
graphical reasoning to mean reasoning that relies on figures and shapes in the plane and their 
properties; algebraic reasoning, by contrast, relies on equations. 

Methodology and Data Sources 
To explore how students reason graphically about function composition, we had university 

students (n=143) in two mathematics and mathematics education programs (primarily from 
precalculus classes) sketch the composite function (𝑔 ∘ 𝑓)(𝑥) given two given functions f and g. 
Participants responded to six tasks (yielding 858 responses), and the task order is important: they 
went from least familiar to most familiar (in the first four the functions were given as graphs, the 
next involved two equations, and the last gave a table of values). Students were given the 
opportunity to revise their original answers after a first attempt at all six tasks – meaning they 
could sketch a new graph for each of the six tasks after having been refreshed on what were 
likely more familiar function composition tasks (i.e., the latter using equations and tables). 

Task Design 
On Desmos, participants were asked to sketch within a limited timeframe (30 seconds, to 

capture their intuitions and reasonings), the composite function (𝑔 ∘ 𝑓)(𝑥) for six pairs of 
functions. The majority of these pairs were represented graphically (Figure 1 displays an 
example Desmos page; Figure 2 displays the other 5 tasks). The purpose in providing 
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participants with somewhat unusual, and non-algebraic forms of the functions, was to deter them 
from immediately converting to an algebraic equation to complete the composition. Doing so 
increased the likelihood that students would have to try to reason about function composition 
graphically based on the shapes of (or relationships represented in) the graphs. In the last two 
tasks, functions were given in the more familiar forms of an equation and a table. In this paper, 
we analyze their second attempts – which included either a new composite function graph or a 
modification of their original graph, as well as a written justification for their changes. Notably, 
their engagement in these revised tasks happened after participants: i) had more experience with 
graphing tasks; and ii) had reviewed function composition with – presumably – more familiar 
modes of reasoning (i.e., equations and tables).  

 
Figure 1. Task 2 in Desmos 

Task 1 

 

Task 3 

 

Task 4 

 

Task 5 
 
 

𝑓(𝑥) = 𝑥ଶ 
 

𝑔(𝑥) = √𝑥 
 

   

Task 6 
(Presented in Table form) 

 
𝑓(𝑥)
= {(1,4), (2,3), (3,1), (4,−1)} 
𝑔(𝑥)
= {(1,−2), (2,0), (3,1), (4,−1)} 

Figure 2. Given functions for Tasks 1, 3, 4, 5, 6 

Analysis and Coding 
This study applied grounded theory as the data analysis technique (Stough & Lee, 2021). Out 

of 85 altered responses (from the possible 858), our analysis focused on (n=73) responses, from 
43 distinct participants, in which participants provided (non-blank) justifications. Our analysis 
identified normative reasoning provided for changes to the initial graphs that were shared across 
participants. Notably, we aimed to create coding categories that could be applied across the 
entire set of tasks. We anticipated the revised graphs to include both incorrect and correct graphs 
of composite functions, and a diverse range of reasoning students may have used. We coded 
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changes between their original and revised graphs as beneficial (+) if they went from incorrect to 
correct; non-beneficial (-) indicated no progress toward correctness. We generated and refined all 
categories of coding as a group; when there were uncertainties in how to code a graph, we 
resolved such cases together and made refinements to categories as needed.  

Due to space constraints, we do not include all codes used in our analysis. However, Table 1 
provides codes and definitions for the majority of codes – and, in particular, those we report on 
in this paper. Specifically, these are the codes used to determine students’ reasoning for 
modifying their initial responses. Clarifying examples are given in the results section. 

Table 1. Categories of students’ reasoning for changing their graph 

Code Description of the reasoning for how or why participants made changes 
to the composite function 𝑔(𝑓(𝑥)) sketched 

MIXED PROPERTY 
(MIXED PROP) 

One graph put together with the property of the other graph 

ALGEBRAIC 
THINKING (ALG) 

Algebraic thinking involving equations or identifying types of 
functions (e.g., polynomial functions) 

DISCRETE POINTS 
(DP) 

Pointwise thinking involving specific points or identifying specific 
discrete points of the graph (e.g., f(1)=2, g(2)=4, so g(f(1))=4) 

TIME Citing a need for more time on the original tasks 

Results 
Table 2 provides an overarching summary of the reasoning used by those students who 

altered their answers after their first attempt. ALGEBRAIC THINKING (ALG) and MIXED 
PROP were the two dominant responses, so those will be the focus of our results. It is important 
to note, however, that TIME was also a major factor, with 19 out of 73 responses citing a need 
for more time on the original tasks as the reason for them altering their original response. Those 
who ran out of time did not provide any additional reasoning for their answer changes, thus 
indicating that one reason students revised their graphs was that they needed more time to think 
about how to compose the two functions. Since a total of 18 out of 73 total changes were 
beneficial, it reinforces the idea that additional time may provide more opportunities for 
participants to reason through the challenges and showcase their thinking. There were also a 
small number of responses (11) that fall under OTHER codes. However, the four most influential 
categories (ALG, MIXED PROP, DP, and TIME) will be the focus of this report. 

 
Table 2. Summary of data for those with answer changes on Tasks 1-6 

Code Task 1-4 Task 5 Task 6 Total 
ALG 4(+)/2(-) 3(+)/6(-) 2(-) 7(+)/10(-) 
MIXED PROP 5(+)/14(-) - - 5(+)/14(-) 
DP 1(+)/2(-) - 4(+) 5(+)/2(-) 
TIME 1(+)/13(-) 2(-) 3(-) 1(+)/18(-) 

                  Note. The symbols (+)/(-) show beneficial/non-beneficial changes in their responses. 

 Given Graphs 
In Tasks 1-4, students were given graphs of f (x) and g(x) and asked to sketch the composite 

function. In these tasks, about 9% of the responses were changed (49 out of 572). See Figures 3 
and 4 for (-) and (+) examples (original graph in blue; revised graph in red).  

Of those changed responses, 39% of them used MIXED PROP as their reasoning for how 
they generated their revised graph (19 out of 49). This seems sensible since MIXED PROP 
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implies that students are utilizing and combining physical characteristics of the two graphs – 
though it was only beneficial in 5 of the 19 cases. On these tasks, 29% (14 out of 49) of 
responses mentioned timing issues. Perhaps this is because students are accustomed to 
approaching function composition algebraically, and thus required more time to orient 
themselves to these graphical representations. Notably, even with the additional time to revise, 
students still had difficulty – only 1 of the 14 responses that cited time issues made progress 
toward a correct composite function on these graphical tasks. 12% of students (6 out of 49) still 
attempted to use ALG to understand these graphical tasks, and this group seemed to make the 
most progress toward correct graphs. Finally, 6% of students used DP to make sense of the 
graphical representations (3 out of 49). 

 
(a) MIXED PROPERTY (-) 

 

 

(b) TIME (-) 

 

(c) DISCRETE POINTS (-) 

 

 
Figure 3. (Still) Incorrect examples from Task 1 of (a) “mixed property” reasoning, (b) “time” reasoning, and (c) 

“discrete points” reasoning (original graph in blue; revised in red) 

(a) ALGEBRAIC THINKING (+)

 
 

 

 

(b) MIXED PROPERTY (+)

 

 

Figure 4. Correct examples from Task 2 of (a) “algebraic thinking” reasoning, and Task 4 of (b) “mixed property” 
reasoning (original graph in blue; revised in red) 

Given Equations 
In Task 5, students were given equations for 𝑓(𝑥) and 𝑔(𝑥) and were asked to sketch the 

composite function. In this task, about 8% of the responses were changed (11 out of 143). See 
Figure 5 (original in blue; revised in red). Of those changed responses, 82% of them used ALG 
as their reasoning (9 out of 11), and 18% cited TIME as their reason for changing their response 
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(2 out of 11). This result is unsurprising, since this task gave students equations, which lends to a 
more algebraic approach. Of those who changed their answers in Task 5, 27% (3 out of 11) 
changed their answer so that it improved. All 3 of the improved responses were coded as using 
ALG for their reasoning, as exemplified in Figure 5a. Interestingly, however, in 4 (of 11) cases 
students changed their answers from the correct response to the incorrect response. Each was 
coded as ALG and all were nearly identical to the response in Figure 5c, where 𝑥ଶ and √𝑥 were 
seen to “cancel” algebraically to 𝑥.  
 

(a) ALGEBRAIC THINKING (+) 

 

  

(b) TIME (-) 

 

 
 

(c) ALGEBRAIC THINKING (-) 

 

 

Figure 5. Examples from Task 5 of (a) (c) “algebraic thinking” reasoning, and (b) “time” reasoning (original 
graph in blue; revised in red) 

Given Tables 
Task 6 gave students tables of values and students were asked to sketch the composite 

function. In this task, about 9% of the responses were changed when students were given this 
opportunity (13 out of 143). See Figure 6 for examples (original in blue; revised in red). About 
31% of responses (4 out of 13) used DP to explain their changed answers, which makes the most 
sense based on a table of values. Indeed, all 4 made improvements (see Figure 6a). (Notably, 
even if students decided to connect the correct set of points with a curve, we considered the 
composite graph (mostly) correct; the correct graph should just be the discrete set of points.) 
23% (3 out of 13) cited an issue with TIME as their reason for changing their answers. 15% (2 
out of 13) used ALG to change their answers.  

 
(a) DISCRETE POINTS (+) 

 

 

 
 

(b) TIME (-) 

 

 

(c) ALGEBRAIC THINKING (-) 
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Figure 6. Examples from Task 6 of (a) “discrete points” reasoning, (b) “time” reasoning, and (c) “algebraic 
thinking” (original graph in blue; revised in red) 

Conclusions and Implications 
In this section, we highlight four important takeaways for the reader. First, perhaps 

unsurprisingly, with more time, students performed better. Approximately 25% of the students 
who edited their responses improved upon their original answer in some way (18 out of 73). This 
might imply that some students’ original wrong responses were due to lack of time rather than 
lack of ability to perform the composite function task. 

Second, when given the opportunity to revise, students seemed to rely primarily on an 
algebraic approach. Approximately 23% of revised responses cited ALG as their method (17 out 
of 73). This could imply that more time simply allowed students to rely on the more familiar 
algebraic manipulations – though, even still, less than half were able to determine the correct 
composite function. This result seems to suggest that students have not been supported in 
developing ways of reasoning graphically about function composition, and the extra time serves 
only to allow for attempts to reason algebraically by identifying approximate equations with 
which to work. 

Third, we also saw that there can be a negative impact to an algebraic approach. All of the 
students who changed their answers from correct to incorrect (all on Task 5) used algebra in their 
reasoning for their revisions. This implies that students are using the familiar algebraic 
approaches even when it actually hinders their natural understanding of the problem! The dual-
edged nature of algebraic thinking evident in these revised responses seems to affirm the broad 
aims of this work – exploring graphical reasoning approaches that support students in developing 
a richer conception of function composition.  

Fourth, overall, the most productive approach in revised responses was based on pointwise 
thinking (DP) – though most of these were in Task 6. That is, using specific values of x, to 
evaluate and plot (x, g(f(x))), was helpful reasoning that often led to a correct or mostly correct 
graphically composed function. Additionally, MIXED PROP seemed to be a promising approach 
on some “given graphs” (Tasks 1-4) – although identifying which properties of the two functions 
to combine represents an additional challenge. Both show potential for helping students develop 
graphical reasoning about function composition. 

Collectively, the results presented here along with the results we presented in Chen et al. 
(2023) highlight that most college students have not been provided opportunities to develop rich 
meanings for function composition; function composition problems are difficult regardless of if 
there is a limited time frame and unfamiliar representations (Chen et al., 2023) or if there is an 
unlimited time frame and students have experienced more familiar representations (this report). 
Hence, more work is needed to identify further productive intuitions and ways of reasoning 
students may have that might be helpful to build on. We conjecture novel representations and 
digital tools might afford learners an opportunity to develop a richer conception of function 
composition, such as conceiving of function composition graphically or as representing a 
covariational relationship between multiple quantities. We call for future research to explore this 
possibility, as well as others, for supporting students in understanding function composition.  
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Undergraduate instructor’s perceptions of barriers to implementing culturally sustaining 
practices 

 
Megumi Asada  

Rutgers University 

Undergraduate math education is highly inequitable. One potential strategy to improve the 
unfair experiences and outcomes of historically marginalized groups in mathematics is to use 
culturally sustaining practices, which relate math content to student’s culture and everyday lives. 
However, there is limited work exploring the applicability of culturally sustaining practices in 
the undergraduate mathematics setting. This study interviews seven math undergraduate 
instructors to better understand their perceived barriers to implementing culturally sustaining 
practices.  

Keywords: undergraduate, equity, culturally sustaining practices 

Introduction 
Undergraduate mathematics education is highly inequitable. Black and Latin* students are 

frequently weeded out of introductory undergraduate math courses like calculus, prohibiting 
access to advanced level mathematics courses (Ellis et al., 2016; Larsen et al., 2017). This 
disproportionate exclusion of Black and Latin* students can result in isolating experiences for 
the few students who do persist to upper-level courses, who have diminished access to same-
gender, same-race peer support (Borum & Walker, 2012).  

One potential strategy to ameliorate the differential experiences and outcomes experienced 
by minoritized groups in mathematics is to relate math content to students’ culture, experiences, 
and everyday lives (Civil, 2016). The framework of culturally sustaining pedagogy (CSP) (Paris, 
2012) proposes a step towards equitable instruction that embeds course content in students’ lives 
while providing them with political consciousness. However, there is limited work exploring the 
applicability of culturally sustaining practices in the undergraduate mathematics setting, with the 
exception of Adiredja and Zandieh (2020). Since most existing scholarship on CSP has been in 
the K-12 context, it is unclear the extent to which the same strategies work in the university 
setting. Thus, in order to better understand how to implement culturally sustaining practices in 
college classrooms, we might want to understand the barriers specific to the university context.  

Accordingly, this study addresses the following research question: What do instructors of 
math undergraduates perceive to be the barriers to implementing culturally sustaining practices? 
Addressing this question presents three contributions. First, this work links the expertise gained 
from scholarship in K-12 equitable practices in mathematics to the undergraduate setting, where 
we have not taken up as much of the work from our colleagues in K-12. Second, there is little 
existing work documenting culturally sustaining practices in undergraduate classrooms. This 
work will explore instructors perceived barriers to implementing CSP. Finally, as Chazan et al. 
(2016) note, much of the work in mathematics teaching documents instructors’ beliefs without 
considering the influences that institutions and various stakeholders can have on instructors’ 
choices. This work answers Chazan et al.’s call for greater attention to institutional and greater 
societal context on the choices teachers make. 
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Literature Review 
An increasing amount of scholarship has documented inequitable experiences in college 

mathematics experienced by Latin* and Black students and students of under-represented 
genders in mathematics (for a review, see Adiredja & Andrews-Larson, 2017; Leyva et al., 2021; 
McGee & Martin, 2011).  

Leyva et al. (2021) document instructional practices and broader ideologies of mathematics 
ability (e.g. mathematics ability as innate; white and Asian people are better at math than Black 
or Latin* students) that create hostile classroom environments for historically marginalized 
students. While some work has illustrated cases of successful Black (Borum & Walker, 2012) 
and Latin* (Leyva, 2016) students, I am not aware of work that considers how more equitable 
instruction interacts with broader institutional and ideological factors. In other words, given 
various institutional obligations, how far can an instructor go in implementing culturally 
sustaining practices?  

When done well, culturally sustaining practices can encourage critical dialogue, improve 
student performance on exams, and promote reflection on previously held social assumptions 
(for a review, see Aronson & Laughter, 2016). Indeed, Hubert (2014) found that students 
appreciated seeing their home lives reflected in the classroom, which in turn promoted 
engagement with mathematics content. However, implementing CSP is far from straightforward. 
Even for those instructors who would like to adopt CSP practices, some struggle with developing 
authentic connections between school mathematics and students’ everyday lives (McCulloch & 
Marshall, 2011; Wager, 2012).   

Unfortunately, there is still little work documenting supportive practices in undergraduate 
math education that disrupt commonplace racialized and gendered experiences (Leyva et al., 
2022). Leyva et al. (2022) document supportive practices intended “for all” students that are 
necessary yet insufficient to supporting students of historically under-represented groups in 
mathematics. While instructional practices such as creating space for questions and mistakes and 
extending out of class support are important, they are limited in their ability to confront the 
broader influences of racism and patriarchy on classroom experiences. The limitations inherent 
to practices that do not explicitly address raced and gendered harm in the classroom calls for 
further work on practices like CSP that do attempt to directly address these harms.  

Theoretical Frameworks 
Culturally Sustaining Pedagogy 

This study uses the theory of culturally sustaining pedagogy (Paris, 2012), reformulated from 
Ladson-Billings’ culturally relevant pedagogy (1995, 2021). Ladson-Billings developed 
culturally relevant pedagogy based on her studies of effective instructors of African American 
students. She found that effective instructors accomplished three key objectives, promoting: 
student achievement, cultural competence, and critical consciousness. 

CSP emerged from an acknowledgement that cultural relevance itself is insufficient. Instead, 
Paris (2012) noted the importance of going beyond curricula that uncritically cite students’ 
cultures towards one that sustains them. As Ladson-Billings (2021) notes, the wide 
popularization of culturally relevant pedagogy has led to uses and abuses of the theory. As 
conceptualizations of culturally relevant pedagogy morph over time, the theory changes and 
gains new subtleties. Culturally sustaining pedagogy combines students’ cultural knowledge with 
the aim of critical consciousness, or an understanding of current sociopolitical realities. In this 
study, I used CSP to identify a set of recommendations to discuss with college instructors. 
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Theory of Practical Rationality 
To make sense of why my participants would or would not adapt elements of CSP in their 

teaching, I used Herbst and Chazan’s (2003) theory of Practical Rationality of Teaching. The 
theory considers the different societal and institutional obligations that affect instructors’ 
choices. Chazan et al. (2016) contend that instructors cannot simply do as they please, 
identifying various obligations instructors must consider: professional obligations, obligations to 
the discipline of mathematics, obligations to students as individuals, and obligations to society 
and its imperatives. In this study, I use Practical Rationality to identify instances when different 
obligations conflict with or support CSP. Like Herbst and Chazan, I make no moral judgments 
about the choices instructors make in prioritizing certain instructional commitments over others. 
The theory also does not make any normative judgments about whether an instructor’s perceived 
obligations are truly obligatory. Instead, it is sufficient that an instructor perceives an obligation 
as relevant to the instructional choices they make. 

Methods 
Participants were selected among current doctoral students in a mathematics department at a 

medium-sized public university in the northeast. My participants were PhD students in 
Mathematics with at least one semester of undergraduate teaching experience as an instructional 
teaching assistant (TA). I excluded participants who only had experience as grading TAs or 
whose only teaching experience was prior to starting their PhD. The choice of target population 
of mathematics PhD students as opposed to current mathematics professors was intentional. 
First, mathematics PhD students represent the cohort of future college-level mathematics 
educators. Additionally, as a younger cohort, current mathematics PhD students may be more 
amenable to CSP practices. While general support of equitable practices is not a requirement to 
participate in the study, I anticipated that participants would provide far richer insights about the 
possibilities of equitable instruction if they themselves were invested in such practices. 

Data Collection 
I invited participants to engage in a single one-hour semi-structured interview about how 

they might adapt various culturally sustaining practices from the K-12 mathematics context to 
the undergraduate classroom. The interview was divided into roughly two parts. In each section, 
I asked the participant to consider a recommendation from New York State Education 
Department’s (NYSED) Culturally Responsive-Sustaining Education Framework. The first 
section reviewed a selection of the recommendations for making a welcoming and inclusive 
environment. The second half of the interview discussed practices related to identifying inclusive 
curriculum and assessment. I picked these themes as they seemed the most relevant and 
potentially challenging for the undergraduate math context. The remaining themes were: 
fostering high expectations and rigorous instruction and engaging in ongoing professional 
learning and support. While there is no agreed set of recommendations for what constitutes CSP 
in mathematics education (Thomas & Berry III, 2019) the NYSED recommendations provide 
actionable recommendations constructed by reputable scholars in the field.  

Each question opened with an elicitation in which I read one of the NYSED 
recommendations for culturally sustaining practices in K-12 mathematics to the participant. The 
participant was then asked the following questions: 

1. What are some of the ways you do or could adapt these recommendations to your 
classroom? 

2. Are there any constraints that would make it hard to adapt this recommendation? 
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3. What kind of resources would you need to implement this recommendation? 
4. What factors get in the way of implementing this practice? OR What supports have 

made these practices possible for you? 
Throughout data collection, I engaged in preliminary data analysis via in-process memos in 
which I pre-coded (Saldaña, 2009) data, documenting any initial impressions or findings. 

Coding 
Data analysis merged inductive analyses in first cycle coding and deductive methods in the 

second and third cycles. During the data collection and pre-coding stage, I observed that 
participants frequently noted moments of conflict in which it became difficult to reconcile 
certain CSP recommendations with other obligations that they held. I decided to use Herbst and 
Chazan’s theory of Practical Rationality to foreground instructional obligations. To capture these 
moments of tension and the underlying values that were in conflict, I blended versus and values 
coding methods (Saldaña, 2009) for my first cycle of coding. I also coded for the various 
institutional obligations that participants indicated in response to my follow-up questions about 
barriers to their practice. In summary, the first cycle yielded two categories of codes: codes 
indicating participants’ values, some of which were paired as versus codes, and codes indicating 
barriers towards CSP practices. 

After first cycle coding, I reanalyzed the data using sensitizing concepts (Charmaz, 2014) 
from the theory of culturally sustaining pedagogy and aligned asset pedagogies. I categorized the 
values and barrier codes from the first cycle of coding based on their alignment with CSP. By the 
third cycle of coding, the code corpus consisted of: versus codes indicating tensions between 
different instructional commitments, values codes that justified instructional moves, and codes 
aligned with the literature on culturally sustaining practices. However, there were notable 
tendencies in the ways in which these coding schemes overlapped. Frequently the versus codes 
contained two different values codes. Furthermore, the values codes could be roughly organized 
on whether they aligned with culturally sustaining practices. I then used concepts from broader 
critical theory (e.g. asset-based pedagogies, resource pedagogies) as parent codes to organize the 
values codes into those that were broadly aligned with CSP and those that were not.  

Findings 
Conflicting Commitments 

In some cases, participants indicated commitments that conflicted with a desire to 
implement practices that were culturally sustaining. One of the NYSED recommendations 
advised instructors to implement restorative justice circles to address harm done in the 
classroom. Restorative justice is an alternative that focuses on redressing harms caused instead of 
punishing the offender. I provided a brief description of restorative justice and offered academic 
dishonesty as an example of a potential harm. I then asked how participants could make sense of 
this recommendation in their own practice and any supports they would require. In response, one 
participant, Michael, indicated: 

Going along the lines of the example that you gave, the professor needs the flexibility to 
be able to adjudicate these things on their own. At [this university], we have a great bit of 
discretion, as TAs or as professors, about how we handle instances of academic integrity. 
So at [this university], the structure is actually pretty fertile for us to do this sort of thing. 
But at other institutions, they are very, very, very strict. To give an example, [at other 
university] … I am pretty sure that if you cheat on the exam, they just expel you. […] So 
in order to allow [for restorative approaches], you need to have this discretion, because 
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otherwise it's simply impossible. You don't want to be in a situation where common sense 
or sympathy as a human being is telling you, “look, I can handle this in a better way.” 
But you have your own job to be concerned with, and, unfortunately, if they're going to 
come after you if you do something, regrettably, you're gonna have to do what's in the 
interest of your job. 
Michael indicated that professor discretion was necessary in order to implement a 

restorative approach to academic dishonesty. Ultimately, even if an instructor’s “common 
sense or sympathy” led them to favoring a restorative approach, the possibility of 
institutional repercussions could require one to “do what’s in the best interest of [their] job.” 
I interpreted Michael’s reference to common sense or sympathy as his perceived obligation 
to the student conflicting with his professional obligations to abide by institutional rules. 
From Michael’s perspective, attempting to adopt the culturally sustaining pedagogical 
practice of restorative justice may be rendered an impossibility depending on institutional 
factors.  

Like Michael, Owen described institutional obligations that impeded his ability to 
implement CSP. In reference to the recommendation to build rapport with students and elicit 
their opinions and concerns, I asked Owen what constraints he felt in adopting the 
recommendation. He noted that the institutional requirement of having to escort students to 
the bathroom during exams and practice of failing 30-40% of business students taking 
calculus make it difficult to build rapport with students. He mentioned apologizing to 
students to push back against these constraints. He empathized with the business students and 
recalled attempting to push back against institutional practices: 

And I think I did do that one day. I think I do try to bring this up sometimes like, “I don't 
want you to be judging yourself over what happens in the classroom. Because that's sort 
of what's going on. You're getting grades and you're going to get into this school or not 
and be allowed to go on or not. And that's stupid and frustrating. I don't believe in it.” I 
don't think that's a huge affront to the system. I think it'd be much more dangerous to start 
criticizing the professor. I mean, not that I'm opposed to that, but I'm just saying. You can 
get fucked up for that. And the other thing is also, in terms of like maintaining rapport, 
you don't want to tell somebody what they're doing is pointless or stupid… 
Owen felt it was hard to build rapport with his students if he had to patronise them by 

walking to the bathroom or punishing them with bad grades. Interestingly, one of Owen’s 
perceived commitments appears to be the disruption of the very institutional practices that 
hinder student autonomy and obstruct CSP. While following his professional obligation to 
follow the professor’s instructions and escort the student to the bathroom, he also attempted 
to abide by his obligation toward the student by making a joke about the situation and 
apologizing to them.    

In Michael’s case, he felt that institutional barriers could obstruct his attempts to follow 
CSP practices. If it came down to choosing between making the best professional decision or 
acting out of sympathy towards the student, he felt that one must choose what’s in the best 
interest of their job. On the other hand, Owen, by apologizing to students or directly calling 
institutional practices “stupid and frustrating,” described methods for subverting institutional 
barriers in favor of aligning with more CSP-like practice. For Owen, the presence of 
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constraints against student agency seemed to generate novel obligations to acknowledge the 
constraints and be candid with students.  

Limited knowledge of how to implement culturally sustaining practices 
In some cases, participants indicated that their lack of knowledge of how to properly 

implement certain culturally sustaining practices served as a barrier. One of the presented 
recommendations is to “feature and highlight resources written and developed by 
traditionally marginalized voices that offer diverse perspectives on … identities traditionally 
silenced or omitted from curriculum” (New York State Education Department, n.d.) In 
response, Max commented:  

The main thing that prevents me from doing this is that I don't put enough time into it. If I'm 
preparing for class, I'm mostly thinking about how to explain—I’m gonna use the example 
of derivatives again—rather than looking back and saying “can I find a useful historical 
example of a woman or disabled person who contributed to this area?” and highlight that. 
I've had a couple of professors who have taken extra time to highlight, for example, women 
who have contributed to an area of math that we're learning about and I've enjoyed that part. 
It's always nice when there's a little break in the lemma-lemma-theorem-proof structure to 
talk about history. That's definitely enjoyable, but it's just extra effort for the professor. 
[…] I try to set pretty high honesty requirements of myself, and I'm not a historian. So one 
constraint would be I want to tell my students the truth about what happened and what was 
important in the history of math. I guess that just adds to the amount of time it would take as 
input to make this work well is that I don't want to just read a BuzzFeed article about Mayan 
mathematical practices and just quote that without understanding what I'm really talking 
about. […] If my PhD had a requirement to take a math history class to graduate, then I 
would love that, and I would know a lot more about that by the time I was teaching it. 

Max appears to be supportive of the recommendation, recalling previous “enjoyable” 
experiences in which professors highlighted historical context in their courses. While he does 
refer to this work as “extra effort” by the professor, he later indicates that he would appreciate 
having a requirement embedded in his PhD program to take a math history course. While Max 
may not view this recommendation as essential, he appears open-minded towards it. However, 
Max mentions that the amount of time it would take to fully research and understand historical 
examples of the work of under-represented mathematicians would be substantial. Part of his 
hesitance stems from wanting to present historical content accurately and his awareness that he 
may lack the sufficient background knowledge as he is “not a historian.”  

While Max does open by citing time as a primary constraint, these instances appear to be 
rooted in the time it would take for Max to prepare and learn any material on his own. He closes 
by mentioning a previous course in his PhD program would alleviate some of his concerns. It 
appears that Max’s commitment towards presenting material accurately conflicts with the 
recommendation to include under-represented perspectives in mathematics, given the lack of 
prior knowledge that PhD students like Max tend to have.  

Discussion 
The data support two main claims. First, instructors perceive various commitments that may 

conflict or align with culturally sustaining practices. Second, instructors also indicate that a lack 
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of knowledge of how to properly implement certain CSP practices serves as a barrier to 
implementation.  

In their work documenting the limitations of “for all” practices, Leyva et al. (2022) argue 
that equitable instruction must also directly confront broader racialized and gendered discourses 
that permeate mathematics classrooms. If we are to ask instructors to directly subvert 
institutional ideologies, it would be crucial to understand the various perceived commitments 
instructors may be balancing as employees of an inequitable institution. Regardless of whether 
these commitments are commonly perceived or even misplaced, these commitments serve as 
barriers to instructors who may desire to implement equitable practices but feel unable to. 

Previous work described a need for instructors to have deep pedagogical content knowledge 
(Enyedy & Mukhopadhyay, 2007) as well as knowledge of how students use mathematics in 
their everyday lives outside of school (Wager, 2012). This data suggests that instructors also felt 
a lack of historical knowledge about mathematics as a discipline provided a barrier to enacting 
CSP effectively. The instructors perceived institutional obligations and obstructions even when 
armored with appropriate training and knowledge would be an interesting direction for future 
research.  

This study explored the question: what do instructors perceive to be barriers to 
implementing culturally sustaining practices? Interviews with seven math doctoral students who 
have taught undergraduates, revealed two main findings. Instructors balance conflicting 
obligations, some in service of culturally sustaining practices and others that directly conflict 
with CSP. Second, instructors expressed insufficient knowledge and training to implement some 
CSP practices. Given the need for instructors to disrupt institutional discourses about 
mathematics, it is important to better understand how instructors may operate and balance 
conflicting commitments to equitable practices and to the institution to which they are 
accountable. Furthermore, this work is part of a larger call to situate instruction in its institutional 
context (Chazan et al., 2016) and potentially understand the possibilities for instructional 
disruptions given inequitable institutional contexts. Previous literature (e.g. Leyva et al., 2022) 
has viewed oppressive ideological and institutional influences in tandem with instructional ones. 
One potential route for further work would be an understanding of the mechanism behind 
instructional disruptions and how they interact with racialized and gendered institutional and 
ideological discourses. For example, if an instructor effectively provides counter-narratives 
against a discourse that mathematics talent is innate, what are the limitations and affordances of a 
single instructor doing this amidst an institution that continues to perpetuate the dominant 
discourse? 

Limitations 
This study presented only a narrow slice of the many perspectives instructors might hold. Of 

our participants there were: four white men, one Asian man, and two white women. It is possible 
that the types of responses we would have received would have different had our sample 
population included more participants of under-represented identities in mathematics. However, 
generalizing to the population of future professors was not the goal of this study. Additionally, 
there is a possibility, using a different theoretical lens, that instructors did not truly perceive the 
obligations they shared with me as legitimate concerns and instead used them as part of a 
rhetorical strategy to uphold systems of white supremacy in mathematics (e.g. Bonilla-Silva, 
2001). While this may have been the case for any of the participants, I argue that it is nonetheless 
valuable to understand the types of commitments instructors indicate may be in conflict with 
equitable practices such as culturally sustaining pedagogy.  

26th Annual Conference on Research in Undergraduate Mathematics Education 184



References 
Adiredja, A. P., & Andrews-Larson, C. (2017). Taking the sociopolitical turn in postsecondary 

mathematics education research. International Journal of Research in Undergraduate 
Mathematics Education, 3(3), 444–465. https://doi.org/10.1007/s40753-017-0054-5 

Adiredja, A. P., & Zandieh, M. (2020). The lived experience of linear algebra: A counter-story 
about women of color in mathematics. Educational Studies in Mathematics, 104(2), 239–
260. https://doi.org/10.1007/s10649-020-09954-3 

Aronson, B., & Laughter, J. (2016). The Theory and Practice of Culturally Relevant Education: 
A Synthesis of Research Across Content Areas. Review of Educational Research, 86(1), 
163–206. https://doi.org/10.3102/0034654315582066 

Bonilla-Silva, E. (2001). White supremacy and racism in the post-civil rights era. Lynne Rienner 
Publishers. 

Borum, V., & Walker, E. (2012). What Makes the Difference? Black Women’s Undergraduate 
and Graduate Experiences in Mathematics. The Journal of Negro Education, 81(4), 366–
378. JSTOR. https://doi.org/10.7709/jnegroeducation.81.4.0366 

Charmaz, K. (2014). Constructing grounded theory (2nd ed.). SAGE Publications, Inc. 
Chazan, D., Herbst, P. G., & Clark, L. M. (2016). Research on the Teaching of Mathematics: In 

D. H. Gitomer & C. A. Bell (Eds.), Handbook of Research on Teaching (5th Edition, pp. 
1039–1098). American Educational Research Association; JSTOR. 
http://www.jstor.org.proxy.libraries.rutgers.edu/stable/j.ctt1s474hg.22 

Civil, M. (2016). STEM learning research through a funds of knowledge lens. Cultural Studies of 
Science Education, 11(1), 41–59. https://doi.org/10.1007/s11422-014-9648-2 

Ellis, J., Fosdick, B. K., & Rasmussen, C. (2016). Women 1.5 Times More Likely to Leave 
STEM Pipeline after Calculus Compared to Men: Lack of Mathematical Confidence a 
Potential Culprit. PLOS ONE, 11(7), e0157447. 
https://doi.org/10.1371/journal.pone.0157447 

Enyedy, N., & Mukhopadhyay, S. (2007). They Don’t Show Nothing I Didn’t Know: Emergent 
Tensions between Culturally Relevant Pedagogy and Mathematics Pedagogy. The Journal of 
the Learning Sciences, 16(2), 139–174. JSTOR. 

Herbst, P., & Chazan, D. (2003). Exploring the practical rationality of mathematics teaching 
through conversations about videotaped episodes: The case of engaging students in proving. 
For the Learning of Mathematics, 23(1), 2–14. 

Hubert, T. (2014). Learners of mathematics: High school students’ perspectives of culturally 
relevant mathematics pedagogy. Journal of African American Studies, 18(3), 324–336. 

Ladson-Billings, G. (1995). But that’s just good teaching! The case for culturally relevant 
pedagogy. Theory Into Practice, 34(3), 159–165. JSTOR. 

Ladson-Billings, G. (2021). Culturally relevant pedagogy 2.0: A.k.a. The remix. Harvard 
Educational Review, Spring 2014(84), 74–86. 

Larsen, S., Marrongelle, K., Bressoud, D., & Graham, K. (2017). Understanding the concepts of 
calculus: Frameworks and roadmaps emerging from educational research. Compendium for 
Research in Mathematics Education, 526–550. 

Leyva, L. A. (2016). An intersectional analysis of latin@ college women’s counter-stories in 
mathematics. Journal of Urban Mathematics Education, 9(2), 81–121. 

Leyva, L. A., Amman, K., Wolf McMichael, E. A., Igbinosun, J., & Khan, N. (2022). Support 
for all? Confronting racism and patriarchy to promote equitable learning opportunities 
through undergraduate calculus instruction. International Journal of Research in 

26th Annual Conference on Research in Undergraduate Mathematics Education 185



Undergraduate Mathematics Education, 8(2), 339–364. https://doi.org/10.1007/s40753-022-
00177-w 

Leyva, L. A., Quea, R., Weber, K., Battey, D., & López, D. (2021). Detailing Racialized and 
Gendered Mechanisms of Undergraduate Precalculus and Calculus Classroom Instruction. 
Cognition and Instruction, 39(1), 1–34. https://doi.org/10.1080/07370008.2020.1849218 

McCulloch, A. W., & Marshall, P. L. (2011). K-2 teachers’ attempts to connect out-of-school 
experiences to in-school mathematics learning. Journal of Urban Mathematics Education, 
4(2), 44–66. 

McGee, E. O., & Martin, D. B. (2011). “You Would Not Believe What I Have to Go Through to 
Prove My Intellectual Value!” Stereotype Management Among Academically Successful 
Black Mathematics and Engineering Students. American Educational Research Journal, 
48(6), 1347–1389. https://doi.org/10.3102/0002831211423972 

New York State Education Department. (n.d.). Culturally responsive-sustaining education 
framework. 

Paris, D. (2012). Culturally sustaining pedagogy: A needed change in stance, terminology, and 
practice. Educational Researcher, 41(3), 93–97. https://doi.org/10.3102/0013189X12441244 

Saldaña, J. (2009). The coding manual for qualitative researchers. SAGE Publications, Inc. 
Thomas, C. A., & Berry III, R. Q. (2019). A Qualitative Metasynthesis of Culturally Relevant 

Pedagogy & Culturally Responsive Teaching: Unpacking Mathematics Teaching Practices. 
Journal of Mathematics Education at Teachers College, 10(1), 21–30. 

Wager, A. A. (2012). Incorporating out-of-school mathematics: From cultural context to 
embedded practice. Journal of Mathematics Teacher Education, 15(1), 9–23. 
https://doi.org/10.1007/s10857-011-9199-3 

 
 
 
 
 
  

26th Annual Conference on Research in Undergraduate Mathematics Education 186



 

Resource Use and Student Engagement in Multivariable Calculus  

 

 Rafael Martínez-Planell Deborah Moore-Russo 

 University of Puerto Rico at Mayagüez University of Oklahoma 

 Paul Seeburger Shelby Stanhope Stepan Paul 

 Monroe Community College US Air Force Academy North Carolina State University 

This article examines the relations between content, resource use, and the pedagogy of 
instructors in multivariable calculus. Content included topics that typically appear in 
multivariable calculus which were grouped into these general areas: introductory ideas, 
differential calculus, integral calculus, and vector calculus. The resources used included digital 
resources, 3D-printed models, and other physical resources. Pedagogy practices included both 
collaborative and individual in-class learning activities, instructor demonstrations, and 
homework. We also consider the instructor’s assessment of the activities they use. Data were 
obtained from three instructors working at three different types of institutions in the United 
States: a community college, a small selective undergraduate college, and a large 
comprehensive research university. The results provide information about instructional needs, as 
instructors implement resources in multivariable calculus, and about patterns related to the 
content they cover, the technology they use, and their pedagogical practices. 

Keywords: Multivariable calculus, digital resources, TPCK, 3D-printed models 

Introduction 
Learning multivariable calculus (MVC) is a challenge for students. After operating primarily 

in two-dimensional worlds to study algebra, pre-calculus, and single-variable functions in 

calculus, students move to MVC, which typically involves two-variable functions. This 

introduces a new situation for students, as they must now generalize from the two-dimensional 

context of their previous studies to the MVC context. Doing so requires students to model and 

visualize the mathematical objects and their relations in three-dimensional (3D) space. As an 

instructional aid in this regard, instructors can leverage resources to help students bridge the gap 

from two to three dimensions, providing learning opportunities that are closer (Parzysz, 1988) to 

MVC topics than drawing on a chalkboard. To clarify, by resources we mean digital technology, 

digitally generated technology (e.g., 3D-printed models), or other physical artifacts.  

However, the use of resources is not ubiquitous in MVC instruction. This leads to 

questioning how to best support instructors’ use of resources for teaching MVC. In order to 

provide this support, it is imperative to first try to understand instructors’ choices of resources 

and how resource selection may depend on the topic at hand or a particular pedagogy. One way 

to initiate this quest is to investigate the relationship between MVC instructors’ use of resources 

for topics in the MVC course and their pedagogical intentions when leveraging resources to 

engage students in certain types of activities. For this case study, we consider data obtained from 

three MVC instructors who reported using the digital resource CalcPlot3D, 3D-printed models, 

as well as other physical resources in their MVC instruction. 

To understand the relation between content, resource use, pedagogical practices, and 

instructor self-assessment of activity quality, we use the following research questions.  
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§ Which topic areas of MVC seem more amenable to resource adoption? What types of 

resources are adopted? 

§ Which topic areas of MVC allow for student-centered activities?  

§ Which topic areas of MVC have activities that instructors assess as being of good or 

excellent quality?  

§ Are any patterns noted above that are specific to certain instructors in the sample?  

Literature Review 
The survey study by Martínez-Planell and Trigueros (2021) shows there is an increasing 

number of studies dealing with the teaching and learning of multivariable calculus (MVC). 

However, there is not much research related to the use of digital resources in MVC (Trigueros et 

al., 2023). There are some studies that report improved learning with the use of physical 

manipulatives, including tangible surfaces and 3D-printed models (e.g., McGee et al., 2012, 

2015; Paul, 2018; Sherer et al., 2013; Wangberg, 2020; Wangberg et al., 2013). A few articles 

consider the use of digital technology like GeoGebra, Maple, and Mathematica as an aid in 

visualization, to foment student discussion, and to help bridge the gap between single variable 

and multivariable calculus (Alves, 2012, Ingar 2014). Some of the studies using digital 

technologies focus on specific topics or areas of MVC, for example, Trigueros et al. (2023) for 

basic ideas of two-variable functions, Rojas et al. (2019) for directional derivative, Ingar and 

Silva (2019) for extrema of two-variable functions, Alves (2014) for using second-order Taylor 

polynomials for approximating two-variable functions near critical points and relating this to the 

second derivative test, Henriquez (2006) for multivariable integration, particularly for drawing 

complex regions and finding limits of integration, and VanDieren et al. (2020) for the cross 

product. There are also some articles discussing the effect of using digital resources for an entire 

MVC course (e.g., Carvalho & Pereira, 2011; Gemechu et al., 2018; Habre, 2001). Some more 

recent articles consider the use of virtual or augmented reality (Cheong, 2023, Jones et al., 2022; 

Kang et al., 2020; Karabina et al., 2023). Yet, overall, there is much to learn about how 

resources, especially digital resources, can support the teaching and learning of MVC. Further, 

all these studies primarily focus on student learning. There is only one published study we know 

about that considers the use of resources for teaching MVC from the point of view of the 

instructors’ needs (Martínez-Planell & Moore-Russo, 2023). This research is an extension of that 

previous study, where more data were obtained about the relation between content, pedagogy, 

and resources for teaching MVC. 

Theoretical Framework 
We use the Technological Pedagogical Content Knowledge (TPCK) model (Mishra & 

Koehler, 2006; Koehler & Mishra, 2009) as a theoretical framework for this study. This 

framework of instructor knowledge builds on the Pedagogical Content Knowledge model 

initially introduced by Shulman (1986) while also considering the role of technology in 

instructional decisions and actions. Koehler and Mishra (2009) situate the flexible knowledge 

needed for teaching as a “complex interaction among three bodies of knowledge: content, 

pedagogy, and technology” (p. 60). We adopt Mishra and Koehler’s (2006) terms “pedagogy” 

and “content” to mean respectively the “processes and practices or methods of teaching and 

learning and how [they] encompass educational purposes, values, and aims (p. 1026)” and “the 

actual subject matter that is to be learned or taught (p. 1025)” respectively. We also adopt their 

TPCK stance on technologies as being both more traditional items (e.g., pencils and chalkboards) 
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and what they refer to as newer technologies, including digital resources that include computers, 

tablets, and mobile devices as well as the digital applications they use. 

Mishar and Koehler (2006) do not treat technology, pedagogy, and content as mutually 

exclusive domains. Instead, there is an interplay between the three that is noted in Figure 1 by 

the overlapping intersections in the TPCK Venn Diagram. In fact, certain resources are more 

likely to be employed for instructional tasks due to the affordances and capabilities of the 

resources (Koehler & Mishra, 2008), the fit between the characteristics of the resources and the 

characteristics of the task at hand (Goodhue & Thompson, 1995), and the instructor’s 

perceptions of how useful and easy-to-use the resources are (Davis, 1989). 

 

   

Figure 1. TPCK: Technological pedagogical content knowledge. 

Methodology 

We used a convenience sample of three MVC professors who employ the CalcPlot3D digital 

platform, digitally generated 3D-printed models, and other physical artifacts as aids in their 

MVC instruction. The professors taught at three different universities in three different states in 

the USA and had taught MVC anywhere from 12 to almost 30 times over their respective 

academic careers. Professor A teaches at a public community college with over 10,000 students 

in the Northeast. Professor H teaches at a small selective undergraduate college with about 4,000 

students in the Midwest. Professor T teaches at a large public comprehensive research university 

with over 35,000 students in the East. The three were participating for a second year in a project 

involving CalcPlot3D and 3D-printed models. The data obtained came directly from the 

professors, and informal interviews were used to clarify their responses when needed.  

The data were instructors' responses to a list of 35 common MVC topics, which was grouped 

into the following general content areas during analysis: introductory information, differential 

calculus, integral calculus, and vector calculus. The professors were given this list and asked to 

respond to questions about the types of resources they used in teaching each topic, describe the 

activities in which the resources were used, and rate the quality of each activity. An activity was 

the unit of analysis. The professors were asked to self-analyze their instruction using the 

following codes under each italicized coding category: resource type (digital resources, 3D-

printed models, other), pedagogical practice (instructor demonstration, individual in-class 

student activity, collaborative in-class student activity, student homework), and instructor rating 
(i.e., evaluation of each activity as excellent, pretty good, needs work, no longer used).  

Results 

Table 1 displays the counts for several coding categories. However, we will primarily discuss 

the more qualitative aspects of the data in this section based on the research questions. 
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Table 1. Activity counts by pedagogical practice, instructor rating, and instructor for each content area and 
resource type. 

Content 
Area 

Resource Type 
Digital  

Resource 
3D-Printed  

Model 
Other Physical 

Resource 
Introductory  
Information 

39 activities 
pedagogical practice 
5 ind act, 37 demos, 10 
hwk* 
instructor rating 
9 excellent, 30 good  

3 activities 
pedagogical practice 
3 collab 
instructor rating 
2 excellent, 1 good  

11 activities 
pedagogical practice 
3 collab, 4 demos 
instructor rating 
7 good, 4 not used  

Differential 
Calculus 

19 activities 
pedagogical practice 
2 collab, 1 ind, 
18 demos, 4 hwk 
instructor rating 
9 excellent, 9 good,  
1 needs work 

10 activities 
pedagogical practice 
10 collab 
instructor rating 
7 excellent,                    2 
good,            
1 needs work  

4 activities 
pedagogical practice 
1 collab, 3 hwk 
instructor rating 
1 excellent, 3 good 

Integral  
Calculus 

 21 activities 
pedagogical practice 
21 demos, 1 hwk 
instructor rating 
3 excellent, 14 good, 
4 needs work  

 6 activities 
pedagogical practice 
6 collab 
instructor rating 
3 good, 3 not used  

 0 activities 

Vector  
Calculus 

21 activities 
pedagogical practice 
21 demos, 4 hwk 
instructor rating 
3 excellent, 15 good 
3 needs work  

4 activities 
pedagogical practice 
3 collab, 1 demo 
instructor rating 
2 excellent, 2 not used  

0 activities 

* Instructor H allows students to use CalcPlot3D for all homework, but she did not detail how 

this resource is leveraged. For this reason, we did not count her homework assignments.  

 

We start with the first research question, dealing with TCK, by considering the activities as 

well as the content areas that were more amenable to resource adoption. There were 138 

activities reported by the three instructors. Of that total, there are 53 activities dealing with 

introductory ideas (38%), 33 with differential calculus (24%), 27 with integral calculus (20%), 

and 25 with vector calculus (18%). Of the 138 activities, 100 (72%) use digital technology 

(CalcPlot3D), 23 (17%) use 3D-printed models, and 15 (11%) use other resources. This shows 

there was a clear preference among the participating instructors for using digital technology. 

As for resource type, the 100 activities that used digital resources were spread across all four 

content areas. The most activities (39%) were employed for introductory ideas with a near even 

split for differential (19%), integral (21%), and vector (21%) calculus covering every individual 

topic area except limits and continuity and the chain rule.  

Ten of the 23 activities (43%) used with 3D-printed models were for differential calculus. 

This suggests that instructors find differential calculus more natural or amenable to the design of 

activities based on 3D-printed models. There are two topics for which the three instructors used 

3D-printed models (functions of several variables, partial derivatives), and five topics for which 

two of the three instructors used 3D-printed models (maxima and minima, Lagrange multipliers, 
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triple integrals in rectangular, cylindrical, and spherical coordinates). There were six other topics 

for which a single instructor used 3D-printed models. This suggests that the use of 3D-printed 

models and their implementation should be further explored. 

Eleven of the 15 activities were used with resources other than digital or 3D-printed 

addressed introductory information. The other resources include K’nex rods, a desktop 

coordinate system, large vector props made from wooden dowels, extendable vectors, a hill 

outside class, and static images on paper. For the most part, the use of these resources predated 

the adoption of digital and digitally based resources and attest to instructors’ initial TPCK and 

motivations for engaging in a project to work on using digital and digitally generated resources. 

For the second research question, we consider pedagogical practices to determine which 

class activities (by content area) allow for more student-centeredness (i.e. individual and 

collaborative in-class activities). Eleven of the 53 activities for introductory ideas (21%), 14 of 

the 33 differential calculus activities (42%), 6 of the 27 integral calculus activities (22%), and 3 

of the 25 vector calculus activities (12%) were student-centered. All three instructors reported 

valuing student engagement, but their TPCK allowed them to design more student-centered 

activities for differential calculus than other areas, especially for vector calculus. 

There were only two topics for which all three instructors designed in-class (individual or 

collaborative) student-centered activities (functions of several variables, partial derivatives) and 

five topics for which two of the three instructors designed student-centered activities (maxima 

and minima, Lagrange multipliers, and triple integrals in rectangular, cylindrical, and spherical 

coordinates). These topics suggest commonalities in instructors’ PCK. At the same time, there 

were 11 topics for which a single instructor designed student-centered activities.  

As for homework, which is also student-centered, but not completed in class, Instructor H 

shared that she allowed students to use CalcPlot3D on all homework, but she did not provide 

explicit details. There were 6 topics where the other two instructors expected students to leverage 

digital resources to complete their homework (equations of lines and planes; vector functions and 

space curves; functions of several variables; tangent plane and linear approximations; maxima 

and minima; Lagrange multipliers). There were also 13 other topics in which one of the 

instructors explicitly stated how he expected students to leverage digital resources. Note that 

none of the six common topics fall under the integral or vector calculus general topic areas. 

We now consider the activities that involve instructor demonstrations, which are less student-

centered than the other in-class activities just reported, and which also stem from instructors’ 

TPCK. Demonstrations include 41 of the 53 activities for introductory ideas (77%), 18 of the 33 

for differential calculus (55%), 21 of the 27 for integral calculus (78%), and 22 of the 25 for 

vector calculus (88%). So, the activities designed for introductory ideas, integral calculus, and 

particularly, vector calculus are mainly instructor demonstrations.  

There were 13 topics where the three instructors used classroom demonstrations (vectors; 

equations of lines and planes; cylinders and quadric surfaces; vector functions and space curves; 

motion in space-velocity and acceleration; functions of several variables; partial derivatives; 

tangent planes and linear approximations; directional derivatives and the gradient vector; 

maxima and minima; Lagrange multipliers; vector fields; fundamental theorem of line integrals). 

There were also 14 other topics in which exactly two of the three instructors used classroom 

demonstrations. So, there is an ample collection of available demonstrations, as the most 

common pedagogical practice used with digital technology implementation, which might speak 

to instructors’ TPK.  
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For the third research question, we consider the topics for which instructor ratings were that 

their activities were of good or excellent quality. Not many activities (only 20%) were self-rated 

as excellent. Of these, nine dealt with introductory topics (33%), 12 with differential calculus 

(44%), 3 with integral calculus (11%), and 3 with vector calculus (11%). So, we see that a higher 

proportion of differential calculus activities rated as “excellent”, and there is a lack of highly 

rated activities in integral and vector calculus. 

In examining instructors’ PCK, there was only one topic for which all three instructors self-

rated their activity as excellent (partial derivatives), and five topics for which two of the three 

instructors self-rated their activity as excellent (motion in space-velocity and acceleration; 

functions of several variables; directional derivatives and the gradient vector; maxima and 

minima; Lagrange multipliers). At the same time, there were 11 other topics for which an 

activity was self-rated as excellent by a single instructor.  

We now move to the fourth research question which considers if any patterns were noted 

specific to certain instructors in the sample. First, pedagogical practices, as determined by 

student-centeredness (collaborative and individual in-class activities), vary not only by content 
area but also by instructor. For example, in introductory information, only one of the 27 

activities of instructor H (4%) was student-centered, while in differential calculus, five of the 13 

activities (38%) reported by the same instructor were student-centered. So, the pedagogical 
practice seems to depend on the content area. Similarly, in the areas of integral and vector 

calculus, instructor T designed six of his 13 activities (46%) to be student-centered 

(collaborative) activities, while none of the nine activities of Instructor A in these areas were 

student-centered. So, pedagogical practices also seem to depend on the instructor.  

The choice of resource type also seems to be instructor dependent. For example, Instructor H 

used CalcPlot3D 23 times when discussing introductory ideas, while Instructor T used it only 

four times. Similarly, Instructor T, when teaching smaller classes, used 3D-printed models in 12 

activities, while Instructor A used them for three activities. 

Discussion and Summary 

Martínez-Planell and Moore-Russo (2023) found that concern for students’ learning and the 

conviction that geometrical understanding is crucial in multivariable calculus motivated their 

sample of instructors to consider a variety of educational resources. It was found that the 

instructors were sensitive to students’ needs and that over time their teaching shifted from being 

instructor-centered (demonstrations presented in class) to being more student-centered (activities 

to engage students often in collaborative group work). The present study examines instructors’ 

TPCK by relating the resources instructors use, the pedagogy employed, and the content at hand.  

To answer the first research question, we observed that the area of introductory ideas is more 

amenable to resource adoption in the sense that it was more frequently the target of activities, 

mainly for demonstrations using digital technology. This might relate to instructors’ TCK. This 

area of content is also more likely to leverage resources other than digital or 3D-printed for in-

class activities. In the case of 3D-printed models, we found that it seems to be more natural for 

the instructors in our study to use them for differential calculus. For the second research 

question, mainly focusing on PCK, we observed that all areas allow for student-centered 

activities through the use of resources. However, there were more student-centered activities for 

differential calculus followed by the area of introductory ideas. The areas of integral calculus, 

and particularly vector calculus, are comparatively lacking in the design of student-centered 

activities. Activities for 3D-printed models, although fewer, tend to be more student-centered 

than other activities. As regards the third research question, we found that differential calculus 
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has more activities assessed as excellent, followed by the area of introductory ideas. The areas of 

integral and vector calculus do not show comparable development. For the fourth research 

question, we found that content addressed, pedagogy used, and resources employed vary by 

instructor. The general patterns that we found are that digital technology is preferred to other 

resource use; the use of in-class demonstrations by the instructor vastly outnumbers the use of 

student-centered activities; there are fewer activities for 3D-printed models, although they tend 

to be more student-centered; and the area of vector calculus is vastly overlooked in comparison 

with the others. These patterns suggest that MVC instructors’ TPCK is not uniform across 

content area nor across resource type. 

There were six topics for which only one instructor used 3D-printed models, 11 topics for 

which only one instructor designed student-centered activities, and 11 topics for which an 

activity was self-rated as excellent by only one instructor. This suggests that sharing materials 

might help instructors incorporate 3D-printed models into other topics, make the MVC course 

more student-centered, and disseminate activities that have been rated as excellent. Consistent 

with Martínez-Planell and Moore-Russo (2023), who argued that instructors could benefit from 

support on how to teach MVC to engage students by leveraging instructional resources, we 

found that establishing a means to facilitate instructors sharing student-centered activities, 

activities they self-rate as excellent, and activities that employ 3D-printed models, could help 

others and improve MVC teaching. This study makes a case for establishing a means to do so. 

In the areas of integral calculus and vector calculus there are fewer activities, very few of 

which were student-centered or rated as excellent. Correspondingly, most of the relatively few 

integral and vector calculus activities are instructor demonstrations. This perceived inadequacy 

or imbalance in these two areas of MVC in comparison with the areas of introductory ideas and 

differential calculus could be a result of several factors: a consequence of the content itself; a 

consequence of these areas (integral and vector calculus) being taught towards the end of the 

course, after instructors have learned to use resources for the introductory and differential 

calculus areas (so they have yet to get there); or a consequence of a lack of digital capabilities or 

other tools to properly treat these two areas. More research is needed to better understand this 

issue. Documenting that these two areas need more work in terms of activities, especially those 

that are student-centered and of high quality is a contribution of our study. 

In the MVC course, there were relatively many activities to address introductory ideas. 

However, not many of them were student-centered or rated excellent; in fact, classroom 

demonstrations constituted a large percentage of these activities. While this suggests the 

possibility of re-examining existing teaching activities in order to increase student engagement 

with the content, there might be more of a function of time constraint issues exerting pressure on 

instructional choices more than pedagogical beliefs playing a role. Further study is needed here. 

In terms of content, this study suggests that more activities that use resources to improve the 

teaching of integral and vector calculus are needed. In regard to pedagogy, there is a preference 

for instructor demonstrations and not enough highly rated student-centered activities. For 

resources, we observe that more work is needed to explore the pedagogical potential of 3D-

printed models. Overall, this study contributes to a better understanding of resource use in MVC, 

while also contributing to a better understanding of MVC instructors’ TPCK. 
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“I don’t see myself as an expert at all”: Authority in Facilitating Instructional Change 
 

Corinne Mitchell 
Virginia Tech 

Of the many challenges in shifting towards inquiry-oriented instruction from a lecture-based 
approach is understanding the role of the teacher in this new paradigm. One aspect of that role 
involves navigating novel classroom authority dynamics as students bear more authority to 
create and justify mathematical ideas. Supporting teachers as they navigate this shift is one of 
the many roles of effective professional development (PD). This study of one PD facilitator’s 
authority as he worked to support instructors’ inquiry-oriented instruction (IOI) revealed a new 
type of authority, called pedagogical expertise authority, that may be of particular importance to 
understanding how to best support IOI. Additionally, the results of this study suggest the impacts 
of facilitators’ beliefs and teaching experiences on long-term professional development. 

Keywords: authority, professional development, inquiry-oriented instruction 

Best practices for supporting instructors as they take up student-centered instructional 
practices have been a central focus in the RUME community in recent years (e.g., Johnson, 
2019; Andrews-Larson et al., 2019; Henderson et al., 2011). Due to the shift in authority 
relations inherent to this change, specific attention must be paid to supporting instructors as they 
begin to teach in ways that invite students to bear authority in classroom discourse. This study 
investigates one facilitator’s authority during a semester-long professional development (PD) 
aimed at supporting instructors’ implementation of the Inquiry Oriented Abstract Algebra 
(IOAA) curriculum materials (Larsen et al., 2013), with a particular eye toward the potential 
impacts of the facilitator’s teaching experience on his practice. 

Background & Theoretical Framing 
Because fostering students' mathematical autonomy is one central goal of inquiry-oriented 

instruction, PD must support teachers as they adjust their behaviors and roles in the classroom to 
share authority with students. To create more opportunities for students to autonomously build 
and justify their own mathematical ideas, as well as develop more productive attitudes and 
mathematical identities, instructors must move away from a classroom authority tradition based 
on their own power and mathematical expertise (Langer-Osuna, 2017; Wilson & Lloyd, 2000; 
Amit & Fried, 2005). Sharing authority among teachers and students is a mutual goal of inquiry 
pedagogies (Gerson & Bateman, 2010; Hicks et al., 2021), but perspectives differ on what 
precisely constitutes shared authority. In the most hierarchical sense, a teacher must relinquish 
authority to students (e.g., Bleiler-Baxter et al., 2023; Fried, 2020), or otherwise minimize his or 
her authority to create and assess mathematical ideas (e.g., Gerson & Bateman, 2010). More 
progressive conceptions focus not on the teacher's abdication of authority but rather on how it 
can be used to promote students' authority (e.g., Bishop et al., 2022; Oyler, 1996). In IOI, 
teachers are tasked with authoritative roles like guiding discussion and leveraging students' ideas 
to advance the mathematical agenda of the class while simultaneously bolstering students' 
authority to create and justify their own mathematics. PD facilitators may become key agents in 
supporting instructors as they adjust their teaching practices to share authority with students in 
this way. 

26th Annual Conference on Research in Undergraduate Mathematics Education 197



Since both facilitators and teachers are tasked with guiding others' learning, the practices of 
teachers who become PD facilitators are a rich territory for research. To this end, I lift a 
framework for analyzing classroom authority dynamics to the professional development context. 
I take specific direction from Gerson and Bateman (2010), viewing authority as an enacted 
relationship between individuals where an authority bearer makes a claim to legitimacy based on 
their position within a hierarchy, their expertise, or the norms and practices of the mathematical 
community, and another receives that authority by changing their behavior, i.e., what is said, 
what is written, how they are thinking. In addition to Gerson and Bateman’s ownership and 
mathematics expertise authorities (summarized in Table 1), I add the construct of pedagogical 
expertise authority. This construct aims to capture those authority relations arising in PD when 
instructors’ claims about mathematics and pedagogy are legitimized by their expertise as 
teaching professionals, rather than as mathematicians. 

Table 1. Authority types and subtypes with definitions. 

Type 
Hierarchical 
 
 
 
Expertise 
 
 
Mathematical 

Sub-type 
Institutional 

Granted 
 

Ownership expertise 
Mathematics expertise 
Pedagogical expertise 

 
Mathematics Community 

Justification 

Legitimized by . . . 
position as instructor of facilitator 
permission from instructor or facilitator 
 
one’s creation of an idea or solution 
one’s mathematical expertise 
one’s pedagogical expertise 
 
shared norms, ideas, and practices 
mathematical & logical reasoning 

 

Context & Methods 
The professional development in this study took place in the context of an online working 

group (OWG) within the TIMES project (Teaching Inquiry-oriented Mathematics: Establishing 
Supports, NSF Awards: #1431595, #1431641, #1431393). The OWG consisted of three 
instructors new to teaching IOAA, Elena, Laura, and Roger, and one facilitator, Mickey (all 
pseudonyms). The instructors were introduced to the curriculum materials in the summer 
workshop and met synchronously online via Google Hangouts once per week to reflect on the 
curriculum and their implementation with the facilitator. Participants were regularly asked to 
share reflections on their instruction and investigate the curriculum tasks from a mathematical 
perspective. Additionally, the facilitator met with one of the TIMES project's principal 
investigators (PI) each week in a series of Debrief meetings, wherein the facilitator and PI 
discussed his goals for facilitation, beliefs about teaching IOAA, and updates on the OWG's 
proceedings. Both Debrief and OWG meetings were recorded for retrospective analysis. 

To identify Mickey’s orientations to authority in his facilitation, three sets of video data were 
analyzed: the OWG meetings, the Debrief meetings, and Mickey’s teaching with the IOAA 
curriculum materials in the previous year. This analysis was guided by iterative thematic analysis 
(Braun & Clarke, 2021) and had four main phases, summarized in Table 2. 
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Results & Discussion 
Mickey's decision-making practices appear to be influenced by an aim to shift traditional 

authority relationships in both the online working group and the classroom context. Mickey first 
demonstrates this intention in an explicit discussion of classroom authority in the early weeks of  
Table 2. Summary of analysis phases. 

Phase 
One 
 
 
 
Two 
 
 
Three 
 
 
Four 

Description 
Created analytic notes of OWG meetings; organized into five columns: Video File 
Name, Timestamp, Quote, Speaker(s), and Notes. Memos focused on Mickey’s 
utterances during and about facilitating discussions regarding IOI. 
 
Created analytic notes of Debrief meetings with identical structure to OWG notes, 
focusing on subject-matter already prevalent in Phase One data log. 
 
Built descriptive themes of Mickey’s prevailing behaviors and attitudes based on 
commonalities between phase one and two logs. 
 
Analyzed videos of whole-class activities from Mickey’s teaching, identifying 
confirming and conflicting instances of Mickeys previously identified orientations. 

 
the OWG meetings. In the following OWG episode, Elena had been reflecting on her 
pedagogical choice to give her students the definition of bijection when they could not recall it 
independently. 

 
Elena:  I didn't feel like that was something they could just “inquiry out'” – it wouldn't 

just happen. 
Mickey:  Sure, but the thing is is that, holistically, are you doing that more often than not? 

Because . . . What you're seeing is authority- or power-shift. 
Elena:  Right. 
Mickey:  Right. Where is the authority lying? Is it lying with you? Well then, they're only 

going to do things that satisfy you, instead of doing things that satisfy themselves, 
you know, for them to learn. 

 
This episode suggests a belief that shifting authority to be shared between teacher and 

students promotes learning. Mickey's last statement implies that if authority lies with the 
instructor, then students' engagement will not result in learning. For Mickey, students must take 
up authority in order to learn. By explicitly motivating participants to attend to these authority 
dynamics within their own classrooms, Mickey demonstrates his orientation toward authority. 
This is best characterized as a belief or value in shifting authority structures so that participants, 
be they students in a classroom or instructors in professional development, rely on their own 
mathematical or pedagogical expertise to reason about their quandaries, rather than turning to 
Mickey for his. This practice of shifting authority arises in both the online working group and the 
classroom when Mickey shares expertise authority with participants while carefully leveraging 
his authority to advance the agendas in both contexts. 
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Expertise Authority 
Throughout his teaching and his facilitation, Mickey rejects the notion that he is an expert. 

This refusal to bear expertise authority was displayed in the OWG when Mickey directly 
discussed his lack of expertise and consistently elicited participants' contributions before making 
his own, thus sharing pedagogical expertise and ownership expertise authorities among 
participants. This attitude toward expertise authority is made more apparent in discussions from 
the debrief meetings and episodes from Mickey's teaching. 

In the online working group, Mickey displayed his orientation toward sharing authority by 
refusing to position himself as the expert in the room, consistently eliciting participant thinking 
first before sharing his own ideas, and sometimes refusing to give advice at all. Often, when a 
participant asked Mickey a direct question, he would redirect it to the entire group with phrases 
like, “So that [question] is for everybody, I can answer later,” and “I think this [topic] merits at 
least a three-to-five-minute discussion. I’ll add a disclaimer that I have no idea how to handle 
that situation.” In a quintessential episode, Elena has asked Mickey how he would handle the 
situation of having an exceptionally bright student eager to share all of the answers: “If you're 
looking at me to be the expert in this situation, I don't have a clue. I have conjectures and 
thoughts about this, but I want to open it up to everybody in the room.” 

Mickey directly states that the participants should not view him as an expert. Furthermore, by 
choosing to give the opportunity to answer Elena's question to the whole group, Mickey receives 
the pedagogical expertise authority of the remaining participants. This is a clear invitation for 
participants to bear pedagogical expertise authority to reason about Elena's quandary, as well as 
ownership expertise authority to create and discuss possible solutions. It can be inferred that 
Mickey’s belief about this practice of sharing expertise authority as essential for participants' 
learning motivates his decision-making as a facilitator. 

Mickey's orientation toward avoiding expertise authority is also apparent in discussions from 
the Debrief meetings, where he overtly describes his relationship to his own expertise. An 
instance of dialogue that captures this is: 

 
It’s hard even with them sometimes, because when I ask a question, they're seeking “Is 
this the answer you wanted?” and like, a colleague of mine introduced me the other day 
as a pedagogical expert and . . . I am so not that. 
 
Even more explicitly, he says: “I don't consider myself an expert in inquiry-oriented [sic] by 

any means.” Rather, than viewing himself as an expert in IOI, Mickey is aware that his position 
as facilitator garners him institutional authority, but chooses to leverage that authority to share 
pedagogical and ownership expertise authorities with students. This is indicative of Mickey's 
orientation toward the importance of sharing expertise authorities in professional development. 

Likewise, in discussing his own views on assessment during a debrief meeting in Week 8, 
Mickey mentioned that his OWG seems to struggle consistently with student learning 
assessments, trying to lean on his experience for guidance. He said, “This keeps coming up over 
and over and over again, and I keep asking them, ‘What are the goals of your course?’ For me, 
your assessment should match your goals.” Mickey shared his personal teaching philosophy but 
rejected any positioning of himself as the arbiter of what kinds of assessments were best. He 
encouraged his instructors to create their own standards for assessment, rather than to look for 
the “correct way” to assess their students based on his expertise. This clearly demonstrates 
Mickey's goal of sharing expertise authorities. His comments about answering participants’ 
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questions based on his expertise authority emphasize his intention to shift traditional authority 
structures within his facilitation to create dynamics of shared authority. 

Mickey's teaching actions provide additional context for these facilitation practices and the 
authority beliefs that inform them. Because of the contextual differences between the classroom 
and the online working group, it is no surprise that this orientation arose differently during 
Mickey's teaching in the year prior. In the classroom, Mickey's orientation toward traditional 
authority dynamics can be characterized by his intentional and particular distribution of 
opportunities to bear expertise authorities among his students through a process-over-product 
value selection of contributions. Additionally, he invites students to bear mathematical authority 
to evaluate each other’s contributions. 

It is often the case that students with correct solutions most consistently bear granted 
authority to contribute to discussion. Mickey subverts this authority tradition by minimizing the 
contributions of students with correct solutions and granting authority to students with partial or 
in-progress solutions to contribute their thinking. In the classroom, this careful distribution of 
opportunities to bear authority arises when Mickey leverages his institutional authority to prompt 
students to share their thinking, especially when he asks students to share what he calls 
“productive failures”. One explanation of productive failures that Mickey gives in class is: 

 
“Try stuff. In Algebra, you're going to cook a lot of equations up. Some of them may be 
fruitful, some of them may not be. The biggest thing, though, is to explore. Because, 
some help, some don't. Learning from your mistakes, having that productivity when 
you're failing, is a huge part of this.” 
 
Mickey regularly granted students the authority to share these productive failures, and it 

should be noted that students were expected to discuss these processes as part of their course 
grade. By granting students authority to contribute their in-progress mathematical ideas, Mickey 
subverted the tradition that only correct solutions can legitimize a students' mathematics 
expertise authority, shifting toward a dynamic where students are enculturated into the 
mathematical community through opportunities to share their informal, in-progress reasoning. In 
an exemplifying episode, the class is attempting to prove a conjecture about a generating set for a 
symmetry group. The student who made the conjecture begins to share his completed proof, and 
Mickey interrupts him to call on a student who is still working on the conjecture, saying, ``Hold 
on, hold on, let's see, Madison, can you help me out with this?'' Mickey has not received the 
mathematical authority the student with the correct solution is attempting to bear, and instead 
grants authority to Madison to share her reasoning about the conjecture so far. In inviting her to 
bear granted authority, Mickey creates the opportunity for Madison to bear both ownership 
expertise and mathematics expertise authorities. This is supportive of Madison's, and arguably 
many other students', mathematical autonomy because it values the process of creating a proof 
over the final product, which helps students to develop productive beliefs about their position in 
the mathematical community (see Serbin et al., 2020, p. 4). This support is also created by 
centering Madison's in-progress thinking, which aids other students in gaining insight into their 
classmate's reasoning.  

Mickey also shifts away from the tradition that the instructor bears the institutional and 
mathematics expertise authorities to evaluate students' contributions by inviting students to bear 
authority to evaluate each other’s ideas. Following the episode above where all students have 
been prompted to share work for task 3 on the whiteboard, Mickey asks, “So, what do we think? 
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And remember, we're in a non-judgmental phase in our lives right now, so keep your comments 
very productive, okay?” By empowering his students to evaluate each other’s contributions 
through constructive feedback, Mickey creates opportunities for students to bear mathematical 
authority to evaluate each other’s work and ownership expertise authority to respond to 
evaluations of their own ideas. This supports their mathematical autonomy by engaging students 
in reasoning about the contributed solutions and giving them ownership of mathematical ideas. 

Mickey's refusal to bear pedagogical expertise authority in the online working group parallels 
his refusal to bear mathematical expertise authority to evaluate students' contributions in the 
classroom, instead inviting students to evaluate each other’s contributions. Similarly, inviting 
OWG participants to share their thinking before sharing his own appears in much the same way 
as his classroom practice; in both instances, Mickey invites participants to share expertise 
authorities specific to the learning environment. The practice of sharing authority in both settings 
demonstrates Mickey's intent to shift traditional authority dynamics. This practice arises as an 
artifact of Mickey's implicit belief that sharing authority supports the development of subject-
specific autonomy in participants. 

Authority to Advance the Agenda 
Although Mickey refused to bear the expertise authority his participants often requested of 

him, there was tension between Mickey's authority values and his responsibility to advance the 
agenda of the OWG. Advancing the agenda required Mickey to bear institutional authority both 
as the facilitator in the OWG and as the instructor in the classroom.   

Mickey often prompted participants and guided group discussion to meet the goals of the 
OWG, bearing institutional authority in order to advance the agenda of the OWG. This is 
evidenced on the individual level when Mickey directly asks participants for their thoughts on 
the mathematics, as seen in the following exchange between Mickey and Roger during a group 
discussion of the Sudoku task (Larsen et al., 2013).  

 
Mickey:  Turning toward the content in Lesson 4, why is it, mathematically, that in every 

group Cayley table, each symmetry appears exactly once in each row and each 
column? 

Roger:  It has to do with cancellation? 
Mickey:  Can you expand on that? Pardon the pun. 
 
When Mickey bears his authority as the facilitator to prompt Roger to share his thinking, he 

advances the professional development agenda by guiding participants to engage with the 
curriculum materials from a mathematical perspective. He also directly prompts the participants 
to reflect aloud on their teaching experiences. After Laura had discussed a difficulty she was 
having with using one of her student's contributions to formalize a mathematical idea, Mickey 
prompted her to dig deeper, saying “Now that you can reflect on it, what went through your mind 
at that moment when you were handling the situation?” and later directing the remaining 
participants to discuss potential pedagogical moves to apply to Laura's quandary. By exercising 
his institutional authority as the facilitator in this way, Mickey advances the agenda of the OWG 
by inviting participants to engage in pedagogical reasoning. 

So, while Mickey shares authority often by refusing to be the bearer of expertise authority in 
the Online Working Group, he is willing to bear the kind of institutional authority associated 
with the facilitator's responsibility to advance the agenda to meet the OWG's goals. Although 
these actions do not depart drastically from hierarchical authority relations, they are consistent 
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with a motivation to support participants' pedagogical reasoning and autonomy, which is in line 
with both Mickey's goals and the intent of the instructional support model. 

Similarly, Mickey must bear institutional authority in the classroom to direct students' 
activity by providing tasks and granting students authority to share their solutions. Similar to the 
OWG, Mickey's orientation toward his own institutional authority is somewhat unsurprising in 
the classroom context, but by using it to grant authority to students to contribute, Mickey acts 
with the goals of supporting the development of his students' mathematical autonomy and 
advancing the mathematical agenda. What is most striking is the way this agenda informs 
Mickey's choice of which students are granted authority to contribute. By de-emphasizing the 
mathematical authority of students with correct answers, Mickey creates more opportunities for a 
wide range of students to bear ownership and mathematics expertise authorities, thereby 
promoting their mathematical autonomy. 

Conclusions 
The results of this case study suggest strong parallels between the teaching and facilitating 

practices of this PD facilitator: across contexts, Mickey balanced the goal of sharing authority 
with participants with his responsibility to advance the agenda of the group, pointing to the 
possibility that teachers’ beliefs can transcend the classroom and influence the way they facilitate 
professional development. Mickey’s emphasis on OWG participants bearing pedagogical 
expertise authority to reason about their instructional practices may have arisen from his 
experiences with balancing authority in an IOAA classroom, where, unlike in other types of 
inquiry-based learning, the instructor’s responsibility to advance the mathematical agenda 
demands that they carefully leverage their own authority in ways that encourage, rather than 
stifle, students’ authority. 

More broadly, this study speaks to the importance of facilitator’s prior teaching experience, 
attitudes, and beliefs about authority, in creating shared authority dynamics that can support the 
professional development of new instructors. Viewing both instruction and PD facilitation 
through this lens of shifting authority dynamics can be useful in future research on both IOI and 
professional development, especially with the added construct of pedagogical expertise authority. 
Future work should investigate the effects on teaching when participants are bearers of 
pedagogical expertise authority in professional development, as well as their affect, attitudes, and 
conceptualizations of shared authority in IOI. 
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The Nature of an Online Work Group Reveals the Teaching Knowledge of Inquiry-Oriented 
Linear Algebra Instructors through Their Goals for Instruction 

 
 Minah Kim  Shelby McCrackin 
                           Florida State University                           Florida State University 

Postsecondary instructors interested in inquiry-oriented instruction of linear algebra 
participated in a sequence of eight one-hour online work group meetings with other inquiry-
oriented linear algebra instructors and facilitators. Recordings were analyzed for how two 
participants referenced goals for instruction in discussions of implementing a new instructional 
unit on subspaces. We identified four goals for the instruction of teaching subspaces. We discuss 
the intersections of several goals that exist due to the tension caused by real-world contexts and 
abstract mathematical concepts. The instructors presented resolutions to the tension by utilizing 
varying teaching knowledge. Based on the results, we make suggestions for those who want to 
transition to inquiry-oriented instructional approaches.  

Keywords: teaching knowledge, goals for instruction, inquiry-oriented linear algebra, online 
work group  

Inquiry-Oriented Linear Algebra (IOLA) is a reform-oriented instructional approach that 
derives from Realistic Mathematics Education (RME). This instructional approach encourages 
teachers to support students in their reinvention of mathematical concepts through inquiry 
(Freudenthal, 1991; Kelley & Johnson, 2022). Research has shown that authentic engagement 
with mathematics through this instructional approach, can benefit student achievement and 
possibly incite equitable outcomes among students (Burke et al., 2020; Freeman et al., 2014; 
Haak et al., 2011; Kogan & Larsen, 2014). This instructional practice is difficult to enact, 
however, because instructors may not fully utilize the teaching knowledge needed to inform their 
practice. This is especially true for novice instructors implementing inquiry-oriented approaches 
(Wagner et al., 2007). If long-lasting instructional change is needed for the desirable outcomes 
available by IOLA, then teachers need to shift their instructional approach (Cohen, 1990; 
Henderson et al., 2011) by growing teaching knowledge. Thus, researchers have declared "a need 
for professional development programs that foster the development of undergraduate 
mathematics instructors' pedagogical reasoning" (Andrews-Larson et al., 2019, p. 129). 

This lays the groundwork for the following problems: what is being done to address the 
professional development gap, what teaching knowledge IOLA instructors possess, and how do 
we capture it. Thus, an Online Work Group (OWG) for postsecondary mathematics instructors is 
examined in this study. The OWG was part of the IOLA-X project and was initially created to 
provide IOLA instructors a chance to collaborate with other instructors who are interested in 
their continuous pursuit of enacting IOLA. These IOLA instructors are guided by facilitators 
who are researchers of IOLA-X. Instructors from various universities across the United States 
joined this OWG for eight sessions across the Spring 2022 semester. They worked on an IOLA 
task unit “subspace” and discussed their teaching practices with the other researchers, instructors, 
and facilitators of the OWG. The researchers of the IOLA-X project took their contributions to 
inform their continual effort to adjust their curriculum and to create teacher notes for other IOLA 
instructors. The instructors' contributions can be valuable to capture how the OWG makes way 
for discussion of teacher practice and to also collect teacher knowledge IOLA instructors 
possess. Here, our research question is “How does the OWG serve opportunities for instructors 
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to exhibit knowledge for teaching in inquiry-oriented ways?” 
 

Literature Review 
Linear Algebra is a postsecondary mathematics course that is often a requirement for 

students in STEM-related majors. As a result, many students at some point enroll in this course. 
IOLA is one instructional approach to active learning (Freeman et al., 2014) and inquiry-based 
mathematics education (Laursen & Rasmussen, 2019). Laursen and Rasmussen (2019) discuss 
this approach to mathematics education as "student engagement in meaningful mathematics, 
students’ collaboration for sensemaking, instructor inquiry into student thinking, and equitable 
instructional practice to include all in rigorous mathematical learning and mathematical identity-
building" (p. 140).  

As stated previously, inquiry-oriented instructional approaches are difficult to implement. 
Mostly because instructors at first may not possess the reasoning and knowledge necessary for 
enactment (Andrews-Larson et al., 2019). The knowledge we are referring to is mathematical 
subject matter knowledge (Ball et al., 2008; Hill et al., 2008) and pedagogical content knowledge 
(Ball et al., 2008; Hill et al., 2008; Shulman, 1986). Shulman in 1986 first introduced the idea of 
Pedagogical Content Knowledge (PCK) as the subject-matter knowledge for teaching. This 
includes at the time the unnamed domains of PCK which are knowledge of content and teaching 
(KCT) and knowledge of content and students (KCS). These domains capture knowledge for 
teaching such as an instructor’s knowledge of the best representation to present to students or 
knowledge of what ideas or conceptions students will bring to the table. The domains are not 
restricted to the teaching of a specific content area. 

Ball and colleagues (2008) expanded on the work of Shulman in their framework of 
Mathematical Knowledge for Teaching (MKT). Their framework includes PCK as half of their 
domains of MKT. The other half is subject-matter knowledge, in other words, mathematical 
knowledge that is unrelated to the practice of teaching. Teaching knowledge for mathematics 
instructors has been studied for decades as either declarative or “knowledge-in-use" (Andrews et 
al., 2022). These studies capture how experienced teachers approach their instruction. Although 
there is little evidence that more experience means more teaching knowledge (Andrews et al., 
2022), there are studies that point to the differences in teaching knowledge between experts and 
novices (Auerbach et al., 2018). Thus, analyzing the teaching knowledge of experienced IOLA 
instructors can prove to be worthwhile as they highlight areas of instruction novice IOLA 
instructors may not consider. 

Theoretical Framework 
Wagner and colleagues (2007) studied the MKT and PCK regarding the challenges of a 

novice instructor teaching an inquiry-oriented differential equations course. As a result, Wagner 
et al. (2007) identified four types of instructional goals in the context of inquiry-oriented 
instruction at the undergraduate level: classroom orchestration goals, cognitive/learning goals, 
assessment goals, and content goals. These goals encompass their framework called goals for 
instruction. Each goal is summarized as follows:  

1. Classroom orchestration goals: How instructors orchestrate, intervene, and redirect the 
discussions and negotiate an agenda with emerging ideas.  

2. Cognitive/Learning goals: What student understanding, questions, and activities look 
like. 

3. Assessment goals: How to assess student learning, what the evidence of understanding is, 
and how to design a pace or curriculum.  

26th Annual Conference on Research in Undergraduate Mathematics Education 206



4. Content goals: What and how specifically mathematical concepts should be learned. 
Using the work from Wagner et al. (2007) as a priori scheme, this proposal identifies how 

instructional goals were discussed by experienced IOLA instructors in the OWG. 

Study Context: Inquiry-Oriented Linear Algebra and Online Work Group 
The IOLA-X project focuses on developing student materials composed of challenging and 

coherent task sequences that facilitate an inquiry-oriented approach to the teaching and learning 
of linear algebra (Wawro et al., 2013). There are five main phases in the design research spiral: 
Task Design, Paired Teaching Experiment (PTE), Classroom Teaching Experiment (CTE), 
Online Work Group (OWG), and Web (Wawro et al., 2023). The participants of our study come 
from the OWG in the fourth phase of the research project. The main purpose of the OWG for the 
IOLA research team is to learn from instructors how IOLA is implemented in various classrooms 
with various student populations and to gain insights to develop instructor notes and revise tasks 
(Wawro et al., 2023). At the center of the OWG for this study was the discussion of a unit of 
tasks about subspaces and Table 1 illustrates the overview of the subspace unit. In this unit, the 
tasks were contextualized in a problem about students walking in one-way hallways past cameras 
monitoring their traffic (See Figure 1). To draw out the feedback from the instructors, the 
facilitators managed mathematical discussions about the tasks as well as facilitated discourse 
about the preparation and implementation of the tasks. Through examining discussion and input 
from the experienced undergraduate instructors participating in the OWG, questions, and 
thoughts about the goals for instruction and challenges with implementation naturally arose.   

 
Figure 1. The hallway scenario of Tasks 1-2 in the IOLA subspace unit 

 
Methods 

Our primary data source was the recorded videos of the OWG meetings—held and recorded 
via Zoom, and group artifacts such as Google Slides and Jamboards that served as secondary 
data sources. In this OWG, there were six members: F1 and F2 (facilitators), R1 and R2 (IOLA 
researchers), and I1 and I2 (“pure” participants who are experienced inquiry-based instructors 
but not IOLA researchers). This study focuses on the pure participants, so the participation and 
contributions of I1 and I2 serve as the main data of our study. I1 is an associate professor at a 
small private college in the Northwestern United States and I2 is a senior instructor at a large 
public university in the Northeastern United States and they all taught linear algebra at their 
universities at the time of the OWG sessions. Other than pure participants, this team involves one 
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graduate student (F2), two associate professors (F1 and R1), and one full professor (R2). 
Table 1. The IOLA subspace unit overview 

Task  Driving Question  Mathematical Formalism 

Hallway Task 1: 
Finding Paths 

What are the possible paths from room A 
to room C and from room C to room C? 

Closure (of “inputs”) 

Hallway Task 2: 
Managing 
Populations 

What are the possible paths that induce a 
specific change in room populations? What 
are the possible paths that leave the room 
populations unchanged? 

Correspondence between 
(“input” and  
“output”) vectors 

Hallway Task 3: 
New Wings 

What are the possible paths for a different 
wing of Ida B Wells High School (defined 
by a matrix) that will leave populations 
unchanged? 

Null spaces as a type of closed 
“input” spaces and column 
spaces as a type of closed 
“output” spaces 

 
Each OWG meeting was approximately one hour and there were eight meetings throughout 

the Spring 2022 semester. Thus, a total of around eight hours of OWG meetings were conducted 
and recorded over several days. In the first four videos, the OWG members discussed the IOLA 
subspace tasks, either as if they were students or teachers, so they shared the mathematical 
progression of an IOLA subspace unit comprised of three tasks. The subspaces unit focused 
primarily on notions of closure of sets of vectors under vector addition and scalar multiplication, 
as well as null and column spaces. So, in the first four meetings, participants worked on the 
mathematical problems as a group and then discussed mathematical goals, approaches, and links 
to other ideas and topics. The remainder of the meetings took place throughout the participants’ 
implementation of the sequence, with each participant reporting on how the implementation 
went, what they liked, how their students reasoned about tasks, what they would change or what 
they would do differently.  

We first analyzed all eight videos in terms of goals for instruction. To do so, videos were 
transcribed by Otter, an online artificially intelligent transcription application. Both authors 
separately coded all transcripts using Nvivo software. In this analysis, the four goals of 
instruction were the code schemes. We coded for all the participants of the OWG—even though 
this report focuses on two pure participants. While coding, we assigned four codes, which mean 
four goals, at the level of a single turn of talk. Then, we compared codes to reach agreements to 
build inter-rater reliability. We identified common themes within each code and found out that 
there were many intersections between two or more goals. We decided to dig into the 
intersections more precisely—and so analyzed what kinds of pieces of knowledge of IOLA 
instructors were discussed, considering the goals for instructions and main themes of OWG 
meetings. For this report, we selected several examples of what I1 and I2 shared and contributed.  

Results 
Generally, in the OWG meetings, the pure participants discuss how to manage discussions of 

contextualized tasks about closures and subspaces (classroom orchestration goal), what kinds of 
discussion topics and communication emerged in engaging in IOLA tasks (cognitive/learning 
goal), curricular trajectories and mathematical content relevant to subspaces reorganized by 
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instructors (content goal), and pacing, timing, testing, and grading of inquiry-based teaching 
(assessment goal). Within the findings, the main notable pattern in this OWG is there are many 
intersections of two or more goals for instruction, except for assessment goals. Also, it is 
interesting these intersections are rooted in some tensions between RME-based context and 
abstract mathematical concepts in implementing IOLA tasks. The following examples address 
those intersections.  

I1: Yeah, my only hesitancy in all of this is the fact that you know, in the other task 
sequences, we have this clear and direct parallel between the intuitive contextual setting 
and the formal definitions. And this one, we're a little loosey-goosey in a couple of 
places, and I just, I don't know how that's gonna translate. Like, are they like, are they 
going to internalize what has been their tendency to think only about scalars that are, you 
know, positive whole numbers in the first place, right? And so, is this going to somehow 
reinforce that? Um. 

Here, I1 expresses her concern of how students will take up subspaces according to the 
“loosey-goosey” definition in the task. That it may be difficult to align the abstract with what 
students would develop intuitively as the formal definition of subspace. This excerpt also is an 
intersection between classroom orchestration, cognitive/learning, and content goals. This 
intersection illustrates challenges for the instructor to discern what content ought to be taught 
(content goal), how those jive with the class activities (classroom orchestration goal) and 
concerns that students may "think only about scalars that are...positive whole numbers" in the 
context of the problem and if the task will continue to "somehow reinforce that" knowledge 
(cognitive/learning goal). 

Similarly, another instructor participant, I2 also talks about the transition from the task 
activity to the introduction to the abstract version of subspace definition. 

I2: So, I do want to say like, so it seems like we, the intent or how people have been talking 
about this is that we're going to use these like non-negative integers for the exploration 
stuff, but then tell the students to use real numbers for the actual subspace definition.  

This is where I2 has the intersection between the classroom orchestration goal and a content 
goal. In terms of classroom orchestration, I2 anticipates how the task will be used for 
"exploration stuff" and also plans when there will possibly be direct instruction to then “just tell 
the students” to use real numbers for the actual subspace definition. Also, in terms of the content 
goal, I2 discusses what mathematical concept—the actual subspace definition, should be brought 
up during instruction using the IOLA task. Like above, throughout the overall OWG meetings, I2 
expresses some tension in the negotiation between the real-world context of the task and the 
abstract mathematical concepts. 

The intersections between classroom orchestration, cognitive/learning, and content goals 
stand out in OWG discussions of Task 3, where the concept of subspace is introduced. Task 3 
starts from a new 5×7 matrix that represents a new scenario of camera record in another school 
wing, and the set U is all the possible camera data vectors which leaves the number of students—
in each room unchanged. In the last part of Task 3 (See Figure 2), the set U is meant to be 
connected to the concept of subspace, and then null space. Here, I1 and I2 communicate with 
each other by discussing their anticipation of implementing Task 3.  

I2: Yeah. So, in the previous prompt, they have to, you know, U as defined as, you know, 
actual students and actual cameras, right? So that means the entries on U are the entries in 
the vectors and U, I think, have to be non-negative integers. It's then, closed under scalar 
multiplication for those scalars for non-negative integer scalars. And then we change the 
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scalars in the box definition, but we don't change U. So, our students going to be 
confused about, I think, "no" is a reasonable answer to C. Right? I think they might say 
"no", because it is not closed under vector scalar multiplication because I can't scale by a 
fraction, or a non-negative number, and I'll get something that is not in U because we 
didn't change U. So, either. So do either. So, I feel like the changes have to be synced, 
right? Like the change to U. And the change to the scalars needs to be synced, otherwise 
C turns into false. 

I1: I assume that's what we want. Is, is that not what we wanted? like to just point out that 
like, well, U is closed to being a subspace, but because the scalars need to be any real 
numbers. It's not? Maybe I misunderstood? The… 

I2: I don't know. That was one I thought. I kind of wanted there to be like a thing you found 
was a subspace, punch line, students like that. I mean, maybe there's used to it. 

 
Figure 2. The statements about subspaces in Task 3  

I1 and I2 presented contrasting approaches to the IOLA instructions, especially in terms of 
the tensions between the RME context and formal concepts in the subspace. It seems I1 liked to 
engage her students in conversation and whole classroom discussions related to the tensions in 
the subspace tasks. From a previous OWG session, I1 remarked on her experience in a previous 
“stellar class” with their discussion of span. When her students discussed span, she “...thought it 
was like, superfluous, but it turned out not to be.” As it turned out, there was a tension or 
confusion caused by the RME-based scenarios in IOLA tasks so students only used positive 
whole numbers as scalar multiples. She faciliated a classroom discussed where she “freaked out” 
her students by introducing other real numbers such as e and pi. That led to her students and she 
having “deeper and deeper” communicatively engaged conversations, and so “that meant content 
coverage was sacrificed a little. And I decided I was okay with that.” On the other hand, I2 
seemed to prefer focusing on what may confuse students so he wanted to reduce confusion 
beforehand. The second instructor wrestles with what content should he bring into discussions in 
his class between himself on the teacher side and the mathematician side. This wrestling 
particularly happened when he addressed more formal mathematical concepts such as closure 
under scalar multiplication, non-emptiness, and dimensions of a subspace—they usually have the 
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potential to conflict with the context of the IOLA tasks. He stated, “I feel it makes me a bad 
mathematician. Probably a better math teacher to not show them that.” 

Discussion 
The results of this analysis demonstrate several points. Firstly, the goals for the instruction 

framework can be used as a coding scheme that highlights teaching knowledge instructors utilize 
as they reflect on their instruction. Secondly, both participants of the study demonstrated often 
overlapping goals for their instruction. This is most likely due to the varying knowledge they rely 
on to inform their instruction. We saw from Participant I1 a demonstration of pedagogical 
knowledge being utilized as she anticipated ways to host a discussion with her students to 
untangle the difference in the contextualized and abstract definition of subspace. The other 
participant, I2, mostly relied on his mathematical subject-matter knowledge and his knowledge 
of students to hypothesize ways to deliver content in the most streamlined manner possible. 
These insights of teaching knowledge these two instructors possessed were made possible due to 
the semi-casual nature of the OWG. The instructors participated the most in the work group, yet 
the facilitators actively engaged in questioning instructors on their decision-making all the while. 
It is because of the structure a lot of varying teaching knowledge is revealed. 

It was through discussion between the participants that revealed tension in implementing the 
subspace task due to its incomplete definition. The two participants presented different 
approaches to the IOLA instruction as it related to ironing out this wrinkle. Our two participants 
highlighted how experienced IOLA instructors will utilize various domains of teaching 
knowledge while balancing their knowledge of the principles of Realistic Mathematics 
Education to problem-solve. Thus, we think postsecondary instructors can have different avenues 
to becoming IOLA instructors so that their approaches to resolving tensions would be different. 
Therefore, it will be important for both novice and experienced IOLA instructors to have a 
professional development space—that may look like OWG—to unpack their speculations and 
approaches and then move forward. After implementation, reflection on instruction is also vital 
for developing teaching knowledge of oneself and others.  

In terms of teacher knowledge—in addition to reflection on teaching practice, the OWG 
provided an opportunity for instructors to communicate with other instructors and also with the 
curriculum developers on the insights of the instructional design. This process of examining 
tasks and reflecting on their implementation is especially vital for IOLA instructors, so the OWG 
serves the place for them to analyze and reflect on the curriculum they implement in their 
classrooms. As the instructors examine instructional task designs after listening to what other 
instructors unpack from their implementation, their approaches can adjust based on their 
previous examination. As a result, they were able to build their teaching knowledge as it relates 
to adjusting curriculum to serve their student populations. That demonstrates the importance of 
reflection for IOLA instructors. Sharing approaches to task implementation and analysis is 
beneficial, yet it becomes more powerful for other instructors if it sparks reflection on practice.  
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Availing Orientations and Facilitating Behaviors: An Emerging Framework for Change Leaders 
 

 Sandra Laursen Chris Rasmussen  
 University of Colorado Boulder San Diego State University  

Scholars and practitioners in higher education recognize that transformational change of 
organizations—especially departments and institutions—is difficult but essential to achieve 
needed, national-scale improvements in access, quality and equity in STEM instruction and 
career development. Based on studies of change projects in college mathematics education and 
gender equity on STEM faculties, we identify and describe a suite of common leadership 
approaches among change agents who led these projects. We propose that these approaches 
function as constructs for an emerging framework about change leadership. By observing how 
change agents lead complex change projects in higher education, we seek to develop theory 
about leadership for organizational change and to offer practical guidance to such leaders. 

Keywords: institutional change, departmental change, leadership 

RUME scholars are well familiar with calls for mathematics departments across the U.S. to 
improve student success in introductory mathematics courses (PCAST, 2012). Concerns about 
passing rates in these courses, coupled with student dissatisfaction with an overpacked 
curriculum that has little connection to their interests, are not new problems (e.g., Seymour & 
Hewitt, 1997; Seymour & Hunter, 2019). In response to these ongoing problems, professional 
societies have called for increased uptake of active learning, which is known to improve student 
outcomes (e.g., Abell et al., 2018; Freeman et al., 2014; Saxe & Braddy, 2015).  

Such efforts to improve undergraduate teaching and learning in mathematics are not new. 
Decades ago a set of major, NSF-funded calculus reform projects sought to create a “lean and 
lively” calculus (Douglas, 1986). These largely focused on creating and disseminating new 
curricula and lab activities as the primary lever for change. These materials offered more 
challenging and relevant problems and often deployed small group work as a primary teaching 
strategy. Research on college STEM education was in its infancy and researchers were not ready 
to provide guidance for this kind of work in higher education. In retrospect, we can recognize 
this approach as insufficient: by focusing on new materials, calculus reform engaged a subset of 
faculty, but could be largely ignored by many others. High-quality instructional materials are 
necessary but not sufficient to motivate reform (Henderson et al., 2011).  

Today, research-based materials and classroom approaches are widely available for many 
college courses (Fairweather, 2008). In addition to high quality instructional materials, current 
innovations are embracing inclusive active learning via sustained professional development. 
Helping individuals to develop the classroom skills, foundational knowledge of learning, and 
availing beliefs is essential support for their effective use of research-based curricula (Yoshinobu 
et al., 2022). Yet relying on individuals to take up innovative materials, one by one, is a slow 
route to widespread change. The most promising reform approaches today focus on deploying 
these resources—research-based materials and effective professional development—in a 
department-wide context with explicit attention to local culture and norms (Laursen et al., 2019). 

In this paper we offer some insights derived from our work as scholars examining 
organizational change in higher education, particularly at the level of departments and 
institutions. Based on our studies of two quite different sets of change projects that use different 
interventions to accomplish distinct change goals, we identify a suite of common leadership 
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approaches among change agents who led these projects. We classify these approaches, discuss 
how they manifest in change projects, and propose that they function as constructs for an 
emerging framework about change leadership. By asking how change agents lead complex 
change projects in higher education, we seek to develop theory about leadership for 
organizational change and to offer practical guidance to those doing such work. 

Conceptual Foundations 
While leadership and institutional change has long been a focus of scholarly inquiry in higher 

education (e.g., Eckel et al., 1999; Birnbaum, 1991), this area of research has yet to be broadly 
taken up in STEM reform contexts (Reinholz et al., 2020). In situating our theory-building 
contribution to this emerging field of inquiry, we draw on the distinction between a global 
change theory and a local theory of change (Reinholz & Andrews, 2020). A global change theory 
is an overarching, meta-level framework of ideas that provide backing or justification for the 
change process, typically empirically informed and grounded in ideas from fields such as 
sociology, psychology, or management. Examples include the Four Frames model (Bolman & 
Deal, 2008), the Networked Improvement Community (Bryk et al., 2015), and the River model 
(Elrod & Kezar, 2015). Such frameworks offer 10,000-foot views that neither refer to specific 
change projects nor outline specific interventions but may be used to explain or predict.  

In contrast, a local theory of change is a project-specific description that links the overall 
goals and rationale to desired outcomes, planned activities, and indicators or metrics to explain 
how the intended local change is expected to come about. Thus, a local theory of change is 
pragmatic and action-oriented compared to a formal change theory. It may be graphically 
represented in a logic model or driver diagram (Kinzie & Kuh, 2017), and represents a ground-
level view of a particular change plan for a particular place and time.  

The framework for change leaders that we begin to develop here takes a 100-foot perspective 
situated somewhere between a global change theory and a local theory of change. As we detail 
below, the framework constructs include availing orientations and facilitating behaviors. We use 
these constructs to characterize change leaders’ work, not to prescribe specific interventions or 
actions. They are aspirational, intended as touch points for decision-making. Local context and 
goals will drive how they manifest or take shape. In sum, if the local theory of change describes 
what work is to be done, our change leaders’ framework offers advice on how to accomplish it.    

Study Contexts and Data Sources 
The authors have separately studied institutional and departmental change in different higher 

education contexts: efforts to change undergraduate instruction in mathematics departments, and 
efforts to advance gender equity on STEM faculties. Here we briefly describe these settings and 
the studies that support our cross-case analysis involving multiple cases of change projects.  

Departmental Reform in Mathematics: The SEMINAL Project  
The Student Engagement in Mathematics through an Institutional Network for Active 

Learning (SEMINAL) project was an NSF-funded effort to better understand mechanisms for 
initiating and sustaining department change focused on implementing active learning in 
undergraduate mathematics classes. The project began with retrospective case studies of six 
departments that had implemented active learning in their precalculus and calculus courses 
(Smith et al., 2021b). The second phase of the project consisted of longitudinal case studies of 
nine mathematics departments as they rolled out their own change initiatives. Each sought to 
shift department norms to enable greater uptake of active learning in their precalculus and 
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calculus courses, supported by nominal funding and a networked improvement community to 
help accelerate their local change efforts. The national call for SEMINAL participants drew 37 
proposals, reflecting high interest in departmental approaches to change. 

Two overarching themes characterize the change interventions chosen by the nine 
departments. First, many developed approaches to support instructors as they implemented active 
learning approaches in their classrooms. They created or adapted active learning instructional 
materials, offered professional development that met instructors where they are, and nurtured 
communities of practice. Second, departments created or reimagined the structures and policies 
that shape instruction from outside classroom walls. For example, departments created curricular 
structures to organize faculty around thematic groups of courses, developed course coordination 
policies and practices, and curated a wide range of instructional support materials in an 
accessible, easy-to-use format. All of these efforts sought to lower barriers that can prevent 
instructors from implementing the desired classroom changes and to establish norms of 
coordination and collaboration that help to align multi-section courses.   

For this paper, we make use of SEMINAL data about the nine Phase 2 departments. Primary 
data include project reports that summarized interviews with project change leaders, faculty, 
administrators, student focus groups, and classroom observations, collected annually over three 
years. The SEMINAL team also interacted with campus team members via webinars and 
summer workshops. We conducted secondary analyses of these data and drew on these projects’ 
own writing about their work, published in a special issue of PRIMUS (Smith et al., 2021a). 

The ADVANCE Institutional Transformation (IT) program 
The U.S. National Science Foundation initiated its ADVANCE program in 2000, calling for 

systemic approaches to address the persistent problem of women’s underrepresentation on 
STEM faculties. Past programs had supported individual women but left untouched the biased 
institutional processes and hostile environments that generated the career challenges that women 
widely faced (Rosser & Lane, 2002). Taking a new tack, ADVANCE supported institutions to 
identify and remediate those structural and cultural barriers to women’s recruitment, retention 
and advancement, and to share their strategies and tactics widely through both scholarly research 
and practice-focused dissemination. By 2023, NSF had made nearly 70 awards for Institutional 
Transformation—sizable ($3M) five-year grants to single institutions—and over 250 awards for 
adaptation, partnership and research that enable others to adapt and adopt the strategies and 
tactics developed across the ADVANCE community (Laursen & De Welde, 2019). 

As a group, ADVANCE IT grantees have developed a variety of strategic interventions to 
address core challenges that face women STEM faculty. Laursen and Austin (2014, 2015, 2020) 
studied the strategies developed and tested by early ADVANCE awardees, and categorized them 
according to the core problem each addressed and the approach taken to address that problem. 
Laursen and Austin observed four broad strategies, aimed at (1) interrupting implicit bias in 
evaluation of faculty for jobs, awards or advancement; (2) improving workplace environments; 
(3) supporting faculty to fulfill both personal and professional responsibilities; and (4) fostering 
individual success. Within each broad type of strategy, an array of several specific interventions 
used in distinct settings is richly described in an online toolkit and book (2014, 2020).  

For this paper, we draw on secondary analyses of data and insights gained from over two 
decades of work with ADVANCE as an evaluator and researcher. Primary data include 
interviews with 19 principal investigators, focus groups with 18 institutional teams, site visits to 
five campuses, and two working meetings with 27 change leaders, as well as deep analysis of a 
large library of documents gathered from over 40 ADVANCE IT projects.  
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Findings: An Emerging Framework for Change Leaders 
It is challenging to shift organizational cultures to make the use of active learning the norm 

rather than the exception, and SEMINAL departments’ progress varied from moderate to 
substantial. Given the often intransigent nature of departmental change, even moderate progress 
is a marker of success. The same is true of ADVANCE Institutional Transformation projects: 
institutions’ progress on STEM faculty gender equity was variable, nonlinear, and context-
dependent. Though they may seem very different on the surface, what these change projects have 
in common is that each used a variety of strategies as levers for change (Laursen et al., 2015). No 
single tactic alone did the job; rather, projects made headway through selecting and combining 
interventions to build a strategic portfolio that fit their local circumstances and conditions.  

Building on the strategic choice of interventions, we noticed that change projects were 
impactful when the interventions within the portfolio were coordinated, synergistic, and guided 
by shared language and principles. In this analysis, we focus not on the specific change goals 
(improving student success in calculus; advancing gender equity) or interventions (shared 
materials, professional development; implicit bias training, partner hiring policy). Rather, we 
identify approaches that change leaders used in guiding their projects. Just as each project 
deployed a mix of interventions to accomplish targeted, local goals, likewise change leaders used 
a diverse toolkit in leading their group. We identify ten leadership approaches seen in change 
projects: five availing orientations and five facilitating behaviors (Figure 1). Below we describe 
these, with examples mainly from ADVANCE, then highlight a case study from SEMINAL. 

 
Availing orientations Facilitating behaviors 

Considers a unit of change beyond the individual 
Takes a systems approach to change 
Attends to context and culture 
Leverages a theory of change  
Promotes a non-prescriptive, asset-based view of 
people and system components 

Co-opts or plugs into existing structures  
Makes new ways of working easier 
Foregrounds inclusive practices and equitable 
outcomes 
Addresses people’s needs for a sense of purpose 
and meaning in their work  
Regularly communicates with stakeholders 

Figure 1. An Emerging Framework for Change Leaders: Availing Orientations and Facilitating Behaviors 

Availing Orientations:  Mindsets for Change Leaders 
Following Muis’ (2004) labeling of students’ beliefs about learning, we label change leaders’ 

beliefs as “availing” if they avail or advantage the desired change outcomes. This terminology 
avoids value judgments of beliefs as ‘better’ or ‘more sophisticated.’ We call them “orientations” 
to recognize that they are not dogmas but mindsets: ways to frame or think about a situation.  

The first two orientations are foundational for leaders. In considering a unit of change 
beyond the individual, leaders focus on the goal of changing whole courses, curricula, processes, 
or programs. This does not mean that everything is upended at once! Rather, it portrays the 
concern of interest as a shared responsibility. While changes in individuals’ knowledge, beliefs, 
skills and behaviors may be needed, leaders emphasize collective decisions and actions rather 
than calling out individuals’ views and behaviors as the source of a problem or its solution.  

Taking a systems approach to change acknowledges that the target course or program is a 
system of interacting parts. People take actions and enact their beliefs as instructors or advisors; 
physical structures and infrastructures such as physical spaces and add/drop policies steer or 
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limit perceptions and behaviors; assumptions about the needs of client departments or traditions 
in assessment influence what topics are highlighted, how they are taught, and what is assumed 
about the needs of the student audience. A course is in turn embedded in the larger systems of 
the department, college and institution. Taking a systems approach means recognizing those 
elements explicitly, probing their functions and interactions, asking why things are this way, and 
looking for ways to rethink, rebuild, or mitigate the negative impacts of different components.  

The next two orientations help leaders translate to their own setting these broad, foundational 
concepts. In attending to context and culture, leaders recognize that every organization has a 
particular context, based on its mission, history, geography, and role in national, state and local 
education landscapes. Two-year or four-year, public or private, urban or rural, secular or church-
related, historically Black or predominantly white: such factors may reflect real differences in 
how problems appear and what strategies may work. Outside factors also shape a department, 
such as its relationships with other departments or with high schools whose students enroll in 
their courses. And context varies over time. For example, economic trends determine if the 
department can hire instructors or must tighten its belt; and changes to state policy may shift 
what courses the institution must provide. Contextual factors shape how a problem presents 
locally, and they mean that strategies cannot be imported wholesale from other institutions. 

Thus it is also important for leaders to develop and leverage a theory of change, as described 
under Conceptual Foundations. Elements of a theory of change may draw on scholarship about 
how people and organizations change, but often more useful to leaders is a local theory that 
identifies the specific problems to be addressed, articulates the interventions to be tried, and 
explains the rationale: why will these activities help to solve this problem? Developing a theory 
of change forces leaders to articulate their ideas and assumptions before leaping into action, 
making visible what may be taken for granted. Sharing it can engage others and build buy-in to 
the rationale and goals of the project. Leaders can also make use of formal change theory to map 
out and guide interaction among the components of their local theory of change. 

The final orientation emerges in part from the others. By conceiving of issues as arising from 
larger systems, yet accounting for local particularities, change leaders more readily see problems 
as shared, systems-embedded challenges rather than pointing fingers toward someone “at fault.” 
They learn to spot local resources that can help them engage others or achieve their change 
goals. By adopting a non-prescriptive and asset-based view of the people, programs, and policies 
that constitute the system, they depersonalize the problem, invite others to be more curious and 
less defensive, and welcome multiple ideas and strategies for addressing the challenge. 

Facilitating Behaviors:  Tactics with Many Uses  
We label change leaders’ behaviors as “facilitating” if they facilitate or advantage progress 

on desired change outcomes. These are not specific actions, procedures or interventions, but 
approaches to leadership that work in concert with the availing orientations. In this way, the 
framework sits between formal change theory and on-the-ground local theory of change. 

One facilitating behavior is to co-opt or plug into existing structures, especially entrenched 
infrastructure, relationships, and policies. Within departments, this may mean introducing course 
coordination or making teaching assignments that support use of common teaching materials and 
strategies. Co-opting existing structures may be less work than inventing new ones, and the 
solutions that emerge are more readily sustained if they are already embedded in the workings of 
the department. Conceptual structures are often useful too, such as important goals or campus-
wide initiatives. Campus ADVANCE leaders met with more whole-hearted support from senior 
administrators when they articulated their faculty equity goals in language that referenced the 

26th Annual Conference on Research in Undergraduate Mathematics Education 218



institutional mission and mirrored its strategic plan, such as elevating scholarly activity, fostering 
interdisciplinary research and teaching, or coupling excellence to diversity, as they developed 
interventions to support women as research leaders or to diversify the faculty body. 

Making new ways of working easier is a behavior that helps normalize new or revised ways 
of working. For example, some ADVANCE teams promoted the use of rubrics to fairly evaluate 
faculty job candidates, and developed templates and training to help search committees craft and 
use rubrics. These tools lessened committees’ work to develop the rubric; using the rubric in turn 
lessened the work to filter candidates and negotiate ratings, because standards were clear and 
already agreed upon. Faculty who had experience with rubrics could then lead other search 
committees, and the rubric became an anchoring structure for new, normative hiring procedures. 

A common way that leaders foreground inclusive practices and equitable outcomes is 
through strategic use of data. ADVANCE leaders used institutional data about faculty retention 
and promotion, for example, to show that gender inequities known from the literature pervaded 
their own campus, thus disrupting “Lake Wobegon” narratives that such problems happen 
elsewhere. They learned how to use social science studies to show the systemic roots of sexism 
and racism to STEM faculty (who are often unschooled in these fields or methods), and they saw 
values and behaviors shift as people came to understand gendered and racialized institutional 
practices as due not to individual “bad apples” but as systems built by and for the historic 
majority. Other ways to foreground inclusion are inviting diverse voices to the table, interrupting 
microaggressions, or providing opportunities to learn about inclusive teaching and mentoring. 

When leaders address people’s needs for a sense of purpose and meaning in their work, they 
are recognizing and harnessing the power of the symbolic frame to elevate certain values and 
give them cultural meaning (Bolman & Deal, 2008). Mathematics department leaders did this 
when they celebrated early wins in a long-haul change project or recognized project contributors 
with teaching awards or callouts in the department newsletter or website. ADVANCE leaders did 
this when they adapted professional development programs to recognize faculty needs for 
autonomy, linking individuals’ goals to collective goals for leadership and inclusion.    

Finally, leaders who regularly communicate with stakeholders are thoughtful and persistent 
in identifying what different constituencies need to know about their change initiative. They 
consider the clarity, coherence, frequency, and consistency of messaging, and how to use local 
data to inform and persuade different audiences. ADVANCE teams found that strategically 
tailored communications could build grassroots support, lessen resistance, and recruit allies who 
shared some degree of common purpose with their work. Speaking to department chairs, for 
instance, garnered their support when chairs discovered that ADVANCE could help them with 
mentoring early-career faculty or supporting associate professors in seeking promotion to full. 

The Toolkit in Action: Case Study of a Change Project 
California State East Bay (CSUEB) faced historically high DFW rates in precalculus (42% 

DFW) and calculus courses (36% DFW), especially among students from historically under-
represented minority (URM) groups. Like many US mathematics departments, CSUEB relied 
heavily on part- and full-time lecturers. Because many taught at more than one institution, they 
often felt isolated or disconnected from the department, and largely relied on traditional lecture. 
After a multi-year transformation effort, CSUEB created and sustained a strong community of 
practice that includes lecturers and ladder-rank faculty, initiated a supportive course coordination 
system, and fostered a culture in which active learning is the new normal. With a keen focus on 
inclusive practices and equitable outcomes, they also lowered DFW rates to the high teens for all 
students, and all but eliminated the gap in DFW rates between URM and non-URM students. 
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Ever mindful of the local cultural value on instructor autonomy, the CSUEB team developed 
a change portfolio with three primary strategies. First, the team created and curated instructional 
material focused on “big ideas” and conceptual understanding, all aligned to a master syllabus. 
All materials were available to all instructors to adopt or adapt, but no one was required to use 
them. Second, they created a new structure of course coordination, based on a dynamic calendar 
that offered instructors a pacing guide, suggested group tasks, and helpful comments on content 
emphasis. Again, these resources were options for instructors to adapt or adopt as they saw best, 
with change leaders taking an asset-based perspective where instructors were seen as caring and 
talented, rather than in need of “fixing.” Third, and linked to course coordination, they developed 
a community of practice with monthly meetings that offered instructors a network to support 
their professional growth, to develop shared understandings, and to build knowledge collectively. 
This went a long way toward addressing instructors’ needs and sense of purpose and belonging.  

Together, these three strategies reflect a systems approach to instructional improvement. By 
offering a variety of resources and embedded professional development opportunities, leaders 
welcomed all and made the desired change easy, resulting in a “new normal” of equitable active 
learning. CSUEB’s story (Oliver & Olkin, 2022) is not a road map for what others should do, but 
an example of how leaders’ approaches can help a department to succeed in its own context. 

Discussion and Implications 
In this initial framework, we identify some general ways of thinking and doing change. 

Observed among leaders of real transformational change projects, they show that meaningful 
change is possible. That is not to say, however, that leading change is easy. Maintaining the 
availing orientations may challenge deep-seated beliefs and long-held habits, and enacting the 
facilitating behaviors requires listening deeply and being open to changing one’s mind. 

Our focus on leaders shares some commonalities with the empirical investigation of 
mathematics course coordinators by Martinez et al. (2021), which revealed two orientations to 
the job (resource/ managerial and humanistic/growth). Knowing these orientations, the authors 
suggest, can help departments hire and support professional development for these key 
department personnel. Likewise, our framing of change leaders’ availing orientations and 
facilitating behaviors may help change leaders accomplish their goals and may assist institutions 
to select and cultivate change leaders whose work will improve the academy. 

The availing orientations and facilitating behaviors are neither independent nor linearly 
related. For example, a change agent’s non-deficit view prompts her to seek out data and search 
for inequities with attention to local concerns about which groups may be privileged or excluded. 
Moreover, as change agents display these orientations and deploy these behaviors, they can 
nurture similar mindsets and skills among others, thus broadening or deepening their change 
coalition. Indeed, recognizing these orientations or behaviors may be a way to identify change 
leaders whose skills can be further cultivated to share in ongoing work. 

At this time the framework is incomplete, as we have identified key constructs but have not 
specified how they relate to each other. In future work we plan to flesh out these relationships, 
seeking both to contribute to theory about leading organizational change in higher education and 
to develop the framework as a practical resource for change leaders. 
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Selves through Collective Poems on Inclusive Teaching 
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The use of inclusive teaching practices is novel for many instructors; there is a need to support 
instructors in envisioning what it looks like to teach inclusively. Related to this learning is a 
focus on reflection—on one’s current self as an instructor and envisioning whom one could 
become as an inclusive teacher. This study explores reflections made possible by reading and 
responding to collective transcription poetry. Informed by Gutiérrez’s conceptualization of 
equitable teaching as existing across critical and dominant axes, we took undergraduate 
mathematics program stakeholders’ definitions of inclusive teaching practice and created 
collective transcription poems. We presented the poems to stakeholders, who then reflected on 
them. We highlight reflections indicative of stakeholders’ current selves and possible selves, and 
the emergent theme of evaluative selves as ways in which to bridge these two dimensions of self 
with regard to inclusive teaching. We conclude by sharing directions for future work. 

Keywords: inclusive teaching practices, critical methodology, reflections, possible selves, 
networked improvement community 

Nationally, undergraduate mathematics courses have significant room for improvement when 
it comes to equitable and inclusive teaching and learning (e.g., Theobald et al., 2020). The work 
of moving toward more diverse, equitable, and inclusive undergraduate mathematics teaching 
and learning is not easy, nor can it be accomplished via a checklist type of approach. Rather, the 
work is complex and messy and involves people in professional relationships with one another, 
forming communities, and making sense of their current practices and how those could change 
for the better. Those involved in instruction in undergraduate environments bring their own 
identities into the classroom context (Ceglie & Settlage, 2019); identities can evolve as a person 
considers whom they are currently (current selves) and explores whom they might become 
(possible selves) (Gee, 2001; Markus & Nurius, 1986). We seek to understand the nature of these 
considerations with regard to inclusive teaching practices and values. 

This study is part of a larger project studying how to support mathematics departments to 
positively impact diversity, equity, and inclusion. Each department formed a networked 
improvement community (NIC; Martin et al., 2020) of six to 11 members who met regularly to 
consider department data and make plans for action. The project brings a critical lens to this 
equity-focused work. Thus, we chose critical research methodologies that centered the voices of 
participants and engaged collaboratively with the participants to elicit their feedback and 
reactions to our research analyses. Here, we explore how NIC members engaged with poetry 
based on their definitions of inclusive teaching.  

 
1 Tremaine and Quaisley contributed equally to this work. 
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Literature Review 
We use Gutiérrez’s work (2002; 2009; 2012) to conceptualize equity in undergraduate 

mathematics classrooms. Gutiérrez bifurcates issues of equity along the dominant axis and the 
critical axis. The dominant axis emphasizes the access students have to resources that allow them 
to participate in mathematics and how this access influences their achievement. This axis 
characterizes an approach to improving equity that focuses on helping students navigate and 
succeed in existing systems. In contrast, approaches aligned with the critical axis challenge these 
existing systems. The critical axis foregrounds student identity and power in mathematics, 
aiming to transform the system to better serve students, particularly those from marginalized 
communities. Both axes are necessary for equity-oriented reform, although the dominant axis is 
often highlighted in change efforts and is more commonly drawn upon by undergraduate 
mathematics stakeholders to justify enhancing diversity in STEM (Tremaine et al., 2021).  

Inclusive teaching incorporates instructor mindset and practices along with the establishment 
of a classroom community in which students are attuned to hearing the voices of peers. Inclusive 
classrooms involve ongoing dialogue between instructors and students to develop and nurture a 
climate in which all participants have a voice, feel their voice is heard, and in which connections 
between content and students’ lived experiences are explicit (Dewsbury & Brame, 2019; Freire, 
1970; Nieminen & Pesonen, 2022; Saunders & Kardia, 1997). 

Instructors may face barriers to implementing inclusive or equity-focused instructional 
practices, including their epistemological beliefs about mathematics, hesitance to engage in 
conversations about student identity, and prior schooling experiences (Dewsbury & Brame, 
2019; Shultz et al., 2023). Many current instructors did not experience learning in inclusive 
classrooms and so may struggle to envision and implement inclusive teaching practices (e.g., 
Dewsbury & Brame, 2019). However, instructor growth to learn about and effectively adopt 
inclusive teaching practices is quite possible, given appropriate learning opportunities and 
support, such as faculty learning communities (Corrales et al., 2021) and departmental action 
teams (Corbo et al., 2015). A key to instructor growth is for instructors to not just hear about 
inclusive practices, but to actively engage in reflections on their teaching practices as part of 
intentional improvement efforts (Dewsbury & Brame, 2019; Schön, 1987). 

Conceptual Framing: Possible Selves 
Possible selves (Markus & Nurius, 1986) has been used as a conceptual framework to 

describe identity exploration, evaluation, and development (e.g., Dunkel, 2000), including 
professional identity in education (e.g., Blaney et al., 2022; Park & Schallert, 2020; Quaisley et 
al., 2023). We draw from possible selves to describe how instructors engaged with the poetry on 
an individual level. As individuals think about their potential future they draw from a collection 
of possible selves—who they might become—to guide their behavior. Possible selves are 
specific to an individual, representing a “cognitive manifestation of enduring goals, aspirations, 
motives, fears, and threats” (Markus & Nurius, 1986, p. 954) and emerge from whom one was. 
Possible selves are also influenced by the sociocultural and historical contexts in which the 
individual resides. Possible selves are a source of motivation for individuals, functioning as 
“incentives for future behavior,” as individuals endeavor to align themselves with possible selves 
they consider ideal, or to reject behaviors they connect with possible selves to avoid (Markus & 
Nurius, 1986, p. 955). In this way, individuals engage in reflection, evaluation, and interpretation 
of the alignment between possible selves and their current self to analyze how the current self 
measures up to whom they want to become, could become, or fear becoming. Among the 
collection of possible selves is an ideal self—the self whom one strives to be. Related to our 
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work, instructors may engage with the poems to evaluate or interpret how their current self aligns 
with the various possible selves they can be as a teacher, specifically related to an ideal self who 
uses meaningful inclusive teaching practices.  

Using possible selves as a conceptual framing, we aim to better understand the ways in which 
undergraduate mathematics program stakeholders engage with identities that embody or 
experiment with inclusive teaching practices and values. We investigate the following research 
question: In what ways do stakeholders reflect on current and possible selves in the context of 
inclusive mathematics teaching through engagement with collective poetry? 

Methods 
The work of the NICs began in January 2022, and the larger project is collecting a wide array 

of data from the NICs. We began with the initial reflective journals from members of the Tau 
University NIC (TU-NIC) and Kappa University NIC (KU-NIC) (all names are pseudonyms). 
Among other journal prompts, we asked “Describe what you think it means to teach with 
inclusive teaching practices.” Participants consisted of mathematics instructors (including 
professors of practice and tenure-track faculty members) and administrators. They were given 
the option to submit their journals anonymously. We extracted the responses to that prompt from 
all 16 of the journals and coded them using Gutiérrez’s (2002; 2009) dimensions of achievement, 
access, identity, and power. We then engaged in poetic transcription (Authors, 2022; Clarke, 
2017; Prendergast, 2009) to capture the four dimensions. We constructed transcription poetry 
from the full set of excerpts for each NIC without stratification by participant; in this way, each 
poem contained excerpts from the words of multiple participants in each NIC. This method of 
collective poetic transcription enables maintenance of participant anonymity (e.g., Thunig & 
Jones, 2020). For TU-NIC, three researchers each wrote individual poems, and then met and 
created a set of poems. For KU-NIC, one researcher wrote all of the poems.  

The collective poems for each institution were then shared with their respective NICs. We 
captured written feedback via individual Jamboards2 containing the poems (two from KU-NIC; 
nine from TU-NIC) and field notes that captured verbal responses to the TU-NIC poems during a 
regularly scheduled TU-NIC meeting. Notably, participants responded in other ways; Figure 1 
provides an example of an artistic response via drawing. Whereas the opportunities for 
multimodality of response was an intended strength of using the Jamboards to collect reflection 
data, we are still learning how to analyze non-textual and non-verbal responses and thus have 
excluded such arts-based modes of reflection from this particular analysis. We approached our 
analysis thematically, and used open coding on the written Jamboard reactions. We then met and 
discussed the codes that arose from each NIC’s reactions, collectively combined related codes, 
and came to agreement. 

The initial open codes included general reflections, connections to individual and collective 
practices (current or desired), challenges, posing questions, emotive responses, and responses to 
poetry as a form. After open coding, we engaged in axial coding, during which we saw 
connections in the data to possible selves (Markus & Nurius, 1986). Many of the NIC members 
responded to the poems in personal ways that compared the poems’ collective NIC responses to 
their own values and teaching. Upon making this connection to possible selves, we revisited the 

 
2 Scholars have used Google Jamboard as a tool for brainstorming and fostering discussion in participatory research 
projects (e.g. Huỳnh et al., 2022). This study extends such use by engaging Jamboard as a data collection tool 
focused on NIC members’ perspectives. Benefits of Jamboard include its multimodality of engagement and 
customizable environment. 
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data and coded it using current selves and possible selves as primary codes and identified 
evaluative selves as an emergent code that added nuance to our understanding of how 
stakeholders conceptualized themselves with respect to inclusive teaching. 

 

 
Figure 1. Screenshot of Jamboard response from a NIC participant. 

Findings 
NIC members engaged in reflections about current and possible selves through their 

interaction with the poems via the Jamboard platform. We identified three primary shapes taken 
by the NIC members’ reflections—that of the current self, that of the possible self, or that which 
uses the possible self to evaluate the current self. Below, we detail these shapes, recognizing that 
all selves are fluid and thus that these reflections represent the specific selves relevant to each 
participant at the moment in time in which this activity took place (Markus & Nurius, 1986). 

Reflections on a Current Self  
Reflections on a current self are those in which the individual engaged with the poetry in a 

way that expressed an awareness of practices that they currently enact in their role as a 
mathematics instructor or administrator, or asserted a value that they presently hold related to 
teaching inclusively. Because these poems were constructed through the process of poetic 
transcription, seeing their colleagues’ and their own words about what inclusive teaching can 
entail prompted moments of resonance or reflection, either with a value or a concrete action, that 
they currently incorporate into their professional practice. We detail some instances of these 
reflections below. 

Many instances of reflections on current selves were provided in the form of value statements 
(Seah, 2002), in which an individual connected with the poetry by affirming a value about 
mathematics education which they read (either explicitly or implicitly) from the poem, or 
expanding upon the content of the poetry to profess a value which they presently hold in relation 
to inclusive teaching. For example, in response to the KU poem on Access, Tiersa wrote, “I think 
it’s important to set clear policies, but I want those clear policies to be flexible policies.” The 
poem led them to identify a component of inclusivity that they value: clear policies that maintain 
a degree of flexibility. In a particularly notable quotation, Connor reflected on the TU 
Achievement poem by writing that the poem’s frequent mention of grading was a “damning 
perspective,” as “learning is more important than grading.” This reflection conveys a relativistic 
value presently held by Connor. In response to the lines, It is extremely important to think about 
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policies: // systematic differences in outcomes, Skylar agreed and elaborated that this value is 
“why we have decided to have administrators as part of our NIC membership, because we 
wanted to examine and change this systemically.” In this way, Skylar not only identified a value 
held by their current self, but connected that current value to a decision.  

In some cases, the identification of a resonant value for inclusive teaching was accompanied 
by a wondering or an experience also embodied by their current self. Kayla, in response to the 
TU Achievement poem, wrote “understanding experience and barriers is super important—how 
can we possibly make it equitable?” This statement conveys that Kayla’s current self values 
“understanding experience and barriers,” and their current self struggles with how we on a 
broader scale might make it equitable. Although they did not explicitly define we or it, they 
appear to allude to some difficulty or tension associated with the value held by the current self. 
We see this also from Natalie: they state that “knowing [their] students as individuals is great. 
But it can become difficult whenever [they] have large class sizes.” With this response to the TU 
Identity poem, they have both identified a value held and a barrier faced by their current self. In 
both of these cases, the ability of their current self to enact a value they hold about mathematics 
education is tempered by their perception of barriers or lack of agency in achieving it. 

Other instances of reflections on current selves took place in the form of an individual 
directly bringing into their reflection a practice that they currently embody or an experience of 
their current self which has relevance to the poem. For example, Skylar notes that they “keep 
trying to build more flexibility into [their] syllabus” while simultaneously juggling continual 
student requests for “extra grace,” a reflection which they wrote next to the lines Offering 
exceptions in some cases– \\ a little extra grace? in the KU Access poem. The question posed by 
the poem prompted Skylar to reflect on how their efforts to make their classroom—and 
syllabus—more inclusive do not appear to mitigate the experience of receiving requests for 
“extra grace” from students. 

Reflections on a Possible Self 
Reflections on a possible self included those in which the individual imagined or wondered 

about alternative versions of themselves as an instructor. For instance, some individuals engaged 
with the poems by contemplating new practices they might try out as instructors who get to know 
their students despite large class sizes (KU, Skylar) or as “flexible” instructors through the 
policies they create (KU, Tiersa). Markus and Nurius (1986) also consider past selves—who one 
was—as a form of possible selves and is another way in which one individual reflected on the 
poetry. Of the KU poem on Identity, Tiersa wrote: “I feel some shame at the way that I have 
failed in the past.”  

Note that these reflections on the possible self sometimes occurred concurrently with 
reflections on the current self. For example, Taylor reflected on the TU poem on Access: 
“Structure is important for students in the classroom and this poem makes me see that I need 
structure too. Note: annotate my stuff for students.” Taylor first reflects on their value (“structure 
is important”) and follows up with a new idea for a practice (“annotate my stuff for students”) in 
alignment with a possible self (a more structured or organized instructor). 

Individuals also connected with the poetry by describing certain teaching practices as either 
desirable or incompatible with their current self or practices, or as ones they imagined having 
difficulty attempting to enact or feeling afraid to enact. For instance, Ethan reacted to the TU 
poem on Identity by describing a way of engaging with students as incompatible with their 
personality: “I’m not a social person. It’s uncomfortable for me when students are friendly on a 
personal level. I don’t know if I can extend that sort of thing without it seeming fake.” Abel 
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reacted to the line “balancing grading policies” in the TU poem on Achievement by revealing a 
feared possible self; Abel wrote, “This is one of my fears, being fair.” 

An ideal self was described by multiple individuals as they engaged with the poetry. In 
response to the lines Everyone // with different incoming backgrounds // should feel like they can 
be successful in the class in the KU poem on Achievement, Skylar identified a desired goal or 
motivation for instruction: “YES, I really resonate with this goal. It’s challenging, but definitely 
my aim.” As these were collective poems, sometimes individuals also described an ideal culture 
in which each of its members share similar notions of self. For instance, in response to the KU 
poem on Power, both Skylar and Tiersa expressed their desire for feedback from other 
instructors and a culture of observation within the department. In this way, Skylar and Tiersa 
reflected on a personal ideal self—the collegial practitioner self—as well as an alternative 
community in which each of its members embodied this ideal self.  

Evaluative Selves 
Evaluative selves are those which exist at a particular intersection of current and possible 

selves. They took the form of NIC members using notions of a possible self to evaluate the 
current self, and thus their current values and practices. Markus and Nurius (1986) identify this 
evaluative bridge between current and possible selves in their work, noting that possible selves 
provide “a context of additional meaning for the individual’s current behavior” (p. 955). In the 
context of these poetic reflections, we observed participants constructing bridges between 
possible and current selves by leveraging a possible self to evaluate the actions or values of their 
current self with regards to inclusive teaching.  

For example, we consider Skylar’s response to the following lines from the KU Identity 
poem: Being attentive // in the problems that I write; // Embedding // culturally relevant 
examples. Skylar highlighted these lines and wrote next to them that they “like this idea, and 
think it’s something [they] need to work on.” In the same body of text, Skylar reflected on efforts 
they currently make to incorporate examples that are specific to the KU context, but expressed 
concern that those examples may still be “exclusionary.” Skylar considered two aspects of self—
a possible self who is intentional about problem-writing and uses culturally relevant examples, 
and a current self which tries but may or may not be effectively incorporating these practices. 
This is a case in which the possible self functioned as an ideal self, utilized as a goal toward 
which the current self could work. We also saw one example in which a past self was used to 
evaluate a current self. In reflecting on the TU Achievement poem, Ethan wrote that they 
recognized from their own reflections the phrase Hoping // for no disparaging trends // with pass 
rates or grades and indicated that they “still really want to know what data from [their] own 
class would say.” By signifying that this experience of the past self remains resonant, a bridge is 
built through which Ethan frames their current curiosity as something which continues to have 
value to their current self.   

NIC members also engaged in evaluative reflections through the questions they asked in 
response to their reading of the poetry. These questions called their current self into a place of 
judgment, without necessarily making a conclusive evaluation of the current self. We view these 
as equally productive; while they may not have expressed an additional insight into their current 
values and practices by understanding them through a comparative lens with a possible self, the 
asking of these questions created space for such evaluation. Tiersa reflected on the KU Identity 
poem by writing the following questions: “Do I always use the right language? Can students less 
familiar with English understand my problems?” Implicit in these questions is a possible self 
which does use the “right language” and does construct problems understandable by students 

26th Annual Conference on Research in Undergraduate Mathematics Education 228



who are less familiar with English. Also implicit in the nature of questioning is the fact that 
Tiersa did not equate these attributes with their current self, but rather acknowledged a gap 
between their current self and this possible self in the context of inclusive teaching. We see 
something similar from Abel, who reflects on the line Holding \\ to high standards by writing 
“Are my policies applicable and fair to all?” In asking this question, Abel called their current self 
into a place of judgment—there exists some ideal possible self who does have policies which are 
fair to all, but in asking whether their policies do presently have this quality, they invite into their 
reflection a comparison of their current self to this ideal possible self.  

Conclusion & Implications 
Engaging with poetry afforded stakeholders the opportunity to see, imagine, and evaluate 

themselves with respect to inclusive teaching along Gutiérrez’s (2009) dimensions of equity. By 
seeing the current self within the poems presented to NIC members, individuals felt validation 
regarding their values, beliefs, and practices surrounding inclusive teaching. Further, imagining 
possible selves offered individuals the opportunity to grapple with tensions and consider 
alternative ways of being as practitioners. Some participants also evaluated their current self 
through comparison to these possible selves, prompting consideration of who an ideal inclusive 
instructor is and how to become one. This reflection was perhaps a preliminary step toward what 
Ibarra (1999) describes as trying on a provisional self—a self of experimentation, a self that one 
tries on after observation of and engagement with role models (i.e., people with qualities that 
align with their ideal self). We found that this dialogue between the current and possible self 
spring boarded individuals’ reflections beyond identifying similar (or dissimilar) values or 
questioning the feasibility of certain practices and into a problem space for potential 
experimentation with the current self. 

Notably, we also found that the poetry engagement made an impact on some individuals’ 
reflections in unique ways. Consider Taylor’s critiques of the TU poem on Access alongside 
their empathetic connection to students: 

Despite not enjoying the poem as poetry, it did get me to see that doing these things is 
"easy", but the issue is getting students to make use of our actions. Thank you…If this 
poem was more structured, more clear, then I wouldn’t have made connections for myself 
and they would have less meaning to me… Structure is important for students in the 
classroom and this poem makes me see that I need structure too. 

Moreover, since this was collective poetry, individuals engaged with a variety of different ideas 
and insights about inclusive teaching. This perhaps gave them a more diverse repertoire of 
possible selves to construct regarding inclusive teaching. Some individuals expressed that 
reading collective poetry meant developing a closer understanding of the values of other NIC 
members, which could perhaps create space for additional community reflection. 

Poetic transcription as a critical method highlights not just words or phrases, but also 
emotions and emphases. Through engaging with collective poetry, participants are invited to 
reflect on and discuss the ideas and feelings of fellow NIC members—and themselves—without 
placing peers in a vulnerable position. Future work could explore the impact of such reflections 
on the beliefs, values, and practices of undergraduate mathematics stakeholders. Skylar wrote 
that the process of reflecting on poetry was “a lot more impactful than [they] expected” and that 
they “got more and new insight into [their] colleagues’ perspectives on inclusive teaching and 
also [their] own.” This insight through novel methodology holds promise for extending our 
knowledge of how undergraduate mathematics stakeholders see, imagine, and evaluate 
themselves regarding inclusive teaching practices and values.  
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Analogical Quotient Structure Sense in Abstract Algebra: An Expansion of University Structure 
Sense  

 
 Michael D. Hicks Kyle Flanagan 
 Virginia Tech Virginia Tech 

Despite existing research describing students’ understanding of group concepts, little research 
in undergraduate mathematics education has attended to students’ understanding of ring 
concepts. In this paper, we present an analysis of four students engaged in task-based interviews 
that provided insights into their understanding of quotient ring when constructed as an analogy 
to quotient group. Using university structure sense (Novotná & Hoch, 2008) as a foundation, we 
propose an expansion of structure sense to include attention to various structures (e.g., 
subgroups and quotient groups), and attention to analogous structure across different contexts 
(e.g., attending to quotient structure across group theory and ring theory.) Findings suggest that 
while students uniformly attended to similar structural components when creating the concept of 
quotient ring, there was variation in the depth of their reasoning about why certain structures 
exist. 

Keywords: Abstract algebra, Analogical reasoning, Quotient groups, Structure sense 

Attention to structure is a key component for understanding advanced mathematical 
concepts. Various studies have investigated students’ attention to structure in high school 
algebra, linear algebra, and abstract algebra. Efforts have also been made to parse students’ 
attention to structure for practical applications to teaching. One approach to parsing students’ 
understanding of and attention to structure is structure sense (Linchevski & Livneh, 1999), which 
refers to the ability to recognize the same structure flexibly and creatively across various 
contexts. Although structure sense was originally defined in the context of algebraic equation 
solving, Novotná and Hoch (2008) extended structure sense to also include university (or 
abstract) algebra. Specifically, they identified two categories of structure sense: (1) structure 
sense of elements within a set and their behavior under a binary operation (e.g., understanding 
closure), and (2) properties of a binary operation (e.g., understanding the relationship between 
inverses and identities).  

The current undergraduate mathematics education literature emphasizes attention to basic 
aspects of algebraic structure in advanced mathematics, most often with a focus on central 
algebraic objects (such as group), and the operations associated with them. For instance, Serbin 
(2023) identified three ways in which secondary pre-service teachers reason about identities and 
found that a unified understanding of identity could lead to productive reasoning about identities 
in more abstract contexts. Cook (2014) described students’ emerging understanding of ring-
theoretic concepts of unit and zero-divisor. Such research has provided a rich understanding of 
students’ sense of basic structure. However, structure sense has not been explicated in the 
literature for attention to structure in abstract algebra beyond groups, although examples of 
implicit attention to a wider variety of structure senses exist. For example, Melhuish et al. (2020) 
presented a case study investigating students’ unified understandings of the function and (group) 
homomorphism concepts and described a variety of understandings, ranging from students who 
could not recognize homomorphisms as functions at all, to students who could explicitly 
leverage homomorphisms as functions when approaching tasks.  
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Given that several important structures exist within abstract algebra (Dubinsky et al., 1994), 
there is a need to explicate different types of structure sense. However, being that similar 
structures are also present in many areas across the advanced mathematical curricula (e.g., sub-
structures in group theory, ring theory, and topology), there is also a need to describe students’ 
sense of structure across different contexts. In this paper, we expand even further upon the 
proposed extension by Novotná and Hoch of structure sense to abstract algebra to also include 
structure sense for a wider variety of structures, as well as introducing a mechanism for 
describing structure sense across contexts. To elucidate this expansion, we pose the following 
research question: What are four students’ sense of structure associated with quotient groups 
and quotient rings? 

Theoretical Framing 

Expanding on Structure Sense 
To describe students’ structure sense, we adopt Novotná and Hoch’s (2008) structure sense 

for university (i.e., abstract) algebra as being able to recognize sets of elements together with 
binary operations and their properties in a range of familiar and non-familiar structures. 
However, our expansion of structure sense also includes recognizing broader structures found 
across the advanced mathematics context. For instance, structure sense for ‘subgroups’ may 
include the ability to coordinate a subset of a group with the same operation as the parent group. 
We call the original structure sense in abstract algebra (as discussed by Novotná and Hoch) a 
fundamental structure sense in reference to it being the structure sense for a fundamental object 
of study in advanced mathematics, such as a group, ring, or topological space. Thus, structure 
sense need not be constrained to a set and a binary operation, but may be generalized to a set of 
elements together with some collection of properties that define an object (i.e., a topological 
space is a set together with a topology defined on the set). In this study, we attended specifically 
to quotient structure sense. Table 1 below summarizes the two types of standard structure senses 
to be discussed in this paper. 

 
As it is central to this paper, we briefly expound upon quotient structure sense. Quotient 

structures possess a rich and complex structure that involves multiple levels of coordination to 
grasp in full. For example, there must be a coordination of a parent structure with a particular 
sub-structure through which an equivalence relation is defined. In the context of abstract algebra, 
quotient groups and rings require the identification of well-defined binary operations on the 
quotient structure, thus allowing for the quotient structure to itself be described as an example of 
the central object of study (e.g., a quotient group is itself a group.) 

Table 1. Types of Structure Sense in Advanced Mathematics 

Fundamental 
Structure Sense 

Recognition of properties inherent to 
the main object of study (e.g., groups 
in group theory) 

Example: Recognizing the identity element in the 
dihedral group of a regular polygon. 
 

Quotient 
Structure Sense 

Recognizing properties required to 
formulate a quotient of a structure, or 
properties that follow from the 
definition. 

Example: Understanding that the role of a normal 
subgroup is to allow for well-defined binary 
operations defined on cosets that respects the 
original group operation. 

26th Annual Conference on Research in Undergraduate Mathematics Education 233



Analogical Structure Sense 
To conceptualize reasoning across different contexts, we view students’ comparative activity 

across contexts as a form of analogical reasoning. We draw upon the Analogical Reasoning in 
Mathematics (ARM) framework for investigating students’ analogical reasoning (Hicks, 2020) 
which adapts several components of Gentner’s (1983) Structure-Mapping Theory to the context 
of mathematics while also respecting students’ potentially idiosyncratic forms of analogical 
reasoning. Within this framework, analogies are determined by mapping content from a source 
domain to a target domain. Unlike typical frameworks for analogical reasoning, ARM parses 
students’ reasoning into individual analogical activities, thus allowing for a close examination of 
one part of a student’s analogy (known as an instance of analogical reasoning), followed by a 
reconstitution of the instances to analyze the student’s analogy as a whole. In this way, even if 
the final result of two students’ analogies appear to be the same, their analogies can be 
distinguished by investigating how the analogy was created.  

We introduce analogical structure sense to parse students’ attention to structure during 
analogical reasoning across different domains. We define analogical structure sense as the ability 
to either recognize or create similar structure across two distinct domains. In other words, it is 
the ability to either (1) reason about which aspects of a known pair of structures are relevant 
when comparing what is similar and different, or (2) reason about which aspects of a structure in 
the source domain are crucial to the creation and development of an analogous structure in the 
target and which aspects of the source are superfluous. Analogical structure sense can be 
explicated across widely different domains, suggesting that a certain level of abstraction may be 
required in some cases, such as comparing the subgroup concept and the concept of topological 
subspace (Hicks, Flanagan & Park, 2022; see also English & Sharry, 1996). In contrast, we refer 
to a sense of structure as standard when it refers to only one domain. 

To a degree, standard structure sense already appeals to basic forms of analogical reasoning: 
a student comparing two examples of groups to identify how they are similar in terms of their 
structure is reasoning by analogy. When viewed in this way, we recognize that analogical 
structure sense can be embedded within the original definition. However, for the purposes of this 
paper, we consider analogical structure in the case where the fundamental structure senses are 
different between the source and target, such as between groups and rings. Thus, analogical 
structure sense captures a wider range of structure senses than are possible with the standard 
definition alone. Table 2 summarizes the two types of analogical structure sense explored in this 
study. 

 

Table 2. Types of Analogical Structure Sense in Advanced Mathematics 

Fundamental 
Analogical 
Structure Sense 

Recognizing (or creating) 
similar/different properties inherent to the 
main objects of study across two domains 
(e.g., groups and rings).  

Example: Articulating that inverses are not 
necessarily required for multiplication in 
rings in contrast to inverses always being 
required for groups operations. 
 

Analogical 
Quotient Structure 
Sense 

Recognizing (or creating) 
similar/different properties inherent to 
quotient structures across two domains. 

Example: Considering the need for both 
additive and multiplicative cosets when 
defining quotient rings by analogy with 
quotient groups. 
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Methods 
The data for this study was collected as part of a larger project investigating students’ 

analogical reasoning in abstract algebra. In the Fall of 2019 and the Spring of 2020, emails were 
sent out to students requesting participation in the study. Four students responded to the request: 
three advanced undergraduate math majors named Ellen, Nathan, and Brandon (all pseudonyms), 
and one graduate student in mathematics education named Andrew. Each student was then asked 
to participate in a series of 5 clinical task-based interviews (Goldin, 2000), with each interview 
lasting between 60-90 minutes. Each of the interviews was conducted by the first author, who 
will be referred to throughout as the interviewer. In this paper, we focus our attention on the 
interview associated with quotient rings in which students were posed the following task: Make a 
conjecture for a structure in ring theory that is analogous to quotient groups in group theory. In 
addition to this task, students were also asked several questions inquiring into their construction, 
as well as provided several tasks in which they leveraged their constructed analogue to reason 
about relevant content, such as generating examples or conjecturing theorems related to the 
structure. 

The analysis of the data occurred in two phases: (1) an analysis of the students’ standard 
structure sense for quotient group, and (2) an analysis of the students’ analogical structure sense 
of quotient structure. The goal was to analyze the students’ evoked structure sense, meaning we 
do not claim that these interviews revealed the full range of the students’ structure senses. The 
video and transcripts of the initial interview were reviewed multiple times, and notes were made 
whenever any evidence of standard structure sense was present. For example, if the student 
explicitly mentioned the need for a normal subgroup to describe a quotient group, then evidence 
of standard structure sense was present. Profiles for each student’s senses of structure (totaling 4 
profiles) were then written, thus providing a holistic summary of the key points that the student 
attended to when recalling (or reviewing) the definition of the structure.  

To analyze the students’ analogical structure sense, the ARM framework was first used to 
code the students’ instances of analogical reasoning while comparing and creating structures in 
each of the interviews 2-5. Each instance was then scrutinized for evidence of analogical 
structure sense, meaning whether or not there was evidence that they were reasoning about why 
certain features of the source should be mapped to the target when comparing or creating 
structures. In addition, these profiles included descriptions of the concepts that the students 
attended to while creating the analogous structures. Identifying these concepts often assisted with 
interpreting the students’ analogical reasoning, and these differences revealed a variation in how 
the students were reasoning by analogy. Following this coding process, a profile was written for 
each student’s sense of analogical structure associated with quotient ring (totaling 4 more 
profiles overall).  

Findings 
The four students displayed a range of analogical structure sense, from superficial grasp of 

the underlying analogous structures to a developing sense of the analogous structure for 
describing quotient rings. In the section that follows, we describe key holistic observations made 
about the students’ attention to analogical structure for quotient structure. We present these 
findings in two sections: (1) describing what structures students considered to be relevant to their 
analogical construction of a quotient structure in ring theory, and (2) describing the variation of 
depth of the students’ reasoning about quotient structure. 
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Attention to Existence of Analogical Structure: Normal Subrings and Cosets 
All students acknowledged that a “normal subring” should be present when constructing the 

ring-theoretic analogy to quotient groups. Rather than immediately copy over the definition of 
normal subgroup to the ring context, each participant reflected upon what differences might be 
present when considering the definition of a normal subring. For example, Figure 1 below 
exhibits Andrew’s constructed definition of a normal subring. Here, Andrew is attempting to 
reconcile the property of normality for subgroups as a property within the context of rings.  
 

 
Figure 1. Andrew’s definition of a “normal subring.” 

In the above example, Andrew is exhibiting two important features: (a) he is describing 
normality as a set of cosets being equivalent, and (b) he is appealing to the existence of two 
operations by expressing equivalence between additive and multiplicative cosets. This suggests 
that Andrew’s sense of analogical structure included the existence of cosets and the manner in 
which binary operations were defined on those cosets. Such observations were present across 
each of the other students as well, meaning that all of the participants uniformly attended to the 
existence of normal subring, cosets, and adapting binary operations to the quotient ring context 
in some way. 

Although analogical inferences related to the existence of structure across the contexts of 
group and ring theory may appear superficial on the surface, we contend that our participants’ 
attention to the existence of these structures indicated a productive sense of analogical structure. 
Furthermore, as we discuss in the next section, the attention to the existence of analogous 
structure proved to be fertile ground for reasoning deeply about the meaning of those structures. 

Variation in Students’ Depth of Reasoning: Attending to Meaning of Structure 
The students’ sense of analogical structure not only entailed the existence of certain 

components related to quotient structure, but also included the underlying reasons for the 
existence of those components. However, the depth of reasoning varied from one student to 
another, thus distinguishing students’ analogical structure senses in our analysis. Although all 
students identified the existence of a normal subring, only some students also investigated further 
by inquiring into why the normal subring concept was needed at all. In particular, Brandon’s 
proposed description for the structure of a quotient ring was focused on describing a mapping 
from an element to the equivalence class of the element. Based upon evidence from the initial 
group interview, Brandon was presumably referring to an analogue for the canonical 
homomorphism defined for groups wherein every element in the domain is mapped to its coset in 
the quotient group. When asked what constituted normality in the context of his ring-theoretic 
analogue for quotient groups, Brandon responded: “I really only remember why we did it for 
groups.” Although he was unable to expound further, he explained that if !′ was normal, then the 
quotient !/!′ would be a ring. Thus, Brandon’s sense of analogical structure included attention 
to a quotient structure in fact being an example of the fundamental structure, and thus the normal 
subring would have to be carefully selected to make this happen. 
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While Brandon asserted that a normal subring was needed to form a quotient ring, he 
struggled to provide a description of normality. However, reasoning about the definition of 
normality for rings appeared in other ways across the students. In particular, each student 
attended to the need for adapting multiple binary operations to the ring-theoretic analogy for 
quotient groups. In general, the students made the following observations about binary 
operations and the quotient ring structure: (1) describing what coset operations look like, (2) 
determining how the existence of two binary operation affected the normal subring concept. 
Initially, Andrew focused his attention on just one operation at a time. He stated: 

 
What I would do, is I would literally just add the second operation to both of these. I’ll do 
it in red what I have. I should probably make it clear though… This [digitally points to x 
+ H = y + H] is a plus operation, and… [writes “x*H = y*H”].  
 

He then attempted to reconcile the meaning of normality when using the multiplicative 
operation: “Oh man, this is gonna be trickier. Because would they be the same? That’s harder, 
let’s think about this. I feel like this would be so hard to make happen [digitally points to x*H = 
y*H].” Returning to Andrew’s construction of normal subring in Figure 1 above, we see this 
attention to multiple operations on display as Andrew eventually conjectured that the desired 
property for a normal subring was that $ + & = $ ∗ & and & + $ = & ∗ $ 

In contrast to Brandon and Andrew, Ellen did not attempt to describe the meaning of 
normality, nor did she ever formally define a coset in the context of rings. However, Ellen spent 
significant time reflecting upon how operations would be defined on cosets, thus attending to the 
need for a set of cosets to form a ring. She proposed the description seen in Figure 2 below. Of 
particular note was Ellen’s attention to a “general” coset of the form )* as seen in the figure. 
Attention to this general coset included reasoning about a general coset operation, suggesting 
that Ellen was attending to more than just two operations for the specific context of rings. When 
asked to explain, Ellen stated: “I’m saying what operation specifically does this need to work for. 
For rings it’s addition and multiplication. So, if you use addition, will that work, and if you use 
multiplication, will that work.”  

 

 
Figure 2. Ellen’s proposed quotient ring definition and coset operations. 
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Summary of Findings 
The findings presented above reveal that although all students in this study possessed a 

strong sense of analogical structure for the existence of structural analogies between quotient 
group and ring, their sense of analogical structure differed greatly in how they attended to the 
meaning of those structural analogies. Specifically, all students recognized ring-theoretic 
analogies to normal subgroups, cosets, and the role of binary operations within quotient groups. 
However, the students’ sense of underlying meaning of those structures ranged from deep 
considerations about the purpose and definition of the structure, to a complete lack of attention to 
purpose or definition at all. 

Discussion and Implications 
Our proposed expansion of structure sense, to accommodate a wider variety of structures as 

well as structures across different contexts, allows for deeper explorations of students’ attention 
to advanced mathematical structures. In this study, we elucidated this framework by 
investigating students’ understanding of a particularly difficult concept: quotient ring. Findings 
indicate that students do indeed productively attend to several aspects of analogical structure 
when developing a ring-theoretic analogy to quotient groups, including attention to the need for a 
“normal subring,” and attention to adapting multiple binary operations to the ring context. 
Overall, while all students were successfully able to make headway into describing a ring-
theoretic analogy to quotient groups by spontaneously identifying the so-called “normal subring” 
concept, the notion of constructing a ring-theoretic analogy to normal subgroups proved to be a 
difficult task for students.  

In contrast to structural similarity, semantic similarity (Holyoak & Thagard, 1989) refers to 
the degree of similarity between the meanings of objects within a domain rather than the global 
similarity of the structures as a whole. By investigating students’ sense of analogical structure, 
we discovered that our participants uniformly attended to structural similarity, but varied in 
terms of their attention to semantic similarity. Although high semantic similarity exists between 
structures in group and ring theory due to their historical development (see Hausberger, 2018), 
only a subset of our participants spontaneously inquired into potential semantic similarities, 
focusing instead on structural similarity.  

Our findings warrant suggestions for teaching abstract algebra concepts as well as 
considerations about the guided reinvention (Gravemeijer, 1999) of ring-theoretic concepts by 
analogy. The existence of a “normal subring” appeared to be a natural first step for students’ 
construction of the quotient ring concept; however, their understanding of the analogous role that 
a normal subring should play appeared to be impeded by their understanding of the normal 
subgroup concept. Thus, our investigation of students’ analogical structure sense suggests that, if 
analogies are to be used during instruction to compare quotient groups and rings, then there is a 
need to not only emphasize the coordination of structures on their own (e.g., describing quotient 
groups as a group together with a normal subgroup), but to also emphasize the conceptual 
underpinnings as to why normality is an important component of establishing quotient groups. 
We assert that this approach could establish an effective first step toward developing curricula 
for the guided reinvention of the concept of ideal. Furthermore, effectively leveraging of student 
analogical reasoning could promote productive instances of backward transfer (Hohensee, 
Willoughby & Gartland, 2022) in which students’ understanding of quotient group and normal 
subgroup could be enriched by attending to the underlying relationship between quotient rings 
and ideals and making comparisons between the domains. Future research can investigate these 
matters in greater detail. 
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This research design uses Approximations of Practice (AoPs), simulated practices of responsive 
pedagogy for prospective teachers to respond to, which lead them to make relevant connections 
between advanced mathematics courses and teaching practices. Data were collected from 
students in a Master's level Mathematics for Teachers course. The curriculum and interviews 
focused on three mathematical content domains: probability, algebra, and analysis. The AoPs 
were written into a semi-structured interview to demonstrate real-world examples of how 
teachers may see this material arise in the classroom. The AoPs prompted the participants to 
interpret and respond to student thinking and structure whole class discussions about students’ 
strategies. Their responses were analyzed using Wasserman’s (2022) pedagogical mathematical 
practices (PMPs). We examined each response to the AoPs to identify the participants’ PMPs. 

Keywords: Pedagogical Mathematical Practices, Advanced Math, Approximations of Practice 
 

Learning advanced mathematics is an essential part of teachers’ preparation, as it can help 
them understand relations among mathematical concepts and refine their mathematical practices, 
which can inform various pedagogical practices (e.g., Baldinger, 2018; Serbin, 2021; Zazkis & 
Kontorovich, 2016; Zazkis & Marmur, 2018; Zbiek & Heid, 2018). The Conference Board of the 
Mathematical Sciences (2012) recommended that there be opportunities in mathematics courses 
for prospective teachers to make explicit connections between advanced mathematics and the 
teaching of secondary mathematics. However, these connections between the curricula and 
teaching are often left unstated (Wasserman & Weber, 2017), so it is essential to make them 
more explicit. Researchers and educators have made such explicit connections between advanced 
and secondary content in their innovative curricula (e.g., Álvarez et al., 2020; Burroughs et al., 
2023; Fukawa-Connelly et al., 2020; Goar & Lai, 2022; Wasserman et al., 2017).   

Following these efforts, we designed a Master’s-level Mathematics for Teachers course on 
connections from abstract algebra, real analysis, and probability to the teaching and learning of 
secondary / college mathematics. In this course, we implemented Approximations of Practice 
(AoPs; Grossman et al., 2009), in which the students, who were preservice or in-service teachers, 
simulated teaching practices of noticing students' mathematical thinking (Jacobs et al., 2010) and 
orchestrating class discussions about students' ideas (Smith & Stein, 2018). AoPs are productive 
in supporting prospective teachers in using their knowledge of advanced mathematics in their 
teaching practices (e.g., Álvarez et al., 2020; Burroughs et al., 2023; Serbin, 2021). AoPs can 
also be productive for supporting prospective teachers in connecting the mathematical practices 
developed in their mathematics courses to their teaching. Wasserman (2022) intersected 
mathematical practices (Rasmussen et al., 2005) with pedagogical practices (National Council of 
Teachers of Mathematics, NCTM, 2014) to develop the theoretical construct of Pedagogical 
Mathematical Practices (PMPs), which are the disciplinary practices common to mathematicians 
and teachers. There is a need for researchers to identify PMPs that can be enacted in the 
classroom and AoPs. We address this need with this research question: What PMPs do graduate 
prospective and in-service teachers engage in as they work on AoPs? 
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Literature Review 
AoPs are a valuable tool for engaging prospective teachers in pedagogical situations before 

entering the classroom. AoPs are “opportunities to engage in practices that are more or less 
proximal to the practices of a profession” (Grossman et al., 2009, p. 2056). AoPs can be enacted 
by teachers acting out classroom scenarios, interacting with simulated students in mixed reality 
simulations, interpreting written student work, or writing scripts for a class scenario. AoPs tend 
to require teachers to simulate a response to student thinking using pedagogical practices, such as 
noticing students’ mathematical thinking (Jacobs et al., 2010), responding to hypothetical class 
situations (Zazkis & Marmur, 2018), and scripting discussions (e.g., Zazkis et al., 2013). 

Instructors can use AoPs in their mathematics content courses and teaching methods courses 
for future teachers. For instance, Tyminski et al. (2014) used AoPs to support prospective 
elementary teachers’ practice of organizing discussions around the different students’ strategies. 
Campbell and Elliott (2015) created an AoP simulating a class discussion to define trigonometric 
ratios in a high school geometry class by introducing a problematic mathematical situation. 
These studies illustrate how engaging prospective teachers in AoPs can give them experience 
using certain pedagogical practices before they teach. 

AoPs can bridge teachers’ learning of advanced mathematics to their teaching (e.g., Álvarez 
et al., 2022; Burroughs et al., 2023; Lischka et al., 2021). Álvarez et al. (2020) suggested that 
teaching is a form of applied mathematics, so teaching applications should be incorporated into 
undergraduate mathematics courses’ curricula, just as engineering and physics applications often 
are. Other researchers have used scripting tasks as simulations of practice to help students 
develop productive mathematical understandings (e.g., Marmur & Zazkis, 2022; Zazkis & Cook, 
2018) and make connections between advanced mathematics and the teaching of secondary 
mathematics (e.g., Fukawa-Connelly et al., 2020; Serbin & Bae, 2023; Wasserman et al., 2017). 
Other researchers have used noticing tasks (Jacobs et al., 2010) to connect advanced and 
secondary mathematics. For example, Serbin (2021) demonstrated how prospective teachers used 
their abstract algebra knowledge as they interpreted and decided how to respond to hypothetical 
students’ mathematical thinking in noticing tasks. Overall, researchers have documented the 
value of AoPs when embedded in the study of advanced mathematical topics. In this study, we 
further contribute to the research based on AoPs by analyzing the PMPs of graduate students, 
who are prospective or in-service mathematics teachers, as they engage in AoPs. 

 
Theoretical Background 

“Teaching relies on more than just knowledge” (Wasserman, 2022, p. 29); it also relies on 
practices. Just as researchers have explicated the intersection of mathematical knowledge and 
pedagogical knowledge (e.g., Shulman, 1987), Wasserman (2022) conceptualized the construct 
of Pedagogical Mathematical Practices (PMPs) as an intersection of mathematics and pedagogy 
with respect to practice. Practices of the discipline are the “regular actions, activities, habits, 
behaviors, processes, norms, etc. that one engages in while ‘doing’ that activity” (Wasserman, 
2022, p. 5). Wasserman explored this domain of practice through the intersectional lens of 
mathematical practices (MPs) and pedagogical practices (PPs). MPs are the practices or 
mathematical habits of mind (Cuoco et al., 1996) that mathematicians engage in, such as 
identifying patterns, proving, conjecturing, problem-solving, and defining (e.g., Heid et al., 2015;  
Polya, 1945; Rasmussen et al., 2005). PPs are the practices teachers engage in as they teach 
mathematics, such as those outlined by NCTM (2014) and Hunter et al. (2016). The intersection 
of MPs and PPs are PMPs: “the regular actions, activities, habits, behaviors, processes, norms, 
etc., that are productive both as a mathematical practice and as a pedagogical practice for  
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teaching mathematics” (Wasserman, 2022, p. 30). Examples include: 
Acknowledge and revisit assumptions and mathematical limitations; consider and use 
boundary cases to test and illustrate mathematical ideas; expose logic as underpinning 
mathematical interpretation; use simpler objects to study more complex objects; avoid 
giving rules without accompanying mathematical explanations; and seek out and use 
multiple explanations. (p. 30) 

In addition to the utility of this construct for analyzing mathematics teachers’ practices, the PMP 
construct also has useful implications for mathematics teacher preparation. PMPs have the 
potential for integrating pedagogy into advanced mathematics courses and for integrating 
advanced mathematics into pedagogy methods courses. This can contribute to preservice and in-
service mathematics teachers perceiving more connections between advanced mathematics and 
the teaching of school mathematics. Given the need for researchers and mathematics teacher 
educators to support teachers in making such meaningful connections between advanced 
mathematics and the teaching of school mathematics, there is a need for researchers to identify 
additional PMPs and explore the contexts in which teachers use them. Our study contributes to 
this need through our identification of PMPs used by teachers as they engage in AoPs. 
 

Methods  
We recruited six participants from a large public research university in the southern US,  

Jessica, Roberto, Amy, Selena, Linda, and Eduardo (pseudonyms), who were enrolled in an MS 
in Mathematics program with a Math Education concentration. Jessica and Roberto were in-
service teachers with multiple years of mathematics teaching experience. The others were 
preservice teachers who intended to teach high school or college. All participants had recently 
completed a Master’s-level Mathematics for Teaching course, which addressed content from 
abstract algebra, real analysis, and probability with connections to the teaching of secondary/ 
college mathematics. The course instructors often assigned AoPs in class work and assignments. 

The second and third authors conducted semi-structured task-based clinical interviews 
(Drever, 1995; Clement, 2000) with each participant two weeks after they completed their 
course. The interviews were conducted over Zoom and were recorded and transcribed for 
retrospective analysis. The participants performed the AoPs shown in Figure 1. These tasks were 
designed to simulate the practices of noticing/ attending to, interpreting, and deciding how to 
respond to students’ mathematical thinking and leading class discussions about students’ work. 
The four AoPs were each related to the mathematical content that the participants had learned 
during the Mathematics for Teachers course: conditional probability, the differentiability of 
functions, the zero-product property, and inverse functions. We designed the interview tasks to 
elicit evidence of the participants’ PMPs used in their responses. We asked the participants 
questions related to what they noticed in the students’ responses, what they interpreted about the 
students’ understandings, how they would respond to the students as their teacher, and how they 
would facilitate a class discussion about the students’ approaches. The first and second authors 
performed inductive coding on the interview transcripts (Miles et al., 2014), in which we open-
coded PMPs that were evident in the responses to the AoP tasks. A participant’s response was 
indicative of a PMP when it satisfied Wasserman’s (2022) criteria: the practice was common to 
mathematicians and mathematics teachers. We used Wasserman’s (2022; 2023) PMPs as a list of 
potential a priori codes to begin the creation of our codebook, and we added newly found PMPs 
to the codebook. We recoded each response to the AoP tasks in two rounds of deductive coding 
(Miles et al., 2014). We identified patterns among the coded PMPs across the responses, which 
provided insight into their similar or varied usage of PMPs.  
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Figure 1. AoP Tasks Used in Interviews 
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Results 
Overview and Examples of the Preservice and In-Service Teachers’ PMPs 

In the four AoPs, 15 PMPs were elicited (see Figure 2). PMP 1 was modified from 
Wasserman’s (2022) PMP, “Acknowledge and revisit assumptions and mathematical limitations” 
(p. 8), and PMP 9 came directly from Wasserman’s (2022) findings. We identified 13 new PMPs 
using inductive coding (see Figure 2). PMPs 1, 2, 3, and 7 were used the most frequently by all 
participants. PMPs 1, 2, and 3 rely on participants noticing and attending to student thinking. 
After noticing student thinking, participants frequently validated the mathematical procedure by 
identifying a mathematical concept that made the work correct or incorrect (PMP 7). An example 
of using these four PMPs in one AoP can be seen in Roberto’s response to AoP 2 (see Figure 
1b). The interviewer asked what Roberto noticed about the students’ reasoning, and he said:  

Student A says that it has the same slope. I don’t know if he’s talking about the tangent, 
but that has nothing to do with this case. It’s not really helping to answer the question if 
it’s differentiable. The second student is just taking the derivatives of the piecewise 
function for each part and getting two, so he’s just assuming that this is the same for the 
derivative, then it’s going to be differentiable… differentiable functions are continuous, 
but the converse of that is not always true. 

Roberto acknowledged assumptions (PMP 1) made by the students regarding slope and then 
invalidated the logic of that claim (PMP 2) by stating it did not answer the question about 
differentiability. The participant interpreted what the second student was doing in their work 
(PMP 3) and finally identified the concept of continuous and differentiable functions to 
invalidate Student C’s assumption about differentiability (PMP 7).  

Linda used PMP 11 regarding simplifying mathematical definitions into their own words 
when responding to AoP 2 (see Figure 1b). The interviewer asked if she would ask the students 
any specific questions to relate it back to the definition. She said,  

I would ask the class to maybe put the definition in their own words because I think 
sometimes definitions are a little bit fancy. To kind of reason them putting them into their 
own words would maybe help them connect what they’re trying to say to the definition. 

Simplifying a mathematical definition in your own words is a valuable tool mathematicians use 
to better understand a definition. Linda leveraged that PMP in her pedagogical techniques.  

An example of PMP 15 was used in Roberto’s response to AoP 3 (see Figure 1c). When 
asked how he would have the students recognize which one was wrong, he responded, “Probably 
put them in groups and work it out and see what the majority of the group gets or the class gets. 
If they get it right, I will use that definitely as the answer.” PMP 15 was used seven times, mostly 
in response to the probability group discussion in AoP 1 (see Figure 1a). 

Jessica shows an example of using PMP 12 in response to AoP 3, which asked her what she 
could tell about the students’ mathematical understanding (see Figure 1c). Jessica said: 

Student 1 doesn’t understand the clear definition of the product. If two things multiplied 
together, they can’t each be −4, because that would be positive 16 there. While Student 3 
understands the definition of a product, I feel like they don’t understand while 2 × (−2) 
does work, there’s not a value of x that’s the same that will work to give you that -4. 

Jessica’s response identified the procedural error in the student’s work (PMP 12), which is a 
practice that both mathematicians and teachers would do when looking at their own or others’ 
work. Jessica also interpreted the student's thinking (PMP 3), identified errors in their 
mathematical logic (PMP 2), recognized the concepts that validate a student’s use of 
multiplication and factorization (PMP 7), and checked the student's work (PMP 6). This example 
shows how multiple PMPs can be used in a short response. 
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Figure 2. List of PMPs identified in the data. 
 
Table 1. PMPs Used by Each Participant in Each AoP 

  Probability AoP  Differentiability AoP  Equation AoP  Inverse AoP  

Amy  1, 2, 3, 4, 5, 6, 7, 11, 
12, 14, 15  

1, 2, 3, 4, 5, 6, 7, 10, 11, 
14  

1, 2, 3, 4, 6, 7, 8, 9, 
10, 12  

1, 2, 3, 4, 5, 6, 7, 9, 10, 
12, 13, 14  

Eduardo  1, 2, 3, 7, 14, 15  1, 2, 3, 4, 7, 10, 14  1, 2, 3, 5, 6, 7, 10, 11, 
12, 14  1, 2, 3, 5, 7, 9, 12, 13, 14  

Jessica  1, 2, 3, 5, 6, 7, 11, 14  1, 2, 3, 4, 5, 10  1, 2, 3, 6, 7, 8, 12, 14  1, 2, 3, 5, 6, 7, 12, 13, 14  
Linda  1, 2, 3, 7, 10, 15  1, 2, 3, 4, 7, 11  1, 2, 3, 6, 7, 8, 9, 12, 14 1, 2, 3, 5, 6, 7, 9, 14, 15 
Roberto  None 1, 2, 3, 4, 7 1, 2, 3, 6, 7, 12, 14 1, 2, 3, 5, 7, 9, 10, 13, 14 
Selena  1, 2, 3, 4, 7, 14, 15 1, 2, 3, 4, 5, 7, 10, 11, 14 1, 3, 6, 7, 12, 14, 15 1, 2, 3, 4, 5, 7, 13, 14 

 
All participants used at least 13 of the 15 identified PMPs throughout the four AoPs, but each 
participant had some nuances in their use of PMPs. The PMPs used by each participant in each 
AoP are presented in Table 1. Amy consistently drew on multiple PMPs throughout the whole 
interview. She used 84 PMPs to answer 11 interview questions. In comparison, Roberto only 
used 33 PMPs. The lower number of PMPs used could be partly attributed to his uncertainty in 
his ability to solve the probability problem, which led him to not respond to the probability 
related AoP. Roberto focused heavily on the PMPs 1, 2, 3, and 7 that involved attending to 
student thinking and validating the mathematical procedures with the correct mathematical 
concept. Although he could use other various PMPs, he only leveraged a small subset of PMPs in 
the interview setting. There are common PMPs, such as 1, 3, and 7, that were used by each 
participant to respond to all class discussion tasks. Some PMPs were more prevalent in certain 
AoPs; for example, on the Probability AoP, the participants commonly used PMP 14 and PMP 
15. They compared the students’ approaches and combined their responses to lead a productive 
classroom discussion. For the analysis task, PMP 4 was elicited by 5 of the participants. 
Participants found it helpful to use the definition to answer the discussion task. That analysis-
related AoP 2 also showed the highest use of PMP 10, where the participants used a 
counterexample to prove the student response was incorrect. We can see the highest use of PMP 
6 for the algebra-related AoP 3 where 4 teachers used it to respond to the discussion task. This 
task asked students to find the zeros of a quadratic equation, and checking work was the most 
used PMP by the participants. PMPs 13 and 14 were the most frequently used for the algebra and 

1. Acknowledge assumptions and/or mathematical limitations. 
2. (In)validating the logic of a mathematical claim. 
3.  Interpreting details in someone’s mathematical claim. 
4. Referencing definition/formulas to verify a mathematical argument. 
5. Using multiple representations to make sense of a concept. 
6. Check work. 
7. Identifying the mathematical concept that validates a mathematical procedure. 
8. When multiple mathematical procedures are available choose the most efficient and accurate procedure. 
9. Use simpler objects to study more complex objects. 
10. Finding a counterexample to a mathematical claim. 
11. Simplifying a mathematical definition in your own words to demonstrate understanding. 
12. Identifying procedural errors in mathematical work. 
13. Interpreting and understanding mathematical symbols and language. 
14. Comparing and contrasting mathematical objects or concepts. 
15. Combining multiple people’s explanations to find a valid mathematical approach. 
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analysis calculus-based task, in which students misinterpreted the meaning of the -1 superscript. 
PMP 13 involved interpreting and understanding mathematical symbols, and PMP 14 involved 
comparing the students’ work as a tool to have a classroom discussion. Thus, certain PMPs were 
used more frequently depending on the mathematical content addressed in the task. 
 
Participants’ Use of Certain PMPs Seemed to Depend on the Type of Pedagogical Task 

Each subsequent AoP question was intended to prompt the participants to use the information 
they identified in a previous task to inform their decision-making for the subsequent class 
discussion AoP. In the initial questions, where the interviewer asked the participant to identify 
what the students were doing in their work, the participants relied heavily on PMPs 1, 2, 3, and 
7. These PMPs require noticing and interpreting student work. As the tasks progressed to the 
questions regarding how they would respond to the students or lead a classroom discussion about 
the students’ ideas, the participants drew on their decisions from the prior tasks and utilized more 
PMPs. This is evident in Amy’s response to AoP 1. Her response to the question about what she 
noticed about students’ thinking used PMPs 1, 2, 3, 7, and 14. Her response to a question about 
how she would respond to the students involved her additional use of PMPs 4 and 10. In her 
response to the question about how she would facilitate a class discussion about the students’ 
ideas, Amy used PMPs 1, 2, 3, 4, 5, 6, 7, 11, 12, 14, and 15. The subsequent addition of different 
PMPs used as the questions in each AoP task progressed gives evidence to the effectiveness of 
the task design in eliciting teachers’ use of PMPs. Wasserman (2022) claimed, PMPs “can be 
used to structure discussions of, and give insight into, observed episodes of teaching and 
practicum experiences” (p. 13). Our research suggests that PMPs are a tool to help teachers 
structure their classroom discussions and attend to student thinking. As the tasks progressed, 
participants made decisions on the information presented in the earlier part of the AoP and used 
PMPs to structure a productive classroom discussion. The participants frequently used five PMPs 
for these discussion tasks, PMPs 1, 2, 3, 7, and 14. These PMPs may be particularly conducive 
for teachers leading classroom discussions about students’ mathematical thinking. 

 
Discussion and Conclusion 

This study showed how the participating teachers used PMPs in AoP tasks where they engaged 
in hypothetical classroom situations. The use of PMPs implies that their experience in the course 
encouraged them to connect their advanced MPs with AoPs in the classroom. Prior to this study, 
the teachers learned advanced topics in real analysis, abstract algebra, and probability by 
engaging in MPs like defining concepts in abstract algebra and examining special examples of 
functions to understand the relationship between continuous functions and differentiable 
functions in real analysis. They applied those practices in the AoP tasks in this course. Their use 
of PMPs in the interviews conducted two weeks after the semester indicates that the design of the 
course contributed to preparing the teachers to carry over their practices from advanced 
mathematics into their future classroom teaching, which could be further examined by following 
their classroom teaching as shown in prior studies (e.g., Wasserman & McGuffey, 2021). These 
findings support the participating teachers’ perceived changes in their views on the relevance of 
learning advanced mathematics to mathematics teaching by providing evidence of their 
demonstration of PMPs in the AoPs. This study gives evidence of their applications of practices 
in advanced mathematics to hypothetical classroom scenarios. Future studies are needed to 
examine how teachers use PMPs in actual classroom settings and to further investigate different 
patterns of using PMPs by content areas and by individual teachers. 
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Equivalence is a foundational idea in mathematics and a key fixture in the K-16 curriculum. 
There is considerable evidence, however, that students at all levels experience difficulties with it. 
A prevailing explanation is that students rely too much on transformations; and yet, 
transformational activity is absolutely essential: it is the primary means by which one generates 
more tractable representations that are better suited to the situation at hand. Strikingly, we 
found no studies that directly examine students’ productive uses of transformational activity. To 
this end, we conducted a series of task-based interviews with undergraduate students in order to 
illustrate and account for productive instances of transformational activity across undergraduate 
mathematics. Our findings affirm a hypothesis from the literature that supplementing one’s 
transformational activity with notions of equivalence can support productive reasoning. 
Additionally, we extend this idea by providing detailed analyses of what these supplementary 
notions of equivalence entail. 
 
Keywords: equivalence, task-based clinical interviews, conceptual analysis, student thinking 

 
Equivalence is one of the most fundamental notions in all of mathematics and, as such, is 

prevalent throughout the K-16 curriculum. Despite this importance, research suggests that 
students at all levels have difficulty leveraging equivalence to solve mathematical tasks (e.g., 
Chick, 2003; Chesney et al., 2013; Kieran, 1981). Researchers have argued that many of these 
difficulties are attributable to an overreliance on transformations–that is, operations that change 
a mathematical object into a new (equivalent) form. The prevailing explanation is that attending 
to transformations can preclude attending to underlying notions of equivalence (e.g., Alibali et 
al., 2007; Carpenter et al., 2003; Kieran, 1981). That is, “an overemphasis on change 
overshadows an emphasis on sameness” (Cook et al., 2022, p. 5).  

We observe that much of the literature on transformational activity focuses on its role in 
students’ difficulties (e.g., Cook, 2018; Pomerantsev & Korosteleva, 2003; Tall et al., 2014). 
And yet, transformational activity is absolutely essential in mathematics: it is the primary means 
by which one generates equivalent representations of an object that are more well-suited to the 
problem at hand. Clearly, then, transformational activity can–and should–be productive for 
students, but we found no empirical studies that feature and analyze productive instances of 
transformational activity. We infer from the literature that supplementing with other ways of 
reasoning about equivalence can support productive transformational activity, but what these 
ways of reasoning are and how they might emerge in students’ activity is a question that has not 
yet been examined. To this end, in this study we aim to provide a “positive counterpoint” 
(Bagley & Rabin, 2016, p. 84) to the large body of work that primarily associates 
transformational activity with students’ difficulties by analyzing episodes in which students use 
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it productively. In doing so, we aim to answer the following research question: What cross-
domain ways of reasoning about equivalence do students demonstrate when engaging in 
productive transformational activity? 

 
Literature 

This study addresses two gaps in the literature. First, we observe that most of the literature on 
students’ reasoning about equivalence has taken place within particular mathematical contexts. 
At the K-12 level, for example, research has examined equivalence of fractions (e.g., Smith, 
1995), numerical expressions (e.g., McNeil, 2008), algebraic expressions (e.g., Solares & Kieran, 
2013), and algebraic equations (Knuth et al., 2006). At the undergraduate level, research has 
included, for example, examinations within the domains of combinatorial equivalence 
(Lockwood & Reed, 2020), isomorphism (Larsen, 2013), and modular equivalence (Smith, 
2006). There is, however, a scarcity of research that has examined how students might reason 
about equivalence across various contexts.  

We note that though the literature on students’ transformational activity is expansive, it has 
almost exclusively been associated with students’ difficulties (e.g., Godfrey & Thomas, 2008; 
Kieran, 1981; Pomerantsev & Korosteleva, 2003; Stephens, 2006). Other studies have pointed 
out how difficulties with transformations can constrain students’ abilities to learn about 
subsequent ideas (e.g., Cook, 2018; Tall et al., 2014). To be clear, this body of literature 
establishes an important point about transformational activity: an overreliance on it can constrain 
students’ reasoning. We do wish to call attention to the fact that even though the importance of 
transformational activity is difficult to understate, research that illustrates and analyzes empirical 
instances of productive transformational activity and what it might entail is scarce. The literature 
overwhelmingly focuses on students’ difficulties. Our efforts here were inspired by Bagley and 
Rabin (2016), who, upon observing that computational activity has been oft maligned in the 
linear algebra literature, illustrated how it can be a very useful tool in certain situations. In the 
same vein, we aim to provide a “positive counterpoint” (Bagley & Rabin, 2016, p. 84) to the 
treatment of transformational activity in the equivalence literature. 

The literature does, however, contain some provisional theoretical suggestions in this respect 
that shaped the current study. Alibali and colleagues (2007) argued that attending to the 
equivalence of equations involves “recognition that the transformation preserves the equivalence 
relation expressed in the first equation” (p. 223). Similarly, Harel (2008) argued that it is 
important for students to recognize that “algebraic expressions are not manipulated haphazardly 
but with the purpose of arriving at a desired form and maintaining certain properties of the 
expression invariant” (p. 14); other researchers have made similar recommendations (e.g., 
Kieran, 1981; Steinberg et al., 1991). We interpret these comments to suggest that a key 
component of engaging productively with transformations involves attending to the reasons that 
the objects being generated by the transformations are equivalent. In the current study, we 
examine this initial hypothesis by examining the ways of reasoning about equivalence that 
students demonstrate in conjunction with their transformational activity.  

 
Theoretical Framework 

We adopted Cook and colleagues’ (2022) framework for analyzing students’ cross-domain 
ways of reasoning about equivalence. The framework is a conceptual analysis because it 
articulates “what students might understand when they know a particular idea in various ways” 
(Thompson, 2008, p. 57). Specifically, it outlines ways of reasoning that the authors hypothesize 
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capture meaningful aspects of equivalence as it manifests across mathematical contexts. These 
include: 

• Common characteristic: involves attending to equivalence in terms of “a perceived 
attribute that the objects in question have in common” (Cook et al., 2022, p. 3). 

• Descriptive: involves attending to the fact that objects “describe the same quantity or 
serve the same purpose with respect to a given situation” (Cook et al., 2022, p. 3). 

• Transformational: transformational activity is defined as “a sequence of actions 
(either already performed or imagined) by which one object might or can be changed 
into another is enacted or described” (Cook et al., 2022, p. 3).  

For example, consider how one might multiply the numerator and denominator of 1/2 by 3 to 
obtain 3/6. One might supplement this example of transformational activity by explaining that 
1/2 and 3/6 are equivalent because they both correspond to the same real number: 0.5 (an 
example of a common characteristic way of reasoning). One might also reason that 1/2 and 3/6 
are equivalent by imagining two different ways of shading a circle: both of these fractions 
correspond to the same amount of shaded area in relation to the area of the whole circle (an 
example of a descriptive way of reasoning because both fractions describe the same quantity of 
shaded area). 

We primarily use Cook and colleagues’ (2022) conceptual analysis as a lens through which 
to build and articulate models of students’ ways of reasoning. We note that Cook and colleagues 
(2022) positioned their framework as their own articulation of key features of the equivalence 
concept that might be advantageous for students to attend to across contexts. It therefore remains 
unclear if and how these ideas might emerge when working with students. Put another way, the 
first order model (Steffe et al., 1983) developed by Cook and colleagues (2022) has not yet been 
used to construct second order models (Steffe et al., 1983) of students’ reasoning. 

 
Methods 

 In order to examine students’ transformational activity and their associated ways of reasoning 
about equivalence, we conducted individual task-based clinical interviews (Clement, 2000) with 
12 students (due to space constraints, in this proposal we focus only on two interviews). All 
participants had recently completed a three-course Calculus sequence; each student participated 
in a single interview ranging from one to two hours in length. Interviews were conducted by the 
second author. The tasks administered are shown in Figure 1. Students’ written work was 
recorded on an iPad application and was synced to an audio recording. 

After completing each task, students were asked to explain their reasoning, particularly how 
they came to (a) produce one mathematical object from another, and (b) replace one form of a 
mathematical object with another. For example, students who used row operations to transform 
the linear system in Task 2 to row echelon form were asked how the new system is related to the 
original and why it is an acceptable replacement for the original. Interviews were transcribed 
verbatim and enhanced with screenshots of the students’ written work. 

We classified an instance of transformational activity as “productive” if the (a) the student 
successfully used transformations to complete the task, and (b) their answers to these follow-up 
questions about the objects generated by their transformations involved a description of 
justification of why they are equivalent. Each enhanced transcript was then independently coded 
by the first, fourth, and fifth authors using Clement’s (2000) interpretive analysis cycles; Cook 
and colleagues’ (2022) framework provided an initial basis for coding. Though the framework 
was refined as coding progressed, due to space constraints we focus here only on illustrating 
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instances of how students productively supplemented their transformational activity with 
common characteristic and descriptive ways of reasoning. The codes for each transcript were 
then compiled, and coding discrepancies were discussed and revised until a state of negotiated 
agreement was reached. 
 

Task 1: Solve the following equation: 3(3# + 1/9) − 2(# − 1/4) = 6(# − 1/36) 
Task 2: Solve the following system of linear equations:  #! + 5#" + 2## = 8

2#! + 4#" + 2## = 8
#! + 5#" + ## = 7

 

Task 3: Evaluate the following definite integral: ∫ 2#2$!3#!
%  

Task 4.1: Consider how we add hours of time on a 12-hour clock. For example, 4 hours from 9:00 is 
1:00.  
We can represent this as 4⊕ 9 = 1. Evaluate the following sums: a) 7⊕ 8; b) 9⊕ 9; c) 
10⊕ 5; d) 11⊕ 4. 

Task 4.2: Consider now how we might multiply hours of time on a 12-hour clock. For example, 3⊙
7 = 7⊕7⊕ 7 = 9. Evaluate the following: a) 2⊙ 10; b) 3⊙ 11; c) 4⊙ 8; d) 5⊙ 9. 

Task 4.3: Evaluate the following: a) 7⊙ 7; b) 11⊙ 11; c) 9⊙ 11; d) 8⊙ 7; e) 10⊙ 8. 
Figure 1. Tasks administered during the interviews. 

 
Results 

Here we present the results of our analysis of the students’ cross-domain ways of reasoning 
about equivalence. In each subsection, we begin by summarizing the student’s relevant 
transformational activity to provide context. We focus on Ethan’s demonstration of a common 
characteristic way of reasoning (across linear systems and the integers modulo 12) and Molly’s 
demonstration of a descriptive way of reasoning (across fractions and the integers modulo 12).  
 
Transformational Activity with a Common Characteristic Way of Reasoning 

Ethan’s transformational activity on Task 2 (solving a system of linear equations) and Task 4 
(modular arithmetic) was supported by a common characteristic way of reasoning about 
equivalence. Using row operations to transform the augmented matrix for the given linear system 
into reduced row echelon form (Task 2), Ethan explained that “you do it systematically, […] you 
want the triangle effect…” and that “…the goal is to get it to reduced row echelon…” (see 
Figure 2). This action of “reduction” into reduced row echelon (RRE) form is indicative of 
transformational activity, whereby Ethan translated the system of equations into an augmented 
matrix, and further produced equivalent augmented matrices. 

 

 
Figure 2. Ethan’s written response to Task 2. 
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The interviewer then asked how the solution to the system represented by the RRE augmented 
matrix related to the system given in the task. Ethan’s response suggested a common 
characteristic way of reasoning: 

Ethan: This [RRE] helps complete the original task because […] if you plug these values in 
[1, 1, 1], they [the equations] would all come out as true. Like 1 + 5 + 2, that equals 8. 
[…] And then, if you went into that for every single one, you would see that the values 
would be true. […] 

Interviewer: So this solution %1 = 1, %2 = 1, %3 = 1 is not just a solution to this last 
augmented matrix with the 0s and 1s? 

Ethan: No. […] It’s a solution for all of them throughout the whole time. If you went back 
through and made equations with these variables, they would all end up being true. So 
[…] every single step of the way, […] these values would make those equations true.  

Interviewer: So, […] even though you’re changing- 
Ethan: The coefficients? 
Interviewer: You’re changing the coefficients […],  
Ethan: Right. […] So, even though you’re changing the system, the values, the 

corresponding values will still be the same.  
Ethan identified a shared attribute among the objects he produced–i.e., the solution of 
(%!, %", %#) = (1,1,1)–indicating a common characteristic way of reasoning about equivalence. 
More specifically, Ethan was aware that the result of his transformational activity preserved an 
attribute of the objects he was transforming. 

Ethan’s initial activity in response to Task 4 (modular arithmetic) centered on multiplying the 
two integers using the typical multiplication and then repeatedly adding or subtracting 12 until he 
obtained an integer less than 12 (see Figure 3). 

 

 
Figure 3. Part of Ethan’s written response to Task 4.3. 

 
On Task 4.2, after pointing out that 3⊙ 7 and 5⊙ 9 are both 9, the interviewer asked Ethan 

about the relationship between 21 and 45. Ethan explained that “if you add 12 to 21 you get 33” 
and “if you add 12 to 33 you get 45.” He concluded, “so they are equivalent.” On Task 4.3, 
similarly relating 49 and 121, Ethan said, “we have 49. We want to get to 121, and then […] I’m 
trying to add 12 to each interval, […] you’re adding 12 each time” (see Figure 3). Ethan’s 
transformational activity entailed adding 12 to one integer to produce another equivalent integer. 

Ethan eventually pointed out a connection between division and his strategy of repeatedly 
adding/subtracting 12. He explained that “the reason that it’s okay to subtract 12 is because that’s 
basically what you do in division. […] It was how many times can 12 actually go into it, and it 
came out as, hey, let me just keep subtracting off of it.” Shortly thereafter, the interviewer asked 
Ethan if he could characterize the integers that are equivalent to 4. He initially used his strategy 
of repeatedly adding 12, yielding 16, 28, and 40, before pivoting to the notion of remainder he 
had previously described:  
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Ethan: Their corresponding remainder will always be the original number you were wanting. 
Interviewer: And in this case that’s … 
Ethan: Is 4.  
Interviewer: I see. Okay. Even though you’re adding 12 repeatedly? 
Ethan: Correct. The remainder will always stay constant at that number. 

Ethan demonstrated a common characteristic way of reasoning by identifying a shared attribute 
of the equivalent objects he was producing: their remainder after division by 12. Again, Ethan 
demonstrated awareness that his transformational activity (in this case, adding/subtracting 12) 
preserved the common characteristic (remainder after division by 12) of the objects in question.  
 
A Descriptive Way of Reasoning about Equivalence 

Molly demonstrated evidence of pairing transformational activity with a descriptive way of 
reasoning on Tasks 1 and 4. In her response to Task 1 (solving a linear equation), Molly 
transformed each fraction into an equivalent fraction with denominator of 36 in order to combine 
like terms (see Figure 4). The interviewer prompted Molly to explain why she made such 
replacements: 

Interviewer: You rewrote […] -2/4 as -18/36. Can you talk about what you see as the 
relationship between those two? 

Molly: Yeah. So, um, if you multiply -2/4 by 9/9 […] you get -18/36, but it doesn’t change 
the value of the fraction. The fraction stays the same. It’s just being written in a different 
way. 

Interviewer: Okay. So, when you say, “The value of the fraction,” what do you mean? 
Molly: Um ... I mean, it’s like if you take a circle and you cut it into 4 and shade 2, and then 

you cut another circle into 36 parts and shade 18, you’ll see the exact same amount is 
shaded on both circles. […] So, that’s how I know that’s gonna be the same value. 

The interviewer then prompted Molly to draw a picture to accompany her explanation, noting 
that she could choose another fraction to compare to 2/4 instead of 18/36 for ease of drawing 
(see Figure 4). 

Molly: Like, if you do a circle that has 4, and you shade that, and then you have a circle that 
has 8, the same amount will be shaded in. 

Interviewer: I see. And so, the relationship between 2/4 and 4/8 you’re saying is similar to 
the relationship between 2/4 and 18/36 in here? 

Molly: Yeah. 
 

 
Figure 4. Part of Molly’s written response to Task 1 to explain why 2/4 is equivalent to 4/8. 

 
Molly’s statement that “if you multiply -2/4 by 9/9 […] you get -18/36, but it doesn’t change the 
value of the fraction” indicates transformational activity because she described a process 
(“multiply […] by 9/9”) by which one fraction (-2/4) could be transformed into another (-18/36). 

This transformational activity was supported by a descriptive way of reasoning when 
explaining why the transformation was valid. In particular, when describing why these fractions 
had the same value, Molly appealed to two circles having the same shaded region. This 
interpretation is further evidenced by Molly’s drawing (see Figure 4) to show that 2/4 and 4/8 
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had the same value, explaining that “the same amount [i.e., the same area] will be shaded in” on 
both circles. 

On Task 4, Molly produced integers she identified as “related” by repeatedly subtracting 12 
until obtaining an integer between 1 and 12. Molly wrote“ ! = # + %(12)”, where # 
represented the integer she was starting with, %(12) signified adding a multiple of 12, and ! 
represented the resulting integer. That is, Molly’s transformational activity entailed a procedure 
by which one object could be obtained from a “related” one. The interviewer asked Molly to 
describe how she would use this process to determine if two given integers were equivalent: 

Interviewer: So if I give you... two integers, let’s say, um... 412 and 378... and asked you if 
they are related in the same way that you’ve been talking about these other numbers, how 
would you go about figuring that out? 

Molly: … I would subtract both by, um, a multiple of 12, and I’ll get a number. And then I’ll 
see if ! is equal. And if ! is equal then I’ll know that they, um... are related. 

Molly then enacted her procedure of subtracting multiples of 12 from 412 and 378 until she 
obtained the numbers 4 and 6, respectively. 

Interviewer: Okay. Now, what are 4 and 6? ... how are you thinking about those...  
Molly: These are what their position on the clock would be. 
Interviewer: Okay. 
Molly: Um, and since 4 and 6 are not the same position, then, um, 412, um, and 378 are not 

related. 
Here, Molly viewed the resulting objects of her transformational activity in descriptive terms: 
“what their position on the clock would be.” Molly was able to judge the equivalence of 412 and 
378 by reasoning that since the objects resulting from her transformational activity did not serve 
the same purpose with regards to telling time (i.e., their positions on a 12-hour clock), the objects 
were not equivalent. 
 

Discussion 
The analysis demonstrated here contributes to the literature in two ways. First, we have 

expanded the theoretical scope of the framework that we used to execute these objectives. That 
is, we used Cook and colleagues’ (2022) first-order conceptual analysis of equivalence to 
construct second-order models of students’ reasoning, demonstrating that these ways of 
reasoning can, in fact, account for students’ reasoning. Second, our analysis establishes a 
counterpoint to well-documented difficulties associated with transformational activity in the 
literature. Previously, analyses of productive instances of students’ transformational activity 
across domains had not yet been documented. In doing so, we affirmed a provisional hypothesis 
we inferred from the literature (that a key to reasoning productively with transformations 
includes supplementing with notions of how the objects being generated by these transformations 
are equivalent), and also explicated what these notions might entail (e.g., demonstrating common 
characteristic and descriptive ways of reasoning).  
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The Evolution of Two Undergraduates’ Example and Set Use During Conjecturing and Proving

Kristen Vroom Abigail Lippert Jose Saul Barbosa
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To better understand how students’ example and set use might evolve during their conjecturing
and proving activity, we engaged two students in guided reinvention of mathematical statements
relating sequence properties during an 11-week teaching experiment. We characterized the
students’ evolving example/set use in three categories: (1) classifying examples from the initial
set of sequences, (2) seeking diversity and using lack of examples from an expanded initial set of
sequences, and (3) attending to properties, searching for structure, and building formality with
the set of all sequences. We exemplify these categories and then discuss some guidance that
could explain the students' example/set use.

Keywords: Examples, sets, conjecturing, proving, sequences

Studies show that students find conviction and justify conjectures by using examples (Coe &
Ruthven, 1994; Healy & Hoyles, 2000) and some suggest that students need to be supported to
recognize limitations of examples (Knuth, 2002; Martin & Harel, 1989; Stylianides &
Stylianides, 2009). More recent research examines how example-based reasoning can support
deductive reasoning (Aricha-Metzer & Zaslavsky, 2019; Iannone et al., 2011; Komatsu et al.,
2017; Ozgur et al., 2019; Pedemonte & Buchbinder, 2011; Sandefur et al., 2013), including how
mathematicians and students use examples in their proving activity (Alcock & Inglis, 2008; Ellis
et al., 2019; Inglis et al., 2007; Lockwood et al., 2016; Lynch & Lockwood, 2019; Weber, 2008).
Furthermore, researchers have drawn on cognitive unity to explore how the development of
students’ conjectures based on their work with examples is reflected in the students’ respective
proving activities and proofs (Lin & Wu, 2007; Pedemonte & Buchbinder, 2011). Additionally,
Fiallo and Gutiérrez (2017) studied what types of conjectures and corresponding proofs students
developed after experimenting with Dynamic Geometry Software. This research points to the
potential usefulness of examples for students in their conjecturing and proving activities.

Additionally, a growing amount of literature shows the usefulness of sets for students as they
make sense of mathematical statements and engage in proving activities (Dawkins, 2017;
Dawkins & Cook, 2017; Hub & Dawkins, 2018). For instance, Dawkins (2017) explained that it
can be productive to consider a subset relation when making sense of a mathematical statement
in the form if p, then q; that is, the set of all objects that fit property p is a subset of all the objects
that fit property q. However, little research has explored how students can use sets to author and
prove their conjectures.

To better understand how students’ example and set use might evolve during their
conjecturing and proving activity, we engaged two students in guided reinvention (Freudenthal,
2005; Gravemeijer, 1999; Gravemeijer & Doorman, 1999) of mathematical statements relating
sequence properties during an 11-week teaching experiment (Steffe & Thompson, 2000). In this
study, we examined the evolution of two calculus students' example/set use in response to an
intervention we crafted for supporting students' conjecturing and proving activity. We
investigated: How can students use examples and sets to support conjecturing and proving?
Specifically, how did a pair of students use sets and examples as they were guided to reinvent
mathematical statements relating sequence properties?

26th Annual Conference on Research in Undergraduate Mathematics Education 259



Theoretical Perspective
We investigated how two calculus students’ example and set use evolved as they engaged in

conjecturing and proving. By conjecturing, we mean developing a statement that relates
mathematical concepts the student suspects are true but does not yet know are true (Lannin et al.,
2011). In this study, we are particularly interested in students’ conjectures from observing
consistent patterns in a finite number of cases (Cañadas et al., 2007) and the generality of the
students’ conjectures (that is, whether the conjectures were specific to an initial set of finite cases
or made a claim about additional cases). The cases that the students in our study observed were
instances of sequences (e.g., ). Additionally, we use proving to mean conveying a𝑥

𝑛
= 𝑛2

general argument, from the students' perspective, for the statement's truth.
Throughout our data, students organized (and re-organized) examples of sequences into sets.

We attended to different sets and set operations to better understand the students’ set use. The
students' universal set was key to understanding the generality of students' conjectures. By
universal set we mean the set of all elements under consideration. The students’ universal set
began as an initial (finite) set of sequences, later expanded to include additional examples, and
eventually included all sequences, where the specific examples were just representative members
of this infinite set. Additionally, we determined whether students seemed to attend to a union,
intersection, subset, complement, and difference (as typically defined in mathematics). For the
sake of a relevant example, consider a universal set as the set of all sequences (represented by the
shaded region in Figure 1A), which includes all the sequences that are bounded above (purple set
in Figure 1), bounded below (green set in Figure 1), or unbounded. The shaded region in Figure
1B represents the union of the set of bounded above sequences and the set of bounded below
sequences, whereas the shaded region in figure 1C depicts the intersection of these two sets. The
shaded region in Figure 1D represents the set of sequences bounded below, which is a subset of
the set of all sequences. The shaded region in Figure 1E represents the complement of the set of
sequences that are bounded below. The difference between the set of bounded above sequences
and the set of bounded below sequences is represented by the shaded region in Figure 1F.
Finally, Figure 1G highlights that the set of convergent sequences (yellow set) and the set of
sequences that are bounded above and not bounded below are mutually exclusive. We continue to
denote sequences that are bounded above, bounded below, and convergent in this way (i.e., with
green, purple, and yellow outlined sets, respectively) throughout our results.

Figure 1. Representation of sets and set operations.

To further understand students’ example use, we drew on Ellis et al.'s (2019) Criteria,
Affordances, Purposes, and Strategies (CAPS) framework, which offers a way to describe
students' example-based activity while investigating and proving conjectures. Specifically, we
attended to Purposes and Strategies to understand how students' example-based reasoning
supported their conjecturing and proving activity. Purposes are the reasons students use
examples. For instance, a student might use the example(s) to: form a connection between two
concepts (conjecture development), confirm their belief in a conjecture’s truth (belief
confirmation), determine a conjecture’s truth (test the truth), reject a conjecture as true (refute),
illustrate their claim that a conjecture is true or false (convey claim), identify the causal
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mechanism behind a conjecture (understand why), convey an argument supporting their claim
that generalizes across cases (convey a general argument), and/or respond to a request or prompt
(respond to teacher-researcher1). Strategies are “the range of deliberately strategic approaches
students employ both in choosing and using examples” (p. 265). A student can deliberately
create a new example that features different properties than previous examples (seek diversity),
select examples based on particular properties of interest (attend to properties), or repurpose an
existing example by varying one or more elements (create systematic variation). A student can
deliberately use examples by searching for a pattern or a mathematical structure to identify
general features (searching for structure) or developing a formal representation to express what
is the same across all examples (building formality).

Methods
Data Collection

We conducted a teaching experiment (Steffe & Thompson, 2000) with two students, Lara and
Stella (pseudonyms), recruited from a Calculus 1 course at a large university the semester before
the experiment. We aimed to experience the students' mathematical learning of and reasoning
about sequences and series as they formed conjectures about sequence and series properties,
defined related terms, and proved their conjectures. Both students indicated they were freshmen
at the time of the experiment, and both used she/her pronouns. Lara was majoring in Biological
Chemistry, and Stella was double-majoring in Psychology and Neurosciences. Lara earned a 2.5
(on a 4.0 scale) in her Calculus 1 course, and Stella earned a 4.0. The experiment consisted of
eleven 1.5-hour sessions in which the students’ collaborative digital work was audio and video
recorded. In these sessions, the first author was the teacher-researcher and the third author was
the observer.

Realistic Mathematics Education, especially the heuristic of guided reinvention (Freudenthal,
2005; Gravemeijer, 1999; Gravemeijer & Doorman, 1999), framed the instruction during the
teaching experiment (similar to Lockwood & Purdy, 2019 and Swinyard & Larsen, 2012). We
describe the general task design of the teaching experiment since the details are beyond the scope
of this paper. The overarching design goal of the experiment was to guide students to conjecture
and prove mathematical statements that relate sequence properties (e.g., all convergent sequences
are bounded) and statements about series convergence (e.g., the comparison test). To do so, we
engaged the students in context problems (Gravemeijer & Doorman, 1999) with sequences
(sessions 1-7) and then with series (sessions 8-11). For this report, we analyzed data from
Sessions 4-7, when we asked the students to sort sequences based on different properties
(increasing, bounded above, bound below, and converging), make conjectures about sequence
properties, and justify these conjectures. The first three sessions mainly focused on the students
generating and defining sequences. We refer to these sequences as the students' initial set.

Data Analysis
We transcribed all teaching episodes and enhanced the transcripts that we analyzed for this

study with embedded pictures of the students' work. We first identified instances of the students
discussing connections between bounded, increasing, and/or convergence by reading the
transcript and watching the corresponding video. Once we identified these instances, at least two
of the three authors participated in coding the data, with any disagreements resolved through

1 Ellis et al. (2019) refer to this as "placate the interviewer." We used this different phrasing since it better fit our
teaching experiment setting.
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discussion. In particular, we investigated the students’ example use by identifying purposes and
strategies using Ellis et al.’s (2019) framework (see previous section). We also identified
additional strategies that we did not think were captured by the framework: classifying and using
lack of examples. We coded data as classifying when it featured the student checking whether a
sequence fit their concept definition and/or concept image (Tall & Vinner, 1981), which often
occurred when students considered moving or adding sequences inside (or outside) a category.
We coded data as using lack of examples when the students reflected on their inability to create
an example with specific properties given the properties' parameters. During this pass of the data,
we also considered how the students used sets, looking for evidence of the students considering
an intersection, subset, complement, difference, and/or if sets were mutually exclusive (see
previous section). Note that the students did not necessarily (if ever) use words like the "union;"
instead, these were our way of denoting the sets that the students seemed to consider. We also
searched for evidence of what the students considered their universal set (i.e., the students' initial
set of sequences, some other finite set of sequences that expanded their initial set, or the set of all
sequences). After we coded each episode, we wrote a vignette of the students' example/set use
and compiled the vignettes into one document, organizing them chronologically. We then re-read
the vignettes, noting changes in the students' example/set use (asking ourselves how the students'
example/set use differed from/similar to the previous episode). Through this constant
comparison, we noticed three categories that characterize the students' evolving example/set use,
which we exemplify next.

Results
We characterized the students’ evolving example/set use in three categories: (1) classifying

examples from the initial set of sequences, (2) seeking diversity and using lack of examples from
an expanded initial set of sequences, and (3) attending to properties, searching for structure, and
building formality with the set of all sequences.

Classifying examples from the initial set of sequences
The first example/set use category featured the students classifying sequences to develop,

test, or refute a conjecture specific to their initial set of sequences. From our perspective, the
students used their initial set of sequences as their universal set while they engaged in
classifying; their diagram organized their initial set of sequences, and their discussion pertained
to these specific sequences. An instance of this example/set use occurred during the fourth
session in which the students were first asked to sort their initial set of sequences as bounded
above and/or bounded below, or neither by placing their sequences in a corresponding set. In
response, the students checked whether each sequence had an upper and/or lower bound
(classifying). As they were classifying, Stella stated, “I feel like all of our , all those𝑎

𝑛
,  𝑓(𝑎

𝑛
)

from that example, are going to be [bounded] both," referencing a set of sequences generated
during a previous task. Here, we see that Stella noticed a pattern (searches for structure) to form
a conjecture about the placement of some of their sequences from their initial set (conjecture
development). From our perspective, she considered some of their initial set of sequences ("all of
our …”) as a subset of their bounded below and bounded above sequences. Then, to𝑎

𝑛
,  𝑓(𝑎

𝑛
)

confirm that the pattern held (belief confirmation), Stella and Lara continued to classify the
sequences they generated based on whether there was an upper and lower bound.

After the students finished classifying their sequences as bounded above and/or bounded
below, the teacher-researcher requested that the students add a place for increasing sequences.
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Lara shared that it should be “somewhere in the middle” because there was a sequence that was
increasing, bounded below, and bounded above. Stella then suggested that they place it “hereish”
(see the blue category in Figure 2A2) because “some of the [only] bounded below are
increasing.” During this, Lara and Stella selected increasing sequences (attended to properties)
and determined whether they were bounded below and/or above (searched for structure) to make
conjectures about their initial set of sequences that connected increasing and the other properties
(conjecture development). The teacher-researcher then responded, “Let’s try it!... With the
examples or the sequences that we have so far, we’ll try to put them in one of these locations.
And then if we find that we need to change that box, then we will do that.” To respond to the
teacher-researcher and to confirm their suspicion about their increasing sequences (belief
confirmation), Lara and Stella considered each sequence to check if it was increasing and
rearranged the sequences accordingly (classifying). See Figure 2B for their revised map. From
our perspective, we see the students suggested that their increasing sequences were a subset of
the union of (a) their bounded below and bounded above sequences and (b) the difference in the
set of their bounded below sequences and the set of their bounded above sequences.

Figure 2. Location of the set of students’ increasing sequences (blue set).

Seeking diversity and using lack of examples from an expanded initial set of sequences
The second category of example/set use featured the students seeking diversity in their initial

set of examples and using the lack of examples to confirm their belief and understand why. From
our perspective, the students expanded their universal set to include more sequences than their
initial set while they sought diversity and used the lack of examples. Their discussion involved
more than their initial set of sequences; in particular, they attempted to generate new sequences
with different properties, and in doing so, their map transformed from organizing their initial set
to potentially organizing additional sequences. An instance of this occurred later in the fourth
session after Lara and Stella added a location for convergent sequences, which at the time they
referred to as sequences "approaching a number" (see yellow set in Figure 3A). The
teacher-researcher then asked, "Should [it] be stretched over?,” changing the set’s placement and
adding a question mark to a new area to consider (see Figure 3B).

2 We slightly altered these pictures from the students' version for clarity and because of space constraints. The
students' version included more sequences with different representations (e.g., graphs).
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Figure 3. Location of the set of sequences that approach a number.

To respond to the teacher-researcher and test the truth of the teacher-researcher’s implied
conjecture that there is a sequence that approaches a number, is unbounded above, and is
bounded below, the students iteratively chose or created a new object to consider. In particular,
they attempted to create a new sequence with the desired properties (seeking diversity, Figure
4A, Figure 4D, Figure 4E see below), selected ones on their map by paying attention to certain
properties (attending to properties, Figure 4B), or created a new sequence based on a previous
one (systematic variation, Figure 4C). With each new object, they disregarded it since it did not
fit with a desired property (classify). Specifically, Figure 4A was bounded above since the
intended domain was natural numbers, Figure 4B was not approaching a number, Figure 4C was
bounded above, Figure 4D was bounded above and below, and Figure 4E was not approaching a
number. After the students continued attempting to identify a sequence with the properties, Lara
stated, "Maybe the answer is just no," meaning that there is not a sequence that is approaching a
number, unbounded above, and bounded below. We interpret this as Lara reflecting on their
inability to create an example with specific properties (using lack of examples) to confirm their
initial placement of the converging set as non-overlapping with the difference of bounded above
and bounded below (belief confirmation). From our view, the students suspected that the
intersection of all convergent sequences, all bounded below sequences, and the complement of
all bounded above sequences was empty (mutually exclusive).

Figure 4. Students’ new objects.

After the teacher-researcher asked, “Can you think of a reason why we couldn’t find a
sequence?,” the students began to understand why there was not a sequence that was
approaching a number, unbounded above, and bounded below (understand why). To do so, Lara
and Stella looked within the approaching sequences (attending to properties) and searched for a
pattern, during which Lara noticed "no matter which section you take of the graph, it's bounded
above and below" (searched for structure).

Attending to properties, searching for structure, and building formality with the set of all
sequences

The third category of example/set use featured the students attending to properties, searching
for structure, and building formality with the set of all sequences to convey general claims and
general arguments. From our perspective, the students used the set of all sequences as their
universal set (not just those depicted and organized on their map) while they attended to
properties, searched for structure, and built formality. Students used examples and sets in this
way during the fifth and sixth sessions, which began when the teacher-researcher asked the
students to make conjectures based on their previous explorations. Stella responded, "I think it's
true that a function cannot be both bounded above and increasing." After the teacher-researcher
asked why not, Stella considered their increasing set and bounded above set (attended to
properties) and seemed to notice that the increasing set intersected some of, but not all, the
bounded above set (searched for structure), explaining, "So my thinking is, the blue increasing
square does not have a category that's just bounded above. So, like increasing and just bounded
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above.” She then revised her conjecture (conjecture development), saying, "I guess you could
say that it has to be bounded below to be increasing". From our perspective, Stella noticed that
the set of increasing sequences was a subset of the set of bounded below sequences. After the
teacher-researcher requested that they write this conjecture, the students began developing a
formal representation in the form of a statement about what is the same across the increasing
sequences (building formality), writing: “sequences that are increasing must be bounded below.”
During the following session, the teacher-researcher asked for clarity about whether they
considered this statement applicable for all or some increasing sequences. The students
confirmed that they intended their conjectures to be about “all” increasing sequences rather than
some of them or the specific examples in their map, and revised their conjecture to “all
sequences that are increasing must be bounded below.”

The teacher-research then requested that they reflect on whether they thought the statement
was true or knew it was true. Stella explained, "So I think we know this is true because all of the
values are greater than or equal to the given number which would be… I guess it would have to
be x equals one in this case.” Here, she noticed a pattern in that all the increasing sequences were
bounded below by a value (searching for structure). She did this to understand what about the
increasing sequences made them bounded below (understanding why). The teacher-researcher
then questioned what she meant by x=1. To respond to the teacher-researcher and convey a
general argument, Stella continued building formality to her argument revising her justification
to : “all of these sequences [increasing sequences] must have a lower bound at where .”𝑎

𝑛
𝑛 = 1

Discussion
In this study, we investigated how students' example and set use might evolve during their

conjecturing and proving activity. Our findings suggest that students' example and set use can
evolve over time, and specifically, we identified three categories of our participants’ example/set
use: (1) classifying examples from the initial set of sequences, (2) seeking diversity and using
lack of examples from an expanded initial set of sequences, and (3) attending to properties,
searching for structure, and building formality with the set of all sequences.

Our findings support previous research that indicates students can productively use examples
and sets in conjecturing and proving activities. Our study further contributes to this existing
literature by shedding light on how students might use examples and sets in tandem during
conjecturing and proving. In particular, the sets served as an organizational tool for students’
examples. These sets evolved from organizing their initial set of sequences to a map that
depicted general claims of the set of all sequences.

We also gained some insight into guidance that supported the students' example/set use by
attending to the responding to the teacher-researcher purpose. We found that the first type of
example/set use was supported by requests for students to place sequences into their appropriate
categories and/or add new categories. The second type was often supported by questioning
whether the students' initial placement of the category should be revised by expanding it to
include a new category. Moreover, questions like, "Can you think of a reason why we couldn't
find a sequence?" further supported students to understand why. The last type of category was
supported by requesting that students write their conjectures and then reflect on whether they
thought they were true or knew they were true, and in the case that they thought it was true but
were not certain, supporting them to further search for structure. In our future work we hope to
further explore such guidance and example/set use.
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Coloring the Relationship of Frames and Responses in Teacher Noticing 
 

Johan Benedict Cristobal 
University of Nebraska-Lincoln 

This study builds on Louie, Adiredja, and Jessup’s (2021) sociopolitical turn on teacher noticing. 
In this study, I use graduate student instructors’ experiences as students and perceptions of their 
desirable actions to add nuance to the way Louie and colleagues discuss (anti-)deficit frames 
and noticing. The study uses a novel analytic framework to organize aspects of frames that begin 
to hint at a complex relationship between deficit and anti-deficit framing and responding. 

Keywords: frames, teacher noticing, responding, graduate student instructors 

There have been strides in our understanding of how graduate students develop as instructors 
(Beisiegel et al., 2019; Miller et al., 2018). However, we still require more nuance in the 
discussions of the development of teaching skills for graduate student instructors (GSIs), 
including in instructors’ noticing within teaching. Typical descriptions of noticing tend to model 
instructors who respond to students in deficit-based ways as those who frame mathematics and 
learning in deficit-based ways; and instructors who respond to students in asset-based ways 
likewise are those who frame mathematics and learning in asset-based ways (e.g., Louie et al., 
2021). Although scholars recognize this conception is idealized, there are few examples in the 
empirical literature of a more complicated relationship between framing and responding. In this 
proposal, I share results from an interview-based study of GSIs that provide such examples. 

In this study, mathematics GSIs were interviewed before their instructor orientation to 
recount their experiences as students that I will argue inform the GSIs’ noticing. This contributed 
report stems from a larger study of how GSIs develop their frames of teaching and learning 
within their first semester of teaching as the instructor of record. With the exploration of 
graduate students, the conceptual contribution of this study is to build on Louie, Adiredja, & 
Jessup’s (2021) teacher noticing framework by coloring the gray relationship between deficit and 
anti-deficit phases of noticing and articulate a possible spectrum between deficit and anti-deficit 
frames and teaching responses. The professional contribution of this study is to clarify the 
professional development (PD) of GSIs by expanding the PD organizers’ training for noticing 
skills. 

These research questions guide the study: (1) How do pre-PD first-time GSIs discuss student 
learning and their desired teaching practices? and (2) How do these discussions clarify our 
understanding of frames and noticing? 

Motivation from the Literature 
Within the circles of research in undergraduate mathematics education, the development of 

graduate students as instructors is a shared curiosity. Miller et al. (2018) provided a literature 
review on the growing literature of GSI development which echoed the need for more 
understanding of how graduate students develop. In the following years, there have been studies 
that encompass various avenues of GSI development such as the obstacles of mathematics GSIs 
face in this development (Beisiegel et al., 2019), factors that influence GSI pedagogical empathy 
(Uhing, 2020), or the different types of programs that prepare GSIs to be instructors of 
undergraduate mathematics (Bookman & Braley, 2022; Ellis, 2014). 
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In a different focus, König and colleagues (2022) conducted a systematic literature review of 
182 articles focused on teacher noticing conceptualization, study design, and findings. Within 
these, they found discussions of comparisons between novice and expert teachers (König et al., 
2022, p. 13). However, there was no highlighted discussion of how an instructor develops their 
noticing skills. In particular, GSI and novice instructors' transition from student to instructor has 
yet to be explored in research of teacher noticing. Following the call for research of mathematics 
GSI development and this gap within the literature of noticing, this study continues exploration 
of the specific skill of noticing within the population of first-time teaching GSIs. 

Theoretical Perspective 
As discussed in König et al. (2022), teacher noticing has different conceptualizations (p. 8). 

This study follows from Jacobs et al. (2010) in which they deconstructed and extended the facets 
of noticing into three interrelated skills: attending, interpreting, and responding (AIR). Attending 
means to identify what is most important in the classroom (van Es & Sherin, 2008). Interpreting 
means to assign meaning to objects, such as students’ questions, spoken or written solutions (van 
Es & Sherin, 2008). Lastly, responding alludes to the plan or action of answering the interpreted 
or attended student contribution in the classroom (Jacobs et al., 2010). 

Hill and Chin (2018) provide a recounting of the role AIR has had in instruction. For 
example in classroom management (Star & Strickland, 2008) and responding to meet students’ 
needs (Barnhard & van Es, 2015; Jacobs et al., 2011). They then investigate the interplay 
between teacher knowledge, instructional practice, and noticing; namely in the realm of “teacher 
knowledge of students” (Hill & Chin, 2018, p. 1105). 

Relatedly, Louie (2018) continued the conversation of equitable noticing (Wager, 2014) in 
which her participant, Amanda Pepper, illustrates the barriers that caused her to still see students’ 
deficits in spite of her substantial skills in noticing that focused on seeing students’ mathematical 
strengths (p. 67). Years later, Louie and colleagues (2021) took a sociopolitical turn in discussing 
teacher noticing. They build on previous works, especially of Jacobs et al. (2010), to introduce 
the presence and influence of frames on the AIR teacher noticing framework, dubbing their 
proposed framework of teacher noticing FAIR. In short, frames (Goffman, 1986) are the 
interpretive contexts that participants of a given situation use in order to quickly interpret 
information, filter the details, and decide how to appropriately proceed. It is the vehicle that 
allows a person to be able to answer the question “What is it that’s going on here?” (Goffman, 
1986, p. 8) after attending any current situation. 

In Goffman’s discussion of frames, there is a strong suggestion that the frames one uses 
strongly dictate their actions. Louie and colleagues take from Greeno (2009) to understand that 
“frames provide interpretive contexts that support participants in a given situation to understand 
what kind of task they are engaged in, what kinds of knowledge are relevant or valuable, and 
what sort of behavior they and others are expected or entitled to engage in” (Louie et al., 2021, p. 
3). In illustrating the utility of the FAIR framework, they acknowledge the gray area between 
deficit and anti-deficit noticing but chose to use two examples with “sharp contrast” to illustrate 
how consequential framing can be for noticing (Louie et al., 2021, p. 4). 

To build their illustration of deficit framing and noticing, Louie and colleagues discuss how 
“it makes a great deal of sense” for teachers to attend, interpret, and respond in a deficit manner 
when teachers frame mathematics learning as “absorption of a universal, objective, and fixed 
body of knowledge” (Louie et al., 2021, p. 5). Here, deficit noticing involves “attending to 
accuracy and correctness”, “interpreting mathematical work [as only] correct or incorrect”, and 
“responding by affirming correct answers and remediating errors (Louie et al., 2021, p. 5). 
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In building a parallel illustration of the FAIR framework for anti-deficit contexts, Louie and 
colleagues began with the “AIR” component and ascertained the “F” that shaped the particular 
noticing. For example, using Oscar’s case, they categorized instances of attending into thematic 
codes first (students, mathematics, and interactions), and then used literature on deficit or 
equitable frames to theorize the interrelation between framing and these themes. These two 
illustrations may suggest the same influence that Goffman had, in that deficit framing leads to 
deficit noticing or anti-deficit framing leads to anti-deficit noticing. 

I understand that the FAIR framework is a model of the relationship between frames and 
noticing, and their discussion focused on the utility of frames in discussing noticing. This 
discussion does not do their work justice, as Louie and colleagues discuss more than just these 
illustrations. The best (or worst) case-scenario illustrations of anti-deficit (or deficit) contexts is a 
helpful model in accounting for frames in noticing, but frames likely cannot dictate all actions 
and responses. They have done extensive work in illustrating the complex web between the parts 
of FAIR as well as how the contexts outside of a classroom has a strong influence on the frames 
of teachers (Louie et al., 2021, p. 11). For now, this report aims to complicate this FAIR 
framework by focusing on analytically unpacking frames, which colors the gray area that Louie 
and colleagues mentioned briefly. This is focused on the framing and the responding parts of the 
FAIR framework and discuss the research implication for the other parts in the conclusion. 

Data and Method 
The data used in this report comes from a larger study of mathematics GSIs teaching for the 

first time as instructors of record. Instructors of record are responsible for the content-delivery 
and assessments of these undergraduate mathematics courses (Rogers & Yee, 2018). This study 
took place in a large, public, R1 university. More specifically, the interview data used in this 
report was collected weeks prior to their first PD and official preparation to teach as instructors 
of record. These four GSIs will be teaching either an “intermediate algebra” course which cover 
ideas that “are prerequisites for tackling college-level mathematics” or a “college algebra” course 
which is not commonly deemed as college-level mathematics, like calculus, differential 
equations, or linear algebra (Burrill et al., 2023, p. 799). Each GSI chose their own pseudonym. 

I am a mathematics GSI myself. While the benefits of rapport and confidence helped in 
acquiring participants, the relatable experience of being nervous about teaching for the first time 
has an unavoidable influence on the data collection and analysis. For example, the guiding 
principle that one’s past experience of being lost in a college course influences their future 
desired actions and expectations as instructors of record is a direct result of the author’s 
experiences as a GSI. 

The structure of interviews supports analysis of GSIs’ preliminary frames, with the caveat 
that I am limited to only their perceptions of responses as they have yet to teach. The guiding 
philosophy of the interview was to orient GSIs into their past experiences. By first asking about a 
college course that they felt “really lost” in, this reveals their desired expectations and actions 
better than recounting a time where mastery came naturally. This philosophy stems from the 
author’s experience of better articulating what he wants to do as an instructor when the context is 
bettering a challenging experience. For example, the question “What expectations should the 
instructor [of the “really lost” class] have had…?” revealed desires of wanting to break the 
monotony of lectures to implement student-to-student discussions when confusion arises. This 
can gather information about how they frame learning as collaborative or how instructors should 
respond to perceived confusion. Additional questions were asked that allows investigation of 
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frames and responding such as “In your view, how do students learn math?” or “when you think 
of a skillful teacher, what is that person doing?”. 

Analysis proceeded by first giving a descriptive summary for each question immediately 
after each interview. Then, focusing on individual interviews, each response was analyzed 
closely to highlight ideas about teaching and student learning. Thus, for each interview, a profile 
of the GSI was built using the guiding questions: “what attitudes does this person have towards 
student learning?” and “how does this person’s attitudes compare to the (anti-)deficit frame 
models from Louie et al. (2021)?” In particular to organize data for the latter, a novel researcher 
analytic framework organized into a table (Table 1) was used, which the larger study this report 
stems from is trying to elucidate its viability as a researcher tool for frame analysis. 

Table 1. Researcher framework for examining instructional frames 

Frames provide interpretive 
contexts that support 
participants’ understanding 
of… 

Frames of teaching provide 
interpretive contexts that 
support GSIs perceptions and 
enactment of… 

Frames of learning provide 
interpretive contexts that 
support GSIs perceptions and 
enactment of… 

(1) What role(s) they take up What their role is in the 
classroom as novice 
instructors 

What do GSIs have to do for 
students to learn the intended 
content, practices, and 
orientations 

(2) What knowledge is 
relevant or valuable 

What professional knowledge 
is relevant in the act of 
teaching 

What content, practices, and 
orientations should GSIs 
attend to in the classroom 

(3) What sort of interactions 
they and others are expected 
or have the right to engage in 

What type of interactions (instructor-student, instructor-
group, student-student) are favored or useful in fulfilling their 
role and achieving the intended learning goals 

 
Here I discuss the formulation of Table 1. The compartmentalization of frames is motivated 

by Greeno’s (2009) work, which Louie et al. (2021) also use to discuss frames. Its construction 
was motivated by asking “how can a researcher establish that one instructor’s frame is different 
from another?” The change of wording from participants’ “understanding of…” to “perceptions 
and enactment of…” is key, because this framework addresses the participants’ point of view on 
the three subdivisions as well as the actions that follow. Professional knowledge (Kunter et al., 
2013) refers to the many different facets of knowledge an instructor could have such as content, 
pedagogical content, organizational, pedagogical/psychological, and counseling knowledge. This 
functions to clarify what Greeno meant by knowledge in a way that still broadly covers the types 
of knowledge that instructors draw upon for teaching. Content refers to the curriculum of the 
course, these are what the instructor must cover according to the department. Practices is a 
general term to refer to the behaviors one can learn as a mathematician like collaboration or 
justification. Lastly, orientations cover the abstract such as the attitudes towards the subject like 
confidence and self-efficacy. 

I also want to highlight the combined section row for teaching and learning. While the 
middle column of Table 1 reads as the instructor’s interactions with the broader profession of 
teaching and pedagogy, the right column serves as the instructor’s intrapersonal connections to 
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the act of teaching. As such, it felt natural to combine the final row as a sort of bridge between 
the two sub-definitions of frames. Using the guiding questions, the preliminary frames and 
perceived ways of responding are organized for each GSI. 

Results 
In organizing these results, Table 1 was used as a way to organize connections, such as “how 

have these three framed what it means to learn mathematics?” In the responses to “how do 
students learn math?”, there is a common thread among all four GSIs in framing student learning 
as learning by doing and highlighting the importance of student-student interactions. 

Interviewer: In your view, how do students learn math? 
Andy: So like the first part of math, like high school math. You can kind of do, so to speak, 

on your own in the sense that you can repeat it and see the patterns between examples, 
and from their branch out into other examples, because you can see the structure better. 
and knowing that structure, and being able to extrapolate on that structure, is still useful 
to you, an integral in later parts of math. But I think that in proof math it starts to become 
more social, because you remember certain things from like true, that stood out to you as 
elegant and useful, and other people remember different things from the lecture that's 
been as elegant and useful, and you all have your different preferences on what proofs 
you like to use. 

Paul: The biggest component is doing it yourself, as in like doing problems. 
Longboat: They learn by exploring it, trying things out, and more importantly, discussing 

with people [sitting] behind them, the peers, the other students. That’s important. 
 
Past this point, differences start to arise. These three GSIs also discussed how learning starts 

with an introduction that covers the "big picture" concept which then develops into more 
intuition and understanding by doing more and more examples. For these three GSIs, the 
instructor's role is explicitly noted as the person who introduces the concepts and chooses the 
"right" examples. The fourth GSI, Carlos, discussed learning through the lens of how they learn 
mathematics which differs from the other GSIs since they take it upon themselves to find more 
challenging problems to work on. 

 
Carlos: I'll talk like from my point of view, like how I like to learn math… I like to go to 

lecture, ask as many questions as I can during the lecture, … take notes, go home, read 
the notes, [and] understand what is going on in the notes. And if I don't understand 
something, I go to office hours, ask questions there that are like more in depth. And then 
but oh, before that I try to read the book… It's like very good at supplementing the 
course. Then, also a lot of problems, or like challenging homework problems that are like 
more challenging than the stuff that I would see inside the classroom. And so I like to 
work on the homework like if I have a problem to work on, I work on it for like 30 min to 
an hour. and then if I don't get anywhere. I stop after an hour like after 30 min to an hour. 
and then ask classmates. and if we don't figure it out, I ask After 30 min to an hour with a 
classmate, I ask the instructor. during off hours. And that's in my view how this student 
[points to themselves] learns math. 

 
Now, compiling the responses to questions that center teaching practices, three common 

teaching practices arose: (a) having awareness of the climate of the classroom, (b) being well-
prepared in content knowledge, and (c) creating a collaborative, supportive environment. These 
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practices are then translated into descriptive codes (Miles, Huberman, & Saldana, 2019): climate, 
content, and collaboration. Below are representative quotes for each of these themes that 
demonstrate each theme the best but note that each participant spoke of each theme. 

 
Paul: (climate) I noticed I liked a lot about [graduate course] and his instructor style. It felt 

like he was pretty good at noticing when the class was lost. and sort of pausing to take a 
break and be like, “Okay, check in with your neighbor, talk about what's going on, where 
or what's gone wrong.” I think that's an important aspect. 

Andy: (content) I think a skillful teacher is one who has an understanding of their knowledge 
base, and also the ways that people can misinterpret it when they first see it. 

Carlos: (collaboration) One thing that I think any class should have, for example, is to make 
sure that, like you’re a good classmate, not just like a good student. That definitely, I 
think, should be verbalized in any classes, especially in that one. 

 
Through Table 1 and these themes, these four GSIs have framed teaching and learning as 

requiring content knowledge to attend to students doing problems, but also requiring sensitivity 
to the comfort of the students to create a space conducive to learning from each other.  

Since these GSIs have yet to enter the classroom as instructors, the study takes the three 
themes above to allude to their perception of responding in noticing. For an explicit exploration, 
Longboat has framed the act of learning as an exploration filled with students asking questions 
and making conjectures and their responding maneuver during this exploration is to be hands off: 

 
“I explained a bit of a concept, say the derivative. Maybe I don't give the full story yet. I 
just give them some precursors to it… Then I say ‘for the next 5 minutes, just to the 
person behind and next to you, ask what's this good for?’ I think these vague, open 
questions are good because you've given them an idea the students know it has to do with 
something you've talked about, right? They don't know exactly where we're heading… 
You expect students to have this mini research mind, they should be in the head that you 
explore math. You don't just solve it. So trying things out… They shouldn't discuss it 
with me, because I know what the answer is… So, give them a safe haven with their 
peers, where they can say anything… and as always allow students to make mistakes.” 
 
Longboat’s response above provides one of the motivating complications to the FAIR 

framework. In one interpretation of this response, this was seen as dismissive as it disallows 
students from seeking answers from their instructor. But, in further exploration, this stems from 
Longboat's insistence that learning does not happen by having answers "thrown" at students and 
their belief that mathematics (research) is not given, but is discovered through exploration. 

Another example, Andy has framed the act of learning with a skeleton metaphor: 
 
“You have to get some picture of what you’re looking for, and then see it a lot of times to 
be able to really see the basic skeleton. And then you can try to fill out that skeleton 
depending on what problem you're working on.” 
 
For them, the instructor’s role is to give an “introductory picture of what that skeleton might 

look like” and provide a range of examples (simple to difficult, unambiguous to ambiguous) that 
allow students to add to the skeleton in different ways during different problems. Longboat and 
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Andy both share the frame that learning occurs when there is student exploration, but they differ 
in their way of perception of responding to this frame. While Longboat has a hands-off approach, 
Andy explores a range of examples alongside their students. 

Lastly, as another point of comparison, GSIs also learn through exploration of “more 
challenging” problems, which is expressed in Carlos’ large quote above, however Carlos’ 
perceived role as instructor is to be there for students to approach with questions. This parallels 
Longboat’s students’ exploration but contrasts Longboat’s instructor role, as students are not 
disallowed from asking questions. 

Discussion 
This contributed report set out to build on the work of Louie et al. (2021) bringing frames 

into the AIR teacher noticing framework. The results of the reported study entangle the 
relationship between anti-deficit or deficit frames with anti-deficit or deficit responding. With 
Longboat, Andy, and Carlos, a suggestion of a spectrum rises in the gray area between anti-
deficit and deficit ways of responding. Even though these GSIs agreed in framing student 
learning as including exploration of various problems, their ways of responding branched out in 
different ways. Similar to Louie et al. (2021), it is reductive to label instructors’ noticing as 
purely anti-deficit or purely deficit as it is rarely the case that noticing is (anti-)deficit in every 
situation. As in Longboat’s situation, their way of responding (not discussing with students 
during their exploration) could be seen as deficit (when viewed as dismissive) or as anti-deficit 
(when viewed as a total belief that students are capable of exploring on their own). 

Implications and Future Direction 
This study was only able to focus on their frames and their perceptions of responding. With 

that, future research should explore where “switching” happens. Since there is a perceived flow 
from attending to interpreting to responding, future work can explore where the switch from 
deficit to anti-deficit happens along this chain. 

An implication of this study for professional development organizers is to understand the 
complicated nature of anti-deficit framing and anti-deficit teacher noticing. On one hand, the 
author now understands that even if novice instructors are taught the same anti-deficit frame to 
approach teaching and learning, these can morph into different expressions that could be taken as 
deficit by their students. On the other hand, this complication of the FAIR framework alludes to 
a spectrum that can form a pathway from deficit responding to anti-deficit responding that PD 
leaders can utilize to train instructors to provide more equitable experiences for students. 

A consequence of this study is that, even before formal professional development or 
experience as instructors of record, mathematics graduate students have nuanced perceptions and 
thoughts about their future teaching and what it means to be a skillful teacher. The larger on-
going study this report stems from assumes that these perceptions are continuously shaped 
during their experiences as students in their mathematics courses. As such, more studies in 
leveraging graduate students’ experiences as students to improve, augment, or re-design aspects 
of the graduate student professional development and preparation to teach undergraduate 
mathematics. 
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Raise Your Hand if You Are Overloaded: The Role of Gestures in Proofs Comprehension 
 

Vladislav Kokushkin 
Colorado State University 

Activities related to reading and understanding mathematical proofs are notoriously challenging 
for college students. On top of applying advanced logico-mathematical knowledge, these 
activities require the reader to process and operate on a substantial amount of information. 
Failure to successfully navigate the incoming stream of information may result in cognitive 
overload and impede one’s ability to make progress on the task. This case study investigates how 
an undergraduate student, David, used his hands to overcome the cognitive load he experienced 
when reading a proof of the Two-Color Theorem. The findings suggest that in the absence of 
other modes of offloading (e.g., using pen and paper, figurative materials, or technology), hand 
gesturing may serve as a powerful and convenient offloading mechanism. 

Keywords: gestures, working memory, proofs 

The ability to read and comprehend proofs is critical for undergraduate students’ success in 
advanced mathematics courses. Students are expected to spend substantial time surveying proofs 
presented in mathematics textbooks and their instructor’s lecture notes (Weber, 2004). However, 
the activity of reading mathematical proofs differs from reading a literary text and requires 
developing special experience and particular skills. Unsurprisingly, then, numerous studies have 
documented that college students struggle to read proofs effectively (e.g., Hodds et al., 2014; 
Inglis & Alcock, 2012; Mejía-Ramos et al., 2012; Selden & Selden, 2003; Weber & Alcock, 
2005; Weber 2004, 2015). 

The implementation of certain ineffective reading strategies may be associated with the need 
to operate on an overwhelming amount of information. For example, Selden and Selden (2003) 
observed that novice readers spend much time paying attention to surface features of proofs, 
such as algebraic calculations. In another study, Inglis and Alcock (2012) found that 
undergraduate students tend to read proofs line-by-line, or, in other words, implement a zooming 
in (Weber & Mejía-Ramos, 2011) strategy. This way of reading proofs is the opposite of a 
zooming out strategy – skimming the proof to grasp the main ideas prior to attending to the 
details. The tendency to read proofs line-by-line or focus on surface details may pose significant 
cognitive load (Sweller, 1988, 2010) and impede proofs comprehension. 

Cognitive offloading refers to the use of embodied activities to reduce the experienced 
cognitive load (Risko & Gilbert, 2016). Mathematics education literature has documented the 
beneficial effects of different modes of cognitive offloading, for example, drawings (Stryker et 
al., 2022), and hand gesturing (e.g., Cook et al., 2013; Goldin-Meadow et al., 2001). 
Remarkably, all these studies were conducted in the context of elementary school mathematics, 
and the role of cognitive offloading as manifested via hand gesturing in the context of 
undergraduate mathematics has been fundamentally under-researched. Moreover, none of the 
previous studies investigated the role of gestures in understanding written mathematical texts. As 
such, the goal of this study is to begin filling the gaps in the RUME literature. Specifically, my 
chief research question is What is the role of students’ gestures in navigating the cognitive load 
associated with reading and comprehending mathematical proofs? 
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Theoretical Framework 
In answering this research question, I adopt Piagetian and embodied perspectives. Embodied 

theories of cognition (e.g., Barsalou, 2008; Lakoff & Nuñez, 2000; Nemirovsky & Ferrara, 2009) 
propose that cognitive activities are rooted in sensory-motor processes (Wilson, 2002). Likewise, 
the idea that sensory-motor operations provide a basis for mathematical learning corresponds to 
Piagetian theories of mathematical development (Piaget, 1972). Sensory-motor activity is a 
kinesthetic activity involving muscular movements, including hand gestures. This activity can be 
further internalized and transformed into mental actions and representations. Although Piagetian 
and embodied perspectives have certain epistemological disagreements (e.g., on how abstraction 
takes place), these two theories allow for the integration of the constructs of mathematical 
proofs, gestures, and working memory (WM) by positioning bodily activities at the core of 
human cognition.  

Working Memory 
WM is a psychological model for human’s ability to simultaneously store and process limited 

amount of information over a short period of time (e.g., Baddeley, 1992; Baddeley & Hitch, 
1974; Daneman & Carpenter, 1980). Although numerous models of WM have been proposed 
(e.g., Atkinson & Shiffrin, 1968; Baddeley & Hitch, 1974; Cowan, 2012), Pascual-Leone’s 
(1970) neo-Piagetian approach to WM is of primary relevance to my theoretical framework. 

Pascual-Leone (1970, 1987) introduced a mathematical model to account for the 
development and functioning of WM. The proposed model has two levels. The first level 
contains cognitive units – schemes in the Piagetian sense. The second level includes cognitive 
operators, which are responsible for the activation of task-relevant schemes and inhibition of 
activation of irrelevant schemes. An individual’s WM capacity (or M-capacity) is characterized 
in terms of the maximal number of schemes they can activate at a time. The cognitive 
complexity of the task (its M-demand) is defined as the number of schemes the task requires to 
be activated simultaneously. If the M-demand of the task exceeds an individual’s M-capacity, 
cognitive overload takes place, and student’s progress on the task can be impeded. 

Gestures 
Hostetter and Alibali (2008, 2019) proposed the Gesture as Simulated Action (GSA) 

framework to provide a theoretical account of how gestures emerge from embodied simulations 
of motor and perceptual states. In line with neurological and behavioral evidence, the GSA 
framework asserts that thinking and talking about an action activates neural areas that are 
responsible for planning the action. This activation may be either inhibited by a human or 
realized as a sensory-motor output. In the latter case, the hand gesture is born.  

Mathematical Proofs 
Harel and Sowder (2005, 2007) have proposed the notion of transformational proof schemes. 

According to this view, when students read proofs, their reasoning is transformational in nature, 
because learners are supposed to perform various transformations of mathematical objects of 
thought to deduce or keep track of a chain of inferences. Although the authors originally defined 
transformations only as expressed through written and spoken language, I follow Pier et al. 
(2019) and extend this definition by including transformations manifested via hand gesturing. 
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Methods 
The data presented here are a subset of data collected for a larger project aimed at 

understanding the role of gestures in offloading cognitive demands on students’ WM when they 
read, present, and construct proofs of mathematical conjectures. In this paper, I report on David, 
an undergraduate student enrolled in an introductory proof course, working on the proof of the 
Two-Color Theorem (see Figure 1). 

 
Figure 1. The proof of the Two-Color Theorem (as it was presented to the participant). 

Procedures 
David participated in two pre-interview WM assessments, a proof-based clinical interview, 

and a stimulated recall interview (SRI). 
WM assessments. The participant’s WM capacity was measured using two previously 

validated procedures – the Figural Intersection Test (Pascual-Leone & Ijaz, 1989) and the Direct 
Following Task (Pascual-Leone & Johnson, 2005). David’s scores on the two tests were 
averaged and resulted in a WM capacity of 8.251. 

Proof-based interview. The participant was presented with a proof printed out on the piece 
of paper as it is shown in Figure 1. The student was told that the proof was correct and that his 

 
1 Average WM capacity ranges between 5 and 9 (Miller, 1956; Pascual-Leone, 1970). 
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task was to read the proof and do his best to understand it. The student was not given a pen, 
scratch paper, a calculator, or any other figurative materials. He was not limited in time and was 
asked to think aloud while surveying the proof. After David indicated that he fully understood 
the proof, the interviewer asked a set of comprehension questions (data not reported here). The 
participant’s behavior and mathematical reasoning were video- and audio-recorded.  

Stimulated recall interview. On a later date, the student was shown selected video clips 
with himself working on the proof, and the interviewer asked questions about the participant’s 
reasoning and behavior. 

Hypothetical Analysis of the M-demand of the Proof 
Prior to collecting data, I conducted a hypothetical analysis of the M-demand of the proof. 

This analysis is based on identifying a sequence of mental actions that need to be carried out to 
understand the proof. Specifically, I broke the proof into lines containing one or two 
mathematical statements. Every line was then coded as Ak. For each line, I identified the set of  
1) previous lines Ak logically depends on, and 2) contextual schemes that a participant would 
hypothetically need to activate when reading the proof. These contextual schemes included extra 
lemmas, definitions, key concepts (e.g., primality or divisibility), and the essential elements of 
the proof framework (e.g., inductive hypothesis or proof by cases). For the purposes of this 
project, I use the word “scheme” in a broad sense to capture the information contained in the text 
of the proof (lines A1,…, An) and contextual mathematical knowledge. 

Figure 2 illustrates the hypothetical M-demand of the proof of the Two-Color Theorem. It 
has been hypothesized that to understand the line A7, the reader needs to activate the schemes A3, 
A4, and A5. Also, the reader needs to allocate additional cognitive resources to retain the 
information contained in A7 itself and to understand why {A3,A4,A5} imply A7 (indicated as an 
arrow). Thus, the M-demand of line A7 was assessed as 5 (one unit per scheme plus an arrow). 
According to the same methodology the M-demand of the lines A9 – A11 was assessed as 9, 
which is higher than an average WM capacity. 

    
Figure 2. A line-by-line analysis of the M-demand of the proof of the Two-Color Theorem. The scheme P denotes the 

proposition of the theorem, IH – the inductive hypothesis, and Cs – the necessity to coordinate cases.  
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Data Analysis 
The analysis began with creating the transcript of the proof-based interview. The videos in 

conjunction with the written transcript were used to identify gesturing episodes. Given that 
gestures oftentimes occurred quickly, I re-watched the video recordings and created codes for all 
gestures. I did this by looking at each gesture and creating a short description considering 
physical hand movements, the associated mathematical context, and the corresponding speech (if 
present). Gestures that did not seem to convey any mathematical meaning, were eliminated from 
the analysis. The remaining gestures were then labeled as (purely) communicative or offloading. 
In the latter case, the offloaded schemes were specified. The participant’s responses during the 
SRI were used to triangulate my initial interpretations of his gesturing. 

Results 
I chose the Two-Color Theorem for two main reasons. First, its proof is mathematically 

accessible for undergraduate students assuming that they are familiar with the method of 
mathematical induction. Second, my methodology for measuring the M-demand of the proof 
predicted significant cognitive overload even for the participants with advanced WM capacity. 

As was expected, David did not experience difficulties with the task until he reached the end 
of the proof. However, when reading lines A9 – A11, the participant demonstrated behavioral 
indicators of cognitive overload. Specifically, he paused reading and reviewed the details of 
(re)coloring of the plane (lines A4 – A7) multiple times, asked for a pen, and eventually started 
assisting himself with active hand gesturing to represent the circles and the associated regions: 

 

 
Figure 3. David working on the proof of the Two-Color Theorem.  
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So, this is a circle [uses his thumb and a pointing finger to form a circle]. And it has a 
different color from its outer region [points to the inside and outside of the circle, Figure 
3, top left]. Ck [meaning Ck+1] is put on top of it [uses another hand to represent a circle, 
Figure 3, top right]. And now it has an opposite color from the original circle [Figure 3, 
bottom left]. And it is a neighboring region, with the original outer region, which was 
opposite of its inside [points to the inside of the original circle and to the outer region. 
Figure 3, bottom left, then bottom right]. They cannot be both opposite to an inside 
circle… Oh wait, but they switch the color! 
 
The described sequence of gestures allowed David to offload the activation of a few critical 

schemes and helped him to make progress in understanding the proof. By placing the first circle 
and pointing to the inner/outer regions, the student offloaded schemes A3 and A4. When using his 
hand to indicate the action of adding another circle on top of the first one, he transmitted the 
activation of scheme A5 into his immediate sensory-motor experience and eventually realized 
that some recoloring was needed, which is one of the key ideas of the proof. Therefore, 
offloading schemes A3, A4, and A5 allowed the participant to free up WM resources to operate on 
other pieces of information, such as scheme A7.  

In the SRI, I showed David the described video episode and asked him what was challenging 
about the proof and what helped him to overcome these challenges. The participant indicated that 
it was hard to “remember all the configurations and steps” and discussed some offloading effects 
of hand gesturing: 

 
…maybe honestly, the working memory tasks helped me realize that if I could like 
potentially store some of the memory, like, in my hands, and not move them, and now it 
helped me like, work on other stuff in my head2. So, I just froze that piece of the memory 
in my hands and then continued to like, think about other configurations… Because, um... 
it was easier to like visualize different colorings of some regions I can actually see. 
Because I didn't have to remember both the colors and the region, I just had to remember 
that.  

 
Although David’s reflection could be biased by his prior knowledge about WM, which 

relates to the context of the study, these data provide an important insight into the nature of the 
offloading power of hand gestures from the participant’s perspective. 

Discussion and Implications 
My work contributes to the existing literature in multiple ways. First, this case study serves 

as a starting point for the investigation of the role of students’ gestures in navigating the 
cognitive load associated with activities pertaining to high-level mathematical cognition, such as 
mathematical proofs. In line with the previous research conducted in the context of elementary 
mathematics (e.g., Alibali & DiRusso, 1999; Cook et al., 2012; Goldin-Meadow et al., 2001; 
Ping & Goldin-Meadow, 2010; Wagner et al., 2004), the data presented here provide evidence 
that, in the absence of other modes of offloading, gesturing may be a convenient and powerful 
offloading mechanism. Using his hands to offload the activation of task-relevant mental 

 
2 After the WM assessments, David was curious about what constitutes WM and why it is important in learning 
mathematics. Apparently, he picked up some WM terminology and used it in the SRI. 

26th Annual Conference on Research in Undergraduate Mathematics Education 282



schemes, David could reduce the experienced cognitive load and free up WM resources that 
helped him to make progress in proof comprehension.  

Second, prior research on gesturing in proofs has revealed the prevalence of so-called 
dynamic gestures during proving practices (e.g., Nathan & Walkington, 2017; Nathan et al., 
2021; Walkington et al., 2014). These gestures depict real-time transformations of either a single 
object or multiple mathematical entities, related to each. Dynamic gestures were also evident in 
my data (for example, gestures depicting the transformations of the regions caused by adding the 
k+1st circle onto the plane). The findings shed light on the cognitive utility of dynamic gestures 
in terms of their offloading power. 

Finally, the proposed analysis of hypothetical M-demands of mathematical proofs was able 
to model the experienced cognitive load and predict places of cognitive overload by specifying 
the number of mental schemes the proof requires to be activated line-by-line. Other scholars used 
alternative approaches for modeling the cognitive load of a mathematical task. For example, 
Norton et al. (2023) introduced the notion of unit transformation graphs (UTGs) to illustrate the 
sequence of mental actions students perform when they are engaged in fractional tasks. Although 
UTGs provide opportunities for measuring the experienced cognitive load and help to explain 
how it may be reduced (Norton et al., 2023; Stryker et al., 2022), the applicability of this model 
is limited, and UTGs become impractical in multidimensional tasks, such as mathematical 
proofs. 

As a closing remark, hand gesturing is only one, although outstanding, example of a 
cognitive offloading mechanism. In another study, Stryker and colleagues (2022) examined the 
role of student-generated drawings in offloading cognitive demands of fractional tasks. The 
results indicated that the possibility to rely on drawings helped the students to free up WM 
resources and complete a cognitively demanding task. Notably, before starting drawing, the 
participants actively produced hand gestures. However, the use of gesturing did not help the 
students to overcome the experienced cognitive overload and finish the task without drawing. 
This gives some anecdotal evidence that drawing can be considered a “more powerful” 
offloading tool than gesturing. Nevertheless, future research should directly contrast various 
modes of offloading. 
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When Cohen’s Kappa Is Not Enough: Exploring Methods for Estimating Inter-Rater Reliability 
for Time Sequential Data 
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We identify a current pragmatic and methodological problem facing RUME researchers who 
study processes that unfold over time, like classrooms and interviews, with qualitative coding 
techniques. In many cases, existing methods for estimating agreement between raters fail to 
account for the properties of this kind of data, are not compatible with how the coding schemes 
are applied, and fail to properly estimate rater agreement. Despite many peer-reviewers 
requesting estimates of agreement for coded data, there is often no suitable value to report and 
researchers must make do with claims about coming to consensus. We review methods found in 
the literature and evaluate their suitability, strengths, and weaknesses. While each reviewed 
method is appropriate for some aspect of this kind of data, none satisfies all desired criteria. 

Keywords: methods, quantitative, qualitative, inter-rater reliability 

Qualitative researchers in RUME often use coding techniques (e.g. Clarke et al., 2015; 
Saldaña, 2016) to analyze recordings, transcripts, or artifacts like written work from educational 
settings like classrooms or interviews. Because qualitative analysis typically adopts a subjective, 
interpretive approach to seeking patterns in rich, complex data sources, one should not expect 
two raters would exactly agree on how to apply a coding scheme to a given record of an 
educational setting. Yet, there is still an expectation that multiple raters trained on the same 
codebook will conduct an inter-rater reliability (IRR) analysis and report an estimate. 
Miscalculating and inaccurately reporting IRR has been identified as a common methodological 
issue when reporting observational data (Hallgren, 2012). In our view, these methodological 
oversights are symptoms of qualitative researchers not having adequate access to suitable IRR 
measures or a clear mapping of which measures are suitable for different research settings. In 
this paper, we discuss the limitations of common approaches to IRR within RUME. We focus on 
observational data with particular attention to time-sequenced data, to illustrate the impact of 
differing types of disagreements between raters and consider the viability of existing approaches 
to estimating IRR. We conclude that the field lacks suitable estimates of IRR for addressing 
questions about time-sequenced interactions between teachers and students’ reasoning, questions 
of particular interest to the RUME community. 

Why Should RUME Care about IRR? 
Seeking an objective numerical metric, such as IRR, may appear in conflict with interpretive 

paradigms of qualitative analysis; however, a suitable IRR method can serve an important role in 
supporting claims about the qualitative codebook and the coding process. First, if a suitable 
threshold is achieved, IRR can support inferences about the level of intersubjectivity (stability) 
of the codebook and therefore increase trustworthiness of the data analysis process. Second, a 
suitable measure may give information about when a rater has been adequately trained to use a 

26th Annual Conference on Research in Undergraduate Mathematics Education 286



coding scheme independently. When raters can reliably work independently, the capacity of the 
research team increases because researchers’ confidence that the coding schemes are being 
consistently applied increases. Relatedly, some researchers intend to disseminate their coding 
schemes so that other stakeholders, like teachers and school districts, can use them to target and 
improve qualities of instruction. Third, researchers may wish to track observer drift (Miller, 
2018). As raters code independently, they will begin to favor certain codes over others or 
introduce examples of codes (or additional codes) in distinct ways. It is important to understand 
how often raters should check in and re-calibrate their usage of the coding scheme. Additionally, 
raters’ convergence or divergence on specific codebooks could become an object of study in 
itself. Fourth, IRR is essential to mixed methods research, where the resulting frequencies (how 
much and how often) of code occurrences serve as the input to quantitative methods. 

IRR Methods RUME Researchers Use 
To situate our discussion within RUME, we conducted a full-text search of the Boston (2022) 

RUME proceedings and articles published in IJRUME using search terms like “agreement” and 
“rater/coder reliability.” The search returned eight proceedings and 16 articles reporting a value 
for IRR. Only 2 of 8 proceedings and 7 of 16 IJRUME articles reported a statistic such as 
Cohen’s ߢ. A further two articles reported comparable statistics (Fleiss’s ߢ and Krippendorff’s 
 and two considered correlations between coders. The remaining papers reported an agreement (ߙ
percentage. This brief search suggests that Cohen’s ߢ is the primary method for estimating IRR 
appearing in published articles in RUME. 

What is Cohen’s ࣄ and why is it problematic? 
Cohen (1960) introduced ߢ to measure agreement between two raters using a nominal scale 

to assign analytic units to categories. Cohen’s ߢ (hereafter: ߢ) is available in many qualitative 
data analysis software packages. The requirements are fairly stringent: analytic units must be 
independent, the coding categories must be independent, the codes must be mutually exclusive 
and exhaustive (MEE), and the raters must be independent.  Imagine a recording of a classroom 
lesson and a codebook containing ݊ different codes, {ݔ}, which do not have a naturally 
occurring order. The recording is segmented into analytic units. These could be turns of speech 
or uniform chunks of time, for example. For each analytic unit, Rater 1 can apply ݔ (or not) and 
Rater 2 can apply ݔ (or not). For each ݔ, and for each segment, there are two agreement states 
(both apply code ݔ, neither apply code ݔ) and two disagreement states (one coder applies ݔ and 
the other does not). The counts for each state can be tallied in a contingency matrix and then 
Cohen’s Kappa computes the ratio between (a) the excess probability that two coders agree 
compared to the probability agreements are due to chance alone and (b) the probability that 
agreement is not due to chance alone. It is interpreted as the likelihood that raters are coding the 
same way, corrected for how often the raters (hypothetically) agree by chance alone. Values 
closer to 1 correspond to stronger inter-rater reliability. Metrics like ߢ can be suitable for well-
structured qualitative data where codes are applied to well-defined analytic units, like turns in a 
transcript. However, ߢ rests on quantitative assumptions (e.g., codes are mutually exclusive and 
represent independent categories) that are not always met by the outputs of qualitative coding. 

Four primary categories of observational data can be distinguished: (a) event sequential data 
encode only the order of events, but not time information about when they occurred, (b) state 
sequential data assume that every second of the observational record can be mapped to a unique 
state in the codebook and thus record transitions between states, (c) interval sequential data 
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consist of equally-segmented intervals and apply codes to each segment, and (d) time sequential 
data (TSD) allow codable events in the observational record to be identified with a rater-defined 
time interval (Bakeman & Quera, 1995); codes can be applied to momentary behaviors (e.g., a 
hand being raised) or to behaviors with a duration (e.g., a teacher engaging in motivational talk). 
Both the start and stop times of each coded event are relevant in TSD, an aspect which 
distinguishes it from the other categories and makes it particularly resistant to statistical methods 
like ߢ. In TSD data, where one codable event begins is partly constituted by when another one 
ends (or begins). This means not only that TSD violates independence assumptions, but it also 
introduces low-level disagreements that researchers may not wish to tally. ߢ assumes that all 
types of disagreements between raters are equivalent and should be tallied.  

Consider the following three kinds of disagreements: (A) errors of omission/commission, 
where one rater misses (or inserts) a codable event relative to the other rater’s analysis, (B) 
multiple interpretation problems, where two raters disagree on what code is appropriate for the 
analytic unit, but agree that something important relevant to the research question is happening, 
and (C) boundary problems, where two raters agree on what code to use, but choose different 
times to apply it. The severity of omission/commission depends on whether Rater 1 simply did 
not perceive the event that Rater 2 conceives as codable, or whether Rater 1 disagrees with Rater 
2’s interpretation of the event as codable. In the first situation, Rater 1 may simply admit they 
missed something and adopt Rater 2’s code. The second situation should count as a 
disagreement, but probably not the first. After all, this is a primary reason to have at least two 
raters reviewing data for mixed-methods work. Multiple interpretations problems will arise when 
codebooks are detailed and complex. Said plainly, the more choices there are for codes, the more 
likely two raters will disagree on which code to use even if, at a high level, they agree that a) 
there is a codable event and b) how to interpret the relevance of the event. Boundary problems 
are common when using coding schemes that allow for codable events to be selected with a 
rater-defined time interval instead of uniform time intervals. The raters need to decide when each 
codable event begins and ends, as well as which code(s) to apply.  Each of these types of 
disagreements is less substantial than two raters fundamentally disagreeing on the nature of what 
is being observed. The problem is that algorithms vary in their capacity to evaluate what kind of 
disagreements may have occurred, and therefore whether to count them as “true” disagreements. 
For these reasons, metrics like ߢ (and percent agreement) may not properly estimate IRR and 
thus are limited in their suitability for the kinds of qualitative research common in RUME. In 
fact, there is growing caution Cohen’s kappa should not be considered as a standard for IRR in 
these cases (Walter et al., 2019). 

These problems are exacerbated for projects recording temporally-sequenced observations, 
like interviews or classroom interactions, and can confront the researcher with distasteful 
choices. To make the discussion concrete, imagine a cognitive task-based interview setting 
where the project is interested in studying interviewer-student interactions that lead to successful 
problem solving. In this example, imagine the research question is about how the interviewer’s 
moves support the student’s reasoning. The interviewer’s moves might get coded for attributes of 
the questions she asks or mathematical content of the statements she makes. The student’s 
speech, writing, and gestures might get coded with indicators for phases of problem solving, 
covariational reasoning, and metacognition – as they occur. These codebooks are very complex 
and may not be hierarchically organized, thereby resisting simplification efforts.  

Due to the nature of mathematical reasoning, multiple codable events may take place during 
overlapping durations of time. For example, while speaking about a graph, the student may be 
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speaking about two quantities covarying, but doing so to reflect on the adequacy of results from 
their previous work (metacognition) by considering an analogous situation (problem solving 
heuristics). Thus, this TSD does not satisfy assumptions about mutual exclusivity. To meet the 
assumptions for ߢ, the observational record would need to be artificially segmented (i.e., 
transformed into a non-TSD type), which would disregard detailed interactional information the 
qualitative codebooks are designed to capture. For example, coding the teacher and student 
moves every 30s would (inaccurately) concede that the only important aspect is whether a move 
occurred during the time interval, and then apply that code to the entire interval, which would 
wash away any interactional information during that interval.  In short, researchers want to retain 
“when” something happened as a property of the data so that time-dependent interactions can be 
studied.  

Considerations for Evaluating a Method’s Capacity to Exclude Low-Level Disagreements 
In general, estimates of IRR are very sensitive not only to raters’ consistency in applying 

codes to the data but also to their accuracy in segmenting transcripts of videos into analytic units. 
Ideally, the coding process supports assignment of “clearly defined, disjunct categories” (Reed et 
al., 2018, p. 208) to each codable event and there is an “intersubjective, transparent basis for 
forming coding units” (Bilandzic et al, 2001 as cited in Reed et al., 2018, p. 208). This is easy 
enough when the codebook corresponds to direct observations, e.g., student raises their hand. It 
becomes much more complicated with research questions that use interpretive coding schemes, 
like those associated with student reasoning or teacher scaffolding moves. As discussed above, 
there are three kinds of low-level disagreements that researchers may not wish to tally. In this 
section, we review existing methods for estimating IRR for TSD that treat two of them: errors of 

omission/commission and boundary problems. 
There are three kinds of boundary problems that have implications for the algorithms used to 

estimate IRR, which we call the basic boundary problem, the splitting boundary problem, and the 
disjoint boundary problem, diagrammed in Figure 1. The basic boundary problem arises when 
the raters use non-identical starting or ending boundary points for the codable event. For IRR 
methods which include some kind of temporal tolerance, a small tolerance can result in false 
negatives for this kind of boundary disagreement, whereas a large tolerance can result in false 
positives. The splitting problem occurs when one rater decides to split a code for some non-
codable activity that occurred during the interval a codable activity occurs. For example, Rater 1 
codes [ݐଵ,  ଶ] as quantitative coordination, but Rater 2 observes that for a duration of timeݐ
,ଷݐ] [ସݐ ؿ ,ଵݐ]  ଶ] that the student makes a comment about their recent mathematics exam, whichݐ
is not a codable event, and then goes back to their covariational reasoning activity. Thus Rater 2 
produces two codable events, [ݐଵ, ,ସݐ] ଷ] andݐ  .ଶ], assigned to quantitative coordinationݐ
Depending on which IRR method is used, an algorithm could count this as two agreements and 

Figure 1 Boundary Problems (BP), which should not count towards disagreements. 
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one disagreement or as three disagreements. However, the disagreement is closer in nature to 
deciding the appropriate duration of an analytic unit, which is why we include it as a boundary 
problem. A suitable method would be sensitive to the splitting problem only in cases where the 
number of coded events is important to the research question. The disjoint boundary problem 
happens when a codable event is a very short duration and is couched in an ongoing student 
activity. For example, the student may exclaim, “wait!”, briefly go silent, and then correct a 
mistake. Here, the raters may agree on the codable event (evaluation), and which code to apply, 
but not “when” to give credit for it. 

Options for Estimating IRR for Time-Sequenced Data 
We sought methods in the literature that aligned with the properties and needs of TSD: (1) 

they could be modified to accommodate violations of the MEE assumptions (2) the method is 
properly sensitive to low-level disagreements arising from boundary problems and 
omission/commission, and (3) the method is adequate to research questions posed about time-
dependent interactions. In this section, we review the strengths and weaknesses of three 
approaches to modifying ߢ for use with TSD: time-unit kappa, multi-pass, and sequence method. 
A summary of the methods is provided in Table 1. 

Time-unit Kappa. Bakeman et al. (2009) describe the time-unit kappa method as one 
commonly used in existing IRR literature. This method subdivides the data into very small, 
uniform, time intervals (typically fractions of a second), and takes the time interval as the 
analytic unit. As with Cohen’s ߢ, an agreement matrix is formed by counting agreements and 
disagreements on the subdivisions and ߢ is calculated on those matrices. As this approach re-
defines the analytic units as small time intervals, disagreement between coders on number of 
coded intervals (as in the splitting boundary problem) are not measured. This method is also 
often modified with a researcher-specified temporal tolerance, allowing it to potentially be 
insensitive to disjoint boundary problems. The main drawback of time-unit kappa is that it 
assumes each tally mark in the matrix corresponds to a codable event, thereby dramatically over-
estimating the number of rater decisions. Additionally, long strings of subdivisions would all be 
(apparently) coded identically, violating the independence assumption of ߢ. Time-unit kappa 
may still be useful in some situations. In particular, it addresses the splitting boundary problem, 
can easily be modified to address the disjoint boundary problem, and would be appropriate for 
research questions that demand high confidence in code location and duration. 

Multi-pass. This family of methods improves upon the time-unit kappa method by 
identifying agreement between complete coded events instead of breaking them up into time 
segments. This comes closer to meeting the ߢ independence requirement. They make multiple 
passes through the coded data and on each pass they assign agreement or disagreement between 
raters to each coded event which has not yet been assigned a state. There are three published 
toolkits that execute multi-pass IRR methods: The Observer (Jansen et al., 2003), Interact 
(Bakeman et al., 2009), and EasyDIag (Holle & Rein, 2015). The Observer makes two passes to 
tally agreements based on overlap of coded events (within some researcher-defined tolerance) 
and then makes two more passes to tally code disagreements. The Interact algorithm works 
similarly but adds an extra pass to identify errors of commission/omission. 

Both The Observer and Interact algorithms state that MEE assumptions should be met and 
both address the three boundary problems. Both are consistent with research questions that care 
about the occurrence and order of coded events. These algorithms can still be executed on data 
which violate the MEE assumption, and so potentially may perform well on data which only 
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minimally violate it (see Jansen et al., 2003). The extent to which they perform well with MEE 
violations would be testable through simulation methods.  However, both algorithms suffer from 
what Holle and Rein (2015) refer to as the linking problem: these methods may produce more 
entries in the agreement matrix than there are total coded events in the union of the two raters’ 
data. Consider the splitting problem in the middle diagram of Figure 1 from the perspective of 
Rater 1 and from the perspective of Rater 2. Rater 1’s coded event agrees with the first and 
second events coded by Rater 2 and Rater 2’s two coded events agree with Rater 1’s only coded 
event. Even though there are only three total coded events, the Observer algorithm would count 
this as four agreements. Holle and Rein claim that multiple linking can lead to bias towards 
agreements (2015). Raters who encounter many splitting problems will have artificially inflated 
reliability.  

The EasyDIag algorithm was developed in response to the linking problem in the Observer 
algorithm (Holle & Rein, 2015). It makes only two passes. In the first pass, it links coded events 
with sufficient overlap and then removes them from the set. The remaining coded events are 
considered disagreements. The second pass links the disagreements in order of percent overlap, 
until the percentage falls below the same threshold. Any remaining coded events are considered 
errors of omission/commission. While EasyDIag resolves overcounting on the splitting problem, 
it does not resolve any of the boundary problems. It relies on percent overlap to link coded 
events and categorize them as (dis)agreements. It would miss boundary problems where the 
duration of Rater 1’s coded event is much longer (or shorter) than Rater 2’s coded event. 
Similarly, it will fail to link coded events with the disjoint boundary problem because it requires 
some level of overlap between codes. Finally, it will fail to link coded events with the splitting 
problem because it permits only one link per coded event before removing that coded event from 
the set of coded events to process. We consider these problems to be potentially resolvable by 
using a negative threshold, allowing for closely disjoint codes to be associated, which would not 
be within the range of thresholds (51% to 90%) suggested by the original authors. 

Sequence Method. All methods mentioned so far have focused on temporally local 
agreements between two coders. Bakeman et al. (2009) introduced the GSEQ-DP algorithm 
which, instead, considers the overall sequence of coded events. This algorithm extends previous 
work with event sequential data (data viewed as a sequence of coded events, without reference to 
time stamps). The original algorithm rendered each rater’s coded events as a sequence and 
computed the Levenstein distance between them (Quera et al., 2007). The Levenstein distance 
measures the minimum number of coded event substitutions, additions, or removals required to 
transform one sequence of coded events into another. A sequence of transformations is generated 
in the process and this sequence can be directly mapped to agreements/disagreements 
�VXEVWLWXWLRQV���FRPPLVVLRQV��DGGLWLRQV���DQG�RPLVVLRQV��UHPRYDOV��LQ�DQ�DJUHHPHQW�PDWUL[��ț�FDQ�
then be calculated as usual on the resulting matrix. The GSEQ-DP algorithm connects the 
sequence-only algorithm to the timing of coded events as follows: Substitutions are free when 
Rater 1’s coded event is temporally close to Rater 2’s coded event but a cost is imposed on 
substitutions that are temporally distant. Imposing the costs ensures the method only identifies 
agreements between coded events which are temporally close to one another. As with previous 
methods, the GSEQ-DP algorithm explicitly assume the codebooks satisfies the MEE 
assumption. Its focus on code sequence resolves the basic and disjoint boundary problems. The 
splitting boundary problem, though, is still unresolved as the algorithm provides one-to-one 
mapping between coded events. This method for estimating IRR could be very useful for 
research questions concerned with the sequencing of coded events, such as, “Does metacognition 
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often follow a teacher’s evaluation of response?” The algorithm could be amended to relax the 
MEE requirement and to adequately treat the splitting problem by introducing swapping and 
splitting as valid transformations, bringing in something closer to Damerau-Levenstein distance 
instead of the Levenstein distance.  

Table 1 Summary of methods for estimating IRR for time-sequence data type: criteria not met (غ), met (ض) and 
could be adapted (!) for requiring codes be mutually exhaustive and exclusive (MEE), the basic boundary problem 

(BBP), splitting boundary problem (SBP), disjoint boundary problem (DBP), and commission/omission errors 
(Com/Om) 

       

Method No MEE BBP SBP DBP Com/Om 1:1 
Time-Unit Kappa ! ! غ ض ! ض 
Observer ! غ ! ض ض ض 
Interact ! غ ض ض ض ض 
EasyDIag ! ! ! ! ض ض 
GSEQ-DP ! ض ض ض ! ض 

Conclusions 
In this methodological review, we problematized existing methods for estimating inter-rater 

reliability (IRR) for specific kinds of time-sequenced data common to research programs in 
RUME. Our discussion distinguished between several kinds of low-level disagreements (errors 
of omission/commission, multiple interpretation problems, and boundary problems) that can 
occur when analyzing data qualitatively and what we consider true disagreements – which occur 
when both raters identify the same event but disagree on which code to apply. True 
disagreements may have implications for the stability of the coding scheme or speak to the need 
to re-calibrate the raters. The low-level disagreements should be sorted out through algorithms or 
quarantined for a reconciliation process between raters. We reviewed Cohen’s ߢ and three 
methods for extending it for suitability by examining their strengths and weaknesses relative to 
how they handle the differing kinds of disagreements. While these methods have proven 
appropriate, and useful, to certain kinds of time-sequenced data, using any of these methods with 
fidelity would require a shift in research questions, a reduction in complexity of the coding 
scheme, or modification of procedures for applying the coding scheme.  

We agree with Jansen et al. that “how one does reliability analysis depends on what research 
questions one needs to answer eventually” (2003, p. 394).  The metric for estimating IRR should 
reflect the particularities of how the coding scheme is applied. Unfortunately, many of the 
measures for IRR make assumptions about the data or coding schemes that do not reflect the 
kinds of data that the RUME community works with nor the complexity of the coding schemes 
we develop to study problems of teaching and learning. Instead, researchers are restricted from 
asking and answering certain kinds of questions because the quantitative tools we have available 
do not suit the properties of the data. Ultimately, the field needs methods for estimating IRR that 
respect how the coding schemes are applied to the observational records and thereby comport 
with the research questions posed.  
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Students’ Treatment of the Negation of Logical Implication 
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Understanding how students reason about the negation of logical statements is essential in 
supporting their mathematical development. Prior literature suggests that undergraduate 
students experience difficulties with the precise negation of logical implications. Many respond 
with the opposite statement “P implies not Q” when asked for the negation of “P implies Q.” We 
investigate the challenges that introductory proofs’ students experience when negating 
implications, and the reasoning they demonstrate in addressing these challenges. Our findings 
indicate quantification contributes significantly to their difficulties with negation. Further, 
nuances in students’ quantification may validate an implication’s opposite as its negation.  

Keywords: logical implication, negation, quantification, transition to proof 

Understanding the negation of a statement is an essential skill in logical reasoning. For 
example, Dubinsky et al. (1988) assert that “in order to understand what something is, it is 
essential to understand what it is not” (p. 46). Prior research has identified the negation of 
mathematical statements—particularly logical implications (LIs)—as a persistent challenge for 
undergraduate students (Barnard, 1995; Griggs & Cox, 1983; Sellers, 2020). The negation of a 
statement is the statement that contradicts the original statement and excludes any middle ground 
(Dawkins, 2017). In other words, an LI and its negation have opposite truth values in all cases. 
However, students will sometimes present a contrary statement as a negation without satisfying 
the law of excluded middle. In particular, students might argue that the negation of P→Q is the 
statement P→~Q (Epp, 2003), which we refer to as the opposite of P→Q.  The primary objective 
of our study is to understand students’ ways of reasoning when negating an LI and the 
distinctions they make between counterexample, negation, and opposite.   

The negation of a universally quantified LI is the assertion that a counterexample exists in 
the universe. To negate the LI P(x)→Q(x), one must specify the logical properties of a 
counterexample (P(x) and ~Q(x)) and additionally attend to the quantification of x.  

Although students may generate specific counterexamples to statements like “If a number is 
a multiple of 3, then it is a multiple of 6” (Dawkins & Hub, 2017), there seems to be a significant 
cognitive gap between identifying a counterexample to an LI and articulating its precise 
negation. Prior research has documented students’ persistent struggles with quantification in 
general (e.g., Dawkins & Roh, 2020; Dubinsky et al., 1998; Shipman, 2016), which suggests 
quantification may be a primary source contributing to this gap. However, there may also be 
other factors influencing the ways they perceive negation, opposite, and counterexample. To 
understand the nuances of students’ treatments of the negation of an LI, we analyzed the 
reasoning demonstrated by two undergraduates enrolled in a Fall 2022 introductory proofs 
course taught by the first author. Our research questions were: 

1. Following research-based instruction in an introductory proofs course, what 
challenges do students experience in negating an LI; and what reasoning do they 
demonstrate as they address these challenges? 

26th Annual Conference on Research in Undergraduate Mathematics Education 294



2. In particular, how do students experience and address the challenges identified in 
prior research on treating negation as the opposite statement?  

Framework: Epistemological Obstacles Associated with Negating LIs 
Our framework presents the persistent challenges students experience with negating an LI as 

epistemological obstacles (EOs). The term EO originates in Bachelard (1938), and Brousseau 
(2002) later described EOs as obstacles that remain in response to best instructional practice. We 
further characterize EOs as experienced in best instructional interactions, by the student or the 
teacher. EOs are persistent; they cannot be resolved in a single lesson. Here we provide the 
supporting literature for existing EOs that are pertinent to this study. 

Students make meaning of quantified statements in various ways (Sellers et al., 2021). 
Sometimes, they even interpret the language of quantification in ambiguous ways (Dawkins & 
Roh 2020; Epp, 1999). Other times, quantification might not be explicitly stated at all, so the 
intended quantification of a statement remains “hidden” (Shipman, 2016). When expressing LIs, 
we often say “P→Q” to mean “for all x, P(x)→Q(x).” It may seem that instructors could resolve 
the issue by consistently and explicitly stating quantification, but subtle differences in meanings 
of quantification persistently remain hidden for students. Dubinsky et al. (1988) described 
quantification as an “insurmountable barrier for students in developing a sophisticated 
understanding of limits and continuity” (p. 44). This description fits our characterization of EOs, 
and following Shipman (2016), we refer to this EO as hidden quantification.  

As we have noted, a statement and its negation have opposite truth values, so negating a 
statement and generating counterexamples are inherently related (Shipman, 2016). Generating a 
counterexample for a given statement can be challenging, and when attempting to prove a 
universally quantified statement false, students will often claim that a single counterexample is 
insufficient (Zaslavsky & Ron, 1998). Sellers (2020) conjectured that this claim might relate to 
the recognition that a singular example is insufficient for proving a universally quantified 
statement is true. It may seem counterintuitive that the negation of a universally quantified 
statement is an existence statement, and the negation of an existence statement is a universally 
quantified statement. Thus, we see quantification of the negation as another potential obstacle. 

The challenge of quantifying negations sharpens when we consider that the negation of a 
universally quantified statement encompasses any possible counterexample. That is why when 
proving a universally quantified statement, it is insufficient to show that a particular case is not a 
counterexample, or to simply modify the statement to bar that case (Shipman, 2016). It is also 
why the opposite of a statement does not suffice as its negation. Consider the universally 
quantified (hidden) LI, P→Q. Its opposite would be the universally quantified statement that 
P→~Q; but both statements could be false because they leave middle ground untouched 
(Dawkins, 2017). Because students ostensibly conflate the negation of a statement and its 
opposite—even after instruction in introductory proofs courses (Arnold & Norton, 2017)—we 
refer to it as another EO. Research suggests relying on Euler diagrams to sort out reasoning with 
LIs (Hub & Dawkins, 2018), but even Euler diagrams may have their limitations (Antonides et 
al., in review).  

Methodology 
The data reported here come from a larger study investigating the EOs that students 

experience, and ways of addressing them, in transition-to-proof courses. The class was taught by 
the first author in the Fall 2022 semester. Emphasizing active learning, the class was designed 
around four main topics: LI, quantification, mathematical induction, and functions. We identified 
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EOs suggested by existing literature and adopted or created instructional tasks for addressing 
those EOs head-on. Four students were interviewed three times by Norton and Kokushkin, with 
each video-recorded interview lasting 30-45 minutes. Students were given a LiveScribe pen and 
were asked to think aloud. The interview tasks corresponded to the four topics of the course; the 
third interview included tasks on mathematical induction and functions, as well as a stimulated 
recall interview (SRI) on a subset of tasks (chosen subjectively) from the first two interviews. 

All interview data were coded to capture students’ EOs. Our codebook (Figure 1) included 
codes both from existing literature and emergent codes that could not be explained using existing 
codes. This paper centers around the NO code, informed by existing literature; emergent codes 
were NF and LIv (Figure 1). Following the initial round of coding, we engaged in thematic 
analysis, analyzing contiguity of codes with the NO code. 

 

Code Description (Source) 

LIv Eliminating the vacuous case (Emerged) 

NF Difficulty with the difference between negation and disproof (Emerged) 

NO Treating the negation as the opposite, e.g., P→~Q (Dawkins & Hub, 2017; Epp, 2003) 

Qh Hidden quantification (Shipman, 2016; Durand-Guerrier, 2003; Ernst, 1984) 

Qneg Uncertainty about quantifying the negation (Dawkins & Roh, 2016; Shipman, 2016) 

Reu Interpreting logic via Euler Diagrams (Hub & Dawkins, 2018; Dawkins & Roh, 2021) 
Figure 1. Codes. 

We report on interview data from two students, Shivani and Carmen, a sophomore and senior 
majoring in Computational Modeling and Data Analytics and Aerospace Engineering, 
respectively. Shivani and Carmen were chosen because of the salience of their data vis-à-vis the 
negation-opposite conflation, and because their cases represent qualitatively distinct issues that 
may arise for students as they reason about the negation of an LI. 
 

1. Consider the implication: P(x)→Q(x). What does it mean? How would you quantify it? 
2. Consider the statement: “For all x, P(x)→Q(x).” How would you negate it? 

Figure 2. Interview task. 

Results 
In this section, we present the details of Shivani’s and Carmen’s reasoning about an LI and 

its negation in response to the interview tasks shown in Figure 2. 

Shivani’s Treatment of Negation 
When first asked what the unquantified LI P(x)→Q(x) meant to her (see Figure 2, Task 1), 

Shivani did not demonstrate an intellectual need for making the quantification explicit. She 
responded, “If P, then Q,” and then elaborated to say, “So if P, if P is true then Q is true.” 

When the researcher asked how Shivani might quantify P(x)→Q(x), she drew a correct Euler 
diagram (Figure 3) and said, “So there exists… an x in the subset P.  There exists an x... in... in P 
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if uh... If there exists an x in P then x also exists in Q.” Shivani saw P(x)→Q(x) as referring to a 
specific x and therefore quantified it existentially. Moreover, she restricted the universe to 
consider only those x in the truth set of P. She also seemed to quantify the hypothesis rather than 
the LI itself: “If there exists an x in P.” 

 

 

 

Figure 3. Shivani’s Euler Diagram (left) and her corresponding writing (right). 
  

When posed with Task 2 (see Figure 2), Shivani again omitted quantification saying, “So 
then it would be like P(x) implies ~Q(x) [writing ‘P(x)→~Q(x)’]. That would be a negation 
because the concl… hypothesis has to be true.” Her emphasis on the hypothesis being true 
coupled with her earlier treatment of x, seems to indicate that, for Shivani, her negation requires 
x to be in the truth set of P. In an effort to unhide quantification, the researcher asked Shivani 
how she would quantify x. She responded, 

Since this is for all, then you would have to prove like, there exists one x value that 
makes this statement true [pointing to her written negation ‘P(x)→~Q(x)’ (Figure 3)]... 
Because then that would be the counterexample because you wanna disprove it…Because 
you only need one counterexample to prove that for all x. 

For her, the existentially quantified LI P(x)→~Q(x) represented the existence of a 
counterexample. When the researcher asked how her negation might be quantified if the original 
LI was existentially quantified, Shivani adjusted her negation to “For all P(x), ~Q(x).” Shivani 
demonstrated her understanding of how quantification of the original LI affected the 
quantification of her negation. And, her use of “for all P(x)” seemed to indicate that Shivani was 
again requiring x to belong to the truth set of P. Regardless of how the original LI was 
quantified, when quantifying x in her negation, x belonged to the truth set of P, not simply the 
universe. 

Carmen’s Treatment of Negation 
Like Shivani, Carmen initially quantified the LI P(x)→Q(x) existentially saying, “This 

means that there is some point in P, some point x in P, that is also in Q.” Note that Carmen also 
restricted the universe to the truth set of P, the values for which she saw the LI as relevant. Then, 
the researcher asked Carmen to reason about Task 2 (see Figure 2). She responded as follows. 

So we’re saying that for every single x, in the set of P... So if... for all values of x, P(x). 
So this would mean that P would be a subset of Q… [draws an Euler diagram] So I can 
negate this by saying... what is it? It’s P(x)... So we would negate this by keeping the... 
hypothesis true, saying that P(x) is still true. And then... you can negate this by saying 
and not Q(x). I think that’s how you negate this. Because saying that... um... Yes. And the 
‘and’ is important, because this means that P(x) has to be true, and not Q(x) has to be 
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true. So you’re saying that you are in P(x), but you’re not in Q(x), so that would be 
negating the P(x) and being in Q(x). 
Carmen correctly stated the negation as P(x) and ~Q(x), emphasizing the importance of the 

connective “and.” However, she did not explicitly quantify x, so the researcher prompted her. 
If we’re saying for all x, and you want to negate it... I... think the negation... because 
you’re not trying to find like a counterexample, you’re just trying to negate it. I think you 
could say for every x… in P... and that’s what you could say for every like for every x...  
in this set of, like a universal set, I guess. Maybe not... For every x in P... I’m not good at 
writing them out. Because I think… that with negations, you’re trying to find a way that 
the original statement, like, not necessarily the opposite, but just like an alteration, I 
guess, to the original statement, or I don’t think you’re like looking for a counterexample. 
Because that would just be proving that the original statement will be false. So if negating 
it, you… it’s still for every x, in... in the universe of... for x is in the universal set. 

Carmen struggled to quantify her negation, expressing that negating the LI was different than 
finding a counterexample or disproving it. She felt that the negation should be a statement about 
every x (questioning whether x is in P or x is in the universe). Ultimately, Carmen settled on 
universal quantification, but never stated her full negation. So, the researcher (R) probed 
Carmen’s (C) distinction between disproving the LI and finding its negation. 

C: To show that that’s false, I would just find one x ...um, that is in P(x), but it’s not in Q(x). 
R: And that’s not necessarily the same as the negation? 
C: I don’t think so. Because that’s just a counterexample. Yes, I think the negation is just 

kind of like doing the opposite of what it’s asking for. It’s not necessarily like… it’s not 
asking you to prove that something is false or to make it or it’s like asking you to rewrite 
this statement that would, in a way that would make it false, not asking you to prove that 
it is false. I guess...  

Carmen understood that to disprove the LI, she needed just one counterexample. Unlike 
disproving, finding the negation for her entailed “rewriting” the statement to “make it false.” To 
understand her emerging distinctions between negation, counterexample, and opposite, the 
researcher followed up with Carmen two months later during her SRI, presented here.   

C: With a counterexample, you choose one specific value. So I think that’s the difference 
between being the opposite and negation. So you have one specific value that you’re 
looking at, but with a negation, you’re saying that something is the opposite. You keep it 
arbitrary, because you kind of want to show like, for all umm so but with like a 
counterexample, you just say, okay, my k value or whatever equals a specific number. 
And that’s why it’s, it’s false, because I can show that it doesn’t work. Like for this one 
specific case. 

R: Okay. Does that mean that negation and opposite are the same thing? 
C: Um, I don’t think... I know that they’re not the same thing. Because opposite would be 

like hot and cold, right? ... But, I think a negation... I’m trying to remember... 
R: What if I want to negate “hot”? How would I negate “hot”? 
C: You can negate it in many ways. You could say warm, cold... or warm, hot, you could say, 

cold or freezing or stuff like that. So that’s a negation because it’s not hot. But if you 
want to just say it’s opposite of hot, then you have to go to cold. 

R: So if I want to do a counterexample of “hot”, I would say, I would find an example of 
something that’s not hot… If I wanted to do the opposite of “hot’, I would show 

26th Annual Conference on Research in Undergraduate Mathematics Education 298



everything is cold…And if I wanna show the negation of ‘hot”, I would show everything 
is “not hot”. 

C: Yes. 
 
Carmen used the example “not hot” to explain her distinctions between counterexample, 

opposite, and negation. In suggesting “you can negate it in many ways,” Carmen seems to be 
referring to all possible counterexamples. Carmen still universally quantified her negation. 

Discussion 
The above data suggest that students’ reasoning about the negation of an LI can be 

influenced by multiple factors, including students’ difficulties with (hidden) quantification, 
reliance on Euler diagrams, reducing the universal set to the truth set of the hypothesis, and 
uncertainty about the distinctions between negation and proving false. In what follows, we 
present the discussion of three main findings that emerged from our thematic analysis. 

Difficulty with (Hidden) Quantification 
Consistent with prior literature, our participants experienced challenges in recognizing the 

hidden quantification of P(x)→Q(x). Shivani omitted quantification of both the LI and its 
negation. Carmen explicitly quantified the LI, but neglected the quantification of its negation. 
This finding confirms that quantification may significantly influence students’ ability to 
articulate the precise statement of negation.  

Ultimately, both Shivani (when prompted) and Carmen existentially quantified P(x)→Q(x). 
Shivani supported her reasoning by drawing an Euler diagram and saying “if there exists an x in 
P.” Carmen did not rely on drawings. Nevertheless, her language for quantifying x (“there is 
some point in P, some point x in P, that is also in Q”) referenced an implicit use of an Euler 
diagram as well. This may indicate that students interpret P(x)→Q(x) as referring to a specific x, 
whereas P→Q might be universally quantified. The necessity to refer to a specific x may result 
in overlooking the vacuous case, which is crucial in distinguishing between the negation and the 
opposite (Arnold & Norton, 2017). This observation echoes our previous finding that reliance on 
Euler diagrams may hide the vacuous case (Antonides et al., in review). 

Reducing the Universal Set to Only Those Values in Truth Set of the Hypothesis  
Prior research has documented students’ struggles with the vacuous case. Hoyles and 

Küchemann (2002) found that students often view the vacuous case as irrelevant. Dawkins et al. 
(2023) reported a tendency for students to treat an LI as a statement only about the truth set of its 
hypothesis. Furthermore, Norton et al. (2022) explicated the nuances of students’ apparent 
conflation of the truth of an LI with the truth of its hypothesis. Our analysis suggests that 
students may omit the vacuous case not merely because of an apparent conflation, but rather 
because they focus only on values for which they view the LI as relevant. Reducing universe to 
the truth set of the hypothesis yields students’ treatment of the negation as its opposite logically 
correct—a finding not previously reported. 

Both students focused on x values for which P(x) was true (coded as LIv). Shivani said, “if 
there exists an x in P” and “for all P(x), ~Q(x),” while Carmen stated, “there is some point in P, 
some point x in P” and “for every x in P.” For us, the LIv code emerged as students’ elimination 
of the vacuous case. However, in furthering our analysis, this treatment is closely related to the 
above prior research. Students’ focus on only values for which the hypothesis is true is consistent 
with their prior experience of using LIs (via modus ponens) to deduce new conclusions. This 
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tendency could explain why students seemingly conflate the negation of P→Q with its opposite 
P→~Q. In fact, when students restrict the universe U to the truth set of P, the negation “∃x ∈ U 
such that P(x) and ~Q(x)” is logically equivalent to its existentially quantified opposite “∃x ∈ P 
such that P(x)→~Q(x).” This opposite statement is indeed the negation.  

Universal Quantification as a Distinction between Negation and Proving False  
Carmen’s unquantified negation, P and ~Q, was correct. But, when prompted to quantify it, 

Carmen chose universal quantification (and further elaborated in her SRI). She consistently made 
distinctions between negation and proving false. She explained that negation is an “alteration” of 
the original statement “that would make it false.” Perhaps because the original statement was 
about all values in the universal set and the negation was an “alteration” of this statement, 
Carmen reasoned that the negation should also be universally quantified. While existential 
quantification is indeed an assertion about the state of the universe, because Carmen associates 
“there exists” with a specific x, she may have felt that existential quantification of the negation 
would not be a broad enough statement about the universe. 

When the researcher asked Carmen to distinguish between opposite and negation in her SRI, 
she gave the example of “not hot,” saying “you can negate it in many ways” (e.g. warm or cold). 
This language may indicate that Carmen sees negating as a collection of all the ways one might 
say a statement is false. If Carmen was viewing negation as the collection of all possible 
counterexamples, then this might also explain her choice of universal quantification.  

Implications and Future Research 
We have discussed how EOs related to attending to quantification, treating the vacuous case, 

and making distinctions between negation and proving false may significantly influence 
students’ treatment of negation. Nevertheless, there are other potential factors that may 
contribute to students’ conception of negation. Such factors include treating an LI as an action 
(Norton et al., 2023), students’ difficulties with transforming LIs (e.g., Durand-Guerrier, 2003), 
understanding the Principle of Universal Generalization (Norton et al., 2022), and others. Future 
research should shed light on the effect of these factors on students’ reasoning about negation. 

Our findings suggest potential instructional interventions. Teachers might draw attention to 
the distinction between using an LI to draw conclusions (modus ponens) and determining the 
validity of an LI. In particular, they might emphasize that the latter requires considering all 
values in the universal set U, not just values in the truth set of P. To make explicit their tendency 
to narrow their focus to only those values in P, students might compare and contrast the logical 
difference between “∃x ∈ U such that P(x)→~Q(x)” and “∃x ∈ P, such that P(x)→~Q(x).”  
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Measuring Mathematical Knowledge for Teaching College Algebra at Community Colleges 
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We present preliminary findings regarding the dimensionality of a 34-item instrument designed 
to measure the mathematical knowledge used in teaching college algebra at community colleges 
and the performance of items within the instrument. The instrument assumed a six-dimension 
model with two organizers of knowledge, one related to knowledge needed to perform two 
specific tasks of teaching, choosing problems and understanding student work, and the other 
related to knowledge of three function types, linear, exponential, and rational functions. 
Multidimensional item response theory models were applied to a sample of 416 community 
college mathematics instructors. A three-dimension model structured by function types better 
fitted the data than a unidimensional model. Two- and six-dimensional models, structured by the 
tasks of teaching or the combination of function types and tasks of teaching, did not converge so 
they are not discussed. We discuss implications and work to further validate the instrument. 

Keywords: mathematical knowledge for teaching, college algebra, community colleges 

Our project (Mesa et al. 2020) sought to develop and validate an instrument to measure 
community college faculty knowledge of teaching college algebra (MKT-CCA).  Theoretical 
work on teacher knowledge has hypothesized distinct components of such knowledge (e.g., 
pedagogical, curricular, and content, Shulman, 1986) but empirical support has been elusive 
(e.g., Copur-Genturk et al., 2019). While there is a consensus that such knowledge should be 
multidimensional, and multiple efforts that further specify content or pedagogical knowledge 
according to cognitive level, knowledge type, or mathematical topic have flourished (Ball et al., 
2008 [MKT]; König et al., 2011 [COACTIV]; Krauss et al., 2008 [TEDS-M]; Saderholm et al., 
2010 [DTAMS]), the question about multidimensionality remains open (Schilling, 2007). 

Using an approach that focuses on content-specific teacher decision making (e.g., in high 
school algebra or geometry), Herbst and colleagues (e.g., Herbst & Chazan, 2012; Ko & Herbst, 
2020; Herbst & Ko, 2019) have empirically shown that teachers’ mathematical knowledge used 
in two tasks of teaching are distinguishable via two distinct (albeit correlated) measures for 
knowledge needed to choose givens for a problem and understanding students’ work in 
geometry. They surmise that the main challenge previous studies had in developing multiple 
measures is related to their knowledge-type-based framework given that there is no clear 
boundary among the types (e.g., common and specialized content knowledge) and that teachers 
need to use multiple dimensions of knowledge simultaneously in the moments of teaching. 
Grounding their work on the notion of instructional exchanges, they seek to understand, from the 
teacher’s perspective, how knowledge is “transacted” in classrooms. Herbst (2006) notes that in 
their role as teachers, they are expected to provide students with activities or assignments that 
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University of Minnesota; Mary Beisiegel, Oregon State University 
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would support the development of mathematical ideas and that as students produce work in 
response to those activities and assignments, teachers must interpret the work to ascertain 
whether the student has learned or not. These two activities, choosing problems and 
understanding students’ work, require teachers to sort through their own mathematical 
knowledge to make decisions that are guided by the goal of the instructional situation at stake.  

We took this perspective in the design of an instrument that would assess community college 
instructors’ knowledge of college algebra topics for teaching (Mesa et al., 2023). The core tasks 
of teaching used in this study are choosing problems and understanding student work. We 
defined choosing problems as a task of teaching that requires instructors to select activities or 
assignments that represent mathematical ideas accurately and give students opportunity to work 
on a mathematical idea at stake. Further, we defined understanding student work as a task of 
teaching that requires instructors to make sense of the ideas that students produce, either orally or 
in writing, and evaluate their mathematical correctness. Each task demands knowledge specific 
to teaching mathematics. Choosing problems requires knowledge about mathematical ideas 
presented in the problem, and about how to assess if ideas in the problem align with an 
instructional goal. For understanding student work, an instructor needs to have knowledge about 
interpreting students’ work, typical errors students make, various strategies for solving a problem 
and how they could be represented, and the mathematically correct answer. We grounded these 
two tasks of teaching in three different types of functions, linear, rational, and exponential 
functions, as they are foundational to college algebra and for further work in mathematics. In this 
paper, we document the process of validating the structure of the instrument, seeking to identify 
whether there are indeed six distinct dimensions of mathematical knowledge for teaching, 
through the hypothesized organization along two tasks of teaching and the three function types 
(see Figure 1). 

 
Figure 1. Blueprint for the development of the MKT-CCA instrument. (Mesa et al., 2023) 

Methods 
The instrument was developed over a two-year period that included an item development 

camp (13 practitioners, 11 researchers, 240 items), cognitive interviews to improve the items (12 
instructors, 36 items), solicitation of situations and student work (15 instructors, 12 items), 
expert review of the mathematical content (2 mathematicians, 36 items), piloting (120 
instructors, 60 items), and further revision of the items (see Figure 2). 
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Figure 2. Sample items in exponential function addressing (a) choosing problems and (b) understanding student 
work. 

The final instrument included 34 items (27 multiple-choice items (MC) and seven testlets 
(T), resulting in 55 different questions) that were balanced across the six hypothesized 
dimensions (see Figure 3).  

 Function type (#MC, #T) 
Total 

Linear Rational Exponential 

Task of teaching 
Choosing Problems 3, 2 5, 1 3, 3 11, 6 

Understanding Student Work 5, 1 5, 0 6, 0 16, 1 

Total 8, 3 10, 1 9, 3 27, 7 
Figure 3. Total number of multiple-choice items (MC) and testlets (T) per dimension in the final instrument. 

We invited a sample of 4,350 instructors teaching from 752 different institutions to complete 
the instrument. The sample was constructed to ensure representation of the diversity of the 
colleges in terms of size, location, and diversity of the student population. The data were 
collected between October 2022 and March 2023. We obtained responses from 954 participants. 
Data were excluded if (a) the participant’s position as an instructor at a community college could 
not be verified (n=185), (b) it was a duplicate response (n=85), (c) the participant entered their 
assigned ID but did not complete any portion of the survey (n=91), (d) the participant indicated 
that they had never taught college algebra (n=17), or (e) the participant responded to the 34 items 
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in less than 1,200 seconds (n=20). There were 556 teachers who responded to some portion of 
the instrument after these data exclusions were applied. Final analyses focused on the 416 
teachers who responded to all 55 questions on the MKT-CCA instrument. Accuracy on each 
question was submitted to a 2PL multiple item response theory (MIRT) model using maximum 
likelihood estimation in Mplus (Muthén & Muthén, 1998-2023). The dimensionality of the 
instrument was tested using likelihood ratio tests comparing alternative models. The six-
dimensional model, where each factor represents one task of teaching and one function type, and 
two-dimensional models, where each factor represents one task of teaching, did not converge. 
The three-dimensional model included correlated factors, with each factor represented by a set of 
function-type items (linear, exponential, and rational). In the one-dimensional model all items 
were loaded onto one factor. Items were considered for deletion when the item did not provide 
much information and had a low discrimination estimate (less than 0.61, indicating low ability to 
differentiate teachers). 

Results  
The sample included faculty from 260 different community colleges in 43 states with 50% 

enrolling a majority of non-White students; 47% of the colleges were located in a city, about a 
quarter (26%) in a suburb, and the rest in rural (12%) or small towns (14%); most of the colleges 
were in the West (37%) or South (36%), with 19% located in the Midwest, and 9% in the 
Northeast region of the United States. Forty-eight percent of the participants identified as male, 
and 46% as female; in terms of race, 76% identified as White, 10% as Asian, 4% as Black, 2% as 
mixed, and 4% chose Other. Seventy-eight percent of the participants held full-time positions; 
32% had a temporary appointment, and 9% were on tenure track. The average number of years 
of teaching experience was close to 17 years (mean=16.76, SD = 9 years; range: 1.5 to 47 years). 
The majority (63%) held a master’s degree in mathematics, mathematics education or another 
mathematics related field, and 12% held PhDs (about 5% were in Mathematics Education.) 

Discrimination and difficulty within the item response theory (IRT) paradigm are indices of 
item performance. Discrimination gives a measure of the differential capacity of an item, that is 
the ability of the item to differentiate participants by their ability level. The discrimination is the 
slope of the item response function graph (i.e., the item characteristic curve); the higher values 
suggest that the item has a high ability to differentiate examinees. Values of discrimination are 
reported as positive numbers (i.e., a negative value would be concerning because the probability 
of getting the answer correct should not decrease as ability increases). Difficulty is defined as the 
ability level at which we would expect examinees to have a probability of 0.50 (assuming no 
guessing) of selecting the correct response to the item. The higher the difficulty is, the higher the 
ability required from an examinee to have a 50% chance of answering an item correctly. Values 
of item difficulty typically range from –3 to +3; items with difficulty close to –3 are very easy 
items; items with difficulty close to +3 are very difficult for the pool of examinees. The 
discrimination values from the 3-dimensional model across the whole set of 55 items ranged 
from 0.183 to 2.555, whereas the level of difficulty of the full set of items ranged from –4.914 
(very easy) to 2.140 (difficult). 

The three-dimensional model including all 55 MKT-CCA items fit the data significantly 
better than the one-dimensional model, χ2(3) = 12.37, p < .01. The Akaike’s Information 
Criterion (AIC) and sample size adjusted Bayesian Information Criterion (BIC) also favored the 
three-dimensional model. Four items contributing to the linear latent factor, seven items 
contributing to the exponential latent factor, and six items contributing to the rational latent 
factor were identified for deletion. The discrimination for all items considered for deletion was 
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less than .61. After removing these 17 items, indicators representing the accuracy on the 
remaining 38 items were submitted to a final 2PL multidimensional IRT(MIRT) model using 
maximum likelihood estimation. As before, the three-dimensional model fit the data significantly 
better than the one-dimensional model, χ2(3) = 9.93, p = .02. The AIC and sample size adjusted 
BIC also favored the three-dimensional model. All item discrimination parameters were greater 
than .61 in this final model on the reduced set of items. Examination of the total information 
curve for each dimension (see Figure 4) revealed that the MKT-CCA instrument provided good 
coverage of a wide range of latent ability levels, but the test provided the most information about 
teachers with lower mathematical teaching knowledge. A total of 15 out of 16 of the linear items 
had negative difficulty parameters (below average MKT-CCA is needed to have a 0.5 probability 
of getting the item correct), 12 out of 14 of the exponential items had negative difficulty 
parameters, and all the rational items had negative difficulty parameters. The discrimination 
across the retained 38 items ranged from 0.612 to 2.472, whereas difficulty level ranged from -
3.465 (very easy) to 2.181 (difficult).  

 
Figure 4: Total information curves for the three dimensions of the final model. 

Discussion 
The six-dimensional model did not converge, potentially because the sample size was 

insufficient. While the three-dimensional model fit the data better, we still need to further 
examine whether the three dimensions do really correspond to distinct function types, given that 
our hypothesized two-dimensional model was by tasks of teaching, and not about whether the 
types of functions were distinct. In other words, we need to rule out that the items that are 
purportedly designed to assess a specific function type, assess that function type and not others. 

A two-dimensional model by tasks of teaching did not converge; in other words, it was not 
possible to differentiate knowledge along the two dimensions associated with choosing problems 
or understanding student work. We believe that this might be due to how we operationalized the 
choosing problems dimension, relative to the work by Ko and Herbst (2020) who focused 
exclusively on choosing givens (set of givens that had enough information for students to solve 
the problem) for problems in geometry. Such specificity might have contributed to make a clear 
distinction possible in Ko and Herbst’s context. In our study, choosing problems is a task of 
teaching that requires instructors to select activities or assignments that include much more than 
specific givens, and thus our broader definition of a task may cause multidimensionality within 
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the choosing problems dimension: that is in crafting items about choosing problems, we may 
have triggered knowledge related to understanding students’ work. 

As is apparent in Figure 4, we found that, overall, the instrument was not very difficult even 
though the instrument allows us to discriminate between high and low scorers. Because of 
resource limitations, and the need to reach faculty in multiple institutions in the United States, 
we administered the instrument online (instead of in person), which might have contributed to 
the test not being as difficult, as we believe that participants might have used resources such as 
textbooks or online applications to respond to the items, even though this was discouraged. 
Despite this, we believe that the instrument could be a promising tool to examine community 
college faculty knowledge for teaching these types of functions and design content-focused 
faculty professional development.  

Next Steps 
Our next steps in the validation process include conducting cognitive interviews with 

participants and testing the model with a population without teaching experience. With the 
cognitive interviews, we plan to validate our hypotheses about how instructors with or without 
the hypothesized knowledge would answer a randomly selected set of items. In doing so, we plan 
to corroborate that instructors who answer the item correctly are doing so because they have the 
needed knowledge, and that when an item is answered incorrectly, is because the instructor does 
not possess such knowledge. In randomly selecting the items, we will be able to establish the 
generalizability of the instrument. Moreover, cognitive interviews will allow us to shed light 
regarding possible ways in which the two tasks of teaching we hypothesized were intertwined in 
ways that instructors could not call on one or the other task of teaching independently of each 
other.  

To determine whether there is something special about the instrument as related to 
community college mathematics faculty, we administered the test to a sample of 100 
undergraduate students, who would be knowledgeable of the mathematics, but who did not have 
any teaching or tutoring experience. We are in the process of analyzing the data to identify 
whether the samples behave similarly or not. We anticipate major differences in the modeling, 
which would further confirm that the instrument is useful to assess knowledge for teaching these 
types of functions at community colleges.  

As part of the data collection process, we gathered background information about faculty and 
their teaching experiences, their history of courses taught, their educational background, 
engagement in professional development, and their beliefs about mathematics, its teaching, and 
its learning. Further analysis of these data will shed light about how these characteristics relate to 
performance on the instrument by different groups of instructors, which would corroborate prior 
findings relating associations between courses community college faculty teach and performance 
on instruments assessing teacher knowledge (Ko et al., in press). Such analysis will provide 
further validation for the dimensionality, difficulty, and discrimination of the instrument.  
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Informed by Realistic Mathematics Education, we designed a hypothetical learning trajectory on 
graduate students’ guided reinvention of reducible and irreducible elements in unique factor-
ization domains. We created experientially real tasks for use in a teaching experiment, in which 
students used algebra tiles as an emergent model of factoring integers and quadratics in ℤ[#]. In 
students’ mathematical activity, this became a model for abstracting the shared structure of 
(ir)reducible elements in ℤ and ℤ[#], which students used as they formally defined (ir)reducibles. 
 
Keywords: Realistic mathematics education, abstract algebra, hypothetical learning trajectory 
 

Abstract algebra courses that serve in-service and prospective teachers (IPSTs) should guide 
IPSTs to reason about the advanced content in a way that helps them reshape their understanding 
of secondary mathematics (Wasserman, 2018). Abstract algebra can be beneficial for helping 
teachers develop unified understandings of algebraic concepts that span K-16 curricula, such as 
the factorization of integers and polynomials (e.g., Murray et al., 2017; Novotná & Hoch, 2008; 
Usiskin, 1974). The Common Core State Standards of Mathematics (National Governors 
Association & Council of Chief State School Officers, 2010) suggested that teachers should 
teach students to “understand that polynomials form a system analogous to the integers” (p. 64). 
An abstract algebra course can support IPSTs in recognizing properties shared by the sets of 
integers (ℤ) and polynomials with integer coefficients (ℤ[#]). ℤ and ℤ[#] are unique 
factorization domains (UFD), defined as an integral domain % in which every nonzero element 
r ∈ % that is not a unit has the following two properties: (i) (	can be written as a finite product of 
irreducibles p! of  R (not necessarily distinct), r = p"p#…p$. (ii) The decomposition in (i) is 
unique up to associates: namely, if r = q"q#…q% is another factorization of r into irreducibles, 
then m = n, and there exists some renumbering of factors so that 1& is associate to 2& for 
	3 = 	1, … , 	6 (Dummit & Foote, 2004). Reasoning about UFDs could help IPSTs better 
understand the properties related to factorization of elements in ℤ and ℤ[#], e.g., the fundamental 
theorem of arithmetic and the fundamental theorem of algebra. Before one can understand this 
structure of UFDs, they need to understand the structure of irreducible and reducible elements. 
An irreducible is a nonzero, non-unit element ( of an integral domain % such	that	if	( = 78	
with	7, 8 ∈ %,	then	7	or	8	must	be	a	unit	in	%.	 A reducible is a nonzero, non-unit element ( of 
an integral domain %	such that we may write ( = 89 for 8, 9 ∈ % and neither 8 nor 9 is a unit. 

There has not yet been research done on how IPSTs can define the shared structure of 
factorability of the elements in ℤ and ℤ[#]. We address this by investigating how graduate 
student IPSTs reinvent the definitions of irreducibles and reducibles. We used the instructional 
design theory of Realistic Mathematics Education (RME; Freudenthal, 1991; Gravemeijer, 1999; 
Gravemeijer & Doorman, 1999) to design a hypothetical learning trajectory (Simon, 1995) of 
how IPSTs can reinvent the definitions of reducibles and irreducibles. This is part of a larger 
project in which we designed a local instructional theory (Gravemeijer, 2004) guiding IPSTs to 
reinvent UFDs in connection to their teaching. We address the following research questions: 
Which aspects of the task sequence support IPSTs’ reinvention of (ir)reducibles? Which ways of  
reasoning are productive to leverage to guide IPSTs toward reinventing (ir)reducibles? 
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Literature Review 
Reasoning about the properties of abstract algebraic structures can help IPSTs develop more 

robust understandings of the secondary algebra content they teach. Researchers have shown how 
reasoning about the properties of algebraic structures can help students or IPSTs develop unified 
understandings (Lee & Heid, 2018; Zandieh et al., 2017) of secondary mathematics content. 
Having a unified understanding of a concept involves recognizing the shared overarching 
structure of the concept among different instantiations of that concept in different contexts and 
being able to reason about that concept generally without needing to reference a specific context. 
Cook et al. (2023) identified students’ unified ways of reasoning about the structure of inverses 
shared by different instantiations of that inverse concept. Serbin (2023) showed how reasoning 
about the group axioms supported IPSTs in recognizing the shared overarching identity structure 
shared by additive, multiplicative, and compositional identities. Several other researchers have 
explored students’ unified understandings of algebraic concepts, including homomorphisms 
(Melhuish et al., 2020), linear transformations (Bagley et al., 2015; Zandieh et al., 2017), and 
binary operations (Wasserman, 2023). These studies illustrate how students and IPSTs reason 
about the shared structure of various algebraic concepts in different contexts.  

We aimed to guide IPSTs to recognize the structure shared by certain types of integers and 
polynomials, those that are composite or factorable (reducibles) and those that are prime or not 
factorable (irreducibles). There has been minimal research done on students’ understanding of 
reducible and irreducible elements. Two studies (Lee, 2018; Lee & Heid, 2018) explored the 
coherence of students’ understandings of the factorization of integers and polynomials as 
instantiations of the decomposition of elements in integral domains. Lee (2018) investigated how 
students developed a unified understanding of factoring across elementary, secondary, and 
tertiary contexts. The students who perceived factoring whole numbers and factoring 
polynomials as disparate procedures could later recognize the shared structure of factorization of 
elements in integral domains. Juxtaposing integers and polynomials allowed the students to 
reflect on parallel structures within the sets, such as primes and irreducibles, composites and 
reducibles, and prime factorization and irreducible factorization. The students developed unified 
understandings of the shared structure of integers and polynomials as integral domains in which 
not every element had a multiplicative inverse. Lee and Heid’s (2018) study informed our study 
design that guides IPSTs to identify the shared structure of primes and irreducible polynomials, 
as well as composites and reducible polynomials, to reinvent irreducibles and reducibles. 

Theoretical Background 
Design Research (Gravemeijer et al., 2003) involves a cycle of designing sequences of 

mathematical tasks to be used during instruction, implementing the task sequences, analyzing 
students’ learning, and revising the task sequences based on the student learning outcomes. In 
designing the task sequence, design researchers develop a Hypothetical Learning Trajectory 
(HLT), which consists of the learning goal, the learning activities, and the hypothesized thinking 
and learning that students might engage in as they perform the activities (Simon, 1995). Through 
the process of designing, implementing, and revising HLTs, researchers can discover students’ 
ways of thinking that anticipate formal mathematics and identify ways to leverage those ways of 
thinking to guide students’ development of formal concepts. Our design of an HLT is guided by 
the instructional design theory of RME (Gravemeijer, 1999), which conceptualizes mathematics 
as a human activity. The HLT is designed based on the three RME heuristics: 1) experientially 
real tasks, 2) emergent model, and 3) guided reinvention. Experientially real tasks allow the 
students to connect with their informal knowledge, developing an intuitive understanding that 
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will help them create an emergent model for use in that given context, defined as a model-of their 
situated activity. The emergent model shifts from being model-of a student’s activity to a model-
for formalizing mathematics as students mathematize their mathematical activity (Zandieh & 
Rasmussen, 2010). Horizontal mathematization involves “describing a context problem in 
mathematical terms to be able to solve it with mathematical means” (Gravemeijer & Doorman, 
1999, p. 117), and vertical mathematization involves “mathematizing one’s own mathematical 
activity” (p. 117). Design researchers create experientially real tasks that require horizontal and 
vertical mathematizing by which students, with guidance, can reinvent mathematical concepts.  

Mathematizing occurs as students engage in mathematical activity, such as defining and 
conjecturing (Rasmussen et al., 2005). Defining is a process of formulating, negotiating, and 
revising a definition (Zandieh & Rasmussen, 2010). Freudenthal (1973) described two types of 
defining: descriptive and constructive. In descriptive defining, students build a definition by 
suggesting ideas about an object’s properties, and the instructor helps organize and clarify such 
ideas. Constructive defining involves students modeling a new object by using prior examples or 
ideas. Rasmussen et al. (2005) deemed descriptive defining as horizontal mathematizing, in 
which the student organizes their ideas into a structured definition, and constructive defining as 
vertical mathematizing, where students abstract and generalize previously organized activities to 
create a new concept. Descriptive defining (horizontal mathematizing) grounds the context for 
students to progressively advance their activity to constructive defining (vertical mathematizing).  

Methods 
We designed an RME-based HLT with the goal of guiding students to reinvent the 

definitions of reducibles and irreducibles. We created “experientially real” tasks related to a high 
school/college algebra context that used algebra tile manipulatives. These tasks were designed to 
help the IPSTs develop an intuitive understanding of the mathematical concepts and engage in 
mathematical practices of defining and conjecturing, which would support them in the process of 
formalizing them. We made conjectures of students’ reasoning for each of the designed tasks in 
our task sequence. We tested this HLT by administering tasks to IPSTs in a teaching experiment 
(Steffe & Thompson, 2000) conducted in a Hispanic-serving institution in the Southern US. Six 
mathematics graduate student IPSTs participated in this study. They all took Abstract Algebra 
courses at the undergraduate or graduate levels but have not learned UFDs in their coursework. 
They were grouped into three pairs (Group A with Josie and Raul, Group B with Javier and 
Roberto, and Group C with Kim and Taylor). Groups A and B participated in person, and Group 
C participated on Zoom. In-person groups were given physical algebra tiles, and the virtual 
group was provided with an online whiteboard and virtual algebra tile manipulatives. 

The research team consisted of a teacher-researcher (TR), secondary instructor, and research 
assistant. The TR’s role was to guide the session, provide students with prompts to work on, and 
ask follow-up questions to better understand and clarify the students’ thinking. The research 
assistant operated the video camera and took field notes. The secondary instructor observed, took 
field notes, and asked questions to students when needed. We collected and transcribed the video 
recordings of fifteen 1.5-hour sessions of the teaching experiment (five sessions per group). The 
groups’ written and virtual whiteboard work was collected. We used inductive coding (Miles et 
al., 2013) to analyze participants’ reasoning, mathematizing, and the development of emergent 
models as they used algebra tiles in the task sequence. We focused our analysis on students’ 
ways of reasoning that were leveraged by the TR to guide them to reinvent (ir)reducibles. In 
what follows, we describe the design of each task set in the HLT, how they were informed by 
RME, and the high-leverage student reasoning (italicized) evident in students’ responses. 
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Results 

Task Set 1: Contrasting Composite and Prime Integers  
The experientially real tasks in Task Set 1 (see Figure 1a) were designed to help students 

develop an intuitive understanding of the factorability of integers as they use the emergent model 
of algebra tiles. The students created a model of factoring irreducibles and reducibles as they 
manipulated algebra tile representations of integers or quadratics in ℤ[#]. Tasks guided students 
to see some integers, like 12 represented by 12 one-unit-squared tiles joined together, can be 
arranged into rectangular arrays where its factors are the side lengths of the rectangle. The first 
way of reasoning evoked was that the factors of an integer correspond to the possible side 
lengths of the rectangular array that represents the integer. This is evident in group C: 

Kim: My thought process is just like, how are all the different ways that…you can factor 12, 
like with different, with smaller decompositions of numbers.  

TR: … how does the factor translate to this rectangle concept here? 
Taylor: It’s length times width, right? That’s what I would think of it. You know, 3 times 4 

and 4 times 3, and 1 times 12, and 12 times 1, and 6 times 2, and 2 times 6. 
When Kim and Taylor worked on problem 1, they recognized that 12 could be represented in 
different rectangular arrays that each had side lengths of the different pairs of factors of 12.  

This led to their second high-leverage idea was that the rectangle that was 12 units × 1 unit 
was essentially the same as the rectangle with dimensions of 1 unit × 12 units due to the 
commutativity of integer multiplication. This is evident in this transcript from group A: 

Josie: Do these count as two separate ones?  
TR: That’s a great question. So you’re saying, 1 by 12, is that the same as 12 by 1?  
Josie: …Well, I figured…multiplication is commutative, so they’re exactly the same. 

Josie and Raul thought that two rectangles with dimensions from the same factor pair were 
essentially the same, so they did not count as two different rectangles. This idea was used in the 
next task, 2a (see Figure 1), which was designed to help students recognize that prime numbers 
of square tiles can have only one arrangement that forms a rectangular array. Josie explained: 

Numbers that can only be written in one way would be the prime numbers. They don’t 
have too many factors. They only have that one and itself. And if we’re only counting 
like the- the 1 by 5 as the same as 5 by 1- that’s really the only way you can do it.  

Josie used the aforementioned way of reasoning that rectangular arrays with the same 
dimensions counted as the same representation to justify her claim that numbers that could only 
be represented in one rectangular array must be prime. This claim is the third way of reasoning 
that could be leveraged toward guiding the students to reinvent reducibles and irreducibles. Once 
the students recognized that those types of integers were prime, they used that way of reasoning 
in task 2c to identify the difference between the integers that could only be represented in one 
rectangular array and the integers that could be represented in many rectangular arrays. Josie 
responded, “The amount of factors that they have. Primes only have 1 and the number itself, and 
composites have at least 2.” This elicited the way of reasoning that the difference between the 
integers that could only be represented in one rectangular array and the integers that could be 
represented in many rectangular arrays was whether they were prime or composite. This is the 
first instance where they use the emergent model (the algebra tiles) as a model for identifying the 
differences between irreducible and reducible elements in ℤ. Overall, these tasks were designed 
to prompt the students to contrast the primes and composites using the emergent model. We posit 
that making this contrast is an essential waypoint in guiding students to reinvent (ir)reducibles. 
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 1. Find all the possible ways that the number 12 can be represented using rectangular arrays of squares.  
2. Like the number 12, some numbers can be written in many different ways using rectangular arrays of 

squares. But some numbers can only be written in one way. 
a) Find several numbers that can only be written using one rectangular array of squares. 
b) Find several numbers that can written using different rectangular arrays of squares. 
c) What is the difference between these two kinds of numbers?  

b)
 

Ta
sk

 S
et

 2
 

1.  Try to arrange these quadratics in a rectangular array using algebra tiles. Each side length of a rectangular 
array cannot be a constant number and must include the variable !. 
a) 3!! + 9!   b) !! + 3! + 3   c) 2!! + 4! d) !! + 4! + 3       e) !! + 	5! + 7 

2. What is the difference between the quadratics you can arrange into a rectangular array and the quadratics 
you cannot arrange into a rectangular array? Make a conjecture.  

3. Give 3 examples of quadratics whose algebra tile representations could be arranged into rectangular arrays. 
4. Give 3 examples of quadratics whose algebra tile representations could NOT be arranged into rectangular 

arrays. 
5. Does your conjecture from Task 2 about the arrangement of the algebra tiles hold true for these examples?  
6. You conjectured that: A quadratic can be arranged into a rectangular array with algebra tiles if and only if 

the quadratic is factorable. Let’s test this conjecture with the following quadratics. 
a) !! − 4  b) !! − 2 c) !! + 4 

7. Refine your conjecture: Quadratics can be arranged into a rectangular array with algebra tiles iff: 

c)
 T

as
k 

Se
t 3

 

1. What similarities can you see between the integers that can be represented in different rectangular arrays 
and the quadratics that can be represented as a rectangular array with algebra tiles? 

2. What similarities can you see between the integers that can only be represented in one rectangular array 
and the quadratics that cannot be represented as a rectangular array with algebra tiles? 

3. We can name the first type of integers and quadratics that can be represented as a rectangular array as 
“reducibles.” We can name the second type of integers that can only be represented in one rectangular 
array and quadratics that cannot be represented in any rectangular array as “irreducibles.” We will 
formally define these terms soon. When irreducible integers can be arranged into a rectangle, one of its 
side lengths must be 1 or –1. These numbers are called “units.” Definition: An element of a ring is called a 
unit if it has a multiplicative inverse. In a ring, an element is either 0, a unit, an irreducible, or a reducible. 
What are the units of ℤ[!], the ring of polynomials with integer coefficients? 

4. We can name the first type of integers and quadratics that can be represented as a rectangular array as 
“reducibles.” Create a definition for a reducible. 

5. We can name the second type of integers that can only be represented in one rectangular array and 
quadratics that cannot be represented in any rectangular array as “irreducibles.” Define irreducible. 

Figure 1. The three task sets in the HLT’s task sequence. 

Task Set 2: Contrasting Reducible and Irreducible Quadratics in ℤ[<]  
The tasks in Set 2 guided students to use the intended emergent model of algebra tiles as a 

model of factoring quadratics in ℤ[#] by attempting to arrange quadratics into rectangular arrays. 
The students recognized 3## + 9#, 2## + 4#, and ## + 4# + 3 can each be arranged into a 
rectangular array, where each side length of a given array is a factor of the quadratic, whereas 
## + 3# + 3 and ## + 5# + 7 could not be arranged into a rectangular array (see Figure 2). The 
tasks had them find the difference between these quadratics and guided students to conjecture (a) 
quadratics that can be factored can be arranged into a rectangular array where the factors of the 
quadratic are the side lengths of the rectangle and (b) the quadratics that cannot be factored 
cannot be arranged into a rectangular array. The conjectures are high-leverage ways of 
reasoning that can be used to support students in reinventing (ir)reducibles. Kim used these: 

For the quadratics that you can arrange in a rectangular array, the quadratic is factorable, 
… if you have a quadratic you cannot arrange into a rectangular array, then…it is not 
factorable… if the quadratic is factorable, then you can arrange it in a rectangular array. 

This discussion led group C to refine their conjecture to be “A quadratic can be arranged into a 
rectangular array with algebra tiles if and only if it is factorable.” The tasks guided students to 
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consider quadratics that are factorable over ℝ but not over ℤ, which cannot be arranged into a 
rectangle, which led them to revise their conjecture to specify the set over which the quadratic 
was factorable: A quadratic can be arranged into a rectangular array with algebra tiles if and 
only if the quadratic is factorable over the integers. These tasks guided the students to contrast 
irreducible and reducible quadratics in ℤ[#] to help them develop intuitive understandings of the 
difference between them in this set. Making this contrast is a high-leverage way of reasoning that 
is an essential waypoint in guiding students to reinvent the definitions of (ir)reducibles. 

Task Set 3: Comparing and Defining Reducibles and Irreducibles in ℤ and ℤ[<]  
The tasks in Set 3 (see Figure 3) were designed to guide students to abstract and generalize 

the structure shared by reducible elements in ℤ and ℤ[#], as well as the structure shared by 
irreducible elements in ℤ and ℤ[#]. The tasks prompted students to identify similarities among 
the modeled representations of the integers and quadratics in ℤ[#] that could be arranged into 
rectangular arrays with non-unit side lengths. Roberto responded, “They’re factorable in the 
integers… one of them is composite, so it can be written in different ways, and the quadratics can 
be represented as a rectangular array.” Prompting students to identify the similar structure of the 
modeled composite integers and quadratics allowed students to recognize that integers and 
polynomials of this type can be factored or reduced into a product of integers or polynomials of 
lesser degree. This way of reasoning about the reducibility property of these types of integers 
and quadratics can be leveraged to guide the students to reinvent the definition of reducibles. 

In task 2, the students were asked to identify similarities among the modeled representations 
of the integers and quadratics in ℤ[#] that could not be arranged into rectangular arrays with non-
unit side lengths. Javier responded, “Prime integers can be represented in [one] rectangular array. 
Like when 7 can be 1 times 7… quadratics that cannot be represented as a rectangular array with 
algebra tiles can be thought of as prime polynomials, such as ## + 4” (see written work in Figure 
3). Prompting students to identify the similar structure of the modeled prime integers and 
quadratics led them to recognize that prime integers and quadratics of this type have the same 
characteristic of not being factorable into a product of integers or polynomials of lesser degree. 
This way of reasoning about the irreducibility of these types of integers and quadratics can be 
leveraged to guide students to reinvent the definition of irreducibles. These tasks intended to 
evoke a transition in the students’ emergent model (i.e., the algebra tiles), provoking the students 
to use their model of factoring integers and quadratics in ℤ[#] as a model for abstracting the 
shared structure of reducibles and irreducibles, which could be used to define those concepts. 

Before the tasks could guide students to formally define (ir)reducibles, the students needed to 
understand the concept of a unit in a ring because the definitions refer to a factor being either a 
unit or not. Task 3 gave the students the definition of a unit and prompted them to identify the 
units of ℤ and ℤ[#], which are 1 and -1 in both sets. Once the students had this terminology of 
“unit” they could use in their definition drafts, tasks 4 and 5 guided students to leverage their 
prior conjectures to give rough draft definitions of reducibles and irreducibles. The students 
iteratively refined their definition drafts with support from the TR’s pedagogical moves of 
scaffolding, poking holes in arguments, posing counterexamples, pressing for precision, 
encouraging the definitions to be nonredundant and generalizable, and making sure any example 
of the concept satisfied the definition. Josie’s five drafts of definitions of reducibles, which 
progress from using informal to more formal mathematical terminology, are shown in Figure 4. 
Overall, task set 3 were designed to engage students in constructive defining and vertical 
mathematizing, i.e., further mathematizing their previous conjectures about properties of 
reducibles and irreducibles in pursuit of reinventing and defining reducibles and irreducibles. 
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(a) Roberto’s Written Work on Task 1 (b) Javier’s Written Work on Task 2 
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(c) Josie’s Drafts of Definitions of a Reducible Element 
Figure 3. Students’ written work in Task Set 3. 

Discussion and Conclusion 
This study shows how the task sequence and TR’s pedagogical moves guided the students’ 

reinvention of the definition of reducibles and irreducibles by facilitating their high-leverage 
reasoning about reducible and irreducible properties of integers and polynomials. The sequence 
of three task sets prompted students’ reasoning in identifying and abstracting the reducibility/ 
irreducibility of integers (Task Set 1) and quadratics in ℤ[#] (Task Set 2). In particular, the 
experientially real tasks using algebra tiles evoked students’ development of emergent models of 
factorizing integers and quadratics, which transitioned to become models for identifying and 
refining their conjectures about the shared structure of integers and quadratics (Task Set 3). In 
this process, TR’s pedagogical moves played an essential role in developing the emergent models 
and facilitating students’ mathematizations (Gravemeijer & Doorman, 1999) by helping them to 
make sense of their mathematical activities of creating and interpreting algebra tile models 
(horizontal mathematization) and by guiding them to formalize their conjectures of the shared 
structure of integer and quadratics in their definitions of reducibles and irreducibles in an integral 
domain (vertical mathematization). This finding suggests a hypothetical learning trajectory of 
students’ reinvention of definitions in advanced mathematics by eliciting and leveraging 
students’ reasoning in experientially real tasks. Future studies can extend the findings of this 
study by refining the task design and implementation and by examining different types of high-
leverage reasoning that can also guide students in learning trajectories. 
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We’re All Human, So Why Does Equity Matter?

Mary E. Pilgrim Gabriela Hernandez
San Diego State University San Diego State University

Brinley Poulsen Stringer Charles Wilkes II
San Diego State University San Diego State University

There is a need for mathematics instructors in higher education to have more equitable teaching
practices. One way to address this need is through equity-centered professional development
(PD). Using interviews across one year of professional development (PD), we describe how three
immigrant mathematics instructors grapple with incorporating equity in their teaching practice
using Gutiérrez (2009) four dimensions of equity. We found that the instructors focused primarily
on awareness and access with respect to equity but did not understand how to infuse equity in
their practice. We also found that three themes, the discipline of mathematics, all students are
human, and the identities of the instructors and beliefs seem to serve as barriers for instructors’
implementation of equitable practices. Future research might consider how PD could be
informed to account for the themes found in this study.

Keywords: equity, identity, two-year college, community college

“It doesn't matter what my race is. Um, or my gender, because, you know, I'm teaching a
subject that I feel is just it's universal. So it really does not matter.” This quote came from a
two-year college mathematics teacher. The statement is not surprising, and, in some cases might
even be expected, as mathematics as a discipline has historically been positioned as universal,
unbiased, and politically neutral. The implication being that mathematics is accessible to
everyone. While this perspective is common, it is problematic as it removes any accountability or
responsibility that the role mathematics as a discipline plays in what it means to do mathematics
and who can do mathematics. This perspective is transmitted to individuals that attain advanced
degrees in mathematics and to the students they teach. Having this perception makes it difficult
to understand why equity is important in the teaching and learning of mathematics.

In this paper we focus on three two-year college mathematics instructors who are
immigrants. We sought to understand how they negotiate their perspective of mathematics,
which is closely aligned with the opening quote, when trying to understand and incorporate
equity in their classrooms. The research question that guides our paper is: How do instructors
think about their teaching practices while grappling with tensions around self-identities, as well
as personal experiences with and beliefs about mathematics as a discipline?

Literature Review
Even as efforts are being made to advance STEM fields toward a more humanistic and

equitable endeavor, mathematics tends to resist transformation more than other fields. One
possible explanation can be traced back to how mathematics is perceived in society. Leyva and
colleagues (2021) argue that mastery of mathematics is often seen as a precursor to one's social
standing and frequently used as a measure for intelligence. Similarly, Moses and Cobb (2002)
liken math literacy to civil rights, emphasizing its societal importance. Hence, when discussing
mathematics as a discipline, we need to recognize the high esteem in which it is held in society
and how it functions as a form of cultural capital.
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In the pursuit of equity in mathematics education, it is crucial to examine four key
characteristics: the universality of mathematics, the understanding of what it means to engage in
mathematical practices, the historical exclusivity of the discipline, and its inherent political
nature, especially as these factors relate to the often-understudied context of immigrant
instructors in community colleges. First, mathematics is often conceptualized as universal. That
is, mathematics is often portrayed as a universal discipline, suggesting its omnipresence and
accessibility to all, irrespective of race, gender, or any other identity markers (Baber, 2015). The
second characteristic to consider when thinking about equity in math education is understanding
what it means to do mathematics. Understanding what it means to do mathematics is critical as
there is often a misalignment between what it means to do mathematics and how mathematics is
taught (Brown et al, 1989). The contrast between the two – school mathematics and the authentic
practice of mathematics outside of the classroom – highlights the tension that exists between
what it means to do mathematics and how it is taught in the classroom. The third characteristic is
who can do mathematics. Historically the discipline of mathematics has been exclusive,
highlighting that only certain individuals can do or are good at mathematics (Ernest, 1989;
Martin, 2009; Hottinger, 2016; Nasir & Shah, 2011). The fourth characteristic is recognizing that
mathematics is political (Gutierrez, 2013). The classroom is more than just a site for social
reproduction and enculturation. Rather, it is a space where power dynamics, identity, and cultural
constructs intersect. Indeed, mathematics inherently carries political aspects and power dynamics
similar to other human activities. Collectively we argue these four characteristics inform
instructor’s teaching practices and how they conceptualize equity. Additionally, we build upon
the literature by focusing on a population and context that is often understudied in mathematics
education, immigrant instructors in mathematics and community colleges.

Theoretical Framing
The four dimensions of equity is a framework as described in Gutiérrez (2009) articulates

considerations for equity in mathematics education. The framework highlights four components,
access, achievement, identity, and power. The components are divided into two axes—the
dominant axis and the critical axis. The dominant axis represents the prevalent emphasis for
equity in mathematics education which centers on access and achievement in which access
precedes achievement. Access refers to ways in which students can participate in mathematics.
This includes students engaging with teachers, curriculum, and resources. Indeed, access may
impact achievement. Achievement attends student outcomes such as grades and scores on
standardized tests and can highlight ways in which students may demonstrate their mathematical
knowledge. While the dominant axis is important, Gutiérrez acknowledges that it is only one half
of equity in mathematics education. The second axis which is referred to as the critical axis,
includes identity and power, where identity precedes power. Identity refers to the social markers
of students and teachers, as well as their lived experiences, and cultural socialization.
Understanding and incorporating students' identities is important to attend equity. Power, the last
component, highlights the power and agency that both students and teachers have and how
teachers can use their power to ensure that classroom instruction is inclusive and attends to the
identities of students.

Methods
The Mathematics Persistence through Inquiry (MPIE) project is a five-year NSF-funded

project that is using design-based research to build and implement a professional development
(PD) program for two-year college mathematics instructors. The focus of the PD program is on
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supporting the development of inquiry- and equity-focused teaching practices. Goals of the
project are to 1) study a two-year college’s response to a state-mandated change in gateway
mathematics courses (College Algebra, Precalculus, and Trigonometry), 2) use cycles of design
research to build the capacity of math instructors in the two-year college to foster student
success, and 3) investigate the effects of the capacity-building effort. In this paper we discuss
participants’ perspectives on equity, which are connected to their own personal experiences and
relationships with mathematics, and, in turn, impact their teaching practices.

Setting and Context
The setting of this research project and PD efforts is a two-year Hispanic Serving Institution

(HSI) in the Southwestern United States. In this paper we will refer to this institution as
Southwestern HSI (SHSI). SHSI serves a student population that includes a majority of students
from historically minoritized communities including Latinx students (68%) and students from
low-income households (70%). PD participants include SHSI instructors who primarily teach
gateway mathematics courses.

The MPIE PD program is a two-semester program running through the fall and spring terms.
The participants discussed in this paper participated in the MPIE PD during the fall 2021 and
spring 2022 semesters. All were math instructors at the SHSI, most of whom taught a variety of
courses including gateway mathematics courses. The fall semester PD focused on inquiry-based
teaching and learning with participants meeting six times, two hours each (for a total of 12
hours). In the spring, the PD shifted to an equity and inclusive emphasis, with participants
meeting 4 times, 1 hour each (for a total of 4 hours). The reduced PD session time in the spring
allowed for individual classroom observation and debrief sessions.

Data
For this paper we present three case studies: Paul, Nhung, and Savana. We selected them as

cases because they are all immigrants with unique experiences that seemed to have shaped their
beliefs about and ultimately their teaching of mathematics. The beliefs they shared highlighted a
tension between their perspectives on what it means to do mathematics, what mathematics
affords as a discipline, and the role of equity in disrupting their perspectives. Below is a brief
description of each participant.

● Paul is a full-time mathematics instructor who grew up in Tijuana, Mexico and
identifies as a Latino who has been perceived by others as white in some spaces and
Latino in others, which has created a complex, dual identity for himself. He has
taught a variety of courses at SHSI for more than two decades.

● Nhung is a full-time mathematics instructor who spent the first 11 years of his life in
Vietnam before coming to the United States as a refugee. He has taught a variety of
courses at SHSI for more than a decade.

● Savana is a part-time mathematics instructor who grew up in a large family in
Tijuana, Mexico and was in the first generation in her family to attend college. She
has taught a variety of courses at SHSI for more than two decades, as well as at other
local colleges.

The data examined from the participants are three, one-hour interviews each across two
semesters of PD. The first interview occurred after the fall PD, the second interview occurred
before the start of the spring PD, and the third interview occurred after the conclusion of spring
PD. Each interview was semi-structured and designed to capture information around the
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instructor’s teaching background and style, mathematics experiences, equity beliefs and practice,
and inquiry beliefs and practices.

Analysis
Each author on this paper read through a set of three interviews for at least one of the three

participants, so that each set of interviews were analyzed by two different researchers. First
round of coding involved members of the research team writing memos so that common themes
regarding equity and identity could be identified, with Gutiérrez's four dimensions of equity as a
guiding framework. After discussion, the themes of self-identity, math as unbiased/universal, we
are all human, awareness, and access were identified as themes that appeared in each
participant’s data. Below we unpack how these themes address our research question.

Findings
These themes all arose across the three interviews from each participant that were used for

data analysis. We present them in an order to help provide context for each participant,
highlighting how their personal experiences and perspectives show up in their teaching practices.

Identity Impacting Practice
All three participants identified as immigrant teachers - each grew up in another country and

then became a teacher in the United States. Their unique experiences growing up and becoming
immigrant teachers has played a role in their teaching, impacting their practice and the way in
which they interact with their students.

Paul. Paul grew up in Mexico and identifies as biracial. In Mexico he experienced racism
and marginalization. Often referred to as “Gringo” or “El Blanco”, he struggled to fit in or feel
like he belonged in his high school classes. As a 15-year-old, he took a difficult physics class
which he ended up failing. During a class period towards the end of the term his Physics teacher
stated in front of the class that “The American white boy failed physics. So now he's going to
learn what it is to be oppressed and what it is to be privileged.” This experience was “hurtful” to
Paul and has impacted his choices and values as a teacher. As a teacher at an HSI on the border
with Mexico, he knows that there will be students in his class that will likely have an identity or
experiences like his own. Having such students in his class is an opportunity for him to connect
and provide the support students might need. He is fluent in Spanish and will share his identity
with his students to let them know that he also has experienced challenges in his education.

Nhung. Nhung spent his childhood in Vietnam. He was 11 years old when his family moved
to the United States (US). Growing up speaking Cantonese, he knew very little English at the
time. Thus, as a student in US schools, he struggled in his classes and had multiple
uncomfortable experiences when being called on during class. The language barrier made it hard
to “verbalize” his thinking and these negative experiences impacted his confidence and learning
processes. Mathematics classes usually did not pose the same level of difficulty for him, given
the reduced amount of English vocabulary. However, he did struggle to read and interpret
contexts presented in mathematical word problems, which made it difficult to apply the
appropriate mathematics. These past experiences impact how Nhung teaches. For one, he never
wants to put students in a position where they feel singled out and uncomfortable. And second,
he wants to be available to help students if they are struggling and need additional support. He
goes further to say “I feel like I can relate to students better because…the adjusting to classrooms
in the United States is just something that I have a little bit more appreciation maybe for what
they have to go through.”
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Savana. Savana was born and raised in Mexico. She was the youngest of 13 children and
grew up in a traditional household. Neither of her parents were formally educated, so learning
and writing were unfamiliar to them. Her father believed that the priority for women was to
focus on family, children, and the home, but her mother viewed education as important. Savana
embraced both values in her own life - family and education. Thus, Savana attended school
through community college in her hometown of Tijuana, and then moved to the US to pursue her
dream of becoming a teacher. This was not easy. She did not speak English, but she was
motivated. She had a “dream…[to] teach math”, and even though she did not know the language,
noting that it “was really, really challenging”, she strived to follow her dream. This aspect of
Savana’s identity is a big part of who she is and impacts how she interacts with students. She
wants students to know and understand that pursuing an education (especially when not in your
native language) is “not easy, but it can be done. If we work hard.” Savana shares this story with
her students, hoping it will motivate them to continue pursuing their education.

Mathematics is Universal and We’re All Human
An interesting theme that arose across the interviews was the idea that anyone can do

mathematics and that mathematics is a neutral subject. In fact, Nhung felt that mathematics is
“unbiased”, and that success is achieved with enough “time and effort”. He went further to note
that that was one of the motivating reasons for joining a PD that had a focus on equity - he
wanted to understand how such a neutral subject could have inequities. 

The notion that mathematics is a neutral subject was also intertwined with the idea that “we
are all human”. When asked about how she thought about race, Savana stated that she did not
think about race and went further to say: “We are all the same. We're all human beings. We're all
the same.” While Paul had a similar sentiment, he situated it in the classroom setting about
engaging with mathematics and promoting student success. Paul noted the sameness in which he
wants to support students while still monitoring biases he may have: 

I'm trying to break the stereotype by, by trying to be okay now we can- no be the same
with everybody. Be the example, communicate the same way with everybody, treat
everybody with the same level of respect, communicate with the same level of
acknowledgement of respect. Don't focus on only a handful of students or one gender.
Everybody's the same, everybody's equal. We all belong to one to race the human race. If
I, if I make sure that everybody to me is a human, that right there is helping me keep
myself in check and avoid falling into those biases, those stereotypes. And if they see that
I'm doing that and, and it's encouraging them to succeed.

Throughout PD, Nhung struggle with the idea of inequity existing in the mathematics classroom:
I just have always seen myself as I'm just a math teacher. Right. It doesn't matter what my
race is. Um, or my gender, because, you know, I'm teaching a subject that I feel is just it's
universal. So it really does not matter.
Although all participants had this idea of mathematics being universal or we are all human,

they each acknowledged the inequities that they themselves had experienced as students or
inequities they recognized as being present in mathematics as a discipline. These inequities
shaped their identity as mathematics teachers, and, in turn, impacted how they interact with
students.

Getting Stuck: Awareness and Access
Throughout the interviews it was clear that Paul, Nhung, and Savana increased their

understanding and awareness of classroom equity issues as they progressed through the PD.
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Participants seemed to think about equity as access to opportunities. An instance that captures
such awareness that was developed early on is when participants were provided with an image,
which is now ubiquitous, showing two cartoon panels. In one panel, there are three children
trying to look over a fence to see a baseball game. The children are of different heights, and each
child is standing on the same type of box to try to look over the fence. Although each has a box
to stand on, not all can see over the fence. In a second panel, each child is standing on a different
size box that will allow for them each to see over the fence. Although this image does not
capture equity as a concept in its entirety, it provides an entry point to a conversation about
equity, especially for those who are new to having such discussions. It was this image that gave
Paul clarity about equity in the classroom for the first time.

And they showed the [cartoon description] and I thought to myself, by the way, please
forgive me if I if I release a colorful metaphor, because I really get worked up about this.
But I was thinking, “God damn w– we’ve been doing this all along! We've just been
giving everybody the same box!” But hey look– there's tutoring, whoopie! Hey look– we
have workshops, yee haw! But if students have different needs, how can we bring them
up to the same level instead of just giving everybody the exact same opportunity? That's
when it clicked, that's how it’s done.
Paul realized that giving all students the same opportunities was not what it meant to attend

to equity. He worked to meet the students where they are, and part of this process was allowing
students to participate in ways that they feel comfortable. This notion of opportunity and comfort
was also reflected in Nhung’s and Savana’s interviews.

Nhung felt that being equitable was giving “students the opportunity to learn” through group
activities guided by “leading questions”. He believed that each of his students were capable of
the same achievement with enough practice, time, and effort. However, Nhung began to struggle
with his definition of equitable teaching once he began to realize the varying levels of
preparedness in his students, which impacted their ability to take advantage of such
opportunities. He noted,

Well, when you interact with students when you recognize that they are not as prepared to
take advantage of those opportunities. Right? And now I see where some of it is falling
short. But I don't really know how to address it yet.
While Nhung felt opportunities were important, he recognized that giving students the same

opportunities did not address the gap that existed between students. Nhung struggled with this
tension stating:

Right. But it's not just equal opportunity. Right. Because if you start further up than
someone else, and both of you are presented with the … same opportunities, you are
going to rise or at least you have the opportunity to rise, um, at a greater rate than
someone else who started way behind.
This tension caused Nhung to shift his perception of equitable teaching slightly, adding the

caveat that students who entered his class with gaps in prerequisite knowledge just needed more
chances to work one-on-one with him as the teacher. He further notes that if students “elect to
not interact with” him, he will leave them alone and not “bother them”. From Nhung’s
perspective one-on-one attention was a way to elevate students to a level commensurate with
their classroom peers. Savana had similar sentiments stating that equity “means being able to
provide every student what they need”, which may be unique to each student. Ultimately Nhung
viewed issues related to equity as access issues and students just needed opportunities to engage
with mathematics. Savana, like Nhung, recognized that students were at different ability levels
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and felt that support needed to be customized based on a student’s specific needs. However,
while Nhung struggled to attend to students’ needs because one-on-one help during class was
difficult to accomplish for all students, Savana expressed not knowing how to begin to attend the
issue.

How do I help the student that, um, you know, uh, that has, I don't know, anxiety and,
and, and, and just being asked to, to talk in front of the class, you know, makes just
asking that person, a question, you know, uh, may block him and, and not be able to, you
know, to, to, to follow, you know, what I'm doing. So it's, so it's so, uh, challenging
By the end of the first year of PD not much had changed with perceptions of equity in the

classroom. Paul, Nhung, and Savana all discussed increased awareness about equity in their
teaching, but little change could be seen in the data across their interviews. All continued to see
increasing access to engaging through participation in mathematics as the key piece to attending
to equity in the mathematics classroom.

Discussion
Paul, Nhung, and Savana provide an important description for what it means for immigrant

mathematics instructors in higher education to grapple with incorporating equity in their teaching
practices. Although each instructor had increased awareness with regard to what it meant to
attend to equity in the classroom, at the end of their first year in PD that awareness was limited to
focusing on increasing access to mathematics. This translated in their practice through their
teaching by having more one-on-one interactions with students and encouraging more questions
and discussion from students (as they felt comfortable).

There are several factors that might contribute to this limited view of equity in the classroom.
Through themes identified across Paul, Nhung, and Savana, one potential barrier seems to be
their own personal identities, beliefs, and experiences. The perspective that mathematics is
unbiased or universal makes it difficult for the instructors to understand how shifting teaching
practices beyond more “opportunities” would help attend to equity. This idea is further validated
as Paul, Nghung, and Savana succeeded academically and professionally, in part because they
took advantage of opportunities and were motivated. As a result, this view makes it difficult for
these instructors to shift their practice beyond creating opportunities and encouraging
participation.

Conclusion
Math is political and it is important for instructors to understand their own identity, power,

and responsibility when implementing equitable teaching practices. In this paper, instructors
highlight a tension that exists between their own identities, beliefs, and experiences, and the
common narratives that exist within mathematics (e.g., mathematics is universal). Understanding
these tensions and the deep-rooted impact that historical norms and beliefs about mathematics
have given us a better understanding of how to reframe aspects of ongoing PD to try to get
instructors to move beyond awareness and access and towards practice that also incorporates
Gutiérrez’s critical dimension (identity and power).
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In this paper, we explore how undergraduate students use and evaluate generative artificial 
intelligence (genAI) in proving. We view proving as a human activity and proof as a production 
of proving, and hence, we believe that students need to be the ones who evaluate the genAI-
generated arguments and write their proofs. In the initial phase of research on genAI in proving, 
we conducted interviews with three undergraduate students to examine how they use genAI in 
proving and how they write their proofs after their use of genAI. This study revealed that there is 
a flow in students’ use of ChatGPT in proving, and there are factors that impact their use of 
genAI. We think that the flowchart presented here can serve as a guide for both teaching and 
research on the use of genAI in the context of proving. 

Keywords: Artificial Intelligence (AI), Undergraduate Students, Proving, ChatGPT 

Since the end of 2022, when a generative Artificial Intelligence (genAI) tool became public, 
ongoing discussions about the role of AI in education have accelerated. People started viewing 
genAI as a tool that can both benefit and hinder students’ learning. As the prevalence of the use 
of genAI in education is inevitable, it is important to consider how educators can help and guide 
students’ responsible use of genAI in education. Based on its affordances (e.g., instant feedback 
or personalized learning) and limitations (e.g., wrong information or ethical issues), we believe 
that students should be able to be aware of the pitfalls of AI tools and critically evaluate 
responses generated by AI tools.  

We chose proving as our research context because proving is a context where students need 
to persuade themselves and convince others (Bieda & Lepak, 2014; Hanna, 2000; Hersh, 1993). 
Using the feature of genAI that provides instant conversation, it can be used as a good tool to 
practice convincing each other. Another benefit of using a genAI as a tool in proving can be that 
it does not necessarily involve negative human interactions with the user. For example, when 
students ask questions to their instructors or fellow students, power relationships exist between 
them. Then, some students may take mathematical statements and proofs from the authorities, 
including instructors, peers, or textbooks, without questioning them (Weber & Mejia-Ramos, 
2014). On the contrary, using AI might help students feel more agency and authority by being 
free from those power dynamics because there is no human behind the tool and their (intentional 
or unintentional) judgment about the student. Thus, communicating with genAI can become a 
place where students can have authority in evaluating the argument if used appropriately.  

As there have been only a few, if any, studies regarding the use of AI in undergraduate 
mathematics-level proving tasks, this study initiates exploring this area. We investigated the 
following research question: How would undergraduate students use ChatGPT when they are 
proving a mathematical statement? Through the study, we call for more conversation about the 
use of genAI tools in proving by proposing a set of aspects to be considered when using genAI in 
proving and how those aspects are connected and interact with each other, by revising the IDEE 
framework by Su and Yang (2023).   
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Backgrounds and Theoretical Perspectives 
In this section, we review 1) the affordances and limitations of genAI, 2) our perspectives on 

proving, and 3) a framework for using a genAI in proving by modifying the IDEE framework 
(Su & Yang, 2023). 

Affordances and Limitations of GenAI in Education 
As emerging of genAI tools was recent, at the end of 2022, which is about a year ago, not 

much research exists in education in general, and even less in mathematics education. The most 
common form of current research articles is examining genAI as a tool for education to find 
affordances and limitations. Researchers viewed that genAI could be of benefit to students’ 
learning, including but not limited to the following: 1) provide personalized and interactive 
learning environment tailored to individual students’ preferences and levels (Baidoo-Anu & 
Owusu Ansah, 2023; Qadir, 2023; Su & Yang, 2023); 2) provide generate formative assessment 
tools (Baidoo-Anu & Owusu Ansah, 2023; Qadir, 2023); and 3) provide instant feedback 
(Baidoo-Anu & Owusu Ansah, 2023). GenAI tools, however, have some limitations and 
challenges as well. First, several researchers pointed out that genAI can provide wrong 
information depending on the data set that it was trained in (Baidoo-Anu & Owusu Ansah, 2023; 
Qadir, 2023; Su & Yang, 2023). Researchers claimed that the accuracy of genAI responses 
would be lower in complex tasks (Su & Yang, 2023). Second, ethical concerns exist regarding 
using genAI, such as plagiarism and overreliance (Qadir, 2023), bias in the data set (Baidoo-Anu 
& Owusu Ansah, 2023), users’ privacy (Baidoo-Anu & Owusu Ansah, 2023; Qadir, 2023; Su & 
Yang, 2023), and equity issues (Cooper, 2023; Qadir, 2023).  

Based on this review, as mentioned previously, we view the critical use of genAI as a skill 
for students to take advantage of the tool, and hence, we aimed to provide a guide for the goal. 

Proving and Proofs 
In this study, we viewed proving as human activities with the goal of generating proofs. By 

proof, we adapt the definition of Stylianides (2007). Stylianides defined mathematical proof as  
… a mathematical argument, a connected sequence of assertions against a mathematical 
claim, with the following characteristics: 1. It uses statements accepted by the classroom 
community (set of accepted statements) that are true and available without further 
justification; 2. It employs forms of reasoning (modes of argumentation) that are valid 
and known to, or within the conceptual reach of, the classroom community; 3. It is 
communicated with forms of expression (modes of argument representation) that are 
appropriate and known to, or within the conceptual reach of, the classroom community. 
(p. 291). 

The key point of this definition is that an argument can be referred to as proof when it is 
approved by the classroom community, which is their mathematical community. It aligns with 
other researchers’ arguments that a mathematical argument becomes proof when a mathematical 
community agrees on it (Weber & Mejia-Ramos, 2014). From this perspective, what genAI 
produces is a mathematical argument, but it does not become proof until a mathematical 
community sanctions it. In other words, students who use genAI become the first person in the 
line who gets to decide if the generated argument can be qualified as a mathematical proof 
considering the three components mentioned in the definition of proof before they present this to 
other people. Thus, the subject who writes and presents mathematical proof should be and is a 
person, not genAI.  
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IDEE Framework  
Su and Yang (2023) suggested a theoretical framework as a guide to using generative AI in 

education. The framework has four aspects:  
Identify the Desired Outcomes. Identifying the objects of generative AI before using it. 
Determine the Appropriate Level of Automation. Automating teaching or learning 
experiences using generative AI or using it as a supplement to traditional teaching 
methods, depending on the objectives.  
Ensure Ethical Considerations. Considering ethical implications of using generative 
AI, including potential biases and their impact on teachers and students.  
Evaluate the Effectiveness. Evaluating the effectiveness of generative AI in achieving 
the desired outcomes.  
While the IDEE framework (Su & Yang, 2023) is for teaching and learning in general 

education, this study focuses on students’ use of generative AI in the context of mathematical 
proof. We interpreted the framework by focusing on (1) mathematics education, more 
specifically for students’ proving, and (2) students’ use of generative AI for their learning. Thus, 
the following is our interpretation of the IDEE framework.   

Identify the Desired Outcomes. Identifying the objects of generative AI before using it 
when proving mathematical statements 
Determine the Appropriate Level of Automation. Deciding the ways to use generative 
AI and the extent to which they want to take from what generative AI generates depends 
on the objectives. 
Ensure Ethical Considerations. Students’ recognition of potential ethical issues, such as 
determining whether using generative AI for homework aligns with academic integrity.  
Evaluate the Effectiveness. Evaluating the effectiveness of generative AI in achieving 
the desired outcomes when proving mathematical statements.  

Methods 

Data Collection 
Participants. In July 2023, we conducted individual interviews with three participants, 

Yuna, Jiho, and Kitae (all pseudonyms), from two different universities in Korea. All of them 
were freshmen mathematics education majors. Yuna was a woman, and Jiho and Kitae were 
men. Yuna took a Linear Algebra course, which she described as a proof-based course, as well as 
Calculus I, and the other two took only Calculus I. 

GenAI. We used ChatGPT 3.5 as a genAI in this study because it was the most commonly 
used genAI in Korea at the time of data collection, July 2023.  

Interviews. At the beginning of the interview, students were given six mathematical 
statements, mostly from number theory and one from advanced calculus. The statements were 
written both in Korean and English. Students were asked to choose one or two statements they 
wanted to prove or disprove and allowed to use any resources. We did not ask them to use 
ChatGPT for this part to see if it occurs naturally for them. However, none of them used the 
ChatGPT in the first part, so we asked them if they were aware of the tool and had used it. All of 
them said they had used ChatGPT before, so we asked them to use ChatGPT for proving tasks, 
observed how they used ChatGPT, and evaluated the argument generated by ChatGPT. During 
the interviews, a main interviewer led the interview, and a secondary interviewer took notes and 
asked supplementary questions if needed. Each interview lasted 80 to 100 minutes and was 
transcribed into Korean after the collection. 
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Data Analysis 
For data analysis, we used the modified IDEE framework. We first coded the transcripts 

using the four categories: 1) desired outcomes, 2) level of automation, 3) ethical consideration, 
and 4) effectiveness. In applying the initial categories, we viewed the level of automation as 
students’ decision process to get an argument and effectiveness as students’ evaluation of the 
argument generated by ChatGPT. If students’ use of ChatGPT in proving does not fit into one of 
the four categories, we coded those as others. First, each participant’s transcripts were coded by 
one of the team members; then, different team members did the second round for cross-checking 
purposes. When the team members detected differences, it was discussed until the team agreed 
on specific coding. Through this repetitive process, we revised and specified the codes (Table 1).  
 

Table 1 Code Descriptions 
Codes Revised Codes 
Desired outcomes Objectives of using genAI. 
Level of automation Decisions on prompts to ask (differently) to genAI. 

Decisions on continuing conversation with genAI. 
Decisions on how much they want to take from the generated 
arguments by AI. 

Ethical consideration Opinions regarding ethical issues 
Evaluation of effectiveness Evaluations of genAI’s argument 
Others GenAI belief 

Proving belief 
Proving knowledge 

Findings 
In this section, we present how Yuna used and understood ChatGPT as a learning resource 

and how she used ChatGPT in a proving task. We only present Yuna’s case here because of the 
page constraints.  

Yuna’s Previous Experiences in Using ChatGPT 
Yuna was the participant who often used ChatGPT for her undergraduate education in 

general. She used ChatGPT in mathematics when she had a problem that she did not know how 
to solve or did not have enough time to complete assignments. Yuna generally noted that 
ChatGPT was a useful tool that expanded her draft and met the quantity requirement for writing 
assignments in other contexts. She said ChatGPT was not that useful in studying mathematics 
because 1) it is not easy to type mathematical symbols into it, and 2) sometimes it generates 
different answers even if the same problem was typed in. Because of these reasons, she preferred 
searching online (e.g., Google or MathStackExchange) to ChatGPT for proving tasks. Lastly, 
despite her negative evaluations for ChatGPT in proving, that she thought using ChatGPT was 
not cheating and did not have an ethical problem. She thought using ChatGPT did not matter 
what she used as resources for assignments and said maybe it was even better than copying 
peers’ assignments. 

Yuna’s Use of ChatGPT in a Proving Task 
As she did not use ChatGPT without the interviewer’s direction, we asked her to use 

ChatGPT. In Yuna’s use of ChatGPT for a proving task, we found that she had a conversation 
with ChatGPT by entering prompts several times. We found a repetitive pattern of 1) making 
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decisions on prompts, 2) executing the prompts in ChatGPT, and 3) evaluating the responses 
until Yuna felt that she was ready to write her proof, which is detailed below (Yuna's pattern of 
using ChatGPT in proving tasks in Figure 1).  

 
Figure 1 Yuna’s pattern of using ChatGPT in proving tasks 

Given a set of questions, Yuna selected the following statement to use ChatGPT for proving: 
For all integers m and n, if the product mn is odd, then m is odd and n is odd. As soon as she 
chose the problem, she copied and pasted the statement directly to prompt ChatGPT (Prompt 1 in 
Figure 2). ChatGPT provided an argument claiming that the statement was false. When Yuna 
read the ChatGPT-generated argument, she found the argument was conflicting with her 
conjecture that the statement was true. Then, she revised the prompt by adding “can you prove 
this statement:” in front of the previous prompt and typing “m*n” instead of “mn” to clarify that 
it is about multiplication (Prompt 2 in Figure 2). With Prompt 2, ChatGPT generated an 
argument using proof by contradiction that discussed the other three cases, except the case when 
both m and n are odd. Yuna initially felt that the argument seemed correct but soon questioned:  

It seems like it is saying the right thing… There exist four cases for m and n, and it used 
all the cases except when both m and n are odds, and claiming these cases led to a 
conclusion that mn is even, but I don’t know where the remaining case is. [Translated 
from Korean] 

Then, we asked if she knew what the word “proof by contradiction” meant and translated it into 
Korean. Then she typed Prompt 3 in Figure 2 in Korean, saying: “There are too many English 
words than mathematical expressions compared to what I am used to, so it is hard to recognize 
the argument in skimming.” When ChatGPT produced the response for Prompt 3, she was not 
satisfied again and prompted Prompt 4 in Figure 2. Yuna noted that both responses did not 
include many mathematical expressions, and she did not feel ChatGPT’s response was rigorous 
enough to be considered as proof.  

When the interviewer asked if she wanted to prompt further, she typed Prompt 5 (Figure 2), 
adding “considering cases for m and n,” into the prompt because she did not understand why the 
argument generated by ChatGPT used proof by contradiction. She felt this response was similar 
to what she was thinking and decided she would not use ChatGPT anymore as she knew what to 
do. Yuna noted that she probably would not use proof by contradiction to write her final answer. 
Even though Yuna said that she would not use “proof by contradiction” in her final answer, she 
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used the format of proof by contradiction without the word “proof by contradiction” in her 
answer.  

 
Figure 2 Yuna’s prompts used in ChatGPT 

Discussions 
By combining the analysis of Yuna’s and the other students’ use of ChatGPT in their proving 

tasks, we present a flow chart (Figure 3) to illustrate students’ process of using ChatGPT in 
proving by revising IDEE framework (Su & Yang, 2023). 

 
Figure 3 Flowchart of students’ use of ChatGPT in proving 

A. Identify desired outcomes. Students had their objectives by using genAI in proving. The 
outcomes could be determined by students themselves or given by other people such as 
an instructor or researcher. 

B. Determine the prompt. Once students decided on their objectives for using genAI, they 
decided how they wanted to ask such questions. Yuna’s various prompts are in Figure 2. 

C. Execute the prompt to genAI. As students entered their determined prompts, they 
received the answers from the ChatGPT immediately.  

D. Evaluate the generated response. When students evaluated generated responses, their 
evaluation varied based on the objectives identified in the first stage. As mentioned in the 
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example, Yuna made several evaluations of the arguments based on her understanding of 
proofs and mathematical knowledge.  

E. Decide whether to ask more questions. At this point, students decided if they wanted to 
use genAI further to get another response based on their evaluation at D. Based on the 
answer, students could repeat the cycle between B and E as many as they wanted to. In 
Yuna’s case, she repeated the cycle five times until she decided to ask no further 
questions. 

F. Determine what to take from AI’s response. When they decided to stop using genAI, 
students made a decision on which part of genAI’s responses they would like to take and 
discard for their proof. It could include a set of accepted arguments, modes of 
argumentation, and modes of argument representations. For example, Yuna hesitated to 
use proof by contradiction in her proof because that was not the mode of argumentation 
she had seen in her mathematics classrooms. 

G. Write their own proof. As a last step, students wrote their proof as the author of their 
proof. This stage emphasizes proof is human activity, and what counts as a proof is 
determined by humans, and in this case, the user of the genAI. 

This process underscores that while automation tools like genAI are used, proving remains 
fundamentally a human activity. In her interactions with genAI, Yuna maintained the authority to 
critique genAI’s arguments and determine their incorporation in her proofs. This finding 
resonates with the significance of students’ agency and autonomous actions in proving (Castle et 
al., 2022) could critically engage with genAI (Cooper, 2023) by resisting passively accepting 
arguments from external resources, including gen AI, by giving them the authority (Castle et al., 
2022). 

In addition to the processes, we identified three other aspects (highlighted in shaded areas of 
proving Figure 3) considered in their use of genAI for proving:  

1. Students’ understanding of proving and proof: Influences the entire process, including 
evaluating genAI’s suggestions and writing students’ final proof. For instance, Yuna 
believed a mathematical proof should be more equation-heavy and less verbose. She thus 
modified ChatGPT’s verbose argument to a more symbolic form in her proof. 

2. Students’ understanding of genAI in use: Concerns how students perceive the genAI 
tool they employ. This might include their knowledge about genAI’s capabilities based 
on prior experiences or beliefs. Yuna, believing it cumbersome to type mathematical 
notations, often refrained from doing so. 

3. Students’ ethical considerations: Relates to students’ awareness of potential ethical 
dilemmas in using genAI. This might be influenced by class norms or personal beliefs 
about leveraging resources. Yuna, for example, felt using ChatGPT was “better” than 
copying others’ work as at least one tried to type questions and checked the argument by 
ChatGPT.  

We believe these three factors would need to be considered in designing and implementing tasks 
using genAI. Also, the presented flowchart in this paper could provide a guideline to 
mathematics instructors to devise their proving activities using genAI in their teaching by 
suggesting some sequences that should be considered. Also, it means that instructors need to 
know their students' understanding of proving and proof and genAI and should develop and 
negotiate the classroom norm with their students. This flow chart could also serve as a tool for 
analyzing how students use genAI in their proving tasks and the extent to which students 
critically think about the responses generated by genAI.  
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Towards Operationalizing What Is Learned During Modeling 
 

 Sindura Kularajan Jennifer A. Czocher 
 Utah State University  Texas State University  

In this theoretical paper we leverage constructivist theories of learning to operationalize what is 
being learned during modeling. We do this by examining model construction through two 
theories: (i) schemes and concepts and (ii) abstracted quantitative structure. In addition to 
operationalizing what is being learned, we illustrate our operationalizations by providing 
examples from STEM undergraduates’ model construction activities.     

Keywords: mathematical modeling, learning theories, cognition 

Scholars have embraced diverse perspectives on mathematical modeling (hereafter, 
modeling) to address a variety of research problems within the field (Kaiser, 2017). For example, 
within the cognitive perspective of modeling, researchers have investigated the ways in which to 
reduce or mitigate the cognitive obstacles students encounter during modeling. Irrespective of 
the perspective adopted, the researchers share a common goal: improving modelers’ learning 
outcomes in modeling. In order to do this, it is crucial to understand what exactly is being 
learned during modeling. This knowledge will shed insight onto the instructional strategies and 
assessment criteria that educators can employ to guide modeling instruction. Two theoretical 
lenses have been proposed on how modeling enables the learning of mathematical concepts. The 
models and modeling perspective puts forward the idea that individuals learn through 
constructing conceptual systems (models) that are used to “construct, describe, or explain the 
behaviors of other systems that occur in the world’ (Lesh et sl., 2003, p. 213). The emergent 
perspective describes how learning is occasioned as conceptual models are evolved from one 
context to the other (Gravemeijer, 1999). While these theories are useful to understand how 
modeling occasions learning, they do not explicate what exactly is being learned during 
modeling. In this paper, we draw on two distinct (but related) constructivist theories on 
knowledge construction: (a) schemes and concepts (von Glasersfeld, 1995), and (b) abstracted 
quantitative structure (Moore et al., 2022) to operationalize what is being learned during 
modeling. We support our operationalizations with illuminating data from two undergraduate 
STEM majors’ work on modeling tasks.     

Theoretical Framework #1: Applying Schemes and Concepts to Modeling  
We take the stance that learning occurs through the change of schemes and formation of 

concepts. von Glasersfeld (1995) identifies three parts of a scheme: (1) An individual’s 
recognition of a certain situation (S); (2) Specific activity associated with that situation (A); (3) 
and an anticipated result of that activity (R). When a learner sets a goal, it initiates a scheme (S-
A-R) (Simon et al., 2004). That is, the goal triggers similar situations (S) where similar goals 
were made. This recognition is a result of assimilation. The assimilated situation then triggers the 
specific activity sequence associated with the situation. In effect, this activity leads to a result 
(say ܴ ܴ If .(כ =  ,(i.e., the result of the activity turns out to be what the learner anticipated) כܴ
the learner again assimilates. If ܴ ്  i.e., the result of the activity is not what the learner) כܴ
anticipated), the learner will experience a perturbation, also known as a state of disequilibrium. 
As individuals desire to stay in a state of equilibrium, the learner will attempt to overcome the 
perturbation through accommodation. An individual can accommodate through either (a) 
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modifying the scheme, or (b) re-organizing the scheme. This results in a change in the scheme. 
(See Figure 1). Therefore, learning has happened, even if the specific change was unintended by 
the curriculum or teacher.  

Von Glasersfeld (1982) describes concept as following: 
“concept” refers to any structure that has been abstracted from the process of experiential 
construction as recurrently usable, for instance, for the purpose of relating or classifying 
experiential situations. To be called “concept” these constructs must be stable enough to be 
re-presented in the absence of perceptual “input” (p. 194).  

Hackenberg (2010) makes the case for concept to be “recurrently usable, for instance, for the 
purpose of relating or classifying experiential situations,” the abstraction itself is implemented 
by the activities of an individual’s schemes. Therefore, Hackenberg (2010) operationalizes 
concepts as “results of schemes that [individuals] have abstracted from their use of the schemes 
that the [individuals] can take as given prior to operating… [That is, concepts are] results of 
schemes that have been interiorized” (ibid, p.387). In other words, the results of a scheme, and 
the activities that produced those results can be taken as given during assimilation of a new 
situation. We adopt this view on concepts as well.  
 

 
(a) 

 
(b)  

(c) 
Figure 1. Our Representation for a scheme (a), modification to a scheme (b), and reorganization of a scheme(c) 

Object of Validation as Schemes in Use and Standards of Validation as Concepts 
Model validation is crucial for mathematical modeling (Czocher, 2018; Zbiek & Connor, 

2006) because non-viable models are of little use for solving real-world problems. In Kandasamy 
& Czocher (2020), we argued that looking deeply into model validation would provide insight 
into how modeling enables learning because (a) the outcome of model validation may lead to the 
modification of the model, and (b) learners validate both their final model and their evolving 
models (p. 924).  

When a learner engages in model validation, she holds two models in her mind: the one she 
is constructing (the object of validation) and the one she anticipates constructing (the standard of 
validation). The model she is constructing resulted from embracing a goal, which triggered a 
situation, which triggered a sequence of activities. Thus, the object of validation can be seen as a 
scheme under use. The model she anticipates is the result of an interiorized scheme and the 
activities that produced the result. Thus, the standard of validation can be seen as a concept. 
When the object of validation meets the requirements of the standards of validation, the learner 
assimilates and remains in a state of equilibrium. When the object of validation does not meet the 
requirements of the standards of validation, the learner is in a state of disequilibrium. To 
overcome the perturbation, the learner may choose to either (1) revise the object of validation or 
(2) accommodate the object of validation through modifying the standards of validation. In these 
terms, we claim that what modelers learn through modeling are the modifications to the 
standards of validation. We exemplify this claim using Eshonai’s work on the Cancerous Mass 
task.  
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Eshonai and The Cancerous Mass Task  
  Eshonai was an undergraduate majoring in electrical engineering with a concentration in 

computer science. In this section, we present a portion of her work on the cancerous mass task, 
one of 5 modeling problems she solved in a modeling instructional sequence. The interviewer’s 
goal was for Eshonai to build on her knowledge of absolute and relative change to develop a 
change equation as a model for exponential growth (rate of change is proportional to value of the 
function). The full task statement included information about the HeLa cell lines and a table of 
hourly measurements of the sample’s mass. 

The Cancerous Mass Task (abridged version): Cancer cells can be grown in a lab, for study 
in their own right and also as a basis for further medical research. The HeLa cell line has a 
24-hour propagation rate of 69% of its current mass. Create an expression that would model 
how quickly the sample is growing. 
Using the table of values, Eshonai computed the hourly percent change in mass for the first, 

second, and third hourly intervals. She obtained 2.93% for each interval. Eshonai concluded that 
the hourly percent change in mass remained constant as time passes and had a value of 2.93%. 
She validated her model by computing the hourly percent change for the 22nd time interval. Next,  
The following conversation between Eshonai and the interviewer was exchanged.   

Interviewer: What is the percent change [in mass] during 2-hour segments? So, if you were to 
look at a segment of time or an interval of time that ranged for 2 hours, lasts for 2 hours, 
what do you suspect the percent change in mass is?  

Eshonai: My gut instinct is saying that it would just be double.  
Interviewer: Okay. Double what?  
Eshonai: Double the percent change of one hour.  
Interviewer: Okay, and why do you suspect this? What is making you suspect that?  
Eshonai: Well, the percent change is going to be fixed throughout each individual hour, so I 

assume that it would be fixed over 2 hours as well.  
[Eshonai validated her answer by computing the percent change in mass during [1, 3] and 
confirmed its “roughly double,” as in Figure 2(a)] 

Interviewer: What about for a 3-hour increment? What does your gut say? 
Eshonai: It would be 3 times. I’ll do the math right now. 

 Eshonai confirmed her hypothesis by evaluating the percent change in mass during [1,4] as 
shown in Figure 2 (b). After computing the values, she realized that her hypothesis did not hold 
true and there was a discrepancy between the “actual’ value and the “hypothesized” value 
(Figure 2). Eshonai nominalized the percent change in mass she evaluated through using the 
percent-change formula as “actual” and the percent change in mass she evaluated through her 
hypothesis—3 times the percent change in mass during an hour—as “hypothesized.” 

For 2-hour intervals: 

 
(a) 

For 3-hour intervals: 

 
(b) 

Figure 2. Eshonai evaluates the percent change in mass during a 2-hour interval (a) and a 3-hour interval. 

After computing the “actual” and “hypothesized” values, Eshonai was hesitant to conclude that 
the percent change in mass during a 3-hour interval was roughly 3 times the percent change in 
mass during a 1-hour interval. When the interviewer asked her why she thought there was a 
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discrepancy, Eshonai replied, “I’m not sure. I mean, maybe there could be an error in my part. I 
feel like they should be exactly the same...I have no idea why there is a discrepancy.” With the 
interviewer’s guidance, Eshonai realized that as the length of the interval increases, her 
“hypothesized” values further depart from the “actual values”. She modified her claim, asserting 
that her hypothesis would hold only for small intervals. The interviewer verified, asking if her 
hypothesis would hold for a half hour interval. Eshonai added, “I would say it is just half [of 
2.93%], because if it is straining accuracy with more time [large intervals] then it should be 
more accurate with smaller of an interval we have.”  
 In this scenario, Eshonai’s object of validation was the precent change in mass during the 
3-hour interval that she evaluated using the percent change formula. Eshonai’s standard of 
validation, the result she was anticipating, was the percent change in mass during a 3-hour 
interval is 3 times the percent change in mass during a 1-hour interval. Her formulation of the 
standard of validation may have drawn on Eshonai’s prior mathematical experiences with linear 
growth patterns and was re-confirmed when she computed the percent change in mass during a 
2-hour interval (for which she got “roughly” 2 times the percent change in mass during a 1-hour 
interval). That is, she had interiorized that if the percent changes in mass are the same for each 
time interval of equal length οt, then the percent change in mass during ܰ such intervals is ܰ 
times the percent change in mass during οt. However, while evaluating the percent change in 
mass during a 3-hour interval using the percent change formula (the object of validation) she 
obtained a discrepant value, leading to a perturbation. As a result, she modified her standard of 
validation by limiting the values of οt to be small. Therefore, we conjecture, Eshonai’s 
modification to the standard of validation—her conjecture holds true for only small values of 
οt—was what she learned during this particular modeling scenario.  

Theoretical Perspective #2: Applying Abstracted Quantitative Structure  to Modeling 
Moore et al. (2022) reframed von Glasersfeld’s (1982) definition of a concept using 

quantitative and covariational reasoning theories. Moore et al. (2022) define abstracted 
quantitative structure as a system of quantitative operations an individual has interiorized. The 
authors adopt Thomson’s view on quantitative reasoning as conceiving a situation consisting of 
quantities and relationship among those quantities, where quantities are conceptualized as mental 
constructs of measurable attributes (Thompson, 2011). Quantitative relationships are a result 
quantitative operation. The authors operationalize quantitative operations as the mental 
operations involved in constructing new quantities (Thompson, 1990) and the mental operations 
involved in reasoning about varying quantities (Carlson et al., 2002). For example, within a 
disease transmission context, an individual may construct the quantity how many more people 
got infected on day 2 than day 1 by additively comparing the quantities: number of infected 
people on day 1 and number of infected people on day 2. Furthermore, an individual may reason 
“as the number of infected people increase, the number of susceptible people decrease,” 
engaging in the directional variation of new quantities. Moore et al. (2022) posit that an 
abstracted quantitative structure has the following characteristics: (1) is recurrently usable 
beyond its initial experiential construction; (2) can be re-presented in the absence of available 
perceptual material including that in which it was initially constructed; (3) can be transformed to 
accommodate to novel contexts permitting the associated quantitative operations; (4) is 
anticipated as re-presentable in any figurative material that permits the associated quantitative 
operations (p.44). We argue that modeling activity constructs abstracted quantitative structures, 
and therefore they are the outcome of learning. We exemplify this claim below.   
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Pai’s Abstracted Quantitative Structure Associated with Interactions  
Using Pai’s work on an instructional sequence of modeling tasks, we illustrate abstracted 

quantitative structures as a result of learning during modeling. Pai was an undergraduate senior 
majoring in economics and minoring in mathematics. The instructional sequence was built to 
examine participants’ quantitative reasoning as they constructed models for real-world situations. 
The overarching goal of the instructional sequence was to examine how participants’ reason 
quantitatively as they constructed models for real-world situations. Of the 8 tasks Pai worked on, 
we draw on Pai’s work from the following tasks.   

The Speed Networking Task (abridged): Suppose you and your friends attend a job fair 
organized by your department. Each student will have 5-minute "quickfire dates" with a 
representative from each firm. Create a mathematical model that would represent the total 
number of meetings between your friends and the representatives from the various firms. 
The Cats and Birds Task (abridged): (i) Consider a backyard habitat, where cats are the 
natural predators of birds. Let (ݐ)ܤ be the number of birds and (ݐ)ܥ be the number of cats at 
time ݐ. How many potential cat-bird interactions are there at time ݐ? (ii) Not every cat and 
bird encounter each other. Only some percentage ߙ of potential cat-bird interactions are 
realized. How would you adapt your model above to account for that fact? (iii) Cats are very 
good hunters, but they aren’t perfect. Sometimes the bird gets away. How would you adapt 
your model above to represent the number of interactions that results in a bird’s death? 
The Disease Transmission Task: Suppose a disease is spread by contact between sick and 
well members of the community. If members of the community move about freely among 
each other, develop a mathematical model for the dynamics of how the disease would spread 
through the population. 

Below we explain how Pai constructed abstracted quantitative structures associated with 
interactions between species by providing examples of Pai’s initial construction, re-presentation 
and construction, and finally accommodating to novel contexts.  

Initial Construction: The speed networking task.  Pai initially modelled this scenario as 
ݕ = 5 +  represented the total number of meetings between students and ݕ where , ݔ2.5
representatives and ݔ represented the total number of questions the students may ask from the 
representative. Pai’s model reflects his assumptions about the event’s organization: each student 
would get 5 minutes with each firm, and then an additional 2.5 minutes per question. However, 
Pai was unsure whether this model satisfied the problem statement. He drew a diagram to 
represent the meetings between the group of friends and representative from firms (Figure 3a). 
He counted the number of lines that connected the representatives (A,B,C,D) to the friends 
(1,2,3,4). Pai then constructed ݕ = ݐ ή ݂ to model the number of meetings between friends (݂) 
and representatives (ݐ). Pai used his drawing to justify the model, arguing, “You would simply 
multiply the number of tech representatives by your number of friends.” Pai expressed 
confidence with the combinatorial model, explicitly qualifying its scope: “every friend talks to 
every firm, which we cannot know for certain” and “what I have ݕ = ݐ ή ݂  is the maximum 
possible” given that “you cannot have two meetings with the same firm.”  

In Speed Networking, Pai first constructed an unsatisfactory model. Using his diagram, he 
was able to construct the quantity total number of meetings between friends and representatives 
as a multiplicative combination of the number of friends and the number of representatives. We 
argue his activity established a quantitative structure for the total number of possible interactions 
between two disjoint sets of objects. Next, we argue that he abstracted that structure to carry it to 
a new scenario. 
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(a) 

 
(b) 

Figure 3. Pai’s diagram in the Speed Networking task (a) and Pai’s models for the Cats & Birds tasks 

Re-presenting and constructing: The cats and birds task. After reading the task, Pai 
immediately wrote the expression ݂(ݐ) =  represented the total number of (ݐ)݂ where (ݐ)ܥ(ݐ)ܤ
potential cat-bird interactions at any time ݐ. Pai stated that the situation was similar to the Speed 
Networking task. He next modelled the percentage of cat-bird interactions that realized as 
ଵ݂(ݐ) =  He justified his expression for the realized cat-bird encounters as “since .[(ݐ)ܥ(ݐ)ܤ]ߙ 
 is the potential number of cats and birds interactions, assuming they all interact with each (ݐ)݂
other, ଵ݂(ݐ) will be a percentage of that [(ݐ)ܥ(ݐ)ܤ], since not all of them actually interact.” He 
saw a clear link between the subtasks, explaining “I’m assuming each of these models are based 
on the previous ones.”  

For the second subtask, Pai first constructed ݂(ݐ) = ఈ(௧)(௧)
(௧)

 to model the number of cat-
bird interactions that resulted in a bird’s death. He nominalized ݂(ݐ) as the number of bird-cat 
interactions that result in a bird’s death and (ݐ)ܭ as the number of birds killed at time ݐ. 
However, he expressed uncertainty around whether ଵ݂(ݐ) should be divided by (ݐ)ܭ  or if he 
should subtract  (ݐ)ܭ  from ଵ݂(ݐ). The interviewer probed Pai’s image of how bird deaths occur, 
and Pai stated that cats and birds need to meet. He then realized that ݂(ݐ) and (ݐ)ܭ represented 
the same measurable attribute, number of birds killed due to interaction with cats. Pai then 
changed his model to  ݂(ݐ) =  as the “percentage of ߚ where he nominalized ,ߚ[(ݐ)ܥ(ݐ)ܤߙ]
these interactions [referring to (ݐ)ܥ(ݐ)ܤߙ as he was drawing square brackets, see Figure 3b] 
that result in a kill for the cat.” Pai justified his revision, arguing that the (ݐ)ܥ(ݐ)ܤ corresponded 
to total, potential interactions, that (ݐ)ܥ(ݐ)ܤߙ corresponded to the actual interactions, and that 
 corresponded to the interactions resulting in a dead bird. He concluded, “this ߚ[(ݐ)ܥ(ݐ)ܤߙ]
makes more sense to me.” 

Pai wrote (ݐ)ܥ(ݐ)ܤ to model the total number of potential cat-bird interactions without 
having to draw a diagram, suggesting he re-presented the quantitative structure from Speed 
Networking in the absence of available perceptual material. The Cats & Birds task presented Pai 
the opportunity to refine his initial quantitative structure for the total number of interactions 
between two disjoint sets of objects through removing the assumption that all objects interact 
exactly once. Pai’s model for the number of realized cat-bird interactions, (ݐ)ܥ(ݐ)ܤߙ, was 
constructed through shrinking the size of the whole, (ݐ)ܥ(ݐ)ܤ, via a scalar ߙ. We interpret that 
he had constructed a quantitative structure for a subset of the number of interactions. We took 
Pai’s placement of the square brackets in his models (Figure 3(b)) and the excerpt above as 
evidence that Pai was engaging in shrinking the size of the whole (quantity), in both instances. 
Next, we show the task that occasioned his accommodation of the quantitative structures. 

Accommodating to novel contexts: the disease transmission task. To model the rate of 
disease spread, Pai introduced the variables ݄(ݐ) and (ݐ)ܫ to represent the number of healthy 
people and the number of infected people, respectively. His immediate goal was to model the 
interaction between healthy and sick people that would result in a healthy person falling sick. He 

26th Annual Conference on Research in Undergraduate Mathematics Education 340



constructed ݄(ݐ)ߙ(ݐ)ܫ, where he defined ߙ to represent “[rate of] successful infections.” He 
justified his model, explaining that “a healthy person interacts with an infected person [gesturing 
over ݄(ݐ)(ݐ)ܫ], the disease doesn’t necessarily spread because they interact. It’s going to be 
some sort of rate, and I have that as ߙ.”  

In comparison to Speed Networking and Cats & Birds, the Disease Transmission task was a 
different context, offered less information, and was less scaffolded. Still, Pai set a sub-goal to 
model the interaction between healthy people and sick people and the interaction that results in a 
healthy person getting sick. To accomplish this goal, Pai accommodated the quantitative 
structures he created in the previous task—total number of possible interactions and a subset of 
the total number of interactions—to this novel context. We take this as indication of Pai having 
constructed an abstracted quantitative structure associated with the number of interactions 
between two disjoint set of objects and subsets of those interactions, as it satisfies the 
characteristics proposed by Moore at al. (2022). Consequently, we claim that through engaging 
with the instructional sequence of modeling tasks, Pai learned the number of interactions 
between disjoint set of objects can be constructed via multiplicatively combining the number of 
each objects and that a subset of interactions can be constructed by scaling the size of the whole. 

Discussion 
In this paper, we operationalized what is being learned during modeling through (i) schemes 

and concepts and (ii) abstracted quantitative structures. Through the first lens, we argued that 
modifications to the standards of validation are what is being learned during modeling. Through 
the second lens we made the case that learners’ construction of abstracted quantitative structures 
is what is learned during modeling. Our analysis sheds insights into concretizing the end goal of 
modeling, in terms of learning. This has implications: first, knowing what is learned during 
modeling will help educators to design modeling tasks that engender that learning. For example, 
when adopting the view that modifications to the standards are learned during modeling, tasks 
can be designed to challenge learners’ existing standards of validation, providing learners the 
opportunity for accommodation. Second, the knowledge of what is being learned during 
modeling is instrumental for educators to be intentional with their instructional goals for 
modeling and learning environments that support those goals, mitigating some of the inadvertent 
cognitive obstacles learners may experience during modeling. Finally, it gives educators a sense 
of what to expect when assessing learners’ modeling competencies. We close with two 
considerations: limitations and future directions. Using the schemes and concepts theoretical 
orientation, we neither analyzed what reorganizing a standard of validation may look like nor 
what is learned in the absence of perturbation. Additionally, as standards of validation reside in 
the mind of the individual, it is not always possible to observe or make predictions about 
learners’ standards of validations nor delineate between the object and standard of validation. To 
attend to this, future interview protocols can include specific questions regarding learners’ model 
validation such as, what made you revise your model? Were you anticipating some other result? 
What was your goal in revising? However, this theoretical paper is a significant contribution to 
the field as it initiates a discourse on leveraging established theories of learning to effectively 
operationalize the learning goal of modeling, and the instructional strategies for nurturing the 
learning of modeling both as a means and as an end. 
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Pre-service Teachers Understanding of Commutativity, Associativity and the Challenge of Order 
 

 Anna Dellori Lena Wessel 
 Paderborn University, Germany Paderborn University, Germany 

Commutativity and associativity are recurring properties in school and university mathematics. 
In design experiments with pairs of secondary pre-service teachers (PSTs) we investigate what 
they are focusing when discussing commutativity and associativity, and how they deal with the 
notion of order. A qualitative discourse analysis shows for commutativity that the focus is on the 
order of two elements for most PSTs. Few focus on the order of several elements. Regarding 
associativity, bracketing is a main focus for many PSTs. The order in which operations are 
computed is sometimes discussed explicitly with also emphasizing the order of elements and 
sometimes more implicitly. The PSTs struggle with the notion of order so that we suggest coping 
strategies like “demanding precision in language” and “using alternative terms for order”. 

Keywords: pre-service teachers, commutativity, associativity, qualitative discourse analysis 

Introduction 
The arithmetic properties commutativity and associativity are recurring mathematical topics 

that can be found at various levels in school and university mathematics (Wasserman, 2016). 
One could assume that dealing with different binary operations and their properties in different 
settings should have eliminated any difficulties in dealing with the properties. However, 
according to empirical data, this does not appear to be the case (Melhuish & Fagan, 2018; 
Zaslavsky & Peled, 1996). When discussing commutativity and associativity, one of the biggest 
struggles for university students seems to be the notion of order (Larsen, 2010). Larsen (2010) 
suspects that a lack of precision in the informal language is one cause for this difficulty. Though 
it is not yet certain what language could be hindering or supportive, and what are possible coping 
strategies for dealing with the notion of order. This is why the reported study in this paper deals 
with the following research questions:  

1. What do (German) secondary pre-service teachers near the end of their studies focus 
on when discussing commutativity and associativity? 

2. How do secondary pre-service teachers deal with the notion of order concerning the 
properties commutativity and associativity? 

Theoretical Background 
In university mathematics, commutativity is defined for an operation ∗: 𝑀 × 𝑀 → 𝑀 on a set 

𝑀 referring to two elements 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎, ∀ 𝑎, 𝑏 ∈ 𝑀 and associativity referring to three 
elements (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), ∀ 𝑎, 𝑏 ∈ 𝑀 (Alcock, 2021). In (German) school textbooks, 
however, we sometimes find definitions of commutativity that are not based exclusively on two 
elements anymore, e.g. “The summands of a sum or the factors of a product can be changed in 
any way” (translated: Braun, 2019, p. 91). For commutativity, the school definition might evoke 
the idea that the order of several elements may be changed. Whereas the university definition has 
the idea that the order of two elements may be changed (Larsen, 2010). As a consequence, the 
understanding of commutativity in school and university mathematics may not match.  

One understanding of associativity suggested by the formal definition is that, if the property 
is valid, brackets may be arbitrarily moved, inserted, or removed (Melhuish & Fagan, 2018). 
Behind this still rather superficial idea, if bracketing refers to two elements, is the understanding 
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that elements can be grouped differently when computing the operations (Weber & Larsen, 
2008). For this, the order in which the operations are computed does not matter (Larsen, 2010) 
One interesting aspect is, how Cayley formulated associativity as a condition for a group. In 
general, that commutativity does not hold would not actually need to be explicitly addressed. He 
postulated "symbols are not in general convertible [commutative], but are associative" (Kleiner, 
1986, p. 208 cited in Larsen, 2010). Larsen (2010) observed exactly this phenomenon with his 
students. They operated with symmetry mappings and addressed (non)commutativity in their 
definitions for a group even though it is not necessary. To some students it seems inherently 
important to emphasize that the order of the elements from left to right is not allowed to be 
changed (Larsen, 2010). Nevertheless, there are also students who have difficulties with keeping 
the order of the elements when using associativity (Larsen, 2010; Zaslavsky & Peled, 1996). 
When checking operations for commutativity, one common difficulty is confusing the operation 
sign with the number sign when changing the order of the elements (Zaslavsky & Peled, 1996). 
For checking operations for associativity, difficulties can be caused if learners primarily have the 
understanding that associativity allows brackets to be moved (Melhuish & Fagan, 2018). 
Students are asked to verify that the operation of the mean ∗: 𝑎 ∗ 𝑏 = ଵ

ଶ
(𝑎 + 𝑏) is associative. 

One given choice to justify that the operation is not associative is based on random shifting of 
brackets ቀଵ

ଶ
𝑎ቁ + 𝑏 ≠ ଵ

ଶ
(𝑎 + 𝑏). This option was chosen by 16.9% of PSTs (Melhuish & Fagan, 

2018). More generally, it can be said that the understanding of and checking for commutativity 
seems to be easier for students than associativity (Findell, 2001). 

In comparison of the two properties it becomes evident that the notion of order is apparent in 
the understanding of commutativity and associativity. However, in the case of commutativity, 
the order refers to the order in which the elements are arranged. While in the case of 
associativity, the order refers to the order in which the operations are computed. This similarity 
entails the risk that students could conflate the two properties when not paying attention to the 
differences (Larsen, 2010; Zaslavsky & Peled, 1996).  

If both properties apply, they could be replaced by a single property (Pinto & Cooper, 2017). 
For example, if multiplication is considered "it is not clear why these two rules should not be 
replaced by a simpler multiply in any sequence rule" (ibid. p. 322). It would be sufficient to 
know that in a multiplication the order may be interchanged arbitrarily without differentiating 
what the order refers to. Empirically, it also appears that some students combine the two 
properties into one "order doesn't matter" (Findell, 2001, p. 148) property. This notion can lead 
students to make statements such as "because it's associative, you can move it all around" 
(Findell, 2001, p. 148) or "this property [meaning commutativity] allows us to switch around the 
elements in an expression so that it doesn't matter which elements will operate first" (Findell, 
2001, p. 148). The difficulty with order and differentiating what the order refers to could also 
lead to the misconception that associativity also has something to do with swapping the order of 
elements (Ding et al., 2013). Furthermore, a common misconception that one property might 
imply the other property (Melhuish & Fagan, 2018; Tirosh et al., 1991). 

Method 

Data Collection 
This study is part of a design-based research project at a German university with the aim of 

connecting university mathematics and teaching school mathematics for secondary pre-service 
teachers (PSTs) (Dellori & Wessel, in press). In this project, three teaching units following the 
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sequencing instruction model (Wasserman et al., 2017) for PSTs algebra learning are developed 
and tested in laboratory design experiments. The second one addresses learning goals related to 
associativity and commutativity. At first (building-up), the PSTs work with school textbook 
excerpts about associativity and commutativity. In the second phase (relearning), the PSTs deal 
with commutativity and associativity in different algebraic structures. Finally (stepping-down), 
they reflect on the textbook excerpts with reference to the university mathematics. The data for 
this paper is situated at the beginning of the relearning phase of the teaching unit about 
commutativity and associativity. It concerns the following tasks: 

1. Let M be a set with the binary operation ∗: 𝑀 × 𝑀 → 𝑀. Write down the definitions 
for commutativity and associativity. 

2. In your own words, describe commutativity and associativity verbally.  
3. What are differences and similarities between commutativity and associativity? 

For the first two tasks, PSTs first discuss orally and then give a written answer. Task 3. is 
only discussed orally. Afterwards PSTs are prompted with the statement: “Commutativity 
implies associativity”. Although, some PSTs already mention this claim during task 3.  

The design experiments were conducted with pairs of PSTs (N=8x2) by the first author. The 
PSTs were in their first to third semester of their master’s program at a German university and 
volunteered to participate in the study. At the time of data collection, 15 of the 16 PSTs were 
enrolled in an Abstract Algebra course. The design experiments were videographed and 
transcribed. The focus of the analysis is on tasks 2 and 3, as these encourage to reflect on the 
understanding of the properties. 

Data Analysis 
To answer the research question about what PSTs focus on when discussing commutativity 

and associativity, a qualitative content analysis is conducted (Kuckartz & Rädiker, 2022). The 
main categories are deductively formulated from previous research. For commutativity the two 
main categories are “order of two elements” and “order of elements” (Braun, 2019; Larsen, 
2010). Inductively, the distinction is added as to whether a more general or example-based 
discussion of the order of the elements took place (examples see Figure 1). 

 
Figure 1: Categories for the focus on commutativity and associativity 
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For associativity the “order of operation”, “emphasis on order of elements” and “bracketing” 
are the three main categories (Larsen, 2010; Melhuish & Fagan, 2018) (see Figure 1). It has been 
observed that the order of operations could be addressed explicitly in using the term “order” or 
more implicitly in describing it on an “example-based” level or focusing on what is “computed 
first” (see Figure 1). 

To answer the second research question (how do the PSTs deal with the notion of order), all 
passages in which the term “order” occurs were paraphrased and summarized for each pair. 
These summaries were contrasted and compared in order to identify typical difficulties and 
coping strategies for the notion of order.  

Results 

Pre-service teachers’ discussion of commutativity 
To answer the first task and give a definition for commutativity and associativity, all PSTs 

give a symbolic based answer. The definition refers to two elements 𝑎 and 𝑏 for all pairs. Minor 
differences between the definitions are the notation of the operation (∗: 𝑀 × 𝑀 → 𝑀) or the 
algebraic structure (𝑀,∗). The pair #8 is the only pair that does not specify that 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 
must hold for all elements. The other pairs use the quantifier ∀ for this in their definitions. 
Furthermore, this pair also added 𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑐 ∗ 𝑎 ∗ 𝑏 later, when Sven (#8) talks about 
switching the elements back and forth. According to their understanding, commutativity is not 
just about the order of two elements but the order of elements in general.  

Sven: If I can switch a and b and have a c there as well, then I can also, yes, … switch that 
back and forth if I want to. 

In describing commutativity in their own words, six out of eight pairs clearly focus on the 
order of two elements. For example, pair #3 wrote: “The two combined elements of a set may be 
interchanged arbitrarily.”. The two pairs #1 and #5 start out with an example-based description 
of commutativity such as “It doesn't matter whether I combine a with b or combine b with a”. 
During their discussion, passages are also at a general level, for example like “It doesn't matter in 
which order I combine two elements”. Similarly, pair #8 has a mix of example-based and general 
passages in their discussion (see Figure 2). Pairs #2 and #4 tend to be almost exclusively at the 
general level while pairs #3 and #7 engage in discourse solely at this level (see Figure 2).  

 

                             

 
Figure 2: Passages focusing on the order of two elements 

Pair #6 was the exception to talk about the order of two elements merely on an example-
based level. On a more general level, this pair only talked about the order of elements such as 
“An operation is commutative if the sequence of elements is freely selectable and may be 
changed.”. It cannot be said with certainty that they are talking about multiple elements, but as 
they never explicitly talk about only two elements, it is assumed. The two pairs #6 and #8 are the 
only ones where the focus is on the order of elements rather just two elements. In the discourse 
of the other pairs we find some passages in which it is not clear from the language whether two 
or more elements are considered. Since, however, these pairs previously have multiple passages 
in which they explicitly only refer to two elements, one can assume that the missing explication 
is only due to an abbreviated form of expression. 

general 
example-based 

  #1          #2           #3           #4           #5          #6           #7          #8 
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Pre-service teachers’ discussion of associativity 
Like in their definitions of commutativity, all PSTs first state a mainly symbolic definition of 

associativity. Again, the only differences are in the notation of the operation and the algebraic 
structure. Pair #8 is the only pair that doesn’t express that (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) must hold for 
all elements.  

The understanding that associativity allows brackets to be set arbitrarily is coded for six 
pairs. Pairs #2 and #4 are the only ones that don’t discuss brackets in connection with 
associativity at all. For four pairs (#3, #5, #7, #8), their initial main idea for the verbal 
description of the property is associated with brackets. For example, in the verbal definition of 
pair #8: “The result is independent of the bracket placement.” Later in the design experiment, 
these pairs are asked to give an alternative definition without using the idea of bracketing. The 
other pairs (#1, #6) discuss the notion of bracketing, e.g., see Pia and Nora (#6), but it does not 
seem to be the focus of their understanding of associativity. For Nora, focusing on the order 
seems more meaningful than the idea of bracketing.  

Pia: Then/ Mhh. Yes, first you are allowed to place the brackets differently somehow. Then, 
uh, it doesn’t matter how the brackets are set. 

Nora: Mhh yes but that/ I think that doesn’t say much. Because I would just write that/ here 
the order doesn’t matter, right? So, whether I do a and b first or b and c first. 

Looking at the discussions about associativity, it can be noted that an emphasis on the order 
of the elements is apparent in six of the pairs while pairs #3 and #8 didn’t talk about it all. In 
some cases, students point out that the order of a, b and c from left to right is not allowed to be 
changed and explicitly contrast this with the property of commutativity. For two pairs (#4, #7) it 
was such an integral part of their understanding of associativity that they included it in their 
verbal definition: “Considering 3 elements from a set, the order of the pairwise composition does 
not matter if the order of the elements remains the same.” 

 
 
 

 
Figure 3: Passages focusing on the order of operations 

In some way, all PSTs discuss the order of operations. Initially, three pairs (#3, #5, #7) 
consider the order of operations at an example based-level. Like Nico and Marcel (#5, see three 
passages below) these pairs use the specific elements a, b and c to implicitly take the order into 
consideration (first part). In further discussion, they move away from the three concrete elements 
and start contemplating that it doesn’t matter what is computed first (second part). Afterwards, 
they go further and explicitly interpret “what you do first” as the order of operations (third part). 

Nico: Yes, well. Um. You could say something like: First a with b and then with c or/  
Marcel: First/ 
Nico: First b with c and then with a. 
Marcel: Kind of like … Yeah, you can do it the same way or? Associativity means that it 

doesn’t matter/ 
Nico: Which operation you do first. 
Nico: Mhh. So here we have/ Here it is about the operation. There it doesn’t matter in which 

order we compute it. Referring to the operation. 

first computation 
  #1          #2           #3           #4           #5          #6           #7          #8 

order 
example-based 
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The other five pairs don’t begin their discussion about associativity on an example-based 
level. With two pairs not referring to associativity on this level at all. Some mention the order of 
operations right at the beginning while some start with discussing which operation is computed 
first. Essentially, it can be observed that two pairs (#1, #5) have their biggest focus on which 
operation is computed first, and two pairs (#4, #6) explicitly on the order of operations. For the 
other pairs, it’s more broadly distributed (see Figure 4). 

Pre-service teachers dealing with the notion of order 
While for some pairs (#1, #5, #6, #8) the notion of order is only provoked by the third task 

about similarities and differences between/ of the properties, some pairs (#2, #3, #4, #7) already 
discuss the notion of order when describing the properties.  

The two pairs who manage particularly well to elaborate the similarities and differences 
always specify what the order refers to when they use the term. Adrian (#3) emphasizes that the 
order regarding commutativity refers to the elements and the order regarding associativity refers 
to the computation of the operations. Adrian (#3) has already shown the precise use of the term 
“order” in the verbal definitions in task 2. Pair #5, on the other hand, was the only one of all 
pairs that did not use the term order in task 2 at all. Nevertheless, most of the other pairs struggle 
more to specify what the order refers to. They often simply talk about the “order of operations” 
and not the “order in which the operations are computed”.  

Adrian: In both cases, it’s about a kind of variable order. Just in one case I may switch the 
elements and in the other case I may/ It’s maybe a bit fare fetched.  But there I am also 
allowed to choose the order, but just which operation I compute first. So that would be a 
similarity and a difference. So, the similarity is that it’s about an order that I’m free to 
choose. And the difference that it’s not about elements, it’s about, um, the operation. 

The pairs that discuss order at the beginning have in common that they use or wanted to use 
the term “order” in both their verbal definitions of commutativity and associativity. This causes 
students to struggle with the notion of order like Anton and Lina (#1, see below). They have a 
problem using the term “order” for both properties and their way of dealing with it is deciding 
not to use the term “order” for both properties after all. For commutativity, they prefer to use the 
alternative term of “direction”, which “fits better” to commutativity, according to Lina. 

Anton: Because somehow order fits both. That’s why I was a bit confused by the term. But 
somehow… But I mean, it fits more to this [means associativity]. 

Lina: Maybe it’s better to use direction, which is what we said first. So, because you can 
combine from the left or from the right. 

Anton: Yes. I mean/ So I would say both of them are correct. But/ 
Lina: No, direction fits better. Because that’s really, you can look at it from the left and from 

the right. And with order, there the direction stays the same and then you have a and then 
the bracket or you have first the bracket and then your element. 

This approach of resorting to alternative terms - such as direction, placement and position - 
can be observed in several pairs (#2, #6, #7). In all of these occasions, the alternative terms are 
used to refer to commutativity. Using alternative terms can lead to rejecting the notion of order 
for a property, as it is the case for Lina. However, when trying to explain the similarities and 
differences in task 3, the alternative terms can also be supportive in disentangling the notion of 
order concerning commutativity and associativity. For example, Anton later used the term 
“placement order” to clarify what the order is for him in commutativity.  

In those pairs (#1, #6, #8) that use the term “order” for only one property in task 2, many of 
the students tend to associate the term more strongly with that one property even later on. Eva 
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and Mirco (#1) use the term “order” only for commutativity in task 2. In task 3, they quickly give 
the answer that both properties are in fact about some sort of order. However, Eva is not 
particularly firm in this view. In the subsequent discussion she is tempted to reject the notion of 
order for associativity because of her understanding of bracketing. Andreas (#8) behaves like 
Eva. A similar pattern can be observed for Pia (#6) and Sven (#8). Only that in their case the 
term “order” originally was used for associativity, and they are inclined to reject order for 
commutativity.  

Eva: Yes, strictly speaking, we don’t switch the order [means associativity]. We just 
rearrange the brackets. 

Mirco: But that is an order in which you compute the operation. 

Discussion 
In summary, for the majority of the PSTs in this study, the focus of commutativity is on the 

order of two elements and consequently aligns with the formal definition in university 
mathematics. For almost all PSTs we found passages in which they just spoke about the “order 
of elements”. It is assumed that for most students, this is just due to inaccuracy in their language. 
For associativity, PSTs seem to have a strong focus on the idea of bracketing. Their focus on 
bracketing leads some students to reject the notion of order for associativity. Just like Larsen 
(2010), we also observe that the majority of the PSTs emphasize the order of elements when 
speaking about associativity. The task about finding similarities and differences between 
commutativity and associativity seems to be very productive in initiating discussions about the 
notion of order. Those PSTs who lack precision in their language concerning what the order 
refers to have difficulties with the notion of order. Struggling with using the term “order” for 
both properties, some PSTs (momentarily) reject the notion of order for one of the properties. To 
cope, some PSTs develop alternative terms for the term “order” such as “direction”.  

The results indicate that a formal symbolic representation of the properties seem not to be 
particularly challenging for the PSTs. Difficulties arise when explicating the meaning of the 
properties is concerned. As shown in previous research, symbolic representations and formal 
vocabulary are not sufficient to explain meanings of mathematical concepts. Thus, meaning-
related language is needed “especially for expressing and thinking about abstract relationships” 
(Post & Prediger, 2020, p. 112). Post and Prediger (2020) suggest providing meaning-related 
phrases in learning arrangement to support students in understanding the meaning of the part-
whole relationship in probability (Post & Prediger, 2020). For understanding the meaning of 
order regarding commutativity and associativity, our findings suggest that phrases with 
alternative terms for order seem to be part of the meaning-related language. In line with the 
theory of scaffolding, we suggest providing students with phrases like that to support them in 
verbalizing the meaning of order. Besides using meaning-related language, demanding precision 
in language (in this case to clarify what the term “order” refers to) seems to be productive for 
explaining the meaning of order as Larsen (2010) already assumed. 

The methodological limitations of this study, above all (a) the small sample size, (b) being 
tied to the specific teaching units, and (c) being situated in a German context (language and 
university), must be considered when interpreting the empirical findings. Concerning the latter, 
seeing how the identified language difficulties, coping strategies and proposed supportive means 
appear and may vary in different languages with other vocabulary could be an interesting aspect 
for further research.  
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Student Reasoning in Quantum Mechanics Examined Through Modeling and Sensemaking 
  

 A.R. Piña Zeynep Topdemir John R. Thompson 
 University of Maine Johannes Kepler University Linz University of Maine 

As part of an effort to examine student mathematical and physical reasoning in quantum 
mechanics, a paired, semi-structured, think-aloud interview was conducted. The students were 
asked to interpret a quantum mechanical operator expression in a functional (position) 
representation and to think about an analogous expression in Dirac notation. When the students 
ceased to make progress on this task, they were given a modeling task in which they constructed 
an eigenvalue equation for a different operator in quantum mechanics. After examining their 
newly constructed eigenvalue equation, students were able to determine more precisely the 
nature of the original expression given in a functional representation. These data were coded in 
accordance with mathematical modeling and mathematical sensemaking frameworks to examine 
the intersection of the two frameworks. 

Keywords: Quantum Mechanics, Modeling, Sensemaking 

Introduction 
Due to its prevalence in modern research and applications in industry, quantum mechanics is 

an essential part of an undergraduate physics curriculum. Research on student understanding of 
quantum mechanics can be largely differentiated by the instructional methods used with the 
student populations. Undergraduate quantum mechanics is typically taught with either a 
functions-first or spins-first approach. In a functions-first approach, instruction first focuses on 
continuous systems represented in functional notations. This often requires solving differential 
equations to model (e.g, Griffiths, 2018). In spins-first instruction, students begin with discrete 
systems represented in Dirac\bra-ket notation (a vector-like notation developed for use in 
quantum mechanics) before moving onto continuous systems in functional notations (e.g., 
McIntyre et al., 2012). 

One motivation for spins-first quantum mechanics courses is that they tend to fall more in 
line with graduate instruction. They allow for students to build intuition for and a qualitative 
understanding of quantum mechanical systems while working with two-state systems, described 
by relatively simple mathematics, before moving onto the continuous systems that require 
functional representations (McIntyre et al., 2012). Ideally, students would be able to apply the 
ideas learned in the context of spins to continuous systems. If this were the case, one could 
reasonably expect to see evidence of mathematical sensemaking during this transition. 
Sensemaking in physics is also closely related to modeling frameworks and activities in 
mathematics education research. The interplay between modeling and sensemaking will be 
discussed herein. We begin to address these issues by examining students’ reasoning and 
sensemaking while working with multiple representations in the context of quantum mechanics. 

Background 
We first situate this study among the relevant literature associated with teaching and learning 

in quantum mechanics. This is followed by a more in-depth discussion of modeling and 
mathematical sensemaking, which are the two primary frameworks used in analysis. 
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Teaching and Learning in Quantum Mechanics 
Much of the work on student understanding of upper-division quantum mechanics has focused 
on identifying difficulties students face in engaging with the material. Work has been done at 
varying levels of specificity ranging from specific concepts, contexts, or calculations to broad 
overviews of difficulties. Some of the specific concepts include time dependence (Emigh et al., 
2015) and measurement (Gire & Manogue, 2008). Others have focused on students’ use and 
understanding of notations (Gire & Price, 2015; Kohnle & Passante, 2017; Schermerhorn et al., 
2019). Many of these have been used as the basis for curriculum development projects aimed 
directly at the identified difficulties (DeVore & Singh, 2015; Emigh et al., 2018; Kohnle & 
Passante, 2017; Singh, 2016). Others have examined student understanding from the perspective 
of resources in efforts to determine what may lead to certain lines of unproductive reasoning 
(Gire & Manogue, 2008, 2011). A variety of studies have addressed how students think about 
operator and eigenvalue equations in quantum mechanics (Her & Loverude, 2020; Singh, 2008; 
Singh & Marshman, 2015; Wawro et al., 2020). There is also a growing body of research around 
representations in quantum mechanics due to their variety and the need for both fluency with and 
fluidity between them. The three primary representations in quantum mechanics are Dirac, 
matrix-vector, and functional. The first two are closely related and well suited to modeling 
discrete systems, while functional representations are well suited to modeling continuous 
systems. The resources framework posits that people have a variety of cognitive resources that 
are activated in different contexts and utilized in reasoning (Hammer, 2000). Gire and Manogue 
identified student resources quantum measurement as agent and operator as agent that could be 
combined unproductively to lead students to the idea that an operator acting on a state is a 
representation of making a measurement of the corresponding observable (Gire and Manogue, 
2008). This association between operators and measurements is consistent with other findings in 
the mathematics education community (Wawro et al., 2020). 

Mathematical Modeling Frameworks 
Modeling activities are commonly implemented in mathematics instruction to present 

students with opportunities to practice developing their skills in a real-world context, or to 
demonstrate how different mathematical concepts can manifest in the real world. This has led the 
mathematics education community to develop several different frameworks for modeling that 
typically depict cycles (e.g., Blum & Leiß, 2007). Given that modeling tasks often utilize 
contexts relevant to the natural sciences, the development of frameworks has not been exclusive 
to mathematics education (e.g., Modir et al., 2017; Redish & Kuo, 2015; Uhden et al., 2012). 

Zbiek and Conner (2006) proposed a model consisting of a variety of processes and sub-
processes both in the physical context (“real world”) and the mathematical context (see Fig. 1). 
Their distinction between a mathematical entity and real world situation also proved productive 
for the analysis presented below. Some of the processes are ways one could engage with or think 
about a real world situation, some are ways one could engage with a mathematical entity, and 
others are ways that one could go back and forth between a real world situation and 
mathematical entity. Exploring is obtaining more information about the real world situation by 
questioning, clarifying, or paying special attention to a specific portion of the situation. By 
exploring one can observe mathematically, using mathematical ideas to describe aspects of the 
situation. Observing allows the interpretations of the physical system to be informed by formal 
mathematics, addressing a common sentiment that the mathematics and physics concepts are 
sometimes inextricable. Specifying is identifying conditions and assumptions (C&A) relevant to 
the real world situation.  This is also a step where one is likely to come to some conclusion about 
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the relevant conditions of the real world situation or make simplifying assumptions that will 
inform the mathematization of the problem. Mathematization in this case is generating a 
mathematical representation of the real-world situation. Combining is identifying that the 
mathematical entity one is working with has the appropriate properties and parameters (P&P). 
This checks that the mathematical entity is representative of the C&A. Analyzing includes many 
activities that can be used to manipulate or interpret the mathematical entity and derive one or 
more new properties. Included in analyzing is formal mathematical reasoning in which one 
utilizes their understanding of formal mathematics to derive new P&P of the mathematical entity. 
A subprocess of analyzing is associating, which is drawing on real world knowledge not 
necessarily associated with the real world situation being modeled to determine something about 
the mathematical entity.  Like the way exploring mathematically provides an avenue for 
addressing how the interpretation of the real world situation is informed by mathematics, 
associating accounts for the ways in which the mathematics done are informed by physics 
concepts. Highlighting is the selection of specific properties to assist in reasoning that allow for 
the drawing of a mathematical conclusion. This conclusion can become one about the real world 
via interpreting. Examining is determining if the real world conclusions make sense given the 
real world situation. This could include things like validity checking or special case analysis. 
Associating and observing mathematically are significant features of the Zbiek and Conner 
model that make it well suited to analysis of physics problem solving. In physics problem 
solving there often processes engaged in that are not explicitly mathematical or physical. The 
focus on process is a primary reason this was chosen for analysis in this project.  

 
Figure 1. Framework for modeling developed by Zbiek and Conner (Zbiek & Conner, 2006). 

Sensemaking 
Broadly, mathematical sensemaking (MSM) can be considered a part of the larger activity of 

seeking coherence in which students, and even experts, seek connections between conceptual and 
mathematical understanding in physics (Schoenfeld, 2016). Odden and Russ worked toward 
building a more operational definition for sensemaking in the sciences (Odden & Russ, 2019). 
Their definition of sensemaking focuses on the goal – to figure something out – and a threshold, 
the recognition of an inconsistency. They characterize sensemaking as the work done to figure 
out or resolve that inconsistency. 

With this definition in mind, Gifford and Finklestein developed a categorical framework for 
analyzing different modes of sensemaking, combining mediated cognition and activity theory 
(Gifford & Finkelstein, 2020). Mediated cognition is a model for cognition in which a mediator, 
or tool, is used to help the reasoner's understanding of an object and potentially produce some 
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conclusion (Redish & Bing, 2009)(Vygotsky, 1978). The structure of the model is a result of 
activity theory, which positions the reasoner (as the subject), the tool being used, and the object 
being reasoned about amidst a larger context, resulting in an outcome (Engeström et al., 1999). 
Gifford and Finkelstein focus on the subject, tool, and object; these make up the basis for the 
model and for the nodes of their sensemaking triangles (see Fig. 2a). 

 (a) (b) 
Figure 2. Categories in Gifford and Finkelstein’s framework for (a) mathematical sensemaking in physics and 

(b) mechanisms for transitions between reasoning spaces (Gifford & Finkelstein, 2020). 

For the purposes of analyzing mathematical sensemaking in physics, the tools are either 
mathematical tools or a physical model. These can be used to engage with either mathematical 
formalism or a physical system as the object. The different permutations of tools, models, 
formalism, and system result in four different modes of sensemaking that can be used to model 
reasoning. The researchers modeled transitions within and between these different modes of 
reasoning via three different mechanisms, summarized in Figure 2b. Students can “translate” 
between these modes, reasoning can be “chained” in a multi-step sequence, in which the object 
of one mode becomes the tool in the next mode, or two different ways of reasoning can be 
“coordinated” to provide two ways to make sense of the same idea (object). 

Methods 
The data being discussed in this paper are from a clinical, think-aloud interview with two 

students from a senior-level, spins-first quantum mechanics course at a mid-sized, research-
focused institution in the northeast United States. The first portion of the interview was focused 
on how the students interpreted, both mathematically and physically, an equation for the 
momentum operator acting on an energy eigenstate of the infinite square well potential: 

Ƹටమ 
ಽ sin ቀ

ଷగ௫

ቁ = െ݅ ଷగ

 ට
మ
ಽ cos ቀ

ଷగ௫

ቁ. (1) 

In a functional position representation, the momentum operator is expressed as a derivative with 
respect to position (െ݅ ௗ

ௗ௫
), resulting in the additional constants and change in function, making 

it explicitly not an eigenvalue equation. While this operation is something that students could 
need to calculate in solving some problems in quantum mechanics, it is not one they are likely to 
have thought about in the context of eigentheory. When given to students in a previous survey 
however, it was common for them to label it as an eigenvalue equation, making it of interest and 
posing the question of the ways in which students determine whether a functional equation was 
an eigenvalue equation.  

26th Annual Conference on Research in Undergraduate Mathematics Education 354



The students were then asked to generate an analog of Eq. 1 in Dirac notation. A correct 
response to this could take any form in which the kets on the left- and right-hand sides of the 
equation are different (e.g., Ƹ|߮ۧ =  The students engaged with Eq. 1 until the interviewer .(ۧߦ|
deemed that no more progress could be made. In the next portion of the interview, students 
engaged in a modeling task involving a system consisting of a single particle constrained to exist 
in one dimension. They were asked to generate an eigenvalue equation for an operator 
representing the position of the system (e.g., ݔො|ݔۧ =  ۧ), identify the different terms inݔ|ݔ
their expression, explain their individual meaning, connections that exist between the terms, and 
connections between the terms and the physical system. After talking through the eigenvalue 
equation generated by the students, the original expression (Eq. 1) was revisited, and the students 
were asked if anything had changed about their interpretation of the equation. 

The authors engaged in collaborative qualitative analysis (Richards & Hemphill, 2018) to 
code student activity into the processes and subprocesses described by Zbiek and Conner. 
Criteria included which entity students were primarily working with (real world situation or 
mathematical entity) and whether they were making identifiable conclusions; certain conclusions 
were associated with specific processes. In the process of interpreting the given expression, 
students engaged in mathematical sensemaking. The framework for mathematical sensemaking 
in physics (Gifford & Finkelstein, 2020) was used to analyze student activity when the data 
reflected students’ recognition of an inconsistency. Similar to the modeling analysis, this 
involved identifying an object and tool utilized in sensemaking. Our aim in using both 
frameworks is to describe the processes the students go through in reasoning with the given 
equation more richly than with either framework alone, and to apply that description to student 
understanding of eigenvalue equations. 

Episodes and Outcomes 
In the interest of space, we are limiting our discussion to the episodes in which sensemaking 

occurred. Both frameworks were utilized in the analysis. These sections provide some insight 
into the interplay of modeling and sensemaking, which is addressed later, in the discussion.  

Recognizing Inconsistencies: A Start to Sensemaking 
After some initial analysis, the students began trying to rewrite Eq. 1. The explicit 

manipulation and rewriting of the equation were coded as analyzing. The result of their re-
writing was, Ƹ߮ாయ(ݔ) =  ாయ, which is incorrect for two reasons: it ignores the fact that there is a
function on the RHS of Eq. 1, and it also implies that the energy eigenstate in Eq. 1 is also an 
eigenstate of the momentum operator, which it is not. The pair continued working with this 
expression for some time, tweaking different aspects of it before pausing long enough for the 
interviewer to ask what was causing them to pause. Bob then articulated the inconsistency that 
led to their sensemaking saying, “Yeah. And my hesitation comes from this, where we say, okay, 
the thing is we don’t have like the, the ket [motions to RHS of ܪ|߮ۧ =  |߮ۧ].” The studentsܧ
had previously written the equation they referred to here. The equation is the eigenvalue equation 
for the Hamiltonian operator which represents energy of a system. It is a very well-known 
eigenvalue equation which is used repeatedly throughout the course, and so it is likely that the 
students are attempting to use it as a template in their reasoning.  

Bob articulated that while the energy state appears on both sides of the energy eigenvalue 
equation, their expression did not have a state represented on the RHS. It could be argued that 
the students noticed that the form of the two equations did not match. If this is the case, then the 
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use of another mathematical entity for the purposes of extracting properties and parameters of 
eigenvalue equations would be considered combining. Bob's leveraging his interpretation of the 
energy eigenvalue equation as a tool for making sense of Eq. 1 can be modeled as a sensemaking 
triangle (see Fig. 3). Their sensemaking attempt is unsuccessful since the students are not able to 
resolve the inconsistency between the forms of the two equations. In their reasoning, the students 
discuss whether the ket on the RHS of the energy eigenvalue equation is there as a formality. 

    Alice: Well, you, I think you technically still do, but it, it just, it doesn't, this [motions to 
|߮ۧܪ =  ?|߮ۧ,] is just a representation of it. Rightܧ

    Bob: A representation of what? 
    Alice: Like when you actually mathematically do this [pointing to ܪ|߮ۧ =  |߮ۧ,] andܧ

you get your value for energy, like the ket, you wrote there. ... And that's really what you 
find, but when you write it mathematically and like, to be formal. You include that 
[points to ket on RHS of ܪ|߮ۧ =  |߮ۧ,]. Which might be like not the best way toܧ
think about it ... 

 
Figure 3. Model of students unsuccessful sensemaking. 

Tying Modeling into Sensemaking 
After the students’ articulation of having essentially hit a wall, the interviewer had them 

move onto the modeling task, where they immediately wrote, ݔො|݅ۧ =  When asked to explain .ۧ݅|ݔ
the terms in their expression, the students identified a position operator (ݔො), a measured value of 
position (ݔ), and a state (|݅ۧ). As their discussion continued, the students made connections 
between elements of the expression and the real world situation. Similar to above, this was coded 
as combining, as the students were connecting their generated equation to features of the physical 
system. In their discussion of what label they would like to use for the kets in the expression, the 
students again compared it to the energy eigenvalue equation, which eventually leads them to 
both accept the equation  ݔො|ܮۧ =  ۧ  as an appropriate eigenvalue equation for an operatorܮ|ݔ
representing the position of a particle constrained to exist in one dimension. 

The interviewer asked the students to think about what makes the equation they generated for 
a position operator an eigenvalue equation. Alice and Bob focused on the fact that when 
operating on the state with the position operator, the state does not change. 

    Bob: … when we operate our operator, which we designate as x hat [ݔො], um, to represent 
the position on one of our states, which that could be anything, but since when we operate 
 ,ො on this state, we get a scalar value times the same state back. It means that we didn'tݔ
we didn’t, we, it, […] - if we had changed our state, they wouldn't commute.  

    Alice: By measuring, we don't change the state. 
    Bob: Yeah. But by measuring, we don’t change the state. We just find the scalar value that 

represents the state, I guess.  
The students’ justifications that their equation is indeed an eigenvalue equation was also 

coded as combining: they are ensuring that the mathematical entity they generated has the 
appropriate properties to describe the real world situation in the prompt. The primary property 
they reference in this justification is that the state does not change. When asked if their analysis 
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had any impact on their interpretation, the students were able to fully articulate that the state is 
changed in Eq. 1 and therefore Eq. 1 is not an eigenvalue equation. The students used their 
general understanding of eigenvalue equations in quantum mechanics as a tool to determine the 
relevant features of the eigenvalue equation they generated. This reasoning was then chained to 
make sense of another object, the non-eigenvalue operator equation, resulting in the final 
conclusion. Figure 4 models the sensemaking process in its entirety including the students’ final 
conclusion.  

 
Figure 4. A model of the students sensemaking leading to their final conclusion about Eq. 1. 

Discussion 
In this study, Zbiek and Conner (2006)’s modeling framework is used to get a fuller picture 

of the processes students engage in as they work through the tasks, while Gifford and Finkelstein 
(2020)’s sensemaking framework is utilized to deepen the understanding of how the students 
resolve an inconsistency in their understanding while working in a modeling frame. When the 
students recognize an inconsistency in their analysis of Eq. 1, they shift into a sensemaking 
frame in order to resolve that inconsistency. That is not to say that a modeling frame is requisite 
for sensemaking, only that the two can coexist, as they do in this case study.  

Odden and Russ (Odden & Russ, 2019) claim that sensemaking is often a part of modeling 
activities, and could potentially occur in parallel with modeling. Our study documents an 
example of sensemaking within modeling, and explicitly identifies behaviors and strategies 
students use to resolve an inconsistency. The modeling and sensemaking frameworks come 
together here to provide insight into the kinds of activities students engage in when given a task 
that places them in what is typically the middle of a modeling cycle, how they go about trying to 
resolve an inconsistency, and how analogous modeling tasks can help students refine their 
reasoning on a task with which they are struggling. 

While productive, the Zbiek and Conner (2006) model may not be sufficient to model more 
advanced physics problem solving. In coding, the authors had several discussions in which they 
were unable to singularly code some of the students’ work because it was difficult to determine 
whether the object of the students’ thinking was a mathematical entity or physical system (e.g., 
real world situation). We suspect this is due to the blended nature of quantum mechanics content 
rather than a lack of student articulation thereof. This may suggest a need for modifications to 
existing frameworks, or a new framework entirely, that accounts for the ways mathematics and 
physics are blended in physics reasoning and modeling.  

The primary limitation of this study is that the data are from a single pair of students so 
results may not be generalizable. However, these students were articulate and thoughtful, and the 
ideas they present corroborate previous findings in the literature. We look forward to further 
empirical and theoretical work in this and other physics topics to provide additional insight.   
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Believability in Mathematical Conditionals: Generating Items for a Conditional Inference Task  
 

 Lara Alcock Ben Davies 
 Loughborough University University of Southampton 

This paper describes design issues for a conditional inference task with mathematical content.  
The task will mirror those used in cognitive psychology to study inferences from everyday causal 
conditionals: its items will present a conditional premise (if A then B) and a categorical premise 
(A, not-A, B, or not-B) and ask participants to evaluate whether a conclusion (respectively, B, 
not-B, A, not-A) necessarily follows.  To assemble items, we asked six mathematics education 
researchers with expertise in conceptual understanding to generate conditionals covering a 
range of mathematical topics.  To mirror the structure of tasks with everyday causal content, we 
asked that these conditionals should vary in believability.  In this paper, we analyze the content 
and phrasing of the submitted conditionals in order to assess their suitability for use in a 
conditional inference task, and describe our planned use of this task to investigate the 
relationship between logical reasoning and mathematical expertise.  

Keywords: conditional, inference, logic, reasoning, proof 

Introduction 
Logical reasoning is central to mathematics, overtly so at the transition to proof (David & 

Zazkis, 2019).  Students must learn to validate inferences that they make during proof 
construction and inferences that they read during proof comprehension (Hodds, Alcock & Inglis, 
2014).  This does not mean that every inference must be explicitly justified – demands vary by 
context (Weber, 2008).  It does mean that every inference could in principle be checked, in a 
process that in experts involves considerable back-and-forth reading (Inglis & Alcock, 2012). 

Inference checking can fail for semantic reasons.  Alcock and Weber (2005), for instance, 
reported that some students were willing to accept an inference from the premise that (√#) is an 
increasing sequence to the conclusion that (√#) tends to infinity.  This inference is deductively 
invalid (Smith, 2020) because some increasing sequences do not tend to infinity.  The argument, 
however, has the form below.  If the conditional premise (interpreted as a generalized conditional 
per Durand-Guerrier, 2003) were true, then the inference would be valid.   

If (%!) is an increasing sequence, then (%!) tends to infinity.  
(√#) is an increasing sequence.  
So (√#) tends to infinity.   

Inference checking can also fail for syntactic reasons.  Selden and Selden (2003), for 
instance, reported that some students were willing to accept a proof of the first claim below as a 
proof of the second (see also Hoyles & Kuchemann, 2002; Inglis & Alcock, 2012).  This is 
logically invalid (Smith, 2020) because a conditional and its converse are not equivalent.    

For any positive integer n, if n is a multiple of 3 then n2 is a multiple of 3.  
For any positive integer n, if n2 is a multiple of 3 then n is a multiple of 3.   

In the semantic case, failure to detect an invalid inference is readily explained by the fact that 
individuals’ example spaces (Sinclair et al., 2011) or concept images (Tall & Vinner, 1981) do 
not fully ‘match’ the defined concepts, so that people might overlook counterexamples.  In the 
syntactic case, failure to detect an invalid inference might occur for what amounts to the same 
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reason at a more abstract level: individuals’ example spaces or concept images for conditionals 
are unlikely to ‘match’ the material or truth-functional interpretation used in mathematics 
(Dawkins & Norton, 2022; Epp, 2003).  This occurs because everyday conditionals lend 
themselves to multiple distinct interpretations: for ‘If it is a dog, then it is an animal’, a material 
conditional interpretation is sensible; for ‘If you mow the lawn, I will give you $5’, a 
biconditional interpretation is sensible (Cummins et al., 1991).  Hence, mathematics students 
must learn to restrict their interpretations of conditionals just as they must learn to restrict their 
interpretations of words like ‘limit’ and ‘group’.  As they learn, we can expect to see errors in 
relation to normative validity.  Indeed, we might expect errors to persist – maybe mathematical 
experts reason normatively across all contexts, but maybe they reason normatively in 
mathematics only, and maybe their reasoning is vulnerable to errors even there.   

To investigate these possibilities and thereby to improve knowledge relevant to the teaching 
of logical reasoning, we plan to build on the extensive research on everyday conditional 
reasoning in cognitive psychology.  Specifically, we plan to construct a mathematical conditional 
inference task and use this, together with a task with everyday causal content, to study whether 
and how reasoning differs across contents and levels of mathematical expertise.  In the present 
paper, we explain the theoretical background of our work and report first steps in task design.        

Theoretical Background 
Cognitive psychology has a long history of studying reasoning with and about conditionals 

(e.g., Evans & Over, 2004; Oaksford & Chater, 2020).  Here we focus on conditional inference 
tasks, as we believe their structure is clearly relevant to proof validation.  A typical conditional 
inference task presents participants with a conditional premise and one of four categorical 
premises, as illustrated below with everyday causal content (De Neys et al., 2003); participants 
are asked to evaluate the conclusion in the third line.  Normatively, MP and MT inferences are 
valid, and DA and AC inferences are invalid.   

Modus Ponens (MP) 
If John studies hard, then he does well 
on the test. 
John studies hard. 
John does well on the test. 

Affirmation of the Consequent (AC) 
If John studies hard, then he does well 
on the test. 
John does well on the test. 
John studied hard. 

Denial of the Antecedent (DA) 
If John studies hard, then he does well 
on the test. 
John does not study hard. 
John does not do well on the test. 

Modus Tollens (MT) 
If John studies hard, then he does well 
on the test. 
John does not do well on the test. 
John did not study hard. 

The task instructions might emphasise logic, asking participants to assume that the premises 
are true and state whether the conclusion necessarily follows, or they might seek to elicit 
everyday reasoning, asking participants to assume that the premises hold and use a scale to 
express certainty that the conclusion can be drawn (e.g., Evans, Handley, Neilens & Over, 2010).  
Instructions that emphasise logic mirror the task of proof validation: participants are asked to 
assume that some premises are true and decide whether a conclusion necessarily follows, which 
involves recognizing normatively invalid DA and AC inferences.   

However, everyday content introduces complexity, because a conditional like ‘If John studies 
hard, then he does well on the test’ is not simply true or false.  It is a reasonable assertion about a 
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causal relationship, but studying hard is neither necessary nor sufficient for doing well.  
Disablers (Byrne, 1989) might intervene to prevent the antecedent from causing the consequent: 
John might study hard but not do well if, for example, the test is very difficult or if he studies the 
wrong subject (De Neys et al., 2003).  Alternative antecedents (Cummins et al., 1991) might 
account for the consequent without the stated antecedent: John might study little but still do well 
if the test is easy or if he is lucky (De Neys et al., 2003).  For causal conditionals, disablers 
highlight the fact that the antecedent might not be sufficient for the consequent and are known to 
make people less likely to endorse MP and MT inferences; alternative antecedents highlight the 
fact that the stated antecedent might not be necessary for the consequent and make people less 
likely to endorse DA and AC inferences (Byrne, 1989; Cummins et al., 1991).  Disablers and 
alternative antecedents can be more or less accessible – for instance, people typically generate 
few disablers but many alternatives for ‘If Alvin read without his glasses, then he got a 
headache’ (Cummins, 1995).  Thus, conditionals are more or less believable and support the four 
inferences to different extents (De Neys et al., 2003).  Also, there are individual differences in 
ability to prioritise logic over believability, though rates do not approach normative perfection.  
Evans, Handley, Neilens and Over (2010) reported that for participants of higher cognitive 
ability, acceptance rates under deductive instructions were 93% for MP inferences, 41% for DA, 
41% for AC and 47% for MT; these are far from the normative 100%, 0%, 0% and 100%.   

In order to study conditional inference across levels of mathematical expertise, we aim to 
design a mathematical conditional inference task with structure that parallels tasks with everyday 
content, using all four inference types and conditionals that vary in believability.  However, this 
raises several issues in task design.   

One issue is that to parallel everyday tasks, we would like to use simple phrasing as in ‘If x is 
less than 2, then x is less than 5’.  However, in mathematics, such a conditional is considered a 
predicate, not a proposition, so that formally it has no truth value (Durand-Guerrier, 2003).  We 
consider this relatively unproblematic because sensible universal quantification is commonly 
assumed (Dawkins & Roh, 2022) and because tasks with everyday content have this feature too 
(Oaksford & Chater, 2007): participants are implicitly invited to consider ‘If John studies hard, 
then he does well on the test’ as a generalized conditional applying across multiple situations.   

Another issue is that in mathematical proofs, universal instantiation is routine.  In the 
Introduction, the conditional premise ‘If (%!) is an increasing sequence, then (%!) tends to 
infinity’ appears not with the general categorical premise ‘(%!) is an increasing sequence’ but 
with the instantiation ‘(√#) is an increasing sequence’.  Premises of both types can appear in 
proofs, and instantiations have been used in the few studies to investigate conditional inference 
in mathematics (Case & Speer, 2021; Durand-Guerrier, 2003).  However, premises of the general 
type are used in typical research on everyday causal tasks so, while noting that this would be an 
interesting variation for the future, we prioritise comparability across contexts. 

A third issue is that with assumed universal quantification and no instantiation, mathematical 
conditionals are either true or false.  For any true conditional (that is not a true biconditional), the 
antecedent is sufficient but not necessary for the consequent.  Sufficiency means that and MP 
and MT inferences are always valid because standard logic is monotonic (Smith, 2020) so there 
can be no disablers – nothing could ‘intervene’ to prevent an x less than 2 from being less than 5.  
Lack of necessity means that DA and AC inferences are always invalid, though counterexamples 
differ from the alternative antecedents of everyday tasks because they are often singular (‘zero’) 
or in classes of a single type (‘all negative numbers’).   
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For these reasons, it is impractical in mathematics to follow the typical research approach 
(e.g., De Neys et al., 2003) of distinguishing more and less believable conditionals using pre-
tests in which participants list possible disablers and alternatives.  Nevertheless, we suggest that 
believability for mathematical conditionals does plausibly vary on a continuous scale.  For 
instance, ‘If X is a square then X is a parallelogram’ is true but perhaps not immediately or 
wholly believable.  While a square is a parallelogram, it would be conversationally 
uncooperative (Grice, 1989) to call X a parallelogram if one knew that it was a square.  In 
contrast, ‘If x < 3 then 1/x > 1/3’ is false but definitely not immediately or wholly unbelievable.  
Negative x values might easily be overlooked – Alcock and Attridge (2023) reported that about 
one fifth of mathematics undergraduates initially judged this conditional true.  We might, in 
theory, assess believability by asking participants to score it directly (cf. Evans et al., 2010).  
However, we think that mathematically experienced people would likely balk at assigning a 
believability score that is not 1 or 0 when they know that a conditional must be true or false.   

We therefore take an alternative approach, asking not about disablers/alternatives or 
believability scores, but instead about relative believability.  In the work reported here, we asked 
experts in conceptual understanding to generate five mathematical conditionals each and to rank 
their conditionals for believability.  If believability does vary continuously, this should ensure 
that we gather conditionals from across the scale.  In work to follow, we will use comparative 
judgement (see, e.g., Davies et al., 2021) with both experts and undergraduates to assess more 
robustly whether believability is a reliably shared construct.     

Method 
Participants, Data Collection and Data Processing 

We set out to collect conditionals covering a range of mathematical topics, to assess whether 
believability might vary as anticipated by the theory above, and to refine our understanding of 
how language around mathematics reflects or differs from that around everyday causal content.  
We therefore approached six mathematics education researchers with expertise in secondary-
school-level conceptual understanding, who would be able to anticipate what undergraduate 
students would find more and less believable.  These participants were informed about the 
purpose and theoretical background of the study and were each asked to generate five 
mathematical conditionals that would be familiar to typical students aged 13-14 and therefore 
basic for mathematics undergraduates, postgraduates, and experts.  They were instructed that to 
parallel those used in tasks with everyday causal content, their conditionals should: 

• Cover a range of mathematical topics; 
• Have plausibly related antecedent and consequent; 
• Not be obviously false;  
• Not use additional connectives (‘not’, ‘and’, ‘or’) in the antecedent or consequent; 
• Vary in believability (where the most believable could be clearly true).     

They were also asked to:     
• State whether each of their conditionals was technically true or false; 
• Rank their conditionals from 1 (least believable) to 5 (most believable); 
• Give a one-sentence explanation of their ranking for each conditional.  
Prior to analysis, we requested amendments where participants had included conditionals 

with extra connectives (often in symbols, for instance ‘≤’ or ‘≠’).  We checked the stated truth 
values, inviting participants to explain/adjust if there was any doubt about, for example, the set 
over which universal quantification was assumed.  We then ensured that all conditionals were 
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written in the same way, with an explicit ‘then’ after a comma, and without extra words.  For 
example, ‘…then it is also convex’ became ‘then it is convex’, and ‘…then the median must be 
7’ became ‘…then the median is 7’.  Overall, participants were able to comply with our 
instructions and generate conditionals with non-obvious truth values, though some observed that 
ranking was difficult.  Naturally, we do not take individual rankings as inherently reliable; the 
planned comparative judgement will provide more robust measures. 
 
Analysis: Removing Unsuitable Conditionals 

Our analysis focused on suitability for use in a conditional inference task.  Seven of the 30 
submitted conditionals were not suitable because, although they met our criteria, their 
consequents could not readily be asserted as categorical premises, even with rephrasing 
(equivalently, the converses could not readily be stated).  Not coincidentally, some were long 
and some invoked an agent ‘you’ or ‘I’ or described physical actions as well as abstract 
relationships.  These conditionals, listed below, were therefore removed.  

• If I flip a fair coin twice, then the probability of getting two heads is 1/3. 
• If you sum the first n odd numbers, then you get #". 
• If a circle is divided into regions by straight lines connecting n dots, then the maximum 

number of regions is 2!. 
• If coin lands on tails 42 times out of 100 flips, then there is not enough information to tell 

whether it is biased. 
• If £12 is shared in the ratio 1:3, then the smaller share is 1/3 of the total. 
• If two normal 6-sided dice are thrown and I tell you that one of the dice shows a 2, then 

the probability of both being a 2 is 1/6. 
• If the perimeter of a square is the same as the circumference of a circle, then the area of 

the square is less than the area of the circle. 
Along similar lines, we also removed the conditional ‘If % = −1,	then |%| = −|1|’ because 

its consequent is false.  We then removed a further four conditionals were not suitable because, 
although they met our criteria and were phrased in ways better fitted a conditional inference task, 
they had true converses.  This would potentially create a confound because it would mean that 
DA and AC inferences would be valid for semantic reasons; it also makes these conditionals less 
‘like’ everyday causal conditionals in which there is a clear cause in the antecedent and effect in 
the consequent.  The following conditionals were therefore also removed. 

• If /# < /" then / < 0. 
• If / = 24 is the solution to 4/ + 9 = 105, then / = 12 is the solution to 8/ + 9 = 105. 
• If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a rectangle. 
• If n is a positive integer, then it can be written as a product of prime factors in exactly one 

way. 
 

Analysis: Content and Form in Suitable Conditionals 
This left 18 conditionals potentially suitable for a conditional inference task.  We list these in 

Table 1, ordered by participants’ individual believability rankings (most to least believable) and 
together with their truth values and mathematical topics.  The final column captures the way in 
which scope of quantification is handled, with codes (discussed further below): 

• ‘I’ where the scope is implicit, usually where a variable is assumed to be a real number; 
• ‘E’ where the scope is explicit, usually where a set is specified in the antecedent; 
• ‘S’ where the antecedent involves a single specific number or situation. 
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Table 1. Conditionals potentially suitable for a conditional inference task 
Conditional Rank Truth Topic Scope 
If a quadrilateral is cyclic, then it is convex. 5 T geometry E 
If a polygon is a square, then it is a rhombus. 5 T geometry E 
If /" = 7", then /7 = 7/. 5 T algebra I 
If / = −4, then /" + / − 12 = 0. 5 T algebra S 
If a quadrilateral has a reflex angle, then it will tesselate. 4 T geometry E 
If x is positive, then tan / > sin /. 4 F trig E 
If x – 12,345 = .67 then x > –12,345.67. 4 T number S 
If a fraction has denominator 7, then it is equivalent to a 

non-terminating decimal. 
4 F number E 

If sin / > 0 then cos / < 1. 3 T trig I 
If a number is a multiple of 13, then it has an even number 

of factors. 
3 F number E 

If a composite number ends in a 3, then it is a multiple of 
3. 

3 F number E 

If a rectangle has area 10cm2, then its perimeter is greater 
than 10cm. 

2 T geometry E 

If an equation is a quadratic, then it has exactly two roots. 2 F algebra E 
If % = 42, then % × A > 42. 2 F number S 
If four consecutive numbers are added, then the result is a 

multiple of four. 
2 F number E 

If the mean of a dataset is 7, then the median is 7. 1 F statistics E 
If % > A, then %B > AB. 1 F number I 
If a rectangle is stretched so that its side lengths double, 

then its area doubles. 
1 F ratio E 

 
In terms of topics, truth values, and believability rankings, we find this initial collection 

satisfactory.  Topics are spread across believability rankings.  More believable conditionals are 
more likely to be true but, in line with our suggestion that truth and believability might not align 
perfectly, there is considerable overlap in the middle of the table.  Our removal of unsuitable 
conditionals did not disproportionately remove those at specific ranks, so there is no evidence of 
a problematic interaction between believability and phrasing challenges or truth of the converse.   

The scope codes highlight new issues in designing a task to parallel those involving everyday 
causal content, in terms of substance, phrasing and the interactions between the two. 

Conditionals with scope code I are most straightforwardly like those used in everyday causal 
tasks.  Their ‘making sense’ without explicit scope means that they lend themselves to 
presentation with all four corresponding categorical premises.  For instance, for the conditional 
‘If /" = 7" then /7 = 7/’, an AC item would appear as follows. 

If /" = 7" then /7 = 7/. 
/7 = 7/. 
/" = 7". 

Conditionals with scope code E usually have a specified set in the antecedent and a deictic ‘it’ or 
‘its’ in the consequent, as in ‘If a quadrilateral is cyclic, then it is convex’.  In these cases, 
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categorical premises cannot simply use the consequent as is (‘It is convex’ makes no sense in 
isolation).  We do not want to lose these items, which make up the majority of those submitted 
and which are clearly natural in mathematics.  As a sensible solution, we will likely mirror the 
phrasing typically used for everyday causal items, naming the object and using the name in both 
categorical premise and conclusion, as below.  Mathematical conditionals are at least simpler in 
that they do not require manipulating tenses to accommodate the temporal aspects of causality.    

If a quadrilateral Q is cyclic, then it is 
convex. 
Quadrilateral Q is convex. 
Q is cyclic. 

If John studies hard, then he does well 
on the test. 
John does well on the test. 
John studied hard. 

Conditionals with scope code S – whose antecedents focus on specific objects – have the 
interesting property that they do not ‘feel’ like generalized conditionals.  We could avoid using 
such items, but we note that they have interesting properties around phrasing, necessity and 
sufficiency.  For instance, the antecedent of the conditional ‘If % = 42, then % × A > 42’ seems 
to be about a, when the conditional actually quantifies over b.  It is false but invokes the common 
misconception ‘multiplication makes things bigger’, and the antecedent is so far from necessary 
for the consequent that accepting the AC inference from % × A > 42 to % = 42 would seem 
nonsensical.  This raises questions about how plausible false conditionals must be in order to 
work in our task, and we will discuss this further at the conference. 

Discussion and Next Steps 
The analysis above clarifies design issues for a mathematical conditional inference task.  

Despite the normative interpretation of conditionals in mathematics, ‘natural’ uses of if-then to 
express mathematical relationships vary considerably.  Some uses do not lend themselves to a 
conditional inference task due to length and overall complexity in describing agents and/or 
actions.  Some have true converses, and therefore do not match items used for causal 
conditionals, where the cause appears in the antecedent and the effect in the consequent 
(Cummins et al., 1991).  For those that are in principle suitable, scope might be fully implicit – 
commonly in the case of quantification over sets of numbers – or explicit in the sense that a set is 
specified in the antecedent.  In the latter case, rephrasing is necessary to construct an item. 

We will use this analysis to inform our ongoing work.  We aim to collect a total of 
approximately 40 suitable conditionals, with a view to constructing a 16-item task using eight 
conditionals that are more believable and eight that are less believable (should believability turn 
out not to be a reliable construct, we will simply use a spread of topics).  We will therefore ask 
two more experts to generate five conditionals each, with the additional criterion that the 
converse of each should be readily articulated and false.  We will then collect conditionals from 
the mathematics education literature and textbooks to complete a set that balances topics, truth 
and implicit/explicit quantification, and will seek to make phrasing as uniform as is practical.  
We will report on this work at the conference, together with the comparative judgement study of 
believability and a first test of the conditional inference task with undergraduates.    
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of the Mathematics Graduate School Application Process 
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Lack of racial diversity has been an ongoing issue in higher education. Recently, the Theory of 
Racialized Organizations has been used to help explain why, despite many calls for diversity, the 
demographics of higher education have not changed. Considering this framework, we seek to 
understand what aspects of the graduate school application process are viewed as barriers by 
minoritized students for applying. As part of a larger study of undergraduate student knowledge 
of the graduate school application process, we analyze 515 responses from undergraduate math 
majors using Mann-Whitney U tests to identify differences in what participants view as a barrier 
to apply to graduate school by race/ethnicity. We discuss two main results and recommend 
changes to graduate programs wishing to recruit more minoritized students. 

Keywords: Graduate school application, undergraduate mathematics majors, Theory of 
Racialized Organizations, Minoritized students 

On June 29, 2023, the U.S. Supreme Court struck down Affirmative Action on college 
admissions (Students for Fair Admissions Inc. v. President & Fellows of Harvard College, 2023). 
This decision has the potential to impact the ability of future minoritized1 students to enter 
college both at the undergraduate and graduate levels. This will be especially problematic for the 
field of mathematics given its lack of racial diversity that becomes more pronounced at higher 
levels. While 31.9% of the U.S. population identify as Hispanic/Latinx or African American 
(U.S. Census, 2020), in recent years only 15.9% of mathematics and statistics (mathematics-only 
data unavailable) bachelor’s degrees were earned by minoritized students (National Center for 
Science and Engineering Statistics, 2019). Finally, only 7.4% of new mathematics doctoral 
recipients were minoritized (Golbeck, et al., 2020).  

Diversity in graduate admissions has become an important topic of research and conflict in 
the last decade. Recent higher education research has shed light on what faculty think about the 
role of diversity in final-round decisions in the graduate admissions process (Posselt, 2016). 
Often, diversity is discussed as a “goal” for institutions of higher education to achieve. Yet, in 
their admissions processes, the conditionality of diversity comes secondary to the perceived 
obligation of “protecting well-established standards of conventional achievement,” such as high 
program rankings and competitive test scores (Posselt, 2016). However, it is well-documented 
that gaps in standardized test scores fall along lines of socio-economic identity and are not 
adequate indicators of intelligence (Posselt, 2016). If diversity is considered a criterion for 

 
1 Minoritized is an alternative way of referring to people who are often labeled as 
“Underrepresented Minorities” in STEM. This alternative phrasing makes it clear that it is power 
imbalances and systematic oppression that cause these groups to be less represented in STEM 
(Wingrove-Haugland & McLeod, 2021). 
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graduate admissions only secondary to traditional quantitative measures, then current admission 
practices are likely to “perpetuate enrollment inequities” (Posselt, 2016). 

While this research provides great insight on the admissions process across multiple 
disciplines it loses context and insight that can be gained through Discipline-Based Education 
Research. Physics education researchers have conducted multiple studies of the graduate 
application process (Chari & Potvin, 2019a, 2019b; Potvin, et al., 2017; Scherr, et al., 2017; 
Young & Caballero, 2019). Physics departments “express a … demand for greater numbers of 
students from [minoritized] groups, but simultaneously report a lack of such applicants” (Potvin 
et al., 2017). This finding mirrors smaller scale research in the field of mathematics which found 
“low graduate mathematics application rates from historically underrepresented groups” 
(Gevertz & Wares, 2020). If the U.S. is to increase diversity in STEM graduate programs, we 
must examine whether minoritized students apply for graduate school at the same rate as their 
non-minoritized peers and if not, determine how to address the disparity.  

Students who want to pursue graduate school in mathematics often face multiple financial 
barriers. These burdens can include working to support their family (instead of acquiring 
research experience or studying), rent, transportation, paying off undergraduate debt, GRE costs, 
and application fees (Cochran et al., 2018). Multiple studies have shown that application fees 
limit the number of applications from students from low-income backgrounds (Cadena et al., 
2023; Cochran et al., 2018; Roberts et al., 2021; Wilson, et al., 2018). Some programs have 
implemented fee waivers for this reason. However, the effort required to gain fee waivers deters 
students from applying to graduate school. For example, students may need to complete their 
application in advance of the normal deadline or achieve a higher GPA (Cadena et al., 2023; 
Roberts et al., 2021). In some cases, fee waivers require U.S. citizenship, so undocumented or 
international students may not qualify for waivers. In addition, the application fee may 
sometimes cost a student an entire month’s salary (Cadena et al., 2023). Thus, financial burdens, 
and application fees in particular, negatively, and significantly impact low-income students 
applying to graduate school. 

The Undergraduate Knowledge of the Mathematics Graduate School Application Process 
(Knowledge-GAP) project was created to examine undergraduate mathematics majors’ 
knowledge about the graduate school application process and to facilitate an understanding of 
perceived barriers to applying to graduate school across different demographic groups. This 
paper focuses on how minoritized students perceive the application process and seeks to answer  
the following subset of research questions from the Knowledge-GAP project: 

1. Do perceptions of barriers to applying to graduate school differ by race/ethnicity? 
2. What factors are most important to minoritized students planning to apply to graduate 

school? 

Theoretical Background 
The Theory of Racialized Organizations (TRO) was developed to help explain “consistency 

of racialized organizational inequality” (Ray, 2019). This framework calls for researchers 
interested in racial inequality to critically examine how an organization's policies and 
institutionalized practices (e.g., admissions procedures) uphold racial disparities (Ray, 2019). It 
has been applied to many fields and types of organizations since its inception including 
undergraduate mathematics education (Leyva et al., 2021). In a recent study, Poon et al. (2023) 
applied the TRO framework “to examine the totality of (undergraduate) admissions as racialized 
organizations”. They found that even supposedly “race-neutral” admissions policies can increase 
racial inequality due to the existing racial wealth gap in America (Poon et al., 2023). To explain 
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this gap, they call upon the concept of racial capitalism (Poon et al., 2023). Melamed (2015) 
explained racial capitalism by stating: “Racism enshrines the inequalities that capitalism requires 
. . . by displacing the uneven life chances that are inescapably part of capitalist social relations 
onto fictions of differing human capacities, historically” along racial lines (p. 77). We extend this 
framework to graduate admissions to understand differences in perceived barriers to the graduate 
application process between minoritized and non-minoritized students. 

Methods 

Instrument Development 
The research team created a survey based in part on a survey used to determine 

undergraduate physics majors’ interest in graduate school and how important they believed 
different aspects of the application process were (Chari & Potvin, 2019b). Nineteen survey items 
were adapted from that instrument. A notable difference between that survey and ours was that 
we provided an opportunity for participants to express their lack of knowledge about different 
parts of the application process. The final survey had 57 items separated into four categories: (a) 
knowledge about different aspects of the application process, (b) barriers to applying, (c) interest 
in graduate school and what students look for in programs they apply to, and (d) demographic 
questions. Most questions were Likert scale or multiple choice, though four were open-ended 
and some of the multiple-choice items allowed participants to type in a text response. The full 
survey is available at this link: https://researchrepository.wvu.edu/faculty_publications/3291/. 

Data Collection  
The research team sent an email with the survey to department chairs and undergraduate 

program directors at all U.S. undergraduate mathematics programs at colleges and universities 
with at least 1000 students total (N = 985). We requested the survey be sent to all undergraduate 
mathematics majors. Initial emails were sent Fall 2022 through Spring 2023, via Qualtrics, and 
follow-up emails were sent to encourage a greater response rate. In addition to direct emails, the 
survey was also posted on social media, listservs and in newsletters for several professional 
organizations in mathematics.  

Data Analysis  
We received 1090 responses from students at 181 colleges and universities, with 519 

complete responses. Note that students could miss part of a question and still have their response 
marked as complete. Thus, the Ns for different items are not always the same. Statistical tests 
were run in IBM SPSS.  

To address these research questions, we analyzed data collected through two survey items: 
To what extent are the following factors a potential barrier to your pursuit of graduate school? 
and How important are the following factors in choosing which schools you apply to? Both 
questions were Likert scale items adapted for this study from Chari and Potvin (2019b). The first 
item had 17 sub-item topics (potential barriers), which students rated on a scale of 1 (not at all a 
barrier) to 5 (very significant barrier). The second item had 15 sub-item topics (potentially 
important factors for applying to graduate programs), which students rated on a scale of 1 (not at 
all important) to 5 (very important).  
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Results 

Participant Demographics  
Tables 1 and 2 show annual income for participants while growing up, and racial/ethnic 

demographics for participants with complete responses. Note that participants were able to select 
more than one category for racial/ethnic identification.  
 
Table 1. Yearly Income for Participants When They Were Growing Up.  

To the best of your knowledge, which category best describes your family's yearly household 
income while you were growing up? 

Income 
Less than $60,000 
Between $60,000 and $100,000 
More than $100,000 
Do not know 
Prefer not to say 
Total 

N 
119 
128 
208 
44 
20 
519 

Percentage 
22.9% 
24.7% 
40.1% 
8.5% 
3.9% 
100% 

 
Table 2. Race/ethnicity of Participants*.  

With which racial and ethnic groups do you identify?    

Race/Ethnicity 
American Indian or Alaskan Native 
Asian or Asian American 
Black or African American 
Hispanic, Latine/Latinx, or Spanish Origin 
South Western Asia and North African (Middle Eastern or North African) 
Native Hawaiian or Other Pacific Islander 
White 
Prefer not to say 
Total 

N 
7 
80 
21 
59 
8 
5 

381 
10 

516 

Percentage 
1.4% 
15.5% 
4.1% 
11.4% 
1.6% 
1.0% 
73.8% 
1.9% 

 

Perceptions of Potential Barriers & Important Factors  
Participants were separated into two groups based on their response to the survey item asking 

for their race and ethnicity. Participants who said they belonged to at least one of the following 
groups were labeled as “minoritized” in the dataset: American Indian or Alaskan Native, Black 
or African American, Hispanic, Latine/Latinx, or Spanish origin or Native Hawaiian or Other 
Pacific Islander. While there are issues with combining different identities that have been 
historically and through modern times excluded in STEM disciplines, this method provides 
insight into factors potentially excluding these groups from graduate education. In addition, 
sample sizes in many of the individual groups were too small to run meaningful statistical 
analyses. 

We report here only on a subset of the sub-item topics for both items, seven for the first item 
and five for the second item. A one-way analysis of variance (ANOVA) was not employed 
because for 8 of the 12 sub-item topics, the Homogeneity of Variance assumption was 

26th Annual Conference on Research in Undergraduate Mathematics Education 372



violated. Thus, for ease of comparison and consistency, Mann-Whitney U tests were performed 
using the minoritized/non-minoritized variables for all sub-item topics. Table 3 contains Mann-
Whitney U test results for the minoritized/non-minoritized groups for the 515 participants who 
responded to the selected sub-item topics from the first survey item. 

 
Table 3. Mann-Whitney U test results for selected items for the question, “To what extent are the following factors a 
potential barrier to your pursuit of graduate school?” using the minoritized/non-minoritized variable. 

Item 
 
Graduate application fees  
 
 
Paying for the General 
GRE Test ($220) 
 
Paying for the GRE 
Mathematics Subject Test 
($150) 
 
Sending GRE scores to 
programs ($30 per 
program) 
 
Availability of 
scholarships/funds or my 
ability to pay tuition 
 
Parenting or family 
responsibilities 
 
A lack of 
mathematicians/scientists 
that look like me 

Group 
 

Minoritized 
Not 

 
Minoritized 

Not 
 

Minoritized 
Not 

 
 

Minoritized 
Not 

 
 

Minoritized 
Not 

 
 
Minoritized 

Not 
 
Minoritized 

Not 

N 
 

85 
430 

 
85 
427 

 
85 
429 

 
 

85 
428 

 
 

84 
429 

 
 

84 
428 

 
83 
429 

Mean 
 

3.08 
2.47 

 
3.40 
2.69 

 
3.38 
2.62 

 
 

3.16 
2.50 

 
 

4.19 
3.55 

 
 

2.35 
1.68 

 
2.82 
1.93 

Mean Rank 
 

313.68 
246.99 

 
317.02 
244.45 

 
320.90 
244.94 

 
 

311.82 
246.11 

 
 

320.87 
244.49 

 
 

316.92 
244.64 

 
322.11 
243.81 

U 
 

13542 
 
 

13003.5 
 
 

12843.5 
 

 
 

13530.5 
 
 
 

12653 
 

 
 

12901 
 
 

12358 

Z 
 

-3.88 
 
 

-4.22 
 
 

-4.41 
 

 
 

-3.83 
 
 
 

-4.47 
 

 
 

-4.60 
 
 

-4.74 

p 
 

<.001 
 
 

<.001 
 
 

<.001 
 

 
 

<.001 
 
 

 
<.001 

 
 

 
<.001 

 
 

<.001 

r 
 

0.17 
 
 

0.19 
 
 

0.19 
 

 
 

0.17 
 
 
 

0.20 
 

 
 

0.20 
 
 

0.21 

 
The output of a Mann-Whitney U test is a Z value on a normal distribution. The Z values in 

Table 3 indicate that the minoritized group has greater means than the non-minoritized group. 
These results show there is a statistically significant difference (all p’s < .05) between the 
minoritized/non-minoritized groups in the responses for all seven sub-item topics. In all cases the 
minoritized participants were more likely to view each sub-item topic as a potential barrier to 
their pursuit of graduate school than their peers. All of these results had a small effect size (all 
r’s between 0.1 and 0.3). 

For the second survey item, “How important are the following factors in choosing which 
schools you apply to?”, it should be noted that not all participants saw this item. Prior to this, 
participants were asked to state their interest in graduate school in mathematics. Only 
participants who responded with anything other than “Not interested in graduate school in 
mathematics” saw this item. Table 4 contains Mann-Whitney U test results for the 
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minoritized/non-minoritized groups for the 435 participants who responded to the selected sub-
item topics from the second survey item. 

 
Table 4. Mann-Whitney U test results for selected options for the question, “How important are the following 
factors in choosing which schools you apply to?” using the minoritized/non-minoritized variable.  

Item 
 
Availability/Amount of 
assistantships or scholarships 
 
Cost of living 
 
 
No GRE General Test requirement or 
no minimum score requirement 
 
Having peers who are the same 
race/ethnicity as myself 
 
Having a thesis advisor of the same 
race/ethnicity as myself 

Group 
 

Minoritized 
Not 

 
Minoritized 

Not 
 

Minoritized 
Not 

 
Minoritized 

Not 
 

Minoritized 
Not 

N 
 

74 
360 

 
74 
361 

 
74 
360 
 
73 
360 

 
73 
359 

Mean 
 

4.61 
4.20 

 
4.54 
3.92 

 
3.09 
2.52 

 
2.52 
1.51 

 
2.19 
1.34 

Mean 
Rank 

259.74 
208.82 

 
278.77 
205.54 

 
257.91 
209.19 
 
278.45 
204.54 

 
274.76 
204.65 

U 
 

10194 
 
 

8860 
 
 

10329.5 
 

 
8654 

 
 

8850.5 
 

Z 
 

-3.51 
 
 

-4.84 
 
 

-3.12 
 

 
-5.52 
 

 
-5.62 
 

p 
 

<.001 
 
 

<.001 
 
 

.002 
 

 
<.001 
 

 
<.001 
 

r 
 

0.17 
 
 

0.23 
 
 

0.15 
 

 
0.27 

 
 

0.27 

*Note the total N for these tables are strictly less than the previous tables since participants not interested in 
graduate school did not get this question. 
 

The Z values in Table 4 indicate that the minoritized group has greater means than the non-
minoritized group. These results show there is a statistically significant difference (all p’s < .05) 
between the minoritized/non-minoritized groups in the responses for all five sub-item topics. In 
all cases the minoritized participants were more likely to view each sub-item topic as an 
important factor in choosing which school to apply to than their peers. All of these results had a 
small effect size (all r’s between 0.1 and 0.3). 

These Mann-Whitney U test results show that minoritized participants are more concerned 
about the cost of different aspects of the graduate school application process compared to their 
peers. They are also more concerned about being able to afford to attend graduate school. 
Finally, they are more concerned about having peers and advisors with the same race/ethnicity in 
the graduate programs to which they apply. 

Annual Income 
To examine the relationship between family income and minoritized status, participant 

responses to the item “To the best of your knowledge, which category best describes your 
family's yearly household income while you were growing up?” were analyzed. A Chi-squared 
test of association determined that there was an association between ethnicity status and income 
category χ2(4, N = 512) = 46.44, p = <.001, V = .30. This result had a medium effect size. 
Minoritized participants were more likely to come from lower income families than their peers: 
half of the minoritized participants were from families that made less than $60,000 dollars a year 
while only 17.6% of non-minoritized participants were from families that made less than 
$60,000 dollars a year. 
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Discussion 
These test results show two main threads in which minoritized participants demonstrate 

different concerns from their peers: finances and a lack of racial diversity in graduate 
education. The financial concerns are most obvious in results for 7 of the 12 sub-item topics 
showing that minoritized participants were directly concerned about funding or finances. Results 
from another two sub-item topics, familial responsibilities and favoring programs with less 
stringent GRE requirements, may also be caused (at least in part) by financial concerns. We also 
found that significantly more minoritized participants reported that they were from low-income 
households than their peers. The Theory of Racialized Organization and racial capitalism explain 
how the apparently uniform cost of the application process serves as a contextual barrier and thus 
a gatekeeper, preventing minoritized students from entering mathematics programs at the 
graduate level. The results from the last three sub-item topics that do not fit under the topic of 
finances demonstrate minoritized participants' well-grounded concerns that they will be the only 
person who looks like them in their department. We know from the demographics of 
mathematics graduate programs that many mathematics departments are likely to have few, if 
any, minoritized students (Golbeck, et al., 2019). This can have multiple repercussions for the 
few minoritized students at these programs. The Theory of Racialized Organizations calls into 
question why programs have so few minoritized students and the impact that could have on 
students who are applying. Did these programs previously admit minoritized students who either 
left of their own volition or were forced out? Is the work of minoritized students, both inside and 
outside of the classroom, systematically undervalued at these programs? The lack of diversity in 
these programs negatively impacts minoritized students’ decisions to apply. 

Based on these results we recommend that programs hoping to recruit and support 
minoritized students seek ways to minimize the cost of applying to, and staying in, the program. 
For example, consider removing the GRE General and Subject test requirements (for additional 
reasons to exclude the GRE from admission requirements, see McEldowney et al., 2024, Miller 
et al., 2019, and Posselt, 2016). Consider allowing unofficial transcripts in the application and 
only require official transcripts for admitted students. Advocate for the financial well-being of 
current graduate students. Try to obtain more funding for graduate students either internally or 
externally. If faculty are eligible for university childcare programs or childcare subsidies, 
advocate for graduate students to be eligible for those programs.  

In terms of research implications, there is still more data to be analyzed from the Knowledge-
GAP survey. A clear next step for the project is to test for differences in knowledge of 
application fees by race or ethnicity. We also need to examine differences in perceptions of the 
graduate school application process by other demographic information like gender, income, etc. 
the Knowledge-GAP is only the first step in studying mathematics graduate student application 
and admissions processes. More work is necessary to fully understand which factors impact 
students, especially minoritized students, choice of graduate schools and what obstacles they 
face. We also look forward to seeing future qualitative research can be done in this area. 
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Factors Influencing Undergraduate Students’ Logical (in)Consistency (LinC) in Mathematical 
Contexts 

 
 Kyeong Hah Roh Yong Hah Lee Kate Melhuish 
 Arizona State University Ewha Womans University Texas State University 

This study delves into undergraduate students’ ability to self-monitor and organize their claims 
coherently to ensure logical consistency when evaluating mathematical statements and 
validating accompanying arguments. To assess the capacity of undergraduate students to 
maintain logical consistency in mathematical contexts, we designed an online instrument 
comprising twenty statement-argument pairs, each rooted in mathematical content. We 
administered this online instrument to 205 undergraduate students, encompassing various levels 
of proof experience, across three diverse U.S. higher education institutions, including two large 
public universities and one small liberal arts college. Our analysis reveals a substantial number 
of undergraduate students displayed logical inconsistencies. It also appears that students may 
exhibit different levels of logical inconsistencies when the accompanying argument is framed 
using proof by contradiction, as opposed to direct proof. This prevalence underscores a critical 
concern in mathematics education, particularly proof-oriented mathematics.    

Keywords:  logic, logical (in)consistency, statement evaluation, argument validation, proof by 
contradiction 

Our primary aim of this study is to understand logical consistency as it pertains to students’ 
mathematical reasoning and argumentation when evaluating mathematical statements and 
validating accompanying arguments. By logical consistency in an individual’s mathematical 
thinking, we refer to a state of having no logical contradiction among their assertions. To uphold 
logical consistency, it is critical that individuals recognize and address any logical contradictions 
that might remain unnoticed within their assertions. Logical contradictions in mathematics arise 
when statements conflict, as in false statements such as “x is a multiple of 2 and x is not a 
multiple of 2.” Fundamental to mathematical logic is the law of non-contradiction, which asserts 
that a statement and its negation cannot both be true simultaneously. For instance, if a student 
claims both “x is a multiple of 2” and “an argument properly proves x is not a multiple of 2,” a 
logical contradiction arises since the second assertion negates the first, and vice versa. 
Overlooking such logical contradiction in their reasoning can lead to creating mathematical 
arguments that the community will not accept. To achieve our research aim, we pose several 
research questions that guide our investigation:  

1. To what degree do students demonstrate logical consistency across a set of statements 
and accompanying arguments? 

2. Is there a correlation between undergraduate students’ logical consistency and their 
exposure to proof-oriented mathematics courses? 

3. Do specific contexts or variables influence the likelihood of undergraduate students 
exhibiting logical inconsistencies (LinC)? 

These questions will serve as the foundation for exploring logical consistency in students’ 
mathematical reasoning.  

Review of Literature & Theoretical Perspective 
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To comprehend the significance of logical consistency in mathematical reasoning, we turn to 
insights from cognitive psychology and educational theory. Cognitive psychologists have long 
posited the general tendency of people to maintain cognitive consistency and avoid cognitive 
dissonance in various contexts (e.g., Abelson et al., 1968; Festinger, 1957). The principle of 
maintaining cognitive consistency has been applied to interpersonal relations, beliefs, feelings, 
and actions (Cooper, 1988; Cvencek et al., 2014; Gawronski & Strack, 2008). However, the 
relevance to mathematical reasoning remains intriguing. Our study extends this notion into the 
realm of mathematical thinking, which we refer to as logical consistency. It is essential to 
recognize the unique challenges that mathematical reasoning presents, particularly concerning 
logical contradiction, while evaluating mathematical statements and validating accompanying 
arguments (Roh & Lee, 2018).  

Our study is grounded in a theoretical framework that draws from cognitive psychology and 
constructivist learning theory. Cognitive psychologists have argued that individuals naturally 
strive to maintain cognitive consistency and resolve cognitive conflicts (e.g., Piaget, 1967). In 
learning, cognitive conflicts are considered essential for individuals to construct new knowledge 
or modify their existing knowledge structures (Glasersfeld, 1995). This perspective suggests that 
students actively seek logical consistency in their mathematical reasoning and argumentation. 
Research showcases that students can also enhance their reasoning by addressing logical 
inconsistencies in their mathematical arguments (Dawkins & Roh, 2016; Ely, 2010; Roh & Lee, 
2011, 2017). 

However, can students effectively identify logical contradictions within their mathematical 
assertions when they exist? Roh and Lee’s study (2018) reported that more than 20% of 
undergraduate students (݊ = 47) who completed introductory proof courses displayed logical 
inconsistencies in their assertions. This suggests that even with substantial mathematical content 
knowledge and mathematical proofs, logical inconsistencies (LinC) may persist in students’ 
mathematical reasoning. Building upon Roh and Lee’s (2018) research, we extend our 
investigation to assess the frequency with which students exhibit logical inconsistencies and 
identify the prevalent types of such inconsistencies when students evaluate mathematical 
statements and validate accompanying arguments.  

Methods 

The LinC Instrument 
We developed the LinC instrument to assess students’ logical (in)consistency when 

evaluating a statement and validating an accompanying argument. The current version of the 
LinC instrument focuses on content areas in precalculus and calculus, employing two factors for 
statements (logical complexity and truth-value) and three factors for accompanying arguments 
(attempts, validity, and frames). Table 1 presents the characteristics of the final 20 statement-
argument pairs derived from these factors. 

 
Table 1 Summary of the LinC items (20 items in total) 

Quantifiers 
in the 
Statement 

Truth-Value of  
the Statement 

An Attempt in the 
Argument 

Validity of the 
Argument 

A Frame of the Argument 

True 
(10) 

False 
(10) 

Proof 
(10) 

Disproof 
(10) 

Valid 
(12) 

Invalid 
(8) 

Direct 
(4) 

by Contradiction 
(7) 

by Example 
(9) 

 2 1 1 2 2 1 3 2 2 (4) 
 3 2 1 2 4 4 2 3 3 (6) 
 2 2 0 1 3 2 2 2 2 (4) 
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 2 2 2 3 3 3 3 3 3 (6) 
 
Each LinC item starts with a statement-argument pair, followed by three questions: (1) 

evaluate if a given statement is true or false; (2) determine if a given argument is an attempt to 
prove or an attempt to disprove the given statement; and (3) evaluate if the given argument 
proves properly what it attempts to prove. Figure 1 illustrates an example of LinC items. 

 
 
Item 1. Consider the statement and argument below: 
 

Statement: For all ݔ > ଷݔ ,0 െ ଶݔ + ݔ > 0. 
Argument: Suppose there exists ݔ > 0 such that ݔଷ െ ଶݔ + ݔ  0. Then, since ݔ > 0 and ݔଷ െ ଶݔ + ݔ  0,  

ଶݔ െ ݔ + 1  0. However, 

ଶݔ െ ݔ + 1 =  ൬ݔଶ െ ݔ +
1
4
൰ +

3
4

= ൬ݔ െ
1
2
൰
ଶ

+
3
4

> 0. 
 

1. Check the most appropriate one about the statement. 
(a) The statement is true. 
(b) The statement is false. 
(c) We cannot determine if the statement is true or false. 

2. Check the most appropriate one to describe what this argument attempts to prove. 
(a) This argument attempts to prove the statement is true. 
(b) This argument attempts to prove the statement is false. 
(c) We cannot determine if this argument attempts to prove the statement is true or false. 

3. Check the most appropriate one to describe the validity of this argument. 
(a) This argument proves properly what it attempts to prove. 
(b) This argument does not prove properly what it attempts to prove. 
(c) We cannot determine whether or not this argument proves properly what it attempts to prove. 

 
Figure 1 An example of the LinC items 

In each LinC item, we first asked students about the truth value of the given statement before 
asking them to evaluate the accompanying argument. However, students were allowed to change 
their answers to any of these three questions before moving to the next LinC item. As a result, 
students could determine or revise their determination of the truth value of the statement after 
engaging with the second and third questions about the accompanying argument. That is, 
students had opportunities to self-organize their thinking to have no logical contradiction among 
their responses to the three questions given in each LinC item. Thus, if there is a logical 
contradiction among a student’s response to the three questions, we interpret the student’s 
response as displaying logical inconsistency. 

For example, a student might initially believe that the statement is true. Still, after reading the 
given argument about the statement, the student might construe and accept that the argument 
proves properly the statement is false. Suppose the student recognized the logical contradiction 
between their initial evaluation of the statement as true and their subsequent validation of the 
argument that proves the statement false. In that case, they may reconsider either their evaluation 
of the statement as false or their validation of the argument to maintain non-contradiction in their 
responses to the LinC item.  

However, some students may not detect a logical contradiction even if it exists in their 
responses. Then, they would not experience psychological pressure to self-organize their 
thinking to have no logical contradiction, and consequently, they would not change their 
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responses. In this case, the presence of logical contradictions in students’ responses suggests that 
the student exhibits logical inconsistency. That is, the students cannot self-organize their thinking 
to have no logical contradiction. The three questions in each LinC item allow logical 
inconsistencies in students’ responses to manifest if they exist. The LinC instrument’s reliability 
is acceptable with Cronbach’s Į=0.686 (n=205).   

Data Collection 
In this study, we collected data via an online survey utilizing the LinC instrument. The 

survey was administered at two large public universities and one small liberal arts college in the 
United States from fall 2019 to spring 2022. We obtained responses from a total of 205 
undergraduate students who dedicated sufficient time to complete the LinC instrument. Among 
them, 86 participants were recruited from in-person classes during fall 2019, fall 2021, and 
spring 2022. The rest of the participants (119) were from online classes during spring 2020 and 
fall 2020, coinciding with the COVID-19 pandemic, during which educational institutions 
experienced a rapid shift towards remote and online teaching modes.  

Data Analysis  
Table 2 provides a comprehensive list of all possible logical inconsistencies that could arise 

from evaluating a statement and validating an argument about the statement. This table serves as 
a valuable reference tool for analyzing logical inconsistencies in students’ responses to the LinC 
instrument and identifying patterns in students’ responses.  

 
Table 2 All instances of responses identified as displaying logical inconsistencies to the LinC items 

LinC 
Type 

Response to  
Question (1) 

Response to  
Question (2) 

Response to  
Question (3) 

aba The statement is True. The argument attempts to prove the 
statement is False. 

The argument proves properly 
what it attempts to prove. 

aca The statement is True. We cannot determine what it 
attempts to prove. 

The argument proves properly 
what it attempts to prove. 

baa The statement is False. The argument attempts to prove the 
statement is True. 

The argument proves properly 
what it attempts to prove. 

bca The statement is False. We cannot determine what it 
attempts to prove. 

The argument proves properly 
what it attempts to prove. 

caa We cannot determine if the 
statement is true or false. 

The argument attempts to prove the 
statement is True. 

The argument proves properly 
what it attempts to prove. 

cba We cannot determine if the 
statement is true or false. 

The argument attempts to prove the 
statement is False. 

The argument proves properly 
what it attempts to prove. 

cca We cannot determine if the 
statement is true or false. 

We cannot determine what it 
attempts to prove. 

The argument proves properly 
what it attempts to prove. 

 
In order to examine the first research question, we report descriptive statistics broken down 

at the item level. To examine the second research question, we considered a level of proof 
experience (in terms of the number of courses) as a predictor of the LinC overall score. We 
created a linear model and a hierarchical linear model (students nested within teachers), finding 
that the nesting added no explanatory power. Finally, for the third research question, our analysis 
focused on a subset of the data of 86 participants. This subset was drawn from the data collected 
during which classes were delivered through an in-person teaching mode. Note that the year 
2020 coincided with the COVID-19 pandemic, and we acknowledge that the experience, 
perceptions, and academic performance of participants in online teaching mode during the 
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pandemic may have been influenced by the unique circumstances and challenges posed by the 
pandemic. Focusing on the subset of participants who experienced in-person teaching, we aimed 
to mitigate the potential confounding variables influencing the third research question.  

Results 

RQ1: To what degree do students demonstrate logical consistency across a set of statements 
and accompanying arguments? 

Of the participants (݊ = 205), 81% (187 students) displayed logical inconsistencies at least 
once while responding to the 20 items in the LinC instrument. Among those who showed logical 
inconsistencies, 73% displayed them at least twice, 64% at least three times, 53% at least four 
times, and 40% at least five times. These findings suggest that many undergraduate students in 
mathematics courses display logical inconsistencies in their thinking. These findings also 
highlight the need for further research and instructional interventions to address this issue.   

RQ2: Is there a correlation between undergraduate students’ logical consistency and their 
exposure to proof-oriented mathematics courses?  

In order to explore this relationship, we developed a series of linear models. The first model 
included both in-person and online semester data. TeachingMode is 1 when online and 0 when in 
person. ProofExperience takes on a value of 0 for no-proof courses, 1 for one proof course, and 2 
for two or more proof courses. We estimated: 

= ݁ݎܿܵ ܥ݊݅ܮ  18.22 െ 3.92 כ ݁݀ܯ݄݃݊݅ܿܽ݁ܶ + 0.13 כ  ݁ܿ݊݁݅ݎ݁ݔܧ݂ݎܲ

finding that TeachingMode was significant with  < .001, but ProofExperience was not 
significant,  = 0.58.  Since TeachingMode plays an unclear role (perhaps relating to modality 
or pandemic effect), we also ran a model on just the in-person data, finding similar results. The 
estimated coefficient for proof experience was 0.05 with a  = 0.89. These results were rather 
robust, with proof experience not being significant in any model our team ran. This indicates a 
surprising result: Logical inconsistency does not appear related to the amount of proof and 
formal representation system exposure.  

RQ3: Do specific contexts or variables influence the likelihood of undergraduate students 
exhibiting logical inconsistencies (LinC)? 

Because the prior analysis showed that teaching mode had a substantial impact on students’ 
performance, we focus this early preliminary exploration of RQ3 on the in-person subset. Of the 
participants drawn from the in-person teaching mode (݊ = 86), 57% (49 students) displayed 
logical inconsistencies at least once while responding to the 20 items in the LinC instrument. 
Among those who showed logical inconsistencies, 40% displayed them at least twice, 30% at 
least three times, 15% at least four times, and 5% at least five times. 

We examined if these students are more likely to display logical inconsistencies with certain 
types of statements or arguments. In particular, we analyzed the student responses considering 
the statements’ complexity and the frames of the arguments as the factors that might affect 
students’ logical inconsistencies. In Tables 3 and 4, the LinC frequency for each item represents 
the number of students displaying logical inconsistency in their responses to that specific item.  

LinC and Statements’ Logical Complexity. We may assume that students would have 
greater difficulty understanding mathematical statements with more complex logical structures, 
such as multiply quantified statements. Similarly, we might anticipate students encountering 
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logical inconsistencies more like in statements with greater logical complexity. We might expect 
more students to display logical inconsistencies when engaging with multiply quantified 
statements in the LinC items 11-20 than statements involving a single quantifier in the LinC 
items 1-10. However, our analysis yielded unexpected results. Students’ responses to LinC items 
contained logical inconsistencies, regardless of the logical complexity of the statements. Over 
10% of the students displayed logical inconsistencies on each of the LinC items, including those 
with complex statements involving two quantifiers (items 11, 15, 17, and 20) and even those 
with relatively simple statements involving one quantifier (items 1, 2, 6, and 9) as detailed in 
Table 3. This finding suggests the frequency of logical inconsistencies of students does not 
significantly differ with respect to the logical complexity of the given statements.  

LinC and Frames of Arguments. On the other hand, the type of argument frames points to 
potential differences in the frequency of logical inconsistencies. We observed a higher 
occurrence of logical inconsistencies when the argument was framed using proof by 
contradiction instead of direct proofs (see Table 4). To be specific, over 10 % of the students 
displayed logical inconsistencies on all but one LinC item with the seven arguments framed 
using proof by contradiction (e.g., LinC item 11), whereas none of the LinC items with the four 
arguments framed using direct proofs (e.g., LinC item 8). We can conjecture that the 
contradiction frame may relate to how students attend to logical consistency.    

 
Table 3 LinC Frequency by Statement Types (n=86) 

Item  LinC 
Frequency 

Statement 

T/F Quantifier 

1 10 T  

2 13 F  

3 0 T  

4 5 F  

5 1 T  

6 9 T  

7 4 T  

8 4 F  

9 10 F  

10 5 F  

11 15 T  

12 2 T  

13 5 F  

14 6 F  

15 10 T  

16 3 T  

17 10 T  

18 2 F  

19 8 F  

20 12 F  
 

Table 4 LinC Frequency by Argument Types (n=86) 

Item  LinC 
Frequency 

Argument 

Attempt Validity Frame 

1 10 Prove Valid Contradiction 

6 9 Prove Valid Contradiction 

11 15 Prove Valid Contradiction 

15 10 Prove Valid Contradiction 

9 10 Disprove Valid Contradiction 

14 6 Disprove Valid Contradiction 

20 12 Disprove Valid Contradiction 

4 5 Prove Invalid Direct 

16 3 Prove Invalid Direct 

8 4 Disprove Valid Direct 

19 8 Disprove Valid Direct 

3 0 Prove Invalid Example 

12 2 Prove Invalid Example 

18 2 Prove Invalid Example 

5 1 Prove Valid Example 

7 4 Disprove Invalid Example 

10 5 Disprove Invalid Example 

17 10 Disprove Invalid Example 

2 13 Disprove Valid Example 

13 5 Disprove  Valid Example 
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Conclusion & Discussion 
Our study investigated the factors influencing logical inconsistencies among undergraduate 

students while evaluating mathematical statements and validating accompanying arguments. 
Initially, we expected students to struggle more with mathematical statements with greater 
logical complexity. However, our findings challenge this assumption. Surprisingly, students 
exhibited logical inconsistencies regardless of the logical complexity of the statements. On the 
other hand, students may exhibit different levels of logical inconsistencies when the 
accompanying argument is framed using proof by contradiction, in contrast to direct proof. The 
complexities involved in indirect proofs (e.g., Antonini & Mariotti, 2008) may be related to 
logical inconsistencies.  

Mathematical reasoning relies fundamentally on avoiding logical inconsistencies, as even a 
single logical inconsistency can render an entire argument invalid. Our study reveals that a 
substantial number of undergraduate students displayed logical inconsistencies. This prevalence 
underscores a critical concern in mathematics education, particularly proof-oriented 
mathematics. We believe that identifying and addressing logical inconsistencies in students’ 
thinking should be a top priority for promoting their learning of proof-oriented mathematics. 
Therefore, it is imperative for mathematics educators and researchers to carefully monitor 
students to see when logical inconsistencies exist in students’ thinking and understand the factors 
that affect their occurrence.  

Our study has limitations, including the specific context (precalculus and calculus) and 
sample size. Future research could explore logical consistency in diverse mathematical contexts 
and involve larger and more diverse student populations. Additionally, the high frequency of 
logical inconsistencies among undergraduate students highlights a potential gap in their 
mathematical reasoning skills. The frequency of these logical inconsistencies suggests a pressing 
need for further research and instructional interventions to address this issue. This is especially 
important as traditional proof courses do not seem to serve our students in developing their 
logical consistency. Investigating the effectiveness of specific instructional interventions in 
addressing logical inconsistencies is a promising avenue for future research. 
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Student Quantitative Understanding of Integration in Single Variable Calculus

Jason Samuels
City University of New York

Student understanding of integration and key concepts from Single Variable Calculus and the

role of infinitesimals was investigated. Analysis was done using a framework which highlights

quantitative reasoning. Data showed rich understanding of integrals in multiple representations,

with some gaps. Also revealed were connections between those concepts expressed over intervals

in Algebra and expressed instantaneously in Calculus, and how conceptions of infinitesimals

supported those connections. Implications for instruction are considered.

Keywords: Calculus, quantitative reasoning, infinitesimals, integral

Introduction & Literature Review

First semester Calculus is a critical course for all STEM majors, a required course containing
foundational ideas for future study. Student success has been below desired levels for a long
time, and efforts toward improving student success are extensive and ongoing (Bressoud, Mesa
& Rasmussen, 2015). There has been much investigation into student understanding of Single
Variable Calculus (SVC), exploring conceptions of limit (Oehrtman, 2009; Tall, 1992), derivative
(Zandieh, 2000; Park, 2013), integral (Jones, 2015; Sealey, 2014), and the Fundamental Theorem
of Calculus (Carlson, Smith & Persson, 2003; Radmehr & Drake, 2017). Some work has been
done to connect those conceptions to a student’s related prior conceptions (Thompson, 1994;
Pustejovsky, 1999; Samuels, 2011). However, none of these studies investigated these questions
for students learning Calculus using infinitesimals. 

Recently there has been a growing call to revise Calculus instruction away from an Analysis-
based approach using limits and toward a more quantitative approach (Augusto-Milner, Jimenez-
Rodriguez,  2021).  There  have  been  a  handful  of  documented  attempts  to  do  so  with
infinitesimals (Ely, 2021). Some research has theorized the underlying student thinking in such
an  approach  (Ely  &  Ellis,  2018).  None  of  these  studies  of  infinitesimal-based  Calculus
instruction has examined how students conceive of important Calculus ideas. These gaps in the
literature suggest  the following research questions.  (1) What is  a  characterization of  student
understanding of integration and key Calculus concepts after one semester of Calculus taught
with infinitesimals? (2) How are understandings of Algebra concepts in discrete form used to
generate understandings of related Calculus concepts in instantaneous form?

Framework

To analyze student  understanding of  Calculus,  an  approach oriented towards  quantitative
reasoning  (Thompson  &  Carlson,  2017)  was  used.  This  mode  of  reasoning  entails
“conceptualizing  a  situation  in  terms  of  quantities  and  relationships  among  quantities”
(Thompson & Carlson, 2017, p425), where a quantity is a measurable attribute combined with a
way to measure that attribute. The quantities of SVC and the relationships between them can be
described using the ACRA Framework (Samuels,  2022).  The framework is  summarized here
briefly with a delineation of the quantities and some of their relationships. An amount is a real
value, a  change is a difference between two amounts, a  rate is a ratio of two changes, and an
accumulation is a sum of consecutive changes. One important relationship is that the product of a
rate  with  a  change  (in  the  input  variable)  is  a  change  (in  the  output  variable),  the  change

equation.  Changes and rates over real  intervals are encountered in a typical  Algebra course;
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changes and rates over arbitrarily small intervals first arise in SVC. A positive infinitesimal is a
positive number which is smaller than all positive real numbers. Instead of using limits, one can
interpret differentials as infinitesimals to describe the arbitrarily small quantities in Calculus.
(For  further  details,  see  (Samuels,  2022).)  This  study  was  targeted  specifically  at  student
conceptions  after  taking  Calculus  I.  In  a  previous  study  (Samuels,  2023),  I  focused  on
conceptions of instantaneous rate. In this study, I focused on conceptions of accumulation along
with connected ideas and relationships.

Table 1. Part of the ACRA Framework for Quantities in Calculus (from (Samuels, 2022))

QUANTITIES Description Real Infinitesimal

Amount A magnitude or extensive quantity   x, y ε

Change A difference between two amounts   Δy = y2 – y1  dx, dy

Rate
A quotient of two changes (of 
different quantities)

m=
Δ y

Δ x
=

y2− y1

x2−x1

f’(x) =
dy

dx

Accumulation A sum of consecutive changes   f(b) – f(a) = Σi Δyi f(b)–f(a)=∫
x=a

x=b

dy

RELATIONSHIPS

Change Equation
The product of a rate with a change in
one quantity is a change in the other

Δy = m·Δx dy = f’(x) dx

CONVERSIONS

An equation of amounts converts to 
one of infinitesimal changes or rates, 
and those two convert back and forth

  y = f(x)      dy = f’(x)dx

dy

dx
= f’(x)

Methodology

In 2023 Spring the author taught a Calculus I course at a northeastern college designed to use
infinitesimals instead of limits. Two months after the end of the course, a clinical semi-structured
interview (Hunting, 1997) was conducted with one of the students, who had volunteered. A script
was prepared beforehand with questions on change, rate,  accumulation, and the relationships
between them, in both precalculus and calculus contexts, and in multiple representations (verbal,
numerical, graphical, symbolic). Flexibility was allowed for follow-up questions which might be
suggested in-the-moment by student responses. The interview was video recorded, transcribed,
and coded using the framework. 

Results

     Travis [a pseudonym] was first asked “without Calculus, what’s an example where we could
talk about change?” He explained that “you could have two different amounts, and you basically
subtract  one  from the  other  to  get  change”.  He  then  described  an  example  involving  toys
produced, made a table of values, calculated various changes, and drew the graph in Figure 1a.
When asked about rate, he expressed it as the ratio Δy/Δx and calculated it over several different
intervals (see Figure 1b).

When asked about accumulation, Travis said that “it's the sum of each individual change in x
or y value.” For the question, “If a plant grows 3in/week for 2 weeks, then 2in/week for 4 weeks,
then 1in/week for  6  weeks,  how much did it  grow?”,  his  calculations  are  in  Figure  2a.  He
initially wrote the numerical calculations, and when prompted for “a more abstract notation” he
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Figure 1. Travis’ example to explain change and rate on a real interval (a) Travis’ graph (b) Travis’ calculations

 
Figure 2. On a question to calculate an accumulation with a finite sum (a) Travis’ calculation (b) Travis’ graph

added more lines, expressing the accumulation as “R·Δx1 +  R·Δx2 +  R·Δx3”  (“R for rate”)  and
“Δy1 + Δy2 + Δy3 = Δy”.

Travis was asked to make a graphical representation of his calculations, and his work is in
Figure 2b. It includes changes in x (e.g. Δx1=2), changes in y (e.g. Δy1=6), rates (e.g. R=3), and
total changes Δx=12 and Δy=20.

Next, questions involving Calculus were asked. When asked “What is a situation where you
would need calculus to talk about the slope or the rate?”, Travis replied “You need calculus when
you do not have a constant rate on a line, and you want to find the instantaneous rate at a certain
point.” He elaborated by creating the example f(x) = x2 and then calculating dy/dx = 2x, which at
the point (4,16) was 8 (see Figure 3b). In the following excerpt, he describes his reasoning.

Interviewer: Can you indicate on this graph [Figure 3a] what a dx is?
Travis: Sure. You would have to zoom in really closely on the point [draws a circle], and

then you would have a little dy and a little dx. [draws and labels two line segments]
Int: And what do you mean by little?
T: Infinitely small. ...it's a little hard for me to describe it, but zoomed all the way in on

that point, you get a line. The slope of that zoomed-in line is your infinitesimal rate. 

   
Figure 3.(a) Travis drew dx and dy (b) Travis created a function, graphed it, calculated the derivative and dy 

           (c) Travis drew the graph, marked several points, and for each drew a short tangent line and a slope estimate

Given the  graph of  a  function,  Travis  was asked to  draw tangent  lines  and estimate  the
derivative at several points. He did this correctly, as shown in Figure 3c. When asked to solve for
dy in his example, he wrote “dy = 2x dx”. When asked what it means, he said “It means that the
infinitesimal change of y equals the infinitesimal change in x multiplied by the rate.”
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When asked about infinitesimals, Travis said “you only have a point to work with, so you
need to zoom in so far on that point in order to get a line... And the infinitesimal basically gives
you a way to use real numbers to assign values to the changes going on at that infinitely small
point.” He said it is not possible to write down an infinitesimal number, so we use the symbol ε.

Travis was given an application in which the height of a ball was h = 27t – 10t2. When asked
for the rate, he calculated dh/dt = 27-20t; when asked for the units he said “meters per second”.
When asked to compare Δh and  dh, he said “because you're dealing with  dh and  dt, these are
infinitely...  small  changes  in  the ball's  height,  because you're  only doing it  in  relation to  an
infinitely small change in the time. If it was going to be Δh and Δt, it would be a bigger change.
So your Δt may be 2 seconds, in which case your Δh would be a bigger number.”

When asked to compare  dh versus  dh/dt, he said that “dh/dt is a rate, and it is...the rate at
which the height of the ball is changing in relation to time... And dh by itself is just the change in
height of the ball, not the rate at which that height is changing.”

When  asked  about  integration,  Travis  described  it  as  “calculating  the  sum [of  changes]
between two points”. As to types of accumulation, when asked “is there a notation for doing” the
sum in a finite accumulation, Travis responded “the sigma thing”. When asked to compare with
the “Calculus version of the same thing”, Travis responded “this is going to be my integral”.  

When given a slope field and asked about its meaning, he said “these are all representations
of, I guess, instantaneous rates of whatever the function is of these graphs” and each dash “tells
you the direction that the function is going to be going at that point.”

Travis was asked an application question. “A rope has a certain amount of mass m over its
length x. Suppose it has 2x kg/ft at the x-foot mark. How much mass does it have between the 1-
foot mark and the 4-foot mark?” Travis’ correct calculations are in Figure 4a. He was also asked
to sketch a graphical  representation of the solution,  and his inscriptions are in Figure 4b.  It
includes  a  slope  field,  a  solution  curve,  with  Δx=3ft  and Δm=15kg marked.  (He noted  that
“obviously my scale is all messed up”.) He explained his work in the following excerpt.

   
Figure 4. For an application to find mass given density (a) Travis’ calculation (b) Travis’ graph

Int: The first expression you wrote down, where did that come from?
T: You're asking from the 1 foot to the 4 foot mark. So those are my limits...
Int: ...in the original expression, it's the integral from 1 to 4, 2x dx. So tell me how that's

going to give you f(4) – f(1) … Tell me what that means and how that's the thing that
you need.

T:  This  [pointing  to  f(4)  –  f(1)]  is  my  Δy,  for  lack of  a  better  phrase.  And then this
[pointing to the right side] is my rate times my Δx...I know that by multiplying my rate
and my dx will give me my dy… so the 2x times the dx that gives you a dy.

Int: ...what about the actual squiggle, the actual integral mark itself? Is that telling you
something specific or is just something that you write down?
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T: The squiggle is like the letter S stands for sum.
Int: And what is it that you're adding up? If it's a sum, what are you adding up?
T: The values of the mass between 1ft and 4ft. Yeah, the value of mass at 1ft plus the value

of mass at 2ft, or I guess at every infinitesimal increment between 1 foot and 4 foot to
give you the amount that it has between those two points.

While explaining his calculation, Travis noted that he was expecting an  x to appear in the
answer. He explained his confusion about it, eventually sorting it out and referencing the FTC.

I'm thinking I'm... trying to figure out where this x mark on the rope is, but that’s not what
you're asking… There would be other times where you would be asking, how much mass
does it have between the 1ft mark and the x foot mark? … I would even have been happier
having the limitations from 1 to x and be solving for f(x) – f(1) … This is very simple.

In the excerpt below, Travis described some infinitesimals and their quantitative characteristics.

Int: What does dm represent?
T: An infinitely small change in the mass of the rope.
Int: Okay. And in the course of doing this calculation or this problem, how many dm’s are

you going to encounter? 
T: Infinitely many. 
Int: Okay. And dm/dx, what does that represent?
T: That would be my 2x. That would be my, that's my m’(x), my instantaneous rate.

 
Figure 5. Travis represents the integral on a slope field.

When asked to use a slope field to find the integral from x=1 to x=4, Travis said “If you have
an endpoint at four and endpoint of one, you have this little area here of your change in y from
one to four and your change in x. I would shade in this and say that's your integral from one to
four… your  Δy accumulation  would  be  one  and  a  half-ish  and  your  Δx would  be  three…
Basically, you're going to find this area [counting boxes] one, two, three, and like a quarter.” His
inscriptions are in Figure 5. 

In the excerpt below, he discussed two different graphical methods of representing integrals.

When I was taking the class ... I was going to tutoring, and [he] explained [integration] to
me using area…I was like, okay ... but slope field ... at the time I don't remember even
linking it to integrals, which obviously now I see how it does. But all I remember was like,
wow, this is easy. I just draw a line going along with the other lines... this is simple.

Discussion

Travis demonstrated a detailed understanding of the quantities of Calculus. He gave clear
explanations of the concepts of change, rate, and accumulation, and made specific connections
between them. For change, he represented a real change numerically as a difference between two
real numbers and graphically as a line segment; he represented an infinitesimal change both
symbolically (using dx) and graphically (using zooming). For rate, he represented discrete rate
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numerically and symbolically as a ratio of two changes and graphically as the slope of a straight
line. For an infinitesimal rate, he calculated one using formulas, represented it graphically as a
short tangent line (both on the original graph and after an infinite zoom, and subsequently as a
slope field), and described it an instantaneous rate, using both prime and differential notation.
(Although he did not explicitly refer to an infinitesimal rate as the ratio of infinitesimal changes,
he frequently manipulated it as though it were.) 

Travis was able to perform all 3 conversions, from an amount equation to an infinitesimal
change or rate equation, and between the last two. From an equation with “y=”, in addition to
calculating the derivative, he wrote down the infinitesimal change equation with “dy=”. Further,
he was able to assign a quantitative meaning to each term - the infinitesimal change in  x, the
infinitesimal change in  y,  the infinitesimal rate - and interpret the equation as a relationship
between those quantities,  both in an abstract  scenario and an application where he assigned
correct units to each. Also, he distinguished between infinitesimal rate and change, in meaning
and use. He converted between the instantaneous change and rate equations by multiplying or
dividing by dx. In a standard Calculus course, students are told both that one cannot manipulate
in that way and individual differentials have no meaning, as well as to manipulate that way and
use  isolated  differentials  in  the  procedure  of  integration  by  u-substitution.  The  inherent
contradiction has been noted before (Ely, 2021). After Calculus instruction with infinitesimals,
Travis had a coherent concept image (Tall & Vinner, 1981) of these equations, in meaning and in
symbolic manipulation.

Travis was able to describe accumulation using the quantities of change and rate. In the finite
case, he stated that it was the finite sum of changes; given a piecewise constant rate, he was able
to calculate the accumulation using arithmetic, and graph it as a piecewise linear graph. He also
stated that the accumulation was a sum of infinitely many infinitesimal changes; given a formula
for instantaneous rate he calculated the accumulation with an integral, he graphed it as a solution
curve  in  a  slope  field.  He  also  (after  some confusion)  described  the  calculation  both  for  a
constant upper boundary to produce a constant answer and a variable upper boundary to produce
a function answer (the FTC). 

 Travis expressed accumulation as a finite sum of changes in the output variable as well as a
sum of rate times input variable change terms (f(b) – f(a) = Σi Δyi = Σi ri·Δxi). For integration, he
made a parallel infinitesimal statement,  f(b) –  f(a) =  ∫ f’(x)  dx. Although he did not explicitly
write the formula ∫ dy, in one application he did describe the integral which calculated the total
mass as a sum of infinitesimal masses, and separately described how  dy can be replaced with
f’(x)  dx.  For integration,  previous research has shown that applications are very difficult  for
students (Wagner, 2018; Jones, 2015), and that quantitative understanding is rare (Jones, 2015;
Fisher & Samuels, 2016). Similar quantitative meanings for integration have been discussed in
previous studies (Oehrtman & Simmons, 2023; Jones, 2015), but instruction relying on limits
results in dx having no rigorous definition.

Travis  made strong connections  between the  real  and infinitesimal  versions  of  the  same
concepts. For change, he indicated Δx as a horizontal segment on the original graph, and he
indicated  dx as a horizontal segment on the graph visible after you “zoom in really closely…
[it’s] infinitely small”. In the ball problem, he referred to dh and dt as “infinitely small changes”
whereas “Δh and Δt, it would be a bigger change”. For rate, Travis drew (piecewise) lines for
(piecewise) constant slopes, labeling slope values. For instantaneous rate, he described “zooming
in” at a point to reveal a straight graph; he drew that straight tangent line on both the original
graph and a zoomed-in graph, also marking the slope value at a point. For accumulation, he
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wrote the formula as a finite sum with Σ, and he used ∫ as an infinite sum of infinitesimals, and
integration  would  be  needed  when  the  rate  is  non-constant.  He  noted  that  there  would  be
“infinitely  many”  dm’s  and  dx’s  in  calculating  the  integral  for  mass.  He  made  a  direct
comparison between Δy and  dy in the context of rate,  change, and accumulation.  In various
contexts,  Travis  made  statements  about  real  quantities  and  incorporated  infinities  and
infinitesimals  to  express  corresponding  statements.  Thus  he  exhibited transfinite  thinking

(Samuels, 2023) underpinning his Calculus conceptions. Learner connections between finite and
infinite scenarios have been investigated previously (Oehrtman, 2009; Mamolo & Zazkis, 2008),
but only recently was this term rigorously defined, or were the connections examined for their
contributions to productive conceptions.

One  initial  point  of  confusion  for  Travis  concerned  whether  or  not  the  solution  to  an
integration  application  should  contain  a  variable.  Previous  research  into  the  Fundamental
Theorem of Calculus (FTC) has shown the extreme difficulty students have in recognizing the
upper  bound  as  the  variable  (Thompson,  1994).  In  this  investigation,  Travis  eventually
remembered the two relevant types of question, a fixed upper bound or a variable upper bound,
even commenting that he would be “happier” with the variable problem, exhibiting knowledge of
the FTC and the functional nature of its formula.

Another point of confusion was the graphical representation of the integral. Working from a
slope field, Travis drew a solution curve, then shaded an area and stated that was the result of the
integral. He conflated the two graphical representations, the solution curve in a slope field, and
the area under the integrand function. This is a conception not previously documented, partly due
to  the  dearth  of  research  on  Calculus  instruction  with  infinitesimals.  Travis  discussed  one
possible cause, working with a tutor whose instruction did not align with the approach of the
class. Previous research has shown that conflicting instruction can cause productive notions of
infinitesimals to erode (Simmons et al., 2022). Having two separate graphical representations for
the same situation or calculation is inherently confusing (the integrand plays different roles). One
implication  for  teaching is  the  need to  emphasize  this  distinction  as  much as  possible.  The
optimal  pedagogy  is  a  topic  for  future  inquiry.  Other  directions  for  future  research  include
investigating quantitative conceptions of the rate equation, and the FTC.

It is important to point out that data in this study was drawn from a single student. I cannot
claim that any observations generalize to the entire population. Rather, the analysis sheds light
on how a student might form conceptions about Calculus and integration using infinitesimals.
Due to the relative novelty of the context, this signifies a contribution to the literature.

Conclusion

In this study, I examined an understudied area of student understanding in Single Variable
Calculus, conceptions of integration after one semester of Calculus I taught using infinitesimals
instead of limits. The data showed rich connected student conceptions of integration, supported
by  conceptions  of  change  and  rate,  in  multiple  representations.  These  conceptions  were
expressed  both  for  real  quantities  and infinitesimal  quantities,  connected  by  the  student  via
transfinite thinking.

Calculus instruction using infinitesimals is not typical practice. There is a growing body of
evidence that it is a productive approach for students to make quantitative meaning in Calculus,
and this study is a contribution in that direction. It also demonstrated how student knowledge of
the quantities and relationships within Calculus, and their connection to prior knowledge, can be
exhibited by students, and productively analyzed using the ACRA Framework.
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Instructors’ Use of Student Projects in Postsecondary Quantitative Reasoning Courses in Ohio

Deependra Budhathoki
Defiance College

Student projects in a postsecondary Quantitative Reasoning (QR) course can encourage students
to think deeply about connections between a real-world situation and the corresponding
mathematical or statistical model. These projects can help students collaborate and improve
their 21st-century skills, such as critical thinking and oral and written communication. This
paper reports how 13 QR instructors across two studies at 11 public postsecondary institutions
in Ohio implemented student projects. We analyzed the course syllabus for each participating
instructor, conducted at least one semi-structured interview, and observed their teaching using
six Instructional Quality Assessment rubrics. Data revealed substantial variation in the
implementation of student projects, resulting in varying opportunities for student learning. Our
findings indicate that student projects are a critical variable in Quantitative Reasoning.

Keywords: Quantitative Reasoning, student projects, and project-based learning and assessment.

An entry-level postsecondary (gateway) QR course includes nontraditional mathematical
goals for students (e.g., collaboration and oral and written communication using quantitative
arguments) that aim to prepare them to solve problems in everyday and professional contexts
(Mathematical Association of America [MAA], 1996; Stump, 2017). Policy documents and
professional opinions call for methods of instruction and assessment that build the student QR
competencies of interpretation, representation, calculation, analysis, assumptions, and
communication (e.g., AAC&U, 2009; Boersma et al., 2011). They also emphasize the need for
students to think deeply and critically about real-world phenomena and link them to relevant
mathematics and statistics (Foley & Wachira, 2021).

QR instruction is relatively common to include projects requiring students to solve real-world
problems and construct associated knowledge and skills (Lutsky, 2008; MAA, 1996). Learning
via such projects provides constructivist and collaborative opportunities for students to grow
academically and nonacademically (Harwood, 2018; Virtue & Hinnant-Crawford, 2019).
Traditional mathematics assessments—quizzes, tests, and exams—do not address students’
engagement in and learning through the projects and typically do not emphasize bona fide
real-world problem-solving, collaboration, or communication. Professionals, including Virtue
and Hinnant-Crawford, argue that students’ learning in a nontraditional course that relies on
projects can only be appropriately assessed through their engagement in similar opportunities,
that is, project-based assessment.

Student Projects in Quantitative Reasoning
Project-based learning (PBL) and project-based assessment (PBA) address issues related to

implementing several formative assessment strategies in mathematics courses, which may be
challenging to implement in a typical mathematics course (Chanpet et al., 2020). PBL and PBA
tasks include several nontraditional instructional and assessment tools, such as observation,
performance tasks, portfolios, presentations, taxonomies of experts, reflection writing, and peer-
and self-assessment in different contexts (Noonan & Duncan, 2005; Tal et al., 2000). These tools
also allow students to enhance and demonstrate their understanding of mathematical
relationships in several real-world phenomena.
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Quantitative Reasoning courses and project-based learning and assessment (PBLA) share
many things, including implementing real-world tasks to help students solve problems from their
everyday contexts. Using rich tasks in projects for instruction and assessment in QR courses can
help instructors understand a student’s misconceptions and determine a student’s learning gaps
(Kish, 2017). QR and PBLA constitute a social constructivist approach requiring students’ active
engagement and critical inquiry into genuine phenomena. Students’ coordination, collaboration,
and communication are their essential components. Several recent studies have identified group
projects as a critical variable for QR instruction and assessment (Budhathoki, 2022; Budhathoki
et al., 2024; Foley et al., 2023). Therefore, PBLA can be instrumental in enhancing and assessing
student learning in QR courses.

National and state-level recommendations (e.g., Leitzel, 2014; MAA, 1996) emphasize active
student engagement and the critical inquiry of real-world phenomena. However, little or nothing
is said about assessing student learning or using projects. Moreover, most gateway mathematics
instructors lack experience using projects in their teaching. QR instructors in Ohio (the research
contexts reported in this paper) and at the national level often say their unawareness about the
types of projects to select, the number of projects to implement during a semester, ways to
engage students in a project, and learning outcomes to focus on through such projects.
Consequently, there are varied QR instructional and assessment practices in Ohio.

This paper reports the combined findings of two studies conducted to explore the formative
assessment practices of QR instructors in Ohio public postsecondary institutions; the first was a
pilot study, and the second a dissertation study. However, this paper focuses on reporting only
QR instructors’ implementation of student projects. The findings reported here may be
significant to novice and experienced instructors who strive to implement projects in their QR
teaching and similar other freshman-level mathematics courses.

Multiple Case Study and Cross-Case Analyses
The Ohio Department of Higher Education (ODHE) created common student learning

outcomes and transferability across its 36 public community colleges and universities for all
gateway mathematics courses, including QR (ODHE, 2015). Foley and Wachira (2021) and
Leitzel (2014) have touted QR as the most appropriate gateway mathematics course for
non-STEM majors. To earn transferability, the ODHE (2015) requires that critical thinking be the
centerpiece of QR, that a QR course develops the competencies of interpretation, representation,
calculation, analysis, assumptions, and communication, and that a QR course focuses on three
main content areas: numeracy, probability and statistics, and mathematical modeling. However,
the ODHE (2015) does not specify how to assess students’ achievement of such learning
outcomes. However, this is a part of the process for a given institution to have its QR course
certified to be transferable across the state.

The researcher employed a multiple case study in both examinations. He defined a case in the
pilot study as an instructor who taught at least one section of QR courses in public postsecondary
institutions in Ohio during data collection, which he narrowed to the instructor teaching at least
one section of Ohio Transfer 36-approved QR courses for the dissertation study. The researcher
employed a purposeful selection of cases to recruit 6 instructors (3 male and 3 female) from 2
universities and 3 two-year colleges during the Spring of 2020 for the pilot study and 8
instructors (2 male and 6 female) from 3 universities and 5 two-year colleges during the Summer
and Fall of 2021. However, 1 female instructor from a two-year college dropped off from
continuing her participation, still giving consent to use the data thus far. Also, 1 male instructor
from a two-year college participated in both studies, totaling 13 QR instructors from 11 public
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postsecondary institutions in Ohio. The instructors had a wide range of positions and experience;
they ranged from graduate students to full professors. Their experiences in QR teaching ranged
between one semester and six years. Also, some of them were working as course coordinators at
their institutions.

The researcher conducted one qualitative interview with each instructor and analyzed their
course syllabus in the pilot study. However, he conducted at least two virtual or in-person
interviews for the dissertation study, analyzed course documents including course syllabus and
teachers’ artifacts, and observed two consecutive classes using 6 IQA rubrics (a) Rigor of
teachers’ questions, (b) Accountable talk, (c) Clarity and detail of expectations, (d)
Communications of expectations, (e) Teachers’ press, and (f) Students providing (Boston, 2019).

The data reported in this paper mainly include that obtained from the instructors’ course
syllabi analyses. The researcher categorized the instructors’ project-related data into several
categories, like the number of projects implemented during a semester, weights to the total
course grade that instructors provided for projects and associated presentations, the content
domains covered through the projects, whether the projects were individual or group assignments
and the time they assigned the projects to students. The researcher transcribed the verbal data for
the interview data and created codes using value coding focusing on the instructors’
intrapersonal and interpersonal perceptions and experiences in implementing projects in this
course (Saldana, 2016). Then, he developed themes by merging similar and related codes. He
used the cross-case analysis technique to explore commonalities and differences in the
instructors’ actions, activities, and processes regarding project implementation (Stake, 2006).

Results and Discussions
The data analyses revealed exciting information about the instructors’ use of student projects in
teaching QR. Though all 13 instructors included projects in their course syllabi, they had mixed
perceptions about using projects and associated presentations in this course. They also had a
great deal of variation in their types, the number of projects, and how to implement them. Table 1
and Table 2 represent information obtained from the analysis of the course syllabi from the pilot
study and the dissertation study, respectively. Both tables consist of the instructors’ plans

Table 1: Use of Student Projects by Instructors in the Pilot Study
Instructors Number

of
Projects

Weights
for

Projects

Content Domains Individua
l or

Group

Time of Implementation

Amanda 3 45% Financial literacy
Statistics
Modeling

Group One at each third of the
semester

Cole 1 10% Media literacy Individua
l

The second half of the
semester

Dani 3 40% Business math
Statistics
Modeling

Group One at each third of the
semester

Evan 1 10% Statistics Individua
l

End of the semester

Fawn 1 4% Comprehensive Group End of the semester
Zach 1 10% Media literacy Individua

l
The second half of the

semester

26th Annual Conference on Research in Undergraduate Mathematics Education 397



for implementing projects, including the frequency of the projects; weights given to projects to
determine student grades; content domains emphasized through the projects; nature of the
projects; and the implementation time. Zach is included on both tables as he participated in both
studies. Still, Zach had different project implementations during the two semesters of his
participation; an increment in his number of projects and associated weights to the course grades
may indicate QR instructors’ increasing use of student projects in public postsecondary
institutions in Ohio.

Wide Range of Number, Weights, and Time of Implementation
The instructors provided a wide range of importance to student projects and associated

presentations in their course syllabi. The weights of student projects and presentations to the total
course grades ranged between 4% and 75% through 1 to 8 projects a semester; the average
number of projects a semester was 13, with an average weightage of 33%. However, as discussed
above, this data may change based on their implementation; in his dissertation study, the
researcher discovered that the average weight for student projects based on the 8 instructors’
implementation decreased from 28.8% of total course grades to 27%, but with an increase in
student presentation weights, from 12% to 15%. Out of 13 instructors reported in this study, 2
instructors (Evan & Fawn) provided a little weight to their projects to determine the course
grades; they employed only one project during the semester and, like a traditional homework
problem, required students to solve the given problems with the provided information. On the

Table 2: Use of Student Projects by the Instructors in the Dissertation Study

contrary, the other 2 instructors (Julie & Kande) used 8 and 6 projects in a semester, offering
40% and 75% weights to the total course grades. Still, these two instructors also implemented
their projects like a traditional homework problem, emphasizing students’ abilities to solve the
problem, not the QR competencies like interpretation, representation, analysis, assumptions, and
explanation. These 4 instructors did not have firm beliefs about using student projects in this

Instruct
ors

Number
of
Projects

Weights
for
Projects

Content Domains Individual
or Group

Time of
Implementation

Ashley 1 30% Student choice Group Over the semester
Clara 3 40% Personal finance,

Statistical modeling
Group One at each third of

the semester
Gordon 2 30% Financial Literacy,

Statistical modeling
Group One in each half of

the semester
Julie 8 40% Recent topics Individual Every other week.
Kande 6 75% Recently topics Individual Every other week
Susan 4 50% Numeracy,

Statistics,
Modeling,
Comprehensive

Group One in about a month.

Yara 4 60% Financial literacy,
Statistics,
Media literacy,
Modeling

Two
individual
, two
group

One in about a month.

Zach 2 20% Media literacy,
Personal Finance

Individual One in each half of the
semester.
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course, but they had to put them in their syllabi as the Ohio Department of Higher Education
required. However, some instructors heavily relied on student projects to determine course
grades even though they did not have much weight on student projects. For example, Ashley and
Susan from the dissertation study heavily relied on student projects. Though they had exams and
quizzes in their course syllabi, they implemented such assignments as open, take-home group
projects. They stated that they had to put exams and quizzes in their course syllabi as the
mathematics departments in their institutions were traditionally required and required them to
use exams and quizzes at least in some manner.

The instructors also had variations in the time they implemented the student projects, mainly
depending on the number of projects during the semester. The instructors using multiple student
projects generally divided the whole semester duration by their number of projects and used the
results as the duration for each project. However, Evan and Fawn implemented their only one
project at the end of the semester, like a test for a content domain or comprehensive exam. It is
worth restating that these two instructors did not rely much on student projects. Likewise, though
Julie and Kande implemented one project every other week, they used their projects as different
names for their unit homework.

Content Domains
Even though the 13 instructors had variations in the number of, weights to, and time of

implementation of their student projects, they had some commonalities in the content domains
their projects covered. Notably, only 9 of the 13 instructors required students to work on any
given quantitative situation, identify the available quantitative information, choose appropriate
mathematical processes to solve the problems, make necessary assumptions, and derive
conclusions. They provided open-ended quantitative situations, embracing the three content
domains the Ohio Department of Higher Education suggested––numeracy, probability and
statistics, and mathematical modeling. Their practices embrace all or any of the six QR
competencies––interpretation, representation, calculation, analysis, assumptions, and
explanation in the projects. The commonalities in content domains were more among the
instructors who used more than one project during a semester. Notably, 7 instructors used more
than one project during a semester, excluding the two who claimed to implement projects in each
content domain. They all assigned a project in numeracy, budgeting, or personal finance. The
statistical project was another popular choice; 6 of 7 instructors assigned multiple projects and 1
assigned only one project implemented statistical projects, requiring students to calculate and
reason with statistics.

Similarly, 4 among the 13 instructors assigned mathematical modeling projects to students. In
addition, 4 instructors included media literacy in their projects. In addition, 2 instructors, who
had only one project, either let students choose any project they found interesting or provided a
comprehensive worksheet; they also had chances to highlight some or all of the content domains
discussed above.

The other 4 instructors, who implemented their projects like a traditional worksheet problem,
generally emphasized students’ ability to use recently learned mathematical knowledge and skills
to solve problems. They usually provided all the required information, suggested appropriate
mathematical steps, and required students to calculate answers. Their practices mainly
emphasized 3 of 6 QR competencies––interpretation, representation, and calculation.
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Collaboration and Communication
The majority of the 13 QR instructors emphasized student collaboration through their

projects. Notably, 8 of the 13 instructors assigned some or all projects in groups and emphasized
that students work together to understand quantitative situations, collect data, prepare reports,
and present findings and conclusions. The instructors used various innovative approaches to
ensure collaboration among students. Some instructors collected effort grade forms from each to
determine how the team members contributed to the projects. Likewise, some required each
member to submit individual reports, reserving rights to grade only one paper per group and
assign grades to the whole group.

All QR instructors required students to submit a written report from their projects, but only 7
incorporated oral presentations. Depending on the nature of their projects, the instructors
required students to prepare a detailed report individually or in a group or submit the worksheet.
However, Cole and Zach needed students to prepare a report, develop QR activities out of their
media literacy projects, and exchange with peers to seek mutual feedback.

The instructors’ student presentation implementation was closely related to the nature of their
projects, group or individual. Seven instructors implemented student presentations, and they all
assigned group projects. Only the instructor who implemented group projects but not student
presentations was the one who did not believe much in student projects. Still, there was a
significant variation in the instructors’ implementation of student presentations. While other
instructors required students to present their project findings and conclusions, Gordan allowed
students to present any interesting quantitative context. The four instructors who did not require
students to present included the 4 instructors using their projects as worksheet problems and the
2 instructors from the same two-year college, Cole and Zach. Many of these 6 instructors argued
that adding a presentation would add anxiety to students. They stated that students in QR courses
often have low confidence in their mathematical abilities, and requiring them to present on a
mathematical topic may adversely affect their learning.

Group Projects as a Critical Variable for Formative Assessment in QR
The dissertation study discovered group projects as a critical variable for formative

assessment in Quantitative Reasoning courses. The 8 instructors in this study generally relied on
group projects for students’ learning with collaborative and collective endeavor; their average
weight for group projects was 20.5%, which was 56.5% of their average collaborative
assessments. They also had a strong positive association between collaborative assessments and
group projects, Five (5) of the 8 instructors used group projects, highlighting students’𝑟 =. 87.  
holistic development and ability to use the mathematical content in real-world problems through
their group projects. They mostly used open-ended, ill-defined, and high cognitively demanding
tasks in their group projects, emphasizing the reasoning competencies of QR, like analysis,
assumption, and communication. They mostly gave less instruction and support and sought
students’ collaboration and communication to accomplish the projects. The group projects also
had a close connection with student presentations. Only the instructors who assigned group
projects required their students to present the findings and conclusions of the projects.

Group projects were also associated with the instructors’ formative assessment strategies.
Only the instructors using group projects asked a series of checking and advancing questions to
check students’ understanding, seek clarification, connect ideas, and further their learning and
understanding, usually in a whole class setting. Likewise, only such instructors had sophisticated
feedback practices; they provided formative feedback while students worked on their group
projects and in-class activities, emphasizing clarifying students’ misconceptions, furthering
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understanding, and fostering self-esteem and confidence. Likewise, the instructors generally
orchestrated students’ peer- and self-assessment only in the group projects and presentations. The
peer- and self-assessment also highlighted the students’ collaboration, communication, and
reflective understanding abilities.

The group projects also connected to the instructors’ scores in the IQA rubrics. Instructors
who employed group projects scored higher than those who used only individual projects. For
the 7 instructors in the dissertation study, the average score on the 6 IQA rubrics was 3.08 out of
a possible 4, with at least 3 in each rubric, but the Accountable Talk. This study also suggested
collaboration and communication as the premise and results for the group projects.

Conclusions
A Quantitative Reasoning course aims to develop students’ quantitative and reasoning

abilities to solve problems in their everyday and professional contexts. A typical QR instruction
uses projects that include real-world tasks and performs as constructive and collaborative
platforms where students work individually or in groups to foster their QR competencies.
Therefore, many professional communities and policy documents explicitly or implicitly suggest
instructors use projects as both instruction and assessment in QR courses.

Quantitative Reasoning instructors in public postsecondary institutions in Ohio greatly varied
their plans for and implementation of student projects. They mainly varied in the number of
projects they used in a semester, associated weights to determine course grades, the content
domains covered by the projects, and the implementation, individual or in groups. There were
significant differences among the instructors who used one project versus multiple projects in the
semester. Likewise, in implementation, the instructors varied when they assigned student
projects, the nature of such projects, opportunities for students to collaborate while working on
projects, instructors and peer feedback practices, and the learning competencies emphasized
through the projects. The instructors’ student presentation and formative assessment practices
mainly depend on the nature of their projects; only the instructors who employed group projects
required students to present their findings and conclusions. The instructors’ variations in their
project implementation provided different learning opportunities for their students. Such
variations may challenge the transferability of this course. Ten among 11 institutions represented
here offered the Ohio Transfer-36 approved QR courses. However, the instructors mostly used
fermi projects, mainly covering the three content domains the state authority
suggested–numeracy, probability and statistics, and mathematical modeling.

The discussion in this paper restated several findings of the first researcher’s dissertation
study: (i) a great deal of variation in QR instructors’ use of student projects in public institutions
in Ohio, (ii) group projects as a critical variable for formative assessment in QR. The group
projects, supported by instructor autonomy, create opportunities for students to solve real-world
problems, fostering their six QR competencies––interpretation, representation, calculation,
analysis, assumption, and communication (AAC&U, 2009; Boersma et al. 2011), and (iii)
collaboration and communication as the premise for and results from the group projects.
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Do Instructors Value Examples in Proof? 
 

Jordan Kirby 
Francis Marion University 

During the transition from procedure-based mathematics courses to proof-based mathematics 
courses, many students struggle to understand the purpose of examples. A productive use of 
examples can help both the generation and understanding of proofs. Although recent advances in 
research have argued the importance of productive uses of examples, there is little research 
investigating the alignment of research with current practices of instructors or of how the 
instructors view research on example-use. Findings from this study indicate instructors are 
aligned with mathematics education research on differing levels of example-use. However, many 
instructors may be hesitant to see examples be used by their students in written work. Despite 
this hesitation, instructors still encourage students to use examples to aid their understanding of 
proof. 

Keywords: Proof, Examples, Instructors 

Introduction 
Student difficulties in understanding and producing proofs are well documented in 

mathematics education research (e.g., Ellis et al., 2019; Harel & Sowder, 2007; Stylianides, 
2007). One such difficulty with proving comes from the effective use of examples to aid proof 
production and understanding (e.g., Aricha-Metzer & Zaslavsky, 2019; Epp, 2003; Zaslavsky & 
Knuth, 2019). Although there is much research in understanding how and why students use 
examples when proving, little research exists studying instruction in proof classes based around 
examples (Zaslavsky & Knuth, 2019). Zaslavsky and Knuth (2019) noted, “Very little research 
has focused on the nature and design of instructional practices that facilitate the development of 
students’ abilities to strategically think about and productively use examples as they engage in 
proving-related activities” (p. 243).  

 This paper begins the process of addressing Zaslavsky and Knuth’s (2019) call for research 
by investigating the perceptions of students’ use of examples held by introduction to proof (ITP) 
instructors. To develop effective instructional interventions, it is imperative to understand what 
practitioners currently do in their classrooms (Desimone & Garet, 2015). This study aims to lay 
groundwork necessary for future research to implement instructional interventions by 
ascertaining the current perceptions and reactions held by ITP instructors across the United 
States. To accomplish this goal, I seek to answer the following research question: How do 
instructors of ITP classes perceive students’ understanding and use of examples when 
proving? 

Theoretical Framework 
I draw upon the work of Aricha-Metzer and Zaslavsky (2019) in distinguishing between 

productive and unproductive use of examples when proving. Aricha-Metzer and Zaslavsky 
defined productive examples when the example helped the prover make progress or gain insight 
into key aspects of the proof. An unproductive use of examples in proof was when the prover 
used an example but no progress towards developing or understanding a proof was made.  

One of the aspects of proof in my work is how examples are used and potentially included in 
the formal written work provided by students in an ITP course. Balacheff (1987) described 
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categories of example-use in proof; these categories include: naïve empiricism, crucial 
experiment, and generic example. Table 1 summarizes these categories.  

 
Table 1 Balacheff (1987) example-use categories 
 

Name of Category Definition (From Balacheff 1987, p. 19-20) 

Naïve Empiricism Drawing from the observation of a small number of cases the certainty 
of the truth of an assertion 

Crucial Experiment A process of validation of an assertion in which the individual explicitly 
poses the problem of generalization and solves it by betting on the 

realization of a case that he recognizes as being as unspecific as possible 

Generic Example Explanation of reasons for the validity of an assertion by carrying out 
operations or transformations on an object present not for itself, but as a 

characteristic representative of a class of individuals 

 
Aricha-Metzer and Zaslavsky (2019) explain that when examples are used akin to the generic 

example level described by Balacheff (1987), the examples used by students were typically 
classified as productive. In defining generic example, I build on the work provided by Rө and 
Arnesen (2020) citing Reid and Vallejo Vargas’ (2018) two criteria of a generic example: 
evidence of awareness of generality and mathematical evidence of reasoning. In short, the 
argument must conclude with a general claim about the original problem to be proven as well as 
contain reasoning directly linked from the example to be classified as a generic example.  

Methodology 
Participants of this study include university professors across the Southeastern United States 

actively teaching their university’s version of an ITP course. Eleven professors agreed to 
participate in the study with varying demographic information such as Carnegie classification of 
the university, type of Ph.D. received, tenure at the university, and self-described teaching style. 
One-hour semi-structured interviews were conducted with all participants online through Zoom. 
Participants were emailed two questions before the study shown in Figure 1.  
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Figure 1. Growing S pattern task and polygon diagonal task 

Participants were not expected to solve these problems before the meeting. The problems 
were chosen to be easy enough to solve for most faculty members during the interview so time 
could be spent discussing student use of examples rather than proving the claim. Four 
participants mentioned they would use or have previously used one or both of the questions 
shown to them in the interview. Ten of the eleven participants expressed belief these two 
questions were appropriate for early semester in an ITP course.  

During the interview, participants were shown three student work samples for each of the 
two questions provided. These student work samples were chosen to exemplify the three levels 
of Balacheff’s (1987) framework on example-use. Figure 2 details one of these student work 
samples: Carla at the crucial experiment level solving the growing S pattern task. 

 
Figure 2. Carla solving the growing S pattern task at the crucial experiment level. 
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During the interviews, the order of the two questions was randomized as was the order the 
student work samples were shown. Student work samples were always kept clustered so a 
participant would either receive the three growing S pattern task solutions first or the three 
polygon diagonal task solutions first. When presented with student work, participants were asked 
to mention anything they noticed about the student work sample. Participants were informed this 
may include if they believe the student is correct, if they liked what the student did, if they had 
comments on any of the student work, if they had seen something similar to this solution in their 
classroom, or any questions they would have as instructors if a student in their class presented 
them with a solution like this as a homework assignment.  

After responding to all six student solutions, participants were asked to group the student 
solutions into as many or as few categories as they deemed appropriate and name each category. 
Finally, participants were asked to rank the six student responses from 1 to 6 with a response of 1 
signaling the best attempt at a proof and a response of a 6 signaling the most work needed to be 
done for a prof. After finalizing their rankings, participants were asked to provide instructional 
feedback to advance the students forward whom they ranked best and worst. This manuscript 
will focus on the ranking task and transcript from across the responses to student solutions. 

Analysis 
Video data from Zoom interviews with faculty were transcribed by talk turn. I define a talk 

turn as all utterances spoken by one participant until interrupted by the interviewer. This data 
was then open coded for common remarks about students’ example use among the faculty 
participants. In order to be considered as a potential code, the code theme had to be included at 
least twice within the same participants’ transcript and across three different participants. For 
instance, Dr. Amanda’s transcript showed a potential code for mathematical induction. This was 
coded when Dr. Amanda remarked discussing Carla’s work, “Okay, so here’s some induction 
ideas. You’ve got the base case. And a small case for the largest.” Similarly, Dr. Amanda 
remarked on Nancy’s work (naïve empiricism, growing S pattern task), “[Nancy] tried a smallest 
case. And the larger case, is suggesting that there’s maybe some more idea there of like, maybe I 
can interim check intermediate cases, which sort of feels like you’re building to induction.” Dr. 
Amanda continued to note similar remarks about two other participants’ work. This was 
sufficient within Dr. Amanda’s transcript to be a potential code. If this code showed up in 
another transcript from another participant, I included the code as a theme. For the ranking task, 
screen captures were taken and compiled to look for common rankings. The rankings were 
compiled into a table with the feedback given for each participant coded as described earlier.  

Results 
I will answer my research question in two parts. First, I will list how participants ranked the 

student responses. Then, I will discuss one of the common themes that emerged from 
transcribing the data. 

Rankings 
Participants were asked to rank the six student work samples from a 1, signaling the best 

attempt at a proof, to a 6, signaling the worst attempt at a proof. The six student work samples 
were split between the two questions listed in Figure 1 with one student work sample at each of 
the levels described by Balacheff (1987). Table 2 shows the rankings of each student argument 
across the 11 faculty participants. 
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Table 2. Participant rankings of student work samples from 1 to 6 
 
 

1st 2nd 3rd 4th 5th 6th 

Gina’s argument 
(generic example) 

10 1 
    

Jacob’s argument 
(generic example) 

1 9 1 
   

Carla’s argument 
(crucial experiment) 

 
1 9 1 

  

Eric’s argument 
(crucial experiment) 

    
8 3 

Aaron’s argument 
(naïve empiricism) 

  
1 5 

 
5 

Nancy’s argument 
(naïve empiricism) 

   
5 3 3 

 
Table 2 shows how frequently each student was ranked in positions 1 through 6 in the 11 

interviews. This table gives evidence to the participant’s inclination to rank students’ arguments 
in alignment with the levels of example-use described by Balacheff (1987). Ten of the 11 
participants ranked Gina’s argument as the best attempt at a proof. Many participants expressed 
although they similarly liked Jacob’s argument, the design of the growing S pattern task led to a 
seemingly more appealing argument leading to Gina’s ranking above Jacob’s. Although Eric 
(crucial experiment – polygon diagonal task) was positioned to exhibit a more robust use of 
examples than students at the naïve empiricism level, some of the wording used by Eric caused 
concern for many participants. Eric included statements such as, “This led me to a pattern” and 
“If my pattern holds,” without every explaining what his pattern was. Most participants 
expressed concern with these phrases when ranking Eric and decided to rank him in the bottom 
two for lack of clarity.  

Theme of Acceptance of Example-Use 
A common theme that emerged from the interviews was the theme of acceptance or rejection 

of example-use. Of the 11 interviews conducted, 5 participants expressed concern with seeing 
examples of any form included in the written work shown by students. The other six participants 
alternatively expressed interest and praise for the use of examples to aid proof production and 
understanding.  

The theme of acceptance or rejection was common amongst all 11 participants. A participant 
was classified as either accepting or rejecting examples entirely based on unprovoked remarks of 
the first phase of the interview responding to student work samples. All participants expressed 
their preference of acceptance or rejection of examples at least twice within their interview. The 
acceptance category included comments promoting student reasoning and praise of the use of 
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examples to aid the understanding or production of the proof. The rejection category instead 
expressed concern in every instance for the example included in the written work and felt the 
proof was more lacking with the inclusion of the example. There were no differences in 
demographic information between the acceptance and rejection groups. 

One instance of an acceptance category comes from Dr. Tucker. When responding to Jacob 
(generic example – polygon diagonal task), Dr. Tucker remarked, “So, I do like the, I guess he 
kind of start out with, you know, thinking of a fixed number. Just to kind of get an idea of what 
to do with it.” Later, Dr. Tucker similarly commented on both Gina (generic example – growing 
S pattern task) and Carla’s (crucial experiment – growing S pattern task) work praise for the 
pictures drawn and an interest in having more students use this type of reasoning. These 
comments were sufficient to include Dr. Tucker in the acceptance of example-use category. 
Participants in the acceptance category did not accept all forms of examples as sufficient for 
proof. Five of the six participants in this category expressed concern for both Nancy (naïve 
empiricism – growing S pattern task) and Aaron’s (naïve empiricism – polygon diagonal task) 
use of examples in their proof. Dr. Tucker commented on both Eric (crucial experiment – 
polygon diagonal task) and Aaron’s work, 

I guess generally, a pitfall I see with students is trying to just do a couple of examples. 
And then that kind of just, I know this doesn’t say prove (referring to the wording of the 
question given), but kind of thinking that counts as a proof. And yeah, it feels like they 
just kind of need to bring more justification of why would this work in general. 

Although Dr. Tucker and others in the acceptance of example-use category appreciated the work 
shown by students when proving, this did not mean they accepted incomplete proofs. 
Participants in the acceptance of example-use category expressed appreciation for the productive 
uses of examples as described by Aricha-Metzer and Zaslavsky (2019) and concern for the 
unproductive use of examples. 

Participants in the rejection category responded to student work regardless of Balacheff’s 
(1987) associated level with explicit concern for the written inclusion of examples in the product 
produced. These comments were made for both productive uses of examples as well as 
unproductive uses of examples. For instance, Dr. Hubert remarked about Gina’s work, “I mean, 
it’s reasoning by example. Which is always rough. I would say the n minus one, n plus one part 
could have helped me earlier on.” Dr. Hubert here refers to how Gina starts with a drawing of a 
specific case. From this case, Gina gathers information about the nature of the problem and 
correctly answers the problem producing a generic formula to solve the growing S pattern task 
along with a short algebraic proof. Dr. Hubert expressed concern that Gina left the reasoning 
with her example in the work instead of removing this first.  

Later in the interview, Dr. Hubert again remarked about Gina’s work, “So I’m struggling 
right now with if you can do this (referring to Gina’s formal answer at the bottom of the page), 
how does it not stick? I mean, I ought to be able to just state that part earlier right?” Dr. Hubert 
was struggling in the interview to understand why if Gina knew the complete answer she could 
not remove the discussion about how she arrived at the answer and instead state her proof more 
formally. This idea of formality was raised by Dr. Sarah about Jacob’s work with examples 
commenting, “The fact that Jacob does still have, like the thinking about his example. To me, I 
would not want to see evidence of it in the proof.” The rejection of examples category was 
largely defined by the difference in how formality was viewed as a necessary condition in an ITP 
course. 
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Discussion and Conclusion 
This research looks to make progress in answering the call to action from Zaslavsky and 

Knuth (2019) to include more instructional tools about examples in proving. I set out to answer 
my research question: How do instructors of ITP classes perceive students’ understanding and 
use of examples? Answering this question will assist future researchers in developing 
instructional interventions for practitioners of ITP courses by considering the current state of the 
field. I answered this research question in two ways. I first answered my research question 
through the participants’ rankings of the provided student work based on the completeness of a 
proof. Second, I showed a theme for common responses to student work involving example-use 
through the acceptance or rejection of examples in proving. 

Through the ranking task, participants are largely aligned with the levels of example-use 
described by Balacheff (1987). Although there was a discrepancy with Eric, most of the 
participants still ranked the student work largely by type of example used by the student. This 
finding can help future instructional interventions find a starting point for helping instructors of 
ITP courses aid students in using examples more productively as instructors seem to be 
implicitly aware of the categories of example-use without any background information given. 
Participants of the study were asked in a short debrief after the interview if they were familiar 
with any research on generic examples or Balacheff’s framework. None of the participants were 
familiar with any of this research. 

Through the coding, a potential theme of acceptance or rejection of example-use came to 
light. This theme should be considered when designing instructional interventions in the future 
for example-use in proof. There were no differences in any demographic information collected 
between the acceptance of example-use group and the rejection of example-use group. For 
professional development to be most effective, practitioners need to be met at their current level 
(Desimone & Garet, 2015). This study gives some evidence that for some practitioners, work 
may need to be done by mathematics educators on convincing their future professional 
development groups of the effectiveness and usefulness of generic examples. There is a potential 
conflict with the message sent to students if practitioners value examples to aid a students’ 
understanding while in class but then do not want to see examples in the written work. Finally, 
the issue of formality of written work in an ITP course was repeatedly seen. Participants in the 
acceptance of example-use group did not bring up issues with formality of the presentation of a 
proof. Participants in the rejection of example-use group frequently brought up issues of how 
including work in a proof detracted from the argument. 

I encourage future researchers to investigate this disconnect of example-use and acceptance 
in other areas of mathematics, other types of proof, and in more detail. The comments taken in 
this study came unprovoked as the interview protocol did not include questions about acceptance 
or rejection of example-use. Directed questioning towards types of examples and what a proof 
should look like would benefit future work in developing instructional interventions for ITP 
classes. Mathematics education researchers and practitioners should consider the idea of 
formality of proof and determine how to best approach future research in the field of example-
use in proof. 
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Playful Math, Problem Posing, and Discovered Complexity 
 

 Amy B. Ellis Anna Bloodworth Dru Horne 
 University of Georgia University of Georgia University of Georgia 

Problem posing is an important part of mathematical inquiry, but students can struggle to pose 
problems that are mathematically relevant. One route for supporting meaningful problem posing 
is through playful math tasks, which can emphasize agency and exploration. In this paper we 
report findings from a small-group teaching experiment with five pre-service secondary teachers 
who explored a variety of tasks, including open tasks, problem-solving tasks, and tasks designed 
to foster mathematical play. In investigating students’ problem posing, we found that developing 
playful challenges for one another supported instances of discovered complexity, the experience 
of new conceptual challenges. We discuss examples of discovered complexity and the 
mathematical ideas students developed when grappling with novel ideas. 

Keywords: Problem posing, mathematical play, covariation 

Instructional approaches that engage students in experiences that are authentic to disciplinary 
inquiry should offer opportunities for problem posing, exploring, and conjecturing (Bonotto, 
2013). Problem posing can be a particularly powerful activity to support students’ mathematical 
inquiry (Cai et al., 2015), and classrooms that do not include problem posing can curtail 
students’ mathematical exploration (Ellerton, 2013). Collective problem posing activities are one 
way to build students’ autonomy in the development of the mathematics they learn, and they can 
provide a space for students to develop their creativity and problem-solving skills (Cai, 2012). 
There are, however, challenges with meaningfully fostering problem-posing skills. Students and 
teachers can pose a variety of problems when presented with a given set of information (Stickles, 
2011), but may struggle to pose problems that are mathematically relevant, appropriate, and 
solvable (e.g., Cai & Hwang, 2003; Silver & Cai, 1996; Silver et al., 1996). As Cai et al. (2015) 
noted, more research is needed to understand not only which strategies are needed to pose 
mathematically interesting problems, but also how to effectively teach for problem posing.  

We conjecture that playful math could be one way to foster productive problem posing. We 
have been running a series of studies investigating how to meaningfully incorporate playful 
elements into task design and instruction, and have found that playful mathematics tasks can 
emphasize student agency, exploration, and goal selection (e.g., Bloodworth et al., 2023; Horne 
et al., 2023; Ellis et al., 2022). When crafting playful mathematics tasks, we shift the design role 
to the student, enabling students to construct challenges for one another. This provides an 
opportunity to engage in problem posing that may support discovered complexity (Williams, 
2001; 2002; 2003), which occurs when problem solvers “perceive intellectual and conceptual 
complexities not evidence at the commencement of the task” (p. 378, emphasis original). In this 
paper we address the following research questions: When does students’ problem posing lead to 
discovered complexity? In particular, how does discovered complexity emerge in different task 
types, and what mathematical ideas are developed through discovered complexity?  

Background Literature and Theoretical Perspectives: Problem Posing and Play 
Cai and Hwang (2020) defined Mathematical Problem Posing (MPP) as “the process of 

formulating and expressing a problem within the domain of mathematics” (p. 2). While some 
emphasize problem posing in terms of the generation of a new problem from a given set of 
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conditions (e.g., Stoyanova, 1998), others also include in problem posing the activity of 
reformulating existing problems (e.g., Silver, 1994). Problem-posing tasks, then, are ones that 
require students (or teachers) to generate new problems based on given situations, expressions, 
or diagrams (Cai et al., 2020). As an example, Stoyanova (1998) offered the following task: 
“Last night there was a party and the host’s doorbell rang 10 times. The first time the doorbell 
rang only one guest arrived. Each time the doorbell rang after that, three more guests arrived than 
had arrived on the previous ring. Ask as many questions as you can” (p. 66). Note that this task, 
which is typical in the literature, offers a constrained context with specific values, and then asks 
students to develop problems with the given information. That said, a good problem-posing task 
should leave room for different interpretations (Kontorovich et al., 2012; Silver & Cai, 1996). 

Posing problems can deepen students’ understanding of mathematics, as well as their 
understanding of problem-solving (Brown & Walter, 2004). Indeed, problem posing is an 
important part of problem-solving competence, and to become successful problem solvers, 
students need to encounter tasks that require both posing and solving problems (Cai et al., 2015; 
Kilpatrick, 1987; Niss & Højgaard, 2019). Problem posing can also capture students’ interest, 
foster reasoning and communication abilities, and can help students understand that there is no 
one right way in mathematics (Cai et al., 2015; Silver, 1994). 

Research on people’s abilities to pose problems is largely situated at the K-12 level, and the 
findings are mixed. Some studies show that both students and teachers can pose interesting and 
important problems (e.g., Silver & Cai, 1996; 2005; Cai & Hwang, 2020). However, more 
studies have identified challenges with successful problem posing (e.g., English, 1998). Stickles, 
for instance, found that secondary teachers could pose problems, but their success was partial 
and was related to experience and background (2011). Taken as a whole, the studies of students’ 
and teachers’ problem posing have identified issues such as a) posing nonmathematical 
problems, b) posing tasks that were not problems, and c) posing low-quality problems (Cai & 
Hwang, 2020; Leung & Silver, 1997; Silver et al., 1996).  

In investigating strategies for supporting problem posing, researchers have noted the 
importance of providing opportunities for exploration (Koichu & Kontorovich, 2013). Crespo 
and Sinclair (2008), for instance, emphasized the need to allow students avenues to explore the 
limits of the mathematical situations they investigate. Cai and Cifarelli (2005) studied how 
undergraduate students posed problems, and identified two levels of reasoning strategies, 
hypothesis-driven and data-driven, that students incorporated into their problem-posing 
strategies. Brown and Walter (2004) proposed the “what-if-not” strategy, and others have 
suggested helping students learn to pose problems by extending or revising an existing problem 
(e.g., Abu-Elwan, 2002; Cai & Brook, 2006). However, as Cai et al. (2015) pointed out, “Much 
more research is needed to develop a broadly-applicable understanding of the fundamental 
processes and strategies of problem posing” (p. 17). As we discuss below, we hypothesize that 
some features of playful math could foster meaningful problem posing. 

Mathematical Play and Playful Math. Drawing on five characteristics that recur 
throughout the literature, we define mathematical play in terms of a person’s experiences, 
behaviors, and affective states during activity. First, mathematical play entails freedom and 
agency. It is player-centric, with the player in charge of the process (Holton et al., 2001; Gresalfi 
et al., 2018). Participation is voluntary (Williams-Pierce & Thevenow-Harrison, 2021) and ludic 
(Featherstone 2000). Second, mistakes have low stakes. When playing, a person is not afraid of 
failing (Williams-Pierce & Thevenow-Harrison, 2021) and may not even experience anything as 
“failure” (Barab et al., 2010; Su, 2017). Third, mathematical play entails engagement and 
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immersion in one’s activity (Gresalfi et al., 2018). Learners find pleasure in their experience 
(e.g., Burghardt, 2011; Sukstrienwong, 2018), and activity is imaginative and creative (e.g., 
Parks, 2015; Su, 2017). Fourth, mathematical play is experimental and exploratory (Mason, 
2019). Play often leads to surprises (Su, 2017), and when one plays, one is in a state of openness 
to unexpected experiences and outcomes (Davis, 1996). Finally, mathematical play is goal-
driven (Huizinga, 1955). Goals can emerge as play proceeds, and researchers have described 
instances of goal-directed behavior, such as learners solving challenges in a video game 
(Williams-Pierce, 2019). Consequently, we consider mathematical play to entail the following 
three traits: (a) exploration, (b) self-selection of goals, and (c) immersion, investment, and/or 
enjoyment.  

Researchers have identified a number of learning benefits from mathematical play. It can 
support experimentation, reflection, and persistence (Barab et al., 2010; Gresalfi et al., 2018; 
Mason, 2019) and can provide a productive route for exploring and conjecturing (Jasien & Horn, 
2018; Mason, 2019; Williams-Pierce, 2019). Beyond mathematics, classroom-based play offers a 
supportive environment for risk-taking and creativity (Barab et al., 2010; Brown, 2009; Radke & 
Ma, 2018; James & Nerantzi, 2019). It can help students connect theory and practice (Barnett, 
2007), it can foster openness to new learning (Forbes, 2021), and it can support classroom 
engagement (James & Nerantzi, 2019; Whitton & Moseley, 2014). Many of these practices 
mirror mathematicians’ activity, such as detecting patterns (Fernández-León et al., 2021; 
Melhuish et al., 2021), generalizing (Bass, 2008; Martín-Molina et al., 2018), conjecturing 
(Fernández-León et al.; 2021; Harel, 2008), and experimenting (Watson, 2008). These 
similarities have resulted in calls for instruction that encourages playful engagement. For 
instance, Gresalfi and colleagues (2018) argued that “much of what is considered to be 
sophisticated disciplinary engagement involves many of the same features as play” (p. 1335).  

To study how to foster mathematical play, we used the term “playful math” to describe the 
elements of classroom activities and environments that can facilitate mathematical play. Drawing 
on the literature, we have identified five design principles for playful math tasks (Ellis et al., 
2022): (1) enable free exploration within constraints; (2) engender anticipation within the task; 
(3) provide a method for intrinsic feedback; (4) offer meaningful challenge while still being 
feasible; and (5) allow the student to act as both designer and player. As an example, we created 
the Guess My Shape game, which draws on a set of research-based tasks to support student 
understanding of function through examining covarying quantities (Ellis et al., 2020; Matthews 
& Ellis, 2018). In these tasks, students investigate dynamically growing shapes, graphing a 
shape’s area compared to its changing length as it sweeps out from left to right (Figure 1a).  

           
               (a)                   (b) 

Figure 1. An instructor generated (a) and student generated (b) shape and associated area-length graph. 

To playify the tasks, the Guess My Shape game prompts students to create shapes of their choice 
(design principles 1 and 5), construct graphs comparing length and area (principles 2, 4, and 5), 
then challenge each other to determine the shape or the graph based on what is provided 
(principles 2, 3, and 4). Figure 1b shows an example of a particularly creative shape and its 
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associated graph created by our participants, which entailed sweeping a pumpkin from left to 
right, and then sweeping backwards right to left to remove area to create a jack-o’-lantern. 

The playful math design principles are consistent with many features of problem-posing 
tasks. Problem-posing tasks require students to generate new problems (principle 5), and they 
offer opportunities for exploration (principle 1). However, our tasks shift the design role to 
students in a manner that is more open-ended than what is seen in the problem-posing literature. 
For instance, in contrast to Stoyanova’s (1998) doorbell task, in which both the situation and the 
relevant numbers or mathematical expressions are given, we provide fewer constraints and 
encourage students to design novel challenges.  

Discovered Complexity. We draw on Williams’ (2001) construct of discovered complexity 
to examine the consequences of students’ problem posing, particularly the spontaneous problem 
posing that occurred in the course of both designing and solving tasks. Williams (2002) wrote 
that when students discover a complexity, they spontaneously formulate a question that leads to 
intellectual and conceptual challenges: “the mathematical ideas in a discovered complexity are 
new to all students in the group and the teacher does not contribute new mathematical ideas 
during the interaction” (p. 403). The process of discovered complexity is autonomous, 
spontaneous, and creative, similar to the activity described by a research mathematician 
(Williams, 2002). Discovered complexity is associated with high positive affect (Williams, 2003) 
and meets the conditions for flow (Williams, 2001), as students can work just above their present 
skill level to meet a challenge almost beyond their reach. 

Methods 
We conducted a videoed teaching experiment (TE; Steffe & Thompson, 2000) with five 

secondary pre-service teachers, Phyllis, Meredith, Kelly, Ryan, and Toby (all pseudonyms). The 
students had all completed their first semester in a secondary mathematics education program, 
and they were familiar with non-routine covariation and graphing tasks. The students enjoyed a 
positive rapport with one another and were comfortable questioning each other and themselves. 

The TE met for a total of 6 hours. We began with the function growth activities described 
above, which we call standard tasks, and which addressed polynomial, trigonometric, and 
piecewise functions. We also incorporated playified tasks in the form of the Guess My Shape 
game, as well as more traditional problem-solving and open tasks (e.g., tasks that were open-
ended with many possible solutions, such as “create two growing shapes that could be 
represented by the same graph”). The problem-solving tasks were ones such as the handshake 
task: “If there are n people in a room, and they all shake hands with each other exactly once, how 
many handshakes occurred?” All of the standard, problem-solving, and open tasks were 
challenging and creative, but only the Guess My Shape game adhered to all five playful math 
design principles. Over the course of the TE we implemented six standard tasks, three problem-
solving tasks, two open tasks, and three playified tasks. 

Analysis. As part of a larger study investigating the characteristics of students’ mathematical 
play, we developed emergent codes describing students’ experiences and behavior. One code that 
became relevant for this paper was “wonderment”, which represented instances of students 
spontaneously communicating curiosity or interest about a new mathematical idea, problem, or 
relationship. Wonderment is an instance of spontaneous problem posing. We initially found 23 
cases of wonderment, and examined each case to determine: a) did it occur during a standard, 
open, problem-solving, or playified task; b) did it result in discovered complexity? We identified 
instances of discovered complexity by seeing whether each wonderment yielded a novel or more 
complex mathematics challenge, as opposed to simply trying to understand the given question, 
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establish a convention or definition, or wondering how to create a challenging task for someone 
else (but not actually creating such a task). During this process, we abandoned two of the 23 
wonderments as not actual wonderments. In one case, a student was trying to understand how 
another student’s shape was being swept out, and in the second case, a student was curious about 
the logic another student was using for her solution. We analyzed the remaining 21 wonderments 
collaboratively, meeting weekly to refine and adjust our meanings and resolve discrepancies.  

Results: When Wonderment Leads to Discovered Complexity 
Table 1 shows the number of wonderments per task type and the number of wonderments 

within each type that led to discovered complexity. Five of the 21 wonderments occurred during 
the two open tasks, and the remaining 16 occurred during the three playified tasks. We did not 
find any instances of wonderment in the six standard tasks or the three problem-solving tasks. 

Table 1. Number of wonderments and number of resulting discovered complexities by task type. 

Task Type Wonderments Discovered Complexity 
Standard 0 0 
Problem Solving 0 0 
Open 5 3 
Playified 16 9 

 
In examining how discovered complexity emerged, we first identified cases of wonderments 

that were not discovered complexities. As an example, Toby grappled with an open task in which 
he had to invent a shape with a monotonically increasing graph that changed concavity. He drew 
a trapezoid, and a corresponding piecewise area-length graph that had a concave up portion, a 
linear portion, and a concave down portion. Toby asked himself, “Does that count as a change in 
concavity? Like, what is the concavity of a straight constant line?” Toby’s wonderment did not 
introduce a new mathematical idea or problem, and it did not count as problem posing. Instead, it 
was an attempt at a clarification of meaning.  

In another example, during the Guess My Shape game, Phyllis and Meredith explored a novel 
way of sweeping. They created a figure that they called a police badge (Figure 2a) and imagined 
sweeping area from a point in the center moving outward in a circle. Phyllis wondered, “I’m just 
thinking about, like, now just the geometry stuff. When there’s a bunch of circles connected 
(draws four circles, Figure 2b). You see what I mean, you see spikes here. Is there any 
relationship with that at all?” Later, she clarifies her wonderment: “How many circles could you 
fit around one circle of the same size?” Here Phyllis’s wonderment posed a problem about circle 
packing, addressing mathematics that was novel to her. However, before she had an opportunity 
to attempt a solution, the students were interrupted and told to move back to the whole group, 
and thus she did not get a chance to engage with intellectual or conceptual complexity.  

 

                         
                   (a)                             (b)                                (c)                                 (d)                            (e) 

Figure 2. Phyllis and Meredith’s shape (a), Phyllis’s illustration of a circle packing problem (b), Meredith and 
Toby’s shape (c), triangle divided into sub triangles (d), Meredith and Toby’s graph (e) 
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In contrast, we present a case in which a wonderment did lead to discovered complexity. As 
seen in Table 1, discovered complexity only occurred a little over half the time during students’ 
activity in the playified Guess My Shape game. It occurred more often when the students were 
creating a challenge for their classmates, a formal act of problem posing, than when solving a 
challenge (discovered complexity occurred during 5 out of 7 wonderments when creating a 
challenge, but only 4 out of 9 wonderments when solving a challenge). We found that discovered 
complexity emerged when students either developed curiosity about the nature of covariation, 
rates of change, or related graphs, or when students became curious about why a particular 
solution method or strategy was valid.  

In the following example, Toby and Meredith posed a problem by creating a shape for their 
classmates, which they imagined sweeping radially from 0 to 360 (Figure 2c). The students 
wondered whether the associated graph comparing area and angle swept would be constant once 
the angle reached 180: 

Toby: So, what happens when we do that? I feel like you’re getting more triangle each time 
you open up, right? Because this length gets longer (points to radial lines in Figure 2d; 
dotted lines are not yet present), but the base is the same and the height is the same, right? 
Wait, the base is definitely the same. I don’t know about the height, it could also be 
increasing. 

Meredith: I think it –  
Toby: – Wait, wait, there’s only base and height. So, the base is the same, the height’s 

increasing, so it would get bigger.  
Meredith: The base has to be the same. 

Figure 2d divides the triangle into three smaller triangles, and Toby and Meredith referred to the 
vertical portion on the left of each smaller triangle as its base. They erroneously assumed that for 
each equal angle increment, the base of each small triangle would be the same. Toby and 
Meredith initially conceived of the height of each triangle differently. Toby assumed the heights 
would be the solid radial lines in Figure 2d, whereas Meredith realized that they would need to 
be the dotted horizontal lines, which she drew in: “I think the height has to be perpendicular to 
the base.” The students agreed that the heights of each triangle must be equal, and therefore, they 
concluded that the amount of area added for each equal angle increment would be equal. Thus, 
the graph for that portion of the shape should be linear. 

Toby remained, however, uncertain about this conclusion. As they worked on an initial 
graph, he returned to the issue of the triangle’s growth, saying, “I still find that hard to believe, 
but I think it’s true. How come this ends up being the same as if we had done that (draws another 
triangle with the base at a 45 angle, rather than vertical) instead?” Both students, however, 
believed that it must be linear, because they had justified it based on the belief that the base of 
each incremental triangle would be equal. Later, a teacher-researcher asked the students about 
their thinking, and Toby expresses doubt again, but this time with a different outcome: 

TR1: How did that triangular part, what was your reasoning there? 
Meredith: We were saying that for the bases, we’re saying all have to be the same because 

that’s how we’re designing the –  
Toby: Wait. Are they though? I’m questioning myself again. Just because the angle increases 

by the same amount, does that mean the base is the distance away, because…(pause). I’ll 
draw a bigger one. There’s this angle, and you open it up by the exact same amount. I 
feel like you’re going to have more base over here (points to the bottom sector in Figure 
2d) than you did up here (points to the top sector). You know what I mean?  
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Toby drew a much larger triangle, and relying on the grid feature of his notetaking app, then 
carefully subdivided it into triangles with equal increment angles. In this manner it became 
apparent that each new triangle had a larger base than the previous triangle. Consequently, the 
students revised their graph to reflect that the portion of the graph from 180 to 270 would not 
be constant, but rather would increase at an increasing rate (Figure 2e). Indeed, this can be 
determined by considering the smaller triangles as each having a swept angle , a height of 1, 
and a base x, in which x grows as area is swept. The area of each triangle will be ቀଵ

ଶ
ቁ 𝑥. Because 

tan 𝜃 = 𝑥, the area function will be 𝐴 = ଵ
ଶ
tan 𝜃, 0 ≤ 𝜃 ≤ గ

ସ
, which yields a graph that increases 

at an increasing rate. 
In posing the radial sweeping problem, Toby and Meredith encountered a discovered 

complexity. Toby’s wonderment about whether the relevant portion of the graph would be linear 
led to the students perceiving a conceptual complexity, that of how to determine the growth of 
the triangle. That this was an intellectual challenge for the students was apparent in their 
discomfort with their initial graph, as well as the need to revisit the question more than once. In 
resolving the complexity, Toby and Meredith shifted from reasoning only about increasing or 
decreasing rates, without attending to a way to quantify area amounts, to reasoning geometrically 
with the triangle area formula to justify why the area had to grow at an increasing rate for each 
equal-increment angle sweep. In this manner, the problem Meredith and Toby posed for their 
classmates required them to grapple with a novel conceptual complexity.  

 Discussion 
The Guess My Shape game formalizes problem posing by asking students to design 

problems, but in a manner that is less constrained than what is typically seen in the literature 
(e.g., Stoyanova, 1998). The primary constraint on the students was that they had to determine 
how to graph any shape they developed. Because the students were motivated to make their tasks 
“fun”, “tricky”, and “unexpected”, they pushed themselves to create shape-graph pairs that 
included novel and creative elements, some that were particularly challenging to solve. However, 
wonderments emerged not just during formal problem posing; they also occurred when students 
were solving one another’s challenges and exploring open tasks. Wonderments are spontaneous 
instances of problem posing, which may or may not be pursued to fruition. When they were 
pursued and resulted in discovered complexity, mathematical ideas emerged that addressed 
topics such as constant versus nonconstant rates of change in novel sweeping situations, the 
effects of the center of rotation on the change in area for equal changes in angle measure, and 
determining the areas of segments of circles formed by two non-radii chords.  

Given the small numbers of each task type, we cannot make definitive claims about which 
types of tasks will necessarily lead to discovered complexity. That said, it was compelling that 
the students did not demonstrate any wonderments when solving standard or problem-solving 
tasks. It may be that the motivation to develop creative tasks and solutions during the playified 
and open tasks, combined with an emphasis on agency and exploration, afforded students 
opportunities to embrace risk taking, openness, and experimentation, mirroring results from 
studies on mathematical play (e.g., Gresalfi et al., 2018; Mason, 2019; Williams-Pierce, 2019). 
We also found that it was often the students’ need for causality (Harel, 2013) – the need to 
explain or determine the cause of a phenomenon – that resulted in a wonderment becoming a 
discovered complexity. These findings suggest that playful math could potentially be one avenue 
meriting further exploration for supporting productive problem posing.  
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Calculus I Students’ Understanding of Implicit Differentiation  
 

Orly Buchbinder Meaghan Allen 
 University of New Hampshire University of New Hampshire 

Implicit differentiation is an important topic in first-semester Calculus, yet only recently have 
researchers in the RUME community turned their attention to it. Our study seeks to contribute to 
this growing body of knowledge. We examined students’ performance on an instructional activity 
that emphasized the graphical representation of implicit curves alongside the symbolic 
competence of implicit differentiation. The students worked in small groups during recitations 
and then completed a similar type of question on an assessment. A researcher-designed 
Hypothetical Learning Trajectory was used to structure the instructional task and to analyze 
student written data. The results suggest that students’ attainment of symbolic learning goals is 
higher than that of graphical ones, with most difficulties experienced with coordination between 
symbolic and graphic modalities. Implications for further research are discussed.     

Keywords: Implicit differentiation, Calculus learning, Hypothetical learning trajectory 

Implicit differentiation is one of the core topics of Calculus, yet only recently researchers 
have turned their attention to studying it (Speer and Kung, 2016). Implicit differentiation is a 
technique for finding derivatives of equations where 𝑦 cannot be explicitly expressed as a 
function of 𝑥. Many popular textbooks on single-variable Calculus in the United States (e.g., 
Stewart, 2016), present implicit differentiation as a computation technique for finding 
derivatives, with a strong emphasis on symbolic manipulation. Little attention is paid to building 
the conceptual basis of implicit functions, justifying the legitimacy of differentiating both sides 
of the implicit equation (Mirin & Zazkis, 2019), or developing the graphical meaning of implicit 
functions. All these contribute to students’ conceptual and technical difficulties with the topic.  

Within the existing research on implicit differentiation, we identified two strands: survey 
studies that characterize students’ difficulties with implicit differentiation (e.g., Chu, 2019; 
Kandeel, 2021), and small-scale intervention studies that closely examine the development of 
students’ understanding of this topic (e.g., Borji & Martinez-Planell, 2019, 2020; Jeppson, 2019).  

Our study occupies a middle ground. It was conducted in the first-semester single-variable 
Calculus I course, in an authentic classroom setting. After attending a lecture on implicit 
differentiation, students worked in groups, during a recitation on an instructional centered on 
graphical representation and the connections between symbolic and graphical meaning of 
implicit differentiation. In this context, we examined students’ performance on the implicit 
differentiation task and the follow-up performance on a similar exam question. Due to space 
constraints, here we focus on the class work only.   

Literature review 
Calculus topics such as derivatives, the chain rule, and related rates have been previously 

researched (e.g., Cottrill, 1999; Infante, 2007; Martin, 2000, Zandieh, 2000). However, implicit 
differentiation came to the researchers’ attention only recently. Several studies focused on 
students’ difficulties with this topic. Chu (2019) surveyed 136 first-semester calculus students 
and found that only about 50% of solutions were correct; with most students’ errors being related 
to calculus concepts and procedures, rather than prerequisite algebra skills. Kandeel (2021) 
classified common errors in an implicit differentiation survey completed by 117 Calculus 
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students. Among common algebraic errors were isolating a common factor, simplifying 
expressions, dealing with exponents and radicals, and isolating 𝑦’, of responses. Common 
calculus errors occurred in the application of the chain rule, product rule, and differentiating 
functions. These types of errors appeared in 25% - 50% of responses.  

Researchers also attempted to unpack what it means to “understand” implicit differentiation. 
Mirin and Zazkis (2019) point to the conceptual difficulty of understanding the legitimacy of 
differentiating both sides of implicit equations. Borji and Martinez-Planell (2019) assert that 
first-year Calculus students have neither the background nor “mathematical tools to consider the 
statement, and even less the proof, of the Implicit Function Theorem, upon which a rigorous 
study of implicit differentiation would be based” (p. 15). The authors utilized the APOS (action-
object-process-schema) theory (Arnon et al., 2014) to develop a genetic decomposition for 
implicit differentiation –a hypothetical sequence of mental constructs involved in learning this 
topic and five technology-assisted activities supporting the development of these mental 
constructs. The genetic decomposition and the activities emphasized a graphical understanding 
of implicit functions and symbolic-graphic connections. The intervention was carried out with 14 
students who have completed a lecture-based Calculus I course. Ten out of 14 students showed 
an increased understanding of implicit differentiation, but others had no evidence of progress. 

In another intervention study, Jeppson (2019) developed a hypothetical learning trajectory 
(HTL) for implicit differentiation. HLT is a sequence of learning goals, activities, and 
conjectured students’ understanding of a particular content (Simon, 1995). Jeppson’s HLT 
integrates the chain rule, implicit differentiation, and related rates under the overarching concept 
of nested multivariation - a covariation of multiple variables related to one another through 
function composition. Jeppson conducted single-subject teaching experiments with four Calculus 
students to study how they develop an understanding of implicit differentiation through 
meaningful context and careful sequencing of mathematical. Yet, Jeppson’s HTL did not include 
graphical representations of implicit functions nor symbolic-graphic connections.   

Theoretical Perspectives 
Following Borji and Martinez-Planell (2019, 2020), we place a strong emphasis on symbolic-

graphical connections in developing student understanding of implicit differentiation.  However, 
the scale and methods of our study, detailed below, do not allow for examining mental constructs 
or cognitive processes underlying student understanding of implicit differentiation. Instead, we 
adopt Vygotsky’s (1978) sociocultural perspective to examine what learners say and do while 
solving an implicit differentiation task in a collaborative group context, supported by more 
knowledgeable others – teaching and learning assistants (TAs and LAs). Within the sociocultural 
perspective, student activity is characterized by their discursive performances, which include 
vocabulary, visual mediators, actions, etc. (Lave & Wegner, 1990; Sfard, 2015)1. Student 
learning is cast in terms of increased, proficient participation in the discursive practices of a 
particular community and sifting from ritualistic to goal-oriented participation. In the Calculus 
course, students are enculturated into discursive practices of the mathematical community. We 
described these practices in a Hypothetical Learning Trajectory of implicit differentiation.  

Hypothetical Learning Trajectory for Implicit Differentiation 
An HLT is a theoretical model to design instruction supporting conceptual learning, which 

consists of learning goals, tasks, and hypothesized learning processes (Sion, 1995). Jeppson’s 
 

1 See Sfard (2015) for the discussion of parallels between cognitive constructs and discursive perspective.  
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(2019) HTL was a main inspiration for our model. But our HTL (Table 1) had a strong focus on 
graphical representation and graphic-symbolic coordination (c.f., Borji & Martinez-Planell, 
2019). The last column matches the HTL’s goal to the item number in the activity (Figure 1). 

 
Table 1. Hypothetical Learning Trajectory for Implicit Differentiation  

Category Description of Goal Item # 
Symbolic  Develop symbolic meaning of implicit equations and correctly 

implement differentiation procedures   

Symbolic Recognition 
(S_Rec)  

Recognize an implicit equation cannot be written explicitly as 𝑦 =
 𝑓(𝑥).  1b 

Symbolic implicit 
equation (S_Eq)  

Given an equation with variables 𝑥 and 𝑦, recognize 𝑦 as an 
implicit function of 𝑥.  2 

Symbolic Chain Rule 
(S_Ch)  

Given implicit equations recognize the need for the chain rule in 
taking the derivative with respect to the implicit independent 
variable.  

2 

Symbolic differentiation 
(S_Diff)  

Can correctly perform procedures for finding ௗ௬
ௗ௫

 for an implicit 
equations.  

2 

Symbolic Evaluation 
(S_Eval)  Can correctly compute the derivative  ௗ௬

ௗ௫
(𝑥, 𝑦) at a point   3a, 3b 

Symbolic Tangent Line 
(S_Tan)  Can correctly find the equation of a tangent line at a point. 3a 

Graphic  Interpret graphical properties of implicit functions   
Graphic Recognition 
(G_Rec)  

Recognize graphic representation of implicit equations as a curve 
in a cartesian place that does not pass the vertical line test.  1a 

Graphic Tangent Slope 
(G_TS)  

Interpret the meaning of  ௗ௬
ௗ௫

(𝑥, 𝑦) a slope of a tangent line at a 

point (𝑥, 𝑦), and ௗ௬
ௗ௫

 as slope of the tangent line or instantaneous 
rate of change at any point.  

2a, 2b 

Graphic Vertical 
Tangent (G_VT)  

Recognize that tangent lines to a graph of implicit equations can be 
vertical, and at the points of tangency the derivative does not exist.  4 

Graphic Constant Rate 
(G_CR)  

Recognize in an explicit function, the lack of x in the derivative 
formula means the function has a constant rate of change, but a 
derivative formula of the implicit equation can contain no x, while 
the curve does not have a constant rate of change.  

2b 

Graphic Coordination 
(G_Cor)  Coordinates graphical and symbolic representations. 2b, 3a, 

3b, 4 
  
We are mindful that the construct of HTL belongs to the cognitive paradigm, hence our use 

of the term may not exactly align with the literature. We operationalize the HTL categories in 
Table 1 as discursive competencies that students can exhibit in their mathematical work. This 
allows us to characterize not just students’ difficulties, but also their areas of strength. We 
examine the following research question: What aspects of HTL can be observed in students’ 
written responses to an implicit differentiation activity?  

Methods 
This study is a part of the larger NSF-funded project for improving the teaching and learning 

of introductory STEM courses in a large public university in the northeast of the USA. Calculus I 
is taught in the format of large lectures (~120 students), taught by a faculty member three times a 
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week; and recitations (~20 students), taught two times a week by graduate TAs. The reform 
efforts involved introducing active learning (CBMS, 2016) in recitations, the inclusion of LAs to 
support student work; and the use of conceptually rich activities that emphasize graphic 
representations of the calculus concepts. Figure 1 shows an activity on Implicit Differentiation. 

 

 
Figure 1: Task 1 from the Implicit Differentiation Activity. Based on Boelkins et al., 2018 (p. 147). 

Data Collection 
Data collection occurred in Spring 2022. After a lecture on implicit differentiation, students 

worked on the Implicit Differentiation activity (ID-activity, hereafter) in the recitations. Students 
worked in groups of 3-4, but each person submitted their own worksheet, graded for completion. 
There was a standard textbook homework assignment, unrelated to graphical representation. The 
mid-term exam, about three weeks later, included an implicit differentiation close in style and 
content to the ID-activity. The data sources were 119 consenting students’ written work on the 
ID-activity and the exam question. Here we only report on their ID-activity performance.  

Data Analysis 
The data were coded using the HLT (Table 1). Each response was coded as either exhibiting 

evidence of the student attaining a certain learning goal, not attaining it, or not enough evidence 
(Yes/No/NEE). For example, consider item 2a: “Explain the meaning of 𝑑𝑦/𝑑𝑥. What does it 
represent?” A student’s response “This represents the derivative, which is the slope of the 
tangent line. Rate of change” was coded as “Yes” for the evidence of attaining the goal Graphic 
Tangent Slope (G_TS). Only wrong or completely irrelevant answers were coded as “No” 
evidence of attaining an HLT goal. All other cases, including no response, were coded as NEE – 
not enough evidence. An example of NEE-coded response for question 2a is: “ ௗ௬

ௗ௫
= 𝑦′. Find 
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derivative with respect to y.” This response explains the notation rather than the meaning of 
𝑑𝑦/𝑑𝑥. Yet, it is not enough evidence to conclude the lack of attainment of the G_TS goal.  

This method allowed us to identify the elements of HLT where students showed competence 
or lack thereof on a fine-grain scale. Figure 2 shows one student’s work in response to question 
(2) “Use implicit differentiation to find the formula for 𝑑𝑦/𝑑𝑥.”  

 
Figure 2: Coding Example 

This work would score “Yes” for evidence of correctly using the chain rule to take the 
derivative with respect to the implicit independent variable (S_Ch) but would get NEE for 
symbolic differentiation (S_Diff), due to incomplete calculation of 𝑦’.   

In our HLT (Table 1) the two codes S_Eval and G_TS were matched with two items, and the 
code G_Cor with four items. To get a single score per code we considered where most evidence 
is leaning, e.g., two or more “Yes” with all other NEE was coded as “Yes” (evidence of G_Cor 
attainment). One “Yes” with all other NEE was coded as NEE. Two or more "No" with all other 
NEE was coded as “No”. Getting NEE in all four G_Cor items was coded as “No,” since the 
student used none of the four opportunities to exhibit any evidence of coordinating graphic-
symbolic representations. There were no “Yes/No” combinations in our data. The rest of the data 
was analyzed similarly, resulting in a total of 1190 codes (119 students x 10 codes/ HLT goals2).  

Results 
Table 2 shows the distribution of Yes/No/Nee codes in each of the HLT categories.  

Table 2: Distribution of Yes/No/NEE codes by category, N=119 
 Symbolic HLT goals Graphical HLT goals 
 S_Rec S_Ch S_Diff S_Eval S_Tan G_Rec G_TS G_VT G_CR G_Cor 

Yes 67 100 109 107 95 109 92 35 102 20 
No 0 0 0 1 0 0 2 0 1 66 

NEE 52 19 10 11 24 10 25 84 16 33 
 
The modal categories with at least 90% show that students had the most success in 

calculating the derivative of the implicit function (S_Diff), evaluating the derivative at a given 
point (S_Eval), and recognizing that a graph of an implicit equation does not pass the vertical 
line test (G_Rec), hence cannot be considered as 𝑦 = 𝑓(𝑥). We were encouraged by such a high 
percentage of “Yes” scores for the correct calculation of the implicit derivative (S_Diff), which 
requires correctly applying the chain rule (S_Ch) and correctly isolating 𝑦’. 100 students (84%) 
correctly applied the chain rule when taking the derivative with respect to an implicit variable.  

The two goals posing the most difficulties to students were related to graphical 
representation: G_VT (vertical tangent) and G_Cor (coordination of symbolic and graphic 
modalities). The item related to G_VT was question 4 which called for finding all points where 

 
2 The codes S_Eq and S_Ch were merged since the worksheet explicitly asked for using implicit differentiation. 
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𝑥 = 𝑦ହ − 5𝑦ଷ + 4𝑦  has vertical tangent line. Most students could correctly identify the four 
points on the graph, and state at these points 𝑦’ is undefined. But only 35 students (29%) 
completed the calculation, and even fewer correctly interpreted the result.   

We observed two types of difficulties in this item. One type is shown in Figure 3a. The 
student identified the points where the tangent line is vertical and marked them on the graph. But 
then proceeded to explain that “these points are local minima and maxima, so the derivative 
switches sign” from positive to negative and vice versa, hence the “derivative is vertical at a 
point during the change.”  The use of “vertical derivative” instead of “vertical tangent line” can 
be a mere carelessness, but it seems alarming that the student refers to these points as “local 
minimum and maximum.” Moreover, although the derivative does change the sign at these 
points, it is unclear whether the student simply states known facts about local minima /maxima, 
or whether the student has some warrant for their claim, from the graph or from the derivative 
formula. This cannot be determined from a written text. Nevertheless, since this kind of response 
appeared repeatedly in our data, we assume that there is some underlying tendency at play, 
where students project their knowledge of critical points of explicit functions to implicit 
equations, but without recognizing how to adjust their prior knowledge to the new situation.  

 

 
Figures 3 a & b: Sample student responses to item 4 

Figure 3b shows another interesting response type. Here, the student marked the vertical 
tangent lines on the graph and correctly calculated the 𝑦-coordinate of the points where the 
derivative is undefined. But then the student made a seemingly contradicting conclusion, that 
there are “no points” with vertical tangent lines. Another student with a similar solution wrote 
that the answers “don’t work.” We conjecture the following explanation. The student solves the 
equation for 𝑦, obtaining the y-coordinates of the marked points on the graph. But then attempted 
to match these numerical values to the x-coordinates of these points. The x-coordinates being 
±3.63 and ±1.91, they indeed do not match the calculations of 2.7 and 0.3, leading the student to 
a quite paradoxical conclusion that “no points have a vertical tangent line.”  

Students who correctly identified the points where the tangent line is vertical and calculated 
the y-coordinates by finding where the derivative is undefined scored a “Yes” for attaining the 
G_VT goal. However, correctly interpreting the meaning of the calculations corresponds to 
another HLT goal: coordinating graphic and symbolic representations of implicit equations 
(G_Cor). Four items contributed to a single G_Cor score: item 4, discussed above, and items 2b, 
3a, 3b (Table 1). So, there were four opportunities for students to show some attainment of the 

(a) (b) 

26th Annual Conference on Research in Undergraduate Mathematics Education 428



G_Cor goal, yet it appeared to be the most difficult one for the students. It was the only one with 
66 students (55%) scoring “No” for that goal, and another 33 students (28%) scoring NEE.  

The items that contributed most to these low scores were 3a and 3b, where students were 
asked to sketch the tangent lines, whose equations they found algebraically, on the graph. In item 
3a, 95 students (80%) correctly found the equation of the tangent line at a point (0,1), but only 49 
students (41%) could correctly draw this tangent line on the graph. The rest of the students either 
did not attempt this item (getting the NEE score) or drew an intersecting line instead of a tangent. 
In item 3b, 66 students (55%) justified algebraically that the tangent parallel to 𝑦 = − ଵ


𝑥 + 1 will 

pass through (0,-1), but only 17 students (14%) drew the correct tangent line.  
Overall, aggregating across all items and HLT goals, we obtained that the percentage of 

“Yes” scores was 80% for all symbolic HLT goals and only 60% for all graphic goals.  

Discussion and Scientific Significance of the Study 
The goal of the study was to examine students’ performance on the implicit differentiation 

activity as they worked in small groups during a recitation in an otherwise traditional first-
semester single-variable Calculus 1 course. Our study contributes to the existing literature in two 
ways. First, rather than using surveys or small-scale teaching experiments, our study was 
conducted in an authentic classroom setting and reflects what students can do collaboratively 
while being supported by GTA and LA. Second, our implicit differentiation instructional activity 
emphasized the graphical representation of implicit equations and coordination between the 
symbolic and graphic meanings of implicit differentiation.  

Our results show that students performed much better on the symbolic HLT goals compared 
to graphical ones. Moreover, the percent of correct performance on utilizing the chain rule 
(S_Ch) and calculating 𝑦’ (S_Diff) were much higher than what has been described in the 
literature 84% and 92% respectively, compared to about 50% in the studies by Chu (2019) and 
Kandeel (2021). The outcome may be attributed to the collective nature of student work, as 
opposed to individual survey data reported by Chu and Kandeel. In fact, the percentage of 
correct performance for S_Ch and S_Diff dropped to 66% and 62% respectively on individual 
exams, but the full discussion of these outcomes is beyond the scope of this paper.  

The graphical interpretation of implicit curves, including graphing tangent lines and, 
specifically, coordinating between graphic and symbolic meanings of implicit functions 
presented the biggest challenges for the students. This outcome concurs with Borji and Martínez-
Planell (2019). Students’ challenges seem to be related to applying procedures and types of 
reasoning borrowed from their experience with explicit functions, e.g., attempting to interpret 
points with vertical tangent lines as “local minima and maxima”, possibly due to the visual 
similarity, while ignoring the graph’s orientation. Similarly, being used to finding the x-
coordinates of critical points first, when obtaining y-coordinates from the calculation, students 
got confused and couldn’t match them to the point on the graph. These challenges suggest that 
students require more exposure to and experiences with implicit curves to develop a better 
understanding of implicit functions. More research is needed to understand how students 
coordinate graphic-symbolic representations of implicit functions to support their learning.  
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The Algebra Concept Inventory: Creation and Validation with Students Across a Range of 
Math Courses in College 
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Even though algebraic conceptual understanding is recognized as a critical skill, existing larger-
scale validated algebra assessments consist mostly of computational tasks, or only assess a very 
narrow range of conceptions in a smaller focused domain. Further, few instruments have been 
validated for use with college students. In this paper, we describe the creation and validation of 
an algebra concept inventory for college students. We describe how items were administered, 
revised, and tested for validity and reliability. Results suggest that algebraic conceptual 
understanding is a measurable construct, and that the instrument has reasonable validity and 
reliability.  Revision and validation is ongoing; however, lessons learned thus far provide 
information about what conceptual understanding in algebra might look like and how it might be 
assessed.  

Keywords: Algebra, conceptual understanding, concept inventory, assessment, validity 

In college, needing to take algebra can be a barrier to degree completion (e.g., Adelman, 
2006; Bailey et al., 2010), and extensive mathematics education research has documented K-12 
students' difficulties with school algebra (e.g., Booth, 1988, 2011; Kieran, 1992). Struggles with 
basic algebra concepts learned in school also impact even those in higher-level college courses 
such as Calculus (e.g., Frank & Thompson, 2021; Stewart & Reeder, 2017).  One reason students 
struggle with algebra is that algebra courses in college tend to focus on procedures disconnected 
from meaning-making (e.g., Goldrick-Rab, 2007; Hodara, 2011). While procedural fluency is 
important, it is critical to connect it with conceptual understanding (Kilpatrick, et al., 2001). 
Thus, there is a critical need to better understand and assess students’ conceptions of algebra 
concepts. However, to date there are no widely-validated assessments that measure college 
students’ conceptual understanding of algebra. Existing large-scale validated algebra assessments 
for K-12 tend towards computational skills, or focus on a narrow set of conceptions in a small 
subdomain. Tests of computational skills are often poor measures of understanding. Students 
may have robust conceptual understanding, but make smaller computational mistakes, especially 
if they have math or test anxiety (e.g., Ashcraft, 2002; Ashcraft & Kirk, 2001; Moran, 2016; 
Namkung et al., 2019). On the other hand, students may have little-or-no conceptual 
understanding, yet produce “correct” answers for “wrong” reasons (e.g., Aly, 2022; Erlwanger, 
1973; Leatham & Winiecke, 2014).  

We aim to address this gap by describing a first attempt to conceptualize, develop, and test 
college students’ conceptual understanding in algebra using the Algebra Concept Inventory 
(ACI). This process continues, but we have chosen to write about results at this juncture with the 
hope they may be helpful for others interested in conceptualizing, measuring, and teaching 
conceptual understanding in algebra.  
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Literature Review 
Several instruments have been created to test algebraic proficiency; however, none were 

designed to test a large body of algebraic concepts and conceptions. TIMMS and NAEP (Mullis, 
et al., 2020; National Center for Education Statistics, 2023) are widely validated at the 
international and national level, and contain some questions intended to assess conceptual 
understanding. There are also state-wide assessments that contain some questions intended to test 
conceptual understanding (e.g., Massachusetts Department of Elementary & Secondary 
Education, 2023; New York State Education Department, 2023). However, the main focus of all 
these instruments is computational skills. 

There is one validated assessment that targets algebraic conceptual understanding in grades 1 
to 5 (Ralston, et al., 2018), and one designed to assess a few specific algebraic concepts in 
middle school (Russell, 2019; Russell et al., 2009). Yet these instruments measure just a few 
conceptions, and were not designed for secondary or postsecondary students. As such, these 
often focus primarily on less complex or less abstract algebraic conceptions.  

Some concept inventories have been developed that assess some student conceptions of 
algebraic concepts, but for students in more advanced courses only.  For example, the Pre-
calculus Concept Assessment (PCA) (Carlson, Oehrtman, & Engelke, 2010) and the Calculus 
Concept Readiness Instrument (CCRA) (Carlson, Madison, & West, 2010) explore some algebra 
concepts relevant to students in higher-level courses; while these have been tested through 
extensive cognitive interviews, larger-scale psychometric validation is still needed. Recently, 
researchers Hyland and O’Shea (2022) in Ireland generated a 31-item algebra concept inventory 
for college students, but it includes algebraic objects that would not be familiar to students in a 
first-year algebra course and has not yet been tested through cognitive interviews or 
psychometric analysis.  Thus, an inventory that is valid for students starting in elementary 
algebra is needed, as well as more extensive large-scale psychometric testing of concept 
inventories more generally.   

Method 
A total of 402 unique items were developed and tested for the ACI. Items were administered 

to 18,234 students enrolled in all mathematics classes (except arithmetic) at a large urban 
community college campus. Data reported here were collected from spring 2019 to fall 2022, in 
eight separate waves. Data collection followed a common-item random groups equating design, 
which was selected because it allowed to investigate a large item pool while allowing a 
simultaneous calibration across multiple forms (de Ayala, 2009; Kolen & Brennan, 2004). For 
the first wave of testing, the last ten items on each form were anchor items, all taken from the 
National Assessment of Educational Progress (NAEP) grade 8 item bank. For subsequent waves, 
six anchor items were included: three of these were NAEP items and three were items that had 
performed well during the first wave of ACI testing. Each form had roughly 25 total items. 
Forms were randomly administered within in each class so there was no association between test 
form and class or instructor. 

Just before answering inventory items, students were invited to participate in cognitive 
interviews, and paid for their time. In total, 135 interviews were conducted with students. Each 
was roughly 1-1.5 hours long and was structured as a “retrospective think-aloud” (Sudman et al., 
1996). Research suggests that retrospective think-aloud protocols reveal comparable information 
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to concurrent think-aloud protocols, and are less likely to have negative effects on task 
performance, particularly high-cognitive-load tasks (see e.g., van den Haak et al., 2003). 
Interviews were analyzed qualitatively to assess construct validity of the items, but there is 
insufficient space to report on that analysis here.  Here we report only quantitative results.   

We investigated each wave of the ACI through item-response theory analysis. First, items 
were dichotomized into pass-fail items using the response key. Then, two-parameter logistic 
models (Birnbaum, 1968) were estimated using marginal maximum likelihood (MML) on each 
wave, using the R package “mirt” (Chalmers, 2012). Because of planned missingness data 
collection design, the default number of model iterations was extended to allow for all models to 
converge successfully. Based on these models, we examined item parameters (difficulty and 
discrimination) and item information functions for item analysis, and computed person estimates 
using expected a posteriori (EAP) factor scores for convergent validity analysis. Reliability 
estimates were computed directly from IRT models. To investigate model fit, we computed item 
fit statistics, using the PV-Q1 statistic (and significance test) (Chalmers & Ng, 2017) for each 
item.  

To investigate measurement invariance, we used multi-group IRT models and a model 
comparison approach. Because of the planned missingness design (and sometimes small 
observed subsample sizes), we used a piecewise DIF detection strategy (Thissen et al., 1993) that 
starts from a fully constrained model and drops constraints for each item separately. More 
specifically, with respect to each examinee characteristic considered, we first estimated a fully 
constrained model (where, across groups, item discriminations, difficulties, latent mean and 
variance are constrained to equality). Then, for each item, the same model was estimated, but 
with unconstrained item parameters (difficulty and discrimination), thus “temporarily” allowing 
differential item functioning (DIF) for the item. A likelihood ratio test was then performed to test 
if the model allowing DIF for the item had a better fit than the constrained model. This resulted 
in a series of tests of the significance of differential item functioning for all items. Because it is a 
multiple testing strategy, p-values were subsequently Bonferroni-corrected.  

Validating the ACI 

IRT Models: Item Discrimination and Difficulty 
Results reported here were based on an item pool in which some items were dropped because 

they were deemed problematic (e.g., typographical errors; multiple correct answers); however, 
no items were dropped from analysis simply because of unsatisfactory IRT parameters. 2PL IRT 
models were run on all waves of data collection (Table 1). IRT models were run on all waves of 
data collection. While Rasch (or 1PL) models and 3PL models were also considered, 2PL models 
were chosen because unlike 1PL models, they allow discrimination to vary by item, and because 
they were considered more parsimonious,  more useable for item selection (because item 
coefficients are more interpretable), and less prone to calibration errors than 3PL models due to 
their lower number of item parameters (San Martin et al., 2015). 

 
Table 1. 2PL Model Coefficients Across all Eight Waves 
Discrimination parameter Proportion of Unique Items 
>=0.65 “moderate”a 63.4% 
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>=1.35 “high” 31.3% 
>=1.7 “very high” 18.5% 
Difficulty parameter Theta 
mean 0.00 
1st quartile -0.85 
median -0.14 
3rd quartile 0.63 
Total number of unique items in 2PL models 399 
a Characterizations of categories of discrimination parameters are taken from Baker (2001).  

 
Discrimination is classified as “moderate” if it is  0.65, “high” if it is  1.35 and “very 

high” if it is   1.7 (Baker, 2001). Based on this, 63.4% of all items (253) have at least moderate, 
and roughly one-third have high or very high discrimination.  

We also assessed item fit in the 2PL model for each wave using Chalmers’ ܸܲ െ ܳଵ test, 
because it performs better than other fit statistics at controlling Type I error (Chalmers & Ng, 
2017) (Table 2).  

 
Table 2. Measures of Item Misfit in 2PL IRT Models 

  
Number of Items With 

Significanta Misfitb Total Number of Items 
Percentage of Items With 

Significant Misfit 
Wave 1 1 33 3.0% 
Wave 2 5 125 4.0% 
Wave 3 4 66 6.1% 
Wave 4 3 72 4.2% 
Wave 5 8 100 8.0% 
Wave 6 5 99 5.1% 
Wave 7 2 39 5.1% 
Wave 8 0 31 0.0% 
Total 28 565 5.0% 
a Significant at the ߙ = 0.05 level 
b Misfit as measured by Chalmers’ Chi-Square Statistic (ܸܲ െ ܳଵ) 

 
Only 5% of items were significantly misfitted by the 2PL models (for ߙ = 0.05), suggesting 

this is likely due to random variation.  

Reliability 
In IRT, the reliability of an item varies based on Theta, which represents the number of 

standard deviations above or below the mean an individual is on the measure of the latent trait. 
Table 3 shows various measure of reliability.  

In Table 3 peak instrument values have excellent reliability (ܴ  0.9). There are also waves 
where excellent reliability (ܴ  0.9) can be obtained for values ranging from ߠ = [െ2,7,2.2] 
(assuming a standard normal distribution of knowledge, this corresponds to satisfactory 
reliability for ~98% of examinees). Further, shorter tests can be constructed with only those 
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items with the highest discrimination: for example, the 10 items with the best discrimination 
from Wave 1 yields a test with excellent reliability (ܴ  0.9) for ߠ = [െ2,1].   

 
Table 3. Reliability (R) for each wave of item administration of the ACI 

 

Theta at 
max infoa Info maxb R for info 

maxc theta w ܴ 
0.8 

theta w ܴ 
0.9 

Number of 
Items 
Tested 

Wave 1 -1.4 26.4 0.96 [-2.8, 0.4] [-2.4, -0.2] 33 
Wave 2 -1.5 37.8 0.97 [-3.0, 2.1] [-2.7, 0.9] 104 
Wave 3 -0.6 24.3 0.96 [-2.3, 1.5] [-1.8, 0.7] 57 
Wave 4 -0.6 30.1 0.97 [-2.4, 2.1] [-1.9, 1.2] 69 
Wave 5 0.7 177.1 0.99 [-2.3, 2.9] [-1.4, 1.8] 100 
Wave 6 -0.6 105.3 0.99 [-1.7, 3.0] [-1.0, 2.2] 99 
Wave 7 -0.1 21.7 0.95 [-1.5, 1.8] [-1.0, 1.1] 39 
Wave 8 0.1 11.3 0.91 [-0.9, 1.2] [-1.2, 0.3] 31 
a info = 2PL IRT model information function 
bd max = information function maximum for 2PL model 
e ܴ = 1െ ଵ

ூ
 

c expected reliability in Normal(0,1) ability distribution for 2PL models 

Relationship Between ACI Score and Prior Algebra Course Completion: Convergent 
Validity 

To explore convergent validity of the ACI, we explored the relationship between scores on 
the ACI (using theta scores from the 2PL model) to various measures of mathematics course 
level. For example, correlation of students’ ACI scores with the level of algebra courses they 
have already successfully completed would be evidence of convergent validity. First, we 
consider linear regression models with level of student’s course (where “level” is defined based 
on the algebra course pre-requisite requirements of the course) as the independent variable, and 
ACI score as the dependent variable (Table 4).  

 
Table 4. Regression of course level (by algebra pre-requisite) in predicting theta scores from the 
2PL model on the ACI, reference group: low 

Course Level Coefficient SE p-value (vs. low) p-value (vs. high) 
mid 0.347 0.014 0.000 0.000 
high 0.700 0.017 0.000  

low = no algebra course prerequisite 
mid = elementary algebra course prerequisite 
high = intermediate algebra course prerequisite 

 
In Table 4, differences in Theta score are significant ( < 0.001) for all pairwise 

comparisons.  Students in “mid”-level courses scored on average 0.35 SD higher than those in 
“low”-level courses; and students in “high”-level courses scored on average 0.35 SD higher than 
those in “mid”-level courses (or 0.70 SD higher than in “low”-level courses). This provides 
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strong evidence of convergent validity.  
We also considered a more nuanced course sequence based on prerequisites (see Table 5).  
 

Table 5. Sequence level of various courses in the sample, based on their prerequisites 
Various elementary algebra courses 1 
Various 100-level courses with an elementary algebra pre-requisite 2 
Intermediate algebra courses 2 
College algebra 2 
Discrete math with intermediate algebra prerequisite 3 
Precalculus 3 
Math for elementary teachers with intermediate algebra prerequisite 3 
Math for elementary teachers, second term 4 
Advanced statistics with precalculus prerequisite 4 
Introduction to geometry with precalculus prerequisite 4 
Calculus I 4 
Calculus II 5 
Calculus III 6 
Differential equations with Calculus II prerequisite 6 
Linear algebra with Calculus II prerequisite 6 
Abstract algebra 7 

 
Rerunning linear regression models using this more refined set of levels again reveals a 

strong correlation between level and ACI score (Table 6).  
 

Table 6. Regression of course position in longer mathematics curricular sequences (by 
classification given in Table 5) in predicting theta scores from the 2PL model on the ACI, 
reference group: sequence level 1 
Course Position 

in Sequence coeff SE p-value 
(vs. 1) 

p-value 
(vs. 2) 

p-value 
(vs. 3) 

p-value 
(vs. 4) 

p-value 
(vs. 5) 

p-value 
(vs. 6) 

2 0.504 0.017 0.000      
3 0.623 0.031 0.000 0.000     
4 0.888 0.023 0.000 0.000 0.000    
5 1.059 0.033 0.000 0.000 0.000 0.000   
6 1.232 0.041 0.000 0.000 0.000 0.000 0.000  
7 1.661 0.226 0.000 0.000 0.000 0.001 0.008 0.060  

 
One of the largest gains (one half SD) was between sequence level 1 and 2 (see Table 6), 

which distinguishes between students who have or have not satisfied an elementary algebra 
prerequisite, providing further evidence of convergent validity, as the ACI is designed to focus 
on concepts relevant to elementary algebra specifically.  

Differential Item Functioning: Measurement Invariance and Discriminant Validity  
We also assessed potential differential item functioning (DIF) related to irrelevant examinee 

characteristics: race/ethnicity, gender, and English-language-learner status. This is an aspect of 
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discriminant validity, as the ACI should measure algebraic conceptual understanding and not 
something else, like English literacy. Each wave was tested for DIF in three separate 2PL 
models: one for each characteristic. There was no consistent evidence of DIF on any of these 
factors. Only a negligible number of items had significant DIF for ߙ = 0.05 (using a Bonferroni 
correction for the number of tests within each model). Many items were tested in multiple waves, 
and none of these had significant DIF in more than one wave, suggesting that significant DIF in 
one wave for these items was likely due to random variation.  

Limitations 
The City University of New York, where this instrument was tested, is very diverse but not 

nationally-representative; however, this makes it useful for validation with marginalized students 
who have often been neglected in large-scale assessment validation. A current study is underway 
to validate the ACI on a larger national sample. The ACI has also only been validated with 
college students—further studies are necessary with younger students. The ACI has also been 
developed to make diagnostic judgements about groups of students—not high-stakes decisions 
for individuals—and thus we caution against that particular use of the ACI.  

Discussion and Conclusion 
Results from analysis suggest that algebraic conceptual understanding, as conceptualized by 

the items included on the ACI, is a measurable domain. IRT analysis indicated that a large 
proportion of items had good discrimination parameter estimates, suggesting that the final 
version of the ACI is likely to have an excellent ability to differentiate between students of 
various levels. Additionally, reliability was excellent for all waves, and results indicated that a 
shorter test could be constructed that would have excellent reliability for a large range of 
knowledge levels. The ACI also showed evidence of convergent validity, as students with higher 
algebra course prerequisites showed higher item success rates. Finally, only a negligible 
proportion of items showed differential item functioning with respect to race/ethnicity, gender, or 
English-language-learner status, indicating that the ACI had satisfactory measurement invariance 
with respect to these characteristics.  

However, the ACI is only a first attempt at measuring algebraic conceptual understanding, 
and much more work needs to be done to map out in detail the various conceptions that students 
in different contexts hold of core algebra concepts, and determine how these can best be 
measured. The ACI provides only a single scale number; however, further work with cognitive 
diagnostic models on ACI items might provide more nuanced diagnostic information that could 
be particularly critical for instruction, by better modeling the complex layers of conceptions that 
students might have about various concepts in algebra.  In reality, the kinds of knowledge that 
the ACI is trying to measure are quite complex, and capturing only a single score is, on its own, 
woefully inadequate if we hope to understand how students think algebraically and how various 
instruction and curriculum relate to this complex conceptual development. We see the ACI as just 
a first step in building out much more complex models of students’ algebraic conceptions.   
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In this contributed report, I tell a story surrounding one mathematician’s learning to teach 
mathematics content courses designed for prospective elementary teachers. Namely, I describe 
the mathematician’s background and the series of events that pushed this newer mathematics 
instructor to develop productive dispositions towards their students, leverage support from their 
mom, a former elementary teacher, and navigate challenging student questions in the classroom. 
This report draws on results from my dissertation study, a narrative inquiry of one mathematics 
instructor, involving a semester-long collection and analysis of classroom observations, 
observations of instructor meetings, weekly instructor reflection journal entries, three instructor 
interviews, and instructor-written mathematics teaching and learning autobiographies. A key 
implication is that mathematics instructors may benefit from early experiences developing 
productive mindsets towards teachers and teaching, and need access to individuals who value 
teachers and teaching and who avoid deficit discourses around teachers or students. 

Keywords: narrative inquiry, post-secondary mathematics instructors, mathematics content 
courses, prospective elementary teachers, support for teaching 

Introduction 
Bruce was a prospective elementary teacher (elementary PT) in a mathematics content course 

designed for elementary PTs in a large midwestern university. During the second class of the 
semester, Bruce asked their instructor, Rowan, "in what grade would number lines be 
attainable?" Rowan responded: 

,¶P�QRW�VXUH��,�WKLQN�FRXQWLQJ�QXPEHUV�DUH�.LQGHUJDUWHQ�DQG��VW�JUDGH��,�WKLQN�LW�ZRXOG�EH�
attainable for 2nd or 3rd graders, but it would depend on the curriculum in the district. 
,¶P�QRW�UHDOO\�WKH�EHVW�SHUVRQ�WR�Dsk because I know more about math--being from the 
math department--but if I was from the teaching department I might know more. 

%UXFH¶V�TXHVWLRQ�SRVHG�D�FKDOOHQJH�WR�5RZDQ��LQ�SDUW��EHFDXVH�5RZDQ�ZDV�WHDFKLQJ�HOHPHQWDU\�
PTs for the first time but also because Rowan did not have K-12 teaching experience. So how did 
Rowan learn to navigate challenging questions from their students, especially those that went 
beyond mathematics content and into intersections of mathematics content and 
knowledge/experience of K-��VWXGHQWV¶�PDWKHPDWLFDO�WKLQNLQJ�DQG�RU�.-6 schools? 

$V�%UXFH¶V�TXHVWLRQ�VKRZV��OHDUQLQJ�WR�WHDFK�PDWKHPDWLFV�FRQWHQW�FRXUVHV�GHVLJQHG�IRU�
prospective elementary teachers (PTs) can be challenging. Mathematics content instructors must 
be prepared to not oQO\�WHDFK�PDWKHPDWLFV�FRQWHQW��EXW�HQJDJH�37V�LQ�XQGHUVWDQGLQJ�FKLOGUHQ¶V�
mathematical thinking strategies, learning trajectories, and misconceptions (Carpenter et al., 
1996; Carpenter & Moser, 1982; I et al., 2020). When considering how instructors might best be 
prepared and supported, however, one must recognize that there is significant variation in the 
backgrounds and expertise of mathematics content instructors (Masingila et al., 2012; Yow et al., 
2016) and little is known about the preparation, knowledge, and experiences of mathematics 
content instructors (Even, 2008; Goos, 2009; Masingila et al., 2012; Oesterle, 2011; Zaslavsky & 
Leikin, 2004). Furthermore, most instructors who are newer to teaching PTs do not feel prepared 
and additionally report an absence of training, resources, and support at their institutions 
(Goodwin et al., 2014; Masingila et al., 2012; Quaisley, 2023; Yow et al., 2016). Mathematics 
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content instructors, especially those newer to teaching PTs, need preparation and support that 
account for their background and teaching context. 

In this contributed report, I draw on the findings of my dissertation study, a narrative inquiry 
connecting the background, preparation, and support of one instructor (Rowan) to their learning 
to teach mathematics content for PTs (Quaisley, 2023). Specifically, I detail the series of events 
that pushed Rowan to develop productive dispositions towards their students, leverage support 
from their mom, a former elementary teacher, and navigate challenging student questions, like 
%UXFH¶V��LQ�WKH�FODVVURRP� 

Literature Review 
Not much research has been done with specific attention to newer mathematics content 

LQVWUXFWRUV¶�SUHSDUDWLRQ�DQG�OHDUQLQJ�WR�WHDFK�37V��4XDLVOH\���������:KDW�VWXGLHV�GR�H[LVW�
typically focus on a few small slices of the knowledge or skills that may be important for 
instructors to develop (e.g., Masingila et al., 2018; Zopf, 2010) or discuss support structures that 
may benefit instructors (e.g., Castro Superfine & Li, 2014; Jackson et al., 2020; Shaughnessy et 
al., 2016; Suppa et al., 2020) but are not necessarily about the instructor and how they navigate 
this work outside of researcher intervention��2HVWHUOH¶V��������VXPPDU\�RI�OLWHUDWXUH�RQ�SRVW-
secondary mathematics instructors holds relevance today:  

although the research is intended for instructors (or for course/program designers), there 
is very little research about WKH�LQVWUXFWRUV«�LQ�WKLV�FRntext there is a lack of documented 
research about what happens in ordinary mathematics content courses for preservice 
teachers, ones that are not undergoing studies for particular interventions. (Oesterle, p. 
39, emphasis original)  

What literature about instructors of PTs of mathematics do exist typically involve one 
experienced instructor reflecting on their experiences (e.g., Chauvot, 2009; Nicol, 1997; Tzur, 
2001), or involve less than a handful of newer instructors (e.g., Oesterle, 2011; Van Zoest, 2006). 
Additionally, of the studies about newer instructors, most focus on mathematics methods 
instructors with experience teaching high school mathematics (e.g., Chauvot; Nicol, 1997; Tzur, 
2001; Van Zoest, 2006). Hence, more perspectives need to be examined to thoroughly 
understand the complexities of learning to teach elementary PTs, specifically perspectives from 
mathematics content instructors who are not only newer to teaching elementary PTs, but newer 
to teaching more generally. 

Studies about newer instructors of PTs of mathematics are important because of the 
RSSRUWXQLWLHV�WKH\�SURYLGH�IRU�LQVLJKW�LQWR�LQVWUXFWRUV¶�GLOHPPDV��WHQVLRQV��DQG�FKDOOHQJHV�DQG�WR�
K\SRWKHVL]H�DERXW�WKH�FRQQHFWLRQV�DPRQJ�DQ�LQVWUXFWRU¶V�EDFNJURXQG��WHDFKLQJ�FRQWH[W�DQG�
experiences. For instance, Nicol (1997) and Van Zoest (2006) both involved mathematics 
methods instructors with prior experience teaching high school mathematics and both studies 
revealed common tensions around teaching PTs to think critically about teaching. More studies 
that center instructor experience may reveal further commonalities among instructors with 
particular backgrounds and in particular teaching contexts. Such studies may also highlight key 
differences among instructors with similar backgrounds and teaching contexts, as well as 
previously undocumented challenges for those instructors. 

Purpose Statement and Research Question 
My research puzzle (Clandinin, 2013) was this: how might the backgrounds and teaching 

contexts of newer mathematics content instructors shape their experiences around learning to 
WHDFK�37V"�&KDXYRW¶V��������VWXG\�FDOOV�IRU�WKLV�NLQG�RI�H[SORUDWLRQ��³GLIIHUHQW�NLQGV�RI�
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NQRZOHGJH�LV�QHHGHG�WR�VHUYH�GLIIHUHQW�UROHV´��&KDXYRW��S��������&RQQHFWLRQV�EHWZHHQ�
LQVWUXFWRUV¶�FRQWH[WV�DQG�WKHLU�learning to teach PTs do not appear to be well understood in the 
UHVHDUFK�OLWHUDWXUH�\HW�DUH�FULWLFDO�WR�PDNLQJ�SURJUHVV�LQ�XQGHUVWDQGLQJ�QHZHU�LQVWUXFWRUV¶�
learning and growth, the challenges and successes they experience, the expertise they need to 
develop, and the support structures that might benefit them. Hence, the purpose of my study was 
WR�REWDLQ�D�PRUH�QXDQFHG�XQGHUVWDQGLQJ�RI�D�QHZHU�PDWKHPDWLFV�FRQWHQW�LQVWUXFWRU¶V�H[SHULHQFHV�
around learning to teach elementary PTs in their respective teaching context. 

7KH�FHQWUDO�TXHVWLRQ�WKDW�JXLGHG�P\�VWXG\�ZDV��³+RZ�PLJKW�D�QHZHU�PDWKHPDWLFV�FRQWHQW�
LQVWUXFWRU¶V�EDFNJURXQG�DQG�SUHSDUDWLRQ�UHODWH�WR�WKH�FKDOOHQJHV�DQG�VXFFHVVHV�WKH\�H[SHULHQFH�
around teaching and learning to teach mathematics content for elemeQWDU\�37V"´ 

Theoretical Framing: Narrative Inquiry and 3-D Framework 
To address my research question, I engaged in a narrative inquiry (Clandinin & Connelly, 

������RI�RQH�EHJLQQLQJ�LQVWUXFWRU¶V�H[SHULHQFHV�OHDUQLQJ�WR�WHDFK�PDWKHPDWLFV�IRU�HOHPHQWDU\�
PTs. Narrative inquiry centers on experience, both as the phenomenon being studied and the 
method used to understand experience (Creswell & Poth, 2018). I drew on Clandinin and 
&RQQHOO\¶V��������WKUHH-dimensional (interactional, temporal, and contextual) inquiry space to 
understand experience. First, the interactional dimension refers to both personal interactions, 
VXFK�DV�³DQ�LQGLYLGXDO¶V�IHHOLQJV��KRSHV��UHDFWLRQV��DQG�GLVSRVLWLRQV´ (Creswell & Guetterman, 
2019, p. 522), as well as social interactions and perspectives of other people. Second, the 
temporal dimension refers to time²past, present, and future²and means that one does not just 
consider the on-going experiences of the present, but also considers past events, anticipated 
future events, and how WKRVH�PLJKW�EH�UHOHYDQW�WR�VRPHRQH¶V�XQGHUVWDQGLQJ�RI�FXUUHQW�HYHQWV��
Third, the contextual GLPHQVLRQ�UHIHUV�WR�³WKH�FRQWH[W��WLPH��DQG�SODFH�ZLWKLQ�D�SK\VLFDO�VHWWLQJ��
ZLWK�ERXQGDULHV�DQG�FKDUDFWHUV¶�LQWHQWLRQV��SXUSRVHV��DQG�GLIIHUHQW�SRLQWV�RI�YLHZ´��&reswell & 
Guetterman, 2019, p. 522). When considered altogether, these three dimensions allow for a 
continuous and storied understanding of experience²not as an isolated event, but as a thread 
connected to the larger storyline of who someone was, is, and wants to become. 

Context of the Study 
The setting for my inquiry was Cardinal University (a pseudonym), a large mid-western 

university. Operations & Number Systems (O&NS; a pseudonym), the mathematics content 
course of interest for this study, is taken during the STEM semester, an integrated effort to 
connect the contents and pedagogies of mathematics, science, and technology. O&NS aims to 
GHYHORS�HOHPHQWDU\�37V¶�XQGHUVWDQGLQJ�RI�VRPH�RI�WKH�HDUOLHVW�JUDGHV¶�PDWKHPDWLFV�FRQWHQW��
such as the base-10 number system, the operations of addition, subtraction, multiplication, and 
division, fractions, and the properties of arithmetic. Because O&NS is taken alongside 
Elementary Mathematics Methods (EMM), as well as a practicum that meets at elementary 
schools for a full day twice a week, the hope is that elementary PTs will be able to see the value 
in what they are learning and apply it to teaching elementary mathematics.  

I recruited one instructor, Rowan (she/they), at Cardinal University who was teaching O&NS 
and who identified as both a newer instructor of PTs and a newer instructor more generally. I am 
especially grateful to Rowan for giving me the precious gift of their time, energy, and thoughts, 
so that I could share their experiences. Other participants in my sWXG\�LQFOXGHG�5RZDQ¶V�VWXGHQWV�
(18 total), as well as the other O&NS instructors (2 total) and EMM instructors (3 total).  
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Data Collection and Analysis 
,Q�VSULQJ�������,�REVHUYHG�DOO�RI�5RZDQ¶V�FODVVHV�DQG�PHHWLQJV�ZLWK�RWKHU�LQVWUXFWRUV��

conducted three interviews with Rowan (on their preparation, support, and overall learning), and 
FROOHFWHG�5RZDQ¶V�WHDFKLQJ�DQG�OHDUQLQJ�DXWRELRJUDSKLHV��5RZDQ¶V�ZHHNO\�UHIOHFWLRQ�MRXUQDO�
UHVSRQVHV��DQG�5RZDQ¶V�WHDFKLQJ�DQG�'(,�VWDWHPHQW��'XULQJ�HDFK�RI�P\�REVHUYDWLRQV�RI�
5RZDQ¶V�2	16�FODVVHV�DQG�LQVWUXFWRU�PHHWLQJV��,�FRPSRVHG�GHWDLOHG�ILHOGQRWHV�RQ�ZKDW�,�VDZ�
and heard, as well as my interpretations. Following nearly every observation of a class or 
instructor meeting, I wrote descriptive and reflexive memos to assist me in interpreting situations 
and writing rich descriptions of themes (Emerson et al., 2011; Spradley, 2016) with specific 
DWWHQWLRQ�WR�HDFK�GLPHQVLRQ�RI�&ODQGLQLQ�DQG�&RQQHOO\¶V��-D framework. 

My goal for data analysis was to utilize the various data sources I collected to support me in 
restorying²a process of analyzing and reorganizing²Rowan's experiences. I analyzed my 
fieldnotes, along with the early (on preparation), mid-semester (on support), and end of semester 
interview (on overall learning) transcripts��5RZDQ¶V�UHIOHFWLRQ�MRXUQDO�HQWULHV��5RZDQ¶V�
PDWKHPDWLFV�OHDUQLQJ�DQG�PDWKHPDWLFV�WHDFKLQJ�DXWRELRJUDSKLHV��DQG�5RZDQ¶V�WHDFKLQJ�DQG�'(,�
statement using cycles of open-coding (Saldaña, 2016) based on broad categories related to my 
research questions: (a) challenges, (b) successes, and (c) prior experiences, preparation, and 
support. As I re-read each and every piece of data and coded ideas, excerpts, or interactions 
within the above categories, I organized ideas and interactions from classroom fieldnotes and 
memos, instructor meeting fieldnotes and memos, and reflection journal responses into tables 
based on these categories chronologically and contextually. I also wrote analytic memos as I 
collected data, which provided a crucial support to me in hypothesizing about themes or 
narrative threads. 

Results: 5RZDQ¶V�/HDUQLQJ�WR�1DYLJDWH�&KDOOHQJLQJ�6WXGHQW�4XHVWLRQV 
In Quaisley (2023), I described numerous concurrent challenges Rowan experienced in 

learning to teach mathematics content courses for elementary PTs, such as time constraints as a 
graduating Ph.D. candidate, the burden of unfinished grading assignments, and an overall sense 
RI�IHHOLQJ�³XQHDV\´�DQG�³XQVWHDG\�´�RIWHQ�ZLWK�UHVSHFW�WR�OHDUQLQJ�³GLIIHUHQW´�DQG�³KDUG´�
content. At the same time, Rowan experienced successes around developing positive beliefs 
about PTs and teaching O&NS, navigating challenging student questions, learning to seek 
external support for teaching (and in general), having students pass exams, and surviving the 
VHPHVWHU�ZLWKRXW�DQ\�³FDWDVWURSKLF�IDLOXUHV�´�)RU�WKLV�UHSRUW��,�GHWDLO�WKH�LQWHUFRQQHFWHG�QDWXUH�RI�
5RZDQ¶V�VXFFHVVHV�LQ�GHYHORSLQJ�SURGXFWLYH�GLVSRVLWLRQV�WRZDUGV�WKHLU�VWXGHQWV��OHYHUDJLQJ�
external support for teaching, and navigating challenging student questions in the classroom.  

5RZDQ¶V�%DFNJURXQG�	�3ULRU�([SHULHQFHV 
At the time of the study, Rowan (she/they) was a mathematics graduate student instructor in 

their fifth and final year in a mathematics Ph.D. program at Cardinal University (a pseudonym). 
Throughout those five years, Rowan taught calculus recitations and lecture and Intermediate 
Algebra, as well as assisted teaching a mathematics content course for practicing teachers during 
a two-week summer session (Math for Teachers). In some semesters, Rowan also taught these 
courses from the position of associate course convenor²a role involving additional 
UHVSRQVLELOLWLHV�VXFK�DV�FUHDWLQJ�FRPPRQ�H[DPV�DQG�REVHUYLQJ�LQVWUXFWRUV¶�FODVVHV��,Q�WKH�
semester in which this study occurred, Rowan was teaching O&NS for the first time. 

An influential SHUVRQ�LQ�5RZDQ¶V story is their mom, a former elementary teacher, who made 
D�VLJQLILFDQW�LPSDFW�RQ�ERWK�5RZDQ¶V�GHVLUH�WR�WHDFK�DQG�WKHLU�SHUFHSWLRQV�RI�WHDFKLQJ� 
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My mom impacts just my teaching generally, not even in relation to this course, because 
my mom was a grade-school teacher and then was an administrator of preschool. And 
she, she loved it. My mother loved teaching. And I think that that really has impacted the 
entire trajectory of my life... So, definitely my mom has had a big influence on like 
wanting to teach, and I think a lot of that comes from her passion for it, and also all the 
discussions we had as I was growing up about like what teaching is. (Rowan, Final 
Interview) 

These early experiences with their mom further supported Rowan in developing an asset-oriented 
mindset towards practicing teachers in the Math for Teachers course. 

The students were a treat though. Since they teach, they have an empathetic 
understanding of the complexities of teaching. Several of the students also reminded me 
of my mom²my mother was a grade-school teacher, and they had similar spirits and 
PHQWDOLWLHV�DURXQG�WHDFKLQJ�DQG�OHDUQLQJ«�ZH�HQGHG�XS�KDYLQJ�D�ORW�RI�UHDOO\�SURGXFtive 
conversations where I would give them advice on mathematics, and they would give me 
advice on teaching. (Rowan, Autobiography) 

Specifically, Rowan positioned practicing teachers as knowledgeable experts, who not only 
know how to teach elementary students but have valuable knowledge relevant to an 
instructor of undergraduate mathematics courses. 

Developing Positive Dispositions 
Rowan began the semester excited to teach and voiced optimistic opinions about their O&NS 

students in their early reflection journals. For instance, Rowan wrote in their week one journal: 
³,�WKLQN�WKH�VWXGHQWV�ZLOO�EH�IXQ�DQG�HDV\�WR�ZRUN�ZLWK��6LQFH�WKH\�ZDQW�WR�EH�WHDFKHUV��WKH\¶OO�
have an appreciation and understanding for both the teaching methods I use and the teaching 
methodV�IRU�PDWKHPDWLFV�WKH\¶UH�OHDUQLQJ´ (Week 1 Reflection Journal). By the end of the 
semester, some of 5RZDQ¶V early semester beliefs about prospective teachers still resonated with 
Rowan. Rowan explained how their thinking was influenced by their mom and their previous 
experiences teaching Math for Teachers: 

>5RZDQ@�VD\V�WKDW�LW¶V�UHDOO\�HDV\�IRU�WKHP�WR�WKLQN�DERXW�ZKDW�LW¶V�OLNH�WR�EH�D�37�MXVW�
because their mom was a grade-school teacher, and she shared with [Rowan] what it was 
like learning to teach. [Rowan] says, although that was 35 years ago, and things are 
different now. [Rowan] says that they also taught teachers when they were assisting with 
[Math for Teachers] and that was the greatest experience they ever had. [Rowan] says 
that the teachers were really great. (Researcher Fieldnotes, Week 15 Classroom Debrief) 

Navigating Challenging Student Questions 
From the beginning of the semester, one of the classroom events that Rowan came to rely on 

DV�³EXVLQHVV-as-XVXDO´�ZDV�WKHLU�VWXGHQWV�UHJXODUO\�DVNLQJ�5RZDQ�TXHVWLRQV�QRW�MXVW�DERXW�
mathematics content, but questions at the intersection of mathematics content and knowledge of 
K-��VWXGHQWV¶�PDWKHPDWLFDO�WKLQNLQJ�DQG�RU�.-6 schools. Early on, Rowan found these questions 
especially challenging. Recall from the introduction that right from the second class at the 
beginning of week two, Bruce asked Rowan, "in what grade number lines would be attainable?" 
%UXFH¶V�TXHVWLRQ�FKDOOHQJHG�5RZDQ�WR�UHIOHFW�RQ�WKHLU�DELOLW\�WR�VXSSRUW�WKHLU�2	16�VWXGHQWV¶�
inquiries about K-��VWXGHQWV¶�PDWKHPDWLFDO�WKLQNLQJ�HDUO\�RQ: 

I wish I had a better sense of the timeline on which elementary students would learn this 
material. A [O&NS] student asked when a [K-6] student would learn about or be able to 
conceptualize the idea of decimals in base-WHQ�QRWDWLRQ�DQG�,�ZDVQ¶W�DEOH�WR�SURYLGH�
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anything useful, but I think it would help the [O&NS] students to be able to consider the 
age of their [K-6] students while they learn the material. (Week 2 Reflection Journal) 

During the preparation interview (also in the second week), Rowan additionally reflected on the 
H[WHQW�WR�ZKLFK�WKH\�³KDYH�WKH�DXWKRULW\´�WR�DQWLFLSDWH�.-6 student thinking and worried about 
missing important ideas behind student thinking. Perhaps addressing questions involving 
knowledge of or experience with K-��VWXGHQWV¶�PDWKHPDWLFDO�WKLQNLQJ�PLJKW�QRW�KDYH�SUHVHQWHG�
itself as a challenge for Rowan if they were asked these questions infrequently. However, Rowan 
was asked such questions in front of the whole class almost every week starting from the second 
week of the semester through at least week ten of the semester. 

Why Not Seek Internal Support? 
So how would Rowan navigate challenging questions from their O&NS students? One way 

in which Rowan might have chosen to navigate these questions is by seeking support internal to 
their institution. Rowan valued the knowledge and expertise of those with K-12 teaching 
experience, and as a result, they wrote about wishing to connect with practicing elementary 
teachers as a desired support in their reflection journals and considered reaching out to EMM 
instructors (all three of whom had K-12 teaching experience) as a support they did have access 
to. An unfortunate experience at the third and final joint O&NS-EMM instructor meeting 
influenced Rowan to not exercise this possibility, however. One of the EMM instructors who 
was looked upon to lead the meetings joined the Zoom call for the meeting and then promptly 
left after a few minutes��5RZDQ�UHFRXQWHG�IHHOLQJ�WKDW�2	16�LQVWUXFWRUV�ZHUH�³QRW�ZRUWK�WKHLU�
�(00�LQVWUXFWRUV¶��WLPH´�GXULQJ�WKH�PLG-semester interview about their support, and lost faith in 
the STEM semester as a collaborative experience between O&NS and EMM instructors. 

Seeking External Support from Mom 
As Rowan did not have access to practicing K-6 teachers or believe that EMM instructors 

could be relied upon for support, a crucial way in which Rowan navigated challenging questions 
from their O&NS students throughout the semester was by regularly relying on support from 
their mom. Following each class, Rowan would debrief with me, then call their mom and debrief 
with their mom on their drive home. Conversations with their mom supported Rowan in 
reflecting on their own K-��PDWKHPDWLFV�OHDUQLQJ�H[SHULHQFHV��DV�ZHOO�DV�VRPH�RI�WKHLU�PRP¶V�
experiences teaching K-6 mathematics��7KHVH�FRQYHUVDWLRQV�DOVR�EXLOW�5RZDQ¶V�FRQILGHQFH: 

But definitely was impactful was thinking about, thinking about and being able to talk 
through what I had done (as a K-6 student) in comparison to what I am teaching. And it 
also helped because then I could more confidently tell my (O&NS) students, 'Oh, like, 
ZKHQ�,�OHDUQHG�LW��DQG�SRVVLEO\�ZKHQ�\RX�OHDUQHG�LW��EHFDXVH�\RX¶UH�RQO\��OLNH��D�OLWWOH�ELW�
younger than I am. Like, this is. I remember this being a thing'. My mom said that this 
was a thing. And I think that connection is useful to me. I wish I had more of it, but it 
ZRXOG�EH�VR�KDUG�WR�WUDFN�GRZQ�EHFDXVH��OLNH��,�GRQ¶W�IXOO\�UHPHPEHU�P\�H[SHULHQFH��
right? I did have to talk it through with my mom, and my mom was very involved in my 
schooling, which is why she remembers. (Rowan, Final Interview) 

A Conversation with Kenny  
$Q�LPSRUWDQW�ZD\�LQ�ZKLFK�5RZDQ¶V�SRVLWLYH�dispositions towards students and their 

conversations with their mom may have supported their navigation of challenging questions was 
that Rowan demonstrated empathy for multiple perspectives, rather than asserting a superior 
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perspective. Consider the following conversation1 between Rowan and one of their O&NS 
students, Kenny, during week ten of the semester, in which Rowan offered a possible rationale 
IRU�WKH�DFWLRQV�RI�.HQQ\¶V�FRRSHUDWLQJ�WHDFKer and directed the conversation away from judging 
WKRVH�DFWLRQV�DV�ULJKW�RU�ZURQJ��,QVWHDG��5RZDQ�GLVFXVVHG�WKH�FRRSHUDWLQJ�WHDFKHU¶V�DFWLRQV�DV�D�
SRVVLEOH�DSSURDFK�WR�VXSSRUWLQJ�VWXGHQWV¶�OHDUQLQJ� 

Kenny: What is the most common way we do this today? My understanding is that [City] 
SXEOLF�VFKRRO�LV�PRYLQJ�WRZDUGV�SDUWLDO�SURGXFWV�PHWKRG��,¶YH�QRWLFHG�WKDW�VRPH�VWXGHQWV�
skip carrying a step, and that you say thirteen tens rather than a hundred and thirty. Does 
that make sense?  

Rowan: That makes sense. I know from the outset that the 2 is in the tens place and allowing 
WKDW�PLQGIXOQHVV�RI�SODFH�IURP�WKH�RXWVHW����>5RZDQ�ZRUNV�DQ�H[DPSOH�ZLWK�.HQQ\¶V�
input.]  

Kenny��,�XQGHUVWDQG�LW��EXW�,�ZDQW�WR�NQRZ�ZKDW¶V�ULJKW�IRU�WKH�SURFHVV�IRU�NLGV�WR�
understand... [Rowan does another example with 38 x 6 and writes 228.] I think I 
XQGHUVWDQG�ZK\�P\�FRRSHUDWLQJ�WHDFKHU�HPSKDVL]HV�LW��EXW�,�DOVR�GRQ¶W�TXLWH�XQGHUVWDQG��� 

Rowan: Yeah, I think the partial products just emphasizes more of the steps. Have you ever 
seen kids who want to add up all the numbers from left to right and end up with too many 
digits? The partial products method is trying to prevent that. [Kenny nods their head up 
and down as Rowan explains.] 

Kenny: Yeah, I think that makes sense. Sorry for taking up the time. [Rowan reassures Kenny 
that its fine and then asks if there are more questions.] 

Discussion and Implications 
Even though Rowan did not feel they initially had the preparation or the authority to address 

questions around K-��VWXGHQWV¶�H[SHULHQFHV�and mathematical thinking, their offering of 
mathematical perspectives through an empathetic lens in their conversation with Kenny provides 
RQH�UHDVRQ�WR�YLHZ�5RZDQ¶V�QDYLJDWLRQ�RI�WKLV�FKDOOHQJH�DV�D�VXFFHVV��1DYLJDWLQJ�VWXGHQWV¶�
questions and maintaining a classroom environment of openness, curiosity, and mutual respect 
for mathematical perspectives, but especially teaching and teachers, is not a given. Rather, this 
may be a skill Rowan developed through reflective practice and their desire to build productive 
dispositions towards teachers and teaching. 

5RZDQ¶V�H[SHULHQFHV�VXJJHVW�WKDW�mathematics instructors may benefit from early 
experiences developing productive mindsets towards teachers and teaching. For professional 
developers, an explicit introduction to and discussion of asset-based frameworks or mindsets 
early in mathematics LQVWUXFWRUV¶ preparation for teaching may support instructors in fostering 
more productive beliefs in the long-run. Furthermore, not all mathematics instructors have 
significant relationships with individuals who value teachers and teaching and who avoid deficit 
discourses around teachers or students. Thus, it is important for departments to carefully consider 
the resources, including people, that instructors have access to in learning to teach mathematics 
content courses for PTs. 
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College Students’ Conceptualizations of Symbolic Algebraic Properties 

 Claire Wladis Benjamin Sencindiver Kathleen Offenholley 
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Here we explore how college students across a wide range of courses may conceptualize 
symbolic algebraic properties. We draw on the theory of Grundvorstellungen (GVs) to analyze 
how learner conceptions may or may not align with instructional goals. In analyzing interviews, 
several categories of conceptions (descriptive GVs) emerged that may help us to better 
understand how students conceptualize symbolic properties during instruction.   

Keywords: Algebraic properties, Syntactic reasoning, Equivalence, Algebraic transformation. 

Mathematical properties are critical to justifying symbolic transformation, especially in 
algebra and domains that rely on algebraic representation.  However, learners often use 
properties in ways that are not mathematically valid (e.g., Hoch & Dreyfus, 2004; Mok, 2010) 
and instruction may not address the use of symbolic properties (and their role in justifying 
transformation) explicitly enough (e.g., Barnett & Ding, 2019). Here we focus on learners’ 
ability to identify parallel syntactic structure between symbolic properties and symbolic 
algebraic representations, and we explore how this may relate to learners’ conceptions.  

Properties and Forms 
Because here the focus is on how properties are used to transform symbolic representations, 

we define a symbolic property as any mathematical statement that can be used to transform a 
symbolic object into an equivalent one with a different form. Two examples are: 1) the definition 
of negative exponents, e.g.: ିݔ = ଵ

௫
 for ݔ ് 0; and 2) this statement about equivalent 

equations: ܣ ڄ ܤ = ܥ ՞ ܣ = 

 (when ܤ ് 0). The key feature of this definition is that 1) could 

be used to replace an expression of the form ିݔ with one of the form ଵ
௫

 (or vice versa), and 2) 

could be used to replace an equation of the form ܣ ڄ ܤ = ܣ with one of the form ܥ = 

 whenever 

ܤ ് 0 (or vice versa). Symbolic properties are made up of two sides, each of which can be 
viewed as a separate object, which are often referred to colloquially during instruction as “forms” 
(e.g., the “forms” ିݔ, ଵ

௫
ܣ , ڄ ܤ = ܣ and ,ܥ = 


 above).  

Relatively little is known about learners’ conceptions of symbolic properties. Existing 
research has focused on classifying errors that learners make when using properties to compute 
or transform (e.g., Hoch & Dreyfus, 2004; Mok, 2010); on learners’ justifications for why 
properties are true; or on learners’ ability to derive properties from arithmetic patterns (e.g., 
Hunter et al., 2022). Schüler-Meyer (2017) has investigated learners’ structure sense for the 
distributive property (e.g., Schüler-Meyer, 2017), there is a dearth of research looking at this for 
symbolic properties more generally.  Given how critical using and understanding symbolic 
properties and forms is for transforming symbolic representations (Kieran, 2011), it is essential 
that more research investigate how students conceptualize symbolic properties more generally, to 
address this gap in the research literature.  
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Theoretical Framework 

Grundvorstellungen 
We use prescriptive and descriptive Grundvorstellungen (GVs) (or “fundamental 

conceptions”) to frame this research. Prescriptive GVs describe conceptions that are the goal(s) 
of instruction (vom Hofe, 1995); descriptive GVs describe actual conceptions that learners hold, 
which may or may not reflect prescriptive GVs. Comparing these two types of GVs can then be 
used to guide curriculum or instruction (Greefrath et al., 2016). Both descriptive and prescriptive 
GVs are intended to evolve with research over time.  Further, one concept may have multiple 
GVs and vice versa.  First we describe two prescriptive GVs for symbolic properties (Figure 1). 
After analyzing student interviews, we will present some descriptive GVs in the Results section.   

 
Equivalence-
Preserving 
GV 

Symbolic properties describe a method for replaceing one symbolic representation with 
another equivalent one, based on a context-dependent pre-existing definition of 
equivalence (e.g., insertion equivalence; Prediger & Zwetzschler, 2013) 

Mapping GV For equivalence to be preserved, the following criteria must be met: The form on one 
side of the symbolic property must be mapped bijectively to the symboic representation 
so that: 1) A unified subexpression is mapped to each variable in the form; 2) All other 
symbols are mapped to notation in the form with the same syntactic meaning (e.g., 
different notations for multiplication can be mapped to one another). 
Figure 1: Two Related Prescriptive GVs for Symbolic Properties 

Operational vs. Structural Conceptions and Extracted vs. Stipulated Definitions 
In constructing models of learners’ descriptive conceptions, we were also influenced by 

research on operational vs. structural conceptions (Sfard, 1992) and extracted vs. stipulated 
definitions (Edwards & Ward, 2004). A learner with an operational conception views properties 
as a process of computation, while a learner with a structural conception views them as abstract 
objects (e.g., canonical representations of particular algebraic structures). Sometimes learners 
treat something as an object that is not the reification of any process, and this is called a 
pseudostructural conception (Sfard, 1992, p. 75). The operational/structural distinction is related 
to the prescriptive Mapping GV of Symbolic Properties, which focuses on conceptualizing forms 
within a property structurally as objects.  

Extracted definitions emerge organically from observed usage of a term (e.g., when a learner 
extracts meanings for a property based on how it was used during computation in instruction). In 
contrast, stipulated definitions are explicitly stated—to determine if something fits the definition, 
one must consult the definition directly (Edwards & Ward, 2004). The extracted/stipulated 
distinction is related to the Equivalence-Preserving GV of Symbolic Properties, as a core 
stipulated part of the properties definition is that they preserve equivalence (in addition, the type 
of equivalence that is preserved must be based on a stipulated definition).  

Methods 
This project is based on 102 cognitive interviews that were conducted with college students 

in the US in 18 courses ranging from elementary to linear algebra on items from the Algebra 
Concept Inventory (Wladis et al., 2018); courses included both STEM and non-STEM courses. 
Students interviewed were diverse in terms of gender, race/ethnicity, national origin, and English 
language learner status. Thematic analysis (Braun & Clarke, 2006) was combined with an initial 
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theoretical stance focused on noticing both extracted vs. stipulated definitions (Edwards & Ward, 
2004) and operational vs. structural (Sfard, 1992) conceptions, as well as the extent to which 
learners provided potential evidence of Equivalence-Preserving or Mapping GVs. This allowed 
for the resulting coding framework of learners’ descriptive GVs of symbolic properties to contain 
both emergent and confirmatory aspects.   

Results and Discussion 
Analysis of cognitive interviews resulted in a framework of learners’ descriptive GVs of 

symbolic properties (Figure 2). Here operational vs. structural conception categories relate to 
how closely learners’ GVs align with a Mapping GV and extracted vs. stipulated definition 
categories relate to how closely they align with an Equivalence-Preserving GV (Figure 1).  

 

 Extracted Definition Stipulated Definition 
Operational 
Conception 
of Properties 

Pseudo-process GV: Learners see 
properties as a cue to a computational 
process, and their approaches are 
extracted from prior experience rather 
than based on stipulated definitions. They 
often draw on surface structure rather 
than syntactic meaning. For example, 
learners may conceptualize the 
distributive property as an instruction to 
“take what is on the outside of the 
parentheses and put it next to each thing 
on the inside”, regardless of the specific 
operations involved. 

Process GV: Learners see properties as a cue 
to a computational process, but attend to 
syntactical meanings and/or equivalence as a 
justification (e.g., checking for appropriate 
operations in the expression; checking that 
original and resulting expressions are 
insertionally equivalent). However, they may 
struggle to conceptualize properties as objects 
to which structures in the expression or 
equation can be mapped one-to-one, and thus 
may have difficulty generalizing the use of 
properties to more syntactically complex 
symbolic representations. 

Structural 
Conception 
of Properties 

Pseudo-object GV: Learners 
conceptualize a property as something 
that requires mapping to the specific 
forms in the property, but the mapping is 
still somewhat ill-defined and/or based on 
extracted notions, such as what “looks 
right”. 

Object GV: Learners conceptualize the 
property as an object, such as a canonical form, 
to which the specific mathematical object (i.e., 
expression, equation, etc.) must be mapped 
one-to-one, in such a way that preserves 
syntactic meaning. They recognize that it is 
these criteria that preserve equivalence. 

Figure 2: Framework to Categorize Descriptive GVs for Symbolic Properties 

We illustrate the framework by presenting some examples of student work. 

Operational Conceptions 
Many learners appeared to draw on operational conceptions of symbolic properties. First we 

consider a student, Iota, who was enrolled in an introductory statistics course (elementary 
algebra was a pre-requisite), who was given seven questions with the following form: 

Figure 3: Task discussed with Iota during the interview 
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Other versions of this item used the following expressions: Q1: (2ݔ + 1)2; Q2: ݔ െ
ݔ2) + 1); Q3: 2(2ݔ ÷ 1); Q4: 2(ݔ ڄ ݔQ5: (2 ;(ݕ + 1)ଶ; and Q7: 2(ݕݔ). Iota stated that the 
distributive property could be used to rewrite the expression for each of these. They correctly 
chose equivalent expressions that could be the result of the distributive property for Q1 (2ݔ ڄ 2 +
1 ڄ 2), Q2 (ݔ െ ݔ2 െ 1), and Q6 (ݔ + ݔ3)(2 + 7) (option D).  However, they also incorrectly 
chose “results” of the distributive property for Q3 (2 ڄ ݔ2 ÷ 2 ڄ 1), Q4 (2ݔ ڄ ଶ(ݔ2)) Q5 ,(ݕ2 +
1ଶ) and Q7 (2ݕ2ݔ) that suggest that they may conceptualize the distributive property as an 
instruction to do something like “take what is outside the brackets and apply it to each ‘thing’ 
inside the brackets”. At the same time, Iota’s is able to conceptualize (ݔ + 2) as a unified 
subexpression within (ݔ + ݔ3)(2 + 7) that could be “distributed” to each term in 3ݔ + 7, which 
suggests that Iota is able to think structurally in key ways.  Iota explains: 

Because obviously two can distribute [makes motion with fingers as though moving two 
from left to right twice] with the one in parentheses. So two in the front can distribute to 
 repeats distributive motion with] ݕmultiply by 2 ݔSo it's gonna be 2 .ݕmultiply by 2 ݔ2
fingers]—that's the result. 
Here Iota focuses solely on describing a computational process based on surface similarities, 

without considering the mathematical validity of that computation, consistent with a pseudo-
process GV. We see further evidence of this later in the interview: 

Interviewer: What is the distributive property?  
Iota: Distribute property is like that you can use the main number or main groups to 

distribute to each of another number or another groups. 
Interviewer: So is that like here [highlighting (ݔ + 2) in Q6], is ݔ + 2 the main number?  
Iota: It's a main group. Yes. 
Interviewer: And then you apply that to each of the ones [motions to 3ݔ and 7 in Q6]? 
Iota: Yes. 
Interviewer: Okay. So, I noticed that this one [highlights + in expression (3ݔ + 7) in Q6] has 

a plus sign in between them. Is the distributive property only for the plus sign or could it 
also be subtraction? Could it be multiplication or division?  

Iota: So, yeah, it could be subtraction, multiplication ... Could be any sign, but when you 
calculate, when you are doing it, you have to do with that own sign.  

Here Iota provides further evidence that they are viewing the distributive property as an 
extracted process here, where whatever is outside the brackets is multiplied by each “group” 
inside the brackets, preserving the original operation between the multiple “groups” inside the 
brackets. However, when Iota was interviewed about Q7 (2(ݕݔ)), they appear to shift to a 
process view, checking for mathematical validity of the transformation results by checking 
insertion equivalence through arithmetic computation: 

Iota: Sometimes when I see these kind of questions, at first I may think its right answer is A 
 but what I normally do is I double check the answer. So, I create some equations ,(ݕ2ݔ2)
and I double check it, it's incorrect. So, for this case, I create like ݔ is 3. Okay, let me type 
it now, ݕ is 2.    
 
 
I think it's wrong. So, I say no... I don't know why, but this is very tricky question for me 
... So, x and y multiply each other should be done before multiply[ing] the one outside.…I 
don't know, it's not look like a distributive property for me. It looks like the way to 
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calculate is you do the ݕݔ first because in parentheses, and after you get the result of ݕݔ 
you do with the number 2. So, I don't think this one is like a distributive property ...to be 
honest, I don't know why. I don't think it's A, but I just feel it's not. 

Interviewer: This strategy that you were doing, replacing x and y with numbers and seeing if 
they were the same: if you did that for number 6, for example, would get the same 
answers?  

Iota: Oh, that's a good question. I don't ... Yeah. Right. I don't know ... I didn't ... I didn't try. 
But ... I mean, I'm just, I'm looking at it right now. Yeah, it should be the same. Because it 
should be only one value. Mm-hmm. 

In this excerpt there is evidence of both process and pseudo-process GVs. Iota now shows 
evidence of the prescriptive Equivalence-Preserving GV, because they substitute numbers to 
check whether the result of their distributive property computation in Q7 is insertionally 
equivalent to the original expression, at least for one value. When it is not, they then question 
their use of the distributive property to replace 2(ݕݔ) with 2ݕ2ݔ, providing evidence of a 
process GV. However, their explanation still draws on extracted meanings and some pseudo-
process GVs: they several times mention “feeling” that the distributive property is not correct or 
whether an expression “looks like” the distributive property should be used. In the other six 
similar distributive property items, they do not use a process GV; however, when the interviewer 
asks them directly whether this checking process should work for those also, Iota then draws on 
their knowledge of the distributive property as an equivalence-preserving transformation to 
recognize that this is also relevant for the other expressions. Whether the pseudo-process or 
process GV was cued for Iota appears to be linked to the way that different expressions “look”, 
which may be important to keep in mind when designing curriculum and instruction.  It may be 
that instruction and tasks that focus more on checking and justifying calculation as well as 
linking the equivalence-preserving GV to calculation procedures, especially for a diverse 
problem space with many different forms, may be critical for learners like Iota.   

Pseudo-object GV 
The next interview was conducted with an elementary algebra student, whom we call Eta.  

They were asked to interpret whether (2ݔ + ݔ3)(1 െ 5) could be viewed as equal to the form 
(ܽ + ܾ)ܿ.  

 
Figure 4: Eta considering whether (2ݔ + ݔ3)(1 െ 5) can be seen as having the form (ܽ + ܾ)ܿ  

Eta: 2ݔ could be ܽ then the one would be ܾ, then the ܿ would be 3ݔ… if ܿ is equal to 3ݔ 
then it would make sense…. I'm just doing it by order by the first number, second 
number, third number. Maybe that's not the best way, but that's what I was doing. 

Interviewer: What’s being multiplied in each case [pointing to the expression]?  
Eta: Two is being multiplied by three. Two is also being multiplied by the negative five. The 

same thing for the one, the one is being multiplied by three and then the one is also being 
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multiplied by the negative five.  
Here Eta focuses on mapping subexpressions to variables in the form “in order”, which 

reflects a pseudo-object GV: they map the “first subexpression” to the first variable, etc., without 
attending to grammatical meaning of the syntax. When considering (2ݔ + ݔ3)(5 െ 5) and 
mapping subexpressions to the form (ܽ + ܾ)ܿ, Eta appears not to “see” the second set of 
brackets around 3ݔ െ 5 initially (or not recognize them as a grouping symbol); but when further 
questioned by the interviewer, Eta explains that each term in (3ݔ െ 5) will eventually be 
multiplied by each term in (2ݔ + 1). This provides evidence that Eta’s pseudo-object GV of 
symbolic properties is likely not caused by a failure to recognize the syntactic role of the second 
set of brackets. Rather, Eta appears not to focus on the existing syntactic meaning of expressions 
when mapping that expression to a form.  Eta appears to conflate the existing syntactic meaning 
of (2ݔ + ݔ3)(1 െ 5) with the result of expansion, perhaps literally conceptualizing (2ݔ +
ݔ3)(1 െ 5) as having the syntactic meaning 2 ڄ 3 ڄ ଶݔ + 2 ڄ െ5 + 1 ڄ 3 ڄ ݔ + 1 ڄ 5.  However, 
while these two expressions are equivalent, they do not have the same syntactic meaning, and 
conflating the syntactic meaning of the first expression with the second one appears to obscure 
the structure needed to map this expression to the form (ܽ + ܾ)ܿ.Thus, Eta’s computational view 
of syntactic structure may be impacting their GV of symbolic properties. Instruction that more 
explicitly highlights the differences in syntactic structure of different expressions and links this 
explicitly to form mapping, may better prepare Eta (and learners like them) to draw on their 
existing knowledge of syntax, symbolic structures, and forms as objects.  Future research is 
needed to explore this possibility. 

Object GV 
We now consider an interview with an elementary algebra student whom we call Theta, who 

was asked to interpret whether ଶ௫
మ(௬ିଵ)
ଶ

 could be viewed as equal to the form ()


 (where ܿ ് 0). 

 
Figure 5: Theta mapping a multi-term expression to a variable in a form 

Theta: I felt like D was the best option because looking at ܽ and ܾ over ܿ the first equation fit 
that like ܽ could be 2ݔଶ squared and ܾ could be ݕ െ 1 and ܿ could be 2.  

Interviewer: Did the parentheses impact your decision?  
Theta: Yes. 
Interviewer: How? 
Theta: Because I saw that the ݕ െ 1, I saw it as separate from 2ݔଶ. And I know that looking 

at the second one that ܽ and ܾ in order for them to be multiplied they would most likely 
have to have parentheses around them. And I saw ݕ െ 1 in parentheses so I just ... 
looking at them all as substitutes, as soon as I saw ܽ and ܾ over ܿ like I was just putting 
in my head okay, 2ݔଶ squared is ܽ, ݕ െ 1 is ܾ, and the two is equal to ܿ.  
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In this excerpt Theta provides evidence of an object GV. They identify mathematically valid 
subexpressions in ଶ௫

మ(௬ିଵ)
ଶ

 and identify which of these should map to which variable in the form 
to preserve the structure. Later the interviewer asked Theta to identify different syntactic 
structures in the expression, and Theta was immediately able to do so correctly. Here Theta also 
appears to conceptualize brackets from an object view (as a grouping mechanism rather than a 
cue to a procedure [see Wladis et al, 2022a]) because they “separate” the 2ݔଶ and ݕ െ 1. 
Because Theta’s object view of syntactic structure is critical to their identifying the 
subexpression structures that will create a syntactic-structure-preserving one-to-one mapping 
from ൫ଶ௫

మ൯(௬ିଵ)
ଶ

 to the form 


 illustrates how this object view of syntactic structure may be a 
critical precursor to having an object view of symbolic properties. Theta also specifically 
mentions substitution when describing how subexpressions relate to the properties form: thus, 
Theta’s notions of substitution and substitution equivalence may be related to their symbolic 
properties conceptions (see Wladis et al., 2022b). Theta’s explanations here are substantially 
more structural than most other students in the sample (including those in a wide variety of 
course levels). While this evidence is not causal, Theta’s responses indicate that some elementary 
algebra students are capable of reasoning structurally about symbolic properties. Theta was part 
of an intervention that was designed to teach students the prescriptive GVs presented here (as 
well as others related to syntactic structure and equivalence). This may have influenced their GV 
formation; ongoing research is underway to explore this possibility. But regardless of whether 
this particular intervention played a role, Theta’s responses show how elementary algebra 
students are capable of thinking structurally.   

Conclusion 
These different vignettes illustrate how conceptualizing student thinking around symbolic 

properties using the framework in Figure 2 may be productive for understanding the reasons that 
students work with symbolic properties in particular productive or non-productive ways.  One 
interesting pattern across all three vignettes is that each of the learners shows evidence of 
potentially productive prior knowledge, however, the extent to which they were able to use this 
prior knowledge productively in the context of symbolic properties varied quite a bit.  We also 
saw here how student conceptions of symbolic properties are also intricately related to their 
conceptions of symbolic structure and equivalence, and thus some conceptions of these related 
concepts may be essential precursors to student conceptions of symbolic properties (Wladis et 
al., 2023).  More research is needed to explore the relationship among these various conceptions, 
as well as what factors enable or disable students from productively drawing on prior knowledge 
when working with symbolic properties.  We continue to investigate these relationships in 
ongoing research, and hope that others will as well. 
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From an Inclination to Subtract to a Need to Divide: 
Exploring Student Understanding and Use of Division in Combinatorics 

 
 Zackery Reed Elise Lockwood John S. Caughman, IV 
 Embry Riddle University Oregon State University Portland State University 
 
In this report, we provide an initial exploration into a key but under-studied phenomenon in 
enumerative combinatorics – the use of division in solving counting problems. We present a case 
of one undergraduate student solving a combinatorics problem; this case is representative of a 
broader phenomenon in which students may intuitively desire to account for an overcount using 
subtraction, when division is a productive and useful approach. We highlight the conceptions a 
student demonstrated as she progressed from using subtraction to using division successfully. 
We frame our analysis in terms of a set-oriented perspective (Lockwood, 2014).  

Keywords: Arithmetic operations, Combinatorics, Discrete mathematics, Sets, Division  

When solving counting problems, we may find ourselves needing to remove some 
undesirable outcomes from a larger set, in order to find the cardinality of the set of outcomes in 
question. For example, in the problem “How many sequences of 5 digits contain at least one 9?”, 
an efficient strategy is to count all possible 5-digit sequences and then to subtract those that do 
not contain a 9. This strategy is common, and can be viewed as a special case of the well-known 
Principle of Inclusion/Exclusion (e.g., Tucker, 2002); subtraction is a powerful tool for counting.  

In some cases, however, the operation of division, and not subtraction, is most useful. In fact, 
division represents an important, often necessary, way to account for overcounting. Consider the 
Table Problem, which is the focus of our case study in this paper: “How many ways are there to 
arrange 10 people around a circular table?” A common efficient solution involves division – we 
first count the ways to arrange 10 people in a line (10!), and then we note that each of the desired 
circular arrangements is actually overcounted by a factor of 10 (since each linear arrangement 
can be rotated 10 times to yield equivalent circular arrangements). Thus, we can strategically 
divide the number of linear arrangements by 10 to arrive at the correct answer of 9!. In such 
problems, we have observed that students’ initial approach tends to focus on subtraction as a way 
to account for overcounting. Our main goal in this paper is to consider and discuss ways in which 
students may progress from an initial intuitive desire to subtract to a combinatorial understanding 
of how and when to divide in appropriate circumstances. 

There are many reasons why we might want students to develop robust, productive ways of 
thinking about division in combinatorics. Indeed, it occurs frequently in problems, and it is a 
fundamental aspect of why certain formulas (such as the binomial coefficients) work as they do. 
As important as division is, it has not commonly been addressed in the teaching and learning of 
combinatorics. We argue that better understanding division as it relates to counting could be 
beneficial for students. Our motivation and goal here is to provide evidence for – and to lay 
groundwork for – future studies to examine division in combinatorics.  

In this report we focus on a case study of one undergraduate student, who solved the Table 
Problem and, in so doing, transitioned from an approach focused on subtraction to one that 
successfully leveraged division. We particularly want to highlight what conceptions about 
division emerged for the student that allowed her to successfully solve the counting problem 
(particularly when she was not able to use subtraction successfully). We attempt to answer the 
following research questions by examining this case: What conceptions and ways of reasoning 
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emerged for an undergraduate student as she progressed from using subtraction to using 
division to solve a counting problem that was designed to elicit division?  
 

Literature Review and Guiding Perspectives that Situate Our Work  
A Set-Oriented Perspective  

Lockwood (2014) introduced a set-oriented perspective as a way of thinking about counting 
“that involves attending to sets of outcomes as an intrinsic component of solving counting 
problems” (p. 31). Lockwood and others have since argued for the importance of having students 
connect counting to sets of outcomes in a variety of ways, connecting such a perspective to 
listing (Lockwood & Gibson, 2016), highlighting its importance in helping students understand 
and interpret counting formulas (e.g., Lockwood et al., 2015; Wasserman & Galarza, 2017; 
Wasserman, 2019), and emphasizing its centrality to being able to engage productively with 
combinatorial proof (e.g., Lockwood et al., 2020; Erickson & Lockwood, 2021a). Relatedly, 
Lockwood (2013) presented a model of students’ combinatorial thinking that included three 
components: counting processes, formulas and expressions, and sets of outcomes. In this model, 
Lockwood emphasized the importance of sets of outcomes, suggesting affordances of having 
students think about ways in which their counting processes generate and organize sets of 
outcomes. Our findings in this paper help flesh out the relatively broad view of this set-oriented 
perspective initially presented by Lockwood (2014). We explore how certain ways of structuring 
sets of outcomes may serve to support students’ reasoning about division in solving counting 
problems. The set-oriented perspective serves as a guiding theoretical principle, and a focus on 
sets of outcomes is central to how we conceive of counting. 

 
Arithmetic Operations in Combinatorics  

With the exception of multiplication, arithmetic operations have generally not been studied 
extensively in combinatorics education. Multiplication occurs so frequently in combinatorics that 
the community has developed a Multiplication Principle (MP) that describes conditions under 
which it is appropriate to multiply when solving a counting problem. Researchers have explored 
a number of ways in which the MP is presented in the teaching and learning of combinatorics, 
including its presentation in textbooks (e.g., Lockwood et al., 2017), students’ reasoning about 
the MP (e.g., Lockwood & Purdy, 2020a, 2020b), and problems involving Cartesian products 
(e.g., Tillema, 2013). To this point, however, adequate attention has not been paid to other 
arithmetic operations in counting, especially subtraction and division. Lockwood and Reed 
(2020) describe an equivalence way of thinking in combinatorics, highlighting how equivalence 
relates to division in counting.   

Broadly, an equivalence way of thinking in combinatorics entails recognizing equivalence 
between particular outcomes, and then subsequently accounting for this equivalence. So, 
when employing an equivalence way of thinking, two things happen: a) one recognizes that 
in a given set of outcomes, there are certain outcomes that should be considered equivalent 
(or “the same,” “duplicate,” or “identical”) for specified constraints in a situation or 
problem, and b) one understands that they can use the operation of division in order to 
account for the occurrence of such equivalent outcomes (Lockwood & Reed, 2020, p. 4). 

Lockwood and Reed noted several places in which such equivalence and division naturally 
arise among topics in combinatorics. Our point here is that division in combinatorics relates to 
important underlying concepts, and it is worthwhile to pursue as a line of inquiry. Our data sheds 
light on students’ conceptions of division (particularly as it relates to subtraction) that illuminate 
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the kinds of productive meanings and ways of reasoning that have thus far been absent from the 
literature, and suggest a need for further exploration. We are thus motivated to think more 
broadly about ways in which other operations can support and augment students’ combinatorial 
understanding beyond just multiplication.  
 

Methods 
We present an episode taken from a series of task-based clinical interviews (Hunting, 1997) 

exploring, among other things, students’ engagement with division in counting. Nine students 
were recruited from a large university in the United States. The participants were a mix of six 
undergraduates, one early-stage graduate, and two late-stage graduate students who were 
enrolled in a math class and had taken (or were taking) a course that featured counting. There 
were no selection criteria aside from their coursework and willingness to participate. We present 
the work of Jillian (pseudonym), an undergraduate mathematics major, in her first interview. 

Interview sessions were 90 minutes long. Because of student availability, some students 
participated in few sessions (1-3) while others participated in many sessions (6-9). Consistent 
with task-based clinical interviews (Hunting, 1997), the participants were asked to describe their 
work as they solved multiple counting problems, and were frequently asked hypothesis- 
confirming questions by the interviewer about their understandings of formulas, concepts, and 
strategies both during and after they solved the problems. Participants worked on an iPad to 
solve the problems, and their written work and gestures and utterances were recorded.  

The interview protocol consisted of a diverse collection of counting problems, with many 
problems chosen as likely to elicit use of division as part of the problem-solving process. For 
instance, one might solve the Table Problem in at least three ways, though we hypothesized that 
many students would be successful by leveraging division as described in the Introduction. An 
alternative solution involves making an initial arbitrary choice that a single person sits first at the 
table. Following this, there are 9! arrangements of the remaining 9 persons around her. 

Notably, one might also solve the Table Problem with subtraction. Beginning with the 10! 
linear arrangements of people, and recognizing the overcount, one might attempt to remove 9 
extra outcomes for each 1 desired outcome. This leads to the insight that, if for each desired 
outcome there are 9 to be removed, then you solve the problem by the difference 10! − 9&, 
where & is the desired number of outcomes. Since & is also the solution, you establish the 
equation 10! − 9& = & to yield the solution !"!!" = 9!. As many counting problems involving 
division can be solved in multiple ways, we attempted to choose problems for which division 
would be a likely solution method. We also included other problems for which division was not a 
targeted solution method (e.g., problems involving sums of binomials) so students would not 
anticipate that division was the targeted operation of the study. Following our focus on a set-
oriented perspective, other interventions were enacted to support student consideration of 
outcome sets during their problem solving.  

The video records (iPad work and gestures and utterances) were spliced together so that we 
could view both the student and their work at the same time. Transcripts were made and 
enhanced with images, references, and comments. The research team analyzed the data for this 
report by searching the records for episodes where students utilized division in their solution, 
attending particularly to problems where subtraction was involved in an earlier solution attempt. 
We then reviewed the records of the episodes via conceptual analyses (Thompson, 2008) to build 
second-order models of the students’ thinking, seeking viable explanations of the students’ 
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actions and utterances in the form of theoretical models (Steffe & Thompson, 2000; Thompson, 
2008). The results that we present follow from our second-order models of Jillian’s cognition. 

 
Results 

In this section, we briefly describe four episodes in Jillian’s work on this problem, as we 
document her progress from her initial inclination to use subtraction to her use and justification 
of division. In each episode, we comment on her reasoning and connect it to what we think are 
broader important points related to student thinking on division in counting. 
 
Episode 1: Starting from 10! with an Inclination to Subtract  

Jillian had correctly solved a previous problem that asked for the number of ways to arrange 
10 people in a line (the answer is 10!), and when answering the Table problem, Jillian began 
with that previous solution. She understood that 10! would give her too many outcomes, and she 
immediately demonstrated engagement with the sets of outcomes by identifying specific 
outcomes as “the same”.  

Jillian: There's going to be similar iterations, because if you have a through j [i.e. the sequence 
(a,b,c,d,e,f,g,h,i,j)], that's the same as b through a just around the circle goes j and then 
come back around [to] a [i.e. (b,c,d,e,f,g,h,i,j,a)],. So we’re going to have another probably, 
I think, subtracting problem. So I think it would start similar to the line of 10 factorial [i.e. 
arranging 10 people into a line]. It’ll give you all the possible ways to arrange them. Not 
accounting for possibilities being the same iteration around the table. 

Jillian thus wanted to try to solve the problem by reducing that 10! in some way to account 
for duplicate rotations around the table. She went on to articulate correctly that there would be 
nine duplicates for every desirable arrangement, as seen in the following excerpt.  

Jillian: So, for each order of 10 that you complete. There’s going to be nine duplicates because 
each order of 10 can be shifted around the table, like there’s 10 ways to express the same 
thing. And so, each of these 10 iterations is going to have nine duplicates. 

Jillian’s intuition was correct – in fact, she could even articulate what precisely would get 
overcounted and what she wanted to remove. However, she did not see how to use the 
subtraction to arrive at a solution and could not figure out what to subtract. The excerpt below 
shows her reasoning that because each desirable outcome had 9 duplicates, she wanted to 
subtract nine times the desirable (possible) outcomes (she wrote this in Figure 1).  

Jillian: So there’s 10 iterations. […] So each order [i.e. one desired outcome] has nine 
duplicates, but there’s a lot of possible orders. [...] So number of possibilities [writing 
Figure 1a]. And then I want to take away or divide or somehow remove the nine duplicates 
of each of those possibilities. I think. And I believe this is a number of possibilities 
[circling 10!]. So how would you find the nine duplicates worth of each of those possible? 
[…] minus 9 times “possibilities”. 

  
Figure 1a and 1b: Jillian’s initial solution to the Table Problem, involving subtraction 

 
She then clarified that she was using “possibilities” to mean two different things, and re-

stated Figure 1a. as “# of possibilities and duplicates – 9 duplicates of each possibility”. Jillian 
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realized that the possible outcomes she sought was what she was trying to solve, which felt 
circular to her (note, she did not attempt to build on this towards the subtraction-based solution 
mentioned in the Methods Section). At this point, enough time passed to suggest an impasse, and 
the interviewer encouraged her to consider a smaller case, which we describe in Episode 2. 
 
Episode 2: Investigating a Smaller Case, Still Focusing on Subtraction  

Jillian wrote out a smaller case involving three people sitting around a table, and she wrote 
the outcomes in lexicographic order (Figure 2a). She noted, “So each of these [referring to abc 
and acb] had two duplicates, which makes sense because there's two iterations around the table.” 

 
Figure 2a - 2d: Jillian’s set of outcomes for the 3-person case 

 
Jillian then proceeded to cross off some outcomes from her list. She noted that bca and cab 

were duplicates of abc, and so she crossed those off first in Figure 2b. Then, she noted that cba 
and bac were duplicates of acb, so she crossed them off next in Figure 2c. As she did this, she 
wrote the expression “3! – 2(2)” in Figure 2d, and she related that expression to her previous 
expression “10! – 9(possible)” in the larger case. Her language in the excerpt below shows her 
relating the expression “3! – 2(2)” to her process of crossing out the outcomes from her list; the 
bolded language summarizes her understanding of that equation. In this way, the smaller case 
and the set of outcomes helped her confirm that her expression was correct. We want to highlight 
that the expression here and the process by which she crossed out outcomes is reflected both in 
how the outcomes are listed, which aligns with Lockwood’s (2013) model.  

Jillian: Six original options minus […] and then instead of multiplying by nine [in the larger 
case] I will by two of each of those original options. By the previous logic, there would be 
three factorial, or six, so I'm happy with that of without not accounting for order, we're 
going to have the same number of options. And then instead of minus 9 times the actual 
amount of possibilities [i.e. desired possibilities and duplicates], I'd say minus 2 times the 
actual amount of possibilities, because there's two duplicate iterations when you have 
three people and there's two legitimate possibilities that aren't duplicates. And so, the 
[expression] makes sense. 

Notably, Jillian realized that in this case she knew there were 2 possibilities (because she had 
actually written them out and counted them), but she wasn’t sure how to get the answer in the 
bigger larger 10-person case. We infer that at this point the smaller case served to support her in 
confirming the formula could make sense if she knew what the number of possibilities were, but 
it did not help her actually solve the problem for the larger case. The interviewer let her wait and 
think, and we interpret that she had come to an impasse and was not sure how to proceed.  
 
Episode 3: A Different Structure on the Set of Outcomes in the Smaller Case  

We had hypothesized that an alternative way of organizing outcomes could help to motivate 
the use of division. So, once Jillian seemed unsure of how to proceed, the interviewer intervened 
by writing the outcomes in a different way (Figure 3a). He wrote the outcomes in two columns, 
with each equivalent rotation of an outcome in its same column.  
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Figure 3a and 3b: The interviewer’s, and Jillian’s circling of two groups of 3 

 
Jillian noted that she had two groups of three, and she realized (because she knew that the 

correct answer was 2) that to get the answer of 2 she would need to divide the 3! by 3. She 
circled the two groups and said, “Yeah, three factorial, you just needed to split it into groups. But 
it wouldn't be divided by two, by three.” However, she continued to reason about the formula 
and the outcomes and to move back and forth between the smaller 3-person case and the original 
10-person case. After some time, the interviewer re-stated her current strategy, as a means of 
confirming her current reasoning about the problem. 

Interviewer: So, you're thinking we can make our two [solution to the 3-case] in this case out 
of three factorial divided by three. But you're noticing that your instinct is to - instead of 
divide - subtract by two, because there are two duplicates. 

Jillian: Yes, yeah. Because you should be able to split it […] divide by. Oh. I guess in this 
case, it would be divided by ten [!"!!" ] and the other one too, divided by three [$!$ ]. Because 
I'm dividing it into groups of three, the original and its two duplicates to see how many 
groups there are because that basically doesn't count the duplicates. It just counts how 
many original generators do we have, like for these different groups 

We interpret that Jillian realized that although the desirable outcomes each had two 
duplicates, she could divide by three because the groups of three include the desirable outcome 
and its two duplicates. She also referred to generators, which the interviewer asked about and we 
discuss in the next episode. She then related this insight about two duplicates and a group of size 
three to the original 10-person case, and she said, “So wouldn't that work if we divided this [10!] 
by 10 because it would split it into […] 10, because we know each of these possibilities has 9 
duplicates. So, if we split it into groups of 10, we should account for […] the 9 in addition to all 
of the original one.” 

Again, Jillian articulated that the division by 10 made sense because each possibility has 9 
duplicates, making a group of size 10. The interviewer wanted to ensure he correctly interpreted 
her reasoning, and so he asked for additional justification, which we discuss in Episode 4. 
 
Episode 4: Ultimately Justifying the Division  

In this final episode, we document Jillian’s understanding of why division made sense. The 
exchange below highlights how she came to talk about the groups of 3 (in the smaller case) or 10 
(in the larger case) as including the desirable outcome and its duplicates.  

Jillian: Yeah. So over here [ smaller case] […] I'm counting abc and acb [draws arrows in 
Figure 3b] as our like “generators” [air quotes], any one of these [group members] could be 
a generator […] 

Interviewer: And so, by generator there, you mean […] abc you said could be swapped out for 
any of the others. So, what makes that, like, a generator? Or what does generator mean. 

Jillian: Yeah. I guess it's almost like if there was an operation that rotated them or something 
like it’s operating on itself over and over again […] 
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Interviewer: [After confirming that Jillian was not formally referring to algebraic groups] So 
for you, maybe in layman's terms we would say you've got abc but you could generate any 
of the other duplicates from abc. 

Jillian: Yes, yes, yes, yes, yes. It's like, it’s kids or something. You have abc and then you have 
all of the family of abc. And I know that there’s going to be in this [larger] case, there’s 
going to be nine children of every parent. If we were to split it into groups of ten, even if 
the kids got all jumbled up and they weren’t the right groups of ten, we still should account 
for the fact that each one is multiplied by ten different iterations. 

Interviewer: So, we take the one generator, as you’ve been calling it, and you multiply by ten. 
That gives you like the entire collection of iterations. 

Jillian: Yes. And so, if we divide by ten, we should get the number of generators. 
Jillian could reason about the whole set of outcomes being split up into groups, and in this 

way she understood that the division was giving her the number of generators. We infer that she 
understood that each group would have one generator, and so the division would yield the 
number of desirable groups and, ultimately, of desirable outcomes. 

 
Discussion and Conclusion 

We highlight a couple of points of discussion here and articulate potential implications. In 
accounting for Jillian’s transition from subtraction to division, we think that a key understanding 
was focusing not just on the number of duplicates (2 duplicates or 9 duplicates in the respective 
cases), but thinking of the entire sets of equivalent outcomes, including the desirable outcomes 
and the duplicates (a total of 3 or 10 in the respective cases); we call these the equivalence 
classes. Transitioning from a focus on a 1:2 or a 1:9 ratio and instead thinking of 3 or 10 seemed 
important in understanding the appropriate use of division. An implication then is that while 
subtraction of duplicates is useful, it is valuable to think of those duplicates not in a ratio to the 
desirable outcome but as part of a set (or equivalence class) with the desirable outcome itself. 
Jillian’s notion of a generator was one useful way to think about this. 

Another observation is that reasoning about sets of outcomes and a set-oriented perspective 
was useful, but certain ways of structuring the sets of outcomes might be associated with 
different solution strategies. The common lexicographic ordering of outcomes first accompanied 
Jillian’s duplicate-removal strategy, whereas grouping the outcomes into equivalence classes 
provided a way for Jillian to focus on the 3 and the 10 (the sizes of the groups, rather than the 
sizes of the groups of duplicates). This re-orientation towards division gives insight into more 
nuances about sets of outcomes and how they might relate to processes and formulas that may be 
particularly suggestive of operations. Indeed, we feel that the listing and expression in Figures 
2a-2d highlight Jillian’s movement between components of Lockwood’s (2013) model, and 
reinforce the currently underexplored idea that different lists of outcomes may be suggestive of 
different processes and expressions. 

A final point and potential implication is that there are natural connections between counting 
problems and equivalence, and problems that focus on division in counting may offer rich 
opportunities and contexts in which to explore such connections. We believe that there is much 
more work to be done to investigate students’ reasoning about division in combinatorics, and we 
hope that researchers will undertake systematic explorations into how students use and come to 
understand division in combinatorics. 
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University mathematics departments are making efforts to improve student success in STEM by 
implementing active learning in their introductory mathematics courses. These efforts are 
context-dependent, driving a need to understand the varying paths departments take in making 
these changes. In this paper we explore the change efforts of two mathematics departments that 
achieved varying levels of success. We take a longitudinal perspective to capture their efforts. 
We identify what levers these departments used, including how robustly the levers were 
implemented. We conclude with a discussion on how the levers identified contributed to each 
department’s progress.  

Keywords:  Department change, calculus, student success 

Research on departmental change, while prevalent for some time in higher education, has 
only recently been a focus of undergraduate mathematics education (e.g., Smith et al., 2021). In a 
recent research commentary, Reinholz et al. (2020) argue for an expanded research base that 
attends to the process of change in mathematics departments. Such research has the potential to 
provide both needed insights for others wanting to embark on a change initiative and to 
contribute to theories of change. Previous studies have focused on various aspects of 
departmental change including research on communities of practice, course coordination, and the 
intentionality needed to initiate desired change (Smith et al., 2021a), as well as research focusing 
on change efforts over a two-to-three-year period (Apkarian, 2018; Smith et al., 2021b). In this 
report we aim to contribute to this emerging research area by examining two different 
departmental change efforts over the span of a five-year period.   

A primary reason mathematics departments in the United States (US) and elsewhere 
undertake transformational change efforts is poor student experience and success in the 
introductory mathematics courses required of most science, technology, engineering, and 
mathematics (STEM) majors (e.g., PCAST, 2012). In addition to traditional markers of success, 
such as grades, students completing calculus courses also report decreased confidence, 
enjoyment, and readiness (Bressoud, 2015). While the effects of these introductory courses apply 
to students in general, they disproportionately affect women and students of color (Bressoud, 
2015; PCAST, 2012; Rocard et al., 2007, Seymour & Hewitt, 1997, Seymour et al., 2019). 

 High attrition and disproportionate outcomes have led to a myriad of calls to improve 
student experiences in introductory mathematics courses through the incorporation of active 
learning (CBMS, 2016; Abell et al., 2018). Analyses of efforts to improve student outcomes 
through active learning strategies have shown that students improve along traditional measures 
of success as well as affective gains, with a significant narrowing of achievement gaps for 
students from underrepresented groups (Freeman et al., 2014; Kogan & Laursen, 2014; Theobald 
et al., 2020). 

Several ongoing efforts in undergraduate mathematics education are investigating 
departmental change efforts to better understand how mathematics departments are making these 
changes and what strategies might be successful (Laursen et al., 2019; Smith et al., 2021). 

26th Annual Conference on Research in Undergraduate Mathematics Education 467



However, change is difficult, highly localized, and requires systemic strategies (Sabelli & Dede, 
2001; Smith et al., 2021b). What works for one institution may not work for another. The two 
case studies reported here provide insights into various levers of change that are useful in 
different contexts over an extended period answering the research question: How do two 
mathematics departments implement various levers of change in an effort to implement active 
learning in their Precalculus to Calculus 2 courses? 

Theoretical framework 
We utilize Laursen et al.’s (2019) 13 levers of change to document the progress mathematics 

departments made with respect to changing instructional practices. Laursen et al.’s levers of 
change, which act on both individuals and academic units, describe a broader change theory. The 
levers themselves can also serve as a descriptive set of options that characterize change efforts. 
We selected this framework because of its flexibility in describing the factors of change at 
different institutions in which the levers are dependent on local context. One contribution of our 
work is the expansion of this framework to account for cultural and contextual factors that 
determine the generation and impact of site-specific levers. The theoretical framework includes 
three themes describing the change process. 

The three themes are: (1) levers to motivate or provide rationale, (2) levers to prepare and 
enable, and (3) levers to stimulate and support action. Laursen et al. (2019) describe levers to 
motivate or provide rationale as, “Identifying the need, suggesting solutions, and prompting 
individual instructors or their departments and institutions to adopt [research-based instructional 
strategies]” (p.159). Levers to prepare and enable, as Laursen et al. (2019) state, “can best be 
described as offering mechanisms for change” (p. 166). That is, what structures are in place to 
support instructors to make changes? The third theme, levers to stimulate and support action, 
includes federal and private investment to support and sustain instructional change efforts - the 
only lever in the framework that impacts individuals and academic units together. Specifically, 
Laursen et al, (2019) state that, “Funding does not work directly on instructors, nor on academic 
units, but rather exerts secondary force on the other levers” (p. 175). We identified one additional 
lever, Administrative funding, that would fit under this broader definition of stimulating and 
supporting action. The 13 levers identified by Laursen et al. (2019) are provided in Table 1 as 
well as the additional change lever identified in this study shown in italics. 
 
Table 1. Levers for change. 
 

Lever Themes Operating on Individuals Operating on Academic Units 

Levers to Motivate 
or Provide 
Rationale (LMPR) 

1. Accreditation of certification 
by disciplines of states 

2. Guiding documents from 
professional 

societies/leadership bodies 
3. Demands from employers for 

specific competencies 
4. Results from research 

 

5. Models and exemplars 
from other institutions 

6. Local data and evidence 
about student outcomes 
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Levers to Prepare 
and Enable (LPE) 
 

7. Professional development 
8. Resource collections or digital 

libraries 
9. Educational technologies 
10. Communities of practice 

11. Collaboration with 
other disciplines or 

departments 
12. Local leaders and 

internal change agents 
with a vision 

Levers to Stimulate 
and Support Action 
(LSSA) 

13. Federal and private funders’ investments (operating on all levels 
and on the system as a whole) 

14. Administrative funding (operating on all levels and on the system 
as a whole) 

Setting and Methods 
This work is part of a larger project that studied change strategies at multiple institutions in 

the US to implement and sustain active learning in their Precalculus to Calculus 2 (P2C2) 
sequence. The research project was carried out in stages, each with its own goals and objectives. 
Phase 1 was a case study of six institutions that had successfully implemented active learning in 
their P2C2 sequence; Phase 2 was a longitudinal case study of nine departments that received 
nominal funding and participated in a networked improvement community (Smith et al., 2021b). 
Phase 3, which is the focus of this report, investigated the change strategies of departments who 
applied to be part of Phase 2 but were not selected. We investigate what levers influenced the 
progress these departments made in implementing their change initiatives. There were 38 
departments that were not selected to join Phase 2, with 11 identified as having carried out at 
least part of their original proposal. 

Of the 11 departments, six were deemed to have moderate to substantial change efforts and 
five were deemed to have made minimal progress towards their change efforts (LaTona-Tequida 
et al., 2022). Two departments from these 11 were selected for this report: One department, Mid 
State University (MSU), represents a modest to substantial successful change effort and one 
department, Large State University (LSU), represents a less successful change effort. MSU is a 
primarily Asian institution with very high research activity and an undergraduate student body of 
roughly 14,000 students. LSU has approximately 22,000 undergraduates, is a primarily white, 
and is a high research activity institution. 

Data sources included proposals submitted by each department, audio-recorded and 
transcribed semi-structured interviews with key personnel in the mathematics departments, and 
final reports written by each department communicating their long-term progress toward their 
proposal goals. Our data sources span a period of five years allowing a longitudinal perspective, 
enabling us to evaluate change implementation over time, uncovering sustained changes and 
successes. Based on our knowledge of the literature, we took Laursen et al.’s (2019) 13 levers as 
an a priori coding scheme to analyze each data source but remained open to identifying 
additional levels (Miles & Huberman, 1994). Each department’s data sources were coded 
individually by 2-3 of the authors who then met to discuss coding until a consensus was reached. 
We further organized the levers identified for each department and each data source into a table 
to capture changes in the use of levers over time. 

Results 
In Table 2 we present an overview of the levers utilized by the mathematics departments at 
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each institution at three time points, Fall 2017, Fall 2020, and Fall 2022. Due to space 
constraints, we provide detail on the 2020 data and briefly discuss the 2017 and 2022 data. 
Levers in bold are those we found to be the most robustly implemented and likely the most 
effective catalysts for change. 
 

Table 2. Levers utilized over five years (LMPR = Levers to Motivate or Provide Rationale; LPE = Levers to 
Prepare and Enable; LSSA = Levers to Stimulate and Support Action). 

 Fall 2017 Fall 2020 Fall 2022 

MSU 
 

LMPR4, LMPR5, LMPR6, 
LPE7, LPE8, LPE11, LSSA.13 

LPE7, LPE10, LPE11, 
LPE12, LSSA13 

LPE7, LPE10, LPE11, 
LPE12, LSSA13, LSSA14 

LSU LMPR6, LPE7, LPE8, LPE10, 
LPE11, LPE12, LSSA13 

LMPR6, LPE7, LPE8, 
LPE12 

LMPR6, LPE7, LPE8, 
LPE12 

 

Mid State University 
MSU made significant progress toward their goals, which included: 1) implementing active 

learning in Calculus 1 with the support of learning assistants, 2) implementing course 
coordination in Precalculus and Calculus 1, and 3) increasing the enrolment and retention of 
Indigenous students in STEM by focusing on Calculus 1. 

Fall 2017. At the time of their proposal, MSU used levers from each of the three themes, 
with plans to expand the use of active learning, strengthening existing levers, or including new 
ones. In their proposal they described two levers that provided motivation and rationale, and 
three levers that prepared and enabled, with both themes acting on individuals and academic 
units. The use of local data (LMPR6) and course coordination (as a form of professional 
development (LPE7)) were two areas where MSU focused their change efforts in Fall 2017. 

Fall 2020. By the fall of 2020 MSU expanded the use of coordination and Learning 
Assistants (LAs), peer-to-peer instructional aids, making use of various levers, primarily focused 
on levers that prepare and enable. There was no progress in data use, and MSU was limited to 
temporary solutions for funding. 

Levers to prepare and enable. Coordination expanded in both Precalculus and Calculus 1. A 
permanent position was created and filled for a Precalculus coordinator and co-coordinators were 
incentivized through course buyouts for Calculus 1. In line with the MSU vision for 
coordination, Precalculus coordination evolved to include common materials and instructional 
support (LPE7). Instructional support was facilitated through weekly meetings where LAs and 
coordinators discussed areas students were struggling and strategies for attending to students’ 
understanding. Calculus 1 coordination grew to include common midterm exams in addition to a 
common final exam and common materials. Notably, MSU was able to resolve resistance to 
coordination in Calculus 1 through teaching assignments. Permanent faculty who were at odds 
with course coordination were shifted away from teaching coordinated courses to teaching upper 
division courses. 

By the fall of 2020, the LA program expanded to Calculus 1 and Calculus 2 and was the 
cornerstone of active learning implementation at MSU. Components of the LA program included 
coordination, professional development, and strong leadership. LA coordinators were responsible 
for creating worksheets and meeting with LAs weekly in preparation for recitation and were also 
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incentivized through course reduction. With respect to professional development, the new LA 
program director taught a semester-long pedagogy course for new LAs and provided optional 
workshops for instructors looking to make the best use of LAs in their classrooms. The program 
director also acted as a local change agent and helped promote the LA program’s success to 
administrators. 

Although coordination and the LA program previously made use of professional 
development, resource collections, and collaboration with other departments, these levers shifted 
and grew more robust as change efforts progressed. Course coordination now included 
communities of practice and professional development via weekly meetings with coordinators 
and LAs. The LA program continued to leverage collaboration with other departments but 
shifted from working with the Physics Department to the College of Education. Also, the 
creation of the LA program director position supported local leadership (LPE12) that could 
facilitate communication about the program's benefits to administration. In addition to these 
levers that prepare and enable, MSU was able to secure funding to support their active learning 
efforts. 

Levers that stimulate and support action. The expansion of the LA program started with a 
round of one-time funding from the Vice Chancellor’s office which supported a semester-long 
consultation with an LA program director from another university. An additional lever that 
stimulates and supports action, is administrative funding (LSSA14). At MSU, the Dean of the 
college was instrumental in securing the initial round of funding, supporting the genesis of the 
LA program. During this initial semester, the consultant ran an LA pedagogy course, while also 
training a MSU faculty member from the College of Education to run the course and fill the LA 
program director role locally. Additionally, the mathematics department provided funding that 
supported the Precalculus coordinator and Calculus 1 co-coordinator positions. Despite the 
positive growth in their efforts, MSU also reported in 2020 that funding for the LA program was 
an ongoing struggle, stating they often do not know where funding will come from until right 
before the semester begins. 

Fall 2022. At the time of their final report, MSU described no changes to their previous 
coordination growth, showing a degree of sustainability and also described a robust and stable 
LA program. Despite previous issues securing funding, the program became a priority of the 
administration and funding was no longer an issue. MSU did not return to expanding their use of 
local data citing a need for access to “guiding principles for successful data collection, analysis, 
and presentation” and did not report any progress in addressing the needs of their Indigenous 
students, which was a need in 2017. 

Overall, the change efforts at MSU included a range of levers. Analysis of local data 
functioned as an initial motivating lever, followed by levers included in course coordination and 
the LA program that prepared and enabled the department to reach their active learning goals. A 
significant turning point was their one-time funding through the Vice Chancellor’s office, 
supported by the Dean of the college, which allowed them to implement the LA program, 
subsequently highlighting its success to administrators, and securing funding that facilitated the 
program’s sustainability.  

MSU relied on a variety of levers to different degrees to sustain their efforts until permanent 
funding was in place. They incentivized permanent positions for coordination and created a 
permanent position for the LA director. They also collaborated outside of the department. First 
with the Physics Department and then with the College of Education. Meanwhile all of these 
levers were maintained and supported by motivated local change agents. MSU’s integrated 
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approach, which adapted based on need, appears to have contributed to their success in 
sustaining their efforts to implement active learning. 

Large State University 
LSU is an example of a department that made minimal progress toward their proposal goals 

which included: 1) rewriting the Precalculus curriculum, 2) solidifying the use of active learning 
in Calculus 1, 3) creating a mentorship program for instructors new to active learning, and 4) 
expanding the use of local data to refine and redesign efforts. 

Fall 2017. At the time of their proposal, LSU utilized levers from all three themes. Their 
proposal described one lever to motivate and provide rationale and three levers to prepare and 
enable. LSU’s levers to motivate and provide rationale acted primarily on individuals, although 
their levers to prepare and enable acted on both individuals and academic units. During this time, 
LSU’s change efforts were focused on the use of local data (LMPR6) and the dissemination of 
active learning materials (LPE8). 

Fall 2020. In the fall of 2020, LSU reported mixed progress toward their active learning 
objectives. Areas of improvement included more consistency in the coordinated Precalculus 
course and more buy-in from instructors teaching these courses. However, despite relying on 
similar levers, active learning efforts in Calculus 1 were stalling. Relevant to these differences is 
the segregated nature of the Precalculus course. At LSU, the Precalculus course is run through 
the Mathematics Learning Centre (MLC), and the rest of the courses in the P2C2 sequence are 
housed in the mathematics department. This separation likely led to differences in the strength of 
similar levers used. 

Levers to prepare and enable. The increased use of active learning in Precalculus relied on 
the use of three levers: material resources, professional development, and leadership of a local 
change agent. Revising active learning materials for Precalculus was a major component of the 
LSU proposal. Despite not making progress in this revision, materials remained a central lever in 
their active learning efforts (LPE8). Those teaching Precalculus, housed in the MLC, were 
strongly encouraged to use these materials. Their use was essentially compulsory as the MLC 
Director, the person leading active learning efforts in Precalculus, was also responsible for hiring 
instructors for the Precalculus course.  

In addition to materials, the MLC hosted a formal professional development meeting at the 
beginning of each semester (LPE7), led by the MLC Director and attended by everyone teaching 
Precalculus. These meetings aimed to encourage active learning and included outlines for the 
implementation of active learning in the classroom. A major goal of these meetings, reported by 
the MLC Director, was to generate buy-in for the use of active learning, particularly among 
newer instructors. Professional development for Precalculus continued informally throughout the 
semester via course coordinators who advised instructors in implementing group work. Central 
to the use of materials and professional development was strong leadership by the MLC Director 
(LPE12).  

Calculus 1, run through the Mathematics Department, also relied on the dissemination of 
materials. However, a change in leadership led to changes in the levers reported at the time of the 
proposal in the Fall of 2017. The previous course coordinator for Calculus 1 collaborated with 
the MLC Director (LPE11), using the structure of the Precalculus program. In addition to 
encouraging the use of active learning materials, the Calculus 1 coordinator also utilized the 
communities of practice lever, meeting regularly with Calculus 1 instructors to discuss and share 
materials. This progress was brief, the Calculus 1 coordinator working with the MLC Director 
left the position, becoming Associate Dean, and no longer had a role in change efforts. After his 

26th Annual Conference on Research in Undergraduate Mathematics Education 472



departure, LSU reported struggles maintaining the active learning curriculum, especially with 
respect to buy-in from those teaching the course. 

Fall 2022. The final report from LSU reflected four levers in their change efforts: local data, 
professional development, resources collections or digital libraries, and local leaders or change 
agents. These levers were essentially unchanged from the time of their proposal, except for 
funding which they were not able to secure since their proposal submission. However, this 
consistency does not reflect the differences in progress between Precalculus and Calculus 1.  

Overall, LSU used local data as an initial motivation for their change efforts. They had a 
brief period in which leaders in both the MLC and the Mathematics Department collaborated to 
promote active learning in Precalculus and Calculus 1. However, after a shift in leadership, the 
gains made in Calculus 1 were stifled. Precalculus continued to consistently use active learning, 
leveraging materials and professional development, both supported by their most critical lever, 
leadership. 

Conclusion 
As shown in Table 2, both MSU and LSU made use of multiple levers across all three points 

in time. Both institutions used local data to motivate and provide rationale (LMPR6). In Fall 
2020 we saw that both institutions made robust use of professional development (LPE7) and that 
LSU also relied heavily on resources (LPE8) and local leaders (LPE12). The reliance on local 
leaders at LSU was problematic when the leader in the department, an ally of the leader in the 
Math Learning Center, left the department for the dean's office. This left both a gap in leadership 
in the department and left the leader of the Math Learning Center somewhat disconnected from 
the department. In contrast, MSU relied less on individuals and put structures in place that were 
sustainable. Additionally, they were actively seeking continued financial support in Fall 2020, 
ultimately leading to permanent funding in Fall 2022. In comparison, LSU was not able to secure 
continued funding beyond 2017.  

At MSU there was a clear thread from 2017 through 2022 of local leadership (LPE12) and 
growing opportunities for professional development (LPE7), both through course coordination. 
MSU was also able to demonstrate how their change initiative aligned with the interests of upper 
administration (LSSA14). The identification of this lever for change makes a modest 
contribution to the change literature and levers for change detailed by Laursen et al. (2019). 
Another important difference that likely contributed to the differential success of the two change 
initiatives was structural in nature. At LSU, precalculus was run out of the Math Learning 
Centre, which potentially did not position the director to be a central figure in the mathematics 
department. In contrast, at MSU members of the mathematics departments were central and 
consistent change agents.  

In addition to contributing to the change literature, we hope that these two stories of change 
provide guidance for others wishing to embark on their own departmental transformation efforts. 
Key takeaways from these data include caution on relying too heavily on individuals, garnering 
the support of upper administration (which can lead to resources for sustainability), and putting 
structures in place (e.g., professional development for LAs) that allow for continuity and 
sustainability. 
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Student Thinking with a Non-Traditional Linear Coordinate System 
 

Inyoung Lee 
Arizona State University 

This study explores different ways that linear algebra students reason with a non-traditional 
linear system, referred to as the Gulliver system, in a task-based clinical interview. Using the 
constructs of Naming and Locating developed in the conceptual framework, an a priori analysis 
outlines how students may engage in Locating and Naming tasks. The a priori analysis was used 
for data analysis as a basic framing. Students’ engagement with the non-traditional linear 
system and the refined and extended a priori analysis will be presented. Students’ adoption of 
their previous experience with the Cartesian coordinate system will be also discussed.  

Keywords: Linear Algebra, Coordinate Systems, Conceptual Framework, RME, A priori analysis 

Coordinate systems are widely used in secondary and collegiate mathematics. Students learn 
the Cartesian coordinate system in their early mathematics, where they associate an ordered pair 
(", $) with a point and use it to graph equations in the plane. Later in Pre-Calculus and Calculus, 
many students progress to explore a new coordinate system, the Polar coordinate system. In 
Linear algebra, students encounter non-traditional linear coordinate systems that are similar to 
the Cartesian coordinate system but scaled and/or rotated. There are a decent number of studies 
which focus on student reasoning with the Polar coordinate system and how their understanding 
of the Cartesian coordinate system impacts their reasoning with the Polar system. (Montiel et al., 
2008; Montiel et al., 2009; Montiel et al., 2012; Moore, Paoletti, & Musgrave, 2014; Sayre 
&Wittmann 2008) Despite the growing importance of linear algebra in STEM education 
(Tucker, 1993), there is a noticeable gap in study concerning student thinking of a non-traditional 
linear system and how students employ their understanding of the Cartesian coordinate system 
when engaging with a non-traditional linear system. This report foregrounds a non-traditional 
linear system that shares similarities with, yet is distinct from, the Cartesian coordinate system.  

Literature  
Some studies found that students’ understanding of the Polar coordinate system is closely 

related to their understanding of the Cartesian coordinate system and sometimes students’ 
familiarity with the Cartesian coordinate system delays the shift to other coordinate systems 
(Arcavi, 2003; Hillel & Sierpinska, 1993; Montiel et al., 2008; Montiel et al., 2009; Montiel et 
al., 2012; Sayre &Wittmann 2008). For example, Montiel and his colleagues found that students 
applied the vertical line test to a graph defined in the Polar coordinate system to check if it is a 
function over the Polar coordinate system even though the vertical line test is no longer useful. 
Similarly, Moore et al. (2014) found that the convention from the Cartesian coordinate system of 
using the ordered pair (input, output) may be problematic when constructing the Polar coordinate 
system which uses the reversed ordered pair (output, input).  

In linear algebra, Wawro et al. (2013) created a lesson which includes a task that uses & =
(	and & = −3(, as the new axes, to rename a location in a non-traditional linear system. Zandieh 
et al. (2017) found that students in the class using the task sequence symbolized locations in 
three different ways. (1) Some students renamed locations using geometry by identifying which 
new axis to treat as the x and y and the size and direction of a unit vector. (2) Other students used 
a matrix equation: setting up a matrix equation ,-["	$%$&'(] = -["*+&,'-	$%$&'(], solving for 
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components in the two-by-two matrix A, and using A to convert names from a system to the 
other. (3) Another way that students renamed involves the idea of linear combination. Students 
found two vectors .110 and .−13 0 to match the two new axis directions of & = (	and & = −3(. 
Then, they determined 1. and 1/, how much in each direction should travel along them in 
reaching a location in the plane. The sum of the scalar multiplications, 1. .110 + 1/ .

−1
3 0, provided 

a coordinate pair with respect to the Cartesian system.  
Other studies have discussed basis or other aspects of linear combinations but did not refer to 

these as coordinate systems. (Bernier & Zandieh, 2022; Bettersworth et al., 2022; Dogan, 2019; 
Dreyfus et al., 1999; Turgut et al., 2022; Wawro et al., 2012) Given that studies of non-standard 
linear coordinate systems are rare in the literature, this study intends to begin filling this absence.  

Conceptual Framing 
The conceptual framework was developed from the author’s calculus and linear algebra 

textbook analysis (Author, year). It can serve as a useful framework when designing tasks that 
involve coordinate systems and analyzing students’ mathematical activity. (Lee, year) The 
coordinate system framework includes two fundamental processes with representations: Naming 
and Locating. In Naming, a location in space is being measured following the convention 
imposed by a coordinate system and creates the measurement, a name. For example, a location in 
the 2D plane gets its name as (1,1) with the Cartesian coordinate system. On the other hand, in 
Locating, an existing name creates its location in space following the convention imposed by a 
coordinate system. An example of Locating is that the ordered pair (1,1) puts on a specific point 
in the Cartesian coordinate plane. Figure 1(left) illustrates that Naming and Locating are the 
reverse processes to each other. The two processes can be extended to represent an object with 
multiple coordinate systems: Re-Naming and Re-Locating. In Re-Naming, a location that has 
been measured by a coordinate system gets its new name measured in a new coordinate system 
that is laid atop the location. That is, the location previously paired with (1,1) is being renamed 
with (√2, 01)≈ (1.414, 0.785) in the same space using the Polar coordinate system (Figure 1, 
middle). On the other hand, in Re-Locating, an existing name creates two different locations in 
space depending on coordinate systems being used. The new location may appear different from 
the first, but they share the same name. For example, (1,1) corresponds to two locations: one 
defined by a horizontal and vertical distance of 1 each, and the other determined by a distance of 
1 from the origin and an angle measure of 1 radian from the horizontal axis. (Figure1, right) 

   

    Figure 1. Naming and Locating (left), Re-Naming (middle), Re-Locating (right) 

A priori analysis 
Prior to conducting interviews with students, the author described an a priori analysis of how 

students might engage in Locating and Naming. Students’ possible steps in Locating include (1) 
pairing known each component in an ordered pair with a proper axis, (2) identifying the location 
of each component by comparing it to the unit length imposed on each coordinate axis, (3) 
finding the intersection that comes from two locations on the axes. Reversely, in Naming, 
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students would do (1) splitting the known location into two locations, one on the x-axis and one 
on the y-axis (if it is the Cartesian system), (2) measuring the length of each location by 
comparing it to the unit length imposed by the coordinate system, (3) expressing the 
measurements on the two axes symbolically. Figure 2 outlines the a priori analysis. 

 
Figure 2. An a priori analysis for Locating and Naming 

This study reports student reasoning with a non-traditional linear coordinate system in a task-
based clinical interviews, designed to answer the research questions: (1) What are the different 
ways that linear algebra student reasons in a new linear coordinate system? (2) How do they 
employ their familiarity with the Cartesian coordinate system in working with the new system? 

Methods 
This proposal includes the first two tasks of a clinical interview, part of a longer dissertation 

study that consists of clinical interviews and teaching experiments. The clinical interview tasks 
were designed based on the central idea of Realistic Mathematics Education (RME), which 
emphasizes tasks to be experientially real starting point to students informed by Freudenthal 
(1991). A motive from the famous book “Gulliver’s Travels” (Jonathan Swift, 1726) is combined 
with a treasure hunt. (Figure 3) Task 1 is a Locating task to place a dot with the number pair 
provided. Task 2 is a Naming task to name the treasure location. Both the tasks are built in the 
Gulliver system that is a new linear coordinate system different from the Cartesian system. 

 

 

Task 1:  
Place a dot on the map indicating where A=.1.30.50 is located.  
 
Task 2:  
Describe the location of the Treasure.  

Figure 3. Problem setting with Task 1(Locating) & Task 2(Naming) 

Data Source and Analytic Method  
The author conducted face-to-face clinical interviews with five students who have taken 

linear algebra at a large public university of the Southwestern United States. The students were 
STEM majors who had taken Calculus 1 or 2 as a prerequisite. Both their written work and 
interview conversations were recorded. The interview data were transcribed into spreadsheet and 
coded line by line, based on the author’s a priori analysis. Whenever students engaged with the 
steps outlined in the a priori analysis, their quotes were noted and examined to characterize their 
reasoning. Additionally, the steps were refined and extended, resulting in the separation of one 
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step into two distinct steps. All the names used in Results are pseudonyms reflecting their 
ethnicity. 

Result 
As shown in Figure 3, each task has its own goal aimed at examining student reasoning that 

corresponds to Locating and Naming. In this section, the different ways that linear algebra 
student reasons with the Gulliver coordinate system within steps outlined in the a priori analysis 
will be explored. 
 
Locating: Determining a location in space 

The students have demonstrated their ways of determining location in space. They 
coordinated the components in .1.30.50 with the appropriate axes and identified the intersecting 
point corresponding to 1.3 and 0.5 on the axes.  

Pairing each component with an axis 
Given the components of A as 1.3 and 0.5, the participants positioned them on either the axes 

of the Cocos Island map or the axes separately created in a blank space. Positioning the number 
values requires the students’ two-step commitments. First, they figure out which component of 
the first (1.3) or second (0.5) is paired with each direction of the horizontal or vertical axis. 
Second, they compare each number value to the unit length of 1.  The following excerpts 
illustrate how they engaged with coordinating and locating on the axes. 

Hann determined that the first coordinate should be in the direction of the Oasis and then it is 
positioned to the right of it. “1.3, that's going to be in the Oasis direction, so that would be 
somewhere here [points to the right of the 1]”. Wilson also attempted to mark the number values, 
1.3 and 0.5, on each direction of axis, however his pairing of the first and second component 
with the horizontal and vertical axis went opposite. “to go and establish where that 1.3 , 0.5 is, 
1.3 roughly there [marks on the vertical axis, above the 1] and 0.5 there [marks on the horizontal 
axis, to the left of 1]”. 

Jeraldo, Wanita, and Neeman marked on axes indicating where the size of the number values 
is located by comparing them to the size of units. Wanita said, “I'm in going a little bit further 
[than 1 for 1.3], and then 0.5 is a little bit less from the 1”. Neeman also mentioned “the y [0.5] is 
the midpoint here [points on the vertical axis]…and then so this is 1[points to the Oasis location, 
the unit], then 1.3[marks on the horizontal axis the right of 1].” 

Coordinating axes and dot; Intersecting two locations from axes. Once the students 
determined the location of each coordinate on the respective axis, some of them drew auxiliary 
lines. For instance, Jeraldo indicated a dotted line starting at 0.5 on the vertical axis and is 
parallel to the horizontal axis, then made some extended portion at 1.3 vertically. He finally 
placed a dot A by intersecting the auxiliary segments (Figure 4. Jeraldo). Neeman also indicated 
some auxiliary lines in yellow that pass the two locations representing 1.3 and 0.5 on the axes he 
marked earlier (Figure 4. Neeman). He constructed a dot for A where the two lines intersect. The 
written work of Jeraldo and Neeman shows that they think of the location of [1.3 0.5] as the 
intersection of the extended two locations from axes. Even though the other students did not 
draw auxiliary lines, they seemed to engage with the intersecting process in that the final dot was 
marked once they determine each coordinate on its corresponding axis.  

I note that the auxiliary lines are not always parallel to the Gulliver coordinate system’s 
grids; rather the vertical part of the auxiliary lines appears somewhat perpendicular to the 
horizontal axis. This demonstrates that the students tend to think of perpendicular grids even 
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when it does not precisely match the appropriate projections of measurements from the axes. The 
students’ final answers to this task are shown in Figure 4. 

     
Hann Wilson Jeraldo Wanita Neeman 

Figure 4. Location of !1.30.5' 

Naming: Obtaining coordinates-pair 
Similar to Task 1, the students utilized their understanding of the rectangular coordinate 

system to determine the coordinates of the Treasure location in Task 2 (Figure 3). One of the 
participants, Hann, seemed to first look for measurement on each axis and then coordinate them 
with their corresponding axis. “The location of the treasure looks to be probably about 1.3 in 
that [Oasis] direction and then exactly 2 in the waterfall or y direction”.  

Some of the participants described how to obtain the coordinates-pair from the Treasure 
location given on the map. I present two distinct ways that students have engaged in obtaining 
the coordinates: Projecting the location onto axes and Over-and-up reaching the location. 

Coordinating axes and dot; Projecting a given location onto axes. Jeraldo and Neeman 
indicated that they need some kind of projection to obtain measurements of the Treasure 
location. Jeraldo noted, “If we follow, like, the parallel line, it's almost at the same exact place 
[refers to the Task 1’s horizontal component, 1.3]. So, I'd probably say it's around the same as 
the previous at 1.3”. From his description, he seemed to be looking at the slanted projection 
from the Treasure location onto the Gulliver horizontal axis, recognizing that the slanty line 
passes through location A that he had placed earlier with 1.3 in Task 1. Similarly, Neeman’s 
written work depicted reasoning with a slanted projection indicated from the auxiliary lines in 
black (Figure 5. left). He drew the lines to pass through the Treasure location and to be parallel 
to the Gulliver coordinate grids. The measurements that he obtained result from the slanted 
projection of the Treasure location onto the two axes. “This [where the slanted projection meets 
on the horizontal axis] is a little bit before the 1.3, that is like 1.2. And it's [where the slanted 
projection meets on the vertical axis] on this one [points the Waterfall], which is 2. So, let's say 
it's a 1.2 over 2”. 

  
Figure 5. Written work of Neeman (left) and Wanita (right) in Naming 

Coordinating axes and dot; Over-and-up reaching a location. Another student, Wanita, 
also demonstrated her reasoning with the rectangular coordinate system to obtain the coordinates 
of the Treasure. She illustrated the process of moving along the Gulliver horizontal axis and then 
turning up towards the Treasure location (Figure 5. right).  

Wanita: It would be like 1.5 and then 2. I'm supposing the port is at the zero. It would be like 
1.5, 1.6 or so. It's going up [indicates the horizontally positive direction] and then 2. 

Interviewer: Why do you say 1.5 or 1.6? 
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Wanita: …2 is over here [points to (2, 0) location] 1.5 should be like, right in the middle, and 
then you just go up [draws an arrow from the middle to the Treasure] and that's where the 
treasure would be…T is equal to the 1.6 and then 2. 

I note that the two distinct ways of finding the coordinates-pair, slanted projection onto axes 
and over-and-up process, are not exclusive to each other. For example, Jeraldo, one of the 
students who engaged in the slanted projection, initially answered that the horizontal coordinate 
has to be 1.5 by over-and-up process, similar to Wanita. He was looking at the locations of one 
unit, two units, and midpoint on the Gulliver horizontal axis, estimating the right location to be 
1.5 in order to reach the Treasure. Soon after, he realized that the slanted projection is not 
precisely matching the upward movement from 1.5 and switched over to the projection onto axes 
way from the over-and-up process. 
 
Types of names in Naming 

Once the participants determine the measurements for the Treasure location, some students 
attempted to represent the coordinates-pair in different ways, whether in response to my request 
or without any prompting. There were three different ways of representing the same coordinate 
found in students written expression: Vector form ."$0, Linear combination with opaque 
symbolics of 1GH and 1GV provided in the problem, and Linear combination with actual vectors 
.100 and .010. 

Hann’s written answer includes all three representations. He first wrote .1.32 0 in a vector form 
and represented it using the linear combination format employing the provided opaque 
symbolics, 1GH and 1GV. (Figure 6) He commented that the symbolics could be substituted with 
the actual vectors consisting of 1’s and 0’s. 

1.    2.  3.   

1. Vector  
2. Linear combination with opaques 
3. Linear combination with actual vectors 

Figure 6. Hann’s symbolic representations for the same coordinates-pair  

Wilson chose to represent the determined coordinates using the linear combination format as 
well in addition to the vector form. (Figure 7) The distinction between Wilson and Hann’s 
representation is that Wilson made a slightly different modification to the opaque symbolics. 
That is, GH and GV have been used instead of 1GH and 1GV. This is an indication that Wilson 
conceives of the number ‘1’ in the opaque symbolics of 1GH and 1GV as an actual measurement 
rather than as a symbol emphasizing a unit.   

1.  2.  3.   
1. Vector  
2. Linear combination with opaques 
3. Linear combination with actual vectors 

Figure 7. Wilson’s symbolic representations for the same coordinates 

The other three participants, Jeraldo, Wanita, and Neeman represented the Treasure location 
as a vector form only using the measurements obtained from either slanted projection or over-
and-up. I note that Neeman read the vector form of .1.12 0 “1.1 over 2”. His treating the vector 

like a fraction sometimes comes a long later in the interview when he writes ..12 0 to mean .146 0. 
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Discussion  
The students have adopted their previous experience with the rectangular coordinate system 

to answer the first task, even though the Gulliver coordinate system is a non-Cartesian 
rectangular system. This aspect is well represented by one of the interview participants, Hann’s 
comment “Even though it's not rectangular, there's no reason not to act like it is”. The following 
lists different pieces of the rectangular coordinate system understanding that the participants 
brought to bear: identifying units as two directional line segments, labeling with ‘x’ and ‘y’, 
employing perpendicular axes, and pivoting a reference point. While some of them assisted the 
students in addressing the tasks, others were applied even though they were no longer useful.  

Jeraldo called the 1GH and 1GV as matrices and noted that they represent one unit in each 
direction of x and y. The letters x and y, widely used in the mathematical community for 
coordinates in the rectangular coordinate system, have been used to denote the first coordinate as 
x and the second coordinate as y. “I remember in back in the class that the matrices they 
obviously defined that the first one represents the x coordinates, the second one equals the y. So, 
x y x y [ writes x’s and y’s next to 1 0 and 0 1]”. (Figure 8. Left) Wanita drew perpendicular axes 
on a blank space, and then placed two dots one on the horizontal axis and one on the vertical axis 
to coordinate them with .100 and .010. She indicated that these dots are pointing to the Oasis and 
Waterfall locations. (Figure 8. Middle) Neeman indicated the Port of Cocos Island on the map 
where the two axes intersect as the coordinate pair [0, 0]. That is, the reference point was 
identified as two components of null. He brought the letters x and y to indicate the first 
coordinate and the second coordinate, respectively and noted x to be corresponding to the 
horizontal axis and y to be the vertical axis. Additionally, he drew the perpendicular axes labeled 
with x and y. (Figure 8, right) 

 

   
Figure 8. Employing rectangular coordinate system: Jeraldo(left), Wanita(middle), Neeman(right) 

  The Locating and Naming activities are reverse processes to each other. The processes were 
outlined in an a priori analysis in Figure 2, and it has been further refined in two ways: variations 
within a step and separation of one step into two distinct steps. Students have been engaged 
differently with the remaining steps when they progress to the subsequent set of tasks following 
Task 1 and 2. 

 
Figure 9. Locating and Naming in a linear coordinate system 
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Exploring How Use of a Shared Google Doc for Collective Proof Construction Supports
Students’ Mathematical Progress

Diana Salter Tenchita Alzaga Elizondo
Portland State University University of Texas Rio Grande Valley

While the pandemic brought much hardship for mathematics education, it also brought
opportunity for ingenuity and transformation. This study builds on results from prior work that
found Google Docs to be rich tools that supported students in effectively engaging in
collaborative proof activity in a remote introduction-to-proofs course. To study if Google Docs
would have similar benefits for students’ collective proof activity in a face-to-face setting, we
investigate how two students in a face-to-face course leveraged a shared Google Doc to support
their collaborative work on a proof construction task. We found that the students used the
shared Google Doc to support their collective proof construction in similar ways as students in
the remote class. In addition, we observed that the Google Doc was an inherent component of
students engaging in an active proof writing process.

Keywords: Proof Construction, Technology, Google Docs, Collaborative Activity

For mathematics education the COVID-19 pandemic brought drastic changes in how
courses were structured and how interactions between students and teachers took place (Tate &
Warschauer, 2022). While these changes brought many challenges both educationally and
emotionally (Engelbrecht et al., 2023), they also brought the opportunity for ingenuity and for
reimagining what mathematics classrooms could look like. Specifically, in many ways the
pandemic forced educators to find new means by which to use technology to engage students
with mathematics and with each other, potentially, enriching students’ learning experiences.
Literature on educational technology has highlighted how we can create rich learning
environments with the aid of technological tools (e.g., Clark et al., 2007; Öner, 2008; Stahl,
2006). As we transition (or have transitioned) back to face-to-face (F2F) courses, it becomes
imperative to reflect back on what we have learned as educators from our experience teaching
remotely. Specifically, we should consider what aspects of our remote mathematics courses can
be (and perhaps should be) transferred to F2F. Studying remote instruction in an introduction to
proof course, Alzaga Elizondo (2022) found valuable implications of using Google Docs for
students’ collective work in small groups. Most notably, she found that by coordinating the use
of Google Docs with Zoom, students were able to actively engage with one another’s thinking
and produce truly collaborative work. Subsequently, we wondered if and how shared Google
Docs would provide similar support to students in a F2F version of this course. In this paper, we
present a case study of two students working on a task to develop a proof in a F2F class with
access to a shared Google Doc. We explore the connection between the students' use of the
Google Doc to support their collective proof activity and their proof construction progress.

Theoretical Grounding
To study the role that the Google Docs played in students’ collective proof construction, this

study builds on the work done by Alzaga Elizondo (2022). Alzaga Elizondo studied students’
small group activity in a synchronous online Introduction to Proofs course where she
investigated how students operationalized technological tools (e.g., Zoom, Google Docs) in the
remote environment to engage in various collective proving activities (i.e., proof construction,
defining, conjecturing). To analyze the students’ tool use, Alzaga Elizondo leveraged the theory
of Instrumental Genesis (Rabardel, 2002) which describes a reciprocal relationship between
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artifacts (or tools) and their users and the impact of that relationship on cognition. Any given
tool can be transformed into an instrument by assigning it a utilization scheme (designated
methods for using the tool) for a specific goal directed activity (Béguin & Rabardel, 2000;
Carvalho et al., 2019). In her study, Alzaga Elizondo identified several collective instruments
that students developed by coordinating the different technological tools available to them.
These were collective in the sense that students coordinated their utilization schemes across
different tools to develop collective schemes that were closely tied to their mathematical
activity. For instance, students developed an instrument to illustrate a new idea by writing a
mathematical statement where they would coordinate the use of Zoom and Google Docs to
verbally communicate and simultaneously visually illustrate a new idea. Simpler instruments
were created to support the development of more complex ones, these are identified in Table 1
with the supportive instruments italicized. We conjecture that students may develop similar
instruments in a F2F class where, in this setting, students coordinate their use of the Google Doc
with their verbal face-to-face interactions rather than through Zoom.

Table 1. Collective Instruments
Instrument Observed Student Action

Engage in collective argumentation
by coordinating visual mediators
and verbal communication

Discuss and debate ideas by using visuals on the
Google Doc to illustrate verbally spoken idea.

Illustrate new idea by writing a
mathematical statement

Write mathematical statement on Google Doc to
illustrate an idea to group before group has agreed on
new idea.

Analyze shared idea by
referencing written text

Reference written text by highlighting (or placing
cursor next to) text on the Google Doc and/or by using
indexical terms like “this” or “that”.

Develop shared understanding
by introducing diagrams and
examples

Adding examples or diagrams to Google Doc for the
goal of developing shared understanding among group.

Co-construct a group solution by
refining shared text

Create final solution by refining written text on the
Google Doc.

Execute solution by repurposing
illustrated idea

Using existing text in the Google Doc for the final
solution that was not originally written for that purpose.

Execute solution by validating
illustrated idea

Keeping text in the Google Doc that was added to final
solution for the purpose of illustrating a new idea.

Further, Alzaga Elizondo conjectured that use of these instruments supported students in
engaging in a process approach to writing, which describes an iterative collective writing
process in which students plan, draft, and revise repeatedly by incorporating feedback from
peers and the instructor (Graham & Perin, 2007; Sun & Feng, 2009). These kinds of activities

26th Annual Conference on Research in Undergraduate Mathematics Education 486



can reflect more meaningful engagement with proof-based tasks, as they promote exploration
and testing which have been noted to reflect more authentic mathematical practices (Larsen &
Zandieh, 2008; Melhuish et al., 2022; Öner, 2008). As such, students, regardless of course
modality (i.e., face-to-face or remote) should be encouraged to engage in a similar writing
process. The work presented here builds on Alzaga Elizondo’s (2022) work by investigating
how and/or if the collective instruments she identified appeared in one group’s collective proof
construction when using Google Docs in a F2F course. Further, and most notably, it investigates
how the students’ Google Doc use supported them in engaging in a process approach to
collective proof construction.

Methods
Data Collection and Episode Selection

The data for this study is from a university introduction-to-proof course that was part of a
larger NSF-funded project (DUE #1916490) that developed introduction-to-proof curricula and
accompanying instructor support materials. The inquiry-oriented curriculum included tasks
designed for small group collaborative work. In this 10-week F2F course each student had
access to an iPad which enabled each group of students to share a Google Doc to work together
on tasks during small group work. A stationary camera and iPad screen recordings captured one
focal group’s interactions each day (26 days total).

This study focuses on two students’ collective work on one task during one day of this
course. Jake and Roger (pseudonyms), worked together on proving the sequence 𝑎

𝑛
= ⌊10/𝑛⌋

is eventually constant. The class had previously established a definition for an eventually
constant sequence: a sequence an is eventually constant if there exists a natural number n such
that for every natural number . In other words, a sequence is eventually constant𝑘≥𝑛,  𝑎

𝑛
= 𝑎

𝑘
if at some point it becomes and stays constant. The Google Doc that the students used included
the task and this definition at the top of the page. This episode was selected because the students
worked together in their small group to complete the task and there was substantial discourse,
both written using the Google Doc and verbal, between the students.

Data Analysis
To begin our analysis, we created a multimodal transcript (Hoffman, 2018) that captured

both the students’ written work on their Google Doc and their spoken interactions. Since the
students’ iPads recorded both their written and spoken work, time stamps added to our
transcript provided an accurate record of the temporal relationship between spoken and written
statements. Then, using the observed student actions in Table 1 as operationalizations of the
collective instruments, the first author identified for each of the spoken and written
communications in the multimodal transcript if and when a collective instrument from Table 1
was used and described any mathematical progress reflected in the communication. The second
author reviewed the first author’s identifications and descriptions and any disagreements were
resolved through discussion. Through the analysis the authors found that students developed a
sequence of proof drafts. Together, the authors then identified six points in the students’ work
on the Google Doc that represented completion of interim drafts of their final solution (see
Figure 1). We identified a point in their Google Doc as a draft if it represented a significant
mathematical change from the previous draft and seemed to be the culmination of the students’
argumentation at the time. We then were able to describe how the students’ instrumentation
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process impacted their progress through development of the draft. We present the findings from
this analysis in the following section.

Figure 1. Students’ drafts of their proof that the sequence is Eventually Constant𝑎
𝑛

= ⌊10/𝑛⌋

Results
In the episode analyzed below we observed students using the Google Doc as a tool to

engage in collaborative proof activity. Here we report the students’ progress through the
development of each draft, highlighting their use of collective instruments to achieve each draft.

Development of Draft 1
To start off their work, Jake suggested that they write a “few terms of the sequence and just

see what it converges to”. Without verbal confirmation, Roger responds by writing the first few
values of the sequence in the Google Doc, writing “ 10/2=5, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0,𝑎

𝑛
= 10,

0,...”. Simultaneously, Roger verbalized his reasoning: “10 over 8, 1, 10 over 9, 1, 10 over 10,
1, and then 10 over 11, 0. I think at that point.” Here Roger used the Google Doc to develop a
shared understanding by introducing examples (i.e., the first terms of the sequence). As Roger
typed, we saw evidence of Jake following along, verbally stating “and after that it becomes
zero” at the same moment Roger says “I think at that point”. In doing this, Jake is using the
Google Doc to analyze the shared idea (the sequence terms) by referencing text when saying
“and after that” where “that'' referred to the 11th term in the sequence. At this point, Jake
suggested that they construct a direct proof that follows the structure of the definition. Roger
proceeds to illustrate an idea by writing mathematical statements on the Google Doc, writing
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If , then . As Roger is writing, Jake follows along and "𝑘 = 11, 𝑛≥11 𝑎
𝑛

= ⌊10/𝑛⌋ = ⌊10/𝑛⌋"
suggests they use inequalities instead which prompts refinement from Roger. Together, they
produce the first draft of their proof (see Figure 1a).

Development of Draft 2
After a brief pause, Roger suggests “Maybe we should say something different. So like 10

over n when n is greater than 11.” Simultaneously he adds to the Google Doc “10/n, when
, 10/n” before the line “ ”. This suggests Roger recognizes the inequality in𝑛≥11 ≤⌊10/11⌋

Draft 1 is not correct and chooses to illustrate a new idea by writing a mathematical statement
in the Google Doc to fix this error. After Roger writes this line in the Google Doc Jake responds
by saying “is less than 1” (in other words, proposing “ ” should follow the “ ” Roger< 1 10/𝑛
has just written). Here, Jake is not only suggesting the completion of this line, he is also
communicating to Roger that he concurs with what Roger has written so far. As such, Jake is
using the Google Doc to execute a solution by validating an illustrated idea (the line Roger has
just added). In other words, Jake agrees with Roger’s new addition and thinks it should be kept
as part of their proof. Robert acknowledges Jake's idea and proposes a variation, saying “well
yeah right sort of bound it like this. It's between zero and one.” As he says this, Roger replaces

” with “ ,” a compound inequality. Again, using the Google Doc to illustrate a"10/𝑛 0≤10/𝑛≤1
new idea by writing a mathematical statement that he only partially communicates verbally.
Jake then again executes a solution by validating an illustrated idea, concurring with Roger’s
compound inequality by saying “Oh true. Yeah, it's not just less than one, it's [...] positive.”
With this validation, Roger then changes “ ” to “ .” This change moves⌊10/11⌋ = 0 ⌊10/𝑛⌋ = 0
the last two lines of the proof closer to showing how the sequence formula generates 0 when

and results in Draft 2 (see Figure 1b).𝑛≥11

  Development of Draft 3:
Roger’s addition to the last line in Draft 2, “ ,” prompts Jake to respond verbally⌊10/𝑛⌋ = 0

“So in that case a sub n equals zero for n greater than or equal to 11.” Jake is observing that the
sequence formula does equal zero, as Roger has written in the Google Doc, but only when

. Roger then illustrates this new idea by writing the mathematical statement “for ”𝑛≥11 𝑛≥11
directly following “ .” Roger validates this illustrated idea verbally when he follows⌊10/𝑛⌋ = 0
up by saying “Yeah”. This addition directly connects to the index value where the⌊10/𝑛⌋ = 0
sequence becomes constant. This new addition prompts Roger to say “I guess we don't need k”
and delete “ ” from the first line. Presumably, Roger suggests deleting k because it is𝑘 = 11
now an unused variable in their proof (see Figure 1c).

Development of Draft 4
Prompted by Roger removing the variable k from the proof, Jake makes the case that this

proof does require two variables. He says, “Yeah. I guess maybe just to make it match the
definition as much as possible, what if you said at the beginning let n be 11. And then we used k
after that [...] like let n be 11 and k is greater than n.” Roger takes Jake’s suggestion and adds

” to the beginning of the proof, illustrating a new idea (Jake’s) by"𝐿𝑒𝑡 𝑛 = 11.  𝑊ℎ𝑒𝑛 𝑘 > 𝑛
writing the mathematical statement at the beginning of their proof draft. Further, Roger executes
the solution by (implicitly) validating the illustrated idea when he keeps the new text and
illustrates his own new idea by refining the rest of the proof to be consistent with this change
saying, “I think I can actually cut some of this out. Let’s see.” He proceeds by deleting the first
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few lines of their proof and, changing “ ” to “ ,” and changes “0≤10/𝑛≤1 0≤10/𝑘≤1
” to “ ” to align with the new use of “k” leading to Draft 4 (see⌊10/𝑛⌋ = 0 𝑎

𝑘
= ⌊10/𝑘⌋ = 0

Figure 1d.). Jake follows Roger’s written work and eventually validates the illustrated idea by
verbally rephrasing the argument being presented in their current draft. With the addition of
these two variables in Draft 4 the students refined their proof to better match the structure of the
definition of an eventually constant sequence.

Development of Draft 5
A few minutes later, with a hint from their instructor, the students have added “Let k be any

natural number” to the beginning line of their proof. The addition of this line in the Google Doc
prompts Jake to say “might need to combine these two statements here. I'm going to take out the
“when” and say “and” or “such that”. At this point, Jake is analyzing a shared idea by
referencing lines in the proof when he says “these two statements here.” He follows up by
illustrating his idea, replacing “When” with “such that” so the text that defines the variable k
now reads “Let k be any natural number such that .” This prompts Roger to follow a similar𝑘≥𝑛
pattern when he says “I think this should be a new sentence. Notice that.” Like Jake, Roger
begins by analyzing their shared text by referencing a line in their proof when he says “this
should be” and then illustrates his new idea when he then adds “Notice that” before

” which separates this statement from the definition of the variable and results in"0≤10/𝑘≤1
Draft 5 (see Figure 1e.). While minimal, the refinement in this draft supported the readability
and logic flow of the proof.

Development of Draft 6
The students make two changes between Draft 5 and their final proof, Draft 6. Roger says,

“[The instructor] might want these on new lines. He kind of likes writing justifications.” Here
Roger analyzes their shared text by referencing “these” lines in their draft. He then breaks the
last line of Draft 5, “ 10/11⌋ ,” into individual lines so that he can𝑎

𝑘
= ⌊10/𝑘⌋ = 0 = ⌊ = 𝑎

𝑛
illustrate his new idea by adding justifications for each of those steps (see Figure 1f.). The
second change they make is led by Jake when he says, “Maybe we should put in a part where it
says then a sub n equals [mumbles to self].” As he’s talking, he illustrates his new idea by
adding “Then 10/11⌋=0” following “Let ” in the first line of the proof. This𝑎

𝑛
= ⌊  𝑛 = 11

addition prompts Roger to delete “ 10/11⌋” from the second last line in the proof. This= ⌊
suggests Roger validates Jake’s illustrated idea as Roger recognizes they do not need this at the
end of the proof if they have already established it at the beginning. This change brings them to
Draft 6, their final proof.

Discussion
These results show how a group of students used a Google Doc as a collective instrument in

a F2F course to support their process of collectively developing a proof. By coordinating use of
the Google Doc with their verbal F2F interactions, we saw similar collective instruments
developed as Alzaga Elizondo (2022) found in a remote class, including illustrating a new idea
by writing a mathematical statement in the Google Doc, analyzing a shared idea by referencing
written text in the Google Doc, and executing a solution by validating an idea illustrated in the
Google Doc. This suggests the productive use of Google Docs for collective activity extends
beyond the online setting.
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Further, throughout the students’ work, we found that as a result of sharing and debating
different ideas the students iteratively refined their proof, developing several drafts of this proof
throughout their collective work. In other words, we found students engaging in a process
approach to proof writing. Most notably, we found that the students’ use of the Google Doc not
only supported this refining activity, it was inherently tied to it. The results presented above,
highlight how students used the Google Docs to engage in this process approach. In particular,
there were multiple instances of a mathematical statement written in the Google Doc that served
as a springboard for subsequent mathematical ideas. Frequently, when a student illustrated a
new idea by writing a mathematical statement, it was immediately followed by a student
analyzing this shared idea by referencing this text in the Google Doc with a verbal remark that
reflected building on the referenced text. Often this cycle continued with the analysis comment
leading to executing a solution by validating an illustrated idea. The validation was sometimes
in the form of verbal agreement, but frequently the validation was implicit in that one student
would just add to another’s idea suggesting they accepted it. As an example, while developing
Draft 4, Roger removing k from the Google Doc was the springboard that prompted Jake to
suggest changing the variable definitions. Roger then executed and validated Jake’s idea when
he added k back into the Google Doc. This, in turn, served as a springboard when it prompted
Roger to delete lines that were no longer needed.

We conjecture there may be several reasons the students’ use of the Google Doc instruments
supported their progress through this proof construction task. The Google Doc provides a
written format and, unlike spoken ideas, mathematical statements placed in a Google Doc do
not disappear into thin air. Relative to spoken ideas, Google Doc ideas give students something
visual to consider, acting as a visual mediator (Sfard, 2008) for the students’ communication. In
addition, ideas in the Google Doc provide the writer with a way to express a thought they may
not be able to adequately verbalize. As a written format, the Google Doc plays two roles. It is
both the place where students record their interim written ideas as they work and the place
where their final solution lives. As a result, when a student is considering an idea presented in a
Google Doc, the format of the presentation bears some resemblance to a solution. The format
itself suggests progress toward a solution. At the same time, an idea in the Google Doc is easily
editable by all group members. This combination of a format that moves toward a solution and
is easy to edit may well invite student participation and inspire ideas.

This case study explored how a shared Google Doc supported a small group of students
working on developing a proof in a F2F class. Future research could explore the role Google
Docs might play when students were faced with other types of mathematics tasks besides
developing a proof. Also, while we highlight certain advantages of the Google Doc, we wonder
how students’ activity might compare if they were to use other non-technological tools like a
whiteboard for instance which is also easily editable and shared by all members of the group.
Overall, this study presents a case for using Google Docs in a face-to-face proof course as it can
promote a more active writing process that naturally ties the students’ collective discourse and
sharing of ideas with a truly collaborative final solution.
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Students enter undergraduate mathematics classrooms with a variety of mathematical 
backgrounds. We view these past mathematical experiences as assets that support students in 
their future mathematical learning. In this paper, we seek to characterize these assets by 
introducing a new concept in mathematics education: mathematics capital. This concept emerges 
from a framework connecting Archer et al.’s (2015) conceptualization of science capital and 
Bourdieu’s seminal work on the forms of capital (1986). Survey data were gathered in Spring 
2023 from a total of 219 students in undergraduate mathematics courses at an urban midwestern 
university. Path analyses in structural equation modeling showed a strong association between 
the variables of mathematics capital and self-efficacy. Other associations are also discussed. 
Our results indicate that mathematics capital is a measurable, quantifiable variable, 
independent from others. Future research is ongoing to better understand the nature of 
mathematics capital and how it is related to other variables. 

Keywords: Mathematics capital, Self-efficacy, Mathematics mindset, Structural equation 
modeling, Path analysis 

The current state of undergraduate mathematics education involves a multitude of variables 
related to student demographics and success. An important variable to student success is equity, 
which addresses purposeful accommodations and adaptations regarding student socioeconomic 
status, gender, and cultural differences (National Council of Teachers of Mathematics [NCTM], 
2014). Students bring their individual characteristics and identities into the classroom, which 
ultimately impacts their learning experiences and success in mathematics (Gutiérrez, 2009, 
NCTM, 2014). In this study, we seek to identify student backgrounds, history, and characteristics 
that potentially impact their success in mathematics education. We view these student 
characteristics through a Bourdieusian style lens, parallel to the previously researched theory of 
science capital espoused by Archer and colleagues (2015). Herein, we describe our approach of 
using structural equation modeling to investigate a novel theoretical construct, which we define 
as mathematics capital. We posit that mathematics capital is a variable that can be measured and 
is related to other important variables in mathematics education. 

Conceptual Framing 
Bourdieu (1986) rationalized that each field has inherent capital veiled in three ways: 

economic, cultural, and social. He fashioned the idea that patterns are not coincidental but rather 
are researchable and employable trends in the social world. Previous research from Archer et al. 
(2015) widened the Bourdieusian lens from art-based concepts to include the theory of science 
capital in society. Through their work, Archer et al. developed a three-part model in order to 
quantify students’ science capital. Our research extends this work to the field of mathematics. 
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Using the three-part model from Archer et al. (2015), we introduce the concept of mathematics 
capital. We build on the following three categories for our variables, analogous to Archer et al. 
(2015), that we posit are related to mathematics capital. The three variables, which we define 
below, are mathematics teaching and learning experiences, mathematics self-efficacy, and 
cultural capital. Additionally, we include a fourth variable: mathematics mindset. We include 
mathematics mindset to incorporate research from Boaler (2015) and Dweck (2006) that 
highlights the importance of how students’ view themselves as mathematical learners and 
developing a growth mindset towards learning mathematics.  

Mathematics teaching and learning experiences are defined as exposures to mathematics as 
process of doing (Cuoco et al., 1996), such that a student develops flexibility and fluidity within 
multiple mathematical representations (NCTM, 2014), and a student’s responses to these 
experiences. Mathematics self-efficacy is rooted by Bandura’s (1997) seminal work on self-
efficacy where self-efficacy is defined as a person’s perception of their ability to complete tasks. 
Specific to mathematics self-efficacy, developing agency and identity in mathematics is integral 
to the development of mathematics self-efficacy and outcomes in mathematics (Boaler & 
Greeno, 2000). Finally, cultural capital described by Bourdieu refers to a person’s family 
background, educational attainment, and perhaps social refinement (1977, 1986). Although this 
is not inclusive, these short phrases can act as descriptors to understand Bourdieu’s vision of 
cultural capital. 

Mathematics capital is theorized using Bordieu’s (1986) definition of social capital where 
social capital is a not only a person’s social relations, but also the power that grows as a result of 
those social relationships. In other words, social capital is not just having relationships with 
people, but having these relationships and using them to harness forward movement in a social 
network. A nonexample of social capital is having positive social relationships, but not accessing 
these relationships for any form of person gain. In this study, we used structural equation 
modeling to investigate the relationship between mathematics capital, cultural capital, and the 
collection of one’s mathematics mindset, self-efficacy and mathematics teaching and learning 
experiences. Most importantly, our model exhibits the independent variable that we are 
interested in characterizing: mathematics capital, where mathematics capital is defined as 
mathematical assets that actively influence a student’s capability or power in the field of 
mathematics education and how the student utilizes these assets to exert power in the field of 
mathematics education. Identification of mathematics capital, and how it has historically been 
acquired and used by successful mathematics students, extends current mathematics education 
research as it relates to equity. Defining mathematics capital will help researchers and educators 
better understand how to take proactive steps to support students in more equitable ways. Thus, 
the purpose of our study is to characterize mathematics capital and understand its relationship 
with other variables related to student success in mathematics. To this end, we investigate the 
following research questions:  

1. Is mathematics capital measurable? 
2. What relationships exist among mathematics capital, cultural capital, mathematics 

mindset, mathematics self-efficacy, and mathematics teaching and learning experiences? 
3. Is mathematics capital distinctly different than the other variables in the study? 
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Methods 

Participants 
The participants in this study were students enrolled in undergraduate mathematics courses at 

an urban midwestern university. Survey data were collected through Qualtrics from 219 
participants where 104 participants were enrolled in foundational mathematics courses (e.g., Pre-
calculus, Trigonometry, Quantitative Literacy), 79 participants were enrolled in either Calculus I, 
II or III, 8 participants were enrolled in Mathematics for Elementary Teachers I or II, and 28 
participants did not respond to this question. No other descriptive data were collected in this 
study including gender, socio-economic status, age, or ethnicity. Participants were recruited 
through their mathematics instructor's request and were not offered any compensation. 
Participation was voluntary and collected anonymously. 

Variables 
Data were collected for the following variables: mathematics mindset (MIND), mathematics 

self-efficacy (SE), mathematics teaching and learning experiences (TEAC), cultural capital (CC), 
and mathematics capital (MC). Participants were asked to respond to survey questions using a 5-
point Likert scale where options varied from strongly agree to strongly disagree. We used 
existing scales for both MIND and SE (Cribbs et al., 2021) where reliability had already been 
established. Our Chronbach’s alpha values for the existing scales used for MIND and SE were 
.914 and .960, respectively. Thus, we proceeded with the validated scales as anticipated. For both 
TEAC and CC we used existing scales as templates to build items that mirrored those that had 
been previously validated but better fit our research. The TEAC items were based on research 
from Ottmar et al. (2014), while the items for CC were developed from existing research from 
Dumais and Ward (2010), Noble and Davies (2009), and Zabihi and Prodel (2011). Finally, to 
address our research question, we developed 15 new survey items that were used for MC (see 
Table 1).  

Table 1. Survey items for TEAC, CC, and MC. 

TEAC  
While growing up:  

1. I discussed solutions to math problems with my peers.  
2. I worked and discussed math problems that reflect real life situations.  
3. I solved math problems in small groups or with a partner.  
4. I wrote a few sentences about how to solve a math problem.  
5. I used visual representations (e.g. diagrams, tables, models).  
6. I learned how to communicate ideas in mathematics effectively.  
7. I worked with manipulatives (e.g. geometric shapes).  

  

CC  
While growing up:  

1. I read.  
2. I was read to.  
3. I attended museums.  
4. I was taught that education was important.  
5. I was encouraged to go to college.  
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6. I participated in my education.  
7. I participated in extracurricular activities.  
8. I was taught about historic events.  
9. I felt supported.  
10. I did not have a lot of screen time.  
11. I read music.  

MC 
While growing up: 

1) I earned good grades in math. 
2) Math was generally easy for me. 
3) I used my math skills outside school. 
4) I noticed patterns in math. 
5) Experiences in my life helped me make sense of math problems. 
6) I advanced in STEM because of my math skills. 
7) I received opportunities, awards, or recognition because I was good at math. 
8) Math made sense to me. 
9) I worked through math problems even if they took longer than expected. 
10) I worked through math tests quickly. 
11) I usually knew when I had solved a math problem correctly. 
12) I knew where math formulas came from. 
13) I knew how to use math formulas. 
14) I knew why math formulas worked. 
15) I enjoyed math. 

  

To attempt to measure TEAC and CC, we utilized 7 and 11 items, respectively, derived from 
existing scales. Our initial recorded alpha values were .805 for TEAC and 0.738 for CC. 
Through the process of investigation, we attempted to eliminate items but could not come up 
with a higher Chronbach’s alpha value for either variable. Thus, we retained all 7 items for 
TEAC and all 11 items for CC as they developed the most parsimonious scale with acceptable 
reliability.  

To attempt to measure MC, we utilized the 15 items listed above in Table 1. Our initial 
recorded alpha value was 0.943. Then, through the process of investigation, we reduced down to 
6 items (retaining items (1), (2), (6), (7), (8), and (15) from above) which developed the most 
parsimonious scale with acceptable reliability. The recorded alpha value for this variable reduced 
to 6 items was 0.946.  

Analysis 
Data were collected using Qualtrics then exported from Qualtrics to SPSS (Ver. 29). In 

SPSS, initial analyses were performed to preliminarily assess the reliability of the survey 
measures. To assess the shared associations between the variables of interest, we used path 
analyses in structural equation modeling (M-Plus Ver. 7, Muthén & Muthén, 2012). The scale 
means for each construct were modeled simultaneously and the interrelations were explored.   

Results 
The constructed scores of mathematics capital spanned the entire range of the scale. 

However, most of the responses (57.20%) were between “Somewhat agree” and “Somewhat 
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disagree” with the remaining 14.4% below towards “Strongly disagree” and 28.40% above 
towards “Strongly agree”. Overall, the distribution of scores was less normal and more 
platykurtic than ideal. However, there was nothing else to suggest that the measure was not a 
valid reflection of the overall distribution of mathematics capital.   

Path analyses in structural equation modeling (M-Plus Ver. 7, Muthén & Muthén, 2012) were 
used to examine the associations in the variables of interest. Figure 1 shows the correlations 
between each pair of variables that were interrelated. Self-efficacy was positively related to 
mathematics mindset (r = .36, p < .05) and teaching and learning experiences (r = .27, p < .05). 
Higher reported self-efficacy was linked with a more positive mathematics mindset in addition to 
more positive teaching and learning experiences, with 12.96% and 7.29% shared variance, 
respectively.  

 
Figure 1. The shared association between the variables of interest. 

Meanwhile, cultural capital was only significantly related to teaching and learning 
experiences (r = .40, p < .05). In other words, more cultural capital was related to more positive 
teaching and learning experiences with 16.00% of the variance shared between the two. Notably, 
however, cultural capital was not meaningfully associated with any of the other variables. 

Finally, the measure of mathematics capital was positively related not only to mathematics 
mindset (r = .21, p < .05) but also to teaching and learning experiences as well (r = .35, p < .05). 
Here too, higher reported mathematics capital was linked with a more positive mathematics 
mindset in addition to more positive teaching and learning experiences, with 4.41% and 12.25% 
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shared variance, respectively. Perhaps most interestingly, mathematics capital’s strongest 
association was with self-efficacy (r = .78, p < .05). In other words, the participants who reported 
more mathematics capital were also more likely to have high self-efficacy with 60.84% shared 
overlap in the variance. Lastly, mathematics capital and cultural capital were not related to each 
other in the current study. The resulting model (n = 208) was a good fit to the data (χ2(2) = .02, p 
> .05, CFI = 1.00; RMSEA < .01, SRMR < .01).  

Discussion 
Our most important finding was that mathematics capital was directly and significantly 

related to almost all other variables in the model: mathematics teaching and learning experiences, 
mathematics self-efficacy, and mathematics mindset. This result suggests that increased 
mathematics capital is correlated to higher levels of mathematics self-efficacy, more positive 
mathematics teaching and learning experiences, and a growth-oriented mathematics mindset. 
This result also indicates that mathematics capital might be a candidate for exploring the 
potential mediating role in explaining the other associations we observed (e.g. the relationship 
between self-efficacy and teaching and learning experiences). While we did not measure the 
directionality between relationships in this analysis, work is ongoing to continue to understand 
and define the relationship between mathematics capital and these variables. 

The strongest association in our model was between mathematics capital and self-efficacy. 
While there is research highlighting mathematics self-efficacy as a predictor of students’ 
mathematics outcomes (e.g., Ayotola & Adedeji, 2009; Bonne & Johnston, 2015; Fast et al., 
2010), our results contribute to the literature by highlighting the importance of the relationship 
between mathematics self-efficacy and mathematics capital. However, the nature of the 
relationship between these two variables must be further teased apart. Specifically, future 
research should investigate the items used to measure mathematics capital and mathematics self-
efficacy to ensure that these two variables are psychometrically distinct. Given the strong 
correlation between mathematics capital and self-efficacy, we found that there was a 60.84% 
shared overlap in the variance, which was not high enough to claim these variables were the 
same. As variable validation continues for mathematics capital, we expect future research to help 
delineate between mathematics capital and mathematics self-efficacy. 

We were surprised to find that our model showed no significant relationship between 
mathematics capital and cultural capital. As we continue to confirm the existence of mathematics 
capital, it is important to differentiate mathematics capital from other forms of capital. This 
distinction reiterates that mathematics capital is its own entity and does not overlap with cultural 
capital. This result also suggests that mathematics capital cannot be defined within cultural 
capital, and instead, requires its own definition. Said differently, mathematics capital is not the 
intersection of cultural capital and other mathematics variables such as self-efficacy, 
mathematics mindset, or mathematics teaching and learning experiences: mathematics capital is 
its own measurable, quantifiable variable. 

While our analysis showed that mathematics capital and cultural capital are distinct forms of 
capital, it brings up the question of whether capital is transmutable. We expected to find some 
relationship between the two forms of capital due to the inherent transmutability of capital 
(Bourdieu, 1986). Thus, the lack of relationship between mathematics capital and cultural 
capital, raises the question: why is there no statistically significant direct relationship between 
these two forms of capital? Notably, mathematics capital and cultural capital are both statistically 
related to mathematics teaching and learning experiences. Therefore, any association between 
mathematics capital and cultural capital only exists inasmuch as they are both related to 
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mathematics teaching and learning experiences. In addition, there may be other variables that 
were not included in our model, such as financial capital, that are associated to both mathematics 
capital and cultural capital. Thus, more research is needed to determine the relationships between 
these variables and different forms of capital. 

Conclusion 
A primary limitation of our study was the sample size. With 219 responses, we were able to 

investigate interrelations between the variables we were measuring. However, collecting a 
minimum of 300 responses would allow us to do latent variable modeling of the associations 
between the variables as latent constructs (i.e., to measure the error free associations between 
them). Data collection is currently ongoing to reach this sample size so that our analysis can be 
extended. We also plan to extend our analysis to investigate potential differences in student 
subgroups. Of particular interest are the differences between students who are enrolled in a 
calculus sequence course pursuing STEM majors and students who are non-STEM intending. 

In addition to our quantitative analyses, our current survey allows students to respond to two 
free-response questions to gather qualitative data. In this portion of survey, we are looking to 
compare and contrast the measured variables, as quantitatively reported by the participants to the 
descriptions in their free-response questions. We are curious how students report their self-
efficacy, mathematics teaching and learning experiences, and their mathematics mindset on a 
scale and how these compare to their experiential descriptions of these variables.  

Our ultimate goal is to understand mathematics capital so that we can learn how it is acquired 
and better support students in attaining this capital. We view mathematics education as a holistic 
and comprehensive undertaking, as Bourdieu saw many capital-related concepts (1986).  
Developing students’ mathematics capital requires understanding and describing how 
mathematics capital intersects with students’ teaching and learning experiences in mathematics, 
their mathematics self-efficacy, their mathematics mindset, and their cultural capital. Having this 
holistic approach to mathematics education will help us as we continue to uncover more 
relationships between these variables and discover new ones. 
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This paper explores the intersection of two critical areas in undergraduate mathematics 
education: the pursuit of diversity, equity, inclusion, and accessibility (DEIA) in mathematics 
classrooms and the understanding of equity by mathematics graduate teaching assistants 
(MGTAs). MGTAs play a pivotal role in teaching undergraduate mathematics courses, yet their 
grasp of equitable teaching practices remains underexplored. In this study, we investigate 21 
MGTAs’ conceptions of equitable teaching. The results indicate the importance of considering 
the critical axis of Gutiérrez’s (2009) equity framework. Ultimately, the findings offer insights 
into MGTAs’ conceptions of equitable teaching, providing a foundation for developing effective 
professional development programs and advancing DEIA efforts in mathematics. 

Keywords: Equity, Mathematics Graduate Teaching Assistants, Student Thinking 

Background 
Researchers have emphasized the need for teaching practices that support Diversity, provide 

Equitable and Inclusive learning spaces for students, and improve Access to mathematical 
content, ideas, and learning resources, referred to as DEIA (AMS, 2019; MAA, 2019; Voigt et 
al., 2023). Mathematics classrooms that support DEIA are often those that are active, engaging 
learners in meaningful mathematical activity, such as inquiry-based learning (IBL) and inquiry-
oriented instruction (IOI) (Hassi et al., 2011; Kuster et al., 2017; Laursen et al., 2014). However, 
Brown (2018) noted that not all active-learning classrooms are equitable and provided a vision 
for equity-oriented IBL (E-IBL). In a recent review and synthesis of the literature on these types 
of classroom practices, Laursen and Rasmussen (2019) posited that mathematics classrooms 
should incorporate the activities outlined by four pillars: “students engage deeply with coherent 
and meaningful tasks, students collaboratively process mathematical ideas, instructors inquire 
into student thinking, instructors foster equity in their design and facilitation choices” (p. 138). 
For our paper, we focus our attention on the last pillar - equity. More specifically, we focus on 
mathematics graduate teaching assistants’ (MGTA) conceptions of equity.  

Mathematics departments often rely heavily on MGTAs for teaching or supporting 100- and 
200-level courses. MGTAs often lead multiple recitation or lab sections for large lecture courses 
or teach courses as the lead instructor. At some doctorate-granting institutions, MGTAs teach up 
to 68% of Calculus I courses (Selinski & Milbourne, 2015). This means that during their 
graduate programs, MGTAs likely contribute to the learning experiences of hundreds and 
possibly thousands of undergraduate students. Despite their contact with and impact on 
undergraduate students, few studies have investigated MGTAs’ understanding of teaching 
practices (Miller et al., 2018; Speer et al., 2010) and whether/how they comprehend instructional 
practices that support DEIA. We found one recent study (White et al., 2023) in which 
mathematics faculty members were asked how they would define equitable and inclusive 
teaching practices after an equity-focused professional development program. Among the 13 
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participants, White and colleagues (2023) found three major themes: “awareness and 
consideration of students, student engagement, and reflective practice” (p. 451). 

Due to their impact on undergraduate learners, we investigate MGTAs’ understanding of 
DEIA because their understanding will influence their instructional decision-making and abilities 
(Schoenfeld, 2011, 2014; Speer, 2008; Speer & Hald, 2008). Additionally, studies that reveal 
what MGTAs associate with equitable teaching can inform the field on what is needed for an 
effective professional development program. Thus, to add to this literature and focus on MGTAs, 
we aim to explore the research question: What are MGTAs’ conceptions of equitable teaching? 

 
Theoretical Framework 

Gutiérrez (2002, 2009, 2011) defines equity as “the inability to predict mathematics 
achievement and participation based solely on student characteristics such as race, class, 
ethnicity, sex, beliefs, and proficiency in the dominant language” (Gutiérrez, 2002, p. 153). 
Within these definitions, Gutiérrez (2011) describes dominant and critical axes (Figure 1), each 
of which has two dimensions. Along the dominant axis are access (“the tangible resources 
students have available to them to participate in mathematics,” p. 19) and achievement 
(“measured by tangible results,” includes “participation in class as the mathematics pipelines,” p. 
19). On the critical axis are power (“voice in the classroom, opportunity to use mathematics as a 
tool to critique society, rethinking mathematics as a humanistic enterprise,” p. 20) and identity 
(“a balance between self and others”; “opportunities to see themselves in the curriculum as well 
as have a view on the broader world,” p. 19-20).  

 
Figure 1. Gutierréz’s (2009) dimensions of equity. 

While Gutiérrez (2009) noted that all dimensions are necessary for true equity, she 
problematizes the dominant axis through the lens of “playing the game” (p. 5) as participating in 
the status quo. In particular, she notes that access is “necessary but not sufficient” (Gutiérrez, 
2009, p. 5) and that “equal access assumes sameness” (Gutiérrez, 2011, p. 19). In addition, she 
argues that focusing on providing all students with access or closing achievement gaps does not 
rectify past injustices that students may have experienced. In contrast, the dimensions of the 
critical axis help teachers and students to “change the game” (Gutiérrez, 2009, p. 5) by 
leveraging students’ cultural and linguistic backgrounds. Moreover, the power dimension 
provides students with opportunities to “rethink the field of mathematics” and to consider 
mathematics as a “more humanistic enterprise” (Gutiérrez, 2009, p. 6). 

Researchers have used Gutiérrez’s (2002, 2009, 2011) framing of equity to redefine the 
actions of teachers and students in classrooms as well as describe people’s conceptions of equity. 
For example, Tang and colleagues (2017) used Gutiérrez’s framing to describe how inquiry can 
support equity. Similarly, by studying mathematics classrooms through the lens of Gutiérrez’s 
work, Brown (2018) revised the notion of Inquiry-Based Learning to include an equity-oriented 
(E-IBL) component. White et al. (2023) applied Gutiérrez’s framing to participants’ answers to 
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interview questions to understand how people talk about equity more deeply. We continue this 
trend of leveraging Gutiérrez’s framework to forward mathematics education. 

 
Methodology 

For this study, we conducted clinical interviews (Clement, 2000) with 21 MGTAs across 
three universities in the United States. MGTAs were recruited at the beginning of their graduate 
program (either Masters or PhD). These interviews were semi-structured (Zazkis & Hazzan, 
1998) in that they were planned in advance, but the interviewer asked different follow-up 
questions based on the interviewee’s responses. The interview took place at the start of the 
school year and consisted of 16 questions focused on investigating the MGTAs’ conceptions of 
teaching. A substantial portion of these questions involved ideas of equitable teaching, such as; 
“How would you define equity and inclusivity?”, “How would you describe equitable 
teaching?”, “How would you describe a classroom that is not equitable?”, and “Do you foresee 
equity and/or inclusivity impacting your plans for group or student interactions?” 

 
Data Analysis 

The analysis involved Open and Axial Coding (Strauss & Corbin, 1990) for moment-by-
moment coding of students’ responses and interpretations. This analysis was inductive in that the 
analysis was driven by what was in the data and that no pre-existing theoretical frameworks were 
used when creating the codes. However, as researchers aware of the literature, our knowledge of 
existing frameworks likely influenced what we noticed and how we decided on codes. Each 
interview was individually coded by at least 2 of the authors and then subsequently reconciled. 
During the reconciliation of codes, the authors created and refined the codes to capture patterns 
across students’ responses. The authors repeated this process until no new codes were created, 
and there was agreement on using the codes in each interview transcript. This process was done 
to improve intercoder reliability to ensure that each code was used in the same way. We present a 
portion of our findings highlighting the major themes of these 21 MGTAs associated with equity. 

Table 1. Summary of Code Counts Organized by Level of Association. 
 

Code Major Minor Other Total 
Access 2 3 8 13 
Active Learning   3 12 15 
Addressing Biases 1 1 5 7 
Awareness of Diversity 3 6 9 18 
Barriers   5 9 14 
Content is Relevant   1 2 3 
Equity and Inclusivity are Similar   1 8 9 
Equity as Equality 1 1 6 8 
Everyone Participating 1 3 9 13 
Gauging Students   5 8 13 
Individualized Approach 4 6 9 19 
Lecturing is not Equitable   1 3 4 
Making Things Equal 4 7 7 18 
Multiple Teaching Methods   1 7 8 
Not Leaving Students Behind 6 3 4 13 
Students are Comfortable   2 11 13 
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Students are Heard   3 8 11 
Valuing Different Types of Thinking 1   4 5 
Valuing Students     5 5 

Table 1 summarizes the most prominent themes among the graduate students, where each 
individual’s codes were organized into Major, Minor, and Other Association levels of equity. 
The counts in each column indicate how many times a particular code was classified in each 
respective association level. Major Associations were determined by the code that emerged most 
frequently for each graduate student. Minor Associations were determined by the codes that 
came up less frequently than those counted in the Major Association category but still more than 
once or twice for the graduate student. All other codes were determined as Other Association, 
representing themes that did come up for the graduate students but not as much as the major or 
minor ones. Two graduate students had two codes come up significantly more frequently than 
the rest of the codes and, therefore, had two codes counted in the Major Association category, 
while the rest had only one. Most MGTAs had several minor codes, and several were counted in 
the Other association. Table 1 highlights each column’s most commonly referred to codes. 

 
Results 

In this section, we highlight the three most prominent codes amongst the 21 graduate 
students. To do so, we explicate the meaning of these codes with excerpts that align with that 
code. It should be noted that each excerpt can be composed of multiple codes and does not 
necessarily fall under only that one code. 
 
Individualized Approach 

The most prominent theme in 19 of the 21 MGTAs was their idea that equitable teaching 
entailed an Individualized Approach. We used this code whenever an MGTA mentioned wanting 
to provide differentiated ways of instruction for their students, which was typically grounded in 
their desire to support students based on their individual needs [Excerpts 1 and 2]. Additionally, 
we used this code when they verbalized their desire to make accommodations for students 
depending on their respective situations [Excerpt 3]. In terms of individualizing education, the 
majority of these MGTAs discussed this in terms of a student’s content understanding. In 
particular with Excerpt 2, this MGTA wanted to differentiate their time with students based on 
whether they had “more gaps or problems understanding” the material. This was a common 
sentiment among the 19 students where they wanted to help those who were behind by spending 

“There might be small things 
like, ‘Hey this student is sick, 
can they do makeup?” or like 
“Can we change this policy so 
if they miss an exam they can 
have their final exam score 
replace it?’ like little things 

like that” 

“So, in equity I assert that 
some people need more than 

others. For example, if I 
have office hours, everybody 

is welcome to. But if one 
student has more gaps or 
problems understanding 

something they might need 
more time with me.” 

Excerpt 2 

“I would try and focus on 
making what I’m teaching 
specific to each student. I 

know it is hard to do that, but 
getting almost like a personal 

lesson plan, or like a 
personal path that each 

student can take.” 

Excerpt 1 Excerpt 3 

Figure 2: Sample Excerpts Coded with “Individualized Approach” 
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more time with them or by providing alternative explanations [Excerpt 1]. Overall, what is 
mutual amongst all the excerpts coded with Individualized Approach was that the MGTA 
expressed a desire not to treat everyone with the same standard. Instead, each MGTA explicated 
that depending on the individual’s way of learning [Excerpt 1], understanding of mathematical 
content [Excerpt 2], personal situation [Excerpt 3], or other aspects, the MGTA wanted to 
address these and consider what would be best for each individual.  

As a significant observation, only a few passages that we coded with Individualized 
Approach included a discussion on students’ identities (e.g., race, gender, sexuality, 
ability/disability, etc.). The only exception was the few passages that considered a student’s 
social class and the MGTA providing accommodations for them (such as flexible deadlines for 
students with jobs or materials for those without the necessary income). We note this because the 
literature clearly shows that people do not experience mathematics equally, and negative 
experiences are disproportionately felt by marginalized populations (Tatum, 1992; Yosso et al., 
2009). For example, many women still face sexist narratives from their male peers (Yang & 
Carroll, 2018; Ernest et al., 2019), and therefore, one way to combat this is to take deliberate 
steps to ensure women have safe spaces in mathematics. In this case, educators can take an 
individualized approach in recognizing how to support marginalized populations, yet none of the 
MGTAs explicitly mentioned such actions. To be clear, we do not claim that the MGTAs are 
unaware of racism, sexism, etc. Instead, we assert that there is no direct evidence that they think 
of them as being concerned with “equity” or fully realize how a student’s identity significantly 
impacts their experiences in the mathematics classroom.  
 
Making Things Equal 

Another popular theme was that equitable teaching involved Making Things Equal for all 
students. This code was used whenever an MGTA indicated the intent to ensure that all students 
had the same opportunities or ability to succeed. It is important to note that this code does not 
capture the idea of treating all students the same way. Instead, excerpts tagged with this code 
involved descriptions of something the teacher or university needed to do to provide equal 
opportunities for students. For example, in Excerpt 4, the MGTA described their awareness of 
students’ access to resources and their background as impacting their ability to succeed. Thus, in 
order to provide an equal learning opportunity, a teacher should provide “extra attention in order 
to put them on a fair footing.” Excerpt 5 also hints at this diversity of backgrounds by 
mentioning that not every student needs to get the same and that equitable teaching involves 
“making sure” everyone has the same opportunities. While Excerpt 6 may initially read as 

“I want to say like teaching so 
that it’s fair. Like making sure 
that you’re taking steps to be 

fair and not giving 
preferential treatment. 

Making sure that anybody 
should have the same ability 
to understand…like everyone 
should be able to continue.” 

“I would say equitable 
teaching would be, not 
necessarily that every 

student gets the same. I 
would say it’s more about 

making sure that everyone is 
at the same level of help or 
has the same opportunities 

as everybody else.” 

Excerpt 5 

“Like some students come 
without a pencil. Some 

students just had problems at 
home and that made me 
realize that sometimes 
students deserve extra 

attention in order to put 
them on a fair footing.”  

Excerpt 4 Excerpt 6 

Figure 3: Sample Excerpts Coded with “Making Things Equal” 
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“treating everyone the same,” the MGTA’s emphasis on “making sure” of fairness indicates their 
assumption that, by default, things are likely not fair in the classroom and that the teacher needs 
to “make sure that anybody should have the same ability to understand.” 

18 of the 21 interviewed MGTAs shared this sentiment that equitable teaching involved 
deliberate actions from the teacher or university to ensure that students have an equal opportunity 
in the classroom. Underlying this idea was the awareness that students may come into the 
classroom with different backgrounds, associations with mathematics, and the possibility of 
being treated differently than other students. This code was often coded alongside “Awareness of 
Diversity,” which makes sense since if an MGTA assumes everyone is equal, they would not 
articulate the need to ensure that things are equal. Instead, these MGTAs noticed the diverse 
populations in their classroom and the impact of those differences in mathematics education. 
 
Awareness of Diversity 

18 MGTAs mentioned an “Awareness of Diversity” as being associated with equitable 
teaching. We used this code whenever an MGTA made specific reference to people of different 
backgrounds when answering equity and equitable teaching questions. In all three of these 
excerpts, each student responded to a question by explicating an awareness of how their students 
come from various backgrounds. These kinds of differences that the MGTAs mentioned included 
the types of students [Excerpt 7], ways a student in a classroom interacts [Excerpt 8], things a 
student might deal with outside of the classroom [Excerpt 9], mathematical background, different 
learning styles, and levels of mathematical understandings. Of importance to note is that none of 
the students specifically mentioned that “you need to be aware of diverse backgrounds to teach 
equitably.” Instead, we infer from their aggregate responses that their realization of students with 
different backgrounds was the impetus for how they envisioned teaching equitably. For example, 
in Excerpt 8, the MGTA described that students have different ways of communicating, and 
because of that, equitable teaching entails giving “everybody a voice that’s equally relevant.” 
Similarly, in Excerpt 9, the MGTA initially addresses a student’s situation as the primary reason 
for equitable teaching involving providing situational accommodations for students. 

 
Discussion 

Overall, between the 21 MGTAs, the common theme of equitable teaching entailed 
supporting student success by individualizing education, making things equal, and being aware 
of the diversity of student backgrounds. One hypothesis for why these three codes appeared 
frequently is that the most prominent image associated with equity is the baseball field analogy 

“For equitable teaching, you get 
people who work like 40 hours a 

week and they’re taking a 
summer class and all the material 

is really crammed together. So 
equitable teaching, I would 

describe it as not necessarily 
giving people a free pass but 

definitely trying to accommodate 
situations.” 

 
 

“I think that people come from 
different backgrounds have 

different ways they communicate 
and that could be a result of 

their environment and culture. 
Those sum up who we are and 
how we think and to include all 

these different ways of thinking is 
to, I guess give everybody a voice 

that’s equally relevant. 

Excerpt 8 

“A lesson that is not 
equitable? Maybe a lesson in 
which the assumption is that 
everybody knows all of the 
terms, or assuming that 
students have the same 

background, that there is no 
non-traditional students or 

foreign students.”  

Excerpt 7 Excerpt 9 

Figure 4: Sample Excerpts Coded with “Awareness of Diversity” 
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(Figure 5). In this widely used metaphor, equity is enacted by distributing the boxes according to 
each individual’s needs. It is not too far of a reach to claim that the three most salient aspects of 
this metaphor involve “people have different needs” (Awareness of Diversity), “give according to 
those needs” (Individualized Approach), and that the overarching goal is to “make things equal.” 
In fact, one MGTA directly mentioned this metaphor when explaining equity: “It’s the classic 
photo of equity versus equality. You don’t give everyone a crate, you give crates according to 

who needs to be able to see (over) the fence.” 
In considering Gutiérrez’s framework for equity (2009), we note that the MGTAs mostly 

attended to the dominant axis by considering ideas of access and achievement. Most of the 
MGTAs focused on supporting academic success and closing achievement gaps. However, as 
Gutiérrez explains, attention to the critical axis is crucial for students to have true equity in the 
classroom. We note that we do not want to ironically gap-gaze at what the MGTAs lack. Instead, 
we make this comparison to highlight what professional development focused on equity for 
MGTAs might include. In particular, the results indicate that many MGTAs have admirable 
intentions and want to support students from various backgrounds. What they would likely need 
then, is a deeper understanding of how issues of racism, sexism, ableism, and other forms of 
oppression play a significant role in mathematics education. Therefore, it stands to reason that a 
productive professional development program for MGTAs would include aspects that address 
issues of inequity, specifically targeting the critical axis of Gutiérrez’s framework.  

We titled our paper with a quotation from one of the MGTAs who explained equitable 
teaching as “acknowledging my students as humans first and students second” to highlight that 
the MGTAs mostly have the intent of treating mathematics education as what Gutiérrez calls a 
“more humanistic enterprise.” We believe the findings of this study indicate a better future for 
mathematics education and that providing training to graduate students on teaching and equity 
can be a worthwhile endeavor toward improving student experiences in mathematics classrooms. 
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The Cognitive Obstacles Associated with Structuring for Mathematization Undergraduates 
Encountered During Dynamic Modeling Tasks 

 
 Elizabeth Roan Jennifer A. Czocher 
 Texas State University Texas State University 

Studies have described a number of blockages to mathematizing, the process of transforming a 
real-world situation into a mathematical model. Recently, researchers have documented four 
cognitive obstacles associated with those blockages in physics-based modeling tasks. We 
attempted to extend these findings to biological-based modeling tasks. However, we found it 
difficult to use the theoretical lens as described in the previous literature. This difficulty arose 
because the previous theoretical lens required the delineation of real-world objects and 
mathematical objects, a pursuit recently shown to be unattainable in some contexts.  By 
examining students mathematization under a quantitative reasoning and symbolic forms lens, we 
were able to find two cognitive obstacles analogous to the ones found in previous research, 
confirming their existence with a different demographic of students and different task scenarios.   

Keywords: modeling, quantitative reasoning, differential equations 

The idea of using mathematical modeling to enrich STEM education is well established. It is 
an idea upheld by the Common Core State Standards (CCSSI, 2010), and researchers alike 
(Blum & Niss, 1991). One line of inquiry into how students learn to model focuses on 
identifying and improving the competencies students need to make progress in a modeling 
problem (Schukajlow et al., 2018). The competency which has received most attention is 
mathematizing – constructing a mathematical representation of the mental model of the scenario. 
It is particularly difficult for students (Brahmia, 2014; Galbraith & Stillman, 2006; Stillman & 
Brown, 2014). Because each phase of modeling builds on decisions the modeler made earlier, 
some of the difficulties students encounter carrying out mathematizing come from how they 
structured the real-world scenario. In order to understand why some students experience 
blockages when they work on modeling problems, researchers have begun to catalog the 
cognitive obstacles associated with structuring for mathematizing that arise when students work 
on modeling problems.  

Literature Review 
Mathematical models are mathematical systems that represent real-world systems. They are 

conceptual systems “consisting of elements, relations, operations, and rules governing 
interactions) that are expressed using external notation systems, and that are used to construct, 
describe, or explain the behaviors of other system(s)…[A model] focuses on structural 
characteristics of the relevant system” (Lesh & Doer 2003 p. 10). Historically, scholars have 
conceptualized the process of generating the representational system as an idiosyncratic cycle 
that can be disrupted by inadequately performing key activities to transition from one 
competency to another. Studies have described a number of blockages to mathematizing such as 
representing elements mathematically so known formulae can be applied (Galbraith & Stillman, 
2006) and failing to define variables or failing to realize interdependences among variables 
(Klock & Siller, 2020). These blockages should be understood as arising from structural choices 
about which elements, relations, and operations are relevant. Recent studies affirm that lack of 
content knowledge was not the root of students’ difficulties during modeling, but rather a two-
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part set of skills: structuring the scenario and then translating the structure into a mathematical 
representation (Jankvist & Niss, 2020; Niss, 2017). Niss (2017) observed four primary obstacles 
to mathematizing that could be attributed to cognitive processes. He framed mathematizing as 
making simplifying assumptions about objects in the real world that are specified by the modeler 
and generating relationships between those objects that are relevant to solving the real-world 
problem. From this perspective, student blockages could be categorized as (a) not identifying a 
mathematical object to impose on the scenario (b) not identifying a key real-world object to 
impose onto the scenario (c) imposing unhelpful mathematical objects, and (d) making structural 
choices that led to a mathematical representation that students were unable to work on (e.g., 
choices that would require too-advanced mathematics). In concluding remarks, Niss called for 
other researchers to corroborate and expand upon this list of cognitive obstacles in other content 
areas. A call we set out to respond by extending Niss’s framework to undergraduate STEM 
majors’ work on canonical modeling problems from biology, including disease transmission and 
predator-prey dynamics. We found that Niss’s framework depends on being able to reliably 
identify and distinguish between a mathematical object and a real-world object, which was 
challenging to do empirically in the biological contexts since it was not obvious what the 
relevant mathematical or real-world objects would be. We were unable to understand what the 
cognitive obstacles associated with structuring for mathematizing from this perspective. 
Recently, Zimmerman et al., (2023) argued that there is no clear distinction between 
mathematical objects and real-world objects, shedding light onto limitations of Niss’s framework 
for settings outside of physics problems. Thus, a promising approach to understanding the 
difficulties students face while mathematizing would need to absolve the researcher from 
assuming a distinction between real-world object and mathematical object. 

To address this theoretical and methodological need, we adopt constructs from quantitative 
reasoning (QR) and symbolic forms. Quantitative reasoning is the conceptualization of a 
situation into a network of quantities and quantitative relationships (Thompson, 1993). A 
quantity is a triple of an object, attribute, and quantification (Thompson, 2011). Quantification 
means to conceptualize an object with a measurable attribute so that the measure is proportional 
to its unit (Thompson, 2011). A quantity is made from an individual’s conceptions of objects 
meaning a quantity is idiosyncratic to the individual (Ellis, 2007). An example of a quantity in a 
disease transmission context could be the number of sick people at time 𝑡. The object is the sick 
population, the attribute is amount, and evidence of quantification could be a student explaining 
they could feasibly measure the number of people on one day by counting them. A quantitative 
operation is a conceptual operation where an individual creates a new quantity in relation to 
already created quantities (Ellis, 2007; Thompson, 2011). Symbolic forms are a type of cognitive 
resource comprising of two components: a symbol template and a conceptual schema (Sherin, 
2001). For example, a common conceptual schema for the symbol template [ ] × [ ] is iterating 
one quantity by the magnitude of another (i.e., repeated addition).  In this way, a mathematical 
model is a conceptual system encompassing a modeler’s ideas they find relevant about a real-
world system (e.g., a fish tank, or an island habitat). The elements of the model are quantities the 
modeler imposes onto the scenario. The relationships between elements, operations, and rules 
governing interactions are determined by the modeler’s QR. A modeler externalizes quantitative 
operations by selecting the symbol template whose conceptual schema comports with the 
quantitative operation. For example, a modeler could multiplicatively combine number of sick 
people at time t and number of healthy people at time t to create the quantity number of 
interactions between sick and healthy people at time 𝑡. The modeler might externalize that 
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quantitative operation via the symbol template [ ] × [ ], because repeated addition comports with 
how they multiplicatively combined the two quantities. In Niss’ (2017) framing, cognitive 
obstacles arose from incongruencies in identifying real-world objects, and assigning the 
appropriate mathematical objects to those real-world objects. In our framing, cognitive obstacles 
arose from imposing quantities onto the scenario, creating new quantities by combining other 
quantities, and expressing that combination externally. From this perspective, we pose the 
question: What cognitive obstacles to mathematizing, arising from structuring, do students 
encounter when working on dynamics modeling problems? 

Methods 
This qualitative study draws data from a larger design study of facilitator scaffolding moves 

that foster undergraduates’ modelling competencies. In this paper, we report on 12 participants’ 
work on three canonical modelling tasks: a predator-prey dynamics scenario, a contaminated 
tank scenario, and a disease transmission scenario. Participants were volunteers from STEM 
courses who stated they had some familiarity with mathematical concepts like instantaneous rate 
of change and reported getting at least C’s in their mathematics course work. The task design and 
task-based interview protocols attended to participants’ QR and intentionally focused on 
similarities of conceptual schema across task contexts. In all three tasks, participants aimed to 
write a (system of) differential equation(s) modeling the dynamics of the scenario. In the 
predator-prey task, students were asked to create two differential equations that modeled the rate 
of change of cats and birds accounting for their interactions. In the contaminated tank task, a 
buffering agent is mixed with water to create a buffering solution. Students were asked to model 
how quickly buffering agent in the tank changed given the buffering solution entered the tank at 
5 liters per minute at a concentration of 1 − 𝑒ି 

మబ grams per liter. In the disease transmission 
task, participants were asked to model how quickly a disease was spreading through a 
community of susceptible, infected, and removed populations. 

Analysis of recordings of and written work from the interviews proceeded in four stages. 
First, we generated a list of quantities each participant imposed onto the task scenario by 
describing the object, attribute, and how the participant exhibited quantification for that attribute 
according to the quantification criteria developed by Czocher and Hardison (2021).  Second, we 
created a chronological narrative documenting how participants combined quantities and 
externalized that combination using symbolic forms. Third, we identified instances where a 
participant’s progress in the task halted. Some key indicators were: the participant said they were 
stuck, the participant wrote down two mathematical expressions for the same quantity (or 
quantitative relationship) and said one of the expressions should be correct, or the interviewer 
noticed that what the participant wrote down did not mathematically mean what the participant 
was explaining. In each instance, we inferred the cognitive obstacle that impeded the 
participant’s progress based on the quantities and quantitative operations previously documented. 
Finally, we looked across instances for commonalities which we report as types of cognitive 
obstacles below. 

Results  
Across the three canonical modeling problems and participants, we observed many blockages 

to mathematization that could be attributed to cognitive processes and report on two with origins 
in structuring: an unhelpful quantitative relationship took precedent, and a key quantity was not 
salient for the participant. A third type of cognitive obstacle (a participant’s specific 
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quantification of a quantity did not permit them to sensibly combine it with other already-present 
quantities using well-known formulas) was previously reported in Roan and Czocher (under 
review). We illustrate each kind of cognitive obstacle to evidence its existence and its role in 
connecting structuring to mathematizing. To evidence the two types of cognitive obstacles 
existence, we selected instances that best exemplified a specific type of cognitive obstacle. To do 
that will show work from two students, Ivory (Physics) and Niali (Electrical Engineering).   

An unhelpful quantitative relationship took precedent. 
This cognitive obstacle occurred when a participant focused on externalizing a quantitative 

relationship that was not helpful (from the interviewer/researcher perspective) in creating a 
differential equation that modeled the scenario. To evidence this type of cognitive obstacle, we 
show work from Ivory (Physics) on the disease transmission task. To start, we show the 
quantities, quantitative relationships and the corresponding symbols and expressions she had 
created up to the point of interest in Table 1.  

 
 Table 1. Ivory’s quantities, quantitative relationships, and the corresponding symbols and expressions. 

Quantity or Quantitative relationship 
 

Symbol or Expression 
 

 

Amount of susceptible people at time t 𝑆(𝑡)  

Amount of infected people at time t 𝐼(𝑡)  

Amount of removed people at time t 𝑅(𝑡)  

Mortality rate 𝑑  

Accumulated amount of dead people at time t 𝑚(𝑡)  

Amount of recovered people at time t 𝑟(𝑡)  

Amount of dead people at time t and amount of 
recovered people are two disjoint subsets of amount of 
removed people at time t 

𝑟(𝑡) = 1 − 𝑚(𝑡)  

 
Ivory was working on creating an expression for amount of dead people at time t. She noted 

some pertinent information she needed to consider, namely, that “there’s a two-week delay” 
between symptom onset and death “…because if you haven’t died within two weeks, you’ve 
recovered, is what we’re assuming here.” Ivory assumed that (A) the amount of dead people at 
time t depended upon amount of infected people at time t, 14 days ago. We identified that Ivory 
had stopped progressing towards creating a differential equation for the scenario because she 
wrote down multiple mathematical expressions for the same quantitative relationship, as if 
searching for the correct mathematical expression. Table 2 shows the different expressions Ivory 
tried and then rejected to depict quantitative relationship (A).  
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Table 2. Ivory’s quantities, quantitative relationships, and the corresponding symbols and expressions. 

Quantity or Quantitative relationship 
 

Symbol or Expression 
 

 

amount of dead people at time t depended 
upon amount of infected people at time t, 14 
days ago. 

𝑚(𝑡) = 𝐼(𝑡 + 14) × 𝑑  

𝑚(𝑡) =
𝑑𝑆

𝑑(𝑡 + 14)
 

 

amount of removed people at time t 
depended upon amount of infected people at 
time t, 14 days ago. 

𝑑𝑅
𝑑𝑡

=
𝑑𝐼

𝑑(𝑡 − 14) 
 

𝑑𝑅
𝑑𝑡

=
𝑑𝑆

𝑑(𝑡 − 14)  

𝑑𝑅
𝑑𝑡

= 𝐼(𝑡 − 14) 
 

 
Ivory experienced a cognitive obstacle related to her attempts to depict a quantitative 

relationship she did not know how to represent adequately. In Ivory’s work, the quantitative 
relationship (A) took precedence over more helpful relationship like (B) positive flux in the 
removed population is proportional per unit time to the current infected population. She could 
not adapt her models for relationship (B) because they did not account for relationship (A) in an 
explicit way. Neither did she think her models accounting for (A) were adequate. She reflected 
she was “still caught up on the 14-day lag thing.” We assert that this was a cognitive obstacle for 
Ivory because she was not able to meet her goal (to create a system of differential equations that 
modeled the disease spread) until this quantitative relationship lost precedence.  

A key quantity was not quantified by the modeler.  
This type of cognitive obstacle occurred when a key quantity was missing from the 

participant’s structure so other key quantities could not be constructed. Across our participants 
and tasks, this cognitive obstacle seemed to occur when participants thought they could not use a 
quantity in an expression because they thought they needed to find an equation to determine it (a 
way to measure its value) first. To evidence this type of cognitive obstacle, we show work from 
Niali (Electrical Engineer) on the contaminated tank task. To start, we show the quantities, 
quantitative relationships and the corresponding symbols and expressions he had created up to 
the point of interest in Table 3. Niali stated that he needed to find a mathematical expression for 
the quantity concentration of buffering exiting, as evidenced in the exchange below: 

Niali: OK, we have a-- let's see. Have a fluid in the tank. We have a tank. We have a pump 
which adds water with concentration. The water starts full. Uh, buffer enters through 
here, and out comes the water. The water exits at a rate of 5 liters per minute. It enters 5 
liters per minute at a rate of-- that-- oh, what is this, grams of buffer per liter. So what 
does it exit at?  

Interviewer: And by exit at, you're talking-- you're thinking specifically about the 
concentration, the true concentration of the liquid exiting, right?  

Niali: Yes. So how many grams per liter of the chemical is exiting? 
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  Table 3. Nilai’s quantities, quantitative relationships, and the corresponding symbols and expressions. 

Quantity or Quantitative relationship Symbol or Expression  

Rate of buffering solution entering in liters per minute 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 =  5  

Concentration of buffering solution entering in grams 
per liter 1 − 𝑒ି ௧

ଶ   

Rate of buffering agent entering in grams per min 5 × (1 − 𝑒ି ௧
ଶ )  

Rate of buffering solution exiting is the same as the rate 
of buffering solution entering 

𝑤𝑎𝑡𝑒𝑟 𝑜𝑢𝑡 =  5  

Maximum volume of the tank in liters 300  
 
We identified that Niali had stopped making progress towards creating a differential equation 

for the scenario because he wrote down multiple mathematical expressions for the same quantity, 
evidencing an ongoing search for an adequate one. In Table 4, we showcase all the different 
expressions Niali tried and rejected to depict the quantity concentration of buffering exiting. 

 
  Table 4. Nilai’s quantities, quantitative relationships, and the corresponding symbols and expressions. 

Quantity or Quantitative relationship 
 

Symbol or Expression 
 

 

Concentration of buffering solution 
entering is the same as concentration 
of buffering solution exiting 

% 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 =  1 − 𝑒ି ௧
ଶ

= % 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡 

 

Concentration of buffering solution 
exiting 5 × (1 − 𝑒ି ௧

ଶ )
300

 
 

൮
5 × ൬1 − 𝑒ି௧ಷೌ

ଶ  ൰

300
−

5 × ൬1 − 𝑒ି௧ೌ
ଶ  ൰

300
൲ ×

1
2

 

 

 

 
Niali experienced a cognitive obstacle related to his attempts to create a quantity when he did 

not have the quantities available to him to do so. In Nilai’s work, the quantity concentration of 
buffering exiting could not be constructed until the quantity amount of buffering agent in the tank 
was quantified. We assert that this was a cognitive obstacle for Niali because he was not able to 
meet his goal (to create a differential equation that modeled how quickly the buffering agent in 
the tank was changing) until the quantity amount of buffering agent in the tank was quantified. 
Further, other students in the study who did explicitly quantify the amount of buffering agent in 
the tank did not encounter this obstacle.  
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Discussion 
 In this paper, we found two cognitive obstacles associated with structuring for 

mathematizing students encountered in three canonical modelling tasks: a predator-prey 
scenario, and a contaminated tank scenario. These were (1) an unhelpful quantitative relationship 
took precedent, and (2) a key quantity was not quantified by the modeler.  While not all 
participants experienced each type of cognitive obstacle, no one obstacle was specific to one 
task. This implies that the cognitive obstacles we showcase here are not a consequence of the 
task scenario but are rooted in how students’ reason quantitatively while mathematizing. We set 
out in this work to confirm the cognitive obstacles found by Niss (2017) existed in these different 
task scenarios with a different demographic of student. However, due to the nature of the tasks 
we selected, we found it difficult to delineate real-world objects and mathematical objects. This 
difficulty has been empirically shown to occur in physics as well (Zimmerman et al., 2023). To 
continue our investigation, we elected to investigate these cognitive obstacles through a 
quantitative reasoning and symbolic form lens. We were successful in finding analogous 
cognitive obstacles found by Niss (2017). The cognitive obstacle an unhelpful quantitative 
relationship took precedent is analogous to Niss (2017) cognitive obstacle “making structural 
choices that lead to a mathematical representation that students were unable to work on”. 
However, here Ivory made structural choices that she could not translate into a mathematical 
representation. Further, the cognitive obstacle a key quantity was quantified by the modeler is 
analogous to Niss (2017) cognitive obstacle “not identifying a key real-world object to impose 
onto the scenario”. Our theoretical perspective offers more nuance. It is not that Niali just “didn’t 
think” to impose the quantify amount of buffering agent in the tank, onto the scenario. It is that 
Niali thought that he couldn’t. Later in the interview, when the interviewer suggested that Niali 
use the symbol 𝐵(𝑡) to represent amount of buffering agent in the tank he said “We're going to 
solve for 𝐵(𝑡) or something, or is that something we can do?” We infer from this question that 
Niali anticipated solving for 𝐵(𝑡) and so he did not think he could use 𝐵(𝑡) in his equation. This 
comports with the findings that it is specifically skills for structuring and mathematizing that 
produce cognitive obstacles not mathematical nor real-world knowledge (Niss, 2017; Jankvist & 
Niss, 2020). However, we did not find cognitive obstacles analogous to the other two cognitive 
obstacles by Niss (i.e., not identifying a mathematical object and imposing unhelpful 
mathematical objects). Our framing fails to pick up on those kinds of cognitive obstacles because 
our framing has no analogue for mathematical object. Further research is needed to determine if 
this is a shortcoming in the quantitative reasoning-symbolic form framing, if this kind of 
cognitive obstacle can be detected when looking at cognitive obstacles associated with other 
parts of mathematizing, specifically when externalizing the structure of the scenario via symbolic 
forms, or even whether they could be replicated in this student population. 
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Teaching professional development (TPD) in collegiate mathematics has expanded over the last 
few decades. Providers of TPD, people who organize and facilitate professional learning about 
teaching, are at the center of this growth. Yet, little is known about who Providers are and what 
they do. To better understand the national landscape of Providers of TPD within university 
mathematics departments, this report shares data from a national survey where respondents 
were Providers. The focus here is on findings from survey questions asking about characteristics 
of Providers and the “providees” with whom they work, along with formats, topics, and 
activities used in TPD. Results suggest that Providers value active, learner-centered 
instructional methods promoted by research and policy. However, in the TPD itself, formats, 
topics, and activities commonly used by Providers may preach but not regularly practice 
activity-based methods. 

 
Keywords: Professional Development Provider, Graduate Student Instructor, Teaching Assistant 

 
Decades of research on undergraduate mathematics teaching, learning, and curriculum 

development have created an evidence-based foundation of resources for equitable teaching and 
effective learning. These resources include instructional materials, assessment tools, and practice 
guides for instructors (e.g., MAA, 2018; Carver et al., 2016; Garfunkel & Montgomery, 2019). 
However, getting implications from research into college mathematics classrooms remains a 
challenge (Archie et al., 2022; Pengelley & Sinha, 2019). Entry-level college mathematics 
classes are often taught by graduate students (about 35% [Blair et al., 2018, p.17]). In fact, 94% 
of graduate students will teach at some point. Graduate students can have a variety of 
instructional roles, from teaching assistant responsible for a lab or recitation session associated 
with a primary course where the instructor-of-record is a faculty member (LabTA) to a graduate 
student who is an instructor-of-record (GSI). Research indicates that college mathematics 
instructors (CMIs) in effective undergraduate programs, particularly novices, benefit from well-
structured teaching-focused professional development (TPD) (Connolly et al., 2016; 
Friedlaender et al., 2014; Gehrtz et al., 2022). Those responsible for offering TPD to novice 
CMIs, including those who lead workshops, courses, and seminars as well as those who facilitate 
TPD as course coordinators, have come to be known as Providers of TPD (Braley & Bookman, 
2022; Braley et al., 2023). Providers have a critical role within departments. However, little is 
known about who Providers are, what they provide, and how they provide it.  
 

Context of the Study 
In the U.S. there are 418 institutions granting a doctorate or master’s as the highest 

mathematics degree and more than half have at least one Provider (some have three or more; 
American Mathematical Society, 2023; Braley & Bookman, 2022). This survey study was part of 
a larger project creating support for mathematics departments for designing teaching preparation 
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programs for graduate students. One step in the project was gathering baseline data for 
understanding the current status of post-secondary mathematics TPD. Among the 200 people 
who responded to the survey, 95 completed all aspects of it. This report uses analysis of those 95 
full responses from 56 institutions. The focus is addressing two questions: 

RQ1: (Who) Who are the Providers and who does their TPD target? 
RQ2: (What) What formats, topics, and activities do Providers use in their TPD? 

 
Related Literature 

Understanding what Providers provide is critical at this time in undergraduate mathematics 
education because the field has reached a critical mass of policy and resources for TPD. In 2018, 
the Mathematical Association of America (MAA) released the Instructional Practices Guide 
(IPG), a report on recommended teaching practices in undergraduate mathematics. The guide 
summarizes the evidence-base on effective methods of instruction and promotes student-centered 
classroom-active methods as an expectation of and for the field. Moreover, multiple calls to 
include inquiry-based mathematics education (Laursen & Rasmussen, 2019) and active learning 
methods (Braun, et al., 2017) have been on the forefront of suggestions for TPD. Concurrently, a 
central resource for Providers has been developed by the College Mathematics Instructor 
Development Source (CoMInDS) project with hundreds of documents from and for Providers in 
an online repository and well-established networks of people to share resources (MAA, 2020). 
Also, recent projects such as Student Engagement in Mathematics through an Institutional 
Network for Active Learning (SEMINAL; Gobstein, 2016) have expanded use of collaborative 
learning methods through active-learning for Providers.  

A study by the CoMInDS project found there is a great desire, but a struggle by department 
leaders to make sense of resources for their institutions (Bookman & Murphy, 2019). There is a 
clear need for guidelines for preparing LabTAs and GSIs. However, there is a reasonable 
concern: institutions vary in structure and resources in ways that are consequential for graduate 
student TPD. Thus, localized support–as through the work of Providers–is needed to demonstrate 
the impact and viability of such evidence-based research.  

Prior research has identified the value of TPD for graduate students and its impact on 
teaching and learning, from course pass rates to level and frequency of complaints by 
undergraduates, to improvements in responsiveness and inclusivity (Hauk & Speer, 2023, Yee et 
al., 2023; Yee & Rogers 2022 and references therein). There is a gap in the research about both 
what and how TPD is provided (Hauk, et al., 2017). To address the gap, this survey study 
leveraged and revised some approaches used to examine secondary teacher preparation (Yee, 
Otten, & Taylor, 2018) to gather baseline data on current collegiate mathematics TPD. 

 
Methods 

Quantitative methods were used to analyze the survey data to determine who Providers are, 
what they provide, and how they provide it. Using multiple national listservs to contact Providers 
(e.g., CoMInDS, SEMINAL, RUME), a Qualtrics survey (vetted by an Advisory Board and 
Expert Providers) was sent out to more than 500 potential Providers across the United States. 
Among the 95 who responded to all the items (participants), 80% were from mathematics 
doctoral-granting institutions and 20% from masters-granting institutions. To answer the 
research questions, responses to five survey items were analyzed: (1) Who was the Provider, (2) 
Who was the main group the Provider worked with, (3) Which formats were used for TPD, (4) 
Which topics were discussed in the TPD, and (5) Which activities were used in the TPD. The 
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“Who” survey questions required a single selection. The “Formats,” “Topics,” and “Activities” 
questions were checkboxes, where more than one could be selected. Options offered on the 
survey were based on prior research on formats, topics, and activities prevalent across the United 
States (Bookman & Braley, 2014; Braley et al., 2023; MAA 2018, 2020) and interviews with 
Expert Providers conducted as part of the larger project. In what follows, descriptive statistics are 
used to describe the Providers and providees, while matrix-like “Upset” plots are used for 
combinations of checkboxes. 

 
Findings 

As indicated in Table 1 and Yee and colleagues (2023), 80% reported being either non-
tenure-line Teaching Faculty (42%) or tenure-track faculty (38%). Thus, non-tenure-line 
teaching faculty have about as much responsibility for supporting graduate student’s learning 
about teaching as do tenure-line faculty. The majority of Providers being teaching faculty 
suggests care is needed in future work examining questions around a Provider’s role in the 
department. Also, more than 80% reported a focus on graduate students – including graduate 
students who are teaching assistants (42%), instructor-of-record (34%), or both (9%). 

 
Table 1. Who: Providers and providees 

The faculty position you hold   The main group served by professional 
development about teaching in your department 

Teaching Faculty (not tenure-line) 
Tenure-line Research Faculty 
Tenure-line Teaching Faculty 
Part-time or Adjunct Faculty 
Other: chair (7%), time-limited 
full-time/post-doc position (10%) 

42% 
35% 
3% 
3% 

 

17% 

    LabTA 
   GSI 
   Novice Faculty 
   Undergrad. Learning Assistant 

    Other: both LabTA & GSI (10%), 
post-doc (3%), faculty (2%) 

42% 
34% 
8% 
1% 

 

15% 

 
Format 

Providers indicated their use of seven different formats (six were described, the seventh was 
“other” and had room for the respondent to describe it). As indicated in Figure 1 (next page), a 
majority of participants selected some combination of three of the six formats:  

(1) pre-semester orientation (bottom horizontal bar, 79 responses),  
(2) meeting with a course coordinator (67 responses), and  
(3) offering a single course about teaching (45 responses).  

The right side of the “Upset diagram” in Figure 1 illustrates the connections among format co-
selections. Most respondents selected two or more of the three most frequently selected formats. 
Among the 15 respondents choosing “other” as a format, mentoring and coaching (3) and weekly 
meetings (2) were the most common responses.  

It is worthwhile to note that very few Providers selected only “one seminar or workshop” 
with most selecting other formats as well. Moreover, only one respondent had only pre-semester 
orientation and only one respondent had only meetings with coordinators. This echoes results 
from the CoMInDS surveys that the field as a whole is using multiple formats for TPD over 
longer periods of time with an increasing frequency of course-like structures (Bookman & 
Braley, 2014; Braley & Bookman, 2022; Braley et al., 2023). Indeed, any combination selected 
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by five or more respondents included meetings with coordinators, a course, multiple seminars, or 
multiple courses to complement a pre-semester orientation. 

 
Figure 1. Formats of TPD reported by Providers. 

 
Topics 

Providers indicated their use of eight different topics (seven were described, the eighth was 
“other” and had room for the respondent to describe it). As illustrated in Figure 2 (next page), in 
order of frequency these were: 

(1) university and departmental policies (90) chosen by nearly all participants,  
(2) active learning (78),  
(3) learning management systems such as Canvas (63),  
(4) grading strategies (58),  
(5) formative assessment (53). 

Twenty respondents described other topics, including particular teaching techniques, (e.g., 
lecturing was written in by (4), student-centered teaching (3), and equitable practices (2)).  

A majority selected topics aligned with the topics suggested  in the IPG (MAA, 2018). 
Combinations of topics among more than three respondents had many of the five most popular 
topics (policies, active learning, learning management systems, grading strategies, and formative 
assessment). Notable is the pattern of exclusion for two topics: generally, those who did not 
select active learning also did not select formative assessment. A majority selected five of the 
seven possible choices, with IBL the least commonly selected.  
 

 

 
 
 
FORMAT: Which of the 

following formats are 
typically included in your 
novice CMI preparation 
program? Checkboxes 
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Figure 2. Topics in TPD reported by Providers. 
 

Activities 
As seen in Figure 3, (next page) the most frequently selected activities were: 

(1) listen to presenters (74),  
(2) discuss example cases of teaching and learning (69), 
(3) read provided articles or other information (64),  
(4) present a practice lecture (59), and  
(5) practice assessing a student assignment (52).  

Despite the knowledge in the field of the value of student-centered instruction, “listen to 
presenter” was chosen alongside “discussion of example cases” by more than half of respondents 
(52). The 30 responses about “other activities” included peer and instructor observations (6), 
collaborative learning (e.g., about facilitating discussions and writing lesson plans; 6), practice 
with teaching (e.g. “mini-lecture,” “co-teaching”; 5). Six respondents only included “other” 
activities and did not select any of the seven given types of activity suggested as effective by the 
literature. Finally, it is worth noting that the most common combinations excluded developing a 
course website or delivering a non-lecture-based practice lesson.  
 

 
 

TOPICS:Which of the 
following topics do novice 
CMIs typically learn about 

in the preparation for 
teaching offered in your 

department? Checkboxes 
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Figure 3. Activities in TPD reported by Providers 

 
Comparative Analysis with Providers and Providees 

Given that Providers were teaching faculty (42%) or research faculty (35%) and providees 
were split between GSIs and LabTAs, analysis included examination of variation in Formats, 
Topics, and Activities depending on faculty role and whether providees were GSIs or LabTAs. 
Analysis of Variance indicated there were no significant or practical differences in formats 
among Provider type (teaching versus research faculty). Additionally, there were no differences 
larger than 5% among activities, and only one difference among topics around video 
conferencing software. The existing slight differences follow from preferences of meeting the 
needs of particular providees. For example, pre-semester orientation was 10 percentage points 
higher as a format for Providers focusing on LabTAs instead of GSIs (37% vs. 27%). This 
coincided with one course being more commonly used when providees were GSIs (23% versus 
15%). GSI-focused Providers chose coordinator meetings more than LabTA-focused (29% vs. 
22%).  

 
Conclusion and Discussion 

The purpose of this study was to learn more about (1) Who Providers and their target TPD 
audiences are (2) What formats, topics, and activities Providers use in their TPD. Information on 
the first question suggests most Providers were as likely to self-identify as teaching faculty as 
they are as research faculty (~45% and 35% respectively) with the balance of Providers reporting 
roles as adjunct or time-limited faculty (e.g., postdoc). The target audiences (the “providees”) for 
most respondents (~86%) were LabTAs and/or GSIs, with novice faculty indicated by fewer than 
10% of respondents and undergraduate learning assistants by only 1%. The results from this 
study suggest that graduate students are the primary focus for most Providers of TPD in doctoral- 
and masters-granting departments.  

 
 

ACTIVITIES: In which of 
the following activities do 
novice CMIs participate 

as part of the preparation 
for teaching offered in 

your department? 
Checkboxes  

26th Annual Conference on Research in Undergraduate Mathematics Education 524



 

 

What Providers provide in TPD was explored in terms of the formats, topics, and activities 
reported. Three formats of TPD were the most popular with the combination of these three also 
being the most commonly indicated by respondents: pre-semester orientation, course 
coordination, and a single course about teaching college mathematics. This supports Hauk and 
Speer’s (2023) work that most doctoral and master’s programs have multiple structures available 
to help novice instructors. The most frequently selected topics for TPD were university and 
departmental policies, active learning, learning management systems, and grading policies. A 
majority of respondents asserted these four topics were part of their department’s TPD offerings. 
Inquiry-based learning was the least frequently chosen. The activities Providers reported using in 
TPD were most frequently listening to presenters and discussions of teaching examples, followed 
by reading/discussing articles. The Upset graph in Figure 3 showed how a majority of 
respondents had a combination of at least two of these three activities.  

 
Implications and Impact 

The finding that active learning was reported as a dominant topic, but not a part of TPD 
activity itself is worth exploring in further research. Do Providers practice what they preach? For 
example, activity-based learning about teaching such as “practice assessing a student 
assignment” or “practice a lecture” or “practice a non-lecture activity” might be expected to be 
more frequently reported than they were if active learning in TPD was highly valued. The field 
of college mathematics TPD is still striving to implement evidence-based teaching practices in a 
way that is meaningful for instructors and meaningful for TPD itself. Just as student-centered 
classrooms focus on student involvement and engagement, TPD can productively focus on 
novice instructor/LabTA/GSI involvement and engagement (in addition to listening and reading). 
More broadly, this indicates a need for assessment of the effectiveness of TPD. Such assessment 
would provide indicators and standards for the ways in which TPD is accomplishing intended 
goals for instructional development (Hauk & Speer, 2023; MAA 2020). 

 
Limitations and Future Studies 

Limitations of this study include the fact that this study’s sample provides a national picture 
rather than a more granular understanding of the program. For example, this study collected 
survey data where respondents chose what they did according to our pre-defined categories. 
Although this gave us a broad national picture, it limits the understanding of how specific 
activities are enacted for each topic. For example, for the selection “reading articles” within the 
survey did not gather information on what occurred after the reading of the articles. Current 
projects are underway to better understand exemplar programs (Yee et al., 2022), and future 
studies could use the results of this study to further detail how U.S. mathematics departments 
implement activities within topics and within formats of TPD. 
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The ACT UP Math project is studying the role and impact of research-practice partnerships 
between mathematics education experts and mathematics department faculty to critically and 
systematically initiate transformative efforts to improve the experiences of students with 
marginalized identities in introductory mathematics programs. This paper explores the shared 
experiences we encountered while working toward critical transformations of three departments 
from within those departments, focusing on three tensions that surfaced and framing these 
tensions as expected and necessary components of the process of critical change. These three 
tensions explore the role of identity as neutral or central, the enactment of power as power over 
or power with, and the role of students as experts or novices. These expected and necessary 
tensions are evidence of the transformations from dominance toward criticality happening within 
the departments.  

Keywords: critical transformation, equity, department change, research practice partnership 

Motivation and Overview 
Barriers to equitable learning outcomes and inclusive learning experiences in mathematics 

education have been widely researched and include issues of implicit bias (Greenwald & Banaji, 
1995), microaggressions (Leyva et al., 2021), instructors’ minimization of existence and impact 
of microaggressions (McNeill et al., 2022), negative instructor relationships (Battey et al., 2018; 
Hill et al., 2010), stereotype threat (Steele et al., 2002), and sense of isolation (Good et al., 2012). 
Math stakeholders are aware of the need to attend to equity within their math programs, but they 
are often not familiar with how to accomplish this, and they feel disengaged from these 
conversations due to a lack of training (Apkarian, et al., 2021). Stakeholders need support to 
develop critical understandings of the factors contributing to differences in outcomes and 
experiences for marginalized students and to translate their understanding into action. To 
accomplish this, the ACT UP Math project is studying the role and impact of research-practice 
partnerships between critical mathematics education researchers and mathematics department 
faculty to critically and systematically initiate transformative efforts to improve the experiences 
of students who are members of marginalized identity groups in introductory mathematics 
programs. 

In Fall 2022, the leaders from the three mathematics departments in collaboration with 
critical mathematics education researchers began the formation of a Networked Improvement 
Community (NIC) to initiate improvement cycles to critically transform their introductory 
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mathematics programs. Each of the mathematics departments formed local NICs composed of 
various stakeholders (instructors, administrators, and students). The local NICs collected 
quantitative and qualitative data to observe the equity issues needing to be addressed; then they 
met to reflect and discuss what they saw in the data and developed a plan for programmatic 
changes to implement in Fall 2023-Spring 2024. Throughout this process, the mathematics 
education researchers worked with the local NICs to support their understanding of critical 
transformations and develop action plans and collected data to better understand the experiences 
of the NICs. This paper explores the shared experiences we encountered while fostering critical 
transformations, focusing on the tensions that have surfaced and framing these tensions as 
expected and necessary components of the process of critical change.   

We are guided by the following research question: What tensions are experienced by 
research-practice partnerships, as mathematics department stakeholders work together to 
critically transform their introductory mathematics programs? 

Framing Critical Transformations and Tensions 
Critical transformations require that we critique and challenge the existing structures that 

shape students' mathematical experiences, and we seek to make improvements that extend 
beyond the confines of these systems. These systems include the mathematical content we teach, 
the way we teach it, the support programs for students, the departments that house these 
programs, the advising processes placing students into these courses, and much more. As we 
work in partnership to change introductory mathematics programs from within these programs, 
we draw on Gutiérrez’s (2002) distinction between the dominant and critical axes of equity 
within mathematics education. The dominant axis attends to achievement and access, and is the 
primary - and sometimes only - component of equity that gets attention when undergraduate 
mathematics stakeholders discuss the importance of diversity, equity, and inclusion (DEI) 
(Tremaine et al., 2022). Focusing equity efforts on the dominant axis positions these changes 
within the existing system. While programs seeking to improve access and achievement can be 
important in supporting students from marginalized identities to succeed (Palid et al., 2023), such 
programs do nothing to change the system that these students are entering and can actually 
function to maintain systems of oppression rather than reform them (Martin, 2019). To discuss 
equity fully, we must also attend to the critical axis, which encompasses issues related to identity 
and power. Attention to the critical axis emphasizes not only valuing the representation and 
success of a diverse population within a current system, but also valuing the changes that 
population may require or make to the system. Therefore, attending to the critical axis 
necessitates working toward changes to the existing system.  

Gutiérrez draws on the indigenous Nahuatl word nepantla to emphasize the tensions that 
exist within the intersection of the dominant and critical axes. Nepantla describes the in-between, 
liminal space between worlds. Anzaldúa (2002) emphasizes that “transformations occur in this 
in-between space, an unstable, unpredictable, precarious, always-in-transition space lacking clear 
boundaries,” and that nepantla is associated with “being in a constant state of displacement - an 
uncomfortable, even alarming feeling” (Anzaldúa, 2002, p. 243). Gutiérrez (2015) emphasizes 
the power of these tensions; within this transformative and liminal space of nepantla we will 
experience tensions, but these tensions are necessary to transform mathematics education.  

In this study, we explore the tensions observed as the NIC members work within the systems 
of introductory college mathematics programs to change these very programs. We specifically 
view the NIC members as walking with one foot in each of the worlds of the dominant and 
critical discourses in undergraduate mathematics. By operating from within the existing systems, 
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one must have experienced some degree of success within that system: all of the NIC members 
are working to complete a mathematics degree or already hold graduate degrees in mathematics 
or mathematics education and are employed within or work frequently with mathematics 
departments. Recognizing the success the NIC members have experienced in these systems does 
not ignore the systemic barriers and struggles the NIC members themselves experience, but it 
does place them in a precarious position to see these systems and critique them. This analysis 
identifies shared tensions expressed among the three NICs and tensions that the research team 
observed and expressed. Drawing on the framing of nepantla, we emphasize that these 
expressions of tensions are evidence of the transformations occurring within these departments 
as they move within one world (dominant discourses) to create another (critical discourses), and 
we hold these expressions of tensions up as positive enactments of working to change the 
systems from within. We deeply respect and value the NIC members for engaging in this work 
and expressing their tensions and vulnerability. 

Methods 

Networked Improvement Communities 
A consensus is emerging that “the department” is a prime locus for change (e.g., Austin, 

2011; Larnell, 2023; Lee et al., 2007; Reinholz & Apkarian, 2018; Smith et al., 2021; Voigt et 
al., 2023). ACT UP Math seeks to support critical changes through Networked Improvement 
Communities (NICs; Penuel, 2020). In a NIC, a group of stakeholders convenes around a 
common aim, conducts a problem analysis, engages in continuous improvement cycles, and 
shares information across the network to contribute to collective progress. Each of the three local 
ACT UP Math NICs are positioned as change agents working to instigate critical 
transformations within their departments. The broader ACT UP Math NIC is made up of the 
members of the local NICs and the research team.  

Alpha University is a public master’s degree-granting university with moderate research 
activity. Alpha University is both a Hispanic-Serving Institution and an Asian American Native 
American Pacific Islander Serving Institution. Introductory math courses are taught primarily by 
faculty members in small classes using active learning strategies. The NIC is composed of two 
faculty leaders, two faculty members, one lecturer, one graduate student instructor, and two 
undergraduate transfer students. The NIC met every two weeks for two hours during Spring 
2023. After a first iteration of their data exploration, the NIC developed plans to disrupt the 
placement system for lower division mathematics courses through self-placement and is driven 
by a goal to create positive relationships between students and mathematics.  

Kappa University is a private, not-for-profit, highly selective doctoral degree-granting 
university that is research-intensive. Introductory math courses at Kappa had previously been 
taught primarily by graduate students in small, coordinated courses with a group-work focused 
recitation once a week, but very recently have shifted to having all calculus I and II courses 
taught by a teaching faculty member in large classes with weekly recitations taught by graduate 
students. The Kappa NIC includes eight members, six of whom regularly attended meetings. Of 
these, four are administrators outside of the mathematics department and four are mathematics 
instructors and/or coordinators, including the two co-leaders. The Kappa NIC meets monthly via 
Zoom. Many NIC members had personal relationships with the co-leaders and joined because of 
those relationships and their trust in the co-leaders. Although it was not an explicit intention of 
the NIC leaders to only recruit women, all regularly attending NIC members identify as women.  
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Tau University is a public, doctoral degree-granting, comprehensive university with a high 
research activity Carnegie classification and two campus locations. Most math courses are taught 
by faculty in small classes with some instructors using active learning strategies. The Tau NIC 
includes 11 members and is led by three faculty members. Nine members are instructors in the 
mathematics department and two members are administrators at the college level. The NIC meets 
monthly via Zoom, partly due to their institution being spread across two campuses, and the 
leaders meet monthly to plan each NIC meeting. One of the leaders recruited the other two co-
leaders, and together they encouraged other faculty members to join with a mass email 
describing the project. After a first iteration of their data exploration, the NIC has decided to 
focus on improving individual instructor pedagogy given the varied nature of the data they 
observed and cultural values about instructional autonomy. 

The Research Team is composed of eleven people from five different, research-intensive 
universities. Our varied identities and experiences shape how we enter this work, the power 
dynamics at play within our team and how we relate to the local NIC members, our individual 
motivations for engaging in this research, and how we interpret our work. We practice reflexive 
journaling as researchers and often engage in discussions about how our own identities may be 
leading to biases and blindspots in our approach to this work. The ACT UP Math NIC is made 
up of the research team and the members of the local NICs, and we meet once a month. As a 
research practice partnership, the research team is considered part of the broader NIC, and as 
such we view the tensions the research team experiences as part of the data for this study.  

Data and Analysis: Critical Ethnography 
Our analysis draws on approaches from critical ethnography, an ethnographic research 

method that seeks to explicitly critique and transform systems of oppression and inequitable 
power relations (Palmer & Caldas, 2015). This study takes a participatory research approach 
using research-practice partnerships such that the researchers and the local NIC participants are 
in ongoing dialogue and engagement, operating together as a research-practice NIC to make 
changes to departments and cultures (Bryk et al., 2015; Coburn et al., 2021; Martin et al., 2020). 

The data from this analysis comes from structured field notes of NIC meetings, semi-
structured interviews, and reflexive journals completed by NIC members during Spring 2023. 
The structured field notes were completed by a researcher who attended each of the NIC 
meetings and documented our observations, reflections, successes, challenges, noteworthy 
language, and observed power dynamics. The semi-structured interviews asked NIC members 
about their experiences over the last semester, how they became a part of the NIC, how data 
were explored, and the role of equitable decision making. The interviews were conducted via 
Zoom and were audio recorded and transcribed. NIC members engaged in reflexive journaling 
throughout the semester, completing 2-5 journal entries, which allow emancipatory dialogue 
with the data and can help mitigate power relations between participants (Malacrida, 2007). 

The research team conducted an analysis of each NIC’s experiences over the past year, 
seeking to identify stories that were emerging from the data. This included reading all reflexive 
journal entries, field notes from the NIC meetings, and interview transcripts and notes from the 
end of the semester. We then identified storylines focused on tensions that were either directly 
expressed by the NIC members or leaders (including the local NICs and the broader ACT UP 
Math NIC) or observed by the research team. In the results, we identify these tensions as specific 
instantiations of moving between the two worlds of dominant and critical discourses within 
undergraduate mathematics.  
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Results 
Through our experiences, observations, and analyses, we recognized ways these tensions 

were experienced by all local NICs and the broader NIC. In telling the story of these tensions, we 
chose to center the ways each tension was experienced by one of the three local NICs.  

Role of Identity: Neutral and Central 
The NICs are positioned in nepantla between two worlds: the critical world of centering 

students with marginalized identities in their change efforts and the dominant world of not 
naming the specific populations and instead seeking improvement changes for all students. As 
we set out to support mathematics departments to critically transform their introductory 
mathematics programs from within, we purposefully chose to not specify any populations of 
students that we wanted the NICs to center in their action plans. Specifically, we did not 
encourage the NICs to explicitly attend to race, gender, sexuality, or other social identities. We 
recognize that this choice may perpetuate color evasiveness and other identity neutral stances 
which can serve to reinforce power structures (Goldin & Khasnabis, 2022).  

Our choice to not prescribe a student population for each site came from wanting to support 
the equity needs specific to each institution through exploring disaggregated data from their 
institution in comparison to a national data set. We created data dashboards (Bolick & Voigt, 
2023) drawing from extant data from 21 institutions (including each of the local NIC institutions) 
about students' experiences in introductory college mathematics. These dashboards, and the data 
exploration reflection activities created for them, encouraged the NIC members to explore the 
data by filtering various identity markers, including race and ethnicity, gender, first generation 
status, sexuality, and institutional comparisons. Some of the research team assumed the NICs 
would use these data explorations to identify populations of students who expressed exclusionary 
experiences and to use this to inform their action plans in their unique context, while others did 
not expect the NICs to center an identity group. The research team reflected on how we did not 
communicate these assumptions or expectations to the local NICs, because some of the research 
team believed their engagement with data dashboards would naturally lead to identifying 
populations of students at their institution who were especially in need of critical transformations 
to their introductory mathematics program. 

Though the NICs did attend to student identity in their data explorations, they did not attend 
to a specific identity in their action plans. The Tau NIC’s goal was to motivate all students to 
engage/succeed in mathematics, with little attention brought to any specific population. The 
Alpha NIC have been exclusively attending to lower division courses and the students who take 
those courses. The Kappa NIC members expressed interest in focusing on students who persist in 
the calculus sequence and those who do not and are interested in students who did not have 
access to calculus. Both of these populations can be proxies for other populations, given that 
research shows women are more likely to not persist in the calculus sequence (Ellis et al., 2016) 
and that low-income students have less access to advanced mathematics courses (Battey, 2011; 
Solorzano & Ornelas, 2002), but the Kappa NIC did not explicitly name any student population.  

Role of Power: Power Over and Power With 
The NICs are positioned in nepantla between two worlds: the critical world of collectively 

leading from within their departments to make changes to them, and the dominant world of 
hierarchies and privileged groups exerting power over others. While striving to increase equity 
within mathematics departments, we see a tension between discomfort with an image of power 
that we are most experienced with—power over—while working collectively toward changing 
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systems built on this version of power. To work within this space of tension, we turn toward a 
different understanding of power. Allen (1998) defines power with as “the ability of a 
collectivity to act together for the attainment of a common or shared end or series of ends” (p. 
35), contrasted with power over, defined as “the ability of an actor or set of actors to constrain 
the choices available to another actor or set of actors in a non-trivial way” (p. 33). The tension 
we see related to power describes the difference between enacting leadership through power over 
others via hierarchies and top-down decision making versus enacting leadership through power 
with others, which emphasizes democratic decision making and a rejection of hierarchies.  

Tensions related to power dynamics were present among all three local NICs and among the 
researchers and the broader NIC. The Kappa leaders expressed not wanting to center their own 
“random ideas” about how to improve the department, discounting their own informed 
perspectives. The Alpha NIC leaders similarly expressed hesitancy toward enacting power over 
their NIC members and were “reluctant leaders,” as noted in a researcher’s summary of their 
NIC dynamics. Power dynamics were especially apparent within the Tau NIC. The researchers 
who observed the monthly Tau NIC meeting documented in the fieldnotes a sense of “power 
avoidance” or hesitancy to make decisions among the three co-leaders of the Tau NIC (Olivia, 
Natalie, and Garrett) throughout the spring semester. These co-leaders also reflected on the 
power dynamics at play in their leadership, noting individual experiences of these tensions. 
Olivia is a math education researcher and administrator at the college level at Tau with primary 
responsibilities to lead instructor professional development; this formal leadership role may have 
led to implicit assumptions she would lead the Tau NIC. She opted for distributed leadership by 
selecting Garrett and Natalie as co-leaders of the NIC, purposefully choosing instructors within 
the introductory mathematics courses to support more buy-in to any initiatives proposed by the 
NIC. Olivia reflected on the challenge of simultaneously valuing their voices and recognizing 
that they have not “gone through some sort of training ahead of time,” so she supports them and 
tries “to push them out of those areas where they're comfortable to get them to do things that 
they might not otherwise do if they weren't pushed.” After co-leading the Tau NIC for the 
semester, Natalie and Garrett expressed confusion and feelings of imposter syndrome in leading 
a group to enact changes while learning more about equity in higher education themselves. By 
putting the onus to enact equity-centered changes on mathematics department members, rather 
than equity experts from outside the mathematics department, such discomforts and feelings of 
inadequacy are to be expected and supported.  

Role of Students: As Novices and as Experts 
The NICs are positioned in nepantla between two worlds: the critical world of viewing 

students as experts of their own experiences and the dominant world of believing students are 
novices. In their work toward adopting more critical views of teaching mathematics, all three 
NICs recognized the importance of students’ voices in telling their own stories but met tension 
when implementing policies that reflect this belief due to dominant structures. This tension arose 
for the Alpha NIC while navigating the inclusion of students within their NIC, for the Kappa 
NIC while coming to the realization that they wish to not only gather student feedback as data 
but also to incorporate students into the structure of their NIC, and the Tau NIC while 
transitioning from thinking of student voices as aggregated and biased opinions on course 
evaluations to meaningful perspectives that can be actively sought as qualitative data. 

Here we highlight how the inclusion of students in the Alpha NIC surfaced tensions. NIC 
members were cognizant of the power imbalances arising within the NIC, and the research team 
noted this dynamic at the onset of the NIC formation. One faculty NIC member, Caroline, called 
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out the power dynamics within the NIC, acknowledging in an interview that there is a “power 
dynamic between faculty (of different ranks/positions) and students in the NIC.” The NIC faculty 
attributed these power imbalances due to “natural” hierarchies (student/instructor), logistical 
aspects (who leads the meeting), or the result of student characteristics (shyness).    

NIC leaders attempted to mitigate this power differential by creating inclusive spaces for 
students to hold equal weight in the conversations through intentional pairings of instructors and 
students, small group discussions and share-outs, and a democratic voting system to decide next 
steps. While the democratic process of voting within the NIC introduced a measure of equality in 
decision-making, it did not counter the authority of faculty perspectives in decisions since faculty 
members outnumbered the students in the NIC. Students did not explicitly name a power 
dynamic occurring across students and faculty, but shared experiencing discomfort while in NIC 
meetings. One student NIC member shared that although they are not shy, settings “like [the 
NIC] make me a little bit nervous,” and “it is a bit intimidating having professors in the group, 
especially since three are current professors of mine.” Students identifying their own discomfort 
without recognizing the power imbalance placed the blame on themselves. The Alpha NIC was 
simultaneously grappling with the role of student perspectives to inform action plans. The Alpha 
NIC created two action plans focused on suggestions disclosed during a student focus group: 
restructuring the placement system for first year mathematics courses for students to self-place 
and engaging in interdisciplinary mathematics seminars. By valuing the voices of students in the 
focus group, the NIC saw students as experts on their own experience. Juxtaposing the students 
in the focus group with the status of student NIC members illustrates the tension well. The 
students outside of the NIC are positioned as experts, yet the students within the NIC are 
positioned as novices.  

Conclusion, Implications, and Next Steps 
Our research team felt empowered in naming the tensions around the roles of identity, power, 

and students and sharing them with our local NIC partners. By framing these tensions through 
the lens of nepantla, we feel more validated in our experiences and empowered to live with them 
instead of trying to rush away from them. When we shared these tensions with our local NIC 
partners, they expressed also valuing the tensions being named and shared, that these tensions 
“resonate,” and that they “appreciate the space to think about the tensions.” When responding to 
each specific tension anonymously on a Jamboard, most participants reflected on how they 
experienced these tensions, however one commenter shared that they did not resonate with the 
power tensions: “Perhaps I'm oblivious, but I haven't noticed power-over tensions, despite the 
fact that we have college-level and department leadership working alongside junior faculty.”  

These tensions also bring to the forefront the benefits and challenges of working within a 
research-practice partnership (such as through NICs) and how to do so equitably (Denner et al., 
2019). Ryoo et al.’s (2015) definition of equitable research-practice partnerships includes 
“challeng[ing] power dynamics and hierarchies; regularly clarify[ing] and surfac[ing] needs, 
wants, and expectations relating to the partnership and partners’ professional contexts; and 
attend[ing] to the changing needs of the collaboration” (p. 1). We position tensions as part of our 
work of being an equitable partnership, and by framing these tensions as existing within nepantla 
we view them as evidence of the progress the local NICs and the broader NIC are making to shift 
from a dominant to a critical framing. Our next steps within this work include asking the local 
NICs and the researchers to regularly reflectively journal about these tensions as they engage in 
action planning and implementation and use these insights to guide our attention during our 
observations of the NIC meetings.  
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Investigating How Students Try to Solve Real Analysis Problems 
 

Brandon Watson 
Texas State University 

This study observed real analysis students attempting the homework assigned by their instructor 
to identify how they used resources, specifically example proofs, to complete their homework. 
The data consisted of seven students in total over three instructors. Overall, the study found that 
students tended to adopt a recurrent style of how they used their notes, or did not use their notes, 
to advance their solutions. However, there were some instances where the students would 
deviate from their style which could be linked to the type of problem as well as how the 
instructor taught that topic. This study contributes insight into how real analysis students may 
use their resources for the tasks assigned by the instructor. 

Keywords: Problem situation image, Tentative solution start, Resource framework 

Introduction 
In Real Analysis, instructors introduce definitions and theorems which are part of the 

material that the student needs to know. Theorems and other statements come tied to proofs that 
are both material the students need to know as well as something the students must learn to write. 
The proofs that the instructor demonstrates in-class, thus, serve a dual purpose. One role of the 
proof is to prove the theorem/statement the instructor has introduced. The second role of the 
proof is to serve as a demonstration of the process of proving to the students. Research has 
already suggested that lecturers tend to recommend their notes as the primary resource for 
students (Ni She, Bhaird, Fhloinn, & O’Shea, 2017). It stands to reason that a skill the students 
should develop is to be able to reference the proofs they do in class as examples to inform 
themselves on how to write the proofs that they are asked to do for homework.  

Studies have shown that students do tend to use curriculum materials and class notes as a 
primary resource when working on class material (Anastasakis, Robinson, & Lerman, 2017; Ni 
She, Bhaird, Fhloinn, & O’Shea, 2017; Pepin & Kock, 2021). Albeit, the students may leverage 
certain resources more heavily when with certain goals such as high grades or simply passing in 
mind (Anastasakis, Robinson, & Lerman, 2017). This study wanted to dive deeper into how 
students used their resources. As such, this study documented students working on homework 
tasks and found that students tended to have a style on how to use their class notes to complete 
homework tasks. Interestingly, certain homework tasks tended to deviate students away from 
their usual style. This seemed to occur due to certain features of the task and how the instructor 
presented related proofs. Building on an existing framework, this study extends the literature on 
how students use resources and worked examples in the context of proof-based mathematics 
courses.  

Research Questions 
1) When and how do real analysis students leverage the examples presented in-class to 

complete their homework tasks? 
2) What factors influence the reason that real analysis students use their notes to complete 

their homework tasks? 
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Resource use has been investigated by a number of researchers (Galbraith et al., 2000; 
Guedet & Pepin, 2018; Muir, 2014; Radovic & Passey, 2016). However, research on resource 
use remains limited for a proof-based mathematics context. This study focuses on that context in 
an effort to broaden our understanding of how students use their instructor-provided resources 
for the problems they are assigned for homework.  

Firstly, it is important to describe how a student comes about making a solution attempt for a 
homework problem. While working on homework, students may have different problem 
situation images associated with the topics in the question as well as the task assigned to them 
(Selden et al., 1999). Students typically make an initial judgement of the difficulty of the task 
and assesses whether they need to reference their notes or if they think they know how to do it. 
This initial assessment leads the student to their initial tentative solution start (Selden et al., 
1999). For this study, it was important to note the instances of when students did not feel the 
need to reference their notes or note what they referenced when they did reference their notes. 
This helped define when students would use their notes by looking both at the task itself as well 
as how a student initially responded to the task.  

As for how students used their resources, I adapted the technology framework developed by 
Galbraith, Goos, Renshaw, & Geigher (2000) into a Resource Use Framework. I conjectured the 
use between resources and technology can be similarly classified since in both cases the object 
being used by the student is still a tool for completing a task. As such, there are four categories 
that students could be classified for how they used their resource: 

 
Table 1: Resource Framework 

 
Resource as Master 

A student copies a proof or makes every decision based 
on their notes without a way to check the adequacy of 
their decisions 

 
Resource as Partner 

A student has a tentative strategy but searches their notes 
to either find a new strategy or justify their own, or the 
student finds a relevant example but needs assistance to 
adapt it into a solution 

 
Resource as Servant 

A student either has a strategy and uses their notes to 
complete their strategy, or a student finds a relevant 
example and is able to fully adapt it into a solution 
without assistance 

 
Resource as Extension of Self 

A student knows exactly what they need from their notes 
so the notes act more as an extension of memory rather 
than a tool 

Data Collection 
Data was collected from three Real Analysis classes over two semesters each of which had 

different instructors from a large, public university in the United States. I observed the 
instruction and took field notes. The field notes consisted of what was written on the board, the 
comments the instructor added, and questions or remarks the students made. The field notes 
provided a detailed reference for the information the students received during class and what 
their resource of written notes could possibly resemble when they are doing their homework. 

I recruited students from the aforementioned classes. In total, seven students participated. 
The student interviews consisted of asking students to attempt problems from their assigned 
homework. Priority was given to problems that I could connect to parts of the instruction that 
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occurred in class. This provided an opportunity to observe whether the student needed the 
resource from class or could identify the same resources I had if they did look into their notes. 
Students were videoed as they attempted to solve each problem. The video provided both verbal 
and visual evidence of what the student was doing at the time. The overall structure of the 
interview had three parts per question. Firstly, I let the student attempt the problem 
independently, noting whether or not they used any resources. If they formed a solution 
independently, I moved on to the next task. If not, I would ask them if they knew of anything 
from class that could help. Sometimes the student would find something and other times they 
would not find anything. If the student did not find anything or they did not yet look at what I 
thought was most relevant, then I would suggest for them to consider what I thought was 
relevant. Sometimes the student could use what I suggested and other times they could not. If the 
student was struggling with using the resource I referenced, I would continue to work through 
why the example could be useful to see if they could ever connect why I would use that part of 
their notes. Overall, this provided insight into the problems that a student may not need notes for 
and what problems a student may want notes for. If the student wanted notes, there was an 
opportunity to observe what the student deemed possibly relevant to the problem. If they found 
something they thought was relevant, then there was a chance to see if they could evaluate 
whether or not it was relevant. Lastly, if provided something relevant according to the 
interviewer, then it could be observed whether the student could make connections from what 
was provided to the problem.  

Data Analysis 
For each student, I made an initial profile based on the experience of the interviews. These 

profiles were made by considering each problem the student did and how they used resources 
during each one. Each interview consisted of about 5 problems and most students had 5 
interviews providing me with approximately 25 questions to use as my unit of analysis per 
student. This provided a frequency on the ways they used their resources which provided insight 
into the tendencies of each student.   

Students’ resource use was broken down per task and I coded each student attempt at a task 
using the following categories: (a) Did not use any resources, (b) referenced class notes, (c) 
made their own example, (d) looked for an example or tried to make their own but failed, and (e) 
could or could not use an example provided by the interviewer. Of these actions, they also have 
varying degrees of success as well as different ways of being performed. However, these cover 
the actions around resources that students could perform. A frequency table was generated 
showing how frequently each student performed any of those actions. With the frequencies, I 
sought to identify whether each student had a recurrent style of resource use, addressing 
Research Question 1. As a note, the students were not asked directly to describe their own 
resource use style.  

After this, I examined students’ resource use by tasks. Though not all students were assigned 
the same problems, the topics were largely consistent among all the students. The topics mostly 
spanned set theory, like supremum and infimum, and sequences.  Thus, the data gathered covers 
similar problems for each student. This uncovered that some problems tended to have the 
students perform similar actions to one another even for students that did not typically behave in 
that way. This suggests that the task itself has influence on how the student will decide to tackle 
the problem regardless of their usual tendency. The characteristics of the task itself as well as 
how similar tasks may have been presented in class both serve as factors towards addressing 
Research Question 2.  
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Results 
The following are a few exemplary student cases that show how students can adopt different 

styles on their usual resource use when attempting homework tasks. 

Jordan 
Jordan frequently looked through their notes for help on their homework tasks. On several 

occasions, Jordan was able to adapt proofs efficiently and effectively from class into solutions 
for their homework tasks. Here is an example: Given a set ܧ ؿ Թ and ݎ > 0, define the set ܧݎ =
:ݔݎ} ݔ א ܧ)In Jordan’s notes, they found where the instructor proved that: sup .{ܧ + (ݎ =
supܧ + ܧ for the set ݎ + ݎ = ݔ} + :ݎ ݔ א  The following table provides the proof that the .{ܧ
instructor gave during class and how Jordan adapted it to solve the problem.  
 
Table 2: Instructor vs Student Proof for a Similar Task 
Instructor’s Work Jordan’s Work 
Assume that ܽ א ܧ +  ݎ
Then, ܽ = ݔ + ݔ for some ݎ א  .ܧ
Since supܧ is an upper bound of E, ݔ 
supܧ so ܽ = ݔ + ݎ  supܧ +   .ݎ
Thus, supܧ + ܧ is an upper bound of ݎ +  .ݎ
Now assume ܰ is an upper bound of ܧ +  .ݎ
Let ݔ א ݔ So .ܧ + ݎ א ܧ + ݔ so ݎ + ݎ  ܰ. 
Then ݔ  ܰ െ   .ݎ
Since ܰ െ ܧis an upper bound of E, sup ݎ 
ܰ െ ݎ ֜ supܧ + ݎ  ܰ 
Then supܧ + ܧ is the supremum of ݎ +   .ݎ

Assume ܽ א  .ܧݎ
Then, ܽ = ݔ for some ݔݎ א  .ܧ
Since supܧ is an upper bound of E, ݔ 
supܧ so ݔݎ    .ܧݑݏݎ
Thus, ܧݑݏݎ is an upper bound of ܧݎ. 
Now assume ܰ is an upper bound of ܧݎ. 
Let ݔ א ݔݎ So .ܧ א ݔݎ so ܧݎ  ܰ. 
Then ݔ  ே


. Since ே


 is an upper bound of E, 

supܧ  ே

֜ ܧݑݏݎ  ܰ. 

Then ܧݑݏݎ is the supremum of ܧݎ. 
 

When working on this problem, Jordan read their notes and interchanged the parts as they 
read. Jordan was able to write the proof without assistance from the interviewer. This illustrates 
how Jordan was able to both recognize a relevant example to adapt as well as an ability to 
recognize what parts of that proof were interchangeable with different characteristics. I coded 
this as Resource as Servant. Jordan both identified the relevant proof as well as efficiently 
identified all the relevant parts that should be changed based on the context. The notes served as 
an outline, but Jordan had the knowledge on how to fill in the blanks or change the instructor’s 
work.  

Peyton 
Peyton did not frequently use their notes. However, they did reference them a few times. 

More frequently, Peyton thought up their own conceptual examples or recall conceptual 
examples from class. Conceptual examples refer to specific cases from which Peyton would try 
to generalize from. Such as using the interval [2,3] to reason why a closed, bounded interval 
must contain its supremum. They would try to use those to reason through what they needed to 
do with their homework tasks. Occasionally, this strategy showed a lot of power for certain tasks. 
However, at other times this technique was not effective enough for Peyton to produce a proof.  

One instance of Peyton using their notes was when asked to prove that ݔ = 2݊ + 6 is a 
strictly increasing sequence. Peyton initially looked up where the instructor talked about 
monotonicity, but they did not find an example they judged to be similar. During the second 
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phase of this task, I suggested to look at a proposition where the instructor proved that {ݔ} is 
non-decreasing if ݔ  ݊  for allݔ  ݉. Peyton noted that the instructor used induction, so they 
tried to implement induction for this problem. With this approach, Peyton noticed that: ݔ =
2݊ + 6  2(݊ + 1) + 6 =  .ାଵݔ

Peyton finished up their argument by establishing that ܲ(1) < ܲ(2) and, by the logic before, 
ܲ(݊ + 1) < ܲ(݊ + 2). After completing this, Peyton decided that a direct proof just stating that 
ݔ = 2݊ + 6 < 2݊ + 2 + 6 = 2(݊ + 1) + 6 =   .ାଵ was a sufficient proofݔ

I coded this proof construction as Resource as Partner. Peyton initially could not find any 
examples they thought would help to solve this problem. With my suggestion, Peyton was able 
to find an instance where they did something sort of similar to this problem. Peyton noted that 
the instructor used induction and decides to take that as a suggestion to do that themself. With 
this suggestion, they were able to make a satisfactory solution. However, afterwards, they noted 
that they do not think induction is necessary. This suggestion at the end is what distinguishes this 
resource use as Resource as Partner rather than Resource as Master. Peyton took the suggestion 
from their notes, but they keep a critical eye on what we’re doing.  

Charlie 
Charlie frequently did not use their notes nor construct their own examples. The frequency 

analysis of their task solutions revealed that they rarely used their notes and often attempted to 
reason using the definitions and theorems presented in class. Occasionally, Charlie would 
construct their own examples, but this usually did not yield a valid solution to the task. When 
they ran into obstacles, I would provide Charlie with examples from the class or create a unique 
example to reason with, but they frequently did not use these to produce a valid task solution. 
Charlie usually mentioned that they wanted to go talk to the instructor during office hours to get 
help when they got stuck. This overall disinterest in using their notes or reasoning with examples 
contrasts with all the other students. However, in many cases, Charlie was successful at making 
strong reasoning connections between the definitions and theorems from class and the problem. 
With these connections, Charlie demonstrated throughout the interviews that they could 
construct proofs in real analysis without using their resources for many problems. However, 
there were several times that Charlie got stuck, but rather than using their available resources at 
the time instead opted to visit the instructor. For the purposes of this investigation of example 
use, I found that this student showed individual preference against using examples. However, 
there were a few occasions where they did opt to use examples, which I will discuss next.  

There were only two instances where Charlie directly used notes. One of these instances was 
for the first tasks asking to prove a limit of a sequence by definition. The other time was to 
answer the following question: Suppose ܵ ؿ Թ is nonempty and bounded below and let ݒ =
݂݅݊ (ܵ). Prove the following statement: For every ݕ > ݏ there exists ,ݒ א ܵ such that ݏ <   .ݕ

Charlie noted that the instructor proved something similar for the supremum. They changed 
necessary components to achieve a correct argument. This time the instructor’s proof was the 
analogous supremum problem. As such, the student had to change very little, but Charlie did 
both identify the relevant proof and adapted it effectively for this context. Similar to the first 
example, I coded this as Resource as Servant.   

Summary of Student Cases 
For the students in this study, there were no particular moments where the students seemed to 

demonstrate Resource as Extension of Self. As such, there is no example given here. Resource as 
Extension of Self would look like a student bringing up a specific instance where a process was 
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showcased by the instructor, but the student did not necessarily need it to complete the problem. 
Rather, the student would like to have the resource available in case they need just a reminder. In 
some sense, the resource would act as an extension of memory rather than a tool needed to help 
actively.  

Additionally, it is important to end off by noting that all the students could change their 
position to their resources from problem to problem. For instance, every student faced with their 
first sequential limit problem to solve using the definition of convergence used their Resources 
as Master. Every student flipped to an instance where the instructor proved the limit of a 
sequence by definition and used that as a line-to-line inspiration of their approach. I conjecture 
that this is due to how the instructors emphasized the routine of this type of proof. When doing 
these proofs in class, the instructors tackled the problems using the same routine and would 
always mention that this is how the definitions proof work. While this can sound similar to the 
Resource as Servant examples from above, these students approached the problem differently in 
these cases. They acknowledged that they were relying on the instructor’s notes to complete the 
problem. Before, they knew those problems held everything necessary to prove the problem, so 
they strategically used that structure to make sure their proof was complete. Here, they did not 
know how to write the proof, so they needed to rely on everything from the notes to complete 
their proof. This shows that students can renegotiate their position with their resources as they 
realize different limitations in their preparedness for certain tasks as well.  

Discussion 
For this study, the class notes were the standard that the student resource use was considered 

against. The class notes could be divided into providing Conceptual Examples and Proof 
Examples. Conceptual being the specific examples such as (1,3) as an open interval, and Proof 
Examples being any instance of a complete proof provided in class. When considering these 
types of resources, the uses of them can be restrictive. From the observations made, the four 
categories that the framework considers are sufficient to categorize the resource uses. Largely, 
Proof Examples are the main resource used by students for their homework. As such, for proof-
based mathematics, the resource use framework here could be a useful tool to describe how 
students are interacting with their available resource in a certain context since it was adapted to 
fit this situation. 

The analysis brings forth a few details about how students use their resources while working 
on homework tasks. Namely, real analysis students adopt typical styles on how frequently they 
use their direct class note resource. Some students use their notes at a much higher frequency 
than others. This frequency might be tied to how confident a student is in their capability to adapt 
what they read in their notes. This can be partially substantiated by the fact that when I would 
bring up aspects from class, students that would frequently not reference their notes tended to 
have a harder time adapting the resources brought forth to them. For instance, Charlie would not 
commonly use the resource I mentioned to them. Instead, Charlie would frequently continue 
thinking about the problem using just the definitions and theorems they were already 
considering. On the other hand, Jordan frequently used their notes to complete their homework 
and could commonly take at least one useful part from any resource that I offered to them.  

 A second result of this data is that some types of questions tend to influence students to 
seek out help from their resources regardless of their previously established style. For instance, 
when students were asked to prove a limit of a sequence using the ߳-݇ definition, every single 
student looked up an example from class and attempted to copy that structure for the homework 
task’s sequence. I conjecture that this results from how the instructor routinized the problem 
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during the instruction, or the very specific technique the instructor required the problem to be 
completed using. With this, the students might have decided that their best strategy would be to 
attempt an adaptation of what the instructor was doing in-class. In turn, this leads them to return 
to their resources and attempt to use them as closely as possible. This could influence them 
approaching the Resource as Master.  

Conclusion 
In conclusion, students can use their resources in various ways. The way that students use 

their resources can even vary from problem to problem and context to context. This suggests that 
students may develop an overall style to how they approach their work, but the way that 
questions are worded or what content they are covering may change how the student decides to 
approach the problem than they usually would. One of the strong ways that an instructor may be 
able to influence resource use of the students is by emphasizing a routinization of certain 
problems like sequential limits. This can be beneficial when the instructor wants students to 
solve problems in certain ways. By both verbally reinforcing the routine being used as well as 
repeated demonstration of the routine in use can help bolster a connection for the students 
between the routine and the types of problems it is relevant for in a student’s problem situation 
image. For students, knowing how to adapt a proof is a key competence for being successful in a 
class like real analysis. This is not something emphasized in the literature, but it may be an 
important part of learning at this stage in a student’s apprenticeship in proving.   

Future research into the link between routinization and resource use by students could 
provide interesting results into how instruction could be meaningfully designed. Also, this could 
provide more insight into how problems that share structure may not be seen as routinized by the 
students.  
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It is essential to provide opportunities for prospective secondary mathematics teachers to 
connect advanced mathematics content to secondary mathematics teaching practice, if 
advanced mathematics courses are to be useful to these teachers. We argue that for teachers 
to frame teaching and learning in equitable ways, connections to teaching must represent 
learning in anti-deficit ways. We review a selection of curricular materials satisfying two 
criteria: first, they are written for use in advanced mathematics courses that prospective 
teachers may take; and second, they feature explicit connections to secondary teaching 
practice. We find that representations of learning in curricular materials tend to take binary 
views of mathematical legitimacy, and frame students as either being correct or incorrect. 
We conclude with implications for mathematics teacher educators in RUME. 

Keywords: content knowledge for teaching, secondary mathematics teacher education, 
advanced mathematics courses 

Many prospective secondary mathematics teachers (PSMTs) complete multiple courses in 
advanced mathematics (e.g., Ferrini-Mundy & Findell, 2004; Tatto & Bankov, 2018). As recent 
empirical work demonstrates, it is essential to provide opportunities for PSMTs to connect the 
content of these courses to the practice of teaching, if these courses are to be useful to 
prospective teachers (Álvarez et al., 2020a; Lai et al., 2023; Wasserman & McGuffey, 2021). 
Multiple scholars have followed this approach in creating curricular materials for secondary 
mathematics teacher education (e.g., Hauk et al., 2018; Heid et al., 2015; Lischka et al., 2020; 
Mathematical Education of Teachers as an Application of Undergraduate Mathematics [META 
Math], 2020; Wasserman et al., 2022). In this approach, scholars represent teaching through 
descriptions of student thinking and teaching scenarios. This approach to secondary mathematics 
teacher education raises the question of how secondary students’ learning is represented in 
curricular materials. This is a critical issue, as instruction in teacher education, including in 
mathematics classes, is part of the socialization that shapes teachers’ images of teaching practice 
(e.g., Lai et al., 2023).  

Our purpose is to review how secondary students’ learning is portrayed in curricular 
materials for advanced mathematics courses that enroll PSMTs. To do so, we reviewed a 
selection of curricular materials satisfying the following criteria: they were intended for use in 
advanced mathematics courses that PSMTs may take; and they featured explicit connections to 
secondary teaching practice. Our review was guided by the research questions: (1) What 
approaches have been taken by curriculum writers to connect advanced mathematics 
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coursework to secondary teaching practice? (2) How do these connections portray students’ 
learning of mathematics? We suggest that approaches taken are consistent with Grossman et al.’s 
(2009) pedagogies of practice. We then analyzed portrayal of students’ learning of mathematics 
in line with Louie’s (2017) exclusive and inclusive frames of mathematics and mathematical 
ability. 

Background 
Advanced mathematics knowledge can potentially strengthen secondary mathematics 

knowledge (Conference Board of the Mathematical Sciences [CBMS], 2012; Murray et al., 
2017). A typical approach has been to follow Felix Klein's (1924/1932) prescription of 
considering “elementary mathematics from an advanced standpoint” (p. 1). The hope here is that 
with a more sophisticated understanding of secondary concepts, teachers will take more 
productive actions when teaching.  

Yet secondary teachers lament their mathematical preparation was irrelevant to secondary 
teaching (e.g., Goulding et al., 2003; Wasserman & Galarza, 2018; Zazkis & Leikin, 2010). Even 
when prospective teachers develop a richer understanding of the secondary mathematical 
concepts that they will teach, they may still exit advanced mathematics believing that they may 
have become better mathematicians, but not better mathematics teachers (Wasserman & Ham, 
2013).  

Mathematics teacher educators have historically connected advanced mathematics to 
secondary teaching along two dimensions: mathematics content at the secondary level and 
mathematical practice. The concept of a capstone course for teachers, which is offered by many 
institutions in the U.S. (Cox et al., 2013), exemplifies the first dimension. In their review of then-
present-day capstone coursework for secondary teachers, Murray and Star (2013) found that 
connections took the form of generalizations or abstractions of secondary mathematical ideas 
(e.g., geometric transformations and group theory, factoring polynomials and Galois theory), or 
specific uses of advanced mathematics to define concepts that secondary students may encounter 
(e.g., limits and irrational numbers). As for mathematical practice, scholars such as Cuoco et al. 
(1996) called attention to the importance of mathematical habits of mind in teaching and learning 
mathematics. CBMS (2001) theorized that mathematics teachers must experience mathematical 
practices in their own learning, so that they can cultivate experiences of mathematical practices 
when teaching secondary mathematics. This argument is compatible with research on the 
perspective of teachers. Some scholars have found that when teachers found coursework 
relevant, it was due to understanding the nature of mathematics practice, and how learning can 
feel (Baldinger, 2018; Even, 2011; Hoffman & Even, 2019).  

The potential of these approaches is unmet. Begle (1979) found that secondary students’ 
performance was associated with neither the number of tertiary mathematics courses taken by 
teachers nor the average grade received by teachers in these courses. Goulding et al.’s (2003) and 
Zazkis and Leikin’s (2010) surveys found that many teachers report their mathematical 
preparation is disconnected from teaching. In a study of an abstract algebra course, Ticknor 
(2012) found that even when secondary teachers wanted to do well in the course, and the 
instructor saw connections between abstract algebra and secondary mathematics, the teachers 
still perceived the course as irrelevant to teaching. Wasserman et al. (2018) articulated concrete 
reasons, given by prospective and in-service teachers, for why their knowledge of real analysis 
did not inform their teaching, even when they understood the material. 

There is a promise of advanced mathematics to shape teachers’ practice and an observed 
inefficacy of advanced mathematics courses to do so. In response, secondary mathematics 
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teacher educators have pushed for explicit connections from advanced mathematics to secondary 
teaching practice and enacted such connections in written curriculum materials (Álvarez et al., 
2020a; Hauk et al., 2018; Heid et al., 2015; Lai, 2019; Lischka et al., 2020; Wasserman et al., 
2022). Many of these authors are in the RUME community; indeed members of the above cited 
teams behind curricula and research have all presented at RUME in the past 5 years. 

Another factor in the ecology of secondary mathematics teacher education, particularly when 
it comes to courses taught by mathematics faculty for PSMTs, is a shift in the teacher education 
community’s focus. For a long time, the sentiment that ‘you can’t teach math and have students 
learn without knowing the math yourself’ drove funding, research, and course design; now, there 
is the urgent problem of increasing equitable access to mathematics. A corollary of this 
observation is that when assessing connections of advanced mathematics to secondary teaching 
practice, one must not only assess the mathematics, but also the images of equity and 
inclusiveness in teaching in connections. 

To our knowledge, there has been no systematic review of materials taking the approach of 
connecting advanced mathematics to teaching, including the ways that these curricular materials 
represent student learning and teaching. In view of the posited connection to teaching practice, 
and the abundance of materials aligned with this approach, now is the right moment to analyze 
how exactly teaching and learning are portrayed. The results of this analysis, particularly in 
terms of equitable and inclusive educational principles, is essential to future work by the RUME 
community in improving teacher education.  

Conceptual Perspective 
Mathematics teaching practice at any level entails relational work with students, routines for 

disciplinary discourse, and norms for establishing the legitimacy of solutions. In this sense, the 
term practice is about what practitioners do rather than think or know (Lampert, 2010). Moving 
up a level from teaching to the teaching of teaching, Grossman et al. (2009) proposed the concept 
of pedagogies of (teaching) practice. By this term, Grossman and colleagues refer to the 
intentional design of experiences for future teachers that develop their future teaching practice. 

Representations and approximations of practice 
To articulate potential pedagogies of practice, Grossman et al. (2009) analyzed the education 

of future teachers, pastors, and therapists. These professions were chosen as comparisons due to 
their commonality of requiring relational work in combination with the expectation of particular 
routines and harnessing technical knowledge. Through this work, Grossman and colleagues 
identified pedagogies of practice that spanned the fields of teacher education, liturgical 
education, and clinical education. These pedagogies of practice included representations and 
approximations of practice. In the descriptions below, we follow Grossman et al. (2009). 

Representations of practice allow novices to observe aspects of practice. When teachers 
engage with representations, they can develop ways of noticing and understanding teaching 
practice. Representations can vary in comprehensiveness and authenticity, and can take a variety 
of forms, including short narratives of teaching scenarios, videos, animations, and case studies. 
We consider curriculum materials (for advanced mathematics courses for PSMTs) to feature a 
representation of practice if they feature a description of a teaching scenario that for instance 
engages PSMTs in evaluating, describing, or reflecting upon features of the presented scenario. 

Approximations of practice allow novices to simulate practice so they can attend to particular 
aspects of practice, rather than all aspects of the complex, relational practice that is teaching. 
Approximations may vary in authenticity and complexity. We consider curriculum materials to 
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feature an approximation of practice if teachers are asked to simulate responding to students’ 
mathematical work, evaluate students’ work, explain content, or teach a full lesson. Note that 
approximations of practice may embed representations of practice, as the prompt for an 
approximation of practice may describe a teaching scenario. 

Exclusionary and inclusive frames for the nature of mathematics and mathematical ability 
We posit that inherent in any representation of practice of mathematics teaching is an at least 

implicit frame for mathematics and mathematical ability. Louie (2017) conceptualized 
exclusionary and inclusive frames for the nature of mathematical activity and the nature of 
mathematical ability. Within the exclusionary frame are the “rote practice frame”, where 
“mathematics is a fixed body of knowledge” involving closed questions and a focus on answers; 
and the “hierarchical ability frame”, where speed and correctness are valorized, and some 
students are positioned as helpers and others as in need of help. Within the inclusive frame are 
the “sense-making frame”, where “mathematics is about making sense of ideas and 
understanding connections” and “the multidimensional math frame”; and the “multidimensional 
ability frame”, where a variety of students are named as resources for peers’ learning and skills 
outside of speed and correctness are valorized (p. 496). 

Data & Method 
We sought to review curricular materials satisfying two criteria: (1) they were intended for 

use in advanced mathematics courses that secondary teachers may take, and (2) they sought to 
make explicit connections to secondary mathematics teaching practice. We also restricted this 
review to materials developed in the US. In searching for curricular materials, we looked for 
both the materials themselves as well as reports of their enactment. We considered textbooks 
commonly used in capstone courses (as reviewed by Cox et al., 2013), those published by 
professional organizations of mathematicians, and the literature reporting the use of these 
materials and textbooks in advanced mathematics courses. As well, we conducted a Fastlane 
search for materials created with the support of the U.S. National Science Foundation.  

The authors of this manuscript are developers of curricular materials, namely the 
MODULE(S2) materials (Lai, Strayer, Casey, Lischka) and ULTRA materials (Wasserman, 
Weber, Fukawa-Connelly). We contacted all curriculum writers and investigators that came up in 
our search (other than ourselves) for copies of materials. Not all authors and investigators 
responded to requests. Table 1 (on the next page) displays materials and reports we obtained. 
Note that in this table, “algebra” refers to the study of number systems, functions, or relations, 
whereas “abstract algebra” refers to the study of mathematical groups, rings, fields, or related 
constructs.  

We analyzed descriptions of enactments and the text of curricular materials in three stages. 
First, we identified instances of presenting secondary teaching context to PSMTs. By context we 
mean the contextual elements of teaching practice such as hypothetical or actual secondary 
student talk or pieces of hypothetical or actual secondary curriculum materials (Lai & Jacobson, 
2018). Second, we coded these instances for whether they satisfied conceptualizations of 
representation of practice and approximation of practice (consistent with the descriptions given 
in the section on Conceptual Perspective) and then inductively coded categories of 
representations of practice and approximations of practice. Third, we analyzed these instances 
holistically for how their prompts and descriptions of students and teachers in the teaching 
context aligned or not with various aspects of Louie’s (2017) framework. For instance, if student 
work was described as “correct” or “incorrect”, this is indicative of an exclusionary frame for 
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mathematical activity. Or, if teachers were asked to name strengths of student work beyond 
correctness, this would align with an inclusive frame for mathematical ability. 

 
 

Table 1. Reviewed materials and reports. 

Citations reviewed, grouped by project Topics addressed 

1. Álvarez et al. (2021) Algebra 

2. Bremigan, Bremigan & Lorch (2011) Algebra 

3. Buchbinder & McCrone (2018, 2020); 
Buchbinder (2018) 

Number Theory, Geometry, Use of 
conditionals 

4. Hauk, Hsu, & Speer (2017, 2018) Algebra, Abstract Algebra, 
Geometry 

5. Heid, Wilson, & Blume (2015) Algebra, Abstract Algebra, Geometry, 
Statistics, Proof by induction 

6. Lai & Hart (2021); Hart & Lai (2021), 
Aubrey et al. (2021); Casey et al. (2021a, 
2021b, 2021c); Alibegović & Lischka 
(2021a, 2021b, 2021c); Anhalt et al. 
(2021a, 2021b, 2021c) 

Abstract Algebra, Algebra, 
Geometry, Mathematical Modeling, Statistics 

7. MAA META Math (2020a, 2020b, 2020c, 
2020d, 2020e, 2020f, 2020g, 2020h, 
2020i) 

Abstract Algebra, Calculus, Discrete 
Mathematics, Proof, Statistics 

8. Sultan & Artzt (2011); Artzt et al. (2011) Algebra, Geometry, Statistics 

9. Usiskin et al. (2003); implementation of 
using this textbook in Winsor (2009) 

Algebra, Geometry, Abstract algebra 

10. Wasserman & McGuffey (2021); Weber et 
al. (2020); Fukawa-Connelly et al. (2020), 
Wasserman et al. (2022); McGuffey et al. 
(2019); Wasserman et al. (2019) 

Real analysis 

Results 
In all 10 projects, we found evidence of representations of practice and approximations of 

practice. Within representations of practice, we found 5 aspects of teaching context constituting 
the representation: student contributions (that is, depictions of student talk, work, or thinking, 
where teachers are not explicitly described); teacher-student interactions; written curriculum and 
assessments (such as actual or hypothetical textbook or lesson plans); personal experience with 
secondary-level tasks (where teachers are asked to notice features of their own experiences 
solving a secondary-level task); and an educator’s modeling of a teaching practice (where the 
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experience of the task becomes an object to notice). Within approximations of practice, we found 
4 teaching practices that PSMTs were asked to simulate: responding to students’ mathematical 
contributions; evaluating students’ work; explaining content; and teaching a full lesson (where 
PSMTs were either teaching a full lesson of the advanced mathematics course in which teachers 
were enrolled [Artzt et al., 2011; Winsor, 2009], or teaching a lesson to secondary students 
[Buchbinder & McCrone, 2020]). 

We now turn to frames within representations and approximations of practice. Evaluating 
student contributions was by far the most prevalent structure for engaging with representations of 
practice, and evaluating teacher contributions (such as appraising a described secondary 
teacher’s teaching moves) was the second most common. A standard format for evaluating 
student contributions was showing teachers a sample of student work or dialogue, and then 
asking teachers to identify strengths and weaknesses of the mathematics shown (e.g., Bremigan 
et al., 2011; Casey et al., 2021a; Hauk et al., 2017, 2018; META Math 2020a; Sultan & Artzt, 
2011; Wasserman et al., 2022). See Figure 1 for an example. Across the multiple secondary 
education projects reviewed, the majority of approximations featured the practices of responding 
to students’ mathematical contributions, evaluating students’ work, and explaining content (e.g., 
Álvarez et al., 2020b; Alibegović & Lischka, 2021b; Aubrey et al., 2021; Bremigan et al., 2011; 
Buchbinder & McCrone, 2020; Hauk et al., 2017; MAA META Math, 2020b; Sultan and Artzt, 
2011; Wasserman et al., 2022). For instance, the Capstone Math materials provided teachers with 
a set of student work samples and asked teachers to work in groups to “sort the work into 
categories that represent different ways of thinking and/or difficulties” (Hauk et al., 2017, p. 9).  

 
Two parts of [a student’s] work on a task are shown. 
(i) Name things [that this student] has done well 
when analyzing the data. 
(ii) Name things [that this student] needs to work 
towards understanding about analyzing univariate 
quantitative data. 

Figure 1. Example approximation of practice with embedded teaching context (Casey et al., 2021a, p. 175). 

Across the reviewed materials, we saw a dominance of the inclusive sense-making frame, 
where mathematics is about making connections across ideas. However, within representations 
and approximations of practice, the secondary-level tasks tended to be closed rather than open. 
While this may a practical consideration for the curriculum developers, it also means that when 
PSMTs are asked to simulate teaching practice, they engage with an exclusionary frame. In 
multiple approximations of practice, an incorrect response was juxtaposed with a correct 
response. This juxtaposition may feed into an exclusionary hierarchical ability frame where some 
students are positioned as helpers and others as in need of help. 
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For brevity, we discuss only one example here in depth, that shown in Figure 1. The 
approximation of practice shown potentially supports an inclusive multidimensional frame of 
mathematical ability mathematics. In this example, PSMTs are asked to name strengths of 
student work. However, PSMTs may also gravitate toward correctness or incorrectness of the 
student work, which aligns with the exclusionary frame of mathematics as a fixed body of 
knowledge. On the other hand, within the materials reviewed, we saw multiple instances of 
representations and approximations which explicitly asked PSMTs to evaluate student work in 
terms of selecting which was the best work, or being presented with work that was incorrect and 
being asked to articulate what is incorrect (without asking PSMTs to articulate what may be 
worth building on). One set of materials contained prompts that asked PSMTs to rate solutions as 
“high, medium, or low”. While assessing mathematical work for mathematical correctness and 
incorrectness is a skill that teachers need to have, only turning to this skill in engaging with 
student work leads to an exclusionary frame of mathematics and mathematical ability. 

Conclusion 
How secondary teaching is represented impacts the opportunities that PSMTs have to engage 

with inclusive frames of mathematics and mathematical ability. Representations and 
approximations may also reinforce exclusionary frames of mathematics and mathematics ability 
within PSMTs. In our review, we found examples of representations and approximations of 
practice that may foster an inclusive frame of mathematics. At the same time, these 
representations and approximations of practice did not explicitly support reframing away from 
exclusionary frames. Supporting PSMTs in inclusive framing of mathematics and mathematical 
ability is ongoing work that will require potential revision of existing materials (including our 
own) and broadening constructions of what counts as representations and approximations of 
secondary teaching practice in advanced mathematics courses that PSMTs experience. 
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To Do Calculus, We Need to Specify R: Lecture Meta-stories & their Underlying Assumptions. 

 
Anna Zarkh 
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This papers examines the stories two instructors tell about why formally defining real numbers in 
the context of a Real Analysis course is a desirable objective. While the two stories exhibit some 
variations, the analysis shows that both narratives relied on the following constitutive elements: 
(1) calculus is a desirable activity, (2) students’ current understanding of R is lacking, and (3) to 
use R for calculus, there is a need to specify it precisely. I discuss how these assumptions can be 
misrepresenting of practice and experienced as problematic impositions on students.  

Keywords: real analysis, real numbers, meta-mathematics, narratives, values. 

The stories we tell about the nature and purpose of mathematical practice matter. They frame 
mathematical activity in and out of the classroom, render it sensible (or not), and help delineate 
what actions are deemed appropriate, valuable or even feasible in a given context (Schoenfeld, 
1989). Stories about math can be problematic. Many mainstream stories, such as “there is only 
one math” (Hersh, 1991) or “math is a young man’s game” (Barany, 2021), both misrepresent 
disciplinary practice and alienate students by constructing a world that few can see themselves 
in. One context for meta-mathematical story-telling is introductory proof-based university 
courses, such as Real Analysis (RA). In such courses, instructors may feel the need to explicitly 
explain and justify the course and its new way of doing math.  

RA is a challenging course in the undergraduate curriculum, largely due to the novelty of its 
proof-oriented epistemic game. Dawkins and Weber (2017) suggested that the norms and 
practices of this epistemic game are difficult to learn in part because the underlying values and 
purposes these norms uphold are not made explicit in instruction. However, we have little 
empirical evidence about whether and to what extent instructors address such meta-issues in 
lectures. This paper addresses this issue, by examining how instructors describe and justify real 
analysis in the first lectures of their RA courses. In particular, I address the following research 
question: What meta-stories about the nature and purpose of RA do instructors tell in lectures? 

This study is informed by sociocultural theories (Wertsch, 2012). Mathematics is 
conceptualized as a discourse that involves telling stories (Sfard, 2008). Here, I focus on meta-
stories, which I define as stories about mathematical practice. I refer to these as stories, rather 
than instructors’ beliefs, to highlight their contingent and situated nature.  

Methods 
This study is part of a larger video-based micro-ethnography (Derry et al., 2010; Erickson, 1992) 
of undergraduate RA lectures taught in Fall 2020 at a large public research university in the US. 
All lectures were delivered online, over Zoom, due to covid-19. Primary data for the larger study 
include video recordings of all lectures, and auxiliary documents such as lecture notes. Four 
instructors (Alex, Cai, David and Emmett) participated in the study. All four worked as research 
mathematicians at the time of data collection. Alex, Cai and David were early career scholars 
and Emmett was a senior faculty member in the department. For this study on meta-stories, I 
consider only the first lecture of each instructor (Alex, David & Emmett, 50 min; Cai, 90 min).  
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Data Analysis  
Data analysis proceeded in two steps. First, I generated secondary data through transcription, 
segmentation and descriptive coding of episodes. Then, I coded episodes for meta-talk, 
consolidated into story themes, and iteratively constructed summary descriptions for each theme.  

 Transcription, segmentation & descriptive coding. Each of the introductory lecture 
videos was transcribed for talk and salient gestures. Transcripts were segmented into short 
episodes, of 1 min length or less. Segmentation was based on “natural” transitions. These 
included linguistic markers (e.g. “So” and “Okay”), and shifts in topic or inscriptional focus. 
Each 1 min episode was given a title that served as its descriptive summary, using a mixture of 
content and in-vivo coding (Saldaña, 2021). I then grouped the short 1 min episodes into larger 
coherent wholes, according to the overall type of classroom activity (e.g. if episodes 3-8 were all 
part of a single proof, they were grouped together under the heading “proof of …”). This multi-
step process resulted in a hierarchically structured outline of each lecture’s transcript (Erickson, 
1992). The structured transcripts were the data sources used for subsequent analysis.  

Coding meta-talk & meta-story summaries. Meta talk appeared in lectures in two ways. 
There were entire episodes devoted to meta talk, and there were shorter instances of meta-talk 
(e.g. a single sentence) that occurred in the midst of an episode with a different focus. The 
coding process was inductive and proceeded as follows. First, I flagged episodes of meta-talk 
that addressed either what the course or the sub-field of RA are, or why they are worth studying 
or doing. To determine whether an episode or utterance counted as meta-talk, I relied on explicit 
linguistic indicators such as “our goal in this course” and “Real Analysis is.” I then went through 
each episode that was flagged for meta talk, and created sub-codes to capture different story 
types. Shifts to different stories were often marked by the instructors themselves (e.g. “another 
goal of this course is…”). Through an iterative process of refinement, I delineated distinct 
categories of meta-stories about RA that together account for all meta-talk episodes and 
instances. With these meta-story categories, I went through the structured transcripts again, 
looking for confirming and disconfirming evidence and more instances of meta-talk. This 
process led to further refinement of the codes and consolidation in the form of story summaries. 

Findings 
All four instructors devoted class time to meta-talk about the nature and purpose of RA during 
their first lecture. Across the data set, I identified the following five meta-stories about RA: 

1. To do calculus, we need to specify R (Real numbers). Our current understanding of R is 
vague. In RA, we define R precisely and build calculus from it.  

2. RA is calculus with proof. Since calculus is known, RA is good for learning to prove. 
3. Calculus is a tool that sometimes breaks. RA is a theory of how the tool work. It is good 

to learn the theory for future tool use and new tool development. 
4. Mathematicians made mistakes in calculus and found solution in rigor. We follow them. 
5. RA is a theory of connections between calculus and more fundamental topics. It is good 

because it makes calculus simpler and more elegant.  
 

The table below (figure 1) shows the presence or absence of the five narratives in each of the 
instructor’s lectures. In this paper, due to space limitations, I elaborate only on the first story: “to 
do calculus, we need to specify R.” In the remainder of the findings section, I will describe how 
Emmett and David each constructed a version of this story in their first lecture, and then compare 
their version across key underlying assumptions: (1) calculus is a desirable activity, (2) students’ 
current understanding of R is lacking, and (3) to do calculus, there is a need to specify R.  
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Figure 1: Appearance of meta-stories in each instructor’s first lecture.  

Meta-story 1: To Do Calculus, We Need Precise R. 
Emmett’s meta-story. Emmett discussed the two constitutive terms of the course title, ‘real’ 

and ‘analysis,’ separately. Starting with ‘analysis,’ he offered the following definition: 
 
… an informal and incomplete definition of analysis is that analysis is that part of 
mathematics in which limits are used to solve problems. So, the key concept in analysis is 
that of a limit. I would say maybe the second concept is that of an inequality. But maybe 
the most fundamental concept is the limit. And that's really what this course is about. 
Limits and closely related concepts. (episode 10) 
 
 In the above quote, Emmett defined analysis as a subfield of math, characterized by its focal 

concepts (limits, inequality) that are framed as tools for solving problems.  
Next, he shifted attention to the other part of the title, namely, the adjective ‘real.’ He posed 

the question “so, what about real numbers?” and shared a slide with the following famous quote 
from the German mathematician Leopold Kronecker: “God made the whole numbers; humans 
made the rest.” Emmett interpreted the distinction Kronecker’s quote makes between god-made 
and man-made numbers as implying that the real numbers are “not as fundamental as the whole 
numbers,” and declared that the course will take that “point of view.”  

On the next slide, he elaborated on what makes real numbers less fundamental. He asked 
“what is a real number?” rhetorically and provided three “informal descriptions” as answers: real 
numbers are (1) points on the number line (“when you teach a calculus class, you draw a line on 
the board and you say here are the real numbers”), (2) expressible using decimals (“Any number 
you can write like that, positive or negative, is a real number”), or (3) possible values of a 
variable x in a calculus course. Emmett then explicitly framed these descriptions as inadequate: 

 
So that's obviously not a very rigorous notion, but that captures what we're talking about. 
I hope that you'll all agree with me that none of these answers are anywhere near as clear 
and unambiguous as the positive whole numbers. We all are confident that we can start 
with one, add one to it, add one to it, add one to it, and keep going. And we more or less 
understand what sort of objects we're getting that way. The real numbers are a bit more 
mysterious. (episode 12) 
 
In the perspective offered above, familiar descriptions of real numbers (standard in calculus 

courses) are declared problematic because they are “informal” and not “very rigorous.”  The 
ambiguity and mystery of real numbers is justified through a comparison to the presumed clarity 
with which whole numbers are comprehended. According to Emmett, whole numbers as 
mathematical objects are clear and unambiguous; by imagining repeated addition, “we can more 
or less understand what sort of objects we’re getting.” Emmett uses this appeal to a presumably 
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shared experience of different degrees of ontological clarity to justify assigning real and whole 
numbers a different epistemic status: “And in this course, we will not take basic properties of the 
real numbers for granted. Unlike these more basic kinds of numbers.” 

In Emmett’s story, filling this ontological and epistemological void is a key problem the 
course aims to solve. Accordingly, constructing the real numbers in a clear an unambiguous way 
played a central role in “the program” Emmett laid out next: 

 
Instead, we're going to spend some time and we're going to use the rationals, which we've 
agreed, we do understand that we can assume things about. We're going to use the 
rationals to construct some objects. And this collection of objects will have all the 
properties that the real numbers ought to have. And then we'll just call these objects the 
real numbers. And as the course goes on, we'll use them. We'll use them, we will develop 
the concept of a limit. And we'll use them with, together with limits to develop the 
theorems that underpin calculus and to solve various other kinds subproblems. Ok, so 
that's the program. (episode 13) 
 
The “program” Emmett articulated describes RA as sequential coverage of mathematical 

content (R, limits, calculus), where each step is ‘built’ on top of the previous one: rational 
numbers are used to construct real numbers, real numbers are used to develop limits, limit are 
used to develop calculus theorems. Analysis is situated later than real numbers in the sequential 
development of content. But, how are these two connected? Why are real numbers needed for 
doing analysis, assuming the latter is an agreed upon goal? Later in the lecture, Emmett made 
additional meta-comments, that can be seen as filling this gap in the story: 

 
… the rationals are not complete. And that, in a nutshell, is why this course is real 
analysis instead of rational analysis, the rationals are defective from our point of view. 
We want to be able to take limits, completeness, the rationals are not complete and there 
will be instances when we can't take limits when we want to. So the rationals don't work 
for us and we need the reals. (episode 34) 
 
Here, the course’s focus on real numbers is justified by their necessity for doing limits. In 

this argument, we don’t care about real numbers just because they are unclear and complex. We 
care about them because we want “to take limits,” and rational numbers do not always allow it. 
The problem is that rational numbers, unlike real numbers, “are not complete” which makes 
them “defective from our point of view.”  

In a later meta-comments, Emmett repeated the course’s program description, adding detail:  
 
… we're going to construct a set of objects that has all the properties that the real 
numbers ought to have. We'll just call that set the real numbers, and then we'll use it 
together with limits to solve problems and to justify the foundations of calculus. OK. And 
the objects that we construct are called cuts, or they are called Dedekind cuts after, after a 
mathematician named Dedekind. (episode 43) 

 
In this last comment, Emmett provided additional information. Namely, that the to-be 

constructed real numbers are “objects” called Dedekind cuts. He immediately followed this 
programmatic outline with a comment about the resulting ontological status of real numbers:  
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So notice that this approach sidesteps the basic question of what the real numbers actually 
are. And, you know, that's some sort of metaphysical question that doesn't really have a 
mathematical meaning. So, we're simply not going to go there. We're simply going to 
construct something and we'll call it the real numbers. Because of the theorem I told you 
at the end of the last set of slides, that's a reasonable approach. Any fully mathematical 
question you can ask will have the same answer for our real numbers, as for anybody 
else's real numbers. (episode 43) 

 
In this last quote, Emmett clarified that the course’s “program” will not provide an answer to 

the ontological question of “what the real numbers actually are.” Despite the fact that he used the 
(presumed) ontological ambiguity of real numbers to motivate the program at the beginning of 
the lecture, in this later comment, he framed the ontological question as “metaphysical” and 
devoid of “mathematical meaning.” To justify this dismissal of the original question, he 
referenced the theorem that any two complete, Archimedean, ordered fields are isomorphic.  

Based on this meta-talk, I summarized Emmett’s narrative as follows: We are interested in 
doing analysis, which is using limits to solve problems. To do limits, we need real numbers. But, 
we don’t know what real numbers are in a clear and unambiguous way. We do, however, clearly 
understand natural, whole and rational numbers. So, the course starts with constructing 
[something we call] real numbers from rational numbers, and develops calculus from that.  

 
David’s meta-story. David began his meta-story by rhetorically posing the question: “what’s 

the goal of this course?”, and immediately providing the following answer: 
 
This is introduction to analysis or real analysis. So what we're really trying to do is come 
up with a set of tools to rigorously study what happens on… what the real numbers are 
and how the real numbers behave. (episode 9) 
 
The above description features some of the themes we saw in Emmett’s presentation. David 

claimed that the course’s objective (“what we’re really trying to do”) is to develop “tools.” The 
tool metaphor is similar to Emmett’s framing of limits as something that can be used to solve 
problems. However, unlike in Emmett’s story where the nature of the problems remains 
underdetermined, in David’s description the objective is characterized as the exploration of a 
mathematical reality in which real numbers are the landscape and focal characters: “what 
happens on [the number line]” “what real numbers are,” “how they behave.” At this point in 
David’s story, understanding phenomena pertaining to real numbers is the goal, whereas in 
Emmett’s story, it was a necessary step in a ‘program’ whose ultimate objective was calculus, 
i.e. ‘using limits to solve problems’. But, this was just the start of David’s story. He continued:   

 
… the core ideas in this course, and the core themes we are going to explore are. Well, I 
guess one core theme is essentially approximation. And the real question we have, right? 
You know you have a vague notion, probably sort of what a real number is, but if you 
actually want to specify what a real number is, it can be a little tricky. (episode 9) 

 
David mentioned approximation as a theme but did not connect it to the declared focus on 

real numbers. It seemed as though he was about to list several core ideas, not just approximation, 
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but he quickly shifted to what he called “the real question,” which is that of specifying real 
numbers. Similarly to Emmett, David problematized real numbers by invoking a binary 
opposition between two epistemic stances: having a “vague notion” versus “actually” specifying. 
This binary allows seeing the specification of “what a real number is” as a problem to be solved. 

David proceeded to justify why specifying real numbers is useful. Recall that in Emmett’s 
story the only justification is the purported experience of ambiguity (for David, “vagueness”) 
with familiar descriptions of real numbers. David’s narrative features more rationales. 
Specifically, he claimed that specifying real numbers is necessary for more advanced calculus: 

 
… if we want to start doing complicated things like calculus or analysis of things in 
higher dimensions or working on- or doing calculus on a surface that isn't actually the 
real line. If you want to do calculus on the surface of a sphere, for example, it gets a little 
bit tricky and it becomes important to know precisely what sort of thing you're talking 
about. And so the goal of this class is to sort of lay that groundwork that dealing with the 
real numbers are, so that we can then in the future expand it to talk about more 
interesting, more interesting topics. (episode 10) 
 
Similarly to Emmett, David invoked a building-foundation metaphor (“lay the groundwork”) 

to interpret the significance of ‘specifying real numbers’ as a base step in the development of a 
hierarchically organized system of mathematical knowledge. However, unlike in Emmett’s story 
where the end point was ‘regular calculus,’ here the motivating horizon is more advanced 
versions of calculus – calculus in higher dimensions or on surfaces such as a sphere – that are 
“interesting,” yet “tricky” and “complicated.” Thus far in David’s story it is the complexity of 
these more advanced topics, rather than any difficulty with regular calculus, that necessitates an 
ontological specification of R (“it becomes important to know precisely what sort of thing you’re 
talking about”). He developed this idea further in relation to infinite dimensional calculus: 

 
You might be curious. Can you do something that looks like calculus in infinitely many 
dimension? I mean, you've probably taken- I'm sure one of the courses you've taken as a 
prerequisite to this is a multivariable calculus class that probably did two or three, maybe 
n-dimensional calculus. But can you have meaningful kinds of calculus in infinitely many 
dimensions? And the answer is yes. But developing that, there are many, many subtleties 
to get through to develop that. So we're going to start somewhere to have something to 
build on. And so we really want to make these ideas of what makes the real numbers, 
what they are, precise. (episode 10) 
 
We see here a repetition of the same theme. Doing more advanced calculus (in this case, 

infinite dimensional) is subtle and complex. Mathematical knowledge is a hierarchical structure. 
To be able to (in the future) cope with this complexity of more advanced levels, it is necessary to 
do preparatory work at the base (“start somewhere to have something to build on”). In particular, 
the prep work involves specifying real numbers. Unlike Emmett, David did not provide an 
explanation for why real numbers, specifically, is the “somewhere” where one “starts.”  

I summarized David’s narrative as follows: We are interested in doing advanced calculus, 
such as calculus on surfaces, and calculus in multiple and infinite dimensions . To do advanced 
calculus, we need precise real numbers. Our current understanding of real numbers is vague. So, 
the course focuses on specifying real numbers, to have something to build on.   
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Summary. I compare Emmett and David’s meta-stories across constitutive assumptions. 
The first assumption is (1) students are interested in doing calculus. Emmett treated interest 

in calculus as a taken-for-granted goal, both in defining analysis and in positioning calculus 
theorems and limits as the end goals of content development. In David’s meta-story, the 
objective is not regular calculus, but rather more advanced versions, such as calculus on surfaces 
and in infinite dimensions. But, like for Emmett, the interest in such topics is assumed and 
positioned as an ultimate goal. A RA instructor may reasonably assume that a motivation for 
calculus – What kinds of problems do limits help solve? Why should we care? – was addressed 
in previous courses. However, David’s framing of interest in infinite dimensional calculus as 
something one is naturally curious about after doing finite dimensional calculus can be 
problematic. It is historically inaccurate and potentially alienating, as few students are likely to 
see themselves reflected in this positionality of wondering about artificial extensions of theory.  

The second assumption is that (2) students’ current understandings of real numbers are 
lacking. Emmett conveyed this by listing descriptions of real numbers students are familiar with 
and framing them as “not very rigorous,” unclear, and ambiguous. David, similarly, claimed that 
students only “have a vague notion … of what a real number is.” In both stories, the negative 
epistemic stance is not fully justified. Emmett’s use of phrases such as “obviously” and “I hope 
that you’ll all agree,” actually highlights the absence of an explanation. Indeed, a negative 
epistemic and ontological stance toward real numbers is not self-evident. Students (and various 
professionals, including mathematicians) have been successfully using ‘informal descriptions’ of 
real numbers for a long time (e.g. in calculus) without feeling the need to specify them in the 
way Emmett and David suggested. To date, in many (if not most) contexts of doing calculus, 
people unproblematically rely on representations of real numbers which Emmett and David 
labeled as ambiguous and vague. Thus, the offered stance can be experienced as an imposition. 

The final assumption is that (3) to do calculus, R needs to be specified. Emmett did not 
provide explicit justification for this claim, but the programmatic description he offered relies 
heavily on building-foundation metaphors for mathematical knowledge, and within such a 
metaphorical conceptualization of math it may seem as self-evidently true that concepts need to 
be ‘built on solid ground’ to be viable. David’s story incorporated building-foundation 
metaphors too (e.g. “lay the ground work”). However, David offered an additional rationale by 
positioning the specification of R, not as something done for its own sake, or as something 
needed for doing regular calculus (that may directly contradict students’ experiences of doing 
calculus without specifying R), but rather as something necessary for doing more advanced 
calculus, one that students have not yet seen. This story defers a compelling motivation for 
specifying R to a future context (e.g. infinite dimensional calculus). The fact that students are 
tasked with ‘taking David’s word for it’ further highlights the absence of an accessible rationale.  

Discussion 
Mainstream stories about math are rife with idealizations of the discipline that both alienate 

many learners and do not tell the full story of what the practice is like and what, and for whom, it 
is good for (Hersh, 1991; Wagner, 2022). This paper aims to contribute to our understanding of 
how such idealizations are constructed in the gatekeeping educational context of RA lectures. 
Critically examining the assumptions instructors’ meta-stories rely on and how these 
assumptions relate to past and current professional practice and students’ past curricular 
experiences, can help us craft meta-stories that are both realistic and more compelling. The 
analysis also illustrates that instructors do address axiological issues in lectures (Dawkins & 
Weber, 2017), though the effect of their stories on students requires further examination.   
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Lesson Planning Practices of Undergraduate Mathematics Instructors: What Do We Know? 
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We surveyed university mathematics instructors across the United States about their planning 
practices. We sought to better understand the complexities involved in the work that goes into 
preparing for instruction at the university level. Research indicates that the quality of 
instructors’ lesson plans can be linked to the quality of their instruction (Akyuz et al., 2012). 
Instructors self-reported as either using inquiry-based practices, lecture-based practices, or an 
even mix of both. Instructors that indicated using both inquiry-based and lecture-based practices 
spend more time lesson planning, but often feel less supported by the lesson plans they create. 
These instructors attempt to do practices that both the inquiry-based instructors do (i.e., spend 
time preparing for and accounting for student thinking) and lecture-based instructors do (i.e., 
ensuring a clear understanding of the mathematics for themselves). We discuss implications for 
instructors and the undergraduate mathematics education community. 
 
Keywords: lesson planning, university mathematics instructors, teaching practices 
 

For decades researchers have investigated the teaching and learning of mathematics. Much of 
the focus has been on understanding how students think and learn particular topics or ideas, and 
what in-the-moment instructional practices support student learning. This work is crucial, and 
more recently some have pointed to the importance of carefully considering this type of 
information during the instructional planning process (e.g., Akyuz et al., 2012; Stephan et. al., 
2017). Much of this work lives in the context of K-12 education, and though it is largely relevant 
to university education, there are some added complexities. More specifically, pedagogical 
freedom at the university level means not all instructors teach the same topics or even teach them 
the same way.  This freedom also means individual instructoprs can significantly change 
pedagogies from semester to semester.  Little is known, however, about how instructors build 
their lesson plans, what they consider when doing so, and how their pedagogical decisions 
impact their planning practices. This research paper describes an investigative journey into the 
planning practices of undergraduate mathematics instructors, aiming to better understand the 
complexities involved in the work that goes into preparing for instruction at the university level. 
We also explore some similarities and differences in these practices across broadly defined 
instructional categories: Inquiry-Based, Lecture-Based, and an Even Mix of Both.   
 

Literature Review 
While there is some literature about planning practices for K-12 teachers as either pre-service 

or in-service teachers, there is a lack of literature regarding the lesson planning practices of 
university mathematics instructors. For example, O’Donnell and Taylor (2007) investigated the 
relationship between preservice mathematics teachers’ focus on student thinking in lesson 
analysis and lesson planning tasks. Their results highlighted a pedagogical lesson planning 
format consistent with Shulman’s (1987) model of pedagogical reasoning and action which 
includes comprehension, transformation, instruction, evaluation, reflection, and new 
comprehensions. This model is used to theorize the knowledge required to develop the 
knowledge of teaching. Additionally, Amador (2016) investigated the role of teacher noticing 
during lesson design. Amador’s findings emphasize the importance of supporting teachers 
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through professional development opportunities, specifically focusing on student outcomes, 
student mathematical understanding, and teacher noticing. Further, Amador (2016) raises 
questions about how to better support these teachers but also how to further support teachers 
more broadly as they work in the space between lesson planning and enactment. Additionally, 
this thinking can also be applied to middle grades educators. For instance, Akyuz et al. (2012) 
aimed to extract the planning practices middle school mathematics teachers used to create 
adequate assessments, introduce important ideas, and choose tasks that are appropriate given the 
objectives of lesson materials. The results mention five core practices that are the foundation of 
the development of effective planning: preparation, reflection, anticipation, assessment, and 
revision. These practices align with Shulman’s (1987) dimensions. These five practices also 
align with Stephan et. al.’s discussion of Lesson Imaging (2017) - where they build on 
Schoenfeld’s (1998) work on how teachers expect their plans to be enacted in the classroom. 
Stephan et. al. outline a visualization process through which K-12 STEM teachers can develop 
effective lessons by unpacking the goals, imaging the launch of the lesson, anticipating student 
thinking and reasoning, and then imagining how they will use that thinking and reasoning to 
support meaningful discussions. Though the previously mentioned literature focuses primarily on 
K-12 planning, we argue that the same notions may apply to researching the lesson planning 
practices of university instructors. However, literature about university instructor’s lesson 
planning practices is limited, as the field continues to grow.  

Undergraduate instructors’ pedagogical decisions in the classroom are represented in 
literature. Uniquely, undergraduate mathematics educators have the choice to teach in certain 
ways, often in a lecture format (Fukawa-Connelly et al., 2016). This freedom to choose could 
impact lesson planning practices. Johnson et al. (2018) stated that the “distinction between 
lecture and non-lecture pedagogy is not clear cut, especially when looking at how instructors 
self-identify” (p. 256). In an attempt to investigate why instructors choose to lecture, Johnson 
(2018) detailed a survey of national abstract algebra instructors at masters and doctorate-granting 
institutions. Ultimately, Johnson provided insight into factors that influence pedagogical 
decisions in American abstract algebra classes as well as avenues for approaching and providing 
better support for those interested in implementing non-lecture teaching approaches (Johnson, 
2018). Johnson et al. (2013) indicated an opportunity for the research field of undergraduate 
mathematics education to “gain insight into the factors and considerations that matter to 
mathematicians,” (p. 2) specifically in teacher identity and stance towards instructional materials. 
Lastly, research indicates that the quality of instructors’ lesson plans can be linked to the quality 
of their instruction (Akyuz et al., 2012). Thus, understanding undergraduate instructors’ lesson 
planning practices can also shed some light on their instructional practices. 

 
Methods 

Our study investigated the lesson planning practices of university instructors through a 
survey with both quantitative and open-ended items. 
 
Data Collection 

Survey creation. We designed a survey using Akyuz et al. (2012)’s lesson planning 
practices as the overall dimensions that characterize lesson planning activity: preparation, 
reflection, anticipation, assessment, and revision. In addition to these dimensions we asked 
questions about different classroom environments, teaching styles, and university characteristics. 
In light of the discussion by Johnson and colleagues (2017) concerning reasons for making 
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certain pedagogical choices, we were particularly interested in how instructors defined success in 
terms of their lesson planning. In this work, we will focus primarily on the preparation and 
reflection dimensions. Preparation outlines any work prior to the start of instruction. Generally, it 
includes activities such as creating a learning trajectory, designing an instructional sequence, 
studying relevant literature, and considering the big ideas of the unit (Akyuz et al., 2012). 
Reflection involves taking a look into past teaching experiences and classroom interactions to 
assess quality instruction as well as evaluation of unexpected situations, misconceptions of 
students, and improvement of instruction (Akyuz et al., 2012).   

Survey description and questions. The survey included 11 demographic questions such as 
instructor gender identity, university type, average class size, and how long they had been 
teaching. We also asked quantitative and qualitative questions about teaching styles. For 
example, we asked, “Which of the following best typifies your teaching style?” (with choices of 
inquiry-based, lectured-based, or a mix) and “Briefly describe why you teach this way. Please be 
detailed.” Then each of the five main dimensions had both quantitative and qualitative items. For 
preparation, we asked questions such as “On a scale of often, sometimes, rarely, never, please 
indicate how frequently the following activities are part of how you prepare for a lesson. - 
Reading relevant education research on the topic (e.g., student learning of the topic).” The 
anticipation stem contained questions such as “Consider preparing for lessons. On a scale of 
strongly agree to strongly disagree, please select if you agree with the following statements. - I 
consider what might happen during a lesson.” Questions such as “When teaching, approximately 
how often do the following occur on a scale of often, sometimes, rarely, never? - I stopped to 
consider how the students were thinking about the content” was used to assess the reflection 
stem. The assessment stem asked questions such as “Consider times when you used informal 
assessment. On a scale of strongly agree to strongly disagree or not applicable (N/A), please 
select if you agree with the following statements. - I change future lesson plans if grades are 
poor.” Finally, questions including “Consider preparing for lessons. On a scale of strongly agree 
to strongly disagree, please select if you agree with the following statements. - I often change the 
order of the content from the textbook as a means to support student learning” were used to 
assess the revision stem. For quantitative questions, a scale was used for all 5 stems in order to 
get a clear response, while still offering a range of answer options.  

Qualitative questions on the survey included inquiries such as “How does the teaching style 
you use impact your lesson planning practices?” These questions were designed to differentiate 
the planning practices of university instructors with different teaching styles and provide us with 
more data to compare to our quantitative results. 

Survey population. The sample for our survey utilized several email listservs as well as 
directly emailing mathematics department chairs. Listservs included Research in Undergraduate 
Mathematics Education (RUME), Associate of Mathematics Teacher Educators’ (AMTE) 
Service, Teaching, and Research (STaR), and the American Mathematical Society (AMS) 
directory of institutions. Potential participants were told that they had to be full-time instructors 
and that they had to teach mathematics content classes (i.e., general education, mathematics 
content classes for future teachers, or mathematics majors classes). We received 65 complete 
survey responses. 
 
Data Analysis 

We broke the respondents into three groups based on their responses to a question asking 
which teaching style they best fit into. We then conducted a series of Analyses of Variance 
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(ANOVA) to examine the relationships between their chosen instructional style and the 
responses to the various survey items. Norman (2010) and Carifio and Perla (2008) note that 
when examining multiple likert-scale items, using a method that compares means and standard 
deviations (such as ANOVA) is appropriate and yields valid results. We found many statistically 
significant differences in the way the respondents in the three groups tended to answer the survey 
questions. All open ended survey items were coded by three of the researchers using thematic 
analysis (Braun & Clarke, 2006). All three researchers did a first pass of coding then met to 
discuss codes and repeat the process until a codebook was developed. Then we all coded the data 
to be able to describe themes from the open-ended items. All disagreements were discussed by 
all three coders. Lastly, the qualitative data gave us a deeper understanding of what we found 
from results from the quantitative data and it supported some quantitative findings. 
 

Results 
Demographics & Teaching Style 

The average length a respondent had taught was 16 years. 80% of respondents worked at 4-
year public universities. Likewise, 80% worked at universities that granted PhDs or Masters. 
36% of respondents taught K-12 prior to their current teaching position. 25% had degrees in 
mathematics education and the rest in some field of mathematics. 32 respondents identified as 
female, 26 as male, 1 as nonbinary, and 6 that preferred not to answer. 

Participants were asked “which of the following best typifies your teaching style?” 18 said 
inquiry-based (i.e., student centered), 15 said lecture-based (i.e., teacher centered), and 32 said 
an even mix of lecture and inquiry activities. We also asked respondents the following question: 
“When teaching, approximately how often do the following occur on a scale of often, sometimes, 
rarely, never? - I stop to consider how the students are thinking about the content.” Inquiry-based 
instructors stop significantly more often to think about student thinking than even-mixed 
(p=0.026) and lecture-based (p<0.001), and even-mixed stop significantly more often to think 
about student thinking than lecture-based (p=0.048). This, to us, aligns with a broad 
interpretation of these teaching styles. In the most basic sense, the role that student thinking 
plays in these teaching styles is crucial. Instructors that identify as lecture-based indicated they 
stopped significantly less frequently than even-mixed or inquiry-based instructors. 
 
Lesson Planning 

Respondents who identified as inquiry-based do not spend as much time making or 
reviewing their lesson plans; however, they feel more supported by them. When asked Q21_4: 
“On a scale of strongly agree to strongly disagree, rate the following statement: I use a textbook 
to determine how I teach material,” respondents who identified as an even mix of teaching styles 
said that they agree significantly more with this statement than either lecture-based or inquiry-
based (p=0.01). 

Similarly, when asked Q20_8: “On a scale of often, sometimes, rarely, never, please indicate 
how frequently the following activities are part of how you prepare for a lesson - Reviewing 
from course materials (e.g., textbook, notes)”, respondents who identified as an even mix of 
teaching styles reviewed course materials significantly more than inquiry-based respondents 
(p=0.003), but there was no significant difference between even mixed and lecture-based and 
inquiry-based and lecture-based. 

However, on Q21_7 despite indicating that they do not create detailed lessons, inquiry-based 
respondents indicate that they feel supported by their lesson plans, significantly more so than 
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respondents who identified as an even mix of teaching styles (p=0.014). There was no significant 
difference between other groups. 

 

 
Figure 1. Bar charts showing all responses to Q21_4, Q20_8, and Q21_7. 

 
These results also appeared in the qualitative data. Respondents were asked “How does the 

teaching style you use impact your lesson planning practices?” and “Please fill in the blank, and 
be detailed: I feel like I am prepared for a lesson when I have ____.” Respondents who identified 
as lecture-based indicated overwhelmingly that their lesson plans are good because they know 
what they are going to talk about and the lesson plans are their notes (although those notes varied 
in format of in their head, on paper, in a PowerPoint, etc.). One participant said, “My planning 
process is mostly deciding which examples I want to include in class. I usually work through a 
few examples for each topic. The topic may be explained as I work through the first example.” 
Inquiry-based respondents indicated on open-ended survey items that because they are sensitive 
to student thinking, their lesson plans are intentionally fluid to account for this. One participant 
said, “Because I teach in an inquiry-based style, it is important to carefully structure student 
interaction with each other and the course material to set the stage for their mathematical 
connections and discoveries.” Respondents who indicated using an even mix of teaching styles 
said that their lesson planning notes are guided by the development of the mathematics, but they 
know they need to be sensitive to how students are reacting to it. One participant said, 

 
Rather than a lesson plan “template” that uses the same template or outline for every 
lesson, at the college level, once I consider the content and the students’ needs for that 
content, then I prepare lesson materials that are most appropriate for that lesson in that 
moment, whether it be lecture notes, guided notes, activity/inquiry/discovery instructions 
for the students to engage, problems for the students to explore in problem-based 
learning, etc. Regardless, I typically will have in my notes (increasingly on Google Docs) 
a timeline with short notes about process, and more detailed notes where I see fit. 
 
Reading research plays a role in lesson planning. Unsurprisingly, those that engage in 

inquiry-based teaching or an even mix of teaching styles are more interested in performing 
research on teaching and learning (p<0.001, p<0.001) and are more interested in reading 
literature on teaching and learning (p=0.009, p=0.018). However, while even mixed respondents 
are interested in research and anticipating student thinking, they are not doing it as often as 
inquiry-based respondents (p=0.002). 
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Lesson Reflection 
 Respondents were asked Q31_4: “On a scale of strongly agree to strongly disagree or not 

applicable (N/A), please select if you agree with the following statements. - I change future 
lesson plans if students indicate the content is not clear to them.” Even-mixed instructors are 
more likely to change their lesson plans if students are struggling to understand than both 
inquiry-based and lecture-based (p=0.015). One even-mixed participant said they are prepared 
when they have: 
 

...A goal in mind for that lesson. I am prepared if I have activities that will support that 
goal and have anticipated questions that the students may ask. I also like to have a means 
of measuring learning by providing closing questions or homework that I can monitor to 
see how the material is being understood. This measure allows me to reflect on how the 
next lesson will begin. 
 

When asked Q24_4:  “On a scale of often, sometimes, rarely, never, please indicate how 
frequently you discuss how a lesson went with colleagues” inquiry-based instructors do this 
significantly more than either other group (p=0.005, p=0.028). 

 

 
Figure 2. Bar charts showing all responses to Q24_4 and Q31_4. 

 
Limitations 

Before discussing our results, we want to acknowledge important limitations of this work. 
First, 65 responses, while large, is still small in terms of the power of our study. Second, as the 
data are self-reported, all reference to self-identifying their preferred teaching style was based on 
their selection of those three categories. Importantly, teaching practices are more than three 
categories, it is a continuum and it's not easy to distinguish between the ends of that continuum 
(Johnson et al., 2018). Additionally, we acknowledge that just because someone self-selected 
into a category, we do not have actual data from their classroom to confirm that their teaching 
practices in fact do align with these categories. Nevertheless, we believe our study sheds 
important light on the lesson planning practices of university mathematics faculty. 

 
Discussion, Conclusion, and Next Steps 

Our data indicates that different teaching styles do indeed relate to different planning 
practices. Respondents who identified that they use both inquiry-based and lecture-based 
teaching styles plan more than either inquiry-based or lecture-based instructors. However, even-

26th Annual Conference on Research in Undergraduate Mathematics Education 569



 

mixed instructors do not feel as supported by their lesson plans compared to both inquiry-based 
and lecture-based instructors. This begs the question, what are the three groups including in their 
lesson plans to cause these differences and how do they relate to their goals? 

Inquiry-based instructors do not report prioritizing doing the mathematics for themselves 
prior to a lesson as part of their lesson planning. Lecture-based instructors report having a strong 
sense of the mathematics for themselves. Whereas, even-mixed instructors seem to be pulled in 
both directions. They reported that they wanted to ensure they knew the mathematical 
progression of the content for themselves but still provided enough space to let student thinking 
drive the lesson. This aligns with the fact that their lesson plans and lesson planning are more 
involved; they appear to indicate a need to be prepared for everything (i.e., supporting the 
students’ thinking and the mathematics). 

Even-mixed instructors also indicated that they are most willing to change their lessons and 
lesson plans based on student reactions and their perception of how lessons are going. This 
further indicates the potential that even-mixed faculty are pulled in different directions. Both 
inquiry-based and lecture-based instructors stay their course, reporting they do not as frequently 
change lesson plans. Despite inquiry-based instructors reporting they reflect on their lessons 
more frequently than the other groups, even-mixed faculty make changes to their lessons more 
often. This further provides insight into why their lesson plans and lesson planning practices are 
more involved. Perhaps changing their lesson plans so frequently leads to less certainty in the 
success of lessons. 

Collectively, our results indicate that the instructional goals and preferred teaching styles of 
instructors impacts their lesson planning practices. But more specifically, while most of our 
respondents indicated they used both inquiry-based and lecture-based teaching practices, that 
same group also indicated being the least comfortable doing so. Research on teaching practices 
tells us that instructors use both inquiry-based and lecture-based practices often (Johnson et al., 
2018). In fact, as indicated earlier, teaching practices are on a continuum and are not dicotomous.  
However, regularly shifting along that continuum appears to be the most difficult in terms of 
preparing for those lessons. 
 
Next Steps 

In this work, we only discussed the lesson preparation and reflection (Akyuz et al., 2012) 
dimensions concerning how university mathematics instructors plan lessons. There is a clear 
indication that some faculty who try to use both inquiry-based and lecture-based teaching 
practices need support. Considering our results with those of Johnson et al. (2018), even-mixed 
instructors often feel overwhelmed by their lesson planning processes and they often change 
their plans as they go; more so than instructors who self-identify as lecture-based or inquiry-
based. Thus, we wonder what support do these faculty need? The undergraduate mathematics 
education community has provided many professional supports (e.g., TIMES NSF#1431641, 
SEMINAL NSF#1624643), but it appears that institutional support is just as needed. The average 
years of teaching was 16 years (which was roughly the same for each teaching category as well) 
and our data did not find significant differences in terms of how supported instructors feel from 
their institutions. However, even-mixed instructors did indicate feeling the least supported by 
their institutions and departments. And these instructors are the ones doing more lesson planning. 
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Exploration of TAMI-OP as a Professional Development Tool for Mathematics Instructors 
 

 Sarah Wise Kyra Gallion Sandra Laursen 
 U. of Colorado Boulder U. of Colorado Boulder U. of Colorado Boulder 

The VIP-Math project aimed to understand whether and how teaching practices of mathematics 
instructors are influenced by discussions of their classroom data visualized using the TAMI-OP 
classroom observation tool.  We found that TAMI-OP data visualizations supported discussions 
that led the participating mathematics instructors to set both short- and long-term teaching 
goals, and to experiment with teaching practices related to at least one of their goals. Given the 
limitations of the participant pool, further research is recommended with a greater diversity of 
instructors and coaches. 

Keywords: classroom observation tool, professional development, college instruction 

Introduction 
Research in STEM higher education has investigated a number of tools for measuring 

teaching, in order to study teaching practices in real time. Alongside surveys, interviews, and 
classroom artifacts, classroom observation is a valued tool in the education researcher’s toolbox 
because it provides direct evidence of what teachers and students are doing and can be used to 
measure change in effective teaching over time (AAAS, 2013; Weston et al., 2021). 
Observations can also be used for evaluating teachers for retention or advancement, for 
providing feedback to teachers about their work, and for evaluating professional development 
offerings and their impacts.  

For any of these distinct purposes, the observation protocol and sampling must be carefully 
chosen to align with the goals of the measurement and the purposes for which the data will be 
used (Esson et al., 2022; Hora & Ferrare, 2013; Weston et al., 2021). Classroom observation 
tools tend to be either segmented or holistic. Segmented tools typically describe teacher and 
student classroom activities by taking data across short time intervals. Holistic tools tend to use 
Likert-scaled items to arrive at ratings. Holistic tools are more inferential, requiring more 
expertise to use reliably (Weston et al., 2021), though both types require attention to features that 
affect the tool’s validity and interrater reliability (Weston et al., 2023).  

Many tools have been developed and tailored for specific kinds of classrooms, including for 
example the RTOP (holistic, applied to K-12 and college contexts; Sawada et al., 2022), the 
TDOP (segmented, for college instructors; Hora et al., 2013), the COPUS (segmented, designed 
for college STEM classrooms; Smith et al., 2013), the GSIOP (segmented, designed for use with 
graduate student teaching assistants; Yee et al., 2019), and the CRIOP (holistic, for middle 
school instructors; Powell et al., 2013).  

One observation tool developed for college mathematics classrooms is the TAMI-OP, a 
segmented, descriptive tool (Hayward et al., 2017, 2018; Weston et al., 2021, 2023). The 
classroom observer records what both the instructor and the students are doing across each two-
minute interval of class time and can record notes. The tool includes codes for modalities of 
active learning often seen in mathematics classrooms—students working in groups or 
individually, answering or asking questions, giving presentations—as well as listening to lectures 
(Laursen et al., 2014). Instructor codes include asking and answering questions, reviewing 
student thinking, moving and guiding student work, lecturing, and working problems. Thus 
TAMI-OP can capture teaching activities that involve students actively or more passively, and 
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the mix of these. Designed to track changes in teaching behaviors such as may result from 
professional development, the TAMI-OP is deliberately behavior-focused and non-evaluative. 

The TAMI-OP tool automatically generates two visualizations that display 1) a timeline of 
what students and teachers were doing across the class period, and 2) the proportion of two-
minute periods of class time in which certain codes appear (Hayward et al., 2018). The 
visualizations highlight how class time is used, enabling instructors to quickly see class features 
such as how much class time is devoted to activities other than lecture, the use and timing of 
questions and answers, and the balance between instructor questions and student answers.  

With a few exceptions (Dillon et al., 2020; Reinholz et al., 2020; Yee et al., 2022), the use of 
observation data has not been well explored as a formative feedback mechanism for improving 
college instruction (in contrast to education research). Interest in this application is growing, 
however, and follows a long tradition of employing observation for feedback (and evaluation) in 
K-12 education (Martinez et al., 2016). Recent work exploring the use of observation tools in the 
college arena for feedback purposes have emphasized their application to spur instructor self-
reflection (Dillon et al., 2020), and to assess the impact of feedback on graduate student teaching 
assistants’ teaching practices (Yee et al., 2022). Observed instructors have reported that 
observation-grounded feedback opportunities are helpful (Dillon et al., 2020). Graduate students 
were found to improve instruction when the feedback was well contextualized (Yee et al., 2022). 
It has been suggested that interactions between expert teaching faculty and research-oriented 
faculty (including through observation-grounded feedback) could support the adoption of 
student-centered instructional practices (Rozhenkova et al., 2023).    

Previously, the TAMI-OP had been used for research and evaluation purposes, but its 
descriptive emphasis and simplicity led us to explore how the TAMI-OP tool could be used in a 
professional development context focused on supporting observation-grounded feedback and 
instructor reflection. The theory of planned behavior (Ajzen, 1991; Archie et al., 2022) shapes 
our understanding of how teaching arises from planning. The theory led us to design a cyclical 
process of gathering data, reflecting, and conversing about teaching can help teachers to assess 
and change their practices in self-driven ways.  Thus, we did not use the theory to make 
predictions or model quantitative data, but it informed the design of the professional 
development process.   

The process specifically involved two coaches facilitating a series of goal-oriented 
discussions with instructors about TAMI-OP visualizations. We wanted to know if instructors 
would use the data to experiment with their teaching or change some teaching practices in ways 
aligned with their goals and, ideally, also aligned with evidence-based teaching. We nicknamed 
this project VIP-Math (Visualization Instructional Practices). The coaches engaged each VIP-
Math participant as follows: they met with instructors to learn their initial set of teaching goals 
and orient them to the TAMI-OP instrument. Instructors then video-recorded a session of their 
mathematics class. The coaches scored the teaching video using TAMI-OP and met with the 
participant to discuss patterns in the data and visualizations. Participants were prompted to 
reflect on progress around their goals and set future intentions. This cycle was repeated two more 
times over the academic term, roughly 4 weeks apart. 

Here “VIP-Math process” refers to this process of repeated gathering, sharing and discussing 
the TAMI-OP data and visualizations. We asked the following research questions:  

• RQ1: Which elements of the TAMI-OP data and visualizations did VIP-Math 
participants tend to focus on? 

• RQ2: How did the VIP-Math process influence participants’ teaching practices? 
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Using the findings, we consider the affordances and limitations of the TAMI-OP as a tool for 
coaching, and the implications of the results for observation-based professional development. 

Methods 
Development of the VIP-Math process. Two of the authors were the coaches for this 

project, an early-career research assistant with classroom and professional development 
observation experience and a mid-career researcher with teaching and research experience in 
K12 and higher education. The coaches co-developed the VIP-Math process in consultation with 
the third author and conducted all participant-facing activities. Participants were sent a digital 
video camera and instructions for recording, and they uploaded each recording to a secure cloud 
storage folder.    

Participants. Three mathematics instructors participated in this study, recruited from a list of 
participants in teaching professional development workshops. All three were white women with 
over 5 years of college-level instructional experience, and each stated a commitment to creating 
student-centered and active learning classrooms. Each also described herself as influential to 
colleagues, through formal or informal means. Two were full-time tenured faculty and one was a 
full-time, non-tenure-track lecturer. All worked at primarily undergraduate institutions, two at 
community colleges and one at a small liberal arts college.  

Coding and analysis. The two coaches coded several sample videos to arrive at a common 
understanding of TAMI-OP code application. Both coaches coded all participant videos, coming 
to consensus on codes prior to discussing them with participants. Coaches tracked qualitative 
features of the classroom using the notes feature of the TAMI-OP. During each discussion, 
coaches prompted instructors to reflect on their video-recorded class, patterns in the TAMI-OP 
visualizations, their initial teaching goals and ways they are addressing them, and to revise their 
goals and intentions for future sessions or classes. Coaches responded to such reflections with a 
mix of follow-up questions, encouraging comments, and ideas for the instructor to consider in 
planning. Discussions were conducted and recorded on Zoom, and coaches also documented the 
flow of ideas in a research journal. Both the research journals and discussions were analyzed 
qualitatively for evidence related to the research questions, and the TAMI-OP data provided 
quantitative evidence about teaching. 

Results 
We present brief summaries of each participant’s engagement with VIP-Math, referencing 

each by their first initial (Table 1). These summaries focus on the goals the instructors set and 
related patterns in TAMI-OP data we observed across their three recorded sessions, which 
provide evidence of change in their teaching practices. 
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Table 1. Characteristics of courses, goals, and key change made by the three participants. 

Participant J S M 

Course 
No. students 
Class length 
Initial goals 
 
Key change 

Calculus 1 
20 

90 min. 
Assess use of class 

time 
Increased use of 

reasoning questions; 
Created plan 

to adjust materials 

Precalculus 
20 

60 min. 
Active learning; wait 

time 
Introduced structured 

group work 

Finite Math 
15 

90 min. 
Student math talk; 

equity 
Alternated questions 

between Zoom & 
room students 

Participant S 
Coaches noted that S’s first videotaped class was highly interactive, with over 55% of time 

spent on activities other than lecture. She asked informational questions that students typically 
answered (Figure 1, Q&A). Students spent significant class time working on problems 
individually and used white boards to show individual work to S (Figure 1, IND). 

The coaches suggested that S could expand the variety of her active learning techniques by 
incorporating structured group work and inviting students to present their work, and S set related 
goals. With the second recorded class, S incorporated structured group work for the first time. By 
the third class, she improved the written directions provided for group work, to increase their 
ability to work independently, and had one student present their group’s work on the board.  

S set long-term intentions to continue using structured group work and student presentations 
in both the Precalculus class that we observed and other classes, even though she anticipated 
some challenges: 
 

I am teaching precalc again in the fall so this is great, because I can implement it again. 
[I] want to start the student presentations earlier in the semester, and [I am] hoping that 
motivates them to be on time. My next goal: How do I add that level of structure in the 
group to ensure that everyone in the group participates and has a role?… I haven’t tried 
[this] with the higher-level classes yet, but I definitely think I would try them. The actual 
physical classroom is logistically challenging because the class is really full and the room 
is really small. Could definitely do pairs though. 

Participant M 
In M’s hybrid class for non-STEM majors, students could choose each day to attend online or 

in person. Her initial recording featured 90% of class time spent on activities other than lecture. 
In accordance with M’s goal, coaches tracked the numbers of questions that M posed to students 
in the Zoom room and overall. The fraction of questions to Zoom students (typically about ⅓ of 
the class) rose from 20% to 35% across the three sessions. For M, making this change didn’t feel 
entirely comfortable, but she had developed a system that seemed to work: 
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Intentionally directing Qs to Zoom vs room without knowing whether they are actually 
there – that feels tricky. I’m doing it alternating now, and if there is no pick-up in Zoom, 
I pivot to room. 
 

Figure 1. Excerpt of timeline visualization of S’s first class, generated from TAMI-OP codes. Student codes (blue): 
WG, working in groups; OG; other group work; WC, whole class discussion; GP, group presentation; SP, student 
presentation; Ind, students working individually; TQ, taking a test or quiz; W/O, waiting/other. Instructor codes 
(orange): Adm/W/O, administrative/waiting/other; MG, moving and guiding; 1o1, teacher interacting with one 
student; Rvw, reviewing student thinking; Lec, lecturing. Horizontal axis represents elapsed time in class session, in 
minutes. Q&A numbers represent questions and answers from students (blue) and teacher (orange). 

 
M devoted significant class time (25-90%) to student group work, in ways aligned with 

evidence-based teaching. Coaches noticed several ways in which class time was spent 
inefficiently, limiting opportunities for students to communicate mathematical understandings, 
but M did not engage with this observation.  

During her final discussion, M continued to wrestle with the problem of engaging Zoom 
room students, in line with her initial goals. The coaches encouraged her to look at the norms she 
was setting around Zoom participation during her introduction to the course, and she came up 
with an idea to encourage Zoomers to use emojis to signal their presence and willingness to 
answer questions. She additionally generated an idea to create an introductory video of how 
Zoomers appear and sound in her hybrid-flexible classroom, to help Zoomers know how they 
appear to the in-person class. 
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Participant J 
We observed three of J’s Calculus I sessions. J’s initial goals were to assess the balance of 

student group work time to other teaching activities, and to increase student voice in her classes. 
She wanted to devote 50% of class time to group work; in her initial class, she spent >60% of 
class time on activities other than lecture.  

Across the three class sessions, TAMI-OP data revealed that J allocated 25-35% of class time 
specifically to group work. Discussion of J’s second class centered around this balance:  

 
I have been thinking about restructuring the worksheets for this day. This is confirmation 
of that, that there is something missing in the balance of how it is set up. 
 
J realized she needed to carefully choose example problems to illustrate new material, so 

there is “conceptual meat” yet without distracting details such as “dividing fractions.” By our 
final discussion, J expressed a related long-term goal: “I need… to redevelop so I can get around 
them being bad at algebra.” This was related to J’s goal of increasing active learning: by 
restructuring class materials to maintain focus on new concepts, she could shift the balance of 
class time away from explanations and toward group work. Further, J described how TAMI-OP 
data led her to alter her expectations for use of class time:  
 

I have mentally adjusted by benchmark to realize that 50% group work may not be 
realistic… It will change how I approach others in my department. [I] don’t want to set 
unrealistic expectations for other people.   
 
Coaches also noticed that J asked 70-95 questions per class session, mostly informational. In 

discussions, J did not respond directly to the coaches’ prompts around reasoning questions, but 
she did begin to ask more reasoning questions, increasing their share from 0% to 25% across the 
three class sessions.  

RQ1: Which elements of the TAMI-OP data and visualizations did VIP-Math participants 
tend to focus on? 

All three participants oriented quite quickly to the instrument. They had few questions about 
the meaning of different code categories and were able to interpret sample visualizations readily. 
Most frequently discussed were instructor codes LEC (lecture), REV (review), IQ and RQ 
(informational and reasoning questions), and MG (moving and guiding); and student codes SA 
(student answers), WG (working in groups), and SP (student presentations). Conversations 
focusing on TAMI-OP data tended to be brief. None of the participants tended to pore over the 
data, looking for patterns that were not obvious.  

Participants tended to focus on TAMI-OP elements that aligned well with their initial goals. 
M tended to focus on the share of questions that she was asking to students in the Zoom room, 
while S and J tended to focus on the amount of class time devoted to student active learning. 
Participants also often commented on TAMI-OP data that they perceived as validating their 
current teaching practices. 

RQ2: How did the VIP-Math process influence participants’ teaching practices? 
We found that the VIP-Math process influenced participants to change specific teaching 

practices in the short term. Each participant altered some teaching practices across their recorded 
classes, and mentioned altering some practices in classes that were not recorded. Some teaching 
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practices changed as recommended by coaches, even when goals were not explicitly set around 
them. Changes were observed in how participants allocated class time to student group work and 
presentations, and how participants asked questions. At final discussions, all three participants 
also set long-term teaching goals, some of which could be traced to patterns in their TAMI-OP 
data. S set goals for increasing student presentations and structured group work, while M set 
goals about increasing the engagement of her online students, and J set goals for altering class 
materials so student group work can proceed more efficiently. 

Discussion 
Patterns across the three VIP-Math participants suggest some preliminary answers to our 

research questions. Participants readily engaged with the data visualizations generated about 
their class sessions and referenced them in reflecting on how their uses of class time related to 
their teaching goals (RQ1). Participants also made specific goal-related changes to their teaching, 
and they set long-term goals for future teaching changes (RQ2).  

The VIP-Math project also allowed us to gather insights about the affordances and 
limitations of TAMI-OP as a professional development tool. As affordances, we found uploaded 
recordings of class sessions easy to score remotely, and we could accomplish an observation-
feedback cycle with less than a week of lag between recording and discussion. Participants 
oriented quickly to the codes and visualizations, maintained a focus on their teaching goals, 
made related changes across the course of their sessions, and reacted positively to the VIP-Math 
process overall. 

However, the VIP-Math process was time-intensive for coaches, and two coaches were 
needed to manage the logistics across three sessions. Coaches found some aspects of high-quality 
teaching challenging to address, particularly evaluative elements not captured by the protocol, 
and elements not well aligned to participants’ teaching goals. For instance, coaches’ concerns 
about M’s efficiency in using class time were never discussed in depth, in part because these 
concerns did not align with M’s goals.  

This study is also limited by the small sample of participants with limited diversity. There 
were no instructors of color, novice or early-career instructors, instructors who expressed 
ambivalence around incorporating active learning into their teaching, or instructors who were 
teaching large classes. This limits our ability to generalize about the tool’s benefits in 
professional development contexts. 
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Are These Vectors Linearly Independent? Conceptions of Linear (In)Dependence in a Linear 
Algebra Textbook and Student Responses 
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Using Balacheff’s (2013) model of conceptions we analyzed textbook examples in the linear 
independence section of an interactive linear algebra textbook and 61 student responses to a 
similar reading question. Reading questions seek to entice students to read the textbook before 
attending the lesson when the ideas will be discussed; the responses are immediately available to 
instructors. We found ten additional parts of conceptions (control structures) used independently 
or in combination with the ones promoted in the textbook. We discuss the implications of our 
findings and our plans for future research. 

Keywords: linear independence, conception, linear algebra, cK¢ model of conceptions 

We contribute to investigations of students’ understanding of fundamental notions in linear 
algebra by bringing a different theoretical approach to such investigation with the goal of 
exploring its usability in large-scale analysis. Linear algebra is a course that is nearly universally 
taught at four- and two-year institutions across the United States (Blair et al., 2018). Extensive 
research documents the difficulties students experience with the high abstract level of the 
notions, which also demands substantial computational dexterity. While much work has been 
done to address student difficulties (e.g., using curricula that emphasize building mathematical 
understanding through concrete experiences and visualizations that are progressively 
mathematized; Wawro et al., 2012), managing these difficulties in the classrooms is not 
straightforward. As they learn the material, independently of the curriculum that is being used, 
students face difficulties in transitioning from concrete to more abstract and from managing 
visual representations to working with spaces that can not be visualized. Our position is that 
independently of the textbooks or the mode of teaching, such difficulties will emerge; thus, 
finding ways in which these difficulties can be readily identified could promote better teaching 
and learning. 

Literature Background 
The research on the learning of linear (in)dependence has focused on identifying students’ 

conceptual difficulties with the notion and its formal/abstract definition (Dorier, 2017; Hannah et 
al., 2013; Stewart & Thomas, 2007, 2009) and characterizing students’ ways of thinking about 
linear (in)dependence. Regarding conceptual difficulties, researchers have shown that, although 
students make mistakes when solving routine problems, their procedural understanding is 
sounder and less varied than their conceptual understanding of this notion (Celik, 2015; Parker, 
2010). To investigate ways of thinking, researchers have relied on a handful theorizations, and 
although they are named differently, the categorizations they produce are similar: abstract, 
algebraic, geometric (Ertekin et al., 2010; using Hillel’s [2000] descriptive modes); travel, 
geometric, vector algebraic, matrix algebraic (Plaxco & Wawro, 2015; using Tall and Vinner’s 
[1981] notion of concept image); embodied, symbolic, formal (Stewart & Thomas, 2007; using 
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Tall’s [2004] three worlds of mathematics); or synthetic-geometric, analytic-arithmetic, analytic-
structural (Dogan-Dunlap, 2010; Sierpinska’s [2000] three worlds of mathematics). Across these 
studies, there is consensus that visual, embodied, or geometric forms of thinking about linear 
(in)dependence can help students overcome their difficulties with its algebraic and formal 
modes. 

We focus on research addressing the problem of determining whether a set of vectors is 
linearly independent. Celik (2015) organized 186 student responses to this problem into 18 
categories. The most common student approach was finding scalars that satisfied the definition 
of linear (in)dependence. Bouhjar et al. (2021) categorized the reasoning of 255 about the 
problem into six strategies: comparing Reduced Row Echelon Form (RREF) to the identity 
matrix, identifying the number of pivots, writing one vector as a linear combination of others, 
solving Ax = 0, comparing the number of rows and columns, and establishing the existence of 
free variables. Because linear independence was defined in terms of the solution to the 
homogeneous vector equation corresponding to Ax = 0, solving Ax=0 and comparing the RREF 
were considered the more appropriate approaches. Analyzing student responses to the same 
problem, Dogan (2010, 2018) showed that when not using geometric ways of thinking, most 
students use one of the following: (1) find a linear combination among the vectors, (2) find that 
the only solution to a linear combination is the trivial solution, (3) find whether scalar multiple 
and/or adding the vectors gives the zero vector, or (4) find RREF.  

We complement this work in three significant ways. First, in addition to identifying student 
reasoning when learning how to solve the problem of determining whether a set of vectors is 
linearly independent, we study how their linear algebra textbook addresses it, which helps frame 
students’ work. Second, while researchers have investigated students’ various modes of thinking 
or types of reasoning, we only focus on one semiotic register: the symbolic vector-matrix. This 
allows us to fully investigate the difficulties of this representation, which is preferred for 
formalization to higher-order spaces. Third, although it is common to draw a line between 
procedural and conceptual understanding, we assume that these approaches are intertwined and 
can significantly inform one another. Therefore, we use a theoretical framework that bypasses 
analysis of conceptual and procedural understanding and instead focuses on the actions and the 
decision-making processes as students determine whether a set of vectors is linearly independent. 

Theoretical Framework 
Balacheff (2013; Balacheff & Gaudin, 2009) posits that meaning derives from the system 

that encompasses a milieu and a cognizant subject rather than being inscribed in either of them 
alone; meaning is created through the interactions between the milieu and the subject through the 
actions of the subject on the milieu and the feedback the milieu provides to the subject. His work 
responds to three needs related to investigating student thinking (1) explaining why particular 
held conceptions of a notion that appear contradictory to an observer are not to the holder of the 
conceptions; (2) describing the array of conceptions that can be held by learners, which are the 
result of historical and pedagogical process of concept development; and (3) understanding the 
connection between behaviors and knowing. Following this tradition, savoir (knowledge), the 
subject matter developed by a community, is differentiated from connoisseur (knowing, as a 
noun), the knowledge held by an individual, which can be incomplete or even mathematically 
invalid. For this reason, knowledge and knowings are tied to the problems in which they emerge. 
Thus, understanding the practices in which specific mathematical ideas are called for is the first 
step in understanding conceptions.  

26th Annual Conference on Research in Undergraduate Mathematics Education 582



The cK¢ model is a heuristic of sorts for identifying conceptions. It has four components: 
problems, operators, semiotic and representation systems, and control structures. Problems 
correspond to the “class of the disequilibria the considered conception is able to recover from” 
(Balacheff & Gaudin, 2009, p. 190); they emerge from the sets of practices in which individual 
concepts are called for. Operators refer to “actions on the milieu” including those needed “to 
transform and manipulate linguistic, symbolic or graphical representations” (p. 190). The learner 
receives feedback from the milieu as a result of their actions (action-feedback loop). The 
semiotic and representation systems are defined as the “linguistic, graphical or symbolic means 
which support the interaction between the subject and the milieu” (p. 190). Finally, the control 
structures refer to the “components supporting the monitoring of the equilibrium of the [Subject 
- Milieu] system” (p . 190), or said differently, the strategies that the cognizant subject relies on 
to decide whether they had solved the problem and that they had done so correctly. This model 
has been used to identify potential conceptions that could emerge as students work with different 
components in textbooks, such as the problems, the examples, or the textbook presentation with 
different concepts (functions, Mesa, 2004; differential equations, Mesa, 2010; angles, Mesa & 
Goldstein, 2016). We use this theorization to identify: (1) What conceptions of linear 
independence are promoted by examples in an interactive undergraduate linear algebra textbook? 
and (2) What control structures do students use when answering reading questions about linear 
independence embedded in these textbooks? 

Methods 
The data for this study come from a larger study that investigates undergraduate mathematics 

students’ and instructors’ use of interactive textbooks in calculus, linear algebra, and abstract 
algebra courses (Beezer et al., 2018). The linear algebra textbook, A First Course of Linear 
Algebra (Beezer, 2021), is designed to be a bridge-to-proof linear algebra course and it follows 
the definition-theorem-proof presentation style (Love & Pimm, 1996). The textbook is authored 
in PreText (https://pretextbook.org/), which allows the inclusion of interactive features. Reading 
Questions are one such feature designed to entice students into reading material before coming to 
class; students are supposed to answer a few of these short answer questions in each section 
directly in their textbooks before coming to class. Their responses are then collected and made 
available for their instructor in real-time so that instructors can learn about their students’ 
thinking before a lesson and alter their plans as needed. 

To investigate how the textbook content related to the chosen reading question in this section 
(Figure 1), we identified one example in the Linear Independence and Spanning Sets (LISS) 
section directly related to it (Figure 2). The example, named Linear Independence in M32 
(LIM32) is about the vector space of all 3x2 matrices and illustrates the work needed to decide 
whether two different sets of matrix vectors are linearly independent or dependent. We analyzed 
the example using Balachef’s (2013) cK¢ model. 

 
Figure 1: The first reading question in LISS 
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Figure 2: Example LIM32 in LISS 

Next, we analyzed 61 responses to the reading question in LISS from 61 unique students 
from four different sections during Fall 19, Fall 20, Spring 21, and Fall 21. All four instructors 
used the textbook and assigned the reading questions to their students. During analysis, we 
noticed that the operators were implied in most of the student responses and the steps taken were 
not outlined. However, the justification for their conclusion was usually explicit. Therefore, we 
solely focused on the control structures stated in the student responses. After coding all the 
responses individually, we met to compare the coding and resolve disagreements. Six of the 61 
students’ responses to the reading question were uninterpretable or did not have a stated control 
structure. We also looked for patterns when students used more than one control structure. 

Findings 

Inferred conceptions from Example LIM32 in the textbook 
Example LIM32 addressed the problem “where a given set of vectors is linearly 

independent” (see Figure 2). Relying on a 3x2 matrix, this example uses symbolic 
representations. We identified a total of five operators (OP) in the solution and two control 
structures (CS).  

The author starts by constructing the homogeneous system by equating an arbitrary linear 
combination of all vector matrices with a zero matrix (OP1: Construct homogeneous system). He 
then creates an augmented matrix for the system (OP2: Construct matrix) and performs a row-
reduced echelon transformation on the matrix (OP3: Row reduction). He proceeds to inspect the 
resulting RREF matrix. He first starts by asserting that “the system is consistent (we expected 
this since the system is homogeneous, Theorem HSC)”, then he states the observation that the 
RREF “has ݊ െ ݎ = 4 െ 2 = 2 free variables, namely ߙଶ and ߙସ” (OP4.1: Free variables, 
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feedback = “there are free variables”). This observation implies that “there are infinitely many 
solutions” (OP4.2: Number of solutions) which leads to the criterion “we can find a nontrivial 
solution.” This enables him to use the control structure Nontrivial (CS1) that alludes to the 
existence of nontrivial solutions to the homogeneous system to justify the claim that the given set 
is linearly dependent. Conversely, if the homogeneous system only has a trivial solution (which 
is implied by having one unique solution, as it can not have no solution because the system is 
consistent by default), then the given set is linearly independent. Even though “the mere presence 
of a nontrivial solution (…) is enough to conclude that S is a linearly dependent set,” the author 
also provides an optional operator, Find nontrivial scalars (OP5) by explicitly constructing a 
nontrivial relation of linear dependence. This suggests another control structure in solving this 
problem, namely Scalars (CS2) that justify the linear dependence of the set by providing a set of 
nonzero scalars that satisfy the homogeneous system. 

Control structures in student responses to LISS reading question 
Nontrivial (CS1) was observed in 14 responses (out of 55 total; e.g., “Linear independent, 

because it only contains the trivial solution”, #50). Despite OP7: Find nontrivial scalars being 
described as optional, Scalars (CS2) was observed in 10 responses (e.g., “This set is linearly 
dependent as there is the nontrivial dependence relation `a_1=-2, a_2=-1, a_3=1`.” #3). Here, 
because the student provided nontrivial scalars, we only coded the responses for Scalars and not 
Nontrivial.  

We identified 10 additional control structures in student responses, four of which were 
identified in at least six responses: FreeVar (CS3), NumSol (CS4), LinearCombo (CS5), and 
Pivots (CS6). FreeVar (CS3, 10 responses) and NumSol (CS4, 6 responses) could derive from 
the solution path demonstrated in the textbook. FreeVar alludes to the number or existence of 
free variables in the justification (e.g., “Set is linearly dependent. These can be modeled by a 
system of 4 equations which can be represented in a matrix that, when row-reduced, yields a free 
variable.” #17) whereas NumSol alludes to the number of solutions to the homogeneous system 
in their justification. For example, 

Following Example 2 of this section, if we form a general relation of linear dependence, 
find the corresponding system of homogeneous equations of each of the matrix entries, 
create the coefficient matrix and row reduce, we see that the resulting RREF of the 
coefficient matrix gives us a 4x3 matrix that has one free variable. This says that there are 
infinitely many solutions for the scalars in the relation of linear dependence, which 
further means (by Def LI) that the given set of matrices is linearly dependent. (#15)1 
The other two control structures—LinearCombo (CS5, 14 responses) and Pivots (CS6, 8 

responses)—were not directly related to the textbook examples. LinearCombo (CS5) alludes to 
the existence of linear combinations within the set or to finding the exact linear combination by 
expressing one vector matrix in terms of others (e.g., “The set of matrices are linearly dependent 
because 2[[1,3],[-2,4]]+[[-2,3],[3,-5]] = [[0,9],[-1,3]] thus making one vector a linear 
combination of the others.” #1) whereas Pivots (CS6) is assigned when the students’ responses 
suggest a comparison of the number of pivots with the number of vectors in their justification 
(e.g., “The set of matrices are linearly independent because there are less pivots than vectors.”). 

Other control structures were observed in at most three responses (“Others” in Figure 3). For 
example, students gave justifications: using the consistency of the homogeneous system (CS7: 

1 Note that this response also used FreeVar (CS3, “... has one free variable”). We could not find responses using 
only NumSol (CS4).  
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Consistency), using singularity of the coefficient matrix (CS8: Singularity), by reducing the 
vector matrix to identity (CS9: VectorMatrix=I), by reducing the coefficient matrix to identity 
(CS10: CoefMatrix=I), mentioning the shape of the coefficient matrix (e.g., number of rows or 
columns, number of vectors, number of equations; CS11: MatrixShape), and using a theorem, 
(Theorem Row-Equivalent Matrices represent Equivalent Systems, CS12: REMES).  

 
Figure 3: Distribution of control structures used in LISS-RQ1 (n = 55) 

Figure 3 is an UpSet plot (Conway et al., 2017; Lex et al., 2012) that summarizes the 
distribution of control structures in student responses. Among the 55 interpretable responses, 42 
used one control structure; nine used two control structures; and four used three control 
structures. FreeVar (CS3) and NumSol (CS4) was the most common combination, recorded in 
five of 13 responses with multiple control structures.  

Discussion and Conclusion 
Analyzing the control structures in student responses to reading questions allowed us to learn 

more about how students interpret the content in the textbook and potentially rely on other 
resources to tackle the problem of deciding whether a set of vectors is linearly independent. In 
the textbook example, the connection between the existence of free variables, the number of 
solutions to the homogeneous system, and the existence of nontrivial solutions are demonstrated 
sequentially, as if one needs to go through all these steps to answer the question. It is possible 
that the author wants to stay consistent with the definition of linear independence in the textbook 
(Figure 4) by ending the action-feedback loop with the criteria “whether there are non trivial 
solutions to the homogeneous system.” However, given that the conditions are equivalent 
mathematically (e.g., free variable(s) exist ֞ infinitely many solutions to the homogeneous 
system ֞ existence of a nontrivial solutions), students may have realized that is possible to 
justify linear dependence after carrying out either or both operations—Free variables (OP4.1) 
and Number of solutions (OP4.2)—and inspecting the feedback. This suggests that students may 
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see these three conditions as equivalent, rather than as a uni-directional line of reasoning as 
described by the author (free variable(s) exist ֜ infinitely many solutions to the homogeneous 
system ֜ existence of non-trivial solutions), which is an important learning objective and must 
be emphasized throughout the course.  

 
Figure 4: Definition of linear independence in section LISS. 

LinearCombo (CS5, 14 responses) and Pivots (CS6, 8 responses) were not mentioned in the 
textbook example. Independently, CS5 was more frequently observed than Nontrivial (CS1, 10 
responses), which was demonstrated in the example. We suspect that students may be relying on 
the textbook’s definition of the dependence relation (Figure 5) and not necessarily on the 
operator paths or the control structures presented in the textbook example. Likewise using Pivots 
might be justified by students making connections across sections as the connection between 
pivots and number of solutions is explained in section Types of Solution Sets (TSS), 17 sections 
before LISS. This implies a potential avenue for future research, which entails conducting a 
longitudinal examination of students’ responses to reading questions across different sections in 
order to observe how their conceptions evolve over time. 

 
Figure 5: Definition of linear dependence relation in section LISS. 
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More Relatable? Students’ Positioning of Undergraduate Teaching and Learning Assistants in 
Mathematics Courses Taught by Graduate Students 

 
Rachel Funk 

University of Nebraska-Lincoln 

Undergraduate teaching and learning assistants (UTLAs) can support learning and students’ 
sense of belonging in undergraduate, active learning STEM classrooms. One main goal of 
incorporating UTLAs into a classroom is to connect students to a peer-like instructional figure 
whom, it is assumed, students find more relatable. However, little is known about how UTLAs 
change the social dynamic of undergraduate mathematics classrooms, particularly those taught 
by an instructor of record who is a graduate student (GSI). I used positioning theory as a lens to 
understand how students locate UTLAs in instruction. I analyzed 411 undergraduate precalculus 
student responses to the survey question: “Do you interact differently with [the GSI] than [the 
UTLA]? If so, please explain.” From a qualitative analysis of responses, I found that students 
positioned UTLAs along three storylines that have different implications for the distribution of 
instructional duties between UTLAs and GSIs in an active learning environment. 

Keywords: undergraduate teaching and learning assistants, graduate student instructors, active 
learning, student perceptions 

For several decades, institutions have been hiring advanced undergraduates to provide 
academic and social support for their peers, with positive outcomes (Barrasso & Spilios, 2021; 
Dawson et al., 2014; Gafney & Varma-Nelson, 2008; Whitman & Fife, 1988). These efforts are 
grounded in the view that knowledge is socially constructed, peer-to-peer interactions are 
important, and that undergraduates, as “near-peers” (Whitman & Fife, 1988, p. 5) have a unique 
ability to support students (Gafney & Varma-Nelson, 2008; Otero et al., 2006). These near-peer 
teaching models can be particularly effective in acting as change levers (Laursen, 2019) to 
support the institutionalization of active learning in postsecondary education.  

Undergraduate teaching and learning assistants (UTLA; Jardine, 2020) are undergraduates 
specifically hired to facilitate active learning during lectures or recitations. The learning assistant 
model is perhaps the most prominent peer teaching model that specifically integrates near-peers 
into regular class time (Barrasso & Spilios, 2021; Otero et al., 2006). Research on this model 
suggests that it supports increases in students’ conceptual understanding, higher-order cognitive 
skills, satisfaction, and sense of belonging and decreases in failure rates (Alzen et al., 2018; 
Clements et al., 2022; Goertzen et al., 2011; Otero et al., 2010; Sellami et al, 2017; Talbot et al., 
2015). But the field is still emergent. With few exceptions (e.g., Stringer, 2023; Webb et al., 
2014) most research has been in physics (Barrasso & Spilios, 2021) and to date, focuses 
primarily on positive outcomes. This also holds true for other models that use UTLAs. There is a 
specific gap in research on UTLAs in classrooms led by graduate student instructors of record 
(GSIs). Indeed, most research focuses on classrooms taught by faculty. Given that a key assumed 
benefit of UTLAs is their positioning as a near-peer, and thus as a more relatable teaching figure, 
it is worth interrogating this assumption in a context in which the instructor is a graduate student.  

The purpose of this study is to explore how students perceive UTLAs in relation to GSIs 
within active learning mathematics classrooms, and what influences that perception. Toward this 
aim, I focus on the following two research questions: 
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RQ1: How did students in active learning precalculus classrooms position UTLAs versus 
GSIs in interactions with students? 

RQ2: Why might students have preferred to interact with either the UTLA or the GSI? 

Theoretical Framework 
Positioning theory has been used as a lens to understand the multiple ways that faculty and 

UTLA interact with one another. I argue that it can also illuminate the nature of student and 
UTLA interactions (Jardine, 2020). Positioning theory focuses on social interactions, specifically 
on “the ways in which people use action and speech to arrange social structures” (Wagner & 
Herbel-Eisenmann, 2009, p. 2). It specifically is useful in highlighting the assumed rights and 
duties of people in interactions. There are three mutually determining components of positioning: 
positions, speech acts - or communication acts as Herbel-Eisenmann et al. (2015) suggest - and 
storylines (Van Langenhove & Harré, 1999). Positions are a cluster of personal attributes which 
determine the distribution of rights (what one is owed) and duties (what one owes others) within 
a certain social milieu. These positions contribute to and are influenced by an unfolding 
storyline, which is likely also influenced by historically, personally, and culturally significant 
stories (Davies & Harré, 1999). Positions and storylines imbue meaning to the ways that people 
communicate in an interaction. Researchers interested in the positions taken up by participants 
may study communication acts for patterns to identify what storylines participants may be 
assuming, thereby illuminating how rights and duties are being distributed in an interaction.  

Although positioning theory often focuses on immanent, moment-by-moment 
communication acts, others have used positioning theory to analyze how people position 
themselves and others through narratives (Bamberg, 1997; Deppermann, 2013). Kayi-Aydar 
(2021) presents an analytic framework to support the identification of positioning in narratives. 
They suggest focusing on four components: a.) attributes and biological dimensions, b.) 
categorical membership, c.) storyline structure, and d) emotions. Attributes and biological 
dimensions include character traits and dispositions (e.g., creative, helpful). Categorical 
memberships refer to an individual’s membership in a cultural or identity group. Storyline 
structures can be identified through multiple means, including word choice, sentence structures, 
abrupt shifts in topic, and the introduction of new people. Emotion words include emotional 
states (proud) as well as words or sentences that express or imply emotion (e.g., “gross!”, “I can 
do it”). In the methods section I discussed how I used this analytic framework from Kayi-Aydar 
(2021) to help identify the storylines students implicitly followed when positioning UTLAs and 
GSIs through the narratives they shared in survey data. 

Methods 
This study is part of a larger case study of the UTLA role1 at a predominately white 

Midwestern University and focuses on data collected in fall 2021. UTLAs supported two 
precalculus courses: College Algebra and a combined College Algebra and Trigonometry course. 
All students in the sections of these courses were invited to participate in a survey for extra 
credit. In this survey, students were asked to directly position UTLAs in relation to GSIs by 
answering the question: “Do you interact differently with [the GSI] than [the UTLA]? If so, 

1 Locally, the UTLAs were called “LAs”; however, a defining feature of the LA model is that students receive 
pedagogical training throughout the semester (Otero et al., 2006). At Midwestern, UTLAs received pedagogical 
training at the beginning of the semester, but in fall 2021 a pedagogy course was not offered. Thus, Midwestern 
University did not implement the LA model as intended in fall 2021. 
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please explain.” There were 411 responses to this question. I coded each of these responses as 
“Difference," “No Difference” or “N/A” to capture perceived differences between student-GSI 
and student-UTLA interactions. In total, I classified 390 responses as either “Difference” 
(n=194) or “No Difference” (n=196) and included these responses in subsequent analysis. I read 
through these 390 responses and took analytic memos to capture factors influencing differences 
or similarities in student-GSI and student-UTLA interactions. Several responses were general 
(e.g. “we generally ask him [the UTLA] more questions than [GSI]”); however, 209 responses 
provided sufficient detail to be included in a secondary analysis. Criteria for inclusion were 
broad to include all responses that could illuminate why students perceived interactions with 
their GSI to be the same or different from interactions with the UTLA. For example, the response 
“No, I respect them both equally as an instructor for this course” was included because, although 
not overtly specific, this response suggests that the student positions the UTLA and the GSI in 
similar ways (positioning both “equally” as instructors), because they respect them as teachers.  

To identify how these 209 students positioned UTLAs and GSIs in their interactions with 
them, I developed codes informed by my memos about factors and Kayi-Aydar’s (2021) 
recommended strategies for identifying positioning in texts. These codes were: dispositions, 
labels/categorical membership, emotions, and perceived teaching quality. See Table 1 for a 
summary of these codes. I then analyzed each of the 209 responses with these codes, before 
engaging in an axial coding process to identify related themes on how students interacted with 
their GSI and UTLA. I structured these themes around storylines to highlight how students 
positioned UTLAs in interactions. I also coded these responses for student preference, as in, their 
expressed preference to interact with the GSI or the UTLA (GSI, UTLA, or Other). 

 
Table 1 Codebook for Identifying Storylines in SPIPS-M Data 
Code Definition  Example 

Dispositions Attributes personality traits and 
dispositions to a UTLA or GSI 

 “Yes, because [UTLA] seems 
more personable and available to 
help. I also like the way he 
explains things better.” 

Labels/ 
categorical 
membership 

Mentions membership in particular 
cultural groups or uses specific labels to 
describe the UTLA or GSI. This includes 
designations such as student, peer, 
woman, etc. as well as titles (e.g., 
professor). 
  

 “Yes, [UTLA] is closer to our 
age so we talk to him more 
often.” 

Emotions Mentions emotions arising from or during 
interactions with a UTLA or GSI. 

 “I can more easily say when I 
don't understand something to 
her and stop her while she's 
explaining - I feel a little rude to 
do that to Professor [GSI].” 

Teaching 
Quality 

Mentions a perceived teaching quality of 
the UTLA or the GSI. 

 [GSI] is better at answering 
questions. 
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Preference Use to capture explicit preferences for the 
UTLA or GSI (or to indicate no explicit 
preference) 
Sub-codes: UTLA, GSI, Other 

 Other: “No, [UTLA] has helped 
me more since he's closer to our 
table, but we all interact the 
same.” 

Findings 
In the findings section, I use positioning theory to share how students in active learning 

classrooms positioned UTLAs and GSIs in interactions with students. I present three major 
storylines students followed to position UTLAs and GSIs, particularly related to one another. As 
I introduce these storylines, I share quotations from students as well as the number of responses 
that the storyline draws from, as a proxy for understanding how prevalent the storyline was in the 
data. 

Storyline 1: UTLA ؆ GSI 
In this section I present evidence of one of three storylines: UTLAs and GSIs only differ 

superficially, and thus have the same duties in interactions with students. Evidence for this 
storyline came from responses in both the “Difference” and “No Difference” categories. 
Seventeen of the 194 “Difference” responses indicated that the only difference between their 
interactions with the UTLA versus the GSI was due to incidental factors, such as proximity or 
the initiative of the instructional figure. One student said “usually [UTLA] helps answer our 
questions first.” Another student said that they did interact differently with the UTLA, “just 
because [UTLA] sits closer to our table. [GSI] helps people on his side.” Although this student 
did perceive there to be a difference in how they interacted with the GSI versus the UTLA, their 
reasoning for this difference was tied explicitly to their location in the classroom, rather than an 
explicit preference for interacting with the UTLA or the GSI. Several “No Difference” responses 
specifically labeled the GSI and UTLA similarly, which in effect positioned the GSI and UTLA 
as occupying the same position (e.g., "No, I see them as both of my teachers who teach me the 
course material in and out of class, "No, I treat them both as my professor..."). Teacher, 
instructor, and professor were the most common labels in this group, but one student also 
referred to their GSI and UTLA as “guides” through “the journey of math class," and another 
student labeled them as “mentors” to help them learn. Overall, this storyline calls attention to a 
group of students that did not perceive there to be any meaningful differences between the 
UTLA or GSI. However, these students did not provide enough information in their responses to 
glean the perceived, shared, duties of the UTLA and the GSI. The following storyline elaborates 
on these duties. 

Storyline 2: UTLA ؆ GSI: Emotions, Dispositions, and Teaching Quality Matter 
When students shared a preference for interacting with either the UTLA or GSI, they often 

explained their preference along three themes: (a) emotions felt during interactions (b) perceived 
teaching quality and (c) UTLA and GSI dispositions. Student responses related to these themes 
suggest that students judged UTLAs and GSIs based on a similar set of expectations, which 
effectively positioned UTLAs and GSIs similarly. Thus, the second storyline I present is an 
elaboration of the first: UTLAs and GSIs hold similar positions, in which both have a duty to 
make interactions comfortable for students by having an inviting disposition and teaching 
content well. Below I elaborate on each of the themes that contribute to this storyline. 
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Forty students discussed the emotions they felt in interactions with UTLAs or GSIs. 
Typically, students brought up emotions to explain with whom they preferred to interact. For 
example, one student said:  

[GSI] makes me feel more comfortable because she is engaging and friendly. She 
explains the answer and why the problem works the way it does. She is encouraging and 
makes me feel like I can actually do the problem. [UTLA] walks around and occasionally 
gives the answer. However she is not very clear, and does not explain her thought 
process. She is reserved and does not make me feel confident in my answer.  

This student positioned their GSI as someone who makes them feel and capable of solving 
mathematics problems. In contrast, the student does not feel confident when working with the 
UTLA. Other students had similar sentiments, but about their UTLA. One student shared that 
they felt “more comfortable asking [UTLA] questions…because he makes sure I understand the 
problem.” In contrast, they found interactions with the GSI “confusing” and time-consuming. 
Most emotions centered on the level of comfort and confidence felt by students. It was also 
common for students to simultaneously evaluate the teaching ability of their GSIs and UTLAs 
when comparing how they interact with these teaching figures2.  

In sum, 101 students described the teaching quality of their GSI or UTLA. Out of these 
responses, 61 responses focused on the ability of the GSI or UTLA to explain content or answer 
questions to support their understanding. One student shared that their GSI’s approach to student 
questions (answering questions by asking questions) was ineffective. In contrast, they perceived 
their UTLA to be more adaptable to their learning needs: 

Yes, I believe that both are good instructors however, my interactions with [UTLA] are 
different because he takes my learning disability into account and bases his methods of 
teaching or explaining off of it. No offense to [GSI], I think he is a good teacher and 
works very hard but I cannot learn efficiently or effectively with his style of teaching. 

Often, students positioned UTLAs as someone who provided more thorough explanations, which 
they valued. However, some students shared a preference for their GSI’s explanations, usually 
for similar reasons as those cited by students who preferred interacting with their UTLA. For 
example, one student described a preference for interacting with their GSI because of their focus 
on understanding “why the answer is the answer it is," in-depth explanations, and 
scaffolding. Nine students also described how differences in the knowledge of the UTLA or the 
GSI impacted their perceptions of interactions with them. One student expressed a preference for 
interacting with the GSI because the “[GSI] knows what he is talking about usually and can help 
with homework and [UTLA] cannot.” Interestingly, a different student in the same section said 
“[UTLA] is usually more helpful with homework or workbook questions, so I ask him rather 
than [GSI].” Students focused primarily on how the UTLA or GSI explained content and 
answered questions, but some students did discuss the opportunities given to students to figure 
things out on their own and receive feedback. 

Fifty-two students attributed dispositions that a GSI or UTLA may have to describe their 
interactions with UTLAs and GSIs. Most of these students described preferring to interact with 
someone that had dispositions which promote interactions (e.g., nice, personable, trustworthy, 
relatable, talkative, friendly, approachable). For example, one student described their GSI as 
“more personable so it is easier to have a conversation with him.” However, students also shared 

2  These evaluations reflect student perceptions of their interactions with instructors and UTLAs; however, I 
purposefully am not making any claims about the quality of the teaching by UTLAs or instructors involved in this 
study. 
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dispositions that inhibited their interactions with either the UTLA or the GSI. These included 
dispositions likely to result in less communication with students (e.g., quiet, reserved) as well as 
traits that were likely to result in negative interactions (e.g., rude, complainer). Often students 
used antithetical dispositions to highlight differences between the GSI and UTLA: 

If I have a question about a problem that I really do not understand, I will ask [UTLA]. 
He takes the time to explain things and is super helpful and patient. [GSI] always seems 
like they are in a rush to get to the next table or does not understand/ listen to what you 
are trying to ask. 

Table 2 provides a complete list of the dispositions used to describe UTLAs and GSIs when 
students also expressed a preference for interacting with either the UTLA or the GSI. The 
dispositions students ascribed to UTLAs and GSIs, and the connection of these dispositions to 
their preference for whom they interact, suggest that students view it as the duty of the UTLA 
and the GSI to be inviting. 

 
Table 2. Dispositions Students Attribute to UTLAs and GSIs  
 
Preference LA Disposition GSI Disposition 

LA approachable (2); calm; communicator; 
easy-going; engaging; friendly (3);  

helpful (5)*; kind; patient; less 
intimidating; chill; outgoing; passionate; 

personable; relatable (3) 

difficult to approach; quiet; rude; rushed; 
straightforward; kind*; helpful*; passionate* 

  
  

GSI complainer; down to business; less 
engaging; reserved; nice* 

easy-going; encouraging (4); engaging (3); 
friendly; helpful (2); nice (2); 

not personal but knowledgeable; personable 
(4); talkative; relatable; trustworthy; 

understanding (2) 
 

Note. Each disposition was mentioned by one student unless otherwise noted (n) 
*Three students described both their UTLA and their GSI using similar dispositions (kind and helpful; passionate; 
and nice) while still expressing a preference for the other teacher figure. Preference was dictated by other factors 
(e.g., perceived teaching quality). 

Storyline 3: UTLA ؈ GSIs 
The prior two storylines focused on duties held in common between UTLAs and GSIs. 

However, several students described interactions with the UTLA and GSI that suggest they 
perceive their roles to be different, and at times, complementary. This is distinguished from the 
storyline above, in which students often expressed a preference for working with either the 
UTLA or the GSI based on a set of common criteria. I capture this idea as the storyline: UTLAs 
and GSIs have different duties in instruction. This storyline was the least prevalent; responses 
from 17 students form the basis of this storyline.  

Sometimes, but not always, students felt that interactions were more comfortable, easier, or 
less intimidating with UTLAs than with GSIs. Further, some of these students attributed this to 
belonging to the same community as the UTLA. For example, one student shared: 
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I don't act differently between [GSI] or [UTLA] but I feel slightly more comfortable with 
[UTLA] just because he's closer to my age. I feel that I can crack jokes and make silly 
mistakes when [UTLA] helps me and I'm not afraid to not know an answer. 
This student positioned the UTLA as someone that allows them to be mathematically 

vulnerable due to their closeness in age. Another student said it was “slightly easier” to talk to 
the UTLA because they were a “student,” whereas they viewed the GSI as a “professor.” Thus, 
some students preferred to interact with the UTLA because of the UTLA’s status as a peer, 
student, or because of their age. For others, gender played a role in how they perceived 
interactions with their GSI versus their UTLA. As an example, one student said: 

I'm a college girl and so is [UTLA], it's just easier for us to interact I think. And I can 
more easily say when I don't understand something to her and stop her while she's 
explaining - I feel a little rude to do that to Professor [GSI]. 
Another student said they interact “better with women than men, and with students vs. 

teachers” and that she felt she had “more in common” with the UTLA than the GSI. Both 
students preferred to interact with their UTLA because they shared assumed commonalities in 
gender, but also academic status as a student. Some students acknowledged similarities between 
themselves and the UTLA but did not connect this to a preference for interacting with the UTLA 
versus the GSI. As an example, one student said “I think I treat [UTLA] more as a peer because 
we are closer in age” but did not say that they preferred one over the other.  

Some students described intentionally interacting with GSIs and UTLAs for different 
purposes. One student explained that the “[GSI] is my professor so I come to her with more 
important or difficult questions. I also act more professional with her” whereas with their UTLA 
they are “much more relaxed” and ask “mundane questions.” Other students discussed 
approaching the UTLA for help on particular components of the course (e.g., homework) while 
approaching the GSI for different help (e.g., clarification on the notes).  

Discussion 
There were likely multiple storylines students drew from to make meaning of their 

interactions with the UTLAs and the GSI. However, these findings suggest that most students 
viewed, at one point or another, the UTLA as having the same position as the GSI in the 
classroom, and further judged the value of the UTLA according to their perceptions of what good 
teaching is, the dispositions of the UTLAs and GSIs, and how they felt in those interactions. 
Furthermore, although only a relatively small number of students did position UTLAs as 
providing a unique perspective or difference in instruction, for those students the impact of 
having someone they could relate to was impactful to their experience. Many of these students 
described similarities between the UTLA and themselves (i.e., categorical membership in the 
same communities) as supporting their desire to engage with the UTLA. Other students valued 
the different perspectives and expertise brought by the GSI and UTLA and used these differences 
to guide who they interacted with and for what purposes.  

A major storyline in the literature about UTLAs is that the UTLA are near-peers, and thus 
more relatable. Yet, several students positioned UTLAs in ways that run counter to this storyline. 
Further research could investigate more deeply how the identities of UTLAs and instructors 
influence students’ storylines about UTLAs, particularly regarding the near-peer assumption. 
Research could also investigate the tacit and explicit ways that mathematics instructors and 
departments position UTLAs in active learning classrooms and connect that to the storylines 
evoked by students. Such research would expand our understanding of the roles UTLAs can play 
in supporting active learning mathematics classrooms. 
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Analyzing an Instructor's Oral Follow-Up Assessment Strategies in an Introductory Proof Course 
 

 Nurul Wahyuni David Miller 
 Davis & Elkins College West Virginia University 

This study investigates the characteristics of an instructor's communication in one-on-one oral 
assessments for an introduction-to-proof course and how they impact student learning. It 
examines the instructor's strategies for evaluating the depth of students’ knowledge. Using 
thematic analysis, the study examines patterns in question types and their relation to revision 
quality and presentation fluency. Findings reveal that well-revised proofs prompted questions 
about comprehension and logical structure. For revisions needing improvement, questions guided 
students to establish correct proofs before addressing comprehension. The study also explores 
teaching elements resulting from the instructor's assessment practice using commognitive theory. 
These findings contribute to assessment practices, particularly in revision and oral assessment for 
introduction-to-proof courses. By highlighting communication's role in student learning, this 
research advances alternative assessment understanding in higher education mathematics. 

Keywords: revision, oral assessment, objective-based grading, commognition, proof feedback 

One crucial element of teaching practice revolves around the creation and execution of 
assessment methods. Gaining insight into how an instructor carries out his/her teaching practices 
can offer valuable insights into the implementation of a course. Given the significant role 
mathematical proofs play in the field of mathematics, evaluating proofs forms an integral aspect 
of teaching practice. Prior research has delved into how mathematics instructors assess students' 
written proof submissions using conventional point-based systems (Miller et al., 2018; Moore, 
2016). This study aims to extend our understanding by exploring oral assessment methods, 
specifically focusing on objective-based grading (OBG) in an introduction-to-proof course. 

The course that is being studied in this paper implemented oral assessments to evaluate proof 
revisions under the implementation of OBG. In OBG, student performance is typically assessed 
as pass or fail, based on near-perfect or perfect solutions, with minor errors sometimes 
overlooked. However, making a judgment about how serious a mistake is can be a challenging 
task when evaluating mathematical proofs (Miller et al., 2018; Moore, 2016). Oral assessment, 
however, has the advantage of clarifying whether a small mistake was indeed insignificant to the 
overall mastery of the material through follow-up questions. 

Studies highlight the advantages of oral assessments for evaluating students' proof skills 
(Soto-Johnson & Fuller, 2012; Stylianides, 2019) and reveal that when students orally present 
their proofs, they often offer more comprehensive explanations, resulting in stronger proof 
outcomes (Soto-Johnson & Fuller, 2012; Stylianides, 2019). Other studies have discussed the 
implementation and outcomes of the use of OBG (e.g., Cooper, 2020; Iannone & Vondrová, 
2023; Prasad, 2020; Zimmerman, 2020), and have discussed the benefits of oral assessment (e.g., 
Iannone et al., 2020; Iannone & Simpson, 2012, 2015). However, there has been limited research 
on oral assessment with OBG and this study will inform readers about the instructor’s 
communicative approach to the implementation of oral assessment in an introduction-to-proof 
class using OBG. The main research goals of this study are: (1) What are the discursive 
characteristics of the instructor’s oral communication during oral follow-ups when grading 
students’ proof productions? and (2) What is the significance of the instructor’s communication 
practices in the oral follow-up assessment? 
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Literature Review 

Objective-based Grading 
The traditional grading system still dominates higher education mathematics in the U.S., 

employing partial credit for each problem submitted (Nilson, 2015). There is, however, an 
alternative grading approach known as OBG, also referred to as mastery-based grading or 
standard-based grading. Under this system, the course is organized around a set of specific 
objectives that students must successfully achieve. Students are provided with multiple chances 
to demonstrate their comprehension for each objective and any initial failure to pass an objective 
does not impact their overall grade; only the final outcome is counted (Campbell et al., 2020). 

Studies consistently demonstrate that OBG offers numerous advantages for both students and 
instructors (Knight & Cooper, 2019; Linhart, 2020; Zimmerman, 2020). Students benefit from 
reduced testing anxiety through multiple attempts, learning from mistakes, fostering autonomy, 
and prioritizing learning over points. This approach can significantly impact the depth of their 
understanding and intrinsic motivation (Linhart, 2020). Instructors, on the other hand, find 
satisfaction in streamlined grading processes without the need for complex rubrics, appreciate 
their students' increased effort and improved quality of work, gain insight into students' 
capabilities and understanding through objective-based assessment, and experience enhanced 
purposefulness in their teaching (Knight & Cooper, 2019; Prasad, 2020). 

 
Proof Evaluation Practices 

Teaching goes beyond classroom instruction; as Moore (2016) noted that when professors 
assess students' proof productions, they effectively engage in teaching by making corrections, 
providing comments, and discussing students' thought processes to enhance their proof-writing 
skills. Evaluating proof productions is a challenging aspect of teaching, influenced by individual 
judgments of the seriousness of proof errors, student comprehension, and perceived abilities, 
leading to considerable scoring variability among professors, especially in traditional point-based 
grading (Miller et al., 2018). However, OBG minimizes this variation, resulting in more 
consistent grading outcomes, except in cases when the seriousness of proof errors is disputed. 

Mathematicians grade students' proofs based on several aspects, such as logic, clarity, 
fluency, understanding (Moore, 2016), and perceived ability (Miller et al., 2018). Some 
professors also focus on linguistic and academic rules, which students often overlook (Lew & 
Mejía-Ramos, 2019). Surprisingly, students and professors have contrasting views about 
language conventions on proofs. For instance, students, regardless of language skills, do not 
realize the importance of correct academic English in proofs. Mathematicians emphasize 
complete sentences, with most deducting points for incomplete ones, while only a few students 
find this unconventional. In addition, professors and students have varying opinions about 
overusing variables in proofs (Lew & Mejía-Ramos, 2019). 

Oral assessments may have distinct evaluation criteria compared to written assessments, 
especially when students prepare written solutions in advance without supervision. In oral 
assessments, follow-up questions are crucial for evaluating a student's understanding, making the 
grading criteria more complex (Iannone & Simpson, 2012). This study aims to contribute to 
mathematics education literature by shedding light on the evaluation of students' proof 
productions in oral assessments, addressing a gap in the existing literature. It will provide 
insights for both researchers and professors in higher education mathematics on the practice of 
oral assessments and proof feedback in higher education mathematics. 
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Theoretical Framework  
From a commognitive perspective, human actions fall within specific discourses, each 

defined by its objects, communication methods, and participant rules, thereby establishing 
distinct communities of communicators (Sfard, 2008). For example, discussions centered on 
mathematics form a mathematical discourse. Within mathematics, a discourse is built upon 
structured activities known as mathematical routines, which Sfard (2008) defines as "a set of 
metarules that describe a repetitive action" (p. 208). These routines serve the purpose of 
generating narratives about mathematical concepts and objects. 

Kontorovich (2021) introduced the concept of the didactical discourse on proof (DDP) to 
encompass the discourse of the teaching and learning of mathematical proofs. DDP has two key 
aspects: the pedagogical aspect and the mathematical aspect (Kontorovich, 2021). For the 
pedagogical role, DDP guides educators on what and how to teach in a proof course. For the 
mathematical aspect, participants must adhere to community-accepted rules for mathematics 
when discussing mathematical proofs. The primary goal of this research is to uncover patterns of 
DDP within the context of assessing mathematical proof productions through oral assessments.  

He also examined routines in feedback practices using DDP and the commognitive 
framework to analyze proof feedback in a graduate topology course, focusing on comments and 
point deductions on graded assignments. He found that fully-scored proofs received comments 
related to mathematical concepts (mathematizing), while reduced-score proofs often received 
comments addressing the student personally (subjectifying). Point deductions were always linked 
to issues concerning the proof's idea, but not its representation (Kontorovich, 2021). 

Viirman (2014, 2015) explored routines among mathematical instructors during lectures. 
Viirman (2014) discovered variations in lecture routines, including construction routines 
(common to all instructors, involving concept definitions and diverse examples) and 
substantiation routines (related to theorem proving, with varying emphasis). Viirman (2015) 
listed three key didactical routines: explanation routines for clarifying concepts, motivation 
routines to engage students, and question posing routines (featuring rhetorical questions). 

The didactic practices of mathematics instructors remain relatively unexamined. There is 
very little (or no) existing research that delves into the routines involved in the execution of oral 
assessments within higher education mathematics courses. This study aims to contribute to the 
body of literature in mathematics education by exploring the routines employed by mathematics 
instructors when conducting oral assessments to evaluate mathematical proofs.  

 
Methods 

Context 
The research was conducted in an introduction to proof course, involving four students and 

an instructor with pseudonyms of Amy, Clara, Dana, Gina, and Dr. Jones. The study focused on 
evaluating proof productions on quizzes, following a specific process. Initially, students 
completed a closed-book, in-person written quiz in which each learning objective was graded as 
a success, growing, or not assessable. Only a grade of success counted as passing and contributed 
to the final grade. For students who did not obtain success on certain learning objectives on the 
quiz, they had the opportunity to revise their solutions and present them in a one-on-one virtual 
oral follow-up assessment within a week of receiving feedback. During this oral assessment, Dr. 
Jones could ask additional questions related to the presented proofs. 
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Data Corpus 
The data for this study was comprised of: (a) original proof productions by students, (b) 

feedback from the instructor, Dr. Jones, (b) students' revised written proof productions, (d) 
recordings of the oral follow-up meetings, and (e) interviews with Dr. Jones. The study 
concentrated on proof constructions, assessed on Quizzes 2 through 5. Four participants (Amy, 
Clara, Gina, and Dana) presented 4, 10, 10, and 3 revised proofs, respectively, in some of the 
oral follow-up assessment meetings. 

The interviews with Dr. Jones were conducted twice through Zoom using a semi-structured 
format, covering various themes. The main topics discussed during the interviews included Dr. 
Jones' teaching background, course structure, quiz assignment procedures, oral follow-ups, 
written feedback practices (both general and specific), and the implementation of mastery 
grading. The first interview with Dr. Jones took place at the end of the semester, and the second 
interview occurred approximately three months after the course had concluded, focusing more on 
the implementation and outcomes of mastery grading in the course. 

Analysis 
The types of follow-up questions were analyzed in relation to the quality of revised proof 

productions. The revised productions were categorized into one of the following: successful 
revised proof production with no improvement or correction suggested by Dr. Jones - coded as 
P1; revised proof production that is correct but could be improved by adding more information, 
such as additional details or explanations, or by refining some phrases - coded as P2; revised 
proof production that has one or more mathematical errors – coded as P3. 

The oral follow-up recordings were the main data for this study. The thematical analysis 
coding was conducted using MAXQDA software for qualitative analysis. Because of our interest 
in depicting Dr. Jones' communication routines, the codes were developed to emphasize the 
aspects of communication in Dr. Jones’ phrases. We particularly focused on capturing on the 
type of communication, rather than the specific content of the communication itself. For 
instance, when Dr. Jones inquired, “Why did you change the quantifier?” the code used is 
“question on changes” rather something related to quantifier. This approach allows us to center 
the analysis on the communication aspects rather than the mathematical aspects. 

Results 
The analysis revealed that Dr. Jones employed two distinct approaches when interacting with 

students based on the quality of the revised proof productions (P1, P2, or P3): the routines when 
encountered with correct narratives and reconstruction of an alternate narrative. 

 
Routines when Encountered with Correct Narratives 

There are two possible cases of Dr. Jones’ actions when encountered with correct proof 
productions: the proof was instantly endorsed without any follow-up questions or there was an 
examination of the students’ comprehension of the proof presented. When questions were posed, 
they were usually centered around logical aspects of the proof or the rationale for changes in the 
proof. 

From a total of 27 proof presentations in the oral follow-up sessions, 11 of them were 
categorized as P1, which means the revised proofs had no issues. This categorization was based 
on the nonexistence of Dr. Jones’ comments for disapproval or comments on improvement. 
Among these 11, there were five performances that received successes instantly. During the 
interview with her, Dr. Jones pointed out two important aspects describing the circumstances that 
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do not require follow-up questions. The first aspect is the authenticity of writing. This is 
important because the nature of the assessment allows the students to access any resources 
available to them. However, they are expected to be able to write it in their own words. The 
second aspect is the fluency of their verbal communication in which the presentation of the proof 
should sound very natural. Therefore, a good quality of mathematical verbal communication is 
valued not only in terms of its validity, but also the fluency of the explanation part. 

In most cases, error-free revised proof productions were subject to scrutiny by Dr. Jones. 
This was done to ascertain whether students had indeed learned and understood the material that 
they presented. Dr. Jones mentioned that “the oral follow-up gave me that option to figure out if 
they just copied it from somewhere or if they had really learned something.” The routines of Dr. 
Jones implemented when she encountered an error-free proof productions can be distinguished 
into two types of inquiry: Question/prompts related to the logical structure of the proofs and 
questions/prompts related to the changes from the originals to the revised versions of the proofs. 

Question/prompts related to the logical structure of the proofs. Dr. Jones collected 
information about the students' logical structures through implicit and explicit methods. In the 
explicit approach, Dr. Jones would request students to explain the reasoning behind their proof 
structures. Here's an illustration of how this explicit examination of the proof's logic works. 

Gina revised her proof for the following objective: “I can construct a correct proof of a 
conditional statement involving sets.” The statement to prove was as follow: Let 𝐴, 𝐵, 𝑉, and 𝑊 
be sets. Prove that if 𝑉 ⊆ 𝐴 and 𝑊 ⊆ 𝐵, then 𝑉 ∩ 𝑊 ⊆ 𝐴 ∩ 𝐵. After Gina presented her revised 
proof for this objective, Dr. Jones asked her the following question, “So, what’s the key word 
that tells us ultimately that definition of subset? That key word that’s allowing us to conclude V 
intersect W is a subset of A intersect B?” Gina replied, “The key word?”, to let Dr. Jones know 
she did not understand the question. Dr. Jones then clarified by stating, “So, somewhere in your 
proof you’re saying by definition of subset. So, what is that definition of subset? Where’s that in 
your proof that it’s allowing you to make that conclusion?” 

Dr. Jones questioned Gina’s understanding of how the definition of "subset" influenced her 
proof's logic. Gina struggled to identify this crucial element in her proof. After some discussion, 
Dr. Jones clarified further, “that's the thing [circling the word implies] that actually allows you to 
make this conclusion [underlying 𝑉 ∩ 𝑊 ⊆ 𝐴 ∩ 𝐵] at the end. Because if you had written that as 
an and then you will be talking about intersection […]. So, this is [pointing out the word 
implies], this word is what's telling us that you're using this definition [the definition of subset].” 

In the implicit approach, Dr. Jones questioned the student about a statement's definition 
without directly connecting it to the proof. This allowed Dr. Jones to assess the consistency 
between the applied definition and the student's narrative. In the following discussion, Dana 
presented her revised proof for the statement: “If 𝐴 ⊆ 𝐵, then 𝐴 − 𝐶 ⊆ 𝐵 − 𝐶". After Dana 
presented the proof, Dr. Jones asked, “Alright. Here's two statements [wrote "𝑥 ∈  𝐴 and 𝑥 ∈  𝐵" 
and “if 𝑥 ∈  𝐴, then 𝑥 ∈  𝐵"]. Are those two statements the same or are they different?” Although 
Dana accurately revised a proof that relies on the concept of a subset, she struggled to correctly 
identify the definition of a subset. Dr. Jones then provided the correct information in which she 
explained, “So, this one is the definition of subset [pointing to the second one]. We're talking 
about we've got a set A and it's inside of some larger set B. But the first one, we're talking about 
our two sets don't necessarily have to be nested and things are just in between them. So, this is 
the definition of intersection [pointing out to the first one].” This exchanged suggests that Dana 
might not have had a complete grasp of the logical structure underlying her written proof. 
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Dr. Jones did not immediately allow Dana to falter; instead, she offered her another 
opportunity through a series of different questions. Dr. Jones then tried to delve into Dana's 
logical structure more directly on another proof by asking, “How do you know to start with x is 
an element of A minus C?” During the second round of questioning, Dr. Jones found Dana's 
response satisfactory and deemed it a success and choose to provide further clarification after 
acknowledging the student's success, emphasizing the answers to the questions. 

Questions/Prompts Related to Changes Made. On many occasions, success in the follow-
up meeting requires students to not only construct a correct proof but also explain why the initial 
proof was rejected. This ability is crucial for meeting the learning target. Failing to articulate the 
errors in the original proof, even if the revised one is correct, can still result in failure.  

This example illustrates how Dr. Jones probed a student’s understanding on the changes she 
made from the original to the revised proof. Gina presented her revised proof for the following 
problem: “Let A, B, and C be sets. Prove that 𝐴 × (𝐵 ∩ 𝐶) = (𝐴 × 𝐵) ∩ (𝐴 × 𝐶). " In Gina's 
initial proof, she had notational problems, like omitting parentheses when denoting an element in 
the Cartesian product. However, she successfully rectified this issue in her revised proof, 
prompting Dr. Jones to pose the question, “Also, things like parentheses around that x, y, why is 
that important?” A student who presented a revised proof correctly may still not achieve success 
if she cannot provide a clear explanation for why the alterations were required. 

Reconstruction of an Alternative Narrative. When a student presents a correct proof 
production, Dr. Jones may make a point to highlight an alternative version. The alternative 
version can involve a minor modification or substantial changes to student’s version of the proof. 
Among the data collected, there were three instances when Dr. Jones constructed alternative 
proof productions. The construction process was conducted through a dialogue with the student 
in which Dr. Jones guided the process. For example, Dr. Jones illustrated that a proof by cases 
(with even and odd integers cases) could be simplified to a straight-forward direct proof. 

 
Routines when Encountered with a Flawed Narrative 

When a student presented a revised proof that had an error, Dr. Jones provided her with 
prompts and questions to rectify the issue. The observed flaws in students' revised proofs fell 
into two categories: those needing additional information or details (P2) and those that were 
mathematically or logically incorrect (P3). 

Eliciting Missing Information. When gaps in the proof arose from missing information, Dr. 
Jones prompted students to fill in that missing information. In one of Clara's revised proofs, there 
was a lack of crucial details regarding the requirement for a valid fraction, specifically that the 
denominator should not be zero. The excerpt below shows how Dr. Jones guided Clara to 
provide more details about the object's properties used in her proof. Dr. Jones began with the 
question, “So, those integers 𝑎 and 𝑏 that you’re using to make up as a rational [number], is there 
any other condition that should be there?” Clara replied, “Yeah, that they are co-prime, right?” 
Dr. Jones then stated, “Co-prime, I’m less concerned about that” and Clara exclaimed, “Okay, 
well, 𝑏 is not zero.” Dr. Jones replied encouraging, “Yeah, that one is kind of important.”  

Exploration of Errors. When a student presented a revised proof that had some 
mathematical errors, Dr. Jones would invite the student to discuss the revision. An example of 
this was shown in Amy’s revised proof presentation of the following statement: “Prove: For all 
integers 𝑥 and 𝑦, if 𝑥 + 𝑦 is odd, then 𝑥 ≠ 𝑦. " In her revised proof, Amy initially wrote the 
contrapositive statement as, "There exist some integers 𝑥 and 𝑦 such that 𝑥 = 𝑦.” In response to 
this alteration, Dr. Jones posed the question, "Why did you change the quantifier?" This inquiry 
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prompted Amy to reconsider her choice regarding the quantifier. After careful thought about the 
quantifier and statement, Amy concluded that altering the quantifier was not necessary when 
applying the contrapositive. Dr. Jones confirmed the validity of Amy's explanation regarding the 
equivalence of the contrapositive statement. In summary, when a student struggled fixing a proof 
error, Dr. Jones would start the proof reconstruction process, which might include verbal 
guidance or an explicit conversation-based reconstruction. 

Summary and Discussion 
Dr. Jones' approach to assessing oral proof presentations combined flexibility and 

thoroughness. Dr. Jones occasionally granted success without follow-up questions for authentic 
and fluently presented valid proofs. However, she frequently asked follow-up questions to 
confirm understanding, even when proofs appeared correct These queries focused on the logical 
structure or the reasoning behind revisions. These inquiries helped gauge student comprehension, 
considering any resources were allowed. When alternative solutions are available, Dr. Jones 
would highlight this and occasionally provide explanations or walk students through the proof's 
reproduction. She also gave students opportunities to correct errors through questions or prompts 
to extract missing information or initiated discussions to encourage self-identification and 
correction of the proof errors. 

Oral follow-up questions revealed a key insight: constructing a correct proof does not 
necessarily imply a deep grasp of the foundational concepts it relied on. These thought-
provoking questions played a pivotal role in preparing students to actively participate in 
discussing the "why" behind the proof, delving into the rationale and reasoning that support their 
revisions and the validity of their proofs. This active engagement, in which students defended 
their arguments, fostered an increased awareness of the meta-discursive rules inherent in 
constructing a mathematical proof. Encouraging students to articulate and justify their thought 
processes helped them understand the fundamental principles and logical connections in 
mathematical proofs, improving their overall communication skills in this context. 

Dr. Jones' assessment method aligns well with the conceptualized commognitive process “of 
becoming able to have mathematical communication” (Sfard, 2007, p. 573). Through revisions 
and oral presentations, students not only share their proofs but also actively engage in the written 
and oral communication to deepen their understanding of proofs. This study highlights the 
effectiveness of oral follow-up assessments in improving communication skills and shifting the 
focus from acquiring knowledge to expressing mathematical concepts sufficiently. 

The act of verbally explaining ideas during the oral follow-up sessions allows students to 
become involved in an authentic mathematical conversation which promotes mathematical 
discourse and think critically when responding to questions related to their proof productions. 
Moreover, through follow-up questions, the students will learn that they need to be responsible to 
defend every statement presented in their proof narrative. This promotes the metalevel learning 
on substantiation in their mathematical proofs. 

As a final remark, we observed that this assessment method also offers a valuable teaching 
and learning platform, allowing Dr. Jones to guide students in error identification and proof 
reconstruction on a one-to-one basis, which is highly effective for learning. Beyond assessing 
proof productions, the oral assessment encourages mathematical discourse and discussion, 
promoting deeper understanding and knowledge enrichment. Furthermore, it prioritizes proof 
comprehension over construction, with discussions shifting from correcting construction errors 
to probing comprehension when students present correct proofs, thereby facilitating a more 
comprehensive assessment of students' mathematical understanding. 
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The Problems with “Any” and “All”: How Language Impacts Student Meanings for Quantified 
Variables 

 
Morgan E. Sellers 

Colorado Mesa University 

This study investigates undergraduate students’ meanings for quantified variables, and how the 
language of a mathematical statement impacts their meanings. I conducted 3-day exploratory 
teaching interviews with eight students from transition-to-proof and advanced calculus courses 
(four from each course). Over the course of the three days, I presented students with a variety of 
statements from calculus in order to test how both and language and mathematical content might 
impact students’ meanings for quantified variables. I found that students’ meanings did often 
change across mathematical contexts that contained different language. In particular, the words 
“any” and “all” were found to lead some students to use different meanings for quantified 
variables in calculus statements.  

Keywords: quantification, quantifiers, meaning, calculus, mathematical language 

Recently, many have called others to focus on students’ logic in elementary calculus courses 
(Case, 2015; Dawkins & Cook, 2017; Sellers et al., 2021). This is because many calculus 
statements are complex mathematical statements (Sellers, 2018), i.e., involving quantified 
variables and logical connectives. Yet, when investigating student quantifications of individual 
quantified variables, some students, in particular calculus students, use different quantifications 
for individual quantified variables, if they quantify at all (Sellers et al., 2021). 

Furthermore, other researchers have called for more investigation into students’ meanings for 
quantified variables as related to the specific language and grammar given in statements across 
different mathematical domains (Shipman, 2013; Vroom, 2022). As such, students’ 
quantifications of the variables in these statements as related to the specific language given in the 
statements is important to investigate if we want to help them understand calculus ideas. 

Others have noted that students’ logic might vary from one mathematical context to the next 
(Dawkins & Roh, 2020; Dubinksy & Yiparaki, 2000; Epp, 1999; Shipman, 2013). Thus, there is 
a need to compare students’ meanings for quantified variables across different mathematical 
contexts which involve different language and grammar.   

This study is part of a larger study investigating both students’ interpretations for quantified 
statements from calculus and their negations of these statements (Sellers, 2020). In this paper, I 
focus on additional information gleaned regarding students’ meanings for quantified variables as 
related to the language given across different statements. Specifically, I focus on findings that 
extend the work of Sellers et al.’s (2021) framework for students’ meanings for quantified 
variables and continue to address the following research question: How does language impact 
student quantifications across different mathematical contexts in calculus? 

Literature Review 
Several researchers have noted the complexities of interpreting quantifiers specifically in 

complex mathematical statements (David et al., 2020; Dubinsky et al., 1988; Selden & Selden, 
1995; Sellers et al., 2021). Furthermore, some have posited that interpreting quantified 
statements may be inherently difficult for students due to the different purposes for quantifier 
words and logical connectives in mathematics and colloquial English (Epp, 1999; Dawkins & 

26th Annual Conference on Research in Undergraduate Mathematics Education 608



Cook, 2017; Grice, 1975; Roh, Lee, & Tanner, 2016). For example, if I state the following 
universally quantified statement, “Every book on the shelf is French,” I colloquially infer there is 
at least one book on the shelf, whereas the statement could be vacuously true in propositional 
logic (Epp, 1999; Johnson-Laird, et al., 1989). Even more striking, there may be cases where the 
meaning of quantifier may be completely different in everyday language than in mathematics. 
Shipman (2013) concluded that students thought “unique” meant “unequaled” instead of “sole,” 
and conjectured that her students’ use of the word may have been attributed to the colloquial use 
of the word. Roh, Lee, and Tanner (2016) found that students assumed the article “a,” attached to 
the existential quantifier “there is,” referred to one single quantity.  

While these previous works do suggest that colloquial language impacts students’ reasoning 
in the mathematics classroom, I do not mean to suggest that instructors should utilize formal 
semantics or symbolism in the presentation of logical rules exclusively. Stylianides, et al. (2004) 
found that elementary majors’ ability to reason about the truth of statement was higher in verbal 
cases than symbolic ones. Thus, verbal representations of mathematical ideas are not necessarily 
to be avoided; rather, an awareness of these colloquialisms may help teachers address these 
inconsistencies in natural language and mathematics as the need arises in their classrooms.  

Theoretical Perspective 
The findings from this study use and extend Sellers et al.’s (2021) framework for students’ 

meanings for quantified variables. Similar to Sellers et al. (ibid), I approach this study from a 
constructivist (Glasersfeld, 1995) perspective. Thus, my focus is on individual students’ 
meanings for quantified variables in a variety of calculus statements. A meaning is a scheme, and 
resides in a student’s mind (Piaget, 1977; Thompson, et al., 2014).  

Sellers et al.’s framework for student quantifications. In Sellers et al.’s (2021) framework 
for students’ meanings for quantified variables (i.e., quantifications), the authors previously 
identified five different quantifications. Each of meanings for quantified variables (i.e., 
quantifications), abbreviated MQ1-MQ4 and NQ, are detailed below. MQ1-MQ4 are not 
intended to be developmental; they are only numbered for convenience of discussion.  

MQ1 and MQ2 are indicative of meanings similar to conventional meanings for “there exists 
and x” and “there exists a unique x,” respectively. Students using MQ3 in a specified moment 
chose a value for x from their chosen domain of discourse and determined whether or not their 
chosen value for x satisfies the predicate. They then repeated (or imagined repeating) this mental 
action by checking the predicate for multiple values of x until they exhausted all the elements in 
the domain of discourse.  

While MQ1-MQ3 are akin to mathematical meanings for the existential, existential unique, 
and universal quantifiers, MQ4 does not align with mathematical convention. Students using 
MQ4 chose or looked at a value of x and then checked the predicate only for this selected value. 
These students sometimes chose another value of x and checked the predicate for this other 
value, but these values were not strategically selected, but spontaneously selected.  

Finally, there were other moments where students did not quantify at all, and thus were 
described as using no quantification (NQ). These students appeared to search for the domain of 
discourse for a variable, but they did not appear to check the predicate for any values of x. 
Students that used NQ did not state that they are searching for a specific number of elements of x 
to satisfy the predicate, but instead interpreted the statement as if it were true. Furthermore, these 
students simply confirmed what they think the predicate means to them, rather than checking 
whether or not the values satisfy the predicate.  
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Methods 
In order to further investigate students’ meanings for quantified variables in calculus 

statements, I interviewed four students currently in transition-to-proof courses and four students 
from advanced calculus or above as part of a larger study.1 I chose these students because they 
had already completed an entire calculus sequence, and had thus, been exposed to all of the 
necessary concepts in the statements. These students were selected from a pool of 24 students 
based on a survey used for theoretical sampling (Patton, 2001). Selected students participated in 
three exploratory teaching interviews (Castillo-Garsow, 2010; Moore, 2010; Sellers, 2020; 
Thompson et al., 2014).  

Each exploratory teaching interview (ETI) lasted approximately 1-3 hours each, for a total of 
5-8 hours, depending upon student responses. During these interviews, students were presented 
with 6 open statements and graphs of 4 functions and then asked to justify why the statements 
were true or false for each individual function. The six open statements are presented in Table 1, 
and the four graphs which were given are shown in Figure 1. 

Table 1. Statements given in ETI 1 & ETI 2. 
Statements Statement Type 

Statement 1 There exists a real number c in [-1, 8.5] 
such that for all real numbers r in [-1, 8.5], f(r) £ f(c). 

 

Statement 2 For all real numbers w in [-1, 8.5], there 
exists a real number k in [-1, 8.5] such that f(w) £ f(k). 

 

Statement 3 There exists a real number m such that for 
all real numbers p in [-1, 8.5], f(p) £ m. 

 

Statement 4 For all real numbers d in [-1, 8.5], there 
exists a real number z such that f(d) £ z. 

 

Statement 5 There exists a real number t in [-1, 8.5] 
such that for all real numbers v, f(t) £ v. 

 

Statement 6 For all real numbers j, there exists a real 
number q in [-1, 8.5] such that f(q) £ j. 

 

 

 

Figure 1. Graphs presented in first two exploratory teaching interviews. 

The graphs of functions shown in Figure 1 provided opportunities for me to ask students to 
explain their thinking about the truth values of the given statements in more detail. Furthermore, 
these graphs were vetted along with Statements 1-6 in pilot studies and were found to be 
beneficial tasks for eliciting distinctions in student quantifications. Consider the Extreme Value 
Theorem (whose conclusion is shown in Statement 1). Since the sinusoidal graph (Function 2) 
has two values of the input that correspond to the same maximum value, some students in pilot 
studies stated that Statement 1 is false for Function 2 if they quantified “there exists” as “there 
exists a unique” (i.e., used MQ2 instead of MQ1).  

In the final interview, I presented students with several alternative statements to test how 
well their quantifications transferred to different mathematical contexts. Additionally, I would 

                                                
1 The larger study focused on both students’ interpretations and their negations of complex mathematical statements. 

∃x1∀x2

∀x1∃x2

∃y∀x

∀x∃y

∃x∀y

∀y∃x
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often change the quantifier language of these statements and ask interviewees if this language 
impacted their meanings for the statement. One of these statements is shown below: 
Statement A: For all differentiable functions f on [a, b], there exists a c in [a, b] such that f’(c)=0. 
Statement A (Alternative): Suppose f is any differentiable function on [a, b]. Then there exists a c in [a, b] 
such that f’(c)=0. 

Data analysis. While interviews were being conducted, I made initial models for students’ 
quantifications and interpretations for each statement using Sellers et al.’s (2021) framework and 
also recorded students’ evaluations for each statement across different moments. After each 
student’s data was collected, I completed both a transcription and content log for each student 
interview. Initial open coding involved determining how to split my data into relevant moments 
(Sellers et al., 2021) where a student explained their interpretation of a statement or explained 
why a statement was satisfied. I determined that a new moment began whenever a student was 
presented with a new question or task, the student changed their evaluation of a statement, or if 
the student provided a new interpretation of a statement.  

Once relevant moments were identified, I conducted iterative coding using Sellers et al.’s 
(2021) framework, as I could, for each student one at time, moment-by-moment, until I had 
codes that explained student quantifications across all moments for all students. However, a new 
code emerged in this process of trying to best explain student quantifications. I then re-observed 
students’ words, gestures, and markings on graphs in order to characterize their mental actions 
that are associated with their quantifications until all the codes I made had explanatory power 
across all moments for all students in the study.  

Finally, I used the evaluations that I coded along with the raw student data in order to 
determine why students evaluated statements in particular ways. Codes emerged in this phase for 
meanings that comprised students’ interpretations of complex mathematical statements that also 
explained students’ evaluations. For purposes of this paper, I only focus on one code or theme 
that emerged that related to students’ interpretations of complex mathematical statements: 
students’ meanings for quantifier language. 

Results 
In this study, three of the eight students in my study exhibited different quantifications 

consistently depending upon the statements at hand. Two of these students were in Transition-to-
Proof at the time of the study, while one student was in advanced calculus. For purposes of this 
paper, I focus my attention on one student, Allison, who was currently in Advanced Calculus at 
the time of the study. I use Allison as a way in which to highlight some of the implications of 
quantifier language upon mathematical meanings. 

The set-wise collection meaning and its connection to “all.” The three students mentioned 
above each claimed that the word “all” led them to think of some variables as sets, and described 
how they interpreted and evaluated other statements with different quantifier words. Statements 
1-6 all have universally-quantified variables and each of those variables are attached to the word 
“all.” When students described these variables, I noticed that they often used additional words 
such as “all at once” to convey that they imagined grouping the values of the universally-
quantified variables. In this subsection, I describe how student words for the values of the 
universally-quantified variable such as “all at once,” “whole interval,” and “entire set” helped me 
identify and describe this quantification.  

I utilize the following moment with Allison to highlight how the word “for all” impacted her 
interpretation of Statement 2 (∀w(∃k f(w)<f(k))) along with Graph 4 (the modified tangent 
graph). Before this moment, Allison had determined that Statement 2 was false for the modified 
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tangent function. During this moment, she was in the process of analyzing her evaluation for 
graphs against other student arguments. I asked Allison to examine several alternative student 
responses. I referred to an alternative student, Emma, and her argument for Function 4. Below is 
the argument I presented to Allison: 

Alternate Student Argument: Emma said, “If I put w at 0, then f(w)=0, and if I put k at 8, f(k) is approximately 1. 
In this case, the statement is true because f(w) is less than or equal to f(k). However, if I put w at 1.5, f(w) would 
be approximately 1, and if I put k at 0, then f(k) would be 0. In this case, the statement is false for this graph 
because f(w) would be greater than f(k). Therefore, I think that Statement 2 is sometimes true for this graph.” 

I presented Emma’s argument for Function 4 in order to examine Allison’s quantifications 
for each variable and why these quantifications led her to a false evaluation of Statement 2 for 
this function. I designed Emma’s argument to represent the use of MQ4 for the variable w, since 
Emma checked the predicate for values of w individually, and then concluded that the statement 
is sometimes true. Allison rejected Emma’s argument in the moment below based upon her own 
quantification for w.  

Interviewer: [...] Do you think Emma's argument is the same as your argument?  
Allison: She [Emma] was still just considering it one piece at a time, not all cumulatively (gestures as shown).  

 
   Figure 2. Allison’s gestures when discussing w in Statement 2. 

Interviewer: When you say all cumulatively, what are you thinking about in your head [...]? 
Allison: I think if [...] you put k at 8, then you can't just check the case that w is 0 and say that that's the case.  

Because the statement is asking about all f(w)'s, I kind of feel like you have to like check them all. […] 
(still explaining Graph 4 from her perspective) Since this [function] is going to infinity, if I choose one 
[function output] that's higher up, and I say this [new point] is now w, then that's going to be false because 
you didn't choose a k for all of these numbers [f(w)] [...]  

Interviewer: So, do you have to think about all of the values of w and all of their output values together at once?  
Allison: Yes. 
Interviewer: Okay, can you explain that a little bit more? 
Allison: Well, you definitely have to think about all of the w's, because it says "for all." And if we're thinking  

about all the w's, then we're thinking about all their outputs being less than or equal to this one k and f(k).  

In determining Allison’s meaning for the variable w, I used her descriptions of the statement, 
the values of w in relation to Function 4, as well as her gestures. First, I noted that Allison used 
the words “all cumulatively” which suggests that she was mentally grouping the values of w 
together. Additionally, when I asked if she was considering the values of w and f(w) “all... at 
once,” she confirmed that this is how she was thinking about the values as well. Beyond her 
description of her own thinking, she also stated that if she changed the values of w, that this 
would not be an accurate interpretation of the statement, in her view, because then she could not 
choose a k for all of the values of w, and that thinking about all values made her think that all of 
the values of w together had to be less than a singular f(k) value. Additionally, Allison’s gesture 
in Figure 2 that accompanied her words “all cumulatively,” further indicates that she is collecting 
all the values of w into one set. I coded Allison’s meaning for the variable w in this moment as a 
“set-wise collection” meaning for a quantified variable. (In light of Sellers et al.’s (2021) 
framework, I extended the framework and will refer to this meaning as MQ5.) 

There are two different ways that a student with a normative meaning for “for all… there 
exists…” (∀∃) and “there exists… for all…” (∃∀) statements might map elements of one set of 
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values to another set. First, for a statement of the form ∀x∃y, each x may be mapped to a 
different y. Yet, for a statement of the form ∃y∀x, the same y-value is mapped to each x. Yet, for 
the student who uses a set-wise collection meaning views “For all x, P(x)” as indicating that he 
needs to check the predicate for the entire set, X, at once, and grouping the set of x’s into X 
before the predicate is checked. For a quantified statement of the form ∀x∃y, the student who 
uses a set-wise collection meaning for x will group the entirety of X at once before mapping and 
searching for the existence of a y-value. As a result, the student needs a singular y-value to 
satisfy the predicate for every x-value. Thus, for both ∀∃ and ∃∀ statements, the student will 
refer to an individual value of y that must satisfy the predicate. This set of cognitive steps is 
shown as a mapping in Figure 3.  

 
Figure 3. Illustration for student using set-wise collection meaning for universally- quantified variable.  

Six out of the eight students (three Transition-to-Proof students and three Advanced Calculus 
students) I interviewed had some moments where they used MQ5 for quantified variables. MQ5 
was used by these students only for universally-quantified variables, and typically when the 
quantifier word “all” was given in a statement. 

How “any” leads to alternative quantifications. There were some cases in this study where 
∀∃ statements using the words “all,” “any” or “every” led to different cognitive processes than 
normative interpretations. In the next example, I present a moment with Allison to explain how 
students’ quantifications for the word “any” can also deviate from convention.  

On Day 3, I also posed both Statement A and an alternative version of Statement A, using the 
word “any” instead of “all” (see methods). While Allison did interpret Statement A as an ∀∃ 
statement, she did not interpret “for any... there exists...” as an ∀∃ statement. Below, I present 
Allison’s description of how this language change impacted her interpretations of the two 
different statements in the moment below: 

Interviewer: So suppose I change this word here “all” [in Statement A] to the word “any.” Would that change  
the meaning of Statement A? 

Allison: Seems like it kind of does. 
Interviewer: Ok, how so? 
Allison: Because, if you say “for any,” I feel like that means like you have all of these choices of differentiable  

functions, and you pick one of them, and you happen to get lucky and you pick one that satisfies that this 
condition, that it’s true. 

Interviewer: Okay, alright, so the word “any”-how does that… how is that different than the word “all?” 
Allison: So “for all” I feel like you have to […] go through all of them and make sure they all satisfy this  

condition. Whereas “for any,” you have a choice of which one, which differentiable function you pick. 
Interviewer: So, then, how would you evaluate that statement if it had the word “any” there instead of “all?” 
Allison: I think it would be true, because when I hear the word “any,” I just think of like […] any one you want. 

Allison was classified by her use of MQ1 (that at least one value of f satisfies the predicate) 
for the variable f in the alternative version of Statement A that contains the word “any.” I 
classified her meaning as MQ1 because she said that “any” made her think that she could select 
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one function out of all of them that would make the statement true. Allison interpreted “any” as 
“any one you want,” and she explained that she wanted one that would make the statement true. 
This means that for Allison, “any” indicates that you can choose one from an entire set. As a 
result, she interpreted the alternative version for Statement A like a “there exists... there exists...” 
statement, rather than as an ∀∃ statement.  

The example with Allison above reveals that the change of the word “all” to the word “any” 
in an ∀∃ statement should not be considered an automatic fix that will help all students interpret 
the statement as an ∀∃ statement. Additionally, one should note, changing “all” to “every” is not 
an automatic fix either, as another student used MQ5 when he was given the word “every.”  

 
Conclusion & Discussion 

One of the main findings of this study was a new theoretical addition to Sellers et al.’s (2021) 
framework for student meanings for quantified variables. I call this meaning MQ5, or the set-
wise meaning for quantified variables. In Table 2 below, I show how the framework has been 
extended to include this new meaning. 

Table 2. Characteristics of MQ5, the set-wise collection meaning for quantified variables. 
Observable Behaviors Mental Actions 

• Identifies a domain of discourse, X. 
• Explains or illustrates whether or not X, the 

collection of all x’s, satisfies the predicate. 
(May use gestures such as marking off 
boundary or use a grouping gesture.) 

• Uses words such as “whole,” “the set of,” or 
“entire” to refer to the collection of values of x 
in X; Uses words such as “all” or “all at once” 
to refer to X’s satisfaction of the predicate. 

1. Identifies a domain of discourse, X. 
2. Determines individual values (x0) that 

comprise X. 
3. Considers the collection of values of x 

from X as a singular unit. 
4. Checks if the predicate is satisfied by the 

collective set X at once (i.e., checking 
P(X), not P(x)). 

In addition to this new meaning for quantified variables, this study also contributes to our 
knowledge on how language choice in mathematical statements impacts student quantifications. 
The word “for any” tends to lend itself to having students use MQ1, because they think “any” 
implies “any one that makes a statement true,” whereas “for all” might tend to lead students to 
the use of MQ5, or a set-wise collection meaning for a quantified variable.  

Additionally, this study connects how the language of mathematical statements might relate 
to students’ interpretations of complex mathematical statements holistically. The word “for all” 
led students to using the set-wise collections meaning for quantification, which then led them to 
treat ∀∃ statements like ∃∀ statements, similar to Vroom’s (2022) finding. The theoretical 
construct of MQ5 allowed me to explain how students equate ∃∀ and ∀∃ statements in their 
minds by using set-theoretic interpretations of these meanings. On the other hand, the word 
“any” led the same student to treat a different ∀∃ statement as an ∃∃ statement.  

This study suggests that in teaching and in curriculum development, certain quantifier 
language may be more advantageous in certain mathematical contexts than others (e.g., in 
presenting definition of a function, “each” or “every” might be more productive than using 
“all”). However, a change from one quantifier word to another is not a “cure all” and may bring 
other unconventional quantifications to light rather than highlighting the intended meaning of the 
statement for all students.  
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An Exploration of Human Factors That Influence the  
 Acceptance of Technology in Calculus Students  

 
 Ricela Feliciano-Semidei Kevin A. Palencia Alcibíades Bustillo-Zárate 
 Northern Illinois University Northern Illinois University University of Puerto Rico 

Studies on the use of technology in calculus courses have focused on the use of different types of 
technology as learning tools for visualization, representations, and understanding. However, 
research on students’ perspectives about the use of technology in calculus classrooms needs to 
be expanded. In this article, we interviewed eight calculus students in a US research institution 
to understand their perspectives about the use of technology. To analyze the data set, we used 
thematic analysis informed by the technology acceptance model focused on external variables 
related to human factors. As a result, students identified human factors that may influence their 
perspectives about using technology in calculus classes such as: their attitude and skills, 
selection of mathematical problems, feedback, classroom environment, and resources. These 
findings inform calculus instructors and coordinators about possible considerations before 
implementing the use of technology in their classrooms. 

Keywords: calculus education, students’ perspectives, technology to teach 

In the last decades, many researchers have explored the use of technology to enhance 
students’ learning experiences in calculus courses (e.g., Ellis Jr et al., 2000; Ferrara et al., 2006; 
Heid, 1988; Thompson et al., 2013). The use of technology is one of many approaches to target 
the retention problem of science, technology, engineering, and mathematics (STEM) programs in 
US institutions, which has been shown to rely on the effective teaching of calculus courses 
(Rasmussen & Ellis, 2013). 

The effective use of technology can promote understanding of calculus concepts by 
facilitating visualization of structures, representations, and exploration of concepts such as limits, 
derivatives, and integrals (e.g. Bressoud et al., 2016; Ferrara et al., 2006). Tall (2002) explains 
that technology facilitates the understanding of fundamental ideas of calculus such as the 
approximation process and infinitesimals. For example, using numerical and graphical 
approaches to explore the concept of limits. In addition, the use of technology may build a 
stronger calculus conceptual understanding by allowing students to explore different ways of 
reasoning while solving problems (Ferrara et al., 2006).  

Many studies have mainly focused on technologies that are used to do mathematics such as 
graphing or geometric software. While these technologies facilitate the learning of calculus 
concepts, it is imperative to understand that technology by itself will not ensure an effective 
learning experience. For example, Takači et al. (2015) found that students’ learning about 
functions and graphs is better when using Geogebra while working in collaborative groups.  

In our study, we explore external variables to the technology itself. Specifically we 
investigate  students’ perspectives about social aspects that may be controllable by humans when 
using technology. The research question that guided our study is: How do students describe the 
social aspects controlled by humans that may influence their acceptance of the use of technology 
in calculus classes? The understanding of these external variables complements research about 
how specific types of technology can enhance the learning of calculus concepts by providing 
possible considerations before implementing technology in the calculus classes as a coordinated 
effort in an R2 institution. 
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Theoretical Perspective 
The Technology Acceptance Model (TAM) provides guidance on how students accept or 

reject the use of technology in calculus classes (Davis, 1989; Venkatesh and Davis, 2000) 
According to this model, understanding a person’s acceptance to use technology depends on 

two key variables: perceived ease of use and perceived usefulness. These determine if a person 
will accept the use of technology (Davis, 1989). Specifically, if someone thinks a technology is 
both easy to use and useful, then that person would like to use that technology tool. Conversely, 
if a person perceives it is not easy or not useful, then will not like to use the technology.  

Since 1989, several researchers (e.g., Venkatesh and Davis, 2000) have proposed extensions 
to these two variables for understanding the complexities of using technology. For example, if a 
person intends to use the technology and if the person is using the technology, which are 
commonly known as behavioral intention and actual use. In addition, Venkatesh and Davis 
(2000) consider external variables that can influence the relationship between the perceived ease 
of use, perceived usefulness, behavioral intention, and actual use. These variables include social 
norms, availability of resources, and personal skills.  

When considering the teaching and learning of calculus, we consider that these external 
variables are controllable by either students, instructors, coordinators, or administrators. Thus, 
they are also considered as human factors. Alomari et. al. (2020) categorize human factors into 
three main indicators: technological, psychological, and student-instructor interaction 
characteristics. However, their research identifies positive human factors attributes like attitude, 
enjoyment, experience, self-efficacy, and promptness that significantly impact user satisfaction 
and subsequently contribute to the success of learning using technology. Understanding these 
external variables provide a clearer picture to explore technology acceptance by an individual. 

The TAM informs our study as we aim to understand the complexity of students’ 
perspectives toward using technology for calculus classes. Considering the human factors of 
using technology will facilitate an informed decision-making process for instructors and 
coordinators to provide students with an effective introduction to new technologies while 
learning calculus. Specifically, this may help students embrace these technologies as important 
tools for their calculus learning experience by helping them see these technologies as both useful 
and easy to use.  

Research Methods 
To answer the research question, we collected audio-recording interviews from eight calculus 

students who volunteered to participate in this research study. Previous to the interview each 
participant completed demographic information. 

Participants 
Participants were sophomores, juniors, or seniors enrolled in Calculus I, II, or III in a US 

research university in the Midwest.  
The university serves approximately 16,000 students from diverse backgrounds with more 

than half of the student population being first generation undergraduate students. About 46% of 
the population is White, 20% Latinx, 17% Black, and 6% Asian.  

While reporting on demographic information, one student self-identified as Asian, one as 
Black, three as Hispanic or Latinx, and three as White. Regarding gender, there were four cis-
men and four cis-women. Five participants reported being first generation students and one a 
non-traditional student. None of the students reported being a veteran or having a documented 
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disability. Seven of them were in a STEM program and one of the students was a non-STEM 
major pursuing a middle school teaching license in STEM. 

Instrument and Data Analysis 
We conducted one hour interviews during the summer 2023 to students who were enrolled in 

a calculus section in the Spring 2023 semester. Questions of the interview were semi structured 
and focused on relevancy of the course, policies, resources, and technology. In this paper, we 
analyzed students’ responses related to the use of technology in calculus classes. 

The interviews were audio-recorded and transcribed for analysis. Data was de-identified by 
assigning pseudonyms to participants.  

The three authors are all junior faculty who self-identify as Hispanic or Latinx. One is a 
mathematics researcher with focus on analysis, one is a computer science researcher, and the 
other is a mathematics education researcher.  

To analyze data, the three authors conducted thematic analysis (Braun et al., 2019). The three 
authors initially coded four interviews guided by the TAM framework and met to agree on a 
codebook. After creating a codebook, two of the authors coded the eight interviews and met until 
consensus was reached.  

Results of the Research 
The categories of the code for identifying the human factors are the students’ attitudes or 

skills, the selection of mathematical problems online, the learning feedback, the classroom 
environment, and the resources.  

Table 1. Human factors when using technology for calculus classes identified by participants. 

Human Factors  

Factor 
Students attitudes or skills 
 
 
Selection of online mathematical problems 
 
Learning feedback 
 
Classroom environment 
 
Resources 

Participants 
Audrey, Ben, Diego, Elena, Josephine, 

Juan, Kate 
 

Josephine, Lin 
 

Josephine, Kate 
 

Ben, Josephine 
 

Audrey, Diego 
 

Students’ Attitudes or Skills 
Students’ attitudes or skills capture the ways students liked or disliked technology. For 

example, the level of difficulty with using technology to learn calculus, their familiarity, 
experiences, and perspectives against or in favor of using technology.  

Seven students reported some of their attitudes and skills related to the use of technology in 
calculus classes. The most popular attitude was related to the use of online homework in calculus 
classes. For example, Kate thinks online homework is beneficial for the learning experience. 

Interviewer: Do you think using technology is beneficial for your learning experience? 
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Kate: I feel like it has been useful just because chances are that’s where the world’s going is 
with technology being more useful. So having those lessons with it is helpful. Though I 
do, I still always end up like even if the assignment is online, I’ll write it out on a paper 
before I do it because it’s hard for me to do it all on the computer. 

Interviewer: Okay, yeah, and what kind of technology would you like to use in the calculus 
classes? I don’t know. It can be anything. It can be like a web page, an app, or software. 

Kate: It can be useful if we use like graphing apps and stuff. So we can plug in like the 
equation and get an idea of what it’s supposed to look like. Because when there’s all 
those different things in it, it’s really hard to visualize the graph and like do it and 
because there's so many different parts to the equation, it’s really hard to graph by 
yourself. But and then I also I like being able to look up similar examples online that are 
like I don’t even know like some sort of like especially with like trig stuff that’s always 
the trouble with me, figuring out how people, if there’s like a sine over a cosine or 
whatever how people treat that in certain problems and different things. 

Kate, sees the use of technology as beneficial for the learning experience when perceiving 
technology as part of keeping up with the uses of technology in the world and as a tool for 
learning mathematics. It is interesting to see how Kate connects the calculus learning experience 
with a more global perspective on how people are increasing the use of technology “in the 
world”. However, it is interesting how Kate still sees a need to work on math problems using 
paper and pencil before sharing the answers in online homework systems. In addition to the 
online homework, Kate thinks that the use of graphing apps is important to visualize graphs and 
to see different strategies when solving mathematical problems.  

Students also reported on their familiarity with different types of technology. For example, 
Juan mentioned using several types of technologies in both high school and college.   

Interviewer: Okay, so you have experience with scientific calculators. You also have some 
experience with online homework. Is there something else I’m missing about your 
experience with technology in math and calculus classes? 

Juan: Umm, sometimes in my calc class as a teacher will like pull up a functions calculator 
or like a plot system to kind of just see things visually. I think those are nice. But for the 
most part, yeah, that’s pretty much accurate. This is my first time ever having online 
homework for a math class. For my calc 3 class that I’m taking online right now. [...] 
WebAssign I think it’s called Yeah, it’s definitely a Cengage Webassign, yes. 

Interviewer: You said something about functions and online graphing. Is that also inside 
WebAssign? 

Juan: No, there are some applications in WebAssign where they can use those for certain 
problems. But I know like the one I’m using right now, because the one prior I can’t use 
it anymore because a lot of my stuff is like in 3D, so I use 3D plot, personally, but that’s 
not like through the instructor. I forget, there’s another popular one. That a lot of 
instructors have used in my calc 1 and calc 2 experience. 

Interviewer: So you do use them for your own learning. Is that correct? 
Juan: Yes, I do 
Interviewer: Okay, is there anything else that you use? Any other technology that you like to 

use for your own learning outside of class? 
Juan: Lecture videos like sometimes if I need extra help on a certain topic. I’ll watch a 

YouTube video. That kind of goes over it again. I use the online homework, which I like. 
Actually, I never knew if I would like online homework. But, since I’ve taken a lot of 
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physics classes that have used, even in my high school, that have used WebAssign 
Cengage, and since I’m really familiar with it, I do like it now. Umm, let me think and 
then. It’s nice to have a calculator. No, I think that’s all the technology. 

In this interview excerpt, Juan mentions using scientific calculators, mathematical software 
programs and online homework. He has a positive attitude toward instructors using visual 
representations in what he describes as function calculators that “are nice”. This may be a 
graphing software that instructors use to visualize functions while teaching calculus classes. 
While he does not explicitly mention familiarity with these technologies, he may be familiar with 
using graphing softwares as he likes using other three dimensional graphing software programs 
outside of the classroom that helps him learn calculus. Regarding online homework, Juan 
mentions that he likes it because he is familiar with the technology as he used it in a physics high 
school class.  

When asking students about using augmented reality in calculus classes most students 
mentioned unfamiliarity with how this may be used in a calculus class. They admitted they did 
not have enough information to have an opinion on how it may or may not be beneficial. For 
example, when asking Diego if using augmented reality would be beneficial, he said “I would 
say no [...] but I also don’t have any experience with it, so I feel like my opinion just isn’t too 
great just ’cause I don’t have that knowledge.” Later in the interview Diego explains having an 
open mind to maybe use it if someone explains how it would be useful with some specific 
examples. 

Selection of mathematical problems online 
Another human factor mentioned by some students was the way instructors or coordinators 

select the mathematical problems online. For example, Josephine finds mathematical problems in 
ALEKS as tedious.  

Josephine: [...] Oh, I thought my Mathlab was horrible, but there is another like program like 
software, it’s called ALEKS. Have you heard of ALEKS? 

Interviewer: Yes. 
Josephine: I hate it, absolutely hate it. I think I was using that app in appreciation for My 

Mathlab after using ALEKS because I took a trig summer class. But the difference 
between My Mathlab and ALEKS is that ALEKS will have you do like 30 different 
problems on a math subject lower than your math subject before you could even start 
practicing on your math subject if that makes some sense. So I feel like using the 
computer is just a little bit too tedious and just you know cause math is complicated, yes, 
but I feel like the computer makes it even more complicated than it needs to be. That’s 
just my opinion as far as technology and math, I don’t think math should have nothing to 
do with it. Well, math [inaudible] with technology, but as far as I’m learning it, I don’t 
think it’s necessary. Technology is not necessary for it though. Yeah. 

In her interview, Josephine expresses a dislike of using a specific online homework system, 
however, the reason is related to the problems selected by the instructor. Specifically, she 
thought it was tedious to work on problems that were (1) not addressing the concept that was 
discussed and (2) too many. This presents two factors that can be controlled by an instructor: the 
alignment with the curriculum and the quantity of problems selected. What Josephine is 
experiencing with the online homework system may be reflecting the drill and train practice 
about mathematical procedures. 

The lack of alignment when selecting mathematical problems online, was also mentioned by 
Lin when we asked about ideal technologies for calculus classrooms. Lin said not to use online 
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homework because, in his experience, online homework “wasn’t exactly tailored to what they 
learned for that day. It was more generic for the topic.” 

Learning Feedback 
Students were also concerned about needing more assessment feedback in their calculus 

classes. Two students mentioned learning feedback as an issue when using technology.  
Specifically, Josephine and Kate explained it was difficult for them to know where exactly 

they had a mistake. For example, when talking about online homework, Kate noted: “[...] it’s 
hard for me to go through and know what I did wrong when it’s such a big problem and there’s 
so many little steps that I could have messed up on.” While Kate is receiving immediate online 
feedback on whether a problem is correct or incorrect, she perceives this is not enough feedback. 
Here, Kate would expect feedback to point out mistakes in her rationale or computations while 
solving calculus problems. 

Classroom Environment 
Students reported on the classroom environment while using technology, for example, using 

a collaborative learning environment, working in small groups, or mimicking other non-math 
courses’ classroom settings.  

A student, Ben, noted that he has had a great experience in the college of engineering with 
collaborative learning when using technology. When asking about recommendations for types of 
technology we could use in calculus, Ben referred to this experience. 

Suppose potentially having some kind of like a screen that’s more of like a table. I don’t 
know what that would be but something that we could all kind of like look down at and 
kinda talk about like, like I said before, kind of in like that circle, you all kind of look 
down and kind of have more forward and open discussions versus the way classrooms 
kind of are, whether you're just kind of staring at the board which is understandably 
easier but yeah. 

Ben perceives that the technological tools available in this engineering class would potentially be 
beneficial to include in calculus classes. Here, Ben perceives that technology could be used to 
foster more open discussions in the classroom by using screens and arranging classrooms in 
circles around those screens. It is worth mentioning that Ben uses the opportunity not only to 
introduce this as an option to improve mathematical discussions in the calculus classrooms but 
also to critique that the current classroom setting is traditional and is limiting discussions. 

Resources 
Participants mentioned that, when using technology, it is essential to consider the 

institution’s available and needed resources. For example, having a computer at home to 
complete online homework and having access to computer labs in the institution.  

For example, Diego agreed to implement technology in calculus classes and referred to 
resources available at the institution. He mentioned that the institutional access to the internet 
was pretty good, especially in computer labs. He explained that the institution had computer labs 
in case “a student did not have those types of resources [personal computer or laptop].”   

Significance and Further Research 
This study contributes to understanding students’ perspectives about the use of technology in 

calculus classes, including human (students, instructors, coordinators, and administrators) 
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factors. Specifically, students’ skills and attitudes, selection of mathematical problems, learning 
feedback, classroom environment, and resources. 

Students’ skills and attitudes toward the use of technology would identify the human factor 
of the student as a learner. Skills and attitudes may result from their experiences or lack of 
experience with using technology in calculus classes. Understanding these factors may provide 
information about possible students’ issues when mixing technology and mathematics, which 
could offer calculus instructors and coordinators targeting tools to overcome them. For example, 
a possible need to train students and help them feel more familiar with the technology before 
implementing it. 

The selection of problems, learning feedback, classroom environment, and resources are 
primarily human factors related to instructors, coordinators, or institutions. These factors were 
mostly perceived as contributors to negative experiences from the students when using 
technology. Specifically, (1) students perceived that the selection of problems had alignment 
issues and  became tedious because of the number of problems, (2) students perceived a need for 
more feedback than the correct (or incorrect) feedback in online homework, (3) students 
perceived a need for restructuring classroom environments, and (4) students discussed issues of 
accessibility when using technology. Some of these have been shown to be important for 
students’ learning of calculus, such as considering the classroom environment when using 
technology (e.g., Takači et al., 2015) and their attitudes toward the use of online homework (e.g., 
Lampe and White, 2023). 

Instructors may control the selection of problems, learning feedback, and classroom 
environment. Some of these issues may suggest a need to provide instructors with technology 
professional development activities before officially implementing online homework as a 
coordinated effort, as well as effective active learning practices and curriculum alignment. We 
must see these findings about learning feedback with caution as these vary in different online 
homework systems and it would not be appropriate to conclude that all online homework 
systems lack the feedback students perceive they need. For example, there are initiatives to use 
artificial intelligence to give more meaningful feedback to students when working on online 
homework. Future research may investigate students’ perspectives about using artificial 
intelligence to provide feedback on assignments.  

Administrators may also control some of the classroom environment and resources needed 
for effectively implementing the use of technology. While instructors have control over 
classroom settings, some of this effort relies on classroom conditions that facilitate active 
learning. In addition, when applying technology, it is important to consider if the type of 
technology would be available to all students. 

Instructors, coordinators, and administrators must engage in open discussions to ensure 
equitable access to technology for all students, fostering an inclusive and technologically 
enhanced learning environment in calculus courses. 
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On the Unique Benefits and Challenges of Mathematics
Graduate Student Instructors Providing Teaching Feedback to their Peers

Melinda Lanius Gary A Olson Scotty Houston
Auburn University University of Colorado Denver University of Memphis

In this paper, we compare the types of teaching feedback that graduate student instructors pro-
vide their peers in comparison to more senior faculty at a large research-oriented university.
Additionally, we consider the challenges and benefits that graduate student instructors report
concerning providing teaching feedback to a peer. Our results reveal that graduate student in-
structors and faculty contribute distinct perspectives on teacher growth and together can form a
strong support system for first-time graduate student instructors. Additionally, while observing a
peer does pose real challenges, we found that graduate student instructors develop strategies to
overcome these and report more benefits than difficulties.

Keywords: graduate student instructors, feedback, teaching observation, peer mentoring

At many research universities, graduate students in the Mathematical Sciences become in-
structors of record for one or more undergraduate courses (Eller, 2017; Justice, Zieffler, & Garfield,
2017); we will call these educators graduate student instructors (GSIs). Oftentimes, GSIs have
little to no assistance on the front-end in preparing to teach; however, departments across the
country have begun to implement training programs for GSIs with the aim of both improving
GSIs teaching abilities and improving the learning experience for their undergraduate students
(Speer, et al., 2005; Ellis, 2014). One promising training component that can support GSIs in de-
veloping student-centered teaching practices is providing them with feedback from a teaching
observation conducted by a more experienced educator (Yee et al., 2022). Within a mathemat-
ics department, this feedback can come from a faculty member or a more experienced graduate
student instructor. In this paper, we explore the following research questions:

Research Questions

1) What types of teaching feedback do peers give to other graduate student instructors and
how does it compare to the feedback provided by more senior faculty?

2) What are the challenges or benefits that graduate student instructors report concerning
providing teaching feedback to a peer?

Theoretical Perspectives

Concerning feedback. We frame feedback using Kluger and DeNisi’s (1996) Feedback
Intervention Theory (FIT). This framework has previously been leveraged in the K-12 setting
(Khachatryan, 2015) as well as in the setting of graduate student instructor professional develop-
ment (Yee et al., 2022). We define feedback as action taken by an observer to provide information
concerning aspects of the graduate student instructor’s teaching performance. We categorize the
components of feedback using three levels or scopes: (Whole) comments on the task of teaching
as a whole, (Part) focused details within the task of teaching, and (Individual) comments concern-
ing the affect, motivation, or skill of the instructor.

Because we are discussing feedback for novice instructors, who may not have particular
knowledge of aspects of teaching, we expand our framework to categorize whole and part scoped
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components as description, feedback, or feedforward. While feedback focuses on what is effec-
tive or not in the present, feedforward focuses on the future by offering particular suggestions.
It is important to track the scope of feedback because Yee et al. (2022) found that feedback that
includes specific context and focal events (what we call part-type feedback) is more effective at
promoting change in graduate student instructor’s teaching behaviors than feedback that lacked
this contextualization. Additionally, FIT suggests that comments focused on the individual are
the least effective in motivating a change in performance (Kluger & DeNisi, 1996). Accordingly,
we track individual scoped comments and categorize them as positive (a compliment) or negative
(a criticism).

Concerning dimensions of mathematical teaching. To facilitate classification of the con-
tent of teaching feedback, we used the topics covered in the Mathematical Association of Amer-
ica’s Instructional Practices Guide (Abell et al., 2017). This comprehensive resource operational-
izes leading research concerning learning in the undergraduate mathematics classroom.

Methods

Context & Data

All data collection was done in the Department of Mathematics and Statistics at a large land-
grant university in the United States. In a typical semester, 30 to 40 faculty members, the major-
ity of which are research-oriented, participate in conducting a teaching observation of each grad-
uate student instructor of record.In addition to this faculty-provided teaching observation, a peer
conducts a teaching observation for each first time graduate student instructor. Each graduate stu-
dent instructor who observed a first-time instructor also completed a reflection about the process.
We analyzed 35 of these peer observations and the observer’s corresponding reflection, from Fall
2020 — which was a planned remote semester due to the COVID-19 pandemic — ranging to Fall
2022 — which was a standard in-person semester.

For comparison purposes, we will share our analysis of 170 faculty observations of gradu-
ate student instructors conducted in the same time range. Please note that our reported analysis
of faculty-generated observation data is a subset of an analysis conducted for a larger project fo-
cused on how mathematics faculty engage with teaching observation protocols; our analysis of
the graduate student instructor-generated observation data and the corresponding reflections is
novel and only appears in this report.

Observation protocols. The observation protocol used by graduate student instructors is
heavily-adapted and pared-down from Rogers and Yee’s (2018) Graduate Student Instructor
Observation Protocol (GSIOP). We originally aimed to use the GSIOP, but struggled to effec-
tively implement the required training with our graduate student instructors during the COVID-19
emergency. Our protocol opens with 5 likert-type items concerning student engagement followed
by the student-centered techniques chart from the GSIOP. To account for the Zoom setting, we
added Small Groups/Breakout Rooms, Polling, Chat feature to engage students with content,
and use of Google Docs or Spreadsheets for activities/group work to the chart. Our protocol
concludes with essay prompts to summarize the observed class, to discuss strengths, and to sug-
gest areas for improvement. The observation protocol used by faculty begins with twelve Likert
prompts asking the observer to rank components of the appropriateness of the mathematics, the
quality of the instructor’s communication, and the level of perceived student engagement. Next,
the observer is provided two essay prompts, one requesting details of the observed session and
the second requesting suggestions to help the graduate student instructor improve. The primary
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difference between the two protocols is that the one used by graduate student instructors has
clearly defined notions of student engagement with very specific active learning techniques given.
Our faculty, on the other hand, have quite varied notions of effective teaching. Consequently, the
observation tool they use is necessarily less concrete.

Pedagogical & mentoring training for graduate student instructors. The graduate stu-
dent instructors who served as peer mentors received both pedagogical and mentor training prior
to conducting observations. The pedagogical training Promoting Success in Undergraduate Math-
ematics through Graduate Teacher Training (PSUM-GTT) included a teaching seminar during the
spring of their first year and fall of their second which focused on modeling active learning strate-
gies and reflecting on journal articles related to teaching and learning. Ongoing professional de-
velopment was also provided through a critical issues in STEM education seminar facilitated 2-4
times per semester. Mentor training was provided to help clarify the role of a mentor and provide
training around communicating effectively, building relationships, setting goals, and conducting
classroom observations using an established observation protocol (Manzanares et al., 2023).

Results of First Research Question

Our first question considers what types of teaching feedback do peers give other gradu-
ate student instructors and how does this compare to the feedback provided by more senior fac-
ulty. We analyzed both the graduate student and faculty observations utilizing a priori coding
(Saldaña, 2016) with two different code books, one focusing on the types of feedback and the
other on the content of the feedback.

Feedback Intervention Theory

Our feedback codes are those types discussed above concerning Feedback Intervention The-
ory. Table 1 shows the frequency of scopes of feedback in both the graduate student peer observa-
tions and the faculty observations. Note that the gray-highlighted rows are the components of the
most effective formative feedback, as discussed in theoretical perspectives.

Table 1

Frequency of feedback intervention theory codes in peer vs faculty observations

Scope &

Category

Graduate Student

Peer Frequency

Faculty

Frequency

Whole - Description 0 % < 1 %
Whole - Feedback 0 % 36 %
Whole - Feedforward 0 % 0 %
Part - Description 100 % 34 %
Part - Feedback 100 % 78 %
Part - Feedforward 100 % 61 %
Individual - Compliment 13 % 38 %
Individual - Criticism 0 % 1 %

Content of Feedback

Table 2 shows the frequency of content codes from the graduate student peer observations
and the faculty observations. As briefly mentioned above, our codes concerning dimensions of
mathematics teaching were developed from the Instructional Practices Guide.
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Classroom community. This code encapsulates students’ connections with their GSI, class-
mates, and university resources. Additionally, it covers classroom norms or atmosphere. For ex-
ample, one peer observer wrote “the class was kept at a pace the students can feel comfortable
asking questions and I liked the idea of giving thumbs up when something is clear... In general,
the class atmosphere was very learner - friendly”. An example of classroom norms is the feed-
back:

I can tell that you are aware that your classroom is kind of a weird shape. It seems like it
makes it hard to make sure everyone can see and participate. Since your room is so big, you
could ask your students to all sit closer to the center or pull their tables over towards you. I
know that’s not the norm for your class since we’re so far into the semester, but maybe the
next time you teach in a room like that you can anticipate and make them sit closer together.

Table 2

Frequency of content codes in peer vs faculty observations

Content

Code

Graduate Student

Peer Frequency

Faculty

Frequency

Classroom Community 63 % 12 %
Student Engagement 69 % 41 %
Student Communication 25 % 2 %
Student Questions 38 % 31 %
Instructor Questions 81 % 28 %
Instructor Communication 44 % 35 %
Collaborative Learning 44 % 6 %
Tasks – Intrinsic Appropriateness 94 % 80 %
Tasks – Extrinsic Appropriateness 6 % 31 %
Technology 38 % 1 %

Student engagement or communication. Engagement refers broadly to the observer’s per-
ceptions of students actively participating in their learning. The student communication code cap-
tures the various modalities for students to communicate their ideas with one another and their
instructor. For example, the quoted comment above concerning the use of the thumbs up button
in Zoom is also student communication.

Student or instructor questions. Comments about questions posed by students were coded
as student questions; Comments about questions posed by the instructor were coded as instruc-
tor questions. Many peer observers discussed wait time, or giving students adequate time to think
about a question before expecting an answer. For example, one graduate student reflected “He
has a slight tendency when the answer isn’t said almost immediately to give them the answers”
and wrote the following feedback on the observation form: “waiting after asking questions. Gives
students some time to internalize and some are shy.”

Mathematical tasks – intrinsic or extrinsic appropriateness. Intrinsic appropriateness
concerns the characteristics intrinsic to a task and whether those characteristics support student
learning while extrinsic appropriateness takes into account external factors such as classroom ar-
chitecture or students’ motivation. The discussion above of classroom shape making participation
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hard is an example of extrinsic appropriateness. The extrinsic appropriateness code only occurred
when there was a concern.

Others. Instructor communication skills focused on legibility of handwriting or instructor’s
speaking volume. Collaborative learning is structured group work managed by the instructor.
Technology primarily was comments concerning Zoom during the planned emergency remote
semesters, but could be related to any technology in the classroom.

Comparing Peer Feedback to Faculty Feedback

Primarily, if a faculty member discussed an engaged-student learning strategy, it was group
work. Our graduate students, on the other hand, leveraged a vast array of techniques coming from
the GSIOP, suggesting when and where a strategy could be used; on average, each graduate stu-
dent peer observer discussed 3.4 strategies. Graduate students 100% of the time employed the
components of effective feedback: part description, part feedback, and part feedforward. Many
faculty did not provide these components in their observation comments. Additionally, there was
a wide difference in the types of topics discussed between graduate student instructors who were
observing their peers who were teaching for the first time in the department and the topics cov-
ered by faculty observing all graduate student instructors. One might think this is because the
first time instructors needed more help, however, we found this to not be the case. Even when a
peer observer felt that the instructor they watched was effective, they still described what they no-
ticed and explained why they found it effective. On the other hand, in a similar situation, where
the faculty member found the session that they observed to be effective, they were more likely to
give whole-type feedback such as “The class went quite well” with no further information about
what they noticed.

One area in which faculty greatly outperformed the graduate student observers is their rich
and nuanced discussions of mathematical task - intrinsic appropriateness. Our graduate student
instructors generally mentioned the mathematical topic of the day and then turned their focus
to the other dimensions of classroom instruction. On the other hand, faculty who discussed the
mathematical content demonstrated a deep mathematical understanding, for example discussing
necessary levels of correctness, alignment of that day’s learning outcomes with the course and
curriculum more broadly, or presenting the material at an appropriate level for the student pop-
ulation. We believe the differences we observed are primarily due (1) to the graduate student
instructors having a tightly formed community of practice while the faculty have no common
notions of effective teaching, (2) to graduate student instructors receiving specific training on pro-
viding teaching feedback while faculty received none, and (3) to our faculty primarily serving in
research-intensive positions with experience teaching a broader range of courses and at an upper
level.

Results of Second Research Question

We utilized emergent coding from a grounded perspective (Saldaña, 2016) when working
with the 35 reflections. Our aim was to uncover the challenges and benefits that graduate student
instructors report after providing teaching feedback to a peer. After individually gaining famil-
iarity with the data, we met as a team to discuss and refine our codes. We met a second time to
resolve any discrepancies in our final coding of the data. Importantly, we want to note that in our
initial round of coding, we discovered a distinct difference in our perspective as coordinators of
teaching professional development versus the perspective of the graduate student instructors. In
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particular, they found certain aspects of the experience to be a challenge, while we thought of that
struggle as a benefit. Because of this tension in perspectives, we will be very purposeful in indi-
cating who is perceiving the benefit or challenge.

Awkward or nervous because it is a peer. Four graduate student instructors felt nervous or
awkward giving feedback to a peer, but also expressed a strategy to overcome this challenge. One
reflected:

I thought our follow-up meeting went well, too. Even though I was still (and probably al-
ways will be) a little nervous to make suggestions for improvement, it wasn’t awkward and I
think we are gaining more rapport with one another to talk through those things.

Another instructor also felt that developing a relationship over time would make this awkward-
ness not “much of an issue”. The source of one GSIs discomfort was their perfecption that their
peer actually had more teaching experience than them, writing, “I feel a little bit of imposter syn-
drome about giving her suggestions for strengthening/improving.” The last instructor who felt
awkward developed a strategy where “instead of telling him he was wrong,” they tried “asking
about certain things and letting him talk through to reach his own conclusion about how effec-
tive/ineffective certain things were.”

Developed a feedback strategy. Eleven graduate student instructors discussed the strate-
gies that they had developed for giving feedback to a peer. Three strategies focused on how to
approach the feedback conversation, with one GSI explaining “I approached it just as a conver-
sation where we point out and maybe debate some aspects of each other’s teaching style and ap-
proaches”, and the other two explaining that they wanted to come across as “supportive instead
of demanding” and “there to help and not out of a place of putting him on trial”, respectively.

One GSI decided to ask their peer if “there was anything she wanted me to focus on during
her observation”, which they felt made the other person “more open to constructive criticism”.
Two GSIs considered how their peer might be more open to suggestions and respectively decided
on “telling him more strengths than weaknesses and always interposing them” and “include more
positive comments instead of only focusing on where my mentee can improve”. The last GSI also
decided to specifically ask their peer what they “wanted me to keep an eye out for, which allowed
her to ask me things she wanted to know about, rather than just what I would say”

Wrestling with different opinions of “good” teaching. This focusing on another person’s
perspective and recognizing that there may different ideas of “good” teaching presented a chal-
lenge to 3 GSIs. One wrestled with the ways in which different class settings may necessitate dif-
ferent teaching styles, reflecting “If you have someone teaching finite math and it is active learn-
ing versus a calculus class which is lecture based, you do not do things the same way.” One GSI
was concerned that they did not know what the department values, writing:

There is not one method or style of teaching that seems to be the “ideal” for the department.
It’s not clear if the department wants the most effective lecture-style environment, or if they
want more active learning, or if they want more in-class assessments, and so on.

The final GSI wrestled with confronting their own biases and opinions, sharing, “The thing I find
most difficult is the actual assigning of values to her teaching. It is based off my own bias of what
I think makes a good teacher and the qualities I identify as important.” We do want to note that
we value the fact that our GSIs are considering and reflecting on this issue to be a benefit of our
program, even if the students themselves feel that this is a challenge.

Uncertainty in role. Every graduate student instructor reported feeling prepared to con-
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duct a teaching observation and to provide feedback except for two students who expressed un-
certainty in this new role. The first explained, “I did not feel prepared going into our follow up
meeting. I was unsure of what questions I should ask my mentee especially ones that would re-
ally make them examine specifics of my teaching style.” The other expressed uncertainty in the
purpose of the observation in the broader context of the department and the GSI training program
explaining, “I wasn’t really sure what my mentee would have to do with regards to observation
follow up” This reveals an opportunity for us to provide additional support for GSIs prior to them
conducting their teaching observations.

Providing self-reflection. One GSI valued having this dedicated time to discuss teaching
with a peer, explaining, “I was eagerly looking forward to it.” Six GSIs explained that this pro-
cess was an effective self-reflection tool, with one even explaining “I learned more about my
teaching” and “This was a good process in general because I feel like it encourages both the per-
son being observed and the observer to reflect on their own teaching and seek how to improve.”

Two reported a boost in confidence after self-reflecting, “It was really encouraging to real-
ize that my three semesters of experience made me feel completely confident and qualified to offer
advice on my mentee’s class.” and “It was an encouraging reminder to me that I have been teach-
ing for a couple of years now, and that experience has taught me a lot!” The last GSI felt the pro-
cess provided some accountability for their teaching, reflecting, “I try to bring up her progress in
these areas every time we meet to keep her accountable for working on this. Incorporating more
active learning is something I also need to work on, so this keeps me accountable as well.”

One GSI reported understanding her own teaching in relation to others’ teaching practices
after discussing feedback with a peer, writing, “I knew that I had a laid-back attitude in my class-
room ... but my mentee pointing out how informal my class was made me realize that that is re-
ally not the norm for everyone.” Another GSI also expressed understanding their own teaching
better: “My mentee is very open to getting help and being evaluated, so it made this process easy
and eye-opening to things that I could improve on too!”

Re-conceptualizing teacher growth. Two GSIs thought of growth as a teacher in a new
way, with one expressing that this experience made them realize that improving their own teach-
ing will be an ongoing and ”continuous process” and the other reporting “I think oftentimes (even
in my own teaching) this is something slower to implement. I have tried to emphasize with her
that changing teaching style/implementation can and probably should happen slowly. You can’t
change everything you do overnight.”

Conclusion

We found that faculty were more effective at giving feedback on mathematical content knowl-
edge while our graduate student instructors were more more effective at giving feedback on ped-
agogical approaches. This demonstrates that both populations contribute uniquely to teacher
growth and together can form a strong support system for first-time graduate student instructors.
Although asking graduate student instructors to observe a peer and provide feedback does pose
real challenges, such as awkwardness and uncertainty, we found that GSIs develop strategies to
overcome these and report many more benefits, such as personal accountability, teaching confi-
dence, and a greater understanding of their own and others’ teaching.
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Teaching Practices Addressing Multiple Uses of a Word in Mathematics – Case for Derivative  
  

Jungeun Park 
University of Delaware 

We investigated teaching practices aiming to communicate multiple uses of a common term in 
mathematics with students focusing on the use of a single word “derivative” for both objects 
“the derivative at a point” and “the derivative function” using commognitive approach and 
intellectual needs. Our analysis of a teacher’s teaching explicitly attending to this feature 
revealed several teaching practices with this aim: discussing discursive rules for distinguishing 
the two uses and using another mathematical object for connecting the uses (e.g., slope);  
discussing a colloquial object that has a similar feature and is familiar to students, which 
provided a familiar discourse that students could rely on; and avoiding multiple uses of a 
common word in one context, Those teaching practices are impacted by multiple uses of a 
common signifier in communication and mathematical relations among the two objects 
objectified by a common word, but also impacted how the objects became related.   

Keywords: commognition; teaching practice; derivative; words with multiple uses 

Multiple uses of same signifiers (words or symbols) have been known to cause potential 
difficulties in teaching and learning of mathematics (e.g., Biza & Zachariades, 2010; Thompson 
& Rubenstein, 2000). For example, various calculus terms are used as both process and object or 
as both function and a specific value (e.g., College Board, 2023; Güçler, 2013). This study 
focuses on the discourse about the derivative to examine the teaching practices that aim to help 
students learn about multiple uses of a common term in mathematics. In introductory calculus, 
derivatives can be separated into the derivative at a point and the derivative function (we use this 
term for a function obtained by differentiating another function). The observation that the word 
“derivative” is included in “the derivative at a point” and “the derivative function,” the word 
“derivative” alone is often used for these objects (e.g., College Board, 2023; Stewart, 2016), and 
students may face challenges distinguishing or relating these objects (Font & Contreras, 2008; 
Park, 2013), motivated our study investigating potential teaching practices aiming to promote 
students’ learning of the use of this common term with the following research question: 

 What can be the teaching practices that aim to promote students’ learning of multiple uses 
of a common term for two mathematical objects in formal mathematical discourse?   

We adopted the commognitive view of learning mathematics as “the process in which 
students extend their discursive repertoire by individualizing the historically established 
discourse called mathematics” which we refer to as canonic discourse (Sfard, 2018, p. 222). Such 
extensions are viewed as meta-level learning when they involve changes in rules of discourse 
(e.g., learning how to choose one of multiple uses of a new word like the ‘derivative’). In 
contrast, object-level learning only involves changes or expansions of properties of objects that 
are already introduced in the discourse (Valenta & Enge, 2022). Individualizing a discourse 
means developing one’s ability to communicate with others and oneself according to the rules of 
the discourse.  Given the commognitive view of teaching, “the communicational activity the 
motive of which is to bring the learners’ discourse closer to a canonic discourse” (Tabach & 
Nachlieli, 2016, p. 303), we assume that there are teaching practices aiming to help students 
learn about how to apply those rules. Our goal is to reveal such practices in the context of the 
derivative based on a case study of a teacher explicitly addressing this discursive feature in class.  
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Theoretical Background 
This study builds up on the existing literature about teaching and learning of multiple uses of 

a signifier in mathematics (Biza et al., 2008; Lamb et al., 2012; Rubenstein & Thompson, 2001; 
Thompson & Rubenstein, 2000; Zazkis & Kontorovich, 2016). We adopted the commognitive 
view of teaching and teaching practices (Cooper & Lavie, 2021; Nachlieli & Elbaum-Cohen, 
2021; Tabach & Nachlieli, 2016) and intellectual needs (Harel, 2008, 2013) to identify teaching 
practices aiming to help students learn about multiple uses of ‘derivative’ and tasks they address.  

Teaching and Teaching Practice Promoting Metalevel Learning in Commognition 
The commognitive approach is a conceptual and analytic framework that combines cognition 

and communication and views mathematics as a type of discourse. A discourse is defined as a 
type of communication characterized by its distinctive use of words and visuals, and what they 
endorse as narratives. A feature of discourse – routines – are defined as a task paired with a 
procedure, where a task is “any setting in which a person considers herself bound to act” based 
on her interpretation of the task and a procedure is the prescription for her actions in the task 
situation “that fits both the present performance and those on which it was modeled” from her 
past experience (Lavie et al., 2019, pp. 160–161). Routines are regulated by object-level rules 
(e.g., rules about addition regulates the routine of adding of fractions) or meta-level rules (e.g., 
rules that determine the use of “derivative” regulates the endorsement of statements about it).   

The commognitive view of learning is changes in one’s discourse, and teaching is considered 
as communicational activities with the motive of bringing students’ discourse closer to what is 
considered canonic discourse (Sfard, 2008). Recent commognition studies considered teaching 
practice as “the task as seen by the performing teacher together with the procedure she executed 
to perform that task” (Nachlieli & Elbaum-Cohen, 2021, p. 7). They examined the teaching 
practices that promoted meta-level learning and called for more studies on this topic. Meta-level 
learning usually happens when students are engaged in activities regulated by meta-level rules 
they are unfamiliar with (e.g., proving or defining) (Park et al., 2023; Schüler-Meyer, 2020; 
Valenta & Enge, 2022) or when they encounter a new mathematical object to which old 
discursive rules do not apply (e.g., from whole numbers to fractions) (Cooper & Lavie, 2021). 
Teaching practices aiming to promote meta-level learning often use characteristics of students’ 
old discourses as a starting point towards a new discourse to create discomfort with old discourse 
(Nachlieli & Elbaum-Cohen, 2021) or to allow students to use old routines in emerging discourse 
in a way appropriate in the teacher’s eyes (Cooper & Lavie, 2021). We contribute to this area by 
examining teaching practices aiming to promote students’ meta-level learning about new 
mathematical objects involving meta-level rules about multiple uses of a word “derivative”.    

Intellectual Needs  
This study views teaching practice as teachers’ actions to address students’ intellectual needs, 

which emerge in a problematic situation that is “incompatible with, or presents a problem that is 
unsolvable by, his or her current knowledge” and the intellectual need is “the need to reach 
equilibrium by learning a new piece of knowledge” (Harel, 2013, p. 122). In commognitive 
terms, ‘a problematic situation’ can be seen as a task situation where students’ existing routines 
do not work (i.e., do not lead to desirable results) or there is no existing routine they can apply. 
In this study, we considered task situations broadly in which students need to connect new words 
with their familiar words/symbols, realizations, narratives, and routines and to learn about how to 
communicate with the new words. Intellectual needs have been referenced in prior literature 
about teaching approaches to multiple uses of a mathematical word/symbol (e.g., Zazkis & 
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Kontorovich, 2016). Similar to those literature, we focused on three intellectual needs: 
• Need for Causality: “one’s desire to explain to determine a cause of the phenomenon”  
• Need for Communication: the need to “externalize…an idea, or a concept, or the logical 

basis” for other to communicate with them 
• Need for Structure: the need to organize “knowledge one has learned into a logical 

structure” (Harel, 2013, p. 126, p. 137, p. 140, respectively) 
Since these needs are inextricably linked (Harel, 2013), we used them collectively to explain 
teaching practices aiming to address students’ needs in their learning of multiple uses of a term.  

Multiple Use of a Mathematical Word or Symbol and Teaching Approaches 
As multiple uses of a signifier are prevalent in mathematics and cause potential difficulties 

for students, existing studies have investigated and suggested teaching approaches aiming to help 
students learn about such uses. Thompson and Rubenstein (2000) provided a list of such words 
including those that have more than one mathematical meaning (e.g., “square” in algebra and 
geometry). Rubenstein and Thompson (2001) provided a similar list of symbols with different 
meanings (e.g., “the raised -1 symbol” for “an inverse function” and a “reciprocal”) (p. 268). 
Thompson & Rubenstein (2000) suggested teaching approaches to help students learn about such 
words/symbols for example by bringing their attention to different uses (e.g., a writing prompt, 
“I thought that a function was __. Now I know that a function is __.”) and relations among 
multiple uses (e.g., “Square and cube have geometric meanings and are also used for second and 
third powers, respectively. How are the geometry and powers related?”, p. 517).  

Other studies that navigated teaching approaches specific to a word or symbol with multiple 
uses also focused on differences or relations among them. Lamb et al. (2012) pointed out 
difficulties that students have with multiple uses of the minus sign as “subtraction”, “a symbol 
for a negative number” and “a unary operation of the opposite of” (p. 5) and suggested asking 
students to explain different uses of the minus sign in solution processes and providing numerical 
tasks that can expand to symbolic expressions (e.g., compare – –6 and –6, and then ! and −!).     

Biza et al. (2008) focused on multiple uses of “tangent line” that students encounter from 
Euclidian Geometry, Analytic Geometry, to Analysis and showed that many Analysis students 
(108 out of 196) still hold thinking developed in Geometry, “the tangent line is the one that has 
only one common point with the curve and leaves the curve in the same semi-plane” (p. 64) 
which do not generally apply to graphs of functions in Analysis. Biza et al. (2009) showed the 
similar results for teachers. The authors suggested providing students a strong image of “tangent 
line” from geometry and dominant but incorrect visual claims, and asking to verify algebraically. 

Zazkis and Kontorovich (2016) analyzed secondary preservice teachers’ (PSTs’) responses to 
a hypothetical student questioning about the two uses of the exponent (-1) as the reciprocal and 
the inverse function. The PSTs addressed intellectual needs for structures for distinctive uses 
based on different contexts, terminologies, and locations of the symbol and related uses based on 
a common word (“inverse”) that implies common actions (e.g., “undo”) and also address the 
need for causality for why the same symbol is used in different contexts. They addressed 
intellectual need for communication using analogies to other symbols with multiple uses.   

Two Uses of the Derivative  
Our study deals with the two uses of the derivative, for each of the two mathematical objects, 

the derivative at a point and the derivative function, focusing on how they are different and 
related in the discourse about the derivative. For example, once the “the derivative at a point” is 
part of the discourse, it can be used to construct “the derivative function”. There are many ways 
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to do this, but one way is called encapsulating in Sfard’s (2008) terminology. Specifically, once 
“the derivative at a point” is in the discourse, one can consider, for any number #, the pair    
(#, &′(#)). All the pairs can be collected into a set and encapsulated into a function called “the 
derivative function”. Once the derivative function has been constructed, one can find its value at 
a specific input by substituting that value into the function.  For example, the value of &′(!) at 
! = 1 is &′(1).  We call this transition evaluating. Evaluating a function at a point is a process, 
typically done in calculus by substituting a value into a formula or reading a coordinate from a 
graph.  In calculus, one of the important steps is appreciating the derivative at a point with the 
result of applying the evaluation process at a point to the derivative function as the same. 
Previous studies (Font et al., 2007; Park, 2013) have shown that the connection between 
evaluating the derivative function and the derivative at a point can be challenging for students. 

Methods  

Data Collection  
The participating teacher, William (pseudonym) was educated in the U.S. He has B.S. and 

M.S. in Mathematics with over 10 years of teaching experience with 7 years of calculus teaching. 
We observed an Advanced Placement Calculus AB class with 34 students in a U.S. public high 
school. William used SMART board and generally organized his class starting with explaining 
key words and solving a few examples on the board, followed by students’ individual or small 
group work on problems, and then whole class discussion about those problems. We video-
recorded six 90-minute lessons at the beginning of the derivative unit, before the class began 
concentrating more on computation, where we could potentially observe the two uses of 
“derivative”, how they were defined and connected to each other, and other realizations and real-
life phenomena were discussed. We transcribed the videos including non-verbal communication.  

Analysis  
In our analysis, we treated the totality of the teacher’s talk collected over multiple days as our 

unit of analysis (Sfard, 2008). However, we separated lessons into several episodes to see how 
words were used in different contexts. Episodes were defined by William’s different teaching 
activities – e.g., defining a new mathematical term, providing a story involving a real-life object 
prior to defining a mathematical term, making connections between a newly defined term and 
previously defined terms, or making connections between a newly defined term and a real-life 
object – because changes in teaching activities correspond to changes in the context of discourse 
and, therefore, to potential changes in usage of words whose meaning is context-dependent (Biza 
& Zachariades, 2010; Thompson & Rubenstein, 2000), like “derivative”.   

Because we were interested in investigating potential teaching practices that aim to help 
students learn about multiple uses of the word “derivative” based on how William dealt with the 
feature, we first identified the mathematical objects that the common signifier signified in 
William’s discourse. In class, William made an explicit distinction between two uses of the 
single word “derivative,” namely as “a number” and as a “function”, and we categorized 
William’s use of the word “derivative” alone into two usages, namely as “the derivative at a 
point” or as “the derivative function,” based on whether the surrounding context suggested it was 
being used as a number or as a function. We also recorded other terms and visual mediators (e.g., 
slope) used for those objects, and grouped episodes according to whether they included both 
objects or only one of them. We then recorded connections made between those terms and visual 
mediators. We operationalized teaching practice as a task–procedure pair (i.e., “the task as seen 
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by the teacher together with the procedure she executed to perform that task”) (Nachlieli & 
Elbaum-Cohen, 2021, p. 110872). Similar to other commognitive literature (e.g., Valenta & 
Enge, 2022), we first focused on William’s actions related to the two uses of the derivative in the 
data, and wrote general instructional procedures based on these actions. We then identified the 
tasks William was trying to accomplish through these procedures based on intellectual needs.  

Results  
Teaching practices aiming to help students learn about the dual use of “derivative” based on 

our analysis of William’s class are organized according to the intellectual needs they addressed.    

Teaching Practice Addressing Intellectual Need for Structure and Causality   
At the beginning of the derivative unit, William explicitly discussed multiple times how to 

distinguish the two uses of the signifier “derivative,” as shown in the following excerpt observed 
on Day 2 after he constructed the derivative function graphically:  

   
This idea of the derivative can be thought of as a number, which represents the slope of 
the tangent line at a point. But, notice that I can talk about slope of the function at every 
point along this curve … And the slope is always changing. What we get then, is a 
function that represents the slope of the tangent line at any point as a function of !. That’s 
called the derivative too. From the context, you understand what I’m talking about. …just 
remember now we’re talking about numbers and we’re talking about functions. We have 
to keep them straight. Then we get into the other half of Calc 1 and talk about integrals. 
There will be the same thing. There will be some integrals that are numbers, some 
integrals that are functions…we use the same words because the concepts are related.  
 

Note that after using “derivative” to refer to both the derivative at a point and the derivative 
function, he provided a rule for distinguishing the two uses: if context shows the object signified 
by “derivative” is a number, then “derivative” signifies the derivative at a point and if context 
shows the object signified by “derivative” is a function, then “derivative” signifies the derivative 
function. This is a metarule because determining which object “derivative” signifies is something 
that participants in canonic discourse must do repeatedly even if often it is done tacitly. He also 
mentioned an equivalent metarule regarding how to distinguish the two uses of “integrals,” 
another object with a similar feature that they were to cover soon. This addressed the students’ 
intellectual need for structure for distinguishing the uses when the common word is used. 

In the excerpt above, William also addressed intellectual need for connecting the two uses 
and causality of using one term for both. Specifically, using another object “slope” for both 
objects, he provided a connection between the two uses of the derivative – the derivative as a 
number and the derivative as a function – the latter comes into being when the former is 
expanded to several points over an interval. This connects the two uses via another mathematical 
object that are used for both objects and also shows how they are connected. He also provided 
the reason for using one word for two objects by stating “because the concepts are related.”  

Teaching Practice Addressing Intellectual Needs for Communication    
Teaching practices addressing intellectual needs for communication were observed implicitly 

through the comparison among episodes. We identified the first teaching practice – connecting 
the dual uses of the derivative to a colloquial object with a similar feature – when William gave  
a story about a colloquial word with dual use by comparing an episode about “speed” and an 
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episode about “derivative”. Specifically, he used a colloquial story about reading changing 
numbers on a speedometer to motivate the construction of the derivative function and followed a 
similar pattern as the colloquial story when constructing the derivative function. He used “the 
slope of the tangent line” at a point for both speed and the derivative and then considered them 
on an interval using numbers on a speedometer “changing all the time” similar to the slope 
“always changing” (see the excerpt in the previous section). Using the same structure and objects 
to discuss both speed and the derivative and talking about speed as a motivation to define the 
derivative seemed to address intellectual needs for communication because it allows students to 
use a new word “derivative” like they use a familiar word “speed” with the similar feature.  

Another teaching practice addressed the need for communication. Specifically, the practice 
of avoiding the common term in one episode after the second object (the derivative function) is 
defined was observed with a shift in which object the common term “derivative” was used for, 
between the derivative at a point and the derivative function. In the beginning of the derivative 
unit, before the derivative function was defined, William used “derivative” dominantly for “the 
derivative at a point compared to other equivalent terms such as “slope of the tangent line,” or 
the symbol &!(#) = 	 lim

"→$
%(")(%($)

"($ . However, after defining “the derivative” as a function, he 
almost exclusively used the word “derivative” for the derivative function in episodes that involve 
both objects, except in the two episodes where the other object became included due to students’ 
questions or participation. Even in those cases, William responded to students using their 
wording or expressions, and went back to his previous use of the “derivative”.  

It should be noted that once this shift in his use of “derivative” was made, he dominantly 
used “slope of the tangent line” to signify the result of evaluating the derivative function at a 
point. Specially, on Day 1, William said, “it [the derivative] is a function of any point I give you 
here, I can tell you what the slope of the tangent line is there”. Then, on Days 3 and 4 he solved 
five problems about this connection by computing “the slope of the tangent line” at a point given 
the equation for &(!) by computing &′(!) and evaluated it at a point. In this computation, only 
the expression &!(!) = 	 lim

)→*
%("+))(%(")

)  was used for the derivative function and only the term 
“the slope of the tangent line” and a symbol &! with a number (e.g., &!(3)) were used for the 
derivative at a point. In other words, in his class, the derivative function evaluated at a point 
became equivalent to the phrase “slope of tangent line” and the notation (e.g., “&!(3)”), but not 
to “the derivative at a point” in the way he initially defined it (e.g., “ lim

"→$
%(")(%($)

"($ ”).   

Discussion and Conclusion 
Our analysis of William’s class suggested several teaching practices aiming to help students 

learn about multiple uses of a mathematical term that addressed intellectual needs for:  
A. Structure – Distinction: Discussing the metarules that distinguish the two uses of 

“derivative” – a number and a function 
B. Structure – Connection: Using another mathematical object (slope) for both objects and 

showing how one use – the derivative as a function—can be engendered by the other use 
– the derivative as a number. 

C. Causality: Using the connection between the two objects as a reason for using one term  
D. Communication: Using the same structure to discuss a word for two mathematical objects 

and colloquial objects 
E. Communication: Avoiding one word derivative in one episode once the second object 

(the derivative function) is defined 
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In general, those teaching practices are aligned with the teaching practices identified in the 
existing literature addressing multiple uses of a mathematical signifier, but also different from 
those due to the distinctive feature of the two uses of the derivative; the two objects for which 
“derivative” is used are usually used in the same context and one object is built up on the other 
object, which we elaborate on with teaching practices A and E only due to the limited space. 
Similar to the teaching practices addressed in other studies, teaching practice A provided a way 
to distinguish the two uses of the term “derivative” (e.g., the PSTs in Zazkis & Kontorovich, 
2016 suggested what the raised (-1) is next to in order to distinguish between its use between 
“inverse” or “reciprocal”). However, the teaching practice we identified was making canonic 
discourse about the “derivative” explicit by stating when it is used as a number, it is “the 
derivative at a point,” and when it is used as a function, it is “the derivative function”. Some 
instructors may not explicitly discuss this metarule about how to distinguish multiple uses or 
may explicitly use the unabbreviated terms “the derivative at a point” and “the derivative of a 
function”.  However, given that students are learning about multiple uses of a common term 
when they are learning about a new concept, explicitly discussing the metarules of how to 
distinguish those two uses seems particularly important because one use is built up on the other 
and they are later related to each other. Being explicit about metarules about a new discourse 
(about the derivative, in our case) seems aligned with the teaching practices found in the 
literature for making the boundary between students’ old discourse and new discourse explicit 
with students (e.g., rules about real numbers and rules about complex numbers, Nachlieli & 
Elbaum-Cohen, 2021). Communicating this could be further aided by providing students 
opportunity to directly attend to and reflect on the multiple uses of the derivative (e.g., writing 
prompts, “I thought that the derivative was __. Now I think that the derivative is ___,” similar to 
Thompson & Rubenstein, 2000). The teaching practice E provides a way to communicate when 
multiple uses of the same term could in the same context. This was observed with a discursive 
shift in our data, where William initially used the “derivative” as the main signifier for “the 
derivative at a point”, but once he defined the “derivative” as a function, he exclusively used the 
term for “the derivative function” whenever he talked about the two objects in one context. We 
note that such a shift could be seen as William’s didactic choice, and there is an obvious appeal 
to avoiding the potential for confusion, ambiguity, and circularity inherent in using one term 
“derivative” for different objects at the same time. This appeal is magnified by the commognitive 
observation that student discourse is often initially a (potentially imperfect) imitation of 
instructor discourse (Sfard, 2014), which suggests that, even if the teacher’s discourse carefully 
avoids such problems, students may not. Notably, given that this shift could be made implicitly 
by the instructor (as seen in our data), students may not even explicitly notice that the shift 
occurred in the teacher’s discourse.  This implicit nature of using “derivative” observed in the 
shift seems aligned with other literature reporting teachers’ implicit shifts between different uses 
of the same word (Güçler, 2013 for “limit”). These discursive shifts would be interesting to 
further investigate because the literature has shown that the connection between the derivative at 
a point and the derivative function can be challenging for students (Font & Contreras, 2008; 
Park, 2013) and implicit shifts in instructor discourse have been tied to student difficulties 
(Güçler, 2013). Although derivatives have been intensely studied in the literature, we have not 
seen shifts like the one we discuss documented before.  Note, however, that the instructors 
studied in (Park, 2015) also dominantly connected “derivative function” to “slope of the of the 
tangent line” and this leads us to conjecture that this shift may be widespread, but not 
documented because previous analyses were not looking for such large-scale discursive patterns. 
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Obligations and Norms: How Instructors Respond to Students’ Correct But Non-Traditional 
Proofs 

 
 Andrew Kercher Anna Marie Bergman Rina Zazkis 
 Simon Fraser University Fort Lewis College Simon Fraser University 

Proof is a central pillar of mathematical practice, and so teaching proof to undergraduate 
students is a necessary responsibility for undergraduate mathematics instructors. Our study 
contributes to research on how instructors can achieve this goal by examining their responses to 
student-generated existence proofs. In particular, the simple logical structure of an existence 
proof allows for proof-writing norms to be the focus of attention. By analyzing instructors’ 
responses to students’ existence proofs in terms of norms, values, and professional obligations, 
our study attends to the ways in which norms are (or are not) supported by instructors in 
undergraduate mathematics classrooms. 

Keywords: Proofs, Existence Proofs, Professional Obligations, Norms, Values 

Among mathematicians, it is not uncommon to agree with Ziegler’s (2013) observation that 
“proofs are the heart and mind of mathematics. They are the pillars upon which the structure of 
mathematics rests” (p. 130). Among students entering undergraduate mathematics programs, 
however, the centrality of proof may not be so self-evident; given the scarcity of proving activity 
featured at the secondary level, this limited perspective is perhaps understandable. It becomes the 
work of undergraduate mathematics instructors, then, to foster a fuller perspective on proof that 
more closely aligns with the actual work of mathematics—to illustrate to their students the nature 
and importance of proof by teaching them what proofs are, how to write them, and what role 
they serve. 

This is not a simple task. Countless studies have explored the difficulties undergraduate 
students navigate as they come to understand proofs as a concept (e.g., Dawkins & Weber, 2017; 
Stylianides & Stylianides, 2009; Selden & Selden, 2013). Other researchers have spotlighted 
particular types of proofs, such as proof by contradiction (e.g., Chamberlain & Vidakovic, 2021), 
contraposition (e.g., Antonini & Mariotti, 2008) or mathematical induction (e.g., Norton et al., 
2022), that are notoriously challenging for students. 

By contrast, proving a statement of existence is perceived to be an approachable process for 
mathematical novices; such proofs are direct, typically constructive, and require only the 
provision of a single example (Buchbinder & Zaslavsky, 2019). Perhaps for this reason, there is 
comparatively little research on how undergraduate mathematics students develop an 
understanding of this type of proof. 

But the simplicity of an existence proof is beneficial for researchers interested in how 
undergraduate students understand the form and function of proofs in mathematics. Because they 
are not encumbered by logical constructions that are difficult or unfamiliar to them, these 
students are free to produce existence proofs that adhere most closely to what they perceive a 
proof “should be like”. In this way, existence proofs provide a clearer lens into the norms and 
values around proof-writing that students have begun to develop. 

Simultaneously, the way that undergraduate mathematics instructors read and respond to 
students’ proofs in the classroom—especially those that do not adhere exactly to conventional 
proof structure—can reveal the mathematical norms and values that inform their teaching. But 
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undergraduate mathematics instructors also have responsibilities towards their institution or their 
students’ learning that might affect how they respond to proofs. Our study examines instructors’ 
reactions to non-traditional student-generated existence proofs to better understand what aspects 
of proving those instructors value and thus promote in their classrooms. This answers the 
research question: What do mathematics instructors consider when evaluating student-written 
existence proofs and how do their considerations relate to normative conventions for proving? 

Background 
To answer our research question, we must first consider what values and norms 

mathematicians might conventionally hold. Dawkins and Weber (2017) conducted a thorough 
review of literature in order to present such a list of values, and the associated norms, with 
respect to proving. The four values they identified were: 

1. Mathematical knowledge is justified by a priori arguments. 
2. Mathematical knowledge and justifications should be a-contextual and specifically be 

independent of time and author. 
3. Mathematicians desire to increase their understanding of mathematics. 
4. Mathematicians desire a set of consistent proof standards. 

Each of these values begets a collection of relevant norms, that is, suggested practices for 
fulfilling the associated value when engaged in proving. For example, the norm “Irrelevant 
statements are not presented in the proof” is a convention used by mathematicians to support the 
value for increasing understanding; Dawkins and Weber argue that “adding irrelevant statements 
or assumptions will confuse the reader as she struggles to find out how this is relevant” (p. 131).  

Rupnow and Randazzo (2023) extend the work of Dawkins and Weber (2017) by 
interviewing mathematicians about the values and norms they hold with respect to defining as 
opposed to proving. They propose an additional value: that mathematicians desire clarity in and 
for communication when writing definitions. 

But when mathematics teachers must respond to student-written proofs or definitions, they 
are often at odds—they must introduce their students to conventional mathematical values and 
norms while still attending to the needs of their students, their classroom, and their institution. To 
understand how mathematics instructors might balance these conflicting needs, we turn to 
Erickson et al.’s (2021) concept of professional obligations. The authors explain: “If norms 
describe expectations for action held in common by members of a profession, professional 
obligations help us understand why actions at a particular point and time may deviate from those 
expectations” (p. 192). Mathematics teachers might experience obligations to the individual 
student, the social classroom, the institution, or to the discipline of mathematics. For example, a 
teacher might endorse a non-normative proof out of obligation to an individual student if they 
perceive that doing so would have a positive effect on that student’s emotional or intellectual 
needs. Thus, a mathematics teachers’ decisions in the classroom can be seen as aligning with a 
mathematical norm (and thus, promoting a particular mathematical value), or else as fulfilling a 
professional obligation to some other entity. 

Methodology 

Participants and Data Collection 
Our data comes from two sources: an online survey and semi-structured interviews, both with 

mathematics instructors. The survey collected participants’ (𝑛 = 86) reactions to five different 
student responses; these responses were proofs of the statement, “There exist four different prime 
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numbers the sum of which is prime,” and are provided in Table 1. The presented responses were 
inspired by student work submitted in a course intended to serve as an introduction to proofs. 

 
Table 1. The five student responses assessed by participants in the study. 
Participant Proof 

Alpha True. In order to prove this exists we only have to show one valid example of the statement. a, b, c, 
d, e in "primes" 
 

a + b + c + d = e 
Example: 2 + 5 + 7 + 17 = 31 
  

2, 5, 7, 17, and 31 are all primes. 
Therefore, there does exist a case where four distinct/ different primes sum to equal a prime number. 

Beta True. For example, consider the sum of prime numbers 2 + 3 + 7 + 11 = 23 which proves that there 
exists four different prime numbers the sum of which is prime. 
 

But there also exists four different prime numbers the sum of which is not prime. For example, 2 + 5 
+ 7 + 11 = 25. 

Gamma True. 2, 3, 5, and 7 are all different positive primes. Their sum, 2 + 3 + 5 + 7 = 17, is also a prime 
number. This example proves the initial statement that there exists a (at least one) solution. 
 

Note that 2 must be one of the primes in the sum: 2 is the only even prime number, so if none of the 
four primes is 2, then we have 
odd + odd + odd + odd = (2a + 1) + (2b +1) + (2c + 1) + (2d + 1) = 2(a + b + c + d +  2) = 2k 
 

where k is an integer, hence the result is even and cannot be prime (unless k = 2, except all odd 
primes are greater than 2, so the sum will be greater than 2 making this not possible).  

Delta True, 2 + 3 + 5 + 7 = 17, all primes. 
Epsilon This statement is true. 

  

Proving by contradiction, let us assume that this statement is false, then it becomes, "There don't 
exist four different prime (positive) numbers the sum of which is prime." 
 

We can disprove this with a single example, such as 2, 5, 7, and 17, which sum to 31, a prime 
number. 
 

As the inverse statement is false, we can see that the original statement, that there exists at least one 
group of prime numbers that sum to a prime, is true. 

 
We note that, despite one minor (unintentionally included) error in Gamma’s proof (the 

phrase “unless 𝑘 = 2” should be “unless 𝑘 = 1”), each proof is mathematically correct and 
logically sufficient to prove the existence of the requisite set of prime numbers. The proofs were 
chosen for the survey because they did not adhere to the previously observed norm for 
minimality found in existing research literature (or, in Delta’s case, pushed the limits of what a 
lower bound on minimality might be). 

Participants were prompted to “Imagine that you were teaching a math class, and you 
received the following five homework submissions as an argument or justification for whether 
the statement is true or false”. Under these circumstances, participants were asked to rank the 
five student responses from “best to worst”, under whatever criteria they deemed to be 
appropriate. More importantly, they were also asked to explain the rationality for their ranking. 

The interviewees (𝑛 = 5) represent primarily a convenience sample, but one that targeted a 
variety of backgrounds both in learning and teaching mathematics. Interviewees completed the 
same survey as described above, but in the presence of a member of the research team. Doing so 
allowed the interviewees to explain in more detail their method for ranking the student 
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responses; it also gave the research team member conducting the interview the opportunity to ask 
clarifying questions and prompt the interviewee to provide additional insight. Each of the 
interviews was audio-recorded and transcribed. 

Data Analysis 
Because the student responses were chosen for their relationship to the norm for minimality 

in mathematics, participants’ explanation of their rankings were first coded by one member of 
the research team according to whether or not they indicated approval of the amount of content 
included in each student response. When participants endorsed a student’s proof that was not 
minimal, their rationale was associated with a corresponding professional obligation. In other 
situations (e.g., when a non-minimal proof was rejected, or when Delta’s proof was rejected 
despite its minimality) techniques from thematic analysis (Braun & Clarke, 2019) were used to 
identify commonalities between participants’ responses. Through constant comparison, these 
commonalities developed into themes that sometimes aligned with existing norms or values that 
could be used to add context to the participants’ reasoning. Next, a second member of the 
research team coded the participant explanations following the same procedure and the two 
researchers met to resolve any differences. An identical process was used to code and recode the 
interview transcripts. 

Findings 
In this report, we focus on three of the five responses that provide the most fertile analysis: 

Gamma, Delta, and Epsilon. We present participants’ responses to each of the three existence 
proofs in separate subsections. Then, we provide a synthesized analysis of these responses. 

Gamma 
Gamma’s response was ranked as the best by a majority of participants (𝑛 = 63) and by 

every interviewee. This overwhelming support of Gamma’s proof, despite the fact that it is not 
normatively minimal, can be attributed to several different factors. 

First, participants often identified Gamma as having produced the “best mathematical 
response” by “investigating and extending the problem.” In particular, Gamma’s observation that 
one of the prime numbers in the sum must be 2 was more than just an arbitrary mathematical fact 
appended to the end of the actual proof; participants considered this contribution a “corollary” 
that unpacks the “underlying structure of the statement rather than just providing an example.” 
Participants stressed that Gamma’s extra result was mathematically interesting and alluded to a 
more general explanation for how a set of primes meeting the requirements of the theorem could 
be found. This perspective was exemplified in Alan’s interview when he said, “I don't 
particularly like the question. It doesn't do anything. It's nothing. There's no theory behind it. 
And Gamma, as I said, is the closest to coming up with a theory that makes the question 
interesting.” Alan appears to accept Gamma’s breach of the minimality norm because he feels an 
obligation to the discipline of mathematics, in the sense that it is a disservice to the subject to 
spend time proving inconsequential results. To Alan, mathematical proof is substantive and 
worthwhile if it is built on or contributes to existing theory; in his opinion, Gamma’s corollary 
does exactly this. 

Other participants ranked Gamma’s proof as the best because they ordered the student 
responses according to the amount of mathematical understanding they revealed. These 
responses demonstrate an obligation to the student: unnecessarily longer proofs can be allowed 
when they provide an instructor with insight into their students’ ways of thinking. Some 
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participants reported that Gamma’s extra work showed “the most conceptual understanding 
behind the answer”—that is, it revealed the extent of Gamma’s mathematical subject matter 
competency. Other participants noted that Gamma probably “understands that they were done 
after the first sentence, but they enjoyed proving a little extra.” In this sense, Gamma isn’t 
displaying mathematical content knowledge but rather a “meta-theoretical understanding of the 
role of an example.” Gamma’s higher-level grasp of the role and methods of proof is evident, 
somewhat ironically, only because of Gamma’s explicit violation of the norm for minimality in 
proving. 

Finally, a number of participants recognized Gamma’s proof as the best response because 
they quantified “best” according to how useful the student’s proof would be as a pedagogical 
tool for promoting mathematical discourse in a classroom discussion. One participant explained 
that “Gamma […] immediately provided an example in the clearest way possible. The extra 
work they did actually put them above Delta because it gives me, as an instructor, ways to extend 
the question in possible follow-up discussion.” This sentiment was echoed by Anthony in his 
interview: “So, in that sense, Delta and Gamma's responses are both good and I think it would be 
interesting to talk about which one would be preferred […] as a class.” Anthony ranked both 
Delta and Gamma highly out of obligation to the social classroom. That is, he foresaw a chance 
for his students to collaboratively negotiate a sociomathematical standard for “how much” 
information should be included in a proof. The length of Gamma’s response was acceptable 
exactly because it was not minimal, and thus could be juxtaposed against Delta’s particularly 
extreme minimalism. 

In fact, Gamma’s response was never ranked as the worst by any participant and was only 
identified as the fourth best response a total of eight times. Most often, participants who ranked 
Gamma especially low took issue with his mathematical mistake (writing “unless 𝑘 = 2” instead 
of “unless 𝑘 = 1”) rather than the length of their response. However, one participant linked the 
two: “The most concise answers are the best. [Answers like Gamma’s], while to be encouraged 
since they are exploring the problem further, are more likely to lead to responses including 
incorrect statements.” 

Delta 
Delta’s response was ranked as the best by five participants. Their rationale for doing so was 

consistent: these participants valued Delta’s “directness and simplicity,” and variously described 
his response as “concise,” “succinct and clear,” and “short and to the point”. This demonstrates a 
very clear preference for proofs that adhere as strictly as possible to the norm for minimality. 
Alan provided another perspective on Delta’s work; although he also admitted that he liked it  
“for its brevity,” he explained that brevity was only warranted because “this question is not 
significant in any way, so I think it's—the response given is on par for the level of the question.” 

On the other hand, Delta’s response was ranked as the worst by half of the total participants 
(𝑛 = 43). These participants took a much more negative view of Delta’s level of explanation, 
describing it as “incomplete” or “insufficient”. Importantly, this appeared to be a mathematical 
shortcoming—one participant felt that Delta “provided no warrants at all for how this [example] 
justifies the claim.” Another explained that, although “Delta’s example is technically correct,” he 
should “include more structure to make this a more formal argument.” These responses indicate 
that participants were not necessarily concerned with Delta’s understanding but instead with the 
understanding of those who might need to read and interpret his proof. This sentiment was 
outlined explicitly by Kenneth during his interview: 
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For me, proof in mathematics is about communication of ideas. And for me, I—if I didn't 
have the question in front of me, I didn't know what we were trying to prove, I would 
have no idea what we were trying to do here, right? 

This aligns with earlier results from Rupnow and Randazzo (2023) that mathematicians value 
communication but applied to proofs rather than definitions. However, it can also be interpreted 
as a type of obligation to the discipline of mathematics. Kenneth appeared to believe that proofs 
are not just a means of establishing deductive truths, but also a means of sharing those truths 
with fellow mathematicians. To do this, proofs need to be self-contained; this perspective is, in 
fact, one of the important mathematical values delineated by Dawkins and Weber (2017). From 
this perspective, Kenneth’s reaction to Delta’s proof is an example of competing mathematical 
norms: A proof must be minimal, but not so minimal that it cannot stand alone as an independent 
mathematical object. 

Other participants who ranked Delta’s response last were more concerned with Delta’s 
personal understanding; in the most extreme case, one participant wondered if Delta had even 
copied their proof from a peer. These participants explained that Delta’s work “gave very little 
insight into their thinking,” and thus did not allow them to “assess what they understand.” 
Kenneth’s interview added a caveat to this assessment of Delta’s understanding. Kenneth 
recognized that he “might accept this from a graduate student because I would assume that they 
have a certain baseline level of proof knowledge, but from an intro to proof course, my 
expectations are a little more, I guess.” This illustrates the importance of context for identifying 
mathematical norms, especially in mathematics classrooms. 

Epsilon 
Epsilon’s response was ranked as the best in eight participants’ responses. Interestingly, 

despite the fact that Epsilon was ranked first in so few responses, there were still two clearly 
distinct schools of thought as to why it should be placed above its peers. 

First, some participants thought that Epsilon’s proof was simply the least incorrect. These 
responses typically took issue with Gamma’s mathematical error and Delta’s insufficient 
explanation, leaving Epsilon as the only “valid proof with no errors.” Kenneth added some 
context to this perspective when he explained that 

Epsilon is clearly communicating everything that they're doing. So they—they’re clear 
about what method of proof they're going to use. […] I don't love that they chose proof 
by contradiction, but they've done it in a nice way and it's clear to me what they're doing. 

That is, Epsilon’s proof may not be stylistically preferable but is still technically correct. 
Anthony also summarized this somewhat conflicted appraisal of Epsilon’s proof by admitting 
that “if I was going to write a contradiction proof for this existence theorem, which is bizarre, it 
would probably look like Epsilon's. I just don't think that's a good idea.” 

On the other hand, some participants ranked Epsilon’s response as the best specifically 
because of its logical complexity. One participant characterized Epsilon’s proof as the “most 
sophisticated,” while another described it as the “most formal.” Importantly, this sophistication 
was seen as evidence of Epsilon’s mathematical understanding: not only did he clearly 
understand how a proof by contradiction should be logically structured, but he was also able to 
use a proof by contradiction in a surprising and unexpected way. Alan provided a counterpoint to 
this interpretation of Epsilon’s understanding when he observed that “it seems like Epsilon is, 
like, over formalizing. Maybe because they expect, you know, this is a math class and I'm 
supposed to be really formal.” Then, the use of proof by contradiction could be seen as an 
explicit lack of understanding. In either case, however, the instructors are acting out of obligation 
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to the student; Epsilon’s clearly non-minimal proof is important to allow because it ultimately 
provides evidence that further conversation should take place with Epsilon. 

Epsilon’s response was the worst-rated proof in almost as many cases as Delta’s (𝑛 = 36). 
Almost universal criticism was directed at Epsilon’s choice of proof by contradiction, which 
participants found “labored,” “unnecessarily complex,” or simply “less clear” than other choices. 
This was a mathematical consideration; these participants were not concerned with why Epsilon 
felt that a proof by contradiction was warranted but were simply dissatisfied with the resultant 
mathematical object. Other participants, however, did identify Epsilon’s choice of proof 
framework as insight into his (lack of) understanding. For example, one participant wondered 
whether Epsilon might be “uncomfortable with existence proofs”. Another inferred that Epsilon 
was “proving things a bit ritualistically—they seem to be copying a known proof structure 
without considering whether it is the best way to prove the theorem in question”. This was the 
basis of Gavin’s poor appraisal of Epsilon’s proof. During his interview, Gavin explained that 
Epsilon “complicated the solution unnecessarily. I don't think they understand clearly the process 
of solving—or sorry, proving this question.”  

Discussion 
Our research question asked: How do mathematics instructors respond to student-written 

existence proofs and how do their responses relate to normative conventions for proving? Very 
commonly, non-minimal existence proofs that included technically extraneous information were 
accepted by participants. This is best illustrated by the overwhelming approval of Gamma’s 
proof. Participants appreciated that Gamma’s additional contribution was mathematically 
interesting, revealed a deeper understanding, and could serve as a foundation for classroom 
discussion. The latter two points are unique to the pedagogical context in which Gamma’s work 
is embedded, but the former point is strictly a mathematical consideration. But minimality is also 
a mathematical consideration, and so in this way, reactions to Gamma’s proof illustrate how two 
mathematical norms for proving can be in conflict even when they are both in service of the 
same value: that proofs should increase a mathematicians’ understanding. A similar observation 
was made about reactions to Delta’s proof, in which minimality was at odds with the need for the 
proof to make sense as an independent object. 

Despite Gamma’s positive reception, other non-minimal proofs (i.e., Epsilon’s) were largely 
rejected by the same participants. This is in spite of the fact that, as pointed out by some 
interviewees, Epsilon’s proof does in fact meet the standard for minimality (in terms of a proof 
by contradiction) and is revealing of Epsilon’s understanding. Ostensibly, Epsilon’s proof also 
could be used to stimulate a classroom discussion. We hypothesize that the difference between 
reactions to Gamma and Epsilon’s proofs lies in the fact that Epsilon’s proof added logical 
complexity without any accompanying mathematical insight. 

Conclusion 
Ultimately, participants in this study illustrated that mathematics instructors are often 

required to attend to non-mathematical obligations when considering student-written proofs. One 
limitation of this study was that much of the pedagogical context that might have led to these 
obligations was not provided in the survey—some participants commented that it was difficult 
for them to appraise the student responses without more information on the structure and purpose 
of the class, for example. Future research might include fewer student responses, but within a 
more elaborate fictional setting to allow instructors the opportunity to make more specific 
judgements. 
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What Meaning Should We Attribute to the Colon in Set-builder Notation? 
 

 Derek Eckman Kyeong Hah Roh 
 Idaho State University Arizona State University 

In this study, we report one group of students’ efforts to create a community meaning for set-
builder notation collectively. Students’ ability to develop and interpret set-builder notation is 
essential to transition-to-proof courses. Conventionally, a colon is used in set-builder notation to 
(1) separate the universe of discourse from the set’s defining property and (2) indicate an 
ordering to these components, with the universe to the left and the property to the right of the 
colon. We describe one normative and non-normative interpretation of this notation and how the 
students’ individual attribution of conventional meanings for the colon to different inscriptions 
within the notation helped (or inhibited) them from interpreting these expressions. We report 
how communicative discourse between the students affected their meanings and discussions. 

Keywords: Set-builder notation, set-based reasoning, symbolization, transition-to-proof  

The mathematical notion of a set is a crucial component of advanced mathematics. In the 
context of mathematical proof, students’ understanding of sets and ability to posit appropriate 
relationships between sets can positively influence their interpretation of mathematical 
statements and proofs (Dawkins, 2017; Dawkins et al., 2023; Dawkins & Roh, accepted; Hub & 
Dawkins, 2018). Instructors often convey information about sets visually (e.g., Euler diagrams) 
or symbolically (e.g., set-builder notation). Still, many students struggle to reason viably about 
sets through these representational mediums. For example, Eckman et al. (2023) reported that 
some students create oval regions in Euler diagrams to (1) gather elements of the universe of 
discourse that fulfill a particular property or (2) distinguish between classes of elements when 
comparing two equal sets. In the symbolic sense, Eckman et al. (2023) reported that students can 
attribute various meanings to arbitrary particulars in set-builder notation (i.e., Δ𝐴𝐵𝐶). 

This paper aims to investigate students’ conceptions of an additional symbolic component of 
set-builder notation: the colon (:). In the conventional sense, mathematicians utilize the colon 
(sometimes written as a vertical bar | ) in set-builder notation to (1) differentiate between the 
universe of discourse and the property by which the elements of the universe are partitioned into 
a set and its complement and (2) denote an ordinality to how students are supposed to create the 
set (i.e., first define a universe, then sort the elements of the universe). For example, a student 
considering the set 𝑆 = {𝑥 ∈ ℤ ∶ 𝑥 is divisible by 4} would first construe the universe as the set 
of all integers and then sort these integers into two sets: the integers divisible by 4 (set 𝑆) and the 
integers not divisible by 4 (set 𝑆, or the complement of 𝑆).  

We report two instances where three students attempted to interpret set-builder notation to 
determine the relationship between two sets. Our data stem from the fourth day of a semester-
long classroom teaching experiment we conducted to investigate the affordances of set-based 
reasoning for students’ comprehension of transition-to-proof coursework. We provide the 
following research question to guide our discussion: What do students’ meanings for the 
expressions in set-builder notation reveal about their meanings for the colon? 

Theoretical Perspective 
We adopt the framework proposed by Eckman (2023) to describe students' symbolizing 

activity or the process of mental activities that entails students’ creation or interpretation of a 
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perceptible artifact (writing, drawing, gesture, verbalization) to organize, synthesize, or 
communicate their thinking. We use the term symbol to denote a personal artifact to which a 
student has attributed a meaning (Thompson et al., 2014) that she can re-present to herself 
through the artifact (c.f., Glasersfeld, 1995). We employ Eckman’s (2023) framework, which 
involves three symbols: personal, communicative, and conventional expressions.  

We use the following example to illustrate the difference between the three types of 
expressions. Suppose an instructor of a transition-to-proof course presents her students with the 
set 𝐴 = {𝑥 ∈ ℤ ∶ 𝑥 is a multiple of 3}. We consider the set-builder notation {𝑥 ∈ ℤ ∶
𝑥 is a multiple of 3} to constitute a conventional expression because the instructor presents a 
perceptible artifact to the students as an authorized representative of the mathematical 
community. In the moment of the presentation, each student attributes a meaning (Thompson et 
al., 2014) to the conventional notation {𝑥 ∈ ℤ ∶ 𝑥 is a multiple of 3} to organize or synthesize 
portions of their experience, forming a personal expression. As the students interact and 
negotiate a community-approved meaning, the expression {𝑥 ∈ ℤ ∶ 𝑥 is a multiple of 3} becomes 
a communicative expression. A vital component of a communicative expression is that 
individuals must interpret and reconcile the meanings others attribute to the expression (which 
may or may not reflect their thinking) with their personal meanings for the symbol. 

Eckman (2023) described a relational meaning as one that students might attribute to their 
personal expressions. This paper focuses on relational meaning students may attribute to the 
colon in set-builder notation, which instructors conventionally use to express a relationship 
between the universe of discourse and the defining property for a set. There are two components 
to a relational meaning: connector and comparator. A connector-oriented meaning refers to 
students’ conception of a relationship between two expressions and attributing this relationship 
to a symbol separating the two expressions. For example, the normative connector-oriented 
meaning an instructor may attempt to convey through the colon in the expression {𝑥 ∈ ℤ ∶
𝑥 is a multiple of 3} would be that the set of integers, ℤ, is the universe of discourse and 
“multiples of 3” is the property defining the elements in the set. A comparator-oriented meaning 
refers to (1) a comparison action the student attributes to the symbol separating the two related 
expressions and (2) an ordering in which this comparison must occur. For example, an instructor 
might portray the colon as denoting an ordered process by which the set is created: (1) define the 
universe as the set of integers, ℤ, and (2) use the property “𝑥 is a multiple of 3” to separate the 
elements of the universe into set 𝐴 and its complement. The instructor would expect her students 
to use the notation (generally) and the colon (specifically) as communicative expressions to 
convey to others their images of the relationships between the integers and the multiples of three. 

Mathematicians often attribute multiple meanings to a mathematical expression (Gray & 
Tall, 1994). In this sense, we consider a conventional meaning for the relational inscription (:) in 
set-builder notation to include viable connector-oriented and comparator-oriented meanings. We 
further expect that students possessing these meanings can re-present them through their 
personal and communicative expressions. In the results section of this paper, we address how the 
students’ various comparator-oriented meanings for the components of set-builder notation 
facilitated or hindered their construction of communicative expressions. 

Methodology 
The data we present in this paper come from an ongoing project to investigate how set-based 

reasoning might help students to access transition-to-proof coursework (Dawkins et al., 2023; 
Eckman et al., 2023; Roh et al., 2023; Ruiz et al., 2023; Tucci et al., 2023). Specifically, we 
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report data from the fourth day of a semester-long constructivist teaching experiment (Steffe & 
Thompson, 2000) during the Fall 2022 semester at a large public university in the United States. 
During this session, the students worked in groups to determine relationships between sets 
defined using set-builder notation. The instructor had presented the conventional meaning of set-
builder notation immediately before this activity, and we consider the students’ group work to 
constitute their attempt to co-construct set-builder notation as a communicative expression. We 
focus on one group of three male students, Enrique, Simón, and Juan. The second author was the 
instructor for the course, and the first author served as the discussion facilitator. 

We collected students’ work through audio recordings, photographs of students’ notes, and 
pictures of collective whiteboard work. Our analysis first consisted of identifying moments in the 
data when the students disagreed about the meaning of an expression and needed to negotiate a 
collective interpretation. We analyzed these key moments using the principles of grounded 
theory (Strauss & Corbin, 1998). For example, we initially modeled the coevolution of the 
students’ meanings for the set-builder notation during the critical moments (i.e., open coding). 
After generating a set of initial codes, we attempted to coordinate our codes into an overarching 
idea, which we determined to be students’ attribution of meaning to the colon inscription (i.e., 
axial coding). In the results section of this paper, we describe how students’ relational meanings 
they attributed (or did not attribute) to the colon inscription allowed them to interpret set-builder 
notation appropriately or, in other instances, led to cognitive conflict. 

Results 
The results section comprises two subsections. First, we provide an example of Enrique, 

Simón, and Juan’s productive reasoning about set-builder notation and the relationship between 
two sets. Second, we share an example where each group member interpreted an instance of set-
builder notation differently. In the discussion section, we describe how the students might have 
leveraged the non-normative interpretations for components of the notation they exhibited to 
make the seemingly “correct” interpretations we describe in the first subsection. 

Distinct Meanings for Set-builder Notation Producing a Conventional Interpretation 
  At one point during the class, the students compared sets 𝐴 = {𝑥 ∈ ℤ ∶ 𝑥 is a multiple of 3} 

and 𝐹 = {𝑥 ∈ ℤ ∶ 𝑥ଶ − 1 is not a multiple of 3}. The mathematical relationship between these 
sets is 𝐴 = 𝐹 (i.e., both sets contain, and only contain, the multiples of 3). 

During this comparison exercise, Simón and Enrique quickly interpreted the elements of set 
𝐹 and posited a relationship between sets 𝐴 and 𝐹: 

Simón Ok, so they’re saying 𝑥ଶ − 1 leaves a remainder of either 1 or 2 (unintelligible). 
So either 𝑥 is a multiple of 3 itself, or, no, I think that’s the only option, 𝑥 has to 
be like a multiple of 3 because ,like, yeah (…) Ok, so I guess it’s the same thing 
[i.e., set 𝐴 and set 𝐹 are identical]. 

Eckman Juan is looking confused. 
Juan I don’t understand how you got there. 
Simón Because it’s like, 𝑥, so, like if 𝑥 were a multiple of 3, then this [𝑥ଶ − 1] won’t be 

[a multiple of 3], like this 𝑥ଶ − 1. 
Enrique Right, because 𝑥ଶ would also be a multiple of 3, but if you subtract 1, then it’s no 

longer a multiple of 3. 
(omitted dialogue) 
Simón Or, I guess, it’s like you could factor 𝑥ଶ − 1 as (𝑥 − 1) and (𝑥 + 1). 
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Enrique Right, since you have a plus 1 and minus 1. Like, the thing about the second 
number [i.e., the expression “𝑥ଶ − 1 not a multiple of 3”] is it [i.e., 𝑥] has to be a 
multiple of 3, so it’s got to be a multiple of 3 in order for it to [work]. 

Juan Oh yeah, that makes sense. So they would be the same set. 
In this excerpt, Simón’s order of reasoning indicates that he considered the multiples of 3 

(i.e., set 𝐴) to be a subset of all integers 𝑥 with the property “𝑥ଶ − 1 is not a multiple of 3” (i.e., 
set 𝐹). In contrast, Enrique’s order of reasoning indicates that he considered the integers 
fulfilling the property “𝑥ଶ − 1 is not a multiple of 3” (i.e., set 𝐹) to be a subset of the multiples 
of 3 (i.e., set 𝐴). Collectively, Simón’s reasoning that 𝐴 ⊆ 𝐹 and Enrique’s reasoning that 𝐹 ⊆ 𝐴 
satisfy the conditions to show that 𝐴 = 𝐹. However, there was no indication from this excerpt 
that (1) Enrique and Simón recognized the subtle (to them) difference in their thinking or (2) 
either student attributed both conceptions to their communicative expression 𝐹 = {𝑥 ∈ ℤ ∶ 𝑥ଶ −
1 is not a multiple of 3}. Juan’s final comment indicates the possibility that he considered both 
qualifications (i.e., 𝐴 ⊆ 𝐹 and 𝐹 ⊆ 𝐴) when positing the elements of set 𝐹. 

We purposefully made no direct reference to the colon (:) in this subsection. Instead, we 
chose to describe the possibility that Enrique, Juan, and Simón agreed on a collective meaning 
for the elements of the set 𝐹 while maintaining distinct personal meanings for the set-builder 
notation denoting these elements. In the following subsection, we describe how these students’ 
differences in relational meanings for their communicative expressions might be attributed to 
their meanings for the colon (:) inscription. 

Distinct Meanings Producing a Mathematically Incorrect Interpretation 
Immediately prior to comparing sets 𝐴 and 𝐹, the students compared the sets 𝐴 = {𝑥 ∈ ℤ ∶

𝑥 is a multiple of 3} and 𝐸 = {2𝑥 ∈ ℤ ∶ 𝑥 is a prime number}. The mathematical relationship 
between these two sets is that 𝐸 ⊂ 𝐴 (i.e., both sets share only the number 6). 

The students spent most of their discussion negotiating a meaning for the elements of set 𝐸. 
Similar to the comparison between sets 𝐴 and 𝐹, each student consecutively expressed a different 
personal meaning for the expression {2𝑥 ∈ ℤ ∶ 𝑥 is a prime number}: 

Enrique To answer [the question] is anything in both sets, maybe there’s nothing in E. 
Because you can’t have a prime number that’s a multiple of 2. 

Simón Well, E, to me E was either the set of primes or the set of all the primes times two. 
Juan I think [the set E is] all the prime numbers multiplied by two. 

In contrast with their comparison between sets 𝐴 and 𝐸, the students recognized the 
differences in their thinking this time. Enrique first claimed that set 𝐸 is empty because (to him) 
no integers exist that are simultaneously even and prime (in actuality, the number 2 satisfies both 
conditions). Simón countered that the set 𝐸 constituted one of two options (between which he 
could not decide): (1) the set of all primes or (2) the set of all primes multiplied by 2. Finally, 
Juan posited that the set 𝐸 contains only the doubles of all primes (the normative interpretation). 
In the following subsections, we describe how each student’s responses were influenced by their 
comparator-oriented meanings for the relationship between the expressions 2𝑥 ∈ ℤ and “𝑥 is a 
prime number,” which mathematicians conventionally attribute to the colon (:) inscription. 

Enrique: The colon does not matter—the universe is determined by 𝒙. Enrique talked the 
least during the negotiation of meaning for the expression {2𝑥 ∈ ℤ ∶ 𝑥 is a prime number} and 
did not explicitly agree to Simón and Juan’s final decision for the meaning of this notation. Still, 
Enrique’s comments about his meaning for set 𝐸 were relatively consistent, as evidenced by the 
following statements he made at various times during this discussion: 
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Enrique Right. But, if you were to like plug in, I don’t think this, it can’t even exist. 
Enrique No, because then if three equals 𝑥, then you’d have six [for 2𝑥] and six is not a 

prime number. 
Enrique 2𝑥 is an element of the integers such that 𝑥 is a prime number. Could you, does 

that even exist? 
Enrique To answer [the question] is anything in both sets, maybe there’s nothing in E. 

Because you can’t have a prime number that’s a multiple of 2. 
These excerpts indicate that to Enrique, membership in set 𝐸, as defined by the expression 

{2𝑥 ∈ ℤ ∶ 𝑥 is a prime number}, required an integer first to satisfy the property “𝑥 is a prime 
number” and then satisfy the property 2𝑥 ∈ ℤ (where 2𝑥 is also prime). In other words, Enrique 
first selected the set of prime numbers, 𝑃, as the universe of discourse. Then, he attempted to 
classify primes whose double was also prime as the elements of set 𝐸. Conventionally, we might 
write Enrique’s definition for set 𝐸 as {𝑥 ∈ 𝑃 ∶ 𝑥 is a multiple of 2}. When he could find no 
integers that satisfied his personal meaning for set 𝐸, he claimed the set was empty. 

Enrique also stated that “the colon [in the set-builder notation] is like a subset.” His comment 
emerged in response to Simón reviewing an example of set-builder notation he had written down 
in his notes. Enrique’s meaning for 𝐸 and his subset comment about the colon implies that he 
attributed his personal comparator-oriented meaning for the set-builder notation for 𝐸 to the 
inscription 𝑥. In effect, Enrique considered 𝑥 in relation to the universe of discourse and the 
colon as a synonym for “subset,” giving no indication that he considered the colon to be more 
than a dividing symbol between two expressions (e.g., 𝑥 ∈ 𝑃, 𝑥 is a multiple of 2) whose subset-
relationship could be utilized to define the elements of a set.  

Simón: Does 𝒙 or the colon relate to the universe? Simón often led group discussions and 
frequently presented conventional interpretations of sets and relationships. Simón’s initial 
conception of set 𝐸 was that it contained “the set of primes.” After realizing that neither Enrique 
nor Juan agreed with his personal meaning for the expression {2𝑥 ∈ ℤ ∶ 𝑥 is a prime number}, 
Simón began to wonder whether the set 𝐸 contained the set of primes or the set of primes 
doubled. At this point of the discussion, the group facilitator intervened and asked the students to 
consider whether individual integers were elements of set 𝐸. 

Eckman So I think in this case it might be nice to just pick some numbers and say like, 
“Oh, [Is] five in 𝐸? Is eight in 𝐸?” and see if you can figure it out that way. 

Simón Okay, so … like the number 5. So 5 is a prime number, and 10 is an element of 
the integers? 

Enrique Is that what it’s saying that? 
Simón But so then is 5 or 10 the number that is in the set [E]? 

Simón’s words indicate that to him, membership in 𝐸, as defined by the expression 
{2𝑥 ∈ ℤ ∶ 𝑥 is a prime number}, required an integer to satisfy the properties “𝑥 is a prime 
number” and 2𝑥 ∈ ℤ. Unlike Enrique, who envisioned 𝐸 = {𝑥 ∈ 𝑃 ∶ 𝑥 is a multiple of 2}, Simón 
considered two distinct sets: 𝐸ଵ = {𝑥 ∈ 𝑃 ∶ 2𝑥 is an integer} and 𝐸ଶ = {2𝑥 is an integer ∶ 𝑥 ∈
𝑃 }. For set 𝐸ଵ, Simón considered the set of primes to be the universe of discourse and claimed 𝐸 
contained all primes whose doubles were integers. This was a different approach than Enrique, 
who insisted that the double of a prime must also be prime to merit inclusion in set 𝐸. For set 𝐸ଶ, 
Simón considered the universe to constitute the set of even integers, and the elements of set 𝐸 to 
comprise those even numbers whose value, when divided by two, is prime. 

Although Simón did not explicitly describe his meaning for the colon (:) in the expression for 
set 𝐸, we infer, based on his remarks, that he recognized the order of comparison mattered for 
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the expressions 2𝑥 ∈ ℤ and “𝑥 is a prime number.” At the beginning of the discussion, Simón 
appeared to attribute this ordinality to the inscription 𝑥 (similar to Enrique). His later cognitive 
confusion emerged from considering whether to attribute the ordinality to the positions of the 
expressions (and the colon dividing them) or the variable 𝑥. In this case, Simón’s comparator-
oriented meaning for the inscription (:) was in development from a simple connector to an 
indication of an ordered process and relationship.  

Juan: The colon divides the universe (left) from the property (right). Juan actively 
participated in group discussions when he agreed with the claims of his fellow students and 
quietly interjected or listened if he did not agree with or understand others’ comments. 
Throughout the discussion about sets 𝐴 and 𝐸, Juan insisted (quietly at first, then more 
rigorously later) that the set 𝐸 contained the set of all primes doubled (the normative 
interpretation of set 𝐸). After Simón attempted to discern whether 5 or 10 was an element of 𝐸, 
Juan took command of the discussion: 

Juan Is the variable 𝑥 the number that’s in the set [𝐸]? I don’t think it is. 
(omitted dialogue) 
Juan  Yeah, so what I’m reading here in my notes for set-builder notation is that where 

the 2𝑥 is in the general form [of set-builder notation], there’s an 𝑓(𝑥) that 
represents a format by which every element of the set can be represented. 

Enrique Oh, that’s useful. 
Juan So, every element of the set [𝐸] is 2 times a prime number. 

In this excerpt, Juan pinpointed what he considered the central point of conflict in the 
discussion: whether the integers represented by 𝑥 were given inclusion in set 𝐸 or the integers 
represented by 2𝑥 were given inclusion in the set. After referring to his notes on the general form 
of set-builder notation that he had taken during direct instruction, Juan stated that the expression 
2𝑥 ∈ ℤ was the arbitrary “format” (i.e., universe) by which to define the set and concluded that 
“2 times a prime number” was the way to denote the elements in set 𝐸. 

Although Juan used his written notes to justify his claim about membership in set 𝐸, he 
repeatedly commented throughout the discussion that the elements of set 𝐸 were the set of 
primes multiplied by 2. His consistent comments imply his comparator-oriented meaning for the 
colon (:) included a distinct and consistent ordering. This ordering included a notion that the 
expression that comes to the left of the colon constitutes the universe, and the expression 
following the colon constitutes the defining property for determining membership in a set. Juan’s 
description of set-builder notation in arbitrary form (e.g., the first expression is 𝑓(𝑥)) could also 
indicate that he was beginning to construct a general form of set-builder notation, which has been 
called a personal expression template (Eckman, 2023) or a symbolic form (e.g., Jones, 2013).  

Discussion 
The purpose of this paper was to provide insight into the question: What do students’ 

meanings for the expressions in set-builder notation reveal about their meanings for the colon? 
In this discussion, we address three distinct ideas: (1) the three types of comparator-oriented 
meanings revealed by our data, (2) how Simón and Enrique might have leveraged their meanings 
for set 𝐸 to make their mathematically correct interpretation of set 𝐹, and (3) the relevance of 
this paper in the context of research literature and student instruction. 

We have described three relational comparator-oriented meanings that Juan, Simón, and 
Enrique attributed to the expressions {2𝑥 ∈ ℤ ∶ 𝑥 is a prime number} and {𝑥 ∈ ℤ ∶ 𝑥ଶ −
1 is not a multiple of 3}. All three students appeared to attribute viable connector-oriented 
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meanings to both expressions, perceiving that the expression on one side of the colon referred to 
the universe of discourse and that the other expression referred to the property by which 
elements of the set are identified.  

However, the portion of the expression to which each student wished to attribute a 
comparator-oriented meaning differed. For instance, Enrique (and, at times, Simón) attributed a 
comparator-oriented meaning to the inscription 𝑥, which they considered to relate to the 
universe of discourse. Consequently, in these moments, the students merely attributed a 
connector-oriented meaning to the colon to divide two connected (to them) ideas. As the 
discussion progressed, Simón’s comparator-oriented meaning developed so that he discerned 
two distinct ways to describe the elements of set 𝐸. In this moment, Simón began attributing a 
comparator-oriented meaning to the colon. Still, his meaning was tenuous and only achieved 
equal status with his prior meaning for 𝑥. Finally, Juan’s intervention and description of his 
comparator-oriented meaning resulted in the group attributing exactly one order to the notation, 
indicating the relationship between a universe of discourse and a set defined within that universe.  

Simón agreed, and Enrique did not disagree, with the Juan-proposed meaning for the 
communicative expression 𝐸 = {2𝑥 ∈ ℤ ∶ 𝑥 is a prime number}. Still, it is possible that Simón 
and Enrique continued to leverage their personal meanings for 𝑥 as an indicator of the universe 
to relate the two expressions for the set 𝐹 = {𝑥 ∈ ℤ ∶ 𝑥ଶ − 1 is not a multiple of 3}. For 
instance, these students might have (1) identified the expression containing 𝑥 (𝑥 ∈ ℤ) to define 
the universe of discourse and (2) selected elements in the domain of discourse that satisfied the 
other expression (i.e., 𝑥ଶ − 1 is not a multiple of 3) to define the elements of 𝐹.  

This study furthers previously reported research on students’ understanding of sets, set-
builder notation, and symbolization. For example, our report provides additional insight into how 
students might interpret set-builder notation previously reported by (Eckman et al., 2023). 
Additionally, our explanation of comparator-oriented meanings including an ordered component 
adds to the examples and constructs proposed by (Eckman, 2023). This study also supports (to 
some extent) that conventional meanings for mathematical topics and symbols are not merely 
transmitted to individuals. Instead, the individuals must construct their personal meanings and 
attribute them to a conventional symbol to achieve a normative meaning for a mathematical 
topic. The students' active participation in the group discussion seemed to serve as a catalyst to 
bridge their personal meaning and conventional meaning by engaging in community efforts to 
build a collective meaning for the notation as a communicative expression. 

This study also informs efforts to improve the instruction of sets and set-based reasoning in 
the context of transition-to-proof courses. For example, our results provide further insight into 
how students come to interpret set-builder notation, which can further inform teaching-oriented 
research projects related to set-based reasoning (Dawkins & Roh, accepted; Hub & Dawkins, 
2018; Roh et al., 2023). Specifically, we describe a potential idiosyncratic student interpretation 
of set-builder notation, students’ attribution (or misattribution) of comparator-oriented meanings 
in the context of set-builder notations. We encourage transition-to-proof instructors to explicitly 
address the comparison order between expressions in set-builder notation and the inscription 
(i.e., the colon :) to which this meaning should be attributed. 
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Serving diverse student populations equitably is a focal concern for mathematics educators
(Association of Mathematics Teacher Educators, 2017), particularly given recent teacher
shortages in high needs schools. Teacher preparation programs are tasked with preparing new
teachers to thrive in these settings. In this paper, we examine what preservice, secondary
mathematics teachers found valuable engaging in structured mentoring and guided reflective
opportunities that integrate theory into practice. Participants engaged in authentic experiences
including learning assistantships along with traditional practicum experiences. Participants
completed guided written reflections throughout the semester, in addition to meeting regularly
with a faculty mentor. We utilized Wenger-Trayner and Wenger-Trayner’s (2014) value
framework to examine the data and share findings that suggest most participants developed an
awareness of mathematical content knowledge, pedagogical content knowledge, and knowledge
of students (Ball et al., 2008) at an earlier phase of their training than may be expected in
traditional teacher preparation programs.

Keywords: preservice teacher development, reflection, mathematics teacher development

The recruitment of highly qualified mathematics teachers is a pervasive issue in K-12
education (Darling-Hammond et al., 2016; Ingersoll & Perda, 2010). Prior to the COVID-19
pandemic, nearly every state reported shortages of highly qualified mathematics teachers (United
States Department of Education Office of Postsecondary Education, 2017), with attrition rates
for math and science teachers nearly 70% greater than this average, particularly in high poverty,
urban settings (Carver-Thomas & Darling-Hammond, 2019; Sutcher et al., 2019). A recent study
(Institute of Educational Sciences, 2022) found 45% of public schools had one or more vacancies
nationwide, with major disparities for schools serving students living in poverty. These figures,
in conjunction with declining enrollment rates in teacher preparation programs (Partelow, 2019),
highlight a critical need to recruit, train, and retain highly qualified mathematics teachers.

Serving students in urban, high needs settings requires educators keep students’ background
knowledge and cultures at the forefront of their planning and teaching. However, beginning
teachers’ concern often rests in their own inadequacies, situational responses, supervisor
feedback, and classroom management (Fuller, 1969; Fuller & Brown, 1975). Further,
mathematics teachers require high levels of pedagogical content knowledge (PCK) and
mathematical content knowledge (MKT) (Ball et al., 2008; Schulman, 1986). In response to this
need, our university developed a layered model of authentic teaching and learning experiences,
where preservice teachers (PSTs) engaged in both learning assistantships in college math courses
as well as in traditional K-12 classroom practicums. We paired these experiences with structured
reflective opportunities, seeking to answer the question: What do PSTs value about field
experiences and learning assistantships when paired with targeted mentoring and reflection as
part of their teacher development?
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Literature Review
Shulman (1986) developed the idea of pedagogical content knowledge (PCK) to differentiate

among content knowledge, curricular knowledge, and effective teaching strategies and
representations for students. In the field of mathematics education, PCK is defined in three parts:
knowledge of content and the curriculum, knowledge of content and teaching, and knowledge of
content and students (Ball et al., 2008; Hill et al. 2008). Master teachers with strong PCK can
interweave students' prior knowledge with mathematical concepts and create a clear
infrastructure for students to decipher and build their comprehension, which van Es et al. (2017)
and Lebak (2022) describe as “ambitious pedagogy.”

Fuller (1969), and later Fuller and Brown (1975), identified three phases of concern for
novice teachers: (a) self-survival (awareness of self), (b) teaching situation (awareness of task),
and (c) pupil (awareness of student-impact). Over time, teachers gradually move away from
solely focusing on their own actions and toward how students grapple with content. Specific to
mathematics teaching, the goal is for PSTs to shift away from examining non-mathematical
classroom matters, such as engagement or classroom management, and toward mathematical
teaching and learning (Mewborn, 1999; Roller, 2016). These shifts often take time for novice
teachers to make but can be supported through structures such as targeted mentoring and
reflection (Feiman-Nemser, 2001; Mewborn, 1999). Powell (2014; 2016), for example, found
that PSTs increased their take up of these stages of concern in undergraduate methods courses,
particularly the task-oriented stage, however he found little change between or among stages
across the span of a semester-long course. More research is needed about the contextual factors
that influence PSTs’ stages of concern and impact their development over time. 

Research on teacher preparation consistently points to the need for PSTs to have authentic
teaching and learning experiences in classrooms to support retention in the profession
(Darling-Hammond, 2005) and to help them develop effective teaching practices (McDonnough
& Matkins, 2010), including culturally responsive pedagogies (Ladson-Billings, 2021).
Traditionally, field experiences (practicums) are incorporated into teacher preparation programs
as opportunities for PSTs to apply what they are learning in methods courses (Darling-Hammond
et al., 2002; Ellerbrock et al., 2018; Garza et al., 2013). Learning assistantships offer an
alternative model for engaging in teaching and learning experiences, whereby undergraduate
students act as learning assistants (LAs), supporting undergraduate peers and faculty instructors
in college courses versus K-12 classrooms (Ellerbrock et al., 2018). LA programs can reduce
student-teacher ratios, support faculty in incorporating active learning practices, and offer
increased supports for student-centered learning (Otero et al., 2006), and increase the content
knowledge of LAs as they engage with near peers (Gomez Johnson et al., 2021; Closer et al.,
2016; Talbot et al., 2015). Research also indicates that LAs later recruited to K-12 teaching
positions exhibit more reform-based practices than their peers (Gray et al., 2016). Authentic
teaching experiences, including both field experiences and learning assistantships, create avenues
for PSTs to actively partake in community-based classrooms with experienced mentor teachers.
When collaborating and reflecting with these mentors, PSTs can discover the realities of
educating students in real time (Ellerbrock et al., 2018; Garza et al., 2013).

Opportunities to reflect in practice and on practice (Schon, 1987) can be facilitated through
both formal and informal means. Effective reflective opportunities can help PSTs hone their
skills in determining what is worth taking note of related to teaching and understanding students
and making connections between pedagogical theory and practice (van Es et al., 2017; Kersting,
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2008). One of the goals of reflective activities in PST programs is to develop their professional
noticing to progress more quickly through Fuller and Brown’s (1975) stages of concern in
anticipation of working with students in diverse settings. Therefore, it is important for
researchers and teacher educators to identify effective elements of such reflective opportunities
to create robust opportunities for PST growth.

Theoretical Framework
Collaborative experiences support meaningful learning (Lave & Wenger, 1991), thus

understanding how opportunities for PSTs to engage in authentic teaching experiences (field
experiences and learning assistantships) supported through collegial structures is important to
understand. In this paper, we investigate PSTs' reported value participating in such experiences
and examine how engaging in structured reflections after the fact influenced their capacity to
shift from focus on self to students during instruction (Fuller & Brown, 1975).

Situated learning theory (Lave & Wenger, 1991; Wenger, 1998) proposes learning is an
intrinsic factor of collaborative participation between agents in an organization. Value can be
viewed as connected and flexible such that researchers can examine participant experiences in
their social and academic contexts (Wenger, 1998; Wenger et al., 2011). Wenger et al. (2011) and
Wenger-Trayner & Wenger-Trayner (2014) identified five value cycles: immediate (in the
moment), potential (for the future), applied (tested implementation), realized (actualized
implementation), and transformative (broader dissemination to others) value. Naming specific
aspects of learning experiences that PSTs find valuable, and interrogating how those are linked to
their development along the stages of concern can help teacher preparation programs maximize
opportunities for PSTs to evolve and develop their MCK and PCK. This study is part of a larger
study at a mid-sized, urban, midwestern university investigating undergraduate PSTs
participating in a STEM education scholarship program. In this paper, we analyze the guided
reflective opportunities that augmented PSTs’ early authentic teaching and learning experiences
to support their mathematics teacher development.

Research Methodology
The NebraskaMath Noyce project, a National Science Foundation (NSF) Robert Noyce

Teacher Scholarship project (Grant No. 1852908), seeks to recruit, train, and retain high-quality
mathematics teachers. The authors of this study are members of the project leadership team. This
study is part of a larger investigation into the value that PSTs experienced during program
activities (e.g., professional development, community of practice, mentorship). Qualitative
research methodology was utilized to allow us to uncover participant conceptions of value and
developmental stages of concern (Charmaz, 2008) by exploring “how people interpret their
experiences, how they construct their worlds, and what meaning they attribute to their
experiences” (Merriam, 2009, p.5) through the collection of rich, descriptive data (Yin, 2018).
We used qualitative methods to examine the research question: What do PSTs value about field
experiences and learning assistantships when paired with targeted mentoring and reflection as
part of their teacher development?

Context and Participants
In Fall 2020, the Noyce scholarship program began integrating learning assistantships in

undergraduate mathematics courses as part of the experiential component of the program. By
Fall 2021, the project leadership team began to proactively consider PST and faculty pairings so
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that each undergraduate student was placed in active learning mathematics courses where they
would engage with students and observe evidence-based practices each day. 

Participants included nine undergraduate students who served as Learning Assistants (LAs)
in Fall 2021. Five participants had completed at least one formal field experience at the time of
the study (however, these early experiences were limited by the COVID-19 pandemic). Two
participants had completed one field experience, while the remaining four participants had not
engaged in a field experience at the time of the study. Participants were placed as LAs in one to
two mathematics courses where their roles primarily involved encouraging and supporting
students through one-on-one or small group engagement. The participants were paired with eight
mathematics faculty members who taught using active learning techniques in their undergraduate
mathematics courses (e.g., college algebra, quantitative reasoning, precalculus). These faculty
members also met with the LAs outside of class to mentor them in areas such as lesson planning,
personal and academic life check ins, and reflection on events from the week.  

Data Collection and Analysis
We collected 10 reflection journal entries from each participant (totaling 90 reflections). A

member of the research team also conducted a focus group with participants at the end of the
semester. We aggregated and de-identified all data from the journals and focus group transcript to
ensure the anonymity of study participants and, where appropriate, pseudonyms are used in this
report. Reflective journals were a program requirement not only as a data source, but also to
support the literature on PST development (e.g., Collins, 2006; Shulman, 1987; van Es & Sherin,
2008). Reflections can frame PSTs’ thinking around their teaching practice and can offer a
unique opportunity for them to highlight both seemingly large and small occurrences during
teaching moments across the semester. Participants were prompted to write their reflections
around one of the eight following categories:

1. Learning Assistantship Reflections- based on…participation & engagement in campus
math courses.

2. Professional Development (PD)- based on…Noyce Math or campus-offered PD
workshops, book study, colloquium, etc.

3. Community of Learners- based on…interaction with other Noyce Math participants or
study groups.

4. Outreach- based on…community or campus activity where you were able to work with
youth or on a project.

5. Mentoring- based on…interactions with a faculty mentor, whether formally assigned or
informal partnership (can also include practicum mentor).

6. Learning Mathematics- based on… experiences as a student of mathematics.
7. Leadership- based on…personal leadership experiences where you took initiative to

organize your peers or create a new process/project/event.
8. Lesson Plans- based on…creation of a lesson for your learning assistantship experience, a

practicum lesson reflection, or other tutoring planning.
We used a combination of directed content analysis (Hsieh & Shannon, 2005) and thematic

analysis (Clarke et al., 2015), mapped onto our theoretical framing of the Wenger et al. (2011)
value framework (Jakopovic & Gomez Johnson, 2021; Gomez Johnson et al., 2021), to derive
meaning from participants’ written reflections and the focus group interview. Via directed
content analysis, we leveraged prior research related to key concepts (e.g., teacher preparation,
PCK, MCK) as our initial a priori codes, using the five value types (immediate, potential,
applied, realized, and transformative) to develop common working definitions and examples of
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each code (Hsieh & Shannon, 2005). We first deductively coded value to find areas of saturation
(LeCompte & Schensul, 2013). We then reanalyzed the data using a thematic lens. Thematic
analysis is an appropriate approach for answering research questions about people’s lived
experiences and perspectives on particular topics (Clarke et al., 2015). In the second cycle of
coding, we examined data for themes that emerged, which we unpack in the following section.

Findings
Participants had access to both K-12 classrooms (practicum) and undergraduate math courses

(learning assistantships) where they participated in authentic learning and teaching activities.
While participants were intentionally placed in “active learning classrooms” with master teachers
as LAs, their field experiences varied greatly in the level of mentorship and quality of
instructional practices they observed and enacted. In our analysis, we found participants most
often valued what they learned about their developing understanding of learners’ needs.
Participants reported immediate value (i.e., experienced in-the-moment awareness) in the
following four areas as they participated in authentic experiences and guided reflection: the
importance of building relationships, student motivation and confidence, the importance of
students’ mathematical background knowledge, and the role of differentiated instruction. PSTs
discussed these topics, considering their impact in the classroom along with their level of
satisfaction teaching and learning.

Building Relationships
Participants noticed the ways in which building relationships with students impacted the

overall experience of working with students and helping them learn. For example, James
reported that his “first goal was to learn every name,” and while it was often a challenge, he
continued “redoubl[ing] my efforts because during my third week there, I got the evil eye from a
student when I asked for his name yet again.” After learning names, he remarked on the impact
that act had on students’ reactions to his instruction. Along with learning names, participants also
described how building relationships meant getting to know learners as “whole people,” which
involved creating a safe space for students to take risks and show that instructors can be caring
adults who care about their success (Stipek, 2010). As Monica noted, “One thing that I am
confident in is that my students will know... that I accept each of them just as they are... I am not
just there to teach them Math.” Monica, along with other participants, shared their increased
awareness of students’ perceptions of PSTs’ investments in them as individuals and the positive
impact this had on the classroom environment overall.

The Role of Student Confidence and Motivation
Additionally, participants identified in-the-moment situations where students lacked

confidence or motivation, resulting in various student behaviors. Several participants recognized
student engagement as a concern and made conjectures about why students might elect to not
participate during instruction, as well as ponder their role in addressing classroom engagement.
As Anthony wondered, “As a teacher, how can I approach a student who is having difficulties in
a class to the point that they give up?” In our data other participants, like Nicole, indicated that
specific strategies might be necessary to support and engage learners, whether it be offering
one-on-one support, continuing to foster positive relationships, or noticing other aspects of a
student’s reality that might be influencing their willingness to participate in math class.
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Participants indicated that at times this may be more about culture, context, and experiences
(Ladson-Billings, 2021; Safir & Dugan, 2021), and less about a student’s intrinsic interest in
mathematics. Helen reported observing differences in the learning environments between
upper-level mathematics classes and on-or below-level mathematics classes,

The honors students seem eager to learn and the “general ed” classes... seem to lack
motivation. It makes me wonder how much of that is due to school culture/teacher
expectation and how much of it is the student themselves.

In her reflection, Helen pondered how the classroom environment and student backgrounds
might influence both behavioral and educational experiences. Several participants noticed that
larger, system level factors may lead to inequities in classrooms (Ladson-Billings, 2021).

Students’ Mathematical Background Knowledge
Participants also valued opportunities that highlighted the role student background

knowledge plays in their classroom interactions. For example, Leslie explained her struggle to
identify the appropriate level of difficulty as a new teacher, “It is such a scary thing when you
show something to them that's too advanced for them, they just shut down...but then if you give
them something that’s way too easy, they might get mad at you.” She noticed that, without an
accurate prior assessment of a student’s mathematics level, significant consequences can occur
without knowledge of where a student is situated on a learning trajectory. While PSTs learn
about theory such as Vygotsky’s zone of proximal development (1978), seeing the application
when students have a broad range of prior knowledge raises a new level of consideration for
PSTs. This can. be rare for new teachers, who typically are not yet at the stage of concern where
they notice how students interact with content (Fuller, 1969; Mewborn, 1999).

Differentiation in Action
A final theme for several participants was the recognition that students often do not have the

expected level of background knowledge, along with the fact that within any given class this
understanding likely exists along a continuum. Some realized their role as a teacher was to
respond with different strategies or approaches than they may have experienced in their own
learning (Ball et al., 2008; Hill et al., 2008). Monica shared a moment where she wrongly
assumed what an adult learner was struggling on a particular concept. “That was way more
advanced than he was ready for, and I was like, oh okay, we have to take another step back and I
looked at that.” Monica noted that as a teacher she needed to reframe her thinking.

For many early career mathematics teachers, identifying moments where differentiation is
needed can be challenging. Participants in the study identified the need to tailor content and
identify specific, effective teaching strategies. Eddie shared that, “You have to have multiple
different tools to be able to teach students. Some students just don't understand something that 15
people will, and you have to work a little harder...for that one student.” James reflected on his
observation of his mentor teachers’ approaches to this, and talked about how their decisions
impacted learners. James mused, “The students that got the easy one are worried they aren't
properly prepared for the hard one...[and]...the group with the hard one felt rushed by everyone
else.” James' noticing of students' reactions to the differentiated problems allowed him to
consider how he might approach differentiation in ways that were similar or different to this
experience. This example helps to illustrate the depth at which James, among other participants,
noticed and analyzed the impact of differentiation on learners.
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Implications
Preparing the next generation of mathematics teachers requires both the art and science of

teaching. For many PSTs, the realities of the myriad roles they play, along with the knowledge,
skills, and dispositions they need to develop can be overwhelming. Early opportunities for PSTs
to interact with students in a variety of environments and to reflect on these experiences can
illuminate key areas of concern for teaching. In terms of immediate value, the most prevalent
takeaways for our participants revolved around the students themselves. As they grew to
understand how to teach content, they noticed key elements of understanding learners necessary
for successful teaching. Pinpointing areas such as background knowledge, motivation and
confidence, and engagement, can provide PSTs with a drawing board of essential components for
their future planning. Furthermore, these features of understanding students can facilitate their
development as effective teachers qualified to teach in diverse settings.
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Student Agency and Identity in Reading Didactical Mathematics Texts 
 

 Aaron Weinberg Emilie Wiesner Ellie Fitts Fulmer 
 Ithaca College Ithaca College Ithaca College 

Reading didactical texts, such as textbooks, requires particular sets of literacy practices. 
Researchers have proposed that these practices are related to aspects of identity and agency, 
and have described aspects of these constructs separately. In this study, we examine the 
interactions between students’ agency and their macro- and micro-identities. We present data 
from two undergraduate students reading a section of a calculus textbook and explore the ways 
the interactions between the students’ identity and agency shape their reading activity. 

Keywords: Agency, Identity, Literacy, Textbooks 

Didactical texts—that is, media such as textbooks and instructional videos—play an 
important role in college mathematics instruction. Many students are asked to read mathematics 
textbooks or watch instructional videos (e.g., Butler, 2019; Shepherd & van de Sande, 2014; 
Weinberg et al., 2022), and these texts constitute an important resource for student learning 
outside of in-person instruction. 

Disciplinary texts have long been viewed as requiring particular sets of skills and literacy 
practices to read productively (e.g., Moje, 2007; Shanahan & Shanahan, 2008). Fang and 
Schleppegrell (2010) described their grammatical resources, Lee and Spratley (2010) described 
discipline-specific reading actions, and others (e.g., Morgan, 1998; Rezat & Rezat, 2017) have 
contrasted aspects of genres in mathematics texts with those of other disciplines. In addition, 
Shanahan et al., (2011) demonstrated that mathematicians, chemists, and historians enact distinct 
literacy practices when reading texts from their own disciplines.  

Some studies of mathematics disciplinary literacy have focused on the identities of the 
readers (e.g., Wiesner et al., 2020) and the relationships between these identities, the text, and the 
discipline itself (e.g., Fulmer et al., 2022; Weinberg et al., 2022), while others have explicitly 
incorporated functions of agency into this exploration (e.g., Fang & Schleppegrell, 2010). Both 
identity and agency have been widely studied in mathematics education research. A close 
examination of theoretical descriptions of these concepts suggests that they are intertwined—for 
example, Boaler and Greeno (2000) suggested that “positional identity” is related to the 
enactions of these positions; Barton and Tan (2010) alluded to the “intersecting roles” of agency 
and identity; Cobb et al. (2009) suggested that identity is related to “the ways that students are 
able to exercise agency” (p. 44); and Hitlin and Elder (2007) stated that agency is grounded in 
ideas of “the self.” Although some studies (e.g., Fulmer et al., 2022; Louie, 2020) have explicitly 
discussed the entanglement of agency and identity, few have explored their interaction in depth. 

 Our current research has two goals. First, we want to understand students’ mathematical 
identities, agency, and potential interactions between these aspects. Second, we are curious about 
the extent to which students’ agency and identity manifest themselves in the ways they read and 
attempt to learn from mathematics texts. 

Theoretical Framework 

Agency 
Agency is generally described as an ability make independent choices and act on those 
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choices (e.g., Anderssen & Norén, 2011), although Gresalfi et al. (2009) point out that agency 
exists in moments of action rather than being a permanent characteristic of a person. Some 
researchers (e.g., Barton & Tan, 2010; Emirbayer & Mische, 1998) regard these actions as 
existing in a structure-agency dialectic (Bourdieu, 1977), so that the structures promote and 
constrain particular types of action and the actions, in turn, influence the structure.  

Many mathematics education researchers cite Pickering’s (1995) notion of a “dance of 
agency” (e.g., Boaler & Greeno, 2000; Brown, 2018; Cobb et al., 2009; Grootenboer & 
Jorgensen, 2010; Sengupta-Irving, 2016; Wagner, 2007) involving human agency—individuals’ 
acts of creating ideas and making choices—and the agency of the discipline, which refers to 
established mathematical practices. In this notion of a dance, disciplinary norms are the product 
of collective human activity and that activity is, in turn, constrained by the norms; thus, this 
dance mirrors the more general agency-structure dialectic. 

Barton and Tan (2010) point out that disciplinary norms aren’t immediately affected by 
individual acts of agency and, thus, Pickering’s perspective doesn’t allow researchers to account 
for more localized entailments of position and power. They called for a formulation of agency 
that attends to its “socially transformative” nature (p. 191) and integrates context, position, 
knowledge, and identity. Similarly, Fulmer et al. (2022) worked to bridge Pickering’s 
formulation of agency with a more “emancipatory theory of constructing knowledge” that 
attends to the “interplay of autonomy, identity, power, and knowledge” (p. 632). 

We draw on Barton and Tan’s (2010) formulation of agency in which “Agency is at once the 
possibility of imagining and asserting a new self in a figured world at the same time as it is about 
using one’s identity to imagine a new and different world” (p. 193). Agency is grounded in the 
individual’s perception and enaction of control and choice. Thus, moments of agency can be 
identified by either affective or enactive dimensions. In the former, the participant expresses a 
perception of their ability to make a choice or feels in control of a situation; in the latter, the 
participant takes an action (or describes acting) in a way that clearly demonstrates a choice they 
have made. These feelings and actions exist within a set of locally negotiated and constructed 
interactional roles and structures that entail a status quo, so actions that run counter to the status 
quo are evidence of agentive moments.  

Identity 
Identity has been theorized in many ways within the discipline of mathematics education. 

Darragh (2016) distinguished between two broad perspectives in which identity has been framed. 
In the first perspective, identity is presented as a stable construct that you acquire over time. For 
example, Aguirre et al. (2013) describe mathematics identity in terms of “dispositions and deeply 
held beliefs” about participating in mathematical contexts. This perspective aligns with the 
structure-agency dialectic in which identities are described in relation to a socially established 
notion of “what it means to know and do mathematics” (Cobb et al., 2009, p. 44). Wood (2013) 
describes these long-term stable constructions as macro-identities and points out that their scale 
makes them difficult to use to examine relationships with moments of learning or to describe the 
multiple, dynamic identities a student might simultaneously inhabit. 

The second perspective frames identity in terms of activity. For example, Boaler and Greeno 
(2000), citing Holland et al. (1998) described positional identity as “the way in which people 
comprehend and enact their positions in the worlds in which they live” (p. 173). This perspective 
focuses on interactions in which people “convey positions or identities for themselves and all 
others involved in the interaction” (Wood, 2013 p. 778) in a way that draws on the socially 
constructed context. Wood (2013) refers to the narratives that individuals construct to make 
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sense of these interactions as micro-identities. This focus on positioning enables researchers to 
describe relationships between enactments of identity and moments of learning, and to consider 
students’ sense of self as potentially multiple and divided. 

In our research, we examine both students’ macro- and micro-identities. The former enables 
us to consider the students’ perceptions of themselves in relation to long-term narratives (e.g., “I 
feel like I’m good at calculus”), whereas the latter lets us resolve apparently conflicting identity-
related narratives (e.g., “I’m not good at derivatives of trig functions”) and to relate aspects of 
identity with the meanings they construct as they attempt to learn from a didactical mathematics 
text. Thus, statements in which students describe their self-perception provide evidence of 
identity, and the interactions—or described interactions—between students and other participants 
in their socially-constructed worlds also can be evidence of their identity. 

Methods 

Materials 
Examining literacy practices for didactic mathematics texts required using text materials for 

which the participants would have the necessary background knowledge, yet could engage in the 
reading process for the purpose of learning a new concept. We selected Newton’s method for 
finding roots as the target concept since it only requires knowledge of derivatives and tangent 
lines and is not always taught in first- or second-semester calculus. Our materials consisted of 
four pages from a standard calculus textbook (Stewart, 2016) that introduced Newton’s method, 
provided examples of using Newton’s method, and included exercises at the end of the section. 

Participants 
We sent invitations to participate in the study to two groups of students at our institution: (1) 

all students who had declared either a major or minor in mathematics and hadn’t yet completed a 
course in numerical analysis; and (2) all students who had been enrolled in first-semester 
calculus the previous semester and earned at least a C-. All participants who replied and were 
available during the times the researchers were able to conduct the interviews were included in 
the study. This resulted in five math majors/minors and five non-math majors/minors. For the 
current study, the restricted length of the conference paper format led us to randomly select two 
student participants for analysis: one math major and one non-math major/minor. We expected 
that such a pairing would allow us to identify similarities and differences in their identities and 
the ways they reported interacting with pedagogical situations and didactical texts. 

Data Collection 
Each student participated in a 75-minute interview, conducted by the first author, who is a 

professor in the mathematics department. They were asked about their positionality with respect 
to calculus, college, learning, and textbook-use (e.g., “how would you describe your relationship 
with calculus?”). Then they described their knowledge of calculus and worked on a problem 
using linear approximation to estimate the value of a function at a point. 

Next, the participants sat at a computer that displayed an electronic version of the textbook 
excerpt; participants were able to use the arrow keys to “turn” the pages. The participants were 
asked to read the textbook section for the purpose of learning about the concept of Newton’s 
method. As they read, an eye-tracker recorded their gaze pattern. After reading the excerpt, the 
participants watched a recording of their eye movements, with a red dot on the screen indicating 
the area of the text they had been looking at each moment. As the recording played, the 
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participants were asked to describe what they were looking at and what they were thinking 
about; both the participant and interviewer were able to pause and resume the playback. 

In the final stage of the interview, the text was segmented into conceptual chunks consisting 
of (1) an example to motivate Newton’s method; (2) the derivation of Newton’s method; (3) a 
description of instances when Newton’s method would fail; (4) an example of using Newton’s 
method to approximate the roots of a polynomial; (5) a description of the idea of precision in 
Newton’s method; (6) an example using Newton’s method to approximate the root of a number; 
(7) an example using Newton’s method to approximate the intersection of two functions; (8) a 
description of the impact of choosing a first approximation; and (9) a collection of exercises; 
each chunk was further sub-divided into a graph (if present), an equation in a blue box (if 
present), and the rest of the text. The interviewer first asked the participant to describe the main 
ideas of the text, and then to describe what was being shown or described within each of the 
indicated conceptual chunks, figures, and boxed equations. 

Analytical Methods 
We divided the text into areas of interest that matched the conceptual chunks, graphs, and 

equations described above. Then we used the eye-tracking data to record which of these parts of 
the text the participants were looking at and how long they looked at each part. We used these 
data to construct a holistic description of each participant’s reading activity. 

We used thematic analysis (Braun & Clarke, 2006) to describe the participants’ identities and 
agentive moves. After segmenting each interview transcript into talking turns, we identified turns 
where the participants demonstrated agency by (1) indicating that they felt they were making a 
choice and expressed a feeling of control, (2) describing a previous situation in which they felt 
they were making a choice, or (3) took action that appeared to run counter to the status quo; this 
identification process took into account the positionality of the participant within the relevant 
social structures—specifically, the context of mathematics classrooms, independently learning 
mathematics for a class, and the interview itself.  

We then identified turns where the student described or enacted aspects of their identity by 
(1) describing a stable narrative about their self (i.e., a macro-identity), (2) describing their 
feelings about their self in the moment, and (3) enacting or describing behavior that reflected 
particular forms of interactional relationships within the relevant contexts. After identifying turns 
that reflected aspects of agency or identity, we generated themes inductively by looking for 
similarities and patterns among the turns. Throughout the identification process, we worked 
collectively to identify, discuss, and resolve differences in our interpretations. 

Results 

Non-Math Major [NMM] 
Activity. NMM spent approximately 63% of his reading time looking at the three examples, 

with nearly half of that time on the first example. He spent approximately 31% of his time 
reading the expository text; nearly 1/3 of this time was spent looking at the equation in the blue 
box and the surrounding text. He spent only 2% of his time looking at the graphs. He generally 
read the text in order, but there were 12 instances of him either glancing forwards/backwards or 
skipping to a different conceptual chunk. 

Identity. NMM described being a person who enjoyed both school (e.g., “I’ve always kind 
of liked school”) and calculus (“it is interesting, but hard, and parts of it are easy and cool”). 
However, he simultaneously contrasted himself with “people who are quicker with math,” 
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suggesting a multi-faceted macro-identity. NMM’s interaction with the textbook suggested a 
micro-identity as somebody who could make sense of mathematical concepts (e.g., “I was kind 
of just trying to see like, all right, like what’s the point of this? Like where is this going?”). He 
had a strong image of himself as a mathematics student, describing himself as “a numbers 
person” and “not a graph person,” distinguishing himself from other “people who like to look at 
the graphs rather than the numbers.” Entailments of this macro-identity included “lik[ing] 
equations” and “seeing people do something” that he could repeat. At several points in the 
interview, he described his activity in a classroom, saying that he would (e.g.) “want to be 
prepared for [problems on an exam]”; this implicit interaction between himself and an instructor 
suggested his position in the classroom as a student.  

Agency. NMM described a lack of agency for reading mathematics texts, describing how he 
“steered away from” them and “found other textbooks easier to read.” More locally, during the 
interview, he skipped some parts because he didn’t “really understand the context.” Although it 
is possible to view these decisions to avoid reading parts of the textbook, in the context of a 
mathematics classroom we interpret these as reflecting his feeling of a lack of agency.  

Despite this feeling of a general lack of agency, NMM regularly offered critiques and 
evaluations of pedagogical aspects of the textbook (e.g., describing a figure as “a nice thing to 
include” and a paragraph as “important to add”), suggesting some feeling of agency. NMM 
regularly made choices about which parts of the textbook excerpt to read and when to read them 
(e.g., “I spent a second or two on these side graphs, but I wasn’t really drawn to them”); if the 
status quo is to read all parts of the textbook in the order they are presented, then these actions 
reflect choice and control, and, thus, are agentic moves. Similarly, he made choices about what 
to write in his notes based on personal goals (e.g., “I kind of just wanted to give myself an 
example of how I would go about solving the problem like that”), reflecting feelings of agency. 

NMM also demonstrated agency in relationship to the mathematical concepts described in 
the textbook excerpt. He felt capable of “figur[ing] out what [the equation] actually means” and 
looked for connections with other concepts he had learned (e.g., “it’s kind of like with 
asymptotes…”). These agentic moves were underscored while he was working on the pre-
reading problem, when he transformed symbols (e.g., “I converted [decimal numbers] to 
fractions because I feel like it’s easier”) and created his own examples (e.g., “I’m operating 
under the assumption that the equation f of x is equal to two x”) to help him solve the problem; 
this “tinkering” demonstrates moments of agency. 

Intersection of Agency and Identity. We noticed several aspects of NMM’s identity and 
agency that built on each other to significantly influence his reading activity and learning. First, 
his identity as an “equations person” and as a person who can understand mathematical concepts 
prompted him to focus on the equations that were presented in the excerpt and enabled an 
agentive relationship to (agentively) “figure out” what things mean. For example, he described 
his sense-making activity: “I like equations and stuff like that. I was immediately drawn to the f 
of x equation up there. I kind of just figured, like, well, that’s an equation. How can I figure out 
what it actually means?” His identity as an “equations person” was related to his identity as not a 
“graph person,” which, coupled with his agency to choose which parts of the excerpt to read and 
which to skip. For example, he described his choice to skim part of the excerpt: “I’m sure for 
other people who are more like graph-based learners, it [text describing one of the graphs] would 
be helpful. just for me as a learner, like I’m not going to look at that graph.” 

NMM’s identity as a student and as an “equations person” was, similarly, coupled with his 
choices about which parts of the excerpt to focus on, and guided his notetaking. For example, he 
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described his rationale for taking detailed notes on the equations in one of the examples: “I kind 
of just wanted examples to look back on, like as if they were my notes for an actual test.” 

Math Major [MM] 
Activity. MM spent approximately 62% of her reading time reading the expository text, with 

roughly half of this time reading the paragraph that described the derivation of Newton’s 
method. She spent approximately 19% of her time reading the examples, with this time split 
roughly evenly between the three examples. She spent roughly 5% of her time looking at the 
equation in the blue box and only 2% looking at the figures. She generally read the text in order, 
but there were 7 instances of her either glancing forwards/backwards or skipping to a different 
conceptual chunk; when she was reading the paragraph describing instances where Newton’s 
method failed, she looked back and forth between the text and the figure 4 times. 

Identity. MM described herself as a person who enjoyed math (e.g., “I was taking math 
courses for fun”) and, in particular, calculus, describing it as “my favorite form of like 
mathematics because I like solving the derivatives and the integrals and all that.” She described 
herself as “an audio-visual learner,” but didn’t elaborate. MM described her interactions and 
position in a math classroom in terms of her status as a student. In particular, she described not 
being able to fully understand concepts until “the professor goes over it” the next day and 
wanting to know “what they’d be asking” to guide her reading and learning from the textbook. 

Agency. MM “felt confident for the most part” about reading and using textbooks and 
reported developing her own strategy for reading the textbook by “skimming it for important 
aspects” and then “go[ing] back to find the answer” to problems. MM regularly made choices 
about which parts of the textbook excerpt to read and when to read them. She regularly described 
“skimming” various parts of the excerpt, looking “more at the equations” than the diagrams, and 
“looking back” at previous equations and explanations when she felt confused. 

MM also demonstrated agency in relationship to the mathematical concepts. She felt capable 
of solving calculus problems in general (e.g., “I like solving the derivatives and the integrals and 
all that”) and that she can do so “on [her] own.” She worked to resolve uncertainty by revisiting 
confusing sections of the text and constructing her own interpretations. For example, when she 
felt confused about instances where Newton’s method fails, she reported “just trying to make 
sense of that because the wording tripped me up” and went back to the first page “to try and 
double check.” As part of this process, she looked for connections with other concepts she had 
learned (e.g., “it’s kind of like Reiman sums, how it’s like the more, the smaller and smaller you 
make the rectangles the more accurate you’re going to get”). 

Intersection of Identity and Agency. MM’s identity as a person who enjoyed calculus 
appeared to be closely connected to her sense of agency at solving calculus problems, noting that 
calculus is her “favorite form of mathematics because I like solving the derivatives and the 
integrals and all that.” Similarly, her identity as a confident textbook reader appeared to be 
connected to her having chosen a textbook-reading strategy. 

MM’s identity as a student, coupled with her choices about which parts of the excerpt to to 
focus on appeared to be connected. For example, she described her choices as guided by the 
obligations she would face as a student: “I like looking at the exercises just to like, get a sense of 
like what the problems are like or like what they’d be asking and how similarly they are 
structured to one another.”  

There were several instances where MM moved on from a section of the text without 
understanding concepts. For example, she described her feeling when after reading the paragraph 
that described instances where Newton’s method would fail: “I think I understood it enough, but 
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at the same time, I think I was still confused that I was like—I’m just going to move on. 
Probably that would have been something if I were in class, like I would ask about the next day.” 
In this moment, MM appeared to have been weighing her options for action based on her 
assessment of her understanding. Her identity as a student allowed her to position herself with 
respect to the textbook, the mathematical concepts, and the (imagined) professor, and this 
position facilitated her choice for a course of action.  

Discussion 
Both NMM and MM shared aspects of their macro- and micro-identities, as well as their 

feelings and enaction of agency. Both students enjoyed calculus, and they both felt and 
demonstrated agency for figuring out mathematical concepts. They made connections between 
the text and their prior learning and made decisions about which parts of the text to read and 
when. In terms of their reading activity, both students chose the order in which to read the text 
components and neither student spent much time looking at the graphs. 

The two students also exhibited some differences in their identities, agency, and reading 
activity. While MM felt confident about reading textbooks, NMM expressed a lack of 
confidence. In their reading, NMM spent most of his time examining the examples, while MM 
focused on the expository text, examined the exercises, and did look back and forth between one 
of the figures and the corresponding text. 

For each student, their identity, agency, and activity intersected in different ways. NMM’s 
identity as a student prompted him to seek out formulas he could use to solve problems on a test 
and to consider the examples as helping him build a library of problem types he could use as 
templates for later solving problems; his identity as an “equations person” and his sense of 
agency with mathematical concepts appeared to enable him to try to make sense of the equations. 
At the same time, being not a “graph person” led him to avoid examining the graphs, which 
potentially contributed to his occasional feelings of confusion, which, in turn, led him to skip 
particular parts of the text. 

MM’s identity as a student connected with her sense of agency differently than NMM. At 
first, her identity as a student appeared to guide her read the text to help her solve problems on a 
test. However, MM also worked to understand the expository text; this could be connected to 
both her identity as an effective textbook-user and her sense of agency for mathematical 
concepts. MM’s student identity also appeared to be connected to her perceived choices when 
she encountered confusing parts of the text: rather than exhibiting a lack of agency, she 
formulated a course of action that involved utilizing the expertise of her (imagined) professor, 
and choosing a course of action that she felt would help her resolve that confusion. 

Taken together, these data show students making agentic moves based on their stated and 
enacted identities and their relationship to both mathematics (as a subject) and the text. This 
demonstrates the flow between identity and agency, and vice versa. What we find particularly 
interesting is that the students in this study are bringing their humanity to the experience of 
reading the textbook—that they do have identities relative to the experience, and that there are 
many moments of agency that they experience. Thus, it is relevant that their identity and agency 
affect their reading activity, but the central take-away is not that there is a causal relationship 
between these two concepts, but rather these two aspects work together to shape the students’ 
activity. 
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Understanding mathematics identity development has yielded insights for undergraduate 
mathematics education. In this work, we build on existing conceptualizations of mathematics 
identity to explore this construct in the context of mathematics graduate students with academic 
career aspirations through analyses of “Dear Math…” letters. We identify and detail four 
dimensions of graduate students’ mathematics identity: Doer of mathematics, Sharer of 
mathematics, Feeler of mathematics, and Believer of mathematics. We conclude by discussing 
implications of these dimensions, as well as the unique opportunities of “Dear Math…” letters to 
provide valuable insight into graduate students’ mathematics identities.  

Keywords: Graduate Students, Mathematics Identity, Methodology 

Introduction 
Mathematics identity development has emerged as a critical area of research, providing 

insight into students’ achievement (e.g., Gonzalez et al., 2020), persistence (e.g., Joseph et al., 
2017), and career choices (e.g., Cribbs et al., 2021), and informing curriculum, pedagogy, and 
instruction that can better support students’ identity development (e.g., Clark et al., 2013, 
Fernández et al., 2022). Despite our increased understanding of mathematics identity in K-16 
education, little is known about the mathematics identities of graduate students. Graduate 
education has historically served to socialize and develop graduate students’ professional 
identities as professors (Van Lankveld et al., 2017). However, within the mathematics discipline, 
this process may be more complex and nuanced. Scholars have explored graduate students’ 
professional identity formation as teachers (e.g., Beisiegel & Simmt, 2012) and as researchers 
(e.g., Hancock & Walsh, 2014). Still, we have yet to critically examine their sense of selves as 
mathematicians or attempt to understand how they make sense of and identify with the discipline 
in ways that do not conflate with their professional identities as mathematics professors. 
Mathematics graduate students have succeeded and persisted through years of rigorous 
mathematics studies, thus focusing on their identities allows us to both incorporate and extend 
beyond notions of competence, performance, and traditional markers of success to dive deeper 
into dimensions of mathematics identities that may not be as prevalent in K-16 students.  

In this work, we also introduce the use of “Dear Math…” letters (e.g., Webb, 2020), or letters 
that students write to the mathematics discipline, and illustrate how this type of qualitative data 
provides new perspectives into graduate students’ mathematics identities. This can inform us 
about the formative and disruptive experiences in their mathematical journeys and we contend 
that a better understanding of graduate students' mathematics identities can position departments 
and institutions to better support their transition to academic positions. The research question that 
guided this study was: How did mathematics graduate students reflect on their mathematics 
identities through writing letters to the discipline?  
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Conceptual Framing 
Scholars generally describe mathematics identity as the ways students relate to mathematics 

and position themselves within or around mathematics. This identity is dynamic and 
transformative, changing depending on the context and the accumulation of mathematical 
experiences (Gardee & Brodie, 2021). However, the exactitudes within different definitions vary. 
Cribbs et al. (2015) divide the concept into three sub-categories: ways in which students perceive 
their competence in mathematics, their interest in mathematics, and their recognition as 
mathematically capable by themselves and others (e.g., instructors, peers). Crossley et al. (2018) 
present a similar three-part definition, including students’ math self-concept about their ability, 
their interest in mathematics, and the value of mathematics in terms of its utility in their lives. 
These two conceptualizations describe mainly individual perceptions and traits. In contrast, 
Voigt (2020) posits a conceptualization that explicitly draws on social and contextual aspects of 
mathematics education. He describes mathematics identity as encompassing students’ 
perceptions of their ability to effectively perform and participate in mathematical environments, 
the ways they position themselves within or outside mathematical communities, and how they 
negotiate their identity within institutional, individual, and societal contexts. These are just three 
examples of the numerous avenues scholars conceptualize mathematics identity.  However, the 
majority of contemporary research focuses on the undergraduate level, with very limited work on 
graduate students’ mathematics identity. Given the many ways undergraduate and graduate 
school differ, in this study we leverage the wide scope of research on mathematics identity and 
the multiple definitions presented to examine graduate students’ mathematics identity.    

Method 

Context and Participants 
This study was conducted at a Minority-Serving Institution in California with a mathematics 

department that offers graduate programs in mathematics at the masters and doctoral levels. We 
used convenience sampling (Miles et al., 2020) to recruit graduate students in the mathematics 
department. Sixteen doctoral students completed a survey that elicited self-identified/self-
selected demographic information and requested their participation in a 90-minute qualitative 
interview. Six students participated in the interview and are identified in this study by their 
pseudonyms and pronouns: Connor and Landon (he/him); Kayla, Kendall, and Morgan (she/her); 
and Martin (they/them). All participants reported actively pursuing mathematics faculty 
positions. 

Data Collection and Analysis 
We utilized Zoom to conduct the 90-minute interviews. In the first hour, we used a semi-

structured interview protocol (Rubin & Rubin, 2011) focused on students’ experiences in 
graduate school, including the supports and barriers they encountered, their perceptions of the 
mathematics professoriate, and their understanding of mathematics teaching. Within the last 30 
minutes, participants wrote the “Dear Math…” letter in which they personified the mathematics 
discipline and wrote correspondence to it. They were prompted to reflect on their experiences 
with mathematics, their career choices, and how mathematics has impacted their sense-of-selves 
and then tell the discipline how they really feel. Although the first author was present in the 
Zoom call, participants wrote the letters without any interaction or interference. For this study, 
we utilized these “Dear Math…” letters as the primary data source.  
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We consider self-reflective, narrative activities as mechanisms of identity development. Prior 
scholars have emphasized that narrative activities (e.g., writing self-reflections, telling stories, 
etc.) are identity constructing activities and can be methodological tools for researchers to 
examine identities (e.g., Beijaard et al., 2004). We posit that writing letters to the discipline is 
one avenue for students to share stories that illuminate dimensions of their mathematics 
identities. The use of letters is a facet of correspondence and arts-based methodology (Leavy, 
2020), and is different from asking participants to narrate their experiences in an interview. Most 
notably, writing letters provides participants with an avenue to privately share experiences and 
emotions they might not comfortably share in an interview (Harris, 2002; Stamper, 2020). Webb 
(2020) found that letter-writing methodology allowed students to critically self-examine their 
experiences with mathematics past and present.  

To analyze the data, the research team first individually read through the letters and wrote 
memos about what we noticed in how graduate students described themselves, others, and 
mathematics. Then, as a group, we open-coded (Miles et al., 2020) the letters and found three 
initial themes: (1) Doers of mathematics, (2) Feelers of mathematics, and (3) Sharers of 
mathematics. The research team verified the relevance of the codes by re-coding the letters and 
in this round, another theme emerged: Believer of mathematics. In our final round of coding, we 
re-coded all the letters using the four themes listed above, which we conceptualize as dimensions 
of graduate students’ mathematics identity.  

Findings 
We now highlight how our analysis of graduate students’ letters to the mathematics 

discipline revealed four key dimensions of their mathematics identities: Doers, Sharers, Feelers, 
and Believers of mathematics. 

Doer of Mathematics  
The first dimension that emerged from our analysis was students positioning themselves as 

Doers of mathematics. In these instances, our participants described how they make use of 
mathematics or see its function in the world (i.e., its utility). For two of our participants, the 
utility of math was mostly a form of play, whereas one of our participants saw it as a means to 
gain valuable life skills. Morgan and Kendall referred to doing mathematics as fun and playful. 
For example, Morgan described how she “loved playing with numbers and coming up with my 
own problems that I could subsequently solve.” Similarly, Kendall stated how “you are 
extremely fun to explore and play with.” These two students viewed themselves as Doers of 
mathematics for the purpose of playing, exploring, and having fun. 

Landon described a more practical application of what it means to do mathematics. For 
example, he wrote that “most importantly, I love how you have taught me how to think. Doing 
math has clearly changed the way my internal world model interprets and analyzes sensory data 
…equivalent to upgrading from an old computer to a new one.” We see that Landon viewed 
himself as a Doer of mathematics for the purpose of developing cognitive skills like logical 
thinking and sensemaking. Further, he placed value on skills that he has acquired through doing 
mathematics. Interestingly, he explicitly specified that the act of doing mathematics was not as a 
requirement to fulfill in school or necessary to enter a mathematical career, but rather “these 
things all feel secondary to doing math as a way to learn how to think clearly about things and 
apply this clear thinking to every aspect of my life.” Again, whereas Morgan and Kendall viewed 
themselves as Doers of mathematics for enjoyment, Landon viewed himself as a Doer of 
mathematics for the purpose of developing valuable and widely applicable skills for life. 
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Sharer of Mathematics  
The second dimension that emerged pertained to how students positioned themselves as 

Sharers of mathematics. In their letters, the participants discussed mathematics both in terms of 
their role in sharing mathematics with others and their sense of mathematics as a 
community. This dimension frequently appeared as students assuming the responsibility to share 
the positive side of mathematics with others. An awareness of common negative perceptions 
associated with mathematics prompted many students to write about how they see themselves as 
advocates for the discipline. Kendall noted in her letter that she hopes she “can help more people 
see you [mathematics] as a friend.” Many participants, like Kendall, identified teaching as a way 
they could take on this advocate role. Martin wrote, “I see [my students] grapple with your 
theorems and symbols, but I want to show them who you truly are – what you can really do.” 
Similarly, Connor wrote, “I’m thankful for…the moments of teaching I remember when I finally 
showed someone something very cool about you.” These participants saw teaching as a prime 
opportunity to share their love and admiration for the discipline with others. 

Affiliation with a mathematics community and awareness of how mathematics is shared 
within that community also revealed how participants identified as Sharers of mathematics. For 
instance, Connor wrote how “you've led to the creation of some of my most treasured 
communities, you've led me to some of my best friends”. Kendall wrote of a similar experience, 
writing “I appreciate how much I have learned from you and the people you've brought into my 
life. You really have the best friends.” For these two participants, mathematics fostered 
community and friendships. For Landon, mathematics could be used to bring people together 
through a universal language, writing “I can communicate perfectly with someone that doesn’t 
speak a word of english.” For some, the notion of a mathematics community did not always 
come with positive experiences or connotations. Morgan wrote explicitly about how she felt 
excluded as a result of being a woman in a male-dominated field, writing “I learned, through 
thousands of little words and actions, that I wasn’t welcome in the boys’ club that is the world of 
math.” She later wrote about persevering and finding her place within the community, but 
acknowledged how exclusionary it can be. Overall, we saw both positive and negative 
experiences in how graduate students described being Sharers of mathematics.  

Feeler of Mathematics  
We also found that participants described themselves as Feelers of mathematics. This 

dimension of their mathematics identities refers to affective factors relating to their experiences 
with mathematics, relationships with members of the mathematics community, and overall 
feelings toward the discipline. Participants described experiencing a range of positive and 
negative feelings towards mathematics over the course of their educational experiences. These 
feelings were not static and were often influenced by their graduate education experience. Some 
students revealed that early experiences with mathematics fostered curiosity, excitement, and 
interest, and this often came from being positioned as successful by their teachers and peers. 
However, positive early experiences were not always shared by the participants. For example, 
Martin wrote, “When we first met, we didn’t get along – at least, I didn’t understand you and 
wanted you to go. Multiplication was hard, and those timed worksheets made me 
anxious…Honestly, you scared me, or so I thought.” Here, Martin expressed how their early 
feelings surrounding mathematics were marked by anxiety and fear, illustrating that graduate 
students can have widely different early emotions with mathematics that shape their identities. 

Additionally, students detailed how graduate school marked a period of time when they 
contested with negative feelings about themselves and the discipline. This detrimentally 
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impacted their mathematics identities and made them question their place within the discipline. 
A frequently cited area of dissent was when graduate students compared themselves to their 
peers and were made to feel like their mathematical abilities were not adequate for this space. 
For example, Kayla noted that entering graduate school involved confronting the idea that “there 
were other people that were just as good at you as I was,” which made her feel “threatened” and 
“jealous.” Kayla was faced with reconciling her mathematics identity, mainly related to her 
competence, in comparison to how she perceived her peers. Similarly, Morgan described feelings 
of exclusion due to gendered mathematics spaces, leading to feeling that “every success was 
handed to me for the sake of diversity, or so I was told, until I believed it.” These feelings of 
exclusion constitute an affective component of Morgan’s positioning within mathematics.  

The most common sentiment across the letters was gratitude. The participants reflected on 
the experiences that mathematics afforded – including the connections and community that they 
developed. Kayla expressed gratitude to mathematics for “bringing [her] joy all through [her] 
school years” and for “your friendship.” Similarly, Morgan wrote, “I wanted to take a moment 
to…express gratitude for the profound impact you made on my life.”  Despite the varying 
feelings expressed about themselves and mathematics, the participants described being drawn to 
mathematics and feeling motivated to continue their studies and pursue faculty positions. 

Believer of Mathematics 
The final dimension of mathematics identity which emerged was the Believer of 

mathematics. This theme echoes the work of scholars who investigate the notion of mathematical 
study and religion as conjuring parallel experiences, both in their embodiment and in their 
rejection (Jonker, 2012; Krajewski, 2021; Kurniawan & Hidayati, 2020). Kurniawan and 
Hidayati (2020) define religion in part as a way one “seeks the meaning of life, the value of truth, 
and the meaning of the world.” Many of our participants described ways that mathematics 
provides universal meaning and truth. In the same way that understanding one’s religious 
identity yields insight into their worldview, we view understanding the ways in which an 
individual “believes” in mathematics and its power as something which yields insight into a 
student’s mathematics identity. 

One way in which this theme appeared was through the participants’ frequent assignment of 
powerful qualities to mathematics. In her letter, Kayla contrasted her initial negative feelings 
towards mathematics with her present feelings of “appreciating your beauty and mystery.” 
Similarly, Morgan noted her passion for “studying the beauty of your theory”, and Martin noted 
the “utility and richness of your subjects.” Landon described mathematics as “foundational to 
understanding the world”, and cited this as a reason he was drawn to the field. In some instances, 
participants expanded on these qualities in ways that went beyond ascribing a quality and 
characterized mathematics in a more holistic way. Connor made two such potent 
characterizations: that “the spirit of discovery resides in you”, and that “we will unlock the 
secrets of the universe with your help.” Both of these characterizations are not out of line with a 
religious profession of exalt; Connor is expressing his exaltation of mathematics through the 
ascription of spiritual characterizations to the subject. 

The participants also described mathematics in ways that reflect omnipresent and omniscient 
properties often ascribed to religious deities. Connor explained how mathematics “is the hope I 
have for a brighter future…, because humanity has hope through you and the insights you hold.” 
Regarding mathematics’ far-reaching power, Martin further wrote that “you are everything, 
everywhere, all at once, and I think nothing else can explain the universe in a better way.” 
Landon and Martin also positioned mathematics as a determinant of universal truth. For 
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example, Martin noted that mathematics “offer[s] exactness in a time and place where everything 
is changing, and… keep[s] me grounded to this existence.” In these ways, the participants' 
descriptions reflect a higher “belief” in the power and truth of mathematics.  

Discussion and Implications 
The participants’ letters revealed four main themes that suggest important dimensions in 

mathematics graduate students’ expressions of their mathematics identities. These themes both 
connect and diverge from literature focused on undergraduate students’ mathematics identity.  

The Doer dimension reflects mathematics identity conceptualizations that include utility, or 
the “degree to which a student thinks that math is or will be useful to their life” (Crossley et al., 
2018, p. 13). Landon’s letter, for example, reflects this, discussing how mathematics supported 
the development of critical thinking skills useful in numerous aspects of his life. The Feeler 
dimension relates to affective components within students’ mathematics identity but expands on 
the usual limitation to students’ level of mathematical interest. Cribbs et al. (2015) define 
mathematical interest as “a student’s desire or curiosity to think about and learn mathematics” (p. 
1052). The participants described feelings of curiosity, such as when Kayla wrote how “ever 
since I was of a young age, I always knew that I wanted to learn more about you.” However, they 
also expressed numerous other emotions including excitement, inspiration, enjoyment, and 
appreciation around mathematics, as well as anxiety, fear, and annoyance. For example, Connor 
described how he is “annoyed with you so very often.” Thus, while interest and curiosity 
appeared in some of the letters, participants described additional feelings that relate to their 
mathematics identity such as perceptions of ability and mathematical self-efficacy.  

The Feeler dimension also demonstrates connections to perceptions of ability. Martin 
described not “getting along with” mathematics initially, implying that a lack of perceived ability 
hindered their relationship with mathematics. Kayla also describes changes in her perceived 
ability, reflecting back on grade school when “you made me stand out as a very smart and 
exceptional student,” whereby in graduate school, “there were other people that were just as 
good at you as I was, and I became threatened and jealous.” As a result of her lower self-
efficacy, she questioned that mathematics “maybe… [was] never my friend to begin with.” Thus, 
perceptions of ability still appear in graduate students’ construction of their mathematics identity, 
whether as a consequence of earlier experiences or within graduate school itself.  

The Sharer dimension exhibits similarities and differences with existing literature on 
undergraduate students’ mathematics identity. Echoing existing literature, the participants 
frequently referenced their positioning within or outside of a mathematical community. Connor 
and Kendall described the friends they have gained through mathematics. However, Morgan 
cited gender-based exclusion within the “boys’ club” of mathematics and Connor noted his 
dislike toward competition within mathematical spaces. These notions of community reflect 
conceptualizations of mathematics identity focused on belonging and recognition (Cribbs et al., 
2015; Voigt, 2020). However, the Sharer dimension also included a unique component of 
graduate students’ mathematics identity, namely their role in sharing mathematics as a teacher. 
Multiple participants described teaching as a way to change negative perceptions around 
mathematics and communicate their love for the discipline. For these participants, the co-
construction of professional and mathematics identity was an important component of their 
graduate school experience. Beisiegel and Simmt (2012) note that “it is through the formative 
experiences of graduate school that mathematics graduate students’ identities are shaped as 
mathematicians, researchers, teachers, or more generally as professors of math” (p. 35). The 
dimensions of Doer and Sharer are particularly relevant to Beisiegel and Simmt’s assertion; 
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understanding how graduate students see themselves as doing and sharing mathematics in 
relation to their mathematics identity can illuminate their professional identity development. 

The identity dimension that most diverges from existing literature on undergraduate students’ 
mathematics identity is the Believer of mathematics. This appears to be a unique facet of 
mathematics graduate students’ mathematics identity. The salience of this theme across all of the 
participants’ letters suggests that a belief in the power of mathematics is a significant factor in 
their mathematics identity. The participants expressed this dimension in various ways, from 
admiration of mathematics’ beauty and spirit to its bringing hope to humanity and grounding one 
to this existence. These statements do not align well with previously established mathematics 
identity components such as perceptions of ability, interest, utility, sense of belonging, 
participation, etc. Given the novelty of this theme, further investigation is needed to determine 
how fundamental or universal this dimension is among graduate students, whether undergraduate 
students who resonate with this aspect of mathematics identity are more likely to pursue graduate 
education, and if and how instructors could instill this within their undergraduate students.   

The letters also reinforced how mathematics identity is a fluid construct, subject to change 
across time and experience. We see past mathematics identities present in Kayla’s narrative, as 
she reflected on mathematics as bringing her her “greatest joys” and “lowest places” in a 
temporal way. She associated a shift with the beginning of graduate school, in which she began 
feeling “threatened and jealous” – something she identified as a “false narrative” that resulted in 
“ill feelings.” In addition to considering previously held mathematics identities through 
descriptions of feelings and experiences, there was one instance of consideration of a future 
mathematics identity present in Kendall’s letter in which she writes she “[has] no doubt we will 
be lifelong friends.” These elements of both a past and a projected future mathematics identity 
are integral to how students position themselves with respect to mathematics as a discipline, and 
thus serve as informants of their mathematics identity. We see this as a possible area of 
application for Markus and Nurius’s (1986) possible selves in which identities are given 
temporal dimensions, and past or possible considerations of identity are conceptualized as 
irrevocably intertwined with the current self. In the same way that possible selves have been 
leveraged to provide insight into professional development in other realms on education (e.g., 
Blaney et al., 2022; Park & Shallert, 2020; Quaisley et al., under review), so too could they 
provide insight in the developing mathematics identities of graduate students.  

Conclusion 
Overall, our work suggests that graduate students’ mathematics identity development reflects 

and extends beyond traditional notions of identity. We recognize the salience of social identities 
(e.g., gender, race, etc.) in the shaping of mathematical experiences (e.g., Leyva et al., 2020; 
Voigt, 2020); future work is needed to more carefully examine the connections between these 
identities and the mathematics identity development of graduate students. We view examining 
letters as a novel and insightful approach to making sense of mathematics identities as they 
afforded students opportunities to articulate self-perceptions, stories, feelings, etc. that may have 
been difficult to convey through other data collection efforts. We posit that writing “Dear 
Math…” letters is one avenue that professional development efforts can take up to gain insight 
into the experiences that graduate students consider supportive or hindering in their progression 
through graduate school and their pursuit of academic positions. A continued examination of 
graduate students’ mathematics identities can inform mathematics departments and higher 
education institutions on how to better support their transition to the mathematics professoriate. 
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An Exploration of Undergraduate Mathematics Education Measures and Their Validity Evidence 
 

 Christine K. Austin Kate Melhuish 
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This report discusses the validity evidence reported in undergraduate mathematics education 
measures. Through a comprehensive literature review of articles published from 2000-2019, we 
identified 166 measures that provided validity claims and evidence to varying degrees. Findings 
overall suggest that validity evidence can be more robust within measures of RUME constructs, 
although there are examples of rigorous validity arguments. Of the validity evidence, the major 
sources of validity were reliability, test content, and internal structure. We report on the number 
of sources of validity, by construct, and the types of evidence to support the validity claims. 

Keywords: validity evidence, undergraduate, measures, reliability  

Measures play a key role in research in undergraduate mathematics education. Measures 
provides a means to quantify elements of teaching and learning to investigate quantitative 
hypotheses. Types of measures might include cognitive measures (e.g., Precalculus Concept 
Assessment; Carlson et al., 2010), affective measures (e.g., Motivated Strategies for Learning 
Questionnaire; Pintrich & de Groot, 1990), or learning environment measure (e.g., Inquiry-
Oriented Instructional Measure; Kuster et al., 2019)  As researchers, we have observed the use of 
many different measures in our field, but it is less clear the degree to which they have sufficient 
validity evidence to assure that scores and interpretations of them are meaningful. Previous 
literature has shown a lack of sufficient validity and reliability evidence in mathematics 
education assessments, broadly (Bostic et al., 2019; Krupa et al., 2019). Thus, we aim to explore 
whether this claim holds true in undergraduate mathematics education research. This report 
addresses: 

RQ1: What measures are currently in use by RUME researchers?  
RQ2: What types of validity evidence support the validity of their usage? 

Background 
Measurement theory is the process of investigating varying forms of evidence to form the 

basis of a valid and reliable instrument (Crocker, 2012). For claims of an instrument to be 
meaningful the instrument needs to be assessed to ensure it is measuring what it was intended to. 
In doing so, researchers assess the reliability and the validity of the instrument. Reliability is the 
degree in which the results/scores of an instrument are replicable, consistent, and accurate 
(Brennan, 2006; Crocker & Algina, 2006). Some examples for evidence of reliability include 
test-retest, alternate test forms, item response theory, Cronbach alpha, and inter-rater reliability. 
Validation, on the other hand, has been described by Cronbach (1971) as the collection of 
evidence to support the claims drawn from the results of the instrument by the assessment creator 
or the user of the instrument. In education, validity is defined in the Standards for Educational 
and Psychological Testing as “the degree to which evidence and theory support the 
interpretations of test scores for proposed uses of tests” (American Educational Research 
Association [AERA] et al., 2014, p. 11). In the Standards, five forms of validity are noted: test 
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content, response process, internal structure, relation to other variables, and consequence of 
testing (AERA et al., 2014). Primary sources of evidence for the five types of validity are 
provided in the Standards (AERA at al., 2014) and Validation in Mathematics Education (Krupa 
et al., 2019).  

Five Sources of Validity 
Test content validity is explained as “the relationship between the content of a test and the 

construct it is intended to measure” (AERA et al., 2014, p. 14). Evidence for test content stems 
from the judgments of experts, observation, and logical or empirical analyses (AERA et al., 
2014, p. 14). In practice, such validity evidence includes, but not limited to, data from experts 
(i.e., experts in the field), field work, literature reviews, alignment of a learning trajectory, and 
participant generated content (i.e., the participant creating the data for the researcher) (Krupa et 
al., 2019). Response process validity is concerned with “the fit between the construct and the 
detailed nature of the performance or response actually engaged in by test takers” (AERA et al., 
p. 15). In other words, this form of validity ensures that the test takers engage in the appropriate 
thinking, processes, and analyses in which the construct was designed to be measured for proper 
claims to be made (Lavery et al., 2019). A non-exhaustive list of Validity evidence for response 
processes includes, cognitive interviews, focus groups, eye-tracking, predicted response patterns 
based on learning trajectories, and think alouds (AERA et al., 2014, Krupa et al., 2019; Lavery et 
al., 2019). 

Validity from internal structure addresses “the degree to which the relationships among test 
items and test components conform to the construct” (AERA et al., 2014, p. 16). This validity 
type is focused on confirming that the construct adheres to the theories in which it was built upon 
(Lavery et al., 2019; Krupa et al, 2019). Further, validity evidence of internal structure confirms 
that the construct is unidimensional. A unidimensional construct assesses a single dimension or 
attribute (e.g., a student’s level of multiplicative reasoning) (Bond & Fox, 2015). Validity 
evidence of internal structure includes, but is not limited to, factor analysis, Item Response 
Theory, Rasch modeling, and multidimensional scaling (AERA et al., 2014, Krupa et al., 2019; 
Lavery et al., 2019). Relation to other variables validity is defined as “the degree to which the 
relationships among test items and test components conform to the construct” (AERA et al., 
2014, p. 16). Many instruments are developed with the expectations that the construct will relate 
to other constructs or variables in predictable ways or patterns (Lavery et al., 2019) thus, this 
source of validity evidence connects results to other constructs (Krupa et al., 2019). Such types 
of validity evidence include correlations analysis, regression analysis, structural equation 
modeling, hierarchical linear modeling, and alignment with expert opinion of user (e.g., teacher). 
Lastly, validity of consequences of testing is the process of “gathering evidence to evaluate the 
soundness of [the] proposed interpretations for their intended use” (AERA et al., 2014, p. 19). 
Standards for Educational and Psychological Testing discuss three main types of consequences 
of testing: unintended consequences (e.g., differences in test score based on race/ethnicity), 
claims made that are not based on test score interpretations (i.e., the need for new more 
information to address the results of the testing), and the interpretations and uses of the test 
scores intended by the instrument creators (AERA et al., 2014). Evidence for consequence of 
testing validity include explicit intended use/interpretations, motivational consequences, 
differential item functioning, and appropriate cut scores (AERA et al., 2014; Krupa et al., 2019). 
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Methods 
This project began in 2020 as part of an NSF-funded collaboration (BLINDED) to catalog 

mathematics education measures that have been in use for the last twenty years. The authors of 
this paper have led the work on the undergraduate sub-team. To identify measures in use, we 
conducted a literature search spanning 2000-2019. We searched the mathematics education 
research journals identified by Williams and Leatham (2017) along with International Journal of 
Research in Undergraduate Mathematics Education as its newness means it was not contained in 
Williams and Leatham’s list. We used the following Boolean string to identify articles: (tertiary 
OR post-secondary OR undergraduate OR college OR university OR “graduate student”) AND 
(test* OR assess* OR instrument* OR measur* OR survey* OR inventor*). From this initial 
search, we identified 2,603 articles. At this point, we developed an inclusion and exclusion 
system with for criteria: (0) Must focus on undergraduate or graduate mathematics students 
and/or instructors (exclusive of primarily statistics or pre-service teachers as they fall under other 
subteams (1) Must be an empirical study (2) Used an instrument that is uniform across the 
population, that should be useable by other researchers with at most minimal modification, 
potentially in a different setting (3) That is associated with a named or described construct. After 
training with a set of 30 articles within the full set, the remaining articles within the 2,603 
articles were coded according to these criteria by two members of the research independently, 
then coming to agreement about whether to include to the next stage. Here, 432 articles met these 
criteria. At this point, we switched to identifying measures. To be considered a measure, we 
required a composite score of some type. That is, an instrument that only reports data at an 
individual item level was not included. We identified 241 unique measures. 

The final stage of this process was then to identify validity evidence.  For each measure, we 
went into the article where it was found, then determined if that article contained its validity 
evidence. If not, we searched for another source of evidence (such as a reference validation 
study.) For any measure with validity evidence, we documented: focal construct (cognitive, 
affective, learning environment), usage information, and any validity evidence or claims 
provided categorized within the five types of validity evidence in the prior section. We aligned 
our classifications with the larger project teams’ set of evidence types. In the next section, we 
present an overview of the types of instruments and most common types of validity evidence. 

Results 
Of the 241 unique measures identified to fit our criteria, only 166 measures were reported to 

have validity evidence for the constructs. Ultimately, 75 measures were eliminated due to having 
no apparent reported validity evidence within the manuscript. Our final list of 166 undergraduate 
mathematics articles contained three prominent construct types that were broken up into their 
focal construct: affective domain, cognitive domain, and learning environment (see Table 1). Our 
findings show that there is a skew in the type of constructs being implemented in undergraduate 
research. These results indicate that the majority of the instruments measure the affective (47%) 
and cognitive domain (45%) and only about a tenth (11%) are designed to measure an 
undergraduate student learning environment.  

On average, two (M = 1.92, SD = 1.06) forms of validity evidence (including reliability) were 
reported for each measure. Only one measure provided all sources of validity and reliability 
evidence. Given that most of the articles only contained two sources of validity, on average, the 
most prevalent source of validity was computed. Table 1 illustrates the validity evidence broken 
down by construct type. The most reported form of validation was test content (n = 113) 
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followed by reliability (n = 87). Very few undergraduate mathematics measures reported validity 
evidence for consequences of testing (n = 4) or response process (n =15).   

 
Table 1. Source of Validity by Construct Type 

Source of Validity 

Construct Type [Total # of Articles] 
AD 
[72] 

AD / 
CD [2] 

CD 
[72]  

CD / 
LE [1] 

LE 
[13]  

LE / 
AD [4]  

Other 
[2] 

Total 
[166] 

Reliability 46 1 25 0 9 4 2 87 
Test Content 43 1 56 1 8 0 1 110 
Response Process 3 0 9 0 3 0 0 15 
Internal Structure 36 1 16 0 9 1 1 64 
Relation to Other 
Variables 18 0 15 0 4 0 1 38 

Consequence of Testing 0 0 4 0 0 0 0 4 
Note: AD = Affective Domain, CD = Cognitive Domain, and LE = Learning Environments  

 
Table 2 reports the types of validity evidence that were documented for the 166 measures. 

Our findings indicate that of our 87 measures that made claims for reliability, 72 (83 %) reported 
a Cronbach Alpha Coefficient as the source of evidence. Further, the 38 measures that provide 
evidence for relation to other variables predominantly used correlation analysis (n = 27) as their 
source of evidence (71%). As shown in Table 2, other than evidence type for test content, there is 
little variation to the evidence type documented undergraduate mathematics education research.  

While in general, the validity evidence for measures was scarce, there were some notable 
exceptions in the set. Of the affective focused measures, Mini-IPIP Scales (Alcock et al., 2014) 
and Attitudes to Technology in Mathematics Leaning Questionnaire (Forgarty et al., 2001) had 7 
and 6, respectively, forms of validity evidence (see Table 2 for validity evidence types). The 
cognitive focused measures with 6 or more types of validity evidence consisted of the Group 
Theory Concept Assessment (Melhuish, 2019), Calculus Readiness Assessment (Pyzdrowski et 
al., 2013), Function Concept Inventory (O’Shea et al., 2016), College Readiness Assessment 
(Bernbaum et al., 2011), Calculus Concept Inventory (Bison et al., 2016), and Proof 
Comprehension Tests (Mejía-Ramos et al., 2017). Lastly, of learning environment focused 
measures, Survey of Calculator Usage Extensiveness and Subordinality (Mao et al., 2017), 
Concept Test (Kaw & Yalcin, 2012), and Inquiry-Oriented Instructional Measure (Kuster et al., 
2019). While we highlight these measures, we note that it is not the number of validity evidence 
types that matters so much as the integration of validity evidence into a validity argument. 
Nonetheless, when validity evidence is presented primarily as reliability, it is difficult to marshal 
this evidence into a robust argument that an instrument measures a particular construct as 
intended.    
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Table 2. Validity Evidence 
Source Evidence Type  
Reliability Alternate Test Forms 1 

Inter-Rater Reliability (Kappa & Percent Agreement) 7 
Cronbach Alpha 72 
Item Response Theory and/or Rasch Modeling  2 
Item Remainder Correlations 2 
Kuder-Richardson Formula 20 4 
Sensitivity Analysis 1 
Split-Half Reliability 2 
Test-Retest 10 

Test Content Alignment with Framework/Theory/Learning 24 
Data from Experts 38 
Fairness of Content 2 
Field Work 4 
Literature Review 36 
Participant Generated Content 16 
Revision Process 15 
Standard Setting 1 

Response 
Process 

Cognitive Interviews 4 
Rater Agreement/Reliability 3 
Rater Training and Collaboration 2 
Student Written Work 5 
Think Aloud 2 

Internal 
Structure 

Factor Analysis* 58 
Item Difficulty 4 
Item Scale Correlations 8 
Item Response Theory (IRT) 6 
Rasch Modeling 5 

Relation to 
Other 
Variables 

Alignment with Expert Opinion 1 
Convergent or Divergent Association  4 
Correlation Analysis 27 
Discriminant Validity 1 
Hierarchical Linear Modeling (HLM) 1 
Statistical Testing (e.g., regression, t-test, chi-square) 5 
Triangulation  1 

Consequence 
of Testing 

Appropriate Cut Score 2 
Cost-Benefit Analysis 1 
Item Function (e.g., DIF) 1 

*Includes Bifactor, Exploratory/Confirmatory Factor Analysis, Parallel Analysis, Principal 
Axis Factoring, and Principal Component Analysis  

 

Discussion 
Our analysis of measures used in the undergraduate mathematics education literature points 

to several findings. First, we found that Bostic et al.’s (2019) and Krupa et al.’s (2019) reflection 
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on the state of measures in math education was largely true in the undergraduate context. While 
many instruments are in use many provided limited or no validity evidence at all. This is 
particularly problematic when scores from such measures are used in service of testing particular 
hypothesis or have impacts on students or instructors in practice. That is, the trustworthiness of 
an instrument is determined by the degree we can be assured it is valid. 

If we consider our results more broadly, we can see that certain types of validity evidence are 
more frequently reported. For example, Cronbach’s alpha is by far the most common type of 
validity evidence in our data set. This is not surprising as it is a relatively easy type of statistic to 
calculate with associated indices of what is acceptable for different measure purposes. We also 
documented other common psychometric and quantitative approaches to validity with the 
prevalence of factor analysis and correlation with variables. These common approaches still 
accounted for less than half of the measures reporting any validity evidence.  

We note the measures were more frequently reported with quantitative evidence and less 
qualitative validity evidence. We suggest a robust validity argument (e.g., Kane, 1992) is made 
with mixed methods. For example, response process evidence was quite infrequent. This type of 
evidence stems from making sure that participant response to items actually reflects their 
thinking.  This can be done through cognitive interviews, collecting written work, and other 
approaches.  Without such evidence, we may be left wondering the degree to which an 
instruments’ scores truly reflect participants.  

We acknowledge some limitations of the current work. First, our exclusion and inclusion 
process mean that we may have overlooked instruments that have not been discussed in primary 
mathematics education journals. Additionally, it is possible that we overlooked a source of 
validity evidence that might be found in harder to access internal reports.  There is also likely 
some variation in how our coders interpreted different types of evidence and therefore, we 
suggest caution when generalizing from frequencies that are similar.  

Finally, we note directions for future research. In our own data set, we have made some 
initial notices that within our construct categories we can find some interesting patterns. For 
example, a full 28 of the affective instruments were focused on mathematics attitudes and belief 
scales. This means that there are many instruments in use targeting the same construct. We also 
note that within the cognitive construct measures, instruments that aligned themselves with 
concept inventory procedures (e.g., Group Theory Concept Assessment, Function Concept 
Instrument, Calculus Concept Inventory) often had more robust amounts of validity evidence 
likely due to commonalities in development approach. The next research direction will involve 
better understanding the nature of the instruments within each category and their relation to the 
types of validity evidence shared. 

We conclude by suggesting that the field consider a variety of validity evidence types when 
creating measures.  It may be a truism that the validation process is never complete. Each new 
sample and use require recalibration. The stronger the evidence is for our measures, the more we 
can trust the results of our quantitative studies.  
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What Makes a Proof a Proof?: It’s Your Job to Decide 
 

 Andre Rouhani Dov Zazkis 
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This study investigates students' conceptions of what makes a particular written mathematical 
communication a proof. To that end, we implemented one-on-one task-based interviews 
involving mathematical communications. These communications were presented as trios, and we 
called each communication a job. We intentionally designed some of these jobs to sit in the 
vague space between proof and calculation. Our study investigated the reasons why participants 
believed certain jobs were proofs, allowing us to develop a model of students' conceptions of 
proofiness. This model revealed differences among students in terms of which attributes they 
thought contributed to or detracted from proofiness, as well as those they thought were and were 
not relevant to whether a job is a proof. These differences and how they relate to normative 
conceptions of proofiness point to aspects of proof that may require further attention in these 
students' introduction to proof courses. 

Keywords: Proof, Introduction to proof students, Remote data collection. 

What follows is the novice portion of a larger planned expert novice study (e.g., Inglis & 
Alcock, 2012). The overall project addresses the question “What makes a proof a proof?” We 
use the term mathematical communication to broadly capture any written work that establishes a 
mathematical fact or property. For example, a calculation that finds the roots of a polynomial 
might be considered a mathematical communication that establishes what the roots of the 
polynomial are. Similarly, a written proof is a mathematical communication that establishes the 
truth of some theorem. 

This portion of the research addresses the research question: “What are undergraduate 
mathematics students’ conceptions of what makes a mathematical communication a proof?” To 
facilitate our discussion, we borrow a construct name from Seife (2010), proofiness. In his work 
“Proofiness: the dark art of mathematical deception,” Seife defines proofiness to be 
manipulations of mathematical norms that, “make falsehoods look like numerical fact” (Seife, 
2010, p. 18). Instead, we use proofiness to refer to a person’s personal conceptions of the 
attributes that make a written communication a (correct mathematical) proof; in other words, 
proofiness refers to the qualities of a text that distinguish proofs from non-proofs. Those are the 
attributes that keep a purported proof from being an instance of proofiness in Seife’s sense of the 
word. So, from our perspective, our use of this construct name is more precise than Seife’s usage 
and more consistent with the mathematical concept of proof (Weber, 2014). 

To simplify the conveyance of ideas, we refer to mathematical communications as jobs. We 
used our jobs-based tasks, and data from clinical interviews with undergraduate mathematics 
students, to develop a proofiness framework. This framework can be implemented to classify the 
attributes of a mathematical communication which a person thinks are relevant to certify or 
discount it as a proof. In the future, this might allow us to implement more informed learning 
trajectories for guiding students toward normative conceptions of proof. As alluded to earlier, 
determining mathematicians’ conceptions of proofiness is part of a planned followup to the 
current study. Thus, the utility of this framework will be demonstrated in a second order 
followup study. The students’ conceptions of proofiness will inform the design of a learning 
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trajectory (Simon, 2020; Simon & Tzur, 2012) that is intended to advance students’ 
understanding of proof toward observed mathematicians’ conceptions. 

Literature Review 
Proof is, out of necessity, not well defined (Inglis & Aberdein, 2016, Weber & Czocher, 

2019). This means that, even among expert mathematicians, there is often no consensus on 
whether a particular mathematical communication is a proof (Weber & Czocher, 2019). Czocher 
and Weber (2020) addressed this fuzziness by describing proof as a cluster concept (Lakoff, 
1987), which is when “a number of cognitive models combine to form a complex cluster that is 
psychologically more basic than the models taken individually” (p. 74). The cluster concept 
nature of proof means that novice provers’ conceptions of proof are, inherently, a fuzzy picture 
of an already fuzzy picture. However, whether a mathematical communication is a proof is also 
context dependent (Stylianides, Stylianides, & Weber, 2017) and students, especially those in 
introduction to proof (ITP) courses (David & Zazkis, 2020), have only experienced proofs in the 
single context of their course. This means that asking an ITP student the question “is this a 
proof?” implicitly asks, “is this considered a proof within the context of your ITP course?” The 
existing research on conceptions of what a proof is and what counts as a proof is primarily 
focused on expert mathematicians (e.g., Inglis, & Aberdein, 2016, Weber & Czocher, 2019). 
Here, we shift toward studying students, since a good grasp of student conceptions of proof is 
needed to use this knowledge as part of well-informed learning trajectories for proof. 

We argue here that, especially given both how much variety there is in approaches to ITP 
course work (David and Zazkis, 2020) and the importance of proof in mathematics, there is value 
in exploring ITP students’ impressions of what makes a proof a proof. However, the nebulous 
nature of proof necessitates a shift away from traditional tasks and interview questions (Zazkis & 
Hazzan, 1998). 

 
Figure 1. An example task which presents two jobs for the subject to compare. 
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Method 
Participants were undergraduate students, each of whom completed a zoom-based think-

aloud one-on-one task-based clinical interview (Clement, 2000). Remote data collection was 
needed because of the COVID-19 pandemic. The ten participants were students in the same 
section of an ITP course offered at an Anonymous State University (ASU) in the Southwestern 
United States. Six of the ten were pursuing a degree in mathematics, and the rest were 
engineering or science majors. 

Students were presented trios (or sometimes pairs) of jobs that spanned the range from proof 
to calculation (from our perspective). Throughout the interview, students were asked which of 
the jobs in front of them were proofs, and then asked to justify their assertions by referring to the 
jobs and their attributes. A pair of example jobs are shown above in Figure 1. As a reminder, 
most of the jobs in our study occurred in trios, but we include this pair due to space limitations. 

 Working in the spirit of grounded theory (Strauss and Corbin, 1997) allowed us to generate a 
framework of the components of proofiness that participants attended to. We refer to our 
organization and categorization of these components as the Personal Conceptions of Proofiness 
framework (PCP). Documenting which students attended to which segments of the PCP allowed 
us to create a personalized proofiness profile (PPP) for each participant. 

Results 
First, we present the components and definitions of our Personal Conceptions of Proofiness 

(PCP) framework. Then, we utilize the PCP to create personalized proofiness profiles (PPP) for 
each of our participants. We then narrow our focus to the parts of students’ PPP that differ from 
student to student. These highlight differences in our participants’ conceptions of what makes a 
job a proof. The differences in students’ PPP are particularly relevant, since all participants were 
recruited from the same ITP section at the same institution, and thus had ostensibly comparable 
experiences with proof. 

The PCP is divided into two domains of proofiness: norms of communication (how a 
mathematical communication is written and presented) and purposes of communication (why a 
mathematical communication is written, and how and whether it meets its mathematical aims). 
Figure 2 presents the domains, subdomains, and dimensions of proofiness that make up the PCP. 
Figure 2(a) displays the norms of communication domain. The subdomains in the left table of 
Figure 2(a) refer to mathematics-specific conceptions, while the subdomains on the right 
describe conceptions that pertain to argumentative writing in general. The primary difference 
between the left and right tables in Figure 2(a) is that the conceptions on the right are broadly 
applicable in written argumentation that is not mathematical (e.g., legal argumentation), while 
those on the left are more closely related to mathematical argumentation. Figure 2(b) details the 
purposes of communication domain of the PCP. Since the PCP was generated from student 
remarks in aggregate, the relative size of Figure 2(b) compared to Figure 2(a) is an important 
finding: it highlights that participants spoke relatively little about purposes of communication; 
most students focused their attention on norms of communication. 

We used the PCP to classify each student’s PPP. A subset of each student’s PPP can be seen 
in Figure 3. The table is written so that + means the student believes that dimension of proofiness 
is necessary (though not sufficient) for a job to be a proof. We use ++ to indicate when the 
student was emphatic in their statement of a dimension’s importance that enthusiasm is not part 
of the analysis in this paper, we maintain the convention to be consistent with future work. We 
use - to indicate the student believes the dimension detracts from a job’s proofiness. We use the 
symbol / to indicate that the student explicitly indicated that the dimension has no effect on 
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whether a job is a proof. Finally, the symbol ~ means the student was inconsistent in their 
assessment of the dimension. 

 
Figure 2(a): Norms of communication domain of PCP. 

 

 
Figure 2(b): Purposes of communication domain of PCP. 
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Figure 3: A subset of the participants PPP. Note the thick border, separating domains. 

 
To illustrate these distinctions, consider the following two quotations from Han and Estrella, 

both of which are relevant to the Generality dimension of proofiness in the PCP framework: 
Han: “Broader case feels proofier than talking about one specific case.” 
Estrella: “Not all proofs have to be arbitrary. You can still prove something for like a 

specific situation.” 
Han indicates he holds the conception that Generality is a dimension of proofiness that 

increases proofiness, while Estrella states that she does not believe that Generality affects 
proofiness. This indicates differences in their personal conceptions of proof.  Since the 
mathematically normative conception of Generality is that a proof can be general or specific, 
depending on the claim, we see that not all students agree with that normative conception: two of 
them stated explicitly that to be more general was to be more proofy. 

We further explore the PCP by comparing Claudette and Redmond’s remarks associated with 
the Long Length dimension of proofiness, which relates to a job having more words, more lines, 
and taking up more space on the page. Claudette said she thinks proofs should have “lots of 
words”, even referring positively to its “sheer amount of words” when claiming one job was 
proofier than another. Redmond, on the other hand, stated he did not like one of the jobs 
because, in his words, “It’s too long.” Therefore, Claudette has a + in the relevant space, while 
Redmond has a -. 

The table in Figure 4 allows us to glean patterns and differences in the students’ personal 
proof profiles (PPP). For example, we can notice that seven of the ten participants mentioned 
that they hold the belief that the inclusion of Conventionally Proofy Language contributes to 
proofiness. The three participants that did not verbalize this view on language did not bring up 
language at all, indicating de facto consensus. This stands in contrast to the group’s conception 
of Algebra (the presence of one or multiple lines of algebraic work like manipulation of 
equations, factoring, expansion of polynomials, etc.)—some students believe that Algebra 
decreases a mathematical communication’s (job’s) proofiness, and others believe that Algebra is 
irrelevant to the proofiness of a mathematical communication. This indicates disagreement 
regarding whether the presence of algebra contributes to proofiness. More broadly, we found 
that, taken as a whole, there was consensus among our participants with respect to Assumptions 
Stated, Explicit Statement of Warrant / Backing, ‘Givens, Work, Goal’, Proof Framework / 
Outline, and Conventionally Proofy Language as positive contributors to proofiness. Moreover, 
we saw strong support for the detrimental effect to proofiness that Unidentified Variables, 
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Unfamiliar Context, and Answer-Getting yielded (see Figure 2 for descriptions of these 
dimensions of proofiness). Further, students broadly disagreed about the proofiness of Long 
Length, Algebra, and Generality. Lastly, the Explicit Reference to Definitions dimension of 
proofiness is noteworthy: most participants agreed enthusiastically that this dimension 
contributed positively to proofiness, with only one stating it did not matter, and another being 
inconsistent. This is intriguing, if not worrisome, since many mathematicians believe that, across 
contexts, full statements of definitions should not be included in proofs (Lew and Mejia-Ramos, 
2020). This discrepancy about whether to include definitions is related to lack of clarity (Ibid.) 
on what student-produced proofs should look like, according to mathematicians. 

 

 
Figure 4: PCP framework (applied to students). Note the thick border, separating domains. 
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One final observation merits consideration: Figure 4 illustrates sparse attention among the 
pool of participants to purposes of communication. In fact, only four participants had a + listed in 
any dimension of proofiness within this domain. Put another way, six out of the ten participants 
did not attend at all to the purposes of communication domain. This is understandable given that 
the participants are at the ITP stage in their mathematics education. However, we hope that 
future study can inform ways to support students like these to do more than “show their work” 
nicely, and in doing so they may consider more deeply exactly what the “work” of proof is. 

Discussion and Conclusions 
We used job-based tasks to study individual students’ conceptions of proofiness. This 

allowed us to develop a framework for which attributes emerged in discussion of what makes 
something a proof. Compiling all these conceptions into one organized list of dimensions of 
proofiness is what we call the Personal Conceptions of Proofiness framework. Applying this to 
each of our participants creates a personalized proofiness profile, which allows us at a glance to 
notice patterns and trends in our data related to student beliefs about proofiness. For example, we 
were able to notice differences in our student participants regarding conceptions of generality in 
proof, and that there was consensus regarding students’ belief that the use of a proof framework / 
outline was relevant to determining whether something is a proof–that is, it increased the 
proofiness of a job. Given that all participants were enrolled in the same introduction to proof 
(ITP) section, this information provides a kind of profile of conceptions of proof that emerged 
from that class as a whole. 

In this connection, we could also envision using these same tools (our jobs-based tasks and 
the PCP) to compare the class profiles of two separate sections of the ITP course taught by 
different instructors with different instructional approaches. Documenting this could lead to 
richer understandings of what kinds of instructional approaches lead to conceptions of proof that 
are more/less aligned with normative mathematical perceptions of proofiness. 

Finally, we plan on using and further developing both our jobs-based tasks and the PCP and 
getting a better sense of the range of mathematicians’ PCP. This followup work should aid us in 
creating curricula aimed at, among other things, developing students’ PCP and simultaneously 
tying this research to currently available research on mathematicians’ conceptions of proofiness.  
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Inquiry-Based Calculus I: What is the impact on student performance?

Kayla Heacock Allyson Hallman-Thrasher Kelly Bubp
Ohio University Ohio University Frostburg State University

While active learning has been found to support student success, it has not yet emerged as the
dominant instructional approach in undergraduate mathematics (Stains et al., 2018). This study
focuses on student performance in undergraduate Calculus I where we compared the
performance of students in inquiry-based (IBL) Calculus I with students in non-IBL Calculus I
courses. Additionally, we examined the performance of first-year and upper-year students as well
as students who were or were not pursuing a math-intensive major. Students in IBL Calculus
performed on the final exam an average of nine percentage points higher than those enrolled in
non-IBL Calculus. Differences in performance between first-year students and upper-year
students and between students majoring in math-intensive fields and those in non-math-intensive
narrowed in the IBL classes. This study aims to add to the ever-growing body of research
showcasing the benefits of IBL in improving student course performance.

Keywords: inquiry-based learning, calculus, student performance

In 2016, the Conference Board of Mathematical Sciences (CBMS), a coalition of
nineteen professional undergraduate mathematics organizations, issued a compelling statement
urging “…institutions of higher education, mathematics departments, and the mathematics
faculty, public policy-makers, and funding agencies, to invest time and resources to ensure that
effective active learning is incorporated into post-secondary mathematics classrooms” (CBMS,
2016, p. 1). Research has consistently demonstrated the positive impact of active learning and
student-centered approaches on improved student course performance (e.g., Abdi, 2014; Bruder
& Prescott, 2013; Dunnigan & Harlow, 2021; Freeman et al., 2014), a deeper appreciation of
challenging content (Cilli-Turner, 2017), and increased persistence and confidence in doing
mathematics (Laursen et al., 2011).

Additionally, the attrition of students from STEM fields is a pressing concern,
particularly when high-achieving students who are often successful in other subject areas are
leaving STEM (Olson & Riordan, 2012). Troublingly, almost 90% of students cite poor
instruction as a factor in leaving STEM (Kung & Speer, 2020). Moreover, Calculus has been
noted as one of the largest gatekeepers and barriers for STEM majors, ultimately excluding
students who would otherwise be successful (Bressoud et al., 2013; Rasmussen & Ellis, 2013).
However, there are signs of improvement as active learning pedagogies have helped increase
student performance (Freeman et al., 2014) and even significantly decreased achievement gaps
for underrepresented students in STEM (Theobald et al., 2020).

Although mathematics departments have the support of organizations like the CBMS and
MAA (Abell et al., 2018; CBMS, 2016), and there are many positive findings regarding the
benefits of active learning in undergraduate STEM courses, active learning pedagogies are still
not the dominant instructional method in undergraduate STEM (Stains et al., 2018). Because of
active learning’s overwhelmingly favorable results in supporting STEM students (e.g., Bruder &
Prescot, 2013; Laursen et al., 2011), we studied the effects of inquiry-based learning (IBL), a
specific type of active learning, on student course performance in an undergraduate Calculus I
course. We contribute to the growing body of research on the effectiveness of IBL in improving
student course performance. Additionally, this study explores the benefits of IBL on course
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performance for various groups of students who often struggle in STEM, such as upper-level
students (Gregg-Jolly et al., 2016) and students majoring in fields that are not math-intensive
such as the life sciences (Kokkelenberg & Sinha, 2010; Rasmussen & Ellis, 2013). In particular,
we use final exam scores to measure differences in student performance between first-year
students and upper-year students as well as between students in math-intensive majors and
non-math-intensive majors. By shedding light on these aspects, we seek to contribute to the
existing body of research on IBL implementation and, in turn, encourage other instructors to
embrace active learning pedagogies. Specifically, this study seeks to answer the following
research questions: 

1. How does the final exam performance compare between students enrolled in
inquiry-based (IBL) Calculus I and those in non-inquiry-based (non-IBL) Calculus I? 

2. Do IBL and non-IBL final exam scores differ for first-year and upper-year students?
3. Do IBL and non-IBL final exam scores differ for students enrolled in math-intensive

majors and students enrolled in non-math-intensive majors?

Inquiry-Based Learning
Inquiry approaches to undergraduate education have been gaining momentum (Laursen &

Rasmussen, 2019) since the CBMS released their statement supporting active learning (CBMS,
2016). One such approach is IBL, where students work through a “carefully scaffolded sequence
of mathematical tasks” (Ernst et al., 2017, p. 570) to construct their mathematical knowledge
under the guidance of an instructor. In IBL, students actively communicate with their peers,
posing questions and testing conjectures, fostering a collaborative and interactive learning
environment. IBL differs from other active learning methods in three distinct ways. First,
strategically sequencing tasks allows topics to build on each other throughout the semester
instead of using a task unrelated to others. Second, IBL encourages students to actively reinvent
mathematics they knew before or create mathematical ideas that are new to them. Third, IBL
fosters critical reflection among students and instructors on their perceptions of mathematics and
what it means to know, teach, and do math (Laursen & Rasmussen, 2019).

Table 1. The four pillars of inquiry.

 Mathematical Space Social Space

Student
Behavior

Engage deeply with meaningful
tasks

Collaborate with classmates in
processing ideas

Instructor
Behavior

Inquire into student thinking and
reasoning

Foster equity, respect, and
responsibility

Adopted from Foley (n.d.).

The key tenets of IBL are built on the four pillars of inquiry (see Table 1), which consider
the behaviors and actions of students and instructors mathematically and socially (Laursen &
Rasmussen, 2019). In the mathematical space, students deeply engage with meaningful tasks and
work collaboratively to process intricate mathematical concepts. Concurrently, the instructor tries
to draw out and understand students’ thinking and reasoning, aiming to acknowledge each
individual’s unique perspective. In the social space, students collaborate with their peers,
exchanging mathematical ideas and collectively constructing their understanding of concepts,
leading to deeper mathematics learning. The instructor’s social role is to cultivate an inclusive
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learning environment where every student’s voice is respected, and students take responsibility
for their learning.

Methods
Context

In this study, we analyzed three consecutive semesters of implementation of IBL and
non-IBL Calculus I courses at a large, public, midwestern university. Instructors of the IBL and
non-IBL sections varied each semester, and instructors had the freedom to choose which type of
section they wanted to teach. Importantly, no explicit indication in the course offerings
differentiated the IBL and non-IBL sections. Therefore, students enrolling in these sections were
unaware of the pedagogical style beforehand. All sections shared the same learning objectives,
met for the same amount of time per week, had approximately the same number of enrolled
students, and used the same final exam, making them suitable for comparing the pedagogical
differences between IBL and non-IBL Calculus and their impact on student performance.

The non-IBL sections had a single instructor in class, while the IBL sections incorporated
graduate and undergraduate students as learning assistants (LAs) to support group work (see
Webb et al. 2014), aiming for an instructor-to-student ratio of 15:1. In the IBL sections, students
took an active role in their learning and spent most of their time working collaboratively in small
groups, engaging with Active Calculus tasks (Boelkins et al., 2018). Instructors and LAs
provided support by addressing difficulties, asking questions, checking comprehension,
encouraging discussion, and fostering independent problem-solving skills rather than providing
direct answers to student questions. On the other hand, the non-IBL sections primarily relied on
lecture-based instruction from the instructor. While some non-IBL sections included elements of
IBL Calculus, such as small group work, they did not emphasize students’ responsibility for
developing strategies, procedures, or conceptual understanding. Instead, instructors primarily
directly presented these procedures, strategies, and key concepts to students.

Data Collection & Analysis
The participants in this study were students enrolled in either non-IBL (n = 381) or IBL

Calculus I (n = 310). In both IBL and non-IBL Calculus sections, all students completed the
same standards-based final exam each semester, designed to align with specific course objectives
and assess conceptual and procedural understanding. While the exams varied slightly across
semesters, they were created by the same calculus coordinator, who adhered to the same exam
guidelines, making it suitable to compare final exam performance across semesters. We used
Welch’s t-test ( = .05), a robust test, to account for the unequal variances between theα
populations to compare exam scores for groups of students in both IBL and non-IBL sections.
We also used Cohen’s d (Cohen, 1988) effect sizes to help determine the practical significance of
the differences observed by certain groups. For these analyses, we followed Cohen’s
recommended benchmarks for small (d = .20), medium (d = .50), and large (d = .80) effects.
Finally, we ran these same tests on subgroups of students including first-year and upper-year
students, in addition to students pursuing math-intensive (MI) majors, those that required a
mathematics course beyond Calculus II, or non-math-intensive (NMI), majors where Calculus I
or Calculus II was the terminal mathematics course required at our institution.
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Results
Here, we present our findings organized by research question. First, we compare IBL and

non-IBL participants’ performance on a standards-based final exam. Then, we discuss how
participants’ scores differed based on whether they were first-year versus upper-year students or
students majoring in a math-intensive field versus a non-math-intensive field.

IBL vs. Non-IBL Final Exam Performance 
Overall, IBL students outperformed non-IBL students. As can be seen in Table 2, IBL

participants’ average final exam score was nearly a full letter grade higher than non-IBL
participants’ average final exam score. IBL participants’ final exam scores (M = 68.37, SD =
16.82) were significantly higher, (t(687.21) = 6.59, p < .001), than the scores of non-IBL
participants (M = 59.24, SD = 19.65). The effect size (Cohen’s d = 0.50) indicated a moderate
difference in the final exam performance of IBL vs. non-IBL participants. Thus, students in IBL
scored significantly and noticeably better, on average, than their peers in non-IBL, averaging
over 9 percentage points higher on the final exam.

Table 2. IBL vs. Non-IBL Participants’ Exam Performance.

IBL
Non-IBL

n
310
381

M
68.37
59.24

SD
16.82
19.65

t
6.59

p
<.001

Cohen’s d
0.50

First-Year vs. Upper-Year Final Exam Performance
The average final exam score of first-year students (M = 67.64, SD = 17.45) across both

IBL and non-IBL sections was significantly higher (t(679.373) = 5.80, p < .001) than the average
final exam score of students in their upper years of school (M = 59.49, SD = 19.29). The effect
size (Cohen’s d = 0.44) indicated a moderate difference in the final exam performance of
first-year and upper-year participants. As seen in Table 3, first-year participants’ final exam score
average was nearly eight percentage points higher than upper-year participants’ final exam
average.

Table 3. First-Year and Upper-Year Participants’ Exam Performance in IBL and Non-IBL
First-Years Upper-Years

IBL 71.58
(n=132)

65.42
(n=173)

Non-IBL 64.76
(n=181)

54.34
(n=199)

Total 67.64
(n=313)

59.49
(n=372)

We further examined the differences in exam scores of first-year and upper-year students
between the IBL and non-IBL sections. We found that upper-year IBL students’ average final
exam score (M = 65.42, SD = 16.99) was significantly higher (t(300.572) = 3.54, p < .001) than
upper-year non-IBL students’ average final exam score. The effect size (Cohen’s d = 0.60)
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showed a strong difference between the scores of upper-year students in IBL and non-IBL,
indicating IBL may have better served upper-year students than did non-IBL. Additionally,
first-year IBL students’ average final exam score (M = 71.58, SD = 15.83) was significantly
higher (t(300.572) = 3.54, p < .001) than first-year non-IBL students’ average final exam score
(M = 64.76, SD = 18.06). The effect size of (Cohen’s d = .40) indicated a moderate difference in
exam scores among first-year students, with those in IBL scoring about 7 percentage points
higher on the final exam than the first years in non-IBL.

Furthermore, we compared final exam scores between first-year and upper-year students
enrolled in the same type of section. The average final exam score for first-year non-IBL
students (M = 64.76, SD = 18.05) was significantly higher (t(377.983) = 5.38, p < .001) than the
average final exam score for upper-year non-IBL students (M = 54.34, SD = 19.72). The effect
size (Cohen’s d = 0.55) indicated a moderate difference in the final exam performance of
first-year and upper-year students in non-IBL. In the IBL sections, the average final exam score
for first-year students (M = 71.58, SD = 15.83) was significantly higher (t(291.193) = 3.26, p <
.001) than the average final exam score for upper-year students (M = 65.42, SD = 16.99). Thus,
in both IBL and non-IBL, first-year students were performing better than upper-year students.
However, the effect size (Cohen’s d = 0.37) was not as strong for IBL as it was for non-IBL
(Cohen’s d = 0.55), indicating a larger difference between first-year and upper-year students in
non-IBL. This is evident in the percentage point gap of nearly 6 percent between first-year and
upper-year students in IBL compared to over 10 percent between first-year and upper-year
students in non-IBL. Therefore, it seems that IBL may have helped lessen the gap between
first-year and upper-year students’ final exam performance.

Math-Intensive vs. Non-Math-Intensive Final Exam Performance 
Regardless of being in an IBL or non-IBL section, the average final exam score for MI

majors (M = 63.34, SD = 19.55) was not significantly higher (t(477.703) = 0.39 p = .697) than
the average final exam score for students in NMI majors (M = 62.74, SD = 18.50) (see Table 4).
The effect size (Cohen’s d = 0.03) indicated very little difference in the final exam performance
based on whether students were required to take a course beyond Calculus II for their major.
Thus, average exam scores did not differ based on the intensity of mathematics courses required
for a major.

Table 4. Math-Intensive and Non-Math-Intensive Participants’ Exam Performance in IBL and Non-IBL
Math-Intensive Non-Math-Intensive

IBL 67.18
(n = 104)

68.55
(n = 201)

Non-IBL 60.46
(n = 139)

57.77
(n = 235)

Total 63.34
(n = 243)

62.74
(n = 436)

We next examined the differences between MI and NMI majors’ exam scores for students
enrolled in IBL or non-IBL sections. Math-intensive IBL students’ average final exam score was
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(M = 67.18, SD = 18.54) significantly higher (t(299.453) = 2.72, p = .007) than the average final
exam score for MI non-IBL students (M = 60.46, SD = 19.85). The effect size (Cohen’s d = 0.35)
indicated a small to moderate difference between MI majors in IBL and non-IBL, with a
difference of about 7 percentage points on the final exam. Thus, the averages of MI majors in
IBL were noticeably higher than MI majors in non-IBL. Similarly, NMI IBL students’ average
final exam score (M = 68.55, SD = 15.78) was significantly higher (t(433.295) = 6.428, p < .001)
than the average final exam score for NMI non-IBL students (M = 57.77, SD = 19.22). The effect
size (Cohen’s d = 0.61) indicated a moderate and stronger effect than those students in MI fields.
NMI majors in IBL scored an average of about 11 points higher on the final exam than NMI
majors in non-IBL. These results indicate that IBL benefited both MI and NMI majors and it was
not the case that MI majors outperformed NMI majors or masked poor performance from NMI
majors.

Finally, we compared the exam scores of MI and NMI majors enrolled in courses with the
same pedagogical approach. Within a type of instruction, typically MI majors and NMI majors
performed about the same. The average final exam score for MI non-IBL students (M = 60.46,
SD = 19.85) was not significantly higher (t(282.356) = 1.28, p = .201) than the average final
exam score for NMI non-IBL students (M = 57.77, SD = 19.22). The effect size (Cohen’s d =
0.14) indicated a small difference in the final exam performance of non-IBL MI and NMI
participants. For IBL participants, the average final exam score for MI majors (M = 67.18, SD =
18.54) was not significantly lower (t(181.566) = – 0.64, p = .523) than the average final exam
score NMI IBL students (M = 67.18, SD = 18.54). The effect size (Cohen’s d = –0.08) indicated
little difference in the final exam performance between the majors. The NMI majors scored over
one percentage point higher than MI majors in IBL. In contrast, in non-IBL, NMI majors scored
nearly three percentage points lower on average than MI students.

Discussion
This study provided insights into the effects of IBL on student performance in

undergraduate Calculus I. We aimed to compare student performance on a common final exam
between the following populations of interest: 1) students in IBL Calculus and those in non-IBL
Calculus, 2) first-year and upper-year students, and 3) students in math-intensive majors and
students in non-math intensive majors. We specifically choose to examine comparisons between
year and major because both our own experience and research has shown that upper-years
(Gregg-Jolly et al., 2016) and those not in math-intensive fields (Kokkelenberg & Sinha, 2010;
Rasmussen & Ellis, 2013) struggle in calculus.

Overall, IBL participants outperformed non-IBL participants on the final exam, with a
difference of nine percentage points (see Table 2). Although this study used a smaller sample
than some prior studies (Freeman et al., 2014), the fact that the final exam was relatively
consistent across semesters, made by the same course coordinator, using the same guidelines,
and was administered to all Calculus I students in courses with similar student populations
helped us draw strong conclusions about student performance. The significant difference and
moderate effect size (Cohen’s d = 0.50) reinforces the idea that IBL can improve student
performance in Calculus I; students enrolled in IBL sections scored nearly a letter grade higher
than students enrolled in non-IBL on the same final exam.

Unsurprisingly, overall, first-year students performed significantly better than upper-year
students. However, the largest gap in final exam performance was between upper-year students
in IBL and upper-year students in non-IBL. Thus, IBL significantly benefited both first-year and
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upper-year students’ course performance. Moreover, we see these differences in performance
between first-year and upper-year students narrow in IBL. The IBL structure provided a learning
environment that focused on (1) deliberate practice, where students worked on scaffolded tasks
and received immediate feedback from course instructors, and (2) a culture of inclusion that
fostered respect among students and demonstrated confidence and interest in each student’s
individual success in calculus (Theobald et al., 2020). We claim this structure supported these
upper-year students who often struggle in STEM courses as they feel the pressure of making
academic and life decisions about their chosen career path (Gregg-Jolly et al., 2016) which
helped lessen differences in performance between first-year and upper-year students.

In terms of the intensity of mathematics required for students’ majors, we did not find a
significant performance difference between whether or not a student’s major required a
mathematics course beyond Calculus II. However, both students who required a math course
beyond Calculus II and students whose terminal math course was either Calculus I or Calculus II
benefited significantly from the IBL pedagogical approach. Effect sizes indicated the largest
difference to be between NMI majors in IBL and NMI majors in non-IBL with students in IBL
scoring nearly 11 percentage points higher on the final exam, which is critical as NMI majors are
those students who most frequently leave calculus (Rasmussen & Ellis, 2013). By incorporating
IBL, students enrolling in these majors succeeded at a greater rate, and hopefully, in turn,
persisted with their majors.

Conclusion and Limitations
Overall, our results indicate the potential for benefits of instruction informed by an IBL

approach. Two groups of students in particular benefited: upper-year students and students in
non-math-intensive majors, who are traditionally less successful in STEM (Gregg-Jolly et al.,
2016; Kokkelenberg & Sinha, 2010; Rasmussen & Ellis, 2013). In some ways, we anticipated
better performance of IBL students than non-IBL peers, as suggested by prior research (Freeman
et al., 2014; Laursen et al., 2011). However, further data analysis revealed subtle differences in
how those benefits played out. Notably, differences in performance between upper-year and
first-year students was significantly smaller in the IBL classes than non-IBL. Similarly, there
were no significant differences in performance for NMI majors and MI majors in IBL classes,
debunking the notion that an IBL approach is only for mathematically strong students. Thus, not
only was stronger course performance associated with the IBL approach, but an IBL approach
may have also better supported students who traditionally leave STEM fields (Gregg-Jolly et al.,
2016; Kokkelenberg & Sinha, 2010; Rasmussen & Ellis, 2013). By incorporating IBL, college
math instructors can create a learning environment that supports overall student success in
Calculus I and specific populations who traditionally struggle in STEM. Although we did not
have adequate sample sizes for analyses in this study, future research could examine the effects
of IBL on differences in performance of other traditionally underrepresented groups in STEM:
women, black and Latinx students, first-generation students, and students of low socioeconomic
status (Theobald et al., 2020).
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Groupwork as a Site for Servingness among Undergraduate Latin* Mathematics Students 
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Undergraduate mathematics classrooms are racialized spaces for Latin* students, even at 
Hispanic-Serving Institutions (HSIs) with educational missions of cultural affirmation. 
Instruction plays an important role in reinforcing and disrupting racial oppression in 
mathematics, which has significant implications for gateway courses (e.g.,  calculus) that impact 
STEM persistence. Groupwork is a widely-adopted practice in gateway mathematics courses 
with intentions to promote equitable access to content and participation; however, research has 
shown that groupwork can perpetuate inequitable experiences for historically marginalized 
groups in STEM, including Latin* students attending HSIs. The present study addresses these 
concerns of racial equity in undergraduate mathematics by exploring Latin* students’ 
groupwork experiences in gateway courses at a HSI. Our findings capture how groupwork 
facilitated or removed access to a sense of racially-affirming community, which was central in 
Latin* students’ visions of equitable support as mathematics learners at a HSI. 

Keywords: groupwork, Hispanic-Serving Institutions, Latin* students, race, servingness 

Purpose of the Study 
Latin*1 students experience undergraduate mathematics as a racialized space due to instances 

of isolation and underestimation of ability (Leyva, 2016; Oppland-Cordell, 2014). Such realities 
in gateway courses (e.g., calculus, introduction to proofs) can limit racial equity in educational 

opportunities, including negative effects on Latin* students’ mathematics identities as well as 
access to course content and STEM majors (Brown, 2018; Convertino et al., 2022). Instructional 

practices in gateway courses, such as groupwork, that are adopted to build equitable access to 
content and participation hold potential to disrupt racial oppression for Latin* learners (Laursen 

et al., 2014; Leyva et al., 2021; Fullilove & Treisman, 1990; Villa et al., 2023). However, 
research has shown that groupwork can perpetuate inequitable experiences for Latin* students 

and other minoritized groups (Johnson et al., 2020; MacArthur & Dobie, 2023; Oppland-Cordell, 
2014). Researchers have called for work that centers minoritized student populations’ groupwork 

experiences to better understand equitable practices (Ernest et al., 2019; Reinholz, 2018). 
Even at U.S. colleges and universities with the federal designation of being Hispanic-Serving 

Institutions (HSIs), mathematics education remains a racialized environment for Latin* students 
(Leyva et al., 2022; McGee, 2016). This reality reflects a broader structural concern at HSIs – 

namely, their lack of institutional visions for serving Latin* students to promote racially-
equitable outcomes and culturally-affirming experiences (Garcia, 2020). Research at HSIs that 

uncovers features of practices and policies for racial equity is a critical need (Vega et al., 2022). 
To guide such work, Garcia and colleagues (2019) conceptualized servingness as a framework 

that addresses various dimensions of culturally-enhancing opportunities for better serving Latin* 
students at HSIs, including outcomes, experiences, organizational structures, and external forces. 

 
1 The term Latin* is inclusive of gender-nonconforming identities in the Latin American diaspora. 
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Research on servingness in STEM has focused on student outcomes related to institutional 
structures, such as departmental policies (Burn et al., 2019) and support programs (Rodríguez 

Amaya et al., 2018). However, limited work has examined Latin* students’ experiences of 
STEM instructional practices. Such work is important in gateway mathematics courses that 

impact STEM retention (Bhattacharya et al., 2020; Byrne et al., 2023; Convertino et al., 2022). 
 The present study addresses the two areas of needed research in undergraduate mathematics 

identified above specific to equity issues in groupwork and servingness through instruction. We 
explored Latin* students’ groupwork experiences in gateway mathematics courses at a HSI to 

uncover features of peer collaboration that constrained and promoted identity-affirming learning 
opportunities. The study addresses two research questions: (i) How does groupwork in gateway 

courses reinforce and disrupt mathematics as a racialized experience for Latin* students? ; and 
(ii) In what ways does groupwork advance and limit opportunities for actualizing Latin* 

students’ conceptions of servingness as mathematics learners at a HSI? 

Methods 
Our study is from a larger project exploring influences of faculty professional development 

about culturally-responsive pedagogy in promoting equity for Latin* mathematics students at 

Sonoma State University – a medium-sized, public university recently designated as a HSI. The 
university’s undergraduate demographics are about 45% white, 35% Latin*, and 20% some other 

race. The larger project explores instructors' and Latin* students' perspectives on servingness in 
instruction across gateway courses for STEM majors, including calculus, statistics, introduction 

to proof, and developmental mathematics sequences. Our team has completed two years of 
recruitment and data collection since fall 2021. A total of 24 Latin* students were recruited in 

Year 1 to complete individual interviews via Zoom and journaling about instructional 
experiences. Fifteen students completed in-person group interviews at Sonoma State during Year 

2. Only one student participated in both years. The present report focuses on group interviews.  
We invited Latin* students in gateway courses to express interest as participants via email 

and class visits. We purposefully sampled from students who expressed interest to have multiple 
voices from different gateway courses as well as to ensure variation in ethnicity and gender. In 

fall 2022, a total of 31 Latin* students were invited to complete a 2-hour, semi-structured group 
interview that was audiotaped and transcribed. Fifteen students completed interviews, resulting 

in six conducted interviews (two for statistics, two for calculus, and two for other courses). The 
majority of our sample identifies as Mexican or Mexican-American, which is reflective of 

Sonoma State enrollment. Eleven of the 15 interviewed students are cisgender women. Students 
with nonbinary gender identities were invited to participate, but were unable to attend the 

interviews. To the best of our ability, we paired each participant with at least one student of the 
same gender to mitigate feeling tokenized and make space for variation in race-gender identities. 

One faculty and two Ph.D. student researchers from outside of Sonoma State conducted the 
interviews, each with 2-4 participants. To the extent possible, we matched interviewers and 

participants by race and gender as an effort to build comfort with discussing racism and other 
forms of oppression. A Latin* researcher was present for all interviews.  

Interviews consisted of three parts: (i) students’ views on servingness, (ii) responses to three 
prompts of instructional scenarios corresponding to themes of servingness from Year 1 data 

analysis (see Leyva et al, 2022 and McNeill et al., 2023), and (iii) responses to an excerpt from 
Sonoma State’s HSI Task Force Report. One scenario featuring instructional practices addressed 

groupwork: 
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My professor asks us to work in groups when solving a mathematics problem, either in class 
or as homework, followed by presenting our group solution to the class. I often feel 

concerned about collaborating with classmates in groups because I am unsure if I will have 
something meaningful to contribute and if my ideas will be welcomed or taken seriously. 

Groupwork can also be an isolating experience for me as a Latinx student in the mathematics 
classroom because students may choose to work with classmates of the same racial and 

gender identities. 
 

For the prompts and report excerpt, we asked about the extent to which Latin* students related as 
mathematics learners, instructional aspects (dis)affirming of their identities, and ways to improve 

support. Our analysis focused on the first and third interview parts and the groupwork scenario. 
A pair of researchers (one from Sonoma State and one from an outside university, at least 

one of whom was Latin*) coded each transcript. Sonoma State researchers coded de-identified 
versions to protect participant confidentiality. We independently and inductively coded to flag 

instructional and departmental features that students viewed as fostering or limiting servingness, 
including attention to Latin* students’ intersectional identities and cultural backgrounds. A coder 

from each pair synthesized codes for each transcript to identify themes discussed as a team. 
Our team approached the analysis with critical self-reflexivity. We have robust diversity 

among faculty and students across intersections of race (Asian/Filipinx, Black, Latin*, white) 
and gender (nonbinary, cisgender woman, cisgender man). Half of our team involved in the 

present analysis identifies as Latin*, and several members are first-generation college students. 
As individuals, we brought awareness of how our respective areas of privilege and oppression 

impact our study of servingness in mathematics at HSIs. We resisted deficit engagement with 
Latin* students’ perspectives and constantly recognized how undergraduate mathematics is 

situated in broader systems of social power. We bracketed our lived experiences when 
interviewing and coding to avoid distorting students’ perspectives, all while interrogating 

structures that limit servingness in groupwork and other mathematical contexts at Sonoma State. 
Our findings avoid essentializing portrayals of Latin* experiences by looking across three cases 

of groupwork for first-generation females from low-income, Mexican families enrolled in 
different gateway courses2.  

Findings 
Our analysis uncovered how groupwork in gateway mathematics courses can be an 

opportunity to advance servingness, particularly in terms of Latin* students building a racially-
affirming community. Participants shared different reasons for why they valued groupwork, such 

as accountability to complete assignments, decreased vulnerability of asking questions in class, 
and meeting new people. Appreciation for groupwork aligned with values of community that 

were central across participants’ views of servingness at Sonoma State. Several students reported 
feeling served through Sonoma State’s student support services (e.g., Educational Opportunity 

Program office), where they built communities that nurtured their mathematical success. Latin* 
students, however, also described a lack of race-conscious support in mathematics, including 

groupwork as an oppressive experience that limited access to content and participation as well as 
negatively impacted their mathematics identities. Despite an overall lack of servingness in 

mathematics, participants addressed possibilities through instruction that can disrupt groupwork 
as an oppressive context and promote a sense of community affirming of their Latin* identities.  

 
2 The findings do not specify the gateway mathematics course for each participant to protect confidentiality. 
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We now present findings from analyzing perspectives from three participants (Kayla, Indrid, 
and Oliva), which offer illustrative cases of how access to community in groupwork can impact 

servingness. Kayla is a third-year Mexican-American female3 studying humanities. Indrid is in 
her first year and Oliva in her second year. Both identify as Mexican females in STEM majors. 

The first two sections of the findings address our first research question by detailing racial 
(in)equity in Lain* students’ groupwork experiences. First, we present how social forces, such as 

stereotypes and structural inequalities, shaped groupwork as a racialized experience. Next, we 
show how groupwork afforded or disrupted Latin* students’ access to a racially-affirming peer 

community. The final section of the findings addresses how groupwork fell short or advanced 
each Latin* participant’s perception of servingness, answering the second research question.  

 “If You’re Latina… They Don’t Take You Seriously If You’re in a Group Project” 
All three participants addressed how stereotypes of mathematical ability and structural 

inequities of access contributed to experiences of isolation, with groups often segregated by race 
and gender. Kayla felt white peers were assumed to be smarter and chosen more often as 

partners, “When students get to choose our own groups, sometimes for Latinx students, we 
would feel left out… It’s hard to find a group because everybody pairs off with the smart 

people… because they’re white.” With strong representation of white students in Kayla’s class, 
she often had white groupmates who seemed to undermine her ability and limit her contributions. 

 
A lot of Caucasian people, I try to put my inputs, try my best, but when I give the answers, 

they always look at me like it’s wrong. Essentially, they do all the work and I just put my 
name on it. I still feel I’m not learning anything because then if I ask, ‘Oh, how do you do 

this?’ They’re like, ‘Well, it’s simple. Just look at the notes.’ I could look at the notes all I 
want. It’s gibberish. Essentially, it’s making me feel, again, like I don’t know it. 

  
Racialized assumptions of who is mathematically able made groupwork exclusionary for Kayla, 

restricting her access to learning opportunities and a positive sense of mathematical competence.  
Oliva saw herself contributing to racialized segregation during groupwork because she was 

concerned that collaborating with classmates who did not share her Latinx or Mexican identity 
could limit her mathematical contributions, “I understand the self-isolation because I still self-

isolate… If it were [a] choose-your-own kind of group, I would one hundred percent choose 
people that look like me, so I can feel related to and I can put forth what I feel like I need to put 

forth.” Her intentional selection of Latinx or Mexican groupmates allowed her to connect with 
peers who understood her and to protect herself from racialized judgment. Indrid similarly shared 

how being stereotyped as a Mexican female shaped groupwork as a racialized-gendered space. 
When asked if being in a mathematics class impacted how students select collaborators, she said, 

“You unconsciously go towards people that look like you… Yeah, because… stereotypes. If 
you’re Latina… ‘Girls are not good at math. Latina, Hispanic girls are just raised to end up being 

housewives… [or] pregnant’... They don’t take you seriously… in a group project.”  Groupwork 
was a racialized-gendered space where stereotypes disallowed productive peer collaboration. 

Indrid recalled an instance of racial stigma when a white female groupmate proposed working on 
textbook problems independently followed by assuming that she could afford to buy the book 

and not trusting her to borrow it. Being low-income also stigmatized Indrid during groupwork. 

 
3 We used language consistent with how students described their identities, including their interchangeable use of 
terms for their race (e.g., Latinx, Hispanic, Mexican) and gender (e.g., female, girl, woman) during the interview.   
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 “Have a Community That Understands the Math and… Without Feeling Ashamed” 
Participants viewed racialized dynamics in groupwork limiting opportunities to find and 

build community that supported their Latin* identities. We now show how exclusion in 
groupwork was reinforced or disrupted for Kayla and Oliva, impacting access to community. 

As a white-passing Mexican-American female, Kayla grappled with tensions of concealing 
her Latin* pride (e.g., not speaking Spanish) to contribute more in groupwork, “[A white person] 

hears me speaking Spanish, they’re like, ‘Oh, you’re not white?’… I also grew up knowing what 
I can and cannot do [as a Latin* person], and sometimes the white-passing helps with the things 

I’m able to do… They treat you differently once they find out [you’re Hispanic].”  In addition to 
such linguistic racism in groupwork, she saw white peers’ backgrounds with “parents having 

higher education” as reinforcing inequities of available support. As a first-generation college 
student, Kayla saw her family limited in offering support for her in mathematics because her 

parents did not attend college, “I can’t ask him [Kayla’s father] for help. He never finished high 
school… They [Kayla’s parents] don’t know the level of math that I’m trying to learn.” Racial 

inequities in terms of families’ educational backgrounds and access to peer support were left 
unchallenged in Kayla’s mathematics classroom where she lacked a community of support, “It 

would be nice to have a community that understands the math and I can go to them without 
feeling ashamed.” Even with groupwork, she was on her own to succeed mathematically. 

In contrast to Kayla being denied community in groupwork, Oliva shared a recent classroom 
moment allowing her to overcome fears of racialized judgment that isolated her and to 

collaborate with a racially-diverse group who became close friends. Her instructors opened the 
course with a discussion about recognizing social diversity and prioritizing mutual respect. 

  
First day of instruction… they’re [instructors] like, ‘We’re going to have a conversation… 

We respect everybody.’ That changed the aspect of the class completely… We were able to 
sit down, have a conversation, and be like, ‘Okay, I am this, but I am also this. 

Intersectionality is a real thing.’… That’s probably why I feel really strongly about that class. 
I was able to talk to people in other races and genders…and still be able to collaborate. 

  
Oliva perceived this practice of encouraging students to be identity-conscious and respect each 

other as establishing a “sense of community,” which facilitated positive groupwork experiences 
with classmates across social differences and thus disrupted racialized segregation in groupwork.     

“There Was Just Much More Communication… That Opened Up A Lot of Doors For Me” 
Latin* students’ groupwork experiences that lacked a racially-affirming sense of community 

constrained opportunities to experience servingness as mathematics learners. Kayla viewed 
having a community that understood her struggles and motivated her pursuits of academic 

success as central to being served as a first-generation Hispanic female at Sonoma State. She saw 
being in a multicultural sorority providing a racially-affirming community missing in 

mathematics. “The sorority that I am rushing, a lot of them [are] first-gens, low-income… which 
makes me feel more [of a sense of] belonging… I’ll have somebody that have gone through the 

same struggles as I have.” The racialized space of groupwork, where Kayla navigated white 
peers’ judgment for her questions and marginalization as a contributor, left her without a 

community where she felt seen and supported like in the sorority space. Kayla saw hiring 
Hispanic mathematics tutors fluent in Spanish as one way to increase Latin* students’ access to 

such a peer community, “A lot of the tutors… are students and not many of them are Hispanic, 
especially in math… I tend to use Spanish to get my points across and sometimes we can’t really 
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do that with someone that doesn’t speak Spanish.” Mathematics groupwork free of racialized 
judgment and an openness to speaking in Spanish would promote Kayla’s vision of servingness. 

Indrid’s oppressive experience in groupwork restricted access to a community where she felt 
seen for her financial struggles, which played a major role in her view of being served as a low-

income Mexican college student, “Honestly, it’s [servingness is] just more financial help… 
Luckily for me, I got FAFSA. That helped with my tuition… groceries, just basic needs. And 

then housing is a struggle sometimes.” Racialized tensions with white groupmates, such as the 
female peer who denied loaning her a textbook, reinforced structural inequities that limited 

Indrid’s access to learning opportunities and therefore servingness in mathematics. When asked 
the extent to which Sonoma State serves Latin* students in mathematics, she critiqued the lack of 

faculty diversity, which she saw impacting comfort in seeking support unavailable in groupwork. 
  

In the group, I was always the social one, so I had to email the teacher…  We should have a 
more diverse faculty… If we had a Latino or Latina math teacher… that would be good too 

because Hispanic, Latino students will most likely be more comfortable talking to them 
and reach[ing] out for help than a white teacher that they are most likely intimidated by. 

  
Indrid viewed having Latin* professors for mathematics increasing access to support for 

overcoming struggles in groupwork. Presence of Latin* mathematics faculty would enhance 
servingness for Indrid by expanding her community of racially-affirming support at Sonoma 

State, which can mitigate oppression due to stereotypes and structural inequities in groupwork. 
Unlike Kayla’s and Indrid’s groupwork experiences that departed from their conceptions of 

servingness, classroom norms of mutual respect and social awareness that guided groupwork in 
Oliva’s classroom aligned with her views of being served as a Mexican female at Sonoma State. 

She perceived open dialogue in her mathematics classroom as resonating with her Mexican 
family’s value for communication, which she described as important to her success, “There was 

just much more communication [in the class], which I personally need, especially… coming 
from the family that’s mostly just speaking to each other on how to get points across. I feel like, 

at least in that class, I thrived.” With the classroom experience of “having that conversation” 
about mutual respect being likened to communication practices in her family, this instructional 

practice advanced servingness for her because it established a collaborative space attuned with 
her values in her family and culture as a Hispanic mathematics learner. Oliva perceived Sonoma 

State serving her as a Mexican female by providing transformative educational opportunities that 
go beyond those that her family can offer and will inspire future generations. 

  
I have the opportunity to continue in education… That’s something I don’t come from. My 

family, definitely not… It’s what I’ve been told, ‘This is what you can do to better yourself 
and everyone that comes before and after you.’ So, just the fact that I’m given the 

opportunity to be able to do that… I’m truly grateful... When you say [Sonoma State] serves 
me… that’s what it is… A home away from home, but with more opportunities… It changes 

you as a person… I’m also first-gen, low-income, have younger siblings and other people at 
home I gotta impress, pave the way, [and] get there so they can get there with a little more 

support. But it just makes you a stronger person at the end of the day. 
  

Personal transformation through education in Oliva’s perspective on servingness is evident in the 
long-term positive impact of open dialogue in her mathematics classroom. She shared, “That [the 
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value of communication in class] opened up a lot of doors for me… That class has led me to 
where I’m at right now. I can talk to the professor, not having to be [about] math… That little 

seed right there has really been pushing me.” Such open communication, which established 
classroom norms of respect, nurtured Oliva’s personal growth as a Mexican female. She 

overcame fears of racialized judgment in peer collaboration and actively sought faculty support, 
both academic and personal, that motivated her persistence. Thus, the disruption of racial 

exclusion in groupwork contributed to transformative learning opportunities that Oliva sought in 
being served at Sonoma State and provided her with a community of support in mathematics. 

Discussion 
The scholarly significance of our findings is threefold. First, our findings add knowledge to 

address the lack of clarity about groupwork approaches for equity (Hwang et al., 2022; Reinholz, 
2018). Our analysis contributes to research on racially-equitable collaborative learning in 

mathematics (e.g., Bhattacharya et al., 2020; MacArthur & Dobie, 2023) by elucidating how 
groupwork expanded and constrained identity-affirming support for Latin* students. Second, the 

study deepens understandings of equity-oriented instruction in gateway mathematics courses 
through its focus on a single racially-minoritized group (Latin* students) and a single type of 

classroom practice (groupwork). By centering three Latin* first-generation college women in the 
findings, we also shed light on intersectional complexities on how gender overlapped with race, 

language, and social class to impact equity in groupwork. Third, our study addresses limited 
inquiry on instructional experiences for servingness in STEM. The findings provide a novel view 

of how HSI structures that foster community can inform equitable groupwork in mathematics. 
Our analysis raises implications for research. Future studies can examine perspectives from 

mathematics faculty at HSIs on designing groupwork opportunities that promote equity for 
Latin* students. Exploring how these views converge and diverge from students’ conceptions of 

servingness can orient faculty learning in translating HSI missions of culturally-affirming 
support into instructional practices. Additional research on student experiences of groupwork and 

other classroom practices across various HSI contexts with different Latin* populations can 
inform more robust understandings of servingness in undergraduate mathematics education. 

In terms of implications for practice, Latin* students’ isolation in racially-segregated groups 
as well as limited access to faculty and peer support underscore how faculty play a key role in 

structuring groupwork to mitigate oppression (e.g., Oliva's instructors setting norms for socially-
conscious collaboration). Faculty can make informed decisions about grouping arrangements by 

learning about students’ backgrounds and collaboration histories using a short survey at the 
beginning of the semester. In addition, faculty can structure groupwork tasks with rotating roles 

and frequent check-ins to ensure Latin* students are collaborating well with peers, engaging 
deeply with the mathematical content, and receiving adequate support. Latin* participants’ 

references to campus support structures at Sonoma State where they experienced servingness 
(e.g., Educational Opportunity Program office, multicultural sorority) raise implications for 

mathematics departments about building partnerships with such offices and units. Mathematics 
faculty and student support leaders can share their respective struggles and successes in 

providing Latin* students with a racially-affirming community. Such exchanges can guide 
faculty to structure instruction, including groupwork, that enhances servingness in mathematics.   
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In mathematics, counter narratives can be used to fight the dominant narrative of who is good at 
mathematics and who can succeed in mathematics. Eight mathematicians were recruited to co-
author a larger NSF project (RAMP). In part, they were asked to create author stories for an 
undergraduate audience. In this article, we use narrative analysis to present five polarities 
identified in the author stories. We present various quotations from the mathematicians’ author 
stories to highlight their experiences with home and school life, view of what mathematics is, 
experiences in growth in mathematics, with collaboration, and their feelings of community in 
mathematics. The telling of these experiences contributes towards rehumanizing mathematics 
and rewriting the narrative of who is good at and who can succeed in mathematics. 

Keywords: Counter narratives, narrative analysis, mathematicians 

Stories provide a particularly powerful way to make sense of our lives and provide structure 
to society. Stories may be personal narratives, the narratives we tell ourselves about our lived 
experiences, as well as dominant (master) narratives that are culturally shared. In the United 
States, there are prevalent deficit narratives in relation to students of color (e.g., Adiredja, 2019; 
Berry III et al., 2011) and women (e.g., Leyva, 2017) and their ability to do mathematics. As 
elaborated by Berry III et al.,  

Master narratives embody and dictate expectations about how things work and how 
stories are framed. Often, master narratives present contrasts between groups of people 
by advantaging dominant groups and disadvantaging members of marginal groups such 
as women and people of color (p. 11).   

An important means of challenging dominant (or master) narratives are counter stories or 
counter narratives (e.g., Solórzano, D. G. & Yosso, 2002) which run counter to status quo and 
dominant narratives. Many scholars have presented such narratives as a way to disrupt prominent 
stories of who is good at math and who can succeed at math (e.g., Berry III et al., 2011; Harris et 
al. 2011; Langer-Osuna et al., 2016; Leyva, 2016; McGee, 2009). These narratives are often 
crafted by researchers or those marginalized and brought into spaces to perturb and make 
change. 

Narratives themselves are constructed with a certain audience in mind. Kaasila (2007b) 
explains, “when we are telling a narrative (or narratives), we often take our audience into 
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consideration and adapt what we say and how we say it accordingly” (p. 206). In this project, we 
examine a set of narratives that were crafted explicitly for students to read in undergraduate 
proof courses. Eight mathematicians whose stories challenge the dominant narratives of who can 
succeed in mathematics, provided two-page biographies for students.  

In this proposal, we share an analysis of these narratives, identifying rhetoric and plots these 
mathematicians shared. For the scope of this paper, we present findings from the portion of our 
analysis focused on “key rhetoric” (Kaasila, 2007a) indicating opposing polarities internal to the 
author’s stories. This analysis is led by the following research question:  

What opposing dimensions are salient in mathematicians’ career counter narratives as told 
for a student audience? 

Narrative and Mathematical Identity  
A narrative approach to identity emphasizes that identity is created by the stories we tell 

about our lives. Narratives are stories that include events that are “attach[ed] to a character” 
(Kaasila, 2007b, p. 206) and are organized into plots. Identity is then a “subjective, constructed, 
and evolving story of how one came to be the person one currently is” (McLean & Syed, p. 320). 
Furthermore, the author of a narrative imparts coherence to the story. Kaasila (2007a) identifies, 
“[k]ey rhetoric [a]s a coherence system through which different life events are connected and 
their relation is explained by dividing the narrated world into different dimensions of reality” (p. 
377). Kaasila (2007b) further asserts that key rhetoric often points to expectations, whether met 
or subverted, adapting Tennen’s (1979) notion that expectations determine how narratives are 
shared. That is, the author of a narrative may be framing their story as adhering to or subverting 
their own or societal expectations. 

Relatedly, many scholars argue for distinctions between master (or dominant) narratives and 
alternative (or counter) narratives. McLean and Syed (2016) elaborated that, “Master narratives 
are culturally shared stories that tell us about a given culture and provide guidance for how to be 
a ‘good’ member of a culture; they are a part of the structure of society.” These narratives may 
be unproblematic if one’s life easily fits into the dominant narratives. However, one’s personal 
narrative may involve adopting an alternative narrative that differs or resists the dominant 
narrative. We take on McLean and Syed’s stance implying there is negotiation between self and 
society and internalization of dominant narratives. We would anticipate that subversion of 
expectations may be reflected in personal narratives when alternative narratives are provided of 
who is good at math and what it means to do mathematics.  

Mathematics identity becomes salient when one tells stories of their mathematics experiences 
including “stories about one’s relationship to mathematics, its learning and teaching. This means 
that a person’s mathematical identity is also context bound and always under construction” 
(Kaasila, 2007b, p. 206). Martin (2007) suggests that mathematics identity is the “dispositions 
and deeply held beliefs that individuals develop about their ability to participate and perform 
effectively in mathematical contexts and to use mathematics to change the conditions of their 
lives” (p. 15). From a narrative perspective, this means considering how one's stories and 
experiences with mathematics are constructed within their institutions, communities, and in 
relationship to sociohistorical dominant narratives (Larnell, 2016). That is, mathematics identity 
is reflected in the stories told of how one arrived at their current dispositions and beliefs, and 
how expectations were subverted or maintained in this process.  
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Methods 
Eight mathematicians joined the larger RAMP project team to develop curriculum materials 

for introduction to proof. The mathematicians were selected based on their reputation in the field 
and via snowball sampling (Parker et al., 2019). That is, mathematicians recommended 
colleagues and friends who are active in the field and dedicated to supporting a more diverse and 
inclusive mathematics community. Amongst the group of eight mathematicians, two identify as 
Black/African American men, one identifies a Black woman, one a Black and Chinese woman, 
one as a Latinx woman, one a Latino man, and one a woman and Native Pacific Islander.  

The eight participating mathematicians were asked to exhibit mathematical results (without 
restriction on the origin of statements) through proof writing based on their own intended 
goodwill and mathematical expertise. The authors refined their work through team-led proof 
sculpting--a process to reduce the noise of mathematical exclusivity in favor of amplifying 
reception by vetting choices of transmission based on a form of accessible reasoning. This type 
of collective engagement recasts expertise. The resulting pieces run counter to the style prevalent 
in research mathematics: Concluding the veracity of a mathematical statement does not have to 
cost the reader (nor the author) their humanity as an act to pay homage to mathematical elitism. 
These costs and refutations were mentioned amongst other themes in author stories that were 
requested to accompany the proofs. A set of guiding (but not required) questions were provided 
to help shape the author stories which had an overarching aim of sharing how the 
mathematicians arrived at their current career. These included prompts about their life before 
becoming a mathematician, finding meaning and joy in math, struggles and overcoming 
struggles, and what it means to do mathematics. Each narrative was roughly two pages and 
designed to be part of the curriculum provided for students. 

We took an “analysis of narratives” approach (Polkinghorne, 1995) analyzing the narratives 
for themes that hold across them. We focused on mathematical identity markers, mathematical 
socialization markers, key rhetoric reflecting polarities, and plot features. The plot features and 
key rhetoric were adapted from Kaasila (2007a) where plots were considered in terms of 
outcomes, key events, and important people, and key rhetoric to identify how incoherent or 
differing dimensions of life stories are connected. All instances of contrasting language such as 
“but”, “however”, or explicit language such as “contradiction” or “surprise” were identified in 
order to identify and analyze the “polarities” described in the mathematician stories. To focus on 
mathematical identity, we adapted Larnell’s (2016) coding scheme marking instances that 
reflected, “importance of mathematics”, “motivation”, “strategies”, “opportunities”, 
“constraints”, and “capacity to perform.” For socialization, we used Larnell’s categories: 
“institutional”, “sociohistorical”, “community-home.” We note that it is in the sociohistorical 
category we are most likely to observe dominant narratives endorsed or contradicted in the 
mathematician stories. Each story was read and analyzed independently by two members of the 
team. In the next section, we report on some of the polarities that were salient in relation to 
mathematical identity and socialization as indicated by key rhetoric in the narratives. 

Results 
For the scope of these results, we share a series of polarities identified and some quotes that 

illustrate the ways they were discussed in the narrative collection.   

Polarity: Home and School Life 
An early polarity observed through the narratives was a divide between home and school. 

This polarity difference was not always experienced the same, but the contrast between the two 
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environments was salient. One mathematician shared that mathematics was an escape, 
elaborating, “In a whirlwind of instability, I could always rely on math to be a subject where I 
could solve problems and feel good about the world.”  

However, more commonly, school was described as constraining with one mathematician 
explaining: 

As a child and teenager, I was diligent and shy at school, while being loud, goofy, and 
creative at home. Most of my weekends were spent gathering with our large extended 
family, celebrating our Indian heritage. I remember these times fondly. I felt, and still 
feel, at home with my cousins, in sharp contrast to how out of place I felt at school. 

Similarly, another mathematician contrasted school as causing an “academic conflict” that 
became problematic as the rigidity of the “high school schedule” contracted with their earlier 
experiences both with the philosophy of Montessori and also the “freedom of 
viewing/connecting dots outside of the classroom.” That is, the school setting was presented as a 
constraint (in various ways) in their mathematics story. 

Finally, we note another contrast that emerged in some of the stories: the math opportunities 
outside of school versus inside whether those be competitions, or camps, or in the case of one 
mathematician’s games,  

Whether it was finding the logic to solve a puzzle or simply counting dominoes to record 
the score of a game, I really enjoyed it all. In school, the story was a little different. I 
always performed well in math classes but found them repetitive and not very interesting.  

It seemed frequently outside experiences of math were salient to supporting interest.  

Polarity: Mathematics as Creativity and Computation/Speed 
A related polarity can be found in mathematicians’ descriptions of what mathematics is. As 

seen in that last quote, school mathematics was often linked to its “repetitive” and closed nature. 
It was common for stories to contrast earlier understandings of what mathematics is, such as one 
mathematician noting, “I thought all the interesting questions had been answered and that being a 
professor meant knowing all the answers.” To follow up this statement with “Spoiler alert: none 
of that previous sentence is true.” There were often key events that led to this shift such as 
research opportunities.  

Another relevant storyline is the way that the dominant narrative around mathematics, that 
what it means to be good at mathematics, is somehow tied to having absolute knowledge or 
speed. For example, one mathematician shared an experience learning a new topic that interested 
one of their students: 

I would imagine a few years back, I would be nervous about understanding a topic with 
which I was unfamiliar. I realized this was tied to my ego. I didn’t want to look like I 
didn’t know something about mathematics. This is a contradiction, it seems. If the 
mathematics I love is about ideas, then why is my ego involved? Why should I care about 
who did the problem fastest?  

This quote describes two contrasts: the contrast between where the mathematician is now versus 
“a few years back” and the contrast between “speed” and “ego” versus “love” of mathematics.  

Finally, we note one other way this polarity came out. One mathematician explained, “I try to 
convey that everyone (not only white men) can do math, that math is more than computation and 
arithmetic, and that math can be fun.” Here the contrast is explained in the context of making 
efforts to change a dominant narrative. It would be remiss not to note that nearly every author 
story did not conclude with them doing their mathematics work, but ways that they have 
integrated changing narratives for others into their lives. 
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Polarity: Mathematical Breakthroughs and Struggles.  

Another polarity is part of what Larnell (2016) calls the strategies of mathematics. Related to 
ideas that math should be fast, with answers known immediately and quickly recited, is the 
inherent tension of breakthroughs and struggles. Across the stories, the mathematicians 
contrasted these elements with statements like: “To me, mathematics is messy and that is the 
beauty of it, because it allows me to be messy without judgment,” “I became more comfortable 
with the fact that mathematics is very hard and that challenges are ok,” and,  

The most glorious moments are always the breakthroughs of a new idea, or an epiphany. 
It’s an indescribable moment that I hope we all get a chance to feel. One moment, the 
struggle is real, frustrating and long. I can feel like I am getting nowhere. There are times 
where it feels like I have wasted time. But when the moment of clarity arrives, it’s worth 
it.   

If we consider key rhetoric as bringing coherence to stories, we can see the ways that messiness, 
challenge, and struggle are all coherent parts of the beauty and joy of doing mathematics. While 
the polarities are in contrast, they are not in tension in the work of the mathematicians in their 
reflections on the present day.  

Polarity: Isolation and Collaboration/People 
Another dominant narrative frequently subverted in the stories was the idea that mathematics 

is not a human endeavor and that mathematical activity is meant to be done in isolation. This 
isolation was often highlighted as a part of their mathematical journey that contrasted with the 
joy they later felt. For example, mathematicians explained the challenges of feeling alone in 
school or the challenges related to research in their careers with one mathematician noting, “I 
found it very difficult to keep my research going since, at the time, I did not have collaborators.”  

Many of the mathematicians contrasted this isolation with feelings of joy in connecting with 
others through mathematics. For example, the mathematician above described a key event where 
they had given a talk and invited collaboration which led to: 

In the years that followed, we got together and had the best time cranking out some super 
neat results on posets and order dimension. It still brings tears of joy to my eyes when I 
think about those days in the basement of the math department at [blinded] with these 
phenomenal women because it was the first time I truly felt like an honest-to-goodness 
mathematician, working on some very cool math with some very cool people.  

Others described the joy in collaboration or made similar comments about the integration of 
people and mathematics. One mathematician noted, “I came to realize that I find the most 
meaning in mathematics through human connection and interaction” or another reflected, “So 
what brought me back to this world of academic and research mathematics? People.”  

We note that the role of people went further than just people to do mathematics with, but also 
included the many role models, family members, and community in the lives of the authors. As 
one mathematician noted, “Who are the people who support us unconditionally? Surrounding 
yourself with these people can create a life more expansive and fulfilling than you can possibly 
imagine.”  

 
Polarity: Outlier and Belonging 

Finally, we note one last polarity related to the human element: belonging or being an outlier. 
This polarity is intimately tied to representation and the people around you. The mathematics 
discipline is notoriously white and male. When taking classes, mathematicians mentioned ideas 
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like, “this love for combinatorics did not remedy how alone and isolated I often felt not knowing 
other people like me in mathematics,” “I am often the odd one out racially and/or culturally 
wherever I go,” and,  

On the other hand, I often felt out of place in many of my classes at [blinded university] 
as a woman of color. I remember constant signaling from my peers and other professors 
that I didn’t belong in math. I found refuge from these experiences through my hobbies 
and social life, and especially through my participation in a competitive collegiate dance.  

One mathematician reflected that they still feel a degree of imposter syndrome despite their CV: 
You might never guess that is how I feel when you look at my CV and all of the math I 
have done and learned along my mathematical journey. Yet, that feeling lingers. Now 
that I am older, I understand that some of that feeling is often triggered because I did not 
see myself reflected in those who I considered mathematicians: my teachers and 
professors. The fact remains that being Latinx and a woman means I am often one of the 
few in a room who is not part of the dominant group in mathematics: male and white. 

This feeling of “not seeing” oneself amongst others in mathematics was quite salient. Key events 
in the authors’ stories would allude to seeing themselves represented or collaborating with others 
that are not part of the dominant group. 

For example, one mathematician noted the impact of seeing a Black, male professor 
explaining a critical moment,  

A tall large Black man entered the room. He took his suit jacket off and said: “I am 
[name blinded]. This is analysis.” He began to detail the course and what it was about. It 
was at this moment where I whispered to myself: “That is who I want to be.” 
Across the stories, mathematicians talked of building community and not just in the sense of 

collaboration above but building community amongst others like themselves. With one 
mathematician explaining, 

I worked to find a community of mathematicians where I do feel like I belong. The 
mathematicians I am closest to are not only my colleagues, but also my friends. We connect 
on shared values and views and work together to promote equity and justice in the 
mathematical community.  

Further, as discussed above, this work was also done to open doors for others coming up, 
students, young scholars, and as one mathematician noted about the stereotype of who does 
math, “By dispelling this stereotype, we create a more inclusive culture for mathematics.  

Discussion 
An overarching goal of stories and narratives is to center the humanity of both the individuals 

and their communities. Humanizing mathematics has been a part of the endeavor to improve 
education of mathematics in service of justice and inclusion (e.g., Berry III, 2021; Tan et al., 
2022; Yeh & Otis, 2019). If we want students to see themselves as doers of mathematics, it is 
necessary that we problematize popular narratives of mathematics in terms of both who is 
capable of doing mathematics and what mathematics is. Some of this work has been championed 
taking a humanistic approach to mathematics. In summarizing Hersch’s contributions, Pais 
(2018) explained, “the purpose is not (only) to study mathematics in itself, but as an activity, 
developed by humans in a variety of different settings” (pp. 235-236). This approach stands in 
stark contrast to the materials often provided in proof-based classes. Davis and Hersh (1981) 
elaborate that proofs often obfuscate the humans involved with an “ideal” mathematician writing 
to “conceal any sign the author or the reader is a human being. It gives the impression that, from 
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the stated definitions, the desired results follow infallibly by the purely mechanical procedure” 
(p. 36).  

If we consider the narratives provided, we can identify many ways that mathematics, as 
engaged in by mathematicians, is a fully human experience. People and communities shaped the 
stories told. These narratives eschew not only dominant narratives that only certain types of 
people should and can succeed at mathematics, but also what mathematical success entails. The 
stories elaborated on how school mathematics geared towards speed and computation is not 
necessarily the mathematics of joy and discovery that supported and inspired the authors’ 
journeys. The mathematicians were agents in the stories, and the proofs they produce are not 
authorless. As we consider ways to humanize mathematics for students, author stories can 
provide a powerful means to challenge the status quo. While it is unlikely that the norms of how 
proofs are written will shift any time soon, we can certainly take strides in pulling back the 
curtain and sharing not just the final product, but the process and the people involved. 
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Active learning in STEM classrooms has been shown to increase student outcomes in 
multiple ways. We present here a discussion of data analysis supporting these types of 
conclusions using data from a large-scale randomized study of the implementation of an 
active learning-based curriculum for Calculus I that collected 1019 observations of student 
outcomes over three semesters. We compare fixed-effects models including cluster levels of 
student learning outcomes to mixed-effects models with random cluster level effects. We 
discuss the differences between the models and the resulting effect sizes suggested by the 
different factors included in the models. 

Keywords: calculus, regression model, fixed effects, mixed effects 

Introduction 
Evidence of the effectiveness of active learning (AL) classrooms in STEM includes increases 

in student achievement, attitudes, and persistence in college (Duran et al., 2022; Ellis et al., 
2016; Freeman et al., 2014; Kramer, Fuller, Watson, Castillo, Oliva, et al., 2023). Most of these 
studies have measured this effectiveness by conducting non-randomized experiments and 
focused on evidence gathered from observational studies or performed meta-analyses of studies 
with varying implementations in order to interpret the outcomes across a collection of studies 
with different sets of participants or contexts. In (Kramer, Fuller, Watson, Castillo, Oliva, et al., 
2023), the authors present a large-scale study of the  implementation of an active learning-based 
curriculum for Calculus I that collected 1019 observations of student outcomes over three 
semesters with a variety of instructors teaching at multiple times. On the one hand, this study 
presents compelling evidence that student learning in an active curriculum has the potential to be 
far more effective than in traditional lecture-based paradigms. The random allocation of students 
to the treatment and control conditions allows the comparison of student outcomes across 
populations while controlling for multiple demographic factors including incoming mathematics 
background, race and/or ethnicity, gender, and student enrollment status. At the same time, 
students are grouped into sections at the same time of day/day of week and instructors will be 
present in different sections, introducing random effects on student outcomes (Hedges, 2009). 

In this work, we present a fixed effects model (FEM) of student learning outcomes dependent 
on multiple demographic factors and show that the differences between the treatment and control 
group outcomes are statistically significant. We then compare that FEM to the mixed-effects 
model (MEM) in (Kramer, Fuller, Watson, Castillo, Oliva, et al., 2023) and discuss the ways in 
which the random effects in that model compare to the FEM properties. We also discuss changes 
to the MEM and show that the MEM presented in (Kramer, Fuller, Watson, Castillo, Oliva, et 
al., 2023) and using the data set from that project here (Kramer, Fuller, Watson, Castillo, Duran 
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Oliva, et al., 2023) possesses the same structure as both the FEM as well as these other models. 
Finally, we provide a comparison of the effect sizes and confidence intervals for different 
models. 

Methods 
In (Castillo et al., 2022; Duran et al., 2022; Kramer, Fuller, Watson, Castillo, Oliva, et al., 

2023) the authors collected data from a trial of an active learning based curriculum where 
students were randomly allocated and presented a number of outcomes analyses. In this study, 
1019 students were randomly allocated to either the treatment condition which utilized the 
Modeling Practices in Calculus (MPC) approach to student learning or the control setting based 
on existing instructional practices that were primarily lectured based. Student data was collected 
from institutional records that provided potential fixed demographic effects on student outcomes 
including mathematics background from standardized tests/high school GPA (MBS), gender 
(Gender), race and/or ethnicity (RE). Along with these data, the section of the course (Section) 
and the instructor of record (TIDw) were recorded as random effects that depended on student 
choices made during enrollment. In addition, student outcomes were recorded both as grade 
outcomes in the course as well as a measure of student learning, LearningMeasure, collected 
from embedded final exam questions implemented within the common final administered across 
all sections of the courses and assessed in a blinded form by multiple evaluators (Kramer, Fuller, 
Watson, Castillo, Oliva, et al., 2023). 

Using these data, a fixed effects model with interacting terms can be constructed to 
determine the dependence of the measure of student learning from the study, LearningMeasure, 
on these factors including the cluster levels SecPair to represent the grouping of participants by 
their time of day and day of week classroom groups. Note that these sixteen pairs then split into 
32 based on random assignment, and this is also a representation of the instructor level 
clustering. The linear model used here is then  

 
where LearningMeasure is the vector of students’ scores, Treatment is the predictor (a dummy 
variable, 0:Non-MPC sections; 1: MPC sections),  ! is the regression coefficient for the 
covariates measured, and " is the vector of residuals, assumed to be distributed N(0,2I). Other 
variations involving either Section or TIDw for cluster levels as fixed effects were not 
considered, as they introduced collinearity with Treatment. Similarly, a variation of the mixed 
effects model presented in (Kramer, Fuller, Watson, Castillo, Oliva, et al., 2023) can be 
constructed using the fixed effects above but instead applying SecPair along with Section and 
TIDw as random effects. Models were implemented in R (R Core Team, n.d.) using the glm and 
lme4 (Kuznetsova et al., 2017) packages. 

Results 
Coefficients for the FEM with both interacting and non-interacting terms along with a model 

with Treatment as the only fixed effect were computed and found to have the values shown in 
Table 1. The model shown using the sixteen cluster levels of SecPair also has the interaction 
terms of the first model. 
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Table 1. Fixed Effects Model Coefficients with and without Interactions and Cluster Levels. 

 Model With 
Interactions No Interactions With SecPair 

Predictors Est. s.e p Est. s.e p Est. s.e p 
(Intercept) -8.20 9.06 0.365 -2.99 4.91 0.543 -0.54 9.41 0.954 
Treatment  30.48 11.82 0.010 16.45 1.39 <0.001 28.91 11.63 0.013 
MBS 0.89 0.13 <0.001 0.81 0.06 <0.001 0.84 0.13 <0.001 
Gender 4.79 12.49 0.701 -3.64 1.39 0.009 0.25 12.24 0.984 
RE2 -7.68 3.59 0.032 -7.57 3.58 0.035 -9.66 3.56 0.007 
RE3 -1.04 2.64 0.694 -1.17 2.64 0.656 -2.30 2.60 0.376 
RE4 2.21 3.38 0.512 2.43 3.37 0.471 -1.12 3.35 0.737 
Treatment × 
MBS 

-0.22 0.18 0.218 
   

-0.19 0.17 0.287 

Treatment × 
Gender 

-23.97 16.74 0.152 
   

-20.32 16.38 0.215 

MBS × 
Gender 

-0.13 0.18 0.479 
   

-0.07 0.18 0.707 

(Treatment × 
MBS) × 
Gender 

0.37 0.25 0.136 
   

0.30 0.24 0.213 

SecPair2 
      

-0.74 3.62 0.839 
SecPair3 

      
2.55 3.61 0.481 

SecPair4 
      

-12.79 3.90 0.001 
SecPair5 

      
-6.54 3.79 0.084 

SecPair6 
      

-0.93 3.65 0.799 
SecPair7 

      
4.97 4.23 0.240 

SecPair8 
      

-16.92 4.61 <0.001 
SecPair9 

      
-0.59 3.57 0.868 

SecPair10 
      

-3.00 3.43 0.382 
SecPair11 

      
2.19 3.54 0.536 

SecPair12 
      

-9.44 3.59 0.008 
SecPair13 

      
-5.19 3.37 0.123 

SecPair14 
      

2.24 3.78 0.553 
SecPair15 

      
-1.07 4.68 0.819 

SecPair16 
      

-4.27 4.97 0.390 
Obs 671 671 671 

R2 0.331 0.328 0.384 

AIC 5792.7 5787.4 5767.6 

logLik -2884.3 -2885.7 -2856.8 
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Using these FEMs we can also then estimate the effect sizes for the fixed effects, shown in 
Table 2.  

Table 2. Effect Sizes for Fixed Effects in Interacting Model 

Parameter 
Partial 

Cohens f 
95% CI 

low 
95% CI 

high 
Treatment 0.45807 0.37679 0.539 
MBS 0.54491 0.46202 0.627 
Gender 0.10635 0.0287 0.184 
RE 0.12148 0.00737 0.189 
SecPair 0.29389 0.16633 0.338 
Treatment:MBS 0.00917 0 0.079 
Treatment:Gender 0.00445 0 0.063 
MBS:Gender 0.03243 0 0.11 
Treatment:MBS:Gender 0.049 0 0.126 

Computing a mixed effects model incorporating interactions and random effects due to 
section (Section, SecPair) and teacher level (TIDw) as in (Kramer, Fuller, Watson, Castillo, 
Oliva, et al., 2023) yields the coefficients shown in Table 3. 

   
Table 3. Mixed Effects Model Coefficients with and without Interactions. 
  Model With Interactions No Interactions 

Predictors Estimates std. Error p Estimates std. Error p 
(Intercept) -2.80 8.98 0.755 0.67 5.14 0.896 
Treatment [TR] 28.07 11.71 0.017 15.76 2.78 <0.001 
MBS 0.83 0.13 <0.001 0.78 0.06 <0.001 
Gender [F] 0.09 12.02 0.994 -3.72 1.35 0.006 
RE [2] -9.42 3.49 0.007 -9.30 3.48 0.008 
RE [3] -2.18 2.55 0.395 -2.26 2.55 0.376 
RE [4] -0.51 3.28 0.877 -0.29 3.27 0.930 
Treatment × MBS -0.18 0.17 0.285 

   

Treatment × Gender -18.83 16.09 0.242 
   

MBS × Gender  -0.05 0.18 0.769 
   

(Treatment × MBS) × 
Gender 

0.28 0.24 0.247 
   

Random Effects 
σ2 289.50 288.68 
τ00 17.14 Section 17.46 Section  

13.67 TIDw 13.57 TIDw  
12.62 SecPair 12.45 SecPair 

ICC 0.13 0.13 
N 16 SecPair 16 SecPair  

32 Section 32 Section 
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19 TIDw 19 TIDw 

Observations 671 671 
Marginal R2 / 
Conditional R2 

0.304 / 0.395 0.303 / 0.394 

AIC 5754.594 5746.831 
log-Likelihood -2862.297 -2862.415 

Computing effect sizes within a MEM is more complicated and in general must be 
approximated (Hedges, 2009). The effect sizes for each section pair were computed and shown 
in Table 4, and the precision weighted effect size (DerSimonian & Laird, 1986) for the 
Treatment effect computed from those using the standard error for each.  

Table 4. Effect Sizes for Each Section Level Pair of Treatment and Control groups 

  95% Confidence Interval 
Section Pair Hedges g lower upper 

1 1.097 0.483 1.748 
2 -0.501 -1.094 0.076 
3 1.003 0.400 1.639 
4 2.221 1.412 3.127 
5 -0.259 -0.903 0.375 
6 0.569 -0.001 1.158 
7 0.200 -0.591 1.004 
8 1.662 0.655 2.800 
9 0.673 0.104 1.262 

10 0.993 0.453 1.560 
11 0.932 0.362 1.530 
12 0.899 0.309 1.518 
13 1.226 0.699 1.782 
14 1.021 0.375 1.706 
15 0.740 -0.185 1.727 
16 0.808 -0.142 1.828 

 
In some cases, the variance of the outcome data due to the number of data points in some 

pairs increases the error and uncertainty in the outcomes for that cluster. This pattern is reflected 
in a forest plot of the effect sizes (Hedges’ g) computed within the section pair clusters as shown 
in Figure 1. 
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Figure 1. Forest Plot of Section Pair Effect Sizes 

Of the 16 pairs, twelve have statistically significant increases in outcome for the Treatment 
section, and four do not. Two of the four with indeterminate outcomes are positive effects, and 
two are negative. The precision weighted effect size in this case is dpw= 0.8008 (CI [0.4589, 
1.1427], t=4.99 p=0.0002). 

Discussion 
The fixed effects model indicates that the treatment condition is statistically significant even 

in the presence of the other fixed effects. Specifically, the models show that the treatment is 
statistically significant and positive even in the model with interactions (! = 30.48, 95% CI 
[7.30, 53.65], t(660) = 2.58, p = 0.010) when controlling for mathematics background, 
race/ethnicity, and gender. The FEM interaction terms are found to be insignificant (the null 
hypothesis of zero-valued coefficients cannot be rejected). In addition, the model without 
interactions is found to have a better fit (AIC = 5787.4) than the model with interactions (AIC = 
5792.7), but the model with interactions and the SecPair cluster levels is best (AIC = 5767.6) 
with a coefficient of ! =28.91 which is almost equivalent to the non-interacting estimate. This 
model compares well to the mixed effects model that includes random effects from the SecPair, 
Section and TIDw clusters. In that model, fixed effects were found to explain 39.4% (with 
marginal R2=0.303) of the outcome while the FEM was found to explain 38.4% (R2 = 0.384) of 
the outcome with interactions and SecPair cluster levels. The MEM is perhaps preferred since it 
incorporates the impact of student choice of section and the presence of the instructor, but this 
analysis shows that these factors explain approximately ~10% (conditional R2=0.1) of the 
outcome in this data. In determining the treatment effect on outcomes, the FEM gives a similar 
model for interpretation even though the MEM is a slightly better fit. One benefit of the MEM 
approach, however, is that it also characterizes the intraclass correlation (ICC = 0.13) for these 
underlying clusters and provides some insight into the degree to which those correlations might 
impact the outcomes. In (Kramer, Fuller, Watson, Castillo, Oliva, et al., 2023), the fixed effect 
Cohen’s d = 0.774 (CI [0.618,0.930]), and cluster adjusted effect size from the random effects of 
the MEM dT =0.771,CI [0.468,1.073] are consistent with the metanalytic approach here using 
only the section pair data.  

The coefficient similarities between the linear FEM and the MEM with random effects in 
some sense reflect the fact that the data form distinctly linear structures when modeled on the 
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strongest effect, MBS. As shown in Figure 2, a LOESS curve approximation of the data plotted 
within a scatterplot of LearningMeasure against MBS, we see that the majority of the curve is 
linear in nature with low levels of uncertainty, and that only in the outlier regions where few data 
points exist do the curves show high levels of non-linearity and uncertainty. 

 
Figure 2. Scatterplot of LearningOutcome Against MBS (Math Background Score) for Treatment and Control 

Groups with LOESS Curve Approximations. Dark Grey Areas Indicate the 95% CI Surrounding the Approximating 
Curve 

Conclusions 
In the data analyzed in this article, the underlying cluster structure has a relationship to the 

outcome variable variance but this explanatory power is small when compared to the other fixed 
and random effects. The impact of the time of day/day of week of the courses was on the order of 
50% of the effect found for Treatment and MBS in the FEM. The estimates for the coefficients of 
Treatment in all the models are similar and the computed effect sizes are consistent using either 
model. The MEM approach has the advantage of estimating the relative variance due to cluster 
levels in a way that represents their underlying random nature, while incorporating SecPair into 
the FEM approach yields similar results. Both analyses support the conclusion that the treatment 
condition led to medium to large increases in student learning outcomes. 
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The relevance of upper division mathematics courses for future secondary teachers is a 
longstanding thorny issue. Suggested improvements include capstone courses and revised upper 
division content courses to explicitly address future teachers’ relevant secondary mathematics 
content knowledge, beliefs about teaching and learning, and experience with learning 
mathematics while engaging in authentic mathematical practices. In this report, we investigate 
prospective teachers’ reflections on their opportunities in an upper division Inquiry-Oriented 
Dynamical Systems course to engage in the eight Common Core State Standards for 
Mathematical Practice. Analysis of students’ self-reported engagement in the eight Practices 
revealed five practices that strongly resonated with them and the various ways that their 
experiences in an inquiry-oriented classroom supported meaningful and powerful engagement in 
these Mathematical Practices. We conclude with implications for practice.  

Keywords: mathematical practices, inquiry, prospective teachers, dynamical systems 

The relevance and usefulness of upper division mathematics courses for prospective 
secondary school mathematics teachers has long been of concern (Begle, 1972; Klein, 1932; 
2016; Wasserman et al., 2019). A number of studies document that teachers find their advanced 
mathematics courses have little relevance to their teaching (e.g., Cofer, 2015; Wasserman, 2017, 
Zazkis & Leikin, 2010). While these challenges are longstanding and pervasive, professional 
organizations have outlined possibilities for improving the connection between university and 
secondary mathematics for prospective teachers (Association of Mathematics Teacher Educators 
[AMTE], 2017; Conference Board of the Mathematical Sciences [CBMS], 2001; 2012). Creating 
capstone courses is one approach. Another recommendation, and the one taken in our work, is to 
redesign upper division math content courses so intentionally strong connections to high school 
mathematics content and teaching are made.  

In recent years progress has been made on the university-secondary mathematics connection. 
For example, a recent issue of ZDM Mathematics Education focuses on how the intersectional 
nature of mathematical and mathematics educational content might be addressed in a wide range 
of university courses in order to prepare better secondary mathematics teachers (Wasserman et 
al., 2023). We contribute to this uptick in progress by investigating the opportunities for 
prospective teachers in an Inquiry-Oriented Dynamical Systems and Modeling (IODSM) course 
to engage in the eight Common Core State Standards for Mathematical Practice (MP) (Common 
Core State Standards Initiative [CCSSI], 2010). The eight Standards are: 1) Make sense of 
problems and persevere in solving them, 2) Reason abstractly and quantitatively, 3) Construct 
viable arguments and critique the reasoning of others, 4) Model with mathematics, 5) Use 
appropriate tools strategically, 6) Attend to precision, 7) Look for and make use of structure, and 
8) Look for and express regularity in repeated reasoning. In particular, we address the following 
research question: How frequently do prospective teachers in an IODSM course report engaging 
in the eight Standards for MP and how do they describe their engagement in these Standards?  
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In related prior work, Apkarian et al. (2023) investigated the impact of an IODSM course on 
prospective teachers’ knowledge of rate of change, their shifting beliefs about learning and 
teaching, and their self-reported ways in which their emerging beliefs and knowledge would 
influence their future practice. The work reported here adds a new dimension to this prior work 
by examining IODSM student-reported connections to the eight Standards for MP.  

 
Theoretical Background 

The “inquiry” part of the IODSM course is heavily influenced by the following four pillars of 
inquiry described by Laursen & Rasmussen (2019): 1) Students engage deeply with coherent and 
meaningful mathematical tasks, 2) Students collaboratively process mathematical ideas, 3) 
Instructors inquire into student thinking, and 4) Instructors foster equity in their design and 
facilitation choices. In the IODSM course, students collaboratively reinvent mathematics by 
engaging in the kind of work that potentially reflects how mathematicians go about their work 
and which are embodied in several of the Standards for MP. Our use of reinvention is informed 
by the instructional design theory of Realistic Mathematics Education (RME), which views 
mathematical concepts, structures, and ideas as inventions that humans create to organize the 
phenomena of the physical, social, and mental world (Freudenthal, 1973).  

Our work is also informed by the emergent perspective (Cobb & Yackel, 1996), which views 
learning as both an individual and social process. Of particular relevance for this report are the 
emergent perspective’s constructs of social and sociomathematical norms. Social norms refer to 
regularities in discourse, such as students routinely explaining their own thinking, listening to 
and attempting to make sense of others’ thinking, asking questions if something is unclear, and 
indicating their agreement or disagreement with reasons. We conjecture that social norms have 
considerable overlap with the first and third MPs (Make sense of problems and persevere in 
solving them and Construct viable arguments and critique the reasoning of others). Also related 
to these Standards is the sociomathematical norm that justifications be based on underlying 
concepts as opposed to appeals to procedures or external authorities such as the text or instructor. 
This particular norm may, for example, relate to the third and sixth Standards for MPs.  

In this report we do not examine actual classroom interactions and hence the full power and 
full set of constructs of the emergent perspective cannot be leveraged. Instead, we use the 
constructs of social and sociomathematical norms to reflect on the extent to which students’ 
report how often they engage in the various Standards and the nature of that engagement.  

 
Methods 

The participants were 30 students enrolled in an upper division IODSM course at a large, 
Hispanic-serving institution in the southwestern United States. This course fulfills an upper 
division math elective requirement and it was designed specifically for prospective secondary 
teachers by infusing content related to high school mathematics. We collected qualitative data 
from a survey taken at the beginning of the semester, a detailed homework assignment where 
students explored the Standards for MP (CCSSI, 2010) and their connection to their experiences 
in the IODSM course, and an hour-long interview with a subset of students. In this report, we 
only discuss findings from their written homework assignment. 

On this homework assignment, students reflected on how their IODSM classroom 
experiences relate to the Standards for MP. Students were asked to read the eight practices and 
categorize each practice into one of three bins based on how often they experienced the MP in 
class, and to explain why they placed each practice into the Bin that they did. Bin 1 was the most 
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opportunities, Bin 2 was some opportunities, and Bin 3 was the least opportunities. Students also 
provided an example from classwork to support their justification. The assignment provided 
insight into students’ understanding and engagement with the Standards for MP. It allowed for 
an in-depth exploration of students’ perceptions and experiences, contributing valuable 
qualitative data to the field. By linking their experiences to specific Standards, the students 
provided a rich and detailed view of their interaction with the mathematical concepts laid out in 
the Standards, helping us gain a nuanced understanding of their learning experiences. We note 
that the Standards for MP were never discussed in class. Therefore, the responses from students 
reflect their own interpretation of the MPs. 

To analyze the data, we used a thematic analysis approach, as described by Braun and Clarke 
(2006), to identify, analyze, and interpret patterns within the data. Students’ responses were 
separated by MP into a spreadsheet that included their bin classification, justification, and the 
example. Note, if students mentioned uncertainty in placing an MP between two bins, we coded 
them as the less often bin. This happened only two times and both were deciding between Bin 1 
and 2; and thus, they were placed in Bin 2. After data were organized, two researchers read 
students’ responses and took notes according to their interpretation of the students’ explanation 
to identify interesting aspects and patterns. Then all researchers met to discuss meaningful ways 
to organize and code the data. We discussed interesting trends students demonstrated as a 
response to their classification of bins and possible explanations for them. Initial codes were 
created for each MP and highlighted specific aspects of the MP description. Common themes 
helped to identify what parts of the MP students considered to experience the most in the class 
and why they placed each practice in the corresponding bin. After collapsing overlapping 
themes, re-working and refining codes, all authors agreed on the coding of all of the MPs. Lastly, 
we found the frequency of common themes. We also calculated the standard deviation for each 
practice. This allowed us to see which practices students agreed on more about engaging in and 
those that they did not. In this report, we focus only on practices where there was more 
agreement (low standard deviation) or modest agreement (medium standard deviation). 
 

Results 
The average number of the bin placement for each mathematical practice ranged from 1.032 

to 2.000 (i.e., for some practices nearly all students selected Bin 1 [the most often bin] while for 
some practices the average selection was Bin 2 [the second most often bin]). Standard deviations 
were between 0.1796 and 0.7878. Three natural groupings of the practices emerged by standard 
deviation (SD), with three practices having SD less than 0.5 (most agreement), two practices 
with SD between 0.5 and 0.75 (modest agreement) and three practices with SD between 0.75 and 
1 (least agreement). As mentioned, we only report on the practices with the most or modest 
agreement. We hypothesize that practices that received a higher SD can be partly attributed to 
the ambiguity of wording of the practices and/or students’ personal interpretations. Table 1 lists 
the mathematical practices by SD group, as well as the themes identified across student 
responses and the frequency of occurrence for each theme. Only themes that were identified in 
the responses of at least one third of the class are listed in Table 1. 
 
Practices with Most Agreement (Low Standard Deviation) 

MP 1. The first theme for MP 1 was highlighting the emphasis on making sense of problems 
which was when students mentioned the importance of taking a step back to read and understand 
the problem to make sense of things. The second theme was the importance of working hard and 
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not giving up which was when students reflected on attempting problems and their perseverance 
towards the correct outcome. This student response exemplifies making sense of problems: 

 
... for a lot of problems in the class, you just cannot look at the given information and just 
solve for one variable, and that’s it. There has to be more meaning to it, what exactly is 
the solution we are looking for, how do we work for the problem in question, what can 
we do and then we can attempt a method and change up our attempt if needed. 

 
The students addressed the importance of making sense of a problem by stating that when 
working on a problem their solution approach cannot be deciphered by just looking at “one 
variable” or applying a single technique and solving for it, instead they dive further into finding 
meaning and value in the text, and only then, continue working towards a solution. That is, 
students in the class described that solving problems requires more than purely manipulating 
variables, they said that the solution has to make logical sense and they need to question 
themselves continually to check if their solution approach is right. 

Students’ responses coded as importance of working hard and not giving up referred to the 
importance of being perseverant when solving a problem and if they committed a mistake that 
they could step back and try a different approach. For example, 
 

Some of the problems that I encounter in class can be particularly challenging and require 
a great deal of patience and perseverance to solve. It is important to remain focused and 
persistent in working through these problems, breaking them down into smaller parts and 
utilizing any available resources or strategies to find a solution. 
 

Students also described that due to the nature of the course more challenging problems were 
constantly being encountered which forced them to persevere in working out solutions. Also, 
students recognize that mathematics is not about getting the correct answer at the first try, but 
that it is important to persevere and change methods as necessary. 
 
Table 1. Student themes from Mathematical Practices. 

SD Mathematical Practice Themes Identified Freq. 

Lo
w

  

(MP1) Make sense of 
problems and persevere in 
solving them 

Highlights the emphasis on making sense of problems 30 

Importance of working hard and not giving up 11 

(MP2) Reason abstractly 
and quantitatively 

Contextualization or decontextualization 20 
Doing mathematics with meaning 16 

(MP4) Model with 
mathematics 

Mathematics applications 16 
Mathematical techniques 10 

M
ed

iu
m

  (MP3) Construct viable 
arguments and critique the 
reasoning of others 

Critiquing and revision of ideas 22 
Group work and collaborative learning 22 
Constructing Arguments and Justifying Answers 13 

(MP6) Attend to precision 
Precision in communication ideas 28 
Group work and collaborative learning 13 
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MP 2. Themes identified for MP 2 included contextualization or decontextualization and 
doing mathematics with meaning. An example student response for the first theme is “A lot of 
times we are given problems with context, then we create mathematical models of the scenarios, 
solve the problem using math, then relate our solutions back to the context/scenario” which 
highlights the transition between abstract mathematics and contextual understanding of the 
problem and vice versa. Additionally, some students talked about giving meaning to the 
variables when working with equations and functions in class and such responses were coded 
under the second theme of doing mathematics with meaning. For example, a student reported, 

 
This standard most directly applies to our use of putting differential equations into words. 
We explored each piece of a differential equation individually, and then we worked on 
putting a differential equation into a sentence. We spoke of a differential equation with 
meaning, rather than speaking out the signs, numbers, and letters as they are. We have 
used these statements of meaning in most of our work in this class thus far. 

 
In the excerpt above the student mentioned that it is important to be aware of the symbolic 
representations of models in regard to the context, emphasizing the need to provide meaning to 
them. The student expressed the necessity to read equations with intention and comprehension. 
In addition, students described their experience in the class with differential equations as 
translating them into meaningful sentences rather than mere symbol recitation, which 
exemplifies the practice’s aim to ensure students can contextualize symbols and equations in 
real-world problems. 

MP 4. The fourth practice revealed that students were seeing differential equations as a 
powerful tool to model real world phenomena and the two main themes identified were 
mathematics applications and mathematics techniques. The first theme was when students 
mentioned real-world scenarios in which mathematical concepts were applied. For example,  

 
…there have been many times in the class where our problem is a model of a real-world 
situation, with examples of the salty tank problem, the helicopter problem, and the list 
problem just to name a few. I also think that we have been given the opportunity to think 
about whether the model fits the situation as for example when we were asked if the model of 
the fish population matched the mathematical model… 

 
Student responses highlighted the application of differential equations to model real-world 
systems, which aligns with the practice’s focus on using mathematical knowledge to address 
real-life situations. The second theme in MP4 was the use of mathematical techniques in 
facilitating problem solving. Responses which discussed the use of Euler’s Method (or as we 
called it, the Tip-to-Tail method), graphs, slope fields, phase lines, and other math techniques 
were coded in this theme. 
 
Practices with Modest Agreement (Medium Standard Deviation) 

MP 3. Three main themes were identified for the third practice. These included critiquing 
and revision of ideas, group work and collaborative learning and constructing arguments and 
justifying answers. For the first theme students acknowledged the importance of peer review and 
critiquing of ideas when developing their understanding of mathematics and underscored the 
value of the collaborative nature of the learning experience. For example, 
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... We are asked to come up with our own explanations for certain answers or approaches. 
We have to share them with the rest of the class and also take critiques if others don’t agree 
until everyone has a satisfactory answer and explanation. Many examples where groups 
would have to come up with a graph tend to cause some disagreement thus leading to more 
discussion and ultimately to a well-backed understanding. 
 

The student described the active engagement in constructing explanations, presenting them to 
peers, and refining them through critique until a shared understanding is achieved. This not only 
embodies MP 3’s focus on constructing arguments and critiquing reasoning but also echoes the 
collaborative nature of mathematical exploration emphasized in MP 3. Other students’ described 
the collaborative nature of the course. The next most common theme for MP 3 was group work 
and collaborative learning which was attributed to responses mentioning the value of discussing 
problems with classmates, sharing ideas, and collectively analyzing and working on problems. 
The following excerpt by students mentions the use of group work daily in class which leads to 
discussions and support from teammates:  

 
Since this class consists of almost entirely group work, constructing clear and viable 
arguments is crucial as we are always explaining our thought process to everyone else in our 
group, and sometimes the rest of the class. In order to do this successfully we must fully 
understand what we are doing and be able to explain why each step was made … This class 
is a team sport, and that quality of respect is crucial as we are all in a learning environment 
where mistakes are welcomed as long as we work through them together and help each other 
out along the way… 

 
The student above describes daily group work and emphasizes the process of understanding 

and exploring mathematical problems and the "team sport" reference signifies the collaborative 
nature of learning in class. Finally, the third theme was attributed to students who emphasized 
reasoning and justifying their approach to problems. For example, “although critiquing the 
reasoning of others is very much one of the more common things that happens during class, the 
construction of arguments is done in a way more informal which is the reason it is in bin 2”.  
Other student responses expressed this sentiment, or the feeling that there was not always enough 
time available in class to construct careful arguments. 

MP 6. Two main themes emerged for the sixth practice including precision in 
communicating ideas and group work and collaborative learning. Note the second theme around 
group work  also emerged for MP 3. The first theme was attributed to responses which 
emphasized the clarity and exactness in mathematical communication, including a need to refine 
mathematical language and avoiding vague terms. For example,  
 

....I feel that I have had the most opportunity in this class to engage in this mathematical 
practice because communicating in a precise manner underpins all the work that we do in 
this class. Whenever I ask a question, present a result, or draw a graph, I strive to be 
accurate with my spoken words and written statements…. 

 
The students who brought up this theme addressed the importance of communicating 
mathematical ideas and concepts to others with precise language which relates to the second 
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theme identified for group work and collaborative learning. For example, 
 

Communication is a huge part of this class. Group work and class discussion is what 
makes this class impactful. If we were to do things on our own all the time, there is a low 
chance that if we were to get something wrong, we’d understand why and how to find the 
right answer. Communication with others keeps each individual on track when it comes 
to using the correct definitions and meanings, symbols, math processes. 
 

Students who mentioned group work and collaborative learning in relation to MP 6 mainly 
pointed out communication with others and being precise in their language in doing so to get 
their ideas across. Additionally, students mentioned the importance of working with others as 
time to get constructive criticism on delivering their ideas.  
 

Conclusion 
The AMTE (2017) Standards state that effective mathematics teacher preparation programs 

should provide opportunities for prospective teachers to learn mathematics that enable them to 
engage in mathematical practices, and that mathematics content should be taught using teaching 
methods that serve as models of effective teaching (AMTE, 2017). Consistent with this call, we 
investigated prospective teachers’ reflections on their opportunities in an upper division inquiry-
oriented mathematics course to engage in the eight Common Core State Standards for 
Mathematical Practice. We found that students’ self-reported engagement centered five practices 
(MP 1, 2, 3, 4, 6) as strongly resonating with them. There were three practices (MP 5, 7, 8) that 
had higher standard deviations in terms of which bins students placed them in. This meant there 
was not as much agreement on how these practices were reflected, from the students’ points of 
view, in class. We posit high SD may have been because these practices appeared in the latter 
half of the assignment (so perhaps not read as carefully) and/or that students may not have 
understood aspects of the educational terms in these practices. Recall that the Standards were 
never discussed in class. 

Collaboratively processing ideas showed up in more than practice (MP3 and 6). This relates 
to social norms (Cobb & Yackel, 1996) in that central to students engagement in class was the 
time to collaborative process ideas. Students discussed how sometimes mathematical concepts 
did not make sense to them until another student explained something or provided more 
information. Relatedly was the concept of being precise with language. A sociomathematical 
norm in the class was speaking with meaning (e.g., avoid saying “it”). Being precise in language 
is not only critical as an MP but also important for future teachers to be precise in their language 
when engaging with their future students. Lastly, the idea of critiquing was often discussed. 
Importantly, some students took a negative connotation to critiquing in that they argued that they 
did not critique but they went back and forth discussing mathematics until concepts were agreed 
upon. Whereas some students fully embraced what it means to critique in their IODSM class. To 
them, it was important to critique because it meant that ideas were only getting better when the 
class critiqued reasoning to improve upon said reasoning.  

Our next steps are to analyze the interviews already conducted which investigated student 
perceptions of the MPs in deeper detail, their beliefs about learning and teaching mathematics, 
and the connections they made between the upper division college mathematics content and 
secondary school mathematics. We also intend to conduct additional iterations of this course, at 
the same and different universities, expanding our focus to approximations of practice.  
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Networking Theories to Investigate Status and (In)equities in Small Group Proof Contexts
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Efforts have been made to study (in)equity in undergraduate mathematics education research.
Across various fields, there is a foundation of work on how status impacts students’ learning and
participation in small groups as well as how differing patterns of interaction contribute to
inequitable outcomes. This report contributes a networked theory for analyzing relationships
between status and (in)equity in general. We argue that applying this methodology to
proof-specific contexts has the potential to uncover how status hierarchies form in proof
classrooms using group work components. We hope to promote conversations within the RUME
community around taking actionable steps towards delegitimizing status hierarchies in proof
classrooms.

Keywords: Status, Inequity, Small Group, Proof

Generally, increasing student-student interactions in classrooms changes the quality of
interactions, creating more opportunities for societal narratives about who can do what kind of
mathematics to influence who participates and how (Battey & McMichael, 2021). A dominant
societal narrative is that ‘doing mathematics’ reflects ‘doing masculinity’ (Jaremus et al., 2020;
Leyva et al., 2017; Mendick, 2006) and simultaneously privileges whiteness (Battey & Leyva,
2016; Martin, 2019) and Eurocentric perspectives (Rowlands & Carson, 2002). Scholars have
argued that students who identify with the dominant culture of mathematics inherit this
privileged status, particularly in advanced proof-oriented classrooms (Weber & Melhuish, 2022).
The power that these narratives have can be corroborated by the fact that advanced courses are
predominantly taught by (mostly white) men and the majority of students who take them are men
(Blair et al. 2013). If a goal is to increase student-student interactions in these spaces (Saxe &
Braddy 2015; the MAA Instructional Practices Guide, 2018), then it stands to reason that issues
of inequities related to status and power must be considered.

Scholars have recently attended to status and power in proof-based contexts (e.g., Brown,
2018; Ellis & Alzaga Elizondo, 2023; Hicks et al. 2021). Adapting an authority framework,
Hicks et al. (2021) explored how four students’ mathematical authority was distributed while
working on an abstract algebra task. They found discrepancies in authority relations and offered
reasons why these discrepancies might have occurred, such as only some students authoring
ideas in public spaces, students self-selecting to not participate, and assessing ideas to give or
take away authority. Drawing on Shah and Lewis’s (2019) work, Ellis and Alzaga Elizondo
(2023) investigated how status attenuated/amplified (in)equities during small group work in an
intro-to-proof course. Using relational and participatory equity as an analytic lens, they claimed
that a ‘less mathematically collaborative’ episode exhibited a more balanced status relationship
while a ‘more collaborative’ episode exhibited strained power relations. While intriguing, these
claims could have been strengthened by a clearer theoretical connection between status, power,
and inequity, which guided the empirical analysis of their data.
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This report contributes a possible theoretical approach to empirically identify how status
hierarchies form in small group interactions. That is, we claim that networking positioning
theory (Harré & van Langenhove, 1999) with systemic functional linguistics (SFL; Halliday,
1978) may provide empirical evidence of discursive processes by which students attribute
academic status to themselves and others. This approach may yield stronger claims regarding
how inequities are attenuated/amplified in small groups (Shah & Lewis, 2019).

Background
In classrooms where students interact with each other regularly, issues related to status and

positioning are more likely to occur (Cohen & Lotan, 2014; Esmonde, 2009b; Shah & Lewis,
2019). In general, ‘status’ refers to the idea that it is desirable to be in a higher position relative
to another (Cohen et al., 1999; Ridgeway, 2018). For example, narratives around socioeconomic
status allude to the idea that it is better to have more monetary capital than less, and people
generally agree that is advantageous to be in a higher status position than a lower status position.
In classroom contexts, academic and peer status greatly influence perceptions of where
individuals fall along a status continuum (Cohen & Lotan, 2014). The former relates to
perceptions of who is ‘smart’ or doing well in the class. The latter relates to perceptions of social
standing (i.e., popularity, attractiveness). Then, ‘diffuse status characteristics’ refer to identity
markers that are perceptible upon initial encounters with others, such as race (via skin color) or
language use (via intonations or accents), gender expression, and certain forms of ability status.
For our purposes, when we say “status” we mean academic status while acknowledging that peer
and diffuse status characteristics influence attributions of academic ability or competency in
proof classrooms.

Researchers studying student-student interactions during collaborative small group activities
have made theoretical connections between status and positioning (Langer-Osuna, 2016;
Esmonde, 2009a; Shah & Lewis, 2019). For example, Lange-Osuna (2016) argued that “students
interactionally position themselves and one another with academic and social power that can
affect collaborative mathematical work” (p. 108). To examine authority relations, they asserted
that students who are positioned with more intellectual authority – that is, students positioned as
valid sources of information directly related to the current task – accumulated more influence,
and thus, academic status. In their coding scheme, influence was attributed to a student whenever
their idea was “positioned as having become part of (or rejected from) the solution path” (p.
112). This aligns with our notion of influence as the combined result of being given opportunities
to contribute that are subsequently evaluated positively by others.

An indirect link can be made between status and research on students’ participation in groups
since identity markers, such as gender, have been shown to influence participation (Ernest et al.
2019; Langer-Osuna, 2011; Reinholz et al., 2022). For instance, Ernest et al. (2019) found that
men and women participated at relatively similar rates in private group talk, yet men dominated
the public space in class discussions. Likewise, investigating gender roles in small groups using
mixed methods, Langer-Osuna (2011) showed how Brianna’s project-related conversation
declined overtime and self-perception went from “good leadership” to “being bossy” while
Kofi’s project-related conversation increased, and he perceived himself as the “smart” student in
the group.

At the undergraduate level, quantitative studies have pointed to gendered disparities in
performance on proof-based tasks. Johnson et al. (2020) reported findings that indicated men
fairing significantly better in inquiry-oriented proof classes compared to men in traditional
classes, while there were no significant differences in performance for women. Reinholz et al.
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(2022) built on this analysis by studying participation patterns, finding that performance
disparities could be attributed to women’s participation rates. We argue that there is a need to
provide qualitative explanations for such results, and one possible direction is to explore how
status hierarchies are de/legitimated (Adams-Wiggins et al., 2020) in proof contexts where small
group work occurs, such as in inquiry-oriented classrooms.

Networking Theories to Evidence Status Relations
This report contributes a possible theory to analyze student-student interactions mediated by

discourse – conceptualized as language-in-action used to communicate meaning, including
written, verbal, gestural, and other forms of communication. We contend that networking
positioning theory with SFL may provide useful analytic tools to document how status
hierarchies form in small group interactions. With such evidence as a guide, we argue that
situations in which status hierarchies are legitimated likely amplify inequities, while situations
where status hierarchies are delegitimated likely attenuate inequities, with inequities defined as
situations that prevent access to resources needed for learning (Shah & Lewis, 2019). It is worth
noting that because human interactions and power relations fluctuate based on available
positions, no situation will ever be ‘status-free’ or fully ‘equitable’.

Positioning Theory
Positioning theory explains the processes underlying how participants in an interaction

attribute rights and obligations to themselves and others (Harré & van Langenhove, 1999; Harré,
2012). Relationships between communication acts (i.e., the meaning embedded in speech and
other forms of communication) and storylines (i.e., accepted sociocultural repertoires for how to
interact in a situation) are what give rise to available positions or ‘rights and duties’
(Herbel-Eisenmann et al., 2015). In an educational setting, for example, a traditionally accepted
teacher-student storyline is one where teachers are the authority and students are obligated to do
what the teacher says. Such a storyline may be evidenced in the communication acts between
participants; perhaps the teacher issues a command to students (e.g., “Please get out your
notebooks and a pencil”) and students accept the obligation by getting out their notebooks and a
pencil. In positioning theory, when communication acts and storylines work together to make
rights and duties available to participants, there is always a choice to accept, negotiate, or reject
the positioning. For example, in the teacher-student scenario, perhaps a student does not get out a
notebook or pencil. This could be interpreted in multiple ways; maybe they do not have the
materials with them or perhaps they are rejecting the command intentionally.

Broad narratives about mathematics and who is perceived to belong to mathematics culture
can operate as storylines associated with mathematics classrooms that students are likely aware
of. For instance, mathematics culture is widely perceived as Eurocentric, white, and dominated
by men (Battey & Leyva, 2016; Jaremus et al., 2020; Leyva et al., 2017; Martin, 2019; Mendick,
2006; Rowlands & Carson, 2002), which positions students who identify with this culture with
higher status in mathematical spaces relative to others. A problematic exception is that students
are well aware of the societal narrative that Asians are “good at math,” which perpetuates the
“model minority myth” (Poon et al., 2015; Shah, 2017). This is problematic since it positions
students in a place of higher status (i.e., gifted academically) while also excluding them from
communities of other minority students along with associated supports for those communities
(Ng et al., 2007; Suzuki, 2002).
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In sum, positioning theory provides conceptual grounding for why (and how) status
hierarchies form in small group interactions. A limitation is the conceptual vagueness around
interpreting the meaning embedded in participants’ communication acts and the possible
storylines at play (Herbel-Eisenmann et al., 2015). Therefore, we bring in analytic tools from
systemic functional linguistics to evidence how positions are created and maintained through
participants’ discourse.

Systemic Functional Linguistics (SFL)
Broadly, SFL offers a learning theory centered on language use, with language operating as a

complex, dynamic, and context-based system (Halliday, 1978). Three metafunctions of language
comprise SFL: interpersonal, ideational, and textual. The textual metafunction “manages the
flow of information to make extended discourse coherent and cohesive” and the ideational
metafunction “constructs ideas and experiences” (Gebhard & Accurso, 2020, p. 1029). The
interpersonal metafunction represents socially constructed positions and power structures. In our
methodology for studying how status operates to organize interactions in classrooms, we are
centrally concerned with the interpersonal metafunction which is mediated by “tenor” choices –
resources including (but not limited to) the use of mood systems.

Within the mood system, statements made evoke a declarative mood, questions asked evoke
an interrogative mood, and commands issued evoke an imperative mood (Gebhard & Accurso,
2020). Gebhard and Accurso (2020) assert that within the interpersonal metafunction and mood
system, textual analysis can evidence how statements, questions, and commands influence social
structures and power dynamics, particularly in classroom interactions. For example, such an
analysis can capture who has the right to speak versus who remains silent, “who uses statements
to construct authoritative ‘facts’; who asks questions and engages in negotiating meaning; who
gives commands and how commands are taken up or resisted” (p. 1032). For our purposes, the
textual artifacts analyzed are transcripts of students interacting during group work.

We argue that the interpersonal metafunction of SFL, including tenor resources such as the
mood system, provides concrete evidence of power relations emerging and shifting during group
interactions through discourse patterns. We conjecture that documenting these processes can
evidence how status hierarchies form in interactions because who issues commands, uses
statements to convey authoritative ‘facts’ and maintains the right to speak will likely be
perceived as having higher status relative to others in the interaction.

Interaction Process Related to Status Formation
Through the interaction process of creating opportunities to contribute and evaluating

contributions, certain students are positioned as having more influence (e.g., Langer-Osuna,
2016). Those who acquire more influence during the interaction will have higher relative status
compared to others, ultimately legitimating or increasing status hierarchies within the group. In
what follows, we describe this process in the context of proof.

Opportunities to contribute. When assessing opportunities to contribute among members
of a small group, we examine instances in which the group encounters a problematic situation
and consider group members’ attempts to offer a resolution, the timing of these offerings, how
these offerings are solicited by other group members, and the time and attention members have
when responding. For example, a group may need to interpret an assumption when working
together to develop a proof. A group member may ask, “Does anyone know what [term] means?”
followed by wait time. Such a generic solicitation often confers an opportunity to contribute
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upon the highest-status members of a group, who tend to experience the least psychological risk
when offering a suggestion and will often be the first to respond. Alternatively, a member (or
instructor) may ask a specific groupmate, “I remember you said something helpful about [term]
before. Can you remind me what you said?” Depending on the relative status between the
participants, this may elevate the academic status of the groupmate granted the opportunity to
contribute, potentially countering the hierarchical effects of peer status and diffuse status
characteristics.

Evaluations of contributions. Any contribution by a group member, unless interrupted by
the end of a small-group activity, is implicitly or explicitly evaluated by the group. When
analyzing evaluations of contributions from group members, we consider both explicit
evaluations (immediate verbal and nonverbal responses to the contribution) by other members
and implicit markers such as an attempt to reinforce or reconcile the contribution with other prior
contributions, a follow-up question or suggestion building on the contribution, or a group
moving on without appearing to give serious consideration to the idea suggested.

Students’ evaluations may have status implications when they appear to agree or disagree
with a peer’s contribution. For example, when asked to provide a proof of a proposition about
equivalence of two expressions involving set operations, a student in a group might suggest
drawing a Venn diagram illustrating each sequence of set operations. Another group member,
skeptical of the viability of this approach, might simply say, “[Instructor] said that a Venn
diagram isn’t a proof,” implicitly dismissing the possibility that a diagram might support the
group’s thinking. Alternatively, they might say, “Can you show how you would use a diagram
for this problem?”, inviting the student to elaborate on their initial contribution. A third
possibility is that a peer might ignore the Venn diagram suggestion entirely and say “We need to
assume that x belongs to A and B but not C.” We posit that each of these interactions has
different implications for the status of the group member who suggested the diagram, both as
evidence of their academic status within the group and as potential incremental effect on the
student’s status within the group and in the class.

Influence. When considering each group member’s influence in a proof-oriented context, we
examine instances in which a group must make a decision about a strategy, validity of a claim or
contribution, or about the group’s collective focus (such as a decision to move on to a different
problem or task). In each such instance, we review group members’ verbal and nonverbal
communication to determine: (1) whether group members seem to defer to a specific member or
subset of the group when making the decision; (2) whether a member’s input into the decision is
taken up by the group; and (3) whether a member suggests criteria or heuristics for
decision-making that ultimately inform the group’s actions. As an example of the latter, consider
an episode in which a group must prove that a sequence converges to a limit, and a student starts
by writing the inequality |an – L| < ε. At this point a peer might interject and say that this
inequality is what the group must prove, and a proof is not allowed to begin with the statement to
be proven. If this persuades the group to move away from this strategy, this would point to the
peer’s influence over the group’s decision making. If on the other hand the student continues
manipulating this inequality (perhaps as a strategy to discover a value of N corresponding to ε)
and is able to enlist the group into helping, notwithstanding the peer’s objection, this might point
to the first student’s influence. It is important to consider that the direction the group takes in this
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scenario is not purely a function of how well each group member argues in favor of their
strategy; it depends on the group’s implicit judgment about each member’s propensity to identify
and validate potential strategies for developing the proof.

Example of Theory in Action
In this section, we demonstrate the analytic potential of the proposed networked theory. Ellis

and Alzaga Elizondo (2023) previously analyzed the role of status in two small-group episodes
using the constructs opportunities to contribute, evaluations of contributions, and influence over
group decisions. The participants were students in an introduction-to-proofs course taught
remotely over Zoom with the second author attending class each day (see Alzaga Elizondo,
2022). Alison, a white woman, became a focal participant since interactions in one episode with
Lee (East Asian man) evidenced differing participation patterns compared to an episode with
Justin (white man). Based on daily observations of class interactions (including virtual breakout
rooms), Lee was perceived to have higher academic status relative to Alison. Both Lee and Justin
also benefited from belonging to demographic groups that granted them higher academic status
in mathematical spaces.

Questions Support Leveling Academic Status Positions
In the following exchange, Lee and Alison used a balanced combination of statements and

questions as they worked on a shared Google doc to prove that group isomorphisms preserve
inverses.

Lee: From here can I just jump to like, therefore e_2- therefore phi(e_1) is the identity by
definition or is that skipping some steps? (pause) [Question]

Alison: Hold on I’m thinking (pause) [Statement]
Alison: yeah I think that’s good. [Statement]
Alison: (reads) “By definition of identity.” So phi(e_1) must be the identity in-
Lee: Oh wait, but we’re not saying for all H, we have to prove that that’s all H. [Statement]
Alison: the identity- What do you mean all h? [Question]
Alison: Oh for the identity for all h? [Question]
Alison: But we’ve already proved that there is only one identity. [Statement]
Alison: Isn’t that in the definition of identity? [Question]
Lee: Yeah, but like this is showing the identity for all these, some elements of H until we

show- [Statement]
Lee: I guess we can use onto right? [Question]
Alison: Yeah. (nods affirmatively) Yeah, we probably have to use onto. [Statement]
Overall, the discursive move of asking questions to elicit evaluations of intellectual

contributions functioned to level the perceived academic status between the pair. For instance,
Lee, a relatively higher status student compared to Alison, started off the exchange with a
question inviting Alison to evaluate his suggestion to “jump” to the desired conclusion. This
attributed academic status to Alison as someone who had the right to validate mathematical
ideas. Alison accepted this position by using a declarative statement that positively evaluated
Lee’s idea (“yeah I think that’s good”). Further along, Lee began a talk turn with a statement
declaring what he knew about a particular line in their proof, saying “this is showing the identity
for all these.” He then used a question to ask Alison how they should approach a refinement,
saying “I guess we can use onto right?” Again, this attributed academic status to Alison by
positioning her as a knowledgeable peer.
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Declarative Statements Uphold Unbalanced Academic Status Positions
In the subsequent exchange, Alison and Justin engaged in a back-and-forth about how to

move forward with their proof that elements of a Cayley table are unique (see Ellis & Alzaga
Elizondo, 2023).

Alison: Yeah it’s different actions but I think for the sake of our proof we need to somehow
say we’re limited to you know (pause) [Statement]

Alison: just four, well in this case we don’t have- however many symmetries there are.
(pause) [Statement]

Alison: I might be articulating that wrong. (pause) [Statement]
Justin: I think the original route we’re going down is right, where we have this, I think this is

definitely the right way. [Statement]
Justin: I’m just trying to make sure that we have the proper way saying that proper, like-
Alison: Yeah, I agree, we have to find the way to set it up before we can just say. (pause)

[Statement]
Justin: Well, (cross talk with Abigail) I just want to make sure there’s no holes, I guess-

[Statement]
Abigail: (cross talking) Q is identical to W then [Statement]
Alison: (responding to Justin) I understand that. [Statement]
Using declarative statements as discursive moves seemed to assert each speaker’s own

knowledge and authority over the work. For instance, Justin made a declarative statement
evaluating Alison’s prior contribution (“I think the original route we’re going down is right”),
positioning himself with the right to validate the group’s work. Alison responded with a
declarative statement “Yeah, I agree, we have to find the way to set it up…” which functioned as
a positive evaluation of Justin’s contribution. Rather than offer or invite a suggestion for how to
accomplish what they agreed they needed to do to move the proof forward, Justin used another
declarative statement, “I just want to make sure there’s no holes” maintaining his right to validate
their mathematical work. Instead of using questions to elicit intellectual contributions, as in the
exchange between Alison and Lee, this interaction pattern functioned to uphold Justin’s higher
relative status he entered the interaction with.

Discussion
This report contributes a potential theory to empirically identify how status hierarchies form

in small group interactions. We have argued that exploring processes by which status hierarchies
form is necessary in proof contexts because such qualitatively-driven empirical analyses can
potentially explain prior inequitable quantitative results, particularly regarding gender. While this
theoretical approach seems fruitful, it has limitations. Additional data about students’
experiences in group work is needed to obtain a more complete picture of how de/legitimating
status hierarchies attenuates/amplifies inequities in small group interactions (see Adams-Wiggins
et al., 2020). Specifically, sociometric data about social relations in the classroom environment
and interviews to allow students the opportunities to elaborate on their experiences would serve
as appropriate data sources to confirm or disconfirm our interpretations from the status analysis.
We hope this work sparks conversations around how status functions in small groups for the
purpose of discussing and implementing possible instructional approaches that delegitimate
status hierarchies in proof spaces.
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Students’ Productive Techniques for Approaching Well-Definedness and Everywhere-Definedness 
 

 Rosaura Uscanga Kathleen Melhuish John Paul Cook 
 Mercy University Texas State University Oklahoma State University 

Functions are critical in mathematics but have received limited attention at the advanced level. 
Research in advanced contexts has primarily focused on students' reasoning about specific types of 
functions (e.g., isomorphisms) but not on the function concept itself. In this paper, we explore 
students' productive techniques involving the definitive properties of function: well-defined and 
everywhere-defined. We found that the techniques students productively employed extended far 
beyond canonical procedures (like the vertical line test) and largely drew upon function meanings 
involving coordination of the domain, codomain, and rule, which previous research has 
highlighted the importance of but stopped short of directly investigating. Two contributions of this 
work include our focus on productive, successful techniques (rather than challenges and 
difficulties), and explicit focus on everywhere-defined (which has not received direct attention). 

Keywords: function, well-defined, everywhere-defined, advanced mathematics 

Functions are an essential concept in advanced mathematics underscoring ideas like binary 
operation, continuity, and homeomorphisms. We treat functions as having two defining properties 
(Even and Tirosh, 1995): “(1) they should be defined on every element in the domain, and (2) for 
each element in the domain there should be only one element (image) in the range; this condition is 
also known as univalence” (p. 4). We refer to the first property as everywhere-defined and the 
second as well-defined. These properties can serve to support or constrain student reasoning about 
abstract types of functions in later mathematics (Melhuish et al., 2020). For example, many 
students determine that functions like 𝑓(𝑥) = 1/𝑥 are not continuous because of their asymptotes 
(e.g., Takači et al., 2006). Students may not be considering that a function must be everywhere-
defined on its domain. Similarly, in abstract algebra, well-definedness plays a crucial role as 
students work with functions on structures such as quotient groups whose elements are equivalence 
classes. In fact, Rupnow (2021) has documented that instructors may spend an entire lesson on 
these properties (along with onto and one-to-one). 

The larger body of literature about student understanding of function primarily illustrates 
students’ incomplete or non-generalizable meanings and techniques (e.g., Dorko, 2017; Even & 
Bruckheimer, 1998; Martínez-Planell & Trigueros Gaisman, 2012). Even and Tirosh (1995) 
proposed that the concept of well-definedness is often viewed in a rote and procedural way which 
is found to be superficial upon probing. Indeed, the most common manifestation—procedural or 
otherwise—of well-definedness at the K-12 level is the vertical line test or checking listed set of 
elements. The vertical line test can be a useful technique when accompanied with meanings of 
well-defined (e.g., Clement, 2001; Melhuish et al., 2020; Thomas, 2003); however, researchers 
have also noted that students over rely on the vertical line test and such techniques remain salient 
at the advanced level (e.g., Zandieh et al., 2017).  

Beyond the vertical line test, researchers have also documented that students may not attend to 
function properties at all (e.g., Melhuish et al., 2020; Vinner, 1983). Thompson (1994) argued that 
the “predominant image evoked in students by the word ‘function’ is of two written expressions 
separated by an equal sign” (p. 5). Furthermore, introductory examples of function tend to draw on 
metaphors like the “function machine” (Tall & Bakar, 1992) which appeal to diagrams and tables 
where properties are readily identifiable by observation. Thus, even when students draw attention 
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to the defining properties, it is not always in a way that is operable in terms of techniques for other 
contexts (e.g., Vinner 1983). We also note, despite the important role of everywhere-definedness 
(such as the continuity example above or in support of understanding homomorphism), few 
researchers have addressed this property explicitly, and we were not able to find any documented 
techniques. In this paper, we explore: What types of techniques do advanced mathematics students 
use to productively engage with well-defined and everywhere-defined properties when 
determining if a given relation is a function?  

Theoretical Framing 
We broadly take an approach aligned with Paoletti and colleagues’ (2018) distinction between 

techniques and meaning. We share similar constructivist assumptions that students have developed 
their meanings for a particular concept based on an array of prior experiences. That is, the 
meanings students have for functions and the properties of well-defined and everywhere-defined 
reflect not an in-the-moment cognitive state, but rather more overarching understandings. In 
contrast, techniques refer to “student’s words and observable activity as she addressed a single 
task” (p. 95). Students draw on their knowledge when engaging in problem-solving tasks, and 
techniques describe what they know-to (Mason & Spence, 1999) do in-the-moment. In our study, 
we were particularly interested in documenting the techniques used as students drew on their 
meanings for functions related to well-definedness and everywhere-definedness.  

As noted in the introduction, it is essential that students move beyond a common meaning for 
functions as only a rule or formula. We suggest that function meaning requires coordination 
between the domain set, the codomain set, and rule that incorporates the two defining properties. 
If, when explaining why a proposed correspondence is or is not a function, students make explicit 
reference (in their language, gestures, or inscriptions) to (1) an element in the domain, (2) an 
element in the codomain, and (3) the rule, it would suggest that they are drawing on a meaning that 
has some coordination between these key components. 

Methods 
We conducted task-based clinical interviews (Clement, 2000; Goldin, 2000) with five students 

who (1) had already completed an advanced mathematics course (e.g., abstract algebra, 
cryptography, number theory) and (2) successfully approached basic “is this a function?” tasks. To 
identify such students, we reached out to several advanced mathematics courses at a large research 
university in the United States to ask for participants.   

Data Collection and Task Design 
We conducted two to three interviews with each student individually for an hour to an hour and 

a half each. Each interview was conducted and video-recorded over Zoom. The tasks were created 
with each category of non-examples from Uscanga and Cook (2022) being represented (sometimes 
in the modified form of an example). These categories are: well-definedness – domain choice 
(where an element in the domain can be represented in different equivalent ways and the symbolic 
rule maps these representations to distinct outputs), well-definedness – codomain choice (where the 
rule requires a choice of the outputs in the codomain, even though it does not invoke different 
equivalent representations), everywhere-definedness – domain restriction (where the symbolic rule 
maps an element in the domain to an output that is not contained in the proposed codomain), and  
everywhere-definedness – domain expansion (where the symbolic rule assigns to an element in the 
domain an output that is not contained in the proposed codomain but is contained in an easily 
accessible superset). The interviews were centered around four core tasks which asked students to 
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identify if a proposed correspondence was an example or a non-example of a function. Additional 
tasks were designed for subsequent interviews to test and refine the hypotheses we established for 
each student, so they were adequately supported or refuted based on our observations.  

Data Analysis 
We engaged in both ongoing and retrospective analysis. Ongoing analysis occurred during and 

between sessions. This involved generating tasks and questions to test specific hypotheses about 
the students’ reasoning. After data collection, we independently analyzed students’ responses to 
five tasks. We identified excerpts from the transcripts that illustrated the techniques used by 
students to explore each task and coded these for definitional properties (well-defined or 
everywhere-defined), focus on domain, codomain, or rule, and the tool or approach utilized to 
solve the task. Codes were revised until agreement was reached and summaries of each student’s 
approaches were created. This allowed us to compare techniques across students as well as across 
tasks. A second round of analysis involved grouping the data by type of property explored in order 
to identify the different techniques students used to productively engage with well-definedness and 
everywhere-definedness. Finally, we categorized these individual techniques into broader 
categories that described the general approaches students employed. 

Results 

Well-definedness 
The well-defined property has been the subject of many empirical studies (e.g., Clement, 2001; 

Dorko, 2017; Even & Bruckheimer, 1998; Even & Tirosh, 1995). In this section, we highlight two 
overarching themes in students’ activity: sameness and divergence. We begin by illustrating 
students drawing on prototypical examples in their open explorations, then consider the more 
sophisticated techniques used by students in more abstract settings. 

 
Table 1. Students’ techniques for engaging with well-definedness. 

Technique Focus Method  

Diagram or Table 
Vertical Line Test 
 
Rule Ambiguity 
 
Rule Equivalence 
 
Attending to Function 
Notation Elements 
 
Attending to Equivalence 
in the Domain 
 
Attending to Equivalence 
in the Domain and 
Codomain 

Canonical Technique 
Canonical Technique  

 
Symbolic Rule 

 
Symbolic Rule 

 
Rule Focus, Domain 

Secondary 
 

Domain Focus, Rule 
Secondary 

 
Domain, Rule, 

Codomain Focus 

Identify diverging outputs or repeats 
Identify multiple points along a same 

vertical line 
Identify if symbolic form assigns 

multiple outputs 
Manipulate symbolic rule into known 

equivalent form 
Determine if symbolic form of how an 
element is represented in input notation 

impacts output 
Identify equivalence classes in the 

domain and explore their corresponding 
outputs 

Identify equivalence classes in the 
domain and examine outputs via 

equivalence classes in the codomain 
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Canonical techniques. We suggest that the literature-based techniques (multiple outputs for 
one input identified via listing elements or vertical line test) might be deemed early canonical. Our 
advanced mathematics students drew on such examples when prompted to create functions and 
non-functions (see Figure 1). For example, Student B explained, “one of the guys from the domain 
goes to like, four different outputs, so that violates our condition.” Student C stated, for instance, 
“if we drew like a vertical line, we know there's a lot of points where, you know, our one input 
value has two different output values.” From the point-of-view of sameness and divergence, these 
techniques do not require identification of sameness, but rather rely on identifying divergence of 
outputs. They simplify the relationship between the domain, rule, and codomain to draw attention 
to inputs and outputs without substantial exploration of the surrounding sets.  

  
Figure 1. Left. Student B’s function diagram of an example and a non-example of a function. Right. Student C’s 

depiction of the vertical line test to establish a circle is not a function. 

Attending to divergence. We begin by elaborating a technique that involves forefronting the 
symbolic rule which involves recognition of the potential for a rule to lead to divergence. Many of 
the students discussed this issue in relation to the correspondence 𝑓:ℝ → ℂ given by 𝑓(𝑥) = √𝑥. 
For example, Student A explained, “we have made a convention that if you just see a square root 
sign, you automatically decide that it’s the positive square root sign.” These students went on to 
provide a counterfactual that without this convention, it would not be a function, because, as noted 
by Student B, “our four could map to plus two or minus two. And then we don’t know which one 
we’re choosing, so that’s an ambiguity.” We note that the students are attending primarily to the 
symbolic rule but coordinating the role the rule plays diverging a single input to two outputs—
drawing on the well-defined meaning. The students’ language also reflects sophistication in their 
meanings with attention to the role of convention and ambiguity.  

Attending to equivalent functions. When exploring the rule 𝑓:ℚ → ℚ taking 

 to ା


, several 

students worked with this unfamiliar rule with a lens of sameness: finding a familiar well-defined 
function. After some algebraic manipulation, Student B explained, “my assignment can be 
abbreviated as 𝑥 going to 𝑥 + 1, which is, which is a function.” We note that this approach is not 
explicating the coordination between sets and rule nor the definition of well-defined. However, we 
infer that the student using this technique likely had an awareness of that, as Student E stated, this 
function “is simply your input plus one” which is quite obviously well-defined. Thus, we suggest 
that manipulating the rule can be a productive technique if there is an obvious equivalent function.  

Attending to function notation elements. Techniques that attend primarily to the rule are not 
sufficient in approaching a common area of concern for well-definedness: equivalence classes in 
the domain set. We identified two different ways that domain sameness was coordinated with rule 
divergence. The first attends primarily to the rule in terms of not just the outputs produced from an 
input, but also the notation of the input in function notation. For example, regarding the function 
𝑔: (0,∞) → ℝ given by 𝑔(𝑥) = ଵ

௫
, Student B explained that “given an 𝑥, it could be in the form 𝑎 

divided by 𝑏 … But the formula, the assignment does not need that information.” This student is 
attending to elements of the domain (recognizing the set involved and potential representations), 
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but then acknowledging that the function, as written, would not use that information. In contrast, 
for 𝜙:ℚ → ℤ given by 𝜙 ቀ


ቁ = 𝑎 + 𝑏, Student B explained, “the formula in this case, actually 

depends on the representation. Like, depends on how we have written the fraction.” They go on to 
provide an example, ଵ

ଶ
 and ଶ

ସ
 are the same, but do not give the same output (divergence). This 

student is drawing on meaning and coordination between the domain set (ℚ) and the rule in order 
to determine if elements from the domain can have distinct representations and whether the rule, 
attending to function notation input, will act on those representations differently.  

Attending to equivalence in the domain. Other techniques centered the domain to determine 
if an “equivalence” relation existed. This technique involved identifying equivalent elements 
(sameness) and then testing if the rule produced two outputs (divergence). Consider Student A’s 
response to a modular arithmetic task (𝑓: ℤଷ → ℤ given by [𝑎]ଷ ↦ 𝑎): 

Look, zero-three [writing [0]ଷ], I could write it a different way, right? … I could write this 
as six-three [writing [6]ଷ]. Those are the same element in ℤଷ. … If I was gonna do six-
three, your rule tells me that I have to map it to six. … the element zero-three maps to zero, 
six, three, nine … There's a lot of, a lot of outputs, and I'm only allowed to have one output. 

This sort of exploration and attention to specific elements was found not just in the modular 
arithmetic tasks, but also the rational number tasks.  

Everywhere-Definedness 
We now transition to the everywhere-defined property which has received less attention in the 

literature. The results in this section are organized around three main themes that arose from 
students’ activity: containment, existence, and set operation. We begin with a students’ 
prototypical example from their open exploration and then explore more sophisticated techniques 
used by the different students throughout the interviews.  

 

Table 2. Students’ techniques for engaging with well-definedness. 

Technique Focus Method  

Diagram 
 
Attending to Output 
Containment 
Attending to Output 
Existence 
 
Manipulating Sets 
via Extending 
 
Manipulating Sets 
via Subsetting 
 
Manipulating Sets 
via Partitioning 

Canonical 
Technique 

Codomain and Rule 
Focus 

Domain and 
Codomain Focus, 
Rule Secondary 

Domain and 
Codomain Focus, 
Rule Secondary 

Domain and 
Codomain Focus, 
Rule Secondary 

Domain and Rule 
Focus, Codomain 

Secondary 

Identify inputs that do not have corresponding 
outputs 

Determine if outputs assigned by the symbolic rule 
are contained in the proposed codomain 

Determine if symbolic rule assigns an output to 
every input 

 
Operate on domain or codomain by extending the 

set and focusing on a superset 
 

Operate on domain or codomain by subsetting the 
set and focusing on a subset 

 
Subdivide domain into sets where the symbolic rule 

causes known problem areas 
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Canonical technique. The students rarely evoked everywhere-defined while generating 
examples and non-examples. Only one student attended to it when asked to provide an example of 
a non-function. We deemed their approach canonical as it is the type of example students might be 
used to from K-12 settings. As seen below (Figure 2), the student drew a function diagram where 
one element in the domain had no corresponding output in the codomain. They explained: 

I was like “oh, well, could I have no outputs? … Would that be, a part, would that break it 
being a function?” Well, that wouldn't even count because a relation requires that each 
input has at least one output … So, I could make it not a relation by sticking this 𝐹 in here, 
and it has no arrow. Well, then it’s not a function because it’s not a relation. 

 
Figure 2. Student A’s function diagram which fails the everywhere-defined property. 

 Attending to output containment. Several students attended to whether the outputs assigned 
by the rule were contained in the proposed codomain. They viewed the rule as assigning an output 
to each input and focused on whether the resulting outputs were contained in the codomain 
specified. For instance, when dealing with the non-example ℎ: ℤ → ℕ given by ℎ(𝑥) = 𝑥ଷ, Student 
A explained, “this relation has its own meaning, and its meaning, says, something about, this ℕ 
right here, having, to include the answer that the rule would go to.” In more detail, they noted:  

What happens when I plug in negative two? Right? Well then the rule, says that, I have to 
go to negative two cubed … that has to be negative eight, and negative eight does not live 
in ℕ … So I can’t say if it’s a function because it’s a nonsensical thing … Negative two 
lives here, look it’s right there, and it’s telling me to go to negative eight, but negative 
eight, I can’t, I can’t go.  It won’t let me. This, this won’t let me go there.” 

This reflects a two-stage process, attending to the rule and then coordinating with the codomain.  
Attending to output existence. A slightly different technique focused on the correspondence 

not assigning outputs to certain inputs. For example, Student B used this technique to explain why 
ℎ: ℤ → ℕ given by ℎ(𝑥) = 𝑥ଷ was not an example of a function:  

So the first thing that we need to have is, we have to have a relation between stuff in the 
range, the stuff in the domain and the stuff in the range. But, so if I tried to write down an 
ordered pair here, I will not have anything to write for minus one. So, that, we can’t even 
get an ordered pair. So we can’t even get a relation for minus one. 

This student argued that there is no output assigned to −1. The attention is on the domain and 
codomain and the rule either relates the two sets or does not. 

Manipulating sets via extending and subsetting. Two other techniques that arose involve 
operating on the domain or codomain by extending the set or subsetting it. For instance, Student E 
subsetted the codomain when working with the square root function and explained how they 
restricted their focus on a subset, “So if it was negative, it would result in a complex number, but 
when you’re considering the function is mapping from reals to reals, then you have to restrict the 
domain. But it’s still a function.” They continued, “It’s just your domain, the 𝑦 values don’t exist 
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for this particular field that we’re considering. But you defined the mapping as from reals to the 
complex numbers, which means that your domain is unrestricted here.”  

We also observed students extending the domain, as Student E did when discussing the 
function 𝑔: (0,∞) → ℝ given by 𝑔(𝑥) = ଵ

௫
, “since you restricted your domain, this is a function … 

if you would have said that you were just mapping from reals … 𝑥 cannot equal to zero … you do 
not have a valid 𝑦 value for that.” The student extended the domain to explore the issues that arise 
with the correspondence and notes that the domain is not extended in this case so there are no 
issues. In this technique, the students’ focus is on a superset of the specified domain or codomain, 
whereas in the first technique the student focuses on a subset of the proposed domain or codomain.  

Manipulating sets via partitioning. The other related technique involved subdividing the 
domain as a result of a known problem area related to the symbolic form of the rule. Students then 
further made arguments about containment of the outputs. For example, Student C noted about the 
𝑥ଷ non-example:  

So our two sets here is the integers and the natural numbers. And so this, function that we 
wrote here, the 𝑥 cubed, you know, there are some things that “okay, yeah we can put some 
numbers in for 𝑥 and we can get some natural numbers, that's fine.” But there's also some 
numbers, you know, our negative numbers, if we put negative numbers in here, we're not 
getting output values in the natural numbers. 

Here, the student is subdividing the domain into the positive and the negative integers since 
negative integers could have issues with this rule. By exploring the places where possible issues 
might arise with the symbolic rule, students were able to determine whether the provided 
correspondences were or were not functions. 

Discussion 
In this paper, we described different types of techniques that advanced mathematics students 

used to productively engage with the properties of well-defined and everywhere-defined when 
determining if a given correspondence is a function. We found that the students in the study used 
techniques that extended far beyond the canonical techniques that rely primarily on observing 
irregularities (multiple outputs or lack of outputs). For well-defined, students used ideas of 
convention and ambiguity to attend to issues with symbolic rules and naming conventions, and 
sameness and divergences to consider equivalence classes and representations in the codomain and 
domain sets. For everywhere-defined, students used ideas of containment and existence to consider 
implications of certain rules and operated on sets to consider extensions and subsets that may 
complicate the relationship with the rule. This is a key contribution because while researchers had 
previously examined various facets of reasoning productively with functions in mathematics in 
general (e.g., Oehrtman et al., 2008; Tall & Vinner, 1981) and in advanced mathematics in 
particular (e.g., Melhuish et al., 2020; Zandieh, et al., 2017), investigation into well-definedness 
and everywhere-definedness has been rather limited.  

These results can provide a foundation for additional research that could attend to ways 
students might develop these techniques. Future research can elaborate how techniques like the 
ones identified here might influence students’ reasoning about more advanced concepts within the 
context of abstract mathematics where these properties have crucial roles in formal proofs. 
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Two Students’ Meanings for Partial and Directional Derivatives when Constructing Linear 
Approximations: The Cases of Alonzo and John 

 
Zachary S. Bettersworth 

Western Kentucky University 

In this paper, I describe two vignettes of two students’ meanings for partial and directional 
derivatives. The data was collected in the Spring 2023 academic semester from two STEM 
students who had completed multivariable calculus at least two semesters prior to participating 
in the study. The interviews were conducted using task-based, exploratory teaching interviews 
with the goal of creating explanatory models of student thinking to highlight the nuance in their 
meanings for differential multivariable calculus ideas. The two students, Alonzo and John, each 
exhibited novel meanings for partial derivatives that were constructed over several semesters of 
mathematics and physics instruction. These results add to the field’s understanding of students’ 
thinking about a relatively underdeveloped area of the research literature, specifically 
multivariable calculus education.  

Keywords: Students’ meanings, partial derivatives, directional derivatives, multivariable calculus 
education 

Introduction and Literature Review 
Investigations of students thinking about multivariable and vector calculus ideas have been of 

increasing interest to undergraduate mathematics education researchers over the past several 
years (Jones, 2020, 2022; Mhkatshwa, 2021; Moreno-Arotzena et al., 2021). Despite a relative 
lack of mathematics education research literature investigating students’ conceptions of 
multivariable calculus topics (Rasmussen & Wawro, 2017), Multivariable and Vector Calculus 
(MVC) is positioned at an important point in the sequencing of the undergraduate mathematics 
curriculum. Specifically, MVC is typically offered as the third semester of university-level 
Calculus and is sometimes required as a prerequisite course for upper-division mathematics 
courses such as Linear Algebra or Differential Equations. Further, the differential calculus ideas 
normally discussed in a MVC course are often necessary to make sense of certain concepts and 
systems of equations encountered in upper-division physics and engineering courses 
(Bajracharya et al., 2019; Dray & Manogue, 2006; Roundy et al., 2015). To better understand 
how undergraduate STEM majors think about partial and directional derivatives, I conducted a 
set of exploratory interviews in the Spring 2023 semester. In this paper, I share two vignettes 
from this study that highlight nuance across two students’ meanings for partial and directional 
derivatives.  

Theoretical Perspective 
Discussions about students’ meanings for mathematical ideas necessarily elicit recursive 

discussions about what we, as mathematics education researchers, “mean” by meaning.  

The Meaning of “Meaning.” 
Thompson (2013), described the recursive nature of meaning, and the development of 

meaning, in the context of mathematics education in the United States. Thompson provided an 
in-depth analysis of what several philosophers meant by “meaning.” As a genetic epistemologist, 
Piaget appeared to understand “constructing a meaning” as “constructing an understanding,” and 
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appeared highly related in Piaget’s Genetic Epistemology (Glasersfeld, 1995; Montangero & 
Maurice-Naville, 1997; Piaget, 2001). In the context of Piaget’s theory, assimilation is a 
biological notion in which an individual grafts new sensorimotor experiences, or mental activity, 
onto previously constructed mental structures, or schemes. For Piaget, assimilation was the 
source of all schemes, and accommodation was the driving mechanism behind the creation of 
new schemes and differentiations in existing schemes to create new schemes through the process 
of Reflective Abstraction (Glasersfeld, 1991; Piaget, 2001). In the context of the learning theory 
that emerges from adopting Radical Constructivism as a background theory or an 
epistemological stance (Simon, 1995), learning is conceptualized as the process of iterative 
cycles of assimilation and accommodation driving individuals, conceptualized by Radical 
Constructivists as individual cognizers, towards a temporary state of cognitive equilibrium (Cobb 
& Steffe, 1983; Glasersfeld, 1991, 1995). If having an understanding is therefore the result of 
assimilating to a scheme, then the corresponding understanding accompanied by an inference, or 
a set of inferences in the moment, would be someone’s meaning that resulted from the 
assimilation to their scheme(s) (Thompson, 2013; Thompson et al., 2014).  

Students’ Classroom Experiences and the Negotiation of “Shared Meaning.” 
However, the construction of meaning is incomplete without consideration of the conveyance 

of one’s personal meanings to another individual, which will always impact the nature of the 
interaction between two or more people (Blumer, 1986; Thompson, 2013). For instance, in 
classroom contexts, one aspect of a teacher’s role is to act as a brokering agent between the local 
classroom context and the larger community of mathematicians and mathematics students 
(Zandieh et al., 2017). It makes sense that a teacher’s meanings will necessarily impact the 
meanings that students construct, and the negotiation of meaning is often a subtle and difficult-
to-grasp process in settings as dynamic as classrooms (Thompson & Thompson, 1994). As such, 
I decided to first analyze the meanings that students had constructed as a start to building 
second-order models of students thinking about partial and directional derivatives (Cobb & 
Steffe, 1983; Steffe & Thompson, 2000).  

Further, while first-order models of student thinking can inform the initial set of tasks or 
instructional materials, engaging with students’ genuine mathematical realities will result in 
more viable models of student thinking. Therefore, a researcher who adopts Radical 
Constructivism as a background theory takes seriously the notion that knowledge resides in the 
mind of the individual and rejects the notion that the researcher has “direct” access to the 
student’s internal cognitive process, or students’ mathematics. Thus, adopting Radical 
Constructivism implies an acceptance of the building models of student thinking is the best we 
can do as qualitative researchers to build theories about student thinking (Cobb & Steffe, 1983; 
Steffe & Thompson, 2000). Since I chose to adopt Constructivism as a background theory, I 
decided to follow the recommendations of Steffe and Thompson (2000) to engage in exploratory 
teaching with students to get in touch with their mathematical realities, or the mathematics of 
students.  

A Quantitative Meaning for Partial Derivative as a Directional Rate of Change Function 
In the context of MVC instruction, Mhkatshwa (2021) highlighted students’ struggles with 

conceptualizing partial derivatives in non-kinematics contexts using covariational reasoning. 
Mhkatshwa’s results corroborated other research results that students will conceptualize 
derivatives differently depending on the problem context (Jones, 2017; Zandieh, 2000; Zandieh 
& Knapp, 2006). For example, conceptualizing a partial derivative as a directional rate of change 
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function would entail (i) a meaning for constant rate of change as a constant of proportionality 
which multiplicatively compares an amount of variation in the value of a single independent 
quantity and the corresponding amount of variation in the value of the dependent quantity, while 
mentally holding the value of the other independent quantity fixed, and (ii) a meaning for rate of 
change function as a record of the relationship between the value of the independent quantity and 
how quickly the value of the dependent quantity changes due to infinitesimal amounts of 
variation in the value of the independent quantity. Such a meaning would lead to the anticipation 
that the symbolization 𝑓௫(𝑥, 𝑦) = 𝑥ଶ𝑦 where 𝑧 = 𝑓(𝑥, 𝑦) would imply that 𝑓௫(2,1) represents the 
rate of change of the 𝑧 value for any change in 𝑥 away from 𝑥 = 2 where the 𝑦 value is fixed at 
𝑦 = 1. The rate of change would represent an equivalence class of ratios leading to the inference 
that the corresponding change in 𝑧 is 𝑓௫(2,1) times as large as the corresponding change in the 𝑥 
value away from 𝑥 = 2, e.g., Δ𝑧 ≈ 𝑓௫(2,1)Δ𝑥.  

Conceptions of partial and directional derivatives align well with recent instructional 
recommendations of research groups investigating student thinking about partial and directional 
derivatives by explicitly lecturing on 3D slopes (Martínez-Planell et al., 2017; Martínez-Planell 
& Trigueros Gaisman, 2021; McGee & Moore-Russo, 2015; Moore-Russo et al., 2011) and 
tactile manipulatives from the Raising Calculus to the Surface workshops (Wangberg, & Dray, 
2022). The issue is that students’ conceptions of rates of change as slope, e.g., as a graphical 
measure of the slantiness of a line or plane, cannot be assumed to automatically “transfer” to 
non-graphical contexts (Lobato & Siebert, 2002). As such, further research is required to 
investigate students’ quantitative conceptions of partial and directional derivatives as rate of 
change functions whose dependent quantities have an equivalent measure to the 3D slopes of 
tangent planes as described by previously mentioned research groups.  

Methods 
The data presented here emerged from a study designed to highlight the nuance in STEM 

intending students’ meanings for partial and directional derivatives across a set of symbolic, 
graphical, and dynamic geometry tasks (Bettersworth, 2023). The tasks were designed using a 
combination of literature on students’ meanings for partial and directional derivatives (Jones, 
2022; Martínez-Planell et al., 2017; Mhkatshwa, 2021) and my conceptual analysis for the two 
dynamic geometry tasks (Bettersworth, Year), to support students in engaging in the goal 
directed activity of using derivatives to create linear approximations for particular functions in 
graphical and symbolic settings. 

Each student completed a 30-minute screening interview, which included questions about 
interpreting the limit definition for derivatives and partial derivatives in graphical and symbolic 
settings. Alonzo (he/him) and John (he/him) were invited to participate in up to five task-based, 
think-aloud style, exploratory teaching interviews with the goal of producing explanatory models 
of student thinking (Cobb & Steffe, 1983; Goldin, 1997; Steffe & Thompson, 2000). While the 
initial goal was to engage in intuitive and responsive interaction with each student, the 
interviewer would transition to making teacher moves if either student expressed discomfort or 
unfamiliarity with a particular subset of the ideas presented in my tasks or interview protocol. 
The teacher moves made by the teacher-interviewer were based on my a priori conceptual 
analysis for the previously mentioned geometry tasks (Bettersworth, 2021; Thompson, 2008). 

I engaged in retrospective analysis of each interview recording by reviewing each video 
between interviews to determine any areas which required further clarification, or to inform the 
design of future tasks and teaching interventions. After the conclusion of the data collection, I 
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engaged in ongoing analysis of the data through iterative rounds of open coding (Strauss & 
Corbin, 1998). Once an initial set of codes was established, the interview data was reanalyzed 
using quantitative reasoning (Thompson, 2022) as a lens for investigating the degree to which 
each student conceptualized variables (Carlson et al., 2002; Thompson & Carlson, 2017), 
function notation (Oehrtman et al., 2008; Thompson & Carlson, 2017), graphs (David Parr et al., 
2018; Moore & Thompson, 2015), and rates of change (Thompson, 1994) as a record of their 
conception of the relevant quantities within each task.  

Context of Student Data 
Alonzo (he/him) and John (he/him) were selected from a group of five students who 

participated in a set of screening interviews in February 2023. Alonzo is a physics major at a 
large research university in the southwest United States. Alonzo completed the undergraduate 
calculus sequence at a local community college before transferring to the university. John is a 
double major in mathematics and physics at the same university. John completed the 
undergraduate mathematics sequence during high school and commented frequently about his 
positive STEM instructional experiences in high school. Both students were very vocal with their 
thinking and agreed to participate in the exploratory interviews after the completion of their 
individual screening interviews and after signing the approved study participation forms. 

Results 
Alonzo and John demonstrated varied and nuanced meanings for partial and directional 

derivatives that include interrelated conceptions of other MVC ideas (e.g., dot product, cross 
product, basis vectors, and projection) while constructing linear approximations. However, due 
to space limitation, I will share two vignettes related to Alonzo and John’s meanings for partial 
and directional derivatives.  

Vignette 1: Students’ Meanings for Partial Derivatives 
In the first vignette, I highlight Alonzo and John’s meanings for partial derivatives which 

included: (i) curves on the surface in the 𝑥 and 𝑦 direction, (ii) tangent lines to each trace in the 𝑥 
and 𝑦 direction, and (iii) slopes of the lines tangent to the curves on the surface in the 𝑥 and 𝑦 
direction, or contained in a plane parallel to the 𝑥𝑧 or 𝑦𝑧 plane.  

Meaning 1: Partial derivatives are the curves on the surface. Throughout the second and 
third day of Alonzo’s interviews, it appeared that his meaning for partial derivative was evoked 
differently based on whether he anticipated mentally evaluating the partial derivative function for 
a particular set of values for both independent quantities. For instance, as demonstrated in the 
following transcript, when finding the partial derivatives of the function 𝑓(𝑥, 𝑦) = 𝑥𝑦ଶ − 𝑥𝑦 in 
task 2.1.2 (day 2, task 1, question 2), Alonzo interpreted 𝑓௫(𝑥, 𝑦) and 𝑓௬(𝑥, 𝑦) differently than he 
interpreted 𝑓௫(2,1.5) and 𝑓௬(2,1.5) in task 2.1.3. The task statements are pictured in Figure 1(b). 

Alonzo: Okay, find the partial derivative of 𝑥 of the function of 𝑓 and the partial derivative of 
𝑦 with a function of 𝑓. What do these partial derivatives represent? So, find partial. I'll 
start with that, with partial of 𝑥. So, that would be 𝑓 of 𝑥 is equal to 𝑦ଶ − 𝑦, 𝑓 of 𝑦 is 
equal to 2𝑥𝑦 − 𝑥. 

Interviewer: Nice, and then how did you come up with those again? 
Alonzo: So here [points to 𝑓௫], I held everything but the 𝑥 variable is constant, so these 𝑦's are 

just constant in this case, and here [points to 𝑓௬] I held everything but the 𝑥 variables 
everything with the 𝑦 variable is constant. So, the 𝑥 variables were constant.  
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Interviewer: Nice. 
Alonzo: Okay, and then what do these represent? These represent I’d say curves on the 3D 

surface. 
After I asked him to clarify his response, Alonzo sketched the diagram pictured in Figure 

1(a). Alonzo explained that డ
డ௫

 and డ
డ௬

 represented the curves on the surface in the 𝑥 and 𝑦 
direction respectively. This meaning appeared highly associated with his attention to mentally 
fixing the value of one of the independent quantities by treating the variable as a constant when 
differentiating. Relatedly, when interpreting 𝑓௫(2, 1.5) and 𝑓௬(2, 1.5) in task 1.3.3, Alonzo 
explained that once he evaluated the partial derivative function, for example 𝑓௫, at 𝑥 = 2 and 𝑦 =
1.5, 𝜕𝑓/𝜕𝑥 and 𝑓௫(2, 1.5) represented the slope of the tangent line to the curve at the given point 
(as shown in Figure 1(b)) while mentally fixing the value of 𝑦 = 1.5. This example of Alonzo’s 
meaning for partial derivatives is interesting because it highlights how Alonzo evokes different 
aspects of his apparent scheme for partial derivative based on his current goal (either 
differentiating, evaluating the function at a point, or attending to graphical interpretations). 

 
Figure 1: (a) Alonzo’s sketch in task 2.1 accompanying his explanation for task 2.1.2 and 2.1.3. (b) Alonzo’s 

response to task 2.1.2 and 2.1.3 demonstrating his dual meanings for partial derivative notation.  

Meaning 2: Partial derivatives are the slopes of the tangent lines to each curve. John’s 
meaning for partial derivative, on the other hand, consistently included a conception of partial 
derivatives as the slope of the tangent line contained within a plane parallel to either the 𝑥𝑧 or 𝑦𝑧 
plane respectively. When responding to task 2.1.2, John’s meaning for 𝑓௫(𝑥, 𝑦) and 𝑓௬(𝑥, 𝑦) 
included a graphical representation of the surface and slopes, as demonstrated by his gestures 
moving along an imagined surface graph. For John, mentally fixing the value of one of the 
independent quantities corresponded to isolating his attention on the graph of the function to a 
particular cross-section represented by intersecting the surface graph with a plane, as 
demonstrated in the following transcript.  

John: Okay, so what do these represent? Well, if I had a sheet [moves hands along an 
imagined bump which smooths out as he moves hands away from one another] right? 
Then I can take a plane in the 𝑥 direction [chops hand down pointing to his left] and if I 
fix the 𝑥 value [gestures with same hand to the right] then I should be able to find the 
instantaneous slope [moves pinched fingers up and to his right] in the 𝑦 direction. If I 
were to just look at that, that graph right there [brings hands together flattened together 
at the fingertips], then I would be able to figure out what the derivative would be with 
this, what the slope would be [moves right hand along holding left hand fixed flat].  
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While Alonzo’s meaning for 𝑓௫(𝑥, 𝑦) and 𝑓௫(2, 1.5) foregrounded different aspects of his 
more general meaning for partial derivatives, John’s meaning for 𝑓௫(𝑥, 𝑦) and 𝑓௫(2, 1.5) 
remained relatively consistent across all day 2 tasks. 

 
Figure 2: (a) John’s response to tasks 2.1.2 and 2.1.3 demonstrating his consistent meaning for partial derivatives. 

(b) John’s annotation of the surface graph in task 2.2 slope of the tangent line meaning.  

Vignette 2: Student’s Meanings for Directional Derivatives 
Alonzo was not comfortable with the idea of directional derivatives, so we spent most of the 

remainder of his day 2 interview making teacher moves aligning with the meanings for 
directional derivative as outlined in my conceptual analysis. John, however, due to his recent 
Differential Geometry course, had revisited these ideas and exhibited numerous meanings for 
directional derivatives which included: (i) the rate of change of 𝑧 in the 𝑢ො  direction, (ii) the slope 
of the tangent line resulting from intersecting the graph of the surface with a new “shifted” 𝑢𝑧 
plane, and (iii) as the amount of variation in 𝑧 due to change in the 𝑢ො  direction.  

Meaning 1: The directional derivative is the slope of the tangent line to the curve in the 
new, shifted uz plane. As shown in Figure 2(b), John’s meaning for directional derivative 
included a conception of slope in the 𝑢ො  direction. While it may look like John conceived of 
partial and directional derivatives as the slopes of the tangent planes in task 2.2, this was not 
explicitly the case. In task 2.2, John was tasked with sketching the best local, linear 
approximation for the given function at a specific coordinate triple. He then discussed his 
meaning for 𝐷௨ෝ𝑓(2, 1) using the relative size measurement of the horizontal and vertical 
segments he sketched in Figure 2(b). However, John’s meaning for directional derivative is 
better demonstrated in the following excerpt from his work on task 2.1, where he describes his 
construction of the new “shifted” 𝑢𝑧 plane, which is also demonstrated in his response to task 
2.1.5 in Figure 3(a).  

John: Okay, this right here is a directional derivative. And so, if I were to want to find, turn 
my plane now [rotates hands together]. I'm going to turn my plane so that the 𝑢 vector is 
pointing [points thumb in a particular direction] in the direction of my plane, in the 𝑥𝑦 
plane, right? [omitted] And so, this 𝑢 vector lies in here and so beforehand we were 
talking about this plane [sketches 𝑥𝑧 plane] we were talking about this plane right here 
[sketches 𝑦𝑧 plane] and now I want to talk about varying this plane right here [sketches 
plane parallel to the 𝑧 axis containing the 𝑢 vector]. 

Interviewer: Great. 
John: And so, if I take that plane and I move it around however I need to [moves vertically-

held hands around in front of him] and find the directional derivative that's the derivative 
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in that direction [points with pen]. So, it represents the rate of change in the direction of 
u-hat. Yeah, I guess that's probably the easiest way to say that. 

 
Figure 3: (a) John’s response to task 2.1.4 and 2.1.5 demonstrating his slope in the uz plane meaning. (b) John’s 

response to task 2.1.6 demonstrating his meaning for directional derivative as the amount of variation in 𝑧.  

Meaning 2: The directional derivative is the amount of variation in z. While John 
appeared to have a robust meaning of linearization which was highly interrelated to his meaning 
for derivative, it appeared that, at times, John conceptualized rates of change as amounts of 
variation in the value of the dependent quantity, as shown in Figure 3(b). For instance, in task 
2.1.5, John described the directional derivative as “the best approximation you can make if 
you're assuming that it's from here starting at this point [underlines x=2 and y=1.5] and goes to 
these points [underlines x=2.1 and y=1.35].” While it is not uncommon that students 
conceptualize rates of change as amounts of variation in the value of the dependent quantity of 
the function, it does highlight the importance of supporting students in differentiating between 
the concepts of rate of change and variation earlier in their mathematics instruction, as the 
complexity of attending to the values of more than two quantities as they change together, 
vectors and vector notation, and the calculus of MV functions is enough of a cognitive load for 
students without worrying about conflating rates of change with amounts of variation.  

Discussion and Conclusion 
In this paper, I shared two vignettes of two student’s nuanced meanings for partial and 

directional derivatives. These vignettes highlight the importance of ensuring that students 
construct a strong foundational understanding of derivatives as rate of change functions in single 
variable calculus, to support the generalization of their meanings to MVC settings (Harel, 2021; 
Martínez-Planell & Trigueros Gaisman, 2021; Thompson, 2019). Second, these results highlight 
a need to support students in differentiating between amounts of variation and rates of change as 
distinct quantities (Thompson, 2022). This is an important, but difficult, conceptual distinction 
that students struggle to make in single variable calculus settings. Since students’ meanings for 
derivatives of functions appear to influence the meanings they construct in MVC settings 
(Bettersworth, 2023), more research is required to support students in making this distinction.  

Limitations 
The mathematics of students presented here represent second-order models of student 

thinking emerging from the analysis of two students’ responses within the context of exploratory 
teaching interviews. As such it is impossible to claim that these are representative of every 
possible meaning a student might possess or construct. Future studies could attempt to replicate 
or generalize the results presented here with a larger collection of students from a different or 
more varied cross-section of students majoring in STEM.   
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Online Mathematics Tutoring: Where Did We Come From; Where Did We Go? 

 
 Keith Gallagher Nicole Engelke Infante Deborah Moore-Russo 
University of Nebraska Omaha University of Nebraska Omaha University of Oklahoma 

Online mathematics tutoring has become a fixture of the educational landscape in higher 
education. Using Lepper and Woolverton’s (2002) INSPIRE model for effective in-person 
mathematics tutoring as a basis, we developed a codebook to analyze online tutoring, modifying 
existing codes to reflect how they manifest in the online environment and augmenting our 
codebook with behaviors that were not present in the in-person environment. We give a 
description of the current state of online mathematics tutoring and identify methods used by 
online tutors to actively engage students in the learning process. In addition to our results, we 
include a brief description of some challenges we faced as researchers when engaging with 
research on online tutoring and the solutions we reached. 

Keywords: online tutoring, student engagement, affect, equity 

Background 
Access to high-quality online tutoring is an issue of equity. Student utilization of 

mathematics tutoring services has been correlated with an increase in final course grades 
(Byerley et al., 2018; Rickard & Mills, 2018; Xu et al., 2001) and with improvements in 
persistence, retention, and degree completion (Astin, 1993; Pascarella & Terenzini, 1991, 2005; 
Rheinheimer et al., 2010; Rheinheimer & Mann, 2000; Rouche & Snow, 1977). This is critical 
for academically fragile students as individual or small group tutoring allows instruction to be 
tailored to student needs (Anghileri, 2006) while helping students develop mathematical 
identities (Bjorkman & Nickerson, 2019). Peer tutoring centers can also provide a space for at-
risk students to find support and build community, as first-generation college students have 
reported needing to work harder than their peers to attain the same level of achievement, and 
underrepresented minority students have reported that lacking a sense of belonging presented a 
significant challenge to persistence in college (Richardson & Skinner, 1992). Anecdotally, the 
authors have witnessed an increase in the need for high-quality mathematics tutoring among 
undergraduate students at their institutions since the widespread school closures in 2020, an 
effect that was predicted by Chetty et al. (2020) and Kuhfeld et al. (2020).  

Despite its importance, online mathematics tutoring has not been extensively studied. 
Directors of online tutoring centers face myriad decisions related to drop-in vs. appointment-
based tutoring, hours of operation, types of technology to use, tutor training and evaluation, and 
advertisement of services, among others. As funding continues to become a more pressing 
concern for many college tutoring programs (Johns & Mills, 2021), it is essential that tutoring 
center directors are able to make informed decisions about the types and quantity of services to 
offer. The body of literature on online tutoring provides insight into these topics (Johns & Mills, 
2021; Turrentine & MacDonald, 2006), but there has been no comprehensive systematic 
implementation and evaluation of online tutoring practices for undergraduates. For that reason, 
we present a description of online tutoring in college mathematics describing ways that tutors 
engage students in online tutoring and outlining challenges particular to this type of research. 
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Research Questions 
During the advent of the modern era of online tutoring via video conferencing in Spring 

2020, the authors observed that online tutoring had become something like a “drive-thru” 
homework service without the benefits tutoring often offers when in-person, where tutors 
provide emotional and metacognitive support to students, provide community, and act as a 
repository of institutional knowledge (Blackwell et al., 2007; Boaler, 2013; Cohen & Sherman, 
2014; Dweck, 2007; Dweck et al., 2014; Moser et al., 2011). Even during purely mathematical 
tutoring sessions, skilled tutors often place much of the problem solving in the hands of their 
students by asking thought-provoking questions and guiding students to exhibit more 
mathematical habits (Lepper & Woolverton, 2002).  

Our main goal with this research was to find ways to restore these more “meta-mathematical” 
practices in our online tutors and to place more focus on the needs of their students. We began 
with simple observations of online tutoring sessions to gain a deeper understanding of what was 
already taking place in these sessions to determine how best to improve them. This led to the first 
research question we attend to below: What does online mathematics tutoring look like?  

With a general sense of how online tutoring sessions typically operate, we returned to our 
original goal of improving the student experience in online tutoring. Our second research 
question focuses on just one aspect of the online tutoring experience: How are tutors engaging 
students in the online tutoring process?   

Theoretical Framing 
We viewed our data through the lens of Lepper and Woolverton’s (2002) INSPIRE model for 

effective tutoring. This model identifies cognitive, metacognitive, and affective strategies and 
considerations employed by expert tutors. These strategies focus on academic content, but also 
emphasize the importance of study skills and student mindsets. The INSPIRE model, outlined in 
Table 1, categorizes the practices and dispositions of expert tutors into seven categories.   
 

Table 1. INSPIRE Model category descriptions. 
 

Category   Description   
Intelligent   Knowledge of subject matter and pedagogical strategies   
Nurturant   Developing a personal rapport with the tutee   
Socratic   Asking questions to foster dialogue rather than telling   

Progressive   Purposeful selection of problems, systematic feedback, predictable routines   
Indirect   Providing appropriate types and amounts of feedback   

Reflective   Asking the tutee to explain reasoning and generalize   
Encouraging    Promoting confidence, challenge, curiosity, control of the learning  

  
Although the INSPIRE model is a comprehensive summary of the practices of effective tutors, 
the model was developed from observations of tutors operating in the in-person tutoring 
environment. Using the INSPIRE model as an established baseline for “good tutoring,” our work 
expands on these results by describing effective practices in the setting of online tutoring.  

Methods 
Data were collected from Spring 2021 through Spring 2023 at two universities, U1 and U2, 

and consisted of recorded online tutoring sessions. Both universities offered tutoring in two 
modalities: in-person during the day and online via Zoom in the evening. Each semester there 
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were five tutors at each university providing online tutoring and participating in the research 
project. All tutors received tutor training, and those who were tutoring online received training 
specific to the online environment. Additionally, online tutors were provided with a tablet and 
stylus to facilitate writing capabilities in online sessions. All students, regardless of whether they 
were enrolled in in-person or online classes, could attend either in-person or online tutoring.  
U1 Context  

U1 is a research-focused institution in the mid-Atlantic region of the U.S. with a total 
enrollment of about 21,000 undergraduate students. It is approximately 50% residential, with 
mostly freshmen living on campus. U1 has two campuses, A and B, about 2 miles apart. The 
mathematics tutoring center is located on Campus A in the same building as the mathematics 
department and offers drop-in, in-person tutoring. Although most math courses are offered on 
Campus A, only about 9% attend their mathematics class in the same building as the tutoring 
center, and 25% of students enrolled in a math class attend their class on Campus B.     
U2 Context  

U2 is a research-focused institution in the southwest region of the U.S. with a total 
enrollment of about 23,000 undergraduates. It is 29% residential, with most freshmen residing on 
campus. U2’s mathematics tutoring center offers drop-in, in-person tutoring. U2’s tutoring center 
is located on the main floor of the building where about 75% of its math classes are offered and 
where all mathematics instructors’ offices are located.    
Codebook Development  

Four researchers developed and participated in the development of our codebook and the 
analysis of our data. Data analysis began by applying codes that were adapted from Lepper and 
Wolverton’s (2002) INSPIRE model presented above. As their study was focused on in-person 
tutoring sessions, the codes needed to be adapted for the online tutoring environment. The 
codebook underwent several revisions across 11 coding-specific meetings as we began adapting 
the codes to what was present in the data. Table 2 below describes our final broad category 
codes including their relation to the INSPIRE Model categories.    
 

Table 2. Descriptions of coding categories used for study. 
 

Code  Description  
Technology   Technology and digital resources used during tutoring captured with 

subcodes to indicate tutor or student sharing screen, who writes, etc.   
Multiple Students   Tutor work involving multiple students during a session    
Modes of Interaction   Tutor’s interaction modes: artifacts, gesture, inscriptions, and speech   
Tutoring Content 
Knowledge   

How the tutor approaches the student making meaning of the mathematics; 
how the tutor’s understanding of the content drives the tutoring episode; how 
the tutor facilitates learning including how his explanations/questions drive 
the session, degree to which tutor tries to facilitate student understanding; 
related to the Intelligent and Progressive categories   

Tutor Affective Interactions   How the tutor facilitates or drives the tone of the interaction; related to 
Nurturant and Encouraging categories   

Tutor Communicative 
Interactions   

How the tutor facilitates the student being an active participant engaging in 
communication; related to the Socratic, Indirect, and Reflective categories   

Student Pursuit of 
Understanding   

How the student enters the tutoring space; how student expectations drive 
the session; degree to which student seeks understanding   
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Units of Analysis  
When data analysis began, we set the unit of analysis to be the interaction between tutor and 

student on a single problem. Although this fairly granular level of analysis allowed certain 
interactions to be captured, it missed others, especially affective interactions. There was also 
significant repetition in coding since interactions across problems in a setting were extremely 
similar. Hence, we zoomed out and tried using a single student-tutor interaction; using the 
problems they completed together in a single “sitting.” Again, we found that some key 
interactions were overlooked such as how a tutor handles multiple students in the session and 
transitions between students. Thus, we settled on each individual recording that corresponded to 
the tutor’s shift for the day, usually 1 to 2.5 hours, as our unit of analysis.    

Results 
The nature of the tutoring we observed among the tutors in our study has changed 

dramatically since data collection began in Spring 2021. At the inception of our study, online 
mathematics tutoring looked like a “drive-thru” homework service. Student pursuit of 
understanding was often minimal in that students arrived in the online tutoring space with 
questions like “I don’t know how to do number 10 in my homework. How do you do it?” In 
response, tutor communicative interactions were lacking; as the tutors typically solved the 
problem for students, rarely involving the students in the process, and then students would leave 
the tutoring space. There were few affective interactions, and tutors and students were 
scrambling to figure out ways to share their thinking and writing (modes of interaction). This is 
not entirely surprising since tutors were not trained to operate in the online environment, and the 
technology to which tutors had access varied widely. After tutors were given tablets and training 
specific to tutoring mathematics online, the nature of tutoring sessions began to change. In this 
section, we will first discuss what online mathematics tutoring looks like when tutors have 
appropriate technology and training, and then we will identify specific strategies employed by 
tutors to engage students in the tutoring process in the online environment.  

What Online Mathematics Tutoring Looks Like Now 
Tutoring sessions begin differently now than they used to; tutors are more intentional about 

welcoming students into the tutoring space. It is very easy for students to feel like they are being 
ignored when they enter a video conferencing session, and a tutor is already deep in conversation 
with another student. Unless the tutor explicitly acknowledges that students have entered the 
tutoring space, the students may not know if anyone has noticed their presence. Moreover, tutors 
keeping their cameras on is particularly important, as students may not even know if a tutor is 
present when they enter the virtual tutoring space without this visual information.  

Some in-person tutoring practices related to tutor affective interactions have translated well 
to the online environment. For example, when a new student enters the tutoring space while a 
tutor is already working with a student, tutors often ask what class the new student is in as well 
as more details on why they are coming to tutoring. It was common to hear, “What do you need 
help with today?” When the new student’s needs overlap with the topic of the conversation in-
progress, the tutor will invite the new student to work along with them so both students can be 
helped simultaneously. If the new student’s needs differ significantly from what the tutor is 
working on with the first student, the tutor will then bounce between students, giving one student 
a task to work on while discussing progress that has been made by the other student. In this 
manner the tutor communicative interactions are attempting to help more than one student 
actively engage in learning mathematics during the tutoring session.   
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In some cases, we have observed a set of new practices develop that are better suited to the 
online setting than in-person – on the parts of both tutors and students. Students have expressed 
being able to learn by listening to conversations between tutors and students in which they were 
not actively taking part. In person, it is often difficult to listen in on other conversations in the 
tutoring space because of physical distance between students, background noise from other 
conversations, and other factors. Video conferencing software makes it especially easy for 
students to eavesdrop on other conversations. So, for some students, the student pursuit of 
understanding has shifted from attending online tutoring to get help with certain homework 
problems to attending to learn through listening to the conversations of others and piping in with 
questions about another’s tasks.  

Regarding tutor communicative interactions involving multiple students, there is one in-
person tutoring practice that has not been noted in online tutoring. In person, tutors often 
encourage students to sit in pairs or small groups in the tutoring center to work on similar 
problems so they can collaborate while the tutor helps other students. Our data set does not 
contain any instances of students working together while the tutor works with another student. 
To do this online without disrupting others, the tutor would have to place students in a breakout 
room and then move between breakout rooms to check on different students. It is possible that 
our tutors either do not know how or are not comfortable doing this. It is also possible that, in the 
moment, they have decided that the costs in terms of time and efficiency outweigh the benefits.  

Looking at the modes of interaction, gesture usage in the online environment is particularly 
interesting. Deictic (pointing), iconic, and metaphoric gestures (Alibali et al., 2014) are nearly 
absent from online tutoring. Tutors seem to realize that many gestures are hard to see and that 
others cannot identify the referents of their pointing gestures, rendering them ineffective. 
However, we observed a large number of what Alibali et al. (2014) call writing gestures: 
“writing or drawing actions that were integrated with speech in the way that hand gestures are 
typically integrated with speech but that were produced while holding a writing instrument 
(usually chalk or marker) and that involved writing to indicate or illustrate the content of the 
accompanying speech (e.g., underlining an equation on the board while saying ‘this equation’)” 
(p. 76). Tutors became adept at writing or drawing with different colors for the purpose of 
emphasizing or differentiating between different kinds of information, such as text written as part 
of a problem’s solution and text written as an annotation of that solution for their student’s 
edification. As with deictic gestures, tutors seemed to understand that students could not see 
where their stylus was when they were tracing over a figure, as when tracing over the graph of a 
parabola to emphasize its shape, or when repeatedly tracing over a tangent line to emphasize its 
slope. Tutors used color in these instances to call students’ attention to the importance of certain 
features or to add new information to previously drawn figures.  

How Tutors Engage Students in Online Tutoring  
Tutors’ engagement of students in the tutoring process has improved substantially since the 

inception of the modern age of online tutoring in Spring 2020, both in terms of tutor affective 
interactions and tutor communicative interactions. Tutors have improved in their abilities to 
create an inviting space for students to engage with them and with mathematics. Tutors have also 
become much more adept at using technology to facilitate interactions that allow students to 
become active participants in the conversation.  

Tutors have adopted a subtle strategy whose power is often understated in the in-person 
tutoring environment: casual and welcoming conversation. The tutors in our sample began each 
session by intentionally greeting and welcoming students into the online tutoring space and 
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engaging them in casual conversation by asking how they were doing or what their plans were 
for the weekend, commiserating about the challenges of being a student, or discussing events 
taking place around campus. More than just creating a comfortable space, this act seemed to 
prime students for social interaction and set a tone for the tutoring session in which both tutor 
and student were active participants.  

Tutors now engage in much more questioning behavior than in the early days of online 
tutoring. After the tutors welcomed students into the session, the next tutor move was typically to 
ask students what they need help with and to describe the progress made so far, and in some 
cases reenact their thought process up to the point where they encountered difficulty. This 
allowed the tutors to identify what students already understood and to diagnose any 
misconceptions or gaps in understanding. Tutors continued to ask questions throughout their 
sessions, encouraging students to think instead of passively receiving information from tutors. 
When working on procedural tasks such as solving equations, tutors often asked students for 
procedural information with justification (i.e., next algebraic step and why that operation is the 
correct choice) or more conceptual questions related to task at hand. 

Tutors’ increased facility with technology has improved their ability to engage students. One 
thing we noticed after providing tutors with tablets was that, rather than replacing their original 
device with the tablet, they used the tablet in concert with the original device. The purpose of the 
original device shifted to become solely for face-to-face interaction with their students, while the 
tablet was used for writing and drawing. This experience mirrors the in-person tutoring 
environment by allowing tutors the ability to look at the students and their work simultaneously, 
as if they were working side-by-side with a sheet of paper or a whiteboard between them.  

Tablets facilitated our tutors’ ability to act as scribes during sessions in which their 
students were not able to write on their own devices. In the early days of synchronous online 
tutoring, in many cases, neither tutors nor students had a device that would allow them to work 
together in a visible collaborative space. Our tutors’ access to tablets gives them the ability to ask 
students questions and keep a record of their work, allowing students to drive conversations 
about solving algebraic equations and computing derivatives and integrals while tutors simply 
keep track of their work for them.  

Discussion 
We have learned quite a bit about how to make the online mathematics tutoring experience 

better for students. Most importantly, we have learned that, with access to training and tools, 
tutoring practices improve. Since Spring 2020, the tutors in our sample have transitioned from 
simply serving as a quick homework solution service to providing highly interactive learning 
experiences for students. The practices our tutors now demonstrate are well aligned with 
established best practices for in-person tutoring – though more in-depth study is necessary to 
determine a set of best practices for online tutoring. Our work takes a necessary first step toward 
establishing these best practices in the research literature.  

In person, nonverbal communication conveys a substantial amount of information. Through 
communication via video conferencing software, much of this nonverbal information is lost 
(particularly if a person’s camera is turned off) or must be communicated in different ways. As 
we observed in our data, gestures, especially deictic gestures and beat gestures (which are often 
used for emphasis and to direct attention), do not seem to be used as frequently as they are 
during in-person communication. However, among the tutors in our sample, writing gestures 
seem to have supplanted many forms of gesture, and these writing gestures are often 
supplemented with strategic use of color to draw students’ attention.  
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Challenges of Online Mathematics Tutoring Research  
When working on such a multifaceted topic, we, as researchers, experienced more challenges 

than initially anticipated. Issues related to data collection, codebook development, selection of an 
appropriate unit of analysis, and other things arose as our project progressed. We conclude by 
discussing a selection of these problems and our solutions to them. This list is not exhaustive, but 
we present it for the benefit of others who may consider engaging in similar research.  

As noted earlier, we revisited the process of selecting an appropriate unit of analysis several 
times. As we operationalized this decision, we quickly realized that tutoring sessions varied 
greatly in terms of length, with some lasting only 10-15 minutes and others lasting upwards of 2 
hours, and tutor behaviors in the first 10 minutes of a session often look very different than they 
do after an hour. Eventually, we accepted that there was likely no choice that would allow us to 
uniformly capture all the information we wanted, and we settled on our current unit of analysis in 
the interest of advancing the project. Subsequent analyses may call for a different unit.    

Development of an appropriate codebook was also challenging. Using the INSPIRE model as 
an initial guide, we set out to investigate the prevalence of a subset of these practices: the 
Nurturant, Socratic, and Encouraging aspects of the framework. As we coded, we realized that 
the difference in environment (online vs. in-person) introduced behaviors not accounted for by 
the original model (e.g., issues and behaviors related to technology), forcing us to expand the 
codebook. Furthermore, within each of the behaviors coded, we recognized that many were 
present to varying degrees: for some tutors, drawing several pictures per session was 
commonplace, while others might only draw one picture per session; though two tutors might 
both ask questions, one tutor may ask significantly more questions. This caused us to augment 
our codebook in places to include subcodes related to degree – strong, weak, or mixed.  

Conclusions and Future Work 
We have made great strides toward improving the online tutoring experience for students. 

The online tutoring environment has become much more like the in-person environment, and 
students are able to be much more interactive participants in the learning process instead of 
passive recipients of information. Despite our best efforts to make the online environment feel 
like the in-person environment, we must acknowledge that the online environment is not, and 
will not be, the in-person environment, and therefore some differences may persist. With access 
to training and appropriate technology, tutors can adapt the online environment to work just as 
effectively for students as the in-person environment.  

Research into mathematics tutoring is a complicated process (see Johns et al., 2021), and this 
is doubly true for online tutoring. The online environment now seems to be a permanent fixture 
of the educational landscape; we must understand its similarities and differences with in-person 
environments to provide our students with the best learning experience possible.  
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Graduate Record Examination (GRE) scores are commonly required in applications to graduate
school in mathematics. We examine undergraduate mathematics majors’ knowledge of the GRE
and their perceptions of the GRE as a barrier to applying to these programs as part of a larger
project studying student knowledge of the graduate school application process and how it
contributes to lack of diversity in graduate mathematics programs. We found that there was an
association by gender, and that women were less likely to report that they had heard of the GRE
General and Subject Tests. Similarly, women were more likely to report that the GRE tests were a
potential barrier to their decision to apply to graduate mathematics programs.

Keywords: Graduate Record Examination, Graduate School Applications, Gender, Social
Cognitive Career Theory

The field of mathematics lacks diversity; this becomes more pronounced at higher levels of
education. While 50.8% of the U.S. population identify as women and 31.9% as Hispanic/Latinx
or African American (U.S. Census, 2020), in recent years only 39% of mathematics bachelor’s
degrees were earned by women (Golbeck et al., 2019) and 15.9% of mathematics and statistics
(mathematics-only data unavailable) bachelor’s degrees were earned by minoritized1 students
(National Center for Science and Engineering Statistics, 2019). At the highest levels of formal
education, only 24.1% of new mathematics doctoral recipients were women and 7.4% were
minoritized (Golbeck et al., 2020).

Many graduate programs in the U.S. require students to take the Graduate Record
Examination (GRE) General Test, and some programs also require the discipline specific test as
well (e.g. mathematics, physics). Graduate programs often use the GRE to gauge applicants’
preparedness for graduate school. Despite recommendations against this practice from the ETS
(Miller et al., 2019; Posselt, 2016), some programs advertised cut off scores for the Subject and
General Test in order to apply (Miller et al., 2019; Petersen et al., 2018). Other programs weigh
GRE performance heavily to speed up the review process (Petersen et al., 2018; Posselt, 2016).
The frequent use of cut off scores and heavy weighting of the GRE led to investigation into
whether these practices disadvantage certain groups. Studies found that minoritized students and
women score lower on the GRE than their counterparts (Bleske-Rechek & Browne, 2014;
Cochran et al., 2018; Miller et al., 2019; Petersen et al., 2018). In fact, women and minoritized
students were less likely than their peers to score above a program's stated Subject Test
threshold, which reduces their chances of being accepted to a given program (Miller et al., 2019;
Posselt et al., 2019; Verostek et al., 2021; Young & Caballero, 2021). Several other studies found

1 Minoritized is an alternative way of referring to people who are often labeled as
“Underrepresented Minorities” in STEM. This alternative phrasing makes it clear that it is power
imbalances and systematic oppression that cause these groups to be less represented in STEM
(Wingrove-Haugland & McLeod, 2021).
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similar results for the General Test (Petersen et al., 2018; Posselt et al., 2019). Building on these
results, researchers have investigated whether the GRE predicts PhD completion, finding that
GRE performance does not predict PhD completion or success in a PhD program (Miller et al.,
2019; Petersen et al., 2018; Roberts et al., 2021; Wilson et al., 2018). So, while the usefulness of
the GRE in predicting success is uncertain it still often serves as a barrier for women and
minoritized students pursuing graduate education. In this paper we examine data related to what
undergraduate mathematics majors know about the GRE as they prepare to apply to graduate
school.

This study is part of the Undergraduate Knowledge of the Mathematics Graduate School
Application Process (Knowledge-GAP) project which was created to explore undergraduate
mathematics majors’ knowledge about the graduate school application process and differences in
perceived barriers to applying to graduate school across different demographic groups. This
paper focuses on the results related to the GRE. Specifically, we examined differences in
knowledge and perceptions of the GRE between graduate school applicants.

1. What do undergraduate mathematics majors know about the GRE? 
2. Do knowledge and perception of the GRE differ by gender identity of the students?

Theoretical Background
Social Cognitive Career Theory (SCCT) incorporates Tinto’s non-cognitive and contextual

factors known to be important in retaining minoritized students and women and expands them
for use in STEM career choice for these groups (Lent et al., 1994, 2000; Tinto, 1975, 1993,
2007). Tinto’s sense of academic belonging is particularly important for student groups
marginalized in STEM; SCCT refines this aspect and identifies several additional significant
barriers affecting degree interest and completion for minoritized students and women, each of
which are exacerbated by institutionalized environmental barriers at every level of education
(Alexander & Hermann, 2016; Cutright et al., 2015; Estrada et al., 2016). The SCCT model
incorporates gender as an individual characteristic and situates it within a person’s context
specific characteristics. Kanny et al., (2014) discussed SSCT studies focusing on individual
characteristics (e.g. race, ethnicity), structural barriers (e.g., institutional and classroom
climates), psychological factors (self-efficacy or sense of belonging), and family influences
(including gender role socialization and self-concept), and perceptions of STEM careers. Within
the SCCT framework, each of these contextual factors impacts career trajectory by acting as
either a facilitator or a barrier and they may even be the key factors influencing lower
participation of women and minoritized people in STEM careers. For example, racist and sexist
systemic barriers may affect both the entrance and persistence of marginalized groups in STEM
careers by negatively influencing their STEM self-efficacy and their STEM career outcome
expectations.

Within this framework, we view the GRE as representative of a structural barrier for some
groups of students wishing to enroll in graduate programs in mathematics. A recent study of
mathematics graduate programs at three large research universities reported that only 18%, 15%,
and 12% of applicants were women, respectively (Gevertz & Wares, 2020). Given the
widespread use of the GRE as an application requirement, gender differences in knowledge of
and perception of the GRE as a barrier to applying has the potential to impact the demographics
of mathematics graduate education.

26th Annual Conference on Research in Undergraduate Mathematics Education 783



Methods

Instrument Development
The research team created a survey based, in part, on a survey used to determine

undergraduate physics majors’ interest in graduate school and how important they believed
different aspects of the application process were (Chari & Potvin, 2019). Nineteen survey items
were adapted from that instrument, though a notable difference in our survey was that we
provided an opportunity for participants to express their lack of knowledge about different parts
of the application process. The final survey had 57 items separated into four categories: (a)
knowledge about different aspects of the application process, (b) barriers to applying, (c) interest
in graduate school and what students look for in programs they apply to, and (d) demographic
questions. Most questions were Likert scale or multiple choice, though four were open-ended
and some of the multiple-choice items allowed participants to type in a text response. The full
survey is available at this link: https://researchrepository.wvu.edu/faculty_publications/3291/

Data Collection 
To ensure broad participation, the research team sent the survey to department chairs and

undergraduate program directors at all undergraduate mathematics programs at colleges and
universities in the U.S. with at least 1000 students total (N = 985). We asked programs to send
the survey to all undergraduate mathematics majors. Initial emails were sent Fall 2022 through
Spring 2023, via Qualtrics, and follow-up emails were sent to encourage a greater response rate.
In addition to direct emails, the research team also posted the survey on social media, listservs,
and in newsletters for several professional organizations in mathematics.

Data Analysis 
We received 1090 responses from students at 181 colleges and universities, with 519

complete responses. Note that students could miss part of a question and still have their response
marked as complete. Thus, the Ns for different items are not always the same. Statistical tests
were run in IBM SPSS.

To address our research questions, we analyzed responses to five survey items. Three were
binary response items asking participants about the following aspects of both the GRE General
Test and Mathematics Subject Test: if they had previously heard of, or taken, the tests; if they
knew about the different sections on the test, testing modality options, testing frequency and
locations, costs associated with taking exams and having scores sent to institutions, and
availability of fee waiver codes. The final two were the Likert scale items: To what extent are the
following factors a potential barrier to your pursuit of graduate school? and How important are
the following factors in choosing which schools you apply to? Both items were adapted for our
study from Chari and Potvin (2019). The first item had 17 sub-item topics, rated on a scale of 1
(not at all a barrier) to 5 (very significant barrier). The second item had 15 sub-item topics, rated
on a scale of 1 (not at all important) to 5 (very important). For this paper we only analyze
responses to the seven sub-item topics related to the GRE.

Results

Participant Demographics 
Table 1 shows demographics of participants with complete responses. Participants were able

to select more than one option for gender, so the total adds up to more than 100%.
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Table 1. Self-identified Gender.

What is your gender?

Gender
Man

Woman
Genderqueer or Non-Binary

Agender
Transgender

A gender not listed
Prefer not to say

Total

N
251
226
41
12
21
2
8

519

Percentage
48.4%
43.5%
7.9%
2.3%
4.0%
0.4%
1.5%

Knowledge of the GRE
Overall participant knowledge of the GRE was incomplete at best. While a majority of the

participants (379/518, or 73.2%) had heard of the test before, only half (270/518, or 52.1%) had
heard of the GRE Mathematics Subject Test. More worryingly, when asking participants who had
heard of the GRE what specifically they knew about the exam, there were large gaps in specific
knowledge about the exam. Of the 346 participants who said they had heard of the GRE General
Test before, only about half (50.7%) knew that the test had three sections: Verbal Reasoning,
Quantitative Reasoning, and Analytical Writing. Only about half of those participants (168/346,
or 48.6%) knew that the test is offered with regular frequency, and that it is possible to take it
from home. For questions pertaining to the cost of the exam, only a third of participants
(115/346, or 33.2%) knew the cost of the test ($220). Just over a fifth of participants (74/345, or
21.4%) knew that it costs $30 to send GRE scores to a graduate program after taking the test and
just over a fifth (79/345, or 22.9%) knew that fee waivers were available for the GRE.

For the GRE Mathematics Subject Test, of the 267 participants who said they had heard of
the test before, only about a third (96/267, or 36.0%) knew that the test is only available three
times a year. About 40% (107/267) knew that at the time the survey was administered, the test
was not available to take from home and you had to travel to a testing center to take it. Finally,
only 30.5% (81/266) knew the cost of the test ($150).

It is necessary to mention that these results are for a subset of the larger sample. For example,
36% of participants who had heard of the Mathematics Subject Test knew how often the tests are
available, but only 52% of participants overall had heard of the Mathematics Subject Test.
Therefore, the percentage of participants overall who knew how often the Mathematics Subject
GRE is offered was only 96/518 = 18.5%. In addition, only a small number of participants had
taken either of the two GRE tests before taking the survey: 50/518, or 9.7%, for the General Test
and 25/518, or 4.8%, for the GRE Mathematics Subject Test.

Based on the established literature on gender and GRE performance we tested if there was a
difference in knowledge or perception of the GRE as a barrier by participant gender. One issue
we encountered in our data analysis was that our participants were not limited to a gender binary
like most previous studies of the GRE. To get results comparable to previous studies participants
were separated into two groups based on their answer to the survey item asking for their gender.
Participants who said they were women, regardless of whether they selected any additional
gender identities were labeled as “Women” for our analysis. This includes women who are also
cisgender, agender, transgender, and/or non-binary. Similarly, participants who did not select the
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women option were labeled as “non-women”. We use this categorization to have results
comparable to studies that had a binary definition of gender, while also being inclusive of our
participants’ other identities. We found that there was an association by gender, women were less
likely to say they had heard of the GRE General Test before taking the survey χ2(1, N = 518,) =
13.47, p = <.001 (V = .16). Similarly, there was an association by gender, and women were less
likely to say they had heard of the GRE Mathematics Subject Test before taking the survey χ2(1,
N = 518) = 14.95, p = < .001 (V = .17). Both results had a small effect size. There were no
associations by gender for the other survey items about knowledge of the GRE (All p’s > .05).

Perception of the GRE 
We report here on the GRE-related sub-item topics for the two Likert scale items, five for the

first item and two for the second item. A one-way analysis of variance (ANOVA) was not
employed because for 3 of the 7 sub-item topics the Homogeneity of Variance assumption was
violated. Thus, for ease of comparison and consistency, Mann-Whitney U tests were performed
using the women/non-women variables for all sub-item topics. Table 2 contains Mann-Whitney
U test results for the women/non-women groups for the 519 participants who responded to the
selected sub-item topics from the first item. The output of a Mann-Whitney U test is a Z value on
a normal distribution. The Z values in Table 2 indicate that the women group has greater means
than the non-women group. These results show there is a statistically significant difference (all
p’s < .05) between the women/non-women groups in the responses for all five sub-item topics. In
all cases, women were more likely to view each sub-item topic as a potential barrier to their
pursuit of graduate school than their peers. All these results had a small effect size (all r’s
between 0.1 and 0.3).

Table 2. Mann-Whitney U test results for selected items for the question “To what extent are the following factors a
potential barrier to your pursuit of graduate school?” using the women/non-women variable.

Item

The need to do well on
the GRE General Test

The need to do well on
the GRE Mathematics
Subject Test

Paying for the General
GRE Test ($220)

Paying for the GRE
Mathematics Subject Test
($150)

Sending GRE scores to
programs ($30 per
program)

Group

Women
Non-Women

Women
Non-Women

Women
Non-Women

Women
Non-Women

Women
Non-Women

N

226
291

226
291

225
290

225
292

224
292

Mea
n

3.08
2.57

3.37
2.75

3.10
2.57

3.05
2.51

2.84
2.43

Mean Rank

295.28
230.82

301.06
226.33

289.42
233.62

291.35
234.07

283.58
239.26

U

24684

23376.5

25556

25571

27086.5

Z

-5.01

-5.80

-4.32

-4.42

-3.44

p

<.00
1

<.00
1

<.00
1

<.00
1

r

0.22

0.26

0.19

0.19

0.15
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<.00
1

For the second survey item, “How important are the following factors in choosing which
schools you apply to?”, it should be noted that not all participants saw this item. Prior to this,
survey participants were asked to state their interest in graduate school in mathematics. Only
participants who responded with anything other than “Not interested in graduate school in
mathematics” saw this item. Table 3 contains Mann-Whitney U test results for the
women/non-women groups for the 438 participants who responded to the selected sub-item
topics from the second survey item. The Z values in Table 3 indicate that the women group have
greater means than the non-women group. Results show a statistically significant difference (all
p’s < .05) between the women/non-women groups in the responses for all five sub-item topics.
The women were more likely to view each sub-item topic as an important factor in choosing
which school to apply to than their peers. All results had a small effect size (all r’s between 0.1
and 0.3). These Mann-Whitney U test results show that women are more concerned about all
aspects of the GRE compared to their peers.

Table 3. This table provides Mann-Whitney U test results for selected items for the question “How important are the
following factors in choosing which schools you apply to?” using the women/non-women variable.

Item

No GRE General Test
requirement or no minimum
score requirement

No GRE Mathematics Subject
Test requirement or no minimum
score requirement

Group

Women
Non-women

Women
Non-Women

N

184
253

184
254

Mean

2.83
2.46

2.99
2.47

Mean
Rank

240.37
203.46

248.55
198.45

U

19344.5

18022.5

Z

-3.10

-4.19

p

.002

<.00
1

r

0.15

0.20

Discussion
Overall, we found that while students may have heard of the GRE, they rarely had detailed

knowledge of the exam, including where and when it is offered, and its associated costs. Those
last two points are especially problematic; if students miss the deadline or do not have the
finances to afford the exam, they cannot apply to any program that requires GRE scores. The
financial barrier is particularly a problem, since minoritized students often come from lower
income families than their peers, and thus are more likely to have the cost of the GRE serve as a
barrier to applying to graduate school (McEldowney et al., 2024). Since this survey was
conducted, the Educational Testing Service recently changed many aspects of how they offer
both the GRE General and Subject Tests, including offering them remotely (Educational Testing
Service, 2023a, 2023b). This did not impact our results since these changes occurred after data
collection was completed.

We contribute to the literature on gender differences in GRE test scores by finding gender
differences in knowledge and perception of the GRE. Women were less likely to have heard of
either GRE test, but for those who had heard of the exam their knowledge of the exams was not
statistically different from other participants. More research is needed to determine the cause of
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this observed difference. As for perception of the GRE, women were more likely to state that the
GRE, both the General Test and Mathematics Subject Test, were barriers to applying to graduate
school. Women were also more likely to favor applying to programs with less rigorous GRE
requirements. Given the established literature showing that womens’ average scores are lower
than their peers on the GRE, which disadvantages them in the application process,
(Bleske-Rechek & Browne, 2014; Miller et al., 2019; Petersen et al., 2018) it is not surprising
that women would view these exams negatively. Our results demonstrate that the GRE acts as an
institutionalized environmental barrier, as proposed by SCCT, that affects degree interest and
interest in applying to programs is perceived differently depending on the gender of the
participant.

A recurring part of the conversation surrounding the GRE is whether it should be part of the
graduate admissions process. During the height of the pandemic many programs dropped the
GRE due to unavailability. Even now many programs have decided to continue not requiring the
GRE (Google, n.d.). Many disciplines have dropped the subject GRE requirement altogether to
the point where the ETS now only offers three subject tests: Mathematics, Physics and
Psychology. There are very few studies of the Mathematics Subject GRE, though there is
research on the reliability and impact of the Physics Subject Test (Miller et al., 2019, Young &
Caballero, 2021). We challenge the research community to study the Mathematics Subject GRE
to this level of rigor.

An important consideration we had for this paper was how to utilize the provided
demographic information of our participants. Most existing research on the GRE assumes a
gender binary while our results give a more honest and interesting reflection of gender among
American college students. To tie our work back to the established literature we decided to use
the women/non-women categories. While this categorization is imperfect, it was the most ethical
solution we found to run statistically meaningful tests. That said, we call on future researchers to
use gender beyond the binary in their quantitative research. New formulations and solutions will
be needed to do this well, but we owe that to our participants.
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Representations of the Derivative Valued by Post-Secondary Teachers 
 

Michael Gundlach 
Laramie County School District #1 

Introductory calculus classes often serve as prerequisite classes for science and engineering 
majors. However, some researchers have questioned whether calculus courses, as currently 
taught, are filtering students appropriately (Black & Hernandez-Martinez, 2016; Williams, 
2012; Williams & Choudry, 2016). Central to introductory calculus classes is the derivative 
(Kidron, 2019). Scholars have discussed the ways in which representations of the derivative 
differ between disciplines (Dray et al., 2019), but there has been no formal research 
investigating the representations of the derivative valued by teachers of calculus and teachers of 
subsequent non-mathematics classes. This study, through a new survey instrument, determined 
there are significant differences between the representations of the derivative valued by various 
post-secondary teachers in majors requiring calculus. By analyzing these differences, 
recommendations can be made to improve calculus as a preparatory course for non-mathematics 
majors. 

Keywords: calculus, STEM education, derivatives, gateway courses 

In a popular comedy sketch, a mad scientist reveals his latest depraved invention: junior high 
school (Studio C, 2014). As part of his invention, the mad scientist forces a student to take 
algebra and geometry. When asked by his assistant if a student will at least use what he learns 
later in life, the mad scientist replies, “Yes…if he ever teaches geometry or algebra” (Studio C, 
2014, 1:33). In horror, his assistant asks, “You mean they exist only for themselves?” (Studio C, 
2014, 1:42). Based on the laughter from the live studio audience in the video, these comments 
resonated with the audience’s experiences. 

Research has repeatedly found that students share the belief that mathematics is not valuable 
to them in their future personal or professional lives (Black & Hernandez-Martinez, 2016; Brown 
et al., 2008; Di Martino, 2019; Hernandez-Martinez & Vos, 2018; Rellensmann & Schukajlow, 
2017; van der Wal et al., 2017; Vos, 2018). This feeling is encapsulated by a study that found a 
group of graduates from engineering programs “perceived their mathematics courses as islands, 
with no relation to the rest of their education” (van der Wal et al., 2017, p. S98). Mathematics 
classes existing only for themselves is concerning because mathematics classes, especially 
calculus, serve as filters for many science and engineering majors (Bressoud et al., 2013; 2015). 
As noted by Bressoud et al. (2015),  

At least one term of calculus is required for almost all STEM majors. For too many 
students, this requirement is either an insurmountable obstacle or—more subtly—a great 
discourager from the pursuit of fields that build upon the insights of mathematics. (p. v) 

There have been calls for calculus to serve as a pump for science and engineering majors, rather 
than a filter (Bressoud et al., 2015). However, as noted by Bressoud et al., there seems to be little 
evidence of this change taking place despite multiple efforts to reform calculus classes. 

Purpose of the Study 
The purpose of this study was to gather quantitative data to determine the representations of 

the derivative favored by teachers of calculus classes as well as the representations favored by 
teachers of classes in majors requiring calculus. The goal of this comparison is to make 
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recommendations for improving the current content taught in calculus I. As noted by Dray et al. 
(2019), students have struggled with representations of the derivative used in upper-level physics 
classes that are not emphasized in calculus I classes. Since Dray et al.’s report was developed 
using anecdotal data from the teaching experiences of the researchers, this study aims to generate 
more general data that can be analyzed to determine which representations need to be 
emphasized more in general calculus I classes. Additionally, the focus of Dray et al. was on 
physics students. However, it is estimated that only about 4% of calculus I students are pursuing 
physical science degrees, which includes both physics and chemistry degrees (Bressoud et al., 
2015). This study cast a wider net and surveyed teachers from faculty in multiple disciplines to 
better determine which representations should be emphasized to better serve the students taking 
mainstream calculus I. 

Research Question 
This study sought to answer the following research question: Is there a difference in the value 

post-secondary teachers of calculus and teachers of non-mathematics classes requiring calculus 
ascribe to different representations of the derivative? 

This survey was distributed to post-secondary faculty at colleges in the state of Wyoming. 
Since Wyoming has only one public university and seven community colleges, surveying faculty 
at all institutions was a feasible project. Additionally, Wyoming law empowers the state 
community college commission to establish common course numbering across undergraduate 
courses throughout the state (Common College Transcripts, 2018). This made surveying teachers 
of common classes across the state of Wyoming easy and efficient, as the course numbering and 
most prerequisites are the same across the state. 

Significance of this Study 
Based on the work of Dray et al. (2019), I suspected that numerical and experimental 

representations of the derivative would be more highly valued by teachers of non-mathematics 
classes than by mathematics faculty. Additionally, it is likely these will be valued more than 
other representations by teachers of non-mathematics classes. As there have been multiple stated 
concerns with calculus instruction and curriculum as they currently stand (e.g., Bressoud, 2021; 
Bressoud et al., 2015, Dray et al., 2019; Tallman et al., 2021; Teague, 2017), this study can help 
determine how mainstream calculus I curricula can be improved to better prepare students for 
future non-mathematics classes. Specifically, this study can help determine how calculus I 
instruction can be made more authentic, to potentially better help prepare professionals to use 
calculus concepts in their fields. 

Calculus: A Problematic Filter 
There are many potential reasons for this failure to reform calculus classes. One concern 

postulated by researchers is that mathematics classes privilege those who know the “rules of the 
game” of math education rather than prepare students to use math outside of math class (Black & 
Hernandez-Martinez, 2016; Williams, 2012; Williams & Choudry, 2016). This suggests that 
proficiency in mathematics classes, as evidenced by good grades, is not of value for use in future 
classes or careers, but as a form of exchange that can be leveraged to enter competitive fields or 
prestigious post-secondary institutions (Williams, 2012). This form of exchange has been dubbed 
“mathematics capital” (Williams, 2012). 

This notion of mathematics classes acting more as producers of mathematical capital rather 
than transferable skill is concerning considering results found by Tallman et al. (2021). In their 
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study, they reviewed 254 calculus final exams to gain a better understanding of how calculus 
students were assessed. Tallman et al. found that the calculus final exams they reviewed did not 
generally assess students’ understanding of calculus concepts, but their abilities to use 
mathematical procedures to answer particular types of calculus questions. Additionally, few 
questions in the final exams allowed students to engage meaningfully with real-world contexts. 

The results found by Tallman et al. (2021) along with Williams’ (2012) notion of 
mathematical capital suggest that calculus classes are not acting as a pump but as a filter that 
does not filter for attributes that help students succeed in science and engineering degrees. Some 
suggest this may be a problem as the number of engineering graduates has not seen real gains 
over the last three decades despite calls from political and advocacy groups for more students to 
obtain such degrees (Bressoud et al., 2017). Additionally, there are concerns that mathematics 
classes as they currently stand reinforce existing inequities rather than make it possible for all 
students, including those from marginalized populations, to succeed in science and engineering 
careers (Williams, 2012; Williams & Choudry, 2016). As students from marginalized 
populations are generally more likely to struggle in calculus classes (Bressoud et al., 2015), the 
filtering done by calculus classes, in their current form, presents serious concerns for educational 
equity. 

These issues show that mainstream calculus is in need of improvement. For such 
improvement to happen, the content of calculus classes must be better examined. Some science 
education researchers, in conjunction with math education researchers, have pointed out that 
mathematicians and scientists often utilize different representations and understandings of 
important calculus concepts (Dray & Manogue, 2005; Dray et al., 2019). As noted by Dray and 
Manogue (2005), “The way mathematicians view and teach mathematics, and the way 
mathematics is used by physicists and other scientists, are completely different; we speak 
different languages, or at least different dialects” (p. 2). This suggests that calculus content 
should focus on future applications of calculus. However, more information is needed to 
determine which applications should be included in an introductory calculus class. This study 
aimed to begin the process of determining which applications should be included through a 
quantitative survey. 

Theoretical Framework: Multiple Representations of the Derivative 
Since mainstream calculus focuses mostly on using the derivative, this study will examine 

how the derivative is represented by calculus teachers, as well as by teachers of STEM classes. 
As noted previously, researchers have observed differences in the ways scientists and 
mathematicians use and discuss derivatives (Dray et al., 2019; Dray & Manogue, 2005). 
Although the formal definition of the derivative is given using limits, this definition is often not 
directly used when determining a derivative from real world data. Roundy et al. (2015) saw this 
when they asked groups of mathematicians, physicists, and engineers to find the derivative of a 
certain rate of change in a mechanical machine created for the purpose of the case study. The 
physicists and engineers found approximations of the derivative by looking at ratios of small 
changes in the input and output variables and were thus able to find “good enough” 
approximations of the derivative to the point they described their answers as “the derivative” 
rather than as an approximation of the derivative. However, the mathematicians were unable to 
find a derivative and were unsure of the approximation they were able to generate. 

In later work, Dray et al. (2019) described this issue seen by Roundy et al. (2015) as an 
overreliance, by the mathematicians, on the limit definition of the derivative. Along with their 
firsthand experiences in working with derivatives in their research and in upper-level physics 
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classes, Dray et al. (2019) used this difference between the results of the mathematicians and the 
physicists and engineers in Roundy et al. (2015) to develop the notion of a “thick derivative.” A 
“thick derivative” is a derivative function or value developed using numerical data to 
approximate the formal limit process. Dray et al. (2019) postulated that this notion of a thick 
derivative is used by scientists and engineers in their work as an approximation of the limit 
definition of the derivative. 

To operationalize these differences, Dray et al. (2019) created a framework describing the 
multiple representations of the derivative they encountered in their professional work. This 
framework was an extension of a framework developed by Zandieh (2000). The framework of 
Dray et al. (2019) lists five main representations of the derivative: (a) graphical, (b) verbal, (c) 
symbolic, (d) numerical, and (e) physical. These representations are all considered process-
objects (Sfard, 1991) that begin as ratios that are then reified into limits and functions. This 
framework was used to help determine which of these five primary representations of the 
derivative are favored by post-secondary teachers in majors that require students to take calculus. 

Methods 
For this study, a quantitative, correlational study design was used (Field, 2018). Correlational 

studies are used to determine if there is a relationship between sets of independent and dependent 
variables. In this study, I specifically examined the relationship between the subject domain of a 
teacher and the value they ascribe to different representations of the derivative. As such, I 
considered the subject domain of collegiate teachers surveyed as the independent variable for 
this study. This independent variable is categorical. There are six dependent variables, each 
representing the value a teacher places on a certain representation of the derivative. These 
variables follow from the representations of the derivative described by Dray et al. (2019). 
Although Dray et al. describe only five representations of the derivative, the graphical, verbal, 
symbolic, numerical, and experimental representations, they do divide their symbolic 
representation into two parts. There is the symbolic representation of using a limit to determine a 
derivative and the symbolic representation of using derivative rules to find derivatives of known 
functions. Since derivative rules play a key role in calculus I classes (Tallman et al., 2021), I 
considered the limit representation of the derivative and derivative rules used to find derivative 
functions separately within this study. This resulted in a survey examining six representations, 
the graphical, verbal, symbolic, rules, numerical, and experimental representations. As the value 
respondents ascribe to each representation will be determined using Likert-scale questions, the 
value respondents assign to each variable can be considered scale variables (Field, 2018). 

Data Analysis 
Since the data collected consisted of one categorical independent variable and multiple 

dependent scale variables, data was analyzed using a multivariable analysis of variance 
(MANOVA) (Fields, 2018; Huck, 2012). This analysis is appropriate as it prevents possible type 
I errors that may result from repeated uses of an analysis of variance procedure for each separate 
dependent variable (Fields, 2018). Additionally, MANOVA can be used to reveal possible 
relationships between the dependent variables. To further analyze differences for the 
representations between individual subject areas, I used Tukey’s post-hoc test. 

To help measure the reliability of the items used to assess the value ascribed to each 
representation of the derivative, Cronbach’s alpha was calculated for each set of items used to 
create the normalized representation scores (Fields, 2018; Huck, 2012). All analyses were carried 
out using SPSS. 
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Participants 
For this study, I surveyed Wyoming public community college and university faculty who 

teach in a major that includes calculus as a requirement. Of those who were sent the survey, 
seventy responded and completed the survey. 

Although surveying teachers within the state of Wyoming does not strictly represent a 
random sample, this sample is still representative of post-secondary teachers across the country. 
All colleges in the state of Wyoming are accredited by a national accrediting body (Higher 
Learning Commission, 2019), and thus educational requirements for these positions are the same 
as at other institutions in the United States. These colleges recruit faculty from all around the 
country, with some faculty even coming from international sources.  

Participant anonymity was protected by collecting no personally identifying information. 
Furthermore, only I had access to the data on a password-protected cloud storage system. This 
research was also protected by having the study approved by the institutional review board of the 
University of Wyoming. 

Data Sources 
Respondents participated in this study by completing a survey I created. This survey was 

created by designing Likert-scale items based on the framework of Dray and colleagues (2019) 
previously described. Multiple items were created for each conception described in the 
framework. These questions were items to elicit respondents’ values of each process-object layer 
for each conception. For each item, respondents were asked to share how important they thought 
various concepts were for students to understand at the end of an introductory calculus class. For 
example, respondents were asked how important it was for students to memorize basic derivative 
rules. For each statement, respondents could rank the statement, “Not at all important,” “Slightly 
important,” “Moderately important,” “Very important,” or “Extremely important.” 

I created this survey based on Dray and colleagues (2019) framework due to its suitability as 
a framework of the mathematical knowledge to teach derivatives, as discussed in the literature 
review. Since an overwhelming majority of calculus students have been found to declare non-
mathematics majors (Bressoud, 2015), this framework is especially well-suited to assess the 
value non-mathematics teachers place on different conceptions of the derivative.  

Results 
As noted earlier, this survey had 70 responses. Participant breakdown by subject area is as 

follows: (a) Mathematics: 22 respondents; (b) Biology: 6 respondents; (c) Chemistry and 
physics: 8 respondents; (d) Engineering and computer science: 9 respondents; and (e) other: 25 
respondents. 

Reliability Results 
Each subscale of this survey, the graphical, verbal, symbolic, rules, numerical, and 

experimental subscales, had high reliability scores. Additionally, to meet the assumptions of 
MANOVA, the graphical and verbal subscales were combined. This new, larger subscale also 
had high reliability scores. This resulted in five representations analyzed as part of the 
MANOVA: the graphical & verbal representation, the symbolic representation, the rules 
representation, the numerical representation, and the experimental representation. Each of these 
representations had a reliability score of 0.891 or better. 
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Test Results 
Based on Pillai’s trace, there was a significant association of subject area with the value 

ascribed to different representations of the derivative, 𝑉 = 0.758, 𝐹(20,256) = 2.690, 𝑝 <
0.001. For each representation, the mathematicians yielded the highest value for their mean 
score. In other words, mathematicians in this study valued each representation more than their 
counterparts. Separate univariate tests for each representation yielded significant associations 
within each representation as well. Tukey’s Post-Hoc test was used to consider subject areas 
pairwise and determine which had significantly different values ascribed to the representations. 
Most notably, mathematics and biology teachers differed significantly on the graphical & verbal 
and rules representation (𝑝 = 0.018 and 𝑝 = 0.042 respectively), with the mathematicians 
valuing each representation more than their biologist counterparts. 

Discussion 
Assuming the differences found in the values ascribed to different representations found in 

this survey are accurate, there are two main ways to address these differences to improve 
calculus I classes; curricular adjustments and creating calculus classes specifically for certain 
majors, often termed “siloed classes” (Ellis et al., 2021; Luque et al., 2022; Voigt et al., 2020).  

Curricular Adjustments 
A call to adjust the curriculum of calculus I is not new. There have been attempts to reduce 

the calculus curriculum in the past to focus less on rote skills and more on relational 
understanding (Douglas, 1986). More recent research, however, indicate that these reductions 
have not yet occurred (Jones & Watson, 2018; Tallman et al., 2021). Despite this lack of 
reduction, researchers involved in more recent studies still expressed a desire to reduce and focus 
the calculus curriculum. Jones and Watson (2018) suggested focusing on Zandieh’s (2000) 
version of the derivative representation framework to help focus instruction, while Tallman et al. 
(2021) suggested that calculus exams should assess relational understanding of the derivative 
rather than solving specific types of calculus problems.  

The results from this study lend additional credence to the suggestions of Jones and Watson 
(2018) and Tallman et al. (2021). Scholars often suggest lessening the emphasis on complex uses 
of rote procedures, especially with the advent of computer technology that can complete these 
procedures more accurately and efficiently than humans (Douglas, 1986; Gravemeijer et al., 
2017; Tallman et al., 2021).  

As mentioned before, non-mathematicians do not view such procedures as unimportant; they 
merely view them as less important. These data do not suggest a complete removal of rote 
procedures from calculus I curricula; instead, they suggest a partial removal of such material 
only. Furthermore, research literature suggests that building fluency with these procedures 
through relational understanding of these procedures, rather than through extensive practice of 
complex combinations of such procedures, can help ensure future professionals can effectively 
use technology to assist them with such procedures in the future (Gravemeijer et al., 2017; Hoyle 
et al., 2013; Tallman et al., 2021; van der Wal et al., 2017).  

Siloed Classes 
The significant difference in the rules category between mathematicians and biologists is 

both striking and practically important. As a reminder, the mathematicians reported valuing the 
rules category more than the biologists, with a difference of 1.5076. These differences between 
the biology and mathematics teachers is made practically important by the number of students 
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from these majors in mainstream calculus. Based on a large national survey, about 30% of 
calculus I students are biology or life science majors (Bressoud et al., 2015). This group is 
second only to engineering majors, who make up about 31% of calculus I students. The group 
with the next highest percentage is business majors, with 7% of calculus I students. Thus, this 
disparity where biologists value the Rules category much less than mathematicians, while the 
engineers answer quite similarly to the mathematicians in that category, leads to a conundrum 
that is difficult to solve in a class serving both populations. 

One possible solution to this conundrum is to create siloed calculus classes (Ellis et al., 2021; 
Klingbeil & Bourne, 2013; Luque et al., 2022; Voigt et al., 2020). These calculus classes are 
variations on the traditional calculus curriculum that focus on using calculus in a particular 
subject area. There are many types of siloed classes, but one that has received significant 
attention is a calculus class for future biologists and other life scientists. These commonly 
referenced siloed classes parallel the large numbers of such students in calculus I classes as well 
as the results of this study.  

Research into siloed classes has shown such classes can lead to lower failure rates in calculus 
classes, especially those for biology and life science majors (Luque et al., 2022; Voigt et al., 
2020). Siloed classes overall seem to have helped students who were less prepared for college 
math (Klingbeil & Bourne, 2013; Voigt et al., 2020). In one study, the drop, failure, and 
withdrawal rate (DFW) for such students was equal to that of their colleagues who entered 
college with better math skills, suggesting that siloed classes “levelled the playing field for less 
prepared students” (Voigt et al., 2020, p. 868). Siloed classes also tend to lead to lower failure 
rates as well as increased enrollment in such classes and majors (Klingbeil & Bourne, 2013; 
Luque et al., 2022). These findings suggest that siloed classes have the potential to help students 
proceed past calculus into major coursework.  

This study adds additional evidence to the need for siloed classes especially for biology 
majors. The significant difference found between the value ascribed to the Graphical and Verbal 
representation and Rules representation between the mathematicians and biologists suggests 
mainstream calculus classes may not be properly serving biology majors. Further research, 
including targeted interviews with course coordinators, is needed to validate this notion. 

Future Research 
This study opens the door to several avenues of future research. In many ways, this study can 

be considered a pilot study for the derivative representations survey used herein. As mentioned 
before, the framework by Dray and colleagues (2019) used to design this survey has been used in 
the past to analyze differences in the ways mathematicians and non-mathematicians approach 
differentiation tasks in task-based settings. As piloted in this study, such differences can continue 
to be analyzed among larger groups of professionals using the derivative representations survey. 
However, before such research could be conducted, improvements would need to be made to the 
survey as it currently stands. 
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Finding Elements of Exploration in a Ritualized Calculus Discourse 
 

Mark Watford 
Florida State University 

Undergraduate mathematics classrooms continue to experiment with active learning strategies 
as an alternative to the traditional lecture-based teaching model. This paper investigates one 
student’s (Jacob) engagement in a poster session activity in a Calculus 1 course and explores 
how he reasoned about calculus concepts in this non-standard learning environment. Informed 
by Sfard’s theory of commognition, an analysis of Jacob’s discursive routines reveals a complex 
interplay between ritualized and explorative discourse. While Jacob’s poster presentations 
appear highly ritualized on the surface, with routines recycled from class, indications of 
explorative activities emerged in his preparation with a partner, reflecting an active search for 
suitable routines. This research emphasizes the importance of considering the entire ritual-
exploration continuum in mathematics education and raises questions about facilitating the 
transition from ritualized to explorative discourse. 

Keywords: Commognition, Routines, Calculus, Exploration, Rituals 

Introduction 
In undergraduate mathematics education, there is a growing trend of incorporating forms of 

learning which differ from the standard lecture model. One notable study reported calculus 
instructors being encouraged to employ active learning strategies in their classroom (Rasmussen 
et al., 2014) as one of seven characteristics of successful calculus programs of doctoral granting 
institutions in the country. However, the term active learning is vague and has varying 
interpretations. Generally, it can refer to any form of student engagement in class which differs 
from the standard lecture model, ranging from the incorporation of worksheets to engaging in 
group discussions and problem solving (Freeman et al., 2014). Nevertheless, there have been 
recent calls to incorporate such strategies in tertiary mathematics learning (e.g., CBMS, 2016; 
Saxe & Braddy, 2015) and a call to investigate such “interventions in practice” (Rasmussen et 
al., 2014, p. 509). At Barrow University1, a large research-intensive university in the 
southeastern United States, one intervention has been implemented in the Calculus 1 courses for 
several years and serves as the context for this research project. The weekly activity of students 
engaging in poster sessions (further described in the “Methods” section) was designed to have 
students become expert at solving one problem and then communicating their solution to their 
peers. Because communication is at the forefront of this activity, Sfard’s (2008) theory of 
commognition, which considers thinking is communicating, is fitting to study how students 
reason about calculus concepts, especially in a non-standard learning environment. For the 
purposes of this paper, I focus on the discursive routines of one student, Jacob, and how he 
situated the poster session activity as explorative or ritualized. Preliminary findings indicate that 
the presentation of the poster was highly ritualized, yet there were moments of exploration 
evidenced in Jacob’s discourse when speaking with his instructor. As well, there was also an 
indication that Jacob engaged in more explorative routines when designing the poster he 
presented, but the constraints of the assignment may have funneled Jacob into a ritualized 
routine. 

 
1 All names in this paper are pseudonyms. 
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Literature Review 
Commognition has gained popularity recently with the framing’s tenet that students’ thinking 

is revealed in their communication. Sfard (2016) promoted that analyzing discursive activities 
stands in stark contrast to a more cognitivist approach which has “the tendency to view 
communication as a mere window to something else” (p. 41). With a commognitive lens, 
thinking is communicating and vice versa. Since its inception, a wide range of aspects of 
commognition have been trialed in various forms in the research of undergraduate mathematics 
education, particularly with intervening learning activities that disrupt the standard lecture 
model. Most recently, Kontorovich (2023) critically examined the panacea-like collaborative 
learning structure by attending to a triad of cognitive, social, and affective aspects of students’ 
collaboration as they studied linear algebra. His research explored how two students, Jan and Sai, 
were able to position themselves as mathematizers (or not as mathematizers) and how they 
perceived each other as such. The careful commognitive analysis of the dynamics between the 
two students illuminated a great need for further research into how the triad of mechanisms plays 
a role in collaborative learning situations.  

Another avenue of study in which the lecture model is disrupted through varying forms of 
classroom activity is the continuum of routines. Lavie et al. (2019) operationalized routines with 
a commognitive lens and made a distinction between rituals (process-oriented routines) and 
explorations (product-oriented routines). Whereas rituals typically are guided by the question, 
“how do I proceed,” explorations are guided by the question, “what is it that I want to get” 
(Lavie et al., 2019, p. 166). Rituals should be in no way absent from a novice mathematics 
learner’s discourse. They are the foundation of transitioning to an explorative discourse. 
Therefore, as a mathematics learner becomes a full-fledged member of the mathematics 
community, they undergo a gradual de-ritualization of their routines and move toward the 
exploration end of the spectrum. In fact, certain curriculum materials which are “explicitly 
designed to promote student-centered activities that shift classroom discourse away from 
lectures” (Barnett, 2022, p. 1579), such as Primary Source Projects (PSPs), were analyzed for 
their potential to de-ritualize mathematical discourse at the tertiary level. Barnett (2022) showed 
how the task situations in PSPs ranged on the whole of the ritual-exploration continuum and may 
be used to fuel the de-ritualization process (depending on how the PSPs are implemented).  

Similarly, Nachlieli and Tabach (2019) and Sfard (2016) proposed that the nature of routines 
in which students engage is highly dependent on the ways in which a lesson or activity is 
implemented. Nachlieli and Tabach (2019) developed a framework to analyze mathematical 
learning tasks as either ritual-enabling opportunities to learn (OTL) or exploration-requiring 
OTL. They, too, stated that rituals are essential for students to enter the discourse because rituals 
help to develop students’ object-level and meta-level discourse which is the foundation of 
explorative activities. However, Sfard (2016) analyzed the discursive routines of a teacher during 
a lesson and subsequently the routines of his students as they solved similar problems. She found 
that they mirrored his ritualized routines and exhibited some of the same features of his routines. 
Thus, it is not surprising that it should be essential to consider the routines afforded by and 
exhibited in such classroom activities.  

Theoretical Framework: Commognitive Routines 
Researchers of mathematical discourse are no stranger to Sfard’s (2008) theory of 

commognition, a concatenation of communication and cognition, which posits that thinking and 
communication are one in the same. Sfard (2008) proposed that mathematical discourse is a 
special form of discourse that can be characterized by four properties: word use, visual 
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mediators, narratives which can be composed of key words and visual mediators, and routines. 
Both word use and visual mediators may be rather trivially conceptualized as those special words 
and symbols we use to communicate mathematics and which are exclusive to mathematical 
discourse. For instance, in the context of evaluating a limit, key words and visual mediators may 
include the words indeterminate form and algebraic symbols like ஶ

ஶ
 or graphs that show the end 

behavior of a function. Narratives are the stories we tell about mathematical objects using the 

key words and visual mediators (e.g., 𝑙𝑖𝑚
௫→ஶ

ቀଶ
య

ଷ
ቁ
௫
= ∞ because ଶ

య

ଷ
> 1). Finally, routines are the 

repetitive patterns found in mathematical discourse (e.g., evaluating a limit using algebra). For 
the purposes of this paper, routines will be characterized as explorative or ritualized. 

Explorations may be considered by many in the professional mathematical community as the 
true form of “doing mathematics.” That is, the goal of an exploration is to produce a narrative 
about mathematical objects which the mathematical community generally accepts as true. Thus, 
explorations may be considered as product-oriented routines (Lavie et al., 2019). On the opposite 
end of the routinization spectrum is the ritual. Those who perform rituals are completing 
discursive actions with the goal of “creating and sustaining a bond with other people” (Sfard, 
2008, p. 241) and may not be concerned about telling stories about mathematical objects. A ritual 
is “appreciated for its performance and not for its product” (Lavie et al., 2019, p. 166) and 
therefore is considered a process-oriented routine.  

Because pure rituals and explorations are truly rare in mathematics classrooms (Lavie et al., 
2019), I will characterize elements of the mathematical discourse of a student presenting a poster 
to his peers and instructor as ritualized or explorative and seek to answer the question: 

How might a student engage in discursive routines in the context of a Calculus 1 poster 
session? 

Methods 

Context of the course and poster session 
Data from this study were collected from a Calculus and Analytic Geometry 1 course taught 

in the Spring 2023 semester at a large southeastern research-intensive university. The 
mathematics department employs graduate teaching assistants as instructors of record for the 
four-credit hour calculus course as well as a specialized teaching faculty member who serves as 
the course mentor and collaborates with TAs to implement a unified curriculum. Members of the 
teaching team are expected to adhere to the same schedule, covering specified content and 
implementing a hallmark classroom activity, poster presentations, weekly. The poster activity 
consists of students collaborating with a partner outside of class to solve one calculus problem 
and then presenting their solution as a poster during class. The problems on which students 
collaborate are comparable to what they may be given as a homework problem and are directly 
related to the content of a recent lecture. As stated in the activity description given to students, 
they are expected to become “expert” at solving the problem. Their expertise is demonstrated 
through the inclusion of four mandatory components of the poster: detailed steps to solve the 
problem, the “final answer” to the problem, clues from the problem that may lead to the solution, 
and mistakes made or mistakes students anticipate others might make while solving the problem. 
Once per week, the class engaged in two rounds of poster sessions. In the first round, one person 
from each pair stood at their respective poster while the partner visited other posters. The person 
standing explained their problem to anyone who visited and should have been able to answer any 
questions posed by their visitors. After 10–15 minutes, partners switched places, and the second 
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round commenced. The poster session from which this analysis was taken occurred in the third 
week of the semester and consisted of problems related to calculating limits and finding the 
derivative at a point. 

Data Collection 
The episode analyzed for this paper is part of a larger research project in which 24 of 29 

students consented to have their classroom interactions audio/video recorded and copies of their 
coursework collected as data. Field notes and recordings of the class lectures were captured. 
Additionally, six of the 24 consenting students participated in an interview designed to expand 
on their mathematical routines observed in the class. This paper focuses on one consenting 
student, Jacob, who also participated in an interview. Although Jacob initially enrolled in the 
course to be eligible for entrance in the computer science program, he revealed that after a few 
weeks of being in the course, he realized that he wanted to progress in a different direction 
entirely and major in Chinese Language and Culture. By personal admission, Jacob said that a 
heavy course load was one factor contributing to his change of heart. The other factor was a 
newfound interest in learning about Chinese culture. The episode of analysis is from Jacob’s 
second poster session in which he was tasked with evaluating the limit using algebra: 𝑙𝑖𝑚

௫→ஶ

ଶయೣశభ

ଷೣశయ
. 

Data Analysis 
When analyzing the poster episode, I drew upon Sfard’s (2016) and Lavie et al.’s (2019) 

notion of the routine as a spectrum ranging from ritual to exploration. According to Sfard (2016), 
there are three main features of a routine that need to be considered when determining whether 
an episode may be explorative. First, the subjects of the narratives are typically abstract objects 
rather than more concrete symbols and signifiers. Second, the source of mathematical narratives 
in an explorative discourse “can be logically deduced from stories already endorsed” (Sfard, 
2016, p. 45) as opposed to relying on memory or an authoritative source, such as the instructor or 
textbook. Lastly, the goals of mathematical activity must be considered. As described above, the 
goal of an exploration is to tell a story about mathematical objects while the goal of a ritual is to 
engage in the process itself. The data sources which inform the following analysis are the 
interview transcript, the poster presentation transcript, and the poster artifact. 

Results 
The following episode is taken from Jacob’s poster presentation in which he presented to 13 

persons including the instructor (Ms. Rebecca) and the researcher (Mark). Jacob’s poster 
monologue was roughly the same for each presentation. He admitted in the interview that he did 
not rehearse a script, however, he said: 

as the poster session gets going, I do say like a similar spiel…. obviously, the prompts are 
laid out step by step; I go step by step. And, I say pretty much the same thing, although 
sometimes I change the wording a bit to make it a bit more interesting to myself. 

Therefore, the components of his mathematical discourse are virtually identical in each 
presentation. Below is one representative example of Jacob’s presentation which he would begin 
once a visitor appeared before him. 
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We have [the problem]2 find the limit of x to infinity of two to that over three to that 
[pointing in the general area of the upper left-hand corner of the poster]. So yes, and put 
very simply, no matter what we tried, we ended up with the indefinite3 form. So, we went 
[with] undefined. We tried to divide by the conjugate because of those pesky exponents. 
And yeah, we still got infinity over infinity, so we went with undefined. To be honest, 
[we are] not sure if it’s correct. 

Figure 1 displays the poster that Jacob and his partner, Rachel, created to present their solution to 
the limit problem. 

 
Figure 1. Jacob and Rachel’s poster detailing their three attempts at evaluating the limit. 

Objects of Mathematical Discourse 
One distinctive component of mathematical discourse is characterized by how discursants 

communicate about mathematical objects. The objects of mathematical discourse were coded as 
either concrete or abstract. This distinction was dependent not only on the key word itself but 
also how the discursant communicated about the object. In other words, concrete objects were 
treated by the discursant as something tangible and that could be operated on by a person, 
whereas abstract objects existed primarily in the discourse and could take on discursive actions. 
For example, Jacob spoke about 𝑙𝑖𝑚

௫→ஶ

ଶయೣశభ

ଷೣశయ
 as something “we have” in terms of a concrete 

problem which needed a solution. There is no perceptible indication that Jacob considered the 

 
2 Words in brackets clarify Jacob’s meaning based on his other instances of delivering virtually the same 
monologue. 
3 Jacob consistently used “indefinite” in place of “indeterminate.” This seemed to have no bearing on what Jacob 
meant by the “indefinite” form. In fact, his instructor and his partner both used this term when speaking about the 
indeterminate form while reasoning through Jacob’s poster. However, the instructor did not use “indefinite form” 
while lecturing. 
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function inside the limit notation as a quotient of exponential functions with certain properties. In 
fact, Jacob further concretized the limit in his recitation of the function by referring to the 
exponents as “that” and “that.” The reason for this word choice is not apparent; however, I 
conjecture that this was a form of colloquial discourse in which Jacob felt comfortable engaging 
with his classmates. This is supported by the fact that Jacob changed his discourse once I (who 
established myself as a researcher in the class) visited his poster. While explaining the poster to 
the me, Jacob recited the entirety of the exponents as “two to the three x plus one over three to 
the x plus three.” Jacob may have perceived me as a person with whom it would be inappropriate 
to engage in colloquial discourse. However, once I left, Jacob adopted this practice of reciting 
the exponents as he did for me in subsequent presentations to both students and the instructor. 
Regardless of the reason for the word choice, Jacob still treated the exponents as “things” rather 
than mathematical objects with special properties.  

Perhaps the most concrete of objects Jacob mentioned were “those pesky exponents.” Jacob 
spoke of the exponents in terms of being physical obstacles imbued with the ability to cause 
trouble. More characteristic of an explorative discourse would be how Ms. Rebecca spoke about 
the exponents when she was trying to help Jacob reason through evaluating the limit. Ms. 
Rebecca posed the question, “are the exponents actually growing faster in the top or the bottom 
[of the fraction]” as if to model the types of questions her students should be asking when 
solving a problem. The way in which she spoke about the behavior of exponents and how that 
behavior affects the overall function is more indicative of discourse with abstract objects. 
Although Jacob’s discourse appeared highly ritualized in the poster sessions based on how he 
communicated about mathematical objects, the source of his narratives and the goals of his 
mathematical activity may shed light in a different direction.   

Sources of Mathematical Narratives 
The source of Jacob’s mathematical narratives both within the poster and the poster session 

itself was predominantly a recycled routine. This is more indicative of ritualized routines. 
Jacob’s poster showed that he and his partner tried to recycle three routines they learned in class: 
substituting a value for the variable, using exponent rules to simplify the expression, and 
multiplying by a quotient of conjugates. Although it may be a mere observation that Jacob and 
his partner attempted to recycle three routines, this was confirmed in Jacob’s admission to his 
instructor that he was looking for the appropriate routine to recycle but did not find one that 
matched the current situation. He said, “I don’t know if we’ve had a problem where we just 
straight up said undefined; so, that’s why I was kind of suspicious.” This explains why Jacob felt 
the need to end each of his presentations with a word of caution about the accuracy of his 
solution.  

Moreover, Jacob verified this in his interview as an almost instinctive normal practice when 
completing the poster each week. When working on a poster problem, he would sometimes refer 
to his notes, “comparing it to previous examples of problems” which were similar or “problems 
that use similar methods.” This may not be an unfamiliar practice to professional mathematicians 
nor to the commognition literature (see Lavie et al.’s (2019) discussion on precedents), but 
Jacob’s seemingly automatic trial of the three routines based on key features of the problem (the 
presence of infinity, exponents, and a sum in a quotient function) suggests that he was acting 
without much purpose. Furthermore, it appears from “Step 5” (Figure 1) that Jacob and his 
partner were not entirely certain of what a conjugate is or how it may be used to help evaluate 
limits. This may be typical of a novice in the mathematical discourse who recognizes that some 
discursive action is necessary, but it is not apparent what the discursive action should be. 
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In contrast to Jacob’s seemingly highly ritualized poster presentation, there was some 
indication that he engaged in a more explorative activity when preparing the poster with his 
partner. Jacob consistently said that he “tried” different routines showing that the source of these 
narratives was not entirely automatic recall; rather, he and his partner were actively searching for 
an appropriate routine that corresponded to a non-indeterminate form solution. Because the 
routine of ending with an indeterminate form was unacceptable according to Jacob’s previously 
encountered routines, he knew that he needed to engage in a different routine. The actual “how” 
of that routine and “which” routine was unclear to him. This trialing of routines shows a mixture 
of Jacob asking the questions that Lavie et al. (2019) characterized as explorative and ritualized. 
Jacob appeared to be asking how to proceed to get a non-indeterminate form. 

Goals of Mathematical Activity 
The third aspect of a routine that can serve to distinguish between explorative and ritualized 

discourse is the goal of mathematical activity. According to Sfard (2016), the objective of 
performing a ritual is grounded in establishing or developing a relationship with another person 
and adhering to the goals set by others. The objective of engaging in an exploration is to know 
more about mathematical objects” (p. 44) and produce an endorsable narrative about those 
objects. The explorative goal is more intrinsically motivated while extrinsic motivation drives 
rituals. It is possible that Jacob and his partner “went [with] undefined,” because providing a 
solution was one of the goals of the assignment. This is apparent because in four of Jacob’s 
presentations, he ended with “we went with what we thought was best.” In contrast, Jacob’s 
discourse with his instructor showed that he genuinely wanted to know more about evaluating 
the limit in this case. Jacob began his poster presentation to his instructor by saying, “I’m pretty 
sure this is incorrect, so that’s why I want to present it to you: to see if you can explain.” There 
was no precedent that Jacob would be able to modify his poster to improve his grade, so the 
desire to know how to evaluate the limit in this case was more of an intrinsic motivation to 
simply “know more.” Further evidence of this conjecture was found in Jacob’s interview. When 
asked why he attempted to solve the poster problem, one of the reasons that Jacob gave was “part 
of it is showing to myself that, hey, I can actually do this stuff. You know, I’m actually not that 
bad at math, even though I feel like I am.” The goal of mathematizing to establish and develop a 
relationship with his mathematical self is, by definition, ritualized discourse. Yet, it is apparent 
that the explorative spark is rooted in Jacob’s discourse, and the ritualized discourse in which he 
engaged during the poster session was not wholly absent of mathematical exploration. 

Discussion 
This research offers insight into the complex nature of student engagement with 

mathematical concepts at the tertiary level and the role of discourse in shaping students’ 
mathematical thinking. It underscores the importance of considering the entire ritual-exploration 
continuum in the mathematics classroom and highlights the interplay between the two extremes. 
Future research in this area could explore how instructors can design activities that intentionally 
promote the transition from ritualized to explorative discourse, such as PSPs (Barnett, 2022) or 
other exploration-requiring OTL (Nachlieli & Tabach, 2019). Additionally, investigating how 
students’ discursive routines evolve over time as they progress in their mathematics learning 
would provide a deeper understanding of the developmental aspects of mathematical thinking. 
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Is it Possible to Instruct College Students in the Role of Inventors?
A Case Study of a Mathematics Instructor in India

Praveen Chhikara Rochelle Gutiérrez
University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign

This qualitative case study attempts to understand instructional goals that a mathematics
instructor in India sets and envisions for engaging students. The instructor participated in a
professional development program provided by the authors on the active role of students in
learning mathematics. The authors’ interpretations from three interviews were guided by two
theoretical lenses of Realistic Mathematics Education and Rehumanizing Mathematics. In
return, the interpretations offer a context to imagine how the lenses might interact.

Keywords: Realistic Mathematics Education, Rehumanizing Mathematics, Undergraduate
mathematics,

Today, a substantial number of students worldwide experience a disconnection from
mathematics and adopt a passive role as mere recipients of knowledge in classrooms. What if
our mathematics instruction was a journey of students’ inventions built on situations
experienced as “realistic” based on what they know, their intuition, and even their
misconceptions (Van den Heuvel-Panhuizen & Drijvers, 2020)? What if we approached
students’ non-traditional conceptions as avenues to expand mathematical knowledge, as a
form of rehumanizing mathematics (Gutiérrez, 2018)? Such an approach has the potential to
enhance students' senses of connection with abstract mathematical concepts, foster active
engagement and participation, and enable them to view themselves as “authors of
mathematics” (Povey & Burton, 1999, p. 235). This study aims to investigate how a
mathematics instructor in India, who has been provided professional development on the
active role of students in learning mathematics, might conceive of engaging students in
classrooms. As a qualitative case, this study seeks to shine light on the meaning that this one
instructor made about his instructional aims while engaging in learning about ways to
highlight the human nature of mathematics. The interpretations were guided by two
theoretical lenses of Realistic Mathematics Education and Rehumanizing mathematics. 

Literature Review and Theoretical Framework
Realistic Mathematics Education (RME), conceptualizes the use of “realistic” situations

to teach mathematical knowledge (Artigue & Blomhøj, 2013; Gravemeijer, 2020; Van den
Heuvel-Panhuizen & Drijvers, 2020). An underlying goal of RME is an instructional
approach beyond just exposing the students to mathematics as ready-made, which makes it
different from traditional instruction. Realistic Mathematics Education is theorized through
six principles: activity, interactivity, reality, intertwinement, level, and guidance (Van den
Heuvel-Panhuizen & Drijvers, 2020). Being focused on instructional practices, this study will
center on the guidance principle or guided reinvention process, but not in isolation from other
principles because other principles interact with and influence guided reinvention. Guided
Reinvention (GR) theorizes how teachers can provide opportunities for students by
selecting “realistic” contexts to facilitate them to reinvent “higher” level formal concepts
individually and collaboratively. (Gravemeijer, 2008; Van den Heuvel-Panhuizen & Drijvers,
2020). Because GR appears to be a set of prescribed practices to teach predetermined
concepts, is there room for instructors to be led more by “alternative conceptions” or
student’s conceptions that differ from or conflict with standard understanding of mathematics
concepts (Fujii, 2020, p. 625)?
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Rehumanizing Mathematics (RM) is a framework that centers queer BIPOC students, as
they are most harmed by standard practices and forms of mathematics (Gutiérrez, 2018). RM
seeks to correct for an overemphasis on abstraction, objectivity, and binary logic. The
framework advocates for humane practices, such as the incorporation of the cultural and
linguistic resources of the participants of school mathematics.  RM involves eight
dimensions: (a) participation/positioning, (b) cultures/histories, (c) windows/mirrors, (d)
living practice/futures, (e) creation, (f) broadening mathematics, (g) body/emotions, and (h)
ownership/stewardship. To understand how instructors might be led more by “alternative
conceptions” or student’s conceptions that differ from or conflict with standard
understanding, we choose the Creation dimension of RM. The Creation dimension (Cr)
acknowledges students’ conceptions and diverse forms of expressing mathematics, which
relates to possible students’ conceptions in group discussions in GR (Gutiérrez, 2018). In this
way, Cr along with GR can be considered as a more comprehensive way of being able to
expand beyond traditional knowledge forms or representations and that can then feel
humanizing for students who might possess other ways of knowing and viewing the world
and help affirm their relationships with mathematics as authors/creators of mathematics. The
overarching question – What are the perspectives and intentions of a mathematics instructor
in India about his roles/goals in classroom instruction in terms of engaging in abstract
concepts? More specifically, [GR] How does the instructor conceive of and facilitate students
to learn abstract concepts of mathematics? [Cr] In what ways does the instructor respond to
his students when their work and conceptions do not align traditional mathematics or when
they could be perceived as “wrong”? (e.g., How does the instructor address students’
responses that are “misconceptions”?)

Methods
India’s new National Education Policy 2020 strongly emphasizes the achievement of

“learning outcomes,” which is evident from its repeated mention of the term in the document
(Government of India, n.d., p. 3). The primary focus in traditional classrooms of India is
often limited to demonstrating the prescribed curricula and preparing students for semester
final exams (Venkataraman et al., 2012). As such, many instructors feel pressured to
complete the curriculum, even though it is too much content to cover in a meaningful manner.
Student-student and student-instructor interactions in these classrooms are usually minimal
(Ramanujam, 2012). Thus, students tend to find themselves disconnected from the course
content.

In order to build rapport and reciprocity, we organized an online professional
development (PD) program consisting of seven interactive sessions (each 90-120 minutes
long) for 10 college/university mathematics instructors in India. Inspired by RME and RM
literature, we designed activities such as creating reinvention-style lesson plans and grading
intuition-driven hypothetical student responses that conflict with standard ideas in order to
facilitate participants to share their meanings around GR and Cr in their classroom practices.
Five participants who volunteered to be part of the research study gave us permission to
interview and record them as they reflected on their experiences in each workshop. The first
author interviewed each research participant twice in two 60-minute semi-structured sessions
conducted and recorded through Zoom. The first interview centered on Guided Reinvention
included questions such as “How was the lesson plan activity with your group partner to
create a lesson that can facilitate students to discover math concepts?” to probe how they
make sense of reinvention-based instruction and their related instructional goals. The second
interview, focusing on Creation, included questions such as, “In the workshop, you discussed
with your group partner about ‘wrong responses.’ What were some important points that
arose in the discussion?” to probe for participants’ viewpoints for alternative conceptions.”
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Thus, the PD program served as the entry point for questions we developed for individuals
based upon their work in groups and perceptions of the PD. The interview questions avoided
evaluation and instead emphasized ways participants made meanings in the program sessions.
We sought explanatory responses and offered interviewees a chance to share
their perspectives and practices as a teacher and learner. Questions that asked participants to
reflect on their experiences as learners offered them a chance to talk about “poor” or
ineffective instructional practices without referring to themselves. For example, “In your
career as a student and then as a teacher, can you recall an event when a learner’s own ways
of solving mathematics problems were supported or discouraged because of something?
What was that?”

Data Analysis
After analyzing responses from the first two interviews, we selected one instructor, whom

we call Aditya [pseudonym], to focus upon for a case study to fully engage and delve into
more complexities of his identity and context in making pedagogical decisions (Yin, 2017).
As a case study design, this study is not generalizable “from samples to universes” (Yin,
2017, p.20), but its findings might be “transferable” (Finfgeld‐Connett, 2010, p. 246) to other
instructors’ contexts. The final interview utilized a “Member Checking and Intervention
Interview” protocol that was aimed (1) to determine the accuracy of interpretations of this
instructor’s identified practices in the first two interviews through member checking
questions that consisted of summaries of our interpretations and (2) to extend/challenge the
participants’ practices toward GR and Cr through intervention questions or joint wonders that
consisted of the interviewee’s own perspectives about teaching and utilizing questions asked
within the literature (Gambill, 2022). We wanted to honor the relational piece in research and
promote collaborative wondering to make research more humane, empathetic, less extractive,
and non-evaluative.

The data were analyzed in multiple phases. We first identified interesting segments and
interpreted them with memos. When the authors had different interpretations, we attempted to
reach a consensus or an “interrater reliability” (Belotto, 2018, p. 2625). We then labeled the
segments and interpretations with short phrases of 3-4 words, which became sub-codes.
These codes served as the basis of the findings we present below.

Findings

We found four themes: (a) Avoiding faulty foundations through correct proofs, (b) Offering
exploratory opportunities through minimal-to-incremental guidance, (c) Encouraging student
engagement by building upon their prior knowledge, and (d) Increasing motivation by
providing the history of mathematical concepts. Due to space constrains, we present below
the first two themes in this section and mainly the second in the discussion section later.

Avoiding faulty foundations through correct proofs
In this section, we will explore Aditya's role, which appeared in the data analysis, to

instruct his students to refrain from faulty foundations through formal or correct proofs.
Interestingly, with this goal in mind, he seemingly incorporates informality and motivates
students to share diverse “guess[es]” or “wrong” conceptions. In his grading of a student’s
solution that included informal terms presented in our PD program, Aditya explained:

[W]e [as students] assume some results are obvious or trivial. We simply write it
down “clearly,” “obviously.” I forbid them [students] to write “obviously” or
“clearly.” I tell them that if it is so obvious or so clear to you, why don't you produce
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a proof because it's not at all obvious to me? … if I could not do it, then either there's
a problem in my understanding … or … what we are trying to solve is not true. 
Like many mathematics instructors, Aditya seems to consider his instructional role to

“forbid” or prevent students to always rely upon intuition/informality (“assume some
results”) so that they can understand the value of proofs. He might be recognizing that ideas
that seem to be true informally might not be the case when they try to prove those ideas
formally. And, in this case, he seems to be invested in supporting his students to learn how to
prove something, as it will be an important skill in learning mathematics. Even if he stresses
formal proofs, Aditya appears quite different from many instructors who consistently ignore
intuition/informality in instruction to understand his goals toward both informality and
formality. When he says, “I forbid them to write obviously, or clearly,” he seems to value
mathematical symbolic or formal proofs, especially when it comes to writing proofs. But
contrasting with the traditional emphasis only on formal procedures, Aditya acknowledges, at
another instance during an interview, informality’s role to get a global bird’s eye view or an
“overall idea” of proofs. These views appear to underscore informalities for thinking
processes in students’ heads when they prove formally or even when they have acquired
formal concepts. The way Aditya “forbids” his students to prevent errors is not necessarily
instant rejection of their thoughts. At another moment, Aditya appears to value an open
classroom space by motivating his students to propose “guess[es]” or conjectures and to ask
questions without thinking of them as trivial and incorrect. This might be one way to
accomplish the goal effectively because Aditya is able to correct more “wrong” points or
“faulty” foundations. Thinking that an understanding based on a student’s “guess” can differ
from or conflict with an instructor’s understanding, the first author asked him about
contradictory understandings. He said: 

[If two understandings] are contradictory, one of the concepts must be wrong because
in maths the answer [to a question] is just one [unique]. … if I realized that I was
completely wrong, [or] I was on the wrong track, … [then it] would stay with me
always, and I would never make that mistake [again]…. If it's not contradictory, then
there are scopes [or chances] of learning. Even if it is contradictory …or one of us
[with contradictory understandings] is completely wrong, [then] you can think of it as
a pin [or reminder] or some kind of marking that would always stay with the student
and would help him not to get it wrong the next time.
Saying “in maths the answer is just one [unique]” and “not to get it wrong the next time,”

Aditya appears to value correcting his students’ “mistakes” or conceptions, which might
otherwise be “contradictory” and ambiguous. Such an instruction can highlight a limited
exploration of “wrong” things though because the instruction is only about identifying
“mistakes” so that the students do not repeat them. The students’ exploration through
“guesses” or “questions” requires instructor's facilitation and guidance, which we understand
in the next theme.

Offering exploratory opportunities through minimal-to-incremental guidance
Aditya expects his instructional role to offer students exploratory opportunities through

his minimal-to-incremental guidance that encompasses exposing the least content possible in
the beginning and providing students hints when believed necessary. When asked about
students’ exploration opportunities in the classroom, Aditya said:

[W]hat I feel I would … follow in the class actually [offer the] least bit of help. So,
as if there are several pages [of hints]. You flip the first page, you have [a hint on the
first page] if you can solve [the given problem] ... If you can't, then move to the next
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page and see some more hints or more suggestions or some more help. So, step by
step it's up to the students. … I get a feeling … how much help they need. So,
depending on that I try to provide help, but at the very beginning. I would give them
the minimum. … let them struggle and learn. 
He appears to target his instruction by offering the “least bit of help” at first so that the

students can “struggle and learn” and can get his support of “more hints or more suggestions”
when they are perceived unable to complete the given tasks. Through such
minimal-to-incremental guidance, as opposed to instructors who give them maximum
guidance, his students are likely to first be given the opportunity to learn with guidance as per
the extent of the “help they need.” Aditya’s exploratory and discovery-oriented goals for his
students were also reflected in his epistemological perspective in the quote below:

[Exploring] Proof first then [getting at] theorem statement should be a way [to teach]
because that means students always would be curious. … How can we get this
theorem? It is a reverse process; you don't get to eat your meal until, unless you cook
it. … That's the way it should be natural. 
When asked, Aditya could not recall any particular example of such a “reverse process”

at that time but it appears worthy to mention. This "reverse process" of getting a theorem
statement after a proof differs from a widespread perception among mathematics professors
and in mathematics textbooks to follow Definition – Theorem – Proof format. If directly
taught, students might not feel supported to explore in the traditional format. On the other
hand, with Aditya igniting “curious[ity],” students might come up with brand new
conjectures because they are free to explore and build knowledge. However, the final
interview’s member checking revealed the strategy does not always play out in the ways he
hopes and revealed that his students just wonder individually in their heads instead of
contributing to proofs by sharing aloud with others. This is understandable because it might
be difficult for students to understand what is expected of them. By practicing
minimal-to-incremental guidance, he values neither complete absence of guidance by letting
them explore without facilitation nor excessive guidance. 

The analysis of the first two interviews highlights his emphasis on asking questions to the
students, which can appear as “hints.” Thus, in the final interview, we asked how he might
model questions to students. Some questions such as “what-if” questions were found to be
open-ended and promote exploration while others such as “this-and that” questions could
guide students toward a particular line of thinking. He said:

[I]magine that I have changed one condition from there or the other condition from
there [in a known result]. [Then I ask them] do you still think the result is true? So,
some questions of this form [I would ask]. Can we remove these conditions or can we
add [some], can we weak[en] them? So, with [their present] knowledge they
[students] can come up with … counterexample[s] … You said that both A & B
would hold? Almost probably A would hold or B would hold. Can you guess which
of them [A and B] would hold? … They are just interpolating [guessing] from
what they know. 
When he says, “Can you guess which of them [A and B] would hold?”, he appears to

prompt the students to consider specific and important ideas or concepts by “interpolating
from what they know.” Such a binary question is important so that students can understand
the intended goals of their instructor. Moreover, Aditya’s “what-if” questions like “chang[ing]
one condition … in a known result” in particular can be seen as open-ended questions and
beyond mere yes/no questions because the “students can come up with … counterexamples”
to justify and there can be brainstorming on tweaking conditional statements, like
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“weaken[ing] them” in his classroom. Thus, the what-if questions in Aditya’s classrooms are
likely to provide support for exploration.

Discussion

Aditya had been introduced to the concepts of Guided Reinvention (GR) and Creation (Cr)
through a series of PD sessions and was offered the opportunity to reflect on these concepts
and how they (might) play out in his teaching. With the objective of how he makes sense of
GR and Cr in mind, we identified four main themes through the teaching practices that he
employs or conceives: (a) Avoiding faulty foundations through correct proofs, (b) Offering
exploratory opportunities through minimal-to-incremental guidance, (c) Encouraging student
engagement by building upon their prior knowledge, and (d) Increasing motivation by
providing the history of mathematical concepts.

Due to space restraints, we mainly focus on the theme of minimal-to-incremental
guidance in this section. Even so, we believe it is important to highlight some of the
interactions between the themes and with the conceptual tools of GR and Cr. We found that
Aditya envisions his responsibility to provide opportunities for exploration through an
instructional strategy of giving minimum assistance in the beginning and increasing the
assistance gradually through “hints” and questions as per the perceived need of the students.
Through the instructor’s hints, such an approach has potential to empower students to
reinvent intended concepts that GR contends. Due to the lack of expository teaching, the
“curious” students might also have opportunities to explore and develop brand new
conjectures in such a minimal-to-incremental guided instruction; thus, the instruction can be
seen consistent with Cr. Aditya’s technique appears unique, given this type of guidance does
not appear in Learning Outcomes based Curriculum Framework (LOCF) and the standard
faculty induction program called GURU-DAKSHTA published by University Grants
Commision (UGC), a statutory body in India. Aditya’ questioning strategy in the classroom
supports both GR and Cr. The binary question, observed in the findings section, is important
so that the students can understand the intended and clear goals of their instructor, which
provides support for GR because RME-instruction sequences appear to have a clear specific
path to follow. Moreover, Aditya’s open-ended questions like what-if questions appear
consistent with King and Rosenshine (1993) who argue for “guided cooperative questioning
strategy” in which teachers ask generic thought-provoking questions that can provide support
for exploration and, thus, Creation. Such an approach is more process-oriented (as opposed to
product-oriented), which makes it different from the learning outcomes approach highlighted
in India’s education policy and GR’s “intended mathematics” goals (Gravemeijer, 1999).

A minimal guidance might facilitate students' exploration, but there are chances that such
explorations can lead to students’ proofs that are not “correct” or to their “contradictory
understandings” that are revealed in the theme on correct proofs. We note from Aditya’s
practice that if guidance is increased too quickly, it might restrict exploration or discovery. In
other words, if his students solve mathematics problems using informal or intuitive language
that does not align with standard proofs, he might feel prompted to make them aware of the
inaccuracy and tell them or motivate them to use formal proofs. 

More than simply showing how Cr and GR arise in Aditya's views and instruction, his
case highlights how the two conceptual tools Cr and GR relate and support or expand the
other theoretically. Both concepts acknowledge: (a) students as mathematicians, (b) students
participating and connecting with each other, and (c) instruction as process-oriented. Let’s
consider how they expand each other. First, Cr expands GR in following ways: (a) The GR
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process aims to facilitate students to reinvent instructor’s or curriculum’s predetermined
concepts. Cr acknowledges that the foundations of the predetermined concepts can be
contextual, for example, following one of several appropriate sets of axioms or a collection of
self-evident statements. In this way, Cr might go beyond just considering predetermined
concepts in teaching and learning mathematics by taking into account the “misconceptions”
as alternative, yet viable, ways to think about or develop a concept. (b) GR appears to be a
linear sequence of levels starting from situation � referential � general � formal in “Model
of - Model for: emergent modeling” (Gravemeijer et al., 2000; Streefland, 1985; Van den
Heuvel-Panhuizen, 2003). Creation can inform us that instructional practices are not
necessarily sequential due to the probable presence of an interaction between correct and
“wrong” conceptions. Second, GR expands Cr in the following ways: (a) Goal-oriented: Cr
does not speak about achieving specific goals that can indicate success. Considering GR with
Cr can be helpful because GR appears goal-oriented by focusing on facilitating students to
reinvent a predetermined concept. (b) Concrete practice: GR can offer instructional steps, for
example the linear sequence of levels, should an instructor be confused or uncertain about
how to approach Cr in the classroom. Thus, Cr and GR show the potential to expand each
other.

There are several strengths of this study. The study was not extractive because we
attempted to build through (a) the PD program before we generated data with Aditya and (b)
the joint wonders during interviews that included the first author’s teaching experience to
identify the resistance in practicing GR and/or Cr in Aditya’s instruction during the interview.
Second, the interview protocols were tailored to the participant’s responses and according to
the examples and comments they provided in preceding interviews. Even so, there are some
limitations to this study. For example, although several interviews were conducted with each
participant, there is a single data source: interview responses from Aditya. Multiple data
sources, such as classroom observations and comments from students during focal groups or
interviews, or survey responses would have allowed for triangulation and increased
credibility and a more comprehensive understanding.

Conclusion and Implications
This case study investigated how a mathematics instructor in India conceived of his

practice in relation to facilitating abstraction and addressing students’ conceptions. This study
raises several issues for future researchers. In this study, Aditya described what he does and
what he thinks about his teaching through interviews and, in that sense, his case offers
researchers a glimpse of the potential approaches and challenges of incorporating GR and Cr
into mathematics instruction at the college level. However, the data fail to capture how his
students feel about his instructional practices. Future research might consider observing the
classroom in an ethnographic study in order to get some evidence from students on how GR
and Cr are experienced or might be supported in the classroom. This approach is especially
important in the case of RM because instructors alone cannot determine if their pedagogy is
being felt in rehumanizing ways (Gutiérrez, 2018). Potential research questions for the study
might include: (a) How does a mathematics instructor practicing both GR and Cr know how
much informality is appropriate during a course primarily based on abstract concepts or in
courses that feature “pure” mathematics? (b) What instructional practices, such as debates in
history, might offer Nepantla moments for students so they can appreciate conflicting
conceptions in classrooms (Scott & Tuana, 2017)? and (c) How might seeing informality and
formality as part of a larger cycle affect a mathematization process in GR during the
instruction?
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A Student’s Self-Perceptions and Social Positions in an Undergraduate Precalculus Classroom 
 

Jason Guglielmo 
Arizona State University 

Mathematics education research has linked students’ development of positive mathematics 
identities to outcomes of academic success and persistence in STEM. I contribute to this 
research area by adopting a positional approach to identity development, focusing on the 
students’ development of in-the-moment identities through the negotiation of acts and roles. To 
better understand the connection between the roles adopted by students in class and the students’ 
mathematics identity development, I conducted classroom observations of an undergraduate 
precalculus classroom and interviewed four focal students on their beliefs about math and 
experiences in this course early and late in the semester. Student-instructor interactions from the 
observations were coded to produce positioning profiles for the focal students. Here, I present 
the positioning profile for one student, alongside a reflection of her transition from not 
identifying as a “math person” to identifying as one, as developed through narrative analysis of 
the interview data. 

Keywords: positioning, identity, student-instructor interactions 

Students’ mathematics identity development has been a topic of mathematics education 
research, with studies linking the development of a positive math identity to students’ academic 
success (e.g., Ma & Kishor, 1997; Lee & Anderson, 2009; Gonzalez et al., 2020) and persistence 
in STEM trajectories (e.g., Meece et al., 1990; Boaler & Greeno, 2000). This study intends to 
explore how student-instructor interactions in the classroom support or hinder the development 
of positive math identities. Identity has been conceived of in many different ways, and here I 
leverage perspectives with a focus on students’ in-the-moment construction of their positional 
identity as they interact with others in math spaces, foregrounding the roles that students are 
allowed access to and choose to adopt in their math classes (Herbel-Eisenmann et al., 2015; 
Radovic et al., 2018). This positional take on identity has offered particular insights into the role 
of communication acts (Andersson & Wagner, 2019) and their associated power dynamics 
(Esmonde & Langer-Osuna, 2013) in affording (or denying) resources for students’ participation 
in mathematical tasks. 

In this contributed report, I utilize longitudinal classroom observation and interview data to 
describe the ways in which Olivia (pseudonym), a student in an undergraduate precalculus 
course, (a) adopted particular roles during interactions involving the instructor in the math class, 
and (b) experienced growth in her sense of self as a “math person” across the semester. The 
ultimate goal of this research is to better understand how an undergraduate student’s positioning 
during interactions with their math instructor impacts the student’s enduring sense of themself as 
a learner and doer of math. To that end, the next phase of analysis will involve linking repeated 
positions adopted by multiple students to changes in their self-perceived mathematics identity. A 
better understanding of the impacts of student positioning during instructor-led interactions on 
their more stable identification with math will support instructors’ ability to consciously reframe 
their discussions (Louie, 2017) in ways to support their students’ mathematics identity 
development.  
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Theoretical Framing and Relevant Literature 
I define a participant’s positional identity using Harré and van Langenhove’s (1999) 

positioning theory. This perspective is focused on understanding the meanings behind different 
communication acts in an interaction through the storylines and positions available to 
participants. Storylines are sociocultural frames for interpreting the available rights and duties of 
participants in the interaction, and positions are the ways that elements of these storylines are 
taken up by the participants during the interaction to act in particular ways (Andersson & 
Wagner, 2019). One’s identity is constructed through social interactions where (a) the individual 
acts to position themselves as having particular roles or qualities, and (b) others act to position 
the individual and accept (or reject) the individual’s own acts of positioning (Langer-Osuna & 
Esmonde, 2017). With this understanding, I define an individual’s mathematics identity as their 
personally held beliefs about their ability to participate appropriately in particular mathematics 
spaces. This framing of mathematics identity assumes a connection between students’ acceptance 
(or rejection) of in-the-moment positions within the mathematics classroom, and their self-
understandings about how they are supposed to participate in mathematics spaces. 

Significant work has been done in K-12 mathematics education research to better understand 
students’ identity development and the outcomes associated with it using a positional lens 
(Boaler & Greeno, 2000; Esmonde & Langer-Osuna, 2013; Bishop, 2012; Anderson, 2009; 
Andersson & Wagner, 2019; Gholson & Martin, 2019; Louie, 2017). In particular, the positional 
approach to identity has given researchers insights into students’ enactment of different 
mathematics identities in the same local context (Bishop, 2012) and the positive influence of 
different positioning acts on students’ engagement with certain mathematical practices (Esmonde 
& Langer-Osuna, 2013). However, this positional approach to mathematics identity has been 
uncommon in RUME (Radovic et al., 2018).  

To characterize the varied positions that students could adopt in the classroom, I initially 
leveraged Andersson and Wagner’s (2019) characterizations of high school math students, who 
highlighted three positions of leader, follower, and rebel. These archetypes focus on 
characterizing who is making requests and who is fulfilling those requests (or not), but they are 
somewhat limited. For instance, any interaction involving students and the instructor tends to 
position the instructor as the leader and the students as followers, given the nature of their formal 
relationship. As such, Andersson and Wagner’s characterization of positions is more suited for 
student-student interactions and not student-instructor interactions. Additional approaches to 
characterizing positions from the literature range from lower inference documentation of the 
structure and function of an individual’s communication actions (Bishop, 2012) to higher 
inference coding for the emotional content of actions (e.g., Heyd-Metzuyanim & Cooper, 2022). 
These various approaches to identifying students’ positions in the math class collectively 
influenced the initial analytic coding process.  

Methods 

Data Collection and Context 
Data for this preliminary report consist of (a) classroom observations of an undergraduate 

precalculus classroom, and (b) early- and late-semester interviews with one of four focal students 
and the instructor. The course was taught in Spring 2023 at a large research university in the 
Southwestern U.S. Class sessions were 75 minutes long, and students typically engaged in small 
group work at their tables while the instructor circulated the room, interspersed with whole class 
discussions (WCD). During WCD, the instructor frequently used an Initiation-Response-
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Evaluation model for questioning (Mehan, 1979), where she initiated the interaction by asking a 
question to the class, a student responded to the instructor’s question, and the instructor assessed 
and evaluated the student’s response.  

Three preliminary classroom visits occurred at the start of the semester, to identify and 
recruit focal students and to refine the video and audio recording setup. Following this, seven 
observations were conducted for study: three earlier in the semester and four later in the 
semester. After the preliminary classroom visits, students who had interacted with the instructor 
at least once were invited to participate in the study, and four students were chosen who had 
interacted with the instructor with varying frequency. Small group work was recorded visually 
using two tripod-mounted iPads and audibly using two recording devices placed on tables with 
the focal students; both visual and audio recording devices were adjusted throughout the class 
session to best capture student-instructor interactions in both small group and whole class 
discussions. While observing and recording class sessions, field notes were taken to provide 
context and to indicate times when there were interactions between the instructor and one of the 
focal students. The instructor was interviewed at the beginning and end of the semester to 
provide additional context regarding instructional practices and how she interacted with students.  

The focal students were interviewed at the beginning and end of the semester, immediately 
following the early-term and late-term observations. All interviews were video- and audio-
recorded using Zoom conferencing software; some interviews were conducted in-person while 
others were conducted over Zoom. Interviews were semi-structured, with questions about the 
students’ (a) academic status and past experiences in math courses, (b) general interests in and 
beliefs about mathematics, (c) performance and participation in this particular course, and (d) 
perceptions of how they and significant others in their life and course (family, friends, instructor, 
classmates) viewed them as a “math person.” At the end of each interview, participants were 
asked to reflect on particular moments from a recent class session, supported by clips from the 
class recording in which the participant was interacting with the instructor. 

Analysis of Observation Data 
Analysis of the observation data began with the identification of notable moments from class 

recordings. A notable moment is one where (a) an interaction occurred involving the instructor 
and a focal student, and (b) the interaction was not focused on course logistics (e.g., asking about 
exam dates). Although this report focuses on the notable moments involving one particular 
student, a total of 17 notable moments were identified between all four focal students, ranging 
from one to three minutes in length. These clips were transcribed using Descript software and 
manual cleaning, with notes added to indicate associated physical movements and gestures. 
Analysis of these notable moments was done in accordance with thematic analysis (Braun & 
Clarke, 2012) to develop roles for these focal students and the instructor. Following 
familiarization with the data, initial codes were assigned to each talk-turn, with multiple codes 
sometimes associated with the same turn. Codes were developed in a predominantly deductive 
fashion, where prior positioning studies were leveraged to construct (a) structural codes 
(Andersson & Wagner, 2019; Bishop, 2012) that capture the discursive function of the talk-turn 
in the interaction, and (b) subjective codes (Heyd-Metzuyanim & Cooper, 2022) that incorporate 
inferences about turn-taker’s emotional hue. Though informed by the literature, these codes were 
refined through an iterative reflection with the data to more accurately capture the roles that were 
common in the class. Once refined, the position codes were grouped by student, and positioning 
profiles were created for each student and the instructor to reflect any patterns noted in the 
individual’s positions throughout the class. In the next section, the developed codes are presented 
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alongside a checklist to indicate if Olivia or her instructor adopted any of those roles during 
notable moments involving Olivia.  

Analysis of Interview Data 
Interview recordings were automatically transcribed by Zoom and manually checked. 

Analysis of interview data was conducted in accordance with narrative analysis (Polkinghorne, 
1995) to configure the elements and events of Olivia’s interview into a developmental account of 
her feelings as a “math person” throughout the semester. The use of “math person” here is due, 
in part, to prior findings that the term is associated with mathematics identity for some 
undergraduate students (Guglielmo et al., 2023). Initially, events relevant to Olivia’s perceptions 
of herself as a learner and doer of math were identified and summarized. These events were then 
organized to construct an initial recounting of Olivia’s math identity development from 
beginning to end of the semester. This narrative was refined through a recursive movement 
between the data and the emerging thematic plot, to ensure it succinctly brought meaning to the 
interview data while maintaining accuracy. In the next section, a condensed version of the 
narrative along with relevant excerpts from the interview transcript are presented. 

Results 

Olivia’s Positioning Profile 
Olivia was involved in six notable moments over four class periods (two early-class, two 

late-class). Five of these moments occurred while students were working in small groups, the 
sixth occurred during whole class discussion. Table 1 describes all nine position codes that were 
developed during analysis. In this table, both the position code and its description are provided, 
alongside a checklist that acknowledges if the instructor or Olivia exhibited that role during any 
of Olivia’s six notable moments. The first six codes are structural codes and the last three are 
subjective codes.  

 
Table 1. Codes developed for Olivia and the instructor’s roles during Olivia’s six notable moments, with a 
checklist for which individuals exhibited these roles in at least one notable moment. 

Code: Description Instructor Olivia 

Requester (general): Making a request expecting a response from 
members of a work group or the entire class. x  

Requester (specific): Making a request expecting a response from a 
specific individual. x x 

Requester (support): Making a request looking for approval or support 
for their prior responses or actions. x  

Responder: Responding to a previous request by another individual, with 
or without justification for response. x x 

Subject: Being the explicit or implicit subject of another individual’s 
request or response. x x 

Revoicer: Rephrasing or restating the response of another person out loud. x x 
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Approver: Responding to another individual’s request or response, with 
explicit or implicit approval of some part of their contribution. x x 

Critiquer: Responding to another individual’s request or response, with 
explicit or implicit critique of some part of their contribution. x  

Apologizer: Expressing regret for a prior response or action.  x x 
 
The following excerpt illustrates how these codes were applied, using a small group 

interaction between Olivia, the instructor, and StudentA (a non-focal student in Olivia’s small 
group), discussing the domain of the sine function: 

 
  Code [Subject] 
Instructor So, do we have any restriction on our angle measure? Requester [General] 
Olivia Well, I was thinking, wouldn’t, wouldn’t it be like 

zero to two pi? 
Responder [Instructor] 

Instructor Can we go (upward vocal inflection) above two pi? Critiquer [Olivia]  
Requester [General] 

StudentA Yeah, yeah, if you do multiple rotations. Responder [Instructor] 
Instructor Okay. Can we go the (upward vocal inflection) other 

direction? 
Approver [StudentA] 
Critiquer [Olivia] 
Requester [General] 

Olivia Yeah. Responder [Inst.] 
Instructor So (expectant pause) Requester [General] 
StudentA Kind of (pause) infinity? Responder [Instructor] 

Requester [Instructor] 
Olivia Okay. Approver [StudentA] 
Instructor Yeah, we can go in both directions. We’ll still get out 

something, right, from our function. Yeah, we haven’t 
been working too much in terms of, like, more than 
one full rotation. But, um, we definitely can. 

Approver [StudentA] 
Revoicer [General] 

 
Initially, Olivia responds to the instructor’s request for the domain of the sine function 

(talked about as an angle measure) as zero to two pi. The instructor, instead of approving 
Olivia’s contribution, makes a request for further information from the whole group, implicitly 
critiquing Olivia’s response. StudentA responds to the instructor’s first request with support, and 
then Olivia responds to the instructor’s second request without support. After the instructor’s 
final request, StudentA provides a hesitant response that also functions as a request for support, 
to which both Olivia and the instructor approve. This was one of three notable moments where 
Olivia made a mathematical error in her response, and the instructor adopted a Critiquer role by 
questioning the student’s response. In the two other instances, one similarly involved an implicit 
critique of the student’s response mediated by another student, while the other was an explicit 
critique of the student’s algebra.  
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Olivia’s Narrative Reflection on Mathematics Identity 
Olivia’s mathematics identity narrative was constructed relative to three phases of Olivia’s 

participation in her precalculus course: the pre-precalculus narrative, the initial reflections on 
precalculus, and the final reflections on precalculus. Before enrolling in her precalculus course, 
Olivia had some positive associations with mathematics, based on prior experiences in math 
courses and her own interests in the sciences. In high school, Olivia found particular math 
subjects interesting and “easy” (trigonometry, statistics), while also developing a preference for 
math classrooms with an active instructor who provides step-by-step explanations and examples. 
In her transition to university, mathematics played a peripheral role in her choice to major in 
biological sciences, with Olivia desiring a biology-focused major that was not “fully set on just 
math.” In relation to her biology identity, Olivia views math as a useful tool for interpreting 
graphs, analyzing data, and making predictions, with its application to many areas and its 
integral role in the advancement of our society. In sum, Olivia has an appreciation for 
mathematics, an interest in learning (at least some areas) of mathematics, and a view of 
mathematics as significant (in some regards) to her future academic and career motivations.  

Despite these positive associations with mathematics, Olivia explicitly did not describe 
herself as a math person during the initial interview, in which she said: 
 

I want to be a math person. I associate a lot of like math people, they're really smart. 
Like they're really smart. They think really well, like the way their minds work, they're 
very calculated […] whereas, like, with English, it’s okay, there’s more leniency in it […] 
I feel good knowing that, like, my family would probably see me as [a math person], but 
I just don’t see myself as it probably due to some, like, I see, I’m like, I’m hard on 
myself. I’m a pretty, like, when it comes to that, I have a pretty high standard. 

 
Olivia often contrasted her sense of being an “English person” with being a “math person” 
during this first interview, as noted in the excerpt above. She viewed herself as an English 
person, in part because it “just comes more naturally,” while not viewing herself as a math 
person due to her own “high standard.” During this first interview, Olivia thought of “math 
person” as a title reserved for “really smart” individuals, of which she did not view herself.  

While reflecting on her classmates’ perceptions of her as a math person during the first 
interview, Olivia noted the mixed perceptions they likely have. She mentioned some students in 
the class that likely don’t view her as a math person due to her getting multiple answers wrong, 
but also one particular student who likely does view her as a math person, because Olivia opens 
up more around her and explains her process. This focus on opening up and reaching out to 
others was brought up multiple times by the student, mostly expressing a desire to contribute her 
ideas more during discussions. Specifically in previous math courses, Olivia acknowledged that 
she often would not speak out during class due to her “low self-esteem when it comes to math 
related subjects.” However, with her precalculus course, Olivia stated that “[the instructor] 
makes it to where you wanna talk to the tables,” and that “this is the perfect moment for me, in 
my mind, to like, try and branch out more.” Though she still has to “fight the feeling” of being 
afraid to be wrong, Olivia acknowledges that she has started sharing her ideas more openly with 
others in her precalculus class, due in part to the interactive nature encouraged in the class. 

During the second interview, and after asking Olivia “How has this class affected your level 
of interest in math as a whole?” Olivia immediately responded, “Okay, this is crazy, but I’ve 
actually, I went from thinking that I wasn’t a math person to actually thinking I am a math 
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person now.” Throughout the interview, the reasons behind this change in the student’s self-
perception as a math person were explored. One particular reason, highlighted in the excerpt 
below, had to do with the students’ shift in thinking about being wrong as necessary in the 
process of learning mathematics: 
 

I'm, I'm feeling a lot more comfortable with being wrong. Just like being able to discuss 
in groups, if I'm wrong, I kind of, I, I used to just care about it so much. It was all I 
would think about. I, I was afraid of like speaking. But like now it's, I don't know. I, 
I'm feeling a lot more comfortable in doing that, because I've seen everyone get 
something wrong before and I'm like, I'm not the only one […] It’s not like I care that 
they got that wrong, so why would others care about me getting stuff wrong, you know? 
It’s all part of the process. It’s all part of learning. That’s why we’re learning it.  

 
Olivia more explicitly notes her instructor’s influence on this shift, through her “sweet and 
genuine” approach to teaching and her ability to “understand where [Olivia’s] coming from.” In 
contrast, Olivia states that with her current English instructor, “I’m afraid that if I say this, I’m 
gonna be wrong, and she’s gonna scream at me.” Unlike other classes, Olivia consistently looks 
forward to going to her precalculus lessons, sees the importance in them, and feels “happy” and 
“motivated” when she learns something new. Overall, Olivia now predominantly sees a math 
person as one who enjoys doing math and participating in math contexts. As such, she now views 
herself as a math person. 

Discussion and Next Steps 
During early- and late-semester class observations, Olivia adopted relatively consistent 

positions during interactions involving the instructor. In five of the six notable moments, Olivia 
made a mathematical error in her response to the instructor’s request, and another individual 
would implicitly or explicitly critique her response. In these interactions across the semester, 
Olivia took on the role of a quiet yet persistent member of her precalculus class, whose 
contributions were open to critique by others. This prevalence of critiquing contributions was 
mirrored in Olivia’s reflections during both interviews, where she often mentioned a fear she had 
of speaking out and being wrong in previous math classes. By the end of her precalculus course, 
Olivia saw the process of trying and getting things wrong as a necessary part of learning 
mathematics. This shift coincided with her coming to claim the title “math person,” as Olivia 
found enjoyment and motivation in her precalculus class. In accordance with positioning theory 
(Harré & van Lagenhove, 1999) and mathematics identity, I conjecture a link between Olivia’s 
frequent in-class role as the subject of others’ critique and her development of understanding 
wrong answers as necessary for learning.  

Additional positioning profiles and math identity narratives for the other focal members of 
this class will contribute to a broader understanding of ways in which students’ mathematics 
identities may shift in relation to the positions they adopt during interactions with their 
instructor. These will inform future research intended to better understand the ways in which 
undergraduate students’ positioning in their math class affects their mathematics identity 
development, including exploring the storylines from which they draw their various roles and 
classroom norms. Ultimately, this will lead to a more comprehensive understanding of the 
factors that influence the students’ positioning and mathematics identity development.  
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Within secondary mathematics teacher preparation, recent scholarship points to the efficacy of 
strong links between university mathematics course content and secondary mathematics teaching 
practice. Studies aligned with this view typically focus on overarching course design, rather than 
instructional characteristics. This investigation builds on a prior such study that found 
improvements in teachers’ potential competence for teaching across four different content areas. 
In the present study, we analyze 137 teachers’ expectation for success in and valuing of core 
instructional practices and their gains in content knowledge for teaching, as well as a purposive 
sample of videos from 6 courses enrolling a subset of these teachers. Based on our analysis, we 
suggest that different aspects of university instruction may have differential influence on 
attitudinal and cognitive aspects of teachers’ potential competence. Moreover, instructional 
practices that most benefit attitudinal aspects may be in tension with those that most benefit 
cognitive aspects. 

Keywords: teaching practice, secondary mathematics teacher education, competence 

For decades, the narrative of secondary mathematics education was one of disconnect. Klein 
(1924/1932, as cited in Kilpatrick, 2019) lamented a “discontinuity” between undergraduate 
mathematics experiences and secondary teaching. Empirical findings documented that many 
secondary teachers found their undergraduate mathematics courses irrelevant to their teaching 
(Goulding et al., 2003; Zazkis & Leikin, 2010). There is recent promise in an approach to 
designing mathematics courses for prospective secondary mathematics teachers that connects 
undergraduate course mathematics content to secondary mathematics teaching practice (see Lai 
et al., in press and Wasserman et al., 2023 for reviews). These results conclude that curricular 
materials that intentionally promote such connections beneficially serve prospective secondary 
mathematics teachers (PSMTs). However, these studies lack an investigation of the 
undergraduate pedagogy through which the intended curricula are enacted. Yet different 
enactments of the same curriculum may have differential impacts (Remillard, 2018).  

 Our purpose is to hypothesize teaching practices that may impact PSMTs’ development of 
competence for teaching. We operationalize competence in terms of expectation for success and 
valuing of evidence-based teaching practices, and the development of content knowledge for 
teaching. In doing so, we account for relationships among these traits. We address: (RQ1) To 
what degree do attitudinal and cognitive aspects of competence associate? (RQ2) What aspects 
of evidence-based teaching practice may most influence PSMTs’ development of attitudinal and 
cognitive aspects of competence for teaching? We analyzed teaching practices with the 
Mathematics Classroom Observation Protocol for Practices (MCOPP; Gleason et al., 2017) 
applied to a purposive sample of 6 instructors’ videos. Hence, we contribute an analysis of 
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relationships between PSMTs’ development of competence and instructional practices they 
experienced. 

Terminology. In this study, secondary refers to Grades 6-12, though we note that 90% of 
participants intended to teach Grades 9-12. PSMT refers to prospective secondary mathematics 
teachers, instructor refers to an undergraduate instructor, and student refers to a secondary 
student. Content refers to mathematics and statistics. 

Conceptual Perspective 
We take competence for teaching to include teachers’ capacity to harness knowledge and 

attitudinal traits (Blömeke et al., 2015). With respect to knowledge, we focus here on content 
knowledge for teaching (CKT), defined as disciplinary knowledge entailed in the recurrent work 
of teaching mathematics or statistics (Ball et al., 2008; Baumert et al., 2010; Thompson & 
Thompson, 1996). With respect to attitudinal traits, we focus on expectancy and value for 
enacting evidence-based teaching practices. A person’s expectancy is their expectation of success 
at carrying out a task in a particular situation (Wigfield & Eccles, 2000). Value is the importance 
of carrying out a task well, and can encompass utility, enjoyment, and personal fulfillment (see 
Eccles & Wigfield, 2020, for a review). We use evidence-based teaching practices to refer to 
teaching practices that promote discussion and elicit student thinking about content in ways 
rooted in disciplinary norms (e.g., Gleason et al., 2017; Grossman et al., 2009). Such teaching 
practices are associated with instructional quality and student learning outcomes at the secondary 
levels (e.g., Baumert et al., 2010).  

Competence is influenced by socialization (Eccles & Wigfield, 2020), and PSMTs’ 
socialization includes their experiences in the mathematics courses they take (e.g., Buchholtz & 
Kaiser, 2013; Werler & Tahirsylaj, 2022). In this study, all participating PSMTs enrolled in 
courses using written curricula developed by the Mathematics Of Doing, Understanding, 
Learning and Educating for Secondary Schools (MODULE(S2)) project, which promoted 
explicit links between university course content and secondary mathematics teaching practice. 
We posit that even with this similarity across PSMTs’ experiences, there may still be differences 
due to instructors’ enactment of the written curriculum (Remillard, 2018).  

One theme in studies of undergraduate mathematics instruction in the past decade has been 
the effectiveness of evidence-based teaching practices, particularly those consistent with 
inquiry-based mathematics education (Laursen & Rasmussen, 2019; Freeman et al., 2014). We 
operationalize the term “evidence-based teaching practices” as teaching for conceptual 
understanding, including opportunities to examine mathematical structure, through teacher 
interactions and students’ engagement. One characterization of evidence-based teaching 
practices (among others) is represented by the Mathematics Classroom Observation Protocol for 
Practices (MCOPP), which has been validated to capture the presence of evidence-based 
practices in undergraduate mathematics instruction (Gleason et al., 2017). The principles behind 
MCOPP items are consistent with guidance at the elementary, secondary, and undergraduate 
levels for mathematics teaching (e.g., Mathematical Association of America, 2018; National 
Council of Teachers of Mathematics, 2014). Gleason et al. (2017) reported that MCOPP items 
fall into two dimensions: Teacher Facilitation and Student Engagement.  

Background 
Evaluation of effectiveness in instruction is typically conceptualized in a process-product 

paradigm: “the search for relations between classroom processes (instruction) and products (what 
students learn” (Gage & Needels, 1989, p. 254). For instance, one of the main results cited in 
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support of evidence-based practices in undergraduate mathematics education is Freeman et al.’s 
(2014) meta-analysis. They concluded from their analysis of 225 studies that “active learning” 
pedagogies (process) increase undergraduates’ scores on concept inventories and course 
examinations (product) in STEM fields. Indeed, the term “evidence-based practices” is rooted in 
this paradigm: they are teaching practices for which process-product research indicates positive 
impacts on student outcomes. 

Studies assessing the impact of evidence-based teaching practices as a process tend to focus 
on one product at a time. For instance, Laursen et al. (2014) examined the impact of inquiry-
based methods on undergraduates’ assessments of their own learning gains. Johnson et el. (2020) 
investigated the effect of active learning methods on undergraduates’ knowledge of group 
theory. Freeman et al. (2014) focused on outcomes in course examinations and concept 
inventories. These results do not account for the possibility that particular teaching practices may 
have differential impacts on different aspects of student outcomes, such as attitudinal in 
comparison to cognitive outcomes. 

Although process-product studies of inquiry-based mathematics education have included 
mathematics courses for PSMTs in their data, their analyses typically consider PSMTs’ 
experiences in aggregate with undergraduate mathematics students more generally (e.g., Laursen, 
et al., 2014). However, PSMTs have needs distinct from other undergraduate mathematics 
students, because content knowledge for teaching is different from content as needed in other 
mathematically-intensive careers (e.g., Krauss et al., 2008; Hill et al., 2007). Moreover, although 
prior studies in undergraduate mathematics education have examined undergraduates’ attitudes 
toward mathematics, they have not addressed attitudes specific to future teaching practice. 

This study addresses the gap in examining the potential for differential impacts as well as the 
need for studies specific to PSMTs. We analyze a combination of teaching practices experienced 
by PSMTs in a mathematics course, content knowledge for teaching, as well as expectancy and 
value for carrying out evidence-based teaching practices.  

Data & Method 
The context for this study is the MODULE(S2) project, a research and development effort 

that produced written curricular materials in algebra, geometry, mathematical modeling, and 
statistics. Materials for each content area are intended to span one term of a university 
mathematics course for PSMTs. All materials featured opportunities for PSMTs to apply course 
content to teaching situations such as responding to student ideas. In a previous study, the 
MODULE(S2) project examined pre- and post-term data for PSMTs’ expectancy and value for 
enacting evidence-based teaching practices, and their CKT. This research found mean increases 
in PSMTs’ outcomes across each of these constructs (Lai et al., 2023). Further, this prior study 
indicated that PSMTs noticed their instructors’ enactment of evidence-based practices. One 
significant limitation of this prior study is that it examined instruction indirectly, using PSMTs’ 
perception of the instruction they experienced.  

There are two parts to the present study. For RQ1, we examined the association among 
PSMTs’ gains in expectancy, value, and content knowledge for teaching. For RQ2, we compared 
ratings for videos of 6 instructors’ use of evidence-based practices to mean gains of participating 
PSMTs enrolled in their courses. Our rationale was that if we were going to examine the impact 
of instructional practices on PSMTs’ development of three different traits (expectancy, value, 
and content knowledge for teaching), we should also examine the relationship among these 
constructs in the population. If significantly associated, instructional processes influencing one 
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trait may influence others in a similar way. If association is more limited, we may be looking for 
differences in the influence of instructional practices on traits.  

Participants for RQ1 were 137 PSMTs enrolled in university courses using MODULE(S2) 
materials, with 50 in algebra, 25 in geometry, 16 in mathematical modeling, and 46 in statistics. 
For RQ2, we purposively sampled 6 instructors’ courses in geometry and statistics, the areas 
with the most video data available for analysis. Following the process-product model, we posited 
that PSMTs’ mean gains in CKT represented variation in instruction. Our purposive sample 
consisted of videos from instructors with high and low relative mean gains among participating 
PSMTs, resulting in a selection of 19 videos from 4 geometry instructors’ courses (12 videos; 
mean CKT gains ranged from 10% to 19.50% of the maximum possible CKT score) and 2 
statistics instructors’ courses (7 videos; CKT gains 10.6% and 26.88%). Video lengths ranged 
from 40 minutes to 75 minutes and documented a single class period instruction.  

As for instrumentation, we measured pre-/post-term expectancy and value for carrying out 
evidence-based practices using a Likert-item survey, whose phrasings were drawn from Wigfield 
and Eccles (2000). In the prior study, internal reliability (Cronbach’s α) was α = 0.91 for the 
expectancy assessment, and α = 0.79 for the value assessment. A common guideline for 
Cronbach’s α is to consider values over 0.7 as acceptable and values over 0.9 as excellent 
(Nunnally, 1978). We measured (CKT) in each area with instruments featuring applications of 
the specified content to teaching (see Lai et al., 2023 for more details on instrument validity for 
capturing PSMTs’ CKT). We analyzed instructional videos using MCOPP, which consists of 20 
items describing aspects of two categories: undergraduate student engagement (SE) (e.g., 
assessing strategies, communicating ideas to peers) and teacher facilitation (TF) (e.g., allows for 
wait time; encourages independent thinking) (Gleason et al., 2017). Each item is rated on a scale 
of 1 to 3, representing less to more intense enactment.  

For RQ1, the first three authors analyzed relationships between PSMTs’ expectancy, value, 
and CKT. To do so, we used Pearson’s correlation coefficient r to measure effect size of 
correlations. We used p-values to determine if there is evidence of a non-zero correlation in the 
theoretical population, but focus on practical significance.  

For RQ2, four researchers (including the fifth and sixth authors) coded videos with MCOPP 
items, reconciling in pairs any difficult evaluations. We intended to analyze relationships 
between these dimensions, items, and mean PSMT gains per course in expectancy, value, and 
CKT. We decided to focus solely on TF as the videos often followed the instructor, affording 
limited data on student engagement. Of note, after 2017, items addressing equitable teaching 
practices were added to MCOPP from outside the original factor analysis. Based on parallelism 
in phrasing, we posited how these items fell into the teacher facilitation dimension; we call this 
dimension TF+. 

Here we emphasize the phrasing of RQ2: “What aspects of evidence-based teaching practice 
may most influence PSMTs’ development of attitudinal and cognitive aspects of competence for 
teaching?” Although we use Pearson’s correlation coefficient r in this analysis, we do so in an 
exploratory way. Our findings are potential hypotheses. We posited that r ~ 0 (~0.1 < r < ~0.1) 
can be interpreted as the hypothesis that the MCOPP item or dimension has little relationship to 
the PSMT gain in the trait (expectancy, value, or CKT). Otherwise, positive r indicates a 
hypothesis that the teaching practices described in the MCOPP item or dimension benefits 
PSMTs’ development in that trait. And negative r indicates a hypothesis that those teaching 
practices may have less benefit for PSMTs’ development.  
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We also emphasize the study context: we already know that PSMTs on average gained 
expectancy, value, and CKT. Thus a negative correlation indicates that the dimension may have 
had less impact on the PSMTs’ development than others for the specified trait, rather than 
indicating that the dimension is detrimental to the PSMTs’ development. 

Results 

RQ1: PSMTs’ Gains in CKT Versus Expectancy or Value Show Mostly Statistically 
Insignificant Correlations with Negligible Effects  

The first three authors used Pearson’s correlation coefficient r to analyze relationships 
between PSMTs’ gains in CKT versus their gains in expectation to implement and valuation of 
core instructional practices. Each PSMT’s scores on these metrics were first converted to a 
percent change from pre to post out of total possible points on the relevant assessment or survey. 
Figure 1 shows Pearson’s correlation coefficient r and the p-values for this group of PSMTs, 
both partitioned by content area and as a whole group. Note that both results for the combined 
group were statistically significant with p < 0.05, though their r values were small. The only 
content-specific significant result was for statistics and value, with a higher r value of +0.41. 
These results imply that, for the most part, PSMTs’ learning of mathematics content for teaching 
was separate from their expectation and valuation of core instructional practices. 

 
 
  CKT vs. E  

r value 
CKT vs. E  
p-value 

CKT vs. V  
r value 

CKT vs. V  
p-value 

Algebra +0.107 0.458 +0.022 0.882 

Geometry +0.137 0.514 +0.153 0.466 

Modeling +0.342 0.195 +0.336 0.203 

Statistics +0.188 0.212 +0.41 0.005 

All Content Areas Combined +0.168 0.0497 +0.199 0.019 

Figure 1. Pearson’s correlation coefficient r and the p-value for correlations between PSMT’s gains in content 
knowledge for teaching (CKT) and gains in expectancy (E) or value (V). Statistically significant results are 
highlighted in green.  
 

RQ2: We Hypothesize that the Process as a Whole (of Evidence-Based Practices) is the 
Sum of Parts in Tension 

Overall, Pearson’s correlation coefficients with the TF dimension with expectancy, value, 
and CKT ranged from 0.022 to +0.49. Our estimate for standard error over the 19 observations 
(for 19 videos) is 0.45 assuming independent observations. This assumption is necessary for the 
analysis even though these observations are not independent, with multiple videos originating 
from the same instructor. Nonetheless, we infer that these coefficients are relatively small. The 
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exceptions are the correlations with gains in expectancy, which were +0.45 (TF) and +0.49 
(TF+). 

When examining correlation for individual MCOPP items with expectancy, value, and CKT, 
we find wider variation. With expectancy, r ranged from -0.12 to +0.73. With value, r ranged 
from 0.42 to 0.57 actual. With CKT, r ranged from -0.62 to +0.51. For some items with larger 
relative r in terms of absolute value (operationalized as |r| > ~0.4), the sign for the coefficient 
flipped between expectancy and CKT, or between value and CKT, or the coefficient for CKT 
was relatively small (for examples, see Figure 2).  

 
 

7) The teacher 
promoted 
modeling with 
math. 

11) The teacher’s talk 
encouraged student 
thinking 

13) There was a 
climate of respect for 
what others had to 
say 

14) In general, the 
teacher provided 
wait-time  

E -0.08 +0.18 +0.58 +0.73 

V -0.42 +0.42 +0.57 +0.56 

CKT +0.51 -0.62 -0.09 +0.01 
Figure 2. Examples of largest correlation coefficients (in absolute value) obtained among MCOPP items and 
PSMTs’ change in expectancy (E), value (V), and content knowledge for teaching (CKT) 
 

Discussion  
We examined pre/post-gains in PSMTs’ expectancy, value, and CKT as well as instruction 

experienced by the PSMTs, for which our analysis found insignificant correlations between 
PSMTs’ gains in these aspects. We also hypothesized that teacher facilitation would have the 
greatest additional impact on PSMTs’ gains in expectancy, in the context that we know students 
on average experienced gains across each trait across all courses. 

Our study was limited in several ways. The band of CKT gains that determined the purposive 
sampling was relatively narrow, limiting differences to detect. The videos coded, though 
purposively selected, may not represent the widest variation in instruction; the courses with the 
highest and lowest mean CKT gains in a content area sometimes had no video data available. 
Additionally, we completed coding in two of the four original content areas. For this reason, we 
view our results as hypotheses for further consideration. 

One hypothesis we make is that in the presence of gains in competence, teaching practices 
may make more difference in expectancy for carrying out evidence-based teaching practices than 
other traits. One reason for this being that experiencing evidence-based teaching can foster 
confidence by providing a model for what such teaching looks and feels like.  

We also hypothesize that different teaching practices have differential benefits to distinct 
intended outcomes for competence (gains in expectancy, value, and CKT). Here we distinguish 
teaching practice, conceived as the whole of a teacher’s instruction, from teaching practices, 
conceived as routines and aspects within instruction (Lampert, 2010). Further, in any given 
moment, an instructor can only focus on so many individual practices; emphasizing one practice 
may necessitate doing so at the expense of another. How do we conceive of “effective” teaching 
practices when faced with these kinds of results? Perhaps effective teaching practice is composed 
of teaching practices in tension.  
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We designed approximations of practice (AoPs; Grossman et al., 2009) that pose hypothetical 
classroom scenarios of high school students learning about factoring polynomials. We 
investigated the ways in which prospective and in-service teachers leverage their understanding 
of unique factorization domains to inform their teaching practices of attending, interpreting, and 
deciding how to respond to students’ thinking in the AoPs with the goal of making explicit 
connections between abstract algebra and the teaching of secondary mathematics. 
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Connecting secondary mathematics and abstract algebra can support in-service and pre-
service teachers (IPSTs) in their teaching. For IPSTs to recognize advanced mathematics 
courses, like Abstract Algebra, as beneficial for their teaching, they should be explicitly given 
opportunities in their mathematics courses to reflect on how the advanced content is connected to 
secondary mathematics and how those connections can inform their teaching. Some researchers 
and teacher educators (e.g., Álvarez et al., 2020; Burroughs et al., 2023; Serbin & Bae, 2023) 
have provided such opportunities to IPSTs by using Approximations of Practice (AoPs) in 
advanced mathematics courses, which are activities situated in hypothetical classroom scenarios 
that require IPSTs to simulate certain teaching practices (Grossman et al., 2009). AoPs often 
include scripting tasks (Zazkis et al., 2013) and noticing tasks (Jacobs et al., 2010) that engage 
IPSTs in attending, interpreting, and deciding how to respond to students’ thinking in samples of 
written student work or scripted class discussions.  

Before teachers’ understanding of connections between secondary and abstract algebra can 
become useful in their teaching or AoPs, those connections should first serve to fundamentally 
change the teachers’ understandings of the content they teach (Wasserman, 2018). This principle 
guided our design of an instructional task sequence that guided IPSTs in reinventing 
(Gravemeijer, 1999) unique factorization domains (UFDs), connecting its properties to the 
factorization of integers and polynomials (commonly used in secondary algebra), and applying 
their understandings of those connections in AoPs. A UFD is an integral domain ! in which 
every nonzero element " ∈ !  which is not a unit has the following two properties: (i) " can be 
written as a finite product of irreducibles	%! of R (not necessarily distinct): " = %"%#…%$ and 
(ii) the decomposition in (i) is unique up to associates: namely, if "	 = 	 ("(#…(% is another 
factorization of " into irreducibles, then )	 = 	* and there is some renumbering of the factors so 
that %! 	is associate to (" for +	 = 	1, 2, . . . , * (Dummit & Foote, 2003). After reinventing UFDs, 
the IPSTs were asked to complete a set of AoPs (Grossman et al., 2009) that were designed to 
lead them to use their understandings of UFDs and factorization while they noticed (attended to, 
interpreted, and decided how to respond to) student thinking or scripted class discussions in 
hypothetical classroom scenarios (Jacobs et al., 2010; Zazkis et al., 2013). We address this 
research question: What aspects of IPSTs’ understanding about UFDs do they leverage as they 
interpret and decide how to respond to students’ mathematical thinking in AoPs? 
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Literature Review 
It is essential for teachers to have knowledge of the content they teach, as well as knowledge 

of advanced mathematics that is related to, but is still outside the scope of, secondary 
mathematics. Wasserman (2018) defines the mathematical knowledge outside of the scope that 
teachers teach as nonlocal mathematics. Nonlocal mathematics can influence the teachers’ 
perceptions and interpretations of their students’ thinking. Thus, it is important that preservice 
teachers are prepared beyond the local mathematics they plan to teach. However, it often occurs 
that IPSTs do not see any connections between the advanced mathematics courses they take with 
the secondary mathematics they eventually teach (Zazkis & Leikin, 2010).  

Some researchers have tried to resolve this disconnect by studying how to support IPSTs in 
making connections between the content they learn and the content they teach on the secondary 
level (Alvarez et al., 2020; Wasserman, 2018; Wasserman et al., 2017; Larsen, 2013). However, 
there has not been much research done on how these connections actually influence the way 
graduate students teach mathematics (Wasserman et al., 2017). Abstract Algebra is one of the 
primary advanced mathematical courses required for IPSTs, where they can learn about algebraic 
structures (Pramasdyahsari, 2021; Ticknor, 2012). To make explicit connections between the 
abstract algebra and secondary mathematics, Álvarez et al. (2020) designed pedagogical tasks for 
use in abstract algebra courses that generated student-teacher interaction and helped students 
construct their own knowledge. Similarly, Zbiek & Heid (2018) proposed the Mathematical 
Understanding for Secondary Teaching framework where IPSTs connect abstract algebra and 
school algebra through the mathematical activities of mathematical noticing, mathematical 
reasoning and, mathematical creating, which leverage the practices of noticing structure and 
symbolic forms, proving and conjecturing, as well as representing and defining. Herbst et al. 
(2014) explored how AoPs using online learning can engage prospective secondary teachers as 
part of their practice-based teacher development. These studies exemplify efforts being made 
toward supporting IPSTs in connecting advanced mathematics to teaching.  
 

Theoretical Background 
 

Building Up From Practice – Stepping Down to Practice 
To help teachers make connections between advanced and secondary mathematics, 

Wasserman et al. (2017) proposed the building up-stepping down model for a real analysis 
course. The model consists of providing IPSTs with pedagogical situation tasks that can help 
them recognize the utility of advanced mathematics, in this case, real analysis, in their teaching. 
Thus, they start from a practical scenario in the context of teaching mathematics and build up the 
advanced mathematical content from that practice. Once the students learn advanced 
mathematics, they step down to teaching practice, where the ideas of real analysis are explicitly 
connected to secondary mathematics, and IPSTs can use their knowledge about real analysis to 
support their teaching practices such as attending and responding to hypothetical students’ ideas.  
 
Approximations of Practice 

Teaching requires multifaceted skills, like interpreting and responding to students’ 
mathematical thinking, explaining mathematical definitions, posing questions, and responding to 
questions that can advance the students’ reasoning (Álvarez et al. 2020). Therefore, it is crucial 
that IPSTs have opportunities to practice these skills without the complexity of teaching in a 
real-life scenario. Grossman et al. (2009) defined AoPs as “opportunities for novices to engage in 
practices that are more or less proximal to the practices of a profession” (p. 2058). AoPs, like 
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scripting and noticing tasks, serve as practice for IPSTs to implement the pedagogical moves 
they learn (Crespo, 2018). For instance, Zaskis & Marmur (2018) argue that scripting tasks 
provide IPSTs the opportunity to “explore erroneous or incomplete approaches of a student, 
revisit and possibly enhance personal understanding of the mathematics involved and enrich the 
repertoire of potential responses to be used in future ‘real’ teaching” (p. 294). Scripting tasks 
also prompt prospective teachers to reflect and explain why they would continue the discussion 
in that manner (Campbell & Baldinger, 2021). By having these opportunities in advanced 
mathematics courses, IPSTs can develop teaching practices in connection to the advanced 
mathematical content they learn in the courses (Álvarez et al., 2020, Zaskis & Marmur, 2018). 
 
Noticing Students’ Mathematical Thinking 

In our task design, we leveraged the three components of professional teacher noticing of 
mathematical thinking: attending students’ mathematical thinking, interpreting students’ 
understanding and deciding how to respond (Jacobs et al., 2010), as we consider them key 
pedagogical moves that teachers can implement to guide a class discussion and answer their 
students' questions. Zambak et al. (2023) recognize that “noticing provides pedagogical readiness 
for PSTs to correctly identify students’ mathematical conceptions and misconceptions and guides 
their instructional strategies” (p. 4). In noticing tasks, prospective teachers are posed with a 
hypothetical classroom scenario where the mathematical activity and thinking of a student are 
described. The goal of such tasks is for IPSTs to attend, interpret, and decide how to respond to 
the student’s ideas by reasoning about the strategies the student used to solve the given task.  We 
investigate the aspects of IPSTs’ understandings of UFDs that IPSTs leverage as they interpret 
and respond to students’ mathematical thinking in AoPs.  

Therefore, our study design is informed by Wasserman et al.’s (2017) building up-stepping 
down model for designing curricula that connects advanced mathematics to teaching, along with 
the instructional design theory of Realistic Mathematics Education (Gravemeijer, 1999), 
informed our creation of local instructional theory, in which we guided graduate student IPSTs’ 
reinvention of UFDs. We connected the first tasks in the sequence to the teaching of factorization 
in high school algebra by using algebra tile manipulatives. We built up the advanced 
mathematical content by guiding the IPSTs to reinvent UFDs (see Bae et al., 2024). We then 
guided the IPSTs to step down to practice by using their understandings of UFDs in their 
responses to AoPs situated in hypothetical classroom situations. The design of the AoPs was 
informed by Grossman et al.’s (2009) AoPs and Jacobs et al.’s (2010) noticing framework. 
 

Methods 
We designed a sequence of tasks to guide IPSTs to reinvent the reducibles and irreducibles 

(Unit 1), reinvent the definition of UFD (Unit 2 & 3), and apply their knowledge to AoPs (Unit 
4). In Unit 4, we created AoPs where IPSTs engaged in noticing students’ mathematical 
reasoning about concepts related to factorizations of integers and polynomials. The tasks were 
designed to elicit IPSTs’ use of their knowledge of UFD from the previous units as they attended 
to, interpreted, and decided how to respond to students’ thinking in written work and class 
discussion scripts. In this paper, we focus on their work on the AoPs tasks in Unit 4.   

We administered the AoPs to IPSTs in a teaching experiment (Steffe & Thompson, 2000) 
conducted in the Southern US. Six mathematics graduate student IPSTs participated in this 
study: Josie and Raul (Group A), Javier and Roberto (Group B), and Kim and Taylor (Group C) 
(pseudonyms). They all had taken an abstract algebra course but had not yet learned about UFDs. 
They had varied teaching experiences at different school and college levels ranging from student 
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teaching to 20 years. Each group participated in five 90-minute sessions of teaching experiments 
with the research team. Groups A and B participated in person, and Group C participated in 
Zoom. We collected and transcribed the session recordings. 

We implemented the AoPs in Figures 1, 2, and 3. The IPSTs responded to questions about 
their interpretation of what the students’ approaches and understandings, and how they would 
respond to such student ideas if they were the students’ teacher and how their responses were 
informed by their understanding of UFDs, providing us with evidence about how they used their 
knowledge about UFD to inform their pedagogical actions. We used inductive coding (Miles et 
al., 2013) to analyze how IPSTs use their knowledge about UFD as they worked on the AoPs. 
We coded the properties of UFDs the IPSTs referenced as they in noticed and responded to 
students’ mathematical thinking, i.e., (Jacobs et al., 2010). 

 
In Mr. Garcia’s class, students were asked to factor a quadratic polynomial −2#! − 4# + 6 for solving a quadratic equation 
−2#! − 4# + 6 = 0. Mr. Garcia had four of his students, Aden, Brian, Cassy, and David come to the board and share how they 
factored the polynomial. The following is the solutions of the four students that involve different final forms of factorization of the 
polynomial −2#! − 4# + 6. 

Aden Brian Cassy David 

−2#! − 4# + 6	
= −2(#! + 2# − 3)	
= −2(# + 3)(# − 1) 

−2#! − 4# + 6	
= −(2#! + 4# − 6)	
= −(# − 1)(2# + 6)	

−2#! − 4# + 6	
= #! + 2# − 3	
= (# + 3)(# − 1)	

−2#! − 4# + 6	
= (−# + 1)(2# + 6)	
= (−# + 1)2(# + 3)	

Jaime, one of the students in Mr. Garcia’s class, said “So who’s got it right? They all got it different, so someone  
must be wrong.” Monica followed, “That doesn’t matter, you have to check if they all give you the same roots”.  

Figure 1. Approximation of Practice Task 1 Scenario 
 

 
Figure 2. Approximation of Practice Task Scenarios from Task Set 2  

 

 
Figure 3. Approximation of Practice Scenario from Task Set 3 

 
Results 

 
Episode 1: Reasoning About the Uniqueness Axiom of UFD to Inform their Interpretation 
of and Response to Hypothetical Students’ Thinking 

In the AoP task set 1, four hypothetical students, Aiden, Brian, Cassy, and David 
obtained different factorizations −21# − 41 + 6 (see Figure 1). In this hypothetical scenario, 
the students’ work was on the classroom board, and the class was discussing the 
factorizations. Two students, Jaime and Monica, shared their ideas (see Figure 1). The 
participants were asked to attend to and interpret the student understanding evident in 
Jaime’s and Monica’s comments. Josie and Raul agreed that Jaime’s comment was valid, 

1. In Ms. Gonzalez’s last class, students went over problems that required factoring polynomials. Ms. Gonzalez wants her 
students to think about the factorization of polynomials. She said: “Today, we are going to explore how polynomials and 
integers are similar. What similarities do you think polynomials and integers have?” 
 

2. A student Amy asked the following question to Ms. Gonzalez: That problem told us to factor a polynomial, and I was 
trying to remember where I saw factoring before. I remember that numbers have prime factorizations. Do polynomials have 
prime factorizations too? Or is that a different kind of factorization? 

The teacher asks students to find the factors of the polynomial  #! + 5# + 6.  
When asking the students to share their answers, he receives the following answer: 
Luis: The factors are 3 and 2.  
Teacher: Can you explain your answer?  
Luis: The factors of 6 are 3 and 2 because 3⋅2 is equal to 6 and 3 plus 2 gives me 5 which matches the polynomial.  
Alex: I think he’s right, he just needs to add x, so we have (# + 3)  and (# + 2). 
Mia: I have (# + 2) and (# + 3). Does the order for this matter? 
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arguing that his understanding of factoring is strong. For instance, Josie claimed: He knows 
that… when you’re factoring something to the irreducibles, it should be unique no matter 
what… The order doesn’t matter, but it still should be unique factorization. So, they should 
still end up with the same solution if the task is to factor it out. Josie recognized that Jaime 
thought only one of the distinct solutions from his classmates must be correct because he 
might know that the problem must have one unique solution. Raul interpreted Jaime’s 
understanding of factorization as “on point” for this same reason. Both IPSTs connected 
Jaime’s comment to the uniqueness axiom of the unique factorization domain. 
The participants were prompted to decide how they would respond to the class following the 
comments by Jaime and Monica. Josie responded: 

Just check each student’s solutions of like, you have student [work] on the board, and you 
might ask, who got it right? It’s a two-part question, the factoring and solving the 
equation. So, to check if you got the factoring right, distribute it, see if you got the 
original polynomial. And then the second part of solving the equation, actually solve it. 
Set it equal to 0. Find the roots for each one. And that will give you the checkmark or the 
X for each one, whether they got both parts of the question right or wrong.   

Josie and Raul decided that they would ask students to go back and check their classmates’ 
answers for them to find whether the factorizations were correct.  

Finally, the participants were asked how their understanding of UFD helped them interpret 
and decide how to respond to the students’ thinking. Josie and Raul said: 

Josie: It helps you address Jaime’s comment, of the unique factorization domain tells us that 
the elements can be written as a unique product of irreducibles up to the order and 
associates of the elements. So, it helps us address his comment right away of, he 
understands that the factorizations should be unique, so every student should have gotten 
the same factorization if the question is to factor it all the way down to irreducibles.  

Raul: [...]. So, I kind of push already for like, you need to factorize it as much as possible, 
which is like this unique factorization idea, prime factorization idea. Um, so, I guess my 
push is like, with this, with this unique factorization domain idea in mind is that, we want 
it to be as small as possible, on what the product is that. […] 

Josie: Because we know… how the integral domain works, we can answer their question like 
well, but how? But why? …I think that’s the question. Which is why I thought that the 
question would be more like appropriately addressed to Jamie’s comment, and maybe 
student Aiden for that matter too, that they understand that the factorization, you’re going 
to get it down to like, you want to break it down as much as possible, like the primes. 
And that factorization must be unique, which is the property of the UFD we’re looking at.  

Josie recognized that the way she could address the students’ comments was by knowing how 
some mathematical structures such as rings and integral domains work. Specifically, she 
mentioned that the UFD axiom about uniqueness helped her respond to the students’ 
mathematical thinking. Raul also referenced the UFD axiom regarding the existence of prime 
factorizations, as evident in his response of pushing students to “factorize it as much as possible” 
and “be as small as possible.” Thus, Josie’s and Raul’s understandings of the axioms of UFDs 
informed their interpretation of and response to student thinking in this AoP. 
 
Episode 2: Reasoning about the Reducibility and Irreducibility of Polynomials to Inform 
their Interpretation of and Response to Hypothetical Students’ Thinking 

In Task Set 2, the IPSTs were given the classroom scenario in Figure 2, where a teacher 
prompts her students to identify the similarities between integers and polynomials to help them 
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develop an intuitive understanding of factoring polynomials. The IPSTs were asked to anticipate 
what similarities students might find between integers and polynomials. Taylor and Kim said that 
students would probably recognize that integers and polynomials have numbers, and they could 
do operations with them such as addition, subtraction, and multiplication. Both agreed that 
students would probably not think about factorization as a similarity between them. Kim and 
Taylor were then asked about how they would respond to these anticipated student ideas and 
how they could connect those ideas to the factorization of polynomials. Kim replied, “I think the 
big thing is… branching the ideas together. Right, okay, so…this is surface-level. Let’s get a 
little bit deeper, to get the point of the factorization at least. Okay, yes, so you can factor 
polynomials.” Next, they were asked about the characteristics of unique factorization domains 
that would help inform their response to students in this question. They answered as follows: 

Kim: I think for that one, just the fact that you had the unique factorization domain of like 
integers but also the ring of polynomials. Knowing that they are, that that is the same, 
inherently those structures, allows one I think to be more confident in saying, okay, they 
are similar, because they are the same structure, right?  

Taylor: I still like the “breaking them down”, that they can be broken down into irreducible 
things. […] Just knowing that you can break these things down, I think that would be 
really beneficial, at least for that level. So that I guess the first point is the most important 
one for me, not so much that they’re unique, but that you can do it to begin with. 

Taylor related the reducibility of elements in UFDs as the main property that was connected 
to factoring polynomials, arguing that students could understand factoring as the action of  
“breaking things down” Therefore, Taylor’s knowledge of the reducibility in UFDs 
helped her have an intuitive understanding of factoring in a high school setting and 
informed her way of sharing these ideas with the student. 

The participants were next asked about how they would decide to respond Amy’s question if 
they were her teacher (see task 2 in Figure 2). They replied as follows:  

Taylor: Yeah, they do have prime factorizations, and I don’t think it’s a different kind of 
factorization. Because like, 2 and 3, you know, that’s 6, but the factorization of 2 and 3 
can be the same as a polynomial as long as you have the correct x value. So it’s, I don’t 
know if I would call it different kind of factorization. I would say they’re the same, but 
they’re performed differently and for different reasons. 

Kim: …I just immediately am like…what do you mean by prime, right? Like prime, just give 
the definition of prime... You can’t reduce it, right? So, talk about reducibility, make that 
connection, and then you can get the polynomial to a reducibility as well, kind of 
depending on like that factorization and with the root finding. 

Taylor agrees with Amy’s reasoning about the similarities between the prime factorizations of 
integers and polynomials, and Kim relates such property of polynomials to the reducibility in the 
elements of UFDs given that both integers and polynomials with integer coefficients are UFDs.  
We asked the participants what aspects of UFD informed their responses to students. Kim said:  

Just knowing that the UFD is both a definition for the integers and the polynomials ring 
is, is important for this response, like with the last one. Because, okay, if you know they 
are the same, you can confidently say yes, of course, without having that doubt. Because 
if you have that… second of doubt of like, oh, are they the same or are they not? And 
you’re discouraging the student from like, but they were right, and they had the right 
idea. So setting a foundation of yes, I know for a fact, because it’s the same structure, 
okay. And it instills confidence in the student as well. 
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Kim’s understanding of the structure of the integers and polynomials as UFDs gave her the 
confidence to assert that the factorizations the student Amy asked about were indeed similar 
because they have the same UFD structure. Having this understanding about the structure of 
factorization in ℤ	and	ℤ[1], informed Kim’s response to the hypothetical student in the AoP. 
 
Episode 3: Reasoning About the Commutativity of Polynomial Factors to Inform their 
Interpretation of and Response to Hypothetical Students’ Thinking 

The last set of tasks consisted of the hypothetical classroom scenario in Figure 3. When 
asked to interpret Mia’s understanding, Javier replied: “Mia’s just trying to I guess clarify if 
commutativity is going to work here also.” We asked the participants how they would address 
and respond to the students’ comments if they were their teacher. Javier and Roberto responded: 

Javier: For Mia, I’d probably just tell her to multiply those out, (1 + 2)(1 + 3), and then 
multiply (1 + 3)(1 + 2), to see if it really does matter if we multiply them in any order. 

Roberto: …Mia to expand both terms and see if they give you the same answer. I think the 
way the task is given is that I think she knows how to factor everything out. She knows 
how to get those two answers, but she’s just not sure if commutativity matters or not. It 
can be solved just by telling her to distribute. It doesn’t matter in this case, it’s the same. 

The IPSTs were asked about how their knowledge of unique factorization domains was 
informing their responses to students. Javier responded, “Seeing the commutativity in the tiles,” 
and Roberto agreed. The IPSTs explained that their knowledge of the commutativity property of 
UFDs helped them explain with confidence why the order of the factors does not matter when 
factoring a quadratic. They both referred to the “uniqueness up to the order” of the factors, which 
results from the multiplicative commutativity that can be applied to the factors in a factorization. 

 
Discussion and Conclusion 

We exemplified how IPSTs’ understandings of the connections between the abstract 
algebraic concept of UFD and the concepts of integer and polynomial factorization from 
secondary mathematics seemed to support them in their pedagogical practices. Specifically, we 
identified how the participating IPSTs seemed to leverage their reasoning about the existence 
and uniqueness axioms of UFDs to inform their responses to AoPs tasks that prompted them to 
interpret and decide how to respond to hypothetical students’ thinking or classroom scenarios. 
Our work contributed to the literature on how IPSTs’ knowledge of abstract algebraic concepts 
can inform their pedagogical practices. Our findings also contribute to the literature on the utility 
of AoPs in supporting IPSTs in connecting advanced and secondary mathematics. Álvarez et al. 
(2020) suggested that these AoPs can be “used both as a vehicle for bridging undergraduates’ 
advanced mathematical knowledge to secondary school mathematics and for strengthening 
undergraduates’ understanding of the advanced mathematics from an encounter with school 
mathematics” (p. 16). Additionally, AoPs can give IPSTs experience in using their knowledge of 
advanced mathematics in their teaching practices, which can contribute to improvements in their 
perceptions of advanced mathematics as being useful for their teaching of school mathematics 
(Serbin & Bae, 2023). Future research can address how IPSTs use their knowledge of other 
advanced mathematical concepts, as well as their pedagogical or mathematical practices (e.g., 
Wasserman, 2022), as they perform AoPs. Lastly, we propose that mathematics instructors who 
prepare IPSTs should implement AoPs in their assignments to support IPSTs in developing 
coherent understandings of the connections between abstract algebra and the teaching and 
learning of secondary mathematics. 
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In Transition from Undergraduate to Postgraduate Mathematics: A Case of Re-learning to Learn 
 

 Rox-Anne L’Italien-Bruneau Igor’ Kontorovich 
 The University of Auckland The University of Auckland 

The transition from undergraduate to postgraduate studies has been underexplored in 
mathematics education research. Several studies showed that this transition is challenging as it 
requires countless changes in familiar practices. In this paper, we present the case of Jordan—
an honors student who was developing mathematical background as a stepping stone toward his 
research project. With the commognitive framework, we analyzed the data from three interviews 
to reveal Jordan’s mathematical learning network of routines. The findings detail the network’s 
components and illuminate the role of agency in Jordan’s network development. Agency appears 
as necessary to navigate learning routines common in undergraduate studies and enables Jordan 
to be less dependent on externally provided resources shaping his learning. 

Keywords: mathematics learning, postgraduate studies, commognition, learning routines 

Introduction and Background 
The preparation of new researchers is vital for the flourishment of any discipline. 

Mathematics departments initiate students to research through a range of programs such as 
honors, master’s and doctorates. Each of these postgraduate contexts is distinct, and their 
structures differ substantially from what undergraduate students are used to. Thus, a shift from 
undergraduate to postgraduate mathematics constitutes a critical transition, that is, one that 
involves “a noticeable change of point of view […and] a necessity for entering into a different 
type of discourse […] or more broadly […] changing ‘lenses’” (Yerushalmi, 2005, p. 37). Yet, 
research into students’ experiences of the undergraduate–postgraduate transition in mathematics 
is scarce. 

Higher education research identified important obstacles in students’ transition to 
postgraduate studies. For instance, O’Donnell and colleagues challenged the assumption that 
undergraduates are experts in disciplinary practices and elaborated on multiple changes 
postgraduate students must navigate simultaneously (O’Donnell et al., 2009; Tobbell & 
O’Donnell, 2013a; Tobbell & O’Donnell, 2013b). Adjusting to a higher level of independence 
has been reported to be particularly challenging for students (Tobbell et al., 2010). Lovitts (2005, 
2008) detailed a range of factors underpinning the complexity of the shift from being expected to 
“[learn] what others know and how they know it” to “conducting original research and creating 
knowledge” (p. 140). Among other factors, the microenvironment composed of the department, 
advisors, and peers appeared to have a significant impact on the shift to independent research. 
Overall, the growth of independence constitutes a central theme in the literature on the transition 
to postgraduate studies. While the existing findings are relevant to many postgraduate programs, 
they may be difficult to appreciate without accounting for the discipline within which the 
transition occurs. Therefore, the transition from undergraduate to postgraduate is a topic of 
interest for mathematics education research.  

A few mathematics education studies discussed the experience of postgraduate students (e.g., 
Herzig, 2002, 2004; Morton & Thornley, 2001) and even fewer focused on the undergraduate–
postgraduate transition. Duffin and Simpson (2006) listed a few differences between 
undergraduate and postgraduate studies. Within the former, students’ learning mainly occurs 
through courses, where lecturers determine syllabi, teach the material, set problems for students 
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to solve, and suggest textbooks and references. The research component features in some 
undergraduate programs, but it is typically small and comes with comprehensive support (Dorff, 
Henrich & Pudwell, 2019). In turn, postgraduate students are expected to learn in an independent 
and self-directed manner. While research supervision is a typical component of many 
postgraduate programs, this role differs from that of a course lecturer. Accordingly, students’ 
adaptation to the circumstances of postgraduate mathematics learning appears unavoidable.  

An example of such adaptations comes from Geraniou (2010). She observed different stages 
in students’ doctoral studies and explored factors contributing to students’ success. Geraniou 
describes the first stage, which she calls adjustment, as “reading and gaining the background 
knowledge so as to be in a position to start their research” (p. 286). As this study was undertaken 
in the UK, coursework was not required, and students experienced learning without the 
structured environment of courses. Geraniou reports that in the absence of clear learning aims 
and imposed assessments, the students drew on their personal interest in the material and turned 
to their supervisors for motivation and guidance.  

Some studies addressed the distinctions between how undergraduates and postgraduate 
students carry out specific learning-oriented practices. For instance, Shepherd and van de Sande 
(2014) explored students’ and mathematicians’ learning from mathematical texts. The 
researchers found that undergraduates limit their attention to the provided reference, relying only 
on the material presented inside the text for support. Postgraduate students and mathematicians 
both used the provided reference and external resources when seeking clarifications.  

The existing literature indicates that the undergraduate–postgraduate transition requires new 
ways to learn mathematics. This study was initiated to enrich the existing literature by exploring 
how these ways of learning come about. Specifically, we aim to characterize the processes of 
students’ adjustment to the learning of mathematics at the postgraduate level. We pursue this 
aim in the case of an honors student who was developing mathematical background outside of 
courses as a preparation for his research project. 

Theoretical Framework 
Research has shown the usefulness of the commognitive framework (Sfard, 2008) in 

exploring mathematics learning and teaching in the university context (e.g., Nardi et al., 2014; 
Karavi et al., 2022; Kontorovich & Ovadiya, 2022). In this study, we rely on the framework to 
cast light on students’ learning of mathematics at the postgraduate level. 

Commognition construes different mathematical areas as discourses, defined as “different 
types of communication, set apart by their objects, the kinds of mediators used, and the rules 
followed by participants, thus defining different communities of communicating actors” (Sfard, 
2008, p. 93). Consistently, learning is associated with one “becoming a participant in certain 
distinct activities” (Sfard, 2008, p. 23). This may be evident in one’s capability to operate with 
broadly accepted discourse-specific narratives, such as definitions, theorems, and proofs.  

Postgraduate studies are expected to prepare students to contribute to a targeted mathematical 
discourse. This preparation imposes expectations on students, but students are “contributors to 
their life circumstances, not just products of them” (Bandera, 2006, p.1). In the context of 
postgraduate studies, students’ contributions are captured through agentive learning. Brennan 
(2012) defines a learner’s agency as an “ability to define and pursue learning” (p. 24). Knowles 
(1975) maintains that agentive learners take initiative, are sensitive to their learning needs, set 
relevant goals, determine helpful resources, and monitor their learning outcomes. Similarly, 
Lavie et al. (2019) specify that growth in agentivity, the commognitive version of agency, can be 
identified via the increasing number of self-determined decisions. Lavie et al. highlight the 
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importance of one initiating activities without invitations from others and in the capability to set 
“the relevant [tasks] for herself, in response to her own needs” (p. 170). These activities can be 
captured in terms of one’s routines. 

Commognition defines routines as patterned courses of action. Initially, the construct referred 
to capture one’s participation in a specific mathematical discourse (Sfard, 2008). Lavie et al. 
(2019) expanded this approach, arguing that “whatever we do involves routines. From the 
simplest, most mundane of our activities to the most abstract and sophisticated of them, we cope 
with the task by repeating something that we did or have seen done before” (p. 154). Sfard 
(2023) demonstrated that one’s routines of teaching can be construed as “a tightly interconnected 
system” (p. 5) or a network, where one routine feeds into another or where several routines 
constitute part of a greater routine. Sfard argues that networks have a fractal-like structure due to 
the recursive nature of routines. In her words, “routines are built from parts that, in themselves, 
constitute routines” (Sfard, 2023, p. 5). 

Following Sfard’s (2023) steps, we propose that mathematics learning, that is an activity 
targeted as becoming an insider to a mathematical discourse, can be considered through the lens 
of routines. Indeed, students’ progression through school and university mathematics can be seen 
as a journey across different discourses and joining these discourses requires the performance of 
various routines of learning. Thus, we propose that learning involves a repertoire of routines 
students employ to come to grips with new mathematics time and again. In undergraduate 
studies, this repertoire may include engaging with the course resources, working on the assigned 
exercises, and consulting with the lecturer during office hours. Identifying what routines students 
employ to learn mathematics at the postgraduate level is at the heart of our study. 

Sfard (2008) distinguishes between the “how” and the “when” of a routine. The former refers 
to the procedure or the course of action, whereas the latter captures applicability conditions 
within which one initiates a routine and brings it to closure. Lavie et al. (2019) proposed that an 
analysis of one’s routines should account for the task—an interpretation of a goal a routine 
performer sets for themselves in a specific task situation, that is, in circumstances in which they 
consider themselves bound to act. 

Lavie et al. (2019) maintain that in task situations, people replicate actions they either 
performed or observed others performing in circumstances they deem sufficiently similar to the 
current one. Common features of situations, called precedents, enable one to cope with 
unfamiliar task situations. As no two task situations are identical, drawing on precedents requires 
one to decide which aspects of past performance should be replicated as is and which elements 
need to be amended to new circumstances. Accordingly, the implementation of familiar routines 
still requires some degree of agency. It is especially needed when one realizes that existing 
routines are insufficient to navigate the current task situation. Routines must then be substantially 
revised or abandoned in favor of new habits. Given the systemic differences between 
undergraduate and postgraduate contexts, it seems reasonable to expect students to develop new 
learning routines deliberately and agentively. We attend to the agentive component when 
analyzing postgraduate students' routines when learning new mathematics. 

Method 
This study is part of the first author’s doctoral research on mathematics students’ transition 

from undergraduate studies to postgraduate research. In this paper, we report on the case of 
Jordan (pseudonym), a mathematics major enrolled in a one-year honors program. The study 
unfolded in a small department of mathematics at a research-intensive university in New 
Zealand. Jordan’s program consisted of six semester-long graduate courses and a research 
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project that he carried out in parallel under the guidance of two supervisors. Jordan’s project 
revolved around group theory and topology. Group theory was part of Jordan’s undergraduate 
and graduate coursework, but topology was not. Nonetheless, Jordan had to develop the 
mathematical background needed for his research project in the first few months of his program. 

Our data came from three interviews, around 50 minutes each. The interviews took place 
when Jordan was in the third, fifth and sixth months of his program. The first interview focused 
on Jordan’s work with the supervisors and his general impression of research so far. Through his 
responses, Jordan elaborated on his self-guided learning of topology, and we used the 
opportunity to delve into this process. In the following interview, Jordan elaborated on his 
typical practices of learning new content, now including group theory, and demonstrated some of 
them in the third interview. 

We engaged with the interview transcripts with the commognitive apparatus, searching for 
routines Jordan employed to join new mathematical discourses. Our data mainly consisted of 
Jordan’s reflections, and thus, we operated with routines-narratives, i.e. self-descriptions of 
patterned actions. Different routines-narratives varied in the level of detail, but we attempted to 
delineate Jordan’s procedures and tasks where possible. In the last stage of the analysis, we 
structured the identified routines into a network, with particular attention to how Jordan’s 
postgraduate learning routines compare to typical actions students employ in undergraduate 
mathematics courses. 

Findings 
To report our results on Jordan’s adjustments to the learning of mathematics at the 

postgraduate level, we report on one network of learning routines central to Jordan’s joining 
mathematical discourses. Building on the fractal nature of networks, we then zoom in on one 
component of this network, which is a network in its own right.  

Agentive Navigation of Network of Learning Routines 
As mentioned, Jordan had to develop the background needed for his research in topology and 
group theory. Thus, the overarching task of the learning network we identified was to become an 
insider of these discourses or, in Jordan’s words, to “get the background knowledge.” Here is an 
example of how Jordan described this endeavor in the case of topology: 

I spent the first couple of weeks learning some topology and I read [some] lecture notes 
from a graduate course. It’s a sort of introduction to topological groups, and it had like 
exercises. So, yesterday, I met with my adviser, and we just went over the exercises that I 
did and checked if they were roughly correct, and tried to approach the ones that I didn’t 
get correct or just didn’t know how to do. This was all building up to this theorem called 
Van Dantzig theorem. The goal of the first couple weeks was to understand that because 
it’s apparently a foundation theorem in this area of topological groups. 

 The synthesis of similar self-reflections and observations of Jordan’s work showed that Jordan’s 
learning activity included finding references online; engaging with them with a special attention 
to definitions, examples, and exercises; discussing selected exercises and their solutions with his 
supervisor; and writing up selected solutions in LaTeX. The activities had a patterned nature and 
fed into each other, giving rise to a network of learning routines. 

Some elements of the network are not foreign to routines undergraduates employ to join 
mathematical discourses in their coursework. Indeed, it is not rare for students to engage with 
provided references, solve exercises, and attend office hours to clarify issues with the course 
lecturer. At some point in the first interview, Jordan reflected on this similarity explicitly: 
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I remember when I was taking algebra and calculus theory, and you’re doing line 
integrals or decomposition of matrices, I could just do exercises, and there were loads of 
exercises, like hundreds of exercises. I could just sort of go, do them quite quickly, and I 
would get a good understanding. 
This excerpt suggests that engaging with exercises provided in lecture notes and textbooks 

was a routinized and valuable way for Jordan to learn in at least some of his undergraduate 
courses. Hence, we propose that features of undergraduate studies and the learning routines they 
shape constitute precedents informing Jordan’s routines as he joins the topological discourse.  

Notwithstanding, it is hard to ignore the differences between typical ways of learning in 
undergraduate courses and Jordan’s learning network. During the first months of his program, 
Jordan studied topology and group theory in an independent, self-directed manner, without a 
teacher providing carefully selected readings, exercises, and assessments. This new situation did 
not enable the replication of routinized habits and necessitated Jordan to be agentive and make 
multiple decisions. Let us elaborate on some of them regarding his engagement with multiple 
references. 

Engaging with multiple references The supervisors directed Jordan to the main concepts 
and theorems in the area, which focused on Jordan’s search for references. Consider an example 
of Jordan reflecting on his engagement with one reference:  

Jordan: Right now I’m reading through this particular document [lecture notes]. I’ll have 
like, 20 tabs opened on my computer, and it’s a couple of different textbooks and this 
paper and I’m also looking up Wikipedia articles, looking up math stack exchange 
articles, or posts to explain certain things. 

Rox-Anne: And you use all those resources to understand better the notes that you have, 
right? 

Jordan: Yeah. It explains sparsely the notes [my supervisors] want me to go through. I have a 
couple of textbook PDFs that I have downloaded, and also a friend of mine in a course. 
He’s doing a master's, and he has some notes on topology, so I’m also using his 
notes…just referencing all this stuff. Sometimes, I want a particular definition, so I have 
to go to another reference. 

In an undergraduate course, students are typically offered single references to learn from. 
These resources cover the relevant material and provide explanations that lecturers deem 
satisfactory and appropriate to support students’ learning. However, in the case of Jordan, he has 
to be the one to search for relevant references. The process occurs online, requiring particular 
search procedures (e.g., choosing keywords). Jordan needs to estimate the usefulness of each 
reference to decide whether to engage with it more deeply or search for an alternative. No single 
reference appears to totally fulfil Jordan’s needs, which yields to search-engagement cycles. 
Furthermore, Jordan also has to be the one to decide when the reference has fulfilled its purpose. 
For instance, once “a particular definition” has been found, he can return to his main notes. In 
this way, we argue that Jordan’s performance of search-for-references and engagement-with-
references routines are more agentive than those typically expected from students in 
undergraduate courses. Agency pertains to all components of these routines, including their 
initiation, procedures, and closure. 

Detachment from Externally Proposed Exercises in Favor of Self-Posed Ones 
In the first interview, Jordan shared that working on exercises he finds in textbooks and 

lecture notes plays a major role in his learning. He also recognized the limitations of learning 
through exercises. In his words: 
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I guess I am not really sure what I’m going to do when the exercises run out because 
that’s kind of the main way I’ve always learned. So if there are no exercises, I don’t 
really know, I’ll have to ask my advisors to, like, create exercises for me or something, or 
maybe I’ll just try to come up with it myself. 

Working on externally assigned exercises constitutes a central component of Jordan’s learning 
network. By engaging with them, Jordan puts himself in task situations he encountered at the 
undergraduate level: an authoritative source, such as a lecturer or a textbook, ensures that the 
exercise is well-formulated, relevant, and potentially contributes to students’ learning. The 
relevant material that is sufficient to solve the exercise is typically presented in the preceding 
text, whereas some learning resources may even provide final answers, hints, or complete 
solutions. A self-generated solution is often interpreted as a marker of understanding and 
progress, whereas difficulties can be clarified with a course lecturer or a supervisor in Jordan’s 
case. In this way, exercises contribute to Jordan’s becoming a participant in his target 
mathematical discourse. 

However, exercises also confine Jordan to a particular type of resource. Indeed, Jordan was 
cognizant that exercises are not characteristic of the literature found in postgraduate 
mathematics, or at least not in the way Jordan is used to. This may potentially impede his 
engagement with that literature since he is “not really sure [what] to do when the exercises run 
out.” As in undergraduate courses, he considers the supervisors as potential setters of exercises in 
these cases. Jordan acknowledges the possibility of coming up with his own exercises, but this 
possibility was mentioned in passing. 

Later interviews revealed a number of routines Jordan developed to reduce his dependency 
on externally set exercises. He labelled one of these routines as filling in the gaps and gave the 
following example: 

Jordan: For the Van Dantzig theorem, they say that the translation map is a continuous map 
and they just make a little remark about it, but the reason it works is because it comes 
from the fact that the product map is continuous as well. 

Rox-Anne: But it’s not that obvious, right? 
Jordan: I mean, it kind of is, I don’t know, I feel like I’ll write it out for myself eventually. 

Just write out a little proof in full like we show that the translation is just a product of 
[continuous maps].  

Filling in the gaps emerged as a network of routines where Jordan sets new task situations for 
himself. Within this network, Jordan engaged with a reference with attention to “gaps”, such as 
statements that were not justified in full or inferences that were unclear to him. Then, he turned 
the generation of a justification or proof into a task for him to pursue. This routine was discussed 
more deeply as Jordan’s research project became more oriented on group theory. To develop the 
background for his research, Jordan engaged with various scientific papers, and the new routine 
of filling in the gaps gained importance. 

Jordan specified that he initially filled in gaps that the references' authors often indicated 
with phrases such as “we omitted the proof because it’s not difficult.” He interpreted these 
indicators as a “signal that ok, I should probably fill that in, for the details, to put in my research 
[thesis]”. At some point, Jordan started to create gaps on his own by pausing his reading and 
attempting to prove or justify mathematical statements before engaging with how this was done 
in the reference. In his words, I “create exercises by looking at the statement, then [trying] to 
prove it, and then reading what their proof is.” Gaps of this sort can be opened in any 
mathematical paper, turning it into a prolific source of learning-inducing task situations. Whether 
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noticed or created, the routine of filling in the gaps enabled Jordan to distance his learning 
network from the dependence on externally set exercises.  

Summary and Discussion 
Mathematics departments invest considerable efforts and resources to involve their majoring 

students in mathematics research through postgraduate programs. However, only a few studies in 
mathematics education explored the transition from undergraduate to postgraduate studies. With 
all the research attention that transitions received in mathematics education (Gueudet, 2016), the 
undergraduate-postgraduate transition appears to be overlooked. 

In this paper, we focused on Jordan—an honors student who was developing mathematical 
background on his own as a stepping stone toward his research project. Higher education 
research emphasizes the shift in independence in students’ transition from undergraduate studies 
to postgraduate research (Lovitts, 2005, 2008). Jordan’s case illustrates that undergraduate 
studies do not always prepare students to embark on research right away, and students may need 
to develop the necessary background related to their research area. Geraniou (2010) referred to 
such situations as the adjustment stage and also identified this stage among doctoral studies. Our 
study shows that an adjustment stage may also be necessary in transitioning to other types of 
postgraduate research. 

Using the commognitive framework, we identified a network of learning routines Jordan 
employed and developed in his adjustment stage. We saw similarities between some network 
components and ways of learning students often employ in undergraduate courses. Instances of 
these similar network components are the engagement with resources and the discussions with 
the advisors who provided clarifications about the material. These correspondences are 
somewhat expected considering that Jordan majored only a few months ago and was offered 
learning aims similar to those found in undergraduate courses. Additionally, we note that the 
main reference used by Jordan when joining the topological discourse was lecture notes, which 
may have facilitated the replication of routines common in undergraduate courses. Nonetheless, a 
distinctive feature of Jordan’s network pertained to agency. In particular, agency was needed to 
navigate the network routines since each required him to make decisions regarding the initiation 
of a routine, the course of action, and a decision that the targeted outcome was achieved. 
Initially, the network depended on Jordan having access to exercises from textbooks and lecture 
notes, which confined his learning opportunities to specific references. Then, he demonstrated 
agency when introducing the routine of filling in the gaps that enabled him to become a poser of 
his own exercises. This new routine had a major impact on the whole network, broadening its 
applicability and enabling Jordan to learn from research papers. Accordingly, we propose that in 
mathematics, the shift to independence mentioned by Lovitts (2005, 2008) may be characterized 
by a growing distance from externally provided resources supporting learning.  

The network development we observed fully exemplifies what has been called agentive 
learning (Brenan, 2012; Knowles, 1975). Our findings show that in the case of Jordan, the shift 
to this kind of learning, which was required at the postgraduate level, was a gradual and time-
consuming process and a part of his adjustment stage. This makes us wonder about the role of 
agentive learning in the transition from undergraduate to postgraduate mathematics, specifically 
considering students’ expected contribution to research. 
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Reinventing the Definition of Unique Factorization Domains

Younggon Bae Sthefanía Espinosa Kaitlyn Stephens Serbin
The University of Texas The University of Texas The University of Texas

Rio Grande Valley Rio Grande Valley Rio Grande Valley

In this study, we conducted a teaching experiment to test hypothetical learning trajectories of
reinventing the definition of the unique factorization domain. Six graduate mathematics students
who are preservice and in-service teachers were given experientially real tasks of examining
factorizations of integers and quadratics using algebra tiles. The experiment showed that their
intuitive and informal reasonings about the reducibility and unique factorization were leveraged
to formalize two defining axioms of the unique factorization domain by the emergent model of
algebra tiles and by the pedagogical moves of the teacher-researcher who led the sessions.

Keywords: Unique factorization domains, Mathematics for teachers, Defining, Conjecturing

The importance of making connections between advanced mathematics courses required in
teaching preparation programs and the secondary mathematics that students may teach has been
highlighted in recent research (Álvarez et al., 2020; Wasserman, 2018; Wasserman et al., 2017).
Abstract Algebra is a course where students learn about algebraic structures, including the
properties of number systems, sets, and operations, including those commonly found in
secondary mathematics contexts. Abstract Algebra serves as a course where in-service and
prospective teachers (IPSTs) can learn the structural and fundamental reasons why secondary
mathematics works, e.g., why the factors of a polynomial are equal to𝑎 + 𝑏( ) 𝑐 + 𝑑( ) 

. One concept typically covered in a graduate algebra course is unique(𝑐 + 𝑑)(𝑎 + 𝑏)
factorization domain (UFD), which is defined as an integral domain such that for every𝑅
nonzero non-unit element , (i) can be written as a finite product of irreducibles of R (not𝑟∈𝑅 𝑟  𝑝

𝑖
necessarily distinct): and (ii) the decomposition in (i) is unique up to associates:𝑟 = 𝑝

1
𝑝

2
... 𝑝

𝑛
namely, if is another factorization of into irreducibles, then , and𝑟 =  𝑞

1
𝑞

2
... 𝑞

𝑚
𝑟 𝑚 =  𝑛

there is some renumbering of the factors such that is associate to for𝑝
𝑖
 𝑞

𝑖
𝑖 =  1,  2,  ..  .  ,  𝑛

(Dummit & Foote, 2004). The structure of UFD is commonly used in secondary mathematics
contexts related to the fundamental theorem of arithmetic and the fundamental theorem of
algebra.

There exists a gap in the literature on students’ understanding and their reinvention of UFDs.
In our study, grounded in the instructional design theory of Realistic Mathematics Education
(RME; Freudenthal, 1973; Gravemeijer, 1999), we designed a local instructional theory
(Gravemeijer, 2004) with the goal of students reinventing UFDs. This concept of UFD is
particularly useful for IPSTs, as it can support them in understanding that polynomials and
integers have similarities in their structure and properties, which can be useful knowledge in
their teaching of high school and college algebra. In this paper, we describe two hypothetical
learning trajectories that comprise this local instructional theory where graduate students, who
are IPSTs, engage in the mathematical activities of conjecturing and defining UFD by intuitively
reasoning about the side lengths of rectangles represented in arrays and quadratics represented
with algebra tiles. The students construct the axiom about the factorization of an element into a
product of irreducibles. This helps students recognize the structural similarities of factorization
in and , which leads them to understand that a factorization of an element reduced to a𝑍 𝑍[𝑥]
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product of irreducibles is unique up to associates and the reordering of the factors. We aim to
answer the following questions: 1) Which aspects of the task sequence and which
teacher-researchers' pedagogical moves support students’ reinvention of unique factorization
domains? 2) As students engage in the task sequence, which ways of reasoning are productive to
leverage to guide them toward reinventing unique factorization domains?

Literature Review
One major strand of research in students’ reasoning about abstract algebra is based on

students’ guided reinvention (Freudenthal, 1991) of algebraic structures. Larsen (2009; 2013)
developed a local instructional theory by which undergraduate students were guided to reinvent
the definitions of group and group isomorphism by reasoning about the properties of the group of
symmetries of an equilateral triangle. Larsen and Lockwood (2013) extended this work by
developing another local instructional theory by which undergraduate students were guided to
reinvent quotient groups. Cook (2012) also developed a local instructional theory for students’
reinvention of rings, integral domains, and fields. These studies illustrated how students’
intuitive reasoning could be leveraged for reinventing and defining formal mathematical
concepts in abstract algebra. Researchers have not yet developed local instructional theories for
unique factorization domains. Our study, therefore, contributes to the literature through its design
of a hypothetical learning trajectory of how IPSTs reinvent the defining axioms of a UFD.

There has been minimal research done on students’ understanding of UFDs. UFDs are
special kinds of integral domains that have additional axioms about the existence and uniqueness
of the factorization of each nonzero, non-unit element as a product of irreducibles. When
exploring students’ understandings of the factorization of elements in algebraic structures,
researchers have focused on investigating student thinking in UFDs including the integers, ,𝑍
and the polynomials with integer coefficients, . They have demonstrated the productivity of𝑍[𝑥]
students considering the juxtaposition of elements in these sets, as doing so led them to recognize
the overarching structure shared by the sets of integers and polynomials (e.g., Lee, 2018; Lee &
Heid, 2018). We leverage this same juxtaposition of integers and polynomials with integer
coefficients in this study to help guide students to make conjectures about the properties that
integers and polynomials with integer coefficients share, which can be generalized to other
integral domains that also satisfy the axioms of UFDs. One of the defining axioms of UFDs is
the uniqueness of a nonzero non-unit element’s factorization. Conceptualizing the factorization
of integers and polynomials as unique has been shown to be a non-trivial endeavor for students
(Zazkis & Campbell, 1996) This uniqueness property of irreducible factorizations is essential for
secondary teachers to understand, as it is commonly used in problems that relate to the
fundamental theorem of arithmetic or the fundamental theorem of algebra. Our task sequence,
therefore, focuses on supporting IPSTs in reinventing the existence and uniqueness properties of
the factorizations of integers and polynomials that are commonly used in the secondary
mathematics content that they may teach.

Theoretical Background

Design Research and RME
We ground our teaching experiment by the design research methodology (Gravemeijer, 1999)

that consists of designing and implementing a set of tasks that will be tested and iteratively
modified, so that the task sequence aligns with the research team’s learning goals. We designed a
task sequence consisting of four units. We refer to the collection of four units as a local
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instructional theory (LIT), and each individual unit as a hypothetical learning trajectory (HLT).
Our LIT had the overall goal of guiding students to reinvent the concept of UFD, which is why
our task sequence was designed guided by the heuristics of RME (Freudenthal, 1991) which
involve implementing: a) experientially real tasks where students can solve context problems that
develop their intuitive understanding and guide them to formalize their understanding, b) an
emergent model that will serve as a model-of students’ informal understanding that can become a
model-for students’ formal and generalized understanding of an object, and c) guided
reinvention, where students construct their own knowledge through their intuitive understanding
with the guide and scaffolding of the tasks and/or an instructor. Each of the HLTs of the LIT,
describes the intended learning goals, the learning activities, and the hypothesized student's
understanding and learning (Simon, 1995). Once researchers design a proposed task sequence,
they implement it in a small-scale teaching experiment where the tasks are administered to pairs
of students, who with the help of a teacher-researcher, complete the tasks. The researchers then
analyze students’ thinking, testing the effectiveness of the tasks depending on how the students
engage in such tasks and accomplish the intended goals. Through this process, the HLTs are
edited and modified accordingly to help the students meet the hypothesized learning outcomes.
Once this occurs, the LIT can be implemented in a larger-scale teaching experiment. Through
this process of designing, implementing, and revising HLTs, researchers can discover students’
ways of thinking that anticipate formal mathematics and identify ways to evoke and leverage
those ways of thinking to support students’ development of formal concepts.

Defining and Conjecturing through Guided Reinvention
In order to leverage students’ ways of thinking, students need to be engaged in mathematical

activities that can help them come up with ideas that describe their informal activity. The tasks in
an LIT contribute to this process, but the teacher-researcher in charge of guiding the LIT has the
role of evoking and leveraging those mathematical practices. In our case, the participants engage
in the process of reinventing an abstract algebraic concept. Dawkins (2015) defined a successful
reinvention as “an instance of psychological explication whenever students already possess some
intuitive or less formal understanding from which they construct formalized meanings” (p. 67).
To achieve this reinvention, the students engage in mathematical activities of defining and
conjecturing where students can sense mathematics as a human activity (Zandieh & Rasmussen,
2010). To guide students in the process of conjecturing, researchers can generate examples and
counterexamples that can help students “enrich their concept images and enable them to judge
the probable truth of conjectures” (Selden, 2012, p. 403). For definitions consisting of axioms,
students axiomatize while transitioning from a model-of to model-for (Larsen, 2013), where
students start to formalize their intuitive reasoning into a more structured and refined conjecture.
Vroom and Alzaga Elizondo (2023) described college instructors’ ways to guide students in the
process of refining and editing a definition by suggesting an edit with implicit/explicit
mathematical reasoning and by presenting students with problematic situations. We explore
students’ conjecturing and defining activities, as well as the pedagogical moves that scaffold
those activities, in this study.

Methods
In this study, we designed RME-based HLTs with the goal of guiding IPSTs to reinvent the

definition of UFD and to connect their knowledge to the teaching of mathematics. The HLTs
include task sequences that are designed to guide students to reinvent the definition of reducibles
and irreducibles (Unit 1), reinvent the definition of UFD (Unit 2 & 3), and apply their knowledge

26th Annual Conference on Research in Undergraduate Mathematics Education 855



to pedagogical scenarios in hypothetical classroom situations (Unit 4). In this paper, we focus on
the IPSTs’ work in Units 2 and 3. The IPSTs were given experientially real tasks to guide their
reinvention of the two defining axioms of UFD following the two HLTs that we initially
hypothesized in the task design stage of this research. They were asked to investigate composite
integers and factorable quadratics using algebra tiles and generate conjectures about the
reducibility of elements in and in Unit 2. They were asked to examine different𝑍 𝑍[𝑥]
factorizations of the same elements that are essentially the same and conjectured about the
uniqueness of factorization in and in Unit 3.𝑍 𝑍[𝑥]

We tested the HLTs by administering tasks to IPSTs in a teaching experiment (Steffe &
Thompson, 2000) conducted in a Hispanic-serving institution in the Southern US. Six
mathematics graduate student IPSTs participated in this study: Josie and Raul (Group A), Javier
and Roberto (Group B), and Kim and Taylor (Group C). They took abstract algebra courses at
the undergraduate and/or graduate levels but had not learned UFD in their coursework. Each
group participated in five 90-minute sessions of teaching experiments with the research team
including a teacher-researcher (TR), secondary instructor, and research assistant. The TR’s role
was to guide the session, provide students with prompts to work on, and ask follow-up questions
to better understand and clarify the IPSTs’ thinking. The research assistant operated the video
camera and took field notes. The secondary instructor observed the sessions, took field notes,
and asked questions to the IPSTs when needed. Groups A and B participated in person, and
Group C participated on Zoom due to their availability. In-person groups were given printouts
with physical algebra tiles, and the virtual group was provided with an online whiteboard with
tasks and virtual algebra tile manipulatives.

We collected and transcribed the video recordings of fifteen 90-minute teaching experiment
sessions. The groups’ written work on handouts and virtual whiteboards were collected. We used
inductive coding (Miles et al., 2013) to analyze how IPSTs engaged in conjecturing and defining
as they were guided to reinvent the definition of UFD. We focused our analysis on their ways of
reasoning that were leveraged by using the algebra tiles and by interacting with the TR.

Results

Reducibility of Elements in , , and UFD𝑍 𝑍[𝑥]
In the first task set of Unit 2 (see Figure 1), the IPSTs observed side lengths of rectangular

arrays of algebra tiles that represent and its factors. They were asked to keep reducing the12
side lengths of rectangular arrays and to conjecture about the reducibility of integers. For
instance, groups arranged tiles to represent or then reduced the composite12 = 3×4 12 = 2×6
factors of into other rectangular arrays such as and . The IPSTs12 4 = 2×2 6 = 3×2
transitioned their use of the emergent model (i.e., algebra tiles) from being a model of factoring
integers to a model for abstracting the reducibility property of composite integers. IPSTs initially
conjectured reducible integers can be reduced to a product of irreducible integers. Their
reasoning was leveraged when prompted to think of counterexamples to their conjectures. When
needed, the TR suggested what to consider such as and units in (1 and -1). This also involves0 𝑍 
referencing the definition of irreducibles from the previous unit where units and zero are not
included. The IPSTs found that the zero and units cannot be represented as a product of
irreducibles because they are not irreducibles by the definition. This investigation allowed them
to revise their conjectures by limiting the scope of integers in the statement: all non-zero,
non-unit integers can be reduced to a product of irreducible integers. Examining precise
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definitions of irreducibles and products (of elements) was productive to leverage their reasoning
in revising their conjectures. For instance, they observed arrangement of algebra tiles and2×1
asked if this could be a product of irreducibles. It allowed them to consolidate their definitions of
irreducibles (e.g., irreducibles do not include units and zero) and products (e.g., a product can be
a single element). In sum, IPSTs’ initial conjectures about the reducibility of integers were
elicited and leveraged by the prompts in the task sequence with support from the TR when
needed. Counterexamples and formal definitions were useful resources for their progression in
the practices of conjecturing and revising their conjectures.

T
a
s
k
S
e
t
1

1. Look at the side lengths of the rectangles of 12. Are those side lengths (factors) of 12 reducible or irreducible?
How do you know?
2. If the side length is a reducible, arrange the tiles representing that side length into a rectangular array. Are
those side lengths of the new rectangle reducible or irreducible?
3. What do you notice about the reducibility of integers? Make a conjecture.
4. Can we always write an integer as a product of irreducibles? Try to find a counterexample where an integer
cannot be factored into a product of irreducibles.

T
a
s
k
S
e
t
2

1. Look at the side lengths of the rectangles that represent these quadratics. Note that we consider polynomials
with integer coefficients only: (a) , (b) , (c) , (d) , (e)3𝑥2 + 9𝑥 𝑥2 + 3𝑥 + 3 2𝑥2 + 4𝑥 𝑥2 + 4𝑥 + 3

. Are those factors of the quadratic reducible or irreducible? How do you know?𝑥2 +  5𝑥 +  7
2. If the side length is a reducible polynomial, arrange that side length polynomial into a rectangular array. Are
those new side lengths reducible or irreducible?
3. Create a conjecture about the reducibility of quadratics.
4. Can we always write a quadratic as a product of irreducibles? Try to find a counterexample where a reducible
cannot be factored into a product of irreducibles.
5. What about a higher degree polynomial? Can we write any polynomial as a product of irreducibles? Try to
find a counterexample where a reducible cannot be factored into a product of irreducibles.

T
a
s
k
S
e
t
3

1. The Common Cores State Standards of Mathematics suggest that students should “Understand that
polynomials form a system analogous to the integers.” Thus, polynomials have similar structure to the integers.
In what ways are polynomials and integers similar?
2. Integers and rings of polynomials with integer coefficients are special kinds of integral domains with special
properties about their elements’ reducibility. Let’s make a conjecture about the reducibility of integers and
polynomials. What similarities do you see between these examples of the side lengths of the rectangular array
that represents an integer and the side lengths of the rectangular arrangements of algebra tiles that represent
quadratics?

Figure 1. Unit 2 task sequence

Task Set 2 used the same structure of the task sequence to guide IPSTs to conjecture about
the reducibility of quadratics over (see Figure 1). This time, they used algebra tiles to𝑍[𝑥]
represent quadratics and their factorizations if they are reducibles. For instance, IPSTs reduced

into , then further reduced into using algebra tiles (see Figure 2).3𝑥2 + 9𝑥 3𝑥×(𝑥 + 3) 3𝑥 3×𝑥
The progression in their reasoning seemed similar to those from the previous unit: generating
initial conjectures, looking for counterexamples (e.g., units and zero), and refining their
conjectures by eliminating units and zero from the initial conjectures. When examining the array
of that cannot be reduced further, the IPSTs needed the precise definition of units in a ring𝑥×1
to determine if is a unit in or not. The TR guided the IPSTs to reference the definition and𝑥 𝑍[𝑥]
pushed them for precision in their conclusion that is not a unit because its multiplicative𝑥
inverse does not exist in .1/𝑥 𝑍[𝑥]

TR: ... why is not a unit? 𝑥

26th Annual Conference on Research in Undergraduate Mathematics Education 857



Kim: is not a unit because, um, its multiplicative inverse, it does not have one that is𝑥
within that ring. Because the power of would need to be outside of the natural numbers,𝑥
so it would not be the unit.

In this task set, the IPSTs’ reasoning was leveraged along the task sequences with the support
of the TR and the emergent model of the algebra tiles. In particular, those supports were
productive in identifying non-unit and non-zero elements in that were less explicit for them𝑍[𝑥]
than those in . So, the IPSTs concluded the conjectures about the reducibility of integers in𝑍 𝑍 
and polynomials in with essentially the same structure: A non-zero, non-unit element in𝑍[𝑥] 𝑅
can be written as a product of irreducible elements in .𝑅

In Task Set 3, the IPSTs were asked to identify common algebraic properties of and𝑍 𝑍[𝑥]
and write a conjecture of the reducibility in UFDs that works for both and . The TR𝑍 𝑍[𝑥]
supported the IPSTs to recall and synthesize algebraic properties of and and formalize𝑍 𝑍[𝑥]
their final conjecture. In sum, the task design in Unit 2 used algebra tiles, and the TR’s
pedagogical moves leveraged the IPSTs’ reasoning of generating, revising, and abstracting
conjectures of the reducibility in the respective algebraic structures.

Figure 2. Group A used algebra tiles to represent the factorization of 3𝑥 = 3×𝑥

Unique Factorization of Elements in , , and UFD𝑍 𝑍[𝑥]
Unit 3 tasks began with investigating two factorizations of an integer or a quadratic that

differ by the order of factors in the products or by . Then, the IPSTs were guided to reinvent− 1
the concept of the uniqueness of factorizations, i.e., determine when two factorizations are
essentially the same. For example, when asked to convince why two factorizations

and are essentially the same, the IPSTs showed(𝑥 + 3)(𝑥 + 2) (− 𝑥 − 3)(− 𝑥 − 2)
algebraic procedure to convert one into the other by using . They initially− 1( )2 = 1
conjectured two factorizations of a quadratic in are essentially same when a factor in one𝑍[𝑥]
factorization is the negative of the respective factor in the other factorization. This reasoning was
leveraged in the following set of tasks that guided them to reinvent the definition of associates.
Later, it allowed the IPSTs to use the formal language to capture their ideas about the
relationship between factors in two essentially the same factorizations. When defining associates,
the TR helped the IPSTs to generalize and to units for a general integral domain when1 − 1
they wrote the formal definition. The TR suggested to generalize their initial definitions, asked a
leading question, and provided scaffolding. For instance, Javier (Group B) first wrote a
conjecture that non-zero and non-unit elements and in an integral domain are associates if𝑎 𝑏
and only if their greatest common factors are and . The TR leveraged his reasoning about1 − 1
associates with common factors of and but also pointed out a limitation of the conjecture1 − 1
by providing counterexamples.

TR: […] the only divisor I guess, the and , then we could have something like1 − 1 𝑥 + 3
and are associates? […] So you’re right in that they do have this shared factor of𝑥 + 2 1
and , and it could be that it’s just or it could be that . So it’s− 1  𝑎 = 1×𝑏 𝑎 = 1×(− 𝑏)
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looking like there’s this shared kind of structure here, where is equal to something𝑎
times . So now we have to figure out, what’s that something?𝑏

Group B wrote a formal definition of associates using the idea of where is a unit in𝑎 = 𝑢𝑏 𝑢
that generalizes their initial conjecture to work for arbitrary integral domains (see Figure 3a).𝑅

Following the problems in Task Set 2, the IPSTs revised their conjectures of the uniqueness of
factorizations by using the definition of associates: Two factorizations of an element in an
integral domain are essentially the same if one factorization can be converted to the other by
rearranging the order of factors or by replacing factors with their associates. This involves
using symbolic notations representing two possible factorizations and𝑎

1
· 𝑎

2
⋯⋅𝑎

𝑛
 𝑏

1
· 𝑏

2
⋯⋅𝑏

𝑚
to express their reasoning of the uniqueness up to the associations and the order of factors. The
TR helped the IPSTs to come up with precise subscripts in their writing. For instance, the TR
suggested different subscripts and for the last factors in the given factorizations, and𝑛 𝑚 𝑎

𝑛
𝑏

𝑚
and different subscripts and for arbitrary factors from each factorization that are associates to𝑖 𝑘
each other, and . The TR pointed out an unintended assumption of correspondence between𝑎

𝑖
𝑏

𝑘
and when using the same subscripts for associates that are not necessarily ordered the same𝑎

𝑖
𝑏

𝑖
way (see Figure 3b).

TR: I like how you symbolized that, the and then the . So𝑟 =  𝑎
1
𝑎

2
 · · · 𝑎

𝑖
 𝑢

1
𝑏

1
𝑢

2
𝑏

2
 · · · 𝑢

𝑖
𝑏

𝑖
you’re kind of pairing the with the and the . So you’re numbering them, that’s𝑎

1
𝑏

1
𝑢

1
kind of implying there’s this correspondence between the and the .𝑎

𝑖
𝑏

𝑖
This pedagogical move of the TR elicited the IPSTs’ attention to the precision in

mathematical language and leveraged their reasoning of what it means two arbitrary
factorizations are essentially the same in the context as well as how to express precisely. The
IPSTs’ reasoning about the reducibility and the uniqueness of factorizations in and were𝑍 𝑍[𝑥]
leveraged in Task Set 3 where they were asked to synthesize two conjectures they made about
the existence and uniqueness of factorizations of elements as a product of irreducibles to create
the two axioms in the definition of UFD. The TR guided them to formalize their statements for
the axioms in this process and helped them with making sense of the definition they created by
using examples and non-examples (e.g., ) of UFD.𝑍[ 5𝑖]

Figure 3. (a) Roberto’s final definition of associates (left), (b) Kim’s use of symbolic notations for two arbitrary
factorizations that are essentially the same (right).

Conclusion
The findings of this study showed evidence of HLTs (Simon, 1995) in reinventing the

definition of UFD by leveraging students’ reasoning of the reducibility and the unique
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factorization of elements in and . The sequence of experientially real tasks provided𝑍 𝑍[𝑥]
guiding prompts for the IPSTs’ mathematical activities of conjecturing and defining in the
progression of reinventing the two defining axioms of UFD. The emergent model of algebra tiles
served as a model-for structuring and formalizing their intuitive reasoning about factorizations of
integers and quadratics. The TR’s pedagogical moves provided sociomathematical scaffolding
that facilitates the IPSTs’ horizontal and vertical mathematization (Gravemeijer & Doorman,
1999) of their informal reasoning and mathematical language. We plan to continue the design
research on refining the hypotheses of student reasoning and task design of the HLTs in the
following iterations of teaching experiments and classroom implementation.

Acknowledgments
This work is supported by the UTRGV College of Sciences Research Enhancements Grants.

References
Álvarez, J. A., Arnold, E. G., Burroughs, E. A., Fulton, E. W., & Kercher, A. (2020). The design

of tasks that address applications to teaching secondary mathematics for use in undergraduate
mathematics courses. The Journal of Mathematical Behavior, 60, 100814.

Cook, J. P. (2012). A guided reinvention of ring, integral domain, and field. [Doctoral
dissertation, The University of Oklahoma]. ProQuest Dissertations Publishing.

Dawkins, P. C. (2015). Explication as a lens for the formalization of mathematical theory through
guided reinvention. The Journal of Mathematical Behavior, 37, 63-82.

Dummit, D. S., & Foote, R. M. (2004). Abstract algebra (3rd ed.). John Wiley & Sons, Inc.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.
Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht: Netherlands.
Gravemeijer, K. (1999). How emergent models may foster the constitution of formal

mathematics. Mathematical Thinking and Learning, 1(2), 155–177.
Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform

mathematics education. Mathematical Thinking and Learning, 6(2), 105–128.
Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education:

A calculus course as an example. Educational Studies in Mathematics, 39(1-3), 111–129.
Larsen, S. (2009). Reinventing the concepts of group and isomorphism: The case of Jessica and

Sandra. The Journal of Mathematical Behavior, 28(2-3), 119-137.
Larsen, S. (2013). A local instructional theory for the guided reinvention of the group and

isomorphism concepts. The Journal of Mathematical Behavior, 32(4), 712-725.
Larsen, S., & Lockwood, E. (2013). A local instructional theory for the guided reinvention of the

quotient group concept. The Journal of Mathematical Behavior, 32(4), 726-742.
Lee, Y. (2018). University Students' School Mathematics Understanding and Its Growth in Their

Learning of Collegiate Mathematics: Through the Lens of a Transformative Transition
Framework. [Doctoral dissertation, The Pennsylvania State University]. ProQuest
Dissertations Publishing.

Lee, Y., & Heid, M. K. (2018). Developing a structural perspective and its role in connecting
school algebra and abstract algebra: A factorization example. In Connecting Abstract
Algebra to Secondary Mathematics, for Secondary Mathematics Teachers (pp. 291–318).
Cham: Springer.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2013). Qualitative data analysis: A methods
sourcebook (3rd ed.). Thousand Oaks, CA: Sage Publications.

26th Annual Conference on Research in Undergraduate Mathematics Education 860



Selden, A. (2012). Transitions and proof and proving at tertiary level. In G. Hanna & M. de
Villiers (Eds.), Proof and proving in Mathematics Education (pp. 391–420). Springer.

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist
perspective. Journal for Research in Mathematics Education, 26(2), 114–145.

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying
principles and essential elements. Handbook of research design in mathematics and science
education (pp. 267-306).

Vroom, K., & Alzaga Elizondo T., (2023). What Are Instructors Doing to Initiate Refinements of
Students’ Definitions? Proceedings of the 25th Annual Conference on Research in
Undergraduate Mathematics Education, 1012–1017.

Wasserman, N. H. (2018). Knowledge of nonlocal mathematics for teaching. The Journal of
Mathematical Behavior, 49, 116–128.

Wasserman, N. H., Fukawa-Connelly, T., Villanueva, M., Mejia-Ramos, J. P., & Weber, K.
(2017). Making real analysis relevant to secondary teachers: Building up from and stepping
down to practice. Primus, 27(6), 559-578.

Zandieh, M., & Rasmussen, C. (2010). Defining as a mathematical activity: A framework for
characterizing progress from informal to more formal ways of reasoning. The Journal of
Mathematical Behavior, 29(2), 57–75.

Zazkis, R., & Campbell, S. (1996). Divisibility and multiplicative structure of natural numbers:
Preservice teachers’ understanding. Journal for Research in Mathematics Education, 27(5),
540-563.

26th Annual Conference on Research in Undergraduate Mathematics Education 861



Exploring Graduate Teaching Assistants’ Teaching Practices in a Purposefully Designed Active 
Learning Environment 
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This study explores the instructional practices of four graduate teaching assistants (GTAs) – 
Ursula, Ava, Phoenix, and Cole – in an active learning Calculus I course. Each GTA's unique 
pedagogical background is discussed in relation to their teaching methods and their students' 
classroom actions. Ursula, a seasoned high school math teacher, brings a wealth of experience 
in active teaching, while Ava, having encountered active learning as a student, reflects on her 
positive experiences. Phoenix, a novice GTA, emphasizes group work and individual student 
exploration, while Cole, with limited teaching and active learning experience, promotes student 
independent work. The contrasting approaches of these GTAs within the same purposefully 
designed active learning environment provides valuable insight into the connection between 
previous educational experiences and teaching practice, especially with respect to student 
engagement in a Calculus classroom. 

Keywords: Active Learning, Calculus, Teaching Practices, Graduate Teaching Assistants 

Calculus teaching and learning is an important and much-discussed topic in post-secondary 
mathematics education. Many educators and administrators are concerned about high DFW (the 
percentage of students who receive a D, an F, or withdraw) rates in introductory mathematics 
courses. Up to 50% of students nationally fail their first mathematics course, and 50% of 
students who struggle in mathematics courses in their first year leave STEM majors (APLU, 
n.d.). One way that institutions have attempted to combat these high DWF rates is through the 
introduction of active learning into first-year mathematics courses (APLU, n.d.). The Conference 
Board of the Mathematical Sciences (CBMS) defines active learning as “classroom practices that 
engage students in activities, such as reading, writing, discussion, or problem solving, that 
promote higher-order thinking” (CBMS, 2016, para. 1). Building on this, we define active 
learning as a productive learning environment that provides meaningful mathematical learning 
opportunities for all students. Such active learning environments include three key components: 
the inclusion of cognitively demanding mathematical tasks, the delivery of high-quality 
mathematics instruction, and the promotion of both small and whole-group discussions. 

While much of the focus of active learning is on students – especially engagement and 
higher-order thinking – active learning also requires instructors to take on a prominent role. This 
role differs significantly from a traditional role in a lecture-based classroom. Instructors must 
choose rich tasks which promote higher-order thinking, facilitate classroom discussions, and 
manage a classroom in which student-centered activities occur. This shift often presents a 
challenge, as most university instructors have not experienced this type of classroom in either 
prior professional settings or their own education. 

At large universities, Graduate Teaching Assistants (GTAs) are a significant part of the 
implementation of active learning. Consequently, there has been a push to provide GTAs with 
professional development opportunities to help them make the transition to facilitators of active 
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learning in their classrooms (Deshler et al., 2015). Significantly, “effective training of graduate 
teaching assistants” is one of the seven characteristics of a successful calculus program, as put 
forth by Bressoud and Rasmussen (2015, p. 145). GTAs have an important role in implementing 
student-centered pedagogy and active learning. Therefore, it is important to understand how the 
GTAs themselves enact and support active learning in the classroom. It is particularly important 
to understand how their backgrounds may influence their actions. This leads to the question we 
explore in this study: what teaching actions do GTAs with different pedagogical backgrounds 
take in an active learning Calculus I course and how do they discuss these actions? 

Literature Review 
Because of the current focus on student-centered activities in entry-level mathematics 

classes, much has been written on active learning strategies and their effect on student learning 
(Freeman et al., 2014; Kim et al., 2013). As GTAs play an important role in enacting active 
learning, there has been a focus on GTA professional development (PD). GTA PD programs 
provide an important opportunity for GTAs to engage with and understand research-based 
instructional strategies, including exposure to active and student-centered pedagogy (Archie et 
al., 2022, Deshler et al., 2015). Many GTAs come into programs with little to no teaching 
experience, and both pedagogical content knowledge and knowledge of student thinking are 
important for GTAs’ transition from learner to teacher (Kung & Speer, 2009). GTA PD provides 
them with opportunities to develop this knowledge and connected skills. 

Regardless of whether they have participated in a PD program, GTAs may not have 
experienced active-learning approaches as learners in their own coursework, leading to a limited 
comfort with using these approaches in their teaching (Deshler et al., 2015). Patrick et al. (2021) 
studied GTAs across a College of Science and College of Engineering to determine their 
perceptions and practice of active learning strategies as a student and teacher. They found that 
GTAs’ ranking of teaching strategies changed depending on whether they were thinking about 
their learning or their teaching. “TAs were currently teaching differently from the way they 
preferred to learn and how they thought undergraduates learned best” (Patrick, et al., 2021, p. 
11). GTAs reported a desire for more active learning strategies in their own classes and felt that 
they should use more active learning strategies in their own teaching (Patrick, et al., 2021). 
However, GTAs’ feelings about active learning were not sufficiently reflected in their classroom 
practices. While the link between experience and teaching practices seems to be straightforward, 
empirical evidence on mathematics GTAs’ implementation of active learning based on their 
perspectives about and background with active learning is sparse.  

Even experienced instructors can encounter challenges when implementing active learning 
strategies, requiring deep understanding of effective teaching practices and productive 
pedagogical strategies. The Mathematics Association of America National Study on College 
Calculus calls teaching which incorporates active learning ambitious teaching, stating that “they 
are ambitious in the sense that they require substantial institutional supports and advanced 
knowledge, skills, and beliefs on the part of instructors” (Larsen et al., 2015, p. 104). These 
complexities in implementing active learning also affect GTAs, who play pivotal roles in 
undergraduate mathematics courses. GTAs, often lacking training and prior classroom 
experience, face these challenges despite the growing emphasis on active learning in 
undergraduate mathematics education, as their own exposure to active learning is limited 
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(Manzanares et al., 2023). Therefore, we need studies that focus on GTAs conceptions and 
teaching practices of active learning. 

Methods 

Active Learning Context 
This study takes place within a wider research effort to transform introductory courses in 

STEM at a large public university in the northeast USA. This study represents one component of 
the overall project and examines the actions and ideas of GTAs as they integrate active learning 
into their Calculus I teaching. The course follows a lecture-recitation model of instruction in 
which students attend a large lecture (~150 students) taught by a faculty member and a smaller 
recitation (~20 students) taught by a GTA. Implementation of active learning was purposefully 
focused on recitation sections and included a new classroom structure (introduction, small group 
work, class discussion), researcher-designed activities, and near-peer tutors called Learning 
Assistants (LAs). GTAs were given the freedom to implement these active learning methods in 
whatever way they saw fit. 

While all recitations involved active learning, there were six special researcher-designed 
activities spread over the course of the 15-week semester. These activities were designed to 
foster the core practices of quantitative reasoning (Thompson, 1994) and representational fluency 
(Fonger, 2019). Students worked on these activities in small groups of three to four students, 
supported by the GTA and LA. The GTA was responsible for leading the class, meaning they 
facilitated the introduction and class discussion and were responsible for administrative tasks 
such as proctoring quizzes and collecting homework. The LAs’ responsibility was to facilitate 
small group discussion, typically by asking students questions and attending to student ideas. 

Data Collection and Analysis 
Data for this study includes video recordings of recitation sessions and interviews with 

GTAs. Recitations were recorded six times throughout the semester on the days the researcher-
designed activities were implemented. Structured interviews with GTAs were conducted at the 
beginning and the end of the course and were focused on GTAs’ experiences with and ideas 
about active learning. This analysis focuses on a subset of these recordings for four GTAs. These 
four GTAs were selected for this analysis because they highlight distinct ways in which 
classroom actions and conceptions of teaching manifest in this active learning context.  

To capture the classroom actions of these GTAs across the semester, two video recordings 
(one from the first half of the semester and one from the last three weeks) were analyzed for each 
GTA using the Classroom Observation Protocol for Undergraduate STEM (COPUS) (Lund et 
al., 2015). The COPUS framework describes the types of activities both instructors (Figure 1) 
and students (Figure 2) are engaged in throughout a lesson. Codes from this framework were 
applied to every two-minute interval of the recorded video. For each GTA, the codes were 
aggregated across the two videos, and the percentage of each coding category out of total number 
of codes was calculated. For robust descriptions of the COPUS action codes used in this study 
see Lund et al. (2015). Each lesson was coded by at least two members of the research team and 
disagreements were resolved by consensus of the team. 
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Interviews were analyzed in order to contextualize each GTAs’ conceptions of their practice 
in the reformed classroom. These interviews were analyzed through open coding and thematic 
analysis to capture GTAs’ definitions of and experiences with active learning (Miles et al., 2018; 
Strauss & Corbin, 1998).  

Results 
In this section, we will introduce the background of four GTAs, Ursula, Ava, Phoenix, and 

Cole, compare their instructional actions (Figure 1), and examine the classroom actions of their 
students (Figure 2). We aim to understand the teaching approaches adopted by the GTAs with 
diverse pedagogical backgrounds and explore how they discuss these actions.  

 

 
Figure 1: Instructional Actions of each GTA 

 
Figure 2: Actions of Students in each GTA’s classroom 

Ursula 
 Ursula was a graduate student in the Mathematics Education Ph.D. program and in her fifth 

year as a GTA at the university. Prior to her GTA experience, Ursula had substantial experience 
teaching mathematics to high school students. She described her high school teaching practice as 
“active” and said that she often had students work in groups or work independently. In Figure 1, 
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we see that approximately half of classroom action codes are moving, meaning that she devotes 
significant attention to facilitating student work on activities in the classroom. She described 
that, when she moves through the classroom, “I’m not going to solve the activity for them, but if 
they got stuck I will ask them the question to lead them to the next step”.  

Outside of facilitating group work, Ursula’s actions are still notably student centered; 13% of 
her actions were coded as following-up, meaning that she responded to student ideas in front of 
the class. Even though 12% and 13% of her actions are respectively focused on lecture and real 
time writing, these codes primarily occur during the lesson introduction. Ursula explained that, in 
this introduction, she “reviews concepts” and “examples” to make students more “comfortable” 
participating in group work by fostering “confidence” in their mathematical knowledge. While 
lecturing and writing are not typically considered as active, Ursula used them selectively and 
strategically in her teaching to support the more active portions of the lesson and to create a 
“balance between the instructors and the student”. While a significant number of codes were 
administration, even these actions were frequently student-centered, consisting of such things as 
organizing student groups and assigning students problems to write on the whiteboard.  

This emphasis on group engagement and instructor collaboration was also reflected through 
the actions of students in Ursula’s classroom (Figure 2). Her students’ actions were primarily 
worksheet group work, indicating that students typically worked together on class activities. 
Also, the students in Ursula’s classroom were answering instructor questions (14%) and 
listening (17%) meaning that they shared their ideas in front of their peers and listened to one 
another and to Ursula. The other (23%) category in this case represents students writing work on 
the classroom whiteboards, again emphasizing the opportunities for students to share their 
mathematical ideas in this classroom.  

Overall, Ursula’s conceptions and practices typify how a GTA with previous active-learning 
teaching experience was able to effectively implement such methods at the undergraduate level 
and provide reasons why such methods are appropriate for supporting student learning. 

Ava 
Ava was a mathematics Ph.D. student who at the time of the study was in her third year as a 

GTA at the university. Unlike Ursula, she had no previous independent teaching experience, but 
Ava did encounter active learning several times as an undergraduate student. She described that 
she “struggled” to interpret mathematical content independently as a learner in a flipped 
classroom, but she had more positive experience in a class where “the teacher would present the 
material, and then we'd work on it in groups”.  

In her own practice as a GTA, Ava’s actions as a teacher mirror her positive experiences as a 
student. We see that her actions as a teacher are similar to Ursula’s (Figure 1), but 14% of Ava’s 
actions are waiting, meaning that she was merely standing on the side during class time. This 
presence of wait time could be because Ava frames active learning as “when students bounce 
ideas off of each other” and hinges upon “the student thinking more deeply about the topic”. 
Since student thinking is central to active learning in her view, Ava allowed students time to 
work on their own without her intervention. 

Additionally, we see that Ursula and Ava’s students primarily engage in the same types of 
activities (Figure 2), except that Ava’s students engage in independent thinking (38%) while 
Ursula’s students rarely work independently. Again, this is probably rooted in their different 
conceptualizations of active learning; Ava has a broad view of active student engagement while 
Ursula takes group work as essential in such an environment.  
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From Ava’s actions and discussion of these actions, we see that she used her own 
experiences as a student with active learning to guide her teaching as a GTA in an active 
environment. Because of her own positive experiences with group work and guided work during 
class, she implements such practices in her classroom, supporting students to work in groups or 
independently on classroom activities.  

Phoenix 
 Phoenix was a graduate student in the mathematics education PhD program; in her second 

semester as a GTA. She began the graduate program directly following her undergraduate degree 
at the same institution, meaning that she had no independent teaching experience prior to her 
time as a GTA. She did, however, have experience as a peer-tutor and had taken several 
university-level courses focusing on teaching and learning.  

 Phoenix’s teaching actions are notably distinct from the relatively similar pattern seen in the 
actions of Ursula and Ava. Unlike these two, Phoenix did not lecture or write on the board; she 
was mostly involved in moving (66%) and administration (19%). That is, Phoenix’s classroom 
actions primarily focus on working with students and organizing student groups, rather than 
instructing students from the board. This is reminiscent of her own experiences with active 
learning as a student as she and her peers spent time “working in groups and kind of 
investigating the material ourselves”. She further explained that she views active learning as 
rooted in “the students and the students wanting to learn the material” with her role being to 
“help each individual student” through this process. Phoenix recognized her responsibility as an 
instructor to guide student thinking, but she provided this support at an individual and group 
level, while Ursula and Ava provided support at the classroom level through short periods of 
direct instruction at the board.  

While Phoenix’s actions are distinct from Ursula and Ava’s, we see that her students’ actions 
are relatively similar to Ava’s students (Figure 2). We do see that Phoenix’s students are 
listening less than Ava’s students (6% vs 10%), which reflects Phoenix’s emphasis on group 
work time. Similar to Ava, we see that Phoenix’s students had the opportunity to share their 
thinking as they are engaged in asking questions and answering instructor questions. 

Through these actions and commentary, we see that Phoenix’s status as a novice GTA with 
limited active learning experience led to a strong emphasis on group work in her classroom. 
While Ava and Ursula, who have more experience with active learning, chose to provide their 
students with some direct instruction, Phoenix chose to provide students more time to work on 
their own or in groups. While this alternate focus in teaching actions was not coupled with major 
shifts in student actions, these alternate approaches of GTAs in the same environment are 
notable. 

Cole 
Cole was a first-year Ph.D. student in statistics and, like Phoenix, was in his second semester 

as a GTA at the university. Cole had some online experience as a one-on-one tutor before his 
time as a GTA, but, unlike the other GTAs discussed in this study, he had no experience with 
active learning as a teacher nor as a student. He stated that in his time as a student he would 
“pretty much study alone, individually” and “usually just listen to the teachers and copy, paste” 
notes written on the board.  

Accompanying this difference in experience, we see that Cole’s classroom actions were 
distinct from those of Ursula, Ava, and Phoenix. While Cole’s proportion of moving is similar to 
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the other GTAs, he has a much higher proportion of waiting (29%) than the other GTAs. It is 
also important to note that Cole’s other code marked times when he left the classroom entirely, 
contrary to other GTAs for whom the other code was content related, representing such activities 
as discussing study skills and reviewing student work. Again, these actions reflect Cole’s view of 
active learning; he describes active learning as “communicating with others... exchanging your 
thoughts” making his role in the classroom “more like a tutor”. Cole’s actions are consistent with 
this idea of active learning as he lets students work with a high degree of independence and 
intervenes in this process sparingly. This strong emphasis on student independence could also be 
a reactionary effort to move away from his “copy, paste” experience as a learner.  

Similarly, we see differences in the actions of Cole’s students in comparison to the students 
of the other three GTAs. Cole’s students are almost always engaged in worksheet group work or 
individual thinking (92%). Again, this echoes Cole’s conceptualization of active learning as 
students working without much direct instruction. 

Overall, Cole’s actions show one way in which active learning can be enacted by a GTA with 
little prior experience with such methods as a student or as a teacher. In Cole’s classroom, active 
learning manifests as student independence, with Cole offering students support at the individual 
or group level, rather than providing direct instruction.  

Discussion 
From the four GTAs examined above, we see that there is a connection between previous 

active learning experiences and instructional practices. Ursula, a GTA with experience teaching 
in an active learning setting, gives attention to students’ work within groups, but supports this 
work through some direct instruction and following up on group work in front of the class. Ava 
and Phoenix, who had some experience with active learning as students, still emphasize group 
work, but allow students to work individually. Cole, a GTA without previous active learning 
experience, attends solely to group work, occasionally leaving students to their own devices.  

While all GTAs in this study were provided with the same active learning teaching guidelines 
and supports (i.e., LAs, researcher-designed activities, suggested classroom structure), we 
observe that GTA actions and the actions of their students are distinct within each classroom. 
Previous literature acknowledges the need for GTAs pedagogical training, but we emphasize that 
GTAs educational needs as teachers vary depending on their previous experiences as both 
teachers and learners. That is, “effective training” (Bressoud & Rasmussen, 2015, p. 145) of 
GTAs must account for the lived educational experiences and resulting pedagogical ideas of 
GTAs. Without such background taken into account, GTAs may have difficulty implementing 
active learning practices in the classroom. 

Since GTAs often serve important roles in facilitating student-centered instruction within 
Calculus courses, it is important to acknowledge factors which enable or inhibit them 
accomplishing this type of instruction. Here, we identify background experiences with active 
learning as one such factor and encourage both researchers and educators to pursue practical 
means of integrating GTAs’ previous educational experiences into GTA pedagogical training. 
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Instructor and Coordinator Perspectives within First-Year Mathematics Courses 
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The perspectives, habits, and mindsets of experienced instructors and coordinators serving 
within course coordination systems are valuable for effective coordination. In this paper, we 
present perspectives and recommendations from coordinators and instructors being coordinated 
with the goal of helping those who are new to coordination. We utilize Martinez et al.’s (2022) 
work on two coordinator orientations, Humanistic-Growth and Knowledge-Managerial, to frame 
the common perspectives of instructors and coordinators of first-year mathematics courses. Most 
participants gave reasonings for their decisions surrounding coordination with a healthy 
balance of Humanistic and Managerial considerations in mind. 

Keywords: Course coordination, first-year mathematics, coordinator orientations 

Research on course coordination has defined the ways in which perspectives, habits, and 
mindsets of coordinators can improve student and instructor experience and outcomes. In this 
paper, we synthesize the perspectives of mathematics course coordinators and instructors across 
one region, for the purpose of supporting (a) instructors and coordinators with little prior 
experience with course coordination, (b) math departments seeking to build/improve course 
coordination, and (c) for instructors and coordinators seeking to improve coordination. 

The paper contributes to the research of course coordination by providing replication and 
expansion of Rasmussen & Ellis's (2015) work exploring coordination at universities with 
successful calculus programs and Martinez et al.’s (2022) work on coordinator orientations. 
There have been calls in the field for more replication studies (e.g., Melhuish, 2018; Melhusih & 
Thanheiser, 2018) and published replication studies (e.g., Borji et al., 2022; Melhuish, 2018) 
indicate that the field values replication studies. Our work replicates Rasmussen and Ellis’ 
(2015) and Martinez et al.’s (2022) work by studying common perspectives of coordinators and 
instructors who work under coordinators within a regional but expanded context of first-year 
mathematics courses. These instructors’ voices are critical for understanding what makes 
coordination successful.  

Literature Review 
As part of an extensive research project involving five PhD-granting universities known for 

having successful calculus coordination programs, Rasmussen and Ellis (2015) characterized 
aspects of effective course coordination in Calculus I. Their work highlights the role of one 
serving as a coordinator as someone who serves in a multi-year or semi-permanent position, is 
knowledgeable and respected in teaching, and who is oriented to serve both as a resource and 
facilitator. Rasmussen and Ellis describe the importance of coordination in which the course is 
viewed as community property with concrete actions taken to this end. Regular meetings are held 
to focus on the needs and priorities of the instructors, compare progress, share difficulties and 
ideas for problems, and develop common grading practices. Additionally, drawing on work in 
behavioral economics (Thaler & Sunstein, 2008), Rasmussen and Ellis identify the role of 
effective coordinators in serving as a choice architect - “someone who is responsible for 
organizing the context in which people make decisions” (p. 112), not someone who makes 
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decisions for others. They identified the role of coordinators in (a) making life easier by setting 
default options (providing resources), (b) providing feedback to users, (c) making mappings easy 
to understand, and (d) providing information about what others are doing. “If many people do 
something or think something, their actions, and their thoughts convey information about what 
might be best for you to do or think” (Thaler & Sunstein, 2008; p. 54) 

Martinez et al. (2022) extended this work to studying coordinator orientations or views that 
“give a sense of direction for what one does, implicitly or explicitly” (p. 330). In their analysis of 
interviews with course coordinators and instructors, Martinez identified two coordinator 
orientations: a Humanistic-Growth Orientation and a Knowledge-Managerial Orientation 
(referred to here as Humanistic and Managerial orientations for simplicity). Each orientation was 
characterized by five themes. The Humanistic orientation involves the following five themes: (a) 
attending to student experience, primarily in receiving the same opportunity to succeed, (b) being 
concerned about others and expressing concern for others, (c) seeking to build community as a 
form of professional support, (d) being attentive to instructor differences in that “one size does 
not fit all”, and (e) providing instructor support through professional development opportunities 
and as a resource for general concerns. The Managerial orientation involves (a) drawing on 
knowledge of the course, department, and institution, (b) bringing knowledge and experience of 
a variety of pedagogical practices, (c) providing materials related to content and curriculum, (d) 
communicating clearly, end (e) exhibiting strong communication skills. Martinez et al. (2022) 
conjecture that “a combination of both coordinator orientations and their corresponding 
professional development approaches (community-based and material-based) is more likely to 
lead to substantive and sustained improvement” (p. 344). 

Both Martinez et al.’s (2022) and Rasmussen and Ellis’ (2015) results draw from an 
extensive data corpus (over 92 interviews and 95 hours of audio recordings) of programs with 
established and effective support for course coordination. This study serves as a smaller-scale 
replication study (Melhuish, 2018) in studying the ways in which regional perspectives regarding 
course coordination are consistent with broader theoretical perspectives. In particular, this paper 
explores a broader category of mathematics course coordination in which there may be less 
structure or departmental support for course coordination, yet a growing local community of 
support for course coordination within and across mathematics departments. 

Research Questions 
In this context of both structured and semi-structured course coordination, we ask the 

following research questions: 
1. What activities do coordinators devote their time and attention to in coordinating a course? 
2. What perspectives, habits, and mindsets do coordinators and coordinated instructors find 

most conducive to effective course coordination? 
3. In what ways do perspectives shared regarding coordination embody theoretical 

perspectives of Humanistic and Managerial coordinator orientations? 

Methods 
The authors of this paper recruited 14 instructors teaching and/or coordinating courses from 

five medium to large-enrollment universities in Oklahoma. Participants were recruited through 
an initial survey of participants of their primary role as coordinator or instructor. Of these 
instructors, a first subgroup of five instructors also served as coordinators of courses with 
structured coordination. These instructors were involved in coordinating various aspects of their 
course throughout the semester. A second subgroup of four instructors served as coordinators of 

26th Annual Conference on Research in Undergraduate Mathematics Education 872



courses involving semi-structured coordination, where coordinators were part of a team that 
mostly made decisions before a semester as opposed to during it. A third group of participants 
involved instructors who have taught one or more coordinated courses with structured 
coordination. 

The authors lead focus-group-style interviews in 6 separate sessions of 1-5 participants per 
session. Interviews were conducted on Zoom and recorded, running about 1.25 hours each. The 
authors recorded field notes of responses to each question. Recorded detailed interview field 
notes, along with transcriptions of targeted segments of the interviews were transcribed. The first 
author open-coded responses based on the intended context of the perspective and advice offered 
(Strauss & Corbin, 1998). After this, a second cycle of axial coding was used to segment 
comments by similar perspectives (Saldaña, 2013). A third round of coding involved identifying 
instructor perspectives, habits, and mindsets aligned with themes of Martinez et al.’s (2022) 
coordinator orientations. Finally, a cross-comparison across the second and third round of coding 
were analyzed.  

Results 
The following sections provide a summary of what coordinators and instructors shared 

regarding (a) the purpose and affordances of coordination, (b) the structure and roles of 
coordination, (c) the goals of coordination meetings, and (d) recommendations for coordinators 
and instructors in both structured and semi-structured coordination courses. Following this, we 
provide the cross-comparison of these four categories of perspectives with Martinez et al.’s 
(2022) coordinator orientations. 

Purpose and Affordances of Coordination 
One of the primary purposes cited by coordinators for developing a coordinated structure for 

a course was to increase consistency of course content and delivery. One coordinator cited that 
before coordination, “students had wildly different experiences.” Across contexts of 
coordination, instructors described how coordination enables a range of instructors to “bring the 
rigor [of the course] more closely together.”  Coordinators also described coordination as a factor 
in improving the quality of course materials and design. 

Instructors described the importance of coordination in providing resources for improving 
teaching and learning, as well as handling student issues. Coordination appeared to be a factor in 
increasing instructors’ competence in teaching by providing support for instructional 
development and a community for discussing and handling issues of concern. One instructor 
stated, “If the course hadn’t been coordinated, I would not have survived my first semester.” 
Another instructor stated that the coordinated structure “helped me focus more on teaching [and] 
what kind of questions I was asking; was I allowing enough time to absorb the material?” 

All instructors described having an increased sense of relatedness to other instructors because 
of the coordination. They said coordination provided a venue to talk and ask questions of other 
instructors which was very beneficial. One instructor said they felt very appreciated by their 
coordinator, but not by the department's administration. This instructor had worked hard to flip 
the class, but in the following semester, was placed in a corequisite section where he was not 
allowed to flip the class. In the face of this loss of autonomy, he said “I’m a creative person, but I 
cannot bring this to the students - what I want to bring to them will not work out.” Regarding the 
increased structure and loss of control, another instructor said she felt like she still had enough 
autonomy, and another instructor said the added support of coordination afforded more 
autonomy to work on what she wanted. 
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Structure and Roles of Coordination 
We acknowledge that coordination presents itself in a variety of ways, from the selection of a 

textbook and topics only, to more heavily coordinated courses where the vast majority of aspects 
are decided on by instructors. From the pre-interview survey, the coordinator participants 
indicated coordinating textbooks, topics, pacing, syllabi, exams, online homework, grading 
schemes, rubrics, written homework, and quizzes. They also cited responsibilities of instructor 
training, instructor observation, and feedback, fielding student complaints, instructor mentorship, 
instructor evaluation, setting up LMS, communicating with an accessibility resource office, 
administering makeup assessments, and scheduling exam rooms. In the interviews, several 
coordinators took particular concern for instructor training and mentorship for graduate students 
and new teachers. When concerns regarding teachers' instruction and behavior arose, one 
coordinator described these as opportunities for professional development and learning, assuring 
responsive instructors that they were not in trouble and that “this is all normal.” 

Coordinators who held regular coordination meetings spoke in detail about how they 
conducted these meetings since it was a primary form of communication between coordinators 
and instructors. Thus, the following section describes the goals coordinators held regarding 
meetings and how they approached them. 

Goals and Approaches for Coordination Meetings 
One of the primary ways of developing and carrying out coordination was through instructor 

meetings. While some coordinators preferred online communication and one-on-one meetings 
with instructors, the majority of coordinators focused substantial time and care on coordination 
meetings. Coordinators used coordination meetings weekly, biweekly, or monthly to (a) discuss 
course policies, (b) guide instructors, (c) provide training on the use of course materials or 
technology, (d) provide opportunities for professional support, and (e) distribute feedback. Some 
coordinators described the importance of using meetings to convey a vision or overarching story 
for the course that they wanted instructors to see and follow. Coordinators described using the 
start of meetings to check in, to “Look everyone in the eye and make sure they are doing what 
they are supposed to be doing. ‘You all are in the same place? Good! Let’s go on.’” 

In their discussion, coordinators agreed that they wanted instructors to perceive meetings as 
necessary and helpful in meeting practical needs. To this end, they discussed the importance of 
planning and sending out an agenda prior to the meeting so that instructors can offer suggestions 
on what to add. However, meetings also furthered the humanistic goals of building relationships 
and providing mutual learning opportunities. One coordinator emphasized that she was “not ‘the 
one’ with the answers.” Although the “young ones” were learning and observing what other 
instructors were doing, discussions often focused on sharing ideas, experiences, and suggestions 
in an environment where everyone could ask questions about the course and learn and buy into 
why the course was set up in the way it was. One coordinator emphasized being sensitive to 
people’s time; if meetings are becoming off track or unproductive, they sought to address the 
cause individually or change the structure of the meetings. 

Specific Recommendations 
Advice for Coordinators. In addition to advice for meetings, coordinators and instructors 

alike shared advice directly related to organization, interpersonal skills, getting feedback and 
support, and beginning a new coordinator position. Instructors gave emphatic advice that 
coordinators work on organizational skills by building detailed lists of what tasks were important 
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at what time of the semester. One instructor described how important it was to receive resources 
in a timely way so that they could have sufficient time to prepare for class. 

Coordinators advised focusing on interpersonal skills, especially in valuing the people you 
are working with, and discerning when to give ground to instructors and when to hold your line. 
Some coordinators described the importance as a coordinator of staying humble, asking 
questions, and continuing to learn from other instructors and coordinators. One coordinator 
advised framing the coordinator structure of their course as beneficial to new instructors. She 
said, “I am doing this to make things easier for you, and make things fair for students.” 

Coordinators also emphasized the value of collecting feedback from instructors. One advised 
that “especially when you have inexperienced instructors who may chafe under authority, get 
administrators on board with this.” One instructor found instructor evaluations helpful for 
seeking feedback on what they did well and what didn’t, which spurred them to also seek 
feedback outside the formal system of evaluations. 

Two coordinators described the complexity and burden of the responsibilities in their first 
year as coordinators, advising new coordinators to be careful about what they take on. One 
coordinator advised: “Come in and get your bearings first. Try it out the way it exists, if it’s not 
broken.” Another coordinator echoed this advice: “Learn what the prior person did, and just do 
it; wait to start making changes until after the first and second semester.” 

Advice for those working in semi-structured coordination. While the above perspectives 
and principles may apply to a broad range of contexts, several course coordinators offered 
advice, particularly for those working in contexts where structured course coordination doesn’t 
yet exist. In seeking the benefits of coordination (aligning the content and rigor of courses, 
improving course resources, and increasing collaborative support), they shared some lower-
stakes ways to add coordination into a course. One instructor suggested in addition to a common 
textbook and syllabus, providing suggested homework assignments, and problems that could be 
used as a guide to new instructors, but would not restrict established instructors. Another 
suggested collaboratively working on building a common final exam. One coordinator was chair 
of a committee of those who regularly teach a course and hold monthly meetings; she suggested 
that if instructors find meetings effective and helpful, they can lead to small but beneficial 
iterative changes in the course. Another coordinator suggested, “Don’t be afraid to add one thing 
per semester. And then keep it up.” 

Advice for Instructors. Since coordination offers affordances and constraints that differ 
from teaching without coordination, coordinators offered the following advice for instructors 
teaching within a coordinated structure: “Don’t mistake the coordinator structure of the course 
for needed preparation,” and “Don’t underestimate the amount of time needed to properly 
prepare.” 

When offering advice to those teaching a coordinated course for the first time, they 
emphasized asking questions and talking to other instructors. One instructor said, “It doesn’t 
matter how many years you have been teaching, you will encounter things that will miserably 
fail.” This instructor emphasized how, as new instructors, we forget how to explain the basics 
and are not used to commanding attention and creating rapport with students: “Anything that you 
don’t know how to do, it is helpful to have a team to talk to.” 

Advice to both instructors and coordinators. One instructor noted that both instructors and 
coordinators share the common goal of working well with students clearly communicating 
expectations. Thus, he advised both instructors and coordinators to see themselves as a team and 
work as a team. 
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Cross-Coding of the Results with Coordinator Orientations 

Of a total of 308 comments assigned specific codes, 292 spoke positively of various aspects 
of coordination, and 16 spoke negatively of the coordinated structure. Of these 16, seven 
comments negatively described the specific structure and roles of the curriculum in relation to 
student experience (e.g., regarding the instructor’s loss of autonomy in being assigned by the 
department a corequisite section in which he was not allowed to flip his classroom). The 
remaining 297 comments were distributed as presented in Table 1, which are further discussed in 
the next section. Table 2 provides a legend of the coordinator orientation codes used in Table 1.  
 

Table 1: Cross-coding of coordinator orientations with axial coding of positive perspectives  
(number of instances coded with a positive perspective of coordination) 

  Coordinator Orientations   

  H1 H2 H3 H4 H5 M1 M2 M3 M4 M5 NA Total 

Axial 
Coding 

Purpose & affordances 9 2 3 4 6 2 4 6 1 2 9 48 

Structure & roles 10 7 5 7 14 5 2 24 4 7 3 88 

Coordination meetings 4 5 8 5 13 0 2 3 1 4 4 49 

Recommendations 3 3 6 2 3 5 2 1 2 11 6 44 
 NA (no cross code) 13 4 4 9 6 1 3 8 6 9  63 
 Total 39 21 26 27 42 13 13 42 14 33 22 292 

 
Table 2: Codes of Coordinator Orientations (Martinez et al., 2022) 

Humanistic-Growth Knowledge-Managerial 
H1: Attends to student experience M1: Draws on knowledge of the course, department, & institution 
H2: Concerned about others M2: Demonstrates experience & knowledge of teaching the course 

H3: Takes action to build community M3: Provides material related to content & curriculum 

H4: Attentive to instructor differences M4: Communicates clearly 

H5: Provides instructor support M5: Exhibits strong administrative skills 

Discussion 
The above cross-coding of common perspectives regarding coordination and Martinez et al.’s 

(2022) coordinator orientations highlight the following in regard to this particular sample of 
instructors and coordinators. In describing the purpose, affordances, structure, and roles of 
coordination, these instructors particularly valued orientations of attending to student experience 
(H1), providing instructor support (H5), and providing course materials (M3). When offering 
explicit advice for coordinators and instructors, participants were more likely to emphasize 
attitudes and behaviors reflecting the importance of coordinators having strong administrative 
skills. 

The most frequent theme found in the cross-coding was the Structures & Roles theme 
coupled with M3: Provides material related to content & curriculum. This is unsurprising in that 
a primary requirement of coordination in the context studied is that materials of some kind are 
provided. What may be more interesting within the Structure & Roles theme, however, is the 
noticeable presence of Humanistic perspectives. The coordinators spent a significant portion of 

26th Annual Conference on Research in Undergraduate Mathematics Education 876



time discussing how their decisions affected the students’ experiences and whether or not they 
supported their instructors. The key role of coordination in how it affects the student experience 
was about keeping the course fair for all students, regardless of which instructor they had. The 
coordinator’s concern for supporting their instructors was evident in how they discussed teacher 
training, observations of classes, and management of assessments and the LMS.  

Course coordination meetings have the potential to emphasize Managerial aspects of 
coordination; however, Table 1 shows that the participants viewed the purpose of meetings more 
in terms of Humanistic perspectives. The purpose of the meetings for the participants was more 
about support and building a community than it was about relaying materials and rules for the 
course. Both coordinators and instructors were eager to offer recommendations for future 
coordinators and instructors. Frequently, their advice involved administrative skills that a 
coordinator needs to have in order to be effective and they made practical suggestions like 
making explicit to-do lists for each semester.  

In their experiences with coordination, instructors described, in varying degrees, gaining an 
increased sense of competence, autonomy, and relatedness for teaching. However, in one case, 
coordination constrained an instructor’s sense of autonomy, and in turn their creative 
engagement and motivation for teaching. Thus, it can be especially important for coordinators to 
give attention to specific decisions that may impact instructors' sense of autonomy. While 
decisions of course assignments and scheduling decisions may never be perfect, fostering a team 
mindset can mitigate negative attitudes regarding loss of autonomy. This instructor’s experience 
also highlights the importance of coordinators holding team meetings and building relationships 
in which instructors can express and feel supported in their concerns. In line with Martinez et 
al.’s (2022) conjecture that a combination of coordinator orientations is more likely to lead to 
improvements, the participants in this study described effective coordination as involving 
decisions led by both coordinator orientations. 

Conclusion 
Research serves to provide a context for instructors and coordinators with little prior 

experience with coordination for understanding how to understand the affordances and 
constraints of coordination and to quickly and effectively adapt efforts within this 
system. Therefore, one of the purposes of this work is to create a practical guide for those 
coordinating for the first time, as well as for those teaching a coordinated course for the first 
time. We hope that categorizing the participants’ perspectives by coordinator orientations can 
help others with new coordination systems and navigating initial decisions.  

Coordination can support first-time instructors to progressively focus their attention on where 
they can grow the most in their effectiveness as instructors, by focusing first on (a) their own 
roles and responsibilities as an instructor, then as questions/issues arise, (b) their role in 
relationship to coordination, and ultimately (c) their role in as part of a team of instructors 
delivering consistent and quality instruction. Coordination also supports coordinators to allocate 
energy most effectively at various stages in their service as coordinators. Especially in light of 
the cyclical nature of course-coordinator-responsibilities (pre-semester preparation, course 
implementation, post-semester reflection and evaluation, revision, repeat), these perspectives can 
help coordinators evaluate where their skills, expertise, and experience can help people the most. 
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A recent movement has developed to emphasize the importance of inclusive teaching practices in 
undergraduate STEM education. Mathematics courses have one of the largest impacts on 
students’ persistence and success in STEM majors, making efforts to improve diversity and 
inclusion in these classes all the more important. In this paper, we discuss our initial steps to 
develop a measure of students’ perceptions of instructor behaviors that promote inclusivity in 
their classrooms. This paper briefly discusses the initial development of items for our measure 
and focuses on our exploratory analysis of the latent factor structure and our process for 
defining these latent factors in the context of math instructors’ actions.  

Keywords: Mathematics, instructor behaviors, factor analysis, instrument development, inclusion 

Introduction 
Efforts to diversify STEM fields, both in academia and industry, will benefit from efforts to 

cultivate inclusive introductory STEM courses. Mathematics courses in particular are notorious 
for contributing to disparities as they are often required in order for STEM undergraduates to 
graduate (Ellis et al., 2016; Leyva et al., 2021, Battey et al., 2022). Multiple efforts to promote 
inclusive teaching practices in higher STEM education have tackled aspects such as curricula, 
classroom interpersonal relationships, and pedagogy. (Dewsbury & Brame, 2019; Hogan & 
Sathy, 2022; Inclusive STEM Teaching Project, 2023; Johnson, 2019; Kachani et al., 2020; 
Tanner, 2013). While these works highlight the importance of inclusion in STEM classrooms, we 
find little work done to identify and functionally measure aspects of inclusivity in post-secondary 
STEM classrooms. This report details our team’s effort to develop an instrument that would 
capture students’ perceptions of how their instructor’s behaviors support or diminish inclusivity 
in undergraduate mathematics classrooms. For our work, we conceptualize inclusiveness as 
students’ feeling that they belong in and can achieve success in the math class. Our current 
findings are part of a long-term instrument development project (a more detailed description is 
available in Brown et. al. (2023)). The aim of this project is to create an instrument that can be 
used primarily for research purposes in investigating relationships between students’ feelings of 
inclusion and other student-level variables (sense of belonging, mathematical confidence, etc.) or 
for instructors’ personal use in improving their teaching practice. Our instrument should not be 
used for institutional assessment of instructors as such an application is likely to introduce racial 
and gender bias, among other concerns. In this report, we present an abbreviated description of 
the exploratory process for developing the 28-item Fundamental Instructor Behaviors for 
Inclusion (FIBI) instrument followed by the details of the exploratory factor structure, our 
process of naming the latent factors, and concludes with a discussion of future work. 
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Methods and Data Collection 

Instrument 
Development of the FIBI instrument began with the creation of 79 items that started with the 

common stem “My mathematics instructor…”. Each item required a response on a 5-point Likert 
scale (1-Strongly Disagree, 2-Disagree, 3-Neither agree nor disagree, 4-Agree, 5-Strongly 
Agree). We created these items based on students’ responses during focus groups discussions of 
the following questions:  

 What has your instructor done or said that conveyed a sense you can succeed in 
math? 

 What have they done or said that conveyed a sense you can’t succeed in math? 
 What have they done or said that conveyed a sense you belong in math? 
 What have they done or said that conveyed a sense you don’t belong in math? 

(Focus groups are more fully reported in Brown et. al. (2023).) In addition to these items, we 
included nine items from two published instruments for measuring teacher behaviors: the 
Teacher Communication Behavior Questionnaire (TCBQ; She & Fisher, 2002) and the 
Questionnaire on Teacher Interaction (QTI; Wubbels et al., 1991). We included those items 
which covered behaviors not specifically mentioned by our focus groups, but that we thought 
could also impact students’ feelings of inclusion in their classroom. These items were modified 
to fit the sentence structure of our previous 79 items before being added to the instrument, 
bringing the total number of items to 88.  

Data Collection 
In the Fall 2021, we collected data using the 88 items as well as demographic questions at a 

large, predominantly white, research-intensive university in the Northeastern United States. We 
intentionally recruited students from introductory chemistry and biology courses but asked them 
to provide responses based on their current mathematics instructor. Our goal for this strategy was 
to reduce the students’ potential fears/concerns that their mathematics instructor would have 
access to their responses and to encourage students to provide honest responses to the items. 
Participants in the study received extra credit (equivalent to 0.5% of final grade) in their biology 
or chemistry course for completing the study. A total of 1,276 students participated in the study.  

Due to the predominantly white makeup of this university and our desire to center the voices 
of students underrepresented in STEM classrooms, namely women and persons excluded 
because of their ethnicity or race (PEERs; Asai, 2020), we implemented a secondary strategy to 
specifically recruit PEER participants from other universities via emails to university chapters of 
student organizations such as the National Society of Black Engineers (NSBE) and the Society 
for the Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS) as 
well as colleagues at other institutions. Participants in this wave of recruitment were incentivized 
with a raffle for Amazon gift cards (20 $50 prizes, five $100 prizes, and two $250 prizes). This 
recruitment led to an additional 149 responses, bringing the total number of participants to 1,425.  

Following the data collection, we cleaned the data by removing participants who (a) did not 
consent to participate (n = 161), (b) did not complete all FIBI items (n = 72), (c) were not 
enrolled in a mathematics course in Fall 2021 (n = 260), and (d) any responses identified as 
duplicates via student emails (n = 62). Thus, 870 participants remained in our sample. While the 
majority of our sample identified as female (n = 551), we still had a lack of participation from 
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students who identify as PEERs (21%; n = 185). Approximately 71% of participants (n = 614) 
identified with at least one of these two groups. 

Methods 
To conduct our exploratory factor analysis (EFA), we used two sets of software: SPSS 

(version 28) and R (version 4.2.0). Analysis of the data was completed using multiple factor 
extraction methods (principal components analysis and principal axes) as well as using both 
Pearson and polychoric correlations (Holgado–Tello et al., 2010) to investigate the impacts of 
these choices on our analyses and to understand the FIBI instrument’s structure in more detail. 
Across these different design choices, we consistently used an oblique rotation method (promax) 
to allow for correlations between factors which we suspected from our prior work with student 
focus groups (Brown et. al., 2023). In addition to considering multiple methodological choices, 
we were also interested in any potential differences in the factor structure for the subsets of 
women, PEERs, and the combined subset of women and PEERs and thus, we repeated these 
analyses for each subset as well as the whole sample. Due to the limited sample size, analysis of 
the PEER subgroup failed to converge. However, the other three analyses produced generally 
similar results (similar factor structure, number of factors, primary loading of items, and factor 
correlations). Thus, only the results for the whole sample are reported here.  

Our EFA relied on several heuristics in tandem to determine the appropriate number of latent 
factors to retain including (a) the Kaiser-Gutman criterion (eigenvalues greater than one), (b) 
parallel analysis (Horn, 1965), and (c) analysis of Scree plots (R. A. Johnson & Wichern, 2007). 
After using these heuristics to limit the number of factors to consider, we then eliminated any 
items which did not have a factor loading with a magnitude greater than 0.4 to any of the 
remaining factors (Stevens, 1992). Following these removals via benchmarks, we moved into 
more detailed item-to-item analysis where we investigated the Pearson and polychoric 
correlations between items with primary loadings on the same factor. In doing so, we identified 
clusters of items containing correlations with magnitude of 0.6 or higher and then selected 
representative items from each cluster to remain in the instrument while removing the others. 
(See Brown et. al., 2023) for our guiding principles for examining item clusters.) Our process of 
exploratory analysis and item reduction was iterative to ensure the stability of the measure. Thus, 
after each wave of item removal by item benchmarks and item-to-item analysis, EFA was rerun 
on the subset of items to ensure similar performance (factor structure—item assignment to 
factors—and cumulative variance explained) after the removal of those items.  

Results 

Exploratory Factor Analysis and Item Reduction 
For our initial EFA containing all 88 items, the Kaiser-Gutman criterion suggested a 12-

factor solution which explained approximately 63% of the total variance in responses while 
parallel analysis suggested a slightly less complex, 10-factor model which explained 56% of the 
total variance. Unfortunately, with such a large number of factors, our initial benchmark for 
removal (magnitude of the factor loading greater than 0.4) only flagged 9 items for removal. Due 
to our desire for a more parsimonious model, we considered the Scree plot of our factors, which 
suggested a model containing four to six factors, and thus we conservatively chose to include six 
factors. With this smaller subset of factors, our benchmark for factor loadings identified a total of 
23 items for removal while still explaining approximately 55% of the total variance. After the 
removal of these items, we began analysis of item-to-item correlations and using our research 
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team’s guiding principles we identified another 23 items for removal, leaving 42 items left after 
our first wave of EFA and item reduction. 

After completing the first wave of analysis, EFA was re-run to confirm that items remained 
in similar clusters and the number of factors was as we expected after removing those items. 
Scree plot analysis now suggested a seven-factor model. However, the seventh factor contained 
only a single item while the other six factors remained thematically intact from our previous 
analysis. Thus, the item was removed, and we retained the six-factor structure which still 
explained approximately 55% of the total variance. Again, employing the factor loading 
benchmark of 0.4, we identified 7 additional items for removal which no longer loaded 
significantly onto any of the factors. Item-to-item analysis was used again to identify six final 
items for elimination, resulting in a 28-item instrument. 

Once more, to ensure our factor structure was stable, we conducted EFA on the subset of 28 
items. Again, we arrived at the same six-factor model which explained 55% of the variation in 
responses. All items remained in their initial factors from the previous wave, except for the item, 
“My mathematics instructor talks too fast.” Additionally, the item “My mathematics instructor 
gives exams which are hard to finish in the allotted time,” now had a factor loading of 0.339, 
which did not meet the original benchmark of 0.4. However, our research team believed that the 
item provided student perceptions that were not equally addressed by any other items in the 
instrument and thus chose to retain the item. The details of the factor structure for the final 28-
item instrument are discussed in the following section. 

Resulting Exploratory Factor Structure 
Following our iterative EFA process followed by item reduction, we arrived at a six-factor 

solution containing 28 items and explaining approximately 55% of the total variation in 
responses. A summary of the variation explained by each factor can be seen in Table 1. Factor 
labels (Factor 1, 2, …) were assigned in order based on the proportion of variance explained by 
the factor in the 28-item EFA. After reducing the instrument to 28 items, we see that Factor 1 
explains the most variation in responses (12.7%) with Factor 2 explaining a similar amount of 
variation (12.6%). We note that Factor 1 and Factor 2 contain strictly negatively worded or 
positively worded items respectively, but both emphasize the irritation/willingness that 
instructors may exhibit when it comes to engaging with students and their questions which may 
have resulted in both factors explaining essentially identical amounts of variation.  

 
Table 1: Summary of 6-Factor Solution on 28 Item Instrument 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 
SS Loadings 3.55 3.52 2.74 1.95 1.92 1.59 
Proportion of Variance 
Explained 

0.127 0.126 0.098 0.070 0.069 0.057 

Cumulative Variance 
Explained 

0.127 0.253 0.351 0.421 0.490 0.547 

Factor are labeled (Factor 1, 2, …) in order based on the proportion of variance explained in the 28 item EFA. 

Unlike the other factors, Factor 3, which explained 9.8% of the variation in responses, was 
the only factor to contain both positively and negatively worded items. Item assignments as well 
as their factor loadings are provided in Table 2. For Factor 3, we can see that both negatively 
worded items associated with this factor, Q20 and Q21, have negative factor loadings while all 
other items have positive loadings, which is consistent with our expectation that negatively  
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Table 2: Primary Factor Loadings 6-Factor Solution 

Question Factor 
Loading 

Question Factor 
Loading 

Factor 1: My math instructor is disrespectful 
to us sometimes. 

Factor 4: My math instructor models the 
math-person archetype. 

Q28: Blames us when we don’t 
understand something. 
Q5: Puts us down. 
Q6: Criticizes our answers to their 
questions. 
Q25: Smirks or laughs at our 
questions. 
Q26: Says the material is simple, 
easy, or obvious. 
Q27: Seems annoyed, frustrated, 
or exasperated by our questions. 

0.816 
 

0.694 
0.761 

 
0.781 

 
0.458 

 
0.766 

Q22: Gives overly complex or 
technical explanations. 
Q1: Teaches too fast. 
Q12: Is too advanced to be 
teaching this course. 
Q18: Gives exams which are hard 
to finish in the allotted time 

0.680 
 

0.601 
0.535 

 
0.339 

Factor 5: My math instructor doesn’t 
prioritize teaching us. 

Q14: Doesn’t manage class time 
well. 
Q11: Makes mistakes which 
confuse students. 
Q13: Pays more attention to some 
students than others. 
Q17: Takes too long to grade 
and/or return homework, quizzes 
and/or exams 

0.611 
 

0.469 
 

0.495 
 

0.534 

Factor 2: My math instructor is open and 
adaptable to us. 

Q15: Makes sure all questions get 
answered before moving on. 
Q2: Explains things in different 
ways when we ask. 
Q3: Pauses to let us absorb 
material or formulate questions. 
Q9: Teaches to all students, not 
just those who’ve already seen this 
material. 
Q10: Is helpful during office 
hours. 
Q16: Makes us feel comfortable 
asking questions. 

0.831 
 

0.675 
 

0.522 
 

0.562 
 
 

0.586 
 

0.592 

Factor 6: My math instructor does more than 
just lecture at us. 

Q19: Checks in on us when we 
work in groups. 
Q8: Encourages us to work 
together. 
Q23: Provides supplementary 
materials like handouts or 
worksheets. 

0.758 
 

0.745 
 

0.508 

Factor 3: My math instructor isn’t apathetic 
toward us. 

  

Q4: Jokes with the class. 
Q7: Talks enthusiastically about 
math. 
Q20: Has little or no enthusiasm 
for teaching. 
Q21: Has little or no interest in 
students’ success. 
Q24: Engages in small talk with 
the class. 

0.858 
0.699 

 
-0.728 

 
-0.410 

 
0.661 

  
  
  
  
  

Item labels (Q1, Q2,…) are the item order in the survey. The first item listed for each factor has the largest factor 
loading for the factor; subsequent items are listed in order by item label. 
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worded items would have a negative relationship with an overall positive factor. When naming 
the factors, we devised a positively framed name for this factor, incorporating the antithesis of 
Q20 and Q21 as themes within the factor. For example, we considered “an interest in student 
success” as a theme defining Factor 3 rather than the lack of interest. 

Based on the item-factor associations presented in Table 2, our team took a collaborative 
approach to develop names to define our latent factors. To begin this process, each team member 
created their own name/phrase to describe each factor. Then, as a team, we discussed the 
proposed names/phrases, identifying consistencies between them and any potential weaknesses. 
Our aim was to create a unified name that could unite all items under a common theme rather 
than naming based on a few of the higher loading items. Thus, after creating a group name for a 
factor, each item was compared to the factor name to ensure that the name represented the item 
well. As we continued this process for multiple factors, our team decided to implement a 
common structure for each factor name to emphasize that these factors represent students’ 
perceptions of their instructor. Thus, each factor name is written using the same structure as the 
FIBI items: “My mathematics instructor …” This commonality is meant to provide FIBI users 
with six collective statements, from the students’ perspective, about their instructor’s behaviors 
that may be increasing/decreasing the students’ feeling of inclusion in their classroom. In this 
respect, we phrased the titles to not be a definitive judgement of the instructor, but rather a 
current understanding that the students have developed with respect to their own class. For 
example, for Factor 5, a few of our initial phrases defining the factor were: “poor time 
management” and “inattentive to teaching.” As we worked to incorporate both the issues of 
timing in Q14 and Q17 and attention to details in Q11 and Q13, our discussion turned to the idea 
of having priorities above providing quality instruction for students. While the factor could have 
been given a definitive title such as, “My mathematics instructor doesn’t know how to manage 
their time well,” we wanted to avoid the declaration that an instructor “doesn’t know” or “lacks” 
some ability or effort. Instead, we chose the title, “My math instructor doesn’t prioritize teaching 
us,” because it addresses the students’ current perception of their instructor’s lack of attention 
and time management skills through the lens of “having priorities other than teaching” which an 
instructor can then address without feeling as if they have been labeled as “inattentive”.  

 

(+)/(–) after each factor denotes whether the factor emphasizes positive/ negative impacts on inclusivity.  

After providing names for each of our factors, we have three positively framed and three 
negatively framed factors. Based on previous work, we expected the factors of inclusion to be 
dependent on each other. Thus, we also investigated the correlations between our factors which 
are presented in Table 3. Of our six factors, three are focused on positive behaviors to support 
inclusion and the other three address negative behaviors that may inhibit feelings of inclusion in 

Table 3: Factor Correlations for 6-Factor Solution 

 Factor 1  
(–) 

Factor 2 
(+) 

Factor 3 
(+) 

Factor 4  
(–) 

Factor 5  
(–) 

Factor 6 
(+) 

Factor 1 (–) 1 -0.61 -0.44 0.51 0.62 -0.33 
Factor 2 (+)  1 0.71 -0.59 -0.58 0.65 
Factor 3 (+)   1 -0.35 -0.31 0.6 
Factor 4 (–)    1 0.51 -0.46 
Factor 5 (–)     1 -0.43 
Factor 6 (+)      1 
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a mathematics classroom. So, we expected that factors addressing negative behaviors will have 
an inverse relationship with positively focused factors. Moreover, two factors that are both 
positively (negatively) focused were expected to have a positive association between the two 
factors. This relationship did indeed present itself in our data. Additionally, we note that the 
magnitude of the associations between factors ranged from 0.31 to 0.71, suggesting that all of 
our factors are moderately dependent on one another and thus the different aspects of students’ 
perceptions of inclusive instructor behaviors are linked to each other. 

Discussion 
This paper addresses the beginning stages of development for the FIBI instrument, a measure 

of students’ perceptions of inclusive instructor behaviors in undergraduate mathematics 
classrooms. Development of this instrument began with an emphasis on the inclusion of women 
and PEER students in defining inclusive practices through targeted focus groups which became 
the basis for items included in the FIBI instrument. After developing these items, we proceeded 
through an iterative process of exploratory factor analysis and item reduction to arrive at our 
current 28-item instrument which contains six factors, of which three describe instructor 
behaviors that promote inclusion and three describe behaviors that inhibit feelings of inclusion. 

One limitation of our work is the lack of diversity present in our sample. Although we were 
able to obtain a majority of our responses from women, our sample did not contain enough 
students who identified as PEERs to assess the factor structure for this subgroup alone. 
Additionally, other underrepresented identities such as Indigenous, Native Hawai’ian, Pacific 
Islander, non-binary gender identities, are not well represented in our sample and we did not 
investigate sexual identity as an identifier for underrepresented students in mathematics class. It 
may be possible that students from these groups would identify alternative factors which we did 
not see in this study. However, for our future confirmatory work, we plan to make a more 
targeted effort to include more PEER participants and to understand any possible differences in 
the factor structure. Another limitation of our study comes from our focus on deriving items from 
the responses of students in our focus groups. Because many students have only experienced 
traditional, lecture-based classrooms, it is doubtful that they have experienced any teaching 
strategies that may promote feelings of inclusion. Hence, we have aimed our instrument at 
defining only “fundamental” behaviors that may be present in a wide variety of teaching styles. 

 While this paper has presented a basic factor structure for the FIBI instrument, future 
analysis is needed to confirm this factor structure. Thus, our future steps for instrument 
development include a secondary data collection to use for confirmatory factor analyses (CFA) 
to validate our factor structure. Additionally, to continue centering women and PEERs in 
defining inclusive practices, we plan to run a multiple groups CFA model to analytically 
compare the factor structures and factor loadings based on gender and race/ethnicity. Finally, the 
FIBI instrument must be compared to other measures of similar constructs to assess construct 
validity and we plan to investigate the relationship between FIBI factor scores and other 
constructs such as math confidence, belonging, as well as course grades. These next steps will be 
crucial for establishing the validity of the FIBI so it can then be used by instructors aiming to 
assess and improve feelings of inclusion in their math classrooms. 
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Teaching Proofs in a Second Linear Algebra Course: A Mathematician’s Resources, 
Orientations, Goals, and Continual Decision Makings 
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In this research study, we employed Schoenfeld’s (2010) theory of Resources, Orientations, and 
Goals (ROGs) to examine an instructor’s (and co-author’s) textbook in a second course in linear 
algebra. The course was proof-based and the instructor anticipated that many students would 
have difficulty. Having the knowledge of students’ difficulties from a first course in linear 
algebra they created tailored resources with many hints and pedagogical attributes for their 
students. The instructor’s goal was to encourage students to construct their own proofs to 
understand and learn the materials, hence promoting exploration, conjecturing, and proving 
mental mathematical actions.  

Keywords: linear algebra, proof, second course, belief, pedagogy, knowledge of content and 
students, mathematical knowledge for teaching 

Literature Review 
Linear algebra is a key topic for many mathematics majors and other fields. The Linear 

Algebra Curriculum Study Group (LACSG) recommended that “at least one second course in 
matrix theory/linear algebra should be a high priority for every mathematics curriculum” 
(Carlson, Johnson, Lay, & Porter, 1993, p. 45). The LACSG 2.0 recommends that mathematics 
departments offer a variety of second courses (e.g., numerical linear algebra) and include wider 
topics (Stewart et al., 2022). However, research on topics in second courses of linear algebra, 
which contain more abstract content, is rare.  In addition, in a survey paper by Stewart, Andrews-
Larson, and Zandieh (2019), the authors found that more research on how students make sense of 
linear algebra proofs are needed. Hence, in this paper, we focus our attention on linear algebra 
proofs. For example, Stewart and Thomas (2019) aimed to uncover linear algebra students’ 
perceptions of proofs in a first course. The results revealed that many students expressed their 
need for understanding. Studies also showed that the number of new definitions which linear 
algebra students must learn to begin writing proofs is overwhelming and makes learning proofs 
difficult (Hannah, 2017; Britton & Henderson, 2009). Malek and Movshovitz-Hadar (2011) 
employed one-on-one workshops to examine the effect of using their Transparent Pseudo Proofs 
(TPPs) in teaching first-year linear algebra proofs. They found for non-algorithmic proofs, 
students with familiarities in the TPPs wrote more in-depth and satisfactory answers than 
students who learned proofs traditionally, however, both groups of students performed equally 
for algorithmic proofs. Uhlig (2002) developed a novel approach compared to the traditional 
Definition, Lemma, Proof, Theorem, Proof, Corollary (DLPTPC) to teach linear algebra proofs. 
He posed the following questions: “What happens if? Why does it happen? How do different 
cases occur? What is true here?” (p. 338). He believed “Such a WWHWT sequence of 
presentation quickly leads students to understand, construct, reason through, enjoy, and actually 
demand ‘salient point’ type proofs” (p. 338). 

Further expanding on the ideas of proof education, Melhuish et al. (2022) synthesized 104 
papers from a range of countries and methods to describe what is known about proof-based 
learning and what is still missing. In their exploration, they uncovered that two schools of 
thought existed for teaching proofs, lecture-based proofs and student-centered learning. They 

26th Annual Conference on Research in Undergraduate Mathematics Education 887



concluded that while student-based learning is promising, a large gap remained in 
“understanding of the theoretical mechanisms which specific instructor moves may encourage or 
scaffold student activity is only beginning to emerge” (Melhuish et al., 2022, p. 17). Attempting 
to understand the theoretical mechanisms of an instructor is not something that is entirely new 
despite not being well explored. Using Schoenfeld’s (2010) Resources, Orientations, and Goals 
(ROGs) framework, Hannah, Stewart, and Thomas (2011) attempted to describe the instructors' 
overarching goals to present linear algebra topics to their students. The paper found that 
analyzing the instructor's goals proved useful in uncovering his decision making and how the 
instructor approached teaching the “big picture.” These results validated the instructor's decision 
making as a useful tool for improving the teaching ability of the instructor. Furthermore, the 
feedback from the students in this case of reflective teaching was positive, reinforcing the idea 
that this analysis provided enrichment for the instructor and students. 

Theoretical Framework 
 The theoretical aspects of this study are based on Schoenfeld’s (2010) Resources, 

Orientations and Goals (ROGs). He claims that “if you know enough about a teacher’s 
knowledge, goals and beliefs, you can explain every decision that he or she makes, in the midst 
of teaching” (2012, p. 343). By resources Schoenfeld focuses mainly on knowledge, which they 
define “as the information that he or she has potentially available to bring to bear in order to 
solve problems, achieve goals, or perform other such tasks” (2010, p. 25). Goals are defined as 
what the individual wants to achieve. The term orientations refer to “dispositions, beliefs, values, 
tastes, and preferences” (2010, p. 29). Although, the theory was originally applied on school 
teaching, (e.g., Aguirre & Speer, 2000; Thomas & Yoon, 2011; Törner, Rolke, Rösken, & 
Sriraman, 2010), it also has applicability to teaching at university (e.g., Hannah, Stewart & 
Thomas, 2011; Paterson, Thomas & Taylor, 2011; Stewart, Troup, & Plaxco, 2018). In addition, 
as we are interested in understanding the teaching and learning of proof in a formal second linear 
algebra course, we approach this problem with the Mathematical Knowledge for Teaching 
framework (MKT) by Ball, Thames, and Phelps (2008). This framework identifies several 
distinct domains of knowledge that instructors must use when they teach mathematical content. 

In particular, for this paper, we restrict ourselves to one domain: knowledge of content and 
students (KCS). According to Ball et al., (2008, p. 401): 

[K]nowledge of content and students (KCS), is knowledge that combines knowing about 
students and knowing about mathematics. Teachers must anticipate what students are 
likely to think and what they will find confusing. When choosing an example, teachers 
need to predict what students will find interesting and motivating. When assigning a task, 
teachers need to anticipate what students are likely to do with it and whether they will 
find it easy or hard. … Each of these tasks requires an interaction between specific 
mathematical understanding and familiarity with students and their mathematical 
thinking.  
In this study, our goal is to network these theories by associating Ball’s instructor 

anticipation KCS and Schoenfeld’s instructor beliefs about student resources.  The research 
question guiding this research is: What knowledge of content and students do experienced 
instructors leverage for teaching proofs in linear algebra?  

Methods 
This narrative study (Creswell, 2013) is part of a larger study working with a mathematician 

(the instructor and first author), whose research is in geometry and algebra, and his linear algebra 
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students. In the rest of the paper, we shall refer to the mathematician as “the instructor.” The 
research team consisted of the instructor, a mathematics education researcher in linear algebra 
education, and a graduate student who is working on linear algebra education. The course was 
self-contained, proof-based, and constructed the theory of formal linear algebra from basic set-
theoretic assumptions. Incoming students all had experience with formal proofs in other 
courses. The author approached this course with the core pedagogical perspective that students 
should have the opportunity to construct all proofs themselves.  

Students were supplied with a self-contained textbook written by the instructor that had all 
definitions, propositions, and reflections, carefully sequenced, that students would progress 
through during the entire term. Recognizing the difficulty of creating proofs on their own, the 
instructor supplied scaffolding (via hints, questions, and reflections) to support the students in the 
completion of the proofs without reducing the cognitive demand of the proofs themselves.  

Class met twice a week for 75 minutes. Class time was split into three components: lecture 
(~15min), group time (~45min), and presentations (~15min). Throughout lecture, the instructor 
would recall concepts from the past class and introduce new ideas for that day’s 
investigations. During group time, groups would work, while standing up at and writing on white 
boards, to construct (and convince one another) of proofs to that day’s propositions. During this 
time, the author would walk among the groups, attempting to facilitate discussions and provide 
hints for groups that were stuck. Towards the end of this time, the author would recruit groups to 
share their thinking for their proofs. During presentations, groups would present their proofs 
(complete or incomplete) to the class for discussion. 

Each week, students were then required to LaTeX up and submit all proofs in their “course 
journal,” a single cumulative document. Students were not allowed to look up proofs from other 
resources, but they were encouraged to work with classmates outside of class.  

Data collection and analysis 
We collected data from the textbook created by the instructor, videos of the instructor during 

lecture, videos of the students presenting, videos of student board work, and the final course 
journal submissions for each student. In this paper we only analyzed the instructor’s textbook.  
The team wanted to look at a small sample and identify structures of linear algebra proofs.  The 
members of the team collectively decided to analyze Investigation 12 (Linear Combinations and 
Span), both because it related to previous work (Madden et al 2023) and the team determined it 
was the first instance of propositions which contained sophisticated linear algebraic reasoning.  
The team then determined it was beneficial to also analyze Investigation 9 (Subspaces), as 
Investigation 12 frequently referenced it.   The research team individually analyzed the data, 
identified emergent themes, and then the team met to share, discuss, and settle upon identified 
themes. The team was especially interested in the hints.  The team continually consulted with the 
instructor to gain insights into his knowledge and beliefs that led him to make the decisions that 
were observed in the investigations.  In this paper, we will only analyze the instructor’s beliefs. 

Results and Discussion 
We analyzed two investigations on subspaces and span that the instructor provided his 

students (see Figures 2, 3, and 4). These investigations, as well as relevant references to earlier 
investigations, are provided below (see also Figure 1). These investigations were created by the 
instructor prior to his students using them. As such, these investigations contain a significant 
amount of information about the instructor’s knowledge and beliefs about the content, his 
students, and teaching the subject, as well as his goals. 
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Instructor’s Knowledge and Beliefs About Learning Proof in a Student-Centric Course 
The instructor has taught a proof-based second course in linear algebra many times, and 

based upon those experiences, wrote his own self-contained textbook that he based his course 
upon and that he distributed to his students. As a consequence of his experiences teaching such a 
course, together with his beliefs concerning how people learn, the instructor came to hold certain 
beliefs regarding the structure of such a second course, and which caused him to make certain 
teaching decisions regarding the nature and structure of his textbook. Here are some of the 
instructor's beliefs and corresponding teaching decisions. 

Belief (B1). Students should learn formal linear algebra in a student-centric course, which 
would include that the students should have the opportunity to construct all proofs themselves. 
Belief B1 resulted in the teaching decision (TD1): he created a self-contained textbook that 
contained no proofs, but rather a collection of carefully sequenced propositions and reflections.  

Belief (B2). Teachers play an important role in student learning by (1) providing students 
with cognitively demanding problems and (2) helping students access knowledge and heuristics 
to solve the problem. In this context, the problems provided were proofs and Belief B2 resulted 
in teaching decision (TD2): for each proof, anticipating where students would struggle, he 
carefully wrote hints, which typically included a suggestion for the type of proof to pursue, the 
definitions to retrieve, and some intermediate results to prove. This can be observed in Figure 4 
in the hints to the proofs of Propositions 4.48 and 4.50. 

Belief (B3). Central to the story of a proof-based second course in linear algebra is (1) a solid 
understanding of linear algebra for the object Rn, and (2) continual enactment of structural 
abstraction (Tall, 2013). Belief B3 resulted in the teaching decision (TD3): prior to a (formal) 
object being constructed, the antecedent object in Rn was revisited and discussed, as was 
explicitly the action of structural abstraction. The terminology of structural abstraction was 
introduced early in the textbook (see Figure 1) and then continually used throughout the term. 
 

 

Figure 1. Excerpt from Investigation 3 of the instructor’s textbook. 

Teaching decision 3 (TD3) can be seen having been implemented in the introduction to 
subspaces (see Figure 2). 
 

 

Figure 2. Excerpt from Investigation 9 of the instructor’s textbook. 
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Instructor’s Knowledge and Beliefs About the Learning of Mathematical Mental Actions 
Belief (B4). There are many distinct types of mathematical mental actions, including 

proving, conjecturing, generalizing, abstracting, modeling, and interpreting (Harel, 2008). It is a 
goal of the instructor that in a formal course such as this, students internalize these actions.  

Beliefs (B5-B7) of the instructor is that students (1) come into such a course not being 
explicitly aware of such mental actions, (2) students are more likely to internalize such actions if 
these actions are explicitly named and discussed, and (3) students are more likely to internalize 
such actions if they have opportunities to engage in them. 

 

 

Figure 3. Excerpt from Investigation 9 of the instructor’s textbook. 

The course is built around proving, however, the instructor identified and highlighted other 
mental actions where he could. In this instance (Figure 3), the instructor made the teaching 
decision (TD4) to have students reflect upon and practice generalizing and conjecturing. This 
sequence comes at the end of the initial investigation into subspaces. Here, in Proposition 4.31, 
students are initially asked to prove that the subset W୧ of 𝐹, where the ith entry is zero, is a 
subspace. The instructor provided a hyperlink to a mathematics education resource to reflect 
upon expansive generalization by Harel and Tall (1989) and then asked students to use expansive 
generalization to conjecture and then prove new propositions (see Figure 3). More precisely, 
students are asked to reflect upon the method in which they proved Proposition 4.31, and then in 
Explore-Conjecture-Prove 4.34 to determine other subsets that are subspaces. Here students were 
free to consider many generalizations, the two most obvious being: (1) if the ith entry is held a 
different (nonzero) constant (which will not be a subspace) or (2) if more than one entry is held 
to be zero (which is a subspace).  
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Figure 4. Excerpt from Investigation 12 of the instructor’s textbook. 

Instructor’s Knowledge and Beliefs About the Learning of Span  
The instructor identified two characterizations of the concept of the span of a set of vectors S, 

span(S), as we now outline. 
The first conception of span is a “bottom-up” construction. One first conceives of a linear 

combination. Based on the instructor’s APOS (Dubinsky & McDonald, 2001) theoretical 
knowledge, the action of computing an explicit linear combination of vectors in Rn for small n, is 
a task that is introduced early in a first course in linear algebra. Through repeating this action, a 
student may internalize this action to create an internalized procedure. Eventually the student 
may encapsulate this procedure as a single object on its own. Only once a student has 
internalized the notion of a single linear combination as an object can the students conceive of 
many linear combinations of S at once. The student is then asked to conceive of not one, nor two 
nor three, but all linear combinations at once. They are asked to hold within their mind the 
infinitude of all such objects. That is span, built from the bottom up. 
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The second conception of span is a “top-down” construction. Here, one first conceives of a 
subspace. Unlike the above pathway, a subspace begins life as a formal object, defined in terms 
of properties. Furthermore, instantiations of this formal object are themselves typically infinite 
and there is no finite construction in the way there is for a linear combination. Once a student has 
internalized the formal object of subspace, the student can then begin to conceive of many 
subspaces at once. The student is then asked to conceive of not one, nor two, nor three, but all 
subspaces containing S at once. They are asked to hold within their mind the infinitude of all 
such objects and conceive of their intersection. That is span, built from the top down. 

Both approaches, linear combination and subspace, are mathematically advantageous in 
appropriate contexts. For example, the former is useful for computation, while the latter is more 
tractable for formal proofs. The mathematician uses both. The student typically only confronts 
the first conception of span in their first course. 

Concluding Remarks 
This study examined a linear algebra instructor’s textbook through the lens of ROGs, and, in 

particular, the instructor’s beliefs and their knowledge of content and students. The instructor’s 
textbook is a product, an accumulation of a sequence of numerous teaching decisions, motivated 
by their beliefs and in line with their goals to help students succeed in understanding linear 
algebra, to promote mental mathematical actions, namely, exploration, conjecturing, and 
proving. 

 When tasked with problem solving, the instructor had knowledge from his experiences as a 
mathematician of the importance of being able to sort through and retrieve relevant knowledge 
(in particular, definitions and propositions) in the context of proving. Furthermore, from his 
experiences teaching, as well as familiarity with mathematics education literature, the instructor 
anticipated that students would significantly struggle (to the detriment of their learning) with the 
spontaneous retrieval of relevant definitions and propositions.  The instructor therefore made the 
teaching decision to include these references in the hints. Anticipating the complexity of certain 
full proofs, the instructor made the decision to recommend specific intermediate results in the 
hints. Based on their beliefs as a mathematician and their knowledge of mathematics education 
literature and teaching experiences, the instructor made the decision to make pedagogical content 
knowledge available to their students. We question, what impact engagement with mathematics 
education literature might have on student learning (metacognition)?   

The instructor got the impression that the hints, in harmony with their other teaching actions, 
had some long-term impact upon (1) students’ understandings of linear algebraic concepts and 
(2) how students approach proofs. Certain common definitions and propositions, such as the 
definition of subspace (Definition 4.24 in Figure 2) were invoked often throughout the term, and 
the students seemed to internalize them and speak of them fluently. After the course, students 
told the instructor that they learned that a well-written proof should include proper invocation of 
definitions and propositions.  

Currently we are in the process of analyzing students’ data, for example, the course journals, 
and exit surveys. The team intends to look at the structure of students’ proofs, and how they 
constructed their proofs from the provided hints/resources. Without a doubt, proof is an 
important component of an abstract second course in linear algebra and more research on 
instructors and students is needed. 

26th Annual Conference on Research in Undergraduate Mathematics Education 893



References 
Aguirre, J., & Speer, N. M. (2000). Examining the relationship between beliefs and goals in 

teacher practice. Journal of Mathematical Behavior, 18(3), 327–356. 
Ball, L. D., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching: What 

Makes It Special? Journal of Teacher Education, 59(5), 389–407.  
https://doi.org/10.1177/0022487108324554 

Briton, S. & Henderson, J. (2009). Linear algebra revisited: an attempt to understand students’ 
conceptual difficulties. International Journal of Mathematical Education in Science and  

      Technology, 40(7), 963-974. 
Carlson, D., Johnson, C. R., Lay, D. C., & Porter, A. D. (1993). The Linear Algebra Curriculum 

Study Group Recommendations for the First Course in Linear Algebra. The College 
Mathematics Journal, 24(1), 41–46. https://doi.org/10.2307/2686430 

Creswell, J. W. (2013). Qualitative Inquiry and research design: choosing among five    
         approaches, (3rd ed). SAGE. 
Dubinsky, E., & McDonald, M. (2001). APOS: A constructivist theory of learning in 

undergraduate mathematics education research. In D. Holton, M. Artigue, U. Krichgraber, J. 
Hillel, M. Niss & A. Schoenfeld (Eds.), The teaching and Learning of Mathematics at 
University Level: An ICMI Study (pp. 273-280). Dordrecht: Kluwer Academic Publishers. 

Hannah, J. (2017). Why Does Linear Algebra Have to Be So Abstract? In S. Stewart (Ed.). 
And the Rest is Just Algebra (pp. 205-217). Springer, Cham. 

Hannah, J., Stewart, S., & Thomas, M. O. J. (2011). Analysing lecturer practice: the role of 
orientations and goals. International Journal of Mathematical Education in Science and 
Technology, 42(7), 975-984. 

Harel, G. (2008). What is mathematics? A pedagogical answer to a philosophical question. In 
B. Gold & R. Simons (Eds.). Proof and other dilemmas: Mathematics and Philosophy, 
Washington, DC: Mathematical Association of America, pp. 265-290. 

Harel, G., & Tall, D. O. (1989). The general, the abstract and the generic in 
advanced mathematical thinking. For the Learning of Mathematics, 11(1), 38-42. 

Madden, A.,  Stewart, S., & Meyer, J. (2023). A Linear Algebra Instructor's Ways of Thinking of 
Moving Between the Three Worlds of Mathematical Thinking Within Concepts of Linear 
Combination, Span, and Subspaces. In Cook, S., Katz, B. & Moore-Russo D. (Eds.). (2023). 
Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics 
Education (pp. 761-769). Omaha, NE.  

Malek, A. & Movshovitz-Hadar, N. (2011) The effect of using Transparent Pseudo-Proofs in 
Linear Algebra, Research in Mathematics Education, 13:1, 33-58, DOI: 
10.1080/14794802.2011.550719 

Melhuish, K., Fukawa-Connelly, T., Dawkins, P. C., Woods, C., & Weber, K. (2022). Collegiate 
mathematics teaching in proof-based courses: What we now know and what we have yet to 
learn. The Journal of Mathematical Behavior, 67, 100986. 

Paterson, J., Thomas, M. O. J., & Taylor, S. (2011). Decisions, decisions, decisions: What 
determines the path taken in lectures? International Journal of Mathematical Education in 
Science and Technology, 42(7), 985-996. 

Schoenfeld, A. H. (2010). How we think. A theory of goal-oriented decision making and its 
educational applications. Routledge: New York.  

Schoenfeld, A. H. (2012). How we think: a theory of human decision-making, with a focus on     
      teaching, Proceedings of ICME 12. Korea, Seoul.  

26th Annual Conference on Research in Undergraduate Mathematics Education 894



Stewart, S., Andrews-Larson, C., & Zandieh, M. (2019). Linear algebra teaching and 
learning: Themes from recent research and evolving research priorities. ZDM Mathematics 
Education, 51(7), 1017-1030. 

Stewart, S., Axler, S., Beezer, R., Boman, E., Catral, M., Harel, G., McDonald, J., Strong, D., & 
Wawro, M. (2022). The linear algebra curriculum study group (LACSG 2.0) 
recommendations. The Notices of American Mathematical Society, 69(5), 813-819.  

Stewart, S., & Thomas, M. O. J. (2019). Student perspectives on proof in linear algebra. ZDM 
Mathematics Education, Springer, 51(7), 1069-1082. 

Stewart, S., Troup, J., & Plaxco, D. (2018). Teaching Linear Algebra: Modeling one instructor's 
decisions to move between the worlds of mathematical thinking. In Weinberg, A., 
Rasmussen, C., Rabin, J., Wawro, M., & Brown, S. (Eds.) Proceedings of the 21st Annual 
Conference on Research in Undergraduate Mathematics Education (pp. 1014-1022). San 
Diego, CA. 

Tall, D. O. (2013). How humans learn to think mathematically: Exploring the three worlds of     
     mathematics, Cambridge University Press. 
Thomas, M. O. J., & Yoon, C. (2011). Resolving conflict between competing goals in 

mathematics teaching decisions. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 4, pp. 241-248), 
Ankara, Turkey. 

Törner, G., Rolke, K., Rösken, B., & Sririman. B. (2010). Understanding a teacher’s actions in 
the classroom by applying Schoenfeld’s theory teaching-in-context: Reflecting on goals and 
beliefs. In. B. Sriraman, & L. English (Eds.), Theories of mathematics education, Advances 
in Mathematics Education (pp. 401-420). Berlin: Springer-Verlag. 

Uhlig, F. (2002). The role of proof in comprehending and teaching elementary linear 
algebra, Educational Studies in Mathematics, 50(3), 335-346. 

 
 
 
 
 
 
 
 
 

26th Annual Conference on Research in Undergraduate Mathematics Education 895



“Really, you’re a math major?!”: Students’ Descriptions of Racial and Gendered 
Microaggressions and Sense of Belonging in Mathematics 

 
 Anne Cawley Robin Wilson 
 Cal Poly Pomona Loyola Marymount University 

Microaggressions (MAs) are intentional or unintentional messages that communicate hostile, 
derogatory, or negative messages towards a recipient (Sue et al., 2007). MAs that students 
receive in a math class can impact a students’ learning experience and can often lead to feelings 
of exclusion (Cawley et al., 2023). This paper expands on previous work, discussing two types of 
MAs—racial and gendered—while also discussing students’ overall sense of belonging in a math 
classroom. This study analyzes the reflections of 133 undergraduate math students who were 
asked to reflect on an article about mathematical MAs (Su, 2015). Findings show that a majority 
of students have felt like they do not belong in the math classroom, and that racial and gendered 
MAs contribute to this. This research supports the need to develop initiatives at departmental 
and institutional levels to encourage more inclusive spaces in math classrooms. 

Keywords: Microaggressions in the Mathematics Classroom, Sense of Belonging 

There is much research related to microaggressions, and their impact within society. 
Microaggressions (MAs) have been characterized as the intentional or unintentional forms of 
insulting, disrespectful communications that occur during everyday exchanges (Yang & Carrol, 
2018). These indignities can communicate “hostile, derogatory, or negative” messages that target 
a person and/or their marginalized group (Sue et al., 2007). The concept of MAs was introduced 
by Pierce and colleagues in the 1970’s to describe “subtle, stunning, often automatic, and non-
verbal exchanges which are ‘put downs’ of Blacks by offenders” (Pierce et al., 1977, p.65). 
While these offenses themselves can be innocuous, they have a cumulative effect on the victim. 
Pierce felt that these MAs were essential to understanding how African Americans experience 
racism (Pierce, n.d.). While MAs were founded to describe experiences that Black people faced 
within society, these have expanded to other racial and ethnic groups such as Latine1, Asian 
Americans, and indigenous people. In recent years other types of MAs that people have 
experienced have been identified by researchers to include women, persons with disabilities, 
ethnic and religious minority groups, and LGBTQ people (Nadal, 2011). 

MAs have been studied within education to understand their effect on a students’ sense of 
belonging. Sense of belonging pertains to a person’s belief that they are an accepted member of 
an academic community, whose presence and contributions are valued (Good et al., 2012). The 
experience of mattering or feeling cared about, accepted, respected, valued by, and important to 
the classroom and campus community define ways that students feel a sense of belonging 
(Strayhorn, 2018). When thinking of students within a university context, sense of belonging can 
also include the perceived social support a student has while pursuing their degree. Steele (1997) 
implied that it is important for students to feel a sense of belonging to a domain, in other words, 
an area of study like math or STEM. Yet, Steele also highlighted how societal barriers, such as 
stereotypes around race or gender, actively reduce feelings of being accepted or valued. MAs 
have been well reported as widespread in academic spaces and detrimental to student outcomes 

 
1Latine is a gender-neutral replacement of the term Latino. It has been used as a more linguistically natural 
alternative to Latinx or Latin@ for Spanish-speakers (Celis Carbajal, 2020).  
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(Sue et al., 2009). This paper focuses on three types of MAs that STEM students face—racial, 
gendered, and mathematical—which we discuss in more detail below. 

Sue and colleagues (2007) defined racial microaggressions as “brief and commonplace daily 
verbal, behavioral, and environmental indignities, whether intentional or unintentional, that 
communicate hostile, derogatory, or negative racial slights and insults to the target person or 
group” (p. 271). Solórzano and colleagues (2000) revealed that MAs were prevalent in 
classrooms and inhibit students’ sense of belonging, especially for students coming from 
marginalized groups. Nadal and colleagues (2014) reported that racial MAs negatively impact 
student self-esteem and self-worth which in turn can impact mental health and student 
achievement. Students’ reports of racial MAs within STEM departments are distinctive, which is 
problematic as many STEM departments already face issues in representation from marginalized 
communities (Burke, 2007; McGee, 2016). Students of color, especially Black students, report 
racial MAs from STEM instructors, advisors, and peers (Lee et al., 2020). Specifically focusing 
on STEM contexts, Marshall et al. (2021) noted that MAs especially impact students who have 
been historically excluded on the basis of race/ethnicity.  

Gendered microaggressions are defined as “nuanced and brief everyday exchanges that 
communicate sexist denigration and slights toward women, which can be conveyed verbally 
and/or nonverbally through expression, gaze, and other gestures (Yang & Carroll, 2018). Rainey 
et al. (2018) found that women more often lacked a sense of belonging in STEM and left the 
major at higher rates than men, citing reasons such as feeling socially different or feeling like 
they did not fit in. Sekaquaptewa (2019) shared that while receiving a gendered MA can greatly 
impact a person, witnessing other women receive MAs can also have a negative impact on a 
student. Intersections of gender and race create a nuanced space where women of color 
experience an even more elevated exposure to MAs during their college experience (Lewis et al., 
2013; McGee & Bentley, 2017).  

As an extension from discussions of racial MAs, Su (2015) used the term mathematical 
microaggression, which refers to the subtle ways that mathematical authorities (such as 
instructors, classmates, or textbook authors) communicate that one does not belong in math. Su 
offered examples such as “It is obvious/clear/trivial that…” and “The rest is just algebra,” and 
elaborated that such comments can convey negative messages towards students (e.g., their 
knowledge is lacking, their questions are unwelcome, their potential in math is limited). Cawley 
and colleagues (2023) documented three different types of mathematical MAs students 
experienced, which included microslights, microinsults, and environmental MAs. They found 
that most students did experience a mathematical MA, and that these were often received from 
both their instructors and peers.  

Our study focuses on the types of racial or gendered MAs that students share they have 
experienced in their math learning experiences. Specifically, this paper focuses on the following 
research questions: 1) How do math students describe experiencing racial or gendered 
microaggressions? 2) How have math students been made to feel like they do not belong in a 
math class? 

Methods 
This study took place at a large public university on the West Coast of the U.S., designated as 

a Hispanic-Serving Institution. Data for this paper were collected between Fall 2019 and Spring 
2022. The sample included 133 participants enrolled in calculus 1 (46 students) or abstract 
algebra (87 students), taught by the same instructor (Author 2). Course modalities included both 

26th Annual Conference on Research in Undergraduate Mathematics Education 897



in-person and virtual instruction. These classes incorporated inquiry-based learning and active 
learning and provided a significant amount of time for student collaboration and discussion 
during instruction. Based on institutional data of the 133 students2, 46% were female, 54% were 
male, and one student was non-binary. Table 1 shows the racial/ethnic demographics of the 
students in the study. Students in the study were mostly STEM majors.  
Table 1. Student Demographics 
 Female  

(N = 61) 
Male  
(N = 72) 

Non-Binary  
(N = 1) 

Total 
(N=134) 

 Total % Total % Total %  
Latine 33  55% 28 38.9% 1  100% 62 46.6% 
Black 1  1.6% 5 6.9%  6 4.5% 
Asian 10  16.6% 15 20.8%  25 18.7% 
Native 0 0% 1  1.4%  1 0.7% 
White 11  18.3% 10  13.9%  21 15.8% 
Mixed Race 1  1.6% 3  4.2%  4 3.0% 
Unknown 4  6.6% 10 13.9%  9 6.7% 
Total 60  72  1  133 

Throughout the course, students were asked to submit reflection assignments. In one of these 
assignments, students were asked to read Su’s (2015) article on mathematical MAs, to reflect on 
the paper, and to respond to the following prompt: Have you ever been made to feel like you 
don’t belong in a math class? Students could reflect on any moments in their math experience. 
The 133 reflections form the data set for this study.  

The data were analyzed using constant comparative methods (Corbin & Strauss, 2008). In the 
first round of coding, all de-identified reflections were coded to identify if the student had 
explicitly written if they had ever been made to feel like they do not belong in the math 
classroom. We categorized it as 1) yes, they have been made to feel they do not belong, 2) no, 
they have never been made to feel like they do not belong, and 3) does not say. After reviewing 
the data, we completed a second round of deductive coding to identify MAs that students 
experienced in STEM, specifically mathematical, racial, and gendered MAs. We marked a MA 
as present if a student wrote about an incident that related to any of the three types of MAs. The 
authors coded the journals in sets of 20, meeting to discuss coding to ensure agreement.  

Findings 
This section is separated into two parts. First, we will share about how students wrote about 

racial and gendered MAs. 21 students discussed racial MAs while 13 students wrote about 
experiencing a gendered MA. Seven students discussed how both racial and gendered MAs 
impacted them. Then, we discuss the ways that students have shared whether they have/have not 
been made to feel like they do not belong in a math classroom.  

Racial Microaggressions 
21 students discussed racial MAs in their writing. The racial identities of the students 

included Latine, Asian American, Black, and unknown race/ethnicity. Seven students explicitly 

 
2 Because racial- and gender-identity data were not collected during the course each semester, the authors used 
institutional data provided for each student to identify race/ethnicity and sex. This may not properly reflect the 
students’ gender-identity or racial/ethnic identity.  
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mentioned how they related to Su’s experience as an Asian American in Texas explaining 
scenarios that were similar to those that Su shared about himself. Each student shared some sort 
of experience that affected their sense of belonging. Most of these racial MAs represented 
experiences in the math classroom, while others reflected general experiences that they had.  

A majority of the responses were written by Latine and Asian American identifying students. 
Three of these students expressed comments that reflected the Model Minority Stereotype (Chou 
& Feagin, 2008), indicating that they have experienced the notion that because they are Asian 
American, they should be good at math. Some students’ writing reflected experiences they faced 
with MAs both inside and outside of the classroom. For example, Alan, an Asian American math 
major described many ways his intelligence was assumed based on his race.  

Math aside, microaggressions suck. One thing I've heard until I was a senior in high 
school was, "oh you're Asian, you should [just] be good at math." And lately (as of 2020) 
as a mathematician among engineers, my new boss has said "you're a math major, you 
should be able to do [algebra] in your head." Albeit that these examples aren't exactly like 
Su's examples, hearing these statements made me feel anything but a positive emotion. 

Alan acknowledged how these comments negatively affected him, appearing to follow him in 
many aspects of his schooling and career. Another student, Lucia, a Latine female math major 
shared an experience where being a math major was questioned.  

I remember speaking to a man about where I go to school and what major I was studying. 
I don't know if it was because I was in my Domino's Pizza uniform, my ethnicity, being a 
woman, or a combination of all three, but the man's response was "really?! You go to 
[university name]? You're a Math major?!! Isn't that major super hard and for smart 
people?" I remember feeling really annoyed and almost anger at the response. 

Lucia faced incredulous remarks from strangers regarding her major, and described how her 
complex intersectionality made it appear that she could not possibly be a math major.   

Gendered Microaggressions 
Thirteen female students wrote about experiencing a gendered MAs. Two main themes 

occurred in this group: 1) female students noticed how male-dominated the STEM space is and 
2) how male peers do not take them seriously and often do not believe that they are capable of 
doing math. Almost half of the women coded with a gendered MA described the memory of 
being one of only a few in their math classes. Monica, a Latine female math major explained her 
feeling of being the only female student,  

As a female in a male-dominated field, there have been times that I have felt I do not 
belong in the classroom. One of the first times was my first quarter…in my Calc 3 class. 
My Calc 3 had 30 students and only 3 were female. I did not feel unwanted but I will say 
that it felt uncomfortable at times.  

This sensation of being one of the only women in the math classroom amplified other MAs. Six 
students described ways in which their male peers made them feel as though they were not 
capable of contributing to the math space, often not taking them seriously. Flor, a Latine female 
engineering major expressed ways that she coped with this type of treatment. 

[My pre-calculus] class was predominantly male students, with just a handful of us 
female. From what I remember, after lecture, it seemed as if all the guys just “got it”. 
Myself and the other five girls usually sat together because it took us longer to get the 
material. We felt more comfortable sitting next to each other because we all knew we 
wouldn’t judge each other for it. It was as if we created a safe place for ourselves within 
our pre-calculus class; we could ask each other questions rather than asking our teacher 
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or the guys, who’d just make us feel stupid. That was the class that made me hate math 
again. I struggled the entire semester, but with the help and support of the other girls, I’d 
managed to pass with a C.  

Other women shared similar experiences as Flor, describing how in group work their 
contributions would often be overlooked, or their male peers would get exasperated when they 
would ask clarifying questions. 

Racial, Gendered, and Mathematical Microaggressions 
Seven students listed having experienced all three of types of MAs, all of which were female 

students of color. These women identified different moments within their educational 
experiences that relate to these MAs. Leticia and Claudia, both Latine female math majors, wrote 
about how the choice of name that the instructor uses for an example can demonstrate a lack of 
diversity and inclusion. Leticia wrote, 

Choosing male white/European names was a weird thing in my opinion because when 
names are used in class the teacher tends to just say the first name that comes to mind, 
and I assume it is the same when making homework/test problems. Many of my non-
white and/or female teachers just use the basic names (i.e., Ann, John, Max, Julie, etc.) 
because that isn't the important part of the problem. 

Leticia implies that the names selected for word problems or examples usually relate to European 
names. What is more, she indicated that even her marginalized instructors, who she may assume 
would diversify this component, also use these types of names. Claudia shared that “as a person 
of color and a female in STEM, I have constantly felt like I didn't belong in my field or in 
college.” She explained that utilizing more diverse examples in class would help to alleviate this 
feeling, and that it “is important to the students of color who are constantly told that they do not 
belong in higher education because the statistics said so or because society keeps showing the 
negative stereotypes of the community.” 

Shenise and Nina, both women of color, expressed the challenges of being a math major. 
Shenise shared her concerns of being both black and a woman in math.  

I know as a black woman in the Math field, white men or men in general don’t think 
you’re capable of understanding the material the way that they do. There are countless 
times where I had ideas or different approaches to a problem and was ignored or 
overlooked and would eventually have to do it the way that I had suggested. They treat 
women as if we did not take the same classes to get where we are now.  

Shenise’s experiences reflected how men in math radiate the sense that she, and others like her, 
do not belong in math. Being ignored is a MA against the person contributing ideas and 
approaches, especially in a math class; this is amplified when Shenise explained that it was 
because she is a black woman. Nina shared,  

It is especially hard to feel like I belong as a Latinx woman. Walking into a class and 
seeing that you are one of maybe 2 or 3 girls in the class is both interesting and scary. 
Interesting because now I realize that I am seeing the “leaky pipeline” happen in real-
time, and scary because I remember when my previous math classes would have at least 
8-9 girls in them. Women and minorities are still underrepresented in STEM fields and 
the numbers have not been exponentially growing even as the years have changed and 
people have gotten far more progressive. 

Nina explained how she felt seeing few women, which is known as an environmental MA 
(Marshall et al., 2021), relating to MAs that occur in the environment in which a person exists, 
not directly received by another individual. 

26th Annual Conference on Research in Undergraduate Mathematics Education 900



Sense of Belonging 
72 students indicated that they have been made to feel like they do not belong in a math 

classroom while 19 students indicated that they have never been made to feel like they do not 
belong. We will refer to the first group as Low Sense of Belonging (LSB) and the second group 
as High Sense of Belonging (HSB). 43 students did not indicate an explicit answer. We discuss 
each of these groups in this order.  

86% of students that indicated LSB also discussed a mathematical MA. Only ten students 
who stated they had LSB did not include any examples of receiving or witnessing a 
mathematical MA. Ezekial, a male student (whose race/ethnicity was unknown), shared an 
experience where a math teacher actively tried to push him out of the STEM field. He shared,  

In the summer before my senior year of high school, after my retake of algebra 2, the 
teacher called me aside and asked me what my plans were for the future. He told me that 
he would only give me a passing grade if I didn’t plan to major in anything involving 
math. While I remember my grade was a 66, and of course I should consider it an act of 
benevolence that he moved me up to a 70, I know I didn’t deserve it. I felt like a fraud. 

At the time of writing this, Ezekial was in his final semester as an economics major, a field that 
required a lot of mathematical skill and reasoning. His reflection indicates that his teacher 
provided a kind act, to provide him with a passing grade. However, he reflects that this act made 
him feel a LSB because he did not feel like he belonged in math.  

Twelve students who indicated LSB also described instances of racial MAs while five 
students described gendered MAs. Carson, a Black male student majoring in physics and 
minoring in math explained how being one of a small minority of Black students creates LSB.   

Being an underrepresented minority is difficult enough, as there are so few that we feel 
we do not belong. The lack of inclusive language in these subjects creates a subconscious 
feeling that we do not belong. It is interesting with microaggressions, those who inflict 
them often don’t know that their statement or attitude was harmful. I have been told by 
others that I speak so well after doing presentations, and while they meant it as a 
compliment, it creates the feeling that they weren’t expecting me to speak well. 

Carson highlights that inclusive language is valuable to feeling a sense of belonging. He 
continues to say, “Mathematics, and Physics, tends to be full of language that is discouraging.” 
While he persisted with the degree, he acknowledged that he did not feel as though he belonged. 

Interestingly, of the 19 students who indicated HSB, 15 documented having received 
mathematical MAs while four did not express any examples of having received or witnessed a 
mathematical MA. This implies that while students experience mathematical MAs, they can still 
have HSB in the classroom. This number is very small, only representing 11% of students. Aron, 
a Latine male, described why he feels HSB, 

I may have felt discouraged but not as if I didn’t belong. I have always had a passion for 
math, and no one can ever take that away from me. At times it has proven to be 
challenging. However, that is part of the beauty. I don’t think there is any other place I do 
belong in. 

Aron finds a sense of belonging within the subject itself – he finds that a strong part of his 
identity is tied to the beauty of math itself.  

While three people with HSB were coded as discussing racial MAs, they still felt like they 
belonged in the math class. Dane, an Asian American male student described,  

I have not ever felt that I didn’t belong in a math class. Being an Asian American there 
are a lot of stereotypes revolving around my ability to do math solely because of my race. 
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Growing up I was somewhat decent in math whether or not it was my genetics giving me 
an advantage or the cultural upbringing that came with being Asian.  

Dane expressed that an awareness of the Model Minority Stereotype, yet persisted in his math 
endeavors maintaining a sense of belonging in the classroom. None of the students who 
described a gendered MA indicated HSB.  

43 students did not state explicitly whether they had been made to feel like they don’t belong. 
However, a majority of these students described mathematical MAs that they directly 
experienced; only five of these students did not write about a mathematical MA. Leticia, who did 
not explicitly say if she had LSB wrote, 

The calculus three teacher I had should be required to read this five times. He is an aero-
space engineer teacher that likes to make math majors feel awful about themselves if they 
aren't doing well or have questions. One other math student asked if he wrote an r or an n 
and he gave the most sarcastic answer. I was never the target because when he asked who 
was a math major he didn't see my hand…There is nothing worse than feeling belittled 
when you are learning something difficult. 

Leticia described here a moment that felt like a macroaggression, where she and her peers 
experienced very direct interactions from a faculty member, creating an experience where many 
may not have felt a sense of belonging in the classroom. She points out that the Su (2015) paper 
would be a useful tool for some faculty to read to understand the possible experiences a student 
may have when trying to learn such a difficult subject. Paired with her acknowledgement earlier 
of the use of white, European names in math word problems, Leticia made clear how she may 
not have experienced a sense of belonging in math.  

Discussion 
Our study showed that students experience traumatizing MAs in their math learning 

experiences. While the frequency was low regarding racial (16%) and gendered (10%) MAs 
discussed in the journals, the fact that these experiences still exist implies a dire need to reflect 
and consider our classroom spaces and the math field in general. When considering all students 
who enroll in math courses, this affects many students. These are also the accounts of students 
who “made it”; what would we see if we collected data from students who left STEM or never 
made it Calculus 1? What is more, over half of the students in this study indicated that they have 
been made to feel like they do not belong in math. Many more wrote accounts that would 
indicate the same but did not state explicitly whether or not they have been made to feel that 
way. If we consider those who did not explicitly say it yet implied it in their writing, it could be 
possible that at some point in time about 85% of students have been made to feel like they do not 
belong in a math classroom. While this is an important finding, future work will explore the 
frequency and longevity with which students feel LSB in their math classrooms.  

Understanding the racial, gendered, and mathematical MAs that students face in classrooms 
may help us to understand ways to make students feel a strong sense of belonging in their math 
classes. Leyva and colleagues (2021) have documented instructional mechanisms that may 
impact a students’ experience in college math, which include limiting within-group peer support 
as well as activating exclusionary ideas of who belongs in STEM (p. 27). As we continue to 
develop best practices for supporting students, we need to keep in mind the ways to develop a 
stronger sense of belonging for math students. We note here that the intersectionality of students’ 
identities as both women and students of color is an important aspect to consider, as negative 
experiences at the intersection of these identities can amplify the lack of sense of belonging 
(Crenshaw, 1991), specifically in math.   
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Studies show that Research-Based Instructional Strategies (RBIS) help students learn, however 
their adoption has been slow. The Teacher Centered Systematic Reform Model (TCRM) is a 
general model for organizing enablers and barriers to adoption of new teaching methods that 
includes departmental, personal and teacher thinking factors. We used the TCRM model as a 
framework to assess the amount of formal lecture reported by 634 mathematics instructors in 
their undergraduate courses. Regression analyses found that instructors who participated in 
Project NExT (a professional development workshop) during their early careers were less likely 
to use lecture than non-participants. Other significant predictors of lecture less included 
evaluation expectations emphasizing active teaching methods, involvement in equity and 
diversity efforts, and prior experience with RBIS. Factors with a positive correlational 
association with lecture included evaluation efforts by departments where lecture was expected. 
Results confirmed some prior models in different disciplines. 
 
Keywords: Undergraduate Education, Adoption of New Teaching Practices, Research Based 
Teaching Strategies, Mathematics Education, Inquiry-Based Learning 
 
     Reaching back over twenty years, many studies show that Research-Based Instructional 
Strategies (RBIS) help students learn in college, but that adoption and integration into 
undergraduate classrooms is stubbornly limited (American Association for the Advancement of 
Science, 2013; Laursen et al., 2019; Stains et al., 2018). While the use of RBIS can help provide 
student understanding of STEM (and other disciplines), their effectiveness is limited if their use 
is constrained. The Teacher Centered Systematic Reform Model (TCSR) provides a general 
structural model to assess incentives and barriers to adoption of RBIS (Gess-Newsome, 2003). 
The broad categories of enablers and barriers to adoption in this model include contextual, 
personal, and teacher thinking; these factors have been researched in studies that assess the 
relative contribution of factors in the implementation of active learning in college classrooms 
(Yik et al., 2022).  
     The departmental context is an important focus of many adoption studies. Departmental 
norms and expectations, both supporting and hindering active learning, have been studied as one 
factor for instructors adopting active teaching methods (Hora & Anderson, 2012). Some of the 
factors constraining adoption were related to teaching load and a lack of time to prepare lessons, 
perhaps related to prevailing practices in university departments (Henderson & Darcy, 2007). 
Pressures to achieve tenure and to publish, found in more research-intensive universities, act to 
constrain the amount of effort instructors can devote to course design (Lund & Stains, 2015). 
Prevailing norms and expectations linked to academic evaluation can also encourage or limit 
adoption of RBIS; if teaching is not valued or if alternative teaching methods are discouraged, 
instructors may be less willing to take risks with new teaching methods. More practically, 
classroom context, mainly large class sizes and classroom layout (e.g., places designed for group 
work), have also worked against adoption (Yik et al., 2022). 
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     The personal characteristic of university instructors also plays into implementation decisions. 
These can include prior experience with active teaching, participation in professional 
development and beliefs and values related to teaching. Instructors who experienced or practiced 
inquiry-based teaching as graduate students were more likely to teach the same way later 
(Fukawa-Connelly et al., 2016), as are instructors who experienced RBIS as students (Yik et al., 
2022). Participation in larger professional development initiatives such as Chem Connections, 
National Academies Summer Institutes on Undergraduate Education, or POGIL have been linked 
to greater use of active teaching methods (Dertling et al., 2016). Our current study used data 
from Project NExT (PN), a teaching initiative in mathematics. Participation in more short-term 
professional development efforts, usually conducted on college campus, have also been linked to 
greater adoption and implementation of alternative pedagogies.   
     While many studies have been conducted on factors influencing adoption, there are few that 
focus on teaching undergraduate mathematics. Yik et al. (2022) conducted the largest 
quantitative study to date on adoption, testing a wide range of factors from the TCSR model. 
These researchers compared the amount of lecture used by instructors in mathematics to 
chemistry and physics. While physics instructors spent significantly less time lecturing than 
mathematics instructors, instructors in mathematics lectured at similar rates to those who taught 
chemistry. However, no separate or interactive models were made to learn how other factors 
worked within the mathematics discipline. Johnson et al. (2019) examined many of the same 
factors found in the TCSR model with survey data from 219 algebra instructors, although they 
did not incorporate a regression model in their analysis. The researchers made comparisons 
between high, medium and low lecturing groups on a range of variables from the TCSR model. 
Significant group comparisons were found in teacher beliefs about student learning (e.g., “I think 
students learn better when they struggle with the ideas prior to me explaining the material to 
them.”). Johnson’s team found only small differences for departmental support between lecture 
groups, with instructors who were given more latitude in course design lecturing at lower rates 
than instructors whose teaching was more constrained by their departments.      
 

Rationale for Study & Research Questions 
     Widespread adoption and implementation of RBIS provide the key to their effective use. 
Understanding what helps and hinders this adoption may spur adoption by addressing policies 
and practices that may encourage or stymie the use of more active instruction. Our research 
questions included:  

1) What factors related to the TCRM model are associated with the amount of time 
instructors engage in formal lecture in their mathematics courses? 

2) Is participation in the professional development workshop Project NExT associated with 
the amount of time instructors engage in formal lecture in their mathematics courses?    

 
Method 

Participants 
     Six-hundred-thirty-four (634) mathematics instructors answered the Alumni Survey, 492 
former participants in Project NExT and 142 from a comparison group. On the survey, 
participants were asked to choose one course they had taught recently and report on their 
teaching practices. Calculus was the most frequently chosen course (31%), followed by Special 
Topics (e.g., higher division mathematics), Algebra (12%), and Other courses (28%). 
Demographically, participants were white (79%), with Asian (4.6%), Hispanic (3%) and Black 
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instructors (1.1%) making up only a small percentage of respondents. Gender representation was 
nearly even with 50% of those answering the survey identifying as male, 44% as female and 
another 6% non-binary or preferring not to answer. Instructors reported teaching at the college 
level from three to 44 years with an average teaching career of 18 years. Of those instructors 
responding, 28% of respondents had been department chairs at one time during their time 
teaching, but only 3% had been deans. Having an advanced degree was a requirement for 
entering Project NExT; 96% indicated their terminal degree was a Ph.D. 
Instrument 
     The Project NExT Alumni Survey was administered to a list of 1532 Project NExT Alumni 
obtained from the project with a response rate of (71%). The sampling frame for the Alumni 
Comparison Group Survey contained 882 names with response rate of 28%. While 902 
mathematics instructors answered the survey, the current analyses used only 643 responses of 
those providing complete information about their teaching and described in-person and non-
virtual classes. The survey was administered during the winter and spring of 2022. 
     The survey contained 47 items (many items with long lists of choices) asking about a range of 
topics related to careers as math instructors. These included: 1) the benefits of Project NExT or 
an alternate professional development project, 2) academic career activities, 3) participation in 
professional development, 4) participation in professional societies, 5) involvement in receiving 
grant money and research, and 6) expectations for evaluation of their work from their 
department, and a parallel section asking about the activities that brought respondents personal 
career fulfillment. The teaching component of the survey was based on the TAMI-S survey 
developed by our research team (Hayward et. al., 2017) and asked instructors to choose a course 
they had taught recently and estimate the amount of time they spent in a range of teaching 
activities (e.g., Lecture or Group Work). We also asked basic demographic questions as well as 
questions about time spent teaching at the college level, and the characteristics of their 
institution.  
Analysis 
     Ordinary Least Squares (OLS) Linear Regression was used to estimate the individual 
contribution of variables on instructor responses to the item: Please choose a course you have 
taught that represents your best teaching. What approximates the amount of time you spend in 
Formal lecture? (1, Did not use this activity, 1/3 or less, 1/3 to 2/3, 2/3 to all of class time). The 
dependent variable was similar to that used in Yik et al. (2022) which asked instructors to report 
percentages of time spent in lecture.  
     The final regression model used 564 listwise responses from 26 variables. These variables 
were included as representing components of the TCSR model. For the sake of space, we 
reported only statistically significant predictors, and listed other variables tested but which were 
not statistically significant. We also compared both raw and adjusted mean differences for 
Project NExT using a simple ANCOVA procedure, adjusting the means for each group with the 
propensity covariate. We used the covariate in this manner only after checking the assumptions 
of the ANCOVA procedure.   
     The survey took place in the context of research on professional development at project 
NExT. As well as selection of PN Alumni, we selected a comparison group of instructors. These 
respondents were chosen through the Math Genealogy Project, a website that tracks the history 
of mathematics Ph.D’s and their advisors. Instructors were chosen for the sampling frame by 
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matching PN alumni with their graduate school colleagues who shared the same advisor and 
attended the same university program at the nearly the same time.  
     For comparisons between PN Alumni and the comparison group mentioned below, we used a 
propensity matching analysis to control for differences between groups (Benedetto et al., 2018). 
The propensity model provided information on how groups differed along many of the same 
variables used in the main analysis.   

Results 
    Fifteen variables entered the regression model; the resulting R-squared value was R2= 0.34. 
Five-hundred and sixty-four (564) cases were used in the regression model. The greatest inverse 
predictors of time spent lecturing were academic evaluation expectations to use techniques other 
than lecture (Beta= -0.22) and participation in Project NExT (Beta = -0.19). Evaluation 
expectations to lecture (Beta= 0.15) and to use a variety of teaching methods were associated 
with greater use of formal lecture. Lecture was used less frequently in courses for education 
majors or non-majors (Beta = -0.13), and instructors who used active or inquiry-based methods 
during their early career tended to lecture less (Beta = -0.09). Other inverse predictors of lecture 
included involvement in equity and diversity in department or institution (Beta = -0.12) and 
collaborating with other instructors to promote changes in math teaching practices (Beta =            
-0.12). The number of campus professional development workshops instructors participated in 
predicted greater use of lecture (Beta = 0.08). Table 1 presents the Linear Regression Model for 
class time spent in formal lecture.   
     Other variables were tested from the TCSR model but did not enter our regression model. 
Non-significant variables included: Years teaching at college/university level, Department head 
or chair (past or present), Gender, Academic Department Expectation: Receiving High 
Evaluations of Teaching from Students (as evaluation criterion), Tenure Track Position, Teaching 
Load, Member of Minoritized Population, Highest Degree Offered at Institution, Member of 
(Specific) Professional Societies, and Participation in (Specific) Campus Professional 
Development efforts. 
     To better assess the association of participation in Project NExT with formal lecture we 
created a propensity matching model. This model used logistic regression to predict group 
membership in PN or the comparison group. The resulting probabilities of group membership 
derived from the logistic model were then used as a covariate in an Analysis of Covariance 
model (ANCOVA) that tests the differences in the mean estimates of time spent lecturing 
between groups and adjusts each mean to reflect the logistic probabilities. The propensity logistic 
model found statistically significant differences between groups favoring the PN group for the 
following variables: Served on National Committee, and Participation in Campus Professional 
Development. The variables favoring the comparison group in the propensity model included 
Highest Degree Offered, Receiving an Endowed Professorship or Other Honorary Post, and 
Years Teaching at University Level.   
    The ANCOVA comparison returned a statistically significant result for the main effect for 
program status (PN or Comparison) of F = 16.02, df 1,497, p< .0001**. This result tested the 
difference in means for Formal Lecture between groups with PN = 2.01 and Comparison = 2.94.  
These means were adjusted by the covariate to PN = 2.09 and Comparison = 2.62.  As effect 
sizes, the difference between raw means was ES = -0.88; for adjusted means the effect size was 
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ES = -0.50. The result indicated that having participated in Project NExT was associated with 
less use of formal lecture in the classroom.      
 
Table 1 Linear Regression Model Predicting Class time Spent in Formal Lecture 

 B SE Beta t p 
      
(Constant) 2.72 0.46  5.89 <.001** 

Participated in Project NExT -0.48 0.10 -0.19 -4.86 <.001** 

Collaborated with colleagues to promote changes in math 
teaching practices 

-0.27 0.09 -0.12 -3.06 .002** 

Agree/Disagree: I am involved in efforts at my institution to 
promote equity and inclusion in teaching practice 

-0.20 0.08 -0.09 -2.42 .016* 

Personal Expectation:  Teaching in more active and engaging 
ways 

-0.22 0.07 -0.12 -2.98 .003** 

Personal Expectation: Promoting equity and diversity in your 
department and institution 

-0.15 0.06 -0.12 -2.72 .007** 

Academic Department Expectation Giving academic talks at 
conferences 

0.13 0.05 0.10 2.60 .010* 

Academic Department Expectation: Expectation to use 
techniques other than lecture 

-0.21 0.06 -0.22 -3.47 <.001** 

Academic Department Expectation: Expectation to use a 
variety of teaching methods 

0.17 0.07 0.16 2.55 .011* 

Academic Department Expectation: Expectation to lecture 0.16 0.04 0.15 3.98 <.001** 

Sum of professional development involvement at institution 0.05 0.02 0.08 2.13 .034* 

Agree/Disagree: “In my department, I am mostly free to teach 
however I want.” 

-0.15 0.07 -0.08 -2.16 .031* 

Agree/Disagree: “I taught using active or inquiry-based 
methods during my early career” 

-0.20 0.08 -0.09 -2.35 .019* 

Agree Disagree: “I taught large introductory-level courses 
during my early career” 

0.17 0.08 0.08 2.18 .030* 

Content: Education and Non-Major -0.46 0.13 -0.13 -3.65 <.001** 

Content: Geometry -0.41 0.18 -0.08 -2.33 .020* 

R2 (Adjusted) = .34,  p<.05* p < .01** , N for model = 564 

Discussion 
     The analysis of the Project NExT Alumni Survey data found significant effects predicting the 
amount of time instructors reported using formal lecture for a range of variables related to 
departmental expectations, personal expectations, campus professional development, course 
content and equity and diversity. The results support some of the previous findings related to the 
TCSR model (Gess Newsome, 2003).  
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     The large attenuated effect seen for participation in the workshop professional development 
Project NExT reflected those seen in Yik et al. (2022) and various other research about teacher 
focused professional development (Dertling et al., 2016). Although this comparison cannot be 
considered causal in any way, the effect for participation in the PN program suggests that those 
who have participated in NExT tend to lecture less than those from the matched comparison 
group. This counters a previous assessment of the program that found little or no benefits for the 
PN program (Fukawa-Connelly et al., 2016). Participation in campus wide professional 
development was not predictive of lecture time by specific program although those participating 
in more types of professional development were slightly more likely to lecture. This countered 
findings from Benabentos et al. (2021) who found higher uptake of research-based methods for 
those using campus professional development services. Our result may have been related to the 
type of professional development we asked about including training in non-teaching activities 
such as grant writing. 
     Perceived departmental expectations for active teaching were also predictive of less time 
spent lecturing. Instructors who reported that their department evaluated them with the 
“expectation to use techniques other than lecture” lectured less. Conversely, departments with 
expectations for lecture reported lecturing more. Johnson et al. (2019) found only small effects 
for departmental expectations for instructors in designing their own courses, with those having 
more latitude less likely to lecture. This was similar to the small effect for our agree/disagree 
survey item: “In my department, I am mostly free to teach however I want”. The findings that 
departmental evaluation criteria are predictive of time spent lecturing was seen in work by 
Seymour et al. (2011), generally with instructors feeling blocked from implementing active 
learning due to a lack of incentives for doing so and pressure to publish for tenure. Items asking 
about activities that instructors find personally fulfilling were also predictive of time spent 
lecturing including valuing “Teaching in more active and engaging ways”.  Other practical 
teaching expectations such as teaching load, tenure status and the importance of student teaching 
evaluations did not enter into our regression model, a result mostly consonant with the Yik et al. 
study (2022). 
     Collaboration with others was also found to be predictive of lecture time. Those who 
collaborated with colleagues to promote changes in math teaching practices were less likely to 
lecture. This reflects other studies on professional development and teaching practices (Bressoud 
& Rasmussen, 2015) where instructors shared experiences with innovative pedagogical practices. 
This perhaps extends to other areas of collaboration such as promoting student equity and 
diversity; those instructors who were involved in these efforts with colleagues were also less 
likely to lecture. Early career experiences seemed to impact current teaching for those who took 
our survey. Those agreeing with the statement : “I taught using active or inquiry-based methods 
during my early career” tended to lecture less, and those who agreed with “I taught large 
introductory-level courses during my early career” lectured more. The influence of early career 
experiences on teaching style is found in studies by Yik et al.(2022) and Lund and Stains (2015).  
     Like many models ours is under-identified. Because of constraints on data collection, we were 
not able to gather information about teaching thinking related to student growth mindset, an 
important part of the TCSR model (Gess Newsome, 2003) and a significant predictor of less 
lecture time in Yik et al. (2022). Similarly, variables of class size and class layout were not 
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included in our model but were found to predict greater use of lecture in previous studies (Lund 
& Stains, 2015; Yik et al.,2022).  Inclusion of these factors in future research would provide a 
more complete picture of enablers and barriers to implementation of active learning.    
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U-Substitution through Quantitative Reasoning: A Conceptual Analysis 
 

                        Steven R. Jones                                                     Leilani C. Fonbuena 
Brigham Young University                                     Brigham Young University 

Research has shown how crucial quantities-based meanings are for calculus concepts. While 
past work has developed important quantitative approaches to integration, the major topic of u-
substitution typically has not been fully detailed in these paradigms. This theoretical paper 
extends this past work to clearly define and elaborate u-substitution through a quantitative 
perspective. We use conceptual analysis based on quantities, starting with a concrete example of 
a solar panel producing energy. We abstract from this example to define u-substitution as a 
transformation from one quantitative relationship, via nested multivariation, to another 
quantitative relationship. We also detail a three-part structure within this transformation.  

Keywords: calculus, integrals, u-substitution, quantitative reasoning, conceptual analysis 

A growing body of work has established that quantitatively-based meanings for calculus 
concepts such as derivatives and integrals are essential for robust student understanding and 
productive usage outside of math classes (Byerley, 2019; Jones & Ely, 2023; Oehrtman & 
Simmons, 2023; Thompson, 1994). For integrals, this means moving away from the purely “area 
under a curve” meaning in favor of a “sum of small bits” meaning (Ely, 2017; Jones, 2015; 
Sealey, 2006). Much work has been done in introducing integrals through this meaning and in 
helping students reason and model with integrals (Bajracharya et al., 2023; Blomhøj & Kjeldsen, 
2007; Chhetri & Oehrtman, 2015; Sealey, 2014; Stevens & Jones, 2023; Von Korff & Rebello, 
2012). Yet, integration chapters typically conclude with the major “u-substitution” method, 
which is the first in a long line of substitution techniques, and which is also utilized in the 
sciences and engineering to convert between quantitative expressions (see Koretsky, 2012). 
Unfortunately, the current literature does not adequately depict how to incorporate u-substitution 
into a quantitative paradigm. It would be detrimental to work toward quantitative meanings for 
integrals only to have this major method exist outside them. Treating u-substitution 
quantitatively would not only allow students to effectively use it, but to understand the 
mechanisms for why it works. To build on the important prior work on quantitative reasoning in 
calculus, in this paper we induct u-substitution into it as well. As the first key step, this paper 
focuses on the theoretical side of a quantitatively-based approach to u-substitution. We use a 
quantities-based conceptual analysis to define the quantitative relationships within u-substitution 
and its three-part quantitative structure. In a separate paper, we build on this theoretical work to 
engage in empirical examinations of learning u-substitution through a quantitative approach. 

Brief Review of Closely Related Literature 
There is a proposed quantitative structure for definite integrals called adding up pieces 

(AUP) (Jones, 2013; Jones & Ely, 2023). AUP is comprised of three parts: partition, target 
quantity, and sum (see also Dray & Manogue, 2023; Sealey, 2014; Von Korff & Rebello, 2012). 
Partition is taking a quantitative object (e.g., a length, a space, a time duration) and segmenting 
it into tiny pieces. If the pieces are essentially infinitesimal in size, they are called “differentials” 
and are denoted with a “d”, as in dx or dt (Ely, 2020). In other words, a dx or dt can be thought of 
as an incredibly tiny ǻx RU�ǻt. While differentials can be rigorously formalized through limits or 
hyperreals (see Jones & Ely, 2023), the more loosely-defined “essentially infinitesimal” is quite 
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common across the sciences and is a crucial idea for quantitative reasoning, even if no specific 
WKUHVKROG�LV�GHILQHG�IRU�SDVVLQJ�IURP�³ǻ´�WR�³d” (Amos & Heckler, 2015; Hu & Rebello, 2013; 
Pina & Loverude, 2019; Thompson & Dreyfus, 2016; Von Korff & Rebello, 2014). 

Target quantity refers to determining the sought-after quantity within each partition piece 
(Jones & Ely, 2023). For example, if one is determining the distance travelled under variable 
velocity, and time has been partitioned into infinitesimal dt pieces, one conceptualizes that each 
dt piece corresponds to a tiny bit of distance travelled, dD. In AUP, any quantitative relationship 
can be used to determine the target quantity. The distance example uses a simple product, ܦ =
ݒ ή  ,but other quantitative relationships can be used when appropriate (Simmons & Oehrtman ,ݐ
2017). Oehrtman and Simmons (2023) called the quantitative relationship that holds for constant 
values, such as ܦ = ݒ ή  ,the basic model. If some quantities vary, such as a varying velocity ,ݐ
the essentially infinitesimal nature of the partition pieces allows this quantity to be considered 
essentially constant over each piece. Thus, the basic model can be applied to the infinitesimal 
partition piece, as in ݀ܦ = ݒ ή  .which Oehrtman and Simmons (2023) called the local model ,ݐ݀

With a conceptualization of tiny bits of the target quantity in each essentially-infinitesimal 
partition piece, sum refers to the literal summation of these target quantity bits to obtain the total 
amount of the target quantity. We follow Leibniz’s convention (Katz, 2009) in using the integral 
V\PERO�����DV�D�OLWHUDO�³VXP´�V\PERO��As an example,  ݐ݀(ݐ)ݒ

  is the summation of tiny 
distances (produced by ݒ ή  .across the many dt pieces, yielding the total distance (ݐ݀

Theoretical Lens: Quantitative Relationships and Multivariation 
Thompson (Smith & Thompson, 2007; Thompson, 1990) defined a “quantitative 

relationship” as a system of three quantities where any two can determine the third. Thompson’s 
three-quantity relationships can be represented as a triangle with a quantity on each vertex 
(Figure 1a). Jones (2022) elaborated on these quantitative relationships to create a set of distinct 
relationship types called multivariation (MV) relationships (though MV can also include 
relationships with more than three quantities). One MV relationship type is independent MV, 
where multiple inputs influence a single output, but where the inputs are independent from each 
other (Figure 1b). Another type is dependent MV, where all the quantities are co-dependent and a 
change in a single quantity implies changes in all others (Figure 1c). A third type is nested MV, 
where the quantities are structured in a chain of influence, congruent to the structure in function 
composition (Figure 1d). Our conceptual analysis of u-substitution in this paper relies heavily on 
Thompson’s idea of a quantitative relationship and on the dependent MV and nested MV types. 

 

(a)  (b)  (c)   (d)  
Figure 1. (a) Thompson’s quant. relationship; with Jones’ (b) independent MV, (c) dependent MV, (d) nested MV 

Conceptual Analysis of U-Substitution: Starting with an Example Context 
We begin our conceptual analysis with an example, from which we can abstract the general 

relationships. For our example, consider Figure 2a of a solar panel, with the sun rising at 6 am 
and reaching its zenith at 12 pm. The main quantities in this context are time (in hours, hr), the 
energy produced by the solar panel over a period of time (in kilojoules, kJ), and the power, or the 
rate at which energy is generated over time (in kilojoules per hour, kJ/hr). While a “watt” is a 

Q1 Q2 

Q3 

Q1 Q2 

Q3 

Q1 

Q3 Q2 

Q2 Q1 Q3 
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standard power unit (joules per second), we use kJ/hr to match the unit of time (hr), and to make 
the rate structure more obvious. Time, power, and energy are related by ܧ = ܲ ή  .(Figure 2b)  ݐ

Notice that early in the morning there is less power because the sun makes a shallow angle 
with the panel. The power increases as the sun approaches its zenith, meaning that power is a 
function of time. In fact, we call time the main input quantity because it is an input both for the 
power, ܲ(ݐ), and for the energy, ܧ(ܲ,  For this context, if we let 6:00 am be t  = 0, we can use .(ݐ
(ݐ)ܲ = 1500 sin ቀ గ

ଵଶ
 ቁ  kJ/hr as a reasonable model. The sine function suits the sun’s increasingݐ

angle over time: it is zero at t  = 0, increases from 0  ݐ  6, and is maximized at t = 6. 

(a)   (b)   
Figure 2. (a) A solar panel with varying power as the sun rises, and (b) the quantitative relationship in this context 

The following initial question leads to a regular definite integral: How much energy is 
produced by the solar panel in this six-hour window? If power were constant over the six hours, 
we could use the basic model to calculate it: ܧ = ܲ ή  But because power varies, we use the .ݐ
quantitative AUP structure to set up an integral. If we partition the six hour interval into 
essentially infinitesimal time intervals, dt, then we can assume power to be essentially constant 
over each interval. We can then use the local model ݀ܧ = ܲ ή  to capture the tiny bit of energy ݐ݀
generated over a dt interval. Power, ܲ(ݐ), is determined by a t value associated with the dt 
interval, so we can write our local model as: ݀ܧ = 1500 sin ቀ గ

ଵଶ
ቁݐ ή  We can then add up .ݐ݀

these bits of energy between t = 0 and t = 6 to find the total energy: ܧ =  1500 sin ቀ గ
ଵଶ
ቁݐ ௧ୀݐ݀

௧ୀ .  
With this definite integral in place, we can now ask a different question that leads to u-

substitution: What if we wanted to track the total energy in terms of the angle the sun makes with 
the horizon (in radians), rather than the time on the clock? This is the fundamental quantitative 
question we claim u-substitution is based on: How do you convert from one main input quantity 
to a different main input quantity? This conversion affects each of the three parts of the AUP 
structure. For the first part (partition), we need to determine what each infinitesimal dt piece 
corresponds to in terms of infinitesimal angles, Gș. For this conversion, notice that six hours 
corresponds to ߨ 2Τ  radians, three hours to ߨ 6Τ  radians, one hour to ߨ 12Τ  radians, and so on. In 
fact, for any time interval, the corresponding angle will always be ߨ 12Τ  as big, even at very 
small scales. Thus, ݀ߠ = గ

ଵଶ
ݐ݀ or equivalently ,ݐ݀ = ଵଶ

గ
where the conversion factor ଵଶ ,ߠ݀

గ
 has 

units of  ୦୰
୰ୟୢ

. Switching from time pieces to angle pieces gives: ܧ =  1500 sin ቀ గ
ଵଶ
ቁݐ ή ଵଶ

గ
௧ୀߠ݀

௧ୀ . 
Of course, for this simpler context, the relationship between time and angle is linear at all scales. 
Later in the paper we examine a context where the relationship is not linear at all scales.  

In tracking the units up to this point, we have ቂ1500 sin ቀ గ
ଵଶ
ቁቃݐ  ୩

୦୰
 ή ቂଵଶ

గ
ቃ  ୦୰
୰ୟୢ

 ή  ,rad [ߠ݀]
which still yields a measure of kJ. This is valid quantitatively, though there is now a mismatch 
between defining part of the integral (the integrand) in terms of time and another part (the 
differential) in terms of angles. We also want to convert from power defined by time to power 
defined by angles. To do so, we note the nested MV relationship from WLPH�ĺ�DQJOH�ĺ�SRZHU, 

12 pm 
(t = 6) 

6 am 
(t = 0) time power 

energy 

ܧ = ܲ ή  ݐ
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given by the function composition (ݐ)ߠ = గ
ଵଶ
൯(ݐ)ߠand ܲ൫ ݐ = 1500 sin൫(ݐ)ߠ൯. However, if we 

no longer care about time, and only want to track the power in angles, this can become ܲ(ߠ) =
1500 sin(ߠ), leading to the integral expression: ܧ =  1500 sin(ߠ) ଵଶ

గ
௧ୀߠ݀

௧ୀ . Note that 
1500 sin(ߠ) still has units of kJ/hr, with the kJ/hr rate now determined by the angle. The factor 
���ʌ�VWLOO�KDV�XQLWV�RI�KU�UDG, so it is the entire “1500 sin(ߠ) ή  .that has units of kJ/rad ”ߨ/12

While energy bits are now determined purely through the angle, ݀ܧ = 1500 sin(ߠ) ή ଵଶ
గ
 ,ߠ݀

the sum itself is still defined in terms of time. We want the sum to also be described in terms of 
the angle. Because 0  ݐ  6 hours corresponds to 0  ߠ  గ

ଶ
 radians, a sum running across dt 

pieces between 0  ݐ  6 hours covers the same ground as a sum running across ݀ߠ pieces 
between 0  ߠ  గ

ଶ
  radians. Thus, ܧ =  1500 sin(ߠ) ଵଶ

గ
ఏୀగ/ଶߠ݀

ఏୀ  and we have successfully 
described the total energy completely in terms of the angle as opposed to time. 

Abstracting from the Example to a Quantitative Definition of U-Substitution 
Before proceeding, we make some terminology clear. We have already used the term input 

quantity for the quantity that the other two depend on and that gets partitioned into infinitesimal 
pieces (time, in our example). We have also used target quantity to represent the quantity whose 
bits are added up by the integral and whose total amount is given by the value of the integral 
(energy, in our example). We introduce a new term, integrand quantity, for the quantity that 
functionally depends on the input quantity and that also combines with the input quantity to 
produce the target quantity. In our example, the integrand quantity was power. 

With this terminology in place, recall that a definite integral answers the following question: 
If a target quantity is some combination of an input quantity and an integrand quantity, how can 
we determine its total amount if the integrand quantity varies over the input quantity? Relatedly, 
we claim that u-substitution now answers this question: How can we determine the total amount 
of the target quantity if we want to switch from tracking it in terms of the original input quantity 
to a new, different input quantity? This conversion is based on an inherent nested MV structure 
going from RULJLQDO�LQSXW�ĺ�QHZ�LQSXW�ĺ�LQWHJUDQG�TXDQWLW\. In our solar panel example, the 
nested MV was ݁݉݅ݐ ՜ ݈ܽ݊݃݁ ՜  .൯(ݐ)ߠdescribed by the function composition ܲ൫ ,ݎ݁ݓ

To provide a clear quantitative definition, we wish to use generic symbols for these quantities 
that are not specific to any context. We use “a” for the original input, “b” for the new input, “Q” 
for the integrand quantity, and “T” for the target quantity. In our solar panel example, “a” was 
time, “b” was angles, “Q” was power, and “T” was energy. Recall that for a basic integral, a, Q, 
and T are in a dependent MV quantitative relationship described by a Thompson triangle (Figure 
3a). The nested MV relationship resides along the triangle’s edge between the input quantity and 
the integrand quantity: D�ĺ�E�ĺ�4 (Figure 3b). Thus, b is always an intermediary between a and 
Q. We can now define u-substitution quantitatively as the act of shifting the vertex “a” of the 

     
Figure 3. U-substitution as the transformation of the original dependent MV relationship (a); through the nested 

MV relationship between a, b, and Q (b); to a new dependent MV relationship (c). 

a Q 

T 

a Q 
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b 
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original three-quantity triangle to the new input along this edge, “b,” thereby creating a new 
three-quantity triangle between b, Q, and T (Figure 3c). 

The Three-part Structure within this Quantitative Definition 
Having defined u-substitution as a transformation from one quantitative relationship to 

another closely-related quantitative relationship, as in Figure 3, we now examine the detailed 
structure contained within this transformation. Recall that the quantitative AUP structure for 
definite integrals contains three parts: partition, target quantity, and sum. U-substitution 
similarly contains a three-part structure, with the three parts corresponding to those in AUP. 

The first part corresponds to AUP’s partition and involves converting the partition pieces 
from the original input quantity to equivalent partition pieces for the new input quantity. In the 
solar panel example, we saw that one cannot simply substitute Gș for dt, because it would change 
the size of the partition pieces. That is, a 0.001 second interval is not equivalent to a 0.001 radian 
interval, and a product between power and a 0.001 second interval does not yield the same 
energy as the product between power and a 0.001 radian interval. Rather, one must determine 
how big an infinitesimal piece of the new input quantity is in relation to an infinitesimal piece of 
the original input quantity. We call this part of the u-substitution structure: differential (Table 1). 

The second part corresponds to AUP’s target quantity. It involves taking the integrand 
quantity that functionally depends on the original input and converting it to a functional relation 
based on the new input. In the solar panel example, power was dependent on time, and we 
converted it to a functional dependency on angle. This conversion permits the infinitesimal bits 
of the target quantity in each partition piece to be completely determined by the new input 
quantity, since both differential and integrand are now in terms of the new input quantity. We 
call this second part of the u-substitution structure: integrand (Table 1). 

The third part is to re-describe the summation. The original sum is in terms of infinitesimal 
pieces of the original input quantity, and we need to instead describe it in terms of the new input 
quantity. In the solar panel example, we originally summed across infinitesimal time pieces 
between 0  ݐ  6, and we needed to switch to an equivalent sum across infinitesimal angle 
segments between 0  ߠ  గ

ଶ
. We call this third part of the structure: bounds (Table 1). 

These three parts are exactly what enable the transformation from the original quantitative 
relationship to the new quantitative relationship by shifting the triangle’s vertex from a to b. If 
only some of these parts are enacted, the original input still exists as a vertex in the triangle, 
making it a four-quantity relationship in the triangle. While this is not incorrect, it creates issues 
for computation. In the solar panel example, when the differential in time was converted to a 
differential in angle, the quantitative structure still worked, but it was odd to have parts of the 
integral defined in one input quantity with other parts defined in another input quantity. Once the  

Table 1. The three-part u-substitution structure, with original input a, new input b, and integrand quantity Q 

Initial AUP parts Corresponding parts in the u-substitution structure 
1. Partition: ݀ܽ 1. Differential: Convert partition from da pieces 

to equivalently-sized pieces in db. 
݀ܽ ՜  ܾ݀[݊݅ݏݎ݁ݒ݊ܿ]

2. Target quantity: 
ܳ ή ݀ܽ 

2. Integrand: Convert integrand quantity, Q, from 
depending on a to depending on b. Target 
quantity now determined entirely by new input. 

ܳ(ܽ) ՜ ܳ(ܾ) 
ܳ(ܽ)݀ܽ ՜  ܾ݀[ݒ݊ܿ](ܾ)ܳ

3. Sum: 
 ܳ(ܽ)݀ܽଶ
ଵ  

3. Bounds: Convert sum from running across 
original input pieces to new input pieces. 

ܽଵ  ܽ  ܽଶ ՜ 
ܾଵ  ܾ  ܾଶ 
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three parts of the u-substitution structure are enacted, the original input quantity’s vertex is 
eliminated and the triangle transforms to the new vertex. Table 1 summarizes this three-part 
structure of u-substitution. Of course, we are quick to point out that in reasoning about u-
substitution, one does not need to follow these three parts in a specific, prescribed order. Rather, 
it is possible to work through them in any order (see Oehrtman & Simmons, 2023).  

Applying this Definition and Structure to Another (Non-Linear) Example 
Having exposited the quantitative theory, we feel it beneficial to zoom back out to another 

contextual example to apply our quantitative definition and the three-part structure of the 
quantitative relationship transformation. We also use a context in which the relationship between 
the original input and the new input is not linear. Suppose a sphere is growing over time and we 
want to know the accumulated volume between t = 5 and t = 10 mins (Figure 4a, below). Note 
that at a given time the volume will grow at a rate proportional to its surface area, meaning there 
is a three-quantity relationship between time, surface area, and volume (Figure 4b). Here, time is 
the input quantity, volume is the target quantity, and surface area is the integrand quantity. Just 
to have something to work with, suppose the sphere’s radius (in cm) is given by the function of 
time: (ݐ)ݎ = ଶݐ + 5 cm. Thus, surface area at any moment is ܵ(ݐ) = ଶݐ)ߨ4 + 5)ଶ. Also, the 
instantaneous rate of radius growth is ݀ݐ݀/ݎ =  cm/min, so that for an essentially infinitesimal ݐ2
interval of time, dt, the radius grows by ݀ݎ = ݐ2 ή  ,cm. To more quickly get to u-substitution ݐ݀
we simply state that for an infinitesimal dt, volume will grow by the product of the surface area 
and the corresponding change in radius, leading to the integral: ܸ =  ଶݐ)ߨ4 + 5)ଶ 2ݐ݀ ݐ௧ୀଵ

௧ୀହ . 
We now ask the question specifically relevant to u-substitution: While volume grows over 

time, could we track its accumulation with respect to growth in the radius rather than time? This 
question is exactly what we claimed the domain of u-substitution to be. That is, we want to 
determine the total amount of the target quantity (volume), but we want to switch from one main 
input quantity (time) to another main input quantity (radius). Further, there is a nested MV 
relationship between WLPH�ĺ�UDGLXV�ĺ�VXUIDFH�DUHD, or ܵ൫(ݐ)ݎ൯ (Figure 4c). U-substitution will 
transform the original quantitative relationship into the new desired relationship (Figure 4d). 

(a)      (b)      (c)     (d)  
Figure 4. (a) growing sphere context; (b) time, surface area, volume quantitative relationship, (c) nested MV 

relationship between time, radius, and surface area, and (d) transformation to the new quantitative relationship  

How do we enact this transformation? By using the three-part structure we proposed for u-
substitution based on AUP. To show these can be done in any order, we purposefully use a 
different order here than for the solar panel example. First, the summation currently runs over dt 
pieces from 5  ݐ  10 min, but we could cover the exact same ground if we instead ran a 
summation over dr pieces from 30  ݎ  105 cm. This is the “bounds” part, making the integral 
so far: ܸ =  ଶݐ)ߨ4 + 5)ଶ 2ݐ݀ ݐୀଵହ

ୀଷ . But the sum now is in terms of the radius, while all else is 
still described in terms of time. Second, we could re-describe the integrand quantity in terms of 
the radius. From the nested MV relationship, we have 4ݐ)ߨଶ + 5)ଶ = ൯ଶ(ݐ)ݎ൫ߨ4 = ܵ൫(ݐ)ݎ൯, but 
since we want to eliminate time, we can rewrite this dependence simply as ܵ(ݎ) =  ଶ. This isݎߨ4

t = 5 
t = 10 t S 

V 

t S 

V 

r t S 

V 

r 
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the “integrand” part, and makes the integral: ܸ =  ୀଵହݐ݀ ݐଶ 2ݎߨ4
ୀଷ . Lastly, we need to convert 

the partition pieces in dt to partition pieces in dr. As explained before, a dr piece is not 
equivalent to a dt piece, so we need to know the conversion factor. While t and r do not have a 
linear relationship, we know that for any time t, ݀ݎ will be exactly 2t times as big as dt: ݀ݎ =
ݐ2 ή  This is the differential part and we now have a fully transformed integral from the .ݐ݀
original input quantity to the new input quantity: ܸ =  ୀଵହݎ݀ ଶݎߨ4

ୀଷ  (see Figure 4b-d). 

Comparison to “Pure Math” U-Substitution 
In a traditional “pure math” sense, u-substitution is depicted as undoing the chain rule: 

 ݂ᇱ൫݃(ݔ)൯݃ᇱ(ݔ)݀ݔ௫మ
௫భ

 . The procedure is to label the “inside” function, ݃(ݔ), as an arbitrary 

symbol “u”, and to label ݀ݑ = ݃ᇱ(ݔ)݀ݔ in order to get  ݂ᇱ(ݑ) ݀ݑ௨మ
௨భ

= (ଵݑ)݂ െ  .(ଶݑ)݂
However, these symbols tend to be just notational conveniences and have little (if any) meaning, 
especially du. Here we show how our quantitative definition for u-substitution corresponds to 
this pure-math procedure and how it can provide conceptual meaning. If we think of x, ݂Ԣ, and ݂ 
as representing three quantities in a relationship, u is an intermediary quantity between x and ݂Ԣ. 
This is why u is always in a nested MV relationship with x and ݂Ԣ, as in ݔ ՜ ݑ ՜ ݂Ԣ. In the 
quantitative paradigm, instead of du being just a notational convenience, ݀ݑ = ݃ᇱ(ݔ)݀ݔ actually 
represents the conversion factor from dx partition pieces to du partition pieces. Lastly, since we 
are converting from one input quantity to another, the switching of the bounds indicates a re-
describing of the sum as it now ranges across infinitesimal pieces of the new input quantity. 

Discussion 
The contribution of this theoretical paper is to induct u-substitution into a quantitative 

paradigm, thereby extending the crucial prior work on quantitative reasoning in calculus (Jones 
& Ely, 2023; Oehrtman & Simmons, 2023; Thompson, 1994). In short, u-substitution deals with 
taking a quantitative relationship (Smith & Thompson, 2007; Thompson, 1990) in a definite 
integral and re-describing it through a new input quantity, where a nested MV exists between 
original input ĺ�new input ĺ�integrand quantity (Jones, 2022). We defined u-substitution as 
transforming this quantitative relationship by sliding the vertex from the original input to the new 
input. To fully accomplish this transformation, we described a three-part structure for u-
substitution (differential, integrand, and bounds) that correspond to the three-part quantitative 
structure of AUP for definite integrals (Jones & Ely, 2023). These parts do not need to be 
executed in one specific order (Oehrtman & Simmons, 2023). In fact, a benefit to quantitative 
reasoning is actually reasoning about the context to flexibly carry out operations (Ely, 2017). 

Our contribution allows for a quantitative reasoning paradigm in calculus based on informal 
infinitesimals (Ely, 2020) and AUP (Jones & Ely, 2023) to extend all the way through the 
introductory calculus curriculum, including u-substitution. This extension permits coherence 
across the entirety of the calculus course, founded on a reasoning type that has been shown to be 
extremely important for understanding and productive usage (Jones, 2015; Nguyen & Rebello, 
2011; Oehrtman & Simmons, 2023; Pina & Loverude, 2019; Von Korff & Rebello, 2012). We 
are also building on this theoretical work through teaching experiments, teaching students u-
substitution based on these quantitative meanings (which we report on in a separate paper). We 
believe that understanding u-substitution quantitatively in this way will enable students to 
actually understand the mechanisms behind it and to become more flexible users of it, as they 
can see what it means and the three-part structure for executing the quantitative transformation. 
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A Framework for Time and Covariational Reasoning 
 

Kevin C. Moore 
University of Georgia 

Within the line of work on students’ quantitative reasoning, researchers have alluded to the 
significance of time in constructing covariational relationships. I draw on this body of literature 
and return to Piaget’s perspective on time to provide a framework for the role of time in 
students’ (co)variational relationships. The framework also clarifies the nature of the 
multiplicative objects underlying students’ (co)variational relationships. In support of 
illustrating the framework and capturing its emergence from building second-order models of 
students’ mathematics, I also describe a task and how its design reflects the framework.  

Keywords: Covariational Reasoning, Time, Piaget, Quantitative Reasoning 

Time has long been a topic of contemplation for researchers and philosophers, and 
ontological and epistemological considerations of time are certainly not restricted to the 
academy. Kant (1781/2003) considered time to be so ubiquitous as to be given a priori. Differing 
from Kant, Piaget viewed time as a concept an individual constructs. Accordingly, Piaget 
dedicated several studies to developing conceptual models of that construction (e.g., Piaget, 
1954; Piaget, 1970). Based on his findings, Piaget proposed that the mental operations involved 
in constructing time are inseparable from space, motion, and objects (Piaget, 1970; von 
Glasersfeld, 1984). Building on researchers who have alluded to covariational reasoning being 
connected to time, I return to Piaget’s (1970) conceptual models for time to further develop the 
role of time in students’ (co)variational reasoning. In doing so, I elaborate on the constructs of 
experiential time and conceptual time (Castillo-Garsow, 2012; Thompson & Carlson, 2017) to 
provide a framework for characterizing students’ (co)variational reasoning in relation to concepts 
of time. Reflecting its empirical roots, I illustrate the framework by describing a task designed to 
provide insights into the role of time with respect to students’ (co)variational reasoning.  

Covariational Reasoning and Time 
The connection between motion, variation, and the concept of time has been indicated within 

work on students’ covariational reasoning (e.g., Ellis et al., 2020; Johnson, 2015b; Paoletti & 
Moore, 2017; Patterson & McGraw, 2018; Stalvey & Vidakovic, 2015; Thompson & Carlson, 
2017). Covariational reasoning—defined as the cognitive activities involved in reasoning about 
how quantities vary in tandem (Carlson et al., 2002; Saldanha & Thompson, 1998)—is an 
emergent area of research within the landscape of quantitative reasoning. Researchers exploring 
covariational reasoning have illustrated its importance for the learning of concepts spanning 
middle, secondary, and undergraduate mathematics (Byerley & Thompson, 2017; Carlson & 
Oehrtman, 2004; Ellis, 2011; Ellis et al., 2015; Johnson, 2015a, 2015b; Moore, 2014; Paoletti et 
al., 2023; Thompson et al., 2017), with other researchers identifying its broader importance in 
STEM (Gantt et al., 2023; Rodriguez et al., 2019; Sokolowski, 2020; Yoon et al., 2021). 

With respect to relationships between time and covariation or function, researchers have 
primarily focused on time as a parameter (Keene, 2007; Kertil et al., 2019; Paoletti & Moore, 
2017; Patterson & McGraw, 2018; Stalvey & Vidakovic, 2015; Trigueros, 2004). These 
researchers have focused on the extent to which time is held implicitly or explicitly in mind by 
students as they construct and reason about relationships between quantities. For instance, 

26th Annual Conference on Research in Undergraduate Mathematics Education 922



Patterson and McGraw (2018) explored student meanings in the context of dynamic situations 
and their graphing quantitative relationships that did not include elapsed time as a graphed 
quantity. Relatedly, Paoletti and Moore (2017) explored how graphing experiences with 
quantitative relationships not explicitly involving elapsed time can create an intellectual need for 
time as a parameter. Taking a different approach, Stalvey and Vidakovic (2015) focused 
explicitly on students constructing relationships between elapsed time and two other quantities, 
and then their subsequent construction of a relationship between those two quantities. 

Some of the aforementioned studies drew on notions of conceptual and experiential time, 
which Castillo-Garsow (2012) and Thompson (2011, 2012) introduced to characterize students’ 
(co)variation. Having roots in Piaget’s (1970) framing of time and Newtonian mathematics 
(Thompson, 2012), conceptual and experiential time are akin but not identical to explicit and 
implicit parametric distinctions. Whereas parametric distinctions focus on time as a distinct 
quantity, conceptual and experiential time are organic to quantities’ (co)variation. Rather than 
framing time as implicit or explicit attribute in and of itself, time is framed as an emergent, 
intrinsic property of (co)variation that differs based on the (co)variation conception. Thompson 
(2012) described experiential time as “felt time that [passes]” in an experience, while conceptual 
time is part of the “flowing” of quantities and “Not time on a clock, but an imagined, smoothly 
changing, quantified time—a measured duration that grows in extent” (p. 147). The distinction 
between experiential and conceptual time is situated in how a phenomenon’s attributes are 
conceived, reflecting Piaget’s (1970) distinction between intuitive time and operational time. 

Linking Piaget’s Cognitive Account of Time and Covariation 
 “We are far too readily tempted to speak of intuitive ideas of time, as if time, or for that 

matter space, could be perceived and conceived apart from the entities or the events that fill it” 
(Piaget, 1970, p. 1). Piaget considered time to be an emergent property of the co-ordination of 
simultaneous positions and the co-ordination of successive, spatial states. He referred to these 
co-ordinations as simultaneity and succession (with displacement), respectively, with their 
development occurring in the context of motions with different velocities. Piaget’s view of 
time’s link to conceptions of space and motion reflects his stance that concepts arise from the 
coordination and abstraction of mental actions. To Piaget, our temporal experience and memory 
of a situation are constructions subject to mental actions. We transition from intuitive to 
operative conceptions of time as we develop ways for organizing our experience that foreground 
operative forms of thought over experiential or figurative forms of thought (Piaget, 1970).  

 
Figure 1. Piaget’s co-seriation model of events, simultaneity, and succession. (Piaget, 1970, p. 264) 

Piaget (1970) formalized the construction of simultaneity and succession of events as a 
grouping (i.e., co-seriation) shown Figure 1. O# represents the initial state of event # (e.g., an 
attribute of an object/phenomenon like position in visual field, weight, or color). A#, B#, C#, and 
so on represent successive states of event #. a, a', b', c', and so on represent durations such that b 
= a + a', c = b + b', and so on. Piaget used  to link states of events occurring simultaneously 
(e.g., an object’s weight and height), which can be thought of as a null vector due to the events’ 
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simultaneity. Piaget’s (1970) model captures the multiplicative basis of co-seriation, in which 
events are united to form a multiplicative object—the cognitive uniting of attributes so that an 
object is simultaneously all of them (Inhelder & Piaget, 1964). As I illustrate below, constructing 
such an object is fundamental to the covariation of quantities (Saldanha & Thompson, 1998). 

Drawing on Piaget’s model of time and the simultaneity and succession of events, I present 
three conceptual models of time as it relates to an individual’s conception of a phenomenon that 
entails quantities’ magnitudes varying (e.g., ||x||, ||y||, ||z||,…). The first model (Figure 2a) conveys 
a conception tied to experiential time. The second and third models (Figure 2b-c) each convey a 
conception tied to conceptual time. The second foregrounds the quantities as conceived with 
respect to elapsed time, while the third involves disembedding the quantities from the 
phenomenon and elapsed time so that they exist in an invariant relationship with each other. 

 
Figure 2. Conceiving a phenomenon and quantities (a) with respect to experiential time, (b) with respect to 

conceptual, elapsed time, and (c) so they are disembedded with respect to time and understood in terms of their 
invariant relationship.  

Adopting expression notation and restricting the focus to two quantities, we can represent 
Figure 2a, Figure 2b, and Figure 2c with ||"||!!⋁	||%||!!, (||"||!⋁||%||!), and (||"||∆⋀||%||∆), 
respectively. I use ||"||!!⋁	||%||!! with ⋁ (OR) and no parentheses to indicate that when a 
phenomenon and its constituent quantities are conceived with respect to experiential time, the 
quantities are both understood as present and varying in experience. They are observed to co-
occur, but they are not cognitively linked beyond that. A conception of their relationship 
involves sequentially recalling and possibly, but not necessarily, comparing the intuitive, in-the-
moment experience of each quantity’s variation. This is captured by the weak link between ||x|| 
and ||y|| in Figure 2a and foregrounding experiential time, te, with each quantity’s variation. 

I use (||"||!⋁||%||!) and (||"||∆⋀||%||∆) to indicate a phenomenon and its constituent 
quantities conceived with respect to conceptual time, whether elapsed (t) or their relationship 
disembedded and understood with respect to variation (Δ) from another state. With respect to 
(||"||!⋁||%||!), I use parentheses to indicate that the quantities are understood as occurring 
simultaneously, but I use ⋁ to indicate that elapsed time is the driver of the relationship such that 
each quantity exists in a multiplicative object with elapsed time but not with each other. The two 
quantities are related through their sharing a relationship with elapsed time. This is captured by 
the link between ||x|| and ||y|| in Figure 2b, which is stronger than that in Figure 2a but mitigated 
by the connection to elapsed time. With respect to (||"||∆⋀||%||∆), I use ⋀ (AND) and 
parentheses to indicate that the quantities are understood as occurring simultaneously and 
persistently. One quantity’s magnitude is held in mind with the “immediate, explicit, and 
persistent realization that, at every [magnitude], the other quantity also has a [magnitude]” 
(Saldanha & Thompson, 1998, p. 298). The quantities’ magnitudes are the driver of the 
relationship, and thus properties of the relationship are understood as defining the multiplicative 
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object formed by joining the two quantities’ magnitudes and thus are sustained irrespective of 
elapsed time or figurative aspects of experience. This is captured by the link between ||x|| and ||y|| 
in Figure 2c, which indicates their simultaneous and persistent co-existence so that their 
covariation is defined precisely by their simultaneous variations. Figure 2b and Figure 2c each 
indicates a bi-directional relationship between states to reflect the operational nature of 
conceptual time (Piaget, 1970). Figure 2c indicates measured durations fade to the background 
so the relationship is not tied to any particular experience or measured duration.  

Illustrating the Framework - Time and Task Design 
The task illustrated here emerged during a teaching experiment with undergraduate 

mathematics education students as part of a larger project focused on capturing middle grades 
and undergraduate students’ reasoning within dynamic situations (see Liang and Moore (2021), 
Lee et al. (2019), Tasova and Moore (2020), and Moore et al. (2019)). With respect to the task 
below, the project team drew on two sources of inspiration beyond the second-order models of 
student thinking that emerged during the teaching experiment (Steffe & Thompson, 2000; 
Thompson, 2008). As one source, we drew on the tasks demonstrated by Saldanha and 
Thompson (1998) and Carlson et al. (2002) that involve covarying quantities other than time. 
Tasks that prompt students to construct graphs with respect to time make it difficult for a 
researcher to tease out whether the student is reasoning with respect to conceptual or experiential 
time (Thompson & Carlson, 2017). The task below includes two distances (i.e., magnitude bars 
that provide figurative material to enact quantitative and covariational operations) with no 
reference to elapsed time. Piaget’s (1970) aforementioned work on time provided the second 
source of inspiration for the task. Piaget described, “It is only by the co-ordination of at least two 
motions with different velocities that purely temporal relationships can be distinguished from 
spatial relationships or from intuitive ideas about motion” (p. 26). The task foregrounds relations 
of simultaneity and succession via prompting the participants to coordinate two objects in 
motion, with the two objects varying at different rates with respect to elapsed time. 

The Task: Which One? – Going Around Gainesville (GAG) 
  “Which One? – GAG” is from a series of tasks titled “Which One?” A “Which One?” task 

is designed to be implemented after a participant constructs a covariational relationship within 
phenomenon or a graphical representation (Liang & Moore, 2021). A “Which One?” task 
provides several representations of covariational relationships, including magnitude bar sets that 
vary simultaneously or a collection of static or dynamic graphs. With the representations 
provided, the researcher asks the participant which of the representations, from none to all, 
accurately capture the relationship they identified previously (whence the name, “Which One?”). 

 
Figure 3. The Going Around Gainesville (GAG) task, video at: https://youtu.be/v2yc55Z9WV8. 
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The part preceding “Which One? – GAG” involves a video depicting a car starting in Atlanta 
and traveling back and forth from Tampa (Figure 3, see Moore et al. (2022) and Moore et al. 
(2019) for empirical data). After viewing the animation, the participant is sequentially asked two 
graphing tasks (Figure 3). After a participant engages in each part and has constructed what the 
research team perceives to be a stable understanding of the covariational relationship, the 
researcher implements the three-part task “Which One? – GAG”. Each part consists of three 
pairs of magnitude bars presented in a dynamic geometry environment (DGE). As support for the 
reader, https://tinyurl.com/4v9ma7pc hosts videos illustrating each part and pair of the task. For 
Part I of the task (see Figure 4a for a snapshot), the participant is presented with three tabs, each 
containing a pair of magnitude bars. For each pair, one magnitude bar represents the distance 
from Atlanta (dfA) and one magnitude bar represents the distance from Gainesville (dfG). For 
each pair, the student can push “Drive” to start or stop the bars changing together, and the 
student can push “Reset” to return the pair to a zero-magnitude dfA and corresponding initial 
dfG. The participant is tasked with determining which, if any, of the pairs covary as to accurately 
capture the determined relationship between the dfA and the dfG. Table 1 describes the design of 
each magnitude pair. Pair B and C capture the normative relationship between the two distances. 

 
Figure 4. Example still shots for (a) Pair A – Part I, (b) Pair B – Part II, and (c) Pair C – Part III. 

Table 1. The design of “Which One? – GAG”. 

RELATIONSHIP DESIGN PART III 
Pair A: With respect to dfA: dfG decreases at an increasing rate, decreases at 
a decreasing rate, remains constant, increases at a decreasing rate, and then 
increases at an increasing rate. When Drive is pushed, with respect to 
elapsed time: (i) dfA increases at a decreasing rate, increases at an increasing 
rate, increases at a decreasing rate, increases at an increasing rate, and then 
increases at a decreasing rate. (ii) dfG decreases at a constant rate, remains 
constant, and then increases at a constant rate.  
Pair B: With respect to dfA: dfG decreases at a constant rate, remains 
constant, and increases at a constant rate. When Drive is pushed, with respect 
to elapsed time: (i) dfA increases at a decreasing rate, increases at an 
increasing rate, increases at a decreasing rate, increases at an increasing rate, 
and then increases at a decreasing rate. (ii) dfG decreases at a decreasing rate, 
decreases at an increasing rate, remains constant, increases at an increasing 
rate, and then increases at a decreasing rate.  

Pair C: With respect to dfA: dfG decreases at a constant rate, remains 
constant, and increases at a constant rate. When Drive is pushed, with respect 
to elapsed time: (i) dfA increases at a constant rate. (ii) dfG decreases at a 
constant rate, remains constant, and then increases at a constant rate.   
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Part II of the task (see Figure 4b for a snapshot) presents the same three pairs of magnitude 
bars, but they can reorient the magnitude bars, join then, and show a “link” between them. This 
link represents the process of joining two orthogonal magnitudes to form a Cartesian point. A 
participant is told that each pair matches its respective pair from Part I (e.g., Pair A in Part I, II, 
and III covary equivalently), and that Part II of the dynamic sketch is designed to help them 
further explore the extent the two magnitude bars capture the determined relationship between 
the two distances. For Part III of the task (see Figure 4c for a snapshot), the participant is again 
presented with the same three pairs of magnitude bars. In this case, each pair is oriented 
orthogonally, a Cartesian point is displayed, and a trace of the point is recorded as the magnitude 
bars covary. Like Part II, the participants are told that each pair matches its respective pair from 
Part I, and that Part III is to aid further exploring the extent the two magnitude bars capture the 
appropriate relationship between the two distances. During Part II and Part III, a participant is 
also prompted to reflect on and describe any changes in their assessment of the paired 
magnitudes. They can return to the previous parts if desired. They are also asked to reflect on 
difficulties from previous parts and how subsequent parts assist their assessment. Said frankly, 
Part I is intended to be difficult, both conceptually and in functional design, with the hopes of 
both eliciting their thinking and affording spontaneous requests for other representations. 

Connecting the Task to the Framework 
First focusing on Figure 2a (i.e., ||"||!!⋁	||%||!!), and reflecting quantities’ variations 

occurring in experiential time, a student reasoning in such a way attends to the variation of each 
magnitude separately, and they primarily do so through the experience of watching the DGE 
animated continuously using “Drive”. With respect to Pair A, the student might conclude that 
dfG varies appropriately due to its smooth decrease, constancy, and then increase, while 
concluding that dfA varies incorrectly. For the latter, they anticipate that dfA increase at a smooth 
rate, which reflects the manner in which it increases during the experience of watching the road 
trip animation. With respect to Pair B, and consistent with their response to Pair A, the student 
might conclude that dfG and dfA vary inappropriately due to anticipating both increases or 
decreases at smooth rates, again reflecting how they experience the variations with the road trip 
animation. With respect to Pair C, the student is likely to conclude that both dfG and dfA vary 
appropriately due to the smooth variation of each. Across all of the pairs, the student primarily 
focuses on each magnitude separately and draws on intuitive or experiential notions of rate to 
draw conclusions.  

For Figure 2b (i.e., (||"||!⋁||%||!)), due to the basis in conceptual time, a student reasoning 
in such a way attends to the variation of each magnitude separately, but they coordinate the 
variation of each using successive durations of elapsed time. This might be accomplished by 
stepping through states of the DGE and tracking the variation of each quantity with anticipated 
properties in mind. With respect to Pair A, as the student tracks through successive, equal 
duration states of the DGE, the student might conclude that although dfG varies by constant 
amounts, dfA does not vary by constant amounts and thus the magnitude bars do not capture the 
appropriate relationship. With respect to Pair B, the student might comment on the difficulty 
assessing the pair using the DGE and thus seek to step through the DGE state by state. Reflecting 
that the quantities are cognitively linked through their shared relationship with elapsed time in 
this form of covariation, the student might attempt to “Drive” the bars for equal durations of time 
and then compare the variations of the magnitudes to each other. With respect to Pair C, the 
student is likely to conclude that the pair covaries appropriately due to the smooth variation of 
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each, and they might further test this by using successive, equal durations of “Drive”. Across all 
of the pairs, the student coordinates each magnitude with equal durations in order to draw 
comparisons across the magnitudes. Because of this, Pair B can lead to a perturbation that stems 
from the student anticipating equal variations in each quantity for equal variations in duration 
due to the piecewise linear relationship between dfG and dfA. 

For Figure 2c (i.e., (||"||∆⋀||%||∆)), due to the basis in a disembedded invariant relationship, 
a student reasoning in such a way foregrounds coordinating a quantity’s variation with respect to 
the other quantity’s variation. Whether Pair A, B, or C, the student is likely to attempt to vary 
one quantity’s magnitude in a systematic way while tracking the variations in the other quantity’s 
magnitude. For instance, the student might use “Drive” to step dfA through successive, equal 
increases, and then assess the appropriateness of the pair by investigating whether the dfG 
magnitude follows the pattern of constant decrease, constant, and constant increase. A student 
engaging in such covariational reasoning might experience a perturbation stemming from the 
functionality of the DGE (e.g., it is difficult to use “Drive” to step through equal amounts of dfA 
increase), but they would not be significantly perturbed by how a single bar varies as the 
animation plays. They persistently foreground how the bars simultaneously covary, which can 
lead to expressing annoyance at Part I and motivating a need for Parts II-III and a graph. 

Closing 
The three forms of (co)variational reasoning differentiate (co)variation based on the role of 

time and, hence, the extent a multiplicative object is formed between the two quantities. The 
three forms invite questions regarding their developmental and hierarchical nature. The three 
forms emerged from work conducted primarily with undergraduate students, and I do not have 
second-order models of their developmental trajectory and relationships. I hypothesize the 
continued work by colleagues such as Ellis, Johnson, Lee, Paoletti, and Tasova will provide such 
insights. With respect to hierarchy, there is a relative increase in sophistication and generativity 
from Figure 2a to Figure 2c that is reflected in Piaget’s exposition of time, as well as Carlson, 
Castillo-Garsow, Saldanha, and Thompson’s descriptions of (co)variation. This relativeness is 
captured by Patterson and McGraw (2018), who described, 

We hypothesize that it is advantageous to be able to envision the covariation between two 
dynamically changing quantities and, to some degree, decouple this image of covariation 
from a unidirectional, experiential image of the passage of time. This process is essential 
for developing an understanding of an invariant relationship between two quantities and 
explaining how changes in one variable constrain changes in another variable. (p. 320) 

The authors hedge in their hypothesis, as the process of decoupling quantities’ covariation from 
experiential time is intrinsic to the form of covariation captured in Figure 2c and, more broadly, 
that suggested by Carlson, Castillo-Garsow, Saldanha, and Thompson. Constructing a 
multiplicative object between quantities’ magnitudes necessarily involves decoupling images of 
variation from experiential or specific passages of elapsed time. It is then that two quantities’ 
variations are taken as objects of thought and united so that an invariant relationship is 
constructed to constrain the two quantities’ simultaneous variations. Although the forms have a 
hierarchical nature, the implications of such remain an open question. This is particularly true as 
it relates to how the forms of (co)variation play a role in students constructing concepts in which 
covariational reasoning provides a foundation, such as rate of change and accumulation.  
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Genre Theories and Their Potential for Studying Proof 
 
 Valentin A. B. Küchle Paul C. Dawkins 
 Auburn University Texas State University 

In this theoretical report, we outline several major traditions of genre theory, argue that proof 
qualifies as a genre as defined by these traditions, and propose how genre analyses could be 
used to further our field’s understanding of proof.   

Keywords: genre, genre theory, proof, move analysis, critical genre analysis  

Mathematics education researchers have engaged intensively with proof and the learning and 
teaching thereof, but rarely have they drawn on genre theories in this pursuit. In this theoretical 
report, we outline several major traditions of genre theory, argue that in line with these traditions 
proof is a genre, and propose how genre analyses could be used to further our field’s 
understanding of proof.   

A Brief Overview of Genre Theories 
Since the 1980s, “genre” has received significant attention in the Anglophone world of 

applied linguistics from scholars of three research areas: English for Specific Purposes (ESP), 
Rhetorical Genre Studies (RGS) (sometimes referred to as “New Rhetoric” studies), and 
Systemic Functional Linguistics (SFL) (sometimes referred to as the “Sydney School”) (Hyon, 
1996, 2018b; Swales, 2012). All three traditions are united in viewing genre as a social practice 
(Tardy, 2012): ESP scholars define genre as communicative events (within discourse 
communities) with shared communicative purpose(s) (Swales, 1990), RGS scholars define genre 
in terms of the “action it is used to accomplish” (Miller, 1984, p. 151), and SFL scholars define 
genre as “a staged, goal oriented social process” (Martin et al., 1987, p. 59). As Tardy (2011) 
summarized:  

[The three traditions] agree on several general characteristics of genre as a category of 
discourse: 
 Genres are primarily a rhetorical category 
 Genres are socially situated 
 Genres are intertextual, not isolated 
 Genres are carried out in multiple—and often mixed—modes of communication 
 Genres reflect and enforce existing structures of power. (p. 55) 

That said, the three traditions continue to differ, for example, in terms of: (a) the genres studied, 
(b) the attention paid to linguistic features, (c) the attention paid to institutional contexts, and 
(d) methods employed (Hyon, 1996, 2018b). 

In addition to the three aforementioned traditions for studying genre (i.e., ESP, RGS, SFL), 
Swales (2012)—father of ESP genre theory—noted that there also exist “[t]he Brazilian 
approach to genre (Vian, 2012) and the Academic Literacies movement, sometimes known as the 
‘New London School’” (p. 113). Although it is incorrect to think of the Brazilian tradition as a 
monolith (Vian, 2012), it is correct to note that genre research in Brazil has been heavily 
influenced by Bakhtin’s (1986b) work on genre (Gomes-Santos, 2003) and, albeit it to a lesser 
extent, socio-discursive interactionism (Bronckart, 1997). The Academic Literacies movement 
finds the ESP tradition too textual and pushes for a greater focus on academic practices (Swales, 
2012). For discussion of further traditions of genre theory, see Vian (2012). 
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   The Genre of Proof 
In this section, we argue that proof satisfies Tardy’s (2011) five characteristics of genre. We 

thereby wish to justify applying genre theories (particularly ESP, RGS, and SFL) and genre 
analyses to the genre of proof. 

Proof Is Primarily a Rhetorical Category 
By being “primarily a rhetorical category,” Tardy (2011) meant that “what makes a text a 

genre is not its linguistic form but the rhetorical action that it carries out in response to the 
dynamics of a social context” (p. 55). As Hanna (2000) listed, proofs can be used to, for 
example, verify, explain, systematize, discover, communicate, construct, explore, and 
incorporate.1 And, Hanna (1989) argued, some of these functions (i.e., rhetorical actions) may be 
more appropriate in certain social contexts—“proofs that explain should be favored in 
mathematics education over those that merely prove” (p. 45). That dynamics of different social 
contexts can lead to different rhetorical actions was also demonstrated by Schifter (2009): In one 
elementary school classroom, students used a proof as an aid to understanding; in the other, 
students used a proof to convince. In short, we argue that proofs serve a set of communicative 
purposes that depend on the discourse community in question, that is, as primarily a rhetorical 
category. 

Proof Are Socially Situated 
To assert that proofs are “socially situated” according to Tardy (2011), we should be able to 

observe that conventionalized forms of proof are tied to their socio-rhetorical context (e.g., a 
class of 4th graders and their teacher, Poisson geometers). Stylianides’s (2007) frequently cited 
definition of proof acknowledges this centrality of the socio-rhetorical context by qualifying that 
accepted forms of statements, modes of argumentation, and modes of argument representation 
used in proofs are only “accepted” in that they are endorsed by the classroom community—or, as 
we would amend using ESP terminology, a given discourse community. 

To underline that proofs are socially situated and that their form is tied to their socio-
rhetorical context, consider the following three examples: (a) a two-column proof in a high 
school geometry classroom, (b) a proof by Gauß in Disquisitiones Arithmeticae, and (c) a proof 
told as a first-person singular narrative (e.g., “First, I noticed that if you take …”) in an 
elementary school classroom. All three proofs vary significantly in form but, assuming their 
veracity, are valid forms of proof within their socio-rhetorical contexts.  

Proof Are Intertextual, Not Isolated 
“[T]he communicative work that genres do is almost never carried out by isolated, single 

texts. Rather genres work in coordination to accomplish complex tasks and social goals” (Tardy, 
2011, p. 58). Below, we outline two ways in which proofs are intertextual.  

First, proofs often explicitly reference previously proven statements (e.g., “By Proposition 
4.2, …”). Thus, deliberate connections are made in proofs to other texts. All such intertextual 
references in proofs must be carefully organized so as to avoid circular reasoning. More 
generally, all proofs implicitly reference axioms and/or previously proven statements due to how 
mathematical theories are logically organized as inverted pyramids.2  

 
1 We acknowledge that although “verifying” is not the only communicative purpose of the genre of proof, it is a 
central one, and it is hard to make sense of proof without thinking about proving that a statement is true or false.   
2 In this analogy, the point of the inverted pyramid is axioms, upon which a progressively broader set of theorems is 
built. 
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Second, proofs are intertextual in that they work in coordination with other genres, such as 
definitions, theorems, and remarks. (Mariotti, 2006, argued that proofs must be understood as a 
triad of proof, statement, and background theory.) Often, a definition is followed by the 
statement of a theorem (or proposition or lemma) about the just-defined object or property, 
which is then proven. After the proof, an author may make a remark, which offers, for instance, 
observations about the just-finished proof. (For a genre analysis of remarks that illustrates 
different communicative purposes of remarks, see Küchle, 2023.) Sequences of definitions, 
theorems, proofs, remarks, and other mathematical genres (e.g., examples, exposition) can 
combine to form larger narratives (e.g., a sequence culminating in Lagrange’s Theorem)—
narratives that university instructors can backwards engineer.  

Proofs Are Carried Out in Multiple—and Often Mixed—Modes of Communication 
As O’Halloran (2015) noted, mathematics is multimodal: Mathematics uses linguistic, 

symbolic, and visual forms of representation. We assert that proof is also multimodal: Proofs 
consist of words, symbols, and images (e.g., graphs, diagrams). Yet, we acknowledge that 
although the value of images during proof-production has been suggested (e.g., Alcock & 
Weber, 2008; Weber & Alcock, 2004), the question remains to what extent a valid proof may be 
visual. Larvor (2019) addressed this question by showing that although not all types of 
diagrammatic inferences are typically allowed in proofs, there is a class of such inferences that 
are often allowed. In addition to satisfying certain diagram characteristics (Larvor, 2019), we 
believe that a proof’s socio-rhetorical context—context that includes level and subdiscipline of 
mathematics—contributes to the permissibility of images in proof. 

Proofs Reflect and Enforce Existing Structures of Power  
As Dawkins and Weber (2017) noted, there are values and norms at play in proof-writing. 

Further, where there are values and norms at play, power dynamics emerge. Thus, Tardy (2011) 
deduced, “[genres] must be viewed as not just a reflection but also a reinforcement of the power 
structures that exist in the community within which they are used” (p. 60). Indeed: 

Genres are forms of “symbolic power” (Bourdieu, 1991, p. 163) and could be forms of 
“symbolic violence” (Bourdieu, 1991, p. 139) if they create time/spaces that work against 
their users’ best interests and their users perceive them as naturalized or “just the way we 
do things around here.” (Schryer, 2002, p. 76) 

Thinking about the educational setting, Tardy (2011) observed: “School genres […] inherently 
situate students in low-power positions, subject to the evaluation and preferences of teachers, 
who serve as gatekeepers” (p. 60).  

Tardy’s (2011) observation about school genres also holds for proofs in educational settings. 
Even proofs written by research mathematicians for publication are subject to a power difference 
between the authors in low-power positions and the editors and reviewers as gatekeepers. In 
educational and academic settings, the person(s) in high-power positions uses their set of values 
and norms to evaluate the proof of the person(s) in low-power positions (see Tanswell & 
Rittberg, 2020). For instance, a proof may be considered “too verbose” or “make too many 
omissions.” That these types of critiques are subject to bias and can (re)enforce existing 
structures of power—in our case, white supremacist capitalist patriarchy (hooks, 2015)—can be 
seen by considering the example of Su’s (2020) student Akemi, whose proofs stopped receiving 
full marks once the teaching assistant found out Akemi was a woman.  

To see how proofs may reflect existing structures of power, consider the language in which 
they are written:  
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[T]he mode in which mathematic is usually written and spoken is one of advocacy, of 
claims and assertions, one which generally ignores its audience. It is a language which I 
feel is more easily adopted by men than women, if we can believe what we are told about 
women using fewer declarative sentences in conversation. And it is a language, which 
particularly, when spoken, is frequently abused with impatience, frustration, and 
defensiveness. (Keith, 1988, p. 8) 

Thus, proofs—and the language they are written in—may reflect stereotypical traits of 
masculinity (Hottinger, 2016; Weber & Melhuish, 2022). 

Summary 
We contend that proof satisfies Tardy’s (2011) list of five genre characteristics on which the 

three central Anglophone traditions of genre theory can agree. Thus, we feel justified in applying 
these theories’ genre analysis tools to the genre of proof.  

Analysis Possibilities  
In this section, we explore two types of genre analysis from the three traditions and see how 

they could be applied to the genre of proof.  

Move Analysis 
In the ESP tradition, a genre is often studied by conducting a move analysis, which focuses 

on moves, “those textual segments that make up a genre’s organizational structure and help the 
genre achieve its purposes” (Hyon, 2018a, p. 27). They are functional units (i.e., they are not 
about what a text is saying but about what the text is doing) and can be thought of as mini 
communicative purposes (Hyon, 2018a). For example, a common move in research article 
introductions is “establishing a niche,” which can be realized by, for instance, indicating a gap in 
research (Swales, 1990). As Bhatia (1993) noted, moves need not occur linearly; they can also be 
interactive (e.g., in legislative texts, legislating and specifying can be thought of as a two-part 
interactive move).  

A common goal of performing a move analysis is to determine a move structure that can be 
shared with students to aid their learning (Hyon, 2018a). To this end, mathematics education 
researchers could use, for example, Hyon’s (2018a) stages of a move analysis—based on Biber 
et al.’s (2007) and Upton and Cohen’s (2009) approaches. A move such an analysis might yield 
is indicating deduction, which authors realize in many ways (e.g., “[X]. Thus/hence/therefore, 
[Y]”, “Since/Because [X], (it follows that) [Y]”, “If [X], then [Y]”, “From [X], we get that [Y]”, 
or “[X] implies that [Y]”). This move can serve several common communicative purposes of 
proof: by indicating deduction, the author is able to more easily convince the reader since the 
text has been systematized and aids the reader’s verifying. Other example moves might include 
setting a goal or initiating a proof technique.  

A move analysis may also shed light on cross-cultural differences, be they differences 
between, what Holliday (1999) termed, “large cultures” (e.g., proofs in Germany versus those in 
the U.S.A) or “small cultures” (e.g., proofs by undergraduates in an introduction to proof [ITP] 
course versus those by research mathematicians) (Hyon, 2018a).  

To illustrate what a cross-cultural difference might look like, consider our following informal 
observation. While skim-reading proofs in research papers and in first-year lecture notes, we 
noticed that mathematicians-as-teachers frequently (re)express the statement to be proved—a 
move seen but once in the research papers. Consider the following examples from Linear 
Algebra, Abstract Algebra, and an ITP course:  
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Proposition 5.3. Let T : U → V be a linear map. Then:  
(i) im(T) is a subspace of V; 
(ii) ker(T) is a subspace of U.  
Proof. For (i), we must show that im(T) is closed under addition and scalar 
multiplication. […] 
 
Theorem VI.6. Let G be a group and a, b ∈ G. Then (ab)-1 = b-1a-1.  
[…]  
PROOF. We’re being asked to prove that b-1a-1 is the inverse of ab. So we want to show 
that (b-1a-1)(ab) = 1 = (ab)(b-1a-1). […] 
 
Example 8.11. State whether the following sets are bounded or unbounded and prove 
your answer. […] 
(b) B = (–∞, √2). […] 
Solution: […] 
(b) B = (–∞, √2) is unbounded. We will prove this by showing that for all M ∈ ℝ we can 
find x0 ∈ B such that |x0| > M. […] 

 
(Re)expressing the statement to be proved seems pedagogical in nature as it breaks down 

what needs to be shown. Although this move may seem innocuous, we would like to point out its 
potential for “deceiving” the student into thinking that nothing has happened. Yet, 
(re)expressing, or “unpacking,” what needs to be shown is often a key step in first-year proofs, 
which frequently amount to rewriting/seeing something in a new way. Therefore, this move can 
significantly simplify the proof. Although the move might be thought of as the instructor 
modeling “good” proof behavior, it also removes the opportunity for students to do this work 
themselves. The study of e-Proofs suggests that in the interplay between work done for the 
student reader by the author and work done by the student reader to make sense of the proof, 
sometimes learning is supported better when the student reader’s work is not co-opted by the text 
(Alcock et al., 2015). 

In short, given differences in intended audience and discourse community, proofs written by 
mathematicians-as-researchers and mathematicians-as-teachers will serve slightly different 
communicative purposes—recall Hanna (1989) asserting that “proofs that explain should be 
favored in mathematics education over those that merely prove” (p. 45). Differences in 
communicative purposes entail differences in moves (i.e., mini communicative purposes), and 
we posit that the field of mathematics education may benefit from studying mathematicians-as-
teachers’ proof moves and the extent to which these indeed facilitate student learning.  

Critical Genre Analysis  
As argued above, the genre of proof reflects and enforces existing structures of power. To 

study how genres do so, some genre researchers have performed critical genre analyses 
(e.g., Hyatt, 2005; Levina & Orlikowski, 2009). Rather than being a singular type of analysis, 
critical genre analyses differ in their methodologies but are connected by their focus on power 
structures, relations, and imbalances. For example:  

 Hyatt (2005) performed a corpus analysis of tutor feedback (and noted the potential for a 
critical discourse analysis [Fairclough, 2003] to complement the analysis);   
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 Levina and Orlikowski (2009) performed a qualitative study, as part of which they 
identified genres in the management consulting field and then “examin[ed] how control 
over genre enactment was exercised […], as well as who had competence in and 
participated in the various genre enactments, and how.” (p. 678); and  

 Schryer (2002) combined a rhetorical analysis with a critical discourse analysis (Hodge & 
Kress, 1993) to create a chronotopic (Bakhtin, 1981) analysis of “bad news” letters by an 
insurance company.3  

Below, we discuss bias and author–reader–proof-text relations4, before offering our thoughts on 
what a critical genre analysis of proof could look like.  

First, consider that different readers receive a text differently, that is, a text is not reader-
independent. A reader’s past experiences with a genre shape their expectations for contemporary 
realizations of the genre. More broadly, discourse communities have and use their own genres, 
which are understood against a horizon of expectations that has developed over time (Swales, 
2016). In addition to a reader’s past experiences with a genre, Akemi’s example from before 
suggests that the reader–author relation (shaped by the reader’s context and biases) also affects 
the reader’s reading of text. Given how heavily U.S. mathematics departments lean non-Hispanic 
White (77%) and male (70%) (Blair et al., 2018)5, women and people of color are most likely to 
be targeted by readers’ implicit and explicit biases.6 

“Properties” of proof—like convincing, transparent, or perspicuous (Czocher & Weber, 
2020)—are not so much properties as they are author–reader–text relations. They can be used to 
weave a set of contradictions that will always ensure that a proof is not good enough for a biased 
reader. The reader might claim the proof was unconvincing because it was too short or that the 
proof—perhaps amended and increased in length—is not perspicuous and untransparent. 
Minoritized students receiving negative (and possibly contradictory) feedback is concerning as it 
can lead to a loss of confidence and contribute to an unsupportive culture—reasons identified as 
leading to undergraduate and graduate students leaving STEM, particularly minoritized students 
(Herzig, 2004; Thiry et al., 2019). 

Second, note that an author’s awareness of the (hypothetical) reader(s) shapes their writing. 
SFL scholars would observe that proofs do not merely serve an ideational function but also an 
interpersonal function (and a textual function). ESP scholars would note that a communicative 
purpose is shaped by discourse community and intended audience. RGS scholars would point to 
genre being a social action. Finally, Bakhtinian scholars would point to the importance of an 
utterance’s addressivity. For example: An author of a journal article will be trying to convince 
the reader that the proof is novel, important, and gives due credit to prior work, whereas a 
student seeks not only to convince the instructor of the veracity of their proof, but also of their 
knowledge. In short, regardless of how much proof genre conventions suppress agency, a proof 
is not author-independent, and the author’s shaping of the text is affected by their awareness of 
the (hypothetical) reader(s). (Whether the shaping achieves the author’s goals is a different 
matter.) 

 
3 Although Schryer (2002) did not label her work a critical genre analysis, she termed it a “critical approach to genre 
theory” (p. 76) and a way to “address the issue of genre and power” (p. 76). 
4 The triangle of author–reader–text relations (within contexts) is sometimes referred to as the rhetorical triangle. 
5 Percentages refer to full-time faculty in mathematics departments of four-year colleges and universities in fall 
2015. 
6 Proof readers’ bias is not just concerning with regard to university students, but also with regard to researchers. 
Single-blind journals are prevalent in mathematics alongside a culture of publishing preprints on arXiv. As a 
research mathematician friend of ours remarked, “I’ve never reviewed a paper I didn’t know the author of.” 
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Combining our observations about readers’ biases and authors’ awareness of their 
(hypothetical) reader(s), we note that an author’s awareness may also include an awareness of 
their (hypothetical) reader(s)’s biases. For example: A friend of ours vividly remembers 
changing a proof to include more “powerful” mathematical ideas (“sledgehammers”) to make her 
proof more convincing and beyond (anticipated) reproach. 

Given the breadth of what constitutes a critical genre analysis, there are many possible 
avenues to pursue with the goal of studying power structures, relations, and imbalances as they 
pertain to the genre of proof. Drawing on our above observations and the view that criteria such 
as “convincing,” “perspicuous,” and “transparent” are prone to biased application, we believe it 
might be fruitful to ask: “What criteria do readers of proof apply when evaluating proofs, and 
how do they apply these in biased ways?” By studying the feedback that proof readers give—and 
to whom they give it—awareness can be fostered for the subjective nature of proof evaluation 
criteria. Further, revealing how biases interact with the application of proof evaluation criteria 
can provide a starting point for raising awareness of this problem within the discourse 
community of (research) mathematicians.  

Finally, as aforementioned, proofs may reflect existing structures of power and stereotypical 
traits of, among others, masculinity (Hottinger, 2016; Weber & Melhuish, 2022). This 
observation raises the question of how proofs can be reenvisioned and rehumanized (Gutiérrez, 
2018). For some examples thereof, consider Harron (2016), Sinclair (2005), Leron (1985), and 
Tymoczko (1993). A critical genre analysis could be used to identify the (invisible) constraints 
of the genre of proof (which hinder reenvisioning and rehumanizing proof) and how they reflect 
and enforce existing structures of power (e.g., Bowers & Küchle, 2020). 

Conclusion  
In this theoretical report, we hope to have given the reader a brief overview of contemporary 

genre theories, argued that proof is a genre for the purposes of (at least) three major genre 
theories, and outlined the potential of move analyses and critical genre analyses for advancing 
the field of mathematics education. But there are many more types of genre analysis mathematics 
educators could pursue, such as:   

 a rhetorical appeals analysis (i.e., appeals to logos, pathos, and ethos);  
 a lexico-grammatical analysis (e.g., of frame markers, attitude markers, hedges, and 

boosters) (SFL, in particular, offers a plethora of lexico-grammatical analysis tools);  
 a historical or diachronic study of genre to understand the evolution of a genre; 
 an ethnography to learn about the relevant discourse community;  
 a genre systems analysis (or genre network analysis) to learn about the relationship 

among genres (and the relationship between genres and community);  
 an intertextual analysis to, for example, understand references to other texts;  
 a multimodal genre analysis. (Tardy, 2011) 

Further, Bakhtin (1981, 1986a) has served as inspiration to genre theorists—particularly of the 
Brazilian tradition—and offered a whole set of possibly useful concepts, such as, carnivalesque, 
chronotope, dialogism, heteroglossia, and polyphony. In short, genre theories offer a whole host 
of analytic tools that, we argue, may be applied to the genre of proof to advance our field. 
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Student Happiness in Mathematics: Antecedents of Positive Emotions

Fern Van Vliet S. Katherine Nelson-Coffey
Arizona State University Arizona State University

Students often express negative emotions in mathematics classes. Positive emotions feel good, but
they are important beyond just feeling good. Positive emotions can benefit learning, attitudes,
and perceptions of mathematics. In this paper, we discuss why positive emotions are beneficial
along with a literature review of common themes which are associated with positive emotions
among students. For example, increases in students’ perceptions of personal control and value in
the classroom have been associated with increased positive emotions. Many practices already
encouraged by mathematics education researchers (e.g. teaching conceptually, helping students
find mathematics important) have the added benefit of potentially increasing positive emotions in
students. Positive emotions have been shown to be associated with engagement and motivation in
mathematics. By increasing positive emotions in the classroom, instructors can encourage the
gradual growth of positive attitudes and beliefs about mathematics to students which are
currently lacking among many students.

Keywords: positive emotions, affect, happiness

Happiness and wellbeing in education have become increasingly emphasized in
psychological and educational research. The Programme for International Student Assessment
(PISA) has been including measures for student affect and wellbeing in their assessments of
students around the world since 2015 (Govorova et al., 2020). In a recent survey of 21,678 US
high school students, 75% of students reported that they typically experience negative feelings at
school, with the most frequently mentioned feelings including tired, stressed and bored (Moeller
et al., 2020).

It is well documented that students have similar negative feelings towards mathematics. For
example, students report finding mathematics boring, unimportant to their lives, and a generally
negative experience (Brown et al., 2008; Hernandez-Martinez & Vos, 2018; Zazkis, 2015).
Emotions in the classroom have been found to be connected to engagement and motivation with
mathematics and attitudes towards mathematics both in the short and long term (Brown et al.,
2008; Middleton et al., 2017; Middleton et al., 2023). Negative emotions have been associated
with reduced motivation and negative attitudes (Brown et al., 2008; Middleton et al., 2023).
While, positive emotions have been connected to increased motivation (Middleton et al., 2023).
Given the prevalence and potential consequences of negative emotions about mathematics, more
work is needed to consider how students’ emotions about and during mathematics can be
improved. We suggest that cultivating positive emotions in mathematics would offer new
perspectives for this pervasive problem.

Robust evidence demonstrates the positive association between positive emotions and
achievement (Camacho-Morles et al., 2021; Coffey, 2020; Villavicencio & Bernardo, 2016). For
example, Coffey (2020) found that positive affect at at age 1.5 years directly predicted higher
educational attainment at age 29. In a meta analysis of 68 studies, Camacho-Morles et al. (2021)
found a positive relationship between enjoyment and academic performance. Thus, positive
emotions are associated with lasting benefits for academic achievement.

The benefits of positive emotions in mathematics likely accrue over time. According to the
Broaden and Build Theory, positive emotions are associated with two categories of benefits
(Fredrickson, 2001). First, positive emotions broaden awareness. People experiencing positive
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emotions are more aware of the “big picture” and able to take in a wider range of information.
For example, smiles have been associated with increased breadth of attention (Johnson et al.,
2010). Second, when in a broadened state of awareness from positive emotions, people are able
to build more resources for themselves. This building of rescources has been associated with
greater cognitive flexibility in an experimental task among participants in a positive emotion
condition (Wang et al., 2017). Further, genuine smiles (Duchenne smiles) have been shown to
predict increased flexibility in attention on an orienting task (Johnson et al., 2010).

Given these potential benefits of positive emotions in mathematics, an important area of
research also involves understanding the factors that may predict positive emotions. We now
review existing literature exploring the correlates of positive emotions in educational settings,
which may inform strategies for educators or researchers interested in promoting positive
emotions in mathematics classrooms. We begin by discussing student characteristics on an
individual level that are associated with positive emotions. Then, we zoom out and discuss
predictors within the classroom environment which are associated with positive emotions.

Student Cognitive Appraisals of Control and Value
Control Value Theory (CVT) posits that students’ personal appraisals of a) control and b)

value of the material are proximal antecedents of emotions related to achievement (Pekrun, 2006;
Pekrun, 2021). Students’ control appraisals describe how much control or influence students
perceive they have over events, and value appraisals describe how much importance or worth
students give to a particular object of focus (e.g. an exam, mathematics in general; Pekrun, 2006;
Pekrun, 2021). Control and value appraisals can operate independently; thus, students can
experience a combination of high and low appraisals of control and value. For example, a student
may feel that they are able to answer every question on their homework assignment easily (high
control), but the same student may feel that the homework is boring and unimportant (low
value). According to CVT, students experience more positive emotions when they have high
levels of both control and value (Pekrun, 2006; Pekrun, 2021).

Control Appraisals
Higher perceptions of control are generally associated with more positive emotions from

students in math classes (Bieg et al., 2017; Bieleke et al., 2023; Buff, 2014; Buff et al., 2017).
However, students on average report low feelings of control in the classroom (Bieg et al., 2017).
These reported low feelings of control may be related to the many aspects of the classroom that
are decided by teachers or administrators (e.g. assignments, exams; Bieg et al., 2017; Boehme et
al., 2017). Research has shown that changes in perceived control are positively associated with
changes in enjoyment of learning (Buff et al., 2017). Thus, perhaps interventions to increase
student perceived control may have benefits by increasing positive emotions. For example, Bieg
and colleagues (2017) demonstrated that working in groups and working individually increases
perceived control when compared to learning from direct instruction.

However, it is important to note that too much control can lead to negative feelings for
students (Buff et al., 2011; Pekrun, 2006, 2021). For example, if a student has very high control
over what is happening in the classroom, they may feel bored and unengaged in mathematics
(Pekrun, 2006). Buff and colleagues (2011) demonstrated that the relationship between control
and positive emotions is nonlinear with the benefits of control tapering off at the highest levels.
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Value Appraisals
Similar to control, it has been demonstrated that changes in perceived value are positively

predictive of changes in enjoyment of learning (Buff, 2014; Buff et al., 2017). Math students
generally report low values for math and feel that math is unimportant to their lives and boring
(Brown et al., 2008; Hernandez-Martinez & Vos, 2018). Low value for math is associated with
lower levels of motivation as well which contributes to negative emotions (Brown et al., 2008).
Thus, interventions to increase student value could be beneficial to increase positive emotions for
students.

However, just as with feelings of control, increasing value appraisals too much may be
damaging to some students which has been demonstrated empirically (Boehem et al., 2017;
Lauermann et al., 2017). High levels of value among families was associated with greater math
anxiety in one study (Boehme et al., 2017). This view is also supported theoretically by CVT.
For example, a student who believes succeeding in math is necessary for success in their future
career has a high value of math, and anything that gets in the way of the success that they feel is
necessary could lead to anxiety.

Control and Value Appraisals Occur Together
As discussed above, appraisals of control and value should not be increased for every

student. Potential intervention studies are made more nuanced by the fact that control and value
appraisals often co-occur. Thus, control and value appraisals become a type of optimization
problem. For each student, there is a different optimal level of control and value which leads to
the most success and positive emotions in the class. For example, Boehme et al. (2017) found
that high family values of math were associated with test anxiety, yet high family values were
associated with lower test anxiety through increased feelings of control among students. This
finding suggests that increasing only value may worsen math anxiety; however, when an increase
in value occurs with an increase in control, students may experience less math anxiety. Similarly,
students with high math anxiety may benefit from an increase in control in the classroom while
gifted students may benefit from classroom practices designed to decrease feelings of control as
this may reduce feelings of boredom and increase positive emotions (Pekrun et al., 2010).

Classroom Environment Predictors of Positive Emotions
Research has also shown many factors within the classroom environment that can contribute

to students experiencing positive emotions.

Learner-Oriented Instruction
General education research has demonstrated the benefits of learner-oriented teaching

practices (e.g. group work, project based learning; Bruder & Prescott, 2013; Cevikbas & Kaiser,
2020; Laursen et al., 2014). However, direct instruction in a lecture format is still one of the most
common teaching practices (Bieg et al., 2017; Jiang et al., 2021; Stigler & Hiebert, 2009). Direct
instruction has also been shown to be associated with negative emotions in students (Bieg et al.,
2017; Jiang et al., 2021). However, learner-oriented instruction, like working in pairs or small
groups) has been shown to give students more feelings of control (e.g. control over discussions,
control over pace of the material; Bieg et al., 2017).

Bieg et al. (2017) used experience-sampling methodology to measure students’ emotions
during math class. Students received notifications sent to an iPod Touch with surveys to
complete during class. The survey asked them to report the current type of instruction (e.g.
lecture, small group work), feelings of control in the moment, and current emotions (enjoyment,
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pride, anger, anxiety, and boredom). Results revealed that working in groups or working
individually was associated with greater student enjoyment and perceived student control.

Collaborative work through learner-oriented instruction also offers the benefits of
encouraging positive social interaction among students. Working in groups and having positive
interactions with others is associated with positive emotions in math classes (Satyam, 2020).
Also, giving students the opportunity to work in groups allows students to experience
mathematics in a way similar to mathematicians, who also collaborate frequently (Burton,
1998). This approach is consistent with current approaches to science education, which has been
dedicating more attention to cultivating experiences for students to make them feel like scientists
(Jaber & Hammer, 2016). Burton (1998) reports that mathematicians report feeling increased joy
and creativity through their collaborative work. Thus, group work could have a twofold effect of
increasing positive emotions and allowing students the opportunity to work in ways similar to
mathematicians and experts.

Learning Materials and Curriculum
Just as instruction type can influence student emotions, classroom activities and curriculum

can influence student engagement which in turn can influence student emotions (Middleton et
al., 2017). For example, giving students opportunities to work on challenging problems has been
associated with more positive emotions and fewer negative emotions (Dettmers et al., 2011;
Greensfeld & Deutsch, 2016; Greensfeld & Deutsch, 2022; Liljedahl, 2005; Satyam, 2020;
Schukajlow & Rakoczy, 2016). For example, Dettmers et al. (2011) found that when students
perceived homework assignments as challenging with well-selected problems, students put more
effort into their homework and experienced fewer negative emotions.

Satyam (2020) describes “satisfying moments” as moments that create significant positive
emotions for an individual. Eleven undergraduate students in a transition-to-proof class were
interviewed to determine moments of satisfaction. The most common satisfying moments
included overcoming a challenge. Thus, overcoming difficulties may create positive moments for
students.

Alternative forms of curriculum and assessment can also decrease the common negative
emotion of test related anxiety (Krispenz et al., 2019; Walen & Williams, 2002). Walden and
Williams (2002) found that their participants had anxiety specific to timed assessments. These
undergraduate students enjoyed mathematics, but the time limit of exams created anxiety.
Further, using timed assessments likely deters students from using a problem solving approach as
procedural methods will likely lead to faster solutions (Walden & Williams, 2002). So, even if
teachers are teaching conceptual lessons and using well developed materials with challenging
problems, timed assessments may undermine the work that went into those lessons and create
more negative emotions for students as well.

Conclusion
Many practices already encouraged by mathematics education researchers (e.g. teaching

conceptually, helping students find mathematics important) have the added benefit of potentially
increasing positive emotions in students. By increasing positive emotions in the classroom,
instructors can encourage the gradual growth of positive attitudes and beliefs about mathematics
to students which are currently lacking among many students (Brown et al., 2008; Zazkis, 2015).

Although we have focused on positive emotions for this paper, it is important to not neglect
the prevalence of negative emotions in the classroom as well (Deshler et al., 2019; Di Leo et al.,
2019; Di Leo et al., 2020; D’Mello et al., 2014; Zazkis, 2015). Research has demonstrated that
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negative emotions can also be beneficial for students’ learning (D’Mello et al., 2014). For
example, although being confused is an uncomfortable feeling, and thus a negative emotional
state, confusion has been shown to be beneficial to learning if the confusion is resolved (D’Mello
et al., 2014). In D’Mello et al. (2014), the participants who experienced confusion were more
successful in remembering information presented to them than participants who learned without
experiencing confusion. Anxiety has also been found to have a positive relationship with student
performance when students have high prior knowledge of mathematics (Schukajlow et al., 2021).

Just as negative emotions can be beneficial, positive emotions can also be detrimental.
Villavicencio et al. (2016) found that pride among engineering students in the Phillipenes had a
negative association with final course grades. Studies have also shown that positive emotions
such as excitement and enjoyment can be barriers to perseverance in mathematical reasoning
(Barnes, 2021; Ben-Eliyahu & Linnenbrink-Garcia, 2015).

Thus, there are benefits and detriments to both positive and negative emotions. However, on
average, positive emotions have been shown to have more beneficial effects in mathematics
learning than negative emotions (Bieg et al., 2017; Greensfeld & Deutsch, 2022; Greensfeld &
Deutsch, 2016; Jiang et al., 2021; Liljedahl, 2005; Middleton et al., 2023; Satyam, 2020;
Schukajlow & Rakocy, 2016). For example, Middleton et al (2023) found that positive emotions
were associated with more motivational outcomes than negative emotions. Thus, in this study,
perhaps an intervention to increase positive emotions would provide more benefit than an
intervention to decrease negative emotions. With an increased focus on increasing positive
emotions in the classroom, mathematics may become a more enjoyable place for students filled
with creativity and curiosity.
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A Framework for Characterizing and Identifying Playful Mathematical Experiences 
 

Jeremy Bernier 
Arizona State University 

Play has been recognized as a component of mathematical practice; accordingly, this 
manuscript explores the potential role of play in undergraduate mathematics education. The 
manuscript introduces a novel framework for characterizing play, wherein a person is said to be 
playing in a scenario if they are (1) making non-routine, voluntary, and free choices/actions, (2) 
experiencing an appropriate level of challenge/uncertainty, and (3) experiencing amusement, 
satisfaction, or excitement. This framework is applied to provide a definition of playful 
mathematical experiences and consider how playful mathematical experiences relate to other 
concepts, like mathematical play and authentic mathematics. 

Keywords: mathematical play, characteristics of play, rehumanizing mathematics 

In the traditional mathematics classroom, students learn mathematics through some 
combination of teacher demonstration and repetitive practice of key computational skills While 
there is no consensus as to what mathematics is, articulations of the nature of mathematics tend 
to refer to concepts like problem solving, logical reasoning, modeling, or creative exercise 
(Halmos, 1980; Mura, 1993; Sfard, 1998; Strauss, 2011) – characterizations which stand in stark 
contrast to the operation of traditional mathematics classrooms (Boaler, 2002; Mann, 2006). 
Many approaches under the umbrella of Inquiry-Based Mathematics Education (IBME) have 
sought to incorporate more components of authentic (cf. Brown et al., 1989) mathematical 
practice – i.e., ways mathematicians do mathematics – into undergraduate mathematics 
classrooms as part of larger efforts to improve undergraduate mathematics instruction and 
learning (Laursen & Rasmussen, 2019).  

One component of authentic mathematical practice – that is, something which 
mathematicians actually do – not included in Laursen and Rasmussen’s (2019) synthesis of 
IBME approaches is the notion of play. Play is a near-universal human experience, and also one 
with much ambiguity (Sutton-Smith, 1997); much of the remainder of this manuscript will be 
dedicated to characterizing it more fully. When mathematicians like Su (2020) and Lockhart 
(2008) discuss play as part of mathematical practice, they refer to the pleasure and whimsy of 
freely exploring mathematical structures. Su (2022) argues that “contemplating patterns, playing 
with ideas, exploring what’s true, and enjoying the surprises that arise along the way” (p. 53) is 
key to mathematical research, while Lockhart (2008) states that in mathematics, “we get to play 
and imagine whatever we want and make patterns and ask questions about them” (p. 4). Beyond 
mathematicians’ descriptions of their own practice, Horne et al. (2023) recently examined the 
problem-solving practices of professional mathematicians and found evidence that playfulness is 
at least sometimes invoked within their mathematical practice. 

Now, play being a part of authentic mathematical practice does not necessitate the inclusion 
of play at all levels of learning mathematics. Reviewing journal articles and attending faculty 
meetings are practices of mathematicians, but I suspect most would agree that first year 
undergraduate students need not participate in these practices. So, while I assert that play is 
legitimate for inclusion in mathematics classes due to its role in authentic mathematical practice 
(Holton et al., 2001; Horne et al., 2023; Lockhart, 2008; Su, 2020), I go further and conjecture 
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that play may be a useful element to introduce to undergraduate mathematics classrooms for 
reasons beyond its validity. 

My evidence for this conjecture is the current status of participation in STEM. Many more 
students enter college with interests in STEM than complete degrees in STEM fields (Bressoud, 
2020; Seymour & Hunter, 2019). One reason for this is that undergraduate mathematics 
classrooms can be dehumanizing (cf. Gutiérrez, 2018) spaces where students are not able to 
interact with mathematics as their whole authentic selves; this is especially so for students from 
minoritized groups (Leyva et al., 2021, 2022). Recently, Caldwell et al. (2023) have argued that 
play can contribute to rehumanizing mathematics classrooms. According to their argument, play 
can challenge traditional mathematics classroom practices and create space for students to assert 
their own understandings of mathematics (Caldwell et al., 2023). While Caldwell et al. (2023) 
placed their work in the context of elementary schools, the fact that people of any age can and do 
engage in play means the same ideas may apply to the undergraduate mathematics classroom. 

So far in this manuscript, I have provided a brief overview of why we might want to integrate 
play into undergraduate mathematics classrooms. Before we can proceed to fully considering 
how play might be integrated into undergraduate mathematics classrooms, further clarity is 
needed on what play actually is and how I suggest we should operationalize it in this context. 
The remainder of this manuscript serves to articulate a framework for play oriented towards 
identifying whether someone is playing or not in a given scenario, using that framework to 
define playful mathematical experiences, and considering how this definition relates to and 
differs from existing work on play in mathematics. 

Characterizing and Contextualizing Play in Mathematics 
Characterizing exactly what play is is a challenge. The conceptual ambiguity of play makes it 

difficult to define in a way which captures all applications of the word while being 
operationalizable. As a result, diverse definitions and frameworks exist which vary greatly 
depending on both the backgrounds of the authors developing the frameworks, as well as the 
audience they are speaking to (Sutton-Smith, 1997; Salen and Zimmerman, 2004; Bergen, 2015). 
Zoologists, philosophers, psychologists, and game designers all study play, each emphasizing 
different aspects of it which are particularly relevant to their domains and motivations. Some 
characterizations of play conflict somewhat with the idea of play in the classroom – for example, 
Huizinga (1949) articulates that play must be separate from “ordinary life” and involves no 
material gain. As a further complication, within mathematics, the concept of mathematical play 
exists and has been operationalized differently by different researchers (Holton et al., 2001; 
Horne et al., 2023; Williams-Pierce, 2019), but typically as a very specific type of play. 

As a transdisciplinary scholar, I felt it was important to leverage the collective knowledge 
about play from diverse perspectives. Moreover, as I examined many frameworks of play, I 
found that they often were oriented to be describing the environment that a person was playing in 
as much as the actions of the player – and in some cases, seemed to imply that environments 
which meet certain conditions demand play. Under certain understandings of play, this is 
sensible. However, this orientation is not useful if one’s goal – as mine is – is to clearly evaluate 
the extent to which the design and implementation of an activity intended to be playful results in 
playful experiences. In other words, in the environment of the undergraduate mathematics 
classroom (or indeed, any classroom), where both playful and non-playful behaviors are 
possible, how do we differentiate between those? So, to resolve this, I have pragmatically drawn 
on articulations of what play is from diverse authors and perspectives (Bergen, 2015; Callois, 
2001/1961; Csikszentmihalyi & Bennett, 1971; Henricks, 2008; Holton et al., 2001; Huizinga, 
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1949; Salen & Zimmerman, 2004; Sutton-Smith, 1997; Sylva et al., 1976; Williams-Pierce & 
Thevenow-Harrison, 2021) to develop a framework of characteristics of play. 

The Framework 
Within any given scenario – whether designed or naturalistic – a person is likely engaging in 

play if, at some point, their interaction with the scenario meets each of the following criteria: 
1. The person is making non-routine, voluntary, and free choices and/or actions. 
2. The person is experiencing an appropriate level of challenge and/or uncertainty.  
3. The person is experiencing amusement, satisfaction, or excitement.  

In the following subsections, I describe in more detail how these characteristics draw on existing 
literature on play from multiple disciplines and authors. I also suggest (non-exhaustively) a few 
actions we may observe that would indicate that each characteristic is met in a scenario. 

Making Non-Routine, Voluntary, and Free Choices and Actions. Across diverse authors 
and contexts, play is strongly associated with the idea of freedom (Henricks, 2008; Holton et al., 
2001; Huizinga, 1949; Salen & Zimmerman, 2004; Williams-Pierce & Thevenow-Harrison, 
2021). Although play is always bound by some sort of structure – be it an implicit societal 
structure or the more explicit rules of mathematics and games – play is defined by the player’s 
ability to interact with that structure in ways that they choose. Moreover, for these choices to be 
truly free, they must be made voluntarily – they must not be imposed upon the potential player 
by an outside source (Huizinga, 1949; Williams-Pierce & Thevenow-Harrison, 2021). Of course, 
the degree to which a choice or action is taken freely and voluntarily may be challenging to 
determine as an observer. Observing kids at a playground at a public park, perhaps we could 
assume that their choices are all free and voluntary. In a classroom or even a playground attached 
to a school, this is a harder assumption to make – the rules of schools and classrooms make them 
spaces where students’ freedom and agency are inherently reduced. 

To allow for identification of playful behaviors under these environments of reduced 
freedom, I draw particularly on discussion by Sylva et al. (1976) about the relationship between 
routines and play. Sylva et al. (1976) articulate this by stating that play offers an “invitation to 
the possibilities inherent in things and events. It’s the freedom to notice seemingly irrelevant 
detail” (p. 396). When operating under a routine, we do not give ourselves space to notice 
alternate possibilities (Sylva et al., 1976). In the undergraduate mathematics classroom, this is 
reflected in the difference between exercises and problems (cf. Schoenfeld, 1985): exercises, like 
completing a worksheet of u-substitution integration tasks after instruction on the technique, 
involve implementing routines and therefore have less space for freedom. Problems, like asking 
students who have not yet learned about integration to estimate the area under a curve, are non-
routine and create more space for students to freely choose their strategy. 

This is not to say that play never involves routine behaviors. Consider a pitcher’s role in a 
baseball game – while the pitcher has practiced their routine for throwing fastballs and 
curveballs, how they implement these pitches in response to the state of the game and the actions 
of the offense is, at least occasionally, non-routine. In the undergraduate mathematics classroom, 
consider the prior example of asking students to estimate the area under a curve. As part of this 
task, students will likely compute the areas of figures they have well-established routines for – 
but the choices of how to deploy those routines is subject to students’ choices. So, the notion of 
non-routine is useful to identify actions which are done freely and voluntarily in environments 
with reduced freedom, like the undergraduate mathematics classroom. 

At this stage, I suggest three observable actions which would indicate to me that the person is 
making non-routine, voluntary, and free choices and/or actions. The first is when a person takes 
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an action with an indication that the action is exploratory and that the outcome will be unknown. 
Routine actions inherently have at least expected outcomes, so an action taken with an explicit 
reference to uncertainty of outcome is indicative of a non-routine action. Second is when a 
person takes actions to test or push the bounds of a scenario. Testing and potentially adjusting 
the limitations of a scenario is reflective of asserting freedom over the scenario by specifically 
challenging it. An example of this is in the case of Calvin and the educational mathematical 
game Boone’s Meadow (Wisittanawat & Gresalfi, 2021). While playing the game, Calvin tested 
the bounds of the scenario by seeing if he could hijack a vehicle and flying in different ways to 
see how the outcome of the game changed. Finally, the creation of individual goals would also 
indicate free action. These goals could be expressed explicitly as a goal or could be any desire to 
accomplish something that is not specifically implicated by the scenario. 

Appropriate Level of Challenge or Uncertainty. In order to engage in playful behavior in a 
scenario, a person should find some challenge within that scenario (Csikszentmihalyi & Bennett, 
1971; Salen & Zimmerman, 2004) or some uncertainty of how to act within that scenario (Holton 
et al., 2001; Salen & Zimmerman, 2004). Whether the play is provoked by challenge or by 
uncertainty roughly corresponds to Callois’ concepts of ludus and paidia (2001/1961). When the 
play is provoked by challenge, the player is trying to accomplish some sort of specific goal 
within (and to some extent, perhaps against) the scenario – which is inclusive of the rule-based 
play of ludus. Conversely, if the play is provoked by uncertainty, the player may simply be 
trying to explore or understand the scenario and what the bounds of the scenario are – which 
would be more in alignment with the improvisational play of paidia. Of course, these are not 
mutually exclusive. How challenging a scenario is can fluctuate depending on a person’s 
uncertainty, and the process of exploring uncertainty may lead to finding or creating challenges. 

For this, I assert three observable actions which may indicate that a person is experiencing an 
appropriate level of challenge or uncertainty. The first is self-explanatory: a direct statement or 
express that they are experiencing challenge or uncertainty, like saying “this is so hard” or “I’m 
not sure if this will work.” The second regards the potential of frustration. Sylva et al. (1976) 
indicate that play comes with a “moratorium on frustration” (p. 245), but Holton et al. (2001) 
suggest that frustration is actually a common feature of play. Indeed, in my own experiences, it is 
typical that working on appropriately challenging tasks will involve some frustration, even as it 
gives way to excitement when a ‘lightbulb moment’ is achieved. So, I draw on Holton et al. 
(2001) to suggest that frustration may be experienced while engaging playfully in a scenario – 
but, if it is experienced, it is not an obstacle to the person’s engagement. What this would 
manifest as, then, is that a person showing signs of frustration persists in the task.  Finally, I 
suggest that if the person makes multiple attempts at interacting with the scenario – by changing 
an action midcourse, somehow resetting the scenario, or otherwise repeating their experience 
with the scenario – this indicates an appropriate level of challenge and/or uncertainty. In the 
world of games, this may be reflected in restarting a level or loading an earlier save file before a 
certain action was taken; in the world of mathematical problems, this could involve crumpling up 
a sheet of paper or erasing everything on a whiteboard up to a certain point.  

Experiencing Amusement, Satisfaction, or Excitement. The affective component of play – 
that is, the idea that play is fun – is broadly acknowledged (Csikszentmihalyi & Bennett, 1971; 
Henricks, 2008; Sutton-Smith, 1997). In my view, it is minimized and under-addressed in 
importance in most frameworks of play. Indeed, many of the definitions and frameworks did not 
mention fun; some who did mention fun did so only to state that fun alone is insufficient to 
understand play (Csikszentmihalyi & Bennett, 1971). I would argue, however, that if a person is 
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engaging in free action and experiencing a challenge or uncertainty, but is not “having fun,” then 
they are not engaging in play. Therefore, if the goal of observing an experience is to determine if 
that experience was playful, then whether they are having fun ought to be considered. Of course, 
fun is too broad a concept, so I suggest that having fun can be operationalized as experiencing 
amusement, satisfaction, or excitement.  

These do not represent the total of all feelings that can be experienced during play – I have 
already mentioned frustration, and other emotions like annoyance or even sadness can occur 
while playing. My exclusion of these experiences in this framework is not to say that they are 
never part of play. However, if the experience of frustration, annoyance, or sadness never gives 
way to amusement, satisfaction, or excitement, that it would be incorrect to characterize that 
activity as play. In other words, play need not always be fun, but at some point, it must. 

Even just with the experiences of amusement, satisfaction, and excitement, there are limits to 
how I might observe these. People do not always outwardly express these emotions even as they 
are experiencing them. Moreover, the way emotions are expressed and recognized varies from 
culture to culture and person to person (Elfenbein & Ambady, 2003), although there is some 
evidence that expressions of joy may be broadly recognized (Sauter et al., 2010). Observing for 
this may be particularly challenging, and is the part of this framework most in need of further 
development. For now, I draw on things I am likely to do when I am enjoying my experience of 
playing a game and/or solving a mathematical problem: smiling, laughing, and engaging in 
celebratory moves (e.g. a fist pump, a ‘woop’, or self-applause). 

Playful Mathematical Experiences, Mathematical Play, and Mathematical Problem Solving 
Given my framework for play, I define a playful mathematical experience as an experience 

where a person or group of persons is (a) interacting with mathematical rules, ideas, and objects, 
and (b) where their interaction otherwise meets each of the three characteristics in the prior 
subsection. Playful mathematical experiences thus overlap with several different kinds of 
experiences discussed in this manuscript (Figure 1). Here, I wish to interrogate the relationship 

Figure 1. An Euler diagram showing the relationship between playful mathematical experiences (dashed lines) and 
other concepts discussed in this manuscript. 
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between playful mathematical experiences and mathematical play, and how these relate to 
authentic mathematical experiences. 

Mathematical play is conceptualized differently by different scholars (Holton et al., 2001; 
Horne et al., 2023; Williams-Pierce, 2019). I start by considering those of Williams-Pierce 
(2019) and Holton et al. (2001), which I see as having the most differences from my definition of 
playful mathematical experiences. Williams-Pierce (2019) defines mathematical play as 
“voluntary engagement in cycles of mathematical hypotheses with occurrences of failure,” (p. 
591), where cycles of mathematical hypotheses entails “shift[ing] regularly between generalizing 
activity and generalizations…in which players learn to adjust their behavior and 
conceptualization” (p. 592). Holton et al. (2001) conceptualize it more generally: 

By mathematical play we mean that part of the process used to solve mathematical 
problems, which involves both experimentation and creativity to generate ideas, and 
using the formal rules of mathematics to follow any ideas to some sort of a conclusion. 
Mathematical play involves pushing the limits of the situation and following thoughts and 
ideas wherever they may lead. (p. 403) 

Both of these invoke ideas of freedom and exploration within mathematics, specifically with the 
solving of mathematical problems or development of mathematical concepts. I drew on both 
characterizations of mathematical play articulate in developing my own understanding of playful 
mathematical experiences.  

Horne et al. (2023), meanwhile, operationalize mathematical play (reframed as playful math) 
in a way which is very well-aligned with my framework. In examining mathematicians’ problem 
solving for evidence of play, they looked for evidence of three characteristics: “(a) agency in 
exploration or goal accomplishment, (b) self-selection of mathematical goals, and (c) a state of 
immersion, investment, and/or enjoyment” (Horne et al., 2023, p. 99). The first two of these 
characteristics align with my first characteristic of play, and their third characteristic lines up 
well with my third characteristic. 

However, each of Williams-Pierce (2019), Holton et al. (2001), and Horne et al. (2023) 
specifically locate mathematical play within or very tightly adjacent to mathematical problem 
solving. While mathematical problem solving is a fertile ground for playful mathematical 
experiences, my definition for playful mathematical experiences is more broad. By way of 
example, consider a group of people who are telling a series of mathematical jokes to one 
another. Their experience may be playful in that (a) creating the jokes to tell is likely a non-
routine process involving free exploration of different ideas, (b) the group members may view it 
as a “challenge” to try to get a bigger laugh with each joke, and (c) the shared laughter is an 
indication of their enjoyment of the situation. Since making jokes about mathematics involves 
interacting, in some manner, with mathematics, this would qualify as a playful mathematical 
experience. But, unless the jokes also represent a sequence of well-reasoned mathematical 
argumentation, it would likely not be construed as mathematical play. 

 I am motivated by the authenticity of play to mathematics. Based on the substantial overlap 
between these different characterizations, it seems to me that nearly any playful mathematical 
experience which involves doing mathematics (i.e., that is an authentic mathematical experience) 
would necessarily fit these definitions of mathematical play. Indeed, as I proceed in developing 
this framework, I am looking to mathematical problem solving experiences to better understand 
what play might look like in mathematics. However, I think it is important to include other ways 
of playing with mathematics, like my previous joke-making example, within the definition of 
playful mathematical experiences for two reasons.  
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First, students may hold beliefs about mathematics which preclude the possibility of playing 
in mathematics classrooms (cf. the case of Keegan in Wisittanawat & Gresalfi, 2021) or have 
anxiety about mathematics. Such students may not be ‘ready’ to engage playfully with 
mathematics while doing mathematics until they become more comfortable with doing 
mathematics itself. If playfulness is a goal, it may be useful to use activities which provoke 
playfulness but which are not necessarily authentic to mathematics as a bridge. In the classroom, 
this could involve an activity sequence which first prompts students to play more generally, then 
adding mathematics to their play, before finally inviting them to engage in mathematical play 
through mathematical problem solving.  

Second, in a humanized mathematics classroom, students must be able to “draw upon all of 
their cultural and linguistic resources” and to “see aspects of themselves” (Gutiérrez, 2018, p. 1) 
in their mathematical work. To me, this means that students are not just invited to participate in 
existing practices of mathematicians, but are also invited to bring practices from other 
communities to bear on mathematics. Since one of my motivations for integrating play into 
undergraduate mathematics classrooms is to contribute to rehumanizing them, then it seems 
appropriate to include space for playful mathematical experiences beyond doing mathematics. 

Discussion 
The framework of play and definition of playful mathematical experiences in this manuscript 

started being developed when I, as a mathematics educator and gamer, first noticed that the traits 
of many of my favorite games were much the same as those of my favorite mathematical 
experiences. Since then, I have developed my understanding of play and playful mathematical 
experiences through the careful transdisciplinary examination of diverse sources of literature. 
While this has been a substantive endeavor, this is still an early draft of this framework, and 
further development is needed before it is used in the evaluation of designed learning activities. 
Even in between my first articulation of this framework and the writing of this manuscript, 
recently-published works (i.e., Caldwell et al., 2023; Horne et al., 2023; Su, 2020) led me to 
further develop my ideas. 

The greatest weakness of my framework for play and my associated definition of playful 
mathematical experiences is that they are informed primarily by research literature and 
secondarily by my own experiences, and they are not yet informed by data. To address this, I am 
presently in the process of conducting a study which will use this framework to examine 
students’ interactions with digital puzzle games and mathematical problems in a clinical 
interview environment. From this process, I expect this framework will evolve and deepen 
greatly. In particular, this process should allow me to better understand the relationship between 
playful experiences in general, playful mathematical experiences, and mathematical play, by 
examining how student interactions are similar and different in more- and less-explicitly 
mathematical situations. Even as a work in progress, I present this framework with the intent to 
prompt mathematicians, mathematics educators, and researchers of mathematics education to 
consider for themselves: what is, can be, and should be the role of play in undergraduate 
mathematics classrooms?  
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Conceptualizing Students’ Ways of Understanding Bijections in Combinatorics 
 

Dru Horne 
University of Georgia 

Pairing and one-to-one correspondences are natural activities, which can be formalized using 
bijections. Despite bijections being central to mathematics, few studies have explicitly attended 
to how students construct, understand, and use them. Because bijections show up naturally in 
combinatorial arguments, I situate this work in combinatorics. In this theoretical paper, I 
propose three ways of understanding bijections in combinatorics—relabeling, representational, 
and relational bijections—and discuss possible affordances and constraints of each. I also 
provide combinatorial examples using binomial coefficients to exemplify each way of 
understanding. 

Keywords: Combinatorics, bijection, ways of understanding 

In elementary combinatorics there are two main proof techniques: double counting and 
constructing a bijection or correspondence (Benjamin & Quinn, 2003; Mazur, 2010). While there 
has been work done with counting arguments (Lockwood, 2013; Lockwood et al., 2015; 
Lockwood & Purdy, 2019; Lockwood & Reed, 2020) and double counting proofs (Engelke 
Infante & CadwalladerOlsker, 2011; Engelke & CadwalladerOlsker, 2010; Erickson & 
Lockwood, 2021; Lockwood et al., 2021), there has been little work done with bijections in 
combinatorics. In this theoretical paper, I define a bijective way of thinking and introduce three 
ways of understanding (Harel, 2008a) bijections in combinatorics: relabeling bijections, 
representational bijections, and relational bijections. For each of these, I provide one or more 
examples to illustrate the way of understanding and discuss the potential affordances and 
constraints. 

Literature Review 
In early childhood, one-to-one correspondences play an important role in children learning 

number concepts such as the cardinality principle and exact number. Mix (2002) found that 
children 12-38 months can experience and use one-to-one correspondences in a wide range of 
contexts and that certain types of correspondences may serve as bridging activities for students to 
develop numerical equivalence. For example, pairing objects that have some conceptual 
relationship, such as frogs and lily pads, serve as cues of equinumerosity for young children 
(Muldoon et al., 2005). Different types of correspondences may foster different skills. For 
example, item-to-item correspondences help with set pairing, whereas word-to-item 
correspondences help children with cardinality (Muldoon et al., 2009). However, just because 
children can understand cardinality does not mean they understand exact number, i.e., cardinality 
is an invariant for equinumerous sets (Muldoon et al., 2009). In fact, the relationship between 
exact number, cardinality, and one-to-one correspondences is complex (e.g., Izard et al., 2014; 
Sarnecka & Carey, 2008; Sarnecka & Gelman, 2004; Sarnecka & Wright, 2013). 

As students progress in mathematics, one-to-one correspondences are formalized as the study 
of bijections, which are important for discussing cardinality of infinite sets, defining equivalent 
mathematical objects via isomorphism, and in making combinatorial arguments. In regards to 
infinite sets, research has found that students experience paradoxes related to arithmetic with 
infinite sets (Mamolo, 2014), which may arise because students rely on their knowledge of finite 
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sets to reason about infinite sets (Fischbein et al., 1981; Tirosh, 1991). Moreover, students can 
often hold multiple conflicting criteria for comparing infinite sets, including bijection, single 
infinity, and subset inclusion (Tsamir, 1999). In fact, the presentation of two infinite sets can 
affect whether students reason using bijections or some other criterion (Tirosh & Tsamir, 1996; 
Tsamir & Tirosh, 1992). Even when students use bijections as a comparison method, they often 
rely on informal arguments rather can constructing explicit bijections (Hamza & O’Shea, 2011), 
which may be because students are limited in the bijections they can construct based on the 
functions they know (Tsamir & Dreyfus, 2005).  

In combinatorial contexts, the research show mixed results related to students’ bijective 
reasoning. Muter and Uptegrove (2011) found that a group of high school students could 
recognize and connect different combinatorial problems, such as pizza toppings and block 
towers, by constructing bijections, whereas Mamona-Downs and Downs (2004) found that 
students did not construct bijective solution unless supported in this approach, and even then 
“students did not make a clear distinction between the bijection itself and the result it was 
justifying (i.e., the number of elements of the two sets corresponded are equal)” (p. 244).  

One-to-one correspondences are a natural object of study that are central to young children’s 
development of number and play an important role in comparing infinite sets. Furthermore, 
bijections are central to discussing equivalent mathematical objects because an isomorphism (of 
graphs, groups, rings, topological spaces, etc.) is a structure-preserving bijection. I hypothesize 
that studying bijections in combinatorics, where the sets are typically discrete and easily 
visualized or listed, may provide students a space to understand and reason with bijections, 
injections, and surjections that could be drawn on and leveraged in other mathematical domains. 

Theoretical Perspective 
In this theoretical paper, I draw on Harel’s dual constructs ways of understanding and ways 

of thinking (Harel, 2008a, 2008b). According to Harel, “a person’s statements and actions may 
signify cognitive products of a mental act carried out by the person. Such a product is the 
person’s way of understanding associated with that mental act” (Harel, 2008b, p. 490, emphasis 
original). For example, a solution is a product of the problem-solving mental act, and a particular 
proof of an assertion is a product of the proving mental act. Thus, a particular solution or proof is 
a way of understanding with respect to the corresponding mental act. Instead of focusing on the 
product of a single mental act, one can also look across ways of understanding to identify a way 
of thinking: “Repeated observations of one’s ways of understanding may reveal that they share a 
common cognitive characteristic. Such a characteristic is referred to as a way of thinking 
associated with that mental act” (Harel, 2008b, p.490, emphasis original). Sticking with the 
previous example, problem-solving strategies and proof schemes (Harel & Sowder, 1998) are 
examples of ways of thinking associated with the mental acts of problem solving and proving, 
respectively. These constructs are central to Harel’s Duality-Necessity-Repeated Reasoning 
(DNR) instructional framework, and the Duality Principle notes that ways of understanding and 
ways of thinking are interdependent. As students engage in a mental act, they may use a way of 
understanding multiple times, which can contribute to the development of a way of thinking. 
Similarly, they may draw on a way of thinking to understand a particular idea or problem. 

Researchers have used Harel’s ways of thinking and ways of understanding to make sense of 
students’ counting activity in enumerative combinatorics. Lockwood has repeatedly concluded 
that attending to sets of outcomes is an important way of thinking (Lockwood, 2014; Lockwood 
et al., 2017; Lockwood & Gibson, 2016). She calls this way of thinking a set-oriented 
perspective, which she has defined as “a way of thinking about counting that involves attending 
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to sets of outcomes as an intrinsic component of solving counting problems” (p. 31). In her 
dissertation, Halani (2013) identified three broad categories of ways of thinking about 
combinatorial solution sets. Lockwood and Reed (2020) defined an equivalence way of thinking, 
which allows a student to frame “division as a way of accounting for duplicate outcomes, 
allowing a counter to identify such duplicates as belonging to the same equivalence class” (p. 4). 
This paper extends this work into bijective combinatorics.  

Three Ways of Understanding Bijections in Combinatorics 
Here, I will define and discuss three ways of understanding bijections in a combinatorial 

context: relabeling, representational, and relational. For each, I will present one or more 
combinatorial examples and discuss the potential affordances and constraints of thinking about a 
bijection from the perspective of each way of understanding. These three ways of understanding 
are associated with a bijective way of thinking, which is marked by a student conceptualizing 
two sets (possibly the same) and imagining how the elements of one set can be transformed or 
mapped to elements of the other set via a bijection. 

Relabeling Bijections 
Suppose two students are asked to solve a coin flipping problem such as the following: “If a 

coin is flipped five times in a row, what are the possible outcomes?”. Student A solves the 
problem by denoting the possibilities of a single flip, using “H” for heads and “T” for tails. 
Student B, in contrast, decides to denote heads as “1” and tails as “0”. Each student lists the 32 
possible outcomes, and the question arises as to whether their answers are the same. The two 
solutions can be related to each other using a bijection that changes “H” to “1” and “T” to “0” 
and vice versa, and thus the students realize they have the same answer differing only by 
notation. This is an example of a relabeling bijection, which is a bijection that connects two sets 
by changing the surface features of those sets, typically by changing notation. 

Relabeling bijections can serve as a starting point for students to recognize situations as 
similar, which can be leveraged to connect different representations. This way of understanding 
bijection may serve as a starting point into an intuitive understanding of injectivity, surjectivity, 
and invertibility, since the function is relatively simple. Additionally, relabeling bijections may 
be a way to begin to discuss permutations as a bijection from a set to itself. However, if a student 
only understands bijections as relabeling, it may difficult for them to construct a bijection 
between two sets whose elements differ in more substantive ways, such as subsets and lattice 
paths (discussed below).  

Representational Bijections 
In combinatorics, students often encounter or are introduced to a variety of different 

problems whose solutions are the same. As an example, let A be the set of k-element subsets of 
an n-element set, let B be the set of binary strings of length n with exactly k ones, and let C be 
the set of north-east lattice paths1 from (0, 0) to (k, n – k) (see Figure 1). The cardinality of each 
set is !!"". This can be shown by starting with the standard combinatorial definition of !!"" as 
counting the number of k-element subsets of an n-element set. Thus, by definition, |$| = !!"". To 
also see that sets B and C have the same cardinality, I will construct two bijections. 

The first bijection is between sets A and B. A k-element subset of A can be mapped to a 
binary string of B by labelling the n positions of the binary string 1 through n and placing a 1 in 

 
1 A north-east lattice path is a path on an integer lattice involving the steps (0, 1) and (1, 0). 
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the ith position of the binary string if the ith element is in the subset and a 0 otherwise. So, if n = 6 
and k = 3, the subset {2, 4, 5} will map to the binary string 010110 and the subset {1,2,3} will 
map to 111000. Similarly, a given binary string can be uniquely mapped back to a subset by 
inverting the process, i.e., 110110 maps to {1, 2, 4, 5} and 000100 maps to {4}. Since bijections 
preserve cardinality, |.| = !!"". 

 

 
Figure 1. Two examples of a north-east lattice path from (0,0) to (3,3). 

Finally, I will construct a bijection between sets B and C. Any binary string of B can be 
relabeled by changing each 1 to an “E” and each 0 to an “N,” which can be turned into a lattice 
path by reading left to right and taking the step (0, 1) when there is an “E” and (1, 0) when there 
is an “N.” For concreteness, I will continue to let n = 6 and k = 3. Consider the binary strings 
110001 and 010101. These map to the binary words EENNNE and NENENE, which are exactly 
the two lattice paths shown in Figure 1. This mapping can be reversed by following the steps in 
reverse. 

These two bijections are examples of what I call representational bijections. A 
representational bijection is a bijection between two sets represented in mathematically different 
ways that may afford different operations and ways of reasoning. In our example above, the 
elements of set A are subsets, which can be operated on naturally using intersections, unions, 
complements, and symmetric differences. In contrast, the elements of set C are lattice paths, 
which are geometric objects that can be reflected, rotated, and assigned an area (such as the area 
between the lattice path and the x-axis). It is not clear what the area of a subset would be, nor 
how to take the symmetric difference of a lattice path; however, it may be possible to interpret 
these through a representational bijection. 

This way of understanding bijections enables students to connect different representations, 
which may allow them to better understand what a combinatorial expression such as !!"" counts. 
Additionally, having a range of contexts in which to interpret combinatorial expressions afford 
students choosing a representation with which they are comfortable working, which could 
support them in proving combinatorial identities (Lockwood et al., 2021). In the examples above, 
I have demonstrated bijections, and thus I know that every set can be counted by !!"". However, 
that does not answer the more fundamental question, which is, if I encounter a new context or 
representation, how do I recognize it as !!""? By examining the examples above, one can look for 
similarities and differences. In each case, there are n slots to be filled and two choices to be 
made:  

1. Set A: To construct a subset of A, one decides whether to include the first element, the 
second element, and so forth. In order to get a subset with k elements, one must choose 
which k elements are included, at which point the n – k excluded elements are 
determined. 
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2. Set B: To construct a binary string, one decides where to put a 0 or a 1. To ensure the 
binary string is an element of B, one has to choose k places to put a 1, which forces where 
a 0 can be put. 

3. Set C: At each step of the lattice path, a choice to go east or north is made. The given 
constrains of the lattice (starting at (0, 0) and ending at (k, n – k)) imposes the restriction 
that k norths must be chosen, which will determine where the east steps must be. 

In each of these cases, one decides between two choices (include or not include, 1 or 0, and east 
or north), and once k choices of one type have been made, the remaining n – k choices must be of 
the other type. This affords a student being able to look for similar reasoning in other problems 
and contexts, which they connect to this counting process (Lockwood, 2013), and by extension, 
to !!"". 

When a combinatorial expression, such as !!"", is examined across the multiple contexts and 
representations, one can gain insight into the underlying counting process. However, this does 
not immediately afford an understanding of how a set counted by !!"" can be structured: Is there 
some recursion that determines the set? Does the set exhibit some symmetry? Can the set be 
restructured and counted according to some property? Being able to understand how a set can be 
structured, partitioned, refined, and counted is important for proving combinatorial identities, a 
student with a representational way of understanding bijections may overlook these finer 
processes.   

Relational bijections 
One goal of combinatorics is to understand the structure of the sets counted by a 

combinatorial sequence. As mentioned above, !!"" counts subsets, binary strings, and lattice 
paths; however, what properties do these objects have and how are they related to the binomial 
coefficients that count them? To be more concrete, I will discuss two binomial identities and 
highlight how each identity captures some information about the structure of sets counted by !!"". 

The first identity is !!"" = ! !
!#"". If I take the left-hand and right-hand side to be the 

cardinality of two sets, then this identity suggests a symmetry among the sets. To illustrate this, 
let us interpret these coefficients as counting the k-elements subsets of an n-element set and as 
counting the (n – k)-element subsets of the same n-element set. Taking the set complement (with 
respect to the n-element set) defines a bijection between the two sets, because the complement of 
k-element subset is an (n – k)-element subset and vice versa. What is this bijection really saying 
about objects counted by !!""? It indicates that if any k elements are chosen, then the other n – k 
element are determined. Thus, I could either count which k elements are included in a subset or 
count which n – k elements are excluded from the subset, which indicates a type of symmetry of 
!!"". 

As a second example, consider the identity !!"" = !!#$" " + !!#$"#$". Once again, I interpret 
these in the contexts of subsets in order to describe a bijection. The left-hand side counts the 
number of k-element subsets of an n-element set while the right-hand side counts the number of 
subsets with either k or k – 1 elements chosen from an n – 1 element set. Given a k-element 
subset of n-elements, it either contains the nth element, or it does not. If it does not contain the nth 
element, then it is already a k-element subset of an (n – 1)-element set and can be mapped to 
itself. Otherwise, it contains the nth element and can be mapped to a set counted by !!#$"#$" by 
removing the nth element. This process is reversible and thus defines a bijection. In this case, this 
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bijection illustrates a recursive structure of the sets counted by !!"", since each element of this set 
can be built from an element of the set counted by !!#$" " or by !!#$"#$" as described in the 
bijection. 

Each of these examples illustrate a relational bijection. Understanding a relational bijection 
entails thinking not only about the sets being counted but also about a property of the sets being 
counted, which can be related to some other property of the sets. This provides additional 
information about how sets counted by combinatorial expressions, such as sets counted by !!"", 
are structured. In the first example, the bijection provided information about the symmetry 
between the subsets of an n-element set, i.e., one can either focus on which elements the set 
contains or which elements the set does not contain. In the second example, the bijection 
describes a systematic process for building new subsets out of old subsets; thereby, it defines a 
two-variable recurrence for binomial coefficients.  

Conceiving of bijections in this way pushes students to go beyond pairing two sets and 
arguing they are equinumerous. It pushes students to examine what properties the bijection may 
be preserving or what structure the bijection is hinting at, e.g., a partitioned structure, a 
refinement, or a recursive structure. All of these properties are related to size and cardinality, 
since that is what a bijection is guaranteed to preserve. However, this way of understanding may 
provide a chance for students to build intuition about preserving structure and connecting 
(counting) processes, which could be leveraged in future discussions about isomorphisms of 
rings, fields, and groups, homeomorphisms of topological spaces, and isometries in geometry.  

One constraint with this way of understanding relates to the difficulty of constructing these 
types of bijections. A priori, it is not clear what property of the sets one should be exploring and 
trying to connect, and thus it takes time to explore and understand the sets. 

Discussion 
These three ways of understanding bijection are not mutually exclusive; it is possible for a 

student to simultaneously understand a bijection in two or more of these ways. To illustrate, I 
return to the identity !!"" = ! !

!#"". Instead of interpreting the binomial coefficients as counting 
subsets, I could interpret them as counting binary strings. Then, !!"" counts the number of binary 
strings of length n with k ones, and ! !

!#"" counts the number of binary strings of length n with  
n – k ones. One can form a bijection between these two sets by interchanging zeros and ones. 
Certainly, this bijection can still be understood as relational for the reasons noted above; 
however, a student may not attend to a counting process and instead see this bijection as 
relabeling. Alternatively, a student could interpret !!"" as counting binary strings and ! !

!#"" as 
counting k-element subsets. In this case, a bijection between the two sets may be interpreted as 
(1) relational if the student understands how the bijection is relating the structuring of the two 
sets; (2) representational if the student sees subsets and binary strings as affording different 
mathematical ideas and approaches; and (3) relabeling if the student has internalized the 
relationship between binary strings and subsets and views the bijection as changing notation 
from binary strings to a more familiar context of subsets (or vice versa). Thus, it is important to 
attend to how the student is reasoning about the bijection in order to understand what way of 
understanding the student may have. 

I see these ways of understanding as hierarchical in the sense that there is a natural 
progression from relabeling to representational to relational. Relabeling bijections are 
conceptually easier for students to construct and reason about since they usually involve 
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notational changes, which can be written down explicitly and properties like injectivity and 
surjectivity are easier to check. Representational bijections can be more challenging because 
different sets of objects have different properties, and it is not immediately obvious what the 
relationship between two sets of objects is, if any. Thus, an instructor may leverage relabeling 
bijections to begin a discussion of representational bijection. For example, a bijection between 
lattice paths and binary strings can be thought of as a relabeling bijection where each east step is 
relabeled as 1 and each north step is relabeled as 0. However, a discussion can be focused around 
how the lattice paths and binary strings are mathematically different by focusing on, for example, 
the geometric properties of lattice paths and whether there are corresponding properties in the 
binary strings. Discussing properties and operations of a set can progress to relational bijections. 
For example, a student may wonder what happens to a lattice path that is reflected across the line 
y = x. Using the representational bijection, a student could convert each lattice path and its 
reflection to binary strings and recognize that the two binary strings have their zeros and ones 
swapped, i.e., the ones in the first binary string are precisely the zeros in the second binary string 
and vice versa. With some further exploration or guidance, this could lead to a justification of the 
identity !!"" = ! !

!#"" using binary strings and using lattice paths. 
In this paper, I have provided a theoretical account of three ways of understanding bijections 

in combinatorics: relabeling, representational, and relational. I provided combinatorial examples 
to exemplify each way of understanding, and I discussed some potential affordances and 
constraints of reasoning with each type of bijection. My hope is that these ways of understanding 
can serve as a foundation for future empirical research and conceptual analyses, both to provide 
evidence and to suggest refinements and additions to these three categories. Moreover, 
conceiving of combinatorial bijections in terms of relabeling, representational, and relational 
provides one avenue for designing tasks to target a bijective way of thinking in combinatorics. 
By elaborating ways of understanding bijections in combinatorics, I hope to inspire thought and 
research into bijections and how this research can be connected to other areas of mathematics 
education research, such as research in combinatorics education, functions, equivalence and 
sameness, and topics such as isomorphism, homeomorphism, and isometry. 
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Ways of Reasoning About Inverse Functions 
 

Erin Wood 
University of Georgia 

Prior research on student understanding of inverse function has primarily focused on deficits in 
these understandings without explicitly addressing the mental actions and operations that 
researchers or instructors would like students to engage in. In this report, I present three ways of 
reasoning about inverse functions: a covariational approach, a mapping approach, and a set 
theoretic approach. I argue that all three entail productive ways of thinking about inverse 
functions, and that the coordination of the three can support students in reasoning about inverse 
functions in a variety of contexts. 

Keywords. Conceptual Analysis, Inverse Functions, Precalculus 

To intentionally design curriculum and plan instruction that targets the development of strong 
mathematical meanings on a particular topic, mathematics educators must first decide what 
specific mathematical meanings are most beneficial for students to construct (Steffe, 2007; 
Thompson, 2013). This includes a need to understand the mental operations and ways of thinking 
that are entailed in these desired ways of reasoning (Thompson, 2008; Thompson, 2013). 
Previous literature has primarily focused on student difficulty with inverse functions instead of 
providing a coherent description of how someone might reason productively about them. There 
is ample evidence that students often do not have coherent meanings for inverse function across 
contexts, but there are few detailed descriptions of what coherent meanings might entail. In this 
paper, I propose three ways of reasoning about inverse function and argue that all three are 
compatible with each other and useful for students, and that they should be targeted in teaching.   

Literature Review 
Although many researchers have studied student learning and understanding of function (e.g., 

Breidenbach et al., 1992; Carlson, 1998; Monk, 1992; Doorman et al., 2012) there has been less 
of a focus on inverse function in particular. Early work by Even (1990; 1992) examined the use 
of the metaphor of “undoing” to understand inverse function and several research groups have 
used characterizations of students’ conception of function developed by Breidenbach et al. 
(1992) to extend to the context on inverse functions. Breidenbach and colleagues defined an 
action versus process conceptualization of function, where an action level of function involves 
the manipulation of objects (either physical or mental) and might allow a student to plug 
numbers into an algebraic expression to calculate a result but would limit the student to consider 
the result of such a calculation separately. A student with a process conception of function thinks 
about functions as processes that transform objects into other objects via some repeatable 
transformation but does not need to calculate any particular values to be able to conceptualize 
this process (Breidenbach et al., 1992). Vidakovic (1996) claimed that students with a process or 
object concept of function can develop concepts for inverse function. She argued that 
coordinating inverse function as the reverse of a function process, as the coordination of two 
function processes to get identity, and as an action of switching x and y and solving for y, is 
necessary for a deep conceptual understanding of inverse function but did not detail how a 
student might coordinate these different ways of thinking about inverse. Engelke and colleagues 
(2005) used the action versus process distinction and argued students who have developed a 
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process view of function understand that this process can be reversed to obtain an inverse which 
would allow them to make sense of inverse function notation such as !!""!($)& = $.  

Oehrtman and colleagues (2008) discussed the implications of an action versus process 
conception of functions, and noted that an action view of functions makes it impossible to reason 
about functions dynamically because each input and output must be considered separately. 
Oehrtman et al. (2008) identified three distinct conceptions of the inverse of a function: as an 
algebra problem, as a geometry problem, and as the reversal of a process. They argued that 
students with an action view of function can understand inverse functions in the context of 
algebra (as a procedure to find the inverse of a given function) and the context of geometry (as a 
procedure to reflect a given graph over the line ( = $), but do not understand why these 
procedures work or their connection to the ideas of composing or reversing functions. In 
contrast, students with a process conception of function can understand the inverse of a function 
to be the reversal of a process, which maps a set of outputs of the original function back to the 
associated inputs (Oehrtman et al., 2008). This way of reasoning requires students to be able to 
consider a function as a general process without having to coordinate individual input and output 
values as would be necessary for students with an action concept of function. 

Paoletti and colleagues (2018) conducted task-based interviews that included contextualized 
and decontextualized inverse function tasks in analytic and graphical representations. Many 
participants tried to use the “switch and solve” procedure in contextualized contexts, which 
proved problematic because switching the variables led to a non-normative relationship between 
the two quantities. For example, when finding the inverse of a function that converts degrees 
Fahrenheit (F) to degrees Celsius (C), interchanging the variables F and C leads to a function 
that does not maintain the standard relationship between Fahrenheit and Celsius. Many of these 
participants concluded that their inverse was not meant to represent the same relationship as the 
original function or were unsure of how to interpret the inverse function that they found. Only 
one student demonstrated what the researchers inferred to be well connected meanings between 
analytic and graphical tasks in decontextualized and contextualized settings. This participant 
used “switching” techniques for all of the tasks, but she identified that she would need to change 
which quantity her variables referred to when switching in the tasks with quantitative context.  

While most research on students’ understanding of inverse functions has focused on the 
deficits and disconnected nature of this knowledge rather than on explicating potential ways that 
students might reason productively, Paoletti (2020) presented an example of a student 
successfully reorganizing her previously disconnected meanings for inverse function. The 
participant originally used switching techniques to solve tasks that did not support her in making 
sense of contextualized inverse function tasks. Throughout the course of the teaching 
experiment, the participant came to understand that a function and its inverse represent the same 
relationship in a contextualized situation, and that the switching and solving technique is used to 
maintain the convention that the quantity seen as the independent variable is represented on the x 
axis. Based on the student’s actions, along with an analysis of research on covariational 
reasoning, Paoletti (2020) provided a detailed conceptual analysis of inverse functions that 
emphasized the invariance of the relationship between the two quantities related by a function 
and its inverse. This conceptual analysis will be discussed in more detail below. 

More recently, Cook et al. (2023) conducted a conceptual analysis on the construct of inverse 
more generally (rather than specific to inverse functions), and proposed three ways of reasoning 
about inverse that can support students’ understandings in a variety of algebraic contexts. Their 
first characterization is “inverse as undoing”, where “inverse is viewed as a relationship between 
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operations” and where “the purpose of the operation (or sequence of operations) in question is to 
undo the effect of the original operation(s)” (Cook et al., 2023, p. 757). They also argued that 
inverse can be thought of as “inverse as a manipulated element” in which students conceptualize 
an inverse as an element rather than an operation, and where this inverse element is “associated 
with a procedure by which a given element is manipulated into its inverse element”)” (Cook et 
al., 2023, p. 757). Lastly, they proposed “inverse as a coordination of the binary operation, 
identity, and set” (Cook et al., 2023, p. 757) where students view inverse as a relationship 
between a pair of elements such that their interaction yields the identity, with whatever binary 
operation is relevant in the given context. This conceptual analysis provides potential ways for 
students to see commonalities in the broader construct of inverse across mathematical contexts 
but does not provide explicit ways that students might reason about particular inverse functions. 

Three Ways of Reasoning About Inverse Function 
To develop the ways of understanding inverse functions presented here, I conducted a 

conceptual analysis.  Conceptual analysis is a method grounded in a radical constructivist 
epistemology that involves a fine-grained examination of the concepts surrounding a particular 
topic (Thompson, 2008). Importantly, the analysis is not situated in the abstract but instead the 
researcher considers how an individual might think about the concepts. Conducting a conceptual 
analysis can be a way to develop answers to the question “What mental operations must be 
carried out to see the presented situation in the particular way one is seeing it?” (von Glasersfeld, 
1995, p. 78).  Thompson (2008) identified conceptual analysis as a fruitful technique for 
describing productive understandings for students to develop, and for examining the coherence 
of different ways of understanding a collection of ideas. To this end, I conducted a conceptual 
analysis on inverse functions to describe potential productive ways for students to reason about 
inverse functions, and to examine the coherence (or lack thereof) of these ways of reasoning. 
Based on my own mathematical understanding and my review of the literature on inverse 
functions, I have identified three distinct approaches to thinking about inverse function: a 
covariational approach, a mapping approach, and a set theoretic approach.  

A Covariational Approach to Inverse Function 
Covariational reasoning, as defined by Carlson et al. (2002), involves “the cognitive 

activities involved in coordinating two varying quantities while attending to the ways in which 
they change in relation to each other” (p. 354). This way of reasoning has been shown to be 
powerful for helping students reason about dynamic situations (Moore & Carlson, 2012), 
exponential growth (Ellis et al., 2012), calculus (Thompson et al., 2013) and trigonometry 
(Moore, 2014). Thompson and Carlson (2017) proposed a covariational meaning for the concept 
of function: 

A function, covariationally, is a conception of two quantities varying simultaneously such 
that there is an invariant relationship between their values that has the property that, in 
the person’s conception, every value of one quantity determines exactly one value of the 
other. (p. 444).  
This construct was extended to define the idea of a “covariational relation” (Paoletti, 2020), 

in which a student has conceptualized two quantities varying together where one quantity varies 
first and the other quantity changes along with the first. This can then become a covariational 
function once the student constructs the property that each value of the first quantity corresponds 
to exactly one value of the second (Paoletti, 2020). A student who reasons about functions from a 
covariational perspective can imagine the first quantity changing and knows that the second 
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quantity will also change correspondingly, without having to think about or calculate actual 
values of either quantity. For example, a student might construct a covariational relation between 
height and volume when considering water being poured into a pool, where they consider the 
height of the water first and then the associated volume at that moment. If the student realizes 
that for any height value, there is a unique corresponding volume, they have then constructed a 
covariational function of volume with respect to the height of the water. 

If a student then were to consider the volume changing first instead of the height, they would 
have constructed an inverse covariational relation (Paoletti, 2020). If they realized that for each 
value of the volume there is exactly one associated value of the height of the water, they would 
have constructed an inverse covariational function (Paoletti, 2020). Once a student has 
constructed both a covariational function and an inverse covariational function to describe the 
same two quantities varying, they can see that both the original function and its inverse represent 
the same relationship between the quantities, and the only aspect that changes is which quantity 
is considered to be varying first, with variation in the second dependent on the variation of the 
first. This does not imply an actual causal relationship between the two covarying quantities, but 
instead refers to the fact that the amount of variation in one quantity that is considered is 
dependent on the amount of variation considered in the other. From this perspective, there is no 
need to consider the inverse relationship as a separate entity from the original relationship, it is 
simply the same relationship viewed from a different perspective.  

In a quantitative context in which one quantity is not uniquely determined by the other, a 
student can still conceive of an inverse covariational relation. For example, imagine that the 
student had instead considered the volume of the water in the pool as time varied, with the pool 
first being drained and then refilled. In this case, each value of the volume of water in the pool 
would correspond to (at least) two different times, one as the pool is emptied and one as it is 
filled. The student can still consider volume varying first with the associated time values varying 
with it, despite the lack of uniqueness. For example, the student can imagine that as the volume 
of water in the pool increases, one of the corresponding time values also increases (becoming 
closer to the time when the pool is completely refilled) while the other decreases (becoming 
closer to the time when the pool started to drain). The mental actions that a student engages in 
when constructing an inverse relation and an inverse function are the same from this perspective, 
and an inverse function can be seen as just a type of relation that happens to fulfill the 
uniqueness property. This flexibility in imagining inverse covariational relations that are not 
necessarily functions is in direct contrast to the way that inverse functions are typically taught, in 
which students learn that functions are not invertible if they are not injective. This may lead 
students to believe that it is impossible to construct an inverse relation in these situations, or that 
these inverse relations would have no use.  

A Mapping Approach to Inverse Function 
 Traditionally, functions are defined as mappings that take each element of a function’s 

domain to exactly one element of the function’s range. To construct the idea of function from a 
mapping perspective, a student must conceptualize two arbitrary sets with some sort of rule that 
takes elements from one set as inputs and gives elements of the other set as outputs, and where 
each possible input maps only to one output. To construct the idea of an inverse function, a 
student must then imagine another function that maps in the opposite direction, taking the 
original function’s output values to the associated input values. To be able to define this map that 
reliably takes an output value to its associated input, the original function must satisfy the 
property that each input maps to a unique output value. A student must see that if this were not 
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the case, there would be no way to determine which input value the inverse function should map 
the output value back to, and thus the injectivity of the original function becomes a requirement 
to define an inverse function. The student can then imagine elements from the function’s domain 
being mapped to elements in the range by the function, and then these elements of the range 
being mapped back to the original elements in the domain when the inverse function is applied. 
The opposite order of applying these mappings will yield the same result, where elements of the 
range of the original function are mapped to elements of its domain by the inverse function, and 
then applying the original function will map these elements back to their “starting point”.  

With a covariation approach to function, the student imagines changes in each quantity 
occurring simultaneously and attends to these changes in relation to each other (e.g., as quantity 
A increases, quantity B decreases). With a mapping approach to function, the student instead 
imagines change from one set to the other (e.g., an element, x, being “transformed” by the 
function to an element, y). Both approaches have an imagined dynamic element, but the types of 
change that are emphasized are fundamentally different. In contexts where students are reasoning 
with actual quantities, often a transformation approach to understanding function is incompatible 
(at least from the perspective of the researcher) because one quantity cannot “transform” into the 
other. Recall the example above where the volume of water in a filling pool is seen as a function 
of time elapsed. This function cannot transform time into volume, but instead simply provides a 
relationship between the values of the two quantities. Additionally, in contrast to the covariation 
approach where the inverse is seen as maintaining the same relationship as the original function 
but from a different perspective, the mapping perspective instead views the inverse as a separate 
function in its own right. Instead of the emphasis being on the sameness of the relationship 
defined by the function, the emphasis is instead on the relationship between the function and its 
inverse, namely that the inverse undoes the action of the original function.  

A Set Theoretic Approach to Inverse Function 
 Relations can also be defined from a set theoretic perspective, as a set of ordered pairs (a, b) 

where the first element in the pairs are elements of a set A and the second element in the pairs 
are elements of a set B. The set A is defined to be the relation’s domain, and the set B is the 
relation’s range. In contrast to the covariation and mapping approaches, there is no mental 
imagery of change or variation, only of static ordered pairs being elements of a relation. From 
this perspective, in order for a relation to be a function, the property must hold that if (a, b) and 
(a, c) are elements of the relation then b and c are the same element of the range. The inverse 
relation would then be the set of ordered pairs (b, a) obtained from reversing the order of the 
pairs in the original relation and thus interchanging the domain and range. This inverse relation 
would be a function if it satisfies the above property. Using this definition to think about 
functions and inverse functions leads to an understanding of inverse as a switching of coordinate 
points. This is useful for mathematical settings that do not involve continuity or that are in 
contexts outside of the real numbers but does not support the use of quantitative reasoning to 
imagine “real life” situations, particularly those in which images of (co)variation are critical. If 
functions are thought of solely as sets of ordered pairs, then there is not a natural way to envision 
how one quantity might change in relation to another. 

Despite these limitations of a solely set-theoretic approach, this approach is in no way 
incompatible with a covariation or mapping perspective. All three perspectives foreground pairs 
of values, but the set theoretic approach does not necessitate the consideration of variation 
between the pairs of values or a transformation from one value to another. From a covariation 
perspective in which two quantities are varying simultaneously, one must keep in mind that for 
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any given value of one quantity there is an associated value of the other quantity, and these pairs 
of values can be seen as the ordered pairs considered from the set theoretic perspective. 
Similarly, the mapping perspective emphasizes that values from the domain are mapped to 
values in the range of a function, and each input/output pair can be seen as the ordered pairs from 
the set theoretic perspective. The set theoretic approach assumes the existence of these pairs of 
values but does not support someone in producing the pairs. In order to produce the pairs, one 
must use either a covariation or mapping approach to function to determine the value of one 
quantity for a given value of another quantity.  

Examples 
Each of the three ways of reasoning described above provide useful ways for students to 

reason about inverse functions, and it is the goal-oriented activity that a student engages in that 
dictates which way of thinking is best suited for the situation. For example, consider a 
quantitative context where two quantities covary and in which it can be useful to think of either 
quantity as varying first. A covariation perspective can allow a student to reason flexibly about 
either quantity varying first, with the persistent realization that both ways of thinking about the 
context maintain the same relationship between the quantities. A student reasoning in this way 
can view the graph of a function as also representing the graph of the inverse by considering the 
quantity on the vertical axis as varying first instead of the standard view of values on the 
horizontal axis representing the independent variable. This can allow them to reason about the 
inverse relationship using only a graph of the original function without needing to construct a 
separate graph of the inverse. In this context, a mapping perspective is somewhat less natural, 
and in order to reason about the inverse of a given function a student would be more likely to 
have to construct an equation or graph for the inverse first.  

However, in contexts involving composition of functions, thinking of inverse from the 
mapping perspective is more productive. From a covariation perspective there is usually no 
motivation to consider the inverse relationship as a separate function from the original, and so 
composition is not obvious. From the mapping perspective the fact that a function composed 
with its inverse should yield the identity function becomes clear. If the inverse of a function is a 
function that maps the outputs of a function back to the original inputs, then performing one 
mapping and then the other must always result in whatever the original input was. When students 
are asked to produce a graph of the inverse function based on the graph of a given function, set 
theoretic reasoning is often most efficient. The original graph of the function consists of the 
ordered pairs of that function, and thus a graph of the inverse function must consist of these same 
pairs but in the opposite order. This reasoning can allow a student to bypass the cognitive effort 
of the analogous reasoning from a mapping perspective, where a student might reason that if a 
point on the original graph (x, y) means that the function maps x to y, then the inverse function 
must map y back to x and thus the point (y, x) will be on the graph of the inverse. 

Despite the varying degrees of utility of each way of reasoning in different contexts, the three 
ways of understanding inverse function are in no way incompatible. Consider the example of the 
relationship between temperature measured in degrees Fahrenheit (F) and Celsius (C): C=5/9(F-
32). From a covariation perspective, a student can reason that this equation gives a relationship 
between the measures of temperature in both units and can see a graph of this relationship as 
providing information about the relationship viewed with either quantity varying first. At the 
same time, that same student can know that, as written, the function takes values of temperature 
measured in Fahrenheit and maps them to the appropriate value measured in Celsius, but that 
they can also find a function that takes values of temperature in Celsius and maps the opposite 
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way back to the appropriate value in Fahrenheit. Along with these ways of reasoning about the 
situation, the student can also understand that the original function can be thought of as ordered 
pairs (F,C) that are solutions to the equation above, and that the inverse relationship can be seen 
as the pairs in the reverse order (C, F). Depending on the student’s goal when reasoning about 
this context, any of these three meanings could be drawn on productively.  

Conclusion 
The ways of reasoning described above provide a finer grained description of the mental 

actions involved in reasoning about inverse functions. Previous work has provided hierarchical 
frameworks for the development of an understanding of inverse functions (e.g., the action vs. 
process conceptions of inverse functions), but the details of what an understanding of inverse 
functions entails were underdeveloped. The action versus process dichotomy does not capture 
differences between a student reasoning from a set theoretic, mapping, or covariational 
perspective. While the description of the covariation perspective on inverse functions is not new 
(Paoletti, 2020), the juxtaposition of this perspective with the mapping and set theoretic 
perspectives offers a broader view of productive meanings for inverse function. In addition, the 
conceptions of inverse functions identified by Oehrtman et al. (2008) separated conceptions of 
inverse mostly by the procedures or products of reasoning associated with them (i.e., reflecting 
over a line to graph, switching variables and solving, or understanding inverse as the reversal of 
a process), without specifying the associated mental operations behind the three conceptions. 
This categorization gives us three ways that students must be able to engage with inverse 
functions but is of limited use in specifying how we would like students to think about inverse 
functions. The conceptual analysis conducted by Cook et al. (2023) also identified three ways of 
reasoning about inverse, but in the more general context of inverse not specific to inverse 
functions. I argue that, while there is overlap between the characterization presented in this paper 
and that provided by Cook et al. (2023), there are ways of reasoning that are important for 
productive engagement with inverse functions that are not captured in broader reasoning about 
inverse. For example, a covariational approach to inverse function relies on continuity, and while 
it is a useful way of reasoning for students in these contexts, there is not necessarily an analogous 
form of reasoning when considering inverse elsewhere in mathematics. In turn, the 
characterization of inverse function meanings provided here does not capture meanings about 
inverse functions as an instantiation of the larger idea of inverse, and I have not attended to how 
students understand functions and their inverses as elements of a set. 

A significant limitation of the characterization of inverse function reasoning presented here is 
that it is a first order model (Thompson, 2000) that it is based on my own mathematical 
meanings. It is informed by the extant literature base on student understanding of inverse 
functions and by my interactions with students but has yet to be studied empirically. Future 
research should examine how these ways of reasoning emerge in practice and explore ways in 
which the coordination of these different ways of reasoning might support engagement with 
inverse function tasks. If these proposed ways of reasoning about inverse function maintain their 
viability after empirical research with students, then further research could begin to explore the 
development of these ways of reasoning. Reflected abstraction (Piaget, 2001) can help to connect 
previously disjoint mathematical meanings into one coherent scheme and brings these 
connections to the level of conscious awareness. Therefore, I hypothesize that reflected 
abstraction is a potential way for students to integrate these distinct ways of understanding 
inverse function, and that supporting students in engaging in reflected abstraction may encourage 
coherence in their meanings. 
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In this paper, we motivate the need for a definition of mathematical autonomy that does not 
imply that autonomy is a trait of an individual. Rather, we demonstrate the usefulness of a lens 
on autonomy that captures the characteristics of actions taken in contexts that shape the space of 
sensible action. Shifting from trait to quality of action in context further allows us to analyze how 
actions of groups of individuals doing mathematical work can have qualities associated with 
mathematical autonomy. We ground our theoretical work in data from a longitudinal case study 
of an undergraduate student, Kaleb, whose orientation to mathematical sense-making changed 
sharply across multiple contexts of activity. 

Keywords: Intellectual Autonomy, Mathematical Experience, Introduction to Proof, Upper-
Division  

Introduction 
It has long been documented that U.S. students experience challenges of many sorts in 

moving from lower division courses to upper division courses (Moore, 1994).  A challenge of 
particular interest is the movement from math coursework that is typically more algorithm and 
procedure oriented to upper division coursework that includes more focus on construction and 
validation of arguments and proofs (Selden, 2012).  In light of the centrality of this challenge, a 
subset of the authors conducted a small-scale longitudinal study to investigate students’ 
experiences as they navigated this challenge in the context of a large public U.S. university (Bae 
et al. 2018; Smith et al, 2017).  This study focused on student experience and development of 
agency and autonomy through this transition to proof-intensive coursework in contrast to more 
traditional focus on mastery of proof methods and mathematical notation.  

One way to capture an important facet of productive disciplinary engagement at the 
undergraduate level, and that is related in a key way to the transition from computationally-
focused to proof-intensive work mentioned above, is that when students encounter a challenge in 
their mathematical work, they are able to consult perceived sources of mathematical authority 
(self, teachers, texts, internet resources) as appropriate and needed.  This goal has been 
articulated in various ways in the literature discussing the need for students to be able to move 
away from appeals to external authority in determining validity of arguments (Harel & Sowder, 
1998; Stylianides, 2007; Yackel & Cobb, 1996).  Inglis & Mejia-Ramos (2009) caution that 
looking to authority figures, per se, is not a problem, but concur that students should be 
empowered to establish the validity of arguments through their own sense-making processes. 
That is, collegiate mathematics educators want students to come to see themselves as local 
disciplinary authorities that view the correctness of a proof as something they can assess via 
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mathematical reasoning and mathematical logic, not something that they are dependent upon 
external sources of authority such as teachers or texts in determining.   

In describing these goals for students and instruction, sometimes the term “autonomy” is 
invoked (NCTM, 2000) with the expectation that a goal for mathematics instruction is that 
students become increasingly autonomous as they move through their mathematics coursework 
and beyond. However, there are multiple perspectives on autonomy in the literature.  Two 
prevalent perspectives relevant to students’ educational experiences include psychological and 
intellectual autonomy.  Psychological autonomy (Deci & Ryan, 1980) is linked with self-
determination, free-will, and independence (self-reliance).  Intellectual autonomy, with roots in 
the work of Piaget, casts autonomy as a trait which individuals develop over time, in which 
individuals become increasingly independent in sense-making in the context of the ideas of 
others (Piaget, 1973).  Later, Wood reformulated the notion of intellectual autonomy through a 
communicational lens, building upon Sfard, to focus more upon the individual in relation to 
sources of authority and whether individuals see themselves as sources of authority, capable of 
deciding whether a given mathematical inference is right or wrong (Wood, 2016).   

In this paper, we broaden the original focus on individuals making determinations of right or 
wrong inferences to students remaining personally involved in processes of sense-making (e.g., 
making determinations of whether actions taken in response to mathematical challenges make 
personal sense or not). We further expand from individual sense-making to sense-making in 
group contexts and also consciously expand from other people as trusted external authorities to 
include other kinds of external sources of authority such as internet-based resources, including 
AI systems. 

Research Focus and Question 
The data for our study was collected at a large public U.S. university where students, both 

mathematics majors and minors, first encounter mathematical proof formally in a semester-long, 
problem-based ITP course. In the ITP course, project data collection involves a baseline 
interview, a task-based interview, and a series of homework reflection logs from each of the 15 
participants in the first cohort. Both the mathematics majors and minors in our study 
subsequently enroll in two or more advanced, proof-based mathematics courses to satisfy their 
major or minor requirements. Our longitudinal study involves following students into these 
subsequent courses as well as collecting data from a second cohort of students. Participants were 
selected to represent a broad spectrum of gender, ethnicity, major/minor, and mathematical 
beliefs as measured by the Mathematics Attitudes and Perceptions Survey (Code, Merchant, 
Maciejewski, Thomas & Lo, 2016). In addition to the interview and reflection log data 
mentioned above, roughly a third of the ITP classes were observed by members of the project 
team to provide context for the research team in interpreting the experiences reported by students 
in the interviews.  

The specific question that guided this inquiry in this paper is “Which view of mathematical 
autonomy [trait or quality of action] is more useful in understanding collegiate students’ 
progression through their upper-division mathematical coursework?” 
 

Reconceptualizing Mathematical Autonomy: A New Definition 
Our initial framing of mathematical autonomy followed Yackel and Cobb’s (1996) analysis 

in seeing intellectual autonomy as both a state of awareness of one’s intellectual capabilities and 
a willingness to act on them in engaging in challenging mathematical work. Where Yackel and 
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Cobb conceptualized intellectual autonomy solely within the social practices of mathematics 
classrooms, we needed our constructs to apply also to in–class and out–of–class mathematical 
activity, as college students have great freedom to act (or not) in ways they see as productive. 
Indeed, one key developmental task for college students is deciding how and why to deploy out–
of–class time and activity productively. 

  Through our initial attempts to characterize the mathematical autonomy students were 
displaying at different points in time in their undergraduate experience, we became more attuned 
to the relationship between students and perceived sources of mathematical authority.  That is, 
we came to appreciate how students’ views of themselves as sources of mathematical authority 
was context-dependent, as well as students’ views of themselves in relation to other sources of 
mathematical authority (instructors, other students, family members, or sources on the 
internet).  In developing our definition, we previously analyzed students’ shifting relationships to 
mathematical authorities such as family members (Castle et al., 2022) and students’ usage and 
reflections on the usage of internet sources of authority (Levin et al., 2020).  The working 
definition for mathematical autonomy that we settled upon is: 

 
Mathematical Autonomy: A quality of action that reflects the actor’s active resistance to 
endorsing, following, or replicating the reasoning of mathematical authorities (e.g., texts, 
internet sources, instructors, peers) while engaging in a process of sense-making. The 
quality of action reflects the actor's judgment of using only the external resources 
necessary to continue a sense-making process when they meet a local obstacle and/or 
engaging in sufficient sense-making to transform the reasoning of others/other resources 
to their own. 

Illustrating Features of Mathematical Autonomy: The Case of Kaleb 
In this paper, we have chosen to illustrate the affordances of the new definition of 

mathematical autonomy using the data from a single case, Kaleb.  Kaleb was a mathematics 
major, considering adding computer science as a second major or minor at the time of his 
Introduction to Proof course, when we began interviewing him. He had aspirations of graduate 
school in mathematics, and was possibly interested in teaching. By following Kaleb for multiple 
semesters, we found Kaleb displayed autonomy in different ways depending on mathematical 
context. 

Kaleb’s individual sense-making actions as autonomous in the ITP course 
Early on in Kaleb’s Introduction to Proof course, he showed more autonomous actions by 

actively engaging in sense-making and rejecting passively accepting others’ mathematical 
authority. For example, in the ITP course, Kaleb thought the course was teaching them how 
students could think mathematically, and this aligned strongly with what he thought he needed to 
learn. Kaleb faced some challenges in doing homework, and his actions dealing with those 
challenges showed that Kaleb valued his work and tried to give him some time to think before he 
used other resources:  

Certain ones [tasks] took longer than others, but I found if I got stuck, I could get up, go get a 
drink, come back, play on my phone for a little bit, get my mind off of it. And then, 
looking at it with a fresh start, it would pop out. 

 
He reported that if he had given enough thinking time for himself, he would reach out to 

other resources, such as peers or the course-provided online platform Piazza.  In one instance, 
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Kaleb reported in his homework log that he felt the instructor included more of a hint than what 
he thought necessary on Piazza. This led him to use only the first half of the hint and create his 
own outline for what he needed to do. After the whole process, he still spent another 40 minutes 
to an hour to write a proof. This excerpt shows Kaleb’s autonomous action in this context in not 
accepting an authority figure’s work when he was stuck, but rather trying to understand, 
evaluate, and use only the part he felt he needed to get unstuck.   At this time, he expressed a 
strong view against copying solutions from other sources:  

If you are simply copying the answers down to get answers and submitting them as your 
own, then yes, that is cheating. However, looking for an answer and using it to get your 
own answer is fine… From what I can tell, one of the main themes about the class is 
teaching us how to think more mathematically. If you only copy someone, you let them 
do the thinking for you. You never learn anything and are wasting everyone’s time. 

Kaleb’s joint work actions in ITP and Abstract Algebra as autonomous 
When Kaleb could not solve problems, even though he gave himself some time to think 

about the problem, he consulted external resources. In the ITP course, the most used resource 
was a friend, Steven (pseudonym), whom he met in the ITP course and a statistics course. Kaleb 
and Steven regularly spoke on the phone and on Sunday night, and one explained to the other 
person as well as sometimes sending photos of their work when one of them was struggling.  

Similarly, in Abstract Algebra, Kaleb worked with another friend who was also taking the 
same course in a different section but with the same instructor. Kaleb and the friend bounced off 
ideas with each other, and he described their contributions as 50-50. They sometimes had 
different ways of solving the same problem, and they examined each other’s solutions and were 
content to submit their final work in different ways. We view this excerpt as showing that they 
did not just follow each other’s work, but rather Kaleb’s joint work with his friends in these 
contexts had features of mathematical autonomy.  

Kaleb’s use of internet resources as more and less autonomous, depending on context 
In addition to human resources, Kaleb used internet resources, and his quality of actions 

shifted, depending on mathematical context. Above, we described how Kaleb resisted the 
reasoning of authorities when consulting internet-resources when stuck. However, Kaleb’s 
actions towards internet resources changed in the following semesters. In the Linear Algebra 
course that Kaleb took concurrently with Abstract Algebra, he did not have a peer who could 
work together. He found himself consulting internet sources faster than in the ITP or the Abstract 
Algebra courses. He reported that once he spent 10-20 mins per question, he went to the internet 
to find some solutions. When he found a solution, he reported that 60% of the time he would try 
to make sense of what the found solution said and rewrite it in his own words. However, for the 
other 40% of cases, he reported that he copied the solution as he found it. Kaleb attributed the 
reasons for this action was that there were too many questions, each with little worth of his time 
because they were not a big part of his grade. In this course, homework was 8% of the final 
grade, and only some of the questions were graded in the course:  

I've definitely had it where I don't completely understand what's going on. […] It feels like 
cheating, or it feels…it doesn't feel good, but I know I'll get points and I'll get an okay 
grade. 

Although there were external situations (i.e. having too many questions), it is important to 
note that in this context he started copying solutions from online sources. In the previous 
semester (in the ITP course), he viewed copying down others’ solutions as relinquishing one’s 
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opportunity for sense-making. However, a less autonomous pattern of action emerged in Linear 
Algebra. His larger frame guiding action appeared to have shifted from understanding to earning 
points.  

Later, in Spring 2020, when the COVID-19 pandemic erupted, Kaleb was taking Analysis I. 
Before COVID-19 changed the modality of the course, to do the homework in his analysis 
course, Kaleb said he spent 10 minutes thinking by himself and then left the problem to come 
back later. He said he usually repeated the cycle three times, then he tried to search online if he 
could still not solve the problem. Because the majority of the homework problems were from the 
textbook, Kaleb said it was very easy to find solutions on the internet. Also, he could find the 
solutions from other college courses or other professors. Even though he was using others’ 
solutions, Kaleb reported that before COVID-19, he still valued understanding and sense-making 
because he knew that he would need them for the exams in the short term and for his career in 
the long term.  

When COVID-19 happened, Kaleb had to go back to his home and had to go back to his 
parents’ house, disrupting his sense of space and place (Küchle et al, 2023). His motivation for 
doing homework dropped significantly, which in turn influenced his actions, becoming less 
autonomous. Kaleb admitted that the quality of his actions before and after COVID-19 was 
different. Kaleb did not view his parents’ house as a conducive workplace, and during this time 
he also suffered the loss of family. These changes made him focus on his personal life rather than 
schoolwork, which led him not to submit a few homework assignments, and to use the internet 
more on assignments he did complete. 

Discussion 
The data from the case of Kaleb illustrates how trait-based views of autonomy are 

insufficient for capturing the context-dependency of college students’ actions in proof-based 
courses.  As opposed to having a trait or characteristic of “being autonomous,” Kaleb instead 
showed the actions he took could be cast as more or less autonomous depending on different 
contexts, such as his work with peers in his ITP and Abstract Algebra courses or the differences 
in his ways of using internet-based mathematics resources across his coursework.  Further, as 
opposed to being a trait that increased in amount over time, we uncovered the way that 
circumstances and the constraints of his experience in different courses (e.g., different working 
conditions and course modality due to COVID-19) went hand in hand with him exhibiting less 
autonomous actions.   

Thus, the data we present push the field to reconsider “autonomy” in a way that is not 
synonymous with a trait such as “individual independence.”  As opposed to framing autonomy as 
a trait that an individual may/may not possess, we are able to focus on qualities of actions taken 
during mathematical work.  Our expanded way of framing autonomy focuses on qualities of 
action that align with being able to use resources (including social resources such as peers, and 
material resources such as the internet-based sources) appropriately.  What is considered 
appropriate can align with current norms around collaboration and use of internet-based 
resources, both of which are features of modern work. Especially in the case of internet-based 
resources, the use of AI systems such as ChatGPT to assist in creative work, will only become a 
larger issue.   

Methodologically, instead of assessing the amount of “autonomy” that an individual 
possesses, or even a Likert-based ranking, we can focus on records of specific interactions in 
specific contexts around mathematics. In conducting a case study of an individual over time, the 
focus shifts from differing amounts of “autonomy” across time to differences in the qualities of 
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actions individuals take over time.  One thing that complicates the tracing of qualities of action 
of individuals, is that the context in which actions are taken needs to be accounted for.  The 
norms and practices in different course contexts can help one to explain how/why individuals 
take particular actions.  For this reason, it is important for us to understand more about the 
constraints that participants perceive relative to their actions.  We view this system of constraints 
as what constitutes the mathematical agency - the felt capacity for action - that students perceive 
(Levin, et al. 2020).  

In terms of implications for instruction, our conceptualization of mathematical autonomy 
does not imply a restriction on the material and social resources available to students during their 
reasoning processes. In building the capacity to act with mathematical autonomy when faced 
with mathematical challenges, students need opportunities to engage deeply before abdicating 
their involvement in the resolution by, for example, calling over an instructor or other 
mathematical authority to direct them, or to search on the internet for the task they were working 
on and copying the argument.  In undergraduate education, students’ ability to navigate “stuck 
points” is linked with their ability to continue their engagement in mathematical challenges (Lu, 
2021). Strategies for supporting productive struggle support the ability to act with mathematical 
autonomy (SanGiovanni et al, 2020; Warshauer, 2015).  
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A Conceptual Analysis of Expressing Distances Algebraically within the Cartesian Plane 
 

 Erika David Parr Samuel Lippe 
 Rhodes College Rhodes College 

This theoretical report offers a conceptual analysis of expressing distances on graphs of 
functions in the Cartesian plane algebraically. We frame this mental activity as a connection 
between the algebraic and graphical registers, and describe three key connections it comprises: 
(1) differences express distances between two positions, (2) points are ordered pairs of distances 
from the axes in the Cartesian plane, and (3) equations give the relation between x and y for 
every ordered pair on a graph. We detail the conceptual components of each connection, which 
involve a component from each of the graphical and algebraic registers and an underlying 
interpretation that forges the connection between the two. This conceptual analysis makes 
explicit the complex cognitive steps involved in algebraically expressing distances on graphs of 
functions, with implications for researchers and practitioners using algebraic and graphical 
representations together. 

Keywords: Graphical representations, algebraic expressions, conceptual analysis, Cartesian plane 

The central goal of this theoretical report is to offer a conceptual analysis (Thompson, 2008) 
of the mental activity involved in representing distances between functions graphed in the 
Cartesian plane using algebraic expressions. Many mathematical objects involved in key results 
of undergraduate mathematics are often represented graphically and expressed algebraically in 
textbooks and curricular materials, such as the difference quotient in the limit definition of the 
derivative. Specifically, students’ ability to use algebraic expressions to represent distances 
within graphs may support them in making sense of such representations that are paired together. 
Further, this ability may also assist students in conceptualizing other key results, such as how 
integrals find area under and between curves, and volumes of solids of revolution. In this paper, 
we consider the mental activity involved in expressing distances algebraically by centering our 
discussion around the following task and asking: what are the conceptions involved in 
algebraically expressing the horizontal distance between any point on 𝑦 = √𝑥 − 1 and a point on 
𝑥 = 2 (for all x such that 1 < 𝑥 < 2) in terms of x and in terms of y? (Figure 1). 
 

 

Figure 1. Graph showing a horizontal segment from a generic point (x, y) marked on 𝑦 = √𝑥 − 1 to 𝑥 = 2. The 
length of this segment may be expressed as 2–𝑥 or equivalently as 2 − (𝑦ଶ + 1). 
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Conceptual Analysis of Expressing Graphical Distances Algebraically 
We engage in the process of conceptual analysis consistent with Thompson (2008) as 

describing “what students might understand when they know a particular idea in various ways” 
(p. 42) to detail the mental steps involved for students to conceptualize an algebraic difference 
expression as representing a horizontal (or vertical) distance within a graph in the Cartesian 
plane. Based on previous research and work with students on such tasks (e.g., Parr et al., 2021), 
we theorize that there are three main connections between the graphical register and algebraic 
register that underly this conception: (1) differences express distances between two positions, (2) 
points are ordered pairs of distances from the axes in the Cartesian plane and (3) equations give 
the relation between x and y for every ordered pair represented at a point on a graph. These three 
connections build upon each other to comprise the connection among distances between 
functions in graphs and (algebraic) difference expressions. We describe each of these 
connections between the graphical and algebraic register, as well as the underlying mechanism 
for how the connection is forged. We see potential obstacles for students within conceptualizing 
each component of the graphical register, algebraic register, as well as the mechanism of the 
connection. We will describe each of the three steps and previous research highlighting potential 
obstacles for students within each.  
 
Connection 1: A difference represents a distance between two positions 

From our perspective, the first main cognitive step to expressing distances on graphs of 
functions involves using a difference expression to represent a distance between two positions in 
a single dimension. Within the graphical register, this connection involves conceptualizing 
distance as a quantity, that is, a measurable attribute (Thompson, 1990, 2011) of the spatial 
arrangement of two positions within a number line or graph. Within the algebraic register, this 
connection involves operating from a “determine the difference,” (Selter et al., 2012) also 
referred to as a “comparison” (Usiskin, 2008) model of subtraction, rather than a takeaway 
model. Connecting these conceptualized distances with difference operations relies on a 
magnitude interpretation of symbols (Parr, 2021). We summarize these components that result in 
this connection between differences and distances between two positions in Figure 2.  

 

 
Figure 2. The components of connecting distances in graphs with difference expressions. 
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Previous research suggests that students may not use these ways of reasoning underlying the 
connection involved in representing distances with differences. Within the graphical register, 
conceptualizing a distance as a quantity in space is a non-trivial component of this connection. 
The Cartesian coordinate system relies on distances to relate points, yet students may not 
conceive of distance between points as relevant when viewing positions on a number line or 
graph. Alternatively, they may conceive of positions as labeled at arbitrary locations, or use 
some other comparison, such as relative location, without explicitly attending to or 
conceptualizing measurable distance between positions (Parr, 2021). At the elementary level, 
students may not necessarily place non-consecutive numerical values at appropriate distances 
apart from one another on a linear-scaled number line (Saxe et al., 2013). Instead of using a 
number line as a measurement model, some students may use it as a counting model (Diezmann 
& Lowrie, 2006), counting the number of tick marks or intervals (Mitchell & Horne, 2008).  
Within the algebraic register, conceiving of subtraction as an operation that determines the 
difference between two amounts that are compared is not a given for students. Previous research 
has found that the comparison operations are those that pose the most difficulty for students 
among types of subtraction problems in early grades (Stern, 1993). When asked to interpret an 
expression involving a difference, students may think exclusively of a counting down or 
takeaway model, rather than a comparison one (Figure 3). 

 
Figure 3. A determine the difference (comparison) model of 5-3 (left) vs. a takeaway model of 5-3 (right). 

Students may also default to using the takeaway model for subtraction on a number line, and 
may not as readily use a determine the difference model, perhaps because the former is more 
commonly encountered in school mathematics and everyday situations (e.g., Selter et al., 2012). 
Even at the undergraduate level, students may default to using a takeaway model of subtraction. 
This was the case with a student, Peter who was at first unable to reconcile a difference 
expression in |x–1| < 𝛿 with a graph of a function showing a shaded vertical strip centered at x = 
1 to represent all values of x within a given distance (𝛿) of 1. (David, 2018).  

We view the magnitude interpretation (Parr, 2021) of a symbol (either a number or variable) 
or expression as the foundation of the connection between the graphical representation of 
distance and the algebraic operation of subtraction to determine the difference. A magnitude 
interpretation of a symbol recognizes that a symbol refers to both a position as well as a measure 
of a distance from 0 (Parr, 2021). To represent the “determining the difference” model of 
subtraction on a number line, one employs what Parr et al. (2021) refer to as a composed 
magnitude interpretation. For example, to understand conceptually why the difference expression 
x2 – x1 yields the distance between two positions, x1 and x2, in one-dimensional Cartesian space, 
one must first understand the positions x1 and x2 as distances from the origin themselves. Then, 
one can apply the operation of subtraction to find the difference between the length of x2 and the 
length of x1 to express the distance between position x1 and x2 as x2 – x1, as shown in Figure 4.  
Students may not readily use a composed magnitude interpretation of difference expressions, 
even in situations where it would support further mathematical activity. At the undergraduate 
level, students may still use a cardinal interpretation, counting tick marks or spaces to interpret a 
difference expression on an axis, rather than as a distance between two points, as in the case of 
Annie and Kate reported in Parr (2021). 
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Figure 4. Composed magnitude interpretation of the expression x2 – x1 involves conceiving of x1 and x2 themselves 

as magnitudes, or distances measured from 0. 

 
Connection 2: A point given by (x, y) represents an ordered pair of distances from axes in 
the Cartesian plane 

The next connection involved in expressing distances in the Cartesian plane is the connection 
that an ordered pair of values, (x, y), that locate a point in the Cartesian plane represents an 
ordered pair of distances measured from the point to each axis. This connection builds on the 
prior one, such that x is a magnitude from the origin horizontally and y is a magnitude from the 
origin vertically. What is new in this step is the combination of the two magnitudes into two-
dimensional space, so that a single entity given by an ordered pair is connected to the pair of 
distances. The foundation of this connection is value-thinking (David et al., 2019), in which one 
envisions a point as a multiplicative object (Saldanha & Thompson, 1998), at once a single entity 
that is comprised of two components conceived of simultaneously. When combined with a 
magnitude interpretation from the previous connection, one envisions a point as a multiplicative 
object of a pair of distances to the axes (Figure 5). 

 

 
Figure 5. The components of connecting points on graphs with ordered pairs of variables. 

Prior research suggests that students, both at the secondary and undergraduate level, may not 
connect a point on a graph of a function with an ordered pair of input and output values of the 
function via value-thinking. Students may instead associate a point solely with a single value- 
often the output of a function, rather than a pair of values, as in the case of location-thinking 
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(David et al., 2019). When students do connect a point with an ordered pair, they may conceive 
of the ordered pair purely as a directive for how to locate a point (Thompson et al., 2017)- right 
(or left) some amount x and then up (or down) some other amount y. Students who view ordered 
pairs this way may not be able to unite pairs of magnitudes represented on axes in a single point, 
even after appropriately plotting points themselves using the over and up technique (Frank, 
2016). Thus, we view building the connection between ordered pairs and pairs of distances from 
axes as an essential part of supporting students in expressing distances between points on 
functions of graphs. 

 
Connection 3: An algebraic relationship of x and y can be used to find equivalent 

expressions of distances  
The third connection between the algebraic and graphical register that we view as essential to 

expressing distances is the Cartesian connection (Moschkovich et al., 1993). The Cartesian 
connection states that the set of all ordered pairs of points on a graph of an equation correspond 
to the complete set of pairs of values satisfying the equation. Using this connection with the prior 
two, in which ordered pairs for points give pairs of distances to the axes, allows one to conceive 
of the algebraic equation relating x and y as a way to express distances in the graph flexibly in 
terms of x or y as needed (Figure 6). 

 

 
Figure 6. The components of connecting distances on graphs with equations of x and y. 

Previous studies have shown that students may not recognize the Cartesian connection when 
working with graphs of functions and their algebraic relationships (Dufour-Janvier et al., 1987; 
Glen & Zazkis, 2021; Knuth, 2000; Moon, et al., 2013). Instead of viewing an equation for a 
linear function as comprising the set of all ordered pairs of values satisfying the equation, which 
can be plotted as points comprising the graph of the line, students may see a linear equation as a 
directive for how to draw a graph of a line using slope and intercept information (Parr et al., 
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2021). In the words of Todd, a Calculus student, “y =2x+1… tells you how it's [the graph is] 
going to look, so the slope would be 2, the y-intercept would be 1” (Parr et al., 2021, p. 219).  

Representing distances on two-dimensional graphs of functions using algebraic expressions 
is a complex cognitive activity. In order to conceptualize why expressions such as 2–x and 2–
(y2+1) in Figure 1 represent the distance depicted, students must connect the graphical and 
algebraic register in the three ways described in this section: 1) a distance between can be 
modeled using a difference, 2) an ordered pair of values gives the distances the associated point 
is located from the axes in the Cartesian plane, and 3) an algebraic relationship between x and y 
can be used to flexibly express distances within the graph of the relationship in terms of x or y.  

In Figure 7, we show how these connections combine to connect difference expressions with 
distances between two points on functions in the Cartesian plane. Connection 1 supports students 
in expressing a straight-line distance between two positions x1 and x2 as x2–x1. Connection 2 
supports students in expressing a straight-line distance from an axis in the Cartesian plane using 
the coordinates of the point, in this case, the horizontal distances as x1. Combining these two 
connections supports students in describing the horizontal distance between two points in the 
Cartesian plane as x2–x1. Assuming the two points shown are located on functions f and g, 
respectively, Connection 3, the Cartesian connection, would support a student in expressing this 
same horizontal distance in terms of y, as g-1(y2) – f-1(y1). 

 

 
 

 
Figure 7. How Connections 1-3 combine to express horizontal distance between two points in the Cartesian plane.  
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Discussion 
The conceptual analysis we present in this paper offers a detailed account of the cognitive 

connections need for students to meaningfully use an algebraic difference expression to represent 
distances between functions in graphs. This conceptual analysis has implications for both 
research and practice. First, the three connections we highlight between the algebraic and 
graphical register uncover the complex nature of the cognitive steps involved expressing 
distances algebraically. At the undergraduate level, researchers and instructors may take for 
granted students’ fluency in moving between two representations. In fact, this connection is not 
included in typical calculus curricular materials and instruction. Yet, our research and this 
analysis suggest that students may benefit from more explicit instruction as to how these 
representations may be used together. In addition to drawing attention to its underlying 
complexity, this analysis may serve to support the development of learning trajectories and tasks 
to assist students in connecting graphs with algebraic expressions meaningfully. Further, this 
conceptual analysis may alert researchers and practitioners to potential issues in students’ 
reasoning that they may anticipate when using subject matter represented both algebraically and 
graphically. These issues may arise in either conceptualizing the objects in the graphical register, 
the objects in the algebraic register, or the way in which these objects are connected.  

More broadly, the structure of the conceptual analysis we offer here may serve as a model for 
others related to connections among registers. Many prior examples of conceptual analysis in the 
literature attend to students’ understanding of mathematical ideas, but may not explicitly attend 
to representational structures involved in conceiving of or communicating these ideas. We add to 
the example of Lee et al.’s (2018) conceptual analysis of coordinate systems by attending to the 
representational structures involved in connecting graphical distances with algebraic expressions. 
We decompose the larger connection in question into sub-connections, which each include 
components in the algebraic register, graphical register, and an underlying interpretation. This 
structure may serve as a model for future conceptual analyses on other connections between the 
graphical and algebraic registers, or any other combinations among mathematical registers. 
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Inclusive and Equitable Mathematics Education: Active Learning is Necessary, but not Sufficient   
   

Nancy E. Kress  
University of Colorado Boulder  

Numerous studies have demonstrated that active learning can increase student learning and 
reduce achievement gaps; research has also shown that active learning in undergraduate 
mathematics is not consistently equitable. These findings highlight a gap in what we know about 
active learning and indicate the need for a deeper understanding of the relationship between 
equity, inclusion, and active learning. Drawing on research about inclusive and equitable 
mathematics learning environments across secondary and postsecondary contexts, in concert 
with what is known about active learning in undergraduate mathematics classrooms, I present a 
theoretical argument that active learning is a necessary but insufficient condition for 
mathematics learning communities to be inclusive and equitable. I close by suggesting potential 
strategies for ensuring active learning is implemented in ways that are inclusive and equitable.   

Keywords: active learning, inquiry, equitable, inclusive, critical   

The use of active learning and inquiry-based mathematics education (IBME, a form of active 
learning) is becoming increasingly common in undergraduate mathematics courses (Stains, 
2018). Active learning has been shown to result in improved student learning outcomes   
(Deslauriers et al., 2019; Freeman et al., 2014, Laursen et al. 2014) as well as significantly 
reduced achievement gaps between women and men (Laursen et al, 2014) and between students 
who are members of underrepresented and overrepresented identity groups (Theobald et al., 
2019). Freeman et al. (2014) suggest that research supports “active learning as the preferred, 
empirically validated teaching practice in regular classrooms” (p. 8410), and Theobald et al. 
(2019) calls for evidence-based active-learning course designs to replace traditional lecturing 
across the STEM disciplines” (p. 6476). Active learning was found to be one of the common 
characteristics in a study of successful calculus programs at five doctoral degree-granting 
mathematics departments deemed to be exemplary based on persistence rates and students’ 
reported enjoyment and confidence in mathematics (Rasmussen, Ellis, Zazkis & Bressoud, 2014; 
Rasmussen, Ellis & Zazkis, 2014). Abundant evidence of student-centered instruction supporting 
increased student success in mathematics at the primary and secondary levels (e.g., Boaler, 2006; 
Matthews et al., 2021) further reinforces the claim that active learning is a better way to teach 
mathematics than traditional lecture.   

And yet, performance (Reinholz et al., 2022; Johnson et al., 2020) and participation 
(Reinholz et al., 2022) gaps between majority identity groups and those who are 
underrepresented in mathematics persist in some active learning classrooms. Johnson et al. 
(2020) showed that achievement gaps between women and men increased in a set of linear 
algebra classrooms using IBME. Reinholz et al. (2022) found performance differences and 
differences in participation rates between women and men in undergraduate mathematics classes 
taught using inquiry-oriented instruction and suggested that “simply implementing active 
learning is insufficient… for improving gender equity in mathematics” (p. 204). Research has 
shown that mathematics classrooms using active learning can be inclusive and equitable, while 
also demonstrating that not all active learning mathematics classrooms achieve this standard.   
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The relationship between equity, inclusion, active learning and IBME is under-researched, 
and scholars have not yet explained the distinctions between inclusive and equitable and 
exclusive and/or inequitable active learning. In this theoretical report I draw on research about 
inclusive and equitable mathematics learning environments in secondary and tertiary contexts, 
along with what is known about active learning and IBME in undergraduate mathematics 
classrooms, to answer the question: What will it take to cultivate undergraduate mathematics 
learning environments that are reliably equitable and inclusive? I present the argument that 
instructors’ use of active learning in general, and IBME specifically, is a necessary but 
insufficient condition for mathematics learning to be inclusive and equitable. Then I propose 
additional criteria that may, when used in addition to IBME, contribute to creating reliably 
inclusive and equitable undergraduate mathematics classrooms.   

Theoretical Perspectives: What is Inclusive and Equitable Mathematics?   
Research showing the positive effects for students of learning mathematics through active 

learning or IBME is abundant and convincing. The strength of the case in favor of active learning 
can make it seem confusing or implausible when evidence is presented showing some settings 
exhibiting persistent inequity and/or exclusion. To explain how the extensive body of research 
supporting active learning can be correct while also failing to explain why some active learning 
settings are exclusive and/or inequitable, I leverage theoretical perspectives. A clear theoretical 
perspective names the researchers’ commitments and perspectives; it provides a context that 
helps explain why certain decisions are made in conducting research, including the questions that 
are asked, the data that is collected and how that data is analyzed and interpreted. This section 
describes the dominant perspective that has shaped most of the existing research on active 
learning in undergraduate mathematics and the critical perspective that may help to usher in a 
new chapter focused on inclusion and equity in mathematics education. This is followed by a 
commitment to intersectionality and attending to the interplay of lived experiences across 
identity group memberships, and a description of the inclusive and equitable teaching practices 
that shape my thinking about the nature of inclusive and equitable undergraduate mathematics.   

Critical Perspective   
Gutiérrez (2007) and Martin (2003) called for mathematics education researchers to adopt a 

critical perspective, and yet much of the research on active learning in undergraduate  
mathematics continues to reflect a strongly dominant perspective. Gutiérrez’s (2009) framework 
for understanding equity in mathematics provides a useful way to understand and interpret the 
body of research on active learning. This framework includes two axes. The dominant axis 
consists of the dimensions of access and achievement, and the critical axis consists of the 
dimensions of identity and power. The majority of the existing research on the effect of active 
learning in undergraduate STEM settings addresses questions about achievement – either 
learning outcomes or achievement gaps – or about access to learning opportunities that arise 
from engaging actively with course content.     

Numerous mathematics education researchers across secondary and tertiary settings have 
called for paying greater attention to the role and impact of identity and power (Adiredja, 2015; 
Gutiérrez, 2009, 2013) – the critical axis of equity in mathematics – in mathematics learning 
spaces. Attending to the role of identity and power in mathematics classrooms means adopting a 
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different vision if what it means for mathematics education, in this case specifically active 
learning, to be successful. Mathematics instruction that supports the “mathematical identities, 
excellence and literacies of marginalized students” (Gutiérrez, 2008, p. 357) may differ from that 
which leads to increased test scores and reduced participation gaps. Gutiérrez’s framework helps 
to illuminate that the existing research on active learning has demonstrated active learning’s 
success along the dominant axis. Active learning has been shown to increase achievement and 
access to learning opportunities. Gutiérrez’s framework also highlights what remains to be 
investigated: by attending closely to identity and power in mathematics classrooms we may learn 
what helps students who are members of marginalized identity groups to succeed and thrive.    

Framework for Understanding the Social Space of Mathematics   
Leyva et al.’s (2022) proposed framework for understanding mathematics as a white 

cisheteropatriarchal space explains how sociomathematical (Yackel & Cobb, 1996; Leyva, 2017) 
and sociohistorical (Leyva, 2021) norms are at play in mathematics classrooms in ways that 
relate to identity including but not limited to gender, race and class. Leyva (2017) calls for 
researchers to “carefully attend to mathematics learning contexts and the interplay of students’ 
multiple identities (including race or ethnicity, culture, class, gender, and sexuality)” (p. 406). 
Crenshaw (1991) suggests that intersectionality could provide the means for understanding and 
addressing experiences of marginalization that are shared across identity groups (p. 1299).    

Inclusive and Equitable Instruction   
Examples of instructional practices that have been shown to contribute to inclusive learning 

environments and equitable outcomes for students who are members of underrepresented or 
marginalized groups in mathematics include equitable teaching practices (Boaler, 2006) and 
belonging centered instruction (Matthews et al., 2021). Additionally, culturally relevant 
(LadsonBillings, 1995) and sustaining (Alim, Paris & Wong, 2020; Ladson-Billings, 2014; Paris, 
2012; Paris & Alim, 2014) pedagogy supports inclusive and equitable learning environments that 
are not specific to mathematics. Describing each of these approaches to inclusive and equitable 
instruction in detail is beyond the scope of this paper. I will, instead, describe cross-cutting 
themes, since teaching strategies that appear in multiple of these instructional approaches are 
especially likely to be impactful across settings.   

Teaching strategies that emerge as common across these instructional approaches include 
holding high expectations (Boaler, 2006; Ladson-Billings, 1995; Matthews et al., 2021), 
assigning competence (Boaler, 2006; Ladson-Billings, 1997) and decentering teacher authority 
(Matthews et al., 2021). Just as importantly, additional themes are present across these 
approaches that relate to interpersonal interactions, social dynamics, and community. Boaler 
(2006) described relational equity as a teaching approach that “valued different insights, 
methods, and perspectives in the collective solving of particular problems” (p. 45), an approach 
that supported students learning to “appreciate the contributions of different students, from many 
different cultural groups and with many different characteristics, and perspectives” (p. 45). 
Belonging centered instruction includes an interpersonal domain that attends to community, 
empathy, and social and emotional aspects of students’ classroom experience (Matthews et al., 
2021). Ladson-Billings (1997) emphasizes the “need to develop caring and compassionate 
relationships with students” (p. 707).   
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Review of the Literature: Three Plus Decades of Inquiry and Active Learning   
The dominant perspective is evident in active learning and IBME in how researchers have 

sought to understand their impacts, and in the origins of these instructional practices. Active 
learning, inquiry-oriented instruction and inquiry-based learning all developed as strategies for 
increasing student engagement and student learning in undergraduate science, technology, 
engineering, and mathematics (STEM). While they each differ somewhat in their commitments 
and orientations, curriculum development and classroom instruction that adheres to principles of 
inquiry and/or active learning is consistently oriented toward a common goal of supporting 
students to understand STEM course content more deeply and to succeed in their undergraduate 
STEM courses. Over time there has been a trend toward coalescing around common definitions 
and principles, as described below.   

Active Learning   
Definitions and conceptions of active learning have consistently centered around the idea that 

students benefit from being actively involved and engaged in learning instead of passively 
listening to lecture. Prince (2004) defined “the core elements of active learning to be introducing 
activities into the traditional lecture and promoting student engagement” (p. 225). Bonwell and 
Eison (1991) suggested that students should be engaged “in such higher-order thinking tasks as 
analysis, synthesis, and evaluation” (p. iii), and they proposed defining active learning as 
“instructional activities involving students in doing things and thinking about what they are 
doing” (p. iii). In 2016, the Active Learning in Mathematics Research Action Cluster of the 
Mathematics Teacher Education Partnership synthesized the research on active and inquiry based 
learning available at that time and developed a set of five design principles for active learning 
that included 1) mathematical coherence, 2) instructional activities that promote “active 
construction of meaning” and “sense-making,” 3) norms for classroom discourse that encourage 
students to share “reasoning in process,” 4) an instructional environment that includes multiple 
modes of instruction, and 5) instructional decision-making in which “the choices made in lesson 
design and adaptation should favor the perspective of the learners.” (Webb, 2016, p. 2).    

Inquiry Based Mathematics Education   
Laursen and Rasmussen (2019) named four pillars of Inquiry Based Mathematics Education 

(IBME), the term they proposed to unify inquiry-oriented instruction and inquiry-based learning, 
and to situate it as a specific form of active learning. The four pillars are as follows:   

1. Students engage deeply with coherent and meaningful mathematical tasks.   
2. Students collaboratively process mathematical ideas.   
3. Instructors inquire into student thinking.   
4. Instructors foster equity in their design and facilitation choices. (p. 138)   
There is significant overlap between the four pillars of IBME as explicated by Laursen and 

Rasmussen (2019) and the design principles for active learning. One result has been that the four 
pillars have increasingly been taken up as a definition of active learning. A team of researchers 
from the Student Engagement in Mathematics through an Institutional Network for Active  
Learning (SEMINAL) project analyzed data from interviews with 115 stakeholders  
(administrators, members of client disciplines, coordinators, leaders, instructors and learning 
assistants) who were asked about their conceptualizations of active learning. The research team 
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compared stakeholders’ responses to the four pillars of IBME and found that instructors’ 
conceptualizations of active learning aligned closely with the first three of the four pillars 
(Williams et al., 2022). I conjecture that the inquiry and active learning instructional contexts for 
which research has shown increased student learning outcomes and reduced achievement gaps 
(Deslauriers et al., 2019; Freeman et al., 2014; Laursen et al., 2014; Theobald et al., 2020), 
particularly “high-intensity” (Theobold et al., 2020) forms of active learning, are closely aligned 
with the first three pillars of IBME.   

Inclusive and Equitable Undergraduate Mathematics Education: What does it take?   
The call for mathematics education researchers to investigate the nature and effect of 

inclusive and equitable instruction in undergraduate mathematics is becoming increasingly 
powerful. Hagman (2019) called for an eighth characteristic of successful calculus programs – 
diversity, equity, and inclusion practices. Laursen and Rasmussen (2019) included an aspirational 
fourth pillar specifying the need to foster equity in the design and facilitation of IBME and noted 
that it is not yet entirely clear how to accomplish this in inquiry-based classrooms. Theobald et 
al., (2020) posited that the large variation in efficacy observed across studies in their data set 
might result, in part, from variations in the culture of inclusion (p. 6479). Reinholz et al., (2022) 
suggested that implementing active learning alone is insufficient to improve gender equity in 
mathematics. And Leyva et al. (2022) analyzed thirty-four undergraduate Black and Latin* 
students’ perceptions of “supportive-for-all practices” which include such active learning aligned 
practices as creating “space for questions and mistakes” (p. 339), discourse, discussion, and 
student-thinking centered instruction. They found that “supportive-for-all practices” were 
perceived by students of color to be “necessary yet insufficient to cultivate equitable 
opportunities for classroom participation and access to content” (p. 339).   

Next I will describe the existing relationship between active learning and equity and argue 
that IBME is a necessary part of implementing inclusive and equitable instruction in 
undergraduate mathematics. I will propose instructional practices that are compatible with 
IBME, and which have potential for resulting in reliably inclusive and equitable IBME learning 
environments. Finally, I will close by calling for research that adopts a critical perspective to 
study the nature and effectiveness of inclusive and equitable active learning in mathematics.   

Active Learning and Equity: An Under-Investigated Relationship   
When researchers shared the seven characteristics of successful calculus programs  

(Rasmussen, Ellis, Zazkis & Bressoud, 2014; Rasmussen, Ellis & Zazkis, 2014), their definition 
of “successful” attended to students’ experiences by considering reported levels of “enjoyment” 
and “confidence,” but they did not consider how students who were members of 
underrepresented identity groups fared in the mathematics departments they described. Hagman 
(2019) identified this failure and called for the addition of an eighth characteristic – diversity, 
equity, and inclusion practices – not because it was found to have been present, but rather 
because that study had not been conducted with attention to the ways students’ identities 
impacted their experiences of their calculus programs. The dominant perspective guiding that 
research project left the dimensions of identity and power uninvestigated.   

The fourth pillar of IBME, “instructors foster equity in their design and facilitation choices” 
(Laursen & Rasmussen, 2019, p. 138), demonstrates commitment to currently under-investigated 
practices for supporting equity and inclusion. But it is presented with a caveat: “the research base 
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in undergraduate mathematics education does not reveal just how to accomplish this in 
inquirybased college classrooms” (p. 138). The authors observe that, while research has shown 
the potential for inquiry classrooms to be equitable, “this is not automatic” (p. 138). They also 
point out that research on secondary contexts (e.g., Boaler 2006) provides potentially useful 
direction. In essence, Laursen and Rasmussen are not suggesting that IBME is equitable as it is 
typically enacted, but rather that IBME can and should be equitable when ideally implemented. 
Williams et al.’s (2022) findings show that instructors’ conceptualizations of active learning align 
with the first three pillars of IBME but engage minimally, if at all, with the fourth pillar of 
fostering equity. These findings align with the aspirational nature of the fourth pillar of IBME. 
Active learning, as described by undergraduate mathematics faculty and instructors, appears to 
be accurately described by the first three pillars of IBME. For naming the critical goal of 
achieving equity and inclusion I appreciate Laursen and Rasmussen’s inclusion of the fourth 
pillar that should motivate and inspire further research to describe exactly what is necessary to 
achieve inclusive and equitable undergraduate mathematics education. The remainder of this 
paper proposes what inclusive and equitable undergraduate mathematics education might require.   

What Are Equitable Teaching Practices in Active Learning Classrooms?   
First and foremost, I address the necessity of recognizing and including IBME as a central 

component, or perhaps a foundational building block, of inclusive and equitable mathematics 
education. I will then propose instructional practices that research across secondary and tertiary 
mathematics contexts suggests might be missing components of inclusive and equitable 
mathematics education. Finally, I call for research grounded in a critical perspective that 
increases our collective knowledge in the field related to creating the conditions necessary for 
students to succeed, thrive and to experience full membership in the mathematics community.   

IBME: Is it necessary? Let’s imagine mathematics instruction that does not meet any one of 
the first three pillars of IBME. What would this imply regarding equity and/or inclusion in such a 
classroom? I will take up each of the first three pillars individually.   

1. A mathematics classroom in which students do not engage deeply with coherent and 
meaningful mathematical tasks denies students the experience of high expectations 
(Boaler, 2006, p. 44; Ladson-Billings, 1995; Matthews et al., 2021) and access to the rich 
learning experiences necessary to achieve high levels of learning. Mathematics 
instruction that fails to incorporate the first pillar of IBME fails to support the dominant 
axis dimensions of access and achievement and is not equitable.   

2. A mathematics classroom in which students do not collaboratively process mathematical 
ideas misses crucial opportunities for students to experience equitable teaching practices 
of “assigning competence” (Boaler, 2006, p. 43) and decentering teacher authority 
(Matthews et al., 2021), and fails to support equitable access to learning opportunities.   

3. A mathematics classroom in which instructors do not inquire into student thinking fails to 
exhibit equitable teaching practices of “assigning competence” (Boaler, 2006, p. 43), 
“student responsibility” (Boaler, 2006, p. 43-44) and decentering teacher authority  
(Matthews et al., 2021). Mathematics instruction that fails to incorporate the third pillar 
of IBME fails to provide access to learning opportunities. Failure to inquire into student 
thinking firmly upholds traditional power dynamics in which the instructor’s ideas and 
thinking override other ways of thinking about or understanding mathematical content.   
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Such instruction fails to address the critical axis dimension of power.   
This suggests that active learning that omits any of the first three pillars of IBME is 

inconsistent with inclusive and/or equitable mathematics instruction, demonstrating the necessity 
of including these practices in order to achieve inclusive and equitable mathematics classrooms. 
In fact, Mathematics instruction that results in students engaging deeply with coherent and 
meaningful mathematical tasks, collaboratively processing mathematical ideas, and in which 
instructors consistently inquire in student thinking is not only necessary, but it is an excellent 
place to start. Next, I will suggest what inclusive and equitable instructional practices could 
potentially be missing in an IBME classroom.   

What else will it take? To consider what might need to be added to the first three pillars of 
IBME to cultivate reliably inclusive and equitable mathematics classrooms I return to the 
teaching strategies that I shared earlier in this paper. These included holding high expectations, 
assigning competence, and decentering teacher authority, all of which are somewhat aligned with 
the first three pillars of IBME. I also noted that inclusive and equitable teaching includes 
attention to interpersonal interactions, social dynamics, and community. In the socially 
interactive environments of active learning classrooms these social and community aspects of 
inclusive and equitable teaching are especially salient. Furthermore, the first three pillars of 
IBME do not explicitly call for attention to the community nature of active learning classrooms. 
The second pillar – students collaboratively process mathematical ideas – may imply the need for 
instructors to attend to social interactions; however, without careful and explicit attention to 
establishing norms of interaction, the group tasks that are often intended to foster collaboration 
are equally likely to reinforce preexisting and deeply established sociohistorical and socio-
mathematical norms that are often marginalizing for students who are members of under-
represented identity groups in mathematics. With a focus on the critical axis dimensions of 
identity and power as they are relevant in active learning mathematics classrooms, I suggest the 
following as potential strategies to support inclusive and equitable mathematics instruction:   

1) co-development and ongoing revision of class norms of participation   
2) opportunities for students to provide feedback about their experiences at regular intervals 

throughout the course   
3) normalizing the experience of not knowing, particularly as it applies to “prerequisite” 

knowledge   
4) flexible course structures that provide students multiple opportunities to demonstrate 

their learning.   
Ultimately, applying a critical perspective and attaining the goal of supporting students to 

consistently develop positive mathematics identities that include a sense of belonging in 
mathematics and a sense of being a capable and skilled doer of mathematics should be central to 
achieving the aspirational fourth pillar of IBME: Instructors foster equity in their design and 
facilitation choices (Laursen & Rasmussen, 2019, p. 138).   
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Developing Personal Representations to Access a Set-Oriented Perspective on Counting 
 

Adaline De Chenne 
New Mexico State University 

In some classical semiotic perspectives, signs and sign systems can be viewed as either 
institutional or personal. This dichotomy can place personal representations as antecedent to 
institutional ones, sometimes with the explicit goal of transitioning away from the personal ones 
entirely. In this paper I draw from qualitative data to argue that personal representations are 
legitimate and sometimes necessary components of developing combinatorial facility, and they 
play an ongoing role in understanding that is not replaced by institutional representations. I 
frame this theoretical argument around a discussion of common institutional semiotic systems 
for combinatorics, which can insufficiently support a set-oriented perspective on counting. I 
discuss how to incorporate personal representations into analysis that uses a classical semiotic 
lens. Doing so includes attending to the motivations for creating (or refining) a sign system, the 
connections between those systems and others, and how the form and nature of the sign systems 
seem to impact or reflect student reasoning. I also discuss how some differences between 
combinatorics and other areas of mathematics might affect the personal/institutional dichotomy 
in semiotic analysis.  

Keywords: combinatorics, semiotics, student reasoning, personal representations 

Consider the counting problem how many ways are there to flip a coin three times in a row? 
This problem is an appropriate introduction to combinatorics because it invites solutions that 
draw from multiple modalities, including and certainly not limited to: flipping physical coins to 
exhaust outcomes (systematically or not), listing entire or partial sets of written outcomes such as 
HHT or 001, reasoning structurally about enumeration processes or representations of those 
processes such as H/T H/T H/T, using embodied and/or gestural reasoning with or without iconic 
imagery, and applying abstract counting principles formally or informally. Each of the 
possibilities mentioned here, and countless others, can find the same numerical solution—there 
are 8 possible ways to flip a coin three times in a row. And yet the approach might impact how 
the solution is expressed. While one approach might yield 2!, others might yield 1 + 3 + 3 + 1 
or simply the integer 8. Institutional combinatorial texts (such as textbooks or lecture notes) 
might only present solutions within limited modalities, often confined to a natural language (e.g., 
English), symbolic mathematics, and figures (if the text is generous). I consider the limit of 
modalities to be a byproduct of the textual medium and not necessarily an indication that the 
solutions are more sophisticated than those drawing from other (often non-institutional) semiotic 
systems. Moreover, the limited presentations of solutions can perpetuate negative attitudes 
towards combinatorics when the singular way combinatorial reasoning is presented does not 
align with what is natural for learners. This is especially unfortunate considering that the 
abundance of solution approaches enrichens combinatorics.  

The purpose of this paper is to legitimize personal representations in combinatorics by 
discussing why they have an ongoing role in the production and justification of solutions, and 
why institutional representations seem insufficient in satisfying this role. I apply a fairly narrow 
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view on semiotics which examines the inscribed signs and sign systems students create and use 
as they solve counting problems. Although this view does not incorporate other semiotic 
resources such as rhythm and gesture, it is consistent with prior undergraduate combinatorics 
education literature while still offering additional contributions. My core argument is as follows. 
Semiotic systems are ubiquitous in mathematics in part because they facilitate mathematical 
production. Yet, common combinatorial notation is more conducive to expressing solutions than 
producing them. Students develop personal representations for combinatorics in order to produce 
mathematics externally because there are limited institutional means of doing so. Institutional 
and personal representations can cohabitate in combinatorics because they are used for different 
purposes. One is not transitional or auxiliary to the other, and personal representations are not 
antecedent to institutional ones. However, personal representations are not neutral mediators of 
combinatorial activity. Two different personal representations might lead to two different 
arguments and two different mathematical expressions of the same integer value, numerically 
equal but indicative of different structural reasoning. A semiotic lens on combinatorics must 
account for such differences. 

Combinatorics and a Set-Oriented Perspective 
Combinatorics is a broad area of mathematics that includes enumeration and existence. Most 

introductions are through enumerative combinatorics, more commonly called counting problems. 
From an expert’s perspective counting problems task the counter (i.e., the person solving the 
counting problem) with determining the cardinality of a set of objects or determining the number 
of ways an event can be carried out. Lockwood (2013) characterizes combinatorial activity as 
occurring between three components: sets of outcomes, counting processes, and 
formulas/expressions. The set of outcomes is the collection of objects being counted in a 
problem, and the solution to the problem is typically the cardinality of that set. Counting 
processes are the real or imagined enumerative processes the counter engages in as they solve a 
problem. Formulas/expressions are the mathematical expressions that yield some numerical 
value, and solutions to counting problems are typically given as some expression. Lockwood 
(2014) describes a set-oriented perspective on counting as “a way of thinking about counting that 
involves attending to sets of outcomes as an intrinsic component of solving counting problems” 
(p. 31). At the core of the set-oriented perspective is the connection between mathematical 
expressions and the structure in a set of outcomes. A mathematical formula can be applied 
because it reflects structural elements of the set of outcomes. The set-oriented perspective 
contrasts other approaches to counting which involve identifying problems types and applying 
formulas associated with those problem types.  

Lockwood’s characterization of a set-oriented perspective is sufficiently broad so as to 
incorporate the manyfold ways of reasoning combinatorially, which inevitably raises the 
question of how the one engages in such a perspective. Antonides and Battista (2022a, b) 
captured certain cognitive processes for spatial-temporal-enactive structuring involved with 
geometric objects, which included recursive reasoning that ultimately led to closed-form 
solutions for permutation problems. Some work with younger students (e.g., English 1993; 
Speiser, 2010; Tarlow, 2010; Tillema, 2013, 2018) has examined how material resources, iconic 
imagery, and emergent representations are key components in developing and communicating 
combinatorial reasoning. Literature examining undergraduate students has often examined 
student inscriptions, such as lists of outcomes (Lockwood & Gibson, 2016), and how encoding 
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outcomes impacts solutions and justifications (Lockwood et al., 2018; Wasserman & Galarza, 
2019). This literature has all reported on various semiotic resources as important to student 
reasoning, even if the analysis was not focused on the mechanisms through which the semiotic 
resources mediated solutions. A further step towards understanding how students engage in a set-
oriented perspective is to examine the role of the semiotic resources in solutions that use a set-
oriented perspective. 

Connecting Classical Semiotics to Combinatorics 
Student use and development of personal semiotic representations in combinatorics are not 

new phenomena. They appear in literature spanning from early elementary to graduate school 
(e.g., Tillema, 2013; Wasserman & Galarza, 2019), and they are reported as indicative of or 
contributing to combinatorial facility. By using a semiotic lens to investigate personal 
representations I seek to better understand the representations themselves, why students create 
them, and how they contribute to solutions. I begin discussing semiotics by discussing semiotic 
systems, and how common combinatorial notation fits within broader semiotic systems. This will 
include a discussion of semiotic systems as communicative mediums as well as ways for 
producing new mathematics. Then, I will briefly discuss some insufficiencies of institutional 
combinatorial notation and why students create personal representations. In the following section 
I will discuss some personal representations in combinatorics, and use the examples to illustrate 
how the personal representations demonstrated sophisticated sign systems that contributed to 
mathematical production. 

Semiotic Systems and the Combinatorics Register 
In broad strokes, semiotic systems in mathematics are the systems of signs and symbols used 

to communicate and carry out mathematics. Common semiotic systems are fractions, decimals, 
set-builder notation, and function notation. Semiotic systems exist in many modalities (e.g., 
speech, manipulatives, imagery, pictures) but for the purpose of this paper I will focus solely on 
written (inscribed) and spoken signs and sign systems. Ernest (2008b) characterizes a semiotic 
system as being composed of three components: i) a set of signs, ii) a set of rules for sign use and 
production, and iii) an underlying meaning structure that incorporates the relationships between 
the signs and the rules for their use. For fractions we may all be aware that ‘0’, ‘3’, ‘8’, and ‘/’ 
are included in the set of signs, and that the set of rules for sign use says that ‘30/8’ is a 
permissible sign whereas ‘038/’ is not. The rules for sign use are a consequence of using signs as 
a communication vehicle for an underlying meaning structure. The rules ensure that there is a 
way of interpreting the signs, and that the interpretations of the signs are consistent with what 
they represent. The fraction 30/8 is permissible because it is interpreted as the ratio between the 
integers 30 and 8. The sign 038/ does not have such an interpretation, and so it is not permissible.  

Sign systems are also used to produce new mathematics through rules that state how some 
signs can be transformed into others (Duval, 2006). That is, beginning with the expressions 
"
"# 3&

$ we can carry out the derivative purely symbolically to find ""# 3&
$ = 2 ⋅ 3&$%& = 6&. 

Although we can relate this transformation back to the underlying meaning structure, in practice 
doing so is rare. In this instance the set of rules in the semiotic system allow for more efficient 
mathematical production because they allow for a temporary foregoing of the underlying 
meaning structure. Duval (1995, 2006) distinguishes between two types of transformations. 
Treatments are transformations that occur within the same semiotic system (e.g., a fraction to a 
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fraction), and conversions are transformations that occur between different semiotic systems 
(e.g., a fraction to a decimal). Duval calls semiotic systems that permit both treatments and 
conversions registers. With these theoretical constructs in mind, we can characterize some 
mathematical activity as reasoning within or between various semiotic systems (registers), and 
we can also characterize some difficulties as difficulty with types of transformations or semiotic 
systems. 

One of the difficulties within combinatorics is that there are limited institutional semiotic 
systems students can access as they solve problems. Many counting problems are given in a 
natural language (e.g., English), and they task the counter to determine the cardinality of a set of 
outcomes, or the number of ways in which an event can occur. Solutions to counting problems 
are integers or parametric expressions that can be transformed into integers, which may include 
signs and symbols associated with combinatorics, including *(8,3) and .'(/. I refer to the 
semiotic system used for combinatorics as the combinatorics register. Seen purely as signs that 
can be transformed into integer values, the combinatorics register might be considered an 
extension of the fraction register or algebraic register. However, the underlying meaning 
structure of the combinatorics register is quite different, which leads to a duality of the notation 
(Wasserman, 2019). Wasserman claims that the combinatorics register (which he described as 
combinatorial notation) can be interpreted in two ways, first as integer-valued expressions, but 
also as representations of enumerative or structural processes. Underlying any combinatorial 
expression is the need for that expression to be tied to a set of outcomes. Not only does the 
expression need to permit a transformation into an integer, but the expression also needs to 
permit an interpretation as an enumerative expression for a set (Wasserman, 2019). This 
connection has repercussions for the set of rules for sign use. From a purely algebraic/arithmetic 
standpoint it is difficult to connect the two signs 2' and ∑ .'(/'

()* , and substituting one for the 
other (although correct) might be considered lacking justification. Interpreted from a 
combinatorics standpoint this substitution is justified because the two expressions represent 
different enumerative/structural arguments for the power set of a set of 1. The underlying 
meaning structure reorganizes and rewrites the rules for sign use and production because it 
focuses interpretation on cardinalities and enumeration of sets rather than abstract integers.  

The combinatorics register provides a means of communicating cardinality and enumerative 
processes simultaneously, but it does not provide a means of producing the mathematics. The 
interpretations of the combinatorics register are purely internal. This contrasts with the prior 
calculus example where the semiotic system also permitted treatments that facilitated producing 
mathematics purely symbolically. The combinatorics register thus conflicts with a set-oriented 
perspective because it does not provide notation specifically for the objects being counted, 
requiring students to either form the connection mentally or develop entirely new notation for the 
objects being counted. In practice students do both, and in the following section I present some 
examples of personal representations to illustrate how personal representations inform and 
impact solutions to counting problems. 

Examples of Personal Representations 
In this section I discuss some examples of personal representations students created over the 

course of several interviews. These data come from a larger study that aimed to examine the 
roles of representations in solutions to counting problems. I have chosen these particular 
examples because they exemplify the potential symbiosis between personal and institutional 
representations. Although the students expressed a ‘final answer’ using an institutional 
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representation, the bulk of their work was done using personal representations. Moreover, the 
students developed and refined the personal systems of representations over the course of 
multiple interviews, and the systems indicate sophisticated attention to structural aspects of the 
sets of outcomes which impacted the form of their solutions. 

Lists and listing processes: Hallie and Leah 
The students Hallie and Leah used lists and listing processes repeatedly over the course of six 

90-minute interviews. During the first few interviews Hallie and Leah used the lists to 
completely enumerate a set of outcomes, solving a counting problem by tallying the total number 
of outcomes in their list. This use of lists became increasingly intractable as counting problems 
became more complex. Hallie and Leah observed symmetric properties in their lists, and their 
subsequent uses of lists exploited symmetry to decrease the number of outcomes they needed to 
write down. The exploitation of symmetry was accompanied by newly introduced signs (such as 
arrows) to indicate continuations of patterns. In early problems Hallie and Leah would list half of 
the total outcomes and indicate a continued pattern. In later problems the listing process was 
increasingly segmented, and symmetry was exploited throughout. Figure 1 provides an example 
of a listing process represented through segmentation of symmetric components of the list. This 
example solves a combination whose solution can be written as .&!! /. 

 
Figure 1: Representation of a listing process exploiting symmetry 

In Figure 1 a listing process is represented using alpha-numerical characters, brackets, and 
arrows. The arrows are used to indicate a continuation of a pattern, and the brackets segment the 
list of outcomes into constituents. Hallie and Leah placed numbers next to the brackets to 
indicate the number of outcomes in each constituent piece. The list indicated in Figure 1 is only a 
partial list, but the sums in the middle of the figure illustrate how Hallie and Leah generalized the 
results of the partial listing to the remainder of the outcomes. The partial list in the example 
corresponds to the sum 11 +⋯+ 1, and the remaining two sums 10 +⋯+ 1 and 9 +⋯+ 1 
correspond to two other segments of the entire set of outcomes. Hallie and Leah used the partial 
sums to count the number of times each summand appeared in a partial sum. They found that 11 
appears in one partial sum, 10 appears in two partial sums, and so forth, leading to their solution 
given in Figure 2. I present this example because it demonstrates that Hallie and Leah used 
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personal representations (the lists and listing processes) to produce their solution, and their 
solution reflects the structure they observed in the outcomes. 

 
Figure 2: Solution to a combination problem 

Sequences of characters: Pat and Damien 
The students Pat and Damien repeatedly solved counting problems by representing outcomes 

as sequences of alphanumeric characters and leveraging know structural information about 
alphanumeric characters to solve their counting problems. This technique was challenged when 
they solved the road problem, which states “A certain map connecting locations A and B is given 
below. You are creating routes between A and B so that no roads are repeated. How many routes 
are there?” 

 
Pat and Damien’s solution to this problem consisted of iteratively refining the method of 
encoding paths in the diagram as sequences of characters. The first method of encoding paths 
consisted of mapping the route of an imagined agent in terms of left and right path segments. 
This method of encoding was difficult to count because it resulted in paths of variable sizes with 
constraints that were challenging to characterize. Through several refinements consisting of 
reformulating how information was encoded or selectively choosing information to leave out of 
the outcomes, Pat and Damien found that each outcome could be encoded as a length-6 sequence 
of Ts and Bs. A T was used to indicate movement along the top of the diagram, a B was used to 
indicate movement along the bottom of the diagram, and vertical movement was omitted because 
it could be deduced by movement along the top or bottom of the diagram. After finding this 
method of encoding Pat and Damien concluded that there were 2+ total paths along the diagram. 
I include this example because it illustrates that most of Pat’s and Damien’s solution consisted of 
using personal representations to characterize the outcomes in ways that were conducive to 
counting. Their final solution, which connected sequences of Ts and Bs to the expression 2+, was 
merely one step in a larger process of iteratively refining representations of the outcomes, and 
the bulk of the mathematical production occurred in personal representational systems. 

 
Figure 3: Multiple iterations of encoding paths as sequence of characters 
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Conclusions 
In this paper I have argued that personal representations play a key role in developing 

combinatorial facility. In part, this role is necessitated by the combinatorial register (the common 
institutional semiotic system for combinatorics) insufficiently supporting mathematical 
production. Unlike semiotic systems common to calculus and algebra, the combinatorial register 
is most conducive to communication. The commonality of personal representations in 
combinatorics appears to be a result of this. Personal representations appear to facilitate 
mathematical production while reflecting student understanding. 

Wasserman (2019) previously discussed the duality of combinatorial notation, and that the 
difficulty of learning to interpret combinatorial notation as representative of enumerative 
processes poses a pedagogical challenge. He proposed the development of institutional notation 
for sets of outcomes specifically in ways that align with the combinatorics register. In my view 
personal representations can fill the same role, and attending to personal representations can 
additionally increase student agency in solutions. This argument, of course, must weigh the 
possibility that students can still be challenged by creating personal representations, and that 
some personal representations might be more difficult to use in ways that are tractable. Further 
study is needed to determine how to leverage personal representations in a didactical setting, and 
potential tradeoffs between attending to personal representations and creating institutional 
representations that incorporate elements of observed personal representations. 
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Isomorphism across Courses: Students’ Metaphors in Discrete Math, Linear Algebra, and 
Abstract Algebra 

 
 Cassandra Mohr Rachel Rupnow 
 Northern Illinois University Northern Illinois University 

Isomorphism appears across many courses in mathematics, including discrete mathematics, 
linear algebra, and abstract algebra. However, examinations of student understandings of 
isomorphism have mostly focused on group isomorphism in abstract algebra. In this paper, we 
compare survey responses from 49 discrete math, 19 linear algebra, and 27 abstract algebra 
students who were prompted to explain the concept of isomorphism to a child. Results include a 
cross-course emphasis on types of sameness but variations in the types of language used to 
characterize isomorphism in each course. Implications include the need for care among 
instructors and researchers when referring the concept of “isomorphism” without a context as 
well as the need for further work in understandings of graph theory. 

Keywords: isomorphism, abstract algebra, linear algebra, discrete math 

Introduction and Background Literature 
Isomorphism, especially group isomorphism, in abstract algebra has received extensive 

attention in the RUME community. Group isomorphism was among the first topics studied in 
RUME (e.g., Dubinsky et al., 1994; Leron et al., 1995), and has received sustained attention for 
its connections to proof construction (e.g., Weber, 2001; Weber & Alcock, 2004), curriculum 
design (e.g., Larsen, 2013), understanding functions (e.g., Melhuish et al., 2020; Rupnow, 2017), 
and conceptions of sameness (e.g., Rupnow et al., 2022; Rupnow & Sassman, 2022). This focus 
is understandable, given its centrality to the abstract algebra curriculum (Melhuish, 2015).  

However, isomorphism has not received comparable emphasis in discrete math or linear 
algebra. Like in abstract algebra, graph isomorphism is central to understanding graph theory 
and, more broadly, discrete math (Ebert et al., 2004). However, most research on discrete math 
understandings have focused on other areas, such as number theory (e.g., Zazkis & Campbell, 
1996; Zazkis & Liljedahl, 2004) and combinatorics (e.g., Lockwood, 2013; Lockwood & 
Gibson, 2016). Research in linear algebra has also focused on other areas, such as bases (Serbin 
et al., 2021; Stewart & Thomas, 2010; Wawro et al., 2012), eigentheory (e.g., Serbin et al., 2020; 
Thomas & Stewart, 2011), and linear transformations (e.g., Andrews-Larson et al., 2017), though 
change of basis and linear transformations are relevant to understanding isomorphism in linear 
algebra. Moreover, comparative examinations of concepts appearing in multiple areas have 
focused on broad topics like functions (e.g., Oehrtman et al., 2008) and sameness (e.g., Rupnow 
et al., 2022) rather than concepts using the same term but with subtly different meanings in 
different contexts like isomorphism. Thus, we address two research questions:  

1. How are characterizations of isomorphism similar across discrete mathematics, linear 
algebra, and abstract algebra students? 

2. How are characterizations of isomorphism different across discrete mathematics, linear 
algebra, and abstract algebra students?  

Theoretical Perspective 
Conceptual metaphors is a theoretical lens that illuminates how individuals’ thinking is 

structured based on their language choices (e.g., Lakoff & Johnson, 1980; Lakoff & Núñez, 
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1997). Cross-domain conceptual mappings relate the cognitive structure of a target concept (e.g., 
isomorphism) to the more developed thoughts in source domains (e.g., same properties, 
transformation). For instance, “An isomorphism is a transformation” is a conceptual metaphor 
that gives information about a target domain (isomorphism) by relating it to a source domain that 
is already understood in some way (a transformation).  

Previous work using conceptual metaphors include analyses of mathematicians’ views of 
isomorphism and homomorphism in abstract algebra (Rupnow, 2021; Rupnow & Randazzo, 
2022; Rupnow & Sassman, 2022). Other work has examined undergraduate students’ 
understandings of various concepts, including bases and linear transformations in linear algebra 
(Zandieh et al., 2017; Adiredja & Zandieh, 2020) and isomorphism and homomorphism in 
abstract algebra (Melhuish et al., 2020; Rupnow, 2017). Here we extend the conceptual 
metaphors for isomorphism in abstract algebra identified in Rupnow (2021) and built upon in 
Rupnow and Randazzo (2022) to parallel uses in linear algebra and discrete mathematics.  

Methods 
Data was collected from surveys sent to six groups of students: two sections each of the first 

author’s discrete mathematics (DM) and linear algebra (LA) courses and two sections of other 
instructors’ abstract algebra (AA) courses. DM students were mostly computer science majors, 
LA students were STEM majors (including computer science, engineering, mathematics, and 
physics majors), and AA students were math majors or minors. The surveys were distributed 
after students had learned about isomorphism in all sections. Initial questions on the discrete 
math and linear algebra surveys asked about sameness in mathematics whereas initial questions 
on the abstract algebra survey assessed beliefs about learning (especially related to fixed or 
growth mindset). Here we analyze responses to one question from the middle of the survey: 
“How would you describe an “isomorphism” to a ten-year-old child?” (AA) or “How would you 
describe the concept of isomorphic/isomorphism to a ten-year-old?” (DM/LA). 21 and 28 
students completed the DM survey in the two sections; 9 and 10 students completed the LA 
survey in the two sections; and 13 and 14 students completed the AA survey in the two sections. 
We did not observe major differences between the sections for each course and thus combine our 
reporting into a dataset of 49 DM responses, 19 LA responses, and 27 AA responses.  

Data analysis was conducted by two researchers who coded independently, then discussed 
and came to consensus for each response. We recognize students were prompted to provide 
comparative explanations based on the task of explaining in a manner understandable by a child. 
Nevertheless, our goal was to classify the underlying meanings conveyed by these explanations 
according to our interpretations of the participants’ responses. As such, we used the metaphors 
for isomorphism in abstract algebra in Rupnow (2021) as an initial codebook, adding new 
metaphors as necessary. This process aligns with codebook thematic analysis (Braun et al., 
2019), in which existing codes are used as a basis for coding but new codes are permitted to be 
added to adequately capture the nuances in data.  

Results 
We organize the results of our coding into three subsections, each corresponding to a 

different course. We also provide Table 1, which offers an initial overview of the frequencies of 
each metaphor by course. Metaphors are organized by cluster, with some belonging to sameness-
based clusters such as sameness (generic sameness, same properties, same but looks different, 
other branch analogues), sameness/mapping (renaming/relabeling, matching), and 
sameness/formal definition (structure-preservation, operation-preservation) clusters. Other 
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metaphors belong to the mapping cluster (generic mapping/relation, morphing/transformation, 
invertible, journey), the formal definition cluster (literal formal definition), or made no 
attempt/unclear.  

 
Table 1. Frequencies of metaphors by course. 

Metaphor Cluster  Metaphor Code  Discrete 
Math (n = 49) 

Linear Algebra 
(n = 19)  

Abstract Algebra 
(n = 27)  

Sameness  

Same but looks different 
Same properties 
Generic sameness  

19 
19 
9  

7 
0 
3 

3 
8 
14 

Other branch analogues   0 0 1 
Sameness/ 
mapping  

Matching  4  4 3 
Renaming/relabeling  1  0  2 

Sameness/formal 
definition  

Structure-preservation 
Operation-preservation  

2  
0 

0  
1 

0 
0 

Mapping  Morphing/transformation 
Invertible 
Generic mapping  

2 
4 
1  

9 
2 
0  

2 
0 
5 

Journey  0  1 1 
Formal definition  Literal formal definition  0  0  1 
No attempt/ 
unclear  

Unclear/no attempt  5  0  1  

 
Discrete Math 

We begin with metaphors used by Discrete Math (DM) students to describe isomorphism. 
The DM textbook defined isomorphism as: “A graph G1 is isomorphic to a graph G2 when there 
is a one-to-one correspondence f between the vertices of G1 and G2 such that the vertices U and 
W are adjacent in G1 if and only if the vertices f(U) and f(W) are adjacent in G2. The function f is 
called an isomorphism of G1 with G2” (Dossey et al., 2005, p. 159). Both same properties and 
same but looks different were commonly used metaphors, as was generic sameness.  

Many of the metaphors discussed shared properties across groups of objects. As isomorphism 
in DM is centered on graphs, a large number of these metaphors identified the same properties 
across different graphs: “look and see if the two shapes of the graphs are identical, vertices, 
edges, weights.” Other responses emphasized common properties across everyday objects, such 
as identifying similarities among houses or vehicles. 

Another commonly used metaphor used to describe isomorphism was same but looks 
different. These types of instances place emphasis on the idea that while isomorphic objects have 
the same underlying structure or properties, they may appear different visually. The context of 
these metaphors varied; as with same properties, many discussed graphs: “we might have two 
different graphs…and even though they might look different, if we can rearrange the points and 
lines in one of the graphs to make it look exactly like the other graph, then we can say that the 
two graphs are isomorphic.” Others emphasized the underlying action behind these surface 
differences through a variety of mediums, including sticks and puzzles, by demonstrating that 
physical manipulation does not change the inherent identity of the object being acted upon. 

Still another metaphor characterizing isomorphism was generic sameness. The majority of 
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metaphors in this category emphasized the underlying sameness of two graphs: “It’s when 
something has a similar form or shape.” In addition to more commonly utilized metaphors, 
structure-preservation was unique to DM in our data set. Two students chose to emphasize the 
structure-preservation property of isomorphism: “an isomorphism is a structure-preserving 
mapping between two structures of the same type that can be reversed by an inverse mapping.”  
 
Linear Algebra 

We now move our focus to Linear Algebra (LA) students’ depictions of isomorphism. The 
LA textbook’s definition for isomorphism was: “Let V be a real vector space with operations ⨁ 
and ⨀, and let W be a real vector space with operations ⊞ and ⊡. A one-to-one function L 
mapping V onto W is called an isomorphism (from the Greek isos, meaning “the same,” and 
morphos, meaning “structure”) of V onto W if (a) 𝐿(𝐯⨁𝐰) = 𝐿(𝐯) ⊞ 𝐿(𝐰) for v, w in V; (b) 
𝐿(𝑐 ⨀ 𝐯) = 𝑐 ⊡ 𝐿(𝐯) for v in V, c a real number. In this case we say that V is isomorphic to W.” 
(Kolman & Hill, 2007, p. 258). Among LA students, the most common metaphors were 
morphing/transformation, same but looks different, and matching.  

Metaphors describing the act of morphing or transformation were the most common type 
used. Many such instances emphasized the ability of isomorphic objects to be physically 
manipulated into one another: “You can take one shape, move it, stretch it, or squish it into 
another shape, and be able to change it back to the original.” This response also notes the 
invertibility of such transformations. Still others highlighted the underlying shared structure of 
isomorphic objects even under a transformation: “When you have a group of things and make the 
same change to everything in that group that is an isomorphism. So if I had a bucket of crayons 
and then shaved the tips off of all of them they would be isomorphic before and after.” 

Same but looks different instances emphasized that although an object or group of objects 
may look different, they still share core underlying properties: “I would describe isomorphism 
through the use of tiles or legos with numbers on it. The idea being that no matter how you 
rearrange the pieces, all of the numbers are still there, and you can trace the method used [to] 
mix up the shape.” 

Several students also discussed isomorphism in terms of matching. These examples often 
invoked non-mathematical objects such as dice or people, and emphasized an underlying 
correspondence or bijectivity:  

If we have 10 classmates on one side of a classroom, and 10 classmates on the other side 
of a classroom. If all 10 classmates went to the other side of the room, and found a friend. 
It is isomorphic if everyone has only one friend, and everyone has a friend. 

In our data, Linear Algebra had the only use of operation-preservation: “if you were to 
change something in group one by adding or multiplying so there is more of it, there must be 
the same increase in the transformed group 2.” 
 
Abstract Algebra 

Finally, we examine Abstract Algebra (AA) students’ isomorphism descriptions. The two 
sections of AA used different textbooks. In one, the textbook’s definition for isomorphism was: 
“Let G1 and G2 be groups. A bijective function f: G1 → G2 with the property that for any two 
elements a and b in G1, f(ab) = f(a)f(b) is called an isomorphism from G1 to G2. If there exists an 
isomorphism from G1 to G2, we say that G1 is isomorphic to G2 (Pinter, 2010, p. 94).” In the 
other section, the definition given was: “Two groups (G,・) and (H, ० ) are isomorphic if there 
exists a one-to-one and onto map ϕ: G → H such that the group operation is preserved; that is, 

26th Annual Conference on Research in Undergraduate Mathematics Education 1013



 

ϕ(a・b)  =  ϕ(a) ०  ϕ(b) for all a, b in G. If G is isomorphic to H, we write G≅H. The map ϕ is 
called an isomorphism (Judson 2019, p. 119).” Among these students, generic sameness and 
same properties were most frequently utilized, along with generic mapping.  

Depictions invoking generic sameness were the most prominent among AA students, 
emphasizing some flavor of sameness that unites isomorphic objects: “It is when 2 things are 
similar in every way and act the same way when you do something to it.” Also commonly 
utilized was same properties, which stresses specific shared properties across isomorphic 
objects: “Draw a group of triangles and a group of squares that have the same number of 
elements. The groups are similar because they are both shapes, or are of the same color, etc.”. 
Several responses utilized both metaphors, such as the following which emphasizes both specific 
traits and generalized sameness: “With two bunches of objects, if they have the same number of 
things and each thing’s traits are similar to one in the other bunch, they’re probably isomorphic.” 

Generic mapping instances focused on the presence of some mapping between isomorphic 
objects: “It is a map that shows that two different things are the same.” Unique to AA in our data 
were other branch analogues and literal formal definition, each used by a single student. Other 
branch analogues identified a parallel between isomorphism and equality: “It is similar to an 
equals sign except it can be between groups of numbers not just equations.” An example of 
literal formal definition emphasized how elements are required to interact under isomorphism:  

When you have 2 groups A and B and all of the rules between the groups A and B are 
followed. There are also additional rules that A and B must follow. They must when 
given a number to plug in give you a number back, and if you put in the two numbers that 
are different they must give you different numbers back. For example if you put in the 
number 2 to A and put in the number 3 for A and get back 4 for both then it does not 
follow the rules. The same rules apply to group B. 

Discussion 
This study examined students’ characterization of isomorphism in Discrete Math (DM), 

Linear Algebra (LA), and Abstract Algebra (AA) courses. Of note, each course had a different 
most-common metaphor. DM tied between same properties and same but looks different; LA’s 
most common metaphor was morphing/transformation; and AA’s most common was generic 
sameness. From this we note that while “isomorphism” is a shared name for concepts across 
courses, students still chose subtly different things to emphasize, indicating the need for care 
when referring to isomorphism and that isomorphism can mean different things in different 
contexts. This aligns with prior work with mathematicians, who carefully attended to the 
context-dependent nature of isomorphism (Rupnow & Sassman, 2022). 

Despite these differences in emphasis, we note that metaphors from sameness-based clusters 
dominated the DM and AA students’ descriptions of isomorphism and were a second emphasis 
behind the mapping cluster in LA. These differences do not appear to be related to the textbook’s 
definition of the concepts given, as all definitions emphasized the function/mapping nature of 
isomorphism and the definition that directly used the word “same” was from LA, whose students 
had the least emphasis on sameness. However, the broader course contexts may have been 
impactful in terms of the objects to which isomorphism is applied, broader emphases of the 
course (i.e., proof), and whether isomorphism had been encountered in a previous course. Future 
research should compare the broader instructional contexts to better understand how students’ 
perceptions of isomorphism were formed and what proved most impactful. 
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A “Different Vibe”: The Effect of Discrete Mathematics on Undergraduate Students’ 
Mathematics Beliefs 

 
 Christine M. Phelps-Gregory  Sandy Spitzer  
 Central Michigan University  Towson University  

This paper presents emerging results from an investigation of undergraduate students’ beliefs 
about mathematics (and themselves as learners) within the context of a discrete mathematics 
course. Our data sources include findings from a survey study with 11 participants and a 
follow-up interview study with 5 participants. Results suggest that students perceived 
discrete mathematics as being significantly different from their previous mathematics 
coursework, offering additional options for creativity and a shift in focus from computation 
to proof and logic. The impact of this shift on students’ mathematical self-efficacy was mixed, 
with some students reporting unchanged self-efficacy but multiple students reporting 
decreased self-efficacy (either temporary or permanent). These results have implications for 
the teaching of discrete mathematics courses and shed additional light on our existing 
knowledge of students’ belief change during the transition from K-12 school to 
undergraduate mathematics courses.  

Keywords: Beliefs, Discrete mathematics, Mathematics self-efficacy 

We present preliminary results of two studies examining undergraduate discrete mathematics 
students’ beliefs about themselves as learners (their mathematics self-efficacy or confidence) and 
their beliefs about discrete mathematics. Discrete mathematics is a valuable site for study 
because it may allow for changes in students’ beliefs. In particular, discrete mathematics courses 
typically include a variety of accessible topics that allow for deep mathematical thinking 
(Goldin, 2018; Sandefur et al., 2022). Particularly given recent increases in the number of 
undergraduate students majoring in the computer and information sciences, which typically 
require a course in discrete mathematics (Berg et al., 2023), it is timely to consider the impact of 
this course. However, little previous research has examined the effects of discrete mathematics 
on students’ beliefs.  

Conceptual Framework and Literature Review 
In this study, we examine two types of beliefs held by undergraduate students enrolled in 

discrete mathematics courses. First, we examine students’ mathematics self-efficacy (MSE), that 
is, their beliefs about their ability to do and learn mathematics (Bandura, 1986). The construct of 
MSE is related to mathematical confidence, although confidence is normally a broad measure 
whereas self-efficacy is task- or subject-specific (Morony et al., 2013). Self-efficacy beliefs are 
important because high MSE has been linked to higher achievement and improved learning, as 
well as non-academic skills such as perseverance and self-regulation (Hackett & Betz, 1989; 
Muenks et al., 2018; Usher et al., 2019). Generally, high MSE is seen as more beneficial than 
low MSE, though some researchers suggest that self-efficacy needs to align with actual ability 
(called calibration) to be fully beneficial (Russell & Phelps-Gregory, 2022). Thus, a goal of 
researchers and instructors should be, at the very least, to help students develop calibrated but 
confident self-efficacy.  

26th Annual Conference on Research in Undergraduate Mathematics Education 1017



Secondly, we examine students’ beliefs about mathematics, including some of their 
generalized beliefs about the nature of mathematics (such as if math is creative) as well as 
specific beliefs about discrete mathematics. Unproductive beliefs (like the belief that 
mathematics is memorizing rules and is not creative) are commonplace among US students 
(Boaler, 1998; Kloosterman & Stage, 1992; Mann, 2006; Phelps-Gregory et al., 2020) and may 
harm students’ learning because these beliefs correlate with higher anxiety and lower 
achievement (Geist, 2010; House, 2006). 

We specifically examine students’ beliefs (and possible beliefs changes) in discrete 
mathematics, a collegiate mathematics course typically taken by aspiring mathematicians, 
teachers, computer scientists and engineers, and information technology/information science 
majors. Discrete mathematics courses generally cover topics related to discrete objects and 
structures, though the exact topics covered are not always agreed upon. Sandefur and colleagues 
(2022) identified core topics and key themes of all discrete mathematics classes, including topics 
such as combinatorics and recursion. Previous research on discrete mathematics has examined 
student work (e.g., Greefrath et al., 2022) and teachers’ pedagogical decisions and techniques in 
building student thinking (e.g., Alsardary & Blumberg, 2009; Love et al., 2006; Soto et al., 
2022). However, one under-researched area is students’ beliefs during and after discrete 
mathematics courses.  

Discrete mathematics may be a good site to examine students’ beliefs because researchers 
have argued that discrete students can engage in deep mathematical thinking regardless of their 
mathematical backgrounds and experiences (Colipan & Liendo, 2022; Goldin, 2018). This 
engagement might provide a site for changes in students’ beliefs (Sandefur et al., 2022). In 
addition, discrete mathematics may also be a source of changes to MSE because mathematical 
transitions such as those required in discrete mathematics may be a site for disruption and change 
(Bandura, 1986; Gill, 2019). In particular, discrete mathematics courses often (but not always) 
include a focus on mathematical proof, thus prompting a transition to the so-called “axiomatic-
formal” mode of mathematics (see Tall, 2008, for a fuller discussion of this transition). However, 
as noted by Stylianou and colleagues (2015), little research has examined undergraduate 
students’ beliefs about proof, including their self-efficacy for learning proof. In general, few 
previous studies have examined students’ beliefs in discrete mathematics. Our study sought to 
begin to address this. We examined the research questions: 

1. How does discrete mathematics affect students’ beliefs about their mathematics ability 
(their mathematics self-efficacy)?  

2. What are students’ beliefs about the nature of discrete mathematics? 

Methods 
We present here the related results of two studies of student beliefs. We first conducted a 

qualitative survey study examining undergraduate students enrolled in discrete mathematics at 
two regional universities. The survey used open-ended prompts to ask participants about their 
MSE and their beliefs about mathematics and discrete mathematics in particular. Eleven 
participants completed the survey, answering in their own words in sentences and phrases. We 
analyzed this data using an open coding procedure where codes were developed emergently from 
the data, following Campbell and colleagues (2013). 

Once analysis of this data was complete, we conducted a second qualitative interview study 
to again examine undergraduate students’ beliefs in discrete mathematics but with a new group 
of participants, enrolled in a different semester and with a different instructor. The goal of the 
interview was to explore the same questions as the survey, but in further depth and with the 
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opportunity for follow-up questions. Questions included asking participants to describe their 
mathematics experiences before discrete mathematics, asking students to describe their discrete 
mathematics experiences, asking about the effect of discrete mathematics on their confidence, 
and asking belief questions (e.g., about the relevance and usefulness of mathematics). There 
were also questions asking participants to examine specific discrete mathematics questions and 
their confidence (MSE) in solving them. Five students completed interviews, lasting on average 
29 minutes. Further interviews will be conducted in future semesters, but we present the results 
of the survey study and initial round of interviews here. 

To analyze the interview data, we transcribed the interviews and then built cases for each 
participant by examining their data and highlighting important themes related to the research 
questions. Analysis then focused on categorizing participants by the effect of discrete 
mathematics on their MSE. We then compared and contrasted the groups of participants. 

Results 
Our preliminary results from both studies show that discrete mathematics may raise some 

students’ MSE, temporarily or permanently, lower other students’ MSE, and have no effect on 
the MSE of some students. This result is tied to students’ beliefs about discrete mathematics, 
with multiple students mentioning their feeling that the course was qualitatively different 
compared to other mathematics classes. We will examine these findings in more detail below.  

Findings of Survey Study 
Of the eleven students who completed the survey, three participants reported that discrete 

mathematics did not affect their self-efficacy, three reported that it increased their self-efficacy 
and one reported that it temporarily lowered their MSE. Students’ reasons for a change in self-
efficacy included their course performance (i.e., grades), particularly given the reputation of the 
course as difficult and the nature of the mathematics in the course. For example, Noah1 said, “I 
feel a little more confident because it isn't as scary as my dad made it out to be.” Caleb reported 
that discrete mathematics temporarily lowered his MSE because the material was “different.” 
When asked if discrete mathematics effected his confidence, Caleb said “Yes and no, it was 
harder for me to pick up the different topics because it's so different from, for example, a 
calculus class, but at the same time I just had to work harder to understand it and when I did my 
confidence was back.”  

Students’ view of discrete mathematics as “different” could be seen in their other survey 
responses as well. Seven participants reported that discrete mathematics required more creativity 
than other mathematics subjects. Ava said, “The proofs in discrete math allow for slightly more 
creativity than in other math classes, because there is no one ‘right’ answer.” However, not every 
participant agreed, with Noah saying, “Less creativity, [because] physics and calculus requires a 
lot of thinking outside of the box.” Overall, the results of the survey study suggest that discrete 
mathematics could be a source of MSE change for some students due to the nature of the 
mathematics in the course. 

Preliminary Findings of Interview Study 
We are currently conducting an interview study to follow-up on the survey results. Based on 

preliminary analysis of data from five participants, one reported that their MSE was permanently 
lowered; one reported that, like Caleb, their MSE was temporarily lowered; and three reported no 

 
1 All names are pseudonyms to protect participants’ identities. 
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change to their MSE. In contrast to the survey study, no students in the interview study reported 
that their MSE was raised as a result of discrete mathematics. 

Jacob reported discrete mathematics permanently lowered his MSE, and Kaitlyn reported that 
discrete mathematics temporarily lowered her MSE. The major source of this lowered MSE for 
both students seemed to be their performance in discrete mathematics; both reported struggling 
some with the class material. Jacob said he was doing “not so hot [laughs]” in his discrete class. 
Kaitlyn said, “Usually math would come to me easy. Like I can pretty pick up pretty fast on it. 
But I just like for whatever reason cannot like wrap my head around some of the stuff that we're 
doing.” Both attributed their performance and lowered confidence to the nature of the 
mathematics in the class being different from previous classes. Jacob said, “the material is like… 
logic based. So, it's really hard to like wrap your mind around sometimes.” He also said: 

I guess there's not so many … like set formulas that I have to memorize. It's kind of just 
like applying all of the math that I've ever learned into one, without like formulas. And 
it's just kind of hard for me to … grasp my head around. 
For Jacob, this lowered MSE seemed to be permanent; that is, he said overall now he 

believed he just was not as good at mathematics and would struggle in future classes. In contrast, 
for Kaitlyn, this change was temporary, and she assumed that she would be successful again in 
the future. The main difference between the two was that Jacob assumed that future classes 
would be like discrete mathematics. He said, “So I know a lot of like math from now on … 
basically builds off of discrete, like proofs and stuff like that.” When asked to elaborate he said: 

Because I feel like the math before, … like calculus and stuff like that, it's all like here's 
the question and then there's an answer. But I feel like discrete and everything moving 
past this is more going to be like, why is this an answer? Or are there other answers? Or 
is there no answer? And like then explain why there isn't that and then prove it. 

In contrast, Kaitlyn assumed that future mathematics classes would be similar to her previous 
classes and discrete mathematics was just an anomaly. She said, “I know it's just … one class. I 
know … it's like I'm good at math. I know I am, but it's just this one class. So, I guess short term 
[it affected my confidence], yes, but long term not really.” 

It is important to note that all five students reported that discrete mathematics was different 
from their previous classes, even students who reported that their MSE did not change. Four of 
the five said discrete mathematics required more creativity, with the fifth student reporting it was 
about the same. Makayla said: 

I would say it's more, more creative. I think there's definitely different ways you can go 
about getting the answer for some things. Which I know is true of like other math classes, 
but I think it's more, more true of this.  

And Madison said it was more creative saying, “Probably more [strongly emphasized] because I 
would think the other classes are more just numbers and equations, whereas this one is thinking 
more outside the box with how they're related, I guess.” 

In addition, all participants implied that discrete mathematics had a “different vibe” from 
previous mathematics classes. Makayla said: 

I feel like it is just like a different overall like vibe, but I don't really know how to explain 
that. Like it just, it does kind of feel different in terms of math. It is more like logic and 
circuits and, and just kind of like… Um, I don't know. It's just … kind of like different.   

Madison said, “How I described it to my friends is it's low-level math but use the most confusing 
words possible. [She laughs here.]” Tyler reported that discrete mathematics did not affect his 
MSE but did say the math was different and perhaps he was less confident in it. He said: 
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I will say that I'm less confident about this class than most other math classes because 
with discrete math it's a bit different from other math. It's a lot less about computation 
and more about proofs and how the different concepts work together. And so I'm less 
confident in that than, say, solving equations. But … I would say it hasn't really affected 
my total confidence in math. 

Overall, as with the survey study, the results of the interview study suggest that discrete 
mathematics could be a source of MSE change for some students due to the nature of the 
mathematics in the course. 

Discussion 
The results of this study add nuance to the field’s understanding of how undergraduate 

mathematics courses such as discrete mathematics might influence students’ beliefs. Previous 
research (e.g., Sandefur et al., 2022) suggests that the conceptual nature of discrete mathematics 
courses could be a source of increased MSE, because students might be able to engage more 
deeply with mathematical ideas compared with more computationally-focused undergraduate 
coursework which relies heavily on prerequisite knowledge and skills. In some ways, our results 
align with this result, in that nearly all our participants in both the interview and survey study 
described discrete math as being different from the math they have experienced in other 
coursework. Students described a “different vibe” including mathematics that seemed more 
creativity, had more options for completing problems, and had a focus on proof, logic, and 
concepts rather than computation. This aligns with existing research about students’ perceptions 
of the transition to more formal mathematics at the undergraduate level (e.g., Tall, 2008).   

However, in contrast with previous research and particularly within the interview study, we 
found that students reported that these perceived differences between their previous coursework 
and discrete math actually lowered their MSE (either permanently or temporarily). We might 
conjecture that this difference from previous research could be caused by the fact that the 
students in the interview study described themselves as having been successful in their prior 
mathematics coursework. Thus, rather than serving as a site where their insufficient prerequisite 
knowledge was not a barrier to achievement, for these students, discrete mathematics pushed 
them to think about math in unfamiliar and potentially uncomfortable ways. These results 
suggest that instructors of discrete mathematics courses should be aware that their students might 
be experiencing lowered self-efficacy, and this could cause students to disengage from the 
course. These students might need additional support to continue persevering despite the new 
challenges. 

Questions for Further Discussion 
We anticipate collecting further data for an additional two semesters, as well as finishing our 

analysis of existing data. Given this research is ongoing, we pose the following questions for the 
reader and the audience. First, the nature of interview work is that the questions you ask guide 
the interview. What further questions should we ask during interviews to better explore students’ 
beliefs? In addition, as our analysis is ongoing, we are open to further interpretations of our data. 
What analysis techniques and questions could help us better understand our data? Finally, we 
pose a broader question to the field. Given discrete mathematics, and possibly other advanced 
mathematics classes, may impact students’ beliefs, what should be instructors’ goals in these 
classes? How can instructors support students in positive belief change while also mitigating any 
effects of negative belief change (like permanently lowered self-efficacy)? 
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Case Studies of Undergraduate Students’ Agentive Participation in the Parallel Spaces of 
Calculus I Coursework and Peer-Led, Inquiry-Oriented, Complementary Instruction 

 
 Karmen Yu Steven Greenstein  
 Montclair State University Montclair State University 

Calculus has long been known as a “gateway course” to STEM fields in postsecondary 
education. To address this issue, researchers in the Math Department at Montclair State 
University designed a model of complementary instruction that features peer-facilitated 
workshops where Calculus I students work in groups on inquiry-oriented, groupworthy tasks. 
The purpose of this multiple-case study is to seek answers to the question, "How do 
undergraduate Calculus I students experience and navigate their learning of calculus in the 
parallel spaces of coursework and inquiry-oriented complementary instruction?" The findings of 
one case study are presented here and include characterizations of the different forms of 
agentive participation afforded to students in each of the two spaces, as well as their 
complementary nature relative to learning calculus with understanding. Implications for 
dismantling the persistent barriers imposed by calculus on access to postsecondary STEM fields 
are also discussed. 

Keywords: Calculus, Complementary Instruction, Agency, Participation  

Calculus has historically operated as a “gateway course” to STEM fields in postsecondary 
education (Hagman et al., 2017). In the hopes of transforming calculus education to be "lean and 
lively," the calculus reform movement in the 1990s called for a change in calculus instruction to 
include fewer topics and utilize an active and engaging approaches to teaching and learning 
(Johnson et al., 2014).  Two decades later, the President’s Council of Advisors on Science and 
Technology (2012) proposed a similar suggestion in an effort to provide students with the time 
necessary to develop deep and conceptual understandings of calculus. Unfortunately, despite the 
ongoing efforts to reform calculus education, calculus maintains its gate-keeping role. 

The Insights and Recommendations from the Mathematical Association of America (MAA) 
(Bressoud et al., 2015) suggested seven essential practices for establishing a successful calculus 
program: (1) attention to the effectiveness of course placement procedures; (2) proactive student 
support services, including the fostering of student academic and social integration; (3) 
construction of challenging and engaging courses; (4) the use of student-centered pedagogies and 
active-learning strategies; (5) coordination of instruction, including the formation of 
communities of practice for instructor learning; (6) effective training of graduate teaching 
assistants; and (7) regular use of local data to guide curricular and structural modifications. 
Informed by these recommendations, researchers at Montclair State University designed a peer-
led (Roth et al., 2001), inquiry-oriented complementary workshop that runs parallel to students’ 
learning in class in order to address this pressing issue. Calculus I students in these workshops 
(Yu & Seventko, 2015) work collaboratively on deliberately designed groupworthy tasks (Buell 
et al., 2016; Cohen & Lotan, 2014) that address calculus concepts.  

A review of the literature on peer-led cooperative learning models in postsecondary 
education confirms their effectiveness in various undergraduate mathematics courses in relation 
to students' academic achievement and other outcomes (Altomare & Moreno-Gongora, 2018; 
Liou-Mark et al., 2015; Trenshaw et al., 2019). As this body of literature evaluates effectiveness 
using quantitative methods, little is known as to how and why peer-led cooperative learning 
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models yield the outcomes found in these studies. The study reported here aims to fill this 
research gap as it seeks to answer to the question, How do undergraduate students experience 
their calculus learning in the parallel spaces of coursework and inquiry-oriented complementary 
instruction? 

Perspectives and Methods 
This multiple-case study (Merriam, 1998) is framed from a situated perspective (Lave & 

Wenger, 1991), and uses Holland et al.’s (1998) concept of figured worlds to analyze changes in 
agentive participation and in relation to identity formation (Vågan, 2011). The unit of analysis is 
forms of agentive participation enacted by students in class and in workshop. A grounded theory 
analytical approach (Corbin & Strauss, 2014) is used to characterize students' participation in 
order to answer the research question. With the agentive participation codes as clusters, a word 
cloud for each class and workshop space was created for each case study participant to depict a 
summary overview of their enacted participation in each of the two spaces. 

Two cohorts of Calculus I students who attended the workshops as part of their course 
requirements participated in the study. Each cohort consists of four participants from the same 
class taught by the same instructor. The data corpus consists of video recordings of 24 classes, 
six workshops, and three focus group interviews (Creswell, 2012), all of which were transcribed 
and subject to analysis.  

Findings 
The table in Figure 1 lists the various forms of participation that emerged from the grounded 

theory analyses of the two cohorts. These participation actions were further sorted into three 
categories of interactivity: high, moderate, and nominal activity. Interactivity describes students’ 
interaction with their peers, tasks, or material resources. The high interactivity category describes 
agentive actions involving a high level of interaction among students, such as inquiring, sharing, 
and explaining. Agentive actions in this category involve the conceptual practices of making 
associations and connections among mathematical concepts (Pickering, 1995), which are the 
kinds of high cognitive demand (Stein et al., 2000) practices that support learning with 
understanding (Hiebert & Grouws, 2007). The moderate interactivity category describes agentive 
actions that entail independent work on executing procedures, providing brief responses to 
dichotomous questions with binary answers (e.g., yes/no or right/wrong), and seeking 
confirmation of ideas or the correctness of a solution. Lastly, agentive actions in the nominal 
interactivity category involve limited interactions with others and material resources, such as 
note-taking and launching tasks. Agentive actions in these latter two categories are considered 
low cognitive demand because they entail memorizing or carrying out procedures without 
making connections to facts, procedures, and ideas (Stein et al., 2000).  

In addition to yielding the emergence of these codes and categories, the analysis also 
revealed periods of “integration” (assimilating norms and expectations) and “expansion” (growth 
in participation) in the students’ participation, which I was able to discern using sequences of 
Venn diagrams that show the trajectory of students’ participation over time. Given the space 
constraints, this phenomenon will be presented in-depth in my presentation should this proposal 
be accepted. In order to illustrate how participation codes and interactivity categories are used to 
address the research question, my analysis of Boris’s case is presented next. I chose to present 
Boris’s case because it accentuates the unique opportunities to enact different forms of agentive 
participation in each of the two spaces.  
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Figure 1. A table of participation actions in class and workshop across both cohorts. 

Boris’s Participation Profile 
The instructor of Boris’s class tended to teach through lectures and demonstrations of solving 

problems on the board. It was rare for the instructor to engage students by asking questions or 
providing problems for individual, in-class practice. Occasionally, however, the instructor 
implemented what he called a “homework active learning activity,” where he would guide the 
class in solving a selected homework problem by having students take turns responding to his 
guiding questions. During this homework activity, the instructor would pose an assortment of 
moderate and higher interactivity questions to lead students through the problem-solving process. 

Across 22 in-person class observations, when the instructor offered students an explicit 
opportunity to participate, Boris refrained from participating 136 times, averaging around six 
times per observation. [Note: Words in italics are participation codes.] He only responded to the 
instructor when the instructor directly asked him questions during a homework activity. In 
general, Boris was an independent and resourceful student in class and an explainer and 
problem-solving leader in workshop. Even though a comparison of his class and workshop word 
clouds (Figure 2 and Figure 3) shows that Boris worked independently in both spaces, his 
characteristic independent work was magnified in class. The independent work cluster supports 
this observation as it is the largest cluster in his word cloud, taking up nearly half the space. On 
the other hand, the independent work cluster in Boris's workshop word cloud is only the fifth 
largest cluster, which depicts his tendency to initiate independent work moments in class by 
working on homework assignments or on the instructor’s examples on the board. Along with 
working independently on problems in class, Boris often accessed resources (e.g., textbook, 
notes, and other online resources) to support his sense making and problem solving. Hence, the 
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accessing resources cluster is the second largest cluster in his class word cloud. Considering his 
active participation in workshop and the limited opportunities to enact agency or work on 
practice problems in class, it can be inferred that Boris was inclined to agentively pursue learning 
on his own, even when these opportunities were not explicitly presented to him.

 
Figure 2. Boris's class word cloud. 

 
Figure 3. Boris's workshop word cloud. 
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Rather than choosing to work independently, as was his tendency in class, Boris tended to 
take on the highly interactive roles of a responder, explainer, and problem-solving leader in 
workshop. As a responder, his responses tended to articulate his confirmation and agreement 
with ideas shared by others. Compared to the rare occasions he enacted explaining in class, Boris 
had opportunities to enact explaining more frequently and extensively in workshop. This is 
evident from the explaining cluster as the second largest cluster in his workshop word cloud. 
Specifically, his workshop word cloud indicates his tendency to explain concepts and procedures 
and provide reasonings and examples in his explanations. Overall, Boris’s role as a problem-
solving leader in workshop was portrayed through his explaining actions and the occasional acts 
of scaffolding his cohort peer’s problem solving.  

Boris’s case illustrates the differential forms of participation he enacted in class and in 
workshop. A review of his participation profile highlights these rather distinctive opportunities to 
enact agentive participation in each of the two spaces. In class, Boris tended to enact low-
demand independent participation actions in moderate and nominal interactivity categories (i.e., 
independent work, accessing resources, and note-taking). In contrast, in workshop, Boris was 
more inclined to enact high demand participation actions in the high and moderate interactivity 
categories (i.e., explaining, sharing, and seeking).  

As depicted in Figure 1, cohort A's participants had more opportunities to enact higher 
interactivity moves in class (i.e., explaining, inquiring, and sharing) than participants in cohort B, 
of which Boris was a member. Nonetheless, class and workshop were found to complement each 
other to offer all the participants a broad range of agentive actions. Given the value of highly 
interactive participation actions in particular, it is critical for students to have more of these in 
order to better support and enhance their learning. 

Discussion and Conclusion 
Reflecting on the MAA’s seven recommendations for establishing a successful calculus 

program, the findings from this study can be used to inform calculus instruction by illustrating 
opportunities for high and moderate interactivity participation actions that can be enacted 
through student-centered pedagogies and active learning strategies (recommendation 4) in 
coursework or in complementary instructional workshop. Additionally, the participation codes 
observed in this study give a vision to calculus instructors of the kinds of interactive participation 
that are characteristic of challenging and engaging courses (recommendation 3). In turn, these 
findings can inform and guide the design and implementation of parallel spaces of coursework 
and complementary instruction, particularly when the realities of coursework alone impose 
constraints that do not allow for adequate opportunities for high and moderately interactive 
participation.  

To summarize, this multiple-case study sought to address the research question, How do 
undergraduate students experience their calculus learning in the parallel spaces of coursework 
and inquiry-oriented complementary instruction? This study found a range of agentive 
participation actions that were further categorized into high, moderate, and nominal interactivity 
categories based on the quality of their interactions with others, tasks, or material resources. All 
in all, these findings would be of value to postsecondary calculus educators and program 
directors who are committed to offering students the kinds of participatory experiences that are 
productive for their learning of calculus. That way, they can be more mindful in planning, 
structuring, and designing their calculus programs so as to dismantle the persistent barriers 
imposed by calculus on access to postsecondary STEM fields. 
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Connecting Proof Comprehension with the Student Perspective: The Case of Christy 
 

 Lino Guajardo Kristen Lew 
 Texas State University Texas State University 

The current state of proof comprehension research has focused on the instructor or researcher 
perspective. Either through assessing student proof comprehension (e.g., Mejia-Ramos, 2017) or 
developing interventions to improve student proof comprehension (e.g., Hodds et al., 2014). In 
this report, we discuss findings from one student from an exploratory study. We consider the 
influence of prior experiences on what it means to them to understand a proof and the reasoning 
behind the proof comprehension strategies used to understand a given proof. 

Keywords: Proof comprehension strategies, student experiences, reading proof 

Comprehending proof is one important task that a mathematician must do during their career. 
A goal for instructors of proof-based courses is to have their students develop the skills needed 
for mathematics research (Weber & Mejia-Ramos, 2011). One way of doing this is to have 
students participate in tasks done by mathematicians, such as comprehending proof. The existing 
literature has either focused on developing ways to assess student proof comprehension (e.g., 
Davies et al., 2020; Mejia-Ramos et al., 2017) or interventions to help improve student proof 
comprehension (e.g., Alcock et al., 2015; Hodds et al., 2014; Roy et al., 2010; Samkoff & 
Weber, 2015). Each of these studies take the perspective of researchers or instructors of proof-
based courses and the student perspective is largely absent from the literature on proof 
comprehension (e.g., Weber, 2015). In this preliminary report, we begin to investigate the 
following research questions: (a) How do students’ prior experiences inform their understanding 
of proof? (b) What reasons do students provide for using strategies to understand proof? 

Relevant Literature 

Proof Comprehension Assessment 
Mejia-Ramos et al.’s model (2012) and tests (2017) have been used by multiple researchers 

to assess the impact of interventions. Alcock et al. (2015) used the model to create proof 
comprehension assessments to assess if workbooks given to students in an abstract algebra 
course improved their independent study of proofs. Zazkis and Zazkis (2016) used the model to 
identify what aspects (with respect to the seven question types) of a proof on the Pythagorean 
theorem preservice teachers focus on during a proof script task. As creating a valid and reliable 
proof comprehension test can be a daunting task (Mejia-Ramos et al., 2017), Davies et al. (2020) 
attempted to find another method to assess student proof comprehension by using student proof 
summaries. Investigating how student proof summaries could be used to assess student’s 
comprehension of a given proof, the authors also hoped this would provide instructors with an 
alternative to the long process of creating a proof comprehension test. The authors found this 
method of comparative judgement to be reliable and valid, but the judgements from the experts 
correlated less with the final course grades in comparison to the comprehension test. The 
findings from Davies et al.’s study suggest that the proof comprehension tests created by Mejía-
Ramos and colleagues may be more effective in assessing students’ understanding with respect 
to course grades than the comparative judgements of student proof summaries.  
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Improving Student Proof Comprehension 
Researchers have attempted to develop ways to present proofs to students so that the proofs 

can be easier for students to understand. Leron (1983) suggested an alternative to the linear 
presentation of proof by describing structuring mathematical proofs to highlight the overarching 
ideas of the argument. Rowland (2001) presented generic proofs for number theory, which used 
specific examples to highlight the general approach of the argument. Using the specific example 
sought to improve clarity and to remove abstractness for the reader.  

More recently, researchers have also developed interventions to help with student proof 
understanding. These interventions attempted to help students in different ways, such as 
providing proofs that had visual and audio aspects to focus student attention (Roy et al., 2017), 
helping students learn how to productively study independently (Alcock et al., 2015), or 
providing students with self-explanation training (Hodds et al., 2014). These interventions 
attempted to support students in various aspects of reading proof. Either by providing students 
the chance to read the proof at their own pace and revisit instructor-provided explanations as 
many times as they would like (Roy et al., 2017), providing students opportunities to engage 
deeper with the concepts and proofs (Alcock et al., 2015), or by providing students with insight 
into how to productively summarize arguments (Hodds et al., 2014).  

Weber (2015) and Samkoff and Weber (2015) offer seven strategies that successful students 
implement as they read proof for understanding. These authors implemented two instructional 
interventions, finding mixed results, to help students improve their proof comprehension skills.  

Conceptual Framework 
Since reading proof is an important part of a mathematician’s career, it is equally an 

important task for students to take part in within their proof-based courses (Weber & Mejia-
Ramos, 2011). Since students must read the proofs they encounter in class and textbooks, they 
are consumers of the presented proofs. As consumers, they are tasked (implicitly or explicitly) to 
understand a given proof. While we acknowledge Mejia-Ramos et al.’s (2012) model for 
assessing students’ proof comprehension and the impact of this model on our own conceptions of 
proof comprehension, this study focuses on what it means to students to understand proof. When 
a student is given a proof with the goal of understanding, students may act to better understand 
particular points or aspects of the proof. That is, a student will employ a proof comprehension 
strategy.  

Scholars have studied what students do when they are reading proof. For example, Weber 
(2015) investigated how successful mathematics majors attempt to understand a given proof 
through task-based interviews. Dawkins and Zazkis (2021) compared the reading behaviors 
between students who had little to no experience with reading proof to those who had 
experience. Additionally, Samkoff and Weber (2015) attempted to teach students seven 
productive strategies that can be employed to understand a given proof, such as dividing the 
given proof into independent sections.  

Literacy education scholars have discussed student reading strategies and reading skills, with 
some scholars differentiating the constructs and others suggesting the two are the same. In both 
cases, scholars rarely (if at all) formally define them. Afflerbach et al. (2008) attempted to bring 
cohesion within the field by defining both constructs, offering the following definition of a 
reading strategy: “[r]eading strategies are deliberate, goal-directed attempts to control and 
modify the reader’s efforts to decode text, understand words, and construct meanings of text” 
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(pg. 368). With respect to reading proof, we define a strategy to be deliberate acts from the 
reader with the goal of understanding some subset of a given proof. To help in operationalizing 
this, we consider the ostensive strategies that a student enacts when attempting to understand a 
given proof. Thus, we define a proof comprehension strategy as any action of the reader that is 
done outside of the proof text with the goal to understand some portion of a given proof 
(inclusive of the whole proof). By outside of the proof, we mean the student engages in 
furthering their understanding through actions not done or recommended within the proof. 

Meanwhile, the literature suggests that students’ beliefs and prior experiences can have a 
significant impact on their actions within a classroom (Muis, 2004; Schoenfeld, 1989). Thus, as 
students are reading proofs to understand, they may rely on previous experiences with proofs or 
related topics. That is, they may reflect on past lived experiences, similar proofs they have seen, 
or on what proof comprehension strategies have previously been useful or productive. As such, 
we believe it is possible that students’ beliefs and experiences may influence their own meanings 
of comprehension and the actions they take to understand a proof.  

 
Figure 1: Three theorem statements 

Methods 
The data presented is from a basic qualitative study (Merriam & Tisdell, 2015) that 

investigated what students do as they attempt to understand given proofs on functions. Three 
participants were recruited from a large southern Hispanic-serving institution. Participants were 
interviewed during the winter break of 2022-2023 or during the Spring 2023 semester. Each 
participant had taken an introduction to proof course during the Fall 2023 semester. Participants 
were met with 1-3 times for hour-long clinical interviews (Ginsburg, 1997), based on their 
availability. For each interview, participants were given a theorem statement and its proof. 
Students were tasked to read the proof until they felt they understood the proof to the best of 
their ability. Each proof focused on functions, a topic covered in each of the participants’ 
introduction to proof courses. Figure 1 shows the three theorem statements. Relevant definitions 
were available and provided if requested. After the participants indicated they understood the 
proof, interview protocol questions were asked. These questions focused on what it means to the 
participant to understand a proof, what the participants had done to understand the proof, and 
what they felt as they read the proof for understanding. All interviews were video and audio 
recorded. For this report, we focus on Christy1, a computer science major at the time of the study 
(now a CS and mathematics double major). Christy successfully completed the course, continued 
in proof-based mathematics courses, and eventually engaged in undergraduate mathematics 
research. For the study, Christy met with the first author for three interviews. Data for this report 
was analyzed using open and axial coding by both authors (Corbin & Strauss, 2015). Both 

1 Pseudonym chosen by participant. 
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authors coded for student experiences and indications for how these experiences influenced what 
it meant for the student to understand a proof. Additionally, the authors coded for reasoning 
provided by the student for the use of identified proof comprehension strategies. 

Preliminary Results 
Christy’s Definition of Understanding. In each interview, Christy was asked what it meant 

to them to understand a proof. Each time, Christy’s response was similar: that understanding a 
proof means to understand the reasoning behind each action taken and decision made by the 
author throughout the proof. For instance, consider Christy’s answer during the first interview: 

To understand, I think for me it's like understanding why people do things or like why 
certain actions we're taking. Like we are doing two parts cuz for proving it you need the 
onto and the one-[to]-one. But then like why do you have to assume - understanding 
why these assumptions are made. Because it's one thing to just do it and another thing 
to understand why it is […]  [L]ike computer sciences, like CS. There's a difference 
between like having a program that works and actually knowing why it works. Because 
if you don't know why it works, then you could mess you up over later on when you're 
doing other things. […] Yeah, like why we make certain assumptions with things and 
like when we have to. 
There are three key points to this quote. First, we note that Christy expressed the need to 

prove that a function is both one-to-one and onto to prove that it is a bijection – meaning that she 
is engaging in some proof comprehension strategies addressed by the literature, namely splitting 
the proof into various cases. Second, Christy emphasizes that simply identifying the modular 
structure (or cases) of the proof is insufficient. Rather, she states that it is also necessary to 
understand why. Why those two cases are made, why any assumptions can be made, and why the 
author is able to take different actions. Finally, Christy connects her need to consider both the 
cases of the proof and the reasoning behind these cases to her experiences in Computer Science. 
Throughout each of her interviews, Christy’s focus on the “why” was consistent, as was her 
connection to computer science. 

Christy’s Comprehension Strategies. Christy was given a goal of understanding a given 
proof to the best of their ability. With their definition of what it means to understand a proof, 
Christy focused on various aspects of the proof to meet this goal. Christy used various proof 
comprehension strategies, some of which were previously identified by other researchers as 
strategies used by mathematicians. For example, for each of the given proofs, Christy segmented 
the proof into parts. Specifically, she marked each proof to indicate independent portions of the 
proof (such as differentiating the onto and one-to-one portions of the first proof). Christy also 
frequently used examples or drew diagrams to illustrate portions of a given proof. However, the 
reasons Christy used these strategies do not necessarily match the reasons the literature has 
indicated that mathematicians use and promote the use of these same strategies. 

Consider partitioning a proof into independent portions. Samkoff and Weber (2015) state that 
identifying the modular structure of a given proof can be used to see overall structure of the 
proof. Additionally, Mejia-Ramos et al. (2012) discuss mathematicians views on the benefits of 
using this strategy as connections can be made between the portions identified. Yet, for Christy, 
this strategy held a different purpose, “I just need something there so I can see it. […] Like, yeah, 
block out what I don't need like sometimes I'll drive with the visor down even if it's there's no 
sun. Just so I can like focus on what's important.” For Christy, portioning the proof was to allow 
them to focus on the independent pieces. Thus, we see Christy using productive comprehension 
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strategies, but the personal reasons for implementing them differ from the motivation suggested 
by the literature. 

Christy also used strategies not identified by Weber (2012). For example, one way Christy 
tried to understand certain portions of a given proof was to continue reading beyond the section 
she did not initially understand. In the second proof, Christy read the line “Since ݂(ݔᇱ) =  and ݕ
(ݔ)݂ = (ݕ)then ݂ିଵ ,ݕ = ,ݔ}  ᇱ}.” Christy expressed she “didn’t think functions could equalݔ
sets.” When asked how she made sense of the line, Christy responded “mine was just read the 
next line.” Similarly, while reading the third proof and attempting to make sense of the definition 
of a set (an element of the powerset and the mechanism by which the contradiction arises), 
Christy read over the definition multiple times before jumping forward in the proof saying 
“trying to see if the conclusion helps.” In both of these instances, Christy continued to read 
further lines in the proof in an attempt to increase their understanding.  This strategy was not 
identified by Weber in his 2015 study. 

Connections to Computer Science. Christy made connections to their experiences with 
computer science in each of their interviews. Moreover, the connections varied in terms of scale. 
For instance, as discussed earlier, her experiences appear to strongly influence her personal 
definition of understanding a proof. Meanwhile, she also made connections between specific 
content in each field. For instance, during the first interview, Christy connected the concept of 
hash maps in computer science to the concept of a bijection:  

Computer science, there's like a hash map. So like to get values, you have to like, know 
the key for it […] There's just an infinite number of keys […] that's the definition of 
bijection is that you can get every single value. […] we just need to be able to get every 
single integer. Yeah, that makes sense in my head. 

Discussion 
Scholars have mainly focused on the instructor or researcher perspectives with proof 

comprehension research, though few have begun to investigate the student perspective. This 
study expands on Weber’s (2015) findings that identified six strategies that successful students 
use to comprehend proof. Christy was a successful student in their introduction to proof course, 
yet her reasoning for using strategies previously identified by Weber are different than the 
motivation mathematicians might have for using these same strategies. Additionally, Christy was 
seen using strategies not reported by Weber. This study contributes to the field’s knowledge 
about how students attempt to understand proofs in two ways. First, there may be additional 
strategies that successful students implement when reading proof. Additionally, we gain insight 
into the reasons students use different strategies. In this study, Christy did not necessarily use 
strategies for the same reasons a mathematician may, yet she productively used strategies that 
helped her understand the given proofs.  

Investigating student perspectives on proof comprehension can inform continued and 
improved support to students. Additionally, investigating more students may provide deeper 
insight into ways to support students in comprehending proofs they see in their courses. 
Researchers can better identify which proof comprehension strategies are productive and when 
they are most productive to further support students in comprehending proofs they see in their 
courses. We aim to address this need in current and future work. We are investigating how more 
students attempt to make sense of given proofs. Further, we will be connecting student beliefs 
about proof and prior experiences with proof to what proof comprehension strategies they use 
with a given proof. 
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Student Understanding of the Direction of Vector Dot Products Across Contexts and Levels 
 

 Allison Molinari Zeynep Topdemir John R. Thompson 
 University of Maine Johannes Kepler University Linz University of Maine 

As part of an effort to examine students’ understanding of vector products, we present 
preliminary findings from student responses to survey questions asking whether the dot product 
has a direction in three different contexts and three different class levels. The contexts were two 
vectors with labels but no values, two vectors on a Cartesian grid with specified magnitudes and 
directions, and the flux of a uniform electric or magnetic field through a planar surface. The 
three courses were the second semester of an introductory calculus-based physics course, a 
sophomore-level mathematical methods in physics course, and a junior-level electricity and 
magnetism course. Depending on the context, between 25% and 30% of introductory students 
were successful at determining that the dot product has no direction. Performance increased 
with course level.  

Keywords: Vector Products, Student Thinking, Pseudo-longitudinal 

Introduction 
Vectors are central to building a robust understanding of physics. Both conceptually and 

computationally, vectors play important roles through all levels of physics instruction. This has 
resulted in a significant body of literature addressing student understanding of vectors (e.g., 
Flores et al. (2004), Gire and Price (2014), and Nguyen and Meltzer (2003)). As is the case with 
the majority of physics education research, the majority of these studies are conducted in 
introductory calculus-based physics courses (Kanim & Cid, 2020). While some work has 
examined student understanding of vector fields (Bollen et al., 2017; Küchemann et al., 2021) 
and differential vector products (Topdemir et al., 2023; Walker & Dray, 2023) in the upper 
division, the evolution of students’ ideas about vector products (dot and cross products) has not 
been thoroughly explored. This paper examines a preliminary study of the evolution of students’ 
ability to identify properties of vector products at different levels and in different contexts. Data 
from a pseudo-longitudinal study is presented to demonstrate some aspects of how student 
performance is related to these factors.  

Background 
A significant amount of the work on student thinking about vectors has focused on student 

difficulties, with computational difficulties taking center stage. Mikula and Heckler (2013) 
examined students’ ability to breakdown vectors into individual components by utilizing 
appropriate trigonometric operations. The decomposition of vectors into components has been 
shown to be challenging for students from a variety of introductory physics courses (algebra- and 
calculus-based, first and second semesters). Heckler and Scaife (2015) explored the effects of 
representation on student performance when adding and subtracting vectors, replicating previous 
findings on student difficulties adding vectors in the graphical (arrow) representation and 
identifying some novel difficulties. They also found that students performed significantly better 
using an algebraic representation than a graphical one. Bollen and colleagues (2017) examined 
student difficulties around the interpretation, construction, and translation between different 
representations of vector fields. They found that students’ difficulties with addition and 
decomposition of vectors also impacted students’ success transitioning between symbolic and 
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graphical representations of vector fields and noted difficulties utilizing field line representations 
to appropriately represent field strength. A general lack of representational fluency was 
identified as a reason students may struggle with determining properties of fields such as the 
signs of the divergence and/or curl. 

Zavala and Barniol (2013) investigated student understanding of the dot product in a 
graphical representation in introductory physics courses. This was done in three distinct contexts: 
mathematical (labeled “no context”), mechanical work, and electric flux. No significant 
difference was found between the two physical contexts, however there was lower performance 
on the no context problems than the others. Students also had significant difficulties connecting a 
conceptual understanding of the dot product to its formal representation. Barniol and Zavala 
(2014) subsequently produced the 20-item, multiple-choice Test of Understanding of Vectors 
(TUV), by considering difficulties reported by a large pool of previous studies and generating 
incorrect answers that tied directly to this literature. The TUV was found to track onto four 
primary factors for student difficulties: graphical properties, graphical procedures, geometric 
calculations, and unit vector notation calculations. However, the TUV did not include any 
physical contexts, and although the TUV did include some questions on the meaning of vector 
products, the majority of the items focused on procedures. 

More recently, Carli and colleagues (2020) developed the Test of Calculus and Vectors in 
Mathematics and Physics (TCV-MP), examining differences in students’ ability to answer 
questions in mathematical and physical contexts by asking 17 pairs of isomorphic questions. 
They found that students did not always use the same strategies to solve the isomorphic 
questions, implying that context influenced students’ framing of the questions. Different 
difficulties were demonstrated by students between some question pairs. The researchers argue 
that differences in performance on some of the items suggest that success in physics is not solely 
dependent on mathematics preparation, but also necessitates students be able to appropriately 
blend the mathematical and physical reasoning in their problem solving. This is supported by 
other literature on student reasoning (e.g., Kuo et al. (2013) and Uhden et al. (2012)).  

As part of a larger project to investigate student understanding of vector products at 
different levels and in different contexts, here we focus on recognition of features of the dot 
product. The research question we are pursuing here is: How, and in what ways, does student 
understanding of the direction of vector dot products differ between mathematics and physics 
contexts, and at different levels in the physics curriculum? 

Methods 
Data were collected via a four-item, online, multiple-choice survey, with three items focusing 

on dot products. While the result of the dot products are scalars and do not have a direction, it is 
not uncommon for physics students to ascribe directions to dot products and quantities described 
by dot products. Questions in the literature that ask students to calculate the dot product had both 
vector and scalars as part of the multiple-choice options (Carli et al., 2020). With common 
incorrect responses being vector options, it is unclear how students understand the nature of the 
operation of a dot product. Additionally, the selection of a calculated scalar response does not 
explicitly imply an understanding that the dot product has no direction. To address the vector 
versus scalar nature of vector products we asked about the magnitude and direction of the 
products in separate questions. Other questions from the literature include the words “vector” or 
“magnitude” in the answer (Barniol & Zavala, 2014). To avoid any cueing from specific vector-
related vocabulary we asked, “Does the dot product ܣԦ ή  ”?ሬԦ have a direction, and if so, what is itܤ
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Since the dot product results in a scalar quantity, the correct answer is, “It does not have a 
direction.” The answer choices were based on distractors from prior literature (Barniol & Zavala, 
2014; Van Deventer, 2008). In all items students were presented with the appropriate formula for 
the dot product and asked whether it has a direction. A generalized list of the answer choices and 
abbreviated labels for presentation purposes can be found in Table 1. The same phrasing was 
used in all direction questions; only the vector labels were changed to reflect the specific context. 

Table 1. Generalized multiple choice responses and abbreviated codes for the survey items. 

Answer choices  Abbreviation 

It does not have a direction 
In the direction of ܣԦ (field vector ܧሬԦ or ܤሬԦ in the flux question) 
In the direction of ܤሬԦ (area vector ܣԦ in the flux question) 
In a direction between ܣԦ and ܤሬԦ 
In the direction perpendicular to both ܣԦ and ܤሬԦ and into the page/screen 
In the direction perpendicular to both ܣԦ and ܤሬԦ and out of the page/screen 
Clockwise 
Counterclockwise 
Not enough information to tell 

ND 
A/FV 
B/AV 

BT 
IP 
OP 
CW 

CCW 
NEI 

 
The first two items used mathematical contexts. Students were provided with diagrams 

containing two vectors in space connected tail-to-tail, with labels ܣԦ and ܤሬԦ. The vectors and 
labels were the only information provided in item 1 (Figure 1(a)); item 2 included a Cartesian 
coordinate grid and noted angles of each vector with respect to the positive x axis (Figure 1(b)). 
Item 1 asked about only the directions of the vector products ܣԦ ή Ԧܣ ሬԦ andܤ ×  ሬԦ, and subsequentܤ
items asked about the direction and magnitudes of the vector products.  

Item 3 used the physical context of electric or magnetic flux through a surface area (Figures 
1(c) and 1(d)); the choice of field was course dependent. In either case the flux due to a uniform 
field through a planar surface is given by a dot product of the field and surface area vectors (e.g., 
Ȱா = ሬԦܧ ڄ  Ԧ). The potential for both positive and negative flux through a surface can sometimesܣ
be conflated for flux having a direction rather than being indicative of source or sink of field.  

 
Figure 1. Diagrams provided in survey items asking about the direction of the dot product or the flux for the given 

situation. Diagrams for (a) item 1, (b) item 2, (c) item 3 for electric flux, and (d) item 3 for magnetic flux.  

The survey was administered at a medium-sized public US university in three different 
physics courses: second-semester introductory calculus-based physics (N=153), sophomore-level 
mathematical methods in physics (math methods; N=14), and the second semester of junior-level 
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electricity and magnetism (E&M; N=6). In each course, the survey was administered after 
instruction on the relevant mathematics or physics context(s). The context for item 3 for each 
course was most relevant to the context of instruction: magnetic flux in the introductory and 
E&M courses and electric flux in the math methods course.  

To address the question of how student understanding of vector dot products differs at 
different levels of the physics curriculum we conducted a pseudo-longitudinal comparison 
between the three courses. For this comparison we limit the pool of introductory students to the 
physics and engineering physics majors who will go on to take the upper level courses (N=9).  

Results 
Performance across the three items related to dot products is presented for the introductory 

students before comparing the performance of students at different levels.  

Introductory level 

 
Figure 2. Introductory-level student performance on items 1, 2 and 3. See table 1 for answer choice descriptions. 

All three items had a similar percentage of introductory students selecting the correct 
response (Figure 2): 28% for item 1, 30% for item 2, and 25% for item 3. The most common 
choice for both items 1 and 2, 50% and 46% respectively, is that the direction of the dot product 
is between the two vectors (BT). This is consistent with the most common response seen by Van 
Deventer in a question asking which arrow, if any, describes the direction of the dot product of 
two given vectors (Van Deventer, 2008). Item 3, the flux question, had the most evenly 
distributed answer choices, suggesting less consistent understanding among students.  

Similar percentages of introductory students selected the correct choice in each context, 
however only 16% of the introductory population selected the correct choice across all three 
items. Another 14% of students said the direction of the dot product is between the two vectors 
on all three items and 3% of students said that the direction of the dot product is in the direction 
of one of the two vectors (selecting either A/FV or B/AV) for all three questions. The remaining 
67% of students did not answer consistently across all three contexts, which suggests that they do 
not have a coherent understanding of the dot product in multiple contexts.  

Pseudo-longitudinal  
The correct answer, “it does not have a direction,” was the most common response on all 

questions through all three levels. At the introductory level, 44% of physics majors selected the 
correct answer on each item (Figure 3(a)). Between 62% and 71% of the math methods students 
chose the correct answer for each item (Figure 3(b)), and as expected, the junior E&M students 
had the highest performance of the three populations, with 100% correct in all three cases.  

In all three levels, performance on the flux question, item 3, was similar to the performance 
on mathematics context questions, consistent with the similarities between isomorphic 
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mathematics and physics questions in which mechanical work was used as the physics context 
conducted by Carli et al. (2020) and Van Deventer (2008). The most common incorrect answer 
in item 1 is different between the two lower courses: introductory students predominantly 
selected that the dot product is in the direction of ܤሬԦ, while math methods students selected that 
the dot product is between ܣԦ and ܤሬԦ. The type of error may depend on how much exposure 
students have had to vector products and the habits they developed as a result.   

 
 (a) (b) 
Figure 3. Performance by physics majors in (a) introductory and (b) math methods courses on items 1, 2 and 3. See 

Table 1 for answer choice descriptions. 

Discussion and Conclusion 
The performance of introductory students in this preliminary study (25-30%) is similar to 

end-of-semester introductory student performance on dot product direction questions in Van 
Deventer’s study, with 25% of students in a mathematics context and 24% of students in a 
physics context selecting no direction (Van Deventer, 2008). The most common incorrect 
answer, a direction between ܣԦ and ܤሬԦ, could be based on properties of vector addition. Some 
student explanations explicitly reference the tip-to-tail method, which is a strategy for vector 
addition not multiplication. For the introductory students, there seemed to be a wider variety of 
responses to the flux question than to the mathematics context questions. Asking these questions 
in other physics contexts (e.g., mechanical work) could document the relative difficulty of flux 
as a physics context for considering the dot product direction.  

The trend of improved results as the course level increases is expected in the pseudo-
longitudinal study, but the performance is not as good as one might expect, especially in the 
sophomore math methods course. Vectors and vector operations are introduced in the 
introductory sequence and proficiency in subsequent courses is almost assumed. A 100% correct 
response rate on all questions in junior E&M is a welcome result, but to promote student 
understanding of physics concepts in intermediate and upper division courses, vector operations 
need to be second nature as soon as possible, not after over half of the physics curriculum. While 
we see that student performance improves as we look at higher-level courses, a limitation of this 
study is the small sample size in each course.  

Future work includes collecting more survey data, both internally and at other institutions, 
conducting interviews to elicit more detailed explanations of student reasoning, and connecting 
empirical data to existing frameworks. 

Acknowledgements 
This material is based upon work supported by the National Science Foundation under Grant 

No. PHY-1912087. We are grateful to A. Piña for assistance with manuscript preparation. 

26th Annual Conference on Research in Undergraduate Mathematics Education 1041



References 
Barniol, P., & Zavala, G. (2014). Test of understanding of vectors: A reliable multiple-choice 

vector concept test. Physical Review Special Topics - Physics Education Research, 10(1), 
1–14. https://doi.org/10.1103/PhysRevSTPER.10.010121  

Bollen, L., Van Kampen, P., Baily, C., Kelly, M., & De Cock, M. (2017). Student difficulties 
regarding symbolic and graphical representations of vector fields. Physical Review Physics 
Education Research, 13(2), 1–17. https://doi.org/10.1103/PhysRevPhysEducRes.13.020109 

Carli, M., Lippiello, S., Pantano, O., Perona, M., & Tormen, G. (2020). Testing students ability 
to use derivatives, integrals, and vectors in a purely mathematical context and in a physical 
context. Physical Review Physics Education Research, 16(1), 10111. 
https://doi.org/10.1103/PhysRevPhysEducRes.16.010111 

Flores, S., Kanim, S. E., & Kautz, C. H. (2004). Student use of vectors in introductory 
mechanics. American Journal of Physics, 72(4), 460–468. 
https://doi.org/10.1119/1.1648686 

Gire, E., & Price, E. (2014). Arrows as anchors: An analysis of the material features of electric 
field vector arrows. Physical Review Special Topics - Physics Education Research, 10(2), 
1–11. https://doi.org/10.1103/PhysRevSTPER.10.020112 

Heckler, A. F., & Scaife, T. M. (2015). Adding and subtracting vectors: The problem with the 
arrow representation. Physical Review Special Topics - Physics Education Research, 11(1), 
1–17. https://doi.org/10.1103/PhysRevSTPER.11.010101 

Kanim, S., & Cid, X. C. (2020). Demographics of physics education research. Physical Review 
Physics Education Research, 16(2). 

Küchemann, S., Malone, S., Edelsbrunner, P., Lichtenberger, A., Stern, E., Schumacher, R., 
Brünken, R., Vaterlaus, A., & Kuhn, J. (2021). Inventory for the assessment of 
representational competence of vector fields. Physical Review Physics Education Research, 
17(2), 20126. https://doi.org/10.1103/PhysRevPhysEducRes.17.020126 

Kuo, E., Hull, M. M., Gupta, A., & Elby, A. (2013). How students blend conceptual and formal 
mathematical reasoning in solving physics problems. Science Education, 97(1), 32–57. 
https://doi.org/10.1002/sce.21043 

Mikula, B. D., & Heckler, A. F. (2013). Student Difficulties with Trigonometric Vector 
Components Persist in Multiple Student Populations. 2013 PERC Proceedings [Portland, 
OR, July 17-18, 2013], Edited by P. V. Engelhardt, A. D. Churukian, and D. L. Jones. 
https://doi.org/10.1119/perc.2013.pr.051 

Nguyen, N.-L., & Meltzer, D. E. (2003). Initial understanding of vector concepts among students 
in introductory physics courses. American Journal of Physics, 71(6), 630–638. 
https://doi.org/10.1119/1.1571831 

Topdemir, Z., Thompson, J. R., & Loverude, M. E. (2023). How students reason with derivatives 
of vector field diagrams. The Learning and Teaching of Calculus Across Disciplines 
Conference Proceedings. https://doi.org/10.1111/j.1365-201X.1994.tb10660.x 

Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2012). Modelling Mathematical 
Reasoning in Physics Education. Science and Education, 21(4), 485–506. 
https://doi.org/10.1007/s11191-011-9396-6 

Van Deventer, J. (2008). Comparing student performance on isomorphic math and physics 
vector representations. Electronic Theses and Dissertations., 1348. 
https://doi.org/https://digitalcommons.library.umaine.edu/etd/1348 

Walker, M., & Dray, T. (2023). Instances of confounding when differentiating vector fields. The 

26th Annual Conference on Research in Undergraduate Mathematics Education 1042



Learning and Teaching of Calculus Across Disciplines Conference Proceedings. 
Zavala, G., & Barniol, P. (2013). Students’ understanding of dot product as a projection in no-

context, work and electric flux problems. 2012 PERC Proceedings [Philadelphia, PA, 
August 1-2, 2012], Edited by P. V. Engelhardt, A. D. Churukian, and N. S. Rebello, 1513, 
438–441. https://doi.org/10.1063/1.4789746 

 

26th Annual Conference on Research in Undergraduate Mathematics Education 1043



Multivariational Reasoning in Linear Algebra: 
How Mathematicians Reason about Linear Transformations 

 
Wesley K. Martsching 

University of Northern Colorado 

Student difficulties in introductory linear algebra courses are often attributed to the novelty of 
the concepts in the course and the disconnectedness of these concepts to students’ prior 
mathematical experiences. However, researchers have stated that a strong prerequisite 
understanding of the function concept is essential to students’ understanding of linear 
transformations in linear algebra. In calculus and related courses, covariational and 
multivariational reasoning has been determined to be necessary for students to appropriately 
reason about functions in two or more variables. However, research on multivariational 
reasoning in linear algebra, especially with respect to linear transformations, is scarce. To 
contribute to the literature, we designed a study exploring a hypothetical model of how students 
might come to reason multivariationally about linear transformations. In this preliminary report, 
I discuss a part of the study – interviews with seven mathematicians who have either taught 
linear algebra or used linear algebra in their research. 

Keywords: Linear Algebra, Linear Transformations, Multivariational Reasoning 

Linear algebra is an important topic for many STEM students, including those studying 
computer science, data science, engineering, mathematics, and physics (Stewart et al., 2022). 
Recently, the second Linear Algebra Curriculum Study Group (LACSG 2.0) published 
recommendations for linear algebra instruction, taking into account advances in the field, 
industry, and technology over the last 30 years. Among the recommendations was the removal of 
calculus as a prerequisite for introductory linear algebra courses (Stewart et al., 2022).  

In response to recommendations put forth by the first Linear Algebra Curriculum Study 
Group in 1993, Dubinsky (1997) claimed that students’ struggles with mathematical concepts 
that are not necessarily part of linear algebra curricula but that are foundational to understanding 
linear algebra topics are one of the primary sources of students’ difficulties in the course. In 
particular, Dubinsky noted that a strong prerequisite understanding of the function concept is 
essential to students’ understandings of linear transformations. Additionally, Dorier et al. (2000) 
attributed students’ conceptual difficulties in linear algebra to their difficulties with the 
“avalanche of new words, new symbols, new definitions, and new theorems” (p. 95) and the lack 
of connection to what students have already encountered in their mathematical experiences. 
Considering these views, it is important to connect students’ learning of the linear transformation 
concept to students’ prior experiences with the function concept, especially if linear algebra 
precedes calculus in the college curriculum.  

There exist studies exploring the connection between students’ understandings of the 
function concept and their learning and understanding of linear transformations (Andrews-
Larson et al., 2017; Bagley et al., 2015; Zandieh et al., 2012; Zandieh et al., 2017). Much of this 
work has focused on a comparison of the concept images that students come to possess for 
functions and linear transformations. As part of a larger study, Zandieh et al. (2017) 
characterized student responses into three categories of mathematical structures (computations, 
properties, and clusters of metaphorical expressions) to compare their concept images of these 
concepts. In their work, the researchers found that “a reliance on properties appeared to impede 
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students’ development of a unified concept image of function while an ability to draw on 
metaphors facilitated such a development” (p. 36). That is, when students leveraged 
metaphorical linguistic expressions in their reasonings they were more successful in 
understanding various functions and transformations as examples of the same phenomenon.  

In calculus and related coursework, covariational reasoning has been determined to be a vital 
way of thinking for understanding of functions (e.g., Castillo-Garsow, 2012; Oehrtman et al., 
2008; Tallman et al., 2021; Thompson & Carlson, 2017; Thompson & Harel, 2021). 
Covariational reasoning encompasses the mental actions involved in reasoning about how two 
related quantities change in tandem with respect to perceptual time. When able to engage at the 
highest levels of covariational reasoning, a student can envision changes in one quantity’s value 
as happening simultaneously with changes in another quantity’s value and envision both 
quantities varying smoothly and continuously. Being able to coordinate the dynamic relationship 
between two quantities as they covary is crucial for students to be able to reason about concepts 
relating to functions, including derivative and accumulation (Silverman, 2017).  

In linear algebra, Turgut (2019) utilized a dynamic geometry environment (DGE) to promote 
student understanding of matrix representations of geometric transformations as representing co-
variation of inputs and outputs, consistent with a covariational view of functions. A review of the 
literature reveals that this study is the only one to-date that focuses on conceptualizing co-
variation of two mathematical objects in linear algebra. However, the covariational reasoning 
framework was not utilized as a lens through which the author analyzed the data. That is, the 
study was not concerned with how or to what extent the students reasoned covariationally. 
Rather, Turgut (2019) employed the use of a semiotic mediation lens to investigate students’ 
development of a conceptualization of matrices as representing geometric transformations, where 
treating a function as co-variation of independent and dependent variables was the byproduct of 
the use of the DGE. 

More recently, there has been a greater focus on students’ reasoning about the simultaneous 
change in more than two variables, excluding conceptual time as mediator, in calculus and other 
STEM subjects; this reasoning has aptly been referred to as multivariational reasoning. The 
development and evolution of multivariational reasoning as a framework of mental actions is 
rooted in the conceptual analyses reported on by Jones (2018). This theoretical report was 
“meant to form the basis of future empirical work” (Jones, 2018) centered around 
multivariational reasoning. Jones’s first conceptual analysis was focused on analyzing a large set 
of functions and formulas derived from a collection of STEM textbooks. In particular, Jones 
considered how the variables in these functions and formulas “could be conceptualized as 
changing with respect to one another” (p. 1111) simultaneously and interdependently (Castillo-
Garsow, 2012; Jones, 2018). The analysis included an identification of four potential types of 
multivariation inherent to mathematical functions and formulas: independent multivariation; 
dependent multivariation; nested multivariation; and vector multivariation.  

To date, no studies have employed use of the multivariational reasoning frameworks to linear 
algebra concepts outside of vector field tasks presented in the context of differential equations 
(Jones & Kuster, 2021; Kuster & Jones, 2019). However, there are implications for the teaching 
and learning of linear algebra concepts when considering vector multivariational reasoning, even 
when viewed as the composition of parallel independent multivariations. Jones and Jeppson 
(2020), in particular, noted many similarities in the various types of reasoning within 
multivariation contexts. And “that it might not be necessary for students to learn about each type 
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of multivariation separate from the others. By learning to reason about one type, they may 
simultaneously be developing reasoning abilities that transfers to other types” (p. 1146). 

If it is indeed the case that the mental actions involved in multivariational reasoning are 
transferrable across the different types, then it may be that multivariational reasoning could serve 
as the catalyst for connecting students mathematical reasoning across courses and disciplines. In 
particular, the teaching of linear algebra concepts, such as linear transformations, from a 
multivariational reasoning lens might provide additional support and opportunities to make 
connections to prior mathematical experiences and concepts, such as reasoning covariationally 
about the function concept. In this study, I aim to explore this idea by addressing the research 
question: What would be a hypothetical model of how students might come to reason 
multivariationally about linear transformations?  

Theoretical Underpinnings 
Quantitative reasoning, “conceptualizing a situation in terms of quantities and relationships 

among quantities” (Carlson et al., 2002, p. 425), is an important component of students’ 
mathematical learning. In this framework, a student has conceived of a quantity when they have 
conceived of a measurable attribute of some object; in this way, the quantity is idiosyncratic to 
the student conceiving of it (Thompson et al., 2017). When a student mentally unites the 
attributes of two or more quantities to make a new conceptual object that simultaneously 
represents both original quantities, this new object is referred to as a multiplicative object. When 
the variations of two quantities, coordinated to form a multiplicative object, are conceptualized 
in tandem, we call this covariational reasoning. 

The idiosyncratic nature of quantity under these framings has allowed for the identification 
of mental actions pertaining to increasingly sophisticated levels of covariational reasoning. For 
example, the first identifiable mental action in the covariational reasoning framework is 
“coordinating the value of one variable with changes in another” (Carlson et al., 2002). 
Similarly, researchers have begun identifying the mental actions pertaining to increasingly 
sophisticated levels of multivariational reasoning (e.g., Jones, 2018). In working to identify 
potential types of multivariation and associated mental actions, Jones (2018) conducted two 
conceptual analyses. 

Conceptual analysis is a tool that leverages the tenet of radical constructivism that knowledge 
persists because it has proven viable in the knower’s experiences. Because, as mathematics 
education researchers, we seek to improve the learning attained by all who study mathematics, 
the purpose of a conceptual analysis is to develop a model of how a concept may be structured, 
ways of knowing the concept that may be favorable to learners, or to develop models of what 
learners actually know at a moment in time and understand in specific situations (Glasersfeld, 
1995; Thompson, 2008). In discussing the role of conceptual analyses in developing hypothetical 
models of a concept and how students might come to reason about it, von Glasersfeld (1995) 
stated: 

[I]t is indispensable to have a fairly explicit model of what these concepts might be in the 
adult. Mathematics textbooks are not very illuminating in that regard and philosophers of 
mathematics rarely stoop to say anything about the conceptual raw material of their 
construction. (p. 161) 
Accordingly, I designed a study to investigate a hypothetical model of how students might 

come to reason multivariationally about linear transformations by first performing an initial 
conceptual analysis leveraging several undergraduate linear algebra textbooks. This analysis 
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guided my work on designing interview protocols to elicit multivariational mental actions of 
mathematicians.  

Methods 
In this report, I share a part of a larger study in which I investigate mathematicians and 

students’ multivariational reasoning in linear algebra, with an aim of developing a hypothetical 
model for how students might come to reason about linear transformations. To achieve this goal, 
I first conducted interviews with mathematicians. The purpose of the interviews with 
mathematicians was to identify the mental actions that they call upon when reasoning 
multivariationally about linear transformations. Then, I plan to refine the interview protocols to 
conduct interviews with students to again identify the mental actions that students call upon 
when reasoning multivariationally about linear transformations. With the results of from these 
data sets, I aim to develop a hypothetical model for how students might come to reason about 
linear transformations. 

At this stage in the project, seven mathematicians each participated in two 60-minute, one-
on-one, semi-structured interviews centered around the concept of linear transformation. 
Mathematicians were considered suitable for participation in the study provided they had 
previously taught a course in linear algebra, or their research had leveraged linear algebra 
knowledge.  

The first interview was used to familiarize the researcher with each mathematicians’ 
background in linear algebra and determine how the mathematician participants reasoned 
multivariationally about linear transformations represented algebraically. These algebraically 
represented transformations were determined to be more similar in appearance to functions that a 
student might have prior exposure to before taking an introductory linear algebra course. For 
example, after being asked which given transformations could be linear, mathematicians were 
each asked to describe the relationship between 𝑥 and 𝑇(𝑥) for the transformation 𝑇(𝑥) =
(𝑥,−3𝑥). If there was no discussion of varying quantities, then a follow-up question at this point 
was “What would happen to 𝑇(𝑥) as you changed/varied the value of 𝑥?”. This prompting was 
used to elicit multivariational reasoning, so that the mental actions of multivariational reasoning 
that mathematicians engaged in could be identified during data analysis and used to inform the 
hypothetical model for students’ multivariational reasoning.  

In the subsequent second interview for each mathematician, participants were similarly asked 
to reason about matrix transformations and geometric transformations; an example of each is 
shown in Figure 1. For each type of representation, mathematicians were first asked which given 
transformations could represent linear transformations and were then asked to reason about the 
relationships between inputs and outputs for particular transformations. During task design, it 
was hypothesized that reasoning about the images of the standard basis vectors and the domain 
and range of a linear transformation might help students reason more powerfully about the 
relationship between the inputs and outputs of the transformation. This led to development of 
sub-questions ii. and iii. for the matrix transformation tasks (Figure 1). These sub-questions were 
given iteratively to the mathematicians, provided the ideas had not been brought up authentically 
by the participant while engaging in previous parts of the task. Throughout both interviews, each 
mathematician was frequently asked to reflect on anticipated student difficulties with each task.  
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Given the matrix 𝐴 = ቀ2 −1
0 3 ቁ, determine 

whether the transformation given by  
𝑇(𝑥) = 𝐴𝑥 could be a linear transformation. 

i. What happens to the output vector 
as you vary the input vector? 

ii. What does 𝐴 do to a vector? 
a. What does 𝐴 do to the basis 

vector ቀ10ቁ? To ቀ01ቁ? 
iii. What is the domain and range of 

the transformation?  
What effect does the transformation have on 
an arbitrary vector? 

Figure 1. An example of a matrix transformation task (left) and a geometric transformation task (right) given to 
mathematician participants during their second interviews.  

During each interview, an over-the-shoulder camera was used to collect data relating to 
mathematicians’ physical cues (e.g., hand gestures, motions, and written work). Mathematicians’ 
written works were captured in real time using screen recording on the interviewer’s iPad Pro®; 
data from the camera and screen recording for each interview was then superimposed for the 
proposed of data analysis.  

In the initial coding of the data, I am identifying and categorizing mathematicians’ 
reasonings (e.g., reasoned geometrically) and potential related mental actions (e.g., recognized 
one quantity’s value as being dependent on another) from the overlayed video and transcribed 
audio. Next, I will identify properties of these categories (e.g., whether a mental action was task 
or representation specific). Following this initial analysis and coding of mathematicians’ 
reasonings, I will perform a member check with each participant to ensure that their views and 
reasonings are accurately reflected. During axial coding, subcategories of mental actions will be 
related to categories of mental actions to which they are subordinate to or supporting. I will also 
examine subcategories of mathematicians’ mental actions to determine whether any categories 
are repetitive and can be removed, condensed, or combined.  

Mathematicians’ responses to anticipated student difficulties for each task will also be coded 
thematically and compared to existing literature on students’ difficulties. Insight from 
mathematician responses and results from data analysis will be used to modify interview tasks 
and protocols ahead of student interviews.  

Discussion 
I will present data analysis results from the interviews at the conference. In preliminary 

initial coding, I observed that some mathematicians focused on varying the input of a 
transformation component-wise by small arbitrary changes to determine the effect this had on the 
corresponding output vector. It seems that their reasonings included recognizing in/dependence 
and coordination mental actions. The audience will be asked to discuss some interview questions 
to elicit additional mental actions that I may have not observed in my data set.  
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Learning to Teach Teachers: Community College Faculty Explore Fraction Tasks for Teaching 
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Teaching mathematics for future elementary teachers is fundamentally different from other forms 
of mathematics and thus requires different knowledge. As community colleges become 
increasingly involved in the process of training future teachers, it is essential to explore how 
instructors at these institutions develop as mathematics teacher educators. This paper reports on 
a preliminary exploration of how community college faculty grappled with teaching-oriented 
mathematical tasks involving fractions. Choices of mathematical representation, selection of 
answer before and after discussion, and overall themes are discussed, with a focus on 
development of mathematical content knowledge for teaching.  

Keywords: Professional Development, Math Teacher Educators, Preservice Elementary Teachers 

Mathematics teacher educators (MTEs) carefully consider the preparation and development 
of preservice elementary teachers (PTs). Though four-year institutions have predominantly 
prepared students for teaching and provide certification/licensure for elementary teachers 
through credential programs (Masingila et al., 2012), community colleges have begun to focus 
attention on widening the teacher preparation pipeline “as more students [turn] to them to take 
required mathematics and education courses” (Blair et al., 2018, p. 185). Masingila et al. (2012) 
found in a survey of 207 two-year college math departments that over 80% offered math content 
courses for PTs, implying that “two-year schools play a key role in the mathematical preparation 
of teachers” (p. 352).  

Our study is framed by the perspective that teaching math for future teachers entails a 
fundamentally different approach than teaching other math courses, as learning to teach math 
requires different and complex ways of understanding (Ball et al., 2008). Just as teachers of math 
require a knowledge of math different than those not engaged in teaching, MTEs require 
knowledge of teaching mathematics that is developed and held in a way different than how 
teachers know it (Beswick & Goos, 2018). While the content being taught in elementary math 
content courses may appear simple, conceptual meaning underlying topics, addressed at both the 
level of the PT and the future elementary school student, is deceptively complex. Masingila et al. 
(2012) argue that “instructors teaching mathematics content courses designed for [PTs] may not 
be prepared to teach those courses in ways that will provide the type of mathematical support 
needed by [PTs]” (p. 355). While faculty may hold strong mathematical knowledge, many have 
not had extensive pedagogical training nor training for how to be a MTE. This paper focuses on 
the following question: How do community college math faculty reason through teaching-
oriented mathematical tasks involving fractions?  

Methods 
This paper focuses on the mathematical work collected from a one-week professional 

development (PD) of 15 math faculty who are developing MTEs. None of the faculty had 
specific training as MTEs prior to the PD. Ten of the faculty were full-time math instructors 
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from three community colleges, while six were part-time math instructors at a university and/or 
community college. Teaching experience ranged from two years to over 20 years, with over half 
of participants having some kind of K-12 teaching experience. Five instructors had taught a math 
course for PTs at least once before, while ten instructors had never taught a math course for PTs 
and therefore had never engaged with the ways that PTs think mathematically. All participants 
expressed a desire to develop their understanding of how to teach mathematics content in a first 
mathematics course for PTs.  

Each morning, faculty engaged in a selected task from the Learning for Mathematics 
Teaching (LMT) Project from the University of Michigan (Hill et al., 2004). These LMT tasks 
were designed to be used in many different contexts. For purposes of the PD, we used tasks as 
“open-ended prompts which allow for the exploration of teachers’ reasoning about mathematics 
and student thinking.” (Hill et al., 2004, p. 2). We utilized a total of five tasks, each focusing on a 
mathematical topic related to the PD activities for that day. This paper highlights participants’ 
responses for two of these tasks, shown in Figure 1. Task 1 targets the knowledge needed by a 
teacher to develop children’s reasoning about comparing and ordering fractions. Task 2 
demonstrates a task related to fractions, providing sequences of questions that may help a child 
determine how many 4s are in 3.  

Task 1: Comparing and Ordering 
Fractions 

Mr. Foster’s class is learning to compare and 
order fractions. While his students know how 
to compare fractions using common 
denominators, Mr. Foster also wants them to 
develop a variety of other intuitive methods.  

Which of the following lists of fractions 
would be best for helping students learn to 
develop several different strategies for 
comparing fractions?  

Task 2: How many 4s in 3? 
Mrs. Brockton assigned the following 
problem to her students: How many 4s are 
there in 3?  

When her students struggled to find a 
solution, she decided to use a sequence of 
examples to help them understand how to 
solve this problem. Which of the following 
sequences of examples would be best to use 
to help her students understand how to solve 
the original problem?  

a) ଵ
ସ

 ଵ
ଶ

 ଵ
ଵଽ

 ଵ
ଶ

 ଵ
ଵ

 

b) ସ
ଵଷ

 ଷ
ଵଵ

 
ଶ

 ଵ
ଷ

 ଶ
ହ
 

 

c) ହ


 ଷ
଼

 ଶ
ଷ

 ଷ


 ଵ
ଵଶ

 

d) Any of these 
would work 
equally well for 
this purpose 

a) How many:  
4s in 6?  
4s in 5?  
4s in 4?  
4s in 3?  

b) How many:  
4s in 8?  
4s in 6?  
4s in 1?  
4s in 3? 

c) How many:  
4s in 1?  
4s in 2?  
4s in 4?  
4s in 3? 

d) How many:  
4s in 12?  
4s in 8?  
4s in 4?  
4s in 3? 

Figure 1: Task 1 and Task 2 from the LMT sample tasks. 

Participants were first given five minutes individually to review the task, select a response, 
and explain their reasoning. In groups of four, participants were then given eight minutes to 
discuss the question with their peers before we discussed as a whole group. Finally, we asked the 
participants to reflect on their thinking after group discussion. Fifteen people responded to Task 
1 and 13 responded to Task 2. This paper discusses the written reflections from participants. 
Data were analyzed through constant comparison analysis (Corbin & Strauss, 2008). All authors 

26th Annual Conference on Research in Undergraduate Mathematics Education 1052



first read through each individual response, noting which choices were selected initially and after 
group discussion and notable themes from their reasoning. This guided our second read which 
focused on all participants’ initial choice reasoning. Our third read focused on all participants’ 
final choice reasoning. During the second and third read, we specifically focused on participants’ 
use of language, inclusion of visual representations, and overarching themes in their reasoning. 

Findings 
Findings are discussed for each task, with a focus on language/vocabulary participants used 

to explain their reasoning, types of visual mathematical representations provided in the response, 
and participants’ initial and final answer selection. 

We first discuss Task 1. Some language trends used by the participants were the words: unit 
fraction, size, easiest, and variety. Initially, option A was the most selected answer. Eight of the 
15 participants identified (in some way) the list of fractions as unit fractions. Nine participants 
referred to the size of the fractions in option A, indicating that option A could help students focus 
on the value in the denominator and its meaning. One participant, Heidi, noted that “it is 
important for students to understand the ‘size’ of fractions first and also determine how the 
denominator affects the size of a fraction before comparing them.” Across participants, there was 
significant overlap between thinking in terms of unit fraction and size, implying that the only 
difference in the fractions in option A was the denominator, which may help children determine 
the size of the fraction. Four participants labeled option A as easy, mentioning that the values 
were “easiest to compare.” For example, Stephanie wrote, “Beginning by understanding fractions 
with 1 in the numerator makes comparing them easier to access,” further sharing that most of the 
fractions “can be re-written with a common denominator of 20 fairly easily.” The idea of variety 
was also something participants discussed, although it was not clear what they meant by the 
word. Four participants selected option C and one participant option B because of variety in the 
numerators and denominators. One participant initially liked option C because of the variety of 
prime and composite values in the denominators. The participant who initially chose option B 
changed to option C, this time mentioning variety to describe difficulty. Variety was also used to 
describe the many strategies that could be used to help students compare fractions.   

Four participants drew diagrams in their response, while three provided real-life contexts 
related to the fractions in the options. The types of diagrams drawn included a tape diagram, 
fraction circles, a number line, and a coin model. For example, one participant drew a number 
line from 0 to 1, showing tick marks for 1/12, 1/4, 1/2, and 3/4 (see Figure 2a). Another bridged 
the idea of student knowledge and fractions in option C, stating that the denominator in 3/7 could 
represent days in a week or the denominator in 3/8 could represent the number of slices in a 
medium pizza. Courtney drew a diagram of coins to connect the denominators in option A 
(Figure 2b), which included different American coins in relation to a one dollar whole, drawing 
them to their relative size, noting that 1/19 caused a challenge for this model, but that students 
could compare it to a nickel. 

There were substantial changes to the final selection in Task 1, with 12 participants changing 
their selection after group discussion. Initially, eight participants selected option A, three 
selected option B, two selected option C, three selected a combination of options, and one was 
unclear on their selection. After discussion, many participants selected a different option, and 
many struggled to select one option. Overall, 11 participants chose option C in some way, and no 
participants selected option A. Most participants’ choices included some type of conditional 
statement, which indicated that they liked an option, but with some adjustments. One participant 
stated that she would pick options A, B, and C, sharing she would start with option A, move to 
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option C, and then depending on class time, also use option B. It appeared that participants were 
highly open to hearing the perspective of others and multiple ways of thinking of the same 
problem. Participants noted that option C included many interesting values, could highlight the 
concept of benchmark fractions, and how the values could be organized in relation to closeness 
to 0, 1/2, and 1, as shown in Figure 2a.   

 

 
(a) (b) 

Figure 2. (a) Diagram of Jane’s number line. (b) Diagram of Courtney’s thinking. 

Next, we discuss Task 2, which asked for the best sequence to help students understand the 
concept of “4s in 3.” Participants responding to Task 2 differed in how they conceptualized the 
problem, either as a division problem, fraction problem, or both. From the 13 participants, only 
one viewed the problem as solely a division problem, stating that option D led students “to 
recognize the use of division.” Eight participants had writing indicating that they viewed this 
problem as a fraction problem, using language like whole, mixed number, or unit fraction, or by 
writing fractions. Four participants used language that indicated thinking of the problem as 
pertaining to both division and fractions.  

Six participants utilized diagrams in Task 2, three of which had also drawn a diagram in the 
first task. One participant, Mara, had a visually distinct drawing for Task 2 involving a discrete 
model for her initial choice, option B, showing circles in groups of four with dotted lines to 
indicate fractional parts (see Figure 3a). The other four participants, in contrast, used number 
lines and tape diagrams. Figure 3b shows Patricia’s use of a tape diagram to visually demonstrate 
that there should be less than one 4 in 3.  

 
 

(a) (b) 
Figure 3. (a) Mara’s discrete drawing representing option B. (b) Patricia’s tape diagram showing 4’s in 3. 

Task 2 also had a high number of people unable to choose one option after group discussion. 
Eight people had more than one answer listed, with six settling on options B and D. Reasoning 
included comments like “I think both explanations are valid” and “Perhaps I would use a 
combination of B and D,” often showing slight preference for one or the other but not making a 
clear decision. Furthermore, one person had no answer listed but instead wrote, “context 
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matters,” with a list of the different factors that would affect a teacher’s decision for which 
response to select, such as grade level and whether the teacher used discovery learning. Two 
more participants also did not choose an answer after group discussion, with one participant only 
including their ideal list of nine examples that would help students to understand the concept. In 
total, there were 11 participants who struggled to pick an answer in some way.   

Due to the general indecisiveness of the group, participants were given the opportunity to 
create an ideal list of four example problems to lead up to the “4s in 3” question, creating a list of 
five examples. Twelve participants had a mixture of examples from options B and D, with six 
people from this group adding in the example “4s in 2” into the list. One person had a visually 
distinct list that was sourced from option C, using the same problems but instead listed as 4s in 4, 
4s in 1, 4s in 2, then 4s in 3. Three people had lists that were longer than five examples, and after 
some large group discussion one participant remarked that in his classroom, he could give as 
many problems as he wanted. Rather than settling on a specific answer, the group felt relieved to 
create their own lists, agreeing that no option in Task 2 gave the “best” sequence of examples.  

Discussion 
The findings described above highlight both the challenges and affordances that may be 

leveraged in training community college faculty to become effective MTEs. Participants’ work 
with two LMT tasks revealed differences in how they described and understood fractions and 
division, choices of visualization, and how they incorporated their experience into the work.  

One of the most surprising features highlighted across both tasks was participants’ limited 
use of visualizations. Very few participants provided number lines, tape diagrams, or other 
visuals in their work. Within their explanations and in discussions, many participants noted the 
importance of visualization when working with fraction ideas yet did not include a diagram 
themselves. It remains unclear whether this was due to a lack of need for diagrams personally or 
a perception that diagrams were not required when explaining to their peers. It has been shown 
that MTEs struggle to know when and how to incorporate visual fractional representations (Petit 
et al., 2016); without evidence of visualizations in the responses, it was not yet clear whether the 
MTEs had developed knowledge on how visualizations may support student thinking. 

Across both tasks, it became clear that participants had a difficult time selecting a single 
answer after the whole group discussions. Many participants placed a strong emphasis on 
instructional context, providing qualifiers next to multiple choices. This indecisiveness and need 
for additional information were likely influenced by the background of the participants. As 
experienced teachers, they were acutely aware of the need to adapt materials to the specific class. 
They were also willing to engage in group discussions with colleagues and subsequently adapt or 
modify their choices - a necessary component of learning new ideas and building a community 
amongst their peers. These changes support the idea that participants were beginning to reshape 
their knowledge of teaching PTs, especially in the context of fractions and division, and were 
open to substantive change in their practice as future MTEs.  

Questions for further discussion: (1) How have others transitioned from mathematicians to 
MTEs, specifically around elementary-school mathematics content? (2) How might lessons 
learned in this space transfer to teaching and learning in other mathematics courses?  
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Barriers and Drivers to Implementing GTA Professional Development focused on Active
Learning, Equity, and Inclusivity

Hayley Milbourne Mary E. Pilgrim ELITE PD Research Group
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and 2013422

Mathematics Graduate Teaching Assistants (MGTAs) play a significant role in undergraduate
mathematics education, as they are often in a teaching-related position for courses in the College
Algebra through Calculus II sequence. Further, research shows that teaching practices that
promote active learning, equity, and inclusion lead to improved student outcomes (e.g., Freeman
et al., 2014; Laursen & Rasmussen, 2019; Mulnix, Vandegrift, and Chaudhury, 2016). However,
MGTA PD that reflects these practices may be limited due to a variety of reasons. In this
manuscript we discuss barriers and drivers to implementing PD that reflects active learning and
equity-focused values. The goal is to understand ways that we can utilize institutional-specific
drivers and navigate barriers to support the implementation of more PD programs like the one in
this study.

Keywords:Mathematics Graduate Teaching Assistant, Professional Development, Active
Learning, Equity, Barrier

Mathematics graduate student professional development for teaching has become
increasingly important in the Mathematics Education community. However, what that
professional development looks like depends on local institutional contexts. A department’s
culture can impact what classroom practices graduate students implement as well as whether
equity and inclusion are identified as being an important element for instruction. Department
leaders who work closely with graduate students who have teaching roles, such as department
chairs, course coordinators, and professional development providers, have an understanding of
that culture and recognize existing barriers and drivers to implementing professional
development for mathematics graduate teaching assistants (MGTAs).

The work presented here is part of a larger NSF-funded project focused on creating,
implementing, and studying a multi-term professional development program for MGTAs across
three different mathematics departments. The program titled, ELITE PD, has two primary foci:
1) active learning and 2) equity and inclusivity. However, how departments think about and
approach these ideas can vary. Thus, we sought to understand institutional-specific barriers and
drivers for implementing a MGTA professional development program focused on active,
equitable, and inclusive teaching practices. Specifically, we ask: What barriers and drivers do
department leaders identify for implementing an MGTA PD program focused on active learning,
equity, and inclusivity?

Theoretical Frameworks
We sought to identify analytical frameworks that reflected the ELITE PD program foci. In

the work by Shadle et al. (2017), researchers sought to understand STEM faculty perspectives
with regard to shifting teaching practices from instructor-centered approaches to more
student-centered approaches. Additionally, Harris and Wood have done extensive work in
understanding barriers to advancing equity in instruction in higher education (e.g., The
Community College Equity Assessment Lab (CCEAL), 2017; Harris & Wood, 2018; Wood &
Harris, 2015). Together, the work of Shadle and colleagues and Harris and Wood provide us with
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analytical frameworks that allow us to understand the barriers and drivers to implementing an
MGTA PD program focused on active learning, equity, and inclusivity.

Shadle et al. (2017) examined STEM faculty response to a vision for teaching as proposed by
university leadership. The vision proposed a shift towards student-centered instruction and
leadership solicited input from faculty regarding the proposed vision, and faculty-perceived
barriers and drivers toward this vision were then identified. Identifying barriers allowed leaders
to better understand aspects and characteristics that might prevent change from occurring (e.g.,
university reward structures, individual beliefs) and drivers that could be leveraged to support
change (e.g., collaboration in teaching, personal satisfaction). We drew upon Shadle et al.’s
barriers and drivers as a starting point for our analytical framework for understanding barriers
and drivers to implementing active learning in MGTAs’ instruction.

While Shadle et al. (2017) address barriers and drivers associated with active learning and
student-centered instruction, Harris and Wood (e.g., CCEAL, 2017; Harris & Wood, 2018; Wood
& Harris, 2015) examine the barriers for doing equity-related work in higher education. Several
of the barriers overlap with those identified by Shadle and colleagues. For example, both Shadel
et al. and Harris and Wood highlight individual attitudes as playing a role in resistance to change
efforts. Similarly, both groups of scholars emphasize institutional culture as potentially impacting
change (e.g., institutional policies or processes). Harris and Wood additionally identify
institutional “politics and power dynamics” as a potential barrier for equity-related work (2018,
Barriers to Actually Achieving Equity section). Combined, both analytical frameworks provided
us with a starting point for understanding department leadership perspectives on an MGTA PD
program focused on active, equitable, and inclusive teaching practices.

Methods
A previous RUME paper with this project explored barriers and drivers tied to implementing

an MGTA PD program focused on active learning, equity, and inclusivity (Fifty et al, 2022). That
work examined a single institution through thematic analysis. Here we expand upon this work by
looking across three institutions and implementing an a priori codebook built from the codes
established by Shadle et al. (2017) and the work of Harris and Wood (e.g., CCEAL, 2017; Harris
& Wood, 2018; Wood & Harris, 2015). We discuss our methods in the following sections. While
we are building upon this work, this work is still preliminary, with only initial findings from
coding being presented.

Data
ELITE PD is being implemented at three large, public universities: Beta University, Epsilon

University, and Gamma University. Each university offers graduate programs in mathematics.
Epsilon University primarily grants master’s degrees in mathematics and Beta and Gamma
Universities primarily grant PhD degrees in mathematics. At each institution there is a structure
within the department around MGTA professional development and interviews were conducted
with the leaders in these structures. Table 1 lists the titles of the leaders at each institution. In
some cases, more than one person carried the same title, and those instances are documented by
the number in parenthesis.

Table 1. MGTA Professional Development Leaders at each institution.
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Epsilon University
Incoming Dept Chair
Outgoing Dept Chair
Course Coordinators (3)
PD Facilitators (1)
Graduate Advisor

Gamma University
Dept Chair
Associate Chair
Graduate Program
Chair
PD Facilitator

Beta University
Dept Chair
PhD Director
Course Coordinators (2)
PD Facilitator

These interviews were semi-structured conversations around ELITE PD practices and
implementation, which is described in more detail below. Interviews were conducted at the
beginning of the study, before ELITE PD had been implemented at any of the institutions.

Coding
Analysis of these interviews was done through open coding. The initial codebook was taken

from Shadle et al. (2017) and supplemented by the work done by Harris and Wood (e.g.,
CCEAL, 2017; Harris & Wood, 2018; Wood & Harris, 2015). As the interviews were coded,
these codes were then refined, and other codes were added based on what was uncovered in the
data. Codes were identified as being in one of three main categories: barrier, driver, or tension.
Barriers were those codes that impeded ELITE PD practices, drivers supported ELITE PD
practices, and tension codes were not necessarily barriers or drivers but emphasized local context
or values that impacted ELITE PD practices. ELITE PD practices are:

● Active Engagement
● DEI practices in and out of the classroom
● Assessment (or feedback) of teaching practices aligned with active learning and/or

DEI practices
● Faculty or peer MGTA mentoring practices
● Fostering MGTA autonomy/agency
● Awareness of and attending to power differentials (how MGTAs are treated,

classroom practices, etc.)
Examples of barriers to ELITE PD practices include Unclear Implementation and Student
Resistance, and Improves Teaching and Assessment is an example driver. Examples of tensions
areMGTA Workload and Student Preparedness.

An utterance was coded only if it could be related to at least one of the ELITE PD practices
listed above. If the utterance was not clearly related to one of those practices, it was not coded.
For example, discussions around professional development for MGTAs were not coded unless it
was clear that there was a connection to ELITE PD practices; general discussions about
professional development were not coded.

Once a codebook had been formed, three researchers coded all of the interview. Each
interview was coded by at least two researchers. For each interview, the researchers coded
individually and then came together to discuss any differences in coding until there was 100%
agreement.

Initial Findings
Some initial findings have included the most common barriers and drivers found across the

three institutions. Each of these are described in more detail in the following sections.

26th Annual Conference on Research in Undergraduate Mathematics Education 1059



Drivers
The three most common drivers were Supportive Attitude, Current Practices, and

Department Support. A description of each of these codes is given in Table 2.

Table 2. Common drivers

Supportive
Attitude

Current
Practices

Department
Support

The interview participant expresses (personal) view in line with ELITE PD
practices such as being supportive of efforts that align with ELITE PD values.

● Some MGTAs and/or faculty participate in PD that reflect ELITE PD
practices

● MGTAs and/or faculty member(s) have already adopted ELITE PD
practices

In reference to the department as a collective (use of “we”) in relation to
efforts associated with ELITE PD practices. May be part of department-wide
culture, expectations, vision statement, and/or department mission.

The drivers described in Table 2 were found to be the most common among the three
institutions, with Supportive Attitude being the most common driver across all three institutions.
These drivers did not vary much between the three institutions. For all three institutions, these
were the most commonly discussed drivers, which was not the case for barriers as described
below. Other drivers included Institutional Support and Aligns With Existing Resources.

One limitation with this finding is that all three of these drivers are quite broad and
encompass many different beliefs and ideas. We are currently working on a secondary code
system for each of these drivers, as well as for Institutional Support, so as to gain a better
understanding of what the specific drivers are within each of these categories.

Barriers
The three most common barriers were Unclear Implementation, Lack of Awareness, and

Faculty Divisions. Each of these codes is described in Table 3.

Table 3. Common barriers

Unclear
Implementation

Lack of Awareness

Department
Support

Don’t know how to assess if doing ELITE PD practices, their
appropriateness, or how to implement them effectively

Participant indicates they are unaware of policies, structures,
happenings/efforts in the department/institution related to or aligned with
ELITE PD practices

Disagreement and/or unwillingness among faculty/lecturer groups with
regard to implementing ELITE PD practices.
(e.g., tenured vs. un-tenured faculty; lecturers vs. faculty; etc.)
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An interesting difference between the most common barriers and drivers was that the barriers
varied across the institutions. For Beta University, the top three common barriers were Unclear
Implementation, Lack of Awareness, and Faculty Divisions, which is consistent with the overall
list described above. However, for Epsilon University, the top three common barriers were
Unclear Implementation, Faculty Divisions, and Not-My-Job, and for Gamma University, the top
three common barriers were Lack of Awareness, Focused on Metrics, and
Misinformed/Theorizing, which includes codes not on the overall common barriers list above. It
was important to delineate by institution, as the number of interviews were not the same for each
institution. Further, examining barriers by institution allows us to better understand the role that
local contexts can play when engaging in PD work focused on active learning, equity, and
inclusive teaching strategies.

In addition, we found that the Not-My-Job code was used to note when the interviewee stated
that something focused on ELITE PD practices was not part of their job. We found that this was
not necessarily a strict barrier as we had originally thought it would be. Rather, it tended to mark
instances the interviewee recognized that there were other people more qualified to address
specific aspects or tasks in the department. In contrast, Focused on Metrics was a code used to
note times the interviewee was more focused on the metrics of the department over the
implementation of ELITE PD practices and Misinformed/Theorizing was used to note times the
interviewee made a statement about ELITE PD practices that was not correct (e.g., active
learning is not possible in large classes).

Conclusion
Understanding the barriers and drivers that can support or impede the implementation of an

MGTA PD program focused on active learning, equity, and inclusion is important because they
can be used to encourage the adoption of such a program. While drivers did not vary much
across the three institutions, barriers did. As barriers can play an important role in hindering
implementation of a PD program, understanding what those barriers are can help in knowing
how to best leverage drivers in order to implement change. For example, the focus on metrics at
Epsilon University could be leveraged in such a way that data collected for assessing impact of a
PD program could include metrics that ‘speak’ to administrators and leaders. Lack of awareness
and/or unclear implementation, on the other hand, may require a focus in communication and
enhanced training to support PD efforts. Such a focus could also address the barrier of
misinformed/theorizing. Moving forward, we aim to understand how institutional-specific
barriers can be addressed through existing drivers.
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Instructional Characterizations of Foundational Math Coordinators with Attention to Instructor-
Student Interactions 

 
 Kimberly Cervello Rogers Camryn Grey Nicholas Long 
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We aimed to get a better understanding of participants’ (eight foundational math course [FMC] 
coordinators’) teaching approaches. In the first year of this grant project, we primarily gathered 
data (through surveys, self-reflections, and class observations) on these individuals as 
instructors. These data were compiled into narrative summaries for each participant and 
analyzed and compared. We discuss our findings from this analysis, using the instructional 
triangle as a framework, and particularly focusing on instructor-student interactions. This 
project aims to develop an understanding of what is needed to support instructional change in 
FMCs by evaluating how math-specific professional development (PD) cycles affect FMC 
coordinators’ teaching practices and perspectives. We seek audience feedback on potential next 
steps towards fostering effective instructor-student interactions and future PD cycles. 

Keywords: Foundational Math, Course Coordinators, Professional Development 

Introduction 
College math instructors typically work in isolation, negatively affecting quality of 

instruction and sustainability of evidence-based teaching practices in college math classrooms 
(Bressoud et al., 2015). Few instructors have access to or utilize explicit communities of support 
(Reinholz, 2017). This paper reports on data from the first year of a 3-year grant project (Rogers, 
2022-2025) that ultimately aims to test and refine a community of practice (CoP; Wenger et al., 
2002) among eight faculty members who coordinate and teach foundational math courses 
(FMCs, e.g., College Algebra, Precalculus, Quantitative Reasoning, Introductory Statistics, Math 
for Elementary Teachers, & Calculus). Course coordinators are a key population within college 
math education because they teach and supervise instruction of thousands of undergraduate 
students each semester. A CoP can provide a means for them to share and manage professional 
knowledge, in this case about math-specific professional development (PD) opportunities. 

The overarching objectives of this grant project evaluate how math-specific PD cycles affect 
FMC coordinators’ teaching practices and perspectives and contribute to theory about supporting 
meaningful instructional change in FMCs. The hypothesis is that by designing and implementing 
PD opportunities about teaching undergraduate math using active-learning (AL) strategies 
(Freeman et al., 2014; Laursen & Rasmussen, 2019) with FMC coordinators, they will develop 
their mathematical knowledge for teaching and become more effective instructors. Ultimately, 
this project will develop an understanding of what is needed to support instructional change in 
FMCs. Our first step toward these goals is to understand the current beliefs, practices, and 
competencies of the FMC coordinators in our study, use these findings to inform future PD 
decisions, and elicit feedback from the RUME community to consider moving forward. In this 
paper, we aim to answer, what are the prevailing characteristics (e.g., beliefs, competencies, 
classroom practices) of these FMC instructors?  

Literature Review 
Over a decade ago researchers (Speer et al., 2010) conducted a literature review on collegiate 

math teaching and concluded that instructors’ practice (i.e., their pedagogical actions and 
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reasoning related to those actions in the context of instructional activities) remains largely 
unexamined in the research literature. Research on PD in college math education is still sparse, 
especially when the focus is on instructors and tenure-track faculty (Florensa et al., 2017). 
Within the context of our larger research project, we first seek to better understand who these 
participants are as instructors and as a community of instructors. When we say community of 
instructors, we are examining this group of instructors as a CoP. 

In a 97-paper meta-analysis of change theories in STEM higher education, the most prevalent 
change theory was CoPs (Reinholz et al., 2021). A CoP strives to create, expand, and exchange 
domain knowledge to develop individual capabilities and cohesion dependent upon passion, 
identity, and commitment (Wenger et al., 2002). These cohesive properties align with the model 
used in this study because all participants share the FMC instructor and coordinator identities, a 
commitment to teaching (per employment), and passion to support student learning outcomes. 

 To consider these CoP components, we note how the MAA Instructional Practices Guide 
(MAA, 2018) emphasizes student-centered teaching practices and pushes us to move away from 
direct instruction. This push is due to research findings that highlight how student-centered 
practices help increase access to learning opportunities for diverse learners (e.g., Laursen & 
Rasmussen, 2019). We specifically conceptualize student-centered instruction through the 
instructional triangle. Instead of solely emphasizing the teacher, Cohen et al. (2003) defined 
teaching as “what teachers do, say, and think with learners, concerning content, in particular 
organizations and other environments, in time” (p. 124). In their definition, four critical aspects 
of teaching become apparent- teachers, students, content, and environment- which are situated in 
a model that represents instruction as interaction where teacher, learners, and content create a 
triangle of interaction, existing within the environment (i.e., the instructional triangle). This 
framework for instruction is appropriate for our study because it allows us to look at participants’ 
self-report data and classroom observation data and consider how their responses and practices 
emphasize components of the instructional triangle.  

Method 

Context: University and Course Coordinator Backgrounds 
At a rural, public, liberal arts college in the Midwest, participants are eight FMC 

coordinators. Course coordination duties include (but are not limited to) deciding on, designing, 
and distributing course materials (i.e., syllabi, lecture notes, pacing calendars, example 
assessments, and activities) to maintain consistency across sections of the course that semester. 
They also include facilitating meetings with all course instructors, adjusting assessments so they 
align with learning outcomes, providing observation feedback for novice college math instructors 
(i.e., graduate student instructors and faculty), and addressing student concerns. Our campus has 
a main (4-year) location and secondary location less than an hour away. The secondary location 
focuses on the first 2-years of undergraduate course work, and providing explicit pathway 
supports for students. Table 1 lists participants’ course names, years coordinating (self-reported), 
and campus location. For College Algebra, both campus locations utilize a math emporium 
instructional style1, a computer-based opportunity to fill in gaps for content knowledge, while the 
other FMCs are taught in in-person lecture formats (pseudonyms are used throughout this paper). 

 
1 Math emporiums use adaptive learning systems to individualize student pathways (Cousins-
Cooper et al., 2017). 
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Table 1. Participants’ backgrounds and course coordination details. 

 
Pseudonym Course(s) Coordinating Yrs Coordinating Campus 

Alaina College Algebra 9 Main 

Alexis College Algebra 0 Main 

Camille (1) Calculus I, (2) Calculus II, & (3) Calculus III 15 Main 

Madeline (1-3) Math Ed Elementary Math Content Courses 4 Main 

Patrick (1) College Algebra & (2) Pre-Calculus 3 Secondary 

Pricilla Pre-Calculus 4 Main 

Reema (1) Math for Architectures & (2) Quantitative Reasoning 12-15 Main 

Stella Introduction to Statistics 4 Main 

Community of Practice Context 
Before this grant project began, Author 1 met with the FMC coordinators at least twice a 

month for course coordination meetings to address administrative and policy needs of the FMCs, 
department, and university. By utilizing these pre-existing meetings, we implement PD activities, 
learn about one another’s teaching practices, and collect self-report and survey data without 
adding additional time commitments.  

Data Collection and Analytical Approach 
During project year 1, FMC coordinators completed surveys2, answered reflection questions, 

completed an empathy map, and were observed teaching. These data points informed our 
understanding of their professional history, beliefs both as an individual instructor and as part of 
the FMC coordinator group, and typical classroom practices. We created narrative summaries of 
each participant’s quantitative and qualitative responses. We analyzed the narratives to examine 
participants’ beliefs and classroom practices, specifically regarding participants’ teaching 
approaches. We conceptualize “teaching approaches as actions and strategies described and 
enacted by instructors when they talk about teaching mathematics or when they actually teach 
mathematics (Mesa et al., 2014, p. 122). We coded the data for student-, content-, or instructor-
centered approaches, defined as instructor descriptions and strategies that are driven by… 

1. …“instructors’ interest in attending to students’ cognitive, social, and emotional 
needs, seeking to give students a more prominent role in classroom activities” (Mesa 
et al., 2014, p. 122): Student-centered.  

2. …“instructors’ interest in emphasizing the content over students’ cognitive, social, or 
emotional needs and involvement” (Mesa et al, 2014, p. 123): Content-centered. 

3. …instructors’ teaching or learning plans, goals, or decisions that do not explicitly 
attend to student- or content-centered aspects: Instructor-centered. 

 
2 The surveys included items from the Collective Teacher Efficacy Instrument by Goddard et. al. 
(2000), and the (self-) Efficacy Instrument by Enochs & Riggs (1990) 
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Findings: Characterization as Instructors 
After analyzing each individual case study and comparing them across the group, we report 

on our initial findings of the identities of these FMC coordinators.  

Beliefs 
Based on their survey responses, we examined the participants’ beliefs about self-efficacy 

and collective teacher efficacy. Each coordinator’s response indicated a high level of self-
efficacy in terms of their ability to teach mathematics. For most, this ability included self-
assessed strength in terms of their content knowledge (content-centered). The self-efficacy 
instrument also highlighted the coordinators’ beliefs on how influential instructors are to the 
learning and success of math students. Specifically, all but one coordinator said the instructor 
(instructor-centered) significantly impacts student learning. Only Alaina’s survey responses 
indicated she believes classroom practices need to be organized to help students be the 
mechanism for their success in learning (student-centered). 

Every participant also indicated a high level of collective teacher efficacy, with survey 
responses that suggest they believe the other individuals in their FMC CoP are effective in their 
teaching of mathematics (instructor-centered). Even so, the coordinators were not in consensus 
as to whether further training was needed for the group to “know how to deal with undergraduate 
students” (Enochs & Riggs, 1990). When responding to this Likert-scale question, Patrick, 
Madeline, and Stella all somewhat agreed more training was needed, Alexis somewhat 
disagreed, Alaina, Camille, and Reema disagreed, and Pricilla was not sure. Interestingly, those 
who somewhat agreed more training was needed have only been in their roles for 3-4 years, 
however those who disagreed with the statement have between 9-15 years of experience as a 
coordinator. We interpret that result to mean that individuals with more course coordination 
experience feel like they, along with their CoP, do not require further training.  

Competencies 
Self-reported data was collected during two different group meetings. In one meeting, 

participants reflected on their areas of strength and struggle as instructors. They described some 
strengths/struggles that were more instructor- or content-centered, however, most 
strengths/struggles described were student-centered. All but one participant explicitly discussed 
strengths related to their students and interactions with students (e.g., engaging students in 
discussion), and every coordinator described a student-centered area of struggle (e.g., difficulty 
motivating students to come to class). These student-centered aspects indicate that as a group, the 
coordinators place value on their students’ role in the classroom and interactions with them.  

We also asked the coordinators to reflect on what a typical day in their class is like. Alaina 
stated practices that are primarily content-centered but are implicitly student-centered by design 
of the emporium class she coordinated (e.g., creating problems for certain students based on their 
current content). We are gathering this data from the recently appointed emporium coordinator, 
Alexis, on her intended practices to compare with Alaina’s (emporium director and former 
coordinator). Camille, Madeline, and Stella all described student-centered approaches including 
dedicating class time for students to engage in the content and interact with classmates. Stella, 
specifically, reports having a mostly student-centered class, while Camille and Madeline spoke 
to both instructor- and student-centered aspects of their class time. Patrick, Pricilla, and Reema 
all described a lecture-based environment (instructor-centered) and focused somewhat on the 
content aspect of their classes (content-centered). We therefore conducted observations to 
investigate how these reported practices aligned with what happens in their classrooms. 
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Classroom Practices and Observed Interactions 
Each coordinator was observed twice in the same semester, except for Stella who was 

observed once (due to scheduling constraints). When comparing the coordinators’ stated 
practices to what was observed, their reported practices mostly aligned with what they did during 
observations of their class. Instances where there were discrepancies between the stated and 
observed practices were mainly things that they articulated did not occur every class session. For 
example, Pricilla stated she occasionally gives students an exit slip or a quiz, however, neither of 
these were observed.  

The observations also allowed us to analyze instructor-student interactions. For some 
coordinators, particularly those with a more student-centered classroom environment, students 
tended to give affirming body language (e.g., nodding their head, actively writing) during these 
interactions and appeared engaged in the math. However, in other coordinators’ classrooms, 
students were observed having negative body language (e.g., turning away from the instructor, 
dissociating) and appeared to disengage with the conversation or content. These instructors did 
not react in a way that would indicate their acknowledgement of the students’ negative body 
language. This observation shows a disconnect between the interpretation of these interactions 
by the instructors and the students we intend to investigate further. 

 Discussion and Questions for the RUME Audience 
From their survey responses and self-reflections, it is clear this group of coordinators care 

about the quality of their interactions with students. During committee meetings, some of the 
coordinators discussed not being able to get through to some students, or not understanding why 
their interactions with students were not as fruitful as they wanted them to be. After considering 
their observations, however, we gained insight into the differences in reported perceptions 
between students and instructors.  

With this finding, we are interested in hearing any ideas from the RUME audience about how 
to illuminate this discrepancy to the group as well as what interventions or PDs could be used to 
promote affirming instructor-student interactions. We attempted to make some initial headway in 
this area in year 1 when we guided the coordinators through developing empathy maps (Aldrup 
et al., 2022; Gibbons, 2018) about personas of students in the FMCs they teach. Given the 
student-centered approaches documented in this study, we were surprised to be met with an 
unwillingness to participate by a few participants who felt the empathy map was not appropriate 
in the educational setting. Discussing this pushback with the RUME audience and exploring 
factors underlying this pushback could provide avenues for future PD with this group. 

Additional specific questions we plan to ask the audience during our presentation include:  
 What research-based, but practitioner-focused papers or resources should we be aware of 

that could inform how we help instructors consider students’ perceptions about 
instructor-student interactions?  

 This paper focuses on the participants as instructors of FMCs. During this second year of 
the project, what suggestions do audience members have regarding data we should 
prioritize gathering about these participants’ perspectives as coordinators? And why? 
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Invoking Conceptual Change in Adult Learners: “Seeing” Fractions Differently

Patrick Sullivan
Missouri State University

I was charged with developing and implementing a course redesign to improve low success rates
in the lowest university-level developmental mathematics course (median ACT score = 17). As
part of the initial implementation of the course redesign a diagnostic assessment was given to
understand the nature of students’ conceptions of foundational concepts. Student responses on
several items indicated that over 25% of students had a dominant part-whole conception of
fractions; not seeing fractions in terms of measures. This dominant part-whole conception of
fractions also influenced how students reasoned about items involving other concepts (e.g.,
addition of fractions and ratio comparisons). In this preliminary report the results that led to our
conclusions, the instructional intervention we used to move students’ conceptions of fractions
forward, and the impact of the intervention, based on the results of the post-assessment, on
students’ conceptions of fractions will be shared.

Keywords: developmental mathematics, conceptual change, fraction conceptions

Introduction
At the university in which I teach the five-year success rates in the lowest developmental

mathematics (DM) course has consistently hovered between 50% and 60%. Despite these low
success rates, not much has been known about the nature of these students’ conceptions of
foundational concepts besides their over reliance on procedures without knowing the
mathematical “why” (Stigler et al., 2010). Charged with improving success rates in this course it
was important to first understand the “roots” of their struggle with mathematics. A thirteen-item
multiple-choice diagnostic assessment (n = 230) was given to assess students’ current conception
of place-value, fractions, area/perimeter, and proportional relationships. While the results
suggested that students’ faced challenges within each of these constructs the most striking and
revealing were those related to their understanding of fraction.

Existing research with students at various levels of academic experience suggested that
students’ knowledge of fraction magnitude, or as a number, is highly associated with their
computational skills (Schneider & Siegler, 2010), algebraic knowledge (Booth et al., 2014), and
general mathematics achievement (Torbeyns et al., 2015). Seeing fractions as a magnitude
requires students to engage in multiple levels of unit coordination that involve relationships
between quantities and various size of units. We had previously conducted research with 4th
through 7th graders and were curious as to whether DM students’ conception of fractions was
similar. We had previously found that elementary and middle school students often struggled
with fraction magnitude concepts because their dominant conception of fractions was as a
part-whole relationship between two quantities without regard for the size of the unit represented
by the denominator of the fraction. An example of student reasoning reflecting this part-whole
relationship is shown in figure 1. When asked to compare the fractions 5/6 and 7/8 the student
partitioned the whole unit into a quantity of equally sized pieces represented by the denominator
of the fraction (i.e., 6 and 8) and shaded the quantity of pieces represented by the numerator (i.e.,
5 and 7). A student with a dominant part-whole conception of fractions will reason that the two
fractions are equal because the quantity of missing pieces is the same (i.e., 1); not considering
the size of the unit attached to each of those quantities, sixths and eighths, respectively. Students
who do reason about the size of the units demonstrate elements of fraction-as-measure
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conception (Wilkins & Norton, 2018). We were curious as to whether DM students’ conception
of fractions was similar. We hypothesized that if DM students had a dominant part-whole
conception of fractions it may also influence how these same students reason about operations
involving fractions and proportional relationships.

Figure 1. Student reasoning to compare 5/6 and 7/8.

To explore the nature of DM students’ current conceptions a thirteen-question
multiple-choice diagnostic assessment was given at the beginning of the DM course The results
of three items from the diagnostic is shown in Table 1. Q4 is an item that was used to determine
whether students had a dominant part-whole conception of fractions. Q9 and Q12 are also
shared because it was hypothesized that student with a dominant part-whole conception of
fractions would reason about these two tasks in a particular manner. The notation (C) in Table 1
represents the correct answer while the bolded response indicates the response in which a student
with a dominant part-whole conception of fractions would most likely choose. It is important to
note that given that Q4 was a multiple-choice we do not know whether the students who chose
the correct answer had a meaningful conception of fractions or simply relied upon a
whole-number relationship (e.g.,7 > 5). However, we believe we can infer that if a student chose
“they ate the same amount” they were at best utilizing a part-whole relationship.

Table 1. Sample diagnostic questions (n = 230)
# Questions
Q4 Two pizzas are the same size. Carlos ate 5/6 of one of the pizzas and Terrell ate 7/8 of

the other pizza. Who ate more?
Carlos Terrell (C) They ate same

amount
Impossible to know

30.43% 41.30% 26.52% 1.74%
Q9 Thomas ate 3/4 of a whole medium pizza and Lydia ate 5/8 of a whole medium pizza.

Together they ate how much of a whole medium pizza?
8/12 11/8 (C) 8/8 (C) Cannot determine
40% 45.65% 9.13% 5.22%

Q12 Mix A: 3 cups of OJ to 4 cups of water Mix B: 6 cups of OJ to 8 cups of water
Which mixture (A or B) will be juicier?
Mix A Mix B They will be the same (C) Impossible to determine
34.44% 14.50% 49.85% 1.21%

As part of our preliminary analysis of the diagnostic results a chi-square test for
independence was conducted to examine our hypothesis that students answering Q4 in a way
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suggesting a dominant part-whole conception (i.e., two fractions are equal) would also answer
Q9 (i.e., 8/12) and Q12 (i.e., Mix A) in a predictable manner. The results of this brief analysis
confirmed our initial hypothesis.

Table 2. Chi-square analysis. X2 (230,1) * p<.05
Q9 Q12

Q4 6.6868
p = 0.0097*

16.4698
p = 0*

Interventions
As the preliminary analysis of the diagnostic assessment revealed many of the DM students

relied on a part-whole conception of fractions to reason about fraction comparisons. The first
challenge of the course redesign was to develop learning experiences that confronted the
limitations of a part-whole conception while also moving them towards fraction-as-measure
conceptions. Guided by two frameworks, Conceptual Change (Vosniadou, 2013) and Progression
of Fraction Schemes (Wilkins & Norton, 2018) a set of instructional activities were designed.
One of the elements of the conceptual change framework is that “knowledge acquisition is not
always a process of enriching conceptual structures. Sometimes the acquisition of new
information requires the radical reorganization of what is already known” (Stafylidou &
Vosniadou, 2004, p. 504).

A radical reorganization of DM students’ fraction conceptions required explicit attention to
the meaning and role of the unit. This was addressed in two ways. First, tasks were designed to
engage students in mental activities that supported the development of fraction-as-measure
conceptions (Wilkins & Norton, 2018). These tasks engaged students in the mental activities of
partitioning, iterating, and disembedding. For example, as part of one the tasks we asked students
to fold (partitioning) fraction strips representing the whole unit into equally-sized pieces such
that only the unit fraction was showing. Then we asked them to iterate the unit fraction to
determine the length of copies of the unit fraction. For example, as shown in figure 2, consider a
paper strip representing 1 whole unit of length.

Figure 2. Coordination of units to engage in a measurement scheme for proper fractions.
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The first action involves partitioning the whole into equally sized lengths and recognizing
that each of those lengths represents a unit fraction (e.g., 1/8). Iterating the unit fraction, a given
number of times represents a length that is multiple copies of the length of the unit fraction. For
example, a length of 7/8 of a whole unit is 7 copies of the length of the unit fraction 1/8.The
disembedding action happened to determine the “missing part” from the whole. For example, as
shown in figure 2, the missing part of 7/8 of a whole unit is a unit fraction of 1/8 because 8
copies of the unit fraction 1/8 is the same length as the whole unit.

The second way in which the unit was made explicit is that fractions were represented using
a novel notation, numeral-unit-name notation. For example, the fraction 7/8 was written as 7
eighths using the numeral to represent the quantity and the unit-name to represent the unit. This
decision supported a learning acquisition goal and a connection goal. Students were introduced
to the idea that the morpheme “ths” indicated that the whole unit is partitioned into a quantity of
equally-sized lengths represented by the word preceding the morpheme (e.g., eighths). It also
supported efforts to utilize overarching principles to connect operations across numerical and
algebraic expressions. For example, instead of seeing an addition problem such as 3/4 and 5/8 in
terms of “getting a common denominator” our goal was for students to see adding fractions as
combining quantities of the same size of unit. Thus, 3 fourths and 5 eighths cannot be combined
because the size of the units are not the same. However, utilizing an equal exchange of 6 eighths
for 3 fourths the numbers 6 eighths and 5 eighths can be combined because the size of the units
are the same (6 eighths + 5 eighths = 11 eighths).

While not a significant part of this preliminary report, it is important to note that making the
units explicit was also an important aspect of the development of understandings related to
equivalent ratios and proportional relationships in the DM class. For example, consider the ratios
represented in Q12 of the diagnostic test. The ratio 6 cups of OJ to 8 cups of water is the same
juiciness as 3 cups of OJ to 4 cups of water because it represents 2 copies of the ratio 3 cups of
OJ to 4 cups of water [2 x (3:4) = (6:8)]. These multiplicative relationships between ratios were
made explicit using ratio tables and double number lines.

Results
After one iteration of the course redesign the success rate in the DM course increased from

56% to 80%. Despite a significant shift of the DM content to more arithmetic concepts, as
opposed to algebraic concepts, the failure rate in the ensuing general education mathematics
course also decreased slightly, 31.40% to 28.74%.

A post-assessment involving the same questions as the diagnostic assessment was given ten
weeks after the fraction concept module. Students were not given advanced notice that they
would be re-taking the diagnostic assessment. The percentage of students that correctly answered
each question on both the pre-assessment and same post-assessment was computed. Only the
results of students (n = 117) who completed both the pre- and post-assessment are included to
remove potential variation in percentage correct resulting from differences in pre- and
post-assessment participants. A difference of proportions z-test was conducted to measure
whether the change in percentage correct from pre- to post-assessment was statistically
significant. Level of significance was set at p < .05. Results of this analysis are shown in Table
3.
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Table 3. Comparing pre- and post-test results.
# Question % correct (pre) % correct (post) p
Q4 Two pizzas are the same size.

Carlos ate 5/6 of one of the pizzas
and Terrell ate 7/8 of the other
pizza. Who ate more pizza?

47.86 61.54 .035*

Q9 Thomas ate 3/4 of a whole medium
pizza and Lydia ate 5/8 of a whole
medium pizza. Together they ate
how much of a whole medium
pizza.

52.14 76.92 .000*

The results suggest that there was growth in students’ fraction-as-measure conceptions. We
acknowledge, as discussed earlier, that comparing the fractions 5/6 and 7/8 requires a high
degree of unit coordination sophistication (i.e., disembedding 1/8 and 1/6 to describe the measure
of the “missing piece”) and reasoning. We were specifically curious as to the change in
percentage of students who indicated that the two fractions were equal. This percentage shifted
from 26.5% on the pre-assessment to 13.68% on the post-assessment. We also conducted the
same chi test of independence on the results of the post-assessment as we did on the
pre-assessment and found the same relation between those who answered Q2 as equal and Q9 as
8/12, Χ2(1,117) = 7.87, p = .005*.

Three other questions showed a statistically significant relation between indicating that 5/6
and 7/8 were equal and an incorrect response. These questions included Q8 (identifying measure
on a tape measure), Χ2(1,117) = 24.159, p = .0012* , Q11 (proportional reasoning involving
distance traveled and a fraction quantity), Χ2(1,117) = 7.57, p = .006*, and Q13 (proportional
reasoning requiring unitizing), Χ2(1,117) = 5.258, p = .022*.

Discussion
Consistent with what others have found (Pesek & Kirshner, 2000) as well as elements of

Vosniadou’s (2003) Conceptual Change Framework, it is challenging to move conceptions
forward once students have procedures and conceptions already in place that interfere with the
intended concept advancements. Even after the intervention 13.68% of DM students still
indicated that the fractions 5/6 and 7/8 were equal and many still used this part-whole fraction
relationship to add fractions.

This study gave us an opportunity to reflect on our teaching practices. We found that we need
to spend more time engaging students in iterating unit fractions. From the analysis of the
pre-and post-assessment we concluded that we need to begin these actions with whole numbers
while also making more explicit the multiplicative relationship that exists between quantities and
size of units of decimal numbers. Inherently numbers have an implied multiplicative relationship.
For example, 0.5, is 5 x (1/10). Same is true with fractions, 4/8 or 4 eighth is also 4 x (1/8).
Writing out the multiplicative relationship sheds light on the meaning of the unit fraction in
relation to the whole unit and that 4/8 is 4 times greater than 1/8.

26th Annual Conference on Research in Undergraduate Mathematics Education 1074



References
Booth, J. L., Newton, K. J., & Twiss-Garrity, L. K. (2014). The impact of fraction magnitude

knowledge on algebra performance and learning. Journal of Experimental Child Psychology,
118, 110–118.

Pesek, D. D., & Kirshner, D. (2000). Interference of instrumental instruction in subsequent
relational learning. Journal for Research in Mathematics Education, 31(5), 524–540.

Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal
of Experimental Psychology: Human Perception and Performance, 36(5), 1227.

Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L., & Wray,
J. (2010). Developing Effective Fractions Instruction for Kindergarten through 8th Grade.
IES Practice Guide. NCEE 2010-4039. What Works Clearinghouse.

Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development.
Developmental Science, 19(3), 341–361.

Stigler, J. W., Givvin, K. B., & Thompson, B. J. (2010). What community college developmental
mathematics students understand about mathematics. MathAMATYC Educator, 1(3), 4–16.

Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction
understanding is central to mathematics achievement in students from three different
continents. Learning and Instruction, 37, 5–13.

Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory
approach. In International handbook of research on conceptual change (pp. 11–30).
Routledge.

Wilkins, J. L., & Norton, A. (2018). Learning progression toward a measurement concept of
fractions. International Journal of STEM Education, 5(1), 1–11.

26th Annual Conference on Research in Undergraduate Mathematics Education 1075



Dimensions of Mathematics Graduate Students’ Professional Identities as Prospective Faculty 
 

T. Royce Olarte 
University of California, Santa Barbara 

Graduate education in mathematics is instrumental to the socialization of prospective 
mathematics faculty, however, our understanding of how graduate students develop their 
professional identities is still limited. This preliminary study examines and compares how two 
doctoral students at different stages of their graduate programs reflect on and understand their 
professional identities. I highlight qualitative similarities and differences in how each participant 
identified as a teacher, as a researcher, and as a mathematician. The structure of the program 
and progression through degree milestones reflected how strongly participants were anchored 
onto dimensions of their professional identities. Both students strongly identified as teachers and 
both described how their gender identity as women negatively impacted dimensions of their 
professional identities, especially their mathematics identities.  

Keywords: Graduate Students, Professional Identities, Socialization, Doctoral Education 

Introduction 
Many mathematics graduate students pursue faculty positions, however, our understanding of 

how they are socialized into the profession (Tierney & Rhoads, 1993) and develop their 
professional identities as faculty is still limited (Clarke et al., 2013), likely contributing to the 
minimal professional development opportunities that aim to develop strong professional 
identities (Austin & McDaniels, 2006; Jensen, 2011). I draw on Beijaard et al.’s (2000) 
conception of teachers’ professional identity as “how they perceive themselves as teachers and 
what factors contribute to these perceptions” (p.751). Although there are similarities between K-
12 teachers and higher education faculty, the differences in the preparation, institutional 
contexts, societal pressures, roles and expectations, and the discipline-specific cultures constitute 
a starkly different backdrop through which professional identities are developed (Nyquist, 1999; 
Van Lankveld et al. 2016). The experiences in graduate education are instrumental to students’ 
professional identity development as future mathematics professors, and it is imperative that we 
understand how they make sense of their professional identities and identify the experiences that 
are formative or destructive to their sense of selves as faculty.  

Additionally, it is important to examine the professional identities of prospective 
mathematics faculty as unique cases because the mathematics discipline has norms, beliefs, and 
values that set it apart from other disciplines. Clarke et al. (2013) noted:  

Discipline-based cultures are the primary source of faculty members’ identity and 
expertise and include assumptions about what is to be known and how tasks [are] to be 
performed, standards for effective performance, patterns of publication, professional 
interaction and social and political status (p.7).  

Examining the professional identity development of mathematics graduate students affords 
insight into the experiences and features of mathematics graduate education that prepare students 
for faculty positions. For this preliminary study, I examined the professional identities of two 
graduate students at different stages of their doctoral programs. The research questions that 
guided this study were: (1) How did mathematics graduate students reflect on their professional 
identity development as prospective faculty? (2) What experiences were formative to their 
professional identity development?  
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Framing 
I drew on a sociocultural perspective of professional identity development (Solari & Ortega, 

2020) to frame this study. Specifically, I consider the process of socialization into the profession 
(Tierney & Rhoads, 1993; Weidman et al., 2001) to be a mechanism of professional identity 
development. This view on identity development recognizes the weight and consequences of the 
context and the social interactions with others (Gee, 1996), and posits that the transmission of 
culture and the acquisition of the knowledge, dispositions, and skills necessary to perform in a 
profession are the product of the everyday social interactions that an individual has with others in 
a situated context (Clarke et al., 2013; Solari & Ortega, 2020). This can involve observing more 
expert others, learning by doing, interacting with others, and reconciling personal ideologies and 
beliefs about the profession with the everyday realities (Pillen et al., 2013; Tateo, 2012).  

Within mathematics graduate education, I consider experiences such as serving as teaching 
assistants, engaging in research, attending conferences, receiving mentorship, and interacting 
with others can shape and inform graduate students’ professional identities. Additionally, 
members of their profession and the mathematics community attach and attribute meanings to 
graduate students, prompting them to reconcile these various meanings and discourses (Gee, 
1996; Sachs, 2001) to construct their professional identities. Lastly, I acknowledge that 
mathematics graduate students are embedded within institutional contexts, power structures, 
societal and political perspectives, and mathematics-specific cultures, values, beliefs, and norms. 
These factors, along with graduate students’ individual social and cultural identities (Hayley et 
al., 2014; Trepte, 2013) interact to uniquely inform their professional identities as prospective 
faculty. 

Method 
This study is part of a larger dissertation project focused on the pathways to the mathematics 

professoriate and was conducted at a Minority-Serving Institution in California. Purposeful 
sampling (Miles et al., 2020) was used to recruit mathematics doctoral students pursuing faculty 
positions. They participated in 90-minute interviews over Zoom that included responding to a 
semi-structured interview protocol (Rubin & Rubin, 2011), writing a letter to the mathematics 
discipline, and graphing a visual representation of their graduate education experiences. For this 
preliminary study, I focus on two graduate students, Kayla and Morgan (pseudonyms), because 
they were revelatory (Yin, 2016) about the dimensions of their professional identities and the 
disparity in the time spent in graduate school afforded a comparison of the experiences that 
seemed to most impact their professional identity development. At the time of the data 
collection, Kayla had completed the first year of the doctoral program and Morgan had 
completed the fourth year (after being previously enrolled in a PhD program at another 
institution). Both graduate students self-identified as White/Caucasian, straight or heterosexual, 
female/feminine, and reported that they are actively pursuing careers as mathematics faculty.  

The data for this study were the participants’ responses to the semi-structured interview 
protocol centered around their experiences in graduate school and perceptions of the 
mathematics professoriate. I open coded (Miles et al., 2020) each response to make sense of how 
participants described themselves as future mathematics faculty, their understanding of the 
profession, and how they hope to be recognized as such by their prospective professional 
community. The initial codes that I conceptualized as dimensions of professional identity, 
included: (1) teacher identity, (2) researcher identity, and (3) mathematics identity. I analyzed 
themes across their responses and made sense of how these dimensions reflected similarities and 
differences in Kayla’s and Morgan’s identities and graduate education experiences. 
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Findings 
I highlight the dimensions of participants’ professional identities that most emerged when 

they reflected on their experiences and considered the ways they have seen themselves as faculty 
and how they hope to be recognized as such in the future. For this preliminary analysis, I focus 
on how Kayla’s and Morgan’s developing professional identities as faculty encompassed their 
teacher identities, researcher identities, and mathematics identities.  

Teacher Identity  
Kayla’s and Morgan’s professional identities as mathematics faculty were primarily anchored 

onto their identities as teachers (Berger & Lê Van, 2019; Mockler, 2011). They both described 
how an early passion for teaching, experiences with tutoring and helping others, and serving as 
teaching assistants or instructors of record during graduate school were formative and positively 
contributed to their professional identities. However, there were also differences in how each 
student recognized themselves as faculty or described what they would emphasize as a teacher or 
instructor. 

Kayla said, “I’ve always known I wanted to teach.” and mentioned that her decision to 
pursue a career as a mathematics faculty was primarily motivated by her desire to teach. She 
considers herself as an educator who is uniquely positioned to teach and support students in a 
variety of ways. As she reflected on her identity as a teacher, Kayla emphasized dimensions of 
teaching that went beyond subject matter expertise and the mathematics content. She expressed 
that getting to know students on a more personal level, connecting with them, and sharing about 
her own experiences are practices that she hopes to engage in. This was most influenced by her 
own experiences as a student when she learned the most from faculty who were more personable 
–  explicitly articulating how she does not want to be like the professors she did not enjoy. An 
important aspect of Kayla’s professional identity was that she saw herself as someone who can 
reframe dominant discourses and narratives around mathematics through teaching. She hopes to 
“reconfigure the narrative that mathematicians are these godlike people you can’t talk to” and 
just make mathematics “more human” to the students. To Kayla, the experience that most formed 
her identity as a teacher was serving as an instructor of record, when she was afforded more 
ownership over the courses she was teaching, rather than just taking up a more supportive role as 
a teaching assistant to a faculty member.  

Morgan shared a similar passion and early desire to teach students, however, given her more 
extensive experiences in graduate school, she recognized herself more jointly as a teacher and 
researcher in more evident ways than Kayla. To describe what being a mathematics faculty 
meant to her, she said “It means you get to teach students during the whole school year…You get 
to contribute to the field by research and publishing papers.” Like Kayla, Morgan most 
recognized herself as a teacher when she was serving as an instructor of record during the 
summer terms – again emphasizing that employment positions that provide more ownership and 
agency of a course significantly contributes to professional socialization. Additionally, Morgan 
saw her identity as a teacher connected to her desire to mentor students and “foster collaborative 
environments” in mathematics. As she reflected on her future students and colleagues, she said, 
“I would like to be seen as someone that students want as a professor.” We can see how Kayla 
and Morgan described their professional identities as teachers with direct consideration of how 
they would like to engage with and be perceived by students. Their teacher identities are 
consistent with literature on women faculty in STEM and how they tend to describe needing to 
be more caring and approachable (e.g., Guarino & Borden, 2017; Hart, 2016) and exhibit more 
student-centered pedagogies (e.g., McMinn et al., 2022). 
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Researcher Identity 
Although both students acknowledged their identities as researchers (Castelló et al., 2020), 

Morgan identified more strongly as a researcher than Kayla, likely due to her more extensive 
research experiences, professional experiences (e.g., presenting conferences), mentorship from 
her advisor, and more time spent in graduate school. In the structure of the focal PhD program, 
students are not assigned an advisor until they pass their qualifying exams (i.e., advance to 
candidacy), and spend time reading scholarly works assigned by a potential research advisor. 
The mathematics department’s norms with progressing through the degree milestones reflected 
the extent to which Kayla and Morgan disparately recognized themselves as researchers. 

At the time of data collection, Kayla had not yet passed all her qualifying exams nor was in a 
position to complete readings and prepare for research with an advisor. Thus, Kayla seemed to 
identify less as a researcher when prompted to describe how she saw herself as a prospective 
mathematics faculty. She said, “I do think I’ll probably end up doing research.” which reveals an 
early understanding of what the profession may entail. Prior to graduate school, Kayla originally 
thought that mathematics faculty were solely focused on teaching. She said that the research 
aspect of the profession is something that she is still getting accustomed to.  

On the other hand, Morgan explicitly said, “There’s two aspects of being a math professor.” 
– referring to her understanding of the mathematics professoriate as encompassing both teaching 
and researching responsibilities. She saw herself as someone who can contribute to the field by 
researching and publishing works, in addition to teaching mathematics to students. Morgan 
expressed that she wanted to be recognized as “someone who is known to be good at teaching 
but at the same time produces high quality mathematics.” which reveals how her professional 
identity as a mathematics professor deeply intertwines her sense of self as a teacher and as a 
researcher. Morgan described that working with her advisor and completing her thesis were the 
most formative experiences to her identity and preparation as a researcher. Morgan more 
strongly identified as a researcher because she was in the latter stages of her program, whereas 
Kayla had only completed her first year. Within this particular institutional context, this revealed 
that graduate students are socialized as researchers later in the doctoral program.  

Mathematics Identity 
Lastly, Kayla and Morgan revealed that their mathematics identities (Cribbs et al., 2015; 

Voigt, 2020) were important dimensions of their professional identities as faculty. Despite 
recognizing themselves as math persons and being positioned as competent from an early age, 
graduate school marked a time when their mathematics identities were negatively affected. For 
Kayla and Morgan, adverse interactions and interpersonal relationships with members of the 
mathematics community damaged their self-concepts and identities. Kayla said, “I’m not the 
math person, I’m a math person.” to describe how arriving in graduate school and seeing herself 
in relation to other students caused her to feel “less special” and made her question her place in 
mathematics. Additionally, Kayla articulated how her qualifying exams experience – particularly 
how she perceived the exams to be unnecessarily difficult and how she felt unsupported by 
faculty – caused her to doubt her career pursuits and sense of self as a mathematician.  

It is important to note that Kayla and Morgan explicitly connected their mathematics 
identities with their gender identity and highlighted how navigating graduate school as women 
involved facing gender-based bias and microaggressions (Wilkins-Yel et al., 2019). Morgan was 
previously enrolled in another PhD program prior to her current program, and the experiences at 
that prior institution caused her to leave academia for a few years. She cited challenges such as 
the low salary to have contributed to her exiting this program, however, her identity as a 
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mathematician and a prospective faculty was most negatively affected by how she was treated as 
a woman. She described the culture at the previous institution as “sexist” and said, “I felt like I 
had to work twice as hard to be taken seriously.” To illustrate an instance of some of the 
microaggressions she experienced, she described an encounter with another graduate student:  

My first year, I won an award for best incoming, or best first year [student]. And then 
another grad student was like, “Oh, you just won that because you’re a woman,” or 
something like that. I felt like I wasn’t really listened to as much and there, wasn’t really 
supported. 

Unfortunately, this is consistent with our contemporary understanding of the experiences of 
women-identifying graduate students or faculty in STEM (e.g., Herzig, 2004). The patriarchal 
and masculine discourses that have historically dominated the field (Leyva, 2021) fostered a 
climate where Morgan felt like her successes do not belong or are simply handed to her because 
of her gender identity, which in turn challenged her mathematics identity. After leaving that 
program, she spent a few years in industry before deciding to pursue a doctorate at the current 
institution. She has described feeling a sense of belonging in the current program and has more 
strongly identified as a mathematician because of the support she has received. 

Discussion and Conclusion 
The professional identity development of mathematics graduate students has been an often-

overlooked dimension of the pathways to becoming mathematics faculty. The present work is 
aligned with scholars who have studied the socialization of graduate students (e.g., Clarke et al., 
2013; Solari & Ortega, 2020), and have illustrated the complexity and multidimensionality of 
professional identities (e.g., Trede et al., 2011). I extend that work and highlight how dimensions 
of participants’ professional identities (i.e., identities as teachers, as researchers, and as 
mathematicians) developed within higher education mathematics contexts. Kayla’s and 
Morgan’s professional identities reveal how formative the experiences of graduate education can 
be, and how students are more strongly anchored onto certain dimensions of their professional 
identities at different stages of their doctoral programs. Using professional identities as a lens 
also afforded insight into the experiences that seemed to drive or hinder professional identity 
development. For example, serving as instructors of record, where graduate students are given 
more agency and ownership, most developed their identities as teachers. Also, graduate students 
may identify more strongly as researchers later in their graduate education, which reflects the 
structure of the degree milestones. This suggests that mathematics departments can better 
support students’ development as researchers at earlier stages of their graduate education or 
provide them more opportunities to serve as instructors of record.  

Moreover, this preliminary study briefly illustrated how graduate students’ professional 
identities, especially their mathematics identities, are influenced by their social and cultural 
identities. The tensions between participants’ gender identities and their sense of selves as 
mathematics faculty demonstrates how mathematics can still be a patriarchal and masculine 
space (Herzig, 2004; Leyva, 2021). This suggests that for women-identifying graduate students, 
the self-recognition as mathematics faculty may be more difficult and challenging. Future 
research can more closely examine the gendered experiences of mathematics graduate students 
pursuing faculty positions and continue to make sense of how students’ intersectional identities 
(e.g., race, sexual orientation, etc.) inform their professional identity development. In all, a more 
nuanced understanding of these dimensions of their identities allows higher education 
institutions and mathematics departments to broaden the access and reimagine systems of 
support that can better prepare graduate students to enter the mathematics professoriate. 
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Feelings of inclusion in the classroom are one contributor to students’ decisions to pursue a 
particular degree pathway, and students from marginalized groups are more likely to experience 
feelings of exclusion in these spaces. These feelings may be exacerbated by particular classroom 
actions and interactions, including microaggressions based on race and/or gender as well as 
being ignored or talked over; these actions are often compounded by instructor and student 
biases. Being able to observe such events is key to instructors’ ability to disrupt those moments 
and develop more inclusive spaces, but many observation protocols are built from an external 
researcher perspective about practices that support equity. We report on a pilot study at an HSI, 
comparing what Hispanic and Latine students report makes them feel more or less included to 
what is typically captured by observation protocols.  

Keywords: Estudiantes, Inclusion, Instructional Practice, Observation Protocols  

Over the past decade, Estudiantes (students who identify as Hispanic, Latine/o/a/x, 
Chicane/o/a/x, Nuyorican, etc.) have experienced rapid growth (an increase of 53%) as a share of 
students enrolled in higher education (NCES, 2011; 2021). Likewise, the proportion of STEM 
degrees awarded to Estudiante undergraduates increased from 8.5% in 2008 to 15.1% in 2018 
(NCSES, 2021). This growth has coincided with increased attention to STEM equity and 
inclusion, but Estudiantes in STEM fields continue to have negative experiences, such as 
encountering negative assumptions about their group, stereotype threat, and “scientific 
disidentification” during STEM coursework (Ong, Smith, & Ko, 2018; Woodcock et al., 
2012). The knowledge base for creating equitable undergraduate classroom learning 
environments is growing yet remains underdeveloped. Scholars have called for postsecondary 
research to adopt a sociopolitical lens in ways that parallel the work done at the K-12 level 
(Adiredja & Andrews-Larson, 2017), supported by recent research illustrating that the links 
between active learning and equity (e.g., Tang et al., 2017; Laursen et al., 2014) are not 
consistent across contexts, and in fact, active learning has the potential to amplify or introduce 
new inequities (Johnson et al., 2020). Mathematical classrooms are not neutral spaces; they can, 
and often do, serve to perpetuate systemic inequities regardless of modality. Assessing the ways 
in which a class perpetuates or disrupts inequities is therefore valuable, however the majority of 
our field’s instructional observation tools do not attend to equity, nor the perspectives of students 
in the classroom (Yee et al., 2022). We have both a moral and practical imperative to better 
understand inclusive instruction in partnership with students most affected by systematic racism. 
To further this goal, we report on a pilot study at an HSI, comparing what Estudiantes report 
makes them feel more or less included to what is typically captured by observation protocols. 

Literature Review and Theoretical Perspective 
This pilot project is part of a larger project aimed at developing new observation protocols 

for assessing the inclusivity of undergraduate mathematics classrooms for Estudiantes. We 
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approach this broader work through a critical lens, drawing on tenets of LatCrit and QuantCrit. 
LatCrit is an extension and specification of Critical Race Theory (CRT) focused on the lived 
experiences of Hispanic and Latine people in the United States (Solorzano & Yosso, 2002). 
Consistent with CRT, LatCrit seeks to challenge the dominant ideologies of society that continue 
to propagate White patriarchal hegemony inside and outside the classroom (Battey & Leyva, 
2016). A central tenet of QuantCrit is to bolster quantitative data with the experiential knowledge 
of people belonging to marginalized groups. This pilot is the start of an investigation of the lived 
experiences of Estudiantes in undergraduate mathematics classrooms that will be expanded and, 
in partnership with Estudiantes, inform the development of quantitative instruments that center 
their lived experiences.  

In keeping with our critical lens, we incorporate the idea of intersectionality, which 
acknowledges and accounts for intersecting systems of oppression/marginalization and identities, 
highlighting the heterogeneity of experiences rather than homogenizing the lives of people 
sharing a particular identity characteristic (Collins & Bilge, 2016; Crenshaw, 1991). For 
example, the higher education experiences of Hispanic and Latine students vary significantly 
based on their economic class, gender, sexuality, and disabilities, among other factors (Byrd, 
Brunn-Bevel, & Ovink, 2019; Ovink, 2014). There is no singular “classroom experience” that is 
shared by all students in a classroom: students have multiple and differing experiences that are 
inflected by their identity and social location with reference to those of peers and instructors 
(Mohajeri et al., 2019). Applying an intersectional theoretical lens also focuses our attention on 
intragroup power dynamics: e.g., classroom experiences of Estudiantes will additionally vary 
because of power differentials between genders, upper- and lower-income status, other sources 
of social inequality, and histories of advantage and disadvantage, the legacies of which still 
reverberate in contemporary higher education environments (Collins, 1971; Karabel, 2005).  We 
leverage intersectionality as we strive to develop local theories of how particular instructional 
approaches differentially affect students.  

We see instructional practice—that is, what instructors actually do during instruction—as an 
essential element of promoting equitable classrooms, and an entry point where transformation 
can occur (Gutiérrez, 2012). Higher education literature also identifies the undergraduate 
classroom as critical to the experiences of minoritized students in terms of racial climates and the 
prevalence of microaggressions (Suárez-Orozco et al., 2015; Solorzano et al., 2000; Yosso et al., 
2009). In the undergraduate mathematics education literature base, there are not many studies of 
classrooms and equity, and many of these focus on achievement or persistence outcomes (e.g., 
Laursen et al., 2014; Johnson et al., 2020) or instructor bias (e.g., Reinholz et al., 2019); these 
have primarily focused on inquiry-based learning (IBL) as the key to equitable instruction. We 
suggest two limitations of this: inquiry instruction is not a panacea for equity (e.g., Johnson et 
al., 2020) and most undergraduate instruction does not use inquiry (Larsen et al., 2015).  

Recently, Leyva et al. (2020; 2021) have explored the ways that precalculus and calculus 
course instruction may reflect racialized and gendered mechanisms. Students’ journaling 
revealed several mechanisms at play that reinforce broader discourses and stereotypes. For 
example, the “ignored student” event: students reported instructors more often ignored Black or 
Latinx students, potentially reinforcing “troublemaker” stereotypes about Black and Latinx 
students who spoke up and discouraging others of similar background from asking questions in 
class. A related finding is that the management of stereotype threat (particularly in relation to 
“who” is capable of doing mathematics) is significant to the STEM experience for 
undergraduates of color (e.g., McGee & Martin, 2011). Additional narrative, such as the myth of 
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meritocracy, and advocacy for constructs like “grit” take a substantial toll on Latinx and Black 
students when societal racism is deemphasized, while individual perseverance is celebrated. 
These studies begin to unpack the experiences of minoritized students, but outside of a few cases 
and institutions, we still know little about these experiences in critical courses like precalculus 
and calculus (Leyva et al., 2021). We position our work as part of that which is needed “to 
document if, when, and how [inquiry] instructional approaches are equitable for all students” 
(Adiredja & Andrews-Larson, 2017, p. 459). 

Methodology 
Pilot data was collected in Summer 2023 at a large HSI in a state which shares a border with 

Mexico and has a high proportion of Estudiantes in their student body (40%); the proportion of 
bachelor’s degrees awarded to Estudiantes is slightly lower (37%) and the proportion of STEM 
bachelor’s degrees awarded to Estudiantes is slightly lower still (34%). Data comes from two 
courses taught in different modalities: Precalculus (flipped), Calculus 2 (in-person). Data 
collection for each class was conducted in the span of a single week. For each class, two sessions 
were video and audio-recorded on consecutive days, and interviews with students from that class 
were conducted on the following day. This will allow us to compare what is accessible to an 
observer with the moments that students found impactful. At the end of the second observation 
day, the observer/researcher (a Hispanic man) invited students who self-identify as 
Hispanic/Latine to participate in a group interview about their experiences. The two semi-
structured interviews involved 2 men (Precalculus) and 1 woman (Calculus 2). Each lasted 
approximately one hour, and were also audio and video-recorded. Participants were asked to 
reflect on moments in which they felt included/welcome or excluded/unwelcome in the class, as 
well as specific actions that led them to believe that their teacher cared about them and other 
students (or did not); with an eye toward intersectionality, they were asked if they felt that their 
Estudiante and/or gender identities impacted their experience and/or treatment in the course.  

Interviews were transcribed using Adobe Premiere Pro and manually checked for accuracy. 
Three members of the authorship team conducted the qualitative analysis of these transcripts, and 
that analysis was reviewed by the other authors. Analysis proceeded according to the stages of 
thematic analysis (Braun & Clarke, 2006). In the first phase, data familiarization, transcripts 
were developed and read independently by the researchers. In the second phase, the team 
independently made research memos (Maxwell, 2013) and generated initial codes of interest. We 
take a data-driven approach as part of our commitment to understanding what is salient to 
students themselves, while retaining a focus on students’ feelings of inclusion/exclusion, 
perceptions of the impact of race/gender on their experiences, and aspects of classroom practice 
that students connect to those feelings. We then progressed to the interpretive phases, beginning 
with thematizing, in which individual codes are organized into broader umbrella themes and sub-
themes. We are currently engaged in the fourth and fifth phases, in which the themes are 
reviewed in connection with the original data, edited, and finally named. In this report, we 
present the current state of our work, in which codes have been identified and themes have 
provisional names. Our next steps include analyzing the classroom data using three existing 
observation protocols and comparing those reports to the student interviews. 

Preliminary Findings 
All three students who were interviewed for this project report generally positive feelings 

about their current mathematics course, though they mention having negative experiences 
elsewhere. These were often brought up as a foil, in order to explain what wasn’t wrong with 
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their current class. As such, most themes emerged with both positive (inclusive, encouraging) 
and negative (exclusive, discouraging) codes; the exception being the microaggression theme. 
We present these themes and some of their constituent codes in Table 1.  

 
Table 1. Themes and examples of codes within each theme from the interview analysis. 

Theme Positive Codes Negative Codes 

Involvement in daily 
classroom activities 

Working in groups  
Going to the board 
Involved in in-class Q&A 

Sitting and watching lecture 

Personal relationship 
with instructor 

Instructor shares personal information (e.g., 
hobbies) 
Instructor is fun / funny / personable 

No insight into instructors’ life 
Feeling like “a number” 

Perception of inst. care 
[human] 

Instructor knows name(s) 
Flexible deadlines / extensions Instructor doesn’t know name(s) 

Perception of inst. care 
[math/learning] 

Instructor’s goal is everyone passes 
Instructor notices when Ss are confused 
Instructor tries to understand what Ss are 
thinking before helping 
Extra help sessions 

Instructor states that many students will 
fail 
Instructor gives “how” solutions without 
“why” 

Community [Class] 
Knowing people in the class  
Having identity peers in class 
Small classes 

Having trouble finding a group 
Large class / online class 

Community [Uni] Joining affinity groups 
Having identity peers on campus 

Fewer Hispanic people than high school 
Seeing fewer Catholic people than home 

Microaggressions 
“How could you not understand this” 
Pretty girls aren’t smart 
People assuming they’re not smart 

Being ignored in group projects 
Being told that engineering (STEM) is a 
“man’s” major/field 

 
From the themes that emerge, we note an emphasis on interpersonal relationships and 

community. These three students report that opportunities to connect on a quasi-personal level 
with an instructor who they believe cares about them and their learning, and enjoys being in the 
classroom with them, help them feel like they belong and are being included in a classroom 
community; similar things were reported regarding interactions with their peers and classmates. 
They also report experiences with distant instructors where they felt like “a number” and 
believed that the instructors were concerned only with doing the bare minimum with regards to 
interacting with them - those experiences left them feeling like they didn’t belong or were 
unwanted in those academic spaces; again, there were similar comments regarding interactions 
with peers and classmates. These students also point to in-class instructional practices which 
made them feel more included and a part of the learning experience, such as working with other 
students (particularly when they were able to answer other students’ questions), while large 
lectures felt impersonal and uninviting. All three students speak of a desire to be in community 
with others who shared identity markers, evincing clear awareness of the demographic makeup 
of their campus, majors, and classes. These ideas are evinced in the following exchange from the 
Precalculus interview: 

 
Interviewer: If you could suggest any improvements or changes to this precalculus class to 

better support Hispanic/Latinx students, what would they be? 
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Student: Other than adding more Hispanic people? There’s only like two or three in our class 
that are, like, Hispanic. 

Interviewer: Well, how, what, how would that make it better? 
Student: Um, because I think, like, because I’m going back to culture. Um, so like, where I’m 

from, like, everybody learns, you know, like the professor talks. And maybe that’s why 
I’m so receptive to the professor, right, because he talks, like, on a personal level [...] 
And other professors here [...] were more impersonal, and maybe that's why the retention 
rate, like, for Hispanics is, like, lower, because they’re just not, like, not relating to the 
professor. It’s like a white, smart man who’s like, you know, obviously he’s worked hard 
for it, but maybe they just don’t relate to it. I don’t blame them, you know, but maybe it’s 
just harder for them to understand or even want to be there, because they’re 
uncomfortable [...] Nothing’s familiar to them. 

 
One theme did not fit in with the positive/negative coding, that of microaggressions, as they 

are inherently negative. We used this term to capture codes which referred to specific comments 
and interactions which negatively affected students’ sense of inclusion. These include events that 
indicated others assumed they were not smart, although students could not always pinpoint why 
that assumption was being made. The two men in Precalculus were not specific about the root of 
the assumption, but they reported incidents which made them feel that way - including 
interactions with instructors and teaching assistants. The woman in Calculus 2 reported events 
which led her to wonder if people believed that she was “too pretty to be smart,” compounded by 
others in her life making comments that “engineering is a man’s major.”  

Discussion and Next Steps  
All three students interviewed in this pilot study report feelings of inclusion in their current 

class, compared to prior experiences where they felt less sense of belonging. Common themes 
across the students included a recognition of the value of being in a community space and human 
interactions with peers and instructors. There were, of course, some differences in what they 
said. Only the woman noted gendered microaggressions and stereotypes, although the men 
recognized that women were a minority in their classes. The men emphasized the personal, 
humanized relationship they had with their instructor as valuable, while the woman did not 
mention this. Further work is needed to uncover the extent to which these distinctions are related 
to intersectional heterogeneity of identity, instructor, class modality, and/or course level. In this 
pilot, we inquired about students’ ethnoracial and gender identity, and one student volunteered 
religious identity (Catholic) as a salient identity characteristic. Parsing heterogeneous 
intersectional experiences, while avoiding determinism, is one of the goals of this work. 

The immediate next steps of this work are the application of three existing observation 
protocols to the class recordings, and comparison of the resulting reports to students’ interviews. 
The three protocols are Classroom Interpersonal MicroAggression (CIMA; Suárez-Orozco et al., 
2015), Equity and Access Rubrics for Mathematics Instruction (EAR-MI; Wilson, 2022), Equity 
QUantified In Participation (EQUIP; Reinholz & Shah, 2018). A cursory comparison of the 
themes and codes from the interview analysis with the constructs targeted by these protocols 
suggests the potential for considerable overlap with CIMA, some overlap with practices outlined 
in EAR-MI, but no overlap with the EQUIP constructs of participatory equity. Full analysis will 
reveal the extent to which these protocols capture these students’ experiences in these particular 
classes. Future work will scale up this research to many more classrooms across multiple sites, 
building toward more generalizable findings. 
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What Mathematicians’ Emotions Can Teach Us About Groupwork and Emotion Regulation

Fern Van Vliet
Arizona State University

Two mathematics professors at a large university were interviewed about how their emotions
impact their research work. Joy and frustration were the emotions they reported experiencing
most frequently. Both reported the benefits of collaboration and the importance of regulating
both positive and negative emotions. Implications on collaborative learning in the classroom
(e.g. groupwork, pair work) and implications for emotions in the classroom are discussed.

Keywords: emotions, collaborative learning, emotion regulation

This paper brings together research on emotions in mathematics education, collaborative
learning, and the professional work of mathematicians.

Literature Review

Emotions and Mathematics
There has been an increased emphasis on research on emotions and affect in mathematics

education (McLeod, 1992; Middleton et al., 2017). In recent years, there have been more
publications in mathematics education journals focused on emotions and affect, and the number
of publications appears to be continuing to increase (Schukajlow et al., 2023). Both negative
emotions (D’Mello et al., 2014; Schukajlow et al., 2021) and positive emotions
(Camacho-Morles et al., 2021) have been shown to be beneficial to student learning. However,
both negative and positive emotions have been shown to be detrimental to student learning
(Barenes, 2021; Villavicencio et al., 2016). Villavicencio et al. (2016) found that pride had a
negative association with final course grades among engineering students in the Philippines.
Barnes (2021) found that joy was associated with decreased focus and self regulation.

Collaborative Learning
Research on collaborative learning tends to focus on social components or the connections

between collaborative learning and mathematical ideas (e.g. Langer-Osuna et al., 2020; Dekker
et al., 2006; Fujita et al., 2019; Sjöblom et al., 2021).

Additionally, research on collaborative learning in classrooms includes work on collaboration
promoting students building off of each other’s ideas which in turn promotes individual learning
(Francisco, 2013; Schindler & Bakker, 2020).

Some work has been done demonstrating emotional benefits of collaborative learning for
students. Group work can have a positive impact on student problem posing (Schindler &
Bakker, 2020). Students also report higher levels of perceived control (Pekrun, 2006) when
working in pair or small groups which is associated with higher reported positive emotions (Bieg
et al., 2017).

Mathematicians as Research Participants
Research on mathematicians has focused mainly on the cognitive aspects of their work.

Researchers have explored mathematicians’ thinking and problem solving abilities (Burton,
1998; Carlson & Bloom, 2005). Other work has shown that mathematicians enjoy collaboration
with others, and that part of this enjoyment is through getting the intellectual input from
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colleagues on their work (Burton, 1998). Mathematicians’ negative feelings of being stuck on
solving a problem and potential implications on students’ negative emotions towards
mathematics have also been discussed in the literature with regards to choosing particular
problems to do (Misfeldt & Johansen, 2015).

However, research focused specifically on mathematician’s emotions appears to be a new
area of study. The previously mentioned literature is focused on the cognitive side of
mathematics rather than emotional components of doing and learning mathematics.

Theoretical Perspective
Two areas of psychological research provide a background for this study: the Broaden and

Build Theory of Positive Emotions and The Cognitive Theory of Emotions. In relation to the
mathematicians in this study, these theories imply that a) positive emotions provide two distinct
benefits and b) emotions are the result of cognitive appraisals of events.

Broaden and Build Theory of Positive Emotions
The Broaden and Build Theory describes two distinct benefits of positive emotions beyond

just feeling good (Fredrickson, 2001). First, positive emotions broaden awareness. When people
experience positive emotions, they are more aware of “the bigger picture” and notice more than
when they are feeling negative emotions. Second, this broadened state of awareness created by
positive emotions allows individuals to build more resources for themselves. The explanatory
power of this theory has been demonstrated by multiple authors (e.g. Fredrickson, 2004; Garland
et al., 2010; Vacharkulksemsuk & Fredrickson, 2013).

For this study, this creates the perspective that positive emotions could give mathematicians
benefits beyond just feeling good. Positive emotions could allow them to potentially work more
creatively or be interested in solving new problems.

Cognitive Theory of Emotions
The Cognitive Theory of Emotions posits that cognitive appraisals of a situation are what

triggers an emotional response to that situation (Ortony, Clore, & Collins, 2022). For example, a
student taking a test realizes they do not know how to answer the questions. The student wants to
do well on the test, but now knows that they will fail. Thus, the student feels anxious because of
their appraisals that a) the test is important and b) they are unable to succeed. It is not the test
itself which makes the student anxious. It is the student’s interpretation of the situation that leads
to the emotions.

Research Questions
The focus of this research was investigating the emotions experienced by mathematicians,

and their interpretations of significance of these emotions. The guiding research questions were:
(1) How can the emotions experienced by mathematicians be characterized?, (2) In what ways do
mathematicians feel that emotions impact their work?, (3) In what ways does collaboration with
other mathematicians relate to these emotions?

Methods and Analysis
Two active research mathematicians at a large research university in the Southwestern United

States participated in interviews over Zoom. Professors were recruited via an email sent to all
full time faculty members of the mathematics department. The participants will be referred to as
Professor 1 and Professor 2.
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Both participants were full research professors at the university, and they both described
themselves as theoretical mathematicians and both were male.

The interviews lasted between 30 and 40 minutes. Participants were asked about their current
mathematical research interests and the role that their emotions play in their work. They were
asked to describe positive and negative emotions felt while doing their research. The interviews
were loosely structured around the impact of the participants’ emotions on their research, as well
as emotions related to collaboration with other researchers. Interviews were recorded over Zoom
then transcribed.

Due to the limited research on mathematicians’ emotional experiences, the interviews were
coded using open coding to identify common themes of mathematicians’ emotions (Strauss &
Corbin, 1990). After completing the interviews, field notes were taken by the researcher on any
details from the interviews which felt relevant in the moment. Then, the interviews were
transcribed. The transcribed interviews were read with the goal of identifying specific emotions
experienced and how the participants felt the emotions impact their work. Preliminary categories
of emotions were grouped together. Afterwards, the interviews were reread multiple times to
compare the categories found with the interviews.

Results
Joy and frustration were the most common emotions reported. Without being prompted, both

participants discussed the importance of emotion regulation of both joy and frustration in order
to do their work effectively. Both participants also discussed the impact of collaboration on their
emotions. These results are discussed in more detail below.

Joy: A Common Positive Emotion
Joy was the positive emotion that both participants described as feeling most often while

doing their research work.
Collaboration Enhances Joy Both participants felt that working with others increased their

joy in research. Professor 1 said, “I think it [collaboration] enhances the joy. So when you prove
something, you’re happy to prove it. But, you’re even more happy if you could show it to
someone.” Being able to share their positive feelings with others amplifies the joy that these
mathematicians feel from their work. Professor 2 said, “If I’m working with a co-author, then it’s
nice to have it [an idea] affirmed by the co-author. And then, when that happens, that feels really
good.”

Emotional Regulation of Joy However, these mathematicians did not feel that joy and
positive emotions should be fully embraced. When discussing joy, both participants felt that joy
should be treated with some caution and distrust while doing their work. After a probing question
on Aha! moments of sudden realization (Liljedahl, 2005), Professor 2 said, “I always have to
temper my enthusiasm… you get a stroke of brilliance…want to come back and write it down…
Oh no, that's not gonna work. So I'm careful to not get too excited until I write it down, and see if
it all works.”

Professor 1 shared a story of another mathematician who would just lay down in bed and
enjoy the feeling of believing he had figured something out because, in Professor 1’s words, “9
times out of 10 - what you’ve done is wrong”.

Frustration: A Common Negative Emotion
Both professors described frustration as their most commonly experienced negative emotion.

Again, both spoke of the importance of regulating that frustration.
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Collaboration Helps Regulate Frustration Both professors discussed collaboration as a
method of dealing with the inevitable frustrations of research. Co-authors were mentioned by
both participants as a useful tool to offset feelings of frustration.

Professor 1 said, “It [collaboration ] may actually spread it [frustration] out so that it’s more
tolerable. It’s more tolerable to be frustrated if you’re frustrated at the same thing that somebody
else is frustrated at.” After a slight pause, he continued and said, “Isn’t that the reason for help
groups?” in reference to group therapy. Professor 1 felt strongly that collaborative work helped
him deal with the frustration of being stuck on a problem. Being able to share the load of
frustration with another made the frustration easier to bear.

Regulation of Frustration in Other Ways - Taking Breaks Professor 2 spoke frequently of
the importance of regulating frustration through taking breaks from research work. Specifically,
he said “the other thing I've always done throughout my career is, I do a lot more than just
research. Like, I teach classes. I get involved with some administrative work and I think for me
that was always important. I didn't really like to have a job where 100% of the time is spent
doing research”. He also discussed that stepping back from a problem and looking at examples is
a “first way of relieving the frustration” for him.

Professor 2 actively works to keep frustration at bay and prevent burnout in his work.

Another Benefit to Collaboration: A New Perspective
Both professors described the benefits of being able to use a colleague’s perspective to

benefit their work.The perspective of others helps them get through when they are stuck and
having trouble making progress.

Professor 1 describes it as, “You try to prove things, and you know at least 9 tenths of the
time. You can't do it. So yeah, you have to keep trying, and that's another reason why it's
worthwhile to work with other people. Because you have to have lots of ideas to try it. I mean if
you can't do something… You never know whether that’s because you're being stupid, or because
it’s not true or really hard.”.

Professor 2 says, “ We can share what we're stuck on with the other. And you know, maybe
the coauthor oftentimes sees something that you don't see And then that's a a way to make a
forward progress”.

Discussion
Both collaboration and emotion regulation appear to play an important role in the work of

mathematicians. Limitations and future directions will be discussed.

Limitations
Emotions are a vulnerable topic to discuss, thus the topic itself creates many limitations.

Validity of self-reported data on emotions depends on many factors. First, participants may not
be fully honest with their self-reported emotions (Rasinski et al., 2005). Also, social pressure
exists against reporting negative emotions (Tourangeu & Yan, 2007). Social pressure may have
presented itself in this study through participants focusing on overcoming and regulating the
negative emotion of frustration while not discussing the actual experience of frustration in much
detail. In other words, social pressure against negative emotions may have led the participants to
focus the discussion on ending negative emotions rather than discussing the experience of
negative emotions. An additional limitation is the possibility that participants may not have the
emotional intelligence (Salovey & Mayer, 1990) to recall and name their emotions.
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All of the limitations discussed above are out of the control of the researcher, but should be
considered when interpreting the results.

Future Directions
Emotions and Collaboration in the Classroom As discussed in the literature review above,

most research on collaborative learning focuses on cognitive rather than emotional factors in the
classroom. Considering the results of this study, future research could examine how students can
provide emotional support for each other while working through problems.

Collaboration is an important part of their work for these mathematicians. Yet group and pair
work in the classroom is not frequently used, while lecture style direct instruction is likely the
most common form of instruction (Bieg et al., 2017; Givvin et al., 2005). Both positive and
negative emotions were shown to be an important part of mathematicians’ work, and
collaboration has a positive effect on both the positive and negative emotions. Confusion, an
emotion similar to frustration, has been shown to be beneficial for learning in adults if the
confusion is resolved (D’Mello et al., 2014). Thus, lecture style teaching in which confusion and
frustration are avoided may be detrimental to student learning. Science education research has
seen a push to engage students in ways that mimic the feelings of scientists (Jaber & Hammer,
2016). Perhaps, a similar movement can occur in mathematics education.

Emotion Regulation for StudentsWith the discussed importance of emotion regulation of
both positive and negative emotions, future research can examine ways of promoting this
regulation among students. Some existing work provides promising results from an intervention
on helping students cope with confusion in mathematics at the elementary level (Di Leo & Muis,
2020). This work can be extended to help students regulate other negative emotions. Students
tend to report more negative emotions related to mathematics as they progress through the school
system (Brown et al., 2008; Frenzel et al., 2009; Zazkis, 2015). Thus, it is crucial to help students
to regulate these increasing levels of negative emotions at the undergraduate level. Other
interventions can also be developed to help students regulate positive emotions. A study with
elementary students has shown that positive emotions can be a barrier to perseverance in
mathematical reasoning (Barnes, 2021), so similar interventions promoting regulation of positive
emotions could also provide fruitful and beneficial results.
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Where is Calculus in Chemistry? Determining Content Alignment Between Calculus and 
Chemistry 

 
 Slade C. McAfee Jon-Marc G. Rodriguez 
 University of Wisconsin - Milwaukee University of Wisconsin - Milwaukee 

Previous research indicates that mathematics ability predicts student success in chemistry 
courses. Not surprisingly, chemistry students are required to take courses in mathematics as 
prerequisites and co-requisites, including calculus. In this work, we seek to identify the ways 
calculus skills and concepts appear in the undergraduate chemistry curriculum, focusing on the 
introductory general chemistry sequence. To this end, we combined relevant disciplinary 
frameworks and looked for alignment: the Calculus Content Framework (CCF) and the 
Anchoring Concepts Content Map (ACCM) for general chemistry. Preliminary results indicate 
explicit use of calculus is not common in introductory chemistry, although there are 
opportunities for instructors to use the general chemistry topic of chemical kinetics as a context 
for the application of differentiation and integration. Future work will involve mapping out the 
landscape of the remainder of the undergraduate chemistry curriculum and as an expected 
outcome of this work we seek to provide tangible resources to facilitate cross-disciplinary 
discussions between instructors in calculus and chemistry.    

Keywords: Calculus, Chemistry, Curriculum Analysis, Interdisciplinary 

Introduction 
There is a large body of literature that indicates students’ mathematical ability correlates with 

success in chemistry courses (Bain et al., 2014; Becker & Towns, 2012; Derrick & Derrick, 
2002; Hahn & Polik, 2004; House, 1995; Nicoll & Francisco, 2001; Spencer, 1996; Tsaparlis, 
2007; Wagner et al., 2002), which is not surprising given the large role mathematics plays in 
typical chemistry courses (Stowe et al., 2021). That said, student performance on standardized 
mathematics assessments (e.g., SAT) is often used to identify at-risk students and identify 
particularly challenging chemistry topics (Lewis & Lewis, 2007; Ralph & Lewis, 2018). Based 
on the emphasis placed on mathematics as a tool to explain and predict in chemistry, it is not 
uncommon to have prerequisite and co-requisite calculus courses for undergraduate students 
taking chemistry. For example, at the University of Wisconsin – Milwaukee, chemistry majors 
are required to take three semesters of calculus (covering topics including limits, derivatives, 
integrals, partial derivatives, and vectors), with the recommendation (not requirement) to take a 
course focusing on linear algebra and differential equations(“Chemistry Major,” 2024). 
However, there is a need to evaluate the alignment between the mathematics used in chemistry 
courses and the mathematics presented in calculus courses. To this end, we are interested in 
mapping the calculus concepts (Sofronas et al., 2011) on to chemistry concepts (Murphy et al., 
2012). 

In broad strokes, this project is the result of an interest in developing resources that further 
interdisciplinary connections and continue the on-going dialogue regarding how disciplines such 
as chemistry and mathematics can support one another to improve teaching and learning. 
Recently the authors attended The Learning and Teaching of Calculus Across Disciplines 
conference in Bergen, Norway (Welcome, 2023). The aim of this interdisciplinary conference 
was to bring researchers from multiple fields (biology, chemistry, economics, engineers, 
physicists) together to discuss how each discipline uses calculus concepts. The current 
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preliminary report builds on a plenary talk given by Dr. Brian Faulkner at this conference that 
discussed prior work involving analyzing where calculus concepts are used in an engineering 
course (Faulkner et al., 2020), with Faulkner’s work mirroring a study in mathematics that 
analyzed the role of calculus concepts in an advanced mathematics course (Czocher et al., 2013). 
Focusing on connections between chemistry and calculus communities, the intended outcome of 
this work is a practical tool for calculus instructors to see the contexts and extent calculus is used 
across the undergraduate chemistry curriculum to inform instructional choices. The guiding 
research question addressed in this report is, Which concepts and skills learned in calculus are 
applied in general chemistry? 

Disciplinary Frameworks 
The scope of this study is supported by readily accessible disciplinary-specific frameworks 

that outline the target content goals for chemistry (Murphy et al., 2012) and calculus (Sofronas et 
al., 2011). In the case of chemistry, the American Chemical Society Exams Institute developed 
the Anchoring Concepts Content Map (ACCM), which was developed through workshops with 
content experts (Murphy et al., 2012). There is currently an ACCM for the following chemistry 
course sequences in the undergraduate chemistry curriculum: general chemistry (Holme et al., 
2015); organic chemistry (Raker et al., 2013); inorganic chemistry (Marek et al., 2018); physical 
chemistry (Holme et al., 2018); and analytical chemistry (Holme et al., 2020). The general multi-
tiered structure for each ACCM involves a series of nested concepts that become increasingly 
more specific: big idea (also called anchoring concept), enduring understanding, subdisciplinary 
articulation, and content detail. For each ACCM, the big idea and enduring understanding levels 
reflect broad concepts that are relevant throughout the chemistry curriculum, whereas the 
subdisciplinary articulation and content detail levels are specific to individual courses (or course 
sequences), such as general chemistry or organic chemistry. Within the ACCM framework, there 
are ten big ideas, one of which is Kinetics. To illustrate the structure of the ACCM, the levels 
from the general chemistry ACCM are provided related to the Kinetics big idea (Holme et al., 
2015):  

1. Big Idea. Kinetics: Chemical changes have a time scale over which they occur.  
2. Enduring Understanding. Chemical change can be measured as a function of time and 

occurs over a wide range of time scales. 
3. Subdisciplinary Articulation. The rate of the reaction must be defined in a manner 

that is not dependent on which reactant or product is used to measure it. 
4. Content Detail. The reaction rate should incorporate reaction stoichiometry when it is 

defined. 
In the case of describing the calculus concepts, this study utilizes the Calculus Content 

Framework (CCF) (Sofronas et al., 2011). The CCF was developed through interviewing experts 
in the calculus field, including prominent textbook authors, experienced educators, and 
researchers. The focus of the interview questions was to elicit instructional goals for students in a 
first-year calculus sequence. To this end, the resulting CCF is organized based on four broad 
categories: (a) mastery of the fundamental concepts and/or skills of the first-year calculus; (b) 
construction of connections and relationships between and among concepts and skills; (c) the 
ability to use the ideas of the first-year calculus, and (d) a deep sense of the context and purpose 
of the calculus. Prior work has illustrated the utility of the CCF, with Czocher et al. (2013) 
applying the framework to investigate the necessary calculus content and skills in an advanced 
mathematics course and Faulkner et al. (2020) doing the same for an engineering course. In both 
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cases, the researchers found a lack of alignment across courses, suggesting the need to consider 
not just whether calculus is used in future coursework, but also how calculus is used.  

Methods 

Data Collection & Analysis 
To map calculus topics to chemistry, we focused on the subdisciplinary articulation level 

within the general chemistry ACCM, which typically represents a two-semester course sequence 
for first-year students. This was compared to the calculus concepts and skills developed in the 
CCF (mastery of the fundamental concepts and/or skills of the first-year calculus, discussed 
above). Our approach for this report is based on the methods described by (Czocher et al., 2013) 
and (Faulkner et al., 2020), which involved attending to mathematics-in-use to assess where and 
how the calculus appears in general chemistry. Using the mathematics-in-use technique requires 
analyzing the chemistry content (as described in the subdisciplinary articulation of the ACCM) 
and noting the ways calculus concepts and/or skills are involved by solving problems associated 
with the subdisciplinary articulation. As part of this, it is helpful to assess secondary routes that 
are available to solve the problem which often results in situations where calculus skills and 
concepts are an available route to successfully solve the problem, but another route is favored. 
To this end, the subdisciplinary articulations were evaluated based on whether: (0) there was no 
calculus associated with the related concepts and skills; (1) calculus was present, but it was not 
the preferred method to solve related problems and reason through and the concepts; (2) the 
application of calculus was the preferred approach toward solving problems and reasoning 
through the concepts. For this work, we report on our analysis related to the subdisciplinary 
articulations that fall nested under the ten big ideas in the general chemistry ACCM. 

Preliminary Results 
Our preliminary analysis, shown that the only calculus concept or skill present in general 

chemistry is derivatives. The subdisciplinary articulations that involve this concept are shown in 
Table 1. The only big idea from the ACCM that involved calculus concepts and skills 
(derivative) was chemical kinetics, which had three subdisciplinary articulations characterized as 
having calculus present, but not as the preferred approach. The remainder of the subdisciplinary 
articulations across the ten big ideas in the general chemistry ACCM did not involve calculus 
concepts and skills.  

 
 
Table 1. ACCM subdisciplinary articulations involving derivatives. 

The rate of the reaction must be defined in a manner that is not dependent on which reactant or 
product is used to measure it. 
Rate is generally defined as the change in concentration of a reactant or product as a function 
of time.  
When solids are included in reactions, surface area is an important factor in the rate of 
reaction.  
Laboratory observation of reaction rates helps to establish the concept of reaction time scales 
empirically.  
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Chemical kinetics involves modeling the rate of a reaction to track changes in the 
concentration of reactants as a function of time. Thus, although chemical kinetics could readily 
be modeled using the derivative, this perspective is often circumvented in a first-year chemistry 
course. In the chemistry curriculum, topics are often explained with less rigorous mathematics 
detail, and subsequently revisited in upper-level courses. For example, one subdisciplinary 
articulation that was coded as having an alternative calculus explanation available was: “Rate is 
generally defined as the change in concentration of a reactant or product as a function of time.” 
In first-year general chemistry courses, the rate of a simple reaction (A + B  AB) is typically 
defined as: 

 
𝑟𝑎𝑡𝑒 = 𝑘[𝐴][𝐵]         (1) 

 
Here, rate is the rate of the reaction, k is the rate constant, m and n are empirically determined 
reaction orders that describe the concentration dependence of rate, and the final equation is 
known as the rate law. This is the most common way to discuss chemical kinetics with 
introductory students, without associating the equation with derivatives. With this version of the 
rate law, students are expected to determine the reaction order, solve for the value of k, and 
generally, use algebra computational skills to manipulate variables and compute values.  

In contrast, in upper-level courses such as physical chemistry, the rate law would be 
discussed using the differential form: 

− ௗ[]
ௗ௧

=  𝑘[𝐴][𝐵]      (2) 
 

In the case, we make use of calculus to describe the rate of the reaction to afford a more 
complicated analysis of chemical systems. Often, the rate law for a reaction is integrated to 
further describe reactions (Table 2). The integrated rate law is helpful because the rearranged 
linear form of the integrated rate law can be used in laboratory contexts to determine reaction 
order by fitting kinetics data and assessing its agreement with the equations for each reaction 
order.  
 
 
Table 2. Summary of equations corresponding to each reaction order. 
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Zero-Order Reaction 

Chemical 
Reaction 

   

Rate Law 

   
Integrated Rate 
Law 

  
 

  
 

Linear 
 

 
 

A B 2A B A catalyst! ! ! B

rate = -d[A]
dt

= k[A]1 rate = -d[A]
dt

= k[A]2 rate = -d[A]
dt

= k[A]0 = k

- d[A]
[A][A ]0

[A ]

ò = k dt
0

t

ò - d[A]
[A]2

[A ]0

[A]

ò = k dt
0

t

ò - d[A]
[A]0

[A]

ò = k dt
0

t

ò

ln [A]0

[A]
= kt 1

[A]
- 1

[A]0

= kt [A] - [A]0 = -kt

ln[A] = -kt + ln[A]0 1
[A]

= kt + 1
[A]0

[A] = -kt + [A]0

26th Annual Conference on Research in Undergraduate Mathematics Education 1101



  

Conclusion and Questions 
Within the first-year general chemistry course, calculus concepts and skills are not 

prominent, with the relevant mathematics required being related to other mathematics courses 
(e.g., algebra). This is not to suggest that calculus concepts and skills are not relevant for 
modeling phenomena in chemistry, but that calculus becomes more important in undergraduate 
chemistry courses as students advance to higher coursework. As an implication, we highlight that 
although calculus is often a prerequisite or corequisite for students in introductory chemistry 
courses, students struggling with the mathematics in chemistry need additional support and 
practice with mathematics at the pre-calculus level. Regarding future work, as part of the 
ongoing analysis, we are interested in expanding our focus toward the ways calculus concepts 
and skills are used across the rest of the undergraduate chemistry curriculum. Especially in 
upper-level chemistry courses such as physical chemistry in which calculus is heavily integrated 
through the curriculum. Moreover, our goal is for this work to be helpful to connect the 
mathematics and chemistry communities by discussing how we use the shared language of 
calculus. For the scope of this conference report, we have some general questions for the 
mathematics community:     

1. What are some of the ways chemistry instructors and chemistry education researchers can 
support mathematics instructors and researchers interested in undergraduate mathematics 
education? 

2. What suggestions do you have regarding the methodological approach and scope of this 
work? 
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Professional Obligations of Graduate Student Instructors and Undergraduate Learning Assistants 
in Partnership within Active Learning Mathematics Classrooms 

 
 Molly Williams1 Rachel Funk1 
 Murray State University University of Nebraska-Lincoln 

Learning Assistants (LAs) are undergraduate students who support active learning classrooms 
by acting as a second instructional figure in the classroom. Although research has shown a 
variety of benefits from the integration of LAs, little is known about the nature of the LA-
instructor relationship and its impact on instruction. We present preliminary findings from a 
comparative case study of how graduate student instructors of record (GSIs) and undergraduate 
learning assistants (LAs) work together within an active learning classroom. Specifically, we 
focus on how the interactions between GSIs and LAs relate to the professional obligations felt by 
GSIs and LAs, both of whom are positioned as mathematics instructors, albeit in different ways. 
This preliminary report highlights initial findings and suggestions for further investigation. 

Keywords: Learning Assistants, Graduate Student Instructors, Active Learning, Obligations 

Research suggests that undergraduate students who are hired as near-peers can support 
students’ academic, social, and emotional well-being (Barrasso & Spilios, 2021; Dawson et al., 
2014; Whitman & Fife, 1988). There are many different near-peer models, including 
supplemental instruction, tutoring, peer-led team learning, and the learning assistant (LA) model. 
However, institutions are increasingly relying on the LA model, or variations of it, to support 
change efforts centered on the use of active learning pedagogies in STEM classrooms (Learning 
Assistant Alliance, 2023; Otero et al., 2006). Although there has been much research conducted 
about the LA model in other STEM disciplines, there is a dearth of research on the integration of 
LAs in mathematics classrooms (Barrasso & Spilios, 2021). Furthermore, existing literature 
suggests that implementation of the LA model varies considerably across different institutions 
and contexts, such as lectures, recitations, and online courses (Hill et al, 2023). Literature is also 
scant on the nature of the partnerships between LAs and instructors (Barrasso & Spilios, 2021). 
Although some researchers are investigating these relationships (Davenport et al., 2017; Jardine 
2020; McHenry et al., 2010; Sabella et al., 2016), instructors are typically faculty. Some research 
has compared self-perceptions of the roles of graduate teaching assistants, learning assistants, 
and professors (Becker et al., 2016), but there is little known about LAs working with graduate 
students acting as instructors of record (GSIs). Given the increasing prevalence of LA programs 
and the large proportion of mathematics departments that hire GSIs to teach mathematics 
courses, it would benefit our community to investigate the nature of this relationship and its 
influence on instruction.  

To that end, we investigated how GSIs and LAs described their interactions in and outside of 
an active learning mathematics classroom, focusing on the conditions (e.g., professional 
obligations) that influence those interactions. We asked the following research question: 

RQ: To what extent did GSIs and LAs of an active learning mathematics classroom 
interact with each other in and outside of the classroom, and how does this relate to the 
professional obligations they felt in their roles? 

1 Williams and Funk contributed equally to this work. 
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Theoretical Background 
Instruction involves interactions between students, teacher(s), and content, but is also 

constrained by the environmental conditions in which these interactions take place (Cohen et al., 
2003; Hawkins, 1974). These environments act as a source for the professional obligations felt 
by those positioned as mathematics teachers, which are in turn used to justify what teachers do in 
mathematics classrooms. Herbst & Chazan’s (2011, 2012) theorize that four professional 
obligations influence the decision making by individuals who take on the position of 
mathematics teacher: disciplinary, individual, interpersonal, and institutional. See Figure 1 for 
definitions of these obligations. 

 
Figure 1. Herbst & Chazan’s (2011, 2012) professional obligations 

Instructors may feel these obligations acutely or be relatively unaware of them, nevertheless 
these obligations exist for every mathematics teacher. Furthermore, instructors who use active 
learning may become more aware of these obligations as obligations come into conflict. For 
example, instructors may feel an obligation to cover prescribed content (an institutional 
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obligation) competing with an obligation to let students engage deeply with mathematics (a 
disciplinary obligation) (Mesa et al., 2020). Using the LA model could change what these 
obligations look like. Specifically, the obligations felt by GSIs and LAs may shift depending 
upon how GSIs and LAs are positioned in the classroom and in relation to one another. Although 
at times LAs may be positioned as mathematics teachers, and thus are subject to the same four 
professional obligations as that of an instructor, LAs take on additional positions in the 
classroom given their status as undergraduate students (Funk, 2023; Jardine, 2020). As such they 
may feel different obligations or feel these obligations differently. For example, LAs and GSIs 
may feel an individual obligation to students, but LAs might feel a stronger obligation to connect 
to individual students on a personal, friendly level, whereas the GSI may not feel that similar 
obligation because they are assigning grades. 

These professional obligations are not the only obligations that teachers may feel in a 
classroom, however they provide a basis for understanding the decisions that teachers make in a 
classroom (Herbst & Chazan, 2012). We contend that integrating LAs into a classroom adds 
additional complexity related to the interpersonal obligation - how are LAs and GSIs sharing 
discursive, physical, and social spaces? Do instructors feel obligated to interact with one 
another? These are important questions to consider, as they influence how GSIs and LAs 
navigate their roles and relationship within an active learning environment, ultimately 
influencing the decisions they make as instructors.  

Methods 
This report draws from a larger multiple case study (Kaarbo & Beasley, 1999; Stake, 2006) 

to examine how the roles of GSIs and LAs may shift in a mathematics department involved in 
change efforts to improve their courses. The larger study includes data collected from two 
separate dissertation studies, both occurring within the same mathematics department but at 
different points in time. The first study occurred in Fall 2015, at the start of the mathematics 
department’s efforts to transform their precalculus courses using an active learning, coordinated 
model. This study focused on the relationship and evolving beliefs of a GSI-LA pair across a 
semester, who had previously worked together in Spring 2015. The second study was conducted 
once the department’s change efforts had been sustained for multiple years, but involved changes 
to instruction due to the COVID-19 pandemic. For this study, data were collected from Summer 
2020-Fall 2021, and involved a total of 18 GSIs and 9 LAs, including 4 GSI-LA pairs. 

Although multiple forms of data were collected in these dissertations, for this report we draw 
on interview data to examine how GSIs and LAs described their relationship. Despite being 
drawn from two separate studies, interview questions focused on similar concepts, including 
beliefs about the role of mathematics instructors and the GSI-LA relationship and changes to that 
relationship (e.g., “Did you notice any changes in [LA/GSI] over the course of the semester?” -
Fall 2015 Interview Question; “What are the major roles and responsibilities for LAs that support 
your class? How do these roles and responsibilities differ from yours?” -Fall 2020 Interview 
Question). 

We began analysis by reading the dissertations to identify specific instances of GSIs and LAs 
describing their interactions. Importantly, we operationalized interactions as encompassing direct 
conversations, as well as observations or noticings of each other’s teaching. We then traced these 
pieces of evidence back to individual transcripts to examine the raw data. These instances were 
open coded (Miles et. al, 2014) by each author individually, then they were compared and 
discussed to generate preliminary themes. Through this analysis we identified variations in how 
participants interacted with one another in and outside of class, noting differences in the 
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obligations felt by participants in these interactions. We use the findings sections of this proposal 
to elaborate on this theme. In future data analysis, we plan to analyze the entire corpus of 
interview data for evidence of professional obligations using Herbst and Chazan’s framework as 
an a priori analytic framework. 

Preliminary Findings 
We found evidence of three different levels of obligation felt by the GSI and LA to interact: a 

definite sense of obligation, some obligation, and no obligation to interact. These different levels 
sometimes depended on whether interactions occurred inside or outside the classroom. In the 
following paragraphs we share evidence from each level of obligation. 

Some GSIs felt a definite sense of obligation to interact with their LAs. This was evident 
from their insistence on the importance of communicating with or observing their LA in or 
outside of class. For many, this sense of obligation was tied to an obligation to ensure active 
learning methods were being used by LAs. GSI Jay said that for them to be an effective teacher, 
their LA’s teaching “approach and philosophy” had to align with their own “at least in practice, 
if not necessarily in belief.” Jay intentionally observed LA Jessie early in the semester to ensure 
that Jessie was using active learning. They said, “I know that my LA is not going into rooms and 
just giving students answers, right? That my LA is not undermining the structure [of the active 
learning course].” GSI Jay also hoped to treat LA Jessie as a “colleague” and a “peer” outside of 
class; they met frequently outside of class time to discuss student dynamics and approaches to 
teaching content. This related to their desire that during class the LA and themselves presented a 
“united front.” Similarly, GSI Sally intentionally had “several quite long conversations about 
what it means to teach, what’s the most effective way to teach, and what I want to happen in the 
classroom” with her LA. Sally admitted, “when we first started teaching together last semester, 
LA Cara stressed me out more than the students did” but Sally had come to trust her. Both GSI 
Jay and GSI Sally proactively interacted with their LAs to fulfill an obligation that the course be 
taught using active learning methods. Furthermore, their LAs sought-out interactions with the 
GSI to learn how to teach the course. For LA Jessie, this was in part inspired by an obligation to 
ensure they were presenting mathematics in a way that was aligned with the instructor. They 
described observing GSI Jay so that they were using “the same wording that [they do] in class.” 
Further, they said it was important to communicate with the GSI to make sure “you’re always on 
the same page, cause you don't want to split the class into two.” 

GSIs and LAs who had a less definite obligation to interact often described feeling 
constraints on their ability to interact, particularly in class. GSI River identified being a novice 
teacher as one such constraint, saying that “there is a cognitive overload” when one first starts 
teaching that prevents an instructor from paying attention to the LA. They elaborated by saying 
that “paying attention to what my LA was doing was a lower priority” for them, as they were 
trying to make sure they did “a good job” teaching. River believed that, as a more experienced 
instructor, they would now be able to “manage paying attention to what [their] LA is doing.” 
However, other more experienced GSIs described feeling constrained by the dynamics of an 
active learning classroom. As GSI Aiden stated: 

I always had a really hard time knowing whether my LA was doing a good job because I 
was just very focused on teaching and trying to go to all of the groups and get a sense of 
how class is doing. So I just completely ignored my LA basically all the time until we 
reconvened at the end of class. 
For GSI Aiden, the obligation to interact with each student group took precedence over an 

obligation to make sure the LA “was doing a good job.” They did, however, reconvene with their 
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LA at the end of class, suggesting that they felt an obligation to interact with their LA beyond 
class time. Similarly, Instructor Blake felt an obligation to “hit every group so I don’t miss 
anyone” and described not knowing what their LA was doing because they were “focused on the 
student.” Unlike GSI Aiden, Blake interacted very minimally with their LA outside of class time, 
suggesting that Blake operated relatively autonomously from the LA. 

Like Blake, GSI Poppy talked about ignoring their LA because they were busy “personally 
knowing the students.” However, they also questioned the appropriateness of monitoring LAs 
during group work, suggesting that LAs are meant to “support us [GSIs] monitoring the [group] 
work.” GSI Harper shared similar sentiments, but with a stronger statement. They felt no 
obligation to their LA during the class session and further felt this was in line with the views of 
the department. They said: 

I guess just sort of the general advice, or attitude I inherited from the department…they're 
[LAs] there to help you, they're there to help students. I don't know if this is advice or just 
a statement about how my classroom works, but don't focus on the LA. Assume that 
they're off doing good work on the other side of the classroom and instead just work with 
the students.  

Thus, Harper did not feel the need to have any focus on the LA beyond assuming the LA was 
there to support the GSI and the active learning environment.  

Discussion & Questions for Audience 
Our findings highlight that participants felt different levels of obligation to interact with one 

another, and further that these differences can in part be accounted for by the context of the 
interaction (in or outside the classroom) and other professional obligations. For example, some 
GSIs prioritized having conversations with their LAs outside of class time to ensure that LAs 
explained content in ways faithful to the discipline (from their perspective) or to support LAs in 
using active learning methods. Likewise, one LA felt an interpersonal obligation to keep the 
classroom from splitting into two, and thus prioritized being on the “same page” as the GSI 
through conversations outside of class time. Some GSIs used in-class observations to ensure that 
LAs were using active learning strategies to engage students. However, one GSI felt no 
obligation to interact with their LA in the classroom, and furthermore described their view as 
being “inherited” from the department, suggesting that they felt an institutional obligation to not 
“focus on the LA” during class time. Several GSIs remarked on the difficulty of attending to 
students and observing the LA, suggesting that while they felt an interpersonal obligation to 
interact, this took less precedence than their obligation to interact with students. This brings up 
several questions: How do GSIs and LAs prioritize competing professional obligations? How 
does department culture influence this prioritization? Do GSIs and LAs prioritize competing 
obligations differently? Should GSIs feel an obligation to interact (or notice) LAs? Should LAs 
feel an obligation to interact (or notice) GSIs? 

More work needs to be done to consider how Herbst and Chazan’s (2011, 2012) framework 
supports understanding of the GSI-LA relationship, particularly in active learning classrooms. 
For example, White and Smith (2023) suggest that the interpersonal obligation should be 
magnified to support inclusion in active learning classrooms; they argue that instructors should 
explicitly be encouraged to support student-student interactions. In what ways does integrating 
LAs into a classroom add additional possibilities for magnification of the interpersonal 
obligation?  
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Exploring the Interplay Between Preservice Teachers' Mathematical Beliefs and EB Students' 
Mathematics Education 

 
 Luis M. Fernández Ursula Nguyen 
 University of Texas Rio Grande Valley University of Nebraska–Lincoln 

We explored the intersections between two sets of pre-service teachers' beliefs, revealing potential 
relationships between beliefs about mathematics and beliefs about EB mathematics education. 
PSTs whose beliefs about mathematics were consistent with reform-oriented mathematics were 
identified as social constructivists, and they were more likely to express equitable beliefs about 
EB mathematics education. However, we find a more mixed pattern regarding beliefs about EB 
mathematics education among PSTs identified as moderately-traditionalists. Specifically, we find 
that the association between PSTs’ demographic backgrounds and engagement with EB issues and 
their endorsement of more moderate beliefs may differ across different groups of PSTs. This 
research contributes to understanding the complex interplay of teacher beliefs in mathematics and 
EB education, offering insights that can inform more effective teacher-preparation programs to 
enhance PSTs' ability to teach EB students effectively. 

Keywords: Emergent Bilinguals, Pre-Service Teachers, Beliefs about Mathematics 

While teacher-preparation programs have made strides in adopting asset-oriented 
perspectives regarding what Emergent Bilinguals (EB) students can achieve, research reveals 
that many pre-service teachers (PSTs) still graduate underprepared to meet the mathematical 
needs of EB students, including prevalent deficit-oriented views about how EB students learn 
mathematics (e.g., Fernandes, 2007; National Center for Education Statistics, 2013; Pappamihiel 
et al., 2017). These beliefs strongly influence the instructional practices that PSTs enact in their 
mathematics classrooms (Akinsola, 2008; Beswick, 2005; De Araujo, 2017; Wilkins, 2008).  

Recent research has started exploring the experiences shaping PSTs' beliefs about EB 
students' mathematics education, including PSTs' beliefs about mathematics, its teaching, and 
learning and how these appear to influence their views on how EB students should learn 
mathematics (e.g., De Araujo, 2017; Janzen, 2008; McLeman & Fernandes, 2012). For that 
reason, identifying relationships between PSTs' beliefs about mathematics and EB students can 
further inform the development of more effective teacher-preparation programs. By addressing 
PSTs' preconceived notions about mathematics learning and teaching, these programs can 
enhance PSTs' capabilities to teach EB students. The study aims to answer two research 
questions: 

 
1. What beliefs do PSTs seem to hold about the nature of mathematics, its teaching and 

learning, and the mathematics education of EB students? 
2. Are there any relationships between PSTs' beliefs about the nature of mathematics, its 

teaching and learning, and the mathematics education of EB students? 
 
The study utilizes a quantitative approach to collect data and situates its work within the 

broader context of research on teacher beliefs, encompassing beliefs about mathematics and the 
education of EB students. The hypothesis is that PSTs who share beliefs about mathematics that 
are aligned with reform-oriented efforts of mathematics teaching and learning will also share 
equity-oriented beliefs towards EB learners and mathematics. 
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Literature Review and Theoretical Background 
Teacher Beliefs about the Nature, Teaching, and Learning of Mathematics  

According to Borg's theoretical framework (1997, 2003, 2005) on teacher cognition, 
teachers enter teaching with existing mathematics beliefs, knowledge, and attitudes categorized 
as either instrumentalist, Platonist, or problem-solving orientations (Ernest, 1991; Raymond, 
1997). These orientations represent distinct views of mathematics: instrumentalists see it as facts 
and rules, Platonists as static interconnected knowledge, and problem-solvers as dynamic and 
inquiry-oriented. This has spurred extensive research into exploring such teachers' beliefs about 
mathematics through various survey instruments, including the Mathematics Belief Instrument 
(Hart, 2002), the Mathematics Beliefs Questionnaire (Adnan & Zakaria, 2010), and the Teachers 
Beliefs Survey (Beswick, 2005; Hughes, 2016). These studies consistently reveal a divide 
between teachers who view mathematics as interconnected knowledge best acquired through 
student-guided experiences and inquiry-based learning and those who see mathematics as a finite 
set of facts and procedures conveyed directly to students, with limited room for exploration. 

More recently, Hughes (2016) adapted Ernest's framework, categorizing instrumentalist 
and problem-solving/Platonist beliefs as traditional and constructivist beliefs, respectively. 
Research finds that teachers tend to align with either traditional or constructivist beliefs (Hughes, 
2016; Paolucci, 2015). However, recently among newer teachers, another group has emerged 
whose mixed beliefs combine elements of both traditions. However, the literature on teacher 
beliefs rarely delves into the factors influencing these beliefs about mathematics’ nature, 
teaching, and learning. Limited studies suggest a positive link between teachers' mathematical 
backgrounds (including coursework and teaching knowledge) and constructivist beliefs about 
mathematics (Ogan-Bekiroglu & Akkoç, 2009; Kutaka et al., 2018). Yet, the evidence in this 
area is inconclusive regarding the role of other factors, such as experiences with linguistically or 
culturally diverse students, on teachers' beliefs about mathematics. 
 
Teacher Beliefs about the Mathematics Education of EB Students 

In recent decades, studies exploring teachers' broad beliefs regarding EB students, 
extending beyond mathematics education, have surged. This body of literature finds that teachers 
often exhibit deficit views, perceiving their role mainly as content instructors (e.g., Tan, 2011; 
Garmon, 2005; Mellom et al., 2018). De Araujo (2017) observed that secondary mathematics 
teachers often chose procedure-focused tasks for EB students, reflecting their deficit-oriented 
beliefs about EB students’ ability to engage with mathematics. Additionally, McLeman and 
Fernandes (2012) noted that even PSTs with overall positive beliefs about EB students also 
endorsed the commonly held belief that lack of parental and family involvement, potentially 
contributed to EB students' mathematics underachievement. 

An intriguing aspect of this research is the exploration of factors shaping teachers' beliefs 
about EB students' mathematics education. Training in EB instruction appears to lead to more 
positive beliefs about teaching EB students (Pettit, 2011b; Polat & Mahalingappa, 2013). 
Similarly, PSTs who engaged in multicultural courses during their teacher preparation, 
specifically addressing EB student issues, tended to hold more positive beliefs about EB students 
and their mathematics performance. These PSTs also had opportunities to interact with EB 
students during their student-teaching experiences (McLeman, Fernandes, & McNuttly, 2012; 
McLeman & Fernandes, 2012). 
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Methods 
This study aims to investigate a diverse array of PSTs beliefs, encompassing perceptions, 

attitudes, conceptions, and beyond. Therefore, the study adopts Borg's (2003) comprehensive 
conceptualization of teacher cognitions as its main theoretical framework, integrating various 
facets of teacher beliefs, particularly those related to the nature of mathematics and the 
mathematics education of EB students. This framework aligns with the study's perspective of 
teachers as active agents who base their instructional decisions on their situated understanding 
and therefore, frames PSTs' beliefs as a flexible yet robust collection of "what teachers know, 
believe, and think" (Borg, 2003, p. 81), particularly in the context of mathematics and the 
education of EB students.  

We collected survey data from 84 PSTs attending a southwestern US public research 
university. Specifically, we recruited PSTs enrolled in an elementary teacher preparation 
program and pursuing either an ESL Generalist Certification (n = 68) or a Bilingual Generalist 
Certification (n = 16). As our intent in this study is to focus on views held by PSTs about the 
mathematics education of EB students as well as their beliefs about the nature of mathematics, 
we selected Bilingual and ESL elementary PSTs who had either completed (n = 53) or were 
currently enrolled (n = 31) in the mathematics pedagogy course (i.e., Mathematics Methods) for 
the elementary teacher preparation program. Through this course, PSTs were exposed to 
research-based instructional strategies for teaching mathematics in elementary grades. 

To capture beliefs held by PSTs regarding the nature of mathematics, teaching 
mathematics, learning mathematics, and the mathematics education of EB students, we utilized 
two different sets of survey items. The first set, or Survey A, (Cronbach’s alpha=0.77) describes 
beliefs about mathematics and mathematics education and was comprised of 28 previously 
validated items (Hart, 2002). A sample item includes “A demonstration of good reasoning should 
be regarded even more than students’ ability to find correct answers.” Response categories were 
5-point Likert-scales, ranging from 1=Strongly Disagree to 5=Strongly Agree, with higher scores 
indicating more alignment with reform-oriented efforts. The second set, or Survey B, consisted 
of 30 previously validated items (Cronbach’s alpha=0.87) describing beliefs about the 
mathematics education of EB students. One item from this set is “The inclusion of EB students 
in classes of mathematics creates a positive educational atmosphere.” Response categories 
followed the same 5-point Likert scale described earlier, with higher scores indicating more 
asset-oriented views towards the mathematics education of EB students. Survey data collected 
also included PSTs’ demographic background information, including gender, race/ethnicity, and 
previous college course experience. 

As this study seeks to explore the potential relationship between PSTs’ beliefs about 
mathematics and the mathematics education of EB students, we utilized cluster analyses, which 
is a descriptive statistical method appropriate for this exploratory study about PSTs’ beliefs (e.g., 
Beswick, 2005; Rodriguez-Muñiz et al., 2022). For each set of beliefs (Surveys A & B), we 
utilized hierarchical cluster analysis to identify and categorize latent types of common beliefs 
shared by PSTs. To analyze the intersection between beliefs about mathematics (Survey A) and 
mathematics education of EB students (Survey B), we used a cross-tabulation analysis and 
identified unique relationships between these two sets of beliefs. 
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Results 
Teacher Beliefs about the Nature, Teaching, and Learning of Mathematics, and the 
Mathematics Education of EB Students  

Results from the hierarchal cluster analysis on Survey A responses provided a solution of 
three clusters (i.e., CA1, CA2, & CA3). On the other hand, results from the hierarchal cluster 
analysis on the responses of Survey B yielded two clusters that reflected the PSTs’ beliefs 
pertaining as it relates to EB students’ mathematics education (i.e., CB1 & CB2). These results 
were further validated by splitting the data into two equal sets and confirming the persistence of 
the same solution for the split data, respectively (Garson, 2012; Hair & Black, 2000; Sarstedt & 
Mooi; 2014). Furthermore, given that significant differences are to be expected among clusters 
(Hair & Black, 2000), a comparison of means for all survey items incorporated ANOVA and 
post-hoc tests among CA1, CA2, CA3 and CB1, CB2. Survey items that presented significant 
differences (i.e., p < 0.05) among all the two groups of clusters were used to create cluster 
descriptions and labels.  

Focusing on Survey A clusters, Traditionalist PSTs (CA1; n=29) shared more 
traditionalist orientations towards mathematics. This includes beliefs that mathematics is a 
collection of isolated strands of knowledge best taught through repetition and reinforcement. 
Moderately-Traditionalist PSTs (CA2; n=34) shared similar beliefs about mathematics, such as 
the view that there exists a right or wrong answer in math, strongly contradicting the beliefs 
expressed in mathematics reform efforts. However, these and other similar traditionalist beliefs 
are not as strongly believed as those from CA1, and therefore the “Moderately” in the label. 
Social Constructivist PSTs (CA3; n=21), on the other hand, shared beliefs about mathematics, 
including its teaching and its learning, that strongly aligned with those of reform-oriented efforts. 
This includes beliefs about mathematics being best taught through a student-centered approach 
that values peer discussions, guided explorations, and self-discovery. 

Regarding the beliefs about the mathematics education of EBs, or Survey B, Moderately-
Equitable PSTs (CB1; n=56) expressed beliefs that align well with recommendations found in 
the literature on the learning and instruction of mathematics to EBs. However, beliefs in CB1 are 
“weaker” than those believed in CB2 (n=28). That is, PSTs in CB1 were more moderate 
compared to CB2 PSTs in how much they agreed and disagreed with research-based 
recommendations for EBs’ mathematics education, and therefore the “Moderately” in the label 
for CB1 and “Equitable PSTs” for CB2, respectively. Demographic and other background 
information were also considered when exploring the composition of each cluster. However, 
results from the Chi-square and ANOVA tests did not reveal any significant associations. 
 
Relationships between PSTs' Beliefs about the Nature of Mathematics, its Teaching and 
Learning, and The Mathematics Education of EB Students 

The percentages from the crosstabulation analysis between the two sets of clusters of 
PSTs are shown in Table 1. We focus on the interesting yet important intersections formed by 
Moderately-Traditionalists and Moderately-Equitable (i.e., CA2 ✕ CB1) and Moderately-
Traditionalists and Equitable (i.e., CA2 ✕ CB2) while recognizing that we also observed other 
relationships, such as between PSTs labeled as Social Constructivists and Equitable (i.e., CA3 ✕ 
CB2). 
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Table 1. Crosstabulation Between MBI Clusters and MEELBI Clusters 

 

Moderately-Equitable 
(CB1) 

Equitable 
(CB2) 

Traditionalists (CA1) 28 (49.6%) 1 (4.3%) 

Moderately-Traditionalists (CA2) 23 (40.6%) 11 (40.2%) 

Social Constructivists (CA3) 5 (9.8%) 16 (55.5%) 
 Total 56 (100%) 28 (100%) 
 

Specifically, as seen in Table 1, both CB1 and CB2 shared a large proportion of PSTs that were 
labeled as Moderately-Traditionalists. This finding suggests the possibility that Moderately-
Traditionalists’ beliefs might be more susceptible to other factors, and these factors may 
contribute to these beliefs differently according to PSTs’ beliefs about the mathematics education 
of EB students. In fact, looking closely at each proportion’s composition revealed differences 
between Moderately-Traditionalists and Moderately-Equitable PSTs and Moderately-
Traditionalists and Equitable PSTs, respectively. For example, PSTs within the Moderately-
Traditionalists and Moderately-Equitable intersection were most likely to identify as White 
(72.7%) and be pursuing a Generalist/ESL certification (100%) whereas PSTs from Moderately-
Traditionalists and Equitable intersection share more diversity in both ethnicity and degree plan. 
PSTs from the Moderately-Traditionalists and Equitable intersection were also more likely to be 
bilingual (52.6%) than those in the Moderately-Traditionalists and Moderately-Equitable 
intersection (37.35%). In terms of previous course enrollment, Moderately-Traditionalists and 
Moderately-Equitable PTSs reported the lowest average number of courses that focused on EB 
issues (M=2.55; SD=2.16) and the highest rate of interaction with EB students during their 
teacher education program (M=2.57; SD=.731). Moderately-Traditionalists and Equitable PSTs, 
on the other hand, reported a higher average number of EB-focused courses taken (M=5.75, 
SD=3.36) and the lowest rate of interaction with EB students during their teacher education 
program (M=1.42; SD=.729).  

Discussion 
As hypothesized, evidence suggests that PSTs who embrace progressive, reform-oriented 
approaches to mathematics education appear to be more inclined to endorse empirically-based 
strategies for effectively teaching EB students in mathematics. Conversely, PSTs with more 
traditional beliefs about mathematics seem to exhibit a degree of caution or reluctance when it 
comes to fully embracing research-based recommendations for the education of EB students in 
mathematics. However, there also existed a group of PSTs that, while adhering to traditional 
views on mathematics, paradoxically champion equitable practices when it comes to teaching 
mathematics to EB students. Several additional factors may also come into play, potentially 
shaping and influencing the beliefs of PSTs. Elements such as the ethnic and cultural 
backgrounds of PSTs, the extent of their exposure to EB-focused coursework during their 
educational journey, and the depth of their interactions with EB students during their student-
teaching placements are all critical factors that warrant exploration. These variables suggest that 
the development of beliefs about mathematics education and equity for EB students is a nuanced 
process influenced by a multitude of contextual and experiential factors. Further exploring this 
holds the potential to better inform teacher preparation programs. 
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Beyond Correctness: Characterizing Authority to Assess in an Abstract Algebra Classroom 
  

 Michael D. Hicks Corinne Mitchell  
 Virginia Tech Virginia Tech  
  
 Rachel Rupnow Lindy Hearne 
 Northern Illinois University Virginia Tech 

In what ways do students bear mathematical authority in advanced mathematics classrooms? 
What authority relations arise within inquiry-oriented classrooms? Answering these questions 
may give insight into the inequities that exist within undergraduate mathematics education. We 
share findings from our initial investigation of 7 lessons from one inquiry-oriented abstract 
algebra (IOAA) classroom to determine who gets to have authority to do certain activities. 
Taking an action-based approach to parsing authority relations, we attended to who bears 
authority for the activities of authorship, communication of ideas, and assessment of ideas. Our 
preliminary findings propose five categories of activities for assessment as well as several 
observations about the nature of authority relations within an IOAA classroom.  

Keywords: Abstract algebra, authority, assessment  
 

Increased attention on student-centered instruction eschewing traditional lecture formats in 
undergraduate mathematics demands better understanding of the complex dynamics by which 
students participate in mathematics discourse, especially when they are expected to engage in 
activities like conjecturing, proving and justifying mathematical ideas. Investigating the authority 
relations created in such courses is one avenue for interpreting both productive and unproductive 
mathematics discourse. For example, it has been argued that inequitable learning and 
participation outcomes (Johnson et al., 2020) in inquiry-oriented classrooms arise from students’ 
differing experiences in leveraging their authority in small-group and whole-class discussions, 
especially in terms of whose ideas are taken up, and how (Hicks, Tucci, Koehne, Melhuish & 
Bishop, 2021). In this paper, we extend an existing framework for interpreting authority relations 
by further parsing another relevant activity found within classroom authority dynamics: 
assessment of mathematical ideas.  

Authority is a multi-dimensional construct, and as such, there are multiple approaches to 
parsing authority structures. Weber’s (1947) power-oriented perspectives on authority have been 
used extensively, often to make observations about the nature of inequitable classroom 
interactions (e.g., Langer-Osuna, 2017; Esmonde & Langer-Osuna, 2013), or discursive 
positioning moves (e.g., Wagner & Herbel-Eisenmann, 2009). Despite the prominence of 
Weber’s power-oriented authority in sociological research, concerns have been raised over the 
negative attention attributed to authority as a necessary evil to be resisted rather than as a 
positive force for social change. In the context of educational philosophy, Benne (1970) 
espoused a perspective that characterized authority in education with greater optimism, one 
which treated bearers of authority as a source of assistance to receivers of authority who 
willfully seek help from an authority and may be provided opportunities to bear authority for 
themselves. This type of authority is known as anthropogogical authority. The reform-oriented 
nature of Benne’s contributions established a natural dichotomy between the Weberian and 
anthropogogical perspectives wherein the first is treated as typical of traditional classrooms and 
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persists in most situations, while the second is thought to be an ideal form of authority to be 
strived for (Amit & Fried, 2005).  

In contrast to the mathematics education literature as a whole, authority relations in 
undergraduate mathematics education have been understudied. This research has largely focused 
on sources of authority. Gerson and Bateman (2010) conducted a grounded theory investigation 
of an inquiry-based calculus classroom and developed a framework for identifying the many 
types of authority that can exist in the university setting, including hierarchal, mathematical, and 
pedagogical authorities. Other research has focused on authority for specific activities relevant to 
undergraduate advanced mathematics classrooms. For example, Bleiler-Baxter, Kirby and Reed 
(2023) investigated ways in which authority manifested in situations related to proof and proving 
activity, finding that students attended to course syllabi, their peers, and logical structure as 
sources of authority. In this paper, we focus specifically on investigating mathematical authority 
in the context of an inquiry-oriented abstract algebra class. We pose the following questions:  

RQ1. What are the authoritative activities associated with assessment in an inquiry-oriented 
abstract algebra classroom?   

RQ2. What are the mathematical authority relations in this classroom?  

Theoretical Framing  
We define authority as a dynamic and negotiated relationship between people (or groups, or 

organizations) in which one party agrees to lead and another party agrees to follow in a given 
situation. Thus, authority is transient and can shift between parties from one moment to the next 
rather than remain as a permanent fixture within a single person.   

In contrast to Weber’s power-oriented and Benne’s reform-oriented definitions of authority, 
we adopt an action-oriented approach to parsing mathematical authority (Bishop, Koehne & 
Hicks, 2022). In particular, we contend that within any given field (i.e., the specific context in 
which bearers and receivers negotiate relevant authority relations), a member of the field 
becomes a bearer of authority by actively participating in one or more activities. These activities 
are situated discursively within a community of practice, either by recognizing that the 
community at large views the activity as pertinent to the field (e.g., a medical doctor bears 
authority by providing a patient with a diagnosis), or through localized negotiation that might be 
exclusive to a subset of the community (e.g., students might become bearers of mathematical 
authority through public validation of proof in one class, but never have such an opportunity to 
publicly validate proof in another.)  
 

 
While several researchers have investigated authority relations between individuals, we 

examine the relations between students (as a collective party) and their teacher in this study. 
Thus, when one student partakes in an activity and bears authority, they bear authority for the 

Table 1. The AAA Authority Framework for Authority Relations 

Authorship Refers to the significant contribution to the 
mathematical ideas under consideration. 

Who is the primary source, or author, of the 
mathematical ideas?   

Animation Refers to who is publicly communicating or 
extending mathematical ideas. 

Who is communicating mathematical ideas in 
the classroom?  

Assessment Refers to judgements/evaluations made about an 
idea. 

Who is assessing mathematical ideas in the 
classroom and who is being assessed?  
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students as a whole. This allows for a broadscale analysis of authority relations across several 
days of class, a scale of analysis that is absent from current literature. To characterize 
mathematical authority, we attend to the activities of authoring ideas, animating (or 
communicating) ideas, and assessing ideas. See Table 1 for a description of these broad 
activities. 

Methods  
The preliminary data consist of seven 1.25-hour long recordings of whole class activity from 

an introductory abstract algebra class at a large, land-grant university in the eastern United 
States, taught using the Inquiry-Oriented Abstract Algebra (IOAA) curriculum materials (Larsen 
et al., 2013). The class was composed of 15-20 students and covered the group isomorphism 
units from the curriculum materials in the 7 classes that were analyzed. Analysis began with 
segmenting classroom video, which indicated a stretch of classroom activity associated with a 
focal mathematical idea or task, or consistent participation structure, ranging from 30 seconds to 
5 minutes in length.  Four types of segments were identified within each video: whole class 
(WC) activity, small group activity (SG), independent activity (i.e., students worked by 
themselves rather than in groups), and segments that were not considered mathematical in nature 
(i.e., task set-up or returning graded work). Each segment that was labelled as WC was assigned 
codes using a version of the AAA framework modified to capture assessment authority.   

Because the AAA framework was originally developed to capture the authority of whole-
class interactions, the authority of students (versus the authority of the teacher) was documented 
collectively, rather than attending to the authority of individual students. In other words, if a 
student authors an idea in a segment, then students are credited collectively for that authorship. 
Codes were assigned based on which group (teacher, students, or both) held authority for 
authorship, animate-speak, animate-represent, and several types of assessment. In our initial 
analysis, we viewed assessment as any explicit statement that indicates judgement or evaluation 
of a mathematical idea. That is, utterances that could be implicit assessments were not coded.  

The first two classroom videos were coded as a team to establish an initial coding scheme. 
The third lesson was coded independently by the first two authors, and then disagreements were 
resolved as a group. After that, the first author coded the fourth and sixth lessons, and the second 
coded the fifth and seventh lessons, with each author bringing difficult segments to the group to 
get consensus. The codebook was then refined over the course of analysis resulting in five types 
of mathematical assessment. These types are exemplified below in our findings, along with some 
general trends in authority relations captured by preliminary counts of the current coding.  

Findings  
In order to parse the authoritative activity of assessing, we attended to five different 

categories related to how students or teachers assess mathematical ideas within public classroom 
discourse: (1) correctness focused assessments, (2) assessments focused on comparison of ideas, 
(3) assessments focused on a particular quality of an idea, (4) justification of assessments, and 
finally (5) reflective or metacognitive assessments. Below we share examples of a subset of these 
activities identified within two interactions.  

We view correctness focused assessments as largely related to the traditional discursive 
structure of initiate-respond-evaluate (IRE) (Mehan, 1979), although correctness focused 
assessments can appear more productively as well. Consider the following excerpt from one 
lesson in which the instructor sets up the class for a new phase of investigation into subgroups, 
beginning first by establishing collective understanding of some possibly unfamiliar notation:  
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Teacher:                We’re going to go into our next reinvention phase now. And to get there,  

  we need to know what 5Z is. Do you guys know what 5Z is?  
Student A:  Z like integers?  
Teacher:  Yes, Z as in integers (points and nods at student while speaking.)   

   
The above interaction showcases an example of a correctness-focused assessment where the 
teacher was a bearer of authority for assessing a mathematical contribution. To capture the wide 
range of productive assessment activity within an inquiry-oriented course, attention to other 
forms of assessment was required. Consider the following excerpt: 
   

Teacher:      (Revoices student’s idea at the board proving an implication about 
abelian groups.)  

Student B:  Is it not simpler than that?  
Teacher:  Can I make it even simpler than that?  
Student B:  (Describes a proposed alternative proof.)  

   
In this interaction, Student B claims to have a simpler alternative proof than the previous one, 
and thus bears authority for comparing two mathematical ideas. In the discussion that followed, 
the teacher commented, “I think they are equally slick,” giving her authority for comparison in 
addition to the students. Because each of students and the teacher was a bearer of authority for 
comparing ideas, we assigned a code of Both to this segment. Such interactions are evidence that 
students are engaging in mathematical practices valued by the field as a whole. Here, the student 
is attending not only to the correctness of a given proof, but also to the comparison of multiple 
ideas in an effort to find a more efficient approach. This is just one of five types of assessment 
indicative of mathematical community practices that arose, the remainder of which are 
summarized in Table 2 below.  
 

Table 2. Five Authoritative Activities for Assessment  
Correctness Focused  Assessments that indicate correctness/incorrectness of a mathematical 

contribution.  
Comparison Focused  Refers to the comparison of two or more mathematical contributions.  
Quality Focused  Assessments that are focused on a particular quality of a contribution, such as 

efficiency or clarity.  
Justification Focused  Providing evidence or rationale to support a previously made assessment. 

Often paired with another assessment type.  
Reflective/Metacognitive 
Focused  

Assessments that are reflective of one’s own thinking, and typically appear as 
an assessment of one’s own contributions.  

  
General Trends and Observations on Authority Relations 

Authority was shared by teacher and students across the activities of authoring, animating, 
and assessing. Out of 150 total segments, students had or shared authority to author ideas in 101 
segments. This preliminary finding count may be an indicator of the increased attention to 
student thinking within the inquiry-oriented setting. Inquiry-oriented classrooms often leverage 
tasks designed for students to inquire into mathematical ideas with their peers in small group 
settings, but allowing students to work in small groups generates a certain level of risk. Pimm 
(2019) identified these risks as gambits. One trend we have observed within this IOAA 
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classroom is that by allowing students to engage in group work, students may bear either more 
authority for themselves or share more authority with the teacher. Small group work was 
followed by student authorship in nearly all transitional segments across all seven lessons.  

Furthermore, authority for speaking was nearly always shared between teacher and students, 
with speech coded as both in 131 segments. Taken together with the high level of student and 
shared authorship, we view this as an indicator that the class did not engage in teacher-driven 
lecture very often. However, students were also provided little opportunity to completely control 
the spoken public discourse without teacher intervention. In contrast to speaking, students rarely 
wrote on the board during whole class discussion, with examples of students bearing authority 
for written representations occurring in only 17 segments. Thus, the teacher had significantly 
more authority to animate ideas through representation.  

Students bore authority to make assessments in all 7 classes, most often focused on 
correctness, justification, or metacognitive aspects. Strikingly, students engaged in justification 
assessment nearly as often as in correctness assessment, and they made assessments that 
reflected on their own thinking far more than the teacher (see Table 3). Furthermore, students 
also always had authority to assess when assessment was the focus of a segment. In terms of the 
teacher’s authority for assessment, the teacher bore authority for corrective assessment most 
often, while authority for justification was the second highest. Note that due to varying segment 
lengths, these percentages are proportions of segments containing assessment activity, of which 
there were 143. Because segments could receive multiple codes, the totals do not add to 100%. 

  
Table 3. Number of Segments Containing Assessment by Type 
Type  Student  Teacher  Both  
Correctness  11 (~8%) 69 (~48%) 7 (~5%) 
Comparison  6   (~4%) 11 (~8%) 3 (~2%) 
Quality  2   (~1%) 19 (~13%) 2 (~1%) 
Justification  10 (~7%) 21 (~15%) 9 (~6%) 
Reflective  8   (~5%) 2   (~1%) 0 (0%) 

 
Discussion 

As this work is preliminary, more analysis is needed to establish claims about trends 
throughout the course of the semester. In particular, as the content within abstract algebra 
increases in difficulty (e.g., quotient groups are commonly identified as a difficult topic), 
authority relations may shift more toward one of student, shared, or teacher. In particular, we 
wonder whether teachers are more likely to assess as content difficulty increases. In addition to 
the success of groupwork gambits at promoting student authority in whole class discussion, the 
very act of engaging in groupwork yields students some private authority to do mathematics, free 
of assessment from the teacher. While prior research indicates inequities in small group 
interactions due to social factors, such as influence (Engle et al. 2014), examining assessments 
on a small group level within an inquiry-oriented course could explore inequities related to 
mathematical authority, such as parsing whose ideas are assessed and how, as well as who bears 
authority to make such assessments. Future work may consider the following questions: Are 
marginalized students’ ideas assessed only for correctness, as opposed to more mathematically 
demanding assessments for justification or quality? Do students of higher social status assess 
more often? More generally, what other activities can lead to students bearing authority?   
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Investigating the Resources Framework through the Lens of Analytic Autoethnography: 
Analyzing Research Questions and “Resource” Grain Size 
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There has been a recent trend in the application of fine-grained constructivist frameworks such 
as the resources framework; however, the resources framework has been operationalized in a 
variety of ways, particularly regarding analytic choices. In this work I seek to further discussions 
surrounding theory use and the ways frameworks may inform (1) research questions and (2) data 
analysis. Using an analytic autoethnographic approach, I characterize the variation in the 
application of the resources framework in my own work (n=10). This allows me to provide 
specific examples without evaluating the quality of colleagues’ research, as well as contextualize 
the research within my experiences and within the broader norms of the chemistry education 
research community. To this end, I discuss alignment between the research questions and the 
resources framework and demonstrate variation in how “cognitive units” were operationalized. 
As an implication, suggestions are made regarding future work using the resources framework. 

Keywords: theory; cross-disciplinary; research questions; methodologies  

Background 

Rationale and Scope 
This work is part of a broader interest in furthering a dialogue related to methods and theory 

use in education research, which is of interest to the RUME community (Haas et al., 2022; 
Melhuish & Czocher, 2022). Last year at RUME I presented on a preliminary report that focused 
on the presence and use of frameworks across discipline-based education research (DBER) 
articles (Rodriguez & Nardo, 2023); this work was recently published as a systematic review in 
Chemistry Education Research and Practice (Rodriguez et al., 2023). As part of this review, we 
noted the potential for frameworks to connect DBER fields, “Therefore, it is more than shared 
disciplinary skills, language, and concepts that connect DBER communities. We are connected 
by theories and frameworks related to concerns such as how students learn and how to promote 
conceptual change.” (Rodriguez et al., 2023). Illustrating the potential bridging connection 
afforded by theory, we noted research articles in the review sample across chemistry (Kelly et 
al., 2021; Parobek et al., 2021; Watts et al., 2021), mathematics (Abu-Ghalyoun, 2021), and 
physics (Barth-Cohen et al., 2021; Goodhew et al., 2021; Robertson et al., 2021) that used fine-
grained constructivism as the theoretical framework. Nevertheless, although frameworks may be 
used across fields, there may be variation in their application. This work focuses on variation in 
theory use within a field (chemistry education research, CER), focusing specifically on analyzing 
my work that utilized the resources framework.  

To this end, this work is guided by the research question: Across n=10 research articles 
involving the application of the resources framework to investigate undergraduate chemistry 
students’ reasoning, what trends emerge related to the ways the resources framework informs: 
(1) the research question(s) and (2) analytic decisions? 
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Resources Framework  
In brief, the resources framework is a constructivist-based theory used to model the nature 

and structure of knowledge, emphasizing the “fine-grained” and context-dependent nature of 
knowledge and describing the mechanism of conceptual change involving the gradual 
restructuring of a network of cognitive units (“resources”) (diSessa & Wagner, 2005; Elby, 
2000). For a theory of learning to be useful for education researchers it must: support prediction, 
possess explanatory power, be applicable to a broad range of phenomena, help organize thinking 
about phenomena, serve as a tool for analysis, and provide a language for communicating about 
learning (Dubinsky, 2001; Schoenfeld, 1998). I have found the resources framework to meet 
these criteria, using the framework to predict and explain patterns in student responses across 
contexts, informing how I think about students’ reasoning, and influencing how I analyze data. 
Nevertheless, to improve teaching and learning we need to further refine the methods and 
theories that inform how we conduct research, employing an analytic agenda that emphasizes 
theory-building and the evaluation of theory.  

Analytic autoethnography 
Generally, ethnography is a field of study that emphasizes interpreting culture and its 

products, with autoethnography highlighting and leveraging the experiences of the researcher in 
this process (Adams et al., 2017). Acknowledging variation in the goals for studies within 
autoethnography, Anderson (2006) highlights a subgenre called analytic autoethnography. Here, 
the modifier analytic is used to draw attention to research aims focused on the analysis of 
empirical data that contributes toward theory development. To this end, the intended output of 
this work is a refined understanding of how to model cognition with a practical concern related 
to the ways it informs project scope and its application in data analysis. I view this as personally 
relevant in my application of theory but also seek to provide support for other researchers, 
particularly new and emerging researchers.  

In the current study, the culture that serves as context for this work is the CER community of 
practice. The boundaries of a community of practice are defined through shared goals and norms, 
but these boundaries can often be fluid and complex (Wenger, 1998). This is especially true 
given the connections made between communities through boundary objects (e.g., journal 
articles) and brokers (e.g., researchers attending conferences), which could result in a 
“constellation” of interconnected communities of practice (p.127).  

Data Collection & Analysis 
For the purposes of this report, I narrowed the scope of the sample to include research 

articles involving the analysis of undergraduate chemistry students’ reasoning where the 
resources framework was explicitly discussed as the theoretical framework (n=10) (Bain et al., 
2018, 2019; Rodriguez et al., 2018; Rodriguez, Bain, Hux, et al., 2019; Rodriguez, Bain, & 
Towns, 2019; Rodriguez, Bain, Towns, et al., 2019; Rodriguez, Hux, et al., 2019; Rodriguez, 
Bain, et al., 2020; Rodriguez et al., 2021; Rodriguez & Towns, 2019). Analysis was guided by 
the research question presented above emphasizing the research question(s) and analytic 
decisions of the articles in the sample. 

With regard to analyzing the research questions in the sample, I applied a framework that 
was developed in the context of ethnography (Spradley, 1980). The framework describes nine 
dimensions an ethnographer should attend to when collecting observational data: space (physical 
location), object (physical or cognitive entities), actor (individuals involved), action (behaviors 
and activities carried out by individuals), time (sequencing in a process), and goal (individuals’ 
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aims). Here, object has been adapted to include not just the physical entities but also cognitive or 
mental entities to afford a focus on students’ knowledge and reasoning, as suggested by 
Melhuish and Czocher (2022); also, act, activity, and event will be collectively described as 
actions for this work because the distinction between these types of observable behaviors is less 
relevant here. As discussed by Melhuish and Czocher (2022), this framework serves as a useful 
tool for discussing qualitative research questions, and in this work, analysis focused on the 
presence of different dimensions in the phrasing of the research questions, as well as the nature 
of the research question phrasing in relation to exploring relationships between dimensions and 
its connection to the resources framework. In terms of the analytic decisions expressed in the 
sample, analysis focused on the ways the framework was operationalized with an emphasis on 
the “size” of the identified resources. Additional analysis involved inductively grouping articles 
based on patterns related to the research questions and grain size. Throughout this process I 
engaged in reflexivity, which contributes to trustworthiness and validity of claims (Vagle, 2009, 
2018). As a member of the CER community of practice, I’m familiar with expectations related to 
theory use in research. I implicitly interact with these norms as a producer (when publishing 
CER articles, presenting at CER conferences, etc.) and consumer (when reading CER articles, 
listening to presentations at CER conferences, etc.) but I also explicitly communicate these 
norms as an evaluator (when reviewing articles for a journal). The specific examples of articles 
discussed in the next section were selected to maximize variation, and I encourage interested 
readers to reference the articles if additional context is needed.  

Preliminary Findings 

Research Questions 
Across the sample, the research questions tended to involve slight variations of the actor-

action-object triad, where the stated goal was to elicit students’ (actor) chemistry knowledge 
(object) using an interview task (action). References were not made to the other dimensions 
(space, time, goal). For example, in Rodriguez et al. (2021), our research question used problem-
solving (action) as way to characterize students’ (actor) understanding related to emergent 
properties and molecular behavior in a system (object), How do students use assumptions 
regarding system ontology to solve enzyme kinetics problems on an exam? According to 
Melhuish and Czocher (2022), research questions that follow this pattern tend to have a singular 
focus and suggest a list as the research outcome. Although there was some variation with the 
research questions, this involved: an implicit reference to the action (the task is unspecified) – 
e.g., How do students reason about rate constants in chemical kinetics? (Bain et al., 2019); and 
multiple objects identified related to an interest in students’ blending of chemistry and 
mathematics knowledge – e.g., In what ways do students use mathematics in combination with 
their knowledge of chemistry and chemical kinetics to interpret concentration versus time 
graphs? (Rodriguez, Bain, Towns, et al., 2019). The latter example moves closer to a relational 
focus that emphasizes connections between dimensions in the research question (Melhuish & 
Czocher, 2022).  

Grain Size 
As discussed by Wittmann (2006), resources can be described as fractal in nature: a cognitive 

unit described as a resource could be divided into a cluster of smaller resources. This is 
consistent with how I’ve observed the resources framework used in my work and others’ 
broadly. Although this provides flexibility related to analytic decisions, this flexibility 
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contributes to challenges with its application and defines the focus of this work. In the current 
work, thematic grouping resulted in the following grain sizes depicted in Figure 1: p-prim, 
distributed element, concept projection, and frame. Apart from frame, these terms are taken 
directly from the class of theoretical models outlined within knowledge-in-pieces (diSessa et al., 
2016), the implications of which are discussed below. 

 
Figure 1. Variation in grain size observed in the articles. 

 
Frames describe the expectations individuals have about a situation, which is important 

because of the ways epistemological frames may mediate the activation and use of knowledge 
(Redish, 2004). Concept projection is a reference to coordination class theory, which defines a 
concept and the mechanism of conceptual change within the knowledge-in-pieces perspective 
(diSessa et al., 2016; diSessa & Sherin, 1998; diSessa & Wagner, 2005). Here, concept (or 
coordination class) is defined as the combination of an inferential net (network of knowledge 
elements) and extractions (features attended to); it is the coordination of the knowledge 
component and perceptual component that allows students to “see” a concept. In practice, a 
coordination class would be a large cognitive structure and individuals use a subset of that 
knowledge when solving a task, a concept projection. Additionally, distributed element is a 
reference to specific knowledge elements within a concept projection. Lastly, p-prims 
(phenomenological primitives) are the smallest functional unit within a fine-grain constructivist 
view, reflecting intuitive knowledge that is self-explanatory and developed based on experiences 
(e.g., dying away is abstracted based on the observation that physical phenomena such as motion 
or sound tend to dissipate over time). In the next sections I will provide examples, focusing on 
distinguishing between distributed element and concept projection.  

In Bain, Rodriguez, and Towns (2019) we analyzed students’ reasoning related to the rate 
constant (k, a parameter relevant when discussing equations related to chemical kinetics). Some 
examples of the resources identified are rate and rate constant as directly proportional and k is 
defined by the Arrhenius equation. What I would like to draw attention to here is that these 
cognitive units are all narrowly focused on the rate constant and are phrased as statements 
(inferential or propositional statements), which provide a certain level of specificity, negating the 
need for a formal code description. This focus and specificity make the resources too small to be 
a larger cognitive structure like a concept projection, but are larger than p-prims, thus, described 
here as distributed elements. 

In Rodriguez and Towns (2019), we analyzed how students reason about competitive, non-
competitive, and uncompetitive enzyme inhibition. In this case, the inductive codes reflect 
cognitive units that are broader and larger than the distributed elements discussed above: 
competitive inhibition, mechanism; non-competitive inhibition, mechanism; uncompetitive 
inhibition, mechanism. Each of these codes has a general description: “Student discusses what 
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physically happens with this inhibitor in a general sense or at the molecular level”. Here, the 
codes are not statements and phrases related to a topic, but rather terms referencing broad 
discussions. Other examples might be codes such as equilibrium, acid-base reactions, chemical 
kinetics, etc., where the code description emphasizes that students “discussed” this topic, as 
opposed to stating the specific details students articulated about the topic. In the study referenced 
here, each of the different inhibition types can be described as a different concept projection.  

Discussion 
Reflecting on the connection between the research questions in the sample and the resources 

framework, only listing resources does not leverage the potential power of fine-grained 
constructivist frameworks in making claims related to the nature and structure of students’ 
knowledge and its dependence on context (i.e., span and alignment) and time (i.e., conceptual 
change) (diSessa et al., 2016). As part of this, for researchers interested in applying the resources 
framework, there is room for incorporating more considerations related to other dimensions and 
relational aims across these dimensions, such as emphasizing how students’ knowledge 
structures change over time (e.g., How do chemistry majors’ knowledge structures related to 
reaction rate change as they move through the undergraduate chemistry curriculum?).  

Regarding resource grain size, my plan for this analysis was to provide theoretical clarity 
related to the resources framework. I initially planned on avoiding making claims related to 
discussing the relationship between the knowledge-in-pieces and resources frameworks, but I 
found the language from knowledge-in-pieces to be helpful for describing the variation within 
the resources framework. According to diSessa (2016), the resources framework builds on 
knowledge-in-pieces providing language to discuss general nodes with varying structure and 
function within a knowledge system, but “resources are not particular kinds of knowledge 
elements” (p.58). Aligned with this, I discussed above that a resource could be different types of 
knowledge elements: a p-prim, distributed element, concept projection, or frame. Given a 
resource can vary in, for clarity, it is important that researchers are very clear in describing the 
scale of the knowledge they are analyzing. This does not necessarily have to involve the use of 
the terms discussed above, but detailed descriptions are important, such as “We are identifying 
resources at the level of evaluating students’ inferential and propositional statements”. As a 
disclaimer, these discrete resource sizes are just a few observable sizes within the data analyzed, 
and although they have a specific rank order, these are not all the possible grain sizes and the 
scale or distance between these levels are not necessarily equal. Moreover, there could also be 
dynamic interplay as multiple scales are considered, such as analyzing frames of individuals and 
groups (Conlin & Hammer, 2016). 

Lastly, as a practical consideration, depending on choices related to the grain size in analysis 
there may be some drawbacks. For example, the resolution provided by coding at the concept 
projection level is too coarse to allow discussions regarding the connections students’ make 
within a concept, with additional analysis needed (e.g., constructing resource graphs from a line-
by-line analysis of an interview since the coded resources are too broad to afford claims about 
the structure of students’ knowledge). On the other hand, the challenge with analysis at the 
distributed element level is that coding individual students’ responses may be too idiosyncratic, 
resulting in concerns related to saturation of themes and workload when looking at large samples 
related to student responses on open-ended surveys and exam questions. Nevertheless, narrative 
coding and smaller samples involving selected episodes and cases (Rodriguez, Stricker, et al., 
2020) aligns more with the approach toward knowledge analysis described by diSessa et al. 
(2016). Balancing the analytic tensions with the scope reflects on area warranting further inquiry. 
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Student Interpretations of Conditional Statements in Probability: The Cases of Byron and Sophie 
 

 Megan Ryals Morgan Sellers 
 University of Virginia Colorado Mesa University  

Students often have to interpret conditional statements in mathematics classes without prior 
training in logic. In a previous study, we investigated how students interpreted variants of the 
conditional statement: If two random variables are independent, their covariance is 0. The 
purpose of the current study is to explore surprising results and apparent inconsistencies in 
student interpretations using clinical interviews after a lecture introducing the conditional 
statement. In this paper we contrast the experiences of two students, Byron and Sophie. 
Preliminary results suggest that Byron relies both on his logic training and his domain 
knowledge to solve problems about independence and covariance. Sophie’s incorrect domain 
knowledge led to her reversing the implication. Once this was resolved, she was not confident in 
assigning truth values to statement variants. We discuss teaching implications that arise from 
issues of both mathematical efficiency and accuracy in presenting this theorem.  

Keywords: Probability, Conditional Statements, Logic, Covariance, Independence 

Undergraduate math courses typically present multiple definitions and theorems in the form 
of conditional statements. We know students often do not interpret these statements in the 
mathematically normative manner, and learning how to interpret conditional statements is 
particularly challenging due to epistemic issues related to set-theoretic components of 
conditional statements (Case, 2015; Dawkins & Cook, 2017; Durst & Kaschner, 2020; Sellers, 
2020). In a previous study (Ryals, et al., 2023), we analyzed Probability students’ written work 
to determine how they interpreted and used the following theorem: “If 𝑋 and 𝑌 are independent 
random variables, then Cov(𝑋, 𝑌)  =  0” (Casella & Berger, 2002, p. 171). We also considered 
whether students’ prior logic training, or lack thereof, would impact their interpretations. 
Approximately 1/3 of the participants incorrectly used covariance being 0 as justification for two 
random variables being independent, and 10% of students failed to use covariance being nonzero 
as justification for variables being dependent. The results did not significantly differ for students 
who had and had not previously received logic training in a prior course.  

In Spring 2023, we began conducting clinical interviews (Clement, 2000) with students in the 
same course in an effort to investigate results from our prior study. Specifically, we address:  

1. How do students view the relationship between covariance and independence? 
2. How does their view of this relationship influence how they use the value of covariance to    
determine and justify whether two variables are independent? 

In this report, we present preliminary findings from interviews with two students, Byron and 
Sophie. We discuss and compare their conceptions of covariance and independence and the 
relationship between the two as well as how and why they used covariance values to determine 
independence of two random variables. 
 

Review of Literature 
For multiple reasons, students often do not interpret conditional statements in conventional 

ways and the same student can interpret logically equivalent statements differently in different 
contexts (Dawkins & Cook, 2017; Durand-Guerrier, 2003). Students often interpret conditional 
statements as biconditionals (Hoyles & Küchemann, 2002; O’Brien et al., 1971; Wason, 1968) 
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which is often intended in common language (Epp, 2003). Moreover, a statement indicating 𝑃 
implies 𝑄, devoid of quantified variables, is an open sentence, which could be considered true 
for one case and false for another (Durand-Guerrier, 2003). Yet, mathematicians typically read 
these statements as generalized conditional statements. This means we interpret our theorem as 
saying “For all pairs of random variables, if 𝑋, 𝑌 are independent, then Cov[𝑋, 𝑌] = 0.” 
However, the implicit “for all” quantifier is not typically stated explicitly, which understandably 
leads to non-normative evaluations for some students (Durst and Kaschner, 2020). 

Efforts have been made to improve teaching students how to interpret conditional statements 
appropriately within the mathematics register (Dawkins & Norton, 2022; Dawkins, et al., 2023). 
Evidence suggests students have an easier time interpreting verbal and mathematical statements 
than abstract or symbolic ones. Consequently, one approach has been to use colloquial 
statements whose inverse, converse, and contrapositive are obviously true or false to students 
through context or familiarity as an introduction to the topic (Case, 2015; Epp, 2003, Stylianides 
et al., 2004). However, training students to generally place a label of “true” or “false” on specific 
variants such as the converse has not proven to transfer to using those variants appropriately in 
novel situations in mathematics (Sellers et al., 2017; Attridge et. al, 2016; Cheng et. al, 1986; 
Inglis & Simpson, 2008). This implies that many students have not fully abstracted logic rules 
with conditional statements across different mathematical domains. Thus, there is a need to study 
how students interpret conditional statements in different mathematical contexts and determine 
how mathematical content of a particular statement may impact students’ logical inference. 
 

Methods 
Data Collection 

This study was conducted in Spring 2023 in a semester-long Applied Probability course 
designed for engineering and computer science majors. The first author taught the lesson 
introducing the theorem to four sections of the course. After presenting the theorem, students 
were asked to individually determine whether each of the three variants listed below was true or 
false in a pre-class quiz. In this paper, we subsequently refer to these statements as the inverse, 
converse, and contrapositive, respectively, though we did not use this terminology with students. 

1. Theorem: If 𝑋 𝑎𝑛𝑑 𝑌 are independent random variables, then 𝐶𝑜𝑣(𝑋, 𝑌)  =  0. 
2. Inverse: If X and Y are not independent, then Cov (X,Y) ≠ 0. 
3. Converse: If Cov (X,Y) = 0, then X and Y are independent. 
4. Contrapositive: If Cov (X,Y) ≠ 0, then X and Y are not independent. 

After the quiz, the instructor clarified the fourth statement was true and the second and third 
statements were false and explained it is possible for two random variables to have a nonlinear 
relationship and have a covariance of 0. The instructor then worked through two examples 
related to the theorem. Each required first determining whether variables were independent and 
then finding the value of covariance. In one example, the variables were independent, so the 
theorem could be invoked to conclude the covariance was 0. In the other, the variables were not 
independent, so the covariance had to be calculated. These examples were chosen to demonstrate 
the theorem’s utility in specific situations and limitations in others. 

Following a brief discussion, students individually solved two similar problems. In each 
problem, they were given a joint probability mass function (Figure 1) and first asked to compute 
covariance and then determine whether X and Y were independent. In the first example, 
covariance was 0 so independence had to be determined using the definition of independence. In 
the second example, the covariance was not 0 so dependence was guaranteed. We will 
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subsequently refer to these examples as the Converse problem and the Contrapositive problem, 
respectively. 

 

 
Figure 1. Probability Distributions used in the Converse and Contrapositive Problems 

 
We invited all students who had either used the converse on the Converse problem or 

neglected to use the contrapositive on the Contrapositive problem to participate in a 30-60 
minute semi-structured interview. Three students agreed to be interviewed one week after 
instruction and prior to any formal assessments on the topic. The first author was the primary 
interviewer and the second author prompted the first with additional questions. We used a 
prepared protocol but allowed for both follow-up questions and probes (Rubin & Rubin, 2005). 
During the interview, students were asked to provide definitions of covariance and independence 
and justify their in-class work. We then presented several colloquial statements and asked the 
students to provide truth values for those statements and their variants to check for consistency 
or inconsistencies in logic across different mathematical domains. 
 
Analytic Framework and Analysis 
     During the interviews and throughout analysis we attempted to construct second-order models 
of students’ thinking about their domain knowledge and logic; “those the observer constructs of 
the subject's knowledge in order to explain their observations or experience of the [student’s 
statements] and activities” (Steffe et al., 1983, p xvi). To achieve this goal, we asked multiple 
follow-up questions during the interview and the authors discussed multiple possible 
interpretations of student claims to come to consensus.  

We developed several categories of codes related to specific interview questions. Our first 
group of codes described the participant’s conceptions of independence and covariance. We paid 
particular attention to whether these were formalized or intuitive notions, whether they were 
normative, and whether linearity was part of the covariance description. We asked them to 
describe any mental images that they may have had in relation to covariance, in particular. Our 
second group of codes addressed their beliefs about the relationship between independence and 
covariance. Finally, a third group of codes attended primarily to responses to questions involving 
everyday statements to describe the participant’s approach to determining truth values of 
conditional statements in various contexts. In the subsequent section, we present results for two 
participants, Byron and Sophie, which includes their conceptions of independence and 
covariance and the relationship between them as well as their level of comfort with logical 
equivalence. We then draw comparisons between the two and discuss implications for practice. 

 
Results 

Byron was invited to participate in the interviews because he did not use the fact that 
covariance was nonzero to conclude variables were dependent on the end-of-class exercise. 

         𝑿 

𝒀 

0 1 2 𝑷𝒀(𝒚) 

0 0.1 0.2 0.2 0.5 
2 0.1 0.25 0.15 0.5 
𝑷𝑿(𝒙) 0.2 0.45 0.35  

         𝑿 
𝒀 

-1 0 1 𝑷𝒀(𝒚) 

-1 0.2 0 0.2 0.4 
0 0 0.2 0 0.2 
1 0.2 0 0.2 0.4 
𝑷𝑿(𝒙) 0.4 0.2 0.4  
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Instead, Byron correctly applied the definition of independence. Byron’s approach was 
particularly interesting since he had identified the contrapositive as true on the pre-class quiz and 
he had previously taken Discrete Math.  

The interview revealed that Byron held normative and robust mental images related to both 
independence and covariance. He provided both the formal definition of independence as well as 
an explanation, saying “I think that means the observed value of one of them will not affect what 
you’ll observe for the other.” Byron stated that covariance was a measure of a linear relationship 
and stated that variables could have a relationship that was not linear. He provided an example, 
saying “…if all of your data fell on a circle, [the two variables] would have a relationship. But I 
think…the covariance would come out to exactly 0 if it was exactly on a circle.” Additionally, 
Byron was clear about the claims and limits of the theorem. He stated that independence 
guarantees a covariance of 0 but a covariance of 0 does not guarantee independence. 

Byron had not made use of the theorem on the end-of-class Contrapositive problem, which 
seems surprising in light of the evidence above. However, when he was asked if there was an 
alternative way he could have justified 𝑋 and 𝑌 being dependent, he immediately said, “Oh yeah, 
I do remember now. If two random variables are independent, their covariance is 0, is equivalent 
to saying if their covariance is not 0, they are not independent. So I guess you can tell from [the 
fact the covariance is not 0] that they’re also not independent.” 

First, we hypothesize that Byron may have been influenced to use the definition of 
independence on the Contrapositive problem, rather than invoking the theorem, by the examples 
worked by the instructor just moments before. In the interview, when asked about these two 
approaches, Byron said they are equally valid, and that invoking the theorem would make more 
sense in the case where a nonzero covariance has already been established. Second, we note that 
Byron introduced the word “equivalent” to explain the relationship between the statement and its 
contrapositive. He made the same argument to justify his choice of truth value for a variant of a 
colloquial statement, this time introducing the word “contrapositive,” which we had not used in 
the interview. With this example, he used logical equivalence of the contrapositive as his primary 
justification for his provided truth value.  

Sophie, who had not previously taken Discrete Math, was invited for an interview because 
she stated that 𝑋 and 𝑌 must be independent because E[𝑋𝑌]  =  E[𝑋]𝐸[𝑌] on the Converse 
problem. We coded this response as Applying the Converse. Consistently, Sophie had classified 
the converse statement as true on the pre-class quiz.  

Sophie demonstrated a conceptual understanding of independence by comparing selection 
with and without replacement. However, Sophie’s concept of covariance was influenced and 
limited by a graphic presented in lecture. When asked what it means to say Cov[𝑋, 𝑌] = 0, she 
replied, “it means that 𝑋 and 𝑌 are not correlated, so the graph would be more like no pattern, a 
bunch of scattered dots everywhere.” A graphical depiction of dependent variables with a 
covariance of 0 had not been presented. Additionally, when asked what it meant for two random 
variables to be independent, she responded, “When the expected value of both of them equals the 
expected value of each of them multiplied.” That is, Sophie believed that two variables are 
independent if and only if 𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌]. This was further clarified when we presented 
Sophie with a situation where Cov[𝑋, 𝑌] = 0 and she concluded X and Y must be independent. 
Sophie was not intentionally applying the converse. Rather, Sophie had believed she was 
checking independence directly using the definition. Accepting Sophie’s definition of 
independence would also mean believing the theorem is a biconditional statement. Yet, Sophie 
was unsure about this claim because of what she remembered from class. 
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Interviewer: What is [covariance] comes out to 0; what will that tell you, if anything? 
Participant: I think what I wanna say is that they’re independent, but (pause) 
Interviewer: How confident would you be on a scale of 1-10? 
Participant: Probably like 5. I don’t know. I remember you saying something in class, like 

there’s a caveat. 
At this point Sophie believed a covariance of 0 guarantees independence because of her 
definition of independence, but she did not believe independence guarantees a covariance of 0 
because she remembered from lecture there was a “caveat.” Sophie was then prompted to review 
the definition of independence as well as the theorem written in her notes. She quickly revised 
her claim about the relationship between independence and covariance. 

“Now I’m thinking if they’re independent based on that equation, then covariance should 
equal 0, but then if they’re not independent, covariance can still equal 0. But they’re not 
related inextricably. It’s like a weird relationship.” 

At this point Sophie believed independence guaranteed a covariance of 0 but not the reverse. 
However, when prompted, she could not produce an example of two dependent variables with a 
covariance of 0. Moreover, she was still hesitant to provide truth values of the statement variants. 
When Sophie was asked about her pre-class quiz response of false to the contrapositive, she first 
claimed that response was incorrect, but then hesitated and ultimately did not provide a definitive 
answer. She responded similarly to a prompt about the contrapositive of one of the everyday 
statements later in the interview and relied primarily on context rather than logical equivalence. 
 

Discussion 
Byron has two distinct advantages over Sophie. First, since his concept of covariance 

involves linearity, he can conceive of dependent pairs of random variables with a covariance of 
0. He can reference his domain knowledge to determine truth values of variants of the theorem. 
Secondly, he can avoid referencing his domain knowledge when expedient because he is assured 
of which statements are logically equivalent. Our analysis of Byron suggests that Probability 
students may rely on their logic training to quickly assess the truth value of variants of 
conditional statements, regardless of whether they are focused on the mathematical content in the 
predicate of a conditional statement. On the other hand, a student who avoids using the 
contrapositive could simply be relying on their knowledge of the mathematics of the statement. 

Sophie demonstrates how gaps in domain knowledge, and specifically lack of 
counterexamples, can prevent students from determining which conditions imply others and lead 
them to rely on memorization. The power of examples in justification has been noted already in 
the literature (Zazkis, et al., 2008). We strongly suspect that instructors including a graphical 
depiction of dependent variables with a covariance of 0 when introducing covariance would have 
established for Sophie that the theorem’s converse was false. Even so, without a strong notion of 
logical equivalence, truth values of the inverse and contrapositive would still not be obvious. We 
do not know at this point whether prior logic training gives students an advantage in Probability 
courses, especially in light of our previous study (Ryals, et al., 2023). However, we certainly 
value the flexibility Byron had in using both his domain knowledge and logical inference to 
answer questions confidently. We need to conduct further interviews or larger-scale surveys with 
more students who have taken Discrete Math and those who have not to make appropriate 
conclusions regarding logic training. Also, absent from our participants thus far were students 
who stated the converse was false on the pre-class quiz but then used it during the exercises. We 
plan to repeat the in-class instruction and invite more interview participants.  
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Promoting College Algebra Instructors' Adoption of Evidence-Based Teaching Practices  

Jessica Gehrtz   Priya V. Prasad  Emily Jones 
UT San Antonio   UT San Antonio   UT Arlington 

 Stephen Lee       Khanh Ho     G. DeLong   Jose Palacios 
UT San Antonio  UT San Antonio  UT San Antonio UT San Antonio 

While there is evidence that college students benefit from classroom activities that engage them, 
a shift in instruction from the lecture style of teaching to methods where students are actively 
involved in their learning is difficult to generate. This study focuses on providing structure and 
support for college algebra instructors to implement evidence-based instructional practices. We 
interviewed participants each semester they were involved with this project to gain insight into 
their perspectives on their teaching practices. We also video-recorded three lessons each 
semester when participants were implementing co-constructed in-class materials. Initial results 
showed how collaboration empowered instructors to implement evidence-based instructional 
practices in their class. Additionally, even though instructors collaborated to co-create in-class 
materials, results showed variation in their implementation styles as they moved towards more 
student-centered practices. 
 
Key words: Professional Development, Active Learning, Instructional Change 
 

College students’ learning and conceptual understandings of mathematics benefit from 
instruction that actively engages students in their learning (e.g., Kogan & Laursen, 2014). 
Although there have been numerous calls to increase student engagement in college mathematics 
classrooms (CBMS, 2016; PCAST, 2012), lecture (where instructors present information and 
students receive it) remains the most prominent form of instruction (Stains et al., 2018). Notably, 
instructional change is difficult to catalyze, especially amongst college-level instructors 
(Fairweather, 2008; Henderson & Dancy, 2007). Shadle et al. (2017) identified several barriers 
to implementing practices that actively engage students and drivers that foster instructional 
change and support college instructors in adopting evidence based instructional practices 
(EBIPs). The project described in this report aims to better understand how a particular form of a 
professional learning community (PLC) can encourage the adoption of EBIPs by college 
mathematics instructors. We address the research question: In what ways does the structure and 
goals of the PLC support college algebra instructors in making changes in their teaching?  

This study is part of a larger ongoing funded project of collaborative instructional 
improvement at the university level, aiming to support the implementation of EBIPs that actively 
engage students with the course content (NSF IUSE: HSI #2116187). The project supports the 
development of a PLC of instructors of all sections of a university-level college algebra course at 
a single large, southwestern, Hispanic-serving institution. Before the start of the project, the 
mathematics department had recently implemented a strong effort of course coordination, 
including a leadership structure with a coordinator for every multi-section course, weekly or bi-
weekly meetings of all the instructors of the course, and aligned assessment procedures, 
instruments, and structures. Additionally, the college algebra team chose to implement 
innovative assessment techniques in the semester before this project began.  

 
Theoretical Framework 
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The theoretical framing that guided the design of this project is the Ethic of Practicality 
(Doyle & Ponder, 1977), which describes the factors teachers consider when deciding whether 
innovative curricula is practical or realistic for implementation in the context of an actual 
classroom. Doyle and Ponder (1977) argue that in order for curriculum to be considered 
practical, it must: (a) Be compatible with the instructor’s classroom, setting, and instructional 
goals (congruence); (b) Have potential benefits (e.g., student outcomes, student attitudes) that 
outweigh the effort and other costs of implementation (cost); and (c) Consist of clearly 
articulated procedures for ease of implementation in the instructor’s classroom (instrumentality). 

The Continuous Improvement (CI; Berk & Hiebert, 2009) framework began as a roadmap for 
instructional improvement within courses for preservice teachers, but its alignment with the 
backwards design principles for lessons are broadly applicable (Wiggins & McTighe, 2005). 
These principles advocate for planning lessons by first defining the student learning outcomes 
and the aligned assessment and then designing the in-class task. As part of this project, 
instructors worked as a group to implement CI cycles (Berk & Hiebert, 2009) to develop and 
facilitate lessons on particular course topics. In this model, each semester participants isolated 
specific lessons and implemented the following cycle: 1) Design a task that targets a particular 
student misconception or deepens understanding of a particular mathematical idea based on 
existing research on student learning about that concept. 2) Develop hypotheses about 
anticipated student responses. 3) Collect data in the form of student work and classroom 
recordings and analyze the data for evidence of the desired student learning outcomes. 4) Record 
this information and use it to revise the task for use in subsequent iterations of the course.  

Instructors chose to create and use Desmos Classroom activities as a way to incorporate 
EBIPs in their teaching. Although instructors differed in how they used these activities (with 
some soliciting and leveraging student thinking more than others), they mostly gave students 
time to work individually or in small groups before discussing the activities in class. The CI 
model was a natural fit for a project guided by the Practicality Ethic. The model empowers 
instructors to make choices about curricular revisions and drive decisions about implementation 
and the CI framework leverages the knowledge, experience and priorities of instructors to guide 
these changes; thus, it maximizes congruence. Additionally, in order to maximize instrumentality 
and minimize cost, we used project funds to secure course releases for college algebra instructors 
so that they would have time and space to implement the CI cycles and participate in the PLC.  
 

Methods 
This report focuses on two participants who were full-time fixed-term faculty participating in 

the PLC instructional improvement project: Alex and Ivy. While Alex and Ivy were involved in 
the project, the course coordinators, Nicholas and Shay, also participated in the project. In the 
final semester of Alex’s and Ivy’s participation, two more instructors joined. Data were collected 
over the first three full academic semesters that these instructors were involved, which were also 
within the first two years they taught the course at this institution. Instructors were interviewed 
each semester. Interviews were semi-structured and included questions that prompted instructors 
to describe their teaching practices and participation in the project activities. We also collected 
class video data. In the first semester one lesson was filmed, and this recording served as a 
snapshot for what instruction looked like before implementing lessons co-created as part of the 
project. During the second semester, we filmed three lessons when the instructors taught lessons 
that were co-created by all the members of the instructional / PLC team.  

Interviews were analyzed using thematic analysis (Braun & Clarke, 2006). We focused on 
coding segments that shed light on instructional practices in the context of the collaboration and 
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coordination within the project. Multiple people from the research team reviewed the interview 
transcripts and identified representative quotes. Video from the filmed lessons were coded by at 
least two people from the research team using the College Observation Protocol for 
Undergraduate STEM (COPUS; Smith et al., 2013). Researchers coded the recordings 
individually and then met to discuss coding decisions and to reach consensus. After the filmed 
lessons were coded, we used the collapsed codes of Instructor Presenting, Instructor Guiding, 
Student Receiving, Student Working, and Students Talking in order to create radar plots of the 
percentage of class time where students and the instructor were engaged in these activities 
(Reisner et al., 2020). Collapsed codes grouped together codes that captured similar behaviors. 
For a detailed description of the codes grouped in these collapsed codes see Smith et al. (2014).   

 
Results 

It was clear from the interviews with instructors that the collaboration and support in the 
context of this project enabled them to try new things in their classes. For example, Alex 
described how watching other instructors implement different lessons gave him ideas of what to 
try in his class. He also highlighted how he was motivated to continue trying new things as the 
semester progressed instead of primarily lecturing. He said: 

Because of the grant I'm refreshing and recycling through different strategies much more 
than I think I would. I think normally I would just settle into what's easy, which might 
end up looking like semi-lecture style … But this time I randomly was pushing my 
students to do more group work. And I wouldn't have been doing that if it wasn't for the 
grant and seeing all the [other instructors use] group work. 

This quote helps illustrate that there was a sense of accountability to keep implementing EBIPs 
amongst the instructors, as well as support. Alex emphasized, “I don’t have to worry if what I’m 
doing in the classroom is good enough because it’s what everyone else is doing and we’re all 
trying it together.”  

Ivy also commented on how she tried new things because of the collaboration and 
coordination of the course. She said, “I've always wanted to do the flipped classroom, and I'm 
getting the benefit of seeing how it works right now.” In another part of the interview, Ivy said 
that “peer pressure” enabled her to try more EBIPs in her classes. She went on to emphasize how 
having access to the co-created resources was important in her decision to implement more 
student-centered activities. She said: 

I have … more freedom to - I can explore this stuff. So the fact that Shay and Alex are 
doing all these activities, and they're amazing, so I've got all these resources. My 
experience was lecture, and now I get to try the things I've always wanted to try. So I'm 
loving it. I love the activities, and I'll be honest, at the start of the semester, I was like, 
‘Oh, we're going to do this now?’ because I didn't know how powerful it was. … And 
yeah, it's just cool to see everything that we can do with [Desmos], and it really helps the 
students understand. 
In addition to instructors discussing how participating in this project enabled them to 

implement more EBIPs in their teaching, the analysis of what happened in class (as measured 
by the COPUS; Smith et al., 2013) indicated that there was some instructional change that 
occurred. Before being involved with this project, Ivy spent most of class time lecturing while 
students listened and took notes (Instructor Presenting and Student Receiving), see Fall 2021 
semester in Figure 1. As Ivy participated in co-creating Desmos activities to use during class 
time, her instruction shifted to include more time where students were working and she was 
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guiding them, see Spring 2022 and Fall 2022 radar plots for the Algebraic Properties, 
Fractions, and Factoring lessons in Figure 1. In the following quote Ivy describes how she 
used the Desmos activities in her class. 

I think Nicholas and I take a more laid-back approach to the Desmos and let the students 
fight through it and ask us questions. Whereas the other four instructors this semester 
seem to do the pacing a whole lot more. And especially Shay, Shay is … really talking 
through every slide … Whereas Nicholas and I, instead of pacing them, … we let them 
pace themselves. … we take the more passive approach and answer individual questions. 
Alex also demonstrated a shift in how he spent class time before and during the project. 

Before the project, he tended to spend a large percentage of class time presenting material 
(Instructor Presenting), see Fall 2021 in Figure 2, but then as he taught the lessons with the co-
created instructional materials, he spent less time presenting. In the interview, Alex shared how 
he started to create more space for students to work through problems themselves or share their 
answers with the class. He said: 

From the interactive style that we would do with … the Desmos [activities], and then 
talking about it, I think that's how I was able to tie in with my lectures. Like even just 
having those long pauses to let the students answer I think I got better at doing all of that 
with the Desmos. And that helps with breaking it up. ... Even though it's like a lecture, I 
try to have some moments where we just really stop and think about a question. 

 

 
Figure 1. Radar plots by semester / lesson of the percentage of class time spent with Students Receiving, 

Talking, Working and the Instructor Presenting or Guiding for Ivy’s recorded classes. 
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Figure 2. Radar plots by semester / lesson of the percentage of class time spent with Students Receiving, 
Talking, Working and the Instructor Presenting or Guiding for Alex’s recorded classes. 

 
Although the instructors co-created the Desmos materials as part of this project, it is 

important to notice that their implementation of the lessons varied (see Figures 1 and 2). That is, 
the analysis video data showed that the instructors (and their students) spent different amounts of 
class time with the instructor presenting or guiding and the students receiving, talking, or 
working. Each instructor had their own way of incorporating the materials into their instruction, 
retaining independence and control over what happened in their section(s). Ivy’s quote above also 
points to these different approaches to implementing the co-created lessons, with her and 
Nicholas taking a more “passive approach” and Shay providing pacing and leading class 
discussions on nearly every slide of the Desmos activity.  
 

Discussion 
Instructors discussed how the project impacted the activities they did in class and their 

pedagogical decisions. The analysis of class video shows some differences in instructor and 
student activities over the course of three semesters. We hypothesize that the course coordination 
system in place allowed for “coordinated independence” (Rasmussen & Ellis, 2015), where 
instructors were encouraged to implement more evidence-based and student-centered activities 
while also retaining independence with their pedagogical and instructional decisions. In an 
interview that was conducted in the semester after her involvement with the project, Ivy said: 

For me the flipped classroom, it didn't work for my teaching style. … That was one of the 
reasons actually, that I asked to try to teach something else … so the flipped classroom was 
just... It just didn't work for me because I preferred to be more 'do it in the moment.’ 

This quote highlights that while participating in the project and teaching in this coordinated 
course, Ivy still used this style of teaching even though the “flipped classroom” did not align with 
her teaching preferences. The coordination and collaboration are also what empowered Alex to 
try different practices throughout the semester. Often, instructors may be isolated when 
attempting to adopt EBIPs, but the experiences of Alex and Ivy show how institutionally 
supported collaboration structures (such as course coordination) can be a powerful force in 
changing instruction.  
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Proof and proving are critical to the work of mathematicians, and in turn research on the 
teaching and learning of proof has historically been one of the larger strands of research 
presented at annual RUME conferences. In this project we systematically reviewed the RUME 
conference papers on mathematical proof from 2018-2023 to provide a picture of (a) the most 
prevalent topics of proof research in RUME, and (b) the data sources drawn upon in proof 
research methodologies in RUME.  This review revealed the most frequent primary topics of 
RUME proof research to be proof instruction, assessment and feedback, and proof conceptions. 
We also noticed an overwhelming proportion of RUME proof research papers rely on qualitative 
data sources. Our continued work on this project will allow us to examine the impact research 
RUME has on the larger body of knowledge of undergraduate proof research. 

Keywords: proof, research, literature review, methodology 
 
Within the past six years, two major reviews of research on the teaching and learning of 

proof have been published (i.e., Stylianides et al., 2017; Stylianides et al., 2023), both casting a 
wide net and synthesizing research across K-16 mathematical contexts. In the first review, a 
contributed chapter in the Compendium for Research in Mathematics Education, Stylianides et 
al. (2017) examined the field of research on the teaching and learning of proof across K-16 
mathematics education and classified the proof literature into three research perspectives: proof 
as problem solving, proof as convincing, and proof as a socially-embedded activity. In the 
second review, in a recent issue of ZDM-Mathematics Education, Stylianides et al. (2023) again 
examined the field of research on teaching and learning of proof across K-16 mathematics 
education, but this time classified the research according to the various didactic relationships 
emphasized between student, teacher, and mathematical content. We aim to add to the literature 
review work of these authors by (a) focusing exclusively on recent research accepted and 
published in the RUME proceedings, (b) taking a more emergent approach to identifying topics 
studied by proof researchers, and (c) attending to the methods utilized by proof researchers.  

The reasons for isolating our literature search to RUME conference proceedings are 
threefold. First, by focusing on the RUME conference proceedings, we can better understand 
how this community of scholars is approaching proof research and empower the community to 
recognize its strengths and areas for growth. Second, we argue the RUME conference 
proceedings can indicate the most up-to-date trends in research, as the conference accepts 
contributed, preliminary, and theoretical proposals, providing a space for researchers to share 
early ideas and research-in-progress. Third, confining our literature search to RUME conference 
papers will enable us to later observe patterns in how proof research presented at the RUME 
conference evolves (or fails to evolve) into eventual journal publication, providing greater 
insight into the impact of the community’s work.  
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Our goals in this review are to, in RUME, (1) identify trends in topics of proof research and 
(2) identify trends in methods of proof research. Specifically, our research questions are:  

1. When RUME researchers study proof, what topics are they investigating? (In other 
words, what are they studying as it relates to proof?) 

2. When RUME researchers study proof, what data sources are they drawing upon? (In 
other words, through what mechanism(s) are they telling the story of their research?) 

Theoretical Framing: Advocating for Variability of Topics and Methods 
In this research, we come from a pragmatic perspective, which assumes “knowledge guides 

method while method also guides knowledge” (Paul, 2005, p. 46). In this way, we seek to 
understand both the topics proof researchers are attending to in their research and the methods 
they are using to do so. We believe that variability in both the topics of investigation and 
methods of investigation can lead to a field of research that is more robust and has greater impact 
on practice. We draw from Stoecker and Avila (2021), who describe the benefits of addressing 
complexity of topics through variability of methods: 

From [a mixed-methods research] perspective, quantitative and qualitative methods are 
complementary, each compensating for the other’s weaknesses in studying complexity. 
[…] Greene (2007) and Clark and Ivankova (2016) believe that different methods can 
produce different kinds of information, such that one method can initiate research 
questions for another method, or expand a research project and lead to broader conceptual 
development [… and] even advocate that mixed methods research can promote social 
justice. (Stoecker & Avila, 2021, pp. 627-628) 
In particular, we recognize different data sources have a different ability to tell a story. If we, 

as RUME researchers, have a preference toward certain data sources we use to make 
conclusions, we may be getting a limited perspective on a given proof topic. For example, 
consider video data from a classroom setting versus in a task-based interview setting. The 
classroom video data can help us better understand the proof learning contexts we are most 
interested in influencing, while the interview data provides a potentially cleaner and more 
focused picture of proof topics. Similarly, survey data has a potentially wide (but not deep) reach 
while interview data offers a potentially deep (but not wide) reach. Variety of methods is critical 
to the impact, robustness, and balanced perspective of a field of study (Stoecker & Avila, 2021).  

Moreover, exploring the topics of study within a field (i.e., proof research), and in this case 
within a professional community (i.e., RUME), will allow us to identify areas of proof research 
that are over- or under-represented. Given the recent reviews of research on proof and proving 
we summarized above, we believe it will benefit the RUME community to compare the results of 
this literature review to those of other reviews. Previous proof reviews (Stylianides et al., 2017; 
Stylianides et al., 2023) were focused on proving literature related to teaching and learning in K-
16 broadly, or on the teaching proof in undergraduate settings (Melhuish et al., 2022) and thus 
future research could benefit from comparing the RUME-specific topics of study from this 
review to the findings from previous broader reviews. 

Methods 
In this study examined proof research published in the RUME conference proceedings during 

2018-2023. After collecting all contributed, preliminary, and theoretical reports from these years, 
we identified reports related to proof by a word search for “proof” or “proving” in both the paper 
titles and abstracts. The four authors sorted these reports into three categories: Proof Inquiries, 
Proof Settings, and Unrelated. Proof Inquiries include research about the teaching, learning, or 
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professional practices of proof or research regarding proof-related concepts/topics conducted in a 
proof-based course context. Proof Settings refers to research that occurs in a proof course but 
was not investigating topics specific to proof. Finally, reports classified as Unrelated are those 
reports with the words “proof” or “proving” in the text of the title or abstract, yet these words 
were not used in the sense of mathematical proof. All reports were sorted by at least two authors 
who met to reach consensus on any disagreements. We excluded the 2021 RUME Reports due to 
the difference in that year’s call for research to be conducted primarily by early career scholars. 
Moreover, our analysis of the 2023 proceedings is ongoing. We describe the methodological 
approach used to answer each research question below. 

RQ1 Methods: Topics in RUME Proof Research  
To identify the topics of RUME Proof research, we took an emergent approach to analysis. 

First, all four authors independently described the study focus of each report in their own words. 
We collapsed our individual descriptions into a list of topic codes through a card sort activity. 
We then each independently coded reports using these topic codes by assigning weights to the 
most relevant topics (3: Most Relevant Topic; 2: Very Relevant Topic; 1: Relevant Topic). 
Although each researcher was required to assign a most relevant (3) code to each study, topics 
weighted with a (2) or (1) were optional. Each proceedings year was coded by two authors, and 
although we did not seek to reach exact agreement, we discussed our codes in pairs and sought to 
understand each other’s rankings and potentially altered our codes following further discussion.  

We analyzed our topic codes by first summing the weighted topic codes of both coders on 
each article, so the topic code for each report ranged from 0 to 6. Our analysis proceeded in two 
ways: (1) we considered the topic codes with maximum sum value as the “primary topic” for 
each report, and (2) we observed trends in overall topic prevalence, regardless of weight, by 
considering the frequency of topics by code sum greater than or equal to one.    

RQ2 Methods: Data Sources in RUME Proof Research  
We first developed a list of data source codes by consulting textbooks and publications 

regarding educational research methods (e.g., Creswell, 2013; Ottinger, 2019; Merriam & 
Tisdell, 2016). Although our research team originally set out to classify research reports 
according to a set list of categories, after many efforts to precisely define our data sources, we 
determined this goal was much more complicated than expected. Upon further reading, we 
learned we are not the first mathematics education researchers who have encountered such 
difficulties. Schoenfeld (2010) described his efforts to create a taxonomy of research methods,  

My original intention […] was to provide a selective overview of some relevant 
categories of research methods, and to raise some issues about their use. This is by no 
means a straightforward task. (p. 495). 
After reaching a conclusion that, like Schoenfeld (2010), we could not create a list of well-

defined, mutually exclusive sources of data, we decided to proceed with our list of codes, 
treating each code as independent despite potential overlap. The categories for analysis were 
theoretical reports, literature reviews, qualitative data sources in the form of interviews, 
observations, artifacts, and surveys, and quantitative data sources in the form of surveys and 
assessments. The four researchers met in teams of two to discuss and resolve any disagreements. 

Preliminary Findings 
Across the RUME conference proceedings in the last five years (2018-2023), there have been 

736 preliminary, contributed, and theoretical reports. Our search for reports regarding proof 
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yielded 88 total reports: 18 reports from 2018, 15 reports from 2019, 20 reports from 2020, 18 
reports from 2022, and 18 reports from 2023. Broadly, proof papers have composed about 12.3% 
of preliminary, contributed, and theoretical reports published in the RUME proceedings in the 
last five years (excluding 2021). We report preliminary findings from the 70 proof-focused 
reports from 2018-2022, as analysis of the 2023 proceedings is ongoing. 

RQ1 Findings: Topics in RUME Proof Research 
Across the RUME proceedings for which our research team has completed analysis, the most 

frequent primary topic in the RUME proof reports was proof instruction and feedback (12/70, 
17.1%), followed closely by proof conceptions (views/beliefs about proof; 11/70, 15.7%). In 
contrast, the topic least prevalent as a primary focus was the transition to proof (2/70, 2.9%). 
Analysis of the primary topics of each report also revealed the, unsurprising, emergence of 
investigations of proof and online learning and technology in 2022, likely due to the transition to 
online instruction of many university courses during the COVID-19 pandemic. Figure 1 
illustrates the prevalence of the primary topics of RUME proof research across 2018-2022.  

 
Figure 1: Primary Topics of RUME Conference Proof Research 2018-2022 

By viewing the data, instead, with respect to the topics labeled any level of relevancy for 
each report rather than only the primary topic, we also observe trends in potential secondary 
topics and/or contexts of the RUME proof research. For example, although the transition to proof 
was least frequently the primary topic of investigation for the proof reports 2018-2022, it was the 
topic most frequently marked as relevant to the study in some capacity (i.e., at least one of the 
coders marked Transition to Proof as a 3, 2, or 1). Meanwhile, the investigation of textbooks 
appeared less frequently as a topic across all codes, yet when it was labeled as relevant this was 
often the primary topic for a report, so we can deduce textbooks are rarely a secondary or tertiary 
topic focus for proof research in RUME.  

 
Figure 2: All Topics Marked Relevant (Any Weight) in RUME Proof Research 2018-2022 
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RQ2 Findings: Data Sources in RUME Proof Research  
Because we encountered difficulties developing precise code definitions for data sources, we 

took suggestions from Schoenfeld (2010) in conjunction with methodological precedence from 
DiMartino and colleagues (2022) and classified RUME reports on proof as having drawn upon 
qualitative data, quantitative data, or both. This simple classification of reports revealed a drastic 
disparity between qualitative and quantitative data in RUME proof research. Two relevant 
theoretical reports did not employ any empirical data, so leaving 68 reports to consider data 
sources. Of these reports, 67 (98.5%) used some source of qualitative data, whereas only 7 
(10.3%) used some form of quantitative data. Six reports used both qualitative and quantitative 
data, and therefore there was only one report which drew upon quantitative data alone. A final 
notable finding is the prevalence of interview research. Thirty-four (50%) of the proof reports 
using empirical data included interview data.  

Discussion and Conclusion 
After analyzing the 736 preliminary, contributed, and theoretical reports published in RUME 

conference proceedings in 2018-2023, we identified some of the most common topics of and 
data sources used in proof research within the RUME community. These preliminary findings 
indicate there is a strong presence of research regarding proof instruction, assessment, and 
feedback as well as proof conceptions, but there is much less research regarding collaborative 
proving, online learning and technology, and logic and reasoning. Much of the proof research 
(n=30, 42.8%) concerned the transition to proof, yet only two of these reports (2.8%) had the 
transition to proof as its primary topic. This finding indicates that there are many researchers 
conducting research within transition-to-proof courses but are not as frequently foregrounding 
students’ transition to proof-based mathematics as their research focus. 

With respect to methodologies and data used in RUME proof research, it is clear an 
overwhelming majority of reports used some form of qualitative data, and only one report used 
purely quantitative data. We speculate this absence of quantitative data may be due to the lack of 
reliable measurement tools relevant to the research of mathematical proof. Although we have not 
yet explored the reports in each topic in depth, we are interested to discover if RUME research 
regarding proof instruction, assessment, and feedback might be working toward developing 
measures which would allow for the collection of quantitative data.  

In conclusion, we see several areas in which the RUME proof community could grow to 
assure there is a diverse presentation of topics and methodologies used to investigate proof at our 
conferences. In particular, there is room for more research on the transition to proof as a moment 
of mathematical development, and research on collaborative proving and proof learning and 
instruction through online mediums and technology. We also recognize the need for more 
quantitative data in order to complement the depth of qualitative data with widespread, 
generalizable claims. In moving this work forward, we intend to complete analysis on the 2023 
proceedings, and then shift our focus to research journal publications on proof at the 
undergraduate level. This shift to journal publications will allow us to compare the distribution 
of research topics at RUME to the larger body of work in undergraduate proof research as well 
as track how research presented at RUME conferences evolves (or fails to evolve) into eventual 
journal publication. We pose the following questions for discussion with our audience:  

1. What strategies for classifying proof research by methodology could best inform the 
field? 

2. What research journals does our audience either seek publication in for proof research or 
look to for research on proving at the undergraduate level? 
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Supporting Instructors in Implementing Team-Based Inquiry Learning 
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Team-Based Inquiry Learning (TBIL) is a novel active learning pedagogy designed to facilitate 
the use of inquiry-based learning in lower division courses. This preliminary report examines 
supports provided by the TBIL project to instructors, as well as the fidelity of implementation of 
TBIL by participants of the project. Initial findings suggest that classroom-ready materials and 
ongoing support, both synchronous and asynchronous, were most helpful to faculty in their TBIL 
implementations. 

Keywords: inquiry-based learning, team-based learning, professional development 

Introduction 
Inquiry-Based Learning (IBL) is a well-established collection of pedagogies with many 

documented benefits for students (Laursen et al., 2011; Laursen & Rasmussen, 2019). Despite its 
benefits, IBL is more likely to be implemented in upper level courses, smaller courses, and 
courses for mathematics majors (Ernst et al., 2017). Team-Based Inquiry Learning (TBIL) is a 
novel active learning pedagogy implementing Team-Based Learning in an effort to facilitate the 
use of IBL in lower division courses (Lewis et al., 2021). TBIL was initially studied by the 
authors in the context of a linear algebra course at a single institution, where it was shown to 
improve students’ content mastery, grades, and procedural flexibility (Lewis & Estis, 2020). 

This paper reports preliminary findings from ongoing work to study the effectiveness of 
TBIL across varied instructional contexts. The authors conducted faculty development 
workshops (described below) to train interested instructors, who then implemented TBIL in their 
Calculus I, Calculus II, or Linear Algebra course. These instructors were invited to participate in 
the present study aimed at addressing the following research questions. 

RQ1: (A) Which of the supports provided to faculty led to a successful implementation of 
TBIL in various instructional contexts? (B) Which additional supports would aid faculty in 
their implementation of TBIL in various instructional contexts?  
RQ2: How faithfully do faculty implement TBIL after participating in the training 
workshops? 

Team-Based Inquiry Learning 
Team-Based Learning (TBL) is a highly structured active learning pedagogy that focuses on 

application of course content through collaborative problem-solving. Each module, or unit of 
instruction, consists of three phases: Preparation, Readiness Assurance, and Application of 
Course Concepts (Michaelsen & Sweet, 2008). TBL balances individual preparation and 
responsibility with the benefits gained from working together as a team to solve problems. 
Students receive frequent and timely feedback, and assignments are designed to promote team 
development, as well as learning. This is typically operationalized through the usage of four 
practical components: permanent teams; a readiness assurance process; so-called ‘4-S’ 
application activities (in which students work on the Same problem, which is to be a Significant 
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problem, and make a Specific choice that is Simultaneously reported); and peer evaluations 
(Michaelsen et al., 2004). 

Team-Based Inquiry Learning (TBIL) utilizes the structure, flow, and principles of TBL to 
implement IBL in lower division mathematics courses. The 4-S application activities are 
designed to allow students to engage deeply with coherent and meaningful mathematical tasks, 
while the simultaneous reporting structure helps the instructor to inquire into students’ thinking. 
The readiness assurance process is designed to remind students of prerequisite knowledge 
needed to fully engage with the challenging 4-S inquiry tasks by reducing extraneous cognitive 
load. A further explanation of how TBIL fulfills the four pillars of IBL is found in (Lewis et al., 
2021). 

The TBIL project, led by the authors, began in 2021 with goals to (1) Determine the extent to 
which TBIL is effective across differing instructional contexts; (2) Create and publish a library 
of accessible, classroom-ready, open-source TBIL materials for lower division courses; and (3) 
Train and support faculty as they implement TBIL at a diverse group of institutions and 
instructional contexts. 

Supporting TBIL Instructors 
The TBIL project provided a number of supports to instructors, beginning with an intensive 

faculty development workshop. Two cohorts of 13 instructors each participated in these 
workshops in the summers of 2021 and 2022, respectively. The first workshop was held in a 
hybrid format to maximize participation (5 faculty participated in person, with 8 connecting 
remotely), while the second workshop was entirely in person. The first workshop was five days 
in duration, while the second was three days; this was done to allow time for the first cohort to 
contribute to development of the curricular materials (described below). Both trainings included 
sessions on the fundamentals of team-based learning, integrating IBL into team-based learning, 
and mock teaching activities. 

Instructors were also provided with a set of curricular materials prior to implementing TBIL. 
The linear algebra materials were initially written by the authors, and then revised by participants 
in the first cohort; while the single variable calculus materials (both Calculus I and Calculus II) 
were developed by participants in the first cohort, building on existing open-source calculus 
active learning materials such as Active Calculus (Boelkins et al., 2018). These materials 
included a full set of classroom-ready, student-facing activities, in addition to other support 
materials such as banks of exercises for practice and assessment, readiness assurance resources 
and quizzes, and videos. 

In addition to initial training, previous work on adoption of IBL has shown that ongoing 
support during implementation is crucial (Hayward et al., 2016). Thus, the project team provided 
instructors with Online Working Groups (Fortune & Keene, 2021; Wawro et al., 2023), which 
were synchronous meetings of the instructors and a project team leader to have informal 
conversations about challenges and success in their TBIL implementations. Additionally, the 
project team created and maintained a Slack community devoted to TBIL. This ongoing resource 
serves to provide instructors with asynchronous support, again both from peers and from the 
project leaders. 
 

Methods 
We employed a survey methodology with the 26 instructors who completed the provided 

TBIL training. These instructors were located at 23 different institutions, 17 classified as 
predominantly white institutions and six classified as minority-serving institutions. Of the 23 
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institutions, 21 were four-year colleges and two were two-year colleges. To answer the first 
research question, this paper reports on a single survey administered at mid- and end-of-semester 
for each semester in which participants implemented TBIL. This survey contained three open-
ended questions about instructor supports (“Of all the provided support, which has been most 
useful and why?”, “Are there additional supports that have aided in your implementation of 
TBIL?”, and “What additional supports would aid you in your implementation of TBIL?”), as 
well as four Likert-scale questions asking the frequency at which the instructor implemented the 
four practical components of TBIL (Permanent Teams, Readiness Assurance Process, 4-S 
Application Activities, and Peer Evaluations). Twenty-five of the 26 participants completed the 
faculty support survey at least once, with a total of 54 responses across all participants and 
semesters of data collection--Fall 2021 through Spring 2023.The three open-ended questions 
about supports were coded by the first author using open coding to identify the kind(s) of support 
described in each response.  

In addition to the surveys, the 26 instructors were also invited to submit a syllabus from their 
TBIL course. 12 responses were received, which were coded by the first author for the presence 
or absence of the same four practical components of TBIL (Permanent Teams, Readiness 
Assurance Process, 4-S Application Activities, and Peer Evaluations). 

Results 
When determining which supports faculty identified as either leading to a successful 

implementation of TBIL, or which additional supports would be helpful in implementing TBIL, 
five codes emerged, with their frequencies presented in Figure 1. The most frequently mentioned 
support was ‘Materials’ in reference to the curricular materials provided. In discussing materials 
as a helpful support, one participant said, “Ready-made materials for the obvious reasons: I've 
really been able to focus my time on my students and facilitation, rather than higher level course 
design work.” In contrast, when materials were described as a needed support, instructors desired 
either additional ancillary student resources (such as videos), or a desire to customize the 
materials to meet their unique needs. It should also be noted that 13 of the 14 respondents who 
identified materials as a needed support also identified elements of the materials as a helpful 
support. The next most frequent codes were ‘Online Working Groups’ and ‘Slack,’ referring to 
the synchronous and asynchronous informal support from the project team and their peers that 
extended through the academic semesters. The code ‘Training’ was unique in that there were 
more codes specific to additional supports needed (n=8) versus the training being helpful in 
implementation (n=7). Those instructors with a desire for additional support related to training 
either wanted a more nuanced understanding of creating TBIL activities, “how-to-guides” related 
to generating additional fluency-building or assessment questions, or desired to have additional 
training specific to TBIL implementation, possibly a refresher on in-class implementation or 
facilitation strategies. The last code was ‘Peer’, which referred to support from peer instructors, 
either through the project or at their institution.  

To address the second research question, we first considered the frequency with which 
participants reported they implemented various components of TBIL in two ways. Since 
instructors were invited to respond to the survey in several semesters, we considered their initial 
response (n=25), as well as the most recent response from those who responded multiple times 
(n=19). We see a high implementation rate of permanent teams and the readiness assurance 
process in the initial response, with the latter waning somewhat in the final response. 
Implementation of the 4-S application activities was somewhat lower; only 72% of initial 
responses indicated that they were implemented ‘Most of the time’ or ‘Always,’ though this rose 
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to 95% in the final response. Peer evaluations were the least used component; notably 47% of the 
final responses indicated that they were never used. 

 
Figure 1. Supports identified as the “Most helpful support” provided, “Other helpful support” provided, or an 

“Additional needed support”. 

As noted above, 12 participants provided a syllabus for analysis. All of them indicated the 
use of 4-S application activities, with 92% indicating a Readiness Assurance Process and 83% 
indicating the usage of permanent teams. Only 67% of syllabi indicated that peer evaluations 
would be used. 

 
Figure 2. Initial and final responses of the frequency at which participants reported implementing components of 

TBIL 

Discussion 
Overall, we found participants identified two key supports in their implementation, namely 

the provided curricular materials, and ongoing support from peers and project leaders. Several 
participants specifically noted that having the provided curricular materials reduced the planning 
time necessary for the course, allowing them to focus on the novel aspects of the TBIL pedagogy 
such as classroom facilitation. We interpret this as the provided materials serving to reduce the 
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cognitive load on participants as they learned to implement the other aspects of TBIL. We also 
note that one participant observed that the choice of the project to distribute the materials without 
requiring a login made it easier to share the materials directly with students.  

We note this latter ongoing support was described by participants and coded separately as 
referring to either the synchronous online working groups or the asynchronous Slack community. 
The prevalence of both suggests that each communication modality offers something valuable to 
instructors that the other does not. The implications of these results are that leaders of similar 
pedagogical and curricular reform projects need to design ongoing faculty development efforts 
that accommodate these support preferences. While some aspects like the Slack channel almost 
maintain themselves after the initial setup, the synchronous online working groups are resource-
intensive in terms of investigator time, which needs to be taken into consideration in the project 
design. An additional observation: the project’s financial investment was greatest in materials 
development and initial training workshops. While the curricular materials were viewed as very 
valuable by our participants, the training was not. In fact, the online working groups and the 
Slack are both mentioned as more important than the initial training. However, we expect the 
community-building aspects of the intensive workshops, which led to participants’ participation 
in the online working groups and Slack, were quite important second order benefits that do not 
appear in participants’ responses.  

Regarding the second research question on fidelity of implementation, we observed very high 
usage of permanent teams and the Readiness Assurance Process across both the self-report and 
syllabi. Usage of 4-S application activities was also quite high on both measures, but the self-
report showed many instructors only used them most of the time. Usage of peer evaluations was 
much lower. We suspect one aspect contributing to this is the growing movement in mathematics 
(and other disciplines) to use alternative assessment and grading practices. Indeed, we (Lewis et 
al., 2021) specifically advocate for the use of Standards-Based Grading (e.g. Elsinger & Lewis, 
2020) in our paper describing the TBIL pedagogy. We assume this stance implicitly permeated 
our trainings and support structure. We also note that Lewis and Estis (2020) reported that peer 
evaluations had no correlation with content mastery. It seems likely that participants may 
similarly have not found value in the evaluative nature of the peer evaluations, and instead opted 
for other peer feedback and team-building pedagogical moves. 
 
Future Work 

While this preliminary report represents partial progress towards addressing the research 
questions, we believe additional qualitative work is needed to fully answer these questions. In 
particular, we have collected (but not yet analyzed) video recordings of classroom sessions to 
further address the second research question regarding fidelity of implementation, particularly 
with a view toward facilitation moves and the usage of the 4-S application activities. We intend 
to conduct follow-up interviews with some of the participants at the end of the academic year to 
try to paint a fuller picture of the utility of various supports (in regards to the first research 
question), as well as to try to understand why various aspects of TBIL (such as peer evaluations) 
were implemented less frequently. 
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Mathematical proof writing is known to follow various norms and conventions set by the 
mathematical community. Yet, recent scholars have questioned if these norms and conventions 
hinder the progression of the field to be inclusive in proof courses. In this report, we discuss 
preliminary findings of a linguistic analysis on the degree of gendered language used in eight 
undergraduate textbook proofs ranging in content. We report a mixture of gendered language 
use in mathematical proof writing. 

Keywords: proof, language, gendered communication 

It is largely accepted that the language of mathematical proof is genre-specific and follows 
particular norms and conventions (e.g., Burton & Morgan, 2000; Dawkins & Weber, 2017; Lew 
& Mejia-Ramos, 2020). A small body of research has attempted to empirically investigate these 
norms such as Burton and Morgan’s work exploring mathematical texts and interviewing 
mathematicians related to elements of proof related to authority or Lew and Mejia-Ramos’s 
investigation of a set of conventional breaches and mathematicians’ evaluations of them. Such 
work points to the fact that there are observable linguistic features of mathematical proofs that 
can be studied. Further, these features do not only involve the structure and nature of 
argumentation; they primarily concern language in which proof is conveyed. 

Recently, Weber and Melhuish (2022) argued that the adherence to language conventions 
may be in tension with critical and inclusive aims in mathematical proof courses. Indeed, 
scholars such as Brown (2018) have illustrated the ways that students who are first generation 
and urban may use more “varied and at times colorful dialects” (p. 7), losing advanced 
mathematical contributions because they are not communicated in a standard way. It is possible 
that the conventions of proof writing are not due to epistemic aims entirely and might 
systematically exclude certain individuals. To make this point, Keith (1998) argued that proof 
characteristics (such as being impersonal and directive) may align with typical ways men 
communicate rather than women. However, to our knowledge, there has been little empirical 
work on how proof texts may be masculine or genderized. With this background in mind, the aim 
of this preliminary report is to build on the work identifying language features of mathematical 
proof and to begin an exploration related to Keith’s (1998) observation. We focus on two 
research questions: (1) What are the language features of proof found in undergraduate 
textbooks? (2) To what degree do these features reflect types of communication associated with 
gendered communication? 

The Norms and Language of Proof 
A number of scholars have pointed to the language and norms of proofs being distinct from 

other types of language. Selden and Selden (2014) refer to the distinct stylistic and linguistic 
features as part of the genre of proof. Recently, Dawkins and Weber (2017) reflected on the 
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values and norms of proofs both held by professional mathematicians and in mathematics 
classrooms. Of particular relevance to our examination of proofs, they identified, “Mathematical 
knowledge is justified by a priori arguments” and “Mathematical knowledge and justifications 
should be a-contextual and specifically be independent of time and author.” Upholding these 
values is then reflected in linguistic choices in proofs. For example, they identified that proofs 
are written in such a way to reference the author or reader’s agency. So, a proof would not 
contain an “I” statement, but rather impersonal “we.” Such choices reflect the value of a priori 
arguments and that mathematical proof is meant to be universal and dependent on a particular 
author.  

 Perhaps in contrast, other scholars, such as Burton and Morgan (2000) argue that, 
“Conventions of mathematical writing are neither necessary nor natural consequences of the 
nature of the subject matter” (p. 450). In fact, in Burton and Morgan’s analysis of published 
proofs and mathematician interviews, they identified similar conventions as Dawkins and Weber 
(2017), but also noted that authority can be found in proofs. For example, “terms such as clearly 
and obvious are relative to the individuals using them” and Burton and Morgan further suggest, 
“the extent or absence of such words is one of the interpersonal aspects of the writing that will 
influence the ways in which the readers of the text will construct an image of the author and will 
consequently judge the worth of the text itself.”  

 The fact that there are some conventions that are not necessary to the subject matter is 
unlikely to be contested. For example, Lew and Mejía-Ramos’s (2019) norm breaching study 
identified a number of breaches that mathematicians found unacceptable, especially in the 
context of textbooks. These include, “using non-statements, overusing variable names, lacking 
punctuation and capitalization, mixing mathematical notation and text, lacking verbal 
connectives, using formal propositional language, using unclear referents, and using an 
unspecified variable with an existential quantifier” (p. 55). While some of these breaches may 
hamper interpretability or validity of a proof, others are merely stylistic.  

The imposition of linguistic and stylistic features that are not necessary to the validity of 
mathematical arguments has led several researchers to wonder about this impact for students 
(e.g., Brown, 2018; Tanswell & Rittberg, 2020; Weber & Melhuish, 2022). In Tanswell and 
Rittberg’s reflection, they explain the concern with the particularities of mathematical language 
in proof (e.g., the interweaving of symbols and words, avoiding the first-person “I”, the unusual 
“Let n be a number” style constructions, specialized use of imperatives and instructions, and 
being devoid of many features of natural language):  

This has the effect of elevating the regimented mathematical language that has grown up 
over the centuries to the level of being the sole vessel of objective mathematics. ...  Once 
we realise that learners do not come from uniform linguistic backgrounds it quickly 
becomes apparent that the allegedly impartial language of mathematics is easier to access 
for some students than others (p.1202). 

Brown (2018) illustrated this point sharing data from an inquiry class where majority of students 
were first generation and urban. She pointed to the “colorful dialects” they used and the ways 
they stand in contrast to standard ways of communicating math in proofs. Students’ rich 
mathematical arguments may not been seen as important contributions if they are not structured 
in a way to align with conventional preferences. Overall, the literature base points to the fact that 
there are strong conventions in how proofs are written and that this is an important element to 
study because they have the potential to disenfranchise some students more than others. 
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Theoretical Framing 
We take on the perspective that language reflects culture, and more broadly that language can 

be treated as a cultural artifact itself (Maltz & Borker, 1982). The culture in which one develops 
their language shapes their communication choices and how they interpret others. As noted by 
Maltz and Borker, these communication differences are salient across different ethnic 
backgrounds. Furthermore, the culture of language is not just developed at a global level (such as 
American English), but within gender, class, and other subgroups. For the scope of this paper, we 
provide particular attention to gender, and adopt Mulac et al.’s (2001) view of gender-as-culture. 
They suggest that, “much of what people know about interpersonal communication is learned 
from same-sex peers during the ages of 5 to 15 years.” This then leads to communication 
differences across gender-lines. We note that this sociological interpretation does not mean that 
power dynamics are not at play for how and why there are communication differences, rather 
that it provides a mechanism for their existence. 

This allows for identifying distinct language and communication aspects that may reflect 
different subcultures. For example, women may be associated with communicating in ways that 
involve more uncertainty and hedging while men may be associated in communicating in more 
direct ways. We further make the assumption that the language of proof reflects a distinct culture 
that may or may not align with communication elements salient in how different genders 
communication. While there are some that conjecture proof is more masculine in communication 
features, this remains an empirically open question.  

Methods 
 In order to begin to analyze language features of proof, we began with the framework 
developed by Mulac et al. (2001). This framework stemmed from the synthesis of a number of 
studies identifying differences in how men/boys and women/girls communicate in both written 
and orally. The features can be found in Table 1. We note they align with four verbal 
communication style dimensions: direct versus indirect, elaborate versus succinct, personal 
versus contextual, and instrumental versus affective (Gudykunst & Ting-Toomey, 1998).  The 
direct-indirect style captures the degree to which one explicates their intention through verbal 
communication. Elaborate-succinct style describes the richness and expressiveness of the 
language used, ranging from the most expressive (i.e., elaborate) to the most understated (i.e., 
succinct). Along the dimension of personal-contextual, a personal verbal style heavily rests on 
the use of personal pronouns (e.g., we, us) and locatives (e.g., then, there) whereas a contextual 
style deemphasizes the use of these language features. Instrumental communication style is goal-
oriented and relies on the speaker (sender-oriented) to make the message clear. Alternatively, an 
affective communication style is process-oriented and the responsibility falls on the listener 
(receiver-oriented) to read contextual cues to decipher the message. 
 
Table 1. Features of Language Found in Empirical Studies (Mulac et al., 2001) where M: male features, F: female 
features; X: mixed results from empirical studies. 
Language Variable  Definition 
Elliptical sentences (M) A unit beginning with a capital letter and ending with a period in 

which either the subject or predicate is understood 
Questions (X) But not including directives in question form 
Tag questions (F) An assertion that is followed by a question asking for support 
Directives (M) Telling another person what to do 
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Negations (F) A statement of what something is not 
Sentence initial adverbials (F) Answers the questions: how, when, or where? regarding the main 

clause [why and how long] 
Dependent clauses (F) A clause that serves to specify or qualify the words that convey 

primary meaning 
Oppositions (F) Retracting a statement and posing one with an opposite meaning 
Judgmental adjectives (M) Indicating personal evaluations rather than merely description 
Uncertainty verbs (F) Verb phrases indicating lack of certainty or assuredness 
Progressive verbs (X) Verbs presented in the “-ing” form 
Intensive adverbs (F) Adverbs such as “really” or “so” 
Hedges (F) Modifiers that indicate lack of confidence in, or diminished 

assuredness of, the statement 
Justifiers (X) A reason is given for a previous statement 
References to emotion (F) Any mention of an emotion or feeling 
References to quantity (M) References to an amount or quantity 
Locatives (M) Usually indicating the location or position of objects 
Personal pronouns (X) Words that stand for beings 
“I” references (M) First person singular pronoun in the subjective case 
Fillers (X) Words or phrases used without apparent semantic intent 

We selected four common undergraduate textbooks across different subject areas: Smith et 
al.’s (2004) A Transition to Advanced Mathematics, Gallian's (2012) Contemporary Abstract 
Algebra, Fitzpatrick’s (2009) Advanced Calculus, and Munkres’ (2000) Topology. We then 
randomly selected a number between 1 and 10 (4), and selected the fourth proof in each text and 
the fourth proof after the halfway point in each text. Each of the four members of the research 
team applied the framework from Table 1. We met to reach consensus on the meanings of codes, 
discuss borderline cases, and ultimately arrive at finalized coded versions of the textbook proofs. 

Results 
We begin by providing some of the expected results in terms of features of proof language. 

None of the proofs contained: elliptical sentences (M), questions (F), tag questions (F), 
uncertainty verbs (F), reference to emotion (F), “I” references (M), fillers (X), intensive adverbs 
(F), or hedges (F).  We note that this evidence points to a particular way of communicating in 
proof that does not contain many features of communication in other contexts. We also note that 
proofs do not contain some common masculine ways of speaking (elliptical sentences and I 
statements) nor contain many feminine ways of speaking such as reflecting questions and 
uncertainty or references to emotions. 

We now consider the language codes that did appear in proofs beginning with the most 
universally found. All proofs had initial adverbials (F). These are sentences beginning with 
words or phrases serving the function of adverbs. “Thus” or “Therefore” are initial adverbials, as 
are clauses such as, “By Theorem 16.1,” or “If I = {0}.” On average, each proof had 6 initial 
adverbials (ranging from 4 to 10). Thus, we suggest that the use of initial adverbials is standard 
feature of proof and seems to serve the purpose of chaining one logical claim to the next. We 
contrast these with justifiers (X). Justifiers, as defined in the literature, provide a reason for 
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something after it is stated. Only one of the eight proofs had any justifiers with the first of the 
topology statements having two sentences containing “for” statements. The first was, “The case 
which B=∅ is trivial, for there cannot exist a bijection of the empty set B with the nonempty set 
{1, ...,n}.” Otherwise, any explicit warrants were found before the inference being warranted. 
That is, they were found in initial adverbials with language such as, “Since X is normal,...” or 
“Because the theorem...” So, while justification is common in proofs, it is not provided as a 
justifier after a statement, but rather anticipates the statement that will be justified. 

Other features found across all proofs were dependent clauses (F) (average of 3) and the 
personal pronoun (X) “we.” Dependent clauses are more frequently found in the communication 
of women than men, but it is unclear whether the average of 3 is more or less than a 
baseline.  The existence of “we” across all the proofs is hardly surprising as the literature has 
pointed to the commonality of the royal or impersonal we.  We do know that “we” and one 
instance of “us” were the only personal pronouns in the proofs. We found no uses of the pronoun 
“I”.  

We also found that all, but one proof (7 of 8) contained directives (M). These directives 
begin with, “Let,” “Suppose,” “Assume,” “Show,” “Define,” “Note,” and “Choose.” We note 23 
such instances indicating that the commonality of directives mentioned in literature seems to 
bear out our analysis of the undergraduate proofs. 

We quickly note the remaining features' prevalence. Quantity (M) was found in all eight 
proofs (usually references counts for abstract quantities such as “infinite”), but this seems like a 
contextual feature rather than a convention feature. Location (M) was not found in the proofs 
(although reference set membership was common). Again, we hesitate to say this is anything but 
a context feature. We also did not observe any oppositions (F) occurring within sentences as 
described in the framework, but we note there existence as complete new sentences in proofs by 
contradiction. We found that half of the proofs we analyzed had negations (F), that is defining 
something by what it is not such as “b-1/2 is not an upper bound.”  Three of the eight proofs 
contained progressive verbs (e.g., “consisting”, “covering”) reflecting a use, but not frequent use 
of these. Finally, we note the use of judgmental adjectives. One proof contained “trivial” while 
another contained “it is clear” reflecting at least the existence of these authority-driven language 
even within undergraduate texts.  

Discussion 
Our preliminary analysis explores the extent that language features from the linguistic 

literature are present in proofs. In the eight proofs we explored, we found that the impersonal 
“we” and directives were common in these proofs. We did not find any instances of uncertainty, 
including hedges, qualifiers, and leaving questions, nor did we find any references to emotion, 
oppositions, or the personal pronoun “I”. While justification was common, justifiers (i.e., phrases 
used to justify prior statements) were rare. It is interesting that some features of proof align with 
masculine ways of communicating, such as the giving of directives, the lack of references to 
emotions, and the lack of hedges and oppositions. However, other features, such as the absence 
of “I” statements, are associated with the literature as feminine ways of speaking.  At this point, 
it would be premature to make any claims about the degree to which mathematical proofs reflect 
masculine ways of speaking. Future research may involve a corpus linguistics analysis to 
document more accurate prevalence of these features, a convention breach analysis to see which 
of these features are considered salient to mathematicians, and comparisons to other texts both 
academic and non-academic. This is especially important when documenting prevalence of 
features such as dependent clauses. Dependent clauses are found more often in communication 
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by women, but that is a comparison and not a claim that men do not use dependent clauses. It 
would be useful to consider how these features in proof compare to some baseline texts that are 
not proofs. 

References 
Brown S (2018). E-IBL: An exploration of theoretical relationships between equity-oriented 

instruction and inquiry-based learning. In Weinberg, A., Rasmussen, C., Rabin, J., Wawro, 
M., and Brown, S. (eds.), Proceedings of the 21st Annual Conference on Research in 
Undergraduate Mathematics Education. 1–15. 

Burton, L., & Morgan, C. (2000). Mathematicians writing. Journal for Research in Mathematics 
Education, 31(4), 429-453.  

Dawkins, P. C., & Weber, K. (2017). Values and norms of proof for mathematicians and 
students. Educational Studies in Mathematics, 95, 123-142.   

Gudykunst, W. B., & Ting-Toomey, S. (with Chua, E.) (1988). Culture and interpersonal 
communication. Newbury Park, CA: Sage. 

Keith, S. (1988, June). Women and communication in mathematics: One woman’s viewpoint. 
Paper presented at the 10th Annual Meeting of the National Women’s Studies Association, 
Minneapolis, MN. 

Lew, K., & Mejía-Ramos, J. P. (2019). Linguistic conventions of mathematical proof writing at 
the undergraduate level: Mathematicians' and students' perspectives. Journal for Research in 
Mathematics Education, 50(2), 121-155. AND Lew, K., & Mejía Ramos, J. P. (2020). 
Linguistic conventions of mathematical proof writing across pedagogical contexts. 
Educational Studies in Mathematics, 103(1), 43-62. 

Maltz, D., & Borker, R. (1982). A cultural approach to male-female misunderstanding. Language 
and social identity, 198-215. 

Mulac, A., Bradac, J. J., & Gibbons, P. (2001). Empirical support for the gender-as-culture 
hypothesis: An intercultural analysis of male/female language differences. Human 
Communication Research, 27(1), 121-152. 

Selden, A., & Selden, J. (2014). The Genre of Proof. In K. Weber (Ed.), Reflections on 
Justification and Proof. In T. Dreyfus (Ed.), Mathematics & Mathematics Education: 
Searching for Common Ground (pp. 248–251). Dordrecht, the Netherlands: Springer. 

Tanswell, F. S., & Rittberg, C. J. (2020). Epistemic injustice in mathematics education. ZDM, 
52(6), 1199-1210. 

Weber, K., & Melhuish, K. (2022). Can we engage students in authentic mathematical activity 
while embracing critical pedagogy? A commentary on the tensions between disciplinary 
activity and critical education. Canadian Journal of Science, Mathematics and Technology 
Education, 22(2), 305-314. 

 
 
 

26th Annual Conference on Research in Undergraduate Mathematics Education 1163



Using CAS to Promote Students’ Ways of Thinking Through Observation and Conjectures: The 
Case of Eigenvalues and Eigenvectors 
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Linear algebra is an important topic in mathematics and many other disciplines. In this paper, 
we consider a set of digital interactive figures (I-figs) using Mathematica created for linear 
algebra students in an introductory course. The figures were designed to facilitate students’ 
ability to visualize and work with eigenvalues and eigenvectors while minimizing computation 
for the benefit of conceptual focus while looking at an unlimited number of examples. The 
worksheets provide a foundation for motivating students to participate in a system of 
observation, conjecture, proof, and theorem. Based on our preliminary analysis of students’ 
reflections on the I-figs, we found that students were confident in making and believing example-
based conjectures. 

Keywords: eigenvalues and eigenvectors, technology, observation, and conjecture 

Literature Review 
Already an important topic in mathematics, science, and engineering, the relevance of linear 

algebra has expanded into other areas as it provides the foundation for a wide range of data-
driven and AI-related techniques. Linear algebra plays a central role in almost any area that uses 
quantitative information and methods to process data, hence the way linear algebra is taught is of 
paramount importance. 

In the early 1990s, the Linear Algebra Curriculum Study Group (LACSG) recommended that 
“faculty should be encouraged to utilize technology in the first linear algebra course” (Carlson et 
al., 1993). As a part of this initiative, David Lay implemented the use of computer algebra 
systems (CAS) educational support such as MATLAB, Maple, and Mathematica in his book 
Linear Algebra and its Application (Lay, 1994). For example, in working with matrices and 
vectors, solving systems, matrix multiplications, finding inverses, and reducing a matrix to a 
reduced echelon form, technology can help with accurate and fast calculations as well as allow 
one to concentrate on the deeper conceptual aspects of the discipline that are often difficult for 
students to grasp. In addition, technology can be employed to build a visual image of the details, 
as well as the big picture, and allows for predictions, investigations, and producing conjectures. 

Despite national initiatives in the US on teaching linear algebra with MATLAB, for example, 
the ATLAST project initiated by Steven Leon and his colleagues (Leon, Herman, & 
Faulkenberry, 2002) in the early 90s, systematic studies of linear algebra instructors' thought 
processes and their students’ feedback on the effect of technology on their understanding are 
lacking. In a survey paper by Stewart, Andrews-Larson, and Zandieh (2019), the authors looked 
at linear algebra education papers from 2008-2017 in mathematics education journals and found 
almost no systematic classroom studies on the effectiveness of the use of Mathematica, Maple, 
Python, or MATLAB in the classroom, with the exception of a study of using MATLAB in 
mathematical modeling (Dominiques-Garcia, Garcia-Plana, & Taberna, 2016). However, the 
survey paper found studies on eigentheory using Geometer’s Sketchpad (e.g., Gol Tabaghi, 
2014; Caglayan, 2015), and Geogebra (Beltran-Meneu, Murillo-Arcila, & Albarracin, 2016) 
focused on the geometric aspects of the topic. The linear algebra recommendations by LACSG 
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2.0 also emphasized the importance of technology in teaching linear algebra (Stewart et al., 
2022). 

The second author has developed a series of digital interactive figures (I-figs) that aim to 
provide students with an opportunity to play with linear algebraic objects in an embodied format 
meant to be easy-to-access and requiring minimal time investment. Linear algebra students’ 
conceptual understanding of eigenvalues and eigenvectors have been a topic of study in some 
studies (e.g., Thomas & Stewart, 2011; Salgada & Trigueros, 2015; Wawro, Watson, & Zandieh, 
2019), largely focused on student thought processes. We also wish to study student ways of 
thinking, with the added structure of a series of I-figs targeting properties of eigenvalues and 
eigenvectors. 

Theoretical Perspective 
The theoretical framework for this study will utilize Harel’s (2008) ways of thinking and 

Tall’s three worlds of mathematical thinking (2010). Harel (2008) introduced the notion of a 
mental act as actions such as interpreting, conjecturing, justifying, and problem solving, which 
are not necessarily unique to mathematics. These several types of mental acts are the foundation 
of ways of thinking defined as “a cognitive characteristic of a mental act” (p. 269). These ways 
of thinking have the characteristics of being able to abstract, generalize, structure, visualize, and 
reason logically. Tall (2010) describes the embodied world as “our operation as biological 
creatures, with gestures that convey meaning, perception of objects that recognize properties and 
patterns… and other forms of figures and diagrams” (2010, p. 22). In his view, “The world of 
operational symbolism involves practicing sequences of actions until we can perform them 
accurately with little conscious effort. It develops beyond the learning of procedures to carry out 
a given process (such as counting) to the concept created by that process (such as a number)” 
(2010, p. 22). The formal world “builds from lists of axioms expressed formally through 
sequences of theorems proved deductively with the intention of building a coherent formal 
knowledge structure” (2010, p. 22). 

Our research questions are: What are the effects of the use of these I-figs on students’ ways 
of thinking involving a system of observation and conjecture and how does that influence their 
understanding of proof and theorem? How did the use of the I-figs influence learning of 
eigentheory? 

Methods 
In this case study, 16 participating students were enrolled in an honors section of 

introductory linear algebra at a large public land-grant R1 university in the USA. These students 
were first and second-year students, with most declared or interested in degrees in mathematics, 
science and engineering, or medicine.  

Five I-figs related to properties of eigenvalues were collected as one digital worksheet for 
students to explore. The worksheet was given to the students over a weekend’s time to complete, 
immediately following the first class on eigenvalues and eigenvectors. In this lesson, students 
were shown the definition of eigenvalue and eigenvector with necessary conditions such as non-
zero eigenvectors and uniqueness of eigenvalues for an eigenvector. By the time of worksheet 
participation, students had not practiced or discussed in class how to compute eigenvalues or 
eigenvectors, nor had any of the eigenvalue properties displayed in the worksheet been 
demonstrated. Students were instructed to spend approximately 15 minutes manipulating the 
digital figures and look for any observable patterns or trends. 
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Three forms of written data were collected at different times following the students’ 
participation. Immediately after their time with the worksheet, students were asked to write a few 
paragraphs describing anything that they found interesting or noteworthy while working in the 
digital worksheet. Second, a few days later in the following in-person class time, students 
completed a short quiz asking if they could recall the definition of eigenvalue and eigenvector, 
and again to recall anything that stood out to them about the worksheet. Lastly, two weeks after 
the worksheet was administered when the class had concluded their study of eigenvalues and 
eigenvectors, students were asked to complete a final exit survey consisting of seven short 
answer response questions: (1) In what ways, if any, did you find the digital worksheet useful in 
understanding the concept of eigenvalues and eigenvectors? (2) What pros/cons do you see with 
this activity being a digital worksheet versus a pen-and-paper worksheet? (3) Describe, if any, 
the connections you see between the digital worksheet and the following week’s content on 
eigenvalues and eigenvectors. (4) Do you like the idea of these exploratory activities before the 
content is introduced in class? (5) Would you have preferred a different sequencing? Please share 
your reasoning. (6) In our modern data-driven society, how do you see the relationship between 
linear algebra (matrices as data) and technology? (7) What part of the digital worksheet stood out 
to you as most important? Why? 

As another data perspective, the instructor of the course (the first author) logged teaching 
reflections after each class meeting. These reflections included a summary of the day’s class 
content, delivery, and notes about what did and did not go well, especially including important 
(from the instructor’s perspective) student interactions. The instructor had weekly meetings with 
the rest of the research team and discussed their perspectives about the class further. The 
research team helped to design the study and research tools. Open coding by Strauss and Corbin 
(1998) was performed to analyze the data. In this paper, we will only analyze students’ responses 
to their immediate post-worksheet reflection. 

Preliminary Analysis 
Some of the common themes in students’ data so far have been as follows: play and 

exploration, pattern/non-pattern seeking, desire for relevance, and mathematical (formal) 
conjecture. These reflections ranged from one to three paragraphs, typically no more than half a 
page of writing.  

We will begin by analyzing student responses relevant to each I-fig. The first I-fig (Figure 1) 
treats eigenvectors geometrically. Students may adjust the second component of v manually or 
use presets to snap to two eigenvector relations. Only four of the thirteen respondents addressed 
this geometric figure in their reflection. Those that did unilaterally employed physically 
embodied language surrounding their work, such as “It was interesting to scale the vector with 
my hand and check the gradual change of the values on my own” (S09). However, only one 
student explicitly named those special vector equations as demonstrating an eigenpair 
relationship. 

For the second and third I-figs (Figures 2), eight students were able to correctly comment on 
the intended patterns in these I-figs (the same students for each). From this activity, these 
students make assertive statements (conjectures) such as “when you scale a matrix, the 
eigenvalues are scaled the same amount” (S03) or “When the matrices were put to a specific 
power, the eigenvalues were also just put to that power” (S05). From these notes we observe that 
those eight students all communicated a confidence that their perceived relationship is true 
(without supplying or referencing any justification), and also were able to supply a productive 
phrasing of the appropriate eigenvalue property, without having seen or otherwise been exposed 
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to those properties in the class. As mathematics instructors, we can capture this as students’ 
displaying an emergent way of thinking of the form (way of thinking: I can build a conjecture 
with a finite set of examples) and (way of thinking: I feel strongly that my conjecture is true). 
Notably, in the second way of thinking, students are unbothered by the absence of any 
supporting proof and have yet to become skeptical that a small set of examples can be used to 
identify a general trend. 

Only one student who addressed these two I-figs proposed related though fundamentally 
incorrect statements such as “when scaling a eigenvalue, it affects the matrix” (S07). 
Nevertheless, we see the fundamental idea (of matrices and their eigenvalues sharing a scalar 
relationship) communicated, though this student’s implication is reversed. 

Next, Figure 3 shows an I-fig meant to display eigenvalue properties (or lack thereof) in 
relation to matrix operations on two matrices A and B. Seven students remarked upon this I-fig. 
Of those, five students were able to either state that the eigenvalues of A and B do not simply 
determine the eigenvalues of AB or A+B (“adding two matrices together does not necessarily 
add the matrices’ eigenvalues, nor does multiplying two matrices together multiply the 
eigenvalues” (S06)), or stated that they were not able to find those patterns (“I wasn’t sure how 
there is a correlation between eigenvalues of matrixes and their sums and products” (S12)). We 
note that these students leave open the possibility of there existing some pattern or rule that they 
simply were unable to find. 

The final I-fig (Figure 4) concerns the relationship between eigenvalues, trace, and 
determinant of a matrix. Six of the thirteen respondents were able to conjecture a relationship, 
with five of those being correct (“I realized that adding the eigenvalues gives you the trace, while 
multiplying the eigenvalues gives you the determinant” (S07)). The final student observed “With 
the matrix provided, if I took the sum of all the eigenvalues, I received the trace of the matrix. 
Then, if I took that sum and multiplied by negative two, I got the determinant of the matrix” 
(S12). We see this student extending a previously identified way of thinking (I can build a 
conjecture with a finite set of examples) to now creating an incorrect conjecture apparently from 
a single viewed example. Again, showing no hesitation in endorsing this conjecture, indicating a 
lack of a way of thinking such as a mathematical conjecture requires a proof to be accepted. 

 

 
Figure 1. Geometric and algebraic connection of eigenvalues and eigenvectors. 
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Figure 2. Effect of scalar multiplication and matrix exponentiation on eigenvalues. 

 

 
Figure 3. Eigenvalues and sums and products of matrices. 

 

 
Figure 4. Relationship between eigenvalues, determinant, and trace. 

Concluding Remarks 
As we continue working on this research study, we plan to develop the theoretical framework 

further, complete the coding, and analyze the data by employing our theoretical framework 
hybridizing ideas of Tall’s (2010) three worlds of mathematics and Harel’s (2008) ways of 
thinking and understanding. Our analysis will also include some recommendations for teaching 
linear algebra using and developing CAS worksheets, and to target future iterations and 
additional worksheets.  
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Academic Resources and Precalculus Students: Knowledge and Use of Tutoring Services, Skill
Sessions, and Academic Coaching

Katie McKeown
The University of Alabama

Discussion of a study that examines data from a single large, public university to determine how
and when precalculus students elect to use learning center resources and their experiences using
these resources. Data collected and to be analyzed includes survey and interview data from the
precalculus students, interview data from instructors, class and learning center artifacts, and
interview data from learning center leaders. 

Keywords: learning centers; mathematics; precalculus

Colleges and universities provide many supplementary academic resources to support
students outside of the classroom in their learning. Designated spaces that provide many of these
supplementary resources in one space are often referred to as learning centers and can be found
at the majority of colleges and universities (Bhaird et al., 2009; Byerley et al., 2019; Gilbert et
al., 2021; Grove et al., 2020; Lawson et al., 2020; Matthews et al., 2013; Rickard & Mills, 2018).
However, a large number of factors may influence a student’s decision to use these resources,
including the difficulty of finding new sources of help when first entering college, their desire to
learn the course material, and their prior knowledge (Giblin et al., 2021). While a variety of
research on learning centers has examined the impact of learning centers on students’ success
(e.g., Wurtz, 2015) or the various roles of learning centers on a campus (e.g., Solomon et al,
2010), one of the gaps in learning center research is how students make the decision to seek out
help and their experiences of the provided resources. This study intends to approach that gap
using a multiphase mixed methods design study to explore what precalculus students experience
concerning the phenomenon of using free supplemental learning resources. Data from the
students, instructors, and learning centers at a single university will be analyzed to look at how
and when students elect to use learning center resources and their experiences using them once
there.

Given the importance of learning centers to postsecondary institutions and of knowing more
about how students decide to use these sites, this study will look at how, in past, present, and
future, precalculus students learn about, decide to use, and experience using academic resources
external to their introductory mathematics course at a large, southern, public research university,
following the proposed theory of source selection by Giblin and colleagues (2021). The
resources focused on in the study will be the mathematics content tutoring offered by the campus
learning center (LC), mathematics content tutoring offered by the campus student success center
(SSC), academic coaching offered by the SSC, and skill sessions offered by the SSC. In
particular, I ask:

1. What opportunities do precalculus students at a large, southern, public research university
have to learn about each of the four resources being studied, and to what extent do
students identify as being aware of each resource?

2. What factors relate to patterns or changes in use by students over time?
I will answer these questions using a variety of data sources, including site observations,

student surveys and interviews, instructors and center coordinators interviews, and center and
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course artifacts. These data and research questions are part of a larger study that also
incorporates learning center usage and demographic data from students in the precalculus course.

Literature Review and Theoretical Framework
Postsecondary institutions provide a variety of resources to support students in their learning

of course material outside of classroom and lab time. However, in order to take full advantage of
these resources, students must learn that the resources are available, decide to use those
resources, and then, decide whether to continue or discontinue use for the duration of the
academic term. Access to these resources is often found in central locations on campus, called
learning centers, but places that provide academic supports also often go by the name of tutoring
centers or subject specific centers.

Postsecondary Academic Support
In his glossary of developmental education and learning assistance terms, Arendale (2007)

defines support areas as, “Institutional services, other than regularly scheduled classes and labs,
designed to assess and improve the academic and emotional well-being of students” (p. 29).
These services include a number of common support areas, including tutoring and advising
services (Parker, 2020; Truschel & Reedy, 2009). Institutions also frequently offer academic skill
sessions, which are usually defined to have the purpose of supporting students in developing
skills that will transfer to future courses, such as how to study or manage time (Munley, 2010;
Parkinson, 2009; Wurtz, 2015).

Learning Centers
When an institution creates a central location where multiple of the previously discussed

supports are located, they are usually referred to in the literature as either learning assistance
centers or learning centers (Arendale, 2007). As previously discussed, learning centers often are
called by a variety of names, including tutoring centers and mathematics support centers.

Mathematics course support. Students seeking success in their mathematics courses
frequently find their way to learning centers. In fact, in a study surveying 61 learning centers,
the only service that every center reported offering was mathematics assistance/tutoring
(Franklin & Blankenberger, 2016). Learning centers can provide a variety of services, but the
courses a student is enrolled in determine which of the previously discussed resources are
available to them at their institution. As this study explores student resource use in relation to
a mathematics course, special attention is on the relationships that the learning center
structure and resources have with mathematics content and coursework.
Learning center structure. The structure of learning centers varies widely across
institutions (Byerley et al., 2019; Johnson & Hanson, 2015; Perin, 2004; Truschel & Reedy,
2009). Three of the most common services offered in learning centers are tutoring, academic
coaching, and skill workshops (Truschel & Reedy, 2009). Structural differences include
drop-in versus appointment only assistance, online versus in-person support, the
qualifications of center staff, and the relationship, or lack thereof, between mathematics
departments and learning centers.
Student decisions surrounding learning center use. This study explores precalculus
students’ experiences concerning the phenomena of using free supplemental learning
resources. I look at this phenomena using Giblin and colleagues’ proposed theory of source
selection of (a) narrowing of sources, (b) evaluation, (c) solicitation, (d) evaluation of
presented help, and (e) use of source as a theoretical framework (2021). In other words,
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students must find the resource, decide to try the resource, and then, after using the resource,
decide whether or not to continue use.

Methods
Seven main types of data will be used to answer the presented research questions: class

artifacts, interviews of course instructors, center artifacts, interviews of learning center
supervisors, center observations, student surveys, and student interviews.

Class Artifacts
The course syllabus and information shared on the Blackboard home page were gathered.

Information from these sources have been reviewed and will be coded for any evidence of
information of any of the four free academic resources being considered in this study.

Interviews of Course Instructors
Once during the semester, I interviewed the course instructors. Questions focused on the

nature and frequency of instructor-classroom communication concerning academic resources
available to students as well as the instructors’ knowledge of these resources. Interviews of
course instructors used a semi-structured format, meaning that the interview protocol is used as a
guide and questions and probes may or may not be used as well as may be presented in a
different order than written (Roulston, 2013).

Center Artifacts
Center artifacts in the form of data presented on resource webpages and distributed

advertisements for services sent to students were collected. These data were collected because
direct contact from the centers may be a way that students learn about these available academic
resources outside of the classroom. Center artifacts will be reviewed for any information that
may support student survey and interview responses.

Interviews of Learning Center Supervisors
Once during the semester, I interviewed the learning center supervisors. The questions asked

during the interview focused on the center’s communications with students concerning available
academic resources, including any intrusive messaging, and what they perceived as the typical
experiences of students when using each of the resources being studied. Interviews of learning
center supervisors used a semi-structured format described previously (Roulston, 2013). The
questions and guidelines provided in the initial protocol were framed by the six significant
dimensions of undergraduate mathematics tutoring centers described by Byerley and colleagues
(2019): “(1) Specialist versus Generalist Math Tutor Models, (2) Strength of Relationship
between Center and Math Instructors, (3) Type and Extent of Tutor Training, (4) Types of
Tutoring Services, (5) Physical Layout and Location, and (6) Tutoring Capacity.” The SSC
leader interviews also contained questions about the skill sessions and academic coaching
appointments available.

Center Observations
Twice during the semester, I observed both the campus LC and SSC. The observation

protocol focused on gathering the nature of student-computer, student-student, and student-staff
interactions in the centers. The questions in the observation protocol were framed by the six
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significant dimensions of undergraduate mathematics tutoring centers described by Byerley and
colleagues (2019), described previously, as both centers provide tutoring services.

Student Surveys
Twice during the semester, I surveyed students about their use or plans to use the four

resources being considered across the two centers. The first survey took place immediately
following the end of the drop/add period at the university, in the second week of classes. The
second survey was given near the end of the semester. Both surveys asked about each of the four
resources being studied, with students reporting (1) the extent to which they have heard about or
seen advertisements for that resource, (2) how much they have used the resource in the past, and
(3) how much they intend to use the resource in the future. Questions concerning knowledge of,
past use, and intended future use of resources were asked using scales increasing in frequency
(e.g., never; happens on occasion, happens at least once a month, happens at least once a week,
happens daily) along with clear layout and other recommendations for survey creation (Walston
et al., 2017). The second survey also included questions about help-seeking behaviors and
attitudes towards mathematics.

Student recruitment. Students were recruited into the study during a classroom visit that
occurred immediately following the drop/add period of classes. During this classroom visit, I
described the survey including risks and benefits and then provide a link to the first survey using
an electronic QR code that was projected during class. In addition to asking about students’
knowledge and use of the academic resources, the linked survey also contained a question asking
students if they have interest in participating in the interviews.

Student Interviews
During the semester, I interviewed five different student participants, with three student

participants completing two interviews. The first interview took place within the first month of
the course, and the second interview took place following the second survey distribution.
Interview questions focused on students’ decisions to seek help, what informed their decisions to
use any combination (including none) of resources offered by the two centers, and their
experiences while using the resources.

Student interviews were conducted using semi-structured format as described previously
(Roulston, 2013). The first interview focused on collecting information about the student, their
course history, and other prior experiences related to seeking help in a mathematics course
followed by the tailored questions concerning resource use experiences. The second interview
followed a similar format. However, there were data points from two surveys as well as the first
interview to guide questions. For example, if a student in the second survey indicated that they
were using a resource after indicating they did not intend to use that resource during the first
survey, I asked a question that aimed to dive into how that decision was made.

Planned Analysis
As I have just begun my analysis, the following descriptions of planned analysis are in future

tense. However, all data have been collected at the time of this proposal submission.

Research Question 1
What opportunities do precalculus students at a large, southern, public research university

have to learn about each of the four resources being studied, and to what extent do students
identify as being aware of each resource? Using appropriate psychometric analysis on the
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student survey data, the frequency that precalculus students hear about resources available to
them will be determined. Class artifacts, interviews of course instructors, center artifacts,
interviews of center supervisors, center observations, and student interviews will first be
reviewed for mention of different ways that resource availability may be advertised or discussed.
The analysis of these data sources will flag any mention of these services, which could come
from a variety of sources, including verbal or written communications, posted information in
course Blackboard, or physical flyers. Finally, this information on the different methods of
exposure to the resource availability will then be used to explain the student survey results
related to whether students report being aware of those resources. These all point to the first step
of Giblin and colleagues’ theory of source selection, narrowing of sources (2021).

Research Question 2
What factors relate to patterns or changes in use by students over time? Using appropriate

psychometric analysis on the student survey data, separately, the changes over time in survey
responses will be analyzed. Analysis of student interviews, center supervisor interviews, and
instructor interviews using a phenomenological line-by-line approach will point towards factors
related to certain combinations of resources being used. The analysis of these data sources will
flag any mention of decision to use or stop use of a resource, which could present in a variety of
forms. Possibilities regarding decision of use include mentions of failing a test, struggling with
homework, being referred to the resource by their instructor, or being referred to the resource by
a friend. Possibilities regarding the decision to stop the use of a resource include expectations of
using resources were not met, description of services by source they heard about resource from
turned out not to be accurate, by their perception, or mention of not having time. Any mention of
deciding to use no resources, a single resource, multiple resources, or all resources will be coded
and considered. These data will point toward the other steps of Giblin and colleagues’ theory of
source selection including evaluation, solicitation, evaluation of presented help, and use of
source (2021).

Next Steps and Questions

Next steps include completing the analysis; although all data have been collected, analysis has
just begun at the time of submitting this proposal. Thus, there are not yet any results or
conclusions to share. The analysis will continue until the conference in February, at which time I
expect to provide results and conclusions.

Audience Questions
1. Can you think of any other frameworks that I should look at this data with?
2. Any experiences at your institutions/in your learning centers that might shed light on

this study that you would like to share?
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Student Perceptions of Individual and Group Creativity in Proving 
 

Amanda Lake Heath 
Middle Tennessee State University 

Student described experiences in creativity can provide insight into instruction to foster 
creativity. In this report, I describe the emergent themes among student narratives describing 
when and why they felt creative during a collaborative proving activity. Continued work to refine 
these themes and their prevalence in student reflections can provide implications for how to best 
structure collaborative work to foster creativity in proof-based courses.   

Keywords: Creativity, proof, collaboration 

Both collaboration and creativity are central to the work of mathematicians (Karakok et al., 
2015; Sriraman, 2004). Professional mathematicians have indicated collaboration is an important 
feature of their work (Sriraman, 2004), and the Conference Board of Mathematical Sciences 
(2016) has called for university mathematics classrooms to incorporate more active, 
collaborative learning. Therefore, there is a substantial need for K-16 education to focus on 
developing creative mathematicians and problem solvers with strong communication and 
collaboration abilities. In mathematics, students follow a journey in which there is an eventual 
transition from computational to proof-based mathematics (Civian & Schley, 1996). During this 
transition to proof, point students are often expected to become producers of mathematical ideas 
on their own for perhaps the first time (Boyle et al., 2015). For this reason, it is critical to study 
mathematical creativity and collaboration within the context of undergraduate mathematics 
courses and proof in order to cultivate the expertise needed by future mathematicians. 

The purpose of this study is to investigate the creativity at work within an individual during 
creative collaborative proving. Although this study is being conducted in the larger context of a 
dissertation study, for this report I focus on the following research question: What actions or 
moments of the collaborative proving process do individuals report fostered their creativity? In 
this report, I first provide background literature on undergraduate mathematical creativity. I then 
describe the definitions and theoretical framings adopted in this study, outline the context and 
methods of the study, describe some preliminary results, and discuss the potential implications 
and future directions of this research. 

Definitions and Theoretical Framing 

Mathematical Creativity 
Creativity has been notoriously difficult to define. Mann (2005) claimed there are over 100 

existing definitions of creativity in the mathematics education literature, and this number has 
only grown with the volume of research on creativity published in the last 17 years (Savic et al., 
2022). In this study, I adopt a perspective on mathematical creativity that describes creativity as 
domain-specific, meaning specific to the context of mathematics and mathematical proof, a 
process, meaning I will consider the motivation, perception, learning, thinking, and 
communicating involved in creativity, and relative, meaning considered within the context of the 
knowledge, abilities, and experiences of an individual. Put succinctly, mathematical creativity is 
defined to be the processes of creating, constructing, or implementing mathematical ideas, 
strategies, or processes, which are perceived as non-routine by the individual. 
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In this study I use the terms collaborative creativity in proving, or creative collaborative 
proving, to describe the process of approaching a shared goal in proving with significant 
contributions from two or more people, in which the proving task is either (a) assumed to be non-
routine for all group members based on context or (b) established to be non-routine for all group 
members by asking them for their perspective. 

Proof 
In this study, situated within a university Introduction-to-Proof course, I adopt the definition 

of proof given by A. J. Stylianides, (2007): 
Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim with the following characteristics:  
1. It uses statements accepted by the classroom community (set of accepted statements) 

that are true and available without further justification.  
2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 

or within the conceptual reach of, the classroom community; and  
3. It is communicated with forms of expression (modes of argument representation) that 

are appropriate and known to, or within the conceptual reach of, the classroom 
community. (p. 291, emphasis in original) 

This definition allows for flexibility in the growth of a classroom community and the tools 
(both accepted statements and modes of argumentation) valid within this community. 

Collaboration 
One way to highlight the inner workings of students’ approaches to proof initiation, proof 

construction, and proof validation is to engage students in collaborative proving. Collaboration is 
a tool for revealing the deeper processes behind proving and reflects the work of mathematicians 
(Grossman, 2002). To define collaboration beyond social interaction (Sriraman, 2004), I 
emphasize two elements of collaboration as a process: (1) contribution from two or more parties 
and (2) a common goal. This definition of collaboration can be applied to a classroom setting to 
describe collaborative learning, wherein typically student groups of two or more gain mutual 
understanding or create a product (Smith & MacGregor, 1992).  

Residue 
Taking mathematical creativity as a relative construct requires asking students what they 

recall as fostering creativity for them, and these recollections will describe “what actually comes 
to the fore of [students’] attention” (Marton et al., 2004) regarding their creativity during 
collaborative proving as well as other activities in the Introduction-to-Proof course. Hiebert et al. 
(1996) described the importance of remembered experiences and influences as residue. Residue 
provides a way for thinking about what students take with them from classroom experiences. 
Therefore, residue for students with respect to creativity can give insight into the experiences, 
activities, and interactions that were meaningful for the student and inform how instructors can 
best shape classroom environments and activities to foster collaborative creativity in proving. 

Background 
It is undisputed that mathematical creativity has grown immensely as a research domain in 

the last ten years (Savic et al., 2022; Sriraman, 2017), yet research on mathematical creativity 
has been slow to extend to the tertiary setting (Savic et al., 2022). In this report, I aim to describe 
the actions or moments students experienced during in-class collaborative proving that fostered 
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creativity for either themselves or their group. It is generally accepted that mathematical 
creativity can be developed and enhanced in students (Sriraman & Haavold, 2017; Zazkis & 
Holton, 2009), and mathematicians believe that mathematical creativity can and should be 
fostered in undergraduate mathematics courses (Karakok et al., 2015). Despite this consensus, 
there is little empirical research on what teaching strategies develop mathematical creativity 
among undergraduate students (Savic et al., 2022). No extant research has explicitly considered 
the impact collaborative work or collaborative proving may have on creativity. Investigating 
student perceptions of how collaborating with their peers on proving tasks fosters (or does not 
foster) creativity for them can inform how to best facilitate collaborative activities to promote 
creativity in proving. 

In extant literature, the teacher actions most supported as effectively promoting mathematical 
creativity are choosing appropriate tasks (Satyam et al., 2022; Savic, El Turkey, et al., 2017a; 
Tang et al., 2022), allowing time for incubation (e.g., Savic, El Turkey, et al., 2017b), 
demonstrating different ways to solve problems and illustrating the mathematical process for 
students (Satyam et al., 2022; Tang et al., 2022), making the classroom a safe place to take risks 
(Satyam et al., 2022; Savic, El Turkey, et al., 2017b; Tang et al., 2022), attending to the emotions 
of students (Satyam et al., 2022; Tang et al., 2022), and providing space for discussion and 
disagreement (Satyam et al., 2022; Savic, El Turkey, et al., 2017a, 2017b; Tang et al., 2022).  

Both Cilli-Turner et al. (2023) and Satyam et al. (2022) investigated how to foster creativity 
in undergraduate settings by considering student perceptions of creativity. Both of these studies, 
conducted in the context of Calculus I, reported six themes of student views of creativity: 
Actions and Attitudes, Application, Different Ways, Originality, Against Authority, and 
Understanding. Although these themes can help describe the ways in which students in an 
Introduction-to-Proof setting may view creativity, I seek to understand the specific ways in 
which students perceive themselves (or their group) as creative in a collaborative proving setting. 

Methods 

Context and Participants 
Data were collected from an undergraduate Introduction-to-Proof course at a large public 

southeastern university in the United States. This course was facilitated in a collaborative, 
inquiry-based learning environment in which small groups of 3-4 students worked together to 
prove instructor-provided mathematical conjectures. The study discussed in this report is a small 
portion of a dissertation study on collaboration and creativity in mathematical proving. This 
report focuses on undergraduate students’ impressions of their individual and group creativity 
after working in groups in class to collaboratively prove the statement: The product of 
consecutive twin primes is one less than a perfect square. In this report, I draw upon available 
written narrative data from eight participants.  

Data Collection and Analysis 
Students were instructed to remain seated at their group tables for five minutes of individual 

think time and then move to a whiteboard space to share their ideas with their peers and 
construct a proof. Students were each given a different color whiteboard marker to track their 
ideas on the collective dry erase board space. After the class session, students completed a 
retrospective writing assignment in which they were tasked with reflecting upon their experience 
working collaboratively in class and describing the times in which they felt (or did not feel) 
creative during the activity. These assignments were due at 11:59pm the day of the collaborative 

26th Annual Conference on Research in Undergraduate Mathematics Education 1179



proving activity to mitigate delayed recall (Gass & Macky, 2000), in which a person creates a 
new mental process instead of recalling their original ideas (Lyle, 2003). Students were asked to 
(I) provide a sequential narrative of their group proving experience and (II) answer the question 
“When during the collaboration did you feel like you or your group were creative? If you did not 
feel creative, explain why not. Include as many details as you can.” 

To determine the actions or moments students perceived as influential on their individual and 
group creativity during the in-class activity, I narrowed my data source to only include written 
responses to task (II) of the writing prompt. First, I conducted an inductive, in-vivo coding 
strategy (Saldaña, 2016). The in-vivo codes were grouped into themes, and I conducted a second 
round of coding using this list of themes to identify the most frequently cited moments and 
incidents that initiated creativity for students. All sentences of responses to (II) containing 
reasons for feeling (or not feeling) creative were given at least one thematic code.  

Preliminary Results 
The inductive analysis of participant retrospective writing assignment submissions revealed 

11 themes in their reflection on their individual creativity: Brainstorming, mistakes, noticing 
patterns/making conjectures, task novelty, suspense/pressure, teamwork, trying different 
ways/seeing things in different ways, writing an equation/formula, connecting mathematics and 
words, uncreative, and other. The most common themes were teamwork/collaboration, noticing 
patterns/making conjectures, uncreative, and writing an equation. Table 1 provides the frequency 
of sentences, proportion of participant responses, and a participant quotation illustrating the code 
theme for the themes reported by at least three participants, excluding the “other” category.  
Table 1. Themes to Answer RQ1: What actions or moments of the collaborative proving process do individuals 
report stimulated creativity for them? 

Theme Frequency Proportion 
of Students 

Participant Quotation  

Teamwork 13 5/8 “I believe that my group was even more 
creative than we could have been 

individually.” 

Noticing Patterns/ 
Conjectures 

10 6/8 “We also felt creative in noticing the 
pattern with every pair of numbers we used 

to verify the proof.” 

Uncreative 10 5/8 “I did not feel very creative at the 
beginning of the group exercise, as I was 
sure that every group was thinking about 
writing out examples for the first step.” 

Writing an Equation/ 
Formula 

9 6/8 “In our group work I felt that we were able 
to be the most creative when we were 

figuring out our initial equation.” 
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Trying Different 
Ways/ Seeing Things 
in Different Ways 

7 5/8 “Thinking outside of the box and using a 
variety of methods to solve a proof is what 

creativity in mathematics is all about.” 

Brainstorming 4 3/8 “We all began throwing out ideas on how 
we could solve this problem.” 

Discussion and Conclusion 
In this report, I have characterized the types of actions or moments students reported as 

causing them to feel creative during an in-class collaborative proving exercise. A first 
observation is that students rarely emphasized themselves as feeling individually creative in their 
narratives (e.g., “I felt creative when…”), but rather emphasized the creative actions of the group 
as a whole (e.g., “my group was creative when…”). This distinction, in part, may be attributed to 
feeling as though the group’s capacity for acting creatively was greater than capacity of the sum 
of the constituent members, as one participant indicated, “I believe that my group was even more 
creative than we could have been individually.” Further, students may feel uncomfortable taking 
individual ownership in their narrative writing reflecting upon a collaborative task. 

Regarding the themes present in student narratives, many align with the teacher actions 
previously indicated to foster creativity in different undergraduate mathematical contexts (e.g., 
Tang et al., 2022). For example, five students recognized themselves or their groups as creative 
when they tried to approach the proof using a different strategy or look at the problem in a new 
way, which corresponds to Tang et al.’s “encourage mathematical behavior” (p. 541) teaching 
action to foster creativity. Moreover, the most frequently mentioned moment, engaging in 
teamwork (13 mentions), corresponds to “allow for discussions” (Tang et al., 2022, p. 541), yet 
participants in this study attributed their feeling creative to positive teamwork, rather than simply 
the opportunity to engage with their peers. One student said,  

I think a vital part of collaboration is the group's overall willingness to actively 
collaborate. In this way uncooperative group members stifle the creativity of the group. I 
really appreciated that no one in my group ignored the ideas of others. 
These preliminary findings indicate students may recognize opportunities to be creative in 

mathematical proving by collaborating with their peers in specific ways. Data used in this report 
is limited to eight student narratives following a single in-class collaborative proving activity; 
however, data collection and analysis will continue throughout the Fall 2023 semester to provide 
a more holistic image of the ways in which students perceive themselves and their teams to be 
creative in proving. The results of this study may be able to both verify the results from previous 
research on student perceptions of creativity in Calculus I (Satyam et al., 2022; Cilli-Turner et 
al., 2023) as applicable also to an Introduction-to-Proof setting, but also provide a guide for 
facilitating creativity-fostering collaborative work in undergraduate proof-based mathematics 
courses. 
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Motivations for Grading Among Math and Physics Faculty 
 
 Brianna Huynh Warren Christensen 
 Pomona College North Dakota State University 

A student’s course grade is typically an overall representation of multiple graded categories 
chosen by faculty. This study uses interviews with math and physics faculty to determine their 
rationale for selecting grading and assessment systems. We hope by identifying common faculty 
motivations, we can provide a baseline for future discussions on the implementation of 
alternative grading practices. Semi-structured interviews were conducted to present math and 
physics faculty with questions regarding enrollment size, length of implementation, and feedback 
processes. Preliminary analysis of faculty interviews demonstrates significant similarities in 
rationale across departments. All faculty considered enrollment size and course content when 
selecting systems. Findings indicated two central student learning goals and the emergence of 
four dominant motivations.  

Keywords: Faculty Rationale, Goals for Student Learning, Teaching Practice, Grading Practice 

Background 
Teaching practices are at the heart of transforming STEM education in U.S. colleges and 

universities. More specifically, students’ experiences in introductory mathematics courses play a 
crucial role in their overall retention in STEM fields. Both high and low-performing students 
have frequently cited teaching in their introductory courses as a factor in their choice to switch 
majors (PCAST, 2012). Members of groups underrepresented in STEM fields have also 
experienced significantly lower retention rates (Brainard & Carlin, 1998; Bressoud, 2011; 
NASEM, 2016). Recent calls for improving mathematics education have focused on the 
implementation of instructional activities that engage students in active learning and promote 
higher order thinking (CBMS, 2016; Freeman, 2014; Saxe and Braddy, 2015). This study seeks 
to expand upon prior research by focusing on teaching practices, specifically grading practices, 
rather than instructional activities.  

To distinguish between instructional activities and teaching/grading practices, we employ the 
definitions provided by Speer, Smith, & Horvath (2010). Instructional activities refer to “the 
organized and regularly practiced routines for bringing together students and instructional 
materials” (p. 101). In contrast, teaching practices encompass the thinking, judgments, and 
decision-making teachers use to prepare for and teach their courses (Speer et al., 2010, p. 101). 
Research in this underexamined area of mathematics education will be a valuable catalysis for 
the widespread adoption of empirically validated teaching practices—a key recommendation 
advised by PCAST (2012). Furthermore, this research will benefit the expansion of professional 
development opportunities for faculty as prior research has been limited in scope (Crooks-
Monastra, 2021; Deshler, Hauk, & Speer, 2015; Speer, Guttmann, & Murphy, 2009). This study 
focuses on tenured and tenure-track faculty, as opposed to graduate teaching assistants, because 
these faculty are more independent and less transient. Concerns expressed by faculty may also be 
useful for designing professional development materials appropriate to this demographic. 

Within the scope of faculty’s teaching practices, this study examines the role of beliefs, 
orientations, and resources in the selection of grading and assessment systems. Assessing student 
learning is a core component of collegiate teaching and varies greatly by instructor, discipline, 
and institution type (Lipnevich et al., 2020). Variations of grading scales have been proven to 
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amplify racial or ethnic inequities in introductory STEM courses (Paul & Webb, 2022). 
Moreover, arbitrary depression of grading scales has contributed to poor student perceptions of 
STEM courses and decreased persistence in STEM majors (PCAST, 2012). While a large and 
growing body of research has indicated a need to move toward alternative learning 
environments, traditional teaching practices have been resistant to change (PCAST, 2012). We 
believe that understanding the current landscape of collegiate teaching will improve strategies for 
implementing alternative grading practices. To address these concerns, we sought to answer the 
question: What considerations do faculty make when selecting grading and assessment systems 
for their classes? 

Theoretical Framework 
This study utilizes a post-facto implementation of Schoenfeld’s goal-oriented decision-

making theory. At the core of this theory is the idea that “one’s decisions about what goals to 
pursue and how to pursue them, are made on the basis of one’s current resources, goals, and 
orientations” (Schoenfeld, 2011, p. 8). This theory is especially prevalent in “well practiced” 
domains, like teaching, where individuals are engaged in established patterns of behavior. 
Instructors enter the classroom with an array of knowledge and resources that may be 
conceptual, social, or material. These knowledge bases and resources are then called upon to 
achieve goals at the macro and micro level of classroom instruction. In this study, we rely upon 
Schoenfeld’s (2011) definition of goals as “something that an individual wants to achieve, even 
if simply in the service of other goals” (p. 20). In applying this theory to the study of college 
faculty, we seek to connect motivations for selecting grading and assessment systems to 
overarching goals for student learning. We rely solely on interviews for this study because 
assessment practices are generally not accessible to classroom observation (Speer et al., 2010). A 
comparative study of these interviews will provide insight on the rationale of faculty across the 
disciplines of math and physics. 

Methods 

Participants  
An invitation to participate in the study was sent to all tenured and tenure-track faculty in the 

math and physics departments at a public mid-sized research university in the Midwestern 
United States. Two math and two physics faculty volunteered for the study. Including graduate 
school experience, the faculty averaged 22 years of teaching. Expanding the study’s participant 
pool to include physics faculty provides greater context for drawing comparisons across and 
within disciplines.  

Data Collection 
The first author conducted in-person, 30–60-minute, semi-structured interviews (Browner, 

1988) with each faculty member in the summer of 2023. Zoom was used to audio record and 
auto-generate transcripts. Each interview was followed by a short-written survey to collect 
demographic information about the participants. All transcriptions were cleaned for accuracy and 
anonymity by the first author, before being shared with the second author for data analysis. 
Transcripts were labeled “M#” and “P#” to represent participants’ respective disciplines. The 
numbers indicate the order in which the interviews were collected.  

The interview protocol focused on the implementation of grading systems in small and large 
enrollment courses. For the purposes of the study, small enrollment courses were defined as 
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having 15 or less students and large enrollment courses were defined as having 150 or more 
students. To distinguish between the discussion of these courses in interviews, participants were 
asked to answer separate sets of questions about courses of each enrollment size. This section of 
the interview protocol included the following questions: 

1. How do you determine grades for a course with an enrollment of 15/150 students? 
a. Could you describe the percentile breakdown of those different graded tasks? 
b. Why have you chosen these percentile breakdowns? 
c. What course are you using as a point of reference? 

2. How long have you been using this grading system? 
a. What do you value about this system? 
b. Some past participants have said they value “ease” in their grading system. Is this 

something you consider? 
Other interview questions included follow-ups about enrollment size that were asked if 

participants did not distinguish between these courses in their initial response. The interview 
protocol concluded with questions concerning faculty’s consideration of alternative ways of 
determining a grade. When asked for the definition of “alternative” participants were told that 
“alternative” referred to systems different from their own.  

Data Analysis 
We employed generative coding (Otero & Harlow, 2009) to identify themes in participant’s 

responses. Together, both authors read the transcripts and highlighted text segments that 
characterized participants’ motivations for implementing grading and assessment systems within 
their classes. The highlighted segments were used to find emergent themes across participants. 
The first author then went through and compiled these motivations, generating a list of 17 items.  

Preliminary Results 
Our analysis found that faculty across the disciplines of math and physics were influenced by 

four dominant motivations: (a) grades reflect learning, (b) assumed maturity, (c) clear feedback, 
and (d) ease of grading. While these motivations were similar across faculty, their manifestations 
within individual faculty’s courses differed greatly by course content and enrollment size. Table 
1 summarizes these findings with examples from faculty interviews. We note that the 
motivations are not ordered hierarchically and were prevalent in all faculty’s discussion of 
grading and assessment systems.  

Table 1. Dominant motivations expressed by faculty when discussing grading and assessment systems. 

Motivation Definition Example  

Grades 
Reflect 
Learning 

Faculty believe grades 
should be an accurate 
reflection of student 
learning. 

Participant M2: So, if A is excellent, B is very good, C 
is average and D is just passing, then how can it be that 
a whole class gets just A's? I don't know what the 
purpose of grades are if everybody's excellent. How 
can everybody be above average? That makes no sense 
to me. 

Assumed 
Maturity 

Faculty assume 
students in upper 

Participant M1: Whereas for the higher-level class, it 
was like there are things that I'm not measuring exactly 
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division courses have 
developed more 
“mature” learning 
processes. 

like are you reading the textbook and, uh, like are you 
actively trying problems outside of the ones that I 
specifically asked you? And so yeah, I hope that 
there's some level of maturity that is reflected in the, 
uh, grading breakdown. 

Clear 
Feedback 

Faculty desire 
systems that allow for 
clear and timely 
feedback. 

Participant P2: Usually for [a] 20-minute exam, I use 
at least the same time, probably more, to just discuss 
the solutions. To discuss what are possible approaches 
to solve it and what were the difficulties and 
challenges and all these things. 

Ease of 
Grading 

Faculty rely on 
systems that simplify 
grading processes and 
optimize time spent 
grading. 

Participant P1: We have so few, uh, graduate teaching 
assistants that we've been forced, and some of us at 
least. I know that others, I commend them for the 
effort they put in to, you know, give direct feedback to 
students. But, um, some of us have resorted, you know, 
out of necessity, to an online homework system. 

 
Grades Reflect Learning reflects faculty’s desire for grading systems that accurately measure 

student learning. In our interviews, this perspective was captured with the question: “What does 
an ‘A’ grade represent in your class?” All participants expressed that an “A” student is someone 
who has a strong understanding of the course content and performs well in multiple graded 
categories. While the graded categories varied between courses, all participants emphasized the 
importance of grading systems that accounted for student performance on assessments and 
engagement in the learning process, e.g., completing and submitting homework on time. 

Assumed Maturity reflects instances in which faculty’s perception of student maturity 
influenced their grading system. The “maturity” referred to by faculty is regarding students' 
approach to the learning process. Across all participants, we found that the inclusion of graded 
categories for procedural tasks—pre- and post-lecture assignments, clicker questions, and 
reading quizzes—was primarily done in lower-division courses. Whereas in upper-division 
courses, grading systems consisted almost exclusively of homework and exams. We found that 
this was because faculty believed that lower-division students were in the early stages of 
developing strong study habits and needed incentives to engage in these learning processes. 

Clear Feedback reflects faculty’s concerns regarding clear and timely feedback processes. 
We found that participants used a variety of feedback systems in their courses from personalized 
written notes on assignments to whole-class discussions of exam solutions. Some participants 
emphasized the importance of “grade transparency,” e.g., always having overall course grades 
available to students through an online gradebook. All participants discussed difficulty with 
offering detailed feedback to students in large enrollment courses.  

Ease of Grading reflects faculty’s consideration of time spent grading when selecting 
systems for their courses. When asked to discuss their grading procedures, all participants 
commented on having a reliance on grading assistance for large enrollment courses. When 
graders and teaching assistants were not available, participants utilized online homework systems 
to provide students with quick and direct feedback. For small enrollment courses, we found that 
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faculty preferred to do all the grading because it gave them a better snapshot of student 
understanding. 

Discussion / Conclusion 
We initially approached this study with inductive analysis to determine whether broad 

themes would emerge in faculty’s discussion of grading and assessment systems. Our study 
found that faculty consider four dominant motivations when making these choices for their 
courses. We believe the discussion around these motivations could additionally provide insight 
into the goals faculty aim to accomplish in the classroom. Employing Schoenfeld’s goal-oriented 
decision-making theory, the motivations we found in our initial analysis can be mapped to 
overarching goals for student learning.  

An example goal could be, “Create Timely Feedback Systems.” This goal directly connects 
two of our previously identified motivations: Clear Feedback and Ease of Grading, (see Table 
1). By considering faculty’s beliefs, orientations, and resources, we can explain the stark 
differences between the implementation of grading and assessment systems in large and small 
enrollment courses. Faculty’s lack of material resources—graders and teaching assistants—has 
led to the use of online, auto-graded homework systems in large enrollment courses. Whereas in 
small enrollment courses, material resources played less of a role in faculty’s decision-making 
processes. 

A second example goal could be, “Balance Process and Product Grading Criteria.” This goal 
refers to faculty’s decision making in determining graded categories for their courses and makes 
use of one previously identified motivation, Assumed Maturity. Process criteria reflect student 
behavior and/or the procedural tasks students complete throughout the learning process 
(Lipnevich et al., 2020). Product criteria reflect student performance at a point in time, assessed 
by written and oral exams (Lipnevich et al., 2020). Past research suggests that the most important 
faculty beliefs are those that concern faculty’s perception of the causes of student behavior 
(Clark & Peterson, 1984). Our research found that faculty’s perception of student maturity 
resulted in variations between grading systems in lower and upper division courses. For example, 
all participants believed that active student engagement in the learning process could only be 
accomplished by incentivizing lower division students with points for completing procedural 
tasks. While in their upper division courses, there were few or no points awarded for these tasks 
because faculty believed students had developed more mature learning processes. 

As we continue to apply Schoenfeld’s theory to our preliminary findings, we will build a 
deeper understanding of how faculty’s beliefs, orientations, and resources shape their goals for 
student learning. These findings will shape the approach to wider implementations of alternative 
grading practices among tenured and tenure-track faculty. 

Questions for the Audience 
Is Schoenfeld’s goal-oriented decision-making theory an appropriate tool for understanding 

faculty motivations, or are there other theoretical frameworks that would provide greater 
explanatory power? 

We foresee multiple avenues for this research going forward. What next-step questions do 
you most want answered? 
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Conceptualizations of Equity in Mathematics Education Research: 2000-2022
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We present work in progress that addresses the question: How do researchers in mathematics
education define and operationalize the concept of equity in their work? Using a wide search of
articles published in mathematics education research journals over the 2000-2022 period, we
identified an initial sample of 47 empirical and theoretical articles, which was then reduced to
28 articles that operationalized or defined equity. In 17 of the 28 articles that included a
definition, we found that equity definitions encompassed mainly notions of fairness, access,
participation, and demanding mathematics, and we observed several references to bridging,
identity, agency, and power. We summarize the scholars’ rationales, purposes, and motivations
for addressing equity across the 28 articles and suggest that a more critical stance is needed in
the operationalization of a definition of equity.

Keywords: equity, mathematics education research, literature review, instruction

Addressing equity in mathematics classrooms has been a concern for mathematics education
researchers since the 1980s (Secada, 1989; Stanic, 1989) and for the RUME community at least
since 2018, when the following Equity Statement was issued:

The SIGMAA on RUME recognizes that equity issues are present and relevant in our
research and practice. The SIGMAA on RUME affirms that as an organization we are
committed to being critical and introspective about the ways that equity can be more
meaningfully integrated into our discipline (http://sigmaa.maa.org/rume/Site/About.html)
The statement addressed “ways in which equitable practice can be furthered in the context of

mathematics instruction” and “ways in which the SIGMAA on RUME aims to increasingly value
and cultivate research on issues of equity in undergraduate mathematics” issuing “calls of action
to the community to begin to remove or circumnavigate (…) barriers [to equity].” However, our
perusal of the literature yielded very few research mathematics education studies addressing
equity in undergraduate education and moreover, we found a multiplicity of definitions and in
some cases, studies without a definition, perhaps suggesting that there is a common
understanding of the construct. We believe that for advancing equity work through research,
understanding how the community defines equity is critical. Most of the information, however,
comes from work on K-12 contexts.

Prior to the 2000s, much work on equity was driven by significant differences in student
outcomes by student characteristics such as gender, race, ethnicity, and socio-economic (e.g., Lee
et al., 1997; Secada, 1995; Warren & Roseberry, 1995). The publication of the Principles and
Standards for School Mathematics by the National Council of Teachers of Mathematics (NCTM)

26th Annual Conference on Research in Undergraduate Mathematics Education 1191



in 2000 marked the first time in which equity was explicitly addressed as a principle1 for
teaching and learning in schools, paired with a notion of ambitious mathematics (Lampert, 2001)
that was expected to be made available to all students. From such work, we have learned that
equity is not equality (Secada, 1989) and that equity and social justice are intertwined terms. Yet,
to inform research that improves practice, the research community needs a definition that can be
operationalized, so that equitable teaching can be systematically studied. For this reason, we
engaged in a literature review process that would allow us to answer the following questions as
related to the US context: (1) What are the definitions or operationalizations of equity used in
articles published in mathematics education journals in the period 2000-2022? and (2) How do
researchers justify and motivate their equity work?

Methods
We searched for empirical or theoretical articles in peer-reviewed scholarly journals under

the assumption that such work would have been vetted by the mathematics education
community. The journals included: Cognition and Instruction; Educational Researcher;
Educational Studies in Mathematics; Journal for Research in Mathematics Education; Journal of
Mathematics Teacher Education; Journal of the Learning Sciences; Journal of Urban
Mathematics Education;Mathematical Thinking and Learning; Race Ethnicity and Education;
and Review of Educational Research. We chose 2000 as the starting year for the review, when
the Principles and Standards of School Mathematics (NCTM, 2000) were published. This was
necessary because most of the work on equity has been advanced with the K-12 context and has
been used to investigate tertiary contexts (e.g., Leyva et al. 2021).

We searched various databases (e.g., ERIC, ProQuest, PsychInfo) for articles that dealt with
equity and mathematics instruction (“equit*” AND “instruct*”, “equit*” AND “teach*”, and
“equit*” AND “classroom”; added “math*” for non-math specific journals). We only selected
articles that collected United States data. This was done to provide a common historical, cultural,
political, and social context (e.g., the legacy of slavery, the Civil Rights and women’s
movements, or immigration policies) for framing equity which is harder to assume for studies
conducted in other countries. The process of identifying the analytical sample involved two steps
(see Figure 1), screening (to eliminate articles that did not address equity) and focused reading
(to identify key elements in the article related to equity). Eight researchers were involved in the
process.

Figure 1. Article reviewing process. Note: Core: equity is central to the article. Peripheral: relevant topic for
contextualizing equity. Unrelated: no mention of equity beyond reference list.

1 Equity. Excellence in mathematics education requires equity—high expectations and strong support for all
students. (NCTM, 2000, p. iv)
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Preliminary Findings
The 28 articles included in this report were published in eight of the 10 journals chosen (see

Table 1). Of these, five were theoretical papers and 23 were empirical studies. Twelve of the 23
empirical studies targeted students at various levels from elementary school through
undergraduate students at university as the research population, eight on teachers, and three on
both. Of the 12 articles that target students, three focused on elementary grades, six on middle
school, six on high school mathematics, four combined data from middle school and high school,
and four on undergraduate mathematics. Five articles did not specify a grade level. Sample sizes
were relatively small: 1- 4 teachers for studies that focused on teachers and less than three
classes for studies that focused on students. Two studies of students had large samples (288 and
522); two studies of teachers had over 20 participants (23 and 39). The theoretical papers did not
specify a target population.

Table 1: Distribution of the 28 papers across the research journals

Journals # Articles
per Journal

Journal for Research in Mathematics Education, Journal of Urban Mathematics
Education

6

Mathematical Thinking and Learning, Race Ethnicity and Education 4
Educational Studies in Mathematics, Journal of Mathematics Teacher Education 3
Review of Educational Research, The Journal of the Learning Sciences 1

In what follows, we present our findings on the definitions and operationalizations of equity
and the rationales, motivations, and purposes for conducting equity research.

Definitions of Equity
Of the 28 articles included in this analysis, only 17 either defined or operationalized equity.

The earliest two pieces, by Cobb and Hodge (2002) and Gutiérrez (2002), proposed two distinct
conceptualizations of equity. Cobb and Hodge defined equity and diversity as correlated terms,
with diversity referring to the different students’ (in and out of school) practices that they
participate in and with equity referring to how, once the common practices and less common
practices are recognized, students can successfully access them, through mathematical reasoning
that has “clout” (Bruner, 2009). Gutiérrez (2002) proposed that equity can be recognized when
researchers can’t predict inequities (in outcomes or in achievement) by individual traits. Her
definition has three elements related to the practices enacted by teachers, students, and
mathematics to (1) develop proficiency in dominant mathematics; (2) be critical of math and its
role in society; and (3) improve the relationship between people, mathematics, and society to
erase inequity (that requires the cultivation of individual agency and the recognition of power)
(p. 174). These two definitions made references to mathematics tangentially, Cobb and Hodge in
terms of classroom practices and discourse and Gutiérrez in terms of “dominant” mathematics.

Esmonde (2009a, b) published two articles in 2009, both of which addressed equity. In her
conceptualization of equity, two key distinctions are made—first, that equity relates to fairness
(“a qualitative sense of fairness”, 2009b, p. 1010) and second, that equity and equality are not the
same. Esmonde used a definition of equity that refers to a fair distribution of opportunity to learn
and a fair distribution of opportunities to participate in ambitious mathematics. In the set of
articles we reviewed, this is the first time we observed an explicit reference to the kind of

26th Annual Conference on Research in Undergraduate Mathematics Education 1193



mathematical content and instruction that teachers should be striving to offer, embracing
students’ contributions, beyond a general description of dominant mathematics.

The definitions present in the 12 articles published after 2009 have elements that strongly
resonate with these four and in some cases advance the attention that researchers put on studying
equity in classrooms. There are several constant features; for example, references to access to
worthwhile, high level, or meaningful, rigorous, mathematics experiences and inquiry (e.g.,
Cross et al., 2012; Dunleavy, 2015; Felton-Koestler, 2019; Louie, 2018, Munter et al., 2019) or
that all students should be offered such practices (Cho et al., 2022; Cross et al., 2012; Dunleavy,
2015; Hand 2012). But there are also differences, for example defining equity as a process
(Gregson, 2013) with two components – first, giving students the opportunity to learn
mathematics content, its processes and norms, and second, supporting those who do have not had
access to those, in bridging their own cultural knowledge to get to the dominant one (e.g.,
Felton-Koestler, 2019; Lo & Ruef, 2020). The goal of this type of equity in mathematics is to
reduce social inequity. This definition resonates with Gutiérrez’s 2002 definition, but also with
her 2012 article that framed equity as learning to “play the game” to being able to “change the
game” (p. 11).

We observed other differences in how authors further specified the object of equity or how
equity was to be realized; for example, in terms of how students relate to each other in
classrooms and the recognizable actions that can lead to democratic learning communities
(Sengupta-Irving, 2014), recognizing “competent sense-makers” (Dunlevy, 2015, p. 62), and
acknowledging that racialized experiences can burden students when doing highly cognitive
demand work (Munter, 2019); these scholars address agency, power, and identity, even when this
is not explicitly stated. These definitions can be seen as influenced by Gutiérrez’s (2012) chapter
that defined equity along two axes, a dominant one that related access and achievement and a
critical one that related to identity and power. The influence of this piece is seen throughout
several of the articles, notably Mintos et al. (2019), who used this framing in their study of how
equity was taught in secondary teacher education programs.

One final element of the definitions from the later articles refers to how researchers and
teachers notice, become aware, or recognize equity or inequity, and indicate that such noticing is
fundamental to social justice work. We note that while all 17 articles made some reference to
fairness in access and opportunity to participate and learn, very few assumed a critical stance
regarding the role of mathematics in maintaining the status quo or addressed specific individual
identities. Almost all the articles emphasized that equity work should be for all (e.g., “broad
range of learners from dominant and nondominant ethnic, racial, and linguistic backgrounds in
rigorous mathematical inquiry”, Hand, 2012, p. 237) which erases the need to attend to identity.

Purpose, Motivations, and Rationale for Conducting Equity Research
In our analyses, we defined purpose as the objective of the article, specifically the questions

the authors wanted to answer or the argument they wanted to make; motivation as the reason why
authors identified the purpose, or the broader context that made the purpose worth pursuing; and
rationale as the authors’ reasons for why equity is worth researching; the rationale signals
macro-level aspects (e.g., society) whereas purpose and motivation are specific to the article.
Empirical studies and theoretical articles had different purposes. The most common purposes in
empirical studies related to analyzing teachers’ practices and implications for equity (e.g., Battey,
2013; Gregson, 2013), teachers’ learning about and understanding of equitable instructional
practices (e.g., Felton Koestler, 2019; Mintos et al., 2019), understanding what specific
curriculum or pedagogy works for whom (e.g., IBL for women, Ernest et al., 2019), and
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understanding the relationship between equity and how students work in groups (e.g., Esmonde,
2009a; Lo & Ruef, 2020). The most common purposes of theoretical pieces were to offer a new
perspective on equity research, for example that equity research needs a critical perspective
(Gutiérrez, 2002) or that equity is “a delusion” and antiblackness needs to be addressed (Martin,
2019). Motivations included (1) responding to or testing out a reform curriculum or pedagogy
(e.g., Lubienski, 2000; Johnson et al., 2020), (2) addressing gaps in understanding of teacher
practice and preparation (e.g., Gregson, 2013; Hunt et al., 2022), and (3) arguing that current
perspectives on equity are incomplete (Gutiérrez, 2002; Louie, 2018). The latter was present in
theoretical and empirical articles and includes motivations for countering a deficit-based lens
(e.g., Berry et al., 2014; Boaler, 2002b). Rationales included the unequal access to learning
mathematics and achievement gaps by social identity groups (race, gender, or SES). In this case,
the rationale for researching equity was that students need or should be able to participate and
succeed in mathematics, and that this is not currently happening. In contrast to unequal access,
Martin (2019) and Gutiérrez (2002) centered the field of mathematics, not the students, as the
rationale for why equity needs to be attended to. Gutiérrez (2002) noted that the field of
mathematics could benefit from perspectives from marginalized groups and Martin (2019)
pointed out that mathematics needs fundamental change to support the liberation of Black
learners. Though all the articles argued for change in some respect, Gutiérrez and Martin are
notable because they shifted attention to mathematics away from students’ success and reminded
researchers that students have agency in this process.

Discussion
Across the articles analyzed, we saw definitions and purposes that directly responded to, or

challenged, reform practices and definitions of equity in the wake of NCTM’s (2000) Principles
and Standards. In post-secondary education, the two studies that investigated equity did so by
identifying inequities (in performance, e.g., Johnson et al., 2020; in participation, Ernest &
Reinholz, 2019), so equity is only possible to identify when it does not occur. We recognize the
need for equity after inequity has been measured. Such approach is aligned with Gutierrez’s 2002
proposal that we will be able to say that equity is achieved when we can’t predict performance
based on identity traits. Our findings suggest that such a strong focus on responding to calls for
reform might prevent giving greater attention to taking a critical perspective on equity. The
scholars’ focus on the dominant axis of access and achievement (Gutierrez, 2012) may
unintentionally disengage with the critical access that requires attention to both identity and
power. Finally, we noted that the varied definitions are symptomatic of a field that has not
grappled with unifying forces to collectively investigate equity so that it can further inform
practice across contexts.
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DFW rates in first-year mathematics courses are a major concern for undergraduate 
institutions. In this study, we explored statistical trends in grades for students who repeat 
mathematics courses or transition to subsequent courses. We analyzed trends among final 
grades in courses from Intermediate Algebra through Calculus II over the past five years at a 
major midwestern metropolitan university. Our results show that students are statistically more 
likely to pass a class on their first attempt, and that DFW rates among students who repeat a 
course hover around 50% for subsequent repetitions of the same course. We also found that final 
grades are a strong predictor of grades in subsequent courses, with students who earn an A in 
the previous course being 3 and 4 times more likely to pass the subsequent course than students 
who earn a B or C, respectively. We conclude by discussing the implications of our results. 

Keywords: DFW rates, First-year mathematics courses, Course trajectories 

DFW rates in first-year mathematics courses are a concern for universities, four-year 
colleges, and community colleges alike. Many factors contribute to student success in a course, 
including past mathematical experiences and prior mathematical knowledge. In this preliminary 
study, we explore trends in student grades as students transition from prerequisite mathematics 
courses into subsequent courses along a standard course trajectory. In particular, we focus on a 
sequence of first-year courses ranging from Intermediate Algebra to Calculus II and analyze the 
relationship between students’ grades in prior courses and DFW rates in subsequent courses. 

Background 
Enrollment in first-year mathematics courses is increasing. The College Board of 

Mathematical Sciences reported that estimated enrollments increased by 21% for precollege 
level mathematics courses, by 16% for introductory level courses, and by 8% for calculus level 
courses between fall 2010 and fall 2015 at four-year institutions (Blair, Kirkman, & Maxwell, 
2018, p. 1). Over the same time period, Bressoud et al. (2015) found that DFW rates in Calculus 
1 courses ranged from 22% to 38% among two-year and four-year institutions in the USA. 
Notably, no systematic data collection has yet taken place to provide statistics on DFW rates in 
precollege level mathematics courses or introductory level mathematics courses at the college or 
university level in the United States. Yet, administrators at many institutions cite their college 
algebra courses as significant challenges to student retention (e.g., Callahan & Belcheir, 2017; 
Gordon, 2008).  

Success in a student’s first college mathematics course is especially important for retention 
and persistence. In one study, Callahan and Belcheir (2015) found that only 55% of students 
earning a D, F, or W in their first mathematics course were still enrolled in college one year later 
(p. 168). To ensure that students succeed in passing their first college mathematics course, 
appropriate placement is critical (Bressoud et al., 2015; Harrell & Lazari, 2020). In their report 
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on characteristics of successful calculus programs, Bressoud et al. (2015) highlighted the 
importance of effective placement procedures on student success and, in particular, the attention 
paid to students near the cutoff. It was found to be essential that students who were identified as 
“ready for calculus” but more at-risk than their peers, as well as students who did not place into 
calculus, were given special attention and placed into programs that suited their individual needs. 

Our work adds to the body of research on factors affecting success in first-year mathematics 
courses. Rather than focusing on a single course in isolation, we instead examine a sequence of 
courses that STEM-intending students typically take as they progress through lower-level 
undergraduate mathematics courses. While we acknowledge that student “success” in 
mathematics encompasses many variables beyond just a student’s final grade in the course, our 
preliminary work focuses on two primary research questions:  

1. How does a student’s grade in a prior course affect their likelihood of earning a 
passing grade in a subsequent course? 

2. For students who do not pass a course, what is their likelihood of passing the course 
in a repeated attempt?  

Methods 
For our study, we gathered institutional data for all undergraduate students enrolled in any 

mathematics course at a major midwestern metropolitan university from Fall 2018 to Spring 
2023, along with the enrollment records of any previous mathematics courses students had taken 
for a period of at least two years prior. Individual students were referenced within our dataset by 
anonymized identification numbers (pseudo-ID) along with the term, course, section, and 
registrar grade for all enrollments. 

The first step of our analysis was to take this list of student enrollments and use it to build a 
data structure which captured the variety of paths students may take when progressing through 
courses. To begin, we loaded the enrollment data into a relational database and cleaned entries to 
ensure that the three-tuple of pseudo-ID, course name, and term of enrollment was unique. This 
cleaning step made it possible to accurately account for students repeating courses by computing 
the instance number of each student’s enrollment in any given course. That is, for a student with 
a given pseudo-id enrolling into course X in term Y, we counted the number of times that this 
same student enrolled in course X in a term chronologically before term Y, then added 1. This 
yielded a natural way to find students taking a given course for the first, second, or nth time by 
searching for instance numbers of 1, 2, or n, respectively within those course enrollments and 
forms the basis for the analysis necessary to answer RQ2. 

We then used these data to create a course transition table to track the history of what 
mathematics courses a student had taken prior to any given enrollment by identifying pairs of 
prior and subsequent courses. This transition table forms the basis of the analysis of student 
grades in subsequent courses necessary to answer RQ1.  

The DFW rates we reference in our Results section are obtained by dividing the number of 
grades of D, F, W, and NC (No Credit) out of the total number of grades consisting of A, B, C, 
D, F, W, NC (No Credit) and CR (Credit). This excludes grades such as Incomplete or Audit 
which have no clear interpretation. Our analysis in this paper focuses on a sequence of courses 
typically taken by STEM-intending students within their first year or two of entering college: 
Intermediate Algebra, College Algebra, Pre-Calculus Algebra, Trigonometry, Precalculus, 
Calculus I, and Calculus II. 
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Results 
Effect of Grades in Prior Courses 

To analyze pass rates in subsequent courses, we first searched within the transition table for 
pairs of prior/subsequent courses associated with the sequence of STEM-intending courses 
described above. The data was then filtered to look only for cases where the student had passed 
(C- or above) the previous course within 24 months and was taking the subsequent course for the 
first time. Prior courses from the Fall 2018 semester onward were considered. The resulting 
DFW rates in subsequent courses are reported in the table below grouped by the grade the 
student achieved in the prior course. We group together +/- grades (i.e., earning an A means that 
a student earned an A+, A, or A- in the prior course). As an example, of the 2144 students who 
took Intermediate Algebra followed by College Algebra, students who earned an A in 
Intermediate Algebra went on to earn a grade of DFW or NC in College Algebra at a rate of 
13.29%. Row and column totals refer to specific course parings and grades, respectively. That is, 
31.11% of the 2144 students who took Intermediate Algebra followed by College Algebra 
received a grade of DFW or NC in College Algebra, whereas 12.64% represents the aggregate 
DFW rate of enrollments with a grade of A in the prior course. 

   
Table 1. DFW Rates in Subsequent Courses 

  Grade in Prior Course  
Sequence N A B C Total 
Int. Alg. → College Alg.  2144 13.29% 43.72% 66.47% 31.11% 
College Alg. →	Precalc. Alg. 679 3.30% 18.57% 37.14% 13.25% 
Precalc. Alg. →	Trig. 416 14.40% 36.67% 66.67% 25.72% 
Trig. → Calculus I 339 22.06% 50.74% 61.19% 41.30% 
Precalc. →	Calculus I 435 25.37% 58.22% 72.62% 45.52% 
Calculus I → Calculus II 936 7.99% 32.36% 43.18% 25.96% 
Totals 4949 12.64% 39.61% 56.29% 29.20% 

 
Looking over longer timescales, we can also see how DFW rates in courses compare with 

student grades in a prerequisite course several courses prior in the usual sequence. Table 2 
provides a few examples of these course sequences with intermediate courses omitted. It is 
evident that far fewer students progress through the entire sequence of these courses – especially 
in the groups with lower grades in prerequisite courses. As such, data entries for groups with 
fewer than 15 students are left blank.  

 
Table 2. DFW Rates for Sequential Courses with Further Separation. 

  Grade in Prior Course  
Sequence N A B C Total 

Int.  Alg. → Precalc. Alg.  285 5.53% 30.65% 45.83% 14.39% 
Precalc. Alg. →	Calculus I 261 34.24% 54.84% 66.67% 41.00% 
Trig. →	Calculus II 118 27.42% 36.59% 40.00% 32.20% 
Precalc. → Calculus II 159 22.34% 48.89% 55.00% 33.96% 
College Alg. →	Calculus II 83 29.85% 46.67%  32.53% 
Totals 906 21.78% 43.11% 50.67%       29.47%    
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Analysis of DFW Rates by Course Repetition 
Students taking courses from Fall 2018 through the Spring 2023 semester were grouped by 

their instance taking (or re-taking) given courses. The values reported in the Table 3 are 
presented in the form “DFW Rate (N),” where N is the total number of students taking the course 
for the nth time. As with the prior analysis, entries with fewer than 15 students are left blank to 
avoid reporting on exceptionally small populations. 

 
Table 3. DFW Rates for Students Retaking Courses 

Course 1st Instance 2nd Instance 3rd Instance 4th Instance 
Intermediate Algebra 32.06% (3656) 52.40% (521) 46.67% (60)  
College Algebra 30.32% (5301) 53.54% (693) 50.00% (148) 23.33% (30) 
Precalculus Algebra 16.81% (2046) 42.64% (197) 52.27% (44) 64.71% (17) 
Trigonometry 27.58% (689) 50.00% (106) 68.57% (35) 66.67% (18) 
Precalculus 19.58% (715) 41.67% (72)   
Calculus I 34.10% (2217) 46.51% (458) 53.77% (106) 62.86% (35) 
Total 28.78% (14624) 50.02% (2047) 52.22% (406) 52.83% (106) 
     

As is the case for the preceding analysis of moving from one course to the next, one 
limitation of the method employed here it that it is not possible to determine if a student took any 
other prerequisite courses between instances of retaking the course in question.   

Conclusions and Future Work 
Our findings have implications for instructors at all levels as well as for course conveners 

and departmental administration. Our results seem to confirm that grades in previous courses are 
a strong predictor of whether a student will pass a subsequent course. To an instructor of a 
subsequent course, our results suggest that particular attention should be paid to students who 
passed their previous course with a final letter grade of B or C, as these students are at roughly 
three- and four-times higher risk, respectively, of not passing their present course as compared 
with students who earned an A in their previous course on the basis of Table 1. To the instructor 
of a student’s prior course, our results underscore the importance of supporting and encouraging 
students to gain a deep understanding of what they are learning – and doing so the first time to 
avoid failing and repeating a course. It also brings into focus the reality that students leaving a 
given course with a grade in the C range have less than a 50/50 chance of passing their next math 
class on the first attempt. Preliminary results from future work confirm the fact that student 
grades decrease on average when students move between any of the course pairs detailed in our 
results section and emphasize the need to focus especially on STEM-intending students who 
begin the sequence in courses below Calculus. Instructors should consider how to incorporate 
specific interventions to better support these students to help them persist in their STEM majors. 

Our preliminary results also provide a method whereby particularly troublesome pairs of 
course transitions could be systematically identified and investigated further. In future work, we 
hope to strengthen this case for efficacy of grades in predicting outcomes with a more rigorous 
statistical analysis and expound further on some of the other aspects of student demographics 
which may factor into these results. It is further worth mentioning that some of the most 
“difficult” pairs of course transitions (viewed either in terms of DFW rate or an average decrease 
in grade) may not be responsible for the greatest numbers of DFW grades issued within a given 
department. Future work will aim to further quantify the numbers of students transitioning 
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between various course pairs with the aim of suggesting where limited resources to help students 
could be most effectively distributed. 

The results for students who end up having to repeat a class are stark where, in aggregate, 
students are 1.75 times less likely to pass a course when repeating for the second, third, or fourth 
time as compared to taking it for the first time. Some courses (e.g. Calculus I) exhibit a nearly 
linear increase in DFW rates with each subsequent retake (R2 = 0.9883) whereby a student is 
nearly 10% less likely to pass the course on each subsequent retake. 

This somewhat surprising statistic raises questions about why students who repeat a course 
may be less likely to pass it. On one hand, one might expect that retaking a course would confer 
certain advantages to students such as familiarity with the content of assessments and insight into 
what aspects of the material are most relevant, in addition to having recently seen the material. 
On the other hand, if the student was not successful on a first attempt, then it may be unlikely 
that they will succeed on a second attempt if the instruction is not significantly different. 
Furthermore, students who repeat a course may feel more confident than their peers due to 
having seen material before, and as a result, they may be less likely to regularly attend class or 
study as much as their classmates who are taking the course for the first time. 

Moreover, viewing DFW rates grouped by the instance in which a student is taking the 
course can provide a much more detailed picture than simply considering the aggregate DFW 
rate alone.  That is, it allows the assessment of how well a given course is performing for 
students who are seeing it for the first time as opposed to those that are repeating it.  

Another area of future work is investigating how students are distributed across sections of 
multi-section courses. Coordinators of larger courses should be aware that the mathematical 
background of students may not be comparable between different sections, and that the DFW 
rates alone may not give a complete picture of the success or failure of an instructor’s or team’s 
teaching; one must consider factors such as total enrollment across all sections, class sizes within 
individual sections, the mathematical backgrounds of the students enrolled, and other factors. 
This is especially important at any institution where faculty may have DFW rates included as 
part of their evaluation process.  

Some technical limitations of this analysis were expounded upon in the methodology and 
results section: most notably the inability to exclude intervening classes in many instances.  
While there is reason to believe that such events may be comparatively rare, we plan to 
undertake a more thorough study of this in future work and switch to a more robust method of 
recording student progress through courses that could account for these factors if warranted. 

Questions for the Audience 
• Are there researchers or practitioners at other institutions who are performing similar 

analyses? Have you identified similar groups of students who might need additional 
supports and what interventions have you studied or tried? 

• What are reasonable metrics to “assess” a course by? Is it useful to partition DFW rates by 
metrics like “instance re-taking a course” to better reflect course outcomes? What are the 
most representative DFW rates to consider? 

• What do our results say about prerequisite knowledge and coursework? How might we use 
our results to ensure students are on a successful trajectory of courses?  

• To help refine the range of factors which might affect students’ grades, we are interested in 
looking at other data such as ACT scores, high school courses, placement exams, 
etc.  What other factors would you recommend investigating more thoroughly?   
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Blending Office Hours into Scheduled Class Time in Gateway Math

Emily Braley Melo-Jean Yap
Johns Hopkins University Johns Hopkins University

A blended course model uses both classroom learning and online learning to create flexibility in
the weekly schedule for students. In this paper, we describe a blended course model and the
rationale for implementing it in Calculus I. We report on student responses to the model and the
behaviors it encouraged. The design of the blended course model created the opportunity for
office-hours-like interactions in scheduled class time to help reveal the hidden curriculum of
office hours. Two goals the model strived to achieve for students were (1) normalizing
help-seeking behaviors and (2) normalizing working with peers. Data collected through
questionnaires and focus group interviews suggest that the blended course model achieved these
goals and more.

Keywords: office hours, blended classroom

The term hidden curriculum was first introduced by Jackson (1968) to describe implied
social norms of classrooms and schools. Today we commonly refer to the hidden curriculum of
modern academic institutions as the norms, strategies, and expectations that students need to
navigate their learning and networking on college campuses. Office hours are a component of the
hidden curriculum; many teaching and learning centers reinforce the need for instructors and
teaching assistants to explain office hours (Using Office Hours Effectively, n.d.; CTEI, n.d.;
Office Hours/Helprooms, n.d.; CRTL, 2023) and invite and encourage students to attend. Jack
(2020) highlights that professors at elite institutions expect students to attend office hours to
make connections needed to request letters of recommendation, and to enhance their learning.
Jack states that some students are ready to tackle these interactions upon arrival at college, while
other students are less comfortable initiating these connections.

This paper describes a course model that created the opportunity for office-hours-like
interactions during scheduled class time and the rationale for implementing it in Calculus I. The
model uses both classroom learning and online learning to create flexibility mid-week for
students. There is some debate about whether such a course structure should be considered a
“partial-flip” (Lax, et al., 2017; Urquiza-Fuentes, 2020) or a “blended model” (Webster, et al.,
2020); and we settled on Johnson’s (2012) description of a “blended model” where students use
“class-time to discuss, apply and clarify” the content and interact with online course components.
The blended course model (BCM) described here was designed to provide accessibility to office
hours and (1) normalize help-seeking behavior and (2) normalize working with peers. Data
collected through questionnaires and focus group interviews support that the model achieved
these goals and more.

Rationale for the Blended Course Model
The blended course model used in gateway mathematics builds on a typical course

meeting structure of 3 class meetings per week in a large (n=150) lecture meeting with an
instructor, plus a small (n=24) recitation meeting with a team of graduate student and
undergraduate student teaching assistants (TAs). In the blended course model, interactive lectures
(using think-pair-share, polling and exit tickets) are delivered in person on Mondays and Fridays.
Recitation time (on Tuesday or Thursday) is used for an alternating schedule of group work,
quizzes, and review. The Wednesday class meeting is repurposed for an office-hours-like large
group meeting where instructors and TAs work together to facilitate the class. During this
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50-minute class, students are prompted to prioritize what they need to work on or study, and the
time is dedicated for students to do that work with opportunities to ask and answer questions.
This prioritization is intended to help the class, as a community, identify difficulties that are
arising in real-time and validate students’ need for support. In this blended course model (BCM),
the lecture content for the Wednesday classes is replaced by asynchronous video lectures created
by the instructional staff and published on the learning management system. The schedule is
depicted in Figure 1. Students watch the videos on their own time. The BCM pushes one hour of
lecture into unscheduled time and replaces one hour of scheduled contact time with high-impact
in-person office-hours-like interactions.

Figure 1. The weekly schedule in the blended course model.

The design goals of the BCM aimed to create access to office hours in scheduled class
time to address two key goals:

(1) Normalize help-seeking behaviors
(2) Normalize working with peers and provide a scheduled meeting time for peer meetings

Data Collection
Methods

This study aimed to build a case study of a blended course model and used a convergent
parallel mixed methods design in which a questionnaire and focus group interviews were used to
collect data. In convergent parallel design, both qualitative and quantitative data were collected
and analyzed to triangulate results (Creswell & Creswell, 2018).

This study was conducted at a private institution in the Mid-Atlantic region of the United
States. The institution is a “very high research university,” and we will refer to it as VHRU in
this paper.

Data Sources. I. Questionnaire: The questionnaire collected enrollment information,
demographic information (major, gender identity, racial/ethnic identities), and the option to
self-identify as a first-generation student, limited-income student, person with a disability,
international student, immigrant, etc. This paper will focus on student rankings and responses
about the instructional components of the course that contributed most to their learning.

Respondents were asked to rank instructional components according to what worked best
for them: blended course model, UPT (Undergraduate peer tutors) tutoring space, office hours
in-person, office hours via Zoom, supplemental instruction sessions, recitations with TAs and
UPTs, textbook, and in-class worksheets. Additionally, a five-point Likert scale portion asked the
level of agreement on questions related to comfort interacting with instructors, TAs and peers, as
well as feelings of support and workload.
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II. Focus Groups. Dr. Yap interviewed 11 focus groups; 4 in person with 23 participants
and 7 online via Zoom with 20 participants. The interviewer referenced trends in the
instructional component ranking and responses from the questionnaire in interviews and
encouraged participants to elaborate on their written responses.

Participants. In February 2023, first-year students from the 1,310-student incoming class
in Fall 2022 who were enrolled in Calculus I were identified as the population of interest. From
161 randomly selected students from the top, middle, and bottom thirds of the final exam grade
distributions, 43 students responded to the questionnaire; the response rate for recruitment was
26.71%. The 43 students participated in 11 focus groups. Participants came from a variety of
majors, with the most represented as Computer Science (23.26%), Mechanical Engineering
(16.28%), Pre-Major (16.28%), and Chemical and Biomolecular Engineering (13.95%). Just over
half, 51.16% of participants identified as female, while 48.84% of participants identified as male.

Results and Discussion
Overall class experience. In general, participants had a positive experience in Calculus I.

Think-pair-share, in-class activities and group projects contributed to participants studying with
their classmates (76.75% of participants) and forming meaningful connections with Calculus I
peers (88.37% of participants). One student reported that they “ended up becoming good friends
of [theirs].” They continued, “One of the TAs walked up to us and asked if Calculus I turned us
all into friends, and we said, ‘Yeah.’ We had fun.” 86.04% of participants felt encouraged by
their Calculus I professor, and 72.09% felt comfortable participating in class discussions.
Ranking Instructional Components. Students identified the two most helpful instructional
components to be the in-class worksheets and the blended course model (BCM). Students
described the worksheets as “very structured”, “easy to follow”, and “organized.” The in-class
worksheets average ranking was 2.72 out of 10 with a standard deviation of 1.76. The BCM’s
average ranking was 2.84 out of ten with a standard deviation of 1.90.

The BCM created access to Office Hours (OHs) with instructors and TAs in scheduled
class time. This addressed student feedback that OHs were not always scheduled conveniently
and students had inequitable access to the instructional staff. Comments, like the two below, state
explicitly that this was helpful for students and addressed issues with time-conflicts:

I really like the Wednesday sessions where you could come in and then ask
questions and I liked that it was the time of a class time because sometimes I
wouldn't be able to go to office hours because of schedule conflicts. So I really
liked starting the homework early and then coming up with questions that I
would ask on Wednesdays, and I felt like that was really helpful.

Well, because you have more than one class. All of those teachers have
different office hours. All of those TAs have different office hours in different
buildings. It sometimes you're just too tired to go… you can't go. Also, clubs,
organizations, the fact that you have to eat. It's kind of just the volley of being
a human being who has to take care of his or her body, which gets annoying.
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In the sections below we will discuss evidence that the BCM addressed the intended
design goals and provided flexibility for students. We will also comment on how students used
the asynchronous videos and opportunities for improvement.

Achieving the Blended Course Model Design Goals. The first goal of the OH-like session
was to normalize help-seeking behaviors. We wanted to make visible needing help from
instructional staff on homework, project work and quiz/exam preparation. This strategically
addressed previous student comments that some students are accustomed to working on their
own and not confident asking for help. These sessions helped reveal some of the hidden
curriculum of OH:

Having Wednesdays as an in-person office hours when I couldn't usually
attend [instructor]’s office hours was really nice for me because I would just
work on homework and then have her... At my disposal is kind of a bad way to
say it, but I would have her there to help me if I needed help, and that was
nice.

So a few of my friends and I would just take the homework problem sets to the
in-class office hours and just kind of work through them as we were sitting
there and if we ever just ran into a problems doing the homework, we can just
ask conceptual questions or even just ask the professor or the TAs to go over
the sample problems that we went over in class again. And that really helped
me shorten the amount of time I needed to put into studying.

The OH-like session normalized working together to do homework or study in the class,
which was the second goal the design hoped to address. It guaranteed scheduled time that
students could collaborate on homework or project work. This strategically addressed previous
complaints that scheduling group meetings outside of class time was a challenge for students:

… you could work on projects or do homework or something. So I ended up
not having to meet outside of class with my group other than once or twice,
because we got most of it done on Wednesdays.

And so on Wednesdays, I got together with my teammates and we worked on
the project sometimes… So it prevented me from procrastinating, I'll say, the
work session on Wednesday was most helpful.

Providing Flexibility and Support. Students reported that the BCM provided flexibility
that they appreciated. Students were comfortable navigating the digital learning tools embedded
in the model and liked the mixed mode of content delivery. Students reported that the
asynchronous videos in the BCM provided an opportunity to pace their learning:

I think the [BCM] was super helpful for me, especially first semester of
college, learning how to study, learning how to keep up in all your classes, just
having a little bit of flexibility in the middle of the week was super helpful.
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...it also allows me to go home, study on my own time, especially with those
videos, which I can pause, play, replay, pause, take notes, do whatever, and
then study on my own and be able to go to a class and ask about the things I
have trouble with and have more time dedicated to that.

I like the fact that I could [watch videos] on my own time and because the
concepts on the Wednesday videos were obscure, I liked having the ability to
rewind and look over them again.

Many students used the videos as a reference and review while studying for quizzes and exams:

The Wednesday videos… I would stay and watch the videos and they would be
more or less of add-ons to the lectures. So for some of the quizzes, I would go
back and watch some of the videos to review.

"Oh, there's these videos I can watch." …if I was struggling on a topic, I would
go to that video… So I used them as a textbook in a way or a resource.

A few participants felt that the videos were not well enough aligned with what happened in the
Monday and Friday lessons, but still reported watching and using the videos as part of the BCM:

When I started watching the hybrid videos, I was like, "These are off-topic." It
just didn't feel like it was super relatable to the other content. There's a gap
between what we were learning in class and what the videos were showing.

This is consistent with feedback from students about flipped-classrooms (Tague & Czocher,
2016) in other contexts. Messaging the planned cohesion of the asynchronous videos and the
interactive lectures on Mondays and Fridays is an area for reconsideration and improvement in
future implementations of the model.

Conclusions and Questions
In this blended course model, students are provided an office-hours-like learning environment
during scheduled class time. Students can work independently and collaboratively and at the
same time access help from instructors, TAs, UPTs, and classmates. Participants ranked the
blended model, with the in-class-office hour, as one of the most valuable course components that
contributed to their learning. This study has implications for math departments acknowledging
that the evolving student population expects easy access to instructional staff and flexibility in
their courses. This model helps reveal the hidden curriculum of office hours and makes
accessible the valuable resource of attending office hours weekly.
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The	Charles	A.	Dana	Center	worked	across	all	public	colleges	and	universities	in	Arkansas	through	a	
project	called	Strong	Start	to	Finish	(SStF)	Arkansas to support the implementation of corequisite 
support for underprepared students in mathematics and multiple mathematics pathways for all. 
Consistent with Reinholz, White, and Andrews’ (2021) call to more effectively ground change 
efforts in change theories,	the	Dana	Center	designed	its	innovation	using	a	change	theory-based	
theory	of	change. This	preliminary	report	describes	this	project’s	outcomes	and	how	the	projects’	
results	further	the	field’s	understanding	of	Rogers’	Diffusion	of	Innovations	theory,	one	of	the	change	
theories	on	which	the	project’s	theory	of	change	was	based.	

Keywords: Change Theory, Diffusion of Innovation, Corequisite Support, Multiple Mathematics 
Pathways, Higher Education 

Introduction 
STEM higher educational change is complex, multi-faceted, and a necessary constant to 

improve access, teaching and learning, and outcomes for diverse educational stakeholders. 
Although long-term research has documented innovation and outcomes for STEM projects 
emphasizing STEM higher educational change, fully scaled sustained change in these projects is 
less known. Furthermore, change efforts have rarely used change theory to directly inform their 
work, making it difficult to build knowledge across the field (Reinholz et al., 2021). 

Reinholz, White, and Andrews (2021) have called for change efforts to more effectively rely 
on theory by using both change theories and theories of change. Reinholz and Andrews (2020) 
defined a change theory as a broad framework of ideas that employs theoretical and empirical 
knowledge to explain some aspect of change. They defined a theory of change as project-specific 
and connected to evaluation; it explicitly promotes underlying assumptions about how and what 
change will occur in a defined project and then uses desired outcomes to guide project planning, 
implementation, and evaluation. A single change theory can support multiple components of a 
theory of change, and a single theory of change can draw from many change theories. The call 
by Reinholz, et. al. urged change efforts to create theories of change that are directly informed by 
change theories so that the results of projects can be used to build fieldwide knowledge.  

The Charles A. Dana Center at The University of Texas at Austin’s Mathematics Pathways 
Project (DCMP) is a national STEM higher educational change initiative that has employed a 
theory of change to create broad, deep, and sustainable change in undergraduate mathematics 
pathways. The Dana Center based the projects’ theory of change on four change theories and 
used the theory of change to design and implement this national change effort. In this 
preliminary research report, we will describe one element of this theory of change (the part based 
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Rogers’ (1983) Diffusion of Innovation Theory) and how the interventions based on this theory 
of change impacted state-, region-, and institution-level reform across Arkansas public colleges 
and universities. We will show how the results of this intervention can be used to inform 
thinking about the change theory on which it is partially based. We will investigate the research 
question: What can be learned about Rogers’ Diffusion of Innovation Theory for STEM higher 
educational change by looking at the results of the DCMP project in Arkansas. Future 
publication by the authors will address all four change theories used to create the DCMP theory 
of change.  

Theoretical Framework 

Change Theory 
The DCMP project drew on four change theories to build their theory of change (Ortiz & 

Cook, 2019). In this paper, we will focus on the aspects of the theory that utilized Rogers’ 
Diffusion of Innovation theory (DoI). In this section, we will discuss the aspects of Rogers’ 
(1983) theory that are relevant to the theory of change.  

Rogers described classifications of potential adopters of a new idea by how quickly they 
adopt innovation — a characteristic Rogers referred to as innovativeness. The quickest and 
slowest groups (innovators and laggards) are the smallest—estimated at 2.5% and 16% of the 
population respectively. The middle three groups (early adopters, early majority, and late 
majority) comprise the bulk of the population—estimated at 13.5%, 34%, and 34% of the 
population respectively. He characterized innovators as able to tolerate a high degree of 
uncertainty about an innovation at the time they adopt it. In contrast, even early adopters require 
higher amounts of legitimization to adopt a new idea. 

Rogers described two different structures of diffusion systems: systems in which innovations 
originate from experts or other authoritative sources and then spread, or do not spread, to 
potential users without alteration (centralized), and systems in which innovations are created by 
users and spread to other users who may adopt the innovation as is or may alter it to suit their 
circumstances (decentralized). He pointed out that decentralized systems are likely to create 
innovations that better fit with the needs of the users and that users are more likely to take 
ownership of the innovation – creating deeper and more sustainable change. However, he argued 
that a centralized aspect of a system can be important if users are not aware of a need for 
innovation or if there are larger centralized structures that need to be modified to enable the 
innovation to operate effectively in the larger system. 

Lastly, Rogers described how the nature of relationships between individuals in a social 
system impacts how innovations spread. When most communication in a system is between 
individuals that are similar in attributes such as beliefs and social status, etc. (homophilic 
communication), diffusion is hampered. This is because earlier adopters tend to have different 
beliefs, communication styles, economic status, and social status than later adopters. If there is 
little communication between people who are different (heterophilic communication), there will 
be no route for innovation to spread beyond the early adopters. 

DCMP Theory of Change 
Following Reinholz (2020), we organize our description of the DCMP theory of change by 

first discussing the context of the project, then the assumptions that connect the DCMP theory of 
change to DoI, then the intervention, and then indicators that were used to judge the success of 
the intervention and the validity of the change theory. 
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Context. Following a national call to action to modernize undergraduate mathematics, the 
state of Arkansas joined the Dana Center in 2015 in a multi-state initiative to lead a mathematics 
faculty task force to develop and publish recommendations that addressed barriers to equitable 
access and success in undergraduate mathematics. In 2019, the Dana Center expanded this work 
in Arkansas through the Strong Start to Finish Arkansas (SStF) initiative, which strategically 
coordinated three state-level agencies and two national advocacy organizations to collectively 
lead the work. The multi-prong leadership approach intentionally pulled together change agents 
within the state of Arkansas to help set the pace, process, and conditions for implementing and 
scaling mathematics pathways1 and corequisite supports2, creating a ‘coalition of the willing’ 
across state-, region-, and campus-level communities and actors. 

Assumptions. Three assumptions of the DCMP theory of change were drawn from Rogers’ 
DoI. The first is that high-profile legitimization of change is an important factor in the decision-
making of early and late majority adopter types. This assumption is based on the relative 
conservatism that Rogers associates with all adopters aside from innovators. If an innovation is 
to spread past the 2.5% of the population that are innovators, it will be helpful if said innovations 
have support from influential regional or national stakeholders. The second assumption of the 
DCMP theory of change drawn from Rogers’ DoI is that deep, broad, and sustainable scaling 
requires a combination of top-down and bottom-up approaches. This is based on Rogers’ 
description of the advantages and disadvantages of centralized and decentralized diffusion 
systems. The third assumption is that broad scaling requires initial change efforts to be 
distributed across the higher education ecosystem. This is based on Rogers’ contention that 
change does not diffuse well between different types of institutions (Rogers, 1983); an initial 
focus on any particular type of institution will limit the prospects for widespread dissemination.  

Intervention. To achieve the SStF project outcomes, guided by the DCMP theory of change 
and its underlying change theories, The Dana Center worked across state, region, and institution 
levels. At the state level, interventions focused on two separate policy areas: (1) support state-
level transfer and applicability work to expand implementation of Quantitative Literacy (QL) 
recommendations, and (2) establish a new task force on secondary-postsecondary mathematics 
alignment. At the region level, Dana Center interventions leveraged a previously established 
system of regional coordinators who strengthened their college and university partnerships. Each 
regional coordinator supported both breadth and depth across their assigned institutions through 
coordinated project activities that focused on transfer and applicability, secondary-postsecondary 
alignment, mathematics pathways and corequisite support implementation, local leadership 
capacity, and data-driven decision-making. Last, institution-level interventions focused on 
building depth of knowledge and leadership capacity within institutions. The Dana Center 
supported both individuals and institutions through multi-institution professional learning 
opportunities for mathematics faculty, academic advisors, and mid-level administrators. This 
professional development increased capacity in key roles, so practitioners were better positioned 
to lead and serve as models for others. 

 

1 Mathematics	pathways	are	a	mathematics	course	or	sequence	of	courses	that	students	take	to	meet	the	
requirements	of	their	programs	of	study.	This	concept	applies	to	college-ready	and	underprepared	students. 
2 Corequisite	support	refers	to	placing	students	who	have	been	designated	as	underprepared	directly	into	
college-level	courses	and	providing	necessary	additional	support	to	help	them	effectively	engage	with	the	
college-level	coursework. 
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Indicators. Broadly speaking, the SStF-identified indicator of success was that all Arkansas 
public institutions of higher education would implement at least two mathematics pathways and 
75% of underprepared students would be enrolled in corequisite support. For this analysis, we 
adopted three additional indicators to examine the extent to which the assumptions of the DCMP 
theory of change held. These were: (1) whether high-profile legitimization occurred and, if so, 
whether it was an important factor in the decision-making of potential adopters, (2) whether both 
top-down and bottom-up approaches were used and, if so, whether the combination impacted the 
depth, breadth, and sustainability of change, and (3) whether change efforts were distributed 
across a variety of institutions and if so did this enable broader scaling or is there evidence that 
heterophilic communication occurred, reducing the need for distributed initial change efforts. 

Methods 
Quantitative data was collected annually in 2020, 2021, and 2022. All public colleges and 

universities in Arkansas submitted a SStF Arkansas Data Collection Workbook which gathered 
data about degree-seeking students relevant to academic placement for mathematics, student 
enrollment and success in remedial mathematics in students’ first year of college, and student 
enrollment and success in introductory college-level mathematics in students’ first year of 
college.  

Qualitative data was collected through ten 45- to 60-minute conversations each with between 
one and eight faculty and/or administrators. Fourteen institutions were represented, seven two-
year and seven four-year institutions. Participating institutions were chosen in consultation with 
the regional coordinators to represent a range of experiences implementing mathematics 
pathways and corequisite support. Participants were asked about the extent to which multiple 
mathematics pathways and corequisite support had been implemented in their institutions, and 
about supportive and inhibiting factors in the implementation. Data addressing the second 
question was analyzed using thematic analysis (Braun & Clarke, 2006). 

Findings 
In order to assess the validity of the theory of change we must first look at whether change 

happened. The data suggests that mathematics pathways and corequisite support were 
implemented widely but, in many cases, not deeply. Every one of the fourteen institutions that 
participated in qualitative data collection offered corequisite support for college-level 
mathematics classes and had at least one pathway in addition to College Algebra, most 
commonly a quantitative literacy (QL) pathway. Statewide progress is being made in increasing 
enrollment in corequisite support and shifting student enrollment to multiple pathways. The 
statewide percentage of underprepared students enrolled in mathematics corequisite support 
increased from 55% in 2020 to 72% in 2022. The percentage of students in college algebra 
decreased from 69% in 2021 to 66% in 2022. It was lower in 2020 (59%) due to many 
community college students taking non-transferable classes – an issue that began to be addressed 
in 2021. Despite the prevalence of QL pathways and corequisite support, about half of the 
institutions represented in the conversations reported that the QL pathway was underutilized, and 
most institutions offered only corequisite support for QL classes but still required prerequisite 
developmental classes for some students taking College Algebra. Most of the institutions that 
participated in conversations reported that about 30% of students who required academic 
remediation for College Algebra took prerequisite classes. 

Participants in the conversations reported that high profile legitimization did occur and was 
an important factor in stakeholder decision making. This legitimization took a variety of forms 
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including (1) state education department expectations, (2) Dana Center advocacy, (3) example 
setting by peer institutions, and (4) the legitimacy of four-year institutions’ adoption of 
mathematics pathways and corequisite support for two-year institutions.  

Participants also reported advantages of the top-down, bottom-up intervention approach by 
the Dana Center. Advantages of the top-down approach were (1) the power of the state to push 
for change, (2) supportive accountability from the Dana Center in the form of data provision and 
check-ins from regional coordinators, (3) the ability of the Dana Center to spread information 
about the innovation including basic concepts, data that supported its feasibility, and technical 
assistance to support implementation, (4) logistical support from the Dana Center such as small 
amounts of funding and protected meeting time, and (5) the importance of four-year adoption in 
assuaging transfer concerns by two-year institutions. Advantages of the bottom-up aspects of the 
approach were (1) much of the persuading at the local level came from colleagues citing local 
data, and (2) local advocates could work out local issues such as strengthening communication 
between faculty and advisors, initiating curriculum review to establish need, creating course 
teams to support implementation, and navigating institutional politics. 

Finally, participants described the advantages of distributing change efforts across 
institutions with some qualifications. Working with a variety of institutions ensured that the top-
down aspects of the effort reached everyone. Furthermore, multi-institutional convenings 
enabled heterophilic communication. However, there is evidence that some heterophilic 
communication would have occurred in the absence of these convenings. Transfer issues require 
two-year institutions to pay close attention to what is happening in four-year institutions. It is 
unclear, however, whether an innovation that starts with two-year institutions would migrate to 
four-year schools.  

Discussion 
Thus, although SStF successfully supported change in Arkansas, its full-scale goals have not 

yet been completely realized. Multiple mathematics pathways and corequisite support have 
spread broadly in the state but could still be deeper within the institutions. The parts of its theory 
of change based on Rogers’ DoI theory (1983) were largely shown to be valid with some 
exception. High-level legitimization was, indeed, important as was the combination of the top-
down, bottom-up intervention design. It is less clear that initiating change across the institutional 
landscape was the only way to spread the innovations broadly. This suggests that Rogers’ 
characterization of most potential adopters as conservative and needing external legitimization 
has merit as does his description of the affordances and constraints of centralized and 
decentralized diffusion systems. It is less clear that his concern about the diffusion-preventing 
character of homophilic communication systems applies to higher education in Arkansas. More 
research will be needed to illuminate this last question. What is clear is that Reinholz, White, and 
Andrews’ (2021) call has merit. Creating a theory of change based on change theory(ies) and 
then building an intervention using the theory of change can enable a change effort to efficiently 
inform theory and provide usable information to the field about how change happens. 

Questions for the Audience 
1. What do you believe it means to have a change theory directly or rigorously inform a theory 

of change? 
2. Please give us feedback on our effort to inform change theory. 
3. What do you think of the call by Reinholz et al. for STEM higher education researchers and 

do you structure your change efforts in this way? 
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Confidence and Sense of Belonging: Undergraduate Mathematics  
Student Experiences with Calculus Support Course 

 
 Colin McGrane Chris Rasmussen 
 San Diego State University San Diego State University 

Studying student experiences in undergraduate mathematics education serves as a fundamental 
aspect of understanding how mathematics departments can best serve the most at-risk 
populations of students who are often harmed by racial and gender inequities present in student 
success rates in undergraduate mathematics courses. In this study, we focus on support courses 
for Precalculus and Calculus I, where students engage in frequent Supplemental Instruction (SI) 
sessions and an online course run by the university Math Equity Coordinator. In analysis of a 
mixed-methods approach consisting of interviews and a survey, we examine the impact of these 
supports on students' sense of belonging and confidence in mathematics. Preliminary results 
from survey analysis show that students in the support course report higher levels of belonging 
and confidence in mathematics. Furthermore, interviews highlight the importance of instructor 
mentorship in enhancing students' confidence and sense of belonging. 

Keywords: identity, belonging, calculus, student success 

Introductory undergraduate mathematics, particularly the study of Calculus, often functions 
as a filtering and access-controlling mechanism that either impedes students’ progress in STEM 
degrees or discourages them from continuing altogether (PCAST, 2012; Weston et al., 2019). A 
comprehensive examination conducted by Koch and Drake (2018) encompassing 36 higher 
education institutions throughout the U.S. revealed that a substantial 34.3% of students received 
a D, F, Withdraw, or Incomplete (DFWI) in Calculus. Even more unsettling were the statistics 
for Black or African American students and Hispanic or Latinx students, who faced even higher 
DFWI rates of 47.8% and 47.9% respectively. Furthermore, women are known to leave STEM 
fields 1.5 times more often than their male counterparts (Ellis et al., 2016). If the rightfully due 
pressure put on mathematics departments to close these racial and gender equity gaps is to be 
taken seriously, mathematics educators must dedicate time, money, and labor towards listening 
to student voices and understanding how we can support them through these historically difficult 
and harmful experiences. 

The large, Southwestern University (SWU) that is the setting for our study has not been 
immune to the sustained racial and gender equity gaps in Calculus success observed across the 
U.S. In response, we are implementing a 2-year holistic approach to closing equity gaps present 
in our precalculus through calculus courses. One of the arms of this multi-faceted approach was 
to create support courses for Precalculus and Calculus I. The unique features of these courses are 
the nature of instruction and student engagement in that students opt-in to a 1-unit course that 
requires frequent attendance to university-provided Supplemental Instruction (SI) sessions and 
regular engagement with an online Canvas course hub run by a coordinator for the Math Equity 
Initiative. We see this definition of support course as fitting somewhere between a corequisite 
course that takes place in a classroom with a dedicated instructor and the regularly offered SI 
sessions.  

In this preliminary report, we focus on the voices and experiences of students who opted-in 
to the new SI sessions in Precalculus and Calculus I through a mixed-methods study that utilizes 
semi-structured interviews and a comprehensive survey sent to all students enrolled in the 
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precalculus and calculus courses in the spring semester of 2023. These experiences include their 
perception of the inclusivity of teaching practices, their praise of and suggestions for 
improvement to the SI sessions, and the impact on their confidence, enjoyment, interest, and 
sense of belonging in mathematics. Focusing on the experiences of the students who enrolled in 
the support course, this study is guided by the following research question: How has enrollment 
in the support course impacted students’ sense of belonging in the math community and their 
confidence in mathematics courses? 

 
Relevant Literature and Theoretical Perspective  

Investigating the experiences of students in our courses requires an acknowledgment of the 
unique identities and voices they offer to our research. Understanding that student’s identities are 
potentially redefined and reshaped every day, we view identities as dynamically designed by a 
variety of factors and constantly in flux (Collinson, 2006). More specifically focused on their 
identities within a mathematics context, Martin (2012) defines mathematical identity as the ways 
that students enact their own identities as “doers” and “learners” of mathematics. We extend 
mathematical identity to include students’ self-reported interest, enjoyment, and confidence in 
mathematics. Since a sense of belonging is so closely tied with the inclusivity a student 
perceives, students’ multiple identities, including their mathematical identity, are intertwined 
with their sense of belonging in mathematics. We believe that with a focus on identity and sense 
of belonging in mathematics we may begin to understand one of the myriad reasons why in the 
U.S. roughly half of the students who pursue a degree in science, technology, engineering, or 
mathematics (STEM) never complete it (National Center for Education Statistics, 2018).  

Supplemental Instruction originated at the University of Missouri-Kansas City in 1973 and 
has since evolved into a widely adopted pedagogical approach practiced at over 1,500 education 
institutions across 29 countries. As explained by Arendale (1994), SI is designed to address 
historically challenging academic courses by providing free, voluntary sessions to all students. 
These sessions held several times throughout the week are led by SI Leaders, students who have 
previously excelled in the targeted course. The hallmark of SI is its collaborative nature, where 
students actively engage with course content and hone essential study skills. SI Leaders draw 
upon insights gained from attending all class lectures to facilitate active learning techniques, 
which include interactive board diagramming and group work.  

While active pedagogical strategies have been found to be effective for learning and 
narrowing opportunity gaps (Freeman et al., 2014; Theobald, 2020), research has also 
demonstrated that the situations that transpire in active learning classrooms put students at most 
risk for marginalizing and anxiety-producing experiences (Aguillon et al., 2020; Cooper et al., 
2018; Cooper & Brownell, 2018; Shah et al., 2020). Since our students experience a mostly 
traditional large lecture atmosphere when they meet with their instructors, we acknowledge that 
the effect of an active learning classroom only applies when students are in their twice-weekly 
discussion sections run by graduate teaching assistants and the SI sessions. It is important to note 
that the participants of our study experienced a variety of classroom atmospheres that all impact 
their overall experience in mathematics and more specifically their own sense of self as they 
interact, problem solve, and learn with groups of their peers. 

 
Methods 

SWU is a large, public 4-year HSI research university. The focus of this study are 26 students 
(gender and race/ethnicity shown in Table 1) who opted-in to enroll in the newly developed 
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Precalculus and Calculus I SI-based support course that also responded to a survey sent at the 
end of spring 2023 semester. Acknowledging our own identities of two cisgender, white, male 
researchers (one heterosexual and one gay) at this institution is important to note, because we 
aim to push back against and rectify the long history of the dominant race and gender performing 
studies that have often taken from underrepresented communities and not given back.  

Table 1. Students self-reported identity. This table shows a count of each gender present by race/ethnicity. 

Support Course Student Demographics 

Gender 
 
Man 
Woman 

Alaskan Native or 
Native American 

1 
0 

Black or African 
American 

1 
1 

Hispanic/  
Latinx 

7 
4 

Middle Eastern or 
North African 

1 
0 

East  
Asian 

1 
0 

White 
 
3 
2 

Three of these 26 students participated in a one-hour long, semi-structured individual 
interview that focused on a variety of topics related to their experiences in their current 
mathematics courses as well as their own histories of experiences with mathematics in general. 
Topics that were discussed included how their identity has impacted their learning of 
mathematics, how their confidence in their mathematics ability has changed, and the extent to 
which they have utilized university-offered support structures such as SI.  

In order to develop a broader sense of experiences across all precalculus and calculus 
courses, the survey we administered was an amalgamation of items built from subsets of two 
existing surveys. One of these surveys is the student postsecondary instructional practice survey 
(SPIPS-M), which specifically targets students’ interpretations of instructional practices, changes 
in attitudes towards learning and doing mathematics, and their perceptions of the climate in the 
classroom (Apkarian et al., 2019). Supplemental to the focus of this survey, the second survey 
developed by Brown and colleagues at Penn State University called the Inclusive Instructor 
Behaviors (IIB) survey was included to leverage student experience to determine various aspects 
of the perceived inclusivity of teaching behaviors and sense of belonging in mathematics.  
 

Results 
Comparing the 26 students who enrolled in the support course and the 700 students enrolled 

in Precalculus and Calculus I combined, the most notable statistical differences emerged among 
the questions that focus on a sense of belonging. In order to compare two independent groups 
with such variance in population size, a non-parametric statistical test called the Mann-Whitney 
U test was performed to determine effect size of agreement to a variety of statements. The 
resulting U statistic was then transformed into Cohen’s d, which is a real number between 0 and 
1 that has been stratified and defined by Cohen (1985) into categories of strength. An effect size 
less than 0.2 is “little-to-no effect”, between 0.2 and 0.5 is a “small effect”, between 0.5 and 0.7 
is a “medium effect”, and greater than 0.7 is a “large effect”.  

Students in the support course agreed with the statement, “I feel like I fit in” more than 
students who did not take the support course with an effect size of d=0.301 (p<0.001).  More 
specifically attending to their sense of belonging in mathematics, students in these students also 
agreed more with the statements, “I feel like I am part of the math community” and, “I consider 
myself a member of the math world” more than students who did not take the support course 
with effect sizes of d=0.246 (p<0.001) and d=0.242 (p<0.001) respectively. Furthermore, these 
students also agreed with the statements, “I feel a connection with the math community” and, “I 
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feel that I belong to the math community” more than students who did not take the support 
course with effect sizes of d=0.237 (p<0.001) and d=0.221 (p<0.001) respectively. Finally, 
students in the support course agreed with the statement “I feel valued” more than students who 
did not take the support course with an effect size of d=0.219 (p=0.002).  

Regarding students' confidence in their mathematical ability, students who enrolled in the 
support course overall were more confident entering the course. When prompted to consider their 
confidence at the beginning of the semester, students who enrolled in the support course agreed 
with the statement, “I am confident in my mathematics ability” more than students who did not 
enroll in the support course with an effect size of d=0.26 (p<0.001). However, students were 
actually not confident in their mathematics ability, so the difference between the groups can be 
translated as the students who enrolled in the support course disagreed less with the statement, “I 
am confident in my mathematics ability” than the students who were not enrolled with the 
support course. In terms of the Likert scale range on the survey, students who enrolled in the 
support course “slightly disagreed” on average while the students who did not enroll in the 
support course “disagreed”. This question was paired with a follow-up question that asked about 
their confidence in mathematics at the time of taking the survey, which was in the last 3 weeks of 
the semester. While both groups showed a statistically equivalent increase in confidence in 
mathematics ability between the beginning and end of the semester, the students who were 
enrolled in the support course felt a higher confidence overall.  

Acknowledging that responses to a survey do not provide a complete picture of students’ 
experiences and reasoning for their responses, three students interviewed near the end of the 
semester supplemented these findings with their own lived experience. The first student, Silvia, 
is an Italian female immigrant who went to primary and secondary schools in Italy before 
coming to SWU as a Biology major. She plans to attend medical school to become a doctor, with 
a passion for helping people. Before she attended SWU, she was not confident in her 
mathematics ability because of the teaching practices of her high school instructors. Specifically, 
she was made to feel that women do not belong in the mathematics community, which she 
attributed to a cultural difference between the old-time ways of her hometown and the liberal 
feeling of California. However, she speaks to how her confidence has changed since she came 
here: 

So I feel that I feel like more confident after taking this class. Probably in my math 
abilities. I work for the math department because I do like tutoring for college algebra. So 
I kind of start liking the math environment way more since I came here. So I think it has 
like changed my way to like see math and the fact that if I really understand I can like 
help other people to have success in the class.  
Another student interviewed named Santiago is a male Mexican immigrant with the goal of 

becoming a computer scientist. He is a first-generation college student whose parents completed 
schooling through primaria, which is equivalent to 6th grade in the U.S. Due to the teaching 
practices he experienced in secundaria and preparatoria, equivalent to 7-9th grade and 10-12th 
grade in the U.S. respectively, he felt at a disadvantage to his peers at SWU. Not only because of 
the way mathematics was taught, but also the general lack of resources he found there to support 
him in his educational goals. When he approached his lecture instructor during office hours to 
comment on how he felt, he expressed his relief in their response by claiming, “I entered the 
room with insecurity, and I left the room feeling more confident about myself.”  

The third student who was interviewed named Bianca is a female Mexican immigrant who is 
a first-generation college student with the goal of going to medical school. She also spoke to the 
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lack of resources she had going to school in Mexico, particularly in the teaching practices that 
left her feeling inadequately prepared for higher education. However, she felt that instruction at 
SWU changed her confidence in mathematics when she said, “the instructor knew how to 
explain it better. Like, I felt more confident here in college than in high school, with the 
problems.”  

All three of these students felt that their confidence was increased due to experiences with 
their instructors at SWU. While these experiences were not directly related to enrollment in the 
support course specifically, their experiences impacted their mathematical identities. Specific to 
the support course, Silvia and Santiago spoke to the canvas course instructor that served as a 
mentor to them and the benefits they gained from her being in that role. Silvia said,  

The professor that led the course, she was like, not like a math professor, but she worked 
more as a mentor… so [the support course] was more like a class to support myself, like 
360 degree, like a total thing. Not just within my math, but also like enrolling into 
classes, understanding what to do next, what classes to take. So, I think it was really 
good. 

Santiago also felt that a having this person in the role of a mentor was beneficial to his 
experience:  

So, it isn't like she's only the instructor of the class, but she's also like a huge mentor for 
me. And I think that it is very connected with the [support course] programs. So they've 
been super helpful. 
In summary, we have found that well-guided mentorship and engagement from 

instructors are two emergent themes from the interviews that stand to bring some reason 
as to why students in the support course had higher confidence and more sense of 
belonging in mathematics. Experiencing support from the SI instructors, their GTA’s and 
their course instructors that form the mathematical community on campus and one key 
instructor that assumed the role of a mentor for them made a powerful difference in their 
experience in introductory undergraduate mathematics courses. Future research and effort 
are necessary to understand how we may broaden our reach to the many students who are 
often failed by our institutional systems. However, one key take-away is that support 
courses like the one we implemented are a cost-effective way to provide much-needed 
support for our most at-risk students.  
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White Male Allies in STEM Diversity, Equity, and Inclusion Faculty Service 
 

Joanna G. Jauchen 
George Mason University 

I describe findings from a hermeneutic phenomenological study of white male engagement in 
DEI faculty service.  I frame the phenomenon of interest using the DEI Institutional Activism 
Framework, and questions of structure and agency through Strong Structuration Theory.  Two 
major findings are reported here.  First, that DEI service is disincentivized by contradictory 
institutional structures that devalue engagement.  Second, that individual faculty agentically 
engage in DEI service because of relational connections to students, but also to women they 
know personally (daughters, wives, friends, colleagues). These preliminary findings are based on 
semi-structured interviews with four STEM faculty.   

Keywords: diversity, equity, inclusion, structure, agency 

Women faculty of all races and male faculty of color are more likely to engage in STEM 
diversity, equity, and inclusion (DEI) initiatives than white men (Jimenez et al., 2019; National 
Science Foundation, 2019).1 This disproportionate engagement highlights how underrepresented 
faculty bear the burden of DEI service in STEM. This burden of equity service silos gender-
based DEI initiatives, prevents critical mass from forming, and stifles progress in STEM 
departments where white men still compose a majority of tenure-line faculty (Jauchen, 2023). 
White men could contribute to equity progress in STEM fields and relieve some of the burden of 
DEI service that men of color and women currently bear. The research question in this study was 
identified through a review of gender-based work in other institutional spaces and centers on the 
experiences of faculty who have historically not been involved in gender-based DEI service: 
white non-Latino men. The goal of the study is to understand how individual agency and 
institutional structures impact white non-Latino male engagement in gender-based DEI service. I 
hope to understand how current structures are impacting white male engagement in equity work 
and how individual white men can agentically contest those structures. I focus on one major 
research question: 

What can we understand about structure and agency in DEI service through the lived 
experiences of white men? 

Theoretical Framework 
Service is “the catchall name for everything that is neither teaching, research, nor 

scholarship" which is still generally relevant for promotion, tenure, or evaluation (Blackburn & 
Lawrence, 1995, p. 22).  DEI service is service faculty perform to encourage historically 
excluded students to enter, persist, and succeed in STEM fields. I have previously argued that 
DEI faculty service (the phenomenon of interest) is a form of institutional activism and can be 

 
1 The word “white,” when not understood to be complex, socially constructed, and changing over time, can 
homogenize all people who are perceived to be white into a singular, hegemonic group. Other aspects of identity 
(gender, sexuality, class, education, and nationality) impact how white identities are experienced and performed 
(Crenshaw, 1995). Similarly, I use the phrase “people of color” to refer to people who are not white or who are 
perceived to be non-white. This phrase was originally embraced as a phrase of collective solidarity for oppressed 
groups, but it too can essentialize and homogenize a large, diverse group of people. I intend it to be a descriptor of a 
small part of a multiple, changing identity that is impacted by intersecting systems of privilege and oppression.  
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framed through the DEI Institutional Activism Framework (Jauchen, 2023).  When engaging in 
DEI service, faculty develop a collective identify which includes: (1) Cognitive definitions 
regarding the environment, aims, and means of the engagement; (2) a network of relationships 
between individuals engaged; and (3) emotional investment in feeling a part of the engaged 
group (Jauchen, 2022, 2023; Melucci, 1996, p. 71).  This framework was instrumental in 
developing the interview protocol for the study. 

Questions of structure and agency are framed through Stones’ Theory of Strong Structuration 
(2005).  Based in Giddens’ Structuration theory, strong structuration asserts that all social 
interaction is made up of moments where agency and structure are intertwined, what Giddens 
called the “duality of structure.”  Under this duality, social interactions are a result of external 
structures, internally held structures, and human agency.  For this study, I focused on 
components of agency that included critical distance, motivations, hierarchy of purpose, horizon 
of action, and creativity.  To analyze structure, I focused on “conjuncturally-specific structures” 
which are internal structures based in the immediate context of action and on the agent’s position 
within that context (Stones, 2005, p. 85).  These internal structures are “memory traces” within 
agents that help agents understand how things are supposed to be done.  In this context, it is 
helpful to think of these conjuncturally-specific structures as participant understandings of “the 
way faculty are supposed to act” or “things faculty are supposed to do.” These include position-
practices (interdependencies, rights, and obligations), asymmetries of power, and social 
conditions (Cohen, 1989; Stones, 2005, p. 122). 

Methods 
Through a critical, intersectional, Western feminist lens, I utilize a structural-hermeneutic 

design based on Strong Structuration theory (Stones, 2005).  Van Manen’s (2016) approach to 
hermeneutic phenomenology guided me throughout.  I pursue understanding of structure and 
agency in DEI service through agent conduct analysis and agent context analysis. In agent 
conduct analysis, I intentionally orient myself to the agent’s knowledgeability, turning away 
(bridling away) from structures and toward the agent’s understanding of the space and their 
hermeneutic interpretation of the actions available to them. In context analysis, I intentionally 
orient myself to conjuncturally-specific structures. 

Through purposeful selection, I recruited seven white, non-Latino men who held PhDs in a 
STEM discipline, were employed full-time as faculty at primarily white institutions, and who 
self-described as being involved in DEI service.  Because I am interested in the hermeneutic 
meaning that white men attach to their own DEI service, self-selection is appropriate as it 
foregrounds the men’s perceptions of their commitment to DEI.  I intentionally obscured most 
information about the participants (discipline, institution type, rank) to protect participant 
confidentiality.  I interviewed men who worked at small regional public schools, large public 
schools, and small private schools.  Four STEM disciplines were represented. I report findings 
from the first four participants only (some analysis is ongoing).  

Each faculty participated in three 90-minute interviews following Seidman’s (2019) 
phenomenological interview protocol. All interviews were recorded, transcribed, and coded 
according to the Structuration framework. Once that coding was complete, I engaged in 
phenomenological reflection, rereading the coded sections, asking “What statement(s) or 
phrase(s) seem particularly essential or revealing about the aspect of agency/structure?” and 
“What is the main significance of this passage as related to agency/structure and DEI service?”  
These reflections were then organized into broad themes, of which I present two here.  
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Findings 

Contradictory Structures:  DEI Service as Everyone’s Work and No One’s Work 
While every participant said their university and departments wanted to support students and 

faculty from diverse backgrounds, they also told me that they understood DEI service was not 
highly valued in promotion and tenure.  Faculty felt free to engage in DEI service but also didn’t 
consider DEI service a formal part of their jobs.  For example, Daniel, who had earlier argued 
that DEI service was primarily faculty responsibility, also knew that he would face little negative 
feedback if he avoided DEI work completely:  

Most faculty are on board with diversifying our university and our fields. But I'm not 
getting any pressure from the department or from the university more broadly to do these 
sorts of things. I have been told many times, especially pre-tenure, that things like this are 
not a formal part of our expectations for you. You have specific things you need to do, 
like research. And if you need to say, “Sorry student, I can't do this for you,” that's okay. 
So, I have been told that and I hopefully have internalized it.  I could decide to ignore 
these issues completely. I’m not really gaining a whole lot by doing extra stuff on the 
diversity and equity inclusion front.2   

Similarly, John said that his university supported DEI service, but only cared about research 
during promotion and tenure evaluations: 

While institutions claim that they care about teaching, at tenure time they're only 
evaluating the research as long as you're not awful at the teaching, which is a mixed 
message, I would say, right? So, on paper, they'll tell you it’s teaching, research, and 
service, right? But I think the people evaluating the tenure case in the end are looking at 
research the most. 

While participants knew their DEI efforts counted broadly as service, they understood service to 
be undervalued by the university reward structure.  In fact, participants were warned not to spend 
too much time on DEI service because it could impact research productivity. 

These contradictions impacted the support universities provided participants.  Participants 
told me that they had not been trained to engage productively in DEI service. Here’s Josh 
speaking about how his graduate school training provided no information about DEI service. 

Outside of my certificate, I have no formal training in what to do. I took a bunch of 
STEM classes. They didn't really talk about any of this. So, it's really great to be able to 
go into Research Gate and enter in a few words and get like a view of literature.  

Similarly, Grant developed some of his understanding of DEI through his own personal reading.  
I mean, I mostly set up training at the different places where I worked. I was the one who 
was instituting those sorts of things. And they're really difficult because most people 
think they're just blow off: “What am I gonna learn from this?” I think all my theoretical 
learning and training and understanding about this happened when I was in graduate 
school. I read widely. I would read business books. I would read Dale Carnegies, How to 
Win Friends, influence people.  I did a lot of this stuff. 

When university training was offered, it was not STEM specific (as with Josh above), or not 
practical.  John expressed frustration because he attended DEI training to better understand race 

 
2 All quotes are phenomenological anecdotes (van Manen, 2016). Anecdotes are edited versions of participant 
quotes. In addition to extraneous words being omitted (um, and, like), participant stories were edited for clarity and 
space, but remain true to the themes identified by the phenomenological analysis.   
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and gender and those trainings morphed into conversations about how “people learn differently” 
that were not practical for his class size. 

On paper, I feel like the intention of some of these trainings was to discuss race and 
gender, but then they turn into this general, “Oh, well, the point is people learn 
differently.” So, I attended one that was focused on how to assess student thinking. So, 
you give a student an exam and they don't put the right thing on the piece of paper, and 
you don't give them any points. But did you really understand what they were thinking? 
And ideally, I'd sit down with the student and say, “Explain to me what you're thinking 
here” but I can't do that for 300 students. So that bothered me a little bit that we're 
learning these ideas and trying to think about these things, which was great. But at the 
same time, is this really practical? 

These contradictions in structures – that discursively the university voiced support for DEI 
initiatives, while functionally not providing resources is an indication of structural inequity. 

Agency Amid the Chaos: Navigating Contradictions 
In spite of these contradictory structures, participants cultivated a commitment to DEI 

service. While all participants described their engagement to the belief that DEI service was “the 
right thing to do,” they also were motivated to engage in DEI service by relational commitments 
they held toward their students and/or toward women they knew personally (wives, daughters, 
friends, colleagues).  For example, Daniel described a deeply held ethical commitment to know 
students as individuals and to communicate their inherent value as humans: 

I talked about this once with a woman who had worked with college students for a long 
time. She said that students would tell her all the time that “I just don't know if anyone at 
this university cares about me for myself and not me for my ability to do X, Y, or Z.” 
That really struck me.  I try to communicate to students that their performance in my 
class is not a make-or-break moment for who you are as a person or for your worth. Their 
value to the university community is not just about their ability to do well in specific 
classes. It's not at all about what they're able to do or not do, or what they're able to 
contribute or not contribute. And I see that belief as very much in opposition to a lot of 
things in the academy.  

Josh was motivated to pursue grant funding for a DEI initiative because of his relational 
commitment as a dad to two daughters: 

So, I remember thinking, my youngest daughter was expressing interest in going into 
video game design or something like that. And I remember thinking like, “This grant 
wouldn’t impact her life specifically, but what kind of environment would I want her to 
be in, or how could she be best supported?” Then I had this real desire to do that for our 
students: think of them like they are someone's daughters. Someone else feels this way 
about their daughter. I can care about them too.  

These relational connections motivated participants to agentically engage in DEI service, 
even in the midst of contradictory messages from the university.  In addition, participants 
told me they learned a lot about women as a result of these relationships.  Here is Josh: 

I was talking to a fellow soccer dad. We played sports growing up, so we've been 
coached. We know about the culture and how it works, at least on the men's side. I 
learned very quickly the way we were coached as kids does not work at all on young 
girls’ teams. Everyone that coaches girls every day understands this phenomenon either 
going in or right away. They don't question it. They just treat these groups a little bit 
differently. Still trying to promote the same skills. Both groups are equally good skill 
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wise. But then it's weird when you get to an academic setting, it's not really as accepted. 
It's like if you say something like that, the response is “We'll just treat everyone equally 
and kinda move on.” I don't really understand that now, looking back on it.  

And Grant, despite having committed a lot of time to understanding race and gender, told me 
that he learned so much when he met his partner, a Black woman.   

When I met my partner and I got to know her girls and I started raising her girls, I learned 
so much more about women of color, about all those extra things that I never had to think 
about growing up. And I was very sympathetic to it, but I mean, it was just like little 
dumb things. Like we'd be in a grocery store, and she'd be at the counter, and then I'd 
walk up and afterwards she said, “Did you notice the way the cashier’s whole demeanor 
changed when you walked up to the counter? That's white versus black.” But it's hard for 
people to really appreciate if they haven't experienced it. 

Discussion 
Universities have established a system that disincentivizes faculty from participating in DEI 

service while also discursively positioning diversity as a common good.  DEI work is structured 
as an optional, individual pursuit. Individual faculty can engage, but it is not in their interest to 
do so.  In fact, it is explicitly against their interest as an individual, working in a system that 
disincentivizes DEI service.  This establishes a structure under which faculty are encouraged to 
engage in either/or thinking about their time – that they can do DEI work or work on their 
research. Since the tenure clock is ticking, the research part of this is considered urgent with DEI 
goals falling to the wayside. But faculty rarely make decisions based purely on university 
reward structure.  Faculty weave together a sense of who they are, what they “should do,” 
through their hermeneutic interpretations of their DEI engagement.  In spite of little support from 
universities, men relied on personal relationships with women to develop understanding of DEI 
service and to motivate their engagement.  This weaving is an agentic practice itself, of course.  
But it also creates new structures that guide future action, resist harmful university 
contradictions, and support students who have historically been marginalized. This early study 
raises many more questions about white male DEI engagement, but also supports so much of the 
research based on the experiences of marginalized faculty.   

Positionality 
I am a white, queer, cisgender woman (BS/MS Mathematics), currently teaching 

mathematics at George Mason University, a public, four-year university. I am part of a 
community of STEM faculty engaged in DEI service.  I study DEI service through the lens of 
institutional activism, hoping to understand who is involved in DEI work in STEM, who is not 
involved, and how universities can strategically increase faculty engagement in DEI while 
retaining, valuing, and centering the work that underrepresented faculty have been doing.  
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Linear Algebra Students’ Reasoning with Compositions of Linear Transformations 
 

 Lorna Headrick Michelle Zandieh 
 Arizona State University Arizona State University 

We report on preliminary findings from a study of the ways in which linear algebra students used 
function composition to describe the result of applying two linear transformations, defined using 
symbolic vector notation, to a graphical region. Our current results from even a small set of data 
suggest that the students engage in function composition in a variety of ways. These results 
suggest areas for future exploration regarding how students engage in these forms of 
composition with linear transformations, and how their conceptualizations of individual 
transformations inform their understandings of the composition. 

Linear transformation is an important idea within linear algebra. Furthermore, several areas 
of linear algebra rely on the idea of composing transformations, particularly in relation to 
multiplying matrices. These include the invertible matrix theorem (e.g., Wawro, 2014), and the 
diagonalization equation (e.g., Zandieh, Wawro, et al., 2017). Currently a few studies have 
investigated students’ understandings of linear transformations, a small subset of which have 
included composition as one of the focal ideas (e.g., Bagley et al., 2015). Thus, a study of how 
linear algebra students conceptualize compositions of linear transformations as a form of 
function composition could have useful implications for the teaching and learning of linear 
algebra. This paper reports on our initial findings from pursuing this line of research. 

Background and Literature Review 
A large body of research has investigated students’ understandings of function (early 

examples include Breidenbach et al., 1992; Carlson, 1998; Sfard, 1992). In contrast, few studies 
have had an explicit focus on function composition (e.g., Bagley et al., 2015; Bowling, 2014; 
Chen et al., 2023; Engelke et al., 2005; Headrick, 2023a; Kimani, 2008; Modabbernia et al., 
2023). Most of these studies have focused on high-school or early college students (Bagley et al., 
2015 being an exception). Furthermore, these studies have mainly used students’ reasoning in the 
context of function composition to draw conclusions about their understandings of function. 
Some research has revealed evidence that students’ reasoning with function composition extends 
beyond their reasoning with individual functions, suggesting a need for research that focuses on 
what is unique and important about students’ reasoning with function composition specifically 
(e.g., Headrick, 2023a; Bowling, 2014). 

Function composition has hardly been studied in linear algebra students’ applications of 
linear transformations. A few studies have investigated students’ understandings of linear 
transformations as functions (e.g., Andrews-Larson et al., 2017; Bagley et al., 2015; Oktaç, 
2019; Turgut, 2019; Zandieh, Ellis, et al., 2017). One such study with a focus on composition of 
transformations (Bagley et al., 2015) found that students constructed the idea of an identity 
transformation as a “do-nothing function” and composing a transformation with its inverse as 
“doing” and “undoing.” Our study will add to this research by investigating the reasoning linear 
algebra students use to describe the result of composing two distinct linear transformations. 

Theoretical Framework 
The theoretical framework currently guiding our data analysis in this study has two 

components. The first and primary component, which we refer to as function composition 
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reasoning, is intended to explain students’ reasoning unique to function composition specifically, 
accounting for ways students conceptualize multiple linear transformations and consider the 
result of applying them in sequence or in some other combination (Headrick, 2023b). The second 
component, called clusters of metaphorical expressions, focuses on the language students use to 
describe how they imagine individual transformations occurring (Zandieh, Ellis, et al., 2017). 

Function Composition Reasoning 
By function composition reasoning, we refer not only to previously described 

conceptualizations of function composition in research (e.g., Ayers et al., 1988; Breidenbach et 
al., 1992), but also other forms of reasoning students use to combine or apply multiple functions 
in response to a situation. Reviewing prior research led to identifying four distinct types of 
function composition reasoning high school and early college students engage in (Headrick, 
2023b). Our current data suggests that these four types could also explain linear algebra students’ 
reasoning with compositions of transformations. An example of each type of reasoning from our 
data is presented in the preliminary results. 

The first type, modifying a function with another function (in short, modifying), involves 
conceptualizing a specific transformation and subsequently applying small tweaks or changes to 
this transformation via another, modifying transformation. The second type, applying an 
operation on two functions (in short, operation), involves conceptualizing multiple 
transformations individually, and subsequently imagining the result of applying all of them 
together. The third type, chaining input/output relationships, involves taking some starting point 
(or input), applying one transformation to it, producing a particular result (or output), applying 
another transformation to the output of the first transformation, producing another output, and so 
forth. The fourth type, chaining relationships between variables, is an application of the third 
type in which the ‘input’ and ‘output’ of each transformation being composed is a variable. 

Clusters of Metaphorical Expressions 
Zandieh, Ellis, and Rasmussen (2017) presented five types of metaphorical expressions they 

found students to use when reasoning with linear transformations. Our current data suggests that 
students used these metaphors when composing transformations. The first, input/output, involves 
a transformation taking in or accepting some initial input, and giving some output in return. The 
second, morphing, involves an entity changing from one form to another through the 
transformation. The third, machine, involves the transformation doing something or acting on an 
initial entity to produce a result. The fourth, traveling, involves an entity moving from one 
location to another through the transformation. The fifth, mapping, involves an assignment of a 
one entity or value to another through some rule of correspondence. 

Research Question 
In light of existing research, we consider the question: In what ways do linear algebra 

students use function composition reasoning when composing two vector-defined linear 
transformations in a graphical context? 

Method 

Data Collection 
The first author conducted one-on-one task-based clinical interviews with six students.  The 

students had recently finished a Linear Algebra course taught by the second author and in which 
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the first author served as a teaching assistant, at a large, public university in the United States. 
The Linear Algebra course was designed from a research-based curriculum (Wawro et al., 2013). 
The interviews were audio and video-recorded, and all written work was retained for additional 
evidence of the students’ thinking.  

Each task involved describing the result of applying a transformation to a 1-unit by 1-unit 
square region in the standard Cartesian plane, with its bottom-left vertex at the origin. Each task 
was structured identically with a three-fold structure: (i) predicting the result of applying a 
particular transformation, (ii) explaining the role of the notation used in the task to define the 
transformation in making the prediction, and (iii) sketching the transformed region, which for 
some (but not all) students, involved more precise calculations for determining points in the 
transformed region. Students applied these prompts to a single transformation T, another single 
transformation U, and the results of composing T and U: T(U(original square)), and U(T(original 
square)). Transformations in the tasks were defined using two different notations: vector 
notation, and matrix notation (different transformations were defined for each notation). Our 
preliminary results are from compositions of transformations T and U from the vector notation 
tasks.  

Data Analysis 
Since there are few prior studies on how students make sense of compositions of linear 

transformations, we began with an open-ended analysis in which we examined the video data to 
determine what themes might emerge from the students’ reasoning. Upon further examination, 
we determined that existing frameworks for function composition reasoning (Headrick, 2023b) 
and for students’ reasoning with transformations as clusters of metaphorical expressions 
(Zandieh, Ellis, et al., 2017) could enable us to develop a useful coding scheme. 

Preliminary Results 
In this section we present three distinct examples from our data to illustrate how the four 

types of function composition reasoning (underlined and italicized) appear to have emerged so 
far. Within each of these examples, the students appeared to use at least one cluster of 
metaphorical expressions (underlined). These examples suggest that linear algebra students could 
imagine composing linear transformations from a single problem context in a variety of ways. 
The data presented in this section are from students’ predictions of how a composition of two 

transformations, defined as T ቀቂ
𝑥
𝑦ቃቁ = 2𝑥𝑦 ൨ and Uቀቂ

𝑥
𝑦ቃቁ = 2𝑥 + 𝑦

𝑦 ൨, will transform a 1-unit by 

1-unit square region drawn in the standard Cartesian plane with its bottom-left vertex at (0, 0). 

Luna: Chaining Input/Output Relationships with Input/Output Transformation Metaphor 
To consider the potential result of T(U(original square)), Luna evaluated the vector-

components definition of U, then T at the original square’s top-right vertex: 1, 1.  
Luna: Yeah, the T, U. Then, yeah, it would be--you would use the U which would turn it--the 

1, 1 into 3, 1 and then you plug 3, 1 into T, which would give you 6, 1… 
Luna described first applying U to the point, getting particular coordinates as a result, and 

then applying T to the resulting coordinates, suggesting she was chaining input/output 
relationships. She appeared to use the input/output metaphor when describing how she would 
apply individual transformations (“then you plug 3, 1 into T, which would give you…”), and 
perhaps a morphing metaphor (“turn it—the 1, 1 into 3, 1”). 
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James: Modifying and Operation Function Composition Reasoning with Morphing 
James appeared to focus on describing the entire square as a completed shape. When initially 

describing his prediction for the result of T(U(original square)), James said, 
James: So if I do U on the original square that's going to turn it into the--that parallelogram 

that I--I drew. But if I do the T after that, that's just gonna stretch that parallelogram twice 
its x-value. So if I would just like to take that side and just pull it ‘til it's twice it's x-
value, I think that's what would--oh, wait, is that what would happen? 'Cause that 2 
(pauses) Oo, it's also italicizing it further. 

After further consideration, James concluded that: 
James: …It basically doubles the size, but it also becomes twice as italicized. 
James’ overarching reasoning, including a description of applying U “to the original square”, 

producing a result (“that parallelogram”), and applying T to the result (“if I do the T after that”) 
suggest he imagined the composition as a chain of input/output relationships. He appeared to 
engage in modifying reasoning when he initially predicted the result of T(U(original square)). He 
began by focusing on the parallelogram he described as resulting from applying U to the original 
square (“that parallelogram I drew”). Then, he described how applying T would change the 
shape of the parallelogram (“stretch…twice its x-value”; “italicizing it further”). Thus, when 
forming his initial prediction, James appeared to think of applying U as the emphasis and 
applying T as tweaking the results of applying U. However, when drawing a final conclusion 
about the transformed region, James also appeared to put greater emphasis on how T as an 
individual transformation would transform the parallelogram resulting from applying U to the 
square (“doubles the size”; “twice as italicized”), suggesting potential operation reasoning.  

Throughout his description, James’ language suggests he imagined a region of interest 
changing from one shape to another through the transformations (“turn...into”; “stretch”; 
“italicizing”; etc.). Thus, James appeared to use predominantly morphing metaphors. 

Olivia: All Four Types of Function Composition Reasoning with Machine and Morphing 
Olivia seemed to imagine applying transformations to a collection of points that she said 

comprised the square. She illustrated this idea by using vector notation to denote the points being 
transformed (later she said, “x, y is really just the same as the whole bunch of points that make 
up our square”). Olivia’s orientation to the task and written work (Figure 1) are given below.  

Olivia: So T of U of--we're gonna call it x y, 'cause the original square freaked me out. So 
that means U is gonna transform x y first, and then T will do it. 

 
Figure 1. Olivia’s Illustration of Applying U, then T to a Set of Points in the Cartesian Plane 

Olivia’s initial description of applying U, then T to the set of points suggests she imagined a 
chain of input/output relationships. When predicting the result of T(U(original square)) in more 
detail, she drew diagrams for the individual result of applying each transformation to the square 
and the combined result of applying both (see Figure 2). Meanwhile, she said, 

Olivia: So this is our whatever x y is we call the original shape. This is my square. U took the 
square and made it like a parallelogram. That's what U did. And if we remember what T 
did, T took it and made it like, boop, it stretched it. So then, T would take this U thing, 
and stretch that to be like twice as long… 
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Figure 2. Olivia’s Diagrams to Illustrate (left to right) the Original Square as a Set of Points, Applying U to the 

Square, Applying T to the Square, and Applying U, then T to the Square 

Olivia appeared to imagine both U and T as having some individual effect on the square and 
T(U(original square)) as applying a combination of their individual effects (suggesting operation 
reasoning). There is also subtle evidence of her engaging in modifying when she described how T 
would change the result of U (“take this U thing, and stretch that…”). When asked what would 
happen to the corner points of the square “when you do T of U”, Olivia described the 
transformation affecting the x-coordinates of multiple points. This reasoning, along with her 
earlier references to the square as a set of points suggests Olivia conceptualized T(U(original 
square)) as a chain of relationships between variables. 

Olivia: …you stretch everything, all the x-coordinates by 2. So I guess that would include 
these, like, these points [points to the edges of parallelogram for T(U(original square))]. 
Their x-coordinates have to get shifted by 2 too, so then the diagonals would have to. 

Throughout her description, Olivia used machine metaphors, describing transformations as 
doing particular actions to points or figures (“U took…and made it”; “U did”; ect.), and 
morphing metaphors (“made it…a parallelogram”; stretched it; etc.). 

Discussion 
All three students in the results presented above appeared to use chaining of input/output 

relationships in some form. They all described some starting shape or value, applying the inner 
transformation to that starting shape or value to produce a result, and then applying the outer 
transformation to the result of applying the inner transformation. The pervasiveness of this 
reasoning in the data thus far could be partly due to the nature of the tasks posed; the two 
transformations were pre-defined and the task prompts involved the notation T(U(original 
square)) and U(T(original square)). This is an area for further exploration.  

On the other hand, each student described the chain of input/output relationships they 
appeared to conceptualize quite differently. Chaining input/output relationships as a form of 
function composition reasoning was most prominent for Luna, and her reasoning with each 
individual transformations appeared to be largely connected to input/output metaphors. James’ 
focus on transforming entire shapes and morphing seemed to naturally give rise to his 
modification reasoning. Olivia’s focus on transformations as machines performing actions on a 
set of points seemed to inform her operation reasoning (i.e., first describing how each 
transformation would act on points individually and then constructing the composition), and 
chaining relationships between variables (i.e., describing how multiple points were transformed). 
Our results thus far lead us to consider the following questions: (a) What contexts for linear 
transformation problems might lead to specific types of function composition reasoning; and (b) 
How might different types of function composition reasoning with linear transformations support 
students in studying related ideas in linear algebra, such as inverses or diagonalization? 
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Assessing Student Learning Experiences in a Corequisite Calculus Course 
 

 Amelia Stone-Johnstone Cherie Ichinose Adam Glesser 
 CSU Fullerton CSU Fullerton CSU Fullerton 

The corequisite model of academic support has been touted as an efficient way of supporting 
student learning while decreasing the time to degree completion for students needing academic 
support. With the learning losses that have occurred globally as a result of the global 
coronavirus pandemic, the Department of Mathematics at California State University, Fullerton 
piloted a corequisite course to support one section of Calculus I, a course historically riddled 
with high DFW rates. In this paper we share preliminary results of our department’s 
implementation of the corequisite model. While corequisite students from the first iteration of the 
course earned higher GPAs than their non-corequisite peers, more data (including longitudinal 
data) is needed to determine the lasting impact from the Calculus I corequisite experience.  

Keywords: Corequisite mathematics, academic support, curriculum development 

Background 
Introductory mathematics courses have historically been a roadblock for students intending 

to major in the Science, Technology, Engineering, and Mathematics (STEM) fields. For most 
STEM majors, students must complete a sequence of calculus courses before commencing their 
major coursework. Historically Calculus I and Calculus II have been identified as bottleneck 
courses at California State University, Fullerton (CSUF). From 2012-2022, the Calculus I course 
was ranked eighth highest in terms of DFW (grades of D, Fail, or Withdraw) with a rate of 33%, 
while Calculus II ranked sixth highest with a 38% DFW rate. Given this institutional data, the 
authors developed an academic support course to try to combat this systemic issue through the 
creation of a Calculus I corequisite, and piloted the course with first-time-freshmen beginning 
their academic journey at CSUF with a declared Mathematics major. 

The primary goal of the Calculus corequisite course at CSUF was to reinforce student 
conceptual understanding of prerequisite mathematical content knowledge, provide students with 
additional opportunities to engage with course content, and to help students develop the required 
skills to perform and succeed in college. Research (e.g., Hancock et al., 2021; Kashyap & 
Matthew, 2017; Logue, 2014; Richardson, 2021; Stone-Johnstone, 2023) on corequisite courses 
like the one created here at CSUF, have demonstrated benefits to student learning, as well as 
supported the placement of students directly into gateway courses (with academic support) as 
opposed to a long sequence of prerequisite courses. 

The primary goal of this work is to increase access to Calculus I and Calculus II. We do this 
by creating a course with the aim of helping students better communicate mathematically (in 
writing and in speech), supporting students in problem solving, and developing their skills in 
using technology when doing mathematics. We hypothesize, based on previously research, that 
this corequisite course will help decrease the time to graduation at CSUF by providing students 
with targeted academic support. The driving research questions in this study are: 

1. What effect does a Calculus I corequisite course have on student success in Calculus 
II? 

2. What effect does a Calculus I corequisite have on students intending on majoring in 
mathematics?  
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Methods 
This study employs a convergent mixed methods approach (Creswell, 2012) where 

quantitative and qualitative data were collected to assess the efficacy of the Calculus corequisite. 
Quantitative data in the form of Calculus I course outcomes of all course sections from the Fall 
2021 semester and the Calculus II course outcomes from a special section of Calculus II 
composed primarily of mathematics majors in the Spring 2022 semester were collected and 
analyzed. Comparisons were made between the subgroups (corequisite and non-corequisite 
students) by performing a series of one and two-sample independent t-tests.  

Qualitative data in the form of student focus groups and classroom observations of the 
corequisite course during the Fall 2021 semester were collected and subsequently analyzed. 
Fifteen corequisite students were interviewed during the data collection period, and from 
interview data, structural codes (Saldaña, 2021) based on the focused research questions were 
used to categorize and interpret their narratives around their experiences in mathematics during 
and after participating the Calculus corequisite course. 

Preliminary Findings 
The Calculus corequisite course was piloted during the Fall 2021 semester with only 

mathematics majors. Incoming students who intended to major in mathematics were advised to 
take the course in conjunction with their regular Calculus I course. Certain students who would 
have normally been placed into Pre-Calculus were also invited to take Calculus I with a 
corequisite support course during their first semester at CSUF. In this section we report both 
preliminary quantitative and qualitative results from the first iteration of the corequisite course at 
CSUF. 

Quantitative Results 
In Fall 2021, 38 math majors were enrolled in the corequisite course. Preliminary results 

from the quantitative analysis of the Calculus 1 course data shows that students who participated 
in the corequisite (versus all other students in other sections of Calculus 1) had higher overall 
course GPAs (grade point averages) and lower DFW rates. In addition, when only considering 
those students who received a non-DFW grade, the corequisite students outperformed the non-
corequisite students (see Table 1). This latter category is infrequently reported, but at CSUF we 
have noticed that students who pass with lower grades in Calculus I tended to struggle more in 
their subsequent calculus and upper-division STEM courses. Out of the 38 corequisite students, 
23 enrolled in the special section of Calculus II that was composed of only mathematics majors 
in the semester that followed. Nine of the other students did not pass Calculus I with a C or better 
(a requirement for STEM majors at CSUF), and the six others changed to a major that did not 
require any additional mathematics coursework.  
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Table 1. Calculus I Course Data from Fall 2021 across all sections 

 Corequisite Students Non-Corequisite Students  

n 
GPA 
DFW 
GPA (excluding DFW) 

38 
2.66* 

24%** 
3.36* 

410 
1.88 

41.8% 
2.93 

 

*Significant at the .001 level 
** Significant at the .007 level 

   

 
Course data from the Spring 2022 Calculus II special course shows that students who were 

enrolled in the corequisite during the previous semester had slightly higher course GPAs and 
lower DFW rates in that course than those students who did not take Calculus I with a 
corequisite support course. When comparing all students that did not receive a DFW in Calculus 
II, the corequisite students earned higher GPAs relative to their non-corequisite classmates (see 
Table 2). It is important to note, of the 21 non-corequisite students, only two were first-time-
freshmen and the rest were either upper-classmen or students repeating the course for credit. 

 
Table 2. Calculus II Special Course Data from Spring 2022 

 Corequisite Students Non-Corequisite Students  

n 
GPA 
DFW 
GPA (excluding DFW) 

23 
2.178 
26% 
2.88 

21 
1.952 
33% 
2.786 

 

*Significant at the .001 level 
** Significant at the .007 level 

   

Qualitative Results 
There were two dominant themes that arose from the qualitative analysis: Students valued the 

course structure of the corequisite course, and Students valued opportunities for community-
building. During the Fall 2021 semester, the corequisite students received more than six hours 
per week of course contact with their course instructor and peers. They were scheduled to attend 
their Calculus I course in person on Mondays and Wednesdays for 1 hour and 50 minutes each, 
and their corequisite course virtually on Tuesdays and Thursdays for 1 hour and 15 minutes each. 
During the corequisite sessions, students spent their time actively engaging in either Calculus I 
review or Pre-Calculus and Trigonometry activities that prepared them for the new Calculus 
content they would cover during the following day. In contrast, the instructor focused Calculus I 
class time on presenting new course material through a mixture of traditional lecture and active 
learning methods.  

The first theme, Students valued the course structure of the corequisite course, arose as 
students were describing the nature of the corequisite course. One student shared that, 

26th Annual Conference on Research in Undergraduate Mathematics Education 1238



[the corequisite course] helps us refresh and review … like with radicals and radical 
numbers and rationalizing numbers and stuff like that, so I feel like that was really 
helpful … I feel like it's pretty helpful and backing up like you're just reviewing - to help 
support what you're learning in calculus …”  

Students recognized that the purpose of the corequisite course was for review and developing a 
deep conceptual understanding of their Calculus material. This course was a low-stakes support 
course where students could seek and receive help from their instructor, teaching assistants, and 
peers. Another student elaborated, 

So [the corequisite course] kinda introduced to us what we’re going to do the next day. 
So it's not as hard the next day we're kind of like we know what we're about to do, like 
we have a taste of it. And it was really nice seeing all my classmates, all my groupmates 
day in, day out and seeing [my instructor] four days a week. And yeah … it wasn't that 
hard - it's like I wouldn't go stressing …  like I have this class, like, I look forward to it. 
Because the problems aren't that hard and they're a good introduction to the next day and 
yeah it was fun. 
The second theme, Students valued opportunities for community-building, showed up in all 

the interview data. For instance, when asked what they have gotten out of the corequisite course, 
one student shared, 

I mean, uh, I mean as cheesy as it might sound … like a community. I feel comfortable 
talking in front of those people, there’s like 30 of them. I asked the teacher questions. In a 
class last year I wouldn’t be doing that because I wouldn’t be comfortable. We would be 
on ourselves most of the time. Now, we’re like actually like you have people that you 
know and that you trust and that are actually helping you and want to help you too. If 
you’re actually struggling and you wanna help them if they’re struggling, it's more like 
personable I guess. You know everyone I guess too. Like even if I haven’t talked to 
someone, I feel comfortable talking to them, which is odd because I’ve never really done 
that before, but yeah this class has definitely helped that. 

Another student added,  
We engaged a lot, as a group ... We sat in groups of four and we engaged a lot … and I 
feel like that also helped us understand the material more because it's just you're figuring 
it out not by yourself, this time, but with, with the group, and I feel like, figuring it out 
together also helps us understand the material. 

The corequisite students engaged in active learning and discovery within both their Calculus I 
and corequisite course four days per week. The early and consistent engagement among the 
students helped foster relationships that spanned past the Fall 2021 semester and into their 
Calculus II course during the following semester. When asked again, during the Spring 2022, to 
reflect on their corequisite course, several students reiterated the benefits of the collaborative 
learning experience. From their experience in the corequisite, students developed friendships and 
study groups that have helped them navigate Calculus II. 

Discussion 
The first driving research question for this work was, what effect does a calculus corequisite 

course have on student success in Calculus II? The preliminary data demonstrates that the 
corequisite course has the potential to support student learning in their Calculus I course as well 
as equip them with the tools for success in Calculus II. The Fall 2021 corequisite students 
attributed their success to the greater mathematical foundation they obtained from their 
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corequisite course as well as the community they were able to build to help support them in their 
studies in Calculus II.  

The second driving question was, what effect does a calculus corequisite have on students 
intending on majoring in Mathematics? While some students who intended to major in 
Mathematics ended up switching majors by the end of the semester, many others persisted into 
Calculus II. However, one student that ended up switching majors shared, 

I was struggling, I think more than I needed to. Or, more than like most of my peers. 
And, when I did my major advising, I was telling her that I was struggling and she was 
like “It's only going to get harder” and I was like “Hmm” and I was like “I don't know 
how much more of this I can take” so I did change my major. 

This student was discouraged by an academic adviser to continue her mathematics pursuit based 
on her present academic struggles in Calculus I. It is unknown whether this student could have 
passed the course should they have stayed the course and sought extra help outside of what was 
offered in the corequisite course and the instructor’s office hours.  

While 23 of the original 38 students persisted to Calculus II, it is too early to firmly measure 
the effect a Calculus I corequisite will have on student persistence in STEM in general. A full 
assessment of the benefits of the corequisite requires a longitudinal study, where we can track 
student progress throughout the tenure of their college experience. Based on the prior research 
and the preliminary findings reported here, we hypothesize that a Calculus I corequisite course 
has the potential to increase student success in Calculus I and Calculus II. The findings from this 
study will be used to optimize future iterations of the corequisite course to support student 
learning and achievement. As we collect more data, we will better understand the potential of the 
corequisite model in supporting our student learning and academic success in STEM.  

 
1. What kinds of data would convince you that a corequisite course is doing its intended 

job, of academically supporting students and helping them to persist in mathematics? 
2. Does it make sense for an institution to adopt a corequisite model when they also 

have a Supplemental Instruction program? 
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Exploring How Undergraduate Students Engage in Computational Thinking with Data 
 

 Alyssa Hu Neil J. Hatfield Matthew D. Beckman 
Pennsylvania State University Pennsylvania State University Pennsylvania State University 

Modern statistics education requires that we support students in building powerful and 
productive ways of computational thinking. In this paper, we seek to understand the ways of 
computational thinking that undergraduate students employ as they engage with data. To 
address this question, we administered task-based interviews with three participants using the R 
programming language. Problem-solving approaches focusing on formatting data and efficient 
coding emerged as early aspects of student thinking. We are still reviewing interview transcripts 
and intend to compare our findings with existing frameworks from the literature, working 
towards a framework highlighting beneficial ways of thinking. This work is part of a larger study 
with additional tasks and additional individuals with varying levels of experience and expertise. 

Keywords: computational thinking, data, statistics education, student thinking 

The Guidelines for Assessment and Instruction in Statistics Education (GAISE) College 
Report endorsed several recommendations for introductory statistics courses, such as “use 
technology to explore concepts and analyze data”, “integrate data with a context and purpose”, 
and “teach statistics as an investigative process of problem-solving and decision-making” 
(Carver et al., 2016). These require that instructors support students in building powerful and 
productive ways of computational thinking.  

Wing (2006)’s seminal paper on computational thinking emphasized that it is a “fundamental 
skill for everyone” that “involves solving problems, designing systems, and understanding 
human behavior by drawing on the concepts fundamental to computer science” (p. 33). Aho 
(2012) defined computational thinking as “the thought processes involved in formulating 
problems so their solutions can be represented as computational steps and algorithms” (p. 832). 
Lockwood et al. (2016) built upon Aho’s work, by studying the role of such thinking in 
mathematics through interviews with mathematicians. They arrived at the working definition “a 
logical, organized way of thinking used to break down complicated goals into a series of 
(ordered) steps using available tools”, which they termed “algorithmic thinking” (Lockwood et 
al., 2016, p. 1591). Shute et al. (2017) considered research in K-12 and higher education settings 
to define computational thinking as “the conceptual foundation required to solve problems 
effectively and efficiently (i.e., algorithmically, with or without the assistance of computers) with 
solutions that are reusable in different contexts” (p. 151). These definitions may appear overly 
broad, so we discuss existing frameworks to ground them. 

Background 
Computational thinking cuts across multiple disciplines including computer science, 

statistics, and mathematics; further, computational thinking appears at all levels of education.  
Working from a computer science education perspective, Barr and Stephenson (2011) discussed 
the core computational thinking elements that emerged during a Thought Leaders meeting for K-
12 implementation organized by the Computer Science Teachers Association and the 
International Society for Technology in Education. Focusing on a particular environment, 
Brennan and Resnick (2012) studied young programmers (ages 8-17) through workshops and 
online project portfolios. To study the effect of age and gender on the development of 
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computational thinking skills, Atmatzidou and Demetriadis (2016) conducted robotics training 
seminars in Greek junior high (age 15) and high school (age 18) classrooms. Weintrop et al. 
(2016) focused on creating a taxonomy of computational thinking practices to incorporate in 
math and science curriculums at the high school level. Lastly, Shute et al. (2017) proposed their 
own model after a thorough literature review and extensive discussion of the four previously 
mentioned works.  

Despite these different contexts and methods, common themes emerged among each set of 
researchers’ frameworks, speaking to the widespread relevance and applicability of 
computational thinking. One such common theme is the role of data. Barr and Stephenson (2011) 
discuss data collection, data analysis, and data representation as part of the core elements and 
capabilities of computational thinking. Brennan and Resnick (2012) refer to data as a key 
concept with regard to the storage, retrieval, and updating of values within computing 
environments. Within their taxonomy, Weintrop et al. (2016) consider five data practices–
collecting data, creating data, manipulating data, analyzing data, and visualizing data. Shute et al. 
(2017) referenced data collection and analysis. Thus, we see that anticipating and planning data 
wrangling as early and vital components to computational thinking. Additional commonalities 
appear in Table 1. 
 
Table 1. Additional commonalities with accompanying references. 

Themes  
Decomposition 
 
Algorithms 
 
Parallelization 
Simulation 
Generalization 
Modularity 
 
Debugging 
Iteration 
Abstraction 

References 
Barr and Stephenson (2011); Atmatzidou and Demetriadis (2016); 
Shute et al. (2017) 
Barr and Stephenson (2011); Atmatzidou and Demetriadis (2016); 
Shute et al. (2017) 
Barr and Stephenson (2011); Brennan and Resnick (2012) 
Barr and Stephenson (2011); Weintrop et al. (2016) 
Atmatzidou and Demetriadis (2016); Shute et al. (2017) 
Brennan and Resnick (2012); Atmatzidou and Demetriadis (2016); 
Weintrop et al. (2016) 
Brennan and Resnick (2012); Shute et al. (2017) 
Brennan and Resnick (2012); Shute et al. (2017) 
All frameworks listed 

Theoretical Perspective 
When discussing these five computational thinking frameworks, we find utility in thinking 

about them through the lens of Harel’s (2007) DNR determinants. Harel (2007) proposed the 
DNR system for curriculum development and instruction which consist of premises, 
determinants, and instructional principles (specifically: Duality, Necessity, and Repeated 
reasoning). Harel describes the determinants of mental act (actions performed in constructing 
knowledge), way of understanding (product or outcome of a mental act), and way of thinking 
(character or feature of a mental act). An example provided in the paper illustrates how proving 
is a mental act, a proof is a way of understanding, and a proof scheme is a way of thinking. 
Within the present study, the code that a participant writes to import data would reflect their way 
of understanding data importing while their imagery for and anticipations of loading data into an 
environment would reflect their way of thinking about data importing. With this backdrop in 
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mind, we define computational thinking as the ways of thinking that individuals employ when 
using computational tools to problem-solve efficiently and effectively.  

Many of the common themes (see Table 1) and our own definition involve the mental act of 
problem-solving. Barr and Stephenson (2011) also discuss some dispositions and pre-
dispositions (e.g., “confidence in dealing with complexity”) and classroom culture (e.g., 
“increased use of computational vocabulary”) that would facilitate productive ways of 
computational thinking. These appear to be outcomes of problem-solving. Similarly, Brennan 
and Resnick’s (2012) computational thinking concepts (e.g., “loops”) and computational 
thinking perspectives (e.g., “questioning”) appear to be products of problem-solving. We 
consider these to be ways of understanding. Our research focuses on the question: What are 
ways in which computational thinking appears as part of undergraduate students’ thinking 
as they work with data?   

Methodology 
This project is part of a larger study regarding computational thinking for individuals of 

varying levels of experience and expertise. In this report, we narrow our focus to two tasks 
designed to probe attributes of computational thinking while participants engage and wrangle 
with complex data to achieve a defined purpose. While many computational tools exist, we 
focused on the R programming language and its related software (e.g., R Studio). 

Participants  
We interviewed three undergraduate students enrolled in a data science course focusing on 

statistical reasoning and computation, which has a pre-requisite of an introductory R course. The 
task-based interviews (Goldin, 2000) were recorded over Zoom. Students also submitted their R 
file in which they worked. We refer to the students as S1, S2, and S3.  

Tasks  
The two tasks are based on the 2021 American Time Use Survey dataset (ATUS; U.S. 

Bureau of Labor Statistics, 2022). Participants are provided with: (a) the raw Activity Summary 
data file from the 2021 ATUS, (b) a simplified data dictionary we created for demographic 
variables in the data file, (c) an activity lexicon to describe the activity variables in the data file, 
and (d) task prompts. The ATUS data was selected due to the topic requiring minimal 
background knowledge and its relevance as real (not simulated) data with practical applications. 
Both tasks follow a similar format, where we present a data visualization, ask participants 
regarding their observations of the chart, and then observe the participants as they explore and 
analyze the data to calculate a particular estimate that is displayed using the ATUS data. 

Task 1 prompt. Consider the visualization below (Figure 1) made by the U.S. Bureau of 
Labor Statistics which tells us the average hours per day spent in selected activities. “Average 
per day, total” is selected. What does this chart tell you about the average hours per day, total, 
spent on personal care, including sleep? Would you walk me through how you would recreate 
this estimate using the atussum_2021.dat file? 

Task 2 prompt. We maintain the same format of Task 1, but the context of the problem is 
modified. In Task 2, both “Average per day, men” and “Average per day, women” are selected 
and compared in a data visualization. We are interested in how participants address the coding 
for sex in the dataset and how they adapt or modify their previous solution to Task 1. (We omit 
the full prompt and figure in this report for brevity.) 
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Figure 1: Task 1 Data Visualization from U.S. Bureau of Labor Statistics (truncated for space constraints) 

Results 
Preliminary analyses are currently underway. Below, we share some excerpts from 

participants and a couple of potential ways of thinking (pertaining to problem-solving 
approaches) that could be emerging.  

Problem-Solving Approach: Ensure Proper Format of Data 
All participants considered how to load data into RStudio. They used different coding 

environments; S1 used an R script, S2 used an R Markdown file, and S3 opted for an R 
Notebook file. S1 proceeded to directly write a read.csv() command and ran the line of code 
which provided a preview of the data frame in the console. S2 and S3 both used the data import 
wizard (GUI) of the RStudio IDE. Despite the two different ways of data importation, all 
students performed a visual inspection of the data frame; S1 checked post-import while S2 and 
S3 checked during import. They all commented on what they perceived to be correct format: 

S1: So everything is already separated in columns. 
S2: Let’s see, and I see that there is a heading so “Yes”, import that. 
S3: The variable column headings are stuck as V1, V2, it goes on. So what I did was switch 

Heading to “Yes” and this makes it the proper headings. 
In contrast to S2 and S3, S1 added in a couple of lines of code using the complete.cases() and 

unique() commands. It appeared that S1 had additional data cleaning procedures to apply 
regardless of the data context, based on the following conversation: 

S1: That’s usually what I do first, I think.  
Interviewer: And can you remind me again, what these 2 lines of code will do? 
S1: So, this, the first one, is to make sure all, everything is completed. There’s nothing 

empty, nothing like the rows. There’s no one with missing information. And then, the 
second one is to make sure there’s nothing repeated. 

Interviewer: Gotcha. And you mentioned that you, you said that this is sort of what you 
normally do. So are these things that you check every time you code, normally? 

S1: I think so, to make sure everything is more clean. 

Problem-Solving Approach: Find Efficient Way to Write Code 
When the interviewer asked participants to talk about their approach for Task 2, all 

participants attempted to find the average hours for men and average hours for women using two 
distinct code blocks. They all expressed a desire for alternative ways to write the code:   

S1: Maybe there is way to do female on the same dataset as the male and then write a code to 
do the rest. I’m just not sure how I’d write that, but I think, the easiest way for me to do 
[it] would be [to] do separately, but I’m sure there’s probably a way to do it together. 
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S2: If I want to do it together, how would that work? So then I’m thinking, like, okay, I, the 
very beginning part’s the same. Uh, I’m just thinking about when I plot it, how am I 
gonna be able to distinguish between male and female and how I want it, I guess. Like, 
your code running is very important but also I think having it be very concise and clean is 
also pretty important. 

S3: So, there probably is a way to do it within one data set, but it’s just the first thing that 
came to mind. 

Based on their terminology (“do it together” and “do it within one”), all three participants 
had considerations of reducing redundancy and increasing efficiency. S2 specifically verbalized 
the reason for doing so, including anticipation of future analysis (plotting) and what they 
considered to be best practices of coding.  

Discussion 
We have outlined some initial ways of thinking that undergraduate students possess and will 

continue to analyze our data. Our next steps will be to consider the points of commonality with 
(and departure from) existing frameworks. This would involve additional coding of the data 
based on these frameworks, and it may be useful to note the frequency and length of time that 
participants spend in each unique code. 

We note some planned future work as this work is part of a larger study. One direction is 
collecting data from individuals with additional experience and expertise, including graduate 
students, faculty, and industry professionals. This would allow us to consider a new research 
question: What similarities and differences do we observe among individuals who self-identify 
along the novice-expert continuum? We will also consider how an individual may move along 
the expert-novice continuum in terms of their data-ing and computational thinking skills. 
Another direction is analyzing participant responses to several additional tasks, including: (a) 
creating a visualization, (b) brainstorming their own question about the dataset, (c) discuss 
coding challenges and review code, and (d) verbalize how they would approach a new prompt 
about the dataset. The purpose of (a) and (b) are to highlight how and what we can communicate 
with data. We hope to spark a discussion regarding effective problem-solving with (c) and how 
computational thinking transfers across different contexts with (d).  

A key outcome from our study will be understanding the role of computational thinking, in 
conjunction with interrogating data sources, in reshaping the statistics curriculum. In creating our 
framework, we will highlight concepts and skills that we might want to foster and support as 
educators. This would support the generation of hypothetical learning trajectories, which can 
then inform classroom interventions and expectations while engaged in data exploration, 
analysis, and communication. In addition, we can reflect and learn from participant feedback 
regarding the tasks we created, which can inform the way we design future tasks and instruction 
in statistics, data science, and related courses. A possible extension in the future would be to 
develop an assessment to measure student development of computational thinking skills. 

Intended Questions for Audience 
1. What similarities or differences in students’ thinking have you noticed in your classroom 

experience compared to our (preliminary) results?  
2. What are your thoughts on or suggestions regarding our planned future work?  
3. What suggestions do you have for supporting students in further developing their 

computational thinking?  
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Abstract Mathematics as Perceived by Pre-Service Mathematics Teachers: “It is Not Gonna 
Benefit Me in Teaching” 
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The secondary-tertiary transition (STT) in mathematics presents university students with multiple 
cognitive-epistemological, didactical, sociocultural, and affective challenges. This qualitative 
study explores the perceptions of two pre-service mathematics teachers regarding the relevance 
of abstract mathematics to their future teaching practices. Using three interviews and eleven 
reflections, the investigation yields in-depth insights. In addition to highlighting the affective 
aspects of the STT in mathematics, the study addressed certain difficulties pre-service teachers 
encountered while dealing with advanced mathematics courses. 

Keywords: affect, perception of abstract mathematics, pre-service mathematics teachers, 
secondary-tertiary transition 

The secondary-tertiary transition (STT) in mathematics represents a significant milestone in 
the academic journey of pre-service mathematics teachers as they progress through university. 
While these individuals possess a deep passion for mathematics and aspire to become educators, 
they often encounter formidable challenges as they navigate the shift from concrete, school-level 
(i.e., empirical) mathematics to the more abstract and theoretical realms of university 
mathematics. This transition is of paramount importance, as it not only influences their own 
understanding of the subject but also shapes their ability to effectively teach complex 
mathematical concepts to future students. This research study seeks to explore the multifaceted 
challenges that pre-service mathematics teachers encounter during this pivotal transition to 
abstract mathematics in university settings. By examining these challenges in-depth, I aim to 
further understand the pertinent issues and identify potential strategies to better prepare pre-
service mathematics teachers for the unique demands of abstract mathematics, ultimately 
enhancing the quality of mathematics instruction in the classroom. 

Theoretical Perspectives 
The secondary-tertiary transition (STT) in mathematics education has been extensively 

explored in the literature, with scholars identifying various categories of challenges. De Guzman 
et al. (1998) categorized these challenges into three main areas: cognitive-epistemological, 
didactical, and sociocultural, with recent studies adding affective factors as a fourth component 
(Di Martino & Gregorio, 2019). The nature of mathematics changes as students transition to 
university, becoming more formal and abstract (Tall, 2008). This shift requires advanced 
thinking and can lead to cognitive and affective challenges when there is a lack of alignment 
between the mathematical expectations of secondary and tertiary institutions (Pepin, 2014). 
Affect in mathematics learning, including beliefs, attitudes, and emotions, plays a pivotal role in 
shaping students’ engagement and performance in the subject (McLeod, 1998). Understanding 
and addressing the affective aspects of mathematics education is crucial for fostering a positive 
and productive learning environment. 
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The Study 
The current study focuses on exploring the secondary-tertiary transition experiences in 

university mathematics from affective perspectives. Five women and/or racially ethnically 
minoritized women participated in this research who were majoring in mathematics at a large 
university in the southeastern United States. The semi-structured interviews and reflection videos 
were used as data collection method focusing on students’ experiences in demographic 
information, secondary school mathematics, decision to major in mathematics, current 
experiences in the major, vision of mathematics, perceived competence in mathematics, 
approaches to and assessments of learning mathematics, and mode of belonging. 

In this study, I focus on Nia and Bethany, both pre-service mathematics teachers who 
frequently brought up the disparities between university-level mathematics and secondary school 
mathematics. This emphasis on their experiences arises from the study’s primary focus on the 
differences between secondary school and university mathematics, which is recognized as a 
“knowledge gap,” or “discontinuities” between two institutional settings (Gueudet, 2008). It is 
noteworthy to highlight that both Nia and Bethany were first-generation college students who 
also openly discussed their financial challenges in pursuing a college education. Nia identified as 
a biracial female with Black and White heritage, while Bethany was a White female student. Nia 
and Bethany participated in three monthly interviews and recorded eleven weekly reflections in 
the semester of Spring 2022. Following stages of open, axial, and selective coding, the grounded 
theory method guided data analysis and enabled the identification of themes that emerged from 
student responses (Charmaz, 2006). 

Preliminary Findings 
I explore the specific beliefs held by Nia and Bethany about abstract mathematics, which 

arose as they reflected on their mathematical skills and the nature of advanced mathematics at 
the university level. These beliefs contribute to their skepticism about the relevance of advanced 
math to their future careers. Using several direct quotes, I delve deeper into Nia’s and Bethany’s 
views on abstract mathematics, which are rooted in their perceived ability to grasp abstract 
concepts in proof-based courses. The following excerpt illuminated Nia’s first proof experiences 
in the Introduction to Advanced Mathematics (IAM) class: 

 
I didn’t like that [IAM] course mainly because the proofs weren’t really interesting to me. 
Because it was me memorizing how to do the proofs and really understanding how to 
prove something in math, which is something that I couldn’t kind of wrap my brain 
around like, ‘okay, where do you start?’ It wasn’t concrete. These are always like, ‘do the 
proof this way’ it was like well, ‘maybe the proof is this way, maybe it’s that way.’ So, I 
have to assume a lot of information. It was pretty hard to keep up. I mean, I ended up 
with a B in there. But it was not my favorite math course. (Nia, Interview 1, February 
2022) 
 
Nia shared her experience in the Introduction to Advanced Mathematics (IAM) course, 

primarily expressing her dislike for it. She found the memorization of proofs uninteresting and 
struggled to grasp the abstract nature of mathematical proofs. This aligns with her preference for 
mathematics that involves practical application and processes. Nia’s frustration stemmed from 
not being able to determine the correctness of her proofs, as she lacked clear expectations and the 
means to verify her work: 
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When I don’t know the expectations or when I am not able to check my work, that’s 
when I am unsure, as I will be ‘is this right thing?’ is my problem with the proofs as well. 
Well, I took the [Introduction to] Advanced Math, and I couldn’t determine for myself, 
like ‘is this right, is this the answer?’ I don’t understand how I know if I’m writing this 
proof right and if it’s an accepted answer. (Nia, Interview 1, February 2022) 

 
Similarly, Bethany had her own perspective on proof-based classes. She believed that exam 

questions should closely resemble the material covered in class, and when they didn’t, she 
considered the course difficult. Bethany didn’t enjoy proofs, especially in courses like Abstract 
Algebra and Analysis, where the abstract nature of the subject made it challenging for her to 
connect with the content. She believed that her future teaching career wouldn’t require 
knowledge of such abstract proofs and preferred mathematics with practical applications: 

 
I don’t like the proofs as much. Well, I guess it depends on what it’s about, because I 
think groups in Geometry were really fun because I could do it. It was really tangible, I 
could understand angles and shapes. But in Abstract Algebra and Analysis, I definitely 
struggled more because it was more abstract. I think for teaching, like, even in high 
school, I don’t need to know proofs for abstract things. It’s not gonna benefit me in 
teaching, really. So I don’t think it’ll be a problem in that context. (Bethany, Interview 2, 
March 2022) 
 
Bethany’s responses revealed a mix of emotions, including both satisfaction and aversion, 

when she contemplated abstract mathematics. She provided several explanations for her lack of 
enthusiasm towards mathematical proofs. Initially, Bethany linked this sentiment to the inherent 
abstractness of proofs, where the concepts lacked a tangible quality. In her first interview, she 
also conveyed that the majority of her university mathematics courses were formal and did not 
align with her aspirations in teaching. Bethany’s perspective on mathematics in her initial and 
subsequent interviews remained consistent. Specifically, she conveyed a preference for 
mathematics with practical applications, believing it would have greater relevance to her future 
career in teaching. Bethany also mentioned her preference for what she termed a 
“straightforward course,” where lectures were followed by problem-solving sessions, and exams 
focused on class exercises. In contrast, she perceived proof-based classes as less straightforward 
because they required students to think independently rather than follow step-by-step 
instructions: 
 

I guess the courses are just lectures, and then you do the problems. Like in Linear 
Algebra, you just write on the doc camera, doing the problems, and then you’d go home 
and do the same problems. The tests were about the exercise problems from class. So, I 
thought that was pretty straightforward, versus proof-based classes, they don’t tell you 
how to do the problems. You have to figure it out. In Calc II, we also had some group 
projects which required more thinking on our part and not just doing what we were told 
to do. (Bethany, Interview 3, April 2022) 
 
Bethany’s perception of proof-based classes as challenging due to their requirement for 

independent thinking rather than following explicit instructions reflected her initial beliefs. These 
beliefs highlighted a mismatch between in Bethany’s expectations of upper-division mathematics 
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courses and the actual classroom experience in secondary school teaching. Consequently, both 
Nia and Bethany viewed abstract mathematics as less relevant to their career aspirations. This 
misalignment led to their disengagement from proof-based courses. They did not see a 
connection between their mathematical abilities and the demands of these courses. Additionally, 
both students expressed little interest in pursuing careers that involve abstract mathematics, 
possibly due to the perceived gap in their mathematical background and competency required for 
such careers. 

Significance and Implications 
When analyzing Nia’s and Bethany’s cases, several noteworthy patterns surfaced in their 

experiences with university-level mathematics, with a specific focus on abstract mathematics. 
Both Bethany and Nia raised doubts about the relevance of abstract mathematics, as they believe 
it is disconnected from their future teaching practices (Wasserman et al., 2019). Some of their 
concerns stemmed from instructional practices encountered in university, which predominantly 
adhered to traditional lecture formats. Additionally, their doubts were further fueled by the 
perceived difficulty in discerning the validity of mathematical proofs, shedding light on 
challenges related to mathematical competence. Furthermore, Nia and Bethany commented on 
the abstract nature of mathematics at the university level, contrasting it with the more tangible 
mathematics of secondary education, which also influenced their attitudes toward learning 
abstract mathematics. Schoenfeld’s assertion that “formal mathematics has little or nothing to do 
with real thinking or problem solving” (1985, p. 43) seemed to resonate with the beliefs held by 
Bethany and Nia about the nature of mathematics. Their reactions to the changing nature of 
mathematics towards upper-division courses corroborated the findings of Geisler and Rolka 
(2021), which highlighted that students anticipate university-level mathematics to align with the 
practical and applied aspects of the discipline. This observation underscores the disparities in 
students’ perceptions of mathematics, particularly in the context of secondary school 
mathematics and university-level mathematics courses (Rach & Heinze, 2017). 

Solomon and Croft (2016) proposed that when undergraduate students feel a challenge to 
their sense of ownership of mathematics, they tend to disengage from the subject. This 
disengagement often stems from mathematics either not meeting their high expectations for 
success or failing to reveal its inner workings while imposing strict adherence to its rules. The 
experiences of Nia and Bethany, who both excelled in high school mathematics and currently 
perceive themselves as rule followers in college mathematics, align with these ideas. 
High school preparation significantly impacts students’ experiences in university mathematics 
courses. Nia and Bethany, who are first-generation students appeared to be less prepared and 
struggling with advanced mathematics courses. Both students highlighted their difficulties in 
keeping up with their peers, attributing it to their limited background in advanced mathematics or 
the instructional style and expressing a need for additional resources to grasp the course 
materials effectively. Future research should investigate the alignment between pre-service 
mathematics teachers’ teaching goals and the content of the advanced mathematics courses, with 
the purpose of tailoring these classes to their specific needs. Furthermore, future research should 
investigate the relationship between the experiences of first-generation college students and their 
views on abstract mathematics. Investigating the requisite support systems necessary for their 
success and their development into proficient mathematics educators should also be a priority. 
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The Meta-Narratives about Function Conveyed by  
a Commonly Used Multivariable Calculus Textbook 
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Function is a unifying, cross-curricular theme that plays a central role in nearly every 
subdiscipline of mathematics. Yet, this cultural meta-narrative that is widely accepted by 
mathematicians is not one students readily adopt. In this report, I share a preliminary analysis of 
the stories told about three different types of multivariable functions in a commonly used 
calculus textbook. In doing so, I juxtapose these stories and consider how this textbook—a 
cultural artifact of the discipline of mathematics—might support or hinder the transmittal of 
desirable cultural meta-narratives about the role of function. Ultimately, I find that real-valued 
functions are consistently positioned as functions, while the function properties of both types of 
vector-valued functions are de-emphasized. As only one of the three function types are positioned 
as functions, this suggests that the stories in the textbook could hinder students’ adoption of the 
meta-narrative of function as a unifying mathematical theme.  

Keywords: Function, Multivariable Calculus, Curriculum as Story, Textbook Analysis.  

Function is a crucial recurring theme across the story of the K-16 mathematics curriculum. 
(e.g., CCSSM, 2010; Zorn, 2015). Some mathematics education researchers even go as far as to 
contend that the concept of function is “the single most important mathematical concept studied 
from kindergarten to graduate school” (Harel & Dubinsky, 1992, p. vii). Mathematicians have 
also spoken about the centrality of the function concept. For instance, Gowers et al. (2008) stated 
how “One of the most basic activities of mathematics is to take a mathematical object and 
transform it into another one” (p. 10). In this sense, function is a unifying, cross-curricular theme 
that occurs across nearly every subdiscipline of mathematics. 

This cultural meta-narrative about the role of function has endured for decades. Yet, this is 
not a narrative that students readily adopt, as a large body of research suggests (e.g., Martínez-
Planell & Trigueros, 2021; Melhuish, 2020; Zandieh et al., 2017). While there are several 
reasons for this, in this preliminary report, I examine the role that the stories told in a commonly 
adopted calculus textbook (Stewart et al., 2021)—a cultural artifact of the discipline of 
mathematics (Plut & Plesic, 2003)—might play in transmitting or failing to transmit this cultural 
meta-narrative to students. Specifically, I examine the stories told about the three different types 
of multivariable functions featured in multivariable calculus (MVC)—parametric, vector-valued 
functions; multivariable, real-valued functions; and vector fields—in the chapter they are first 
introduced. In this arts-based textbook analysis, I lean into the metaphor of curriculum as story 
(Dietiker, 2015) and treat each of these function types as mathematical characters. I investigate 
two questions: (1) How are these characters portrayed in the chapters they are introduced and 
how do these portrayals compare with one another? (2) What meta-narratives about function(s) 
are conveyed collectively by these character introductions? 

Background 
MVC textbook analyses that focus on the concept of function are admittedly limited.  

Notably, McGee et al. (2015) observed that in commonly used calculus textbooks, explicit 
conversations linking representations of single-variable and multivariable functions are virtually 

26th Annual Conference on Research in Undergraduate Mathematics Education 1253



nonexistent, even though students may not spontaneously draw these connections on their own 
(Martínez-Planell & Gaisman, 2012). More generally, Harel (2021) noted that traditional MVC 
textbooks tend to introduce key concepts without proper motivation and introduce computational 
shortcuts prematurely. While other analyses attend to the meta-narratives conveyed by textbooks, 
they tend to be with an eye to a particular topic, like line integrals (Dray & Manogue, 2023).  

Textbooks as Cultural Artifacts & Curriculum as Story 
In undergraduate education, many instructors use textbooks as a primary curricular guide 

(Fraser & Bosanquet, 2006). So, even though mathematics students do not read them cover to 
cover (Weinberg et al., 2012), the stories conveyed (or not) in textbooks play a powerful role in 
the reproduction of mathematical culture and specifically the meta-narratives that are valued by 
the discipline (Plut & Plesic, 2003). By a meta-narrative, I mean a “cultural narrative schema 
which orders and explains knowledge and experience” (Stephens & McCallum, 1998, p. 6). In 
other words, meta-narratives are narratives that recur (implicitly or explicitly) across cultural 
artifacts which individuals subsequently leverage to frame and explain their past and subsequent 
experiences. For example, the meta-narrative that “good always conquers evil” is common across 
children’s books. That said, as Brown (2022) demonstrated, the meta-narratives perpetuated by 
undergraduate mathematics textbooks do not always align with those held by members of the 
discipline of mathematics. In these cases, textbooks might actually convey messages that serve a 
counterproductive role toward enculturating students into the discipline.  

I adopt the perspective that mathematics curriculum (and therefore textbooks) can be 
conceptualized as a story (Dietiker, 2015; Gadanidis & Hoogland, 2003). Like a story, curricula 
features (mathematical) characters inhabiting settings and engaging in actions that constitute the 
plot. A curriculum also features literary themes and morals in the same way a good story might. 
As textbooks are used for enculturating students into the discipline of mathematics, the stories 
contained within them should not merely be an afterthought. After all, the stories we are told and 
then re-tell influence how we organize our experiences (Clark & Rossiter, 2008). Indeed, the 
power of story has been acknowledged repeatedly by mathematicians (Doxiadis & Mazur, 2012) 
as well as mathematics educators (Burton, 1999), but analyses of the stories conveyed in 
textbooks from a literary and aesthetic angle remain rare (e.g., Dietiker & Richman, 2021).  

I employ Dietiker’s (2015) framework for analyzing mathematical stories based on the 
narratological work of Bal (2017). Specifically, I attend to the characters, action, settings, and 
plot. Mathematical characters are those concepts that get objectified in the text, including 
functions, numbers, etc. They are often imbued with character traits (e.g., a function may be 1-1, 
even, etc.). I attend specifically to which mathematical characters are positioned as protagonists 
and side characters, as well as the relationships between characters. Mathematical action refers 
to moments where a new character is created or introduced as well as when characters are 
manipulated mathematically (e.g., the characters “2” and “3,” might be added to form a new 
character, “5”). The setting of mathematical stories includes different representations (tables, 
graphs, etc.) as well as physical contexts. Finally, the mathematical plot includes a reader’s 
aesthetic reactions to the unfolding story as they attempt to discern its structure.  

Data & Methods 
I analyzed the character introductions of three different multivariable function types in 

Stewart et al.’s (2021) Calculus, a commonly adopted textbook in U.S. undergraduate 
classrooms for teaching the calculus series (Mesa, 2010; Mkhatshwa, 2022). By “character 
introduction”, I mean the first section within the unit in which each function type is introduced 
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(e.g., 13.1). Hereafter, I refer to these sections as “chapters” as a reminder that I am 
conceptualizing the textbook as a literary story. The three chapters analyzed were: (1) 13.1: 
Vector Functions and Space Curves, within the Vector Functions unit, in which parametric, 
vector-valued functions are introduced; (2) 14.1: Functions of Several Variables, within the 
Partial Derivatives unit, in which multivariable, real-valued functions are introduced; and (3) 
16.1: Vector Fields, within the Vector Calculus unit, in which vector fields are introduced. I also 
included the paragraph overview of each unit because they immediately precede each chapter 
and briefly introduce each function type.  

Methods 
 I first read the story of each chapter three times while making marginal notes in the same 

way someone might while trying to interpret literary fiction. Following an arts-based approach 
(Leavy, 2018; McNiff, 2018), I did not restrict the structure or modality of these notes. Instead, I 
focused on recording my thoughts, feelings, and observations in whatever modality was most 
appropriate. Sometimes, I would write a comment or pose a question; other times, I would draw 
a sketch or write a quick poem to artistically convey my reactions as a reader. 

To add focus to my analysis, I attended primarily to the story elements outlined in Dietiker’s 
(2015) framework (character, action, setting, plot). However, I did not shy away from attending 
to other dimensions that were salient in my reading of each story, especially those related to my 
aesthetic interpretations of how the story was told or the overall moral of each story. My intent 
was to lean into my subjectivity (Tremaine & Hagman, 2023) and unique positionality as a 
reader who is a disciplinary expert and has taught MVC multiple times. This involved engaging 
my full senses and emotions: I did not restrict myself to purely logical analysis of structure, 
mathematical content, etc. I allowed myself to wonder about what came next, why the textbook 
was or was not introducing certain elements, and to make aesthetic judgements.  

Following this open-ended analysis, I re-read and reflected across my marginal notes and 
conducted secondary analyses to follow up on recurring themes and questions that had appeared 
across all the character introductions. In this report, I share the preliminary results from two such 
analyses: (1) a “nickname analysis” of the changing names and phrases used to refer to each 
character (e.g., function, equation, curve) paired with (2) a plot structure analysis of each story. 

Story Analyses 

Parametric, Vector-Valued Functions (PVVFs) 
As soon as the unit introduction, the purpose of introducing PVVFs is clearly signposted: 

“We now study functions whose values are vectors because such functions are needed to 
describe curves and surfaces in space” (p. 927). While PVVFs are introduced formally as “a 
function whose domain is a set of real numbers and whose range is a set of vectors” (p. 928), 
they are soon relegated to a side character used primarily to introduce the main character of 
space curves. In fact, once the relationship between these characters has been established, the 
word function only appears two more times. Additionally, across the entire chapter, “function” is 
mentioned only about half as frequently as “curves” and about the same number of times as 
(parametric) “equation”. The set theoretic functional properties (e.g., domain and range) of 
PVVFs are effectively backgrounded in favor of sketching curves and writing parametric 
equations in the subsequent examples.  

Ultimately, the character of PVVFs appears to have been introduced as a technicality: even 
before space curves are introduced, the (unboxed) function definition is followed quickly by the 
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introduction of component functions. After this, the primary action involving PVVFs is to 
quickly reduce them to their component single-variable functions for further computation. This 
backgrounding of PVVFs as functions sends a strong message about the defining traits of such 
functions: they decompose into multiple other single-variable functions and these functions are 
the most important. 

Multivariable, Real-Valued Functions (MRVFs) 
The character of MRVFs, on the other hand, is treated as a function from beginning to end. 

Unlike both other chapters analyzed, this one starts by outlining four points of view for studying 
MRVFs: verbally, numerically, algebraically, and visually (by a graph or level curves). This 
phrasing positions the words, tables, formulas, graphs, and level curves as in service of MRVFs, 
rather than the other way around (as was the case with PVVFs and geometric space curves). 
Additionally, this is the same framing used to introduce the function concept in the first (single-
variable) chapter of the textbook, further affirming that MRVFs are, by their nature, functions.  

Unlike with PVVFs, the formal set-theoretic definition of MRVFs of two variables is boxed 
and even “domain” and “range” are bolded, further emphasizing their functional characteristics. 
Next, the independent and dependent variables of a MRVF are defined and followed 
immediately by an aside to the reader that draws a comparison between single- and multivariable 
RVFs: “Compare this with the notation y = f(x) for functions of a single variable” (p. 927). 
Interleaved throughout the remaining pages are recurring explicit references to the domain and 
range in text and in the examples. Finally, the chapter ends by introducing the formal definition 
of MRVFs of three or more variables, returning to highlight that these characters are functions. 

“Function” is far and away the most common name used to refer to MRVFs (87 instances). 
This use of this name does not subside, even as “level surfaces” (51 instances) and geometric 
names (such as “graph” or “surface”, 44 instances) are introduced as alternatives. 

Vector Fields 
The caption for the image featured in the vector calculus unit introduction immediately states 

how “vector fields can be used to model such diverse phenomena as gravity, electricity and 
magnetism, and fluid flow” (p. 1161). Nearby, the first sentence of the main text reads, “In this 
chapter we study the calculus of vector fields (These are functions that assign vectors to points in 
space)” (p. 1161). The use of parentheses to convey the technical details persists throughout this 
paragraph and feels almost like the narrator is whispering to the reader, implicitly conveying that 
perhaps the function definition of vector fields is a sidenote.  

The emphasis on modeling realistic phenomena carries into the beginning of the chapter 
introducing vector fields, which features nearly a full page of four example velocity fields 
depicted visually alongside written interpretations of what meaning the plotted vectors convey. 
Afterwards, the general definition of vector field is introduced (unboxed) as “a function whose 
domain is a set of points in ℝ2 (or ℝ3) and whose range is a set of vectors in V2 (or V3)” (p. 1163) 
followed by separate boxed definitions of a vector field on ℝ2 and on ℝ3. Curiously, the language 
of domain and range is less explicit in the boxed definitions: “Let D be a set in ℝ2 (a plane 
region). A vector field on ℝ2 is a function F that assigns to each point (x,y) in D a two-
dimensional vector F(x,y)” (p. 1163). After each definition, component functions are introduced, 
with a brief mention that the reader should already be familiar with these characters from reading 
about them alongside PVVFs.  

After two examples concerning how to sketch some specific vector fields, the story shifts 
primarily to what can best be described as extended vignettes of notable types of vector fields 
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(e.g., a gravitational field, electric field, gradient fields, etc.). Aside from using function and 
vector notation as a symbolic necessity, once technology is introduced as a way of plotting 
vector fields, the functional aspects of vector fields go almost entirely unmentioned. Indeed, 
there are only 5 explicit references to vector fields as “functions” across this entire chapter, most 
of which occur near the formal definitions. 

Discussion 
These story analyses emphasize key differences between the character introductions of these 

three types of multivariable functions in one commonly used MVC textbook. While real-valued 
functions are clearly positioned as a main character and repeatedly portrayed as a type of 
function, the same cannot be said about both types of vector-valued functions. The difference is 
most extreme in the case of parametric, vector-valued functions, which play the role of a 
secondary character meant to introduce space curves and whose function character traits are 
quickly backgrounded. Vector fields remain the main character of their story; however, their 
functional character traits are mostly de-emphasized across a series of vignettes that focus on 
introducing and interpreting the physical meanings of specific vector fields (e.g., velocity fields, 
gravitational fields, etc.). Considered collectively, these stories perpetuate the meta-narrative that 
the most important type of multivariable functions in MVC are the real-valued ones. Vector-
valued ones are also functions—at least formally—but this is portrayed as a mere technicality 
and not a fact used frequently in practice. Readers (our students) are more likely to come away 
with alternative messages about vector-valued functions that are foregrounded in these stories, 
such as how readily they can be decomposed into component functions (“the truly important 
functions”) for the purposes of further computation. Or, in the case of vector fields, the 
importance of physical interpretation of vector outputs.  

Whether these alternative messages are consistent with the curricular goals of MVC is 
beyond the scope of this preliminary report. However, it is worth noting that the dominance of 
such messages may hinder students from picking up on the cultural importance of function as a 
unifying, cross-curricular theme that includes both RVFs and VVFs. Rather, readers may be led 
to believe the meta-narrative that function is an unnecessary boondoggle, “extra”, or formalism 
that only plays a passing role in the overarching story of MVC and, more generally, 
mathematics. Already, research suggests MVC students often need support in making sense of 
MRVFs as a generalization of single-variable real-valued functions. The same may well be true 
for making sense of vector-valued functions as multivariable functions, especially if there are 
even fewer textbook supports for making this generalization.  

There is emerging empirical evidence suggesting students benefit from reasoning about 
different function types as instantiations of the same overarching function concept (Melhuish et 
al., 2020; Zandieh et al., 2017); however, none of these studies are in the context of MVC. 
I hypothesize that MVC students may similarly benefit from recognizing PVVFs, MRVFs, and 
vector fields as functions, as this would better position them to recognize structural similarity 
across the different types of calculus required for each function type (e.g., the Chop, Multiply, 
Add conceptual pattern for integration, Dray & Manogue, 2023). Simultaneously, I recognize 
that while an overarching story for MVC centered on function may support students’ 
enculturation into the discipline of mathematics, it may have the opposite effect on students’ 
enculturation into other STEM disciplines, given the differing ways that scientists and 
mathematicians conceptualize functions (e.g., Dray & Manogue, 2004). This suggests further 
cross-disciplinary research collaboration is needed to ensure that our MVC curricula feature 
coherent stories which set up our STEM students to be successful, regardless of their discipline.  
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Student Use of Series Expansions as an Approximation Technique in Physics Modeling Tasks 
 

Michael E. Loverude 
Department of Physics, California State University Fullerton 

As part of a larger project to investigate student use of mathematics in upper-division physics 
courses, we have examined how students use series expansions as a means of approximating and 
simplifying complicated expressions in theory-oriented physics courses. Student responses were 
collected on pre- and post-instruction written tasks in which students were prompted to use a 
series to approximate an expression arising from a problem in electricity and magnetism. 
Despite prior experience with series in calculus and physics, students struggled to determine 
appropriate quantities in which to expand and did not attend to units or the convergence of their 
series. While student success rates improved after targeted instruction, many students expanded 
in quantities that were neither dimensionless nor small, and thus unproductive for modeling. 

Keywords: calculus, series, physics, applications 

This work is part of a project to investigate student use of mathematics in upper-division 
physics courses. A key lens has been the study of how concepts studied in calculus and other 
mathematics courses are implemented in modeling tasks in physics, and how students perceive 
and take up these concepts given the different disciplinary context. For this study, the research 
questions are: To what extent are upper-division physics students successful in using series to 
model simple physical systems? What aspects of this task are challenging? What implications 
does this have for instruction, both in physics and in mathematics?  

Background and Previous Research 
Power series are commonly covered in an introductory calculus sequence. In physics, Taylor 

and Maclaurin series are used frequently as modeling tools, for simplifying analytical solutions 
and constructing approximations. As part of a project to study student use of mathematics in 
upper-division physics and support curricular interventions, we have investigated the reasoning 
used by students in using series to manipulate physics expressions and use mathematical tools for 
modeling physical systems, including the use of series as approximation tools.  

While often physics students will be asked to perform a full Taylor series expansion, in many 
cases it will suffice to use a binomial expansion. A typical usage is to generate an exact 
expression from a physical and mathematical model, then to replace a portion of this expression 
with a power series, in powers of a small, dimensionless ratio of two physical quantities. For 
example, for the expression for the electric field of an electric dipole (a pair of charges with 
equal absolute value but opposite sign), shown in Figure 1, the task directs students to consider 
points far from the dipole. The statement ‘far from the dipole’ can be interpreted to mean that the 
distance y is considerably greater than the distance d between the two charges, and thus 
mathematized as y>>d. Students can perform algebraic manipulation to produce an expression 
proportional to (1-d/2y)-2, which is of the form (1+x)p with |x|<1 as stated in the course text 
(Boas, 2006). With |x|<1 the series will converge, and higher-order terms fall off quickly, 
allowing the complicated expression to be replaced with a relatively simple polynomial. 

Previous research on student learning of series comes from both the mathematics education 
and physics education research (PER) communities. RUME studies have tended to focus on 
conceptual understanding and visualization. Alcock and Simpson (2004) focused on use of 
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visualization of series. Martin and Oehrtman (2011) investigated the concept of convergence in 
terms of metaphors, including a part / whole metaphor and a cutting metaphor. Champney and 
Kuo (2012) focused on visual images of the Taylor series as an approximation.  

PER studies have often focused instead on application to problems, Smith et al. (2013) 
reported that students lacked fluency in both creating and using series, despite prior exposure in 
mathematics and physics as well as evidence of conceptual understanding of the graphical 
meaning of series terms.  Wilcox et al. (2013) investigated Taylor series as a modeling tool in 
upper-division classical mechanics. From this analysis they developed the ACER framework for 
student use of mathematics in physics, named for its four components: activation of a tool, 
construction of a model, execution of the relevant mathematics, and reflection on the result. 
Student difficulties in each of the four phases were described, including those with expansions 
about a point other than zero and a lack of meaningful reflection. In both PER studies, students 
had to make choices about the series expansion, but in neither case was it necessary to 
manipulate an expression to produce a small, dimensionless ratio with which to expand.  

Context and Methods 

Context for the Research 
This work has taken place in the context of a course on mathematical methods for physics 

(“Math Methods”), a required course in many physics departments that is generally intended to 
prepare students for the mathematics encountered in upper-division theory courses. Course 
prerequisites include three semesters of calculus and two semesters of introductory physics; all 
students would have encountered series and the relevant physics concepts. For this report, we 
describe data that were collected in twelve in-person sections of the course from different 
semesters over the period 2009 to 2022, all taught by the same instructor at a comprehensive 
university serving a diverse student population. Instruction focused on mathematical ideas used 
as modeling tools in physics and included relevant post-tests on course quizzes. Total enrollment 
over these semesters is approximately 160 students and the performance was roughly similar 
across sections while accounting for fluctuations. Approximate demographics for these semesters 
were: 78% male, 22% female, 45% white, 33% Latino, 18% Asian.  

Instruction in Math Methods was interactive and used instructional materials developed in 
response to both prior research and results from early versions of the ungraded quiz. Students in 
small groups worked on guided worksheets. Tasks in the worksheets included qualitative 
questions about the first three terms in a Taylor series for several points on an arbitrary graph 
(adapted from Smith et al., 2013), followed by procedural tasks including evaluation of terms of 
series for sine and cosine. Students were then asked to interpret their results by comparing their 
series for sine and cosine to the original functions in terms of values and behavior (slope, 
curvature). Student groups then revisited the dipole task and executed the expansion, with 
guiding questions that directed their attention to the units and magnitude of the expansion 
variable and what implications this had for series convergence and meaning. The purpose of this 
report is to examine aspects of student reasoning, but the results also have implications for the 
instructional materials that are addressed in the discussion section. 

Method 
For this study, we present the results of written responses to tasks administered as part of 

course assessments, including ungraded and graded quizzes. Each task involved the use of series 
to derive an approximation from an exact analytical result. In all cases, the generic form of the  
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Figure 1. Task from initial ungraded quiz. A diagram was included (not shown due to space 
considerations). The problem statement in the quiz included the expression for the binomial 

expansion from the course text (Boas 2006), with the form (1+x)p. Graded quizzes were similar 
but included different contexts (E field from charged ring, potential from charged disk). 

terms of a binomial series was available to students, either as explicit information included in the 
problem statement, or as a supplemental sheet of equations (e.g., in given information on a quiz).  

The initial task for the ungraded quiz involved a series expansion for an expression for the 
electric field of a dipole for points along the axis containing the two charges (Fig. 1). This task is 
often encountered in introductory electricity and magnetism as an example and/or textbook 
problem (Halliday et al., 2011), and the approximate field proportional to the inverse cube of 
distance is familiar to experienced physicists. Graded quizzes after instruction included other 
tasks of similar structure (expression given, perform expansion to generate approximation) that 
are not shown due to space limitations. These tasks included four examples from electricity and 
magnetism, involving expressions for the electric field or potential for an extended object with a 
distributed charge (e.g., a ring or disk) or for a simple model of a crystal lattice.  

Written responses were collected on an ungraded quiz (dipole, Figure 1, N = 156) on the first 
day of instruction in the Math Methods course over twelve semesters. Additional responses were 
collected on the first graded quiz (other tasks, not shown, N = 161). Student responses were 
coded by the lead researcher and student assistants using qualitative inductive analysis (Otero 
and Harlow, 2009); the initial data were coded without a priori categories, based on correctness 
and the overall approach taken. Initial codes were then refined, informed by an analysis of the 
steps in the task. Categories are described in results, below.  

Results 
Categories coded for included: mathematization of relative distances (e.g., y>>d), choice of 

expansion variable, dimensionality and magnitude of expansion variable, identification of 
exponent, execution of expansion, and interpretation of results (see Table I). For each category, 
specific choices in the response were recorded, e.g., whether to expand in powers of (y-d/2) or to 
factor the expression and expand in powers of d/2y or 2y/d. For example, expanding in (y-d/2) 
would be coded as neither small nor dimensionless. In contrast, 2y/d is coded as dimensionless 
but is not small compared to one. Nearly all codes of ‘small’ were also coded ‘dimensionless.’  

Responses on the initial ungraded quiz, before instruction in the Math Methods course, 
illustrated the difficulty of the tasks but provided relatively little insight into student reasoning. 
Very few students produced complete and correct responses to the task. A third of the responses  

Consider the electric field at points along the axis of an electric dipole,   for 

a point far from the dipole, with y much larger than d.  

The first term of the expression is .  Use the binomial expansion (given) to construct the first 

three terms of a series for this term given that y >> d.  Explicitly identify what x and p you are using.  
What simplification is allowed by the fact that y >> d? 
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Table 1. Categories coded for in student responses, and examples of the coding. Examples are 
drawn from post-test questions involving a ring or disk. 

Step Examples 

Mathematize “far from the ring so z>>R” 
Choose expansion variable 
        dimensionless 
        small compared to one 

 
“x=R2/z2” 

“use z/L, <<1 b/c L>>z” 
Identify exponent in binomial  “p=-3/2, negative brings to numerator” 
Execute expansion [omitted due to space constraints] 
Interpret results physically  “we can cut out [terms] so àkQ/z which is a 

point charge from far away” 
 
were either blank or nonproductive and uncodable, despite ample time to respond. Under 10% of 
responses transformed the expression into a form suitable for the expansion, i.e., (1+x)p with x 
dimensionless and 0<|x|<1. Students who identified such a dimensionless quantity frequently 
neglected to attend to convergence, choosing a series with powers of a quantity large compared 
to one (e.g., y/d). Around 3% of students expanded in a dimensionless quantity small compared 
to one, one that would lead to a series that converges. 

Student responses to the question about the significance of y>>d further suggest the 
importance of the interplay between mathematical calculation and more qualitative physical 
reasoning. A large group of coded responses included answers stating incorrectly that the electric 
field would be zero. This category included two subcategories. One set of codes (~20% of 
students) included assertions, without calculation, that the electric field is zero because y is large. 
The second group of codes (~30%) included an algebraic calculation or symbolic argument,  
stating explicitly that y>>d allows one to set d=0 or set y-d/2=y, in which case the expression for 
E reduces to zero. It is not clear whether the students in the second group force the mathematics 
to support their intuition that E=0 or simply perform the calculations and reach that result. The 
former might be explained with a dual-process model (Kryjevskaia et al., 2021). 

Table 2 compares results before and after instruction. The post-test quizzes involved four 
tasks different from the dipole, all involving electricity and magnetism. The results are shown as 
a single combined entry because there was very little difference in response patterns. (For 
example, the fraction of students choosing a dimensionless x with which to expand was 72% in 
tasks involving electric potential of a disk, 78% in tasks involving electric field of a ring, and 
76% in tasks involving electric forces in a crystal lattice.)  
Table 2. Responses to series approximation tasks before and after tutorial instruction. In the 
table, x and ‘exponent’ refer to the binomial (1+x)p from the course textbook (Boas, 2006). 

Instruction Appropriate  
quantity x 

 
 x unitless 

  
(|x|<1) 

Appropriate 
exponent  

Pre (N = 156) 3% 8% 3% 3% 
Post (N = 161) 56% 76% 60% 67% 
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More students successfully chose a dimensionless quantity with which to expand, but roughly 
20% of those who did still chose quantities that were large compared to one, expanding in a 
series that would not converge and was not productive in modeling.  

All post-test examples led to series in which there were fractional and/or negative exponents, 
which proved to be challenging. For example, given the expression for electric potential of a 
charged disk,  ! = 2$%&'√)! + +! − √)!-, the students who answered incorrectly frequently 
expanded with a positive integer exponent (1 or 2, rather than (1 + +! )!0 )"/! with exponent ½). 

While the algebraic manipulation required means that success on these tasks will be linked, 
there may also be a hierarchy of ideas; most of the students who correctly identified a small 
argument also chose a dimensionless argument and the correct exponent. The converse was not 
true; roughly one in three students who identified the correct exponent had incorrect series terms.  

Discussion 
Prior research may have underestimated the difficulty for students in using this technique by 

providing examples in which the variable of expansion was already dimensionless and small 
compared to one. Even after targeted instruction, nearly half of the students expanded these 
symbol-rich expressions in powers of a quantity that would not be productive for modeling.  

While series are a point of shared emphasis in calculus and physics courses, the emphasis 
differs in important ways. Power series in physics must be dimensionless, but few students on 
the pretest chose to expand in a dimensionless quantity. Whereas a mathematics course might 
provide a ‘cleaned up’ expression to simplify student calculations (and instructor assessment), 
students in physics will encounter expressions that are symbolically rich and quantities that have 
units. Despite the strong emphasis in calculus on convergence, physics students need support to 
understand how this idea plays out in physics contexts. Students are likely to encounter an 
expression in a form inconvenient for expansion and must make choices consistent with 
convergent behavior that consider the dimensionality of quantities in physics. In our data set, 
many students have chosen to expand in powers of a quantity greater than one, for which a series 
would not converge and thus would not be useful in modeling. Instructors should be cognizant of 
the disciplinary differences their students will encounter and provide appropriate support. 

The case of the dipole illustrates that it is sometimes necessary to perform an expansion 
rather than simply arguing that y >> d implies that d ~ 0. While ignoring a small quantity might 
be productive in certain circumstances while modeling, here it eliminates the interesting physics 
of the dipole configuration, in which the small extra distance to one charge has important 
physical consequences, thus highlighting disciplinary practices.   

We are using these results to modify the instructional materials and develop a set of modular 
curricular materials that can be adapted to the purposes of different upper-division physics 
courses. Preliminary materials seem to provide support for students in identifying dimensionless 
quantities but students seem to need additional scaffolding to recognize when and whether their 
series are convergent. Additional research and development in ongoing. Current versions of the 
materials are hosted at PhysPort.org. 
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Analysis Across Geometry Textbooks to Link Content, Curriculum and Children’s Reasoning

Ayse Ozturk
The Ohio State University, Newark

Research showing that geometry textbooks for teacher candidates primarily focus on
expanding the content knowledge in geometry by applying geometry to real-world problems
(Litoldo & Amaral-Schio, 2021) and using technology to support problem-solving activities and
create multiple representations (Jones et al., 2017). In this study, building on the previous
research, we looked for how textbooks used in geometry content courses for elementary school
teacher candidates might support their pedagogical content knowledge.

The conceptual framework of this study is Ball et al.’s (2008) practice-based theoretical
model that refines pedagogical content knowledge which blends content knowledge, pedagogy
and curriculum that highlights teacher’s knowledge of standards, grade levels when particular
topics are taught, and more. The framework guided the current study’s data creation and analysis
process to learn how textbooks support prospective teachers’ pedagogical content knowledge in
geometry teaching.

We collected the commonly used textbooks reported by U.S. mathematics courses instructors
for elementary teachers (Max & Newton, 2017; Ozturk et al., 2023). Drawing from relational
content analysis methodology (Elo et al., 2014), we first analyze the content of five geometry
textbooks and identify the instances of pedagogical content knowledge elements while
considering the conceptual framework and examine the differences and similarities across the
textbooks. We engaged in a selective reduction process that entailed reading the book and
reducing the text to categories, from which we could focus on developing codes for informing
our research question. After creating the initial codes, we examined the books individually and
then came together to compare and contrast the patterns found in each book. After six meetings
(about 14 hours), we finalized five codes including instancing children’s written work, instancing
children’s ideas, instancing teacher’s role and their activities in K-5 classrooms, using of
learning standards and connection to K-5 curriculum, and using of standardized assessment
questions. Next, we created the final table containing the code frequencies within each textbook
and across all codes to draw conclusions.

Analysis revealed that of 780 total codes, the highest percentages of codes focused on
children’s ideas which provides many examples of how children reason through geometric
concepts. The second-highest code percentages focused on the teacher’s role and classroom
connections, such as discussing teachers’ responses to children’s ideas to advance the latter’s
geometric reasoning. The third-highest percentage of codes focused on the use of learning
standards, which was often listed next to each relevant book session to show how standards
could be linked with instructional activities in progressing through grades K–5. The
fourth-highest percentages were related to the code for children’s written work which would
allow prospective teachers to see concrete examples of children’s reasoning through geometric
concepts. The code with the least frequency related to the use of assessment questions, providing
sample questions from actual standardized tests for K–5 students to familiarize prospective
teachers with the content for different grade levels. Depending on the instructor’s purposes and
practices, the coded instances of pedagogical content knowledge in the textbooks could be used
to support prospective teachers’ knowledge in geometry content courses (Ozturk et al., 2023).
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Exploring Students’ Mathematical Convictions Through a Script-writing Task

Mario A. Gonzalez
Texas State University

Some empirical studies that report on mathematical convictions include proof
comprehension (Stylianides et al., 2007) or evaluation (Inglis & Mejia-Ramos, 2008). Some
focus on students’ convictions (Lockwood et al., 2020; Zaslavsky, 2005). One underreported
method in the literature for this topic of research is script-writing—the creation of a dialogue,
between oneself and an imaginary student or classmate, focused on issues that may be
encountered and resolved (Zazkis & Zazkis, 2014). This method is often used with teachers as a
form of lesson-play (Koichu & Zazkis, 2018; Zazkis et al., 2013) while others have used it to
investigate proof comprehension (Brown, 2018; Zazkis, 2014).

The purpose for this study was to explore this method’s utility when investigating
students’ mathematical convictions. The guiding research question was: how do students’
responses to a script-writing task describe their mathematical convictions? Take-home
script-writing tasks, initial interview recordings, and one follow-up interview recording were
collected. The statement and argument presented to students for their task were:

Statement: For n ϵ ℕ, the sum of the first n consecutive odd numbers is n2: 1 + 3 + 5 + …
+ (2n – 1) = n2.
Argument: Let n be a natural number and consider n = 1. We have 2(1) – 1 = 2 – 1 = 1
which is 12. Assume that 1 + 3 + 5 + 7 + 9 + … + (2n – 1) = n2 is true for the natural
numbers: 1 + 3 + 5 + 7 + 9 + … + (2n – 1) + (2n + 1) = [1 + 3 + 5 + 7 + 9 + … + (2n –
1)] + (2n + 1) = n2 + (2n + 1) = n2 + 2n + 1 = (n + 1)2. Therefore, 1 + 3 + 5 + 7 + 9 + … +
(2n – 1) = n2 is true for the natural numbers.

The task had instructions on creating a dialog between them and a classmate named Gamma.
These instructions asked to introduce and explain the statement and argument to Gamma and to
identify problematic points (see Brown (2018, p. 66) for similar instructions).

Taylor, in his final semester, was completely convinced that the statement was true and
the argument proved the statement in the initial interview. For his script, he used an example
showing the statement to be true and invited Gamma to try examples. In the follow-up interview,
Taylor explained he tried to help Gamma “understand intuitively” because it’s easier to do that
with examples. When asked how he would resolve the issue if Gamma was still not convinced
that the statement was true, he responded with “like if I lay down a whole proof?... I guess
they’re just not convinced….” This was interpreted that Taylor had an assumption that proofs
should be convincing. I asked Taylor if he agreed that if Gamma understood the statement and
argument more, then Gamma would be more convinced. He responded with “definitely.”

Stewie was a fifth-year student who recently completed a transition-to-proof course. In
the initial interview, he was 99.99% convinced by the statement and argument saying, “it’s hard
to be 100% certain on anything.” He cited possible human errors for this judgment. In his script,
he identified issues regarding the formatting and clarity of the proof. Stewie appeared to explain
the components of the proof, like the purpose of the base case, to help Gamma.

In this study, I hoped that the scripting task would influence participants’ convictions.
However, their convictions remained the same throughout the study. The script-writing task
revealed that they viewed ideas of helping a classmate in: 1) comprehension and clarify of the
method of proof and 2) conviction in the statement’s truth. Future research may include more
complex statements and arguments to explore the script-writing task’s influence on convictions.
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The Precalculus Concept Assessment (PCA) and Prospective Secondary Teachers 
 

 Kevin C. Moore Irma E. Stevens 
 University of Georgia University of Rhode Island 
  
 Anne Waswa Sohei Yasuda 
 University of Georgia University of Georgia 

Keywords: Student Cognition, Covariational Reasoning, Pre-Calculus 

Carlson et al. (2010) developed the 25-item multiple choice Precalculus Concept Assessment 
(PCA) to investigate reasoning abilities and meanings researchers (e.g., Carlson et al., 2002; 
Dubinsky & Harel, 1992; Oehrtman et al., 2008; Thompson & Silverman, 2007) have established 
as critical for pre-calculus and calculus learning. Since its initial development and validation, the 
PCA has been administered to thousands of secondary and post-secondary students, providing 
key insights into their reasoning abilities, as well as their potential success (as measured by 
grades) in future calculus courses. For instance, using a population of 248 students who were 
entering a first-semester calculus course taught by six different instructors, Carlson et al. (2010) 
identified that 77% of the students who scored 13 or higher passed the course (i.e., C or better). 
Meanwhile, 60% of the students who scored 12 or lower failed (i.e., D, F, or W). The authors 
illustrated that the correlation between course grades and PCA score were as strong or stronger 
than other popular educational math tests including the MAA placement test.  

Given the insights the PCA provides relative to pre-calculus and calculus students, we grew 
interested in the extent the PCA can provide useful insights with other populations. Across 
several semesters, we administered the PCA to 174 undergraduate students upon their entry to a 
secondary mathematics teacher preparation program. Their program entry typically occurs 
during their sophomore or junior year of undergraduate studies, and after having taken two math 
courses beyond a calculus sequence. In this poster, we present on the results of that 
administration. Specifically, we report on an analysis of the aggregate scores of the population 
(Figure 1a), as well as their performance on covariational reasoning items (Figure 1b). With 
respect to the covariational reasoning item performance, we draw on our expertise and research 
(Moore, 2021; Moore et al., 2022; Moore et al., 2019) to develop hypotheses regarding 
discrepancies in performance. Specifically, we highlight differences between items based on the 
level of covariational reasoning targeted by the item. We also explore differences between items 
based on the items’ figurative material and the extent the material afforded enacting quantitative 
operations versus numerical operations. These differences provide potential insights and 
implications relative to the participants’ grounding to reason about and teach for key concepts of 
secondary mathematics.  

       
(a)                    (b) 

Figure 1. (a) PCA Participant Scores and (b) Covariational Reasoning Item Performance. 
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a 11 6.32%

b 50 28.74%

c 3 1.72%

d 7 4.02%

e 103 59.20%

a 5 2.87%

b 70 40.23%

c 72 41.38%

d 3 1.72%

e 24 13.79%

a 44 25.29%

b 125 71.84%

c 5 2.87%

d 0 0%

e 0 0%

Ans. # %
a 4 2.3%

b 20 11.49%

c 1 0.57%

d 134 77.01%

e 15 8.62%
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Match The Task to 
the Answer Data Set 
The Precalculus Concept Assessment (PCA) and Prospective Secondary Teachers 

by Kevin C. Moore, Irma E. Stevens, Anne Waswa, and Sohei Yasuda  


PAPERMATCHING 
GAME

Differences in responses to 
covariation items provide insights 
into their covariation meanings. 

The prospective teachers have formed indexical 
associations between graphs and covariation 

statements, but that does not imply their having 
abstracted graphs in terms of re-presenting 

quantitative and covariational operations.  
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An Exploratory Study of Students’ Understanding of Graphical Optimization in a Cost 
Minimization Context 

Thembinkosi P. Mkhatshwa 
Miami University 

This study reports on first-semester calculus students’ reasoning about a univariate optimization 
problem that involves finding the production level at which the cost per yard is minimized when 
given the graph of a function that represents the relationship between the cost per yard and the 
number of yards produced by a factory. Analysis of verbal responses and work written by four 
students when solving the problem revealed that determining the production level at which the 
cost per yard is minimized was straightforward for all the students. However, explaining how 
this production level is related to the first derivative of the given function was problematic for 
most of the students.  

Key words: Optimization problems, graphical optimization, problem solving, calculus education 

Unlike algebraic optimization that uses algebraic methods (that may sometimes be 
sophisticated, especially when working with complex objective functions) to solve univariate 
optimization problems or numerical optimization (that requires some level of technical skills 
such as proficiency in MATLAB programing) to solve univariate optimization problems, 
graphical optimization (Bhatti, 2000) is the simplest method for solving univariate optimization 
problems (UOPs) in that it only requires making sense of graphs of objective functions. A 
number of studies have reported on several difficulties typically exhibited by students when 
solving optimization problems algebraically, including formulating the objective function, 
finding and interpreting critical values or extrema of the objective function, and determining if a 
critical value(s) results in a minimum/maximum value of the objective function (cf. Borgen & 
Manu, 2002; Dominguez, 2010; LaRue & Infante, 2015; Mkhatshwa, 2019; Swanagan, 2012). 
We are not aware of any research that has examined students’ thinking in the context of 
graphical optimization, which is the motivation for this study. To address this knowledge gap, 
task-based interviews (Goldin 2000) were conducted with four calculus students. 

Contrary to findings of studies that have reported on students’ thinking about algebraic 
optimization (cf. Borgen & Manu; Swanagan, 2012), nearly all the students in the present study 
were successful in finding the critical value or extremum as well as justifying extremum while 
working with a UOP where the graph of the objective function was provided. To some extent, 
this may suggest that while students may struggle with solving UOPs algebraically, partly due to 
the lack of facility with some algebraic techniques such as calculating derivatives of complex 
objective functions, students have better success with solving UOPs graphically not only because 
they can visualize the objective function, but also because having access to the graph of the 
objective function supports their quantitative reasoning (Thompson, 1993; 2011) such as the ease 
of identifying critical values and extrema. Additionally, three of the four students made remarks 
that suggested that they had difficulty understanding that the derivative of the objective function 
ought to be zero at the critical value (i.e., the cost minimizing quantity), something that generally 
comes easy for students when solving UOPs algebraically.  
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Students’ Attitudes and Perseverance in Problem-solving in Undergraduate Precalculus 
 

 Amy Daniel Joseph DiNapoli 
 Montclair State University Montclair State University 

Keywords: precalculus, curriculum enactment, attitudes, perseverance in problem-solving 

This exploratory study investigated the relationships between professors’ enactments of a 
research-based precalculus curriculum and changes observed in students’ attitudes towards 
mathematics and perseverance in problem-solving. While much research focuses on improving 
student achievement in undergraduate STEM courses, we must also support them in developing 
the positive dispositions and practices needed to sustain them through years of mathematics-
based STEM coursework (Bressoud et al., 2015). When students hold positive attitudes towards 
mathematics, they are more likely to both succeed in calculus (Sonnert et al., 2020) and persist in 
completing a STEM degree (Wu et al., 2022). When students persevere in their problem-solving 
amidst challenges, they make meaning of mathematics and develop productive dispositional 
factors for STEM majors, including building resilience for overcoming setbacks (Middleton et 
al., 2015). The Pathways precalculus curriculum (Carlson et al., 2021) leverages research on 
student thinking to support them in developing problem-solving skills and in making connections 
across concepts (Moore & Carlson, 2012), and has been tied to improvement in students’ 
covariational reasoning and subsequent success in calculus (McNicholl et al., 2021). However, 
since curriculum and its enactment can transform students’ opportunities to learn in various ways 
(Stein et al., 2007), including outcomes related to disposition and mathematical practices 
(DiNapoli & Morales, Jr., 2021; Ruthven, 2011), we chose to focus on the relationships between 
different enactments of Pathways and students’ attitudes and perseverance measures.   

Three precalculus professors (Profs. A, B, and C) and 33 of their students participated in this 
study. Two classroom observations for each professor were video recorded and transcribed. The 
professors’ pedagogical choices were scored on a 0-3 scale along three Pathways-aligned 
dimensions: support of student problem-solving, understanding and advancing student thinking, 
and making connections (rubric adapted from Schoenfeld et al., 2014). Student participants 
completed an Attitudes Towards Mathematics Inventory (ATMI; Tapia & Marsh, 2004) pre- and 
post-survey, which measured students’ mathematical self-confidence, value, enjoyment, and 
motivation. Student participants also engaged in 12 video-recorded problem-solving sessions. 
Students’ perseverance was measured using the Three-Phase Perseverance framework (3PP; 
DiNapoli & Miller, 2022), which considered the extent to which students initiated and sustained, 
and re-initiated and re-sustained upon impasse, productive struggle on a challenging task. 

Profs. A, B, and C implemented Pathways in different ways along the dimensions analyzed; 
over the two observations, Prof. A’s scores were almost uniformly low, Prof. B’s consistently 
high, and Prof. C’s scores were medium-to-high. Each professor’s students exhibited changes in 
attitudes: Prof A’s students shifted towards more negative attitudes across the semester, whereas 
Profs. B and C’s students exhibited positive attitude shifts. Finally, students in all three classes 
averaged positive 3PP slope scores, indicating some perseverance growth for all, yet Prof. B and 
C’s students experienced about 5 and 4 times the growth, respectively, compared to Prof. A’s 
students. More detailed qualitative and quantitative evidence of our findings will be shared in our 
presentation. These findings suggest that although the Pathways precalculus curriculum may 
support the development of positive attitudes toward mathematics and improved perseverance in 
problem-solving, this potential is influenced by professors’ pedagogical choices. 
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In this early exploratory study, we were able to see some potential connections between 
different ways of  implementing Pathways and students’ changes in attitudes towards 
mathematics and perseverance in problem solving, and many of  these perceived connections 
are consistent with the literature.
● We saw evidence of  the links between actively engaging students in 

problem-solving and improvements in attitudes and perseverance in 
problem-solving (Barnes, 2019; DiNapoli & Miller, 2022; LeSage et al., 2021; Peterson, 
2019; Schettino, 2016; Schoenfeld, 1992).

● We saw evidence of  the links between understanding and advancing student 
thinking to improve students’ self-confidence, motivation, and perseverance in 
problem-solving (DiNapoli & Miller, 2022; Harper et al., 2019; Jatisunda, 2020; Reiser 
& Tabak, 2014).

● We saw evidence of  the links between providing students opportunities to make 
connections between content and real-world contexts to their perception of  the 
value of  mathematics (Aikens et al., 2021). 

 

What are the relationships between professors’ enactments of  a 
research-based precalculus curriculum and changes observed in students’ 
attitudes towards mathematics and perseverance in problem-solving?

● Student achievement in precalculus is necessary, but not sufficient
○ Positive attitudes towards mathematics help students succeed in calculus and 

persist in completing a STEM degree (Sonnert et al., 2020; Wu et al., 2022). 
○ Persevering in problem-solving helps students make meaning of  mathematics and 

build resilience for overcoming setbacks (Middleton et al., 2015). 
● The Precalculus: Pathways to Calculus curriculum has the potential to support 

students in developing positive attitudes and improving their perseverance
○ Content development embedded in rich, real-world contexts 

■ Reduces math anxiety (Karunakaran, 2020)
■ Supports students’ value of  mathematics (Aikens et al., 2021)

○ Focus on developing students’ problem-solving skills and covariational reasoning
■ Increases enjoyment (Schettino, 2016) and motivation (Peterson, 2019)
■ Supports perseverance development (Barnes, 2019; DiNapoli & Miller, 2022)

○ Scaffolded questioning based on research on how students make sense of  
precalculus concepts (e.g., Frank, 2017; Kuper, 2019; Moore, 2010) 
■ Improve students’ mathematical self-efficacy (Jatisunda, 2020)
■ Helps students initiate and sustain productive struggle (Reiser & Tabak, 2014), 

and thus, their perseverance at times of  impasse (DiNapoli & Miller, 2022)
● Curriculum enactments can differentially impact

○ Students’ opportunities to learn (Stein et al., 2007)
○ Students’ attitudes towards mathematics (Ruthven, 2011)
○ Students’ improvement in perseverance in problem-solving (DiNapoli & Miller, 2022)

Introduction and Rationale Results

Research Question

Discussion

This research suggests that although the 
Pathways precalculus curriculum may 
support the development of  positive 
attitudes toward mathematics and improved 
perseverance in problem-solving, this 
potential is influenced by 
professors’ pedagogical choices.
          
         Scan this QR code to access our paper: 

Main Takeaway of  Research #betterposter

Context and Participants
● Public research university in the Northeast U. S.

○ ~23,000 students, HSI, R2: Doctoral University
● Coordinated, entry-level precalculus course 

○ ~40 sections and ~1200 students per year, optional PD
● Three precalculus professors (Profs. A, B, and C) and 33 of  their 

students participated.
Data Collection and Analysis
● Two classroom observations for each professor were video recorded and transcribed. 

○ The professors’ pedagogical choices were scored on a 0-3 scale along three 
Pathways-aligned dimensions: support of  student problem-solving, understanding and 
advancing student thinking, and making connections (Schoenfeld et al., 2014). 

● Student participants completed an Attitudes Towards Mathematics Inventory (ATMI; 
Tapia & Marsh, 2004) pre- and post-survey, which measured students’ mathematical 
self-confidence, value, enjoyment, and motivation. 

● Student participants also engaged in 12 video-recorded perseverance in problem-solving 
sessions. 
○ Students’ perseverance was measured using the Three-Phase Perseverance framework 

(3PP; DiNapoli & Miller, 2022), which considered the extent to which students 
initiated and sustained, and re-initiated and re-sustained upon impasse, productive 
struggle on a challenging task.

Methods

Attitudes Findings
Small shifts in ATMI outcomes: 
● Prof  A’s students: mostly negative 

shifts in attitudes
● Profs B’s students: mostly positive, 

particularly in value
● Prof  C’s students: mostly positive, 

particularly in self-confidence.

Perseverance Findings
● All students showed perseverance growth

○ Prof  B & C’s 3PP growth ~4-5 times 
greater than Prof  A’s

● To show 1 point of  3PP growth:
○ Prof  A: ~11 problem-solving sessions
○ Prof  B: ~2 problem-solving sessions
○ Prof  C: ~3 problem-solving sessions

● Interpreting 1 point of  3PP growth, e.g.:
○ 0→1: none → some effort
○ 2→3: sustaining → productive effort
○ 3→4: first → second effort upon impasse

Attitudes Towards Mathematics and Perseverance in Problem-Solving

Classroom Observations

Classroom Observation Findings
● Prof  A had somewhat lower scores across the 

board compared to Profs B and C, particularly 
in the Problem-Solving category. 

● Prof  B’s scores were consistent across all 
categories and were generally highest.

● Prof  C’s scores were mixed, a bit higher for 
their first observation than their second.

Note: Maintaining a level 3 in all three categories 
would be impossible.

159 9

ATMI 
respondents

Problem-solving 
Session Participants

Examples of  Understanding and Advancing Student Thinking
      Prof  A’s Level 1 Interaction          Prof  B’s Level 3 Interaction

Examples of  Engaging and Supporting Students in 
Problem-Solving

In Prof  C’s first 
observation, students spent 
the majority of  class working 
in small groups with Prof  B 
circulating around the room 
in a supportive role.
In Prof  C’s second 
observation, they spent 
more time at the board 
delivering content.

Examples of  Providing Students with Opportunities to Make 
Connections

In Prof  A’s first observation, 
they developed the exponential 
function formula using a 
real-world context, connected 
symbolic and graphical 
representations, and contrasted 
exponential and linear growth.

In Prof  A’s second observation, they made 
fewer connections to real-world contexts, 
other representations, and other content. 

○ Prof  A’s lack of  problem-solving 
pedagogies were due, in part, to COVID 
concerns.

○ Prof  B’s best problem-solving 
pedagogies involved leading interactive, 
whole-class discussions.

○ Prof  C’s best problem-solving 
pedagogies involved small group work.

○ Valuing student thinking in 
class can help them develop 
their mathematical agency.

○ Students seeing how their 
in-progress thinking can lead 
to mathematical productivity 
in class can reinforce the 
value of  productive struggle.

○ Whether the professor or the students make 
connections may influence students’ value of  math.

○ Prof  A and Prof  C scored similarly, but Prof  C more 
often provided students with opportunities to make 
these connections for themselves.

○ Prof  B often used real-world scenarios suggested by 
students to create contextualized problems for 
in-class discussion.

Students’ Attitudes and Perseverance in
Problem-solving in Undergraduate Precalculus
Amy Daniel – daniela4@montclair.edu Joseph DiNapoli – dinapolij@montclair.edu This project was supported by a 

grant from the State of New Jersey
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Summarizing the Experiences and Beliefs of Community College Instructors and Students in a 
Corequisite Mathematics Course 

 
Brianna Bentley 

Alamance Community College 

Keywords: developmental mathematics corequisite course, community college, mindset, math 
anxiety, math self-efficacy 

At community colleges in North Carolina, the corequisite course model has been adopted for 
all the entry-level mathematics courses. Research about the corequisite course model has shown 
that these courses can successfully help students earn their mathematics credit (e.g., Childers et 
al., 2021; Kashyap & Matthew, 2017; Logue et al., 2019) and can increase students’ interest in 
mathematics (e.g., Campbell, 2015). The purpose of this poster is to summarize my three-article 
dissertation study that described the experiences, mindset, math anxiety, and math self-efficacy 
of students taking corequisite courses and instructors teaching corequisite courses, the 
interactions between student and instructor experiences, and the influence of instructors on 
students’ mindset, math anxiety, and math self-efficacy over the course of the semester. 

The first article explored the experiences of students taking a corequisite course and 
instructors teaching a corequisite course, specifically, what characteristics of corequisite courses 
students and instructors found to be effective, ineffective, and what changes they would make to 
corequisite courses. A multiple case study design was used to analyze the student and instructor 
perspectives of corequisite mathematics classrooms. Semi-structured interviews were completed 
with 11 students and 13 instructors from four community colleges. Interviews were transcribed 
and coded, and then codes were grouped into four broader themes: (1) corequisite courses 
characteristics determined at the college and department level; (2) corequisite courses 
characteristics determined at the classroom level; (3) changes that have been or that could be 
made to corequisite courses; and (4) their overall recommendation of corequisite courses.  

The second article was a convergent parallel mixed methods study that investigated 
community college students’ change in mindset, math anxiety, and math self-efficacy in a 
corequisite mathematics course and what characteristics of corequisite courses influence these 
changes. Student’s math self-efficacy significantly increased, while their math anxiety decreased 
over the course of the semester. Student’s mathematical mindset did not significantly change 
over the course of the semester. Student interview comments could be categorized into two 
larger themes: (1) how students felt at the beginning of the semester when they signed up for a 
corequisite course; and (2) how the characteristics of the corequisite course influenced their 
mindset, math anxiety, and math self-efficacy.  

The third article was a convergent parallel mixed methods study that investigated the extent 
to which community college students’ change in mindset, math anxiety, and math self- efficacy 
in a corequisite mathematics course varied among instructors and how corequisite instructors 
influenced these changes in students’ beliefs. The results from an ANOVA analysis showed that 
there were significant differences across the seven instructors in students’ mean math anxiety 
gain scores. To investigate how instructors influenced students’ mindset, math anxiety, and math 
self-efficacy, semi-structured interviews were conducted at the end of the semester with 11 
students and 13 instructors at four community colleges, and student and instructor comments 
were grouped into four larger themes: (1) pedagogical decisions; (2) instructor disposition; (3) 
the classroom environment; and (4) instructor and student interactions.  
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A Peer Tutor with a Partial Growth Mindset 
 

Katie Bjorkman 
Richard Bland College 

 
Keywords: Growth mindset, peer tutors, motivation, self-regulation 
 

An undergraduate mathematics peer tutor gave various reasons why not all students were 
successful in mathematics. I consider his reasons in light of the growth mindset framework and 
common misconceptions about what it means, reflection on the fact that the beliefs of 
mathematics educators have been shown to alter student outcomes (Dweck, 2015; Rattan et al., 
2012). The undergraduate mathematics peer tutor, Jake (gender-preserving pseudonym), was a 
case-study participant that participated in an ethnographic study of a mathematics learning center 
as a figured world (Bjorkman, 2019). The study consisted of ethnographic field notes, video-
recording of tutoring interactions used in stimulated recall, and semi-structured interviews of 
peer tutors which were analyzed using grounded theory methodology (Corbin & Strauss, 1990; 
Dempsey, 2010; Emerson et al., 1995; Lyle, 2010; Muir, 2010; Strauss & Corbin, 1994). 

Jake expressed belief that everyone can learn mathematics, but only if they were willing to 
“put in the effort.” He made statements like “I believe that everyone can do math” and “I think 
it's important to get things wrong and then you understand.” However, Jake also said that 
“weeding out” through failing a mathematics class, rather than changing learning behavior, is 
good – then clarified that he didn’t think that weeding out was for those who were intellectually 
unable to do math since, “I believe that everyone can do math… but there’s some people who 
just don’t put in the effort.” Jake talked elsewhere about this group of unmotivated students as 
“[W]hen they say they don't go to lecture or don't take notes I almost don't want to help.” Jake’s 
model for student success and failure, while on the surface aligned with a growth mindset, is, in 
fact a limited growth mindset model that does not see self-regulation skills as areas where 
students can learn and grow and does not consider other factors that may lead students to 
perform poorly (Dweck, 2015; Granberg et al., 2021; Michaelson, 2017). It is likely that he 
implicitly communicated his belief about those students’ identities as “bad students” to them 
through his interactions (Holland et al., 1998; Rattan et al., 2012). If Jake as a peer tutor isn’t the 
one to help students who don’t yet know “how to college” where should they turn?  

The idea of a “growth mindset” has become quite popular in educational circles since the 
framework was put forward in the 1980’s, and more recent research has indicated it can be a 
useful construct for helping students learn (Denworth, 2019). Yet, in my personal reflection, and 
experience with other professors, this fixed mindset in terms of student effort and self-regulation 
seems to exist in more educators than Jake, perhaps even more saliently now as students and 
educators struggle with the new normal after the pandemic (Bozkurt, 2022). We have long had 
evidence that teacher beliefs about students are influential in student outcomes (Rosenthal et al., 
1966; Timmermans et al., 2021). Explicitly extending a growth mindset to students’ self-
regulation and motivation and designing courses toward fostering self-motivation and self-
regulation as skills may help these “bad students” succeed in mathematics courses, rather than 
giving up or expending effort on ineffective learning strategies (Granberg et al., 2021). 
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Conceptual Framework

The Workshop

The workshop is being embedded into an extended 
section of Business Calculus where students meet for 2 
hours twice a week vs the standard 75 minutes twice a 
week. 

The workshop has three main educational 
objectives beyond the goals of the research: 
1)Increase the academic success of students in

Business Calculus.
2)Expose students to skills that can be used in

future classes and their careers.
3)Bring value to the overall academic experience of

students.

• Workshop focuses on helping students with
nonacademic and mathematics strategy skills
specifically tailored for Business Calculus

• Topics include growth mindset, metacognition,
time management, mathematics anxiety,
mathematics test-taking strategies, calculator
skills, procrastination, feedback, goal setting,
communication skills, mathematics literacy, and
more.

• Workshop includes class discussions, group
discussions, personal reflections, group activities,
and videos.

• Workshop was piloted in Fall 2023.

Box Breathing

To delineate from regular class time (first 75 
minutes) to workshop time (last 45 minutes), I 
guide the students through the box breathing 
exercise for around 2 minutes. We started this on 
the first day of class and do it every class time. This 
allows students to be exposed to a technique which 
can reduce stress and anxiety. I also guide them 
through this on exam day for a longer period.  

Examples of Activities 

Example 1: Communication Skills 
(After watching a short video) On your own, think about 
how you feel working with others in a school or work setting. 
Do you enjoy or not enjoy working with others? What do you 
think makes a good group work? How do you plan on making 
your calculus group work this semester?

Example 2:  Metacognition
(After watching a short video) Have you heard of 
metacognition before? How would you rate your own 
metacognition? Using some of the tips in the video, how do 
you plan to study for exam 1? Be as detailed as possible. 

Example 3: Reflecting on an Exam 
Let’s take some time to dissect the exam. Go through each 
question and circle whether you felt comfortable with the 
question or not while taking the exam. If the question was 
partially incorrect or fully incorrect, write the mistake(s) you 
made or what might have confused you while attempting it. 

Learning to Learn Mathematics
Kathleen Guy

Center for the Transformation of Teaching Mathematics
Florida International University

Scan to download 
lesson plans, 
activities, data 
collection tools, and 
more. 

Learning mathematics in higher 
education is so much more than 
learning content. It requires 
students to have metacognition 
skills, growth mindset, time 
management, emotion control, 
and more!  HOW CAN WE HELP 
OUR STUDENTS???

I have created a special workshop 
which is being facilitated as an 
educational intervention that helps 
students learn to learn mathematics 
by focusing on nonacademic skills 
and mathematics strategy skills 
specific to learning Business 
Calculus.

Investigating the effectiveness of the 
intervention by measuring mathematics 
anxiety, self-efficacy, and academic 
achievements throughout the semester. 
Additionally, investigating the usefulness 
of the intervention from the student 
perspective. 

The Research

To measure the effectiveness and usefulness of the 
intervention, I am conducting a quasi-experimental 
study within an action research paradigm using mixed 
methods. 

Research Questions

1) What is the effectiveness of an intervention for
Business Calculus focused on nonacademic and
mathematics strategy skills regarding students’
academic achievements, mathematics anxiety, and
mathematics self-efficacy?

a) How do the academic achievements, mathematics
anxiety, and mathematics self-efficacy of students
enrolled in an intervention for Business Calculus
vary, if at all, over the course of a semester with
demographics of students as covariates?

b) How do the academic achievements, mathematics
anxiety, and mathematics self-efficacy of students
NOT enrolled in an intervention for Business
Calculus vary, if at all, over the course of a
semester with demographics of students as
covariates?

c) How do the changes, if any, in academic
achievements, mathematics anxiety, and
mathematics self-efficacy compare between the
students enrolled in the intervention and the
students not enrolled in the intervention?

2) How do students enrolled in the intervention
perceive the usefulness of that intervention?

3) What is the relationship between students’
perceived usefulness of the intervention and
students’ academic achievements, mathematics
anxiety, and mathematics self-efficacy?

Data
Two sections of Business Calculus:

Control Group: Standard twice a week 75 min course
Intervention group: Twice a week 2 hours course 
(where the workshop is embedded in the extra 45 
minutes)

Both quantitative and qualitative data are being 
collected throughout the semester. 

The GOAL:
To investigate if providing an innovative, 
unique, and engaging experience in higher 
education relating to learning to learn 
mathematics can impact student 
outcomes in a positive way and provide a 
resource students find useful
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Using Stories to Understand the Attitudes of Students in Entry-Level Mathematics Courses

Samuel D. Reed Chase T. Worley
Lander University Lander University

Keywords: Mathematical Attitudes; Mathematical Autobiographies

It has long been recognized that attitudes towards mathematics impact how students learn
and the degrees to which they achieve in mathematics (Hwang & Son, 2021). Most work on
college students’ attitudes towards mathematics revolve around students who are pre-service
teachers (Watson, 2019; Zazkis, 2015) or in-service teachers (Drake et al., 2001) and its impact
on teaching. In this study, we describe the types of mathematical autobiographies that students
possess in an entry- or freshman-level mathematics course (e.g., College Algebra). Namely, we
add on to Watson’s (2019) dissertation findings where she found that pre-service teachers'
prompts to humanize mathematics fit into three categories: (1) Friendly - mathematics has been a
lifelong friend; (2) Familial - mathematics is like a brother, sister, father, grandmother, etc; and
(3) Antagonist - mathematics is a bully or trying to hold a person back.

The goal of our study was to further examine and refine these categories and to assess
whether these categories were useful in describing other populations of students, such as those
enrolling in a freshman-level, non-majors, mathematics course. To assess this, we asked students
participating in a ‘Launch into the University’ initiative over the summer of 2023 to humanize
mathematics and tell their story or relationship with mathematics throughout their schooling.
These students were taking the university’s freshman-level English and Mathematics courses
(e.g., English 101 and College Algebra) with extra support from embedded tutors. Many of these
students had their high school learning impacted by COVID-19 and the ensuing pandemic. In our
analysis, we found that Watson’s (2019) categories remained useful and accurate in describing
the types of stories that students wrote in regard to their relationship with mathematics. We also
found that an additional category was useful in describing these students’ stories. Namely, that
mathematics can be a ‘Frenemy.’ Watson (2019) described Frenemy to be under the category of
Antagonist; however, we found that this description was useful as a separate category and more
akin to Drake and colleagues' (2001) ‘roller-coaster’ relationship. We found this distinction to be
important as students in the Antagonist category had (mostly) negative leaning stories. This was
in contrast to what we saw as a Frenemy or roller-coaster type of relationship, where students
expressed how they used to be friends with mathematics (or had a more positive view), and some
experience or experiences caused their relationship to change directions. It was also noticeable
how impactful the teacher is in impacting a student’s story, consistent with previous work on this
subject (e.g., Watson, 2019)

In this poster session we hope to prompt the following discussion: What can we do as
instructors to help to shift student’s perceptions about mathematics? How can we leverage
student’s stories to help them succeed in early mathematics courses?
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Professional Mathematicians’ Levels of Understanding and Pseudo-Objectification 

Kyle Flanagan 
Virginia Tech 

Keywords: Abstraction, Mathematical Understanding, Professional Mathematician 

The notion of mathematical understanding has always been central to mathematics education 
research, including how students understand mathematical concepts (e.g., Wawro et al., 2019; 
Zandieh, 2000). More recently, researchers have been interested in the mathematical practices of 
mathematicians, including how they understand mathematical concepts (e.g., Flanagan, 2022; 
Oehrtman et al., 2019; Shepherd & van de Sande, 2014; Wilkerson-Jerde & Wilensky, 2011). 
Related to understanding is the notion of abstraction, which includes various process-object 
theories (e.g., Dubinsky & McDonald, 2001; Sfard, 1991). Likely the most prominent theory of 
abstraction is Piaget’s reflective abstraction and his broader genetic epistemology (Piaget, 1970). 
In this broader theory, Piaget (1964) distinguished between two different ways to understand a 
mathematical concept, namely “act on it,” and to being able to “understand the process of this 
transformation, and as a consequence to understand the way the object is constructed” (p. 176). 

Using this distinction by Piaget, this study introduces three different theoretical levels of 
understanding: pseudo-object-level, process-level, and object-level. Pseudo-object-level 
understanding consists of being able to act on the concept like an object without understanding 
the underlying processes. Process-level understanding consists of being able to understand the 
underlying processes of the concept. Object-level understanding consists of being able to both 
act on the concept and understand the underlying processes. Pseudo-object-level understanding 
also closely aligns with the notion of a pseudostructural conception (Linchevsky & Sfard, 1991; 
Sfard, 1992; see also Zandieh, 2000). 

Through using these levels of understanding, this study addresses the following two research 
questions: 

1. In what ways do professional mathematicians operate with highly-abstract, advanced
mathematical concepts at different levels of understanding?

2. What factors can influence a professional mathematician’s level of understanding for a
given mathematical concept?

To answer these research questions, three semi-structured Zoom interviews (Hammer & 
Wildavsky, 1993) were conducted with six professional mathematicians specializing in algebra 
research. The first interview was a semi-structured task-based interview, where the participants 
completed two tasks with category theory concepts unfamiliar to the participants. The second 
interview utilized the participants’ own research journal publications to generate discussion on 
what influenced their understanding of the concepts they used in that journal article. The final 
interview was more reflective, utilizing stimulated recall to triangulate the other two interviews. 

The primary forms of data analysis consisted of conceptual analysis (Thompson, 2008) and 
thematic analysis (Braun & Clarke, 2006). The results provided evidence that professional 
mathematicians often function at a pseudo-object-level understanding for various mathematical 
concepts, and that they tend to operate differently with the concepts depending on their level of 
understanding. Moreover, numerous factors were shown to influence mathematicians’ level of 
understanding, including the particular way the concept is being utilized in their work, as well as 
other sociocultural factors like one’s field of study or what their research community values. 
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Is it “fast enough?”: Two undergraduate students’ guided reinvention of the comparison test 

Catherine Davis Kristen Vroom 
Michigan State University Michigan State University 

Keywords: Comparison test, series, sequences, guided reinvention 

Series convergence is a key part of the calculus curriculum. Much of the related education 
research has focused on students’ understandings of sequences and series (Earls, 2017; Eckman 
& Roh, 2022; Askgun & Duru, 2007; Kung & Speer, 2013; Martínez-Planell et al., 2012), the 
notation (Larsen et al., 2022), or textbook analysis (González-Martín, 2010). However, there is 
limited research on ways to support students’ conjecturing about series convergence. 

Our data comes from a teaching experiment (Steffe & Thompson, 2000) with two post-
Calculus I students, Lara and Stella. Instruction during this experiment was informed by 
Realistic Mathematics Education’s guided reinvention heuristic (Freudenthal, 2005; Gravemeijer 
& Doorman, 1999). Here, we focus on the last four (of 11) sessions in which the students were 
guided to reinvent statements about series convergence. During these sessions, the students 
played a game in which they imagined moving an object a certain number of feet each day. A 
sequence {xn} indicated how many feet xn to move the object on any given day n. Winning the 
game required predicting the object’s location if the experiment continued indefinitely (i.e., 
∑𝑥 converged and the students reported the value that it converged to). After playing the game 
with various sequences, the students wrote a “cheat sheet” with tips for which sequences 
win/lose the game and some warnings for future players. We interpreted much of their cheat 
sheet as common tests for series convergence (i.e., p-series test, comparison test). For this study, 
we investigated: How did two undergraduate students reinvent the comparison test? We 
explored how their version of the comparison test emerged from their previous informal ideas by 
rewatching videos and re-reading transcripts to identify relevant key moments. 

Stella and Lara’s reinvention was tied to their understanding of the sequences n-1 and n-2 and 
their corresponding series. Using speed as a metaphor, they identified that a winning sequence 
must converge to zero at a certain “rate” using n-2 and n-1 as their benchmarks for a sequence 
which decreased “fast enough” or “too slowly,” respectively. The teacher-researcher then 
graphed the sequence n-1 and a generic sequence that was greater than n-1 for all n, asking the 
students if the generic sequence would win. Lara quickly inferred that it would lose, and Stella 
explained it converges to zero “at a slower rate” than n-1. They formalized this on their cheat 
sheet as “if a sequence is always above the sequence n-1 it will lose the game” (which we 
interpret as a specific case of the comparison test). They compared other sequences to n-1 and 
were unsure whether sequences in between n-1 and n-2 won the game since they decreased 
“faster” than n-1 but “slower” than n-2. To find clarity, they played (and lost) the game with the 
sequence (2n)-1. They generalized this with two warnings: “sequences that are below n-1 will not 
necessarily win the game” and “sequences above n-2 might lose,” which we interpret as the 
comparison test’s possible inconclusiveness. Finally, with the teacher-researcher’s guidance, the 
two students considered their benchmark sequences (n-1, n-2) as hypothetical losing and winning 
sequences, and this encouraged them to write the conjecture which we interpret as (part of) the 
comparison test: “any sequence that is below a known winning sequence but above 0 will win.”  
     Our study is an existence proof of two students being guided to reinvent the comparison test, 
showing that students can be supported to conjecture tests for series convergence. In the poster 
session, we will elaborate on our data and discuss our future work.   
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Supporting Mathematical Connections Between Abstract Algebra and Secondary Mathematics 
for Preservice Teachers 

Cammie Gray 
Colorado Christian University 

Keywords: Abstract Algebra, Secondary School Mathematics, Preservice Teachers, Connections 

The numerous mathematical connections between abstract algebra and secondary school 
mathematics have led professional organizations and mathematics education researchers to 
identify abstract algebra as an important course for preservice mathematics teachers (CBMS, 
2001; CBMS, 2012; Wasserman et al., 2017). Despite what experts might say are clear 
mathematical connections between abstract algebra and secondary mathematics, many preservice 
teachers do not see the relevance of an undergraduate abstract algebra course to their teaching 
practice. In fact, many of them see no relation at all between abstract algebra and secondary 
school mathematics (Christy & Sparks, 2015; Ticknor, 2012). To address this need for direct 
connections between mathematical knowledge and pedagogical practice, this poster presents a 
portion of the results from a larger qualitative study that followed students with an interest in 
secondary mathematics teaching through their enrollment in an abstract algebra course (Gray, 
2021). In particular, the study investigates the types of tasks and course activities that aid 
preservice teachers in establishing connections between abstract algebra and secondary school 
mathematics. 

For the larger project, survey data was collected from collegiate mathematics faculty and 
practicing secondary mathematics teachers regarding mathematical connections between abstract 
algebra and secondary school mathematics. Mathematical connections that these participants 
identified as important were subsequently utilized to create short instructional tasks that were 
situated in secondary school mathematics contexts. The abstract algebra course involved in the 
larger study included undergraduate and graduate students with various majors meaning that the 
course was not explicitly designed for preservice teachers. The instructional tasks were 
implemented as warm-up activities before and after the relevant abstract algebra material was 
taught. This was an adaptation of Wasserman and his colleague’s (2017) model building up 
from/stepping down to teaching practice. While all students in the course completed these 
activities, this study focuses on seven participants: six undergraduates, all of whom expressed 
interest in teaching careers, and one graduate student with secondary teaching experience. Data 
collection for these participants included written work on eight warm-up activities, two written 
student questionnaires (pre/post course), two individual interviews, one midsemester group 
interview with the undergraduate participants, and classroom observations of 38 class sessions. 

Grounded theory coding (Charmaz, 2006) was used to analyze all data sources. The most 
common mathematical content connection that the participants made is the connection between 
algebraic structures and their properties in abstract algebra to various concepts in secondary 
school mathematics. For example, one task asked participants to solve a system of linear 
equations and justify/explain each step. Six of the seven participants were able to connect this 
secondary mathematics problem to abstract algebra concepts like inverse and identity. The 
seventh participant could identify that connections exist making abstract algebra an important 
course for preservice teachers but did not display evidence of making any connections. Results 
suggest that abstract algebra instructors can support preservice teachers by providing them 
opportunities to explore connections themselves. 
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Obstacles of Learning Proof by Cases 

Ahsan Chowdhury              Andrew Miller              Emma Feinstone       Michael Holman
    George Mason University   George Mason University    Virginia Tech Virginia Tech 

Keywords: Introduction to Proofs, Proof by Cases, Lesson Analysis Manuscript 

Epistemological Obstacles (EOs) are defined as challenges that students face when exposed 
to concepts that contradict their pre-existing mathematical intuition (Norton & Arnold, 2023). 
The objective of our poster is to address EOs that emerge during the lesson on proving by cases, 
rather than circumventing them. This approach, as pursued by Norton and Arnold (2023), elicited 
EOs such as the Principal of Universal Generalization (PUG) and understanding the difference 
between the role versus the value of a quantified variable (Qrv). PUG entails proving “for all” 
statements with an arbitrary value. It was mainly encountered during mathematical induction by 
Norton and Arnold (2022), but its relation to proofs by cases was not studied. When proving 
statements with PUG, it may not occur to students that they need specific (x=0), or arbitrary (x is 
even) cases. Qrv teaches students to prioritize maintaining generality; however, loss of generality 
is allowed with proof by cases as it is preserved in the aggregate. The obstacle comes from 
students struggling to understand that generality is maintained differently depending on the 
situation. The two EOs are closely related; Qrv can be thought of as a direct product of PUG.  

 At the study institution, students generally take introductory proofs their Junior or 
Sophomore year and are required to have passed the second of a three-part calculus sequence and 
discrete math. As such, they are expected to have experience with symbolic logic and operations 
on conditional statements (converse, contrapositive, negation), set theory and proofs on sets, and 
mathematical induction. Many upper-level students transfer from the local community college, 
which introduces a deficiency in the information on what students have and have not covered.  

Class size ranges from 12-20 students in a room with whiteboards on most walls. An 
undergraduate learning assistant was present to walk around during group discussions to aid 
students and note student reactions for post lesson reflections. The instructor has a degree in 
mathematics, with a specialization in undergraduate mathematics education. He relied on that 
background to focus the course goals on inculcating social practices, specifically the norms and 
practices of the mathematics community. He intentionally structured the class to get students to 
‘play mathematician’ by questioning arguments, positing hypotheses, and proving or disproving 
those hypotheses through routine think-pair-share cycles.   

Our course begins with a review of symbolic logic. We then cover translating written 
propositions into logical forms, performing operations on those propositions, and discovering 
how universal and existential quantifiers modify them. After covering our first proof method, the 
direct proof, we move on to proof by cases. This lesson was immediately after direct proof 
because the instructor was following the order of topics set out in the course textbook suggested 
by the department. Our poster will detail the lesson tasks, the rational behind the tasks, and 
student thinking that came up during the lesson. In particular, the instructor was aiming to 
introduce students to proof by cases, when to use cases, what cases to consider, and how to use 
the statement ‘without loss of generality’. Through reflection on student reactions to lecture 
content, certain areas of the lesson could be improved. In particular, in-class examples can be 
chosen in a way that requires students to think more about how the constructs are used. Our 
intention with this poster is to get ideas on how we can improve the lesson and produce a lesson 
analysis manuscript (Corey & Jones, 2023) from this material for a future journal submission. 
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Students find it difficult to determine 

whether to use cases and which cases to 

use early in the proof writing process.

How might you address such obstacles? What would be productive tasks to 

move students through this struggle?

BACKGROUND: Epistemological obstacles (EO's) 
are challenges students face when exposed to 
concepts that contradict their pre-existing math 
intuition. A framework of eliciting and addressing 
EOs was developed by and practiced at a partnering 
institution. The particular purpose of this work was 
to use that EO framework in crafting a proof by cases 
lesson.

METHODS/CONTEXT
1. Lesson was taught at Eastern US University, class 

size about 15-20 students.
2. Student Population: had discrete math pre-requisite 

where a bit of proof was introduced
3. Structured lesson to elicit the EOs that arise in proof 

by cases- based on suggestions from collaborators 

Like the Following:
Task 1) ... For each ‘for all’ statement, discuss what 
might make proving the claim tricky. What additional 
info might you want to know about the arbitrary 
variables to prove the statement?
a. If 𝑛∈"Z", then 𝑛^2+𝑛 is an even integer
b. Given two integers a, b, if a and b have opposite 
parity (i.e. characteristic of being even or odd), then 
a+b is odd
c. ∀𝑥∈R, 𝑥≤|𝑥|
d. ∀(𝑥,𝑦)∈R^2  , 𝑦=𝑚𝑥 for some 𝑚∈"R"
e. If 𝑥^2−5𝑥+6>0, then 𝑥>3 or 𝑥<2

RESULTS
�  Students found it difficult to determine whether to 
use cases and which cases to use
�  Were some tasks too basic & didn't elicit 
obstacles? We need insights on how to improve the 
lesson if so
� Or is proof by cases too easy & there aren't many 
EOs?
� Or is there only 1 EO (identifying cases thinking is 
needed and what are the cases) but that itself is a huge 
challenge?
� Or are things more nuanced because of contextual 
differences: students at the study institution had 
experience with baby proofs in discrete mathematics

Ahsan Chowdhury Andrew Miller
Emma Feinstone  Michael Holman

Obstacles of Learning Proof 
by Cases

Some tasks are too easy:

How might you adjust these 
problems?

Teaching 
Materials: Feedback:

Non-Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

This task was added to the second implementation in 
the current spring semester. Part (d) specifically was 
added as a challenging problem for students to think 
about which cases are needed.

Compared to the first implementation, many 
students did not realize that we need the zero case

This problem was skipped in the first implementation 
due to time constraints. But in the second 
implementation, the problem was tackled and asked 
students to identify cases.

The EO we most frequently noticed was the Principle 
of Universal Generalization (PUG), which is when 
students struggle with the concept of maintaining 
generality in a proof. In our case, they confuse the 
generality of the proof with the generality of cases. 
Another is Qrv which is when students mistake the 
role and the value of a quantified variable.
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Online Real Analysis for In-Service Teachers’ Meanings for Continuity and Differentiability

Zachary Bettersworth Nicholas Fortune Sarah Hartman
Western Kentucky University Western Kentucky University Western Kentucky University

In this poster presentation, we present pilot data that emerged from working with secondary
math teachers enrolled in a fully online, Introductory Real Analysis course in the Southeastern
United States. This pilot data will inform our second attempt at implementing the
recommendations of the Project ULTRA (Wasserman et al., 2022) research group in an online
context with in-service teachers in a future academic semester.

Keywords: Secondary Teachers, Real Analysis, Continuity, Differentiability, Online

Calculus, and the related mathematical content, is one of the most important, foundational
areas of mathematics for people intending to pursue careers in STEM (Bressoud et al., 2016;
Rasmussen et al., 2019). Teachers serve a crucial role in the community by providing students
with early and continued education about mathematical ideas which build throughout students’
K-12 education, up to and including AP Calculus courses (Ball, 2003; Bressoud et al., 2016;
Frank & Thompson, 2021). Understanding how in-service teachers develop their own
mathematical understanding of ideas related to Real Analysis topics will therefore provide
important insights to researchers about the development of teachers’ mathematical meanings
(Thompson, 2016), or mathematical knowledge, for teaching calculus (Ball, 1990; Hill et al.,
2008). Several researchers have reported on students’ understanding of mathematical logic in the
context of limit and the Intermediate Value Theorem (Roh, 2010; Sellers et al., 2017), and the
format of proof-based mathematics courses as well as secondary teachers’ views of the utility if
proof in their own teaching (Wasserman et al., 2018; Weber, 2004). This work adds to the current
RUME literature by demonstrating a burgeoning relationship between secondary teachers’
understanding of continuity and differentiability in the context of a fully online Real Analysis
course for teachers and their perception of the impact understanding these mathematical ideas
has on their teaching.

Our research team collected pilot data during the Fall 2023 academic semester with the goal
of better understanding how in-service teachers develop deeper conceptual understandings of
important concepts for understanding introductory Real Analysis. The students are currently
employed at secondary schools in the surrounding area teaching secondary mathematics. Our
research questions are: 1) What meanings for continuity and differentiability do in-service
teachers construct in an online analysis course? How are these meanings related? 2) In what
ways can the instructional recommendations of Project ULTRA be implemented in the context of
an online course for in-service teachers?

In this poster, we will present preliminary results from our initial implementation of the
instructional recommendations from the Project ULTRA research group in their textbook
Understanding Analysis and its Connections to Secondary Mathematics Teaching (Wasserman et
al., 2022). This work represents an initial attempt to extend this research group’s instructional
recommendations in a fully online Real Analysis course for in-service teachers in the
Southeastern United States. We borrowed and added tasks from Sellers et al. (2017) to better
understand the teachers’ attention to mathematical logic in addition to their conceptual
understanding of the concepts of continuity and differentiability when interpreting alternative
statements for the Intermediate Value Theorem and the Mean Value Theorem.
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Understanding the IVT and the MVT does 
not necessarily mean that secondary 

teachers view their students’ learning as 
metaphorically “continuous.”

Zac Bettersworth, Nick Fortune, Sarah Hartman
Western Kentucky University

First published by Springer Nature in 2023 in Wasserman, Buchbinder, and Buchholtz's article, 
"Making university mathematics matter for secondary teacher preparation", in ZDM–Mathematics 

Education, 55(4), pp. 719-736." 1, 2, and 3 added by authors.

Our work adds to the current RUME literature by 
demonstrating a burgeoning relationship between 
in-service secondary teachers’ understanding of 
continuity and differentiability in the context of a 
fully online Real Analysis course and their perception 
of the impact understanding these mathematical 
ideas has on their teaching.
1) What meanings for continuity and differentiability 
do in-service teachers construct in an online analysis 
course? How are these meanings related?
2) In what ways can the instructional 
recommendations of Project ULTRA be implemented 
in the context of an online course for in-service 
teachers?

The teachers’ responses to the IVT and MVT tasks were 
coded using Roh et al. (2010) codes in addition to 
emergent codes.

Teachers’ reflection data was coded using open 
coding with an attention to their meanings for 
continuity, differentiability, quantifier order in the IVT 
and MVT statements, and perceptions of teaching or 
teacher change. 

“I think this statement is a good preliminary 
definition for the graph of a continuous 

function, but it is not at the caliber that is 
necessary for analysis.”

-Student B (Reflection 1)

"This book is almost antagonistic with its 
problems that keep bringing up things to 

consider, (I know a good textbook should and 
we are grad students) But with our kids we are 
at the same time trying to teach then skills to 

use that work.”

“... it seems to me such a huge gap between 
general Algebra 2 and what the text is saying it 

is almost not useful at all, it has to be 
translated several times into a language that 
they can understand, and with that translating 

come the inferences and ambiguity that has 
caused the problems all along.”

-Student D (Reflection 1)

-Student E (Graph 1)

-Student A (Graph 1)

• Statement 3 is true because for all the c values, the 
N value is always between f(a) and f(b), so we can 
definitely find at least one case.

• Statement 4 is true because all the N values 
between f(a) and f(b) correspond to at least one c 
value, so we can definitely find at least one case.

-Student F (Graph 4)

CONTEXT

RESEARCH QUESTIONS

LITERATURE & PROBLEM STATEMENT

Students’ attention to logical quantifiers in the 
context of theorems related to continuity and 
differentiability impacts their understanding of 
theorems in Real Analysis courses (e.g., Roh et al., 
2010; Wasserman et al., 2018).

There need to be clear connections between content 
and teaching, and those connections need to be 
authentic from a pre-service teacher’s perspective 
(Wasserman et al., 2017). 

But what does this look like for in-service teachers?

In-service secondary teachers enrolled in a graduate-
level, online Real Analysis course at a regional 
comprehensive University in the Southeastern United 
States.

2 out of 10 students had completed an 
undergraduate Real Analysis course prior to 
completing this course.

Borrowed/modified tasks from Sellers et al. (2017) to 
better understand the teachers’ attention to 
mathematical logic in addition to their conceptual 
understanding of the concepts of continuity and 
differentiability when interpreting alternative 
statements about the IVT and MVT.

They read Project ULTRA book and reflected on the 
relationship between their understanding of analysis 
and the high school mathematics that they teach.

TASKS & REFLECTIONS DATA ANALYSIS

Since Statement 1 says that there exists a point 
c in [a,b] where !! " = " # $"(&)

#$& . There exists 
means that there just has to be one c in (a,b) 
where this is true.

-Student K (Graph 3)
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Learner vs. Mathematical Perspectives: Pre-Service Secondary 
Mathematics Teachers’ Interpretations of  Roles of Proof

Yi-Yin (Winnie) Ko, Sarah K. Bleiler-Baxter, & Jordan Kirby

Indiana State University, Middle Tennessee State University, & Francis Marion University

De Villiers’ Roles of Proof & Sample Responses
• Over the past decade, increased attention has 

been given to teaching and learning proof in 
school mathematics, as its central roles in 
mathematics include verification, explanation, 
discovery, systemization, and communication 
(e.g., De Villiers, 1990). 

• In addition, proving and proof are fundamental 
to doing mathematics, communicating 
mathematical ideas, and developing 
mathematical knowledge (Stylianides, 2007). 

• Given that pre-service secondary mathematics 
teachers (PSMTs) play a critical role in shaping 
their future students’ experiences with proof 
and proving, we seek to better understand how 
PSMTs’ interpretations of the verification, 
explanation, discovery, systemization, and 
communication roles of proof align or misalign 
with that of the discipline (as represented in De 
Villiers’ (1990) seminal work).

• This study involved 29 PSMTs in the transition-
to-proof course titled “Discrete Mathematics” 
during two semesters (n = 11 in Fall 2020 and n = 
18 in Fall 2021) at a Midwestern University in the 
United States. 

• While gaining an appreciation of these five roles 
that proof can play in mathematics was one of the 
course goals, the instructor who is the first 
author did not explicitly name these five roles as 
a topic of study with students in class until the 
study week before final exams. 

• The primary source of data for this study was 
PSMTs’ written responses to the take-home 
portion of the final exam, where they were asked 
to read De Villiers’s (1990) article and describe 
the five given roles of proof using their own 
words. 

• The first author and one research assistant read 
all PSMTs’ responses individually and coded each 
participant’s self-description as not in alignment 
(N), in partial alignment (P), or in 
alignment (Y) with De Villiers’s (1990) 
explanation. 

Background 

Study

Verification

Proof serves as a means to obtain 
conviction and establish the truth 

of a mathematical statement.

Y This role deals with the justification behind mathematical proofs. It reasons with the truth of the statements and is used as conviction to proof.

P To be able to verify a proof can be a difficult task. “Absolute certainty also does not exist in real mathematical research…” (18). This is not the only way 
verification could be used in fact most are taught to check the answer at the end of a problem. This form of verification can be extremely effective in 
easing the doubts of an incorrect conclusion.

N Verification can be used to show that something is incorrect or find mistakes in the problem.

Explanation

Proof serves as a means to 
promote understanding and 

illumination of why underlying 
mathematical concepts are true.

Y We must also say why something is true. Many believe the function of explanation is far more important than verification because it gives us an 
insight into the proof and in return makes us more intelligent.

P Explanations in proofs play the part of describing why a statement might be true. They are the validation of a proof’s truthfulness. The explanation of 
a proof also helps strengthen the verification of the proof itself.

N Explanation doesn’t necessarily aim to prove something true. It is more about giving reason or explanation as to why it is true. 

Systemization

Proof serves as a means to 
structure unrelated definitions 

and previously-proven results to 
gain a global perspective of 

mathematical concepts.

Y Another function of a proof is as a means of systematization. Systematization helps show the logical relationships between statements. These 
statements are deductive systems such as theorems and definitions. Systematization makes it easier for all of the audience to understand how the proof 
is built.

P The systemization of a proof is the organizational process. This role helps simplify a proof and combine similar ideas into a more uniform one. 
Systemization can help strengthen a proof as well.

N Systematization is the organization of results. It can help identify errors within the work, connect similar ideas to promote understanding and 
simplifications, it provides a “global perspective” which I interpreted as a greater understanding within multiple views, and it can provide 
applications for many things.

Discovery

Proof as a means to expose 
unexpected results beyond the 
given mathematical scope or 

context 

Y A proof that is written for the sake of discovery follows logical deductions to come to a conclusion that was not necessarily already known or thought 
to be true. This type of proof can also be used as a way to generalize something—if someone discovers the reasoning behind why a certain hypothesis is 
true while they are working through examples, that knowledge can then be used to construct a more general proof than before. Proofs of discovery do 
not always have to be done this way, however. They can also be done just by analyzing the properties of objects that are given.

P According to de Villiers, there is always a discovery of mathematical results when writing a proof. There are also many instances that new results are 
found for a proof. Many times, a mathematician has not gone and verified their theorems making their results different.

N The fourth role of a proof is discovery, in which some concepts and theories are actually discovered on accident through proof. This is not just for new 
theories to the world, but also new theories to the student. Students can stumble upon untaught theories through class work in proofs.

Communication

Proof serves as a means to expose 
unexpected results beyond the 
given mathematical scope or 

context.

Y The final role is communication, where the real value of proofs is seen through debates about the topic. Through debates, we learn new perspectives on 
topics that we would not have known otherwise and can implement these perspectives into our own work.

P The article by de Villiers points out that a proof is a way of communicating among people who are working on mathematics. The argument made in 
the proof is addressed to a human audience. We are trying to convince the audience our results are correct meaning in our explanations we need to use 
communication so they can understand it.

N Communication is key to any problem. This means explaining the reasoning good enough to communicate to the reader that it is a proof. It goes hand 
in hand with explanation. Being able to transcribe the meaning behind the proof to get the reasoning across.

Tables, References, & 
Contact InformationMore than half of the pre-service 

secondary mathematics teachers’ 
interpretations of De Villiers’ 
(1990) roles of proof are often 
aligned on communication and 
explanation compared to other 
roles of proof.
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Preservice Teachers’ Knowledge and Understanding of Fraction Division

Kingsley Y. Adamoah Jeremy F. Strayer
Middle Tennessee State University Middle Tennessee State University

Keywords: Cognitive types, conceptions, content knowledge, content understanding

It is important for preservice teachers (PSTs) to have a deep and connected conceptual
understanding of mathematical concepts they will teach in their future classrooms (Ball, 1990;
Da Ponte & Chapman, 2015). For this reason, teacher education programs work to provide
opportunities for preservice teachers' (PSTs’) to build understanding of the various ways students
conceive of significant mathematical ideas and practices (e.g., Ball et al., 2008; Hill, 2010; Li,
2008; Li & Kulm, 2008; Lo & Luo, 2012; Tirosh, 2000). Therefore, it is important to investigate
PSTs’ conceptions, connections, notions, and understandings of specific mathematics concepts
so that results can be used to inform effective instruction in content courses for future teachers.

The goal of this comparative case study was to investigate PSTs’ content knowledge (Ball
et al., 2008; Coskun et al., 2023) and content understanding (Bair & Rich, 2011; Hill et al., 2004,
2008) as the basis for measuring cognitive types of teacher content knowledge (Tchoshanov,
2011). The cognitive types include knowledge of facts and procedures (Type 1), knowledge of
concepts and connections (Type 2), and knowledge of models and generalizations (Type 3). Our
poster presentation will share results from the study for only Type 2 with a content focus on
fraction division. The research question for this portion of the study was: What are PSTs’
mathematical conceptions, connections, and notions of the fraction division concept?

We utilized a linear progression of constructs to guide the analysis of our data to answer
the research question. That is, content knowledge � cognitive types of teacher content
knowledge � specialized content knowledge (SCK) progression � content understanding �
(conceptions, connections, and notions), with each construct rooted in the literature.

Data was collected from 18 preservice elementary teachers enrolled in mathematics
content course at a public university in the Southeastern United States. The study analyzed both
quantitative and qualitative data. For the quantitative data, a modified form of the Teacher
Content Knowledge Surveys (TCKS) designed by Tchoshanov (2011) was used. For the
qualitative data, pre- and post-term exit tickets were used. The SCK progression framework
(Bair & Rich, 2011) informed the qualitative data analyzes.

Results also showed that Blair and Rich’s (2011) SCK progression framework was
associated with levels of knowledge as measured by the TCKS. We found that 30% of PSTs with
less than a numerical average value ( of Type 2 TCKS pre-post scores were those at Level< 0. 5) 
0 and Level 1 of SCK progression. Also, 40% of participants who were above average in TCKS
scores were at Level 3 and Level 4 and the rest were at average. This study informed
mathematics teacher educators and instructors of content mathematics courses for PSTs on the
characterization of the kind and qualities of aspects of content knowledge and content
understanding that PSTs possess and how to support them in specific mathematical concepts.
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Preservice Teachers’ Knowledge and Understanding of Fraction Division
Kingsley Adamoah                      Jeremy Strayer
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Big Takeaways

Results

It is important for preservice teachers (PSTs) to have a deep and connected conceptual understanding of mathematical concepts they will teach in their future           
classrooms (Ball, 1990; Da Ponte & Chapman, 2015). For this reason, teacher education programs work to provide opportunities for preservice teachers' (PSTs’) to build 
understanding of the various ways students conceive of significant mathematical ideas and practices (e.g., Ball et al., 2008; Hill, 2010; Li & Kulm, 2008; Lo & Luo, 2012). 
The goal of this study was to investigate PSTs’ content knowledge (Ball et al., 2008; Coskun et al., 2023) and content understanding (Bair & Rich, 2011; Hill et al., 2008) as 
the basis for measuring cognitive types of teacher content knowledge (Tchoshanov, 2011). 

Introduction

Instruments, Tools, Constructs, and Data Coding

Conclusion and Implication

The study utilized a linear progression of constructs to 
guide the analysis of our data to answer the research 
question. That is, content knowledge  cognitive types 
of teacher content knowledge  specialized content 
knowledge (SCK) progression  content 
understanding  (conceptions, connections, and 
notions), with each construct rooted in the literature.

Instruments and Tools
Analyzed with the SCK Progression Framework 
(Blair & Rich, 2011) 
Five-level SCK Progression Framework 
Indicators: entry (Level 0), emerging (Level 1), 
developing (Level 2), maturing (Level 3), and deep 
and connected mathematical knowledge for 
teaching (Level 4).
Data Coding: Bair and Rich’s framework to 
provide a fine-grained process for coding PSTs’ 
content understanding using the five-level 
progression of indicators.

Content Knowledge Content Understanding 

The results of this study will inform instructors 
content mathematics courses for PSTs the need to 
integrate pedagogical strategies that will support the 
development of a deeper conceptual knowledge and 
understanding of any mathematical concept.

Figure 1: Sample Response;    Joan at Level 4
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Research Question
What are PSTs’ mathematical conceptions, 

connections, and notions of the fraction division 
concept?

Methodology

Participants
 A total of 18 elementary preservice teachers in a 

mathematics content course were involved.
 Ten of the participants were selected for further 

qualitative analysis. Those were the top 5 and lower 5 
PSTs with Teacher Content Knowledge Surveys 
(TCKS) scores.

Data Source and Design
  Written Exit Tickets. PSTs were provided with both 
pre-and post exit tickets modified from the TCKS 
(Tchoshanov, 2011) as the qualitative data.

Blair and Rich’s (2011) SCK 
Progression Framework 

Levels appear to be associated 
with the Cognitive Type of 

Teacher Content Knowledge 
as measured by the TCKS 

(Tchoshanov, 2011). 

PSTs with strong and 
explicit fraction division 
conceptions, connections, 

and notions were at Level 4 
or Level 3 but getting 

nearer to Level 4. 

Joan: “the question is asking how many ½ liters containers can be filled? 
So, it is a measurement division problem”. Fraction Division Conception
Joan:  

Joan’s model brings out (i) the problem structure, (ii) the action in the 
problem, (iii) appropriate representational connections to the problem 
situation and the context of solution, and (iv) the possible ways the solution 
can be expressed 

PSTs with “b” against names are the Bottom 5 for the TCKS 
scores
Those with “t” against them are the Top 5 for the TCKS scores

Future Research
Investigating PSTs cognitive 
processes that interact with 

their conceptions, connections, 
and notions about specific 

mathematical concepts
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Issues with Assessments Practices

Traditional Assessments:
• Privilege symbolism and formalism (Nemirovsky & Bunn, 2022)

• Characterize mathematics as mechanisms (Nemirovsky et al., 2023)

• Viewed as “easy” to implement, non-disruptive, and “real math” 
(Munter et al., 2014)

• Avoid mathematical aesthetics (Sinclair et al., 2006)

Current recommendations and ways forward: 
Assessments should engage students: (Meta)Cognitively, 
Affectively, and Behaviourally (MAA Instructional Practices Guide). 

Creating Metaphors for Linear Algebra Concepts: 
Developing Cognitive, Behavioral, and Affective Domains

Discussion

Embodied Cognition

.

Results: Students’ Engagement During Summative Assessment

Dr. Hortensia Soto
Colorado State University

Dr. Vladislav Kokushkin
Colorado State University

Dr. Jessi Lajos
Utah State University
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Framework for Engagement 

Targeting Three Domains via Intentional 
Design of an Embodied Assessment

Embodied design applied to “tools whose operatory function is 
engineered specifically so as to . . . cultivate .  . . the 
development of particular sensorimotor schemes as a condition 
for masterful control of the environment in accord with task 
demands” and thereby “come to ground mathematical concepts 
we want these students to learn” (Abrahamson & Bakker, 2016, p.5, Piaget, 
1954)

Summative Metaphor Creation

Contact: hortensia.soto@colostate.edu

Formative Assessments (Play)

ReferencesResearch Questions

Be
ha

vi
or

al

(Nemirovsky & Ferrara, 2009)

• Personal Experiences
– Hobbies
– Childhood experiences
– Professional Interests/Major: 
– In-the-Moment

• Classroom Experiences

• Linguistics

Metaphor Resources:

Evaluating the “Soundness” of Metaphors

Extending Metaphor across Multiple LA Concepts: Popcorn Popper

A. Incomplete model of real-world
B. Incomplete representation of linear algebra 

concept

kernels represent the 
vectors. Heat is the matrix, 
it's the one that's changing 
the vectors. The ones that 
pop and go into the bowl 
underneath the popcorn 
machine, those are in the 
column space, because they 
get transformed into a new 
location.

And the kernels that 
pop or just like fly out 
[throws hand over 
shoulder] of the 
machine and land on 
the floor, those are in 
the null space, 
because they get sent 
out of the system 
entirely.

Kernels that stay in the popcorn 
machine are like “eigenvectors 
because they didn’t’ really move” 
or “pop out”.

The degree to which they 
[popcorn that don’t move] got 
semi-popped is like the 
eigenvalue of the situation 
because it tells you how much it 
changed even though it’s still 
like where it was before.”

Two-part summative 
assessment:

1. Written part: Create and 
reflect on your own 
metaphors about various 
LA concept pairs (e.g., 
Explain how you arrived 
at this metaphor and how 
it fits the formal concept. 

1. Collaborative focus 
group: Sharing and co-
constructing new 
improved metaphors with 
peers.

Slinky Metaphor for Invertible

You can actually see it 
go back … repeats 
gesture and then says 
“to itself”

In some of my science 
classes we used to … 
how sound moves

If we could physically see it (grab 
both ends with eyes focused on her 
slinky and Billy sweeps his hand)

It always goes back 
to itself (brings hands 
together)

Findings illustrate the notion that “Learning – the creation of the new – comes 
about from situations that were previously unimagined, impossible, 
unusual, & unexpected … expressed through diagram/gesture [and 
verbiage] interplay” (de Freitas & Sinclair, 2014, p. 109).

1. What metaphors do students create for linear algebra concepts? How do 
they manifest?

2. What cognitive, behavioral, and affective behaviors emerge as students 
share their metaphors for linear algebra concepts? 

(Anderson & Krathwohl, 2016; Bloom et al., 1956)

1. Embodiment espouses learning from concrete to 
abstract (Tall, 2013)

– This activity moves students from abstract back to 
concrete (make full circle)

– Forced to think deeply about the abstract 
2. Metaphor Assessment Privileges

– Blending Creativity & Metacognitive 
– Togetherness
– Aesthetics of Mathematics (surprise, joy, frustration) 

3. Learning is inventiveness (de Freitas & Sinclair, 2014)

Conceptual Metaphors 
Appear as 
cognitive links, 
or mappings, 
between a 
source domain 
(abstract/formal 
concept) and a 
target domain 
(real-
world/physical/co
ncrete).
(Lakoff & Núñez, 1997)

De Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the classroom. 
Cambridge University Press.
Lakoff, G., & Núñez (1997). The metaphorical structure of mathematics: Sketching out cognitive foundations for a 
mind-based mathematics. In L. English *Ed.), Mathematical reasoning: Analogies, metaphors, and images. 
Mahwah, NJ: Lawrence Erlbaum Associates.
Nemirovsky, R., & Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies in 
Mathematics, 70, 159-174.
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How Undergraduates Make Decisions When Co-Validating Mathematical Proofs 
 
 Jordan E. Kirby Sarah K. Bleiler-Baxter Yi-Yin Ko 
 Francis Marion University Middle Tennessee State University Indiana State University 

Keywords: Proof, Introduction to Proof, Validation 

Mathematical proof is central to the work of mathematicians (e.g., Weber, 2008), and is a 
center pointe of the undergraduate curriculum for mathematics majors (Stylianides, G., 2007). As 
undergraduates learn to prove, they need to learn various proving processes, not the least of 
which are construction and validation (e.g., Ko, & Rose, 2022; de Villiers, 1990; Segal, 2000). 
Construction and validation of proofs go hand-in-hand, yet they involve unique skills and 
processes (Kirsten & Greefrath, 2023; Selden & Selden, 2003)). Therefore, it is crucial to 
understand how undergraduates make decisions about proof construction and proof validation. In 
recent work, we explored how students in an inquiry-based Introduction-to-Proof (ITP) course 
make decisions when it comes to co-constructing proofs in small groups (Bleiler-Baxter et al., 
2023). In this poster, we seek to extend the findings from that research by exploring situations 
where students are co-validating proofs in small groups. We ask: To what aspects of proof do 
students in an undergraduate inquiry-based ITP course attend when co-validating mathematical 
proofs within small groups?  

This study involves students enrolled in an ITP course at a public university in the 
southeastern United States in the fall of 2023 taught by the second author. Students in this class 
were asked, at three separate time points during the semester (early, middle, late), to review 
sample arguments and to determine if those arguments should “count” as mathematical proof. 
They were given independent think-time to make their initial validations of the given arguments, 
and then they were tasked with coming to a consensus in their pre-assigned small-groups, as to 
whether each argument was or was not a proof and why. We explore the transcripts of audio data 
of small group discussions across these various points in the semester to investigate how students 
make decisions about validating proofs.  

To analyze the small-group discussions, we use a three-part theoretical coding scheme 
informed by A. Stylianides’ (2007) definition of proof: set of accepted statements, modes of 
argumentation, and modes of argument representation. We use this definition as a coding scheme 
to be able to discern what students prioritize when making decisions on what counts as proof. 
For example, students may focus on the way the definition of divisibility is used in an argument 
(i.e., set of accepted statements), the way proof by contradiction is employed (i.e., mode of 
argumentation), or the way a table is used to organize an argument (i.e., mode of argument 
representation). 

Submitting as a poster will allow us to include various student excerpts from transcripts 
highlighting each of the codes we have used as well as how their frequency changes over the 
course of the semester. We hope to gain from attendees at the conference what questions they 
may have about our data and other data analysis methodologies to consider as we begin 
finalizing our data analysis in the spring. 
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Proofs Project Partners: Implementing Research-Based Instruction Across Institutions 
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Keywords: epistemological obstacles, logical reasoning, proof and proving 

The Proofs Project is an NSF-funded research project investigating persistent challenges 
students experience in Introduction to Proofs courses. These challenges are framed in terms of 
epistemological obstacles (EOs) students and instructors experience during classroom 
interaction, even within research-based practice (Brousseau, 2002; Sierpińska, 1987). The project 
has generated video modules illustrating such obstacles and tasks that instructors can use to elicit 
and address them. Now, in the second year of the project, instructors at three different 
universities have begun using project materials in their Introduction to Proofs courses. These 
three instructors participated in a three-day Proofs Project workshop at Virginia Tech, during the 
Summer of 2023. Here, we report on their experiences implementing project materials to 
intentionally elicit and address EOs they have experienced in prior instruction. Data come from 
surveys conducted at the end of the summer workshop; at the start of the following Fall semester, 
as they taught their Introduction to Proofs course; and at the end of that semester. In addition to 
discussion of these findings, Authors 2, 3, and 4 will report on their individual experiences in 
implementing project materials to elicit and address students’ experience of persistent 
challenges. 

At the time of the workshop, one instructor had taught Introduction to Proofs more than five 
times; one was teaching the course for the fifth time; and one was “terrified” to be teaching the 
course for the first time. Following the summer workshop, all three instructors were eager to 
implement project materials and, indeed, had begun making instructional plans using those 
materials, during the workshop. They anticipated the materials—especially tasks and video 
clips—would help them address and elicit EOs related to students’ treatment of logical 
implications, quantification, and particular methods for proving, such as proof by cases. 

Each instructor elicited EOs that had been identified in prior research. One instructor noted, 
“For example, even after discussion, students will still take the negation of P implies Q as ‘If P, 
then not Q’ or ‘If not P, then not Q,’ when trying to negate a sentence written in everyday 
language.” (cf., Dawkins & Hub, 2017; Epp, 2003). She found that when students became aware 
of such obstacles, they were able to begin addressing them on their own, or in discussion with 
peers. In reflecting on such an approach, another instructor shared the following: 

I think I am gaining an appreciation for the value of eliciting EOs. It’s a lot easier to just let 
some of them fly under the radar, particularly in the classroom. I suppose in the past I had 
assumed/hoped that students were struggling with some of these concepts while engaging 
with the homework—that’s how I remember experiencing many of them for the first time. 

During the presentation, the three instructors will share, compare, and contrast such experiences. 

Acknowledgments 
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Using Trees to See a Forest: Leveraging Machine Learning to Classify Student Thinking 
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Keywords: Decision Trees, Qualitative Coding, Machine Learning 

Introduction 
ChatGPT has caught the world’s attention and has researchers considering the ways artificial 

intelligence can be integrated into human endeavors (Kasneci et al., 2023). This methodological 
poster will present a systematic method to apply a particular machine learning classification 
model, Decision Tree (Song & Lu, 2015), to perform and extend the scale of qualitative analysis 
in mathematics education research.  

Implementation of a Decision Tree 
There are five general phases to the creation of a decision tree: data preparation, feature 

analysis, test label creation, decision tree coding, and parameter tuning. 
1. Data Preparation: While the original data can take any form (verbal, student work, hand 

gestures, etc), it will need to be unitized in some way. The size of each unit of data will be 
affected by the theoretical framework employed and the attributes to be identified from the unit. 

2. Feature Analysis: Each unit of data will then be coded for important attributes that are 
referred to as features. Features can be categorical or numeric, and do not need to be of just one 
type for a single decision tree. For example, features tied to a student’s free response to a task 
could include [a] Presence of a response (yes/no), [b] Presence/Absence of key words/phrases 
(binary or number of occurrences), or [c] Use of a particular representation (graphical, 
algebraic, tabular, etc). Identifying features is a critical human task in creating a decision tree, 
much like qualitatively coding according to a theoretical framework.  

3. Test Labels Creation: We need to provide labeled data the decision tree algorithm can 
learn from. This is the second critical human researcher task that again mirrors a typical 
qualitative coding task where labels are determined by the theoretical framework employed.  

4. Decision Tree Coding: Open source libraires such as Python’s pandas library (Reschke, et 
al., 2020) contain the majority of the technical aspects of employing a machine learning model. 
After preparing the data, completing the feature analysis, and labeling the data, creating the 
decision tree is as easy as calling RandomForestClassifier().fit.  

5. Parameter Tuning: Numerous parameters can be defined by the researcher to improve the 
accuracy of predictions as well as the amount of data that is used to train and test the data.  

Discussion 
We believe that incorporating machine learning can significantly benefit the qualitative 

coding process and is feasible for many mathematics education researchers. One major benefit to 
this implementation is the scale and speed at which data can be analyzed. Another major benefit 
was seen in our codebook. By carefully considering what features might be present and what 
labels they may correlate to, we have improved the replicability of our qualitative coding based 
on our extensive codebook. Finally, classification algorithms would provide an excellent engine 
for automating the analysis of student work based on qualitative coding of student responses. 
This would allow researchers to bridge the gap and provide practical uses of their esoteric work.  
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Analyzing Calculus Textbooks’ Introduction of the Dynamic Derivative Using a Framework of 
Shape-Thinking and (Co)Variational Reasoning 

 
Allison Olshefke 

University of Delaware 

Keywords: calculus, content analysis, covariational reasoning, shape thinking, textbook analysis  

Research over the past few decades demonstrates that calculus students have difficulties 
making sense of the derivative conceptually, even if they can calculate derivatives fluently (e.g., 
Orton, 1983; Carlson et al., 2002; Thompson & Carlson, 2017; Epstein, 2013). In a review of 
literature on ideas foundational to calculus learning, Thompson and Harel (2021) argue that that 
the underdevelopment of covariational reasoning skills may be the missing link in students’ 
ability to engage deeply with major calculus concepts including the derivative. Covariational 
reasoning, (i.e., reasoning about how quantities vary simultaneously and in relation to one 
another) is evident in the MAA’s recommended conception of the derivative as dynamic 
(Bressoud, 2015). Recent work emphasizes the need to promote “derivative as instantaneous rate 
of change or as a measure of sensitivity of one variable to change in another,” rather than the 
static conception of “derivative as slopes of tangent lines,” which does not make explicit the 
relationship between quantities (Bressoud et al., 2015, p. 18). 

A few recent studies suggest that calculus textbooks do not frequently provide opportunities 
for students to develop covariational reasoning skills with quantities related to the derivative. 
These studies used Carlson et al.’s (2002) five levels of (co)variational reasoning to compare the 
opportunities for covariational reasoning across international calculus textbooks (Chen, 2023) 
and between a regular and applied Calculus textbook (Mkhatshwa, 2022).  

This study adds a different perspective on opportunities for reasoning covariationally in the 
context of the derivative by analyzing introductory material about the derivative in a two widely 
used calculus textbooks, one traditional (Larson & Edwards, 2018) and one reform (Hughes-
Hallet et al., 2013) by applying a novel framework introduced by Tasova et al., 2018. Their 
framework for analyzing written curriculum, which they used to analyze precalculus content in 
calculus textbooks, merges Thompson & Carlson’s (2017) (co)variational reasoning framework 
with Moore and Thompson’s (2015) framework for static and emergent graphical shape thinking. 
This multi-layered approach allows for a more nuanced description of the opportunities for 
students to understand the derivative from a covariational perspective and for exploration of the 
alignment with a dynamic or static conception of the derivative.  

In this poster, I present the results of my directed content analysis (Hsieh et al., 2005) to 
answer the following questions: What opportunities does each textbook provide in its narrative 
and worked example sections for students to reason about quantities and variables related to the 
derivative as dynamic? and What are the similarities/differences between the textbooks in the 
nature and frequency of these opportunities? Results are supplemented with an expanded 
presentation of Tasova et al.’s (2018) framework that includes examples illustrating the range of 
opportunities textbooks provide. Finally, I present suggestions for both research and practice that 
focus on supplementing textbook opportunities to foster a dynamic conception and the 
implications of these results for equity and inclusion in STEM. 
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Calculus textbooks differ in the 

ways that they promote the 

derivative as static and dynamic. 

MOTIVATION:
• Even when they can work with derivatives 

procedurally, students still struggle 
understanding the derivative conceptually. 

• Covariational reasoning may help bridge 
this gap.

• How do textbooks promote conceptions of 
the derivative that are productive?

METHODS:
• I compared the intro chapter on derivatives 

from two commonly used calculus 
textbooks: 
• Larson’s Calculus 
• Hughes Hallett et al.’s Calculus: Single 

and Multivariable
• I coded narrative sections of the textbooks 

using a framework that distinguishes 
between static and dynamic conceptions 
of the derivative.

MAIN RESULTS:

Static and Dynamic:
How Two Textbooks 
Introduce the Derivative 

PRESENTER: 
Allison Olshefke

Static Dynamic
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Frequency

Static Dynamic Total

Larson 76.4%
(n = 84)

23.6%
(n = 26) 110

Hughes 
Hallett

46.5%
(n = 33)

53.5% 
(n = 38) 71

Larson Correspondence worked example (p. 102) 

Hughes Hallett Continuous Covariation Worked Example (p. 92-93)

Property-Shape Association worked examples 
(Larson p. 110 & Hughes Hallett p. 94) 
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Prior research highlights the critical importance of teachers' professional noticing skills
(Jacobs et al., 2010; Sherin et al., 2011). Specifically, the concept of "embodied noticing," or the
ability to interpret students' physical gestures and manipulations alongside their verbalizations, is
gaining attention (Bondurant et al., 2023; Goldin et al., 2011; Walkoe et al., 2023). In this study,
we investigated Pre-Service Teachers' (PTs) abilities to notice and evaluate students' embodied
actions in mathematics (Bondurant et al., 2020; Bondurant et al., 2023). The aim of our study
was twofold: to investigate PTs' skills in noticing students' embodied actions in math, and to
determine how such noticing might contribute to more equitable classroom environments. We
employed a sequential exploratory design, incorporating both qualitative and quantitative
methods (Creswell & Plano Clark, 2017). Initial qualitative data were gathered from 20 PTs who
participated in a 15-week online pedagogical course on elementary math education. PTs were
asked to watch a video of a student engaged in a math task and to respond to a set of instructional
activity prompts (Musser et al., 2013).

Our findings reveal that most PTs are still at the peripheral or transitional levels of noticing
embodiment in all three stages: attending, interpreting, and deciding. In particular, they often
overlook the embodied nuances and focus on evaluating the correctness of students’ written and
verbal responses using a deficit lens. This lack of attention to embodiment may be detrimental as
it fails to consider the whole child's mathematical thinking and doing, possibly leading to an
inequitable evaluation (Gutiérrez, 2008; 2009).

We recommend several interventions to improve PTs' embodied noticing skills:
1. Implement a mandatory multiple-viewing approach.
2. Utilize on-screen annotation tools for enhanced evaluation.
3. Initially, mute videos to emphasize embodiment, then enable sound for

subsequent viewings.
Our study contributes to the field by offering refined instructional prompts, exemplars of

embodied noticing, a framework for layering embodiment and noticing, and a rubric for
evaluating embodiment in educational contexts. Future research should investigate the long-term
impact of these interventions on PTs' noticing, teaching practices, and student outcomes.
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Bridging Mathematics: To Care for an Abstraction 
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This theoretical poster engages with and presents dominant undergraduate mathematics 
topics as lively forces with rich potentialities for connection beyond disciplinary mathematics. 
More specifically, this poster offers both (a) a theoretical contribution to engage with 
undergraduate mathematics as situated, open, and lively (de Freitas & Sinclair, 2013; Mikulan & 
Sinclair, 2023); and (b) a potential bridge to resurface and generate connections between 
undergraduate mathematics and philosophical ideas that are often left out of mathematics 
classrooms. We invite our field to, as Mikulan and Sinclair (2023) write, care for an abstraction: 
“To care for an abstraction is to make sure you haven’t extended it too far, forgotten the 
contingencies on which it depends, applied it flippantly or use it to foreclose thinking” (p. 70). 

Doxiadis (2003), when inviting mathematicians to open up to other ways of sharing their 
work, suggested considering historical, philosophical, aesthetic, and other dimensions of 
mathematics to understand math differently. They propose to “[e]mbed mathematics in the 
soul…by embedding it in story” (p. 24). In resonance, this poster understands mathematics as 
embedded in worlds (rather than fixed, separated/separable from the ‘real’ world); always 
emergent, relational, and in transformation, carrying with it histories, desires, and possibilities 
that are neither predetermined/fixed nor confined within mathematics as a discipline. For 
example, the concept of isomorphism is often fixed to its algebraic definition and approached as 
the ‘endpoint’ of some learning trajectory (e.g., Larsen, 2013), narrowing down pedagogical 
conversations to metaphors of sameness or connections with homomorphisms (Rupnow, 2021). 
But what if instead we engaged with it as a starting point, as a spark? What stories can it awaken 
and how are they interconnected (or not) with(in) the world? Isomorphism then becomes a 
kaleidoscope of stories, awakening multiple wonderings: Why does isomorphism seek to 
preserve these specific structures (e.g., group operation), and what possibilities are foreclosed? 
Connecting isomorphism with notions of preserving a melody without, for example, 
consideration of an instrument’s timbre could invite discussions of what might be left out when 
prioritizing certain structures at the expense of other dynamics. These stories, moreover, need not 
be reduced to auxiliary metaphors towards the definition of isomorphism and can invite other 
wonderings: Where does the persistent preoccupation for ‘sameness of forms/structures’ in 
dominant mathematics come from? This opens worlds of historical connections to follow, such 
as ties with coloniality and language (Barton & Frank, 2001; Gutiérrez, 2017) and often-ignored 
contingencies as well as connections between temporalities and abstractions (Mikulan & 
Sinclair, 2023), inviting us to trouble the belief that mathematics is ‘universal’ and ‘objective.’ 

Understanding mathematics as open and entangled with lived/living histories has not only 
pedagogical implications but also political. The pervasive understanding of mathematics as 
abstract and thus objective is harmful in multiple ways, concerns that have been raised in K-12 
literature (e.g., Fasheh, 2012; Martin, 2019) but are rare in undergraduate mathematics. Thus, we 
invite our field to open up to engage with mathematics as lively and situated, and question 
dominant narratives of undergraduate mathematics. As Wertheim (2019) writes, understanding 
mathematics as living “enables us to recalibrate our relationship with the subject, reframing it as 
a mode of engagement in which we can highlight its joyous potential for all people” (p. 70). 
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For many students, discrete mathematics is a first exposure to formal logical reasoning,
proofs, and proving. Undergraduates entering discrete mathematics have much experience with
procedural problem solving and many attribute the authority for mathematical sense-making to
textbook, instructor, or software (Herbel-Eisenmann, 2007). Like calculus courses, discrete
mathematics shares a history of enormous disparities in outcomes correlated to demographic
variables. For example at one institution, grade point averages (GPAs) in discrete mathematics,
disaggregated by demographic groups privileged in society’s majority culture and those
marginalized in it were, respectively, 2.28 and 1.72 (Hsu, 2020). Yet subsequent course-taking
requires at least a C, 2.0 grade points or higher. The 1.72 is a disqualification for further study.

Research in undergraduate mathematics education, notably in calculus, has indicated that
disparities can be addressed by changes in student materials and instruction methods (Bressoud
& Rasmussen, 2015). Groupworthy learning opportunities for students, and faculty use of
socio-culturally informed instructional approaches, build positive relationships among students,
between students and institution, and create active engagement in and outside of class (Archie et
al., 2022; Johnson et al., 2020; Laursen et al., 2014; Leyva et al., 2022). Decades of reform in
calculus has generated rich curricula, client-discipline informed policy, and most recently,
instructor preparation to address the disparity (Yoshinobu et al., 2023). Now, in calculus, the
GPA for groups privileged in society is above 2.0 and the GPA for historically marginalized
groups is near 2.0 (Voigt et al., 2023). For calculus it took several generations of scholarly work
to transform the system of structures, values, policies, and people to eke out a less inequitable
state. No similar reform effort has occurred for discrete mathematics. Yet.

This poster (Campisi et al., 2024) reports on a state-wide effort in California to transform
curriculum and instruction in discrete mathematics. Project research examines student and
faculty experience of team-worthy lessons (as substitutes for lecture) and scaffolds for use. Early
results indicate increases in students’ sense of access to, and engagement in, the intellectual work
of discrete mathematics, growth in instructor knowledge of equity-supportive practices, and a
reshaping of instructors’ views of students’ capabilities. Ultimately, the project will:

1. generate a collection of seven team-worthy discrete mathematics lessons,
2. create and refine an asynchronous short-course for faculty who teach with such lessons,
3. gather data from students and faculty to inform lesson and short-course revision,
4. examine implementation in a variety of 2-year and 4-year college settings, and
5. participate in the revision of state policy for the content and processes/practices in discrete

mathematics and a similar course in computer science called discrete structures.

Acknowledgements
Based on work supported by the California Education Learning Lab.

26th Annual Conference on Research in Undergraduate Mathematics Education 1318



References
Archie, T., Hayward, C. N., Yoshinobu, S., & Laursen, S. L. (2022). Investigating the linkage

between professional development and mathematics instructors’ use of teaching practices
using the theory of planned behavior. PLOS One, 17(4), e0267097.

Bressoud, D., & Rasmussen, C. (2015). Seven characteristics of successful calculus programs.
Notices of the AMS, 62(2), 144-146.
https://www.ams.org/journals/notices/201502/rnoti-p144.pdf

Campisi, M., Gonzalez, J., Hauk, S., Hsu, T., Rayappan, M., & Yahdi, M. (2024). Student and
instructor experiences of equity and access for team-worthy tasks in discrete mathematics
[Poster]. The poster associated with this poster report available at:
https://sfsu.box.com/s/3z0ev677cvjgtl2vzsh05wxwd4bdgp2y

Herbel-Eisenmann, B. A. (2007). From intended curriculum to written curriculum: Examining
the voice of a mathematics textbook. Journal for Research in Mathematics Education, 38(4),
344-369.

Hsu, T. (2020). An introduction to equity and access in discrete mathematics. California
Educational Learning Lab.

Johnson, E., Andrews-Larson, C., Keene, K., Melhuish, K., Keller, R., & Fortune, N. (2020).
Inquiry and gender inequity in the undergraduate mathematics classroom. Journal for
Research in Mathematics Education, 51(4), 504-516.

Laursen, S. L., Hassi, M. L., Kogan, M., & Weston, T. J. (2014). Benefits for women and men of
inquiry-based learning in college mathematics: A multi-institution study. Journal for
Research in Mathematics Education, 45(4), 406-418.

Leyva, L. A., Amman, K., Wolf McMichael, E. A., Igbinosun, J., & Khan, N. (2022). Support for
all? Confronting racism and patriarchy to promote equitable learning opportunities through
undergraduate calculus instruction. International Journal of Research in Undergraduate
Mathematics Education, 8(2), 339-364.

Voigt, M., Hagman, J., Gehrtz, J., Alexander, N., Ratliff, B., & Levy, R. (2023). Justice through
the lens of calculus: Framing new Possibilities for diversity, equity, and inclusion.
Mathematical Association of America. Available online at
https://www.researchgate.net/publication/373515596_Justice_through_the_lens_of_calculus_
Framing_new_Possibilities_for_diversity_equity_and_inclusion

Yoshinobu, S., Jones, M. G., Hayward, C. N., Schumacher, C., & Laursen , S. L. (2023) A broad
doorway to the big tent: A four-strand model for discipline-based faculty development on
inquiry-based learning, PRIMUS, 33(4), 329-354, DOI: 10.1080/10511970.2022.2072427

26th Annual Conference on Research in Undergraduate Mathematics Education 1319



Decentering and Interconnecting as Key Practices for Change Agency Leadership in
Teaching-focused Professional Development for College Mathematics Instructors

Shandy Hauk Natasha Speer
San Francisco State University The University of Maine

Keywords: teaching-focused professional development, leadership, decentering, interconnecting

Research in undergraduate mathematics education (RUME) continues to identify features of
high quality learning opportunities for students and explore what instructors need to know and do
to create those opportunities. RUME also has illustrated features of effective teaching-focused
professional development (TPD) for college instructors, characterized the complexity of the
system in which TPD occurs, and examined the practices used by providers of TPD in seminars
about teaching (Akin et al., 2023; Deshler, et al., 2015; Smith et al., 2021; Yee et al., 2023).
Additionally, recent work has explored how development of two skills, decentering and
interconnecting, may support professional growth of instructors as future change agents (Hauk &
Speer, 2023a,b). Decentering is, at its most basic, the act of seeing from someone else’s point of
view (Teucher et al., 2016). While decentering involves perspective-taking, interconnecting is
meta-awareness linking across perspectives and contexts and is key in developing and nurturing
coalitions, an essential component of local and systemic change (Kotter, 2012; Manville, 2016).

What does it look like if we leverage what is known from the literature to consider the
questions: What do providers of TPD need to know and do to create desired types of learning
opportunities (for instructors, about teaching) and, more broadly, what are the features of high
quality leadership development for providers to support their growth into facilitators (who teach
about teaching about teaching) and stewards of the discipline (Bass, 2006)? In addition to
supporting faculty in their work to be effective providers of TPD for novice instructors (middle
layer of Figure 1) leadership-focused development experiences (outer layers in Figure 1) can
scaffold providers to take on roles as stewards and agents for change in the realm of TPD.

In this poster (Hauk & Speer, 2024), we illustrate how stewardship, a particular kind of
leadership in the complex system of mathematics instructional development, requires
decentering and interconnecting. This model for professional growth of faculty agents for change
expands on Figure 1. Earlier work described how
instructional practices used by TPD providers (for
graduate students) could be beneficial both for
learning high-powered teaching approaches for
undergraduate mathematics and for building a
foundation for future change-agent work. Here we
extend the model, with analogous arguments for
facilitators and stewards. Ensuring that faculty have
capacity as facilitators and as stewards is essential.
Such faculty will shape efforts over time, informed
by developments in RUME and in response to
other developments in the discipline.
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Building capacity to 
steward the 
development of the 
next generation of 
college instructors. Decentering

● learning to elicit student thinking 
● learning how to shape instruction based on student thinking
● scaffolding students to contribute to mathematically dense student-to-student 

conversations 
● being an expert participant rather than sole source of knowledge 
● attention to students as (potentially) different from oneself

Interconnecting
● noticing how student conceptions may support or constrain how target learning 

progresses. 
● knowing conceptions as well as the dynamics of communicating about them in a 

multi-contributor conversation
● selecting formats (e.g., group or pre-meeting activity) for problem-solving about 

target learning. 
● connect across and prioritize instructional / mathematical and contextual factors, 

to decide what is professionally useful for students.

Glossary
Decentering: the act of seeing 
from someone else’s 
point of view [1,2]. 

Decentering and Interconnecting as Key Practices for Change Agency Leadership in 
Teaching-focused Professional Development for College Mathematics Instructors
Shandy Hauk, San Francisco State University and Natasha Speer, The University of Maine
Funded by National Science Foundation DUE Awards 1432381, 1654273, & 2021139 

This material is based on work 
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DUE 1432381, 1654273, & 2021139. 

Any opinions, findings, and conclusions or 
recommendations expressed in this material are 
those of the authors and do not necessarily reflect 
the views of the NSF.                            [RUME 2024]

Interconnecting: meta-awareness linking across 
perspectives and contexts response to other 
developments in the discipline [1,3,4].

Student: learner of mathematics
Instructor: person responsible for instruction in 
mathematics courses
Provider: one who offers teaching-focused professional 
development to (often novice) instructors
Facilitator: one who offers professional learning for 
(sometimes novice) Providers.
Steward: one who shapes efforts over time to advance 
teaching-focused professional learning.

TPD
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A Comparison of Tutors’, Students’, and Researchers’ Perceptions of College Algebra Mistakes

Linda C. Burks Mary E. Pilgrim Megan Ryals
Santa Clara University San Diego State University University of Virginia

Experiences in first year mathematics classes predict persistence in a STEM major
(Seymour & Weston, 2019). Retention becomes increasingly difficult when students need to
develop foundational skills in prerequisite courses such as College Algebra. The development of
study skills, including metacognitive skills, are often used to improve low success rates. As part
of a study on the impact of metacognitive instruction for College Algebra students, we found that
when reflecting on the reason for their errors, students often attributed exam errors to “simple
mistakes.” Researchers identified many of these mistakes as “not simple.” Classifications of
“simple” or “not simple” mistakes by undergraduate peer tutors, who provide support in campus
learning centers, did not consistently align with either the views of students or researchers. We
discuss student, tutor, and researcher views of mistakes and how they compare with each other.

Methods
For this IRB approved study, data was obtained from students in a College Algebra

support course at a large, Western, public, Hispanic-Serving Institution. In semi-structured
interviews, students classified recent errors on an exam as either simple or not simple and
provided justification for their classifications. Transcripts of these interviews along with student
work on the exams were analyzed to determine students’ reasoning for classifying mistakes as
“simple or “not simple.” Data was later gathered from 11 undergraduate peer tutors at two
institutions through an online questionnaire which presented five mistakes from the first college
algebra exam. Iterative coding was used to analyze the tutors’ reasoning for the mistakes.

Discussion and Conclusion
Researchers defined simple mistakes as ones that “could be made accidentally, would

likely not be repeated, or violated a mathematical convention rather than a rule” (Authors,
2020b). Sometimes, tutors’ classifications aligned with students’ or researchers’ classifications of
simple and not simple; other times, the tutors were divided. Students sometimes distinguished
between simple and not simple by the difficulty level of the problem or by how quickly they
could see how to do the problem correctly when reviewing the exam. Student RG stated, “I think
that a simple mistake is something that can be fixed without … a large amount of time” Tutors were
similar to researchers in that they distinguished between simple and not simple mistakes by
noticing if the student had demonstrated understanding previously. Different from both
researchers and students, some tutors considered the amount of work it would take to correct the
student’s misconceptions. Tutor X stated, “A simple mistake is one that can be corrected (and the
student would understand where they went wrong), with just a quick clarification. If the mistake
requires a more in-depth discussion, then it is not simple.” By comparing different views of
mistakes between student, tutor, and teacher, we build a deeper understanding of how both tutors
and instructors might better address student’s misconceptions and misunderstandings.
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Is the mistake 
simple or not simple?

Linda C. Burks  Mary E. Pilgrim Megan Ryals
Santa Clara University San Diego State University University of Virginia

Mistake A

Researchers say…
Students say...
Tutors say…

What do you say?

Mistake B

Mistake C

Mistake D

The student correctly began getting a common 
denominator for each term. The student did not 
correctly multiply the last numerator, which 
should have been -3x2+21x.

   

The student initially correctly combined 
exponents for the y-terms, but did not 
for the x-terms and the student did not 
reduce the coefficients.

The student incorrectly canceled the 
x^2 terms in the numerator and 
denominator, which led to subsequent 
incorrect steps. Consider the first error 
of canceling the x2 terms.

Mistake E
The student incorrectly factored 
the numerator as (x+8)(x+1). 
The student should have 
factored the numerator as 
x(x+8).

The student recognized the squared terms, 
but did not factor as a difference of squares 
to get (4a-6b)(4a+6b)

Mistake A B C D E

Student S S NS NS S

Researcher S S NS NS NS

Tutors (S/NS) 10/1 3/8 1/10 7/3 7/3

A Comparison of Tutors’, Students’, and Researchers’ 
Perceptions of College Algebra Mistakes
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One Woman’s Use of Learning Resources in Conjunction with Her Mathematical Identity 

 
 Brandi Rygaard Gaspard Kristen Lew 
 Texas State University Texas State University 

Keywords: mathematical identity, learning resources, calculus 

Calculus courses are critical turning points for university students. Reporting high Drop-Fail-
Withdraw rates, retention in these courses is a problem (Voigt et al., 2017). Students, particularly 
calculus women, navigate decreasing attitudes towards mathematics (Good et al., 2012). For 
instance, Ellis et al. (2016) found that many women cited lacking confidence as their reasoning 
for not persisting after their calculus course. 

Our study highlights how one woman employed learning resources in conjunction with her 
mathematical identity, where mathematical identity consists of her dynamic “self-understanding 
… in the context of doing mathematics” (Martin, 2006, p. 206). We aim to address the following 
research question: How does one woman calculus student use learning resources and how does 
her usage of those resources connect with her mathematical identity? 

Methods 
We conducted three semi-structured interviews with a university freshman, Becca, who was 

taking a calculus course designed for non-STEM majors at a large southern university. 
Interviews focused on Becca’s perceptions towards her experiences in the course, how she 
viewed mathematics, and how she viewed herself in mathematical contexts. Analysis consisted 
of open coding to flag instances in which Becca described learning resources she felt supported 
her academic success or described a more stable sense of self in reference to mathematics – 
consistent with the definition of “core mathematical identity” (Cobb & Hodge, 2010).  

Results 
Becca’s learning resources and mathematical identity were interrelated. She viewed herself 

as an organized mathematics learner focusing on step-by-step approaches, which led her to 
systematically use learning resources to process the concepts on her own. For example, Becca 
used apps that provided worked examples of her homework problems. Rather than copying 
answers, Becca focused on understanding and replicating these processes. We interpret Becca’s 
intentional use of resources as influenced by her identity as an organized mathematics learner. 

Becca’s use of learning resources also impacted her mathematical identity. In particular, 
learning resources had a positive impact on her confidence related to mathematics. Reflecting on 
her instructor’s open lab, in which she practiced solving problems, Becca explained, “[…] if I 
can do it now, then I can do it later […] when I went to the lab and I was like, so stuck on those 
problems then I, like, figured it out, it just like, like amazed me […]” (author’s emphasis). This 
quote suggests that the lab gave Becca confidence in her ability to solve problems.  

While Becca’s use of learning resources may appear to put her in danger of becoming 
dependent on them, we observe that she has found a way to transfer learning resources to her 
own knowledge in alignment with how she views mathematics, ultimately leveraging them to 
perceive herself as capable to persist mathematically. 

Acknowledgment 
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Systemic Racism in School Discipline Data 
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     In this poster, we share preservice elementary teachers' (PSTs') initial noticings during 
exploratory data analysis of materials focused on developing content knowledge of statistics as 
well as normalizing conversations of race in math class. The content covered is typically 
included in college-level introduction to statistics courses. We summarize PSTs' noticings and 
wonderings of an interactive data dashboard presenting racial disparities in school discipline.  
     Racial disparities in school discipline are a significant issue with lasting effects (Huang, 2018; 
ProPublica, 2023). To illustrate, Black students are suspended at a rate three times higher than 
their white counterparts (USDEOCR, 2014). These disparities are rooted in prevailing racial 
narratives that influence teachers' perceptions of Black, Indigenous, and People of Color 
(BIPOC) students and impact their math identities (Aguirre et al., 2013). Implicit biases may 
help explain these disciplinary disparities (Gilliam et al., 2016). Since about 80% of U.S. 
teachers are white, we must raise awareness of these disparities (NCES, 2023). 
     Inspired by Paulo Freire's critical pedagogy, we focused on critical thinking, empowerment, 
social justice, and collaborative dialogue to engage PSTs in addressing this issue (Freire, 2004). 
We developed instructional activities for secondary PSTs, combining statistical investigations 
with social justice concepts, contributing to the growing body of work on using data analysis to 
examine social justice issues (Bondurant et al., 2022; Casey et al., 2023). After implementing, 
we adapted it for elementary PSTs, emphasizing elementary math content and pedagogy, 
specifically operations with fractions, decimals, and percentages, and utilizing virtual 
manipulatives to teach math concepts (Suh & Roscioli, 2023). 
    This poster delves into elementary PSTs' initial observations of an interactive data dashboard 
focusing on racial disparities in school discipline. We aimed to answer the research question: 
When presented with such data, what aspects of racial disparities do PSTs notice? Using open 
coding, we identified themes in PSTs’ responses, highlighted representative quotes, and 
determined frequencies for each theme (Corbin & Strauss, 2014). The findings revealed four key 
themes in PSTs' responses: "Personal connections" encompassed experiences as students or 
school employees; "Academics" focused on course offerings, graduation rates, and standardized 
test scores; and "Discipline" involved comments about behavior, classroom management, and 
suspension data. Surprisingly, only one PST mentioned discipline, and none discussed racial 
disparities. We employed nudges in the form of assessing and advancing questions to guide 
PSTs' attention toward racial disparities (e.g., "What do you notice about the suspension rates of 
Black and white students and why might this be?"). The impact of these nudges was not within 
the scope of this poster. Our findings suggest that PSTs may be uncomfortable discussing race 
and discipline or may not perceive them as relevant to their role as math teachers. These findings 
point to a need for math teacher educators (MTEs) to explicitly connect mathematics topics with 
social justice issues (Conway et al., 2022). Future research could explore the impact of different 
nudging techniques in this context.  
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First Generation Calculus Students’ Beliefs 
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The retention of college students in the Science, Technology, Engineering, and Mathematics 
(STEM) fields has been widely studied (e.g.; Rasmussen & Ellis, 2013; Sithole et al., 2017). 
Less research has focused on students traditionally underserved by the educational system (e.g., 
Carver et al., 2017). Understanding students’ beliefs in mathematics can improve achievement 
and motivation (Muis, 2004), which has inspired research on the beliefs of several student 
populations (e.g.; Berkaliev & Kloosterman, 2009; Sangcap, 2010; Sintema & Jita, 2022; Yavus 
& Erbay, 2015). There is still a need to explore the beliefs of first-generation students, as little 
confidence in the ability to solve mathematics problems is related to lower academic 
performance (DeFreitas & Rinn, 2013). Since calculus is key for college STEM retention 
(Rasmussen & Ellis 2013), our study explores the beliefs that first-generation calculus students 
hold based on the Indiana Mathematics Beliefs Scale (IBMS) to inform on the retention of first-
generation calculus students. 

Methods 
The study was conducted at a public, Ph.D.-degree granting institution in the midwestern 

United States implementing a quantitative research approach (Johnson & Christensen 2019). 
Demographic information such as gender and major was collected via a questionnaire. The 
IBMS (Fennema & Sherman, 1976; Kloosterman & Stage, 1992) contains 36 Likert-type scale 
questions measuring six beliefs about mathematical problem-solving, each including six 
questions that positively or negatively reflect it. The extensively used and validated (e.g.; Ayebo 
& Mrutu; Berkaliev & Kloosterman 2009) IBMS survey was distributed to 16 calculus classes 
with a total of 362 students. We collected 224 responses (61.9% response rate) and analyzed 
responses to identify students who self-identified as first-generation by reporting the highest 
degree achieved by one of their parents being less than a four-year degree in college. In the 
analysis, we assigned numerical values to the responses and adjusted for questions that had 
negative statements toward the beliefs. Then, we used descriptive statistics and an independent 
sample t-test on the average score of students by belief. 

Results & Discussion 
From the 94 first-generation students’ responses to the demographic survey, we found that 

this was composed of 40 women, 53 men, and one non-binary student. We also found that within 
this subset of participants, 14 were black, 41 were Hispanic, and none were indigenous. 
Respondents most strongly believed that “understanding concepts are important in mathematics” 
and “mathematics is useful in daily life,” but this is not the case for the belief that “there are 
word problems that cannot be solved with simple, step-by-step procedures.” Using an 
independent samples t-test to compare the average score of each belief for both men and women, 
there were no significant differences seen (p>0.05).     
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Intro-to-Proof Students Discuss Logical Implication and Quantification: Themes from the
Triangle Group

Alejandro Ortuno Joseph Antonides Benjamin Bruncati
Virginia Tech Virginia Tech Virginia Tech

Anderson Norton Rachel Arnold
Virginia Tech Virginia Tech

Keywords: proofs, logical implication, quantification, epistemological obstacle

Research has shown that students in introduction-to-proof courses encounter epistemological
obstacles (EOs, or persistent challenges; cf. Brousseau, 2002) in learning and reasoning about
core concepts, even in the face of research-based instruction (e.g., Norton et al., 2022, 2023).
Quantification and logical implication are two major course topics that are seen for the first time
in the case of most students; consequently, they tend to experience challenges when working
with mathematical statements, which are then reflected as specific EOs. In our ongoing research
project, we investigate students’ experiences in introduction-to-proof courses with particular
attention to eliciting and addressing students’ EOs. Data from our project include whole-class
discussions, one-on-one interviews with students, and small group discussions. In this poster, we
present findings from our analyses of the discussions of one small group.

Our methods included analyzing video data from a group of students (the “Triangle Group”)
working on mathematical tasks during an undergraduate introduction-to-proof course. Tasks
were drawn from existing research on the teaching and learning of mathematical proofs (e.g.,
Hub & Dawkins, 2018; Shipman, 2016). During the completion of these tasks, students in the
small group were able to discuss their strategies and any mathematical insights or challenges that
they experienced. Consistent with basic qualitative data-analytic methods (Merriam & Tisdell,
2015), we analyzed students’ discussions and found patterns in students’ reasoning—patterns
that constituted the themes shared in this poster.

Three major themes emerged from our analyses. The first major theme involves students
establishing constraints on the universal set when reasoning about mathematical statements. For
example, the group was asked to negate the statement, “for all nonnegative real numbers x,

.” They responded, “for all nonnegative real numbers less than 1, ,” constraining𝑥≤𝑥 𝑥 > 𝑥
the truth set to the interval (0, 1). The second theme involves students providing a
counterexample when asked to find the negation of a statement. Using the same statement as
above, the Triangle Group said the negation would be given if they “define x and write the exact
same thing, [the statement] will be false.” Specifically, they said P(x) is false if x = 0.01, finding
a counterexample to the given statement. Lastly, the third theme explores how small group
discussions can help students address EOs. For instance, students in the course were asked to
consider how the statement, “the matrix A is invertible,” is an existence statement. We inferred
that this task elicited hidden quantification (Shipman, 2016), which is the EO caused when
quantifiers are not explicitly stated in a mathematical statement. However, the Triangle Group
seemed to be able to address this EO through their small-group discussion about the task.
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Motivation
• Epistemological obstacle (EO): a 

persistent challenge in one’s 
learning, even in the fact of best 
instruction (Brousseau, 2002; Norton 
et al., 2023)

• Research shows students encounter 
specific EOs related to core concepts 
about proof and proving (Arnold et al., 
in press; Norton et al., 2022, 2023; 
Shipman, 2016)

• The Proofs Project aims to identify 
EOs and design instructional 
strategies for supporting students by 
eliciting and addressing EOs directly

Methods
• The Proofs Project collected data 

from whole-class discussions, small-
group discussions, and clinical 
interviews with students

• Tasks designed by The Proofs Project 
or adapted from published research 
(e.g., Dawkins & Roh, 2020; Hub & 
Dawkins, 2018; Vroom, 2020)

• Regular opportunities for discussion 
provided in class for students to 
share ideas, strategies, and 
challenges

• Analyzed video data from small 
groups of students working on tasks 
during an intro-to-proofs class

• Focus of this presentation on the 
“Triangle Group”

• Identified regularities in qualitative 
findings from our analysis of small-
group discussions, constituting the 
themes shared here (Merriam & 
Tisdell, 2016)

Intro-to-Proof Students Discuss Logical Implication and Quantification: 
Themes from the Triangle Group
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Theme 1
Students place 

constraints on the 
universal set when 

reasoning about 
mathematical statements.

Theme 2
Students provide a 

counterexamples when 
asked to find the negation 

of a statement.

Theme 3
Small group discussions 
can help students elicit 

EOs and work together to 
begin addressing EOs.

“Since it’s an absolute value, 
we know at least one of them [! 
or "] has to be over 5. Or… I 
don’t know. There’s some sort 
of constraint about ! and ", like 
over 5 or under 5, or something 
like that.” 

Purpose 
To share themes from 

qualitative analysis of one 
small group’s discussions 

about research-based tasks 
during class

Acknowledgements

Task 1
Determine if the following statement is 
true or false. “Suppose !, #, and $ are 

integers. If ! − # < 5 and # − $ < 5, 
then |! − $| < 5.”

Fig. 1: Visual representation for Task 1

Fig. 2: Group’s work on Task 2

On Task 2, Triangle Group initially 
found a counterexample to the 
statement.

Progressing from identifying a counter-
example to writing a negation of the 
statement posed a challenge.

• S1: So then the whole 
statement is false. Therefore, 
#(%) is false.

• S2:  So, in order to make this 
statement true—

• S3: Well, #(%) is the open 
statement. So, all of #(%) 
isn’t false. ‘Cause, #(%) is 
true for like 2 or 3. So I think 
we can just say that, um, just 
statement # of .01 is false.

“For all nonnegative real 
numbers less than 1, !(#) is 
false.”

Task 2
Negate the statement. “For all 

nonnegative real numbers ), ) ≤ ).”

Constrained the universal set to the 
interval (0,1).

Task 3
Explain how the statement “Matrix A 

is invertible” is an existence 
statement.

Fig. 3: Statement for Task 3

Task designed to elicit the EO of 
hidden quantification (Shipman, 
2016).

“It’s kind of like saying, there 
exists a matrix such that [A] is 
invertible.”

Group member unveils the hidden 
quantifier, reframing the statement as 
an existence statement.

Task 4
Prove or disprove the statement. 

“If x > 0, then '	 + !
" 	≥ 2.”

Statement contains a hidden universal 
quantification. Through working together, 
the group was able to unveil the 
universal quantifier and work together to 
negate the statement.

“…the way you would negate it 
would be ‘there exists’, right?"

The Proofs Project 
Website

“Don’t we just need to find a 
value of % where the square 
root of that number is greater 
than? … #(. ,-) is false” 
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Self-reported Student Motivations to Participate in DEI Service Work

Keywords: Department change, introductory math, student voice, equity

The proposed poster describes information collected from a case study of a DEI initiative in
the math department at Kappa University (KU). In Spring 2023, a Networked Improvement
Community (NIC) of faculty members and administrators began meeting monthly to discuss DEI
in introductory math at KU. After one semester, in recognition of the need to better attend to
Gutiérrez’ critical axis of equity (2002), the NIC leaders solicited applications from
undergraduate and graduate students. Applicants were asked “Why are you interested in joining
the KU Networked Improvement Community (NIC)?” We use the 117 application responses as
data to answer the question: What motivates students at KU to get involved in DEI work in the
mathematics department? How do students bring their identities into these motivations? We
conceptualize students’ desired engagement in the NIC as involving “joint action for a common
good,” within the “voluntary organizational activity” of NIC participation (Ansala et al., 2016, p.
151). Ansala and colleagues detail five emergent themes which motivated students’ engagement
with activism: social motives of engaging collaboratively, motives of influence related to a desire
to have a positive impact, motives emphasizing the benefits of engaging in activism, motives
related to activism as a lifestyle, and motives of pure coincidence.We utilized the former four
themes as first-level a priori codes. We also found a need to attend to student identities, framed
with a critical sociocultural lens (Esmonde et al., 2009), which articulates both social identities
and practice-based components of a person’s identity. The social components are the socially
constructed aspects of one’s identity, that are both imposed on people by society and that we
impose on ourselves. The practice-based identities are developed through our participation in
cultural practices. This perspective on identity encourages attention to how social identities
interact with and inform practice-based identities. Here, we explore how students evoke their
identities in their expressions on wanting to join the DEI work in the mathematics department.

Our preliminary analysis shows that of the 117 applicants, 50 referenced a component of
their social identity as salient to their application. The social identities they cite include race,
gender, sexual orientation, being a first generation student, being an international student, being
low income or rural, and disparate access to calculus before college. Among these students, 27
also reference either having previous positive experience with math, a very strong math identity,
or referenced mathematical struggles. Additionally, 104 out of 117 cited a desire to have
influence as a component of their motivation for their participation in the NIC, often in the
context of making the mathematics program or its associated classes a more positive experience
for other students. This often included reference to their own identities; a student remarked, “as a
Latina woman, I usually find myself pretty isolated in the fields of STEM…I would love to be a
part of transforming the world of mathematics, especially at KU, into one that is accepting and
transformative for people like me.” In the poster, we highlight student voices behind the
motivations and patterns of how students motivate their participation in an equity-oriented NIC.
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Colorado State University
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Self-reported Student Motivations to Participate in DEI Service Work

Existing structures in college math departments that don’t attend to students’ 
varied identities may compound feelings of exclusion in introductory courses [5]. 
Thus, there is a need to interrogate and challenge the systems currently in place, 
particularly at the level of college calculus. Students, as experts in their own 
experience, play an important role in such DEI initiatives. As D’Ignacio and Klien 
assert in Data Feminism, leveraging experience and emotion as sources of data has 
the potential to inspire systemic change [2].

1.

2.

3.

4.

5.

Ansala, L., Uusiautti, S., & Määttä, K. (2016). What are Finnish university students' 
motives for participating in student activism?. International journal of adolescence 
and youth, 21(2), 150-163.
D’Ignazio, C. and Klein, L. (2019). Data Feminism community review site. 
https://mitpressonpubpub.mitpress.mit.edu/pub/dgv16l22/release/6
Esmonde, I., Brodie, K., Dookie, L., & Takeuchi, M. (2009). Social identities and 
opportunities to learn: Student perspectives on group work in an urban mathematics 
classroom. Journal of Urban Mathematics Education, 2(2), 18-45.
Gutiérrez, R. (2002). Enabling the practice of mathematics teachers in context: Toward 
a new equity research agenda. Mathematical Thinking and Learning, 4(2-3), 145-187.
Leyva, L. A., McNeill, R. T., Marshall, B. L., & Guzmán, O. A. (2021). “It seems like they 
purposefully try to make as many kids drop”: An analysis of logics and mechanisms of 
racial-gendered inequality in introductory mathematics instruction. The Journal of 
Higher Education, 92(5), 784-814.

Student Voices

As a Latina woman, I usually find myself pretty isolated in the fields of STEM, rarely 
coming across professors or other students who look like me. I would love to be a part of 
transforming the world of mathematics, especially at [Kappa], into one that is accepting 
and transformative for people like me.

  Influence

I am interested because it seems like a good opportunity to help [with] on going research at 
[Kappa]. I want to get better at interviews which will be beneficial to me.

 Benefit

What excites me most is the chance to collaborate with a diverse group including faculty, 
instructors, and fellow students. I am enthusiastic about participating in data collection, 
analysis, and collaborative efforts within the [Kappa] NIC that accommodate different 
learning styles and backgrounds.

Social Motivation

As a lifelong activist, I have always fought for change and equity as much as is possible in 
the environments I inhabit. Nowhere is this more relevant than in the courses that I take, 
where I do not see the diversity of students that I would expect to find at a diverse 
institution. I want to join the NIC so that I can help make math courses, nationwide, a more 
welcoming place for all, so that all students are comfortable in the math classroom and all 
can forget about its looks to focus instead on expanding our knowledge in the field.

Lifestyle

In 2022, a team of faculty members at 
Kappa University (Kappa), as part of a 
multi-institution collaboration, began 
work toward critically transforming their 
introductory math courses. They 
assembled a “Networked Improvement 
Community” (NIC) of faculty, staff, and 
administrators who met monthly to 
discuss potential changes in the Calculus 
sequence at Kappa. After one semester of 
work, NIC leaders recognized the need toNIC Improvement Cycle

Demographics

Students cite desire for influence and 
social identities as motivations to join DEI-focused 

intro math Networked Improvement Community.

39.32%

49.57%

0.85%

10.26%

Influence and
underrepresented social
identity at Kappa

Influence only

Underrepresented
social identity only

Neither identity nor
influence

Shira Viel¹, Victoria Akin¹, Jessica Ellis Hagman², Rachel Tremaine²,

Kaylee Fantin-Hardesty², and Nancy Kress³

¹Duke University, ²Colorado State University, ³University of Colorado, Boulder 
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Self-reported applicant motivations, n=117

All applicants

Did not reference an
underrepresented
social identity

Referenced an
underrepresented
social identity

View activism as part of their identity. May cite prior 
experiences with activism as motive.

Desire to participate in decision-making, ensure 
values are represented, and/or influence change.
Desire to learn more, gain skills and/or apply skills 
in a way that complements university studies.

Desire to collaborate and/or make friends. May 
describe being drawn to DEI through friendship.

What motivates Kappa students to get involved in math department DEI work?
We conceptualize students’ desired engagement in the NIC as involving “joint action 
for a common good,” within the “voluntary organizational activity” of NIC 
participation [1], and thereby used Ansala et al.'s four themes as a priori codes: 

Kappa Networked Improvement Community (NIC)

better attend to Gutiérrez’ critical axis of equity [4] in understanding and addressing 
student experiences in Calculus at Kappa and the intersection of these  experiences 
with student identities and backgrounds. Thus, it became essential to not just 
gather data on student experiences but to incorporate students into the NIC itself. In 
Summer 2023, the NIC leaders solicited applications from graduate and 
undergraduate students to join the NIC.  As a case study, we analyze responses to 
the single application question, "Why are you interested in joining the Kappa NIC?"

Self-reported applicant motivations, n=117

Research Question 2: Intersection with identity

References
Research Question 1: Motivations

How do Kappa students bring their identities into these motivations? 
47 of the 117 applicants referenced a component of their social 
identity [3] that is underrepresented in math at Kappa as salient to 
their application. Underrepresented identities that were referenced 
by students related to race (13.7%), gender (8.5%), sexual orientation 
(3.4%), high school math preparation (4.3%) being a low income or 
rural student (11.1%), being a first generation student (6%), and 
being an international student (6%). Students who referenced an 
underrepresented identity were significantly more likely than those 
who did not to also express a desire for influence as a component of 
their motivation for participation. This was often in the context of 
making mathematics courses at Kappa a more positive experience 
for other students, resonating with Gutiérrez’ critical axis of equity 
and a desire for structural change [4].
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An Integrated Teaching Model for Post-Covid Graduate Teaching Assistants Professional
Development

John Sevier
Appalachian State University

Keywords: GTA Professional Development, Teacher Preparation, Online Instruction

The roles and expectations for many of the GTAs vary across higher education, from
assisting instruction through grading and tutoring on a small scale to teaching entire mathematics
courses. Graduate teaching assistants (GTAs) are indispensable assets in many undergraduate
learning programs in higher education (Di Bendetti et al., 2022; Lang et al., 2020; Mutambuki &
Schwartz, 2018). Higher Education has responded to the growing demand for teaching staff by
utilizing GTAs in many gateway courses, including entry-level mathematics courses. It is
assumed that if GTAs have a background or a degree in mathematics, they can support and teach
mathematics. Unfortunately, many of these GTAs have little to no prior teaching experience
(Choate et al., 2021; Di Bendetti et al., 2022; Jonnalagadda et al., 2022; Lang et al., 2020;
Mutambuki & Schwartz, 2018). This issue only intensified after many educational programs and
clinical practice (student teaching) experiences were altered, shortened, or eliminated outright in
March 2020 due to COVID-19 (Choate et al., 2021; Flores & Swennen, 2020). Many students
now have a perceived gap (K-12 and post-secondary) in content understanding due to the sudden
shift to online learning. This gap is especially impactful on mathematics students and pre-service
educators (Choate et al., 2021; Flores & Swennen, 2020; König et al., 2020). Many GTAs
entering graduate mathematics programs during this time were expected to support students in
the gateway mathematics courses with little to no training or professional development. Many
higher education institutions provide some professional development, including one-day
workshops, one-credit courses, observation/shadowing opportunities, mentoring, and
microinstruction, but few provide any extensive, effective teacher training (Di Bendetti et al.,
2022; König et al., 2020; Lang et al., 2020). Even so, many GTAs still are underprepared for
future teaching beyond graduation (Choate et al., 2021; Lang et al., 2020). However, with the
sudden shift to online learning, there needs to be a new emphasis on GTA professional
development and effective teaching training to help engage students affected by the changes in
mathematical instruction.

This poster will present the development and implementation of a comprehensive GTA
effective teacher training and professional development model created to tackle and address the
need for a more conducive and thorough professional development framework for teaching and
assisting mathematics GTAs in the post-Covid era and the sudden shift to online instruction. This
model is divided into three phases and covers a four-term (two-year) graduate program that
incorporates clinical teaching (in-person and online), a mentoring program, micro sessions of
professional development, peer and student feedback reflections. This poster will review the
model with collected GTA insight from the past three years (Fall 2020- Fall 2023) on the impact
of their experiences within this model. Specific highlights will focus on areas GTAs felt most
prepared in content understanding, pedagogical preparedness, and beliefs about entering the
mathematics classroom. The aim is to provide other mentors insight to better support the
educational growth of GTAs and other preservice mathematics teachers.
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Stakeholders’ Perspectives on a 
Coordinated Developmental Mathematics Course

Katherine J. Burke
Temple University

Introduction
From my own experience as a graduate student and 
adjunct instructor of developmental mathematics 
courses (DMCs), I was interested in contributing to the 
field of developmental mathematics (DM) research by 
conducting an exploratory, qualitative 
study documenting the perspective of 
educator stakeholders involved with College Algebra, a 
second-level DMC. The participants, informed by their 
experiences and values as educators, demonstrated a 
strong commitment to their students, expressing hope 
for students’ mathematics future and a desire to 
improve their practice.

Research Questions
1. How do stakeholders describe the purpose, goals, 

and outcomes of College Algebra?
2. What kind of professional development (PD) do 

DMC instructors receive and what PD would they 
like to receive?

Methods
I interviewed five stakeholders involved with College 
Algebra, the math department's second level DMC.
• John (he/him), adjunct instructor
• Diane (she/her), non-tenure track instructor
• Nancy (she/her), course coordinator
• Sarah (she/her), coordinator of developmental math
• Rae (she/her), leadership in math department

For the past several years, the math department has 
undertaken efforts to redesign its DMCs in response to 
the needs of the growing DM student population. 
These efforts were mentioned by nearly all the 
participants and meaningfully shaped our 
conversations.

For more details on my study, 
scan the QR code or email me at 
katherine.j.burke@temple.edu, 

I'd love to continue our conversation!

Results
Participants described the development of students’ 
academic maturity as another necessary purpose of 
this entry level course; they expressed a willingness 
and desire to help their students make the transition 
from high school to college. Overall, the 
participants viewed College Algebra as successfully 
achieving its preparatory purposes, especially since the 
DM redesign. Similarly, though PD had not been a 
requirement for DM instructors in the past, with the 
concerted attention paid to DMCs going forward, 
upper-level stakeholders described the creation of PD 
attuned to the needs of DM instructors; a new grading 
PD session was well-received and appreciated by a 
participant of this study. 

Discussion and Future Work
The participants of this study provided insight into the 
systemic operation of developmental mathematics, as 
well as perceptions of this system and the DM student 
population. With recent DM redesign efforts, the 
participants depicted an increasingly cohesive and 
comprehensive program that works to serve and 
support both its instructors and students. That said, 
the means through which the branches of this DM 
system achieve its aims warrant further study. I am 
interested in pursuing the following lines of inquiry:
• Building on this study with a larger population of 

instructional stakeholders, namely adjunct and 
graduate student instructors

• Repeating this study with first-level DMC educator 
stakeholders

• Investigating how DMC instructors support their 
students in practice

• Understanding how DMC instructors’ enacted 
practices are perceived by students 

Big Ideas

Stakeholders unanimously stated 
the goal of College Algebra as 
preparing students for pre-

calculus and beyond.

The stakeholders valued gaining 
pedagogical content knowledge 

through the experience of 
teaching.
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Tracking Graduate Teaching Assistants’ Responses through Sustained Professional Development  
 

 V. Rani Satyam Franklin Yu Rebecca Segal 
 Virginia Commonwealth Virginia Commonwealth Virginia Commonwealth 
 University University University 
 
 Mary E. Pilgrim Mary Beisiegel ELITE PD Research Group 
 San Diego State University Oregon State University EHR #2013590, 2013563,  
   and 2013422 

Keywords: graduate teaching assistants, professional development, active learning 

There is a strong need to support mathematics graduate teaching assistants (MGTAs) in 
leveraging active learning techniques in ways that are inclusive and equitable (Beisiegel et al., 
2019). Mathematics graduate students make up a large section of the workforce involved in 
teaching introductory mathematics courses at Ph.D. granting universities (Selinski & Milbourne, 
2015). Professional development geared specifically towards MGTAs would provide support and 
guidance (Kuechle, 2022). In this poster we examine: How do MGTAs’ responses about 
teaching with active learning shift through a year of sustained professional development? We 
track three MGTAs’ responses over time and describe their individual trajectories. 

This is part of a large multi-site project focused on designing and implementing a multi-year 
professional development program for MGTAs. We report on data from one of the three sites, a 
public Southeastern university. Participants are graduate students who were teaching assistants 
for mathematics courses and took part in a teaching seminar in the fall and then an Introduction 
to Active Learning course in spring. Each of these professional development structures involved 
readings and activities in and out of class. These included reading Su (2016)’s The Secret 
Mathematical Menu and sessions on facilitating group work, examining the meaning of equity, 
considering majority versus marginalized identities, and reflecting on problematic assumptions 
in teaching. Data consisted of exit tickets and reflections to the aforementioned activities and the 
overall course from graduate students who consented to the research.   

Preliminary analysis of MGTAs’ discourse reveals (1) increased sophistication in articulating 
their thoughts regarding teaching, (2) centering of students, and (3) intellectual need for learning 
more about issues of diversity, equity, and inclusion in teaching. For example, one participant 
wrote, “The course has given me more specific examples of what equity and inclusion look like 
specifically in classroom settings and ideas on how to implement them.” Another participant 
wrote in her exit ticket at the end of the course, “I have learned new ways to be more inclusive” 
and included what she would still like to learn: “More about changing our own biases.” This last 
finding corroborates MGTAs’ readiness for the next phase of the professional development and 
research: to design and implement a more advanced course around issues of equity, where they 
can gain deeper awareness and tools to be prepared for teaching. In the poster, we will provide 
quotes and trajectories for three MGTAs who consistently shared, for how their thoughts shifted 
through the various professional development activities.      
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The Effect of Small Group Interactions on Opportunities for Student Learning 

 
 Lauren Surratt Erika David Parr 
 Rhodes College Rhodes College 

Keywords: Group Work, Student Interaction, Calculus 

Mathematics instructors frequently incorporate group work as a pedagogical tool to enrich 
students’ comprehension and engagement. This approach promotes social interaction and 
encourages student autonomy, potentially leading to deeper student learning (e.g., Amit & Fried, 
2005; Smith & Confrey, 1991). Our research investigates the intricate relationship between 
group dynamics and mathematical learning, specifically focusing on students’ comprehension of 
graphs and distances within the Cartesian coordinate system. Understanding the impact of group 
dynamics on mathematical learning provides insights into how students collaboratively approach 
mathematical concepts, which can significantly influence their individual learning outcomes. 
Accordingly, we center our research around the following question: How do social interactions 
among undergraduate math students completing a graphing activity influence individual 
opportunities for mathematical learning? 

Data for this study was collected from four sections of a Calculus II course at a small, private 
college in 2022 and 2023. The primary data source includes student work and 23 video 
recordings of small groups of 2-3 students working on an “Interpreting Graphs for Calculus 
Activity” during one 50-minute class period. This activity required students to write algebraic 
expressions to represent distances in one- and two-dimensional graphs. Data was also collected 
from students completing a pretest item before the activity, two questions on their third exam, 
and questions on their final exam, all assessing skills relevant to the graphing activity. 

We draw on a preliminary analytical framework (Parr et al., 2023) to develop knowledge-
based questions (e.g., who is being sought for knowledge?) and five questions related to social 
dynamics (e.g., who directs the group’s activity?) to guide our video data analysis. Throughout 
video analysis, the first author created content logs, documenting key elements of students’ 
behavior and interactions within the group work. Additionally, the first author documented 
emerging themes and patterns across group videos. Thus far, analysis has been conducted on ten 
videos, with plans to continue to analyze additional videos and work from the larger dataset.   

Our analysis revealed a diverse spectrum of group interactions among students during the 
completion of the graphing activity. While some students demonstrated a high level of 
collaboration, others adopted a more independent approach, primarily cross-checking their 
answers and communicating only when uncertainties arose. Two prominent themes emerged 
across groups in the interactions, which impacted their responses to the tasks. First, the role of 
pattern recognition emerged, in which students validated solutions through pattern identification 
from previous tasks in the activity, valuing consistency. Second, the extent to which students 
were willing to correct their peers, reflecting variations in students’ perceived comfort levels 
with correcting their group members, emerged as a significant distinction in varied opportunities 
for mathematical learning across groups.  

The diverse group dynamics observed during students’ group completion of the graphing 
activity highlights the need to comprehend the complex interplay between social interactions and 
mathematical learning. As our research progresses, we intend to use position codes to analyze 
selected episodes more closely from the videos that are expected to yield intriguing results.  
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Some challenges of teaching General Education Mathematics Courses (GEMC) motivated us 
to investigate how doing collaborative projects affects undergraduate students’ self-efficacy in 
mathematics. The problems we see in the GEMC include students’ low self-efficacy in 
mathematics, low engagement, and negative attitudes toward mathematics. Many students in 
GEMC described mathematics as a challenging subject area and a mixture of formulas and 
intense calculation, not recognizing the close connection with real-life. The need to improve the 
student success rate in GEMC is pervasive (Aycaster, 2001; Harrington et al., 2016; Thiel et al., 
2008). These issues led us to questions about changing these low and negatives to higher and 
positive. In addition to achieving the specific student learning outcomes, three main goals in our 
teaching include 1) promoting student self-efficacy, 2) boosting student engagement in 
mathematics, and 3) fostering students’ recognition of the relevance of mathematics in the real 
world. Several research studies have presented that project-based approaches worked positively 
for students’ academic achievement and interest (Han et al., 2015; Jacques, 2017; Larmer & 
Mergendoller & Boss, 2015; Lou et al., 2012; Remijan, 2017; Rice & Shannon, 2016; Tseng et 
al., 2013). We added two collaborative projects in Math 1004 (pseudonym), one of the GEMC, 
to get students more engaged and constructing their meaning in learning.       

Five elements were considered in implementing the collaborative projects in Math 1004: 1) 
own team decision, 2) own topic decision, 3) online shared documentation, 4) presentation 
together, and 5) peer evaluation. Students could learn technical competency, communication, 
presentation skills, and mathematical content knowledge throughout this process. Students could 
develop competency in identifying the problems in the real world and how to present the issues 
related to the problem and demonstrate techniques.  

To explore any change in students’ mathematics self-efficacy and recognition of mathematics 
relevance in real life, the pre-and post-surveys were given in the two sections of the Math 1004 
course in the fall of 2021. There were 22 participants in both the pre-survey and the post-survey. 
In the survey forms, students were asked to mark one of the Likert scales: Strong Disagree, 
Disagree, Not Sure, Agree, Strongly Agree.  

In summary, the results of this pre-survey and post-survey presented a positive change in the 
participants’ self-efficacy in applying mathematical knowledge, problem-solving and 
explanation quantitatively, mathematical interpretation, and writing ideas quantitively. The 
findings through these students’ positive changes include the following: 1) The participants 
anticipated the relevance of mathematics in real life through collaborative projects in the GEMC. 
2) The participants showed positive change related to efficacy in mathematics after completing 
the collaborative projects in GEMC.  

It is necessary to understand better how collaborative learning approaches work related to 
students’ efficacy in mathematics. Knowing more about what students value in their experiences 
of learning mathematics through a collaborative learning approach is essential for instructors to 
develop instructional strategies for positive outcomes in learning.  
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MethodIntroduction

Motivation

Results

Discussions

General Education Mathematics (GEM)
• Quantitative Literacy (Association of American 
Colleges and Universities, 2005; Bennett et al, 2008; 
Steen, 2004)
• Students Failing in GEM (Aycaster, 2001; 
Harrington et al., 2016; Thiel et al., 2008)
• Students are less confident in mathematics (Ellis et 
al., 2016; Hall & Ponton, 2005; Hill et al., 2010;  
Sadler & Sonnert, 2017).
• Mathematics is frustrating (Hoyles, 2016; Riegel, 
2021).

Issues Noticed in My Teaching Experiences
• Low self-efficacy in doing mathematics
• Low engagement
• Low interaction
• Difficulty in developing written communication 
summaries after/during their verbal discussion.
• Difficulty making the task align with other elements 
such as context and purposes.

Change in My Teaching 
• Provide more meaningful learning opportunities for 
students to have a more positive orientation towards 
mathematics.
• Collaborative Projects in GEM

Elements Considered in the Implementation of 
Collaborative Projects
• Students’ own team decision
• Students’ own topic decision
• Online shared documentation to progress-check
• Presentation together
• Peer evaluation 

Ontological Assumptions
• “Realities are multiple, constructed, and holistic” 
(Lincoln & Guba, 1985, p. 35).
• Each student's experience constructs their reality, 
which is related to their learning.
• “Knowledge is constructed by learners as they 
attempt to make sense of their experiences” (Driscoll, 
2000, p. 376).
Research Question
• How do students change in efficacy in mathematics 

through collaborative projects in the General 
Education Mathematics course?

Data Collection
• We added two collaborative projects in Math 1004 

(pseudonym), one of the GMC.
• Pre-survey and post-survey were given in two 

sections of the Math 1004 courses in the fall of 
2001.

• There were 22 participants in both the pre-survey 
and the post survey.

• In the Survey forms, students were asked to mark 
one of the Likert scales: Strongly Disagree, 
Disagree, Not Sure, Agree, Strongly Agree.

Figure 1: Students' self-efficacy change in applying mathematical 
knowledge in pre-survey and post-survey.

Figure 2: Students' self-efficacy change in problem-solving and 
explanation mathematically.

Figure 3: Students’ self-efficacy changes in interpretation after 
mathematical problem-solving.

Figure 4: Students' self-efficacy changes in writing ideas 
mathematically.

The participants showed positive change related to 
efficacy in mathematics after completing the 
collaborative projects in GEM. 

• The participants anticipated the relevance of 
mathematics in real life through collaborative projects 
in the GEM.
• The students interacted more actively and 
constructively during class and outside class.

• Knowing more about what students value in their 
experiences of learning mathematics through a 
collaborative learning approach is essential for 
instructors to develop instructional strategies for 
positive outcomes in learning. 
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Project Adelante: An Anti-deficit Professional Development Program for University
Mathematics Instructors

Aditya P. Adiredja Marta Civil Becca Jarnutowski
The University of Arizona The University of Arizona The University of Arizona

Keywords: antideficit perspective, professional development, community engagement

In this report, we share the design of a year-long professional development program for
university math instructors that we developed and refined as the Anti-deficit Learning and
Teaching Project (Adelante). The program is a community learning project wherein minoritized
students, STEM peer mentors, and math instructors (graduate students and instructional faculty)
build relationships as they share their knowledge and experiences with race, gender, and
mathematics. Culturally relevant pedagogy (Ladson-Billing, 1995) frames the goals of the
community learning in terms of deep mathematical knowledge, cultural knowledge, and
sociopolitical consciousness. The program activities are inspired by the Funds of Knowledge for
Teaching project (Moll et al., 1992) wherein teachers are offered opportunities to build
meaningful relationships with students and their communities.

An anti-deficit perspective (Adiredja et al., 2020) guides the learning experience for all
participants. Not only are minoritized students assumed to have cultural and intellectual assets
for learning, but the project also aims to dismantle deficit master narratives (Solórzano & Yosso,
2002) about these students and their capacity to learn. Instructors worked on explicitly
challenging deficit narratives about their students as they engaged in the program’s activities.
The project also takes an anti-deficit approach to instructor development, focusing on their
individual growth and agency, joy in teaching, and mental health. We also position ourselves as
learners to the experience and wisdom of the staff and students at the university cultural centers.

The core activities for the PD engage teachers to: (a) participate in five PD meetings on
anti-deficit teaching and Inquiry Based Learning (IBL) teaching method; (b) lead a five-day
math summer bridge workshop in Pre-Calculus, Calculus I, II, Vector Calculus, or Linear
Algebra immediately following the meetings; (c) participate in critical conversations about race
and gender in STEM with students at the cultural centers; (d) conduct a semi-structure interview
with one of their students from the summer workshop about their STEM experience; and (e)
participate in group reflection meetings debriefing their experience in the activities.

Preliminary analysis of two of the three cohorts of participants found that most instructors
developed a more humanizing approach to their teaching and their students (Gutiérrez, 2018).
IBL helped instructors to explicitly challenge deficit narratives about minoritized students in the
classroom, wherein most observed their students engaging in deep mathematical reasoning.
Interviewing one of their students also shifted deficit narratives that developed in the classroom
for some instructors. The workshop served as a space to try out previously learned teaching ideas
(student centered teaching) without constraints from curriculum and assessments. Doing so
reinvigorated many instructors’ passion for teaching, especially those who are more experienced.

Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant

No. DUE-2021313. Any opinions, findings, and conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

26th Annual Conference on Research in Undergraduate Mathematics Education 1349



References
Adiredja, A. P., Bélanger-Rioux, R., & Zandieh, M. (2020). Everyday examples from students:

An anti-deficit approach in the classroom. PRIMUS: Problems, Resources, and Issues in
Mathematics Undergraduate Studies, 30(5), 520-538.
https://doi.org/10.1080/10511970.2019.1608609

Gutiérrez, R. (2018). The need to rehumanize mathematics. In I. M. Goffney & R. Gutiérrez
(Eds.), Rehumanizing mathematics for Black, Indigenous, and Latinx students. Annual
Perspectives in Mathematics Education. Reston, VA: National Council of Teachers of
Mathematics, Inc.

Ladson-Billings, G. (1995). Toward a Theory of Culturally Relevant Pedagogy. American
Educational Research Journal, 32(3), 465–491. https://doi.org/10.2307/1163320

Moll, L. C., Amanti, C., Neff, D., & González, N. (1992). Funds of knowledge for teaching:
Using a qualitative approach to connect homes and classrooms. Theory into Practice, 21(2),
132-141. https://doi.org/10.1080/00405849209543534

Solórzano, D.G., & Yosso, T. J. (2002). Critical race methodology: Counter-storytelling as an
analytic framework for education research. Qualitative Inquiry, 8(23), 23-44.
https://doi.org/10.1177/107780040200800103

26th Annual Conference on Research in Undergraduate Mathematics Education 1350



From Conflict to Unity: Leveraging Incoherence in Student Thinking to Improve Understanding 
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Many methodological approaches, such as clinical interviews (Clement, 2000) and teaching 
experiments (Steffe & Thompson, 2000) are well-equipped for investigating the schemes and 
constructed knowledge of individuals (Glasersfeld, 1988). Sellers (2020) extended the teaching 
experiment to the exploratory teaching interview for when the researcher aims to influence 
student thinking but is not testing a pre-determined hypothesis. Numerous researchers have 
tasked subjects with reading proofs to probe their thinking (e.g., Dawkins & Zazkis, 2021). I 
used proof-texts during a teaching experiment which modeled a subject’s thinking. This 
approach was profoundly effective in revealing inconsistencies to the subject in her thinking. 
 

Incoherence as a Basis for Task Design 
 The lone participant in the study, Rachel, sat for a series of six interviews designed to probe 
her understanding of the chain rule of differentiation and its underlying ideas, such as continuity, 
differentiability, and function composition. On several occasions, she evidenced conceptions 
relevant to the tasks which I conjectured would result in her acknowledging a conflict if 
presented properly. For example, during the first interview, Rachel stated that a function ݂ was 
continuous at ܽ if ܽ was in the domain of ݂. Later in the interview, she said that ݂ was 
continuous at ܽ if lim

௫՜
 existed, regardless of whether ܽ was in the domain of ݂. Though she (ݔ)݂

did not initially indicate that she found her thinking inconsistent, presenting her with proof-texts 
which imitated her thinking was effective in helping her recognize conflicts in her thinking and 
the need to reconcile them (Figure 1). 

 
Figure 1: Graph of Function and Accompanying Proof-Texts 

 
Discussion and Future Steps 

 The interventions in the teaching experiment were designed only to focus on sources of 
incoherence (Thompson, 2008). As such, my only desired learning outcome for the experiment 
was to perturb Rachel’s schemes (Glasersfeld, 1988) and observe how she assimilated the new 
stimuli. Resolving conflicts allowed Rachel to cultivate a much deeper understanding of the 
target concepts. As such, the methodological combination of exploratory teaching interviews 
(Sellers, 2020) and proof-texts which imitate the subject’s thinking warrants further 
implementation and investigation. 
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Theoretical Backing

Glossary of New Constructs

Discussion and Next Steps

Illustrative Episode from Study

Interview TasksArgument-Mirroring Proofs, Illustrated

Suppose P.
Since

Therefore, Q.

Suppose P.
Since

Therefore, Q.

Suppose P.
Since

Therefore, Q.

Suppose P.
Since

Therefore, Q.Overview of Case Study

• Radical Constructivism (Glasersfeld, 1988)
• Scheme – a discrete unit of knowledge possessed 

by an individual
• Perturbation – when expectation associated with a 

scheme is different from what occurs
• Accommodation – action taken by an individual to 

account for a perturbation
• E.g., adjustment of scope of schemes, rejection 

of schemes, rejecting perturbation as anomaly
• Coherence – the extent to which a thinker’s 

schemes are consistent with one another 
(Thompson, 2008).

• Extensions to tenets of radical constructivism
• Disjoint activated schemes – schemes evoked by 

individual in response to specific stimuli
• “Disjoint” refers to notion that individual’s 

schemes may not be related or that individual 
may not recognize relationships between them

• Schemes targeted for conflict – disjoint activated 
schemes which an outside observer conjectures 
represent lack of coherence in subject’s thinking

• Perceived conflict – Explicit recognition by the 
subject that their thinking was indeed incoherent

• Argument-Mirroring Proofs – texts which use 
subject’s previously exhibited thinking to form and 
justify a claim, particularly in effort to perturb their 
schemes

• Participant was an undergraduate student of 
mathematics education

• Teaching experiment (Steffe & Thompson, 2000)
• Consisted of clinical interviews (Clement, 2000) 

and exploratory teaching interviews (Sellers, 2020)
• Task-based interviews focused on continuity, 

differentiability, and the derivative of composite 
functions

• Clinical interviews
• Consider where 𝑓 𝑥 = 𝑘 − 1 − 𝑥ଶ is continuous 

(resp. differentiable) under various conditions
• Purpose is to model subject’s understanding of the 

mathematical ideas relevant to the task and target 
schemes for conflict

• Exploratory teaching interviews
• Confirm that researcher’s model is representative 

of subject’s thinking
• Present subject with argument-mirroring proofs 

in efforts to perturb their schemes

• Schemes Targeted for Conflict from First Interview

• Argument-Mirroring Proofs from Second Interview

• Schemes Targeted for Conflict after Accommodation

• Key Findings
• Argument-mirroring proofs were unanimously 

effective in revealing incoherence to subject
• Subject’s thinking became more coherent in 

response to argument-mirroring proofs
• Future Research

• Conduct similar investigations with students of 
various mathematical backgrounds

• Explore other mathematical content areas

1) Characterize subject’s schemes
• Conduct task-based clinical interviews 

to gather evidence about how student 
understands mathematical ideas at 
hand

2) Target schemes for conflict
• Code clinical interview data to identify 

segments of subject’s thinking which 
represent lack of coherence or 
internal inconsistency

3) Write argument-mirroring proofs
• Construct proof-like texts for use in 

exploratory teaching interview which 
model the thinking indicated by the student 
in the schemes targeted for conflict.

4) Present argument-mirroring proofs
• In an exploratory teaching interview, 

task the subject with examining the 
validity of the claims and reasoning in 
the proof-texts.

5) Characterize subject’s schemes
• Code exploratory teaching interview 

data to gather evidence about how 
student understanding of 
mathematical ideas has changed.
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Student Perceptions on Collaborative Class Projects in Gateway College Calculus Courses

Melo-Jean Yap Emily Braley
Johns Hopkins University Johns Hopkins University

Keywords: Gateway Calculus, Group work, STEM writing, Real-world applications, peers

Working in small groups can be a daunting activity for students, yet also provide an
opportunity to promote peer interactions and build an inclusive community (Tanner, 2013). In
this focus group study, we present how students (n = 43) perceive collaborative class projects in
Calculus I at Johns Hopkins University, a predominantly-White, “very high research” university
in an urban metropolitan area in the Northeastern United States. 51.16% identified as women and
48.84% as men. The most represented majors were Computer Science (23.26%), Mechanical
Engineering (16.28%), and Pre-Major (16.28%).

Prior to the focus group, participants filled out a questionnaire that gathered their
demographic information (major, gender identity, racial/ethnic identities), first-generation
student status, limited-income status, etc.). The questionnaire also asked students to rank these
course assessments from most helpful to least helpful to their learning: homework, quizzes,
group projects, final portfolio, midterm, and final exam. While homework ranked as the most
helpful and tests (final and midterm) as the least helpful, group projects have the highest
variability in helpfulness. Hence, in the focus group, Dr. Yap explored this trend by eliciting
elaboration on students’ group work experience. Responses were analyzed by qualitative coding
of themes (Saldana, 2021) that emerged from the focus groups.

Findings show that participants who highly favored group projects saw these collaborative
activities as opportunities: (1) to meet students who can be their friends outside of class, (2) to
practice Calculus in a different way, such as being a teacher to a groupmate to explain a concept,
and (3) to apply Calculus in practical ways. Meanwhile, other participants disliked group
projects because of (1) group dynamics, (2) logistical limitations, and (3) resistance to new ways
of learning Math. Examples of group dynamics include dealing with absent or uncooperative
groupmates and feeling left out if groupmates are either too far ahead or behind in understanding
the class topic. Logistical limitations consist of receiving limited instructions about the group
project, including rubrics not being given in advance; however, instructions and rubrics were
posted in the syllabus and learning management system. Finally, students complained that the
group work was “busy work” forcing them to work with others, was not directly helpful in
exams, was too demanding in writing in non-technical ways, was unclear how it was connected
to the lessons, and too practical and connected to the real world.

These findings inform the next iteration of Calculus I group projects at Johns Hopkins
University. The curriculum team will improve collaborative projects by (1) providing multiple
reminders of the already existing pointed instructions and rubrics in multiple modalities, (2)
providing best practices in group communication, in regards to norms for participation, work
distribution, etc., and (3) providing clear connection to lessons for genuine buy-in from resistant
students.

In conclusion, collaborative group projects provide opportunities for improving peer social
cohesion and practical knowledge of Calculus but need targeted improvements in
implementation and genuine buy-in from potentially resistant students.
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STEM Course Taking Patterns of Transferred Students from Tribal College

* University of Montana, ** Chief Dull Knife College

Authors: Shurong Li*, Jeff Hooker**, Gary Ramsey**,  Aaron Thomas*, Ke Wu*

The purpose of this study is to examine the academic outcomes and 
performance patterns of students transferring from a tribal college to four-year 
institutions in the Montana University System(MUS).

Ethnicity Frequency %

Hispanic 4 1.6

Indian 208 83.9

Missing 4 1.6

Other 1 .4

White 31 12.5

Total 248 100.0

Data source: Merged data between a tribal college and OCHE for 2001 to 2019 

Data Variables Overview: 
• Transferred student counts by year and term
• Transferred student counts by year and institution
• Student demographic: Ethnicity and Gender
• Transfer destinations within MUS
• Major distribution across institutions
• Enrollment duration in terms of semesters
• Initial status at 4-year institutions
• First-term GPA
• Credit hours completed per term
• Graduation after 4-year MUS enrollment
• STEM courses of identified successful students

-----The-----
QuantCrit

Framework
Core Principles

Numbers
Are Not
Neutral 

Constructed  
Categories

Data Needs Voice

Numbers 
for 

Justice

Centrality 
of Racism

Gillborn, D., Warmington, P., & Demack, S. (2018). QuantCrit: Education, policy,‘Big Data’and principles 
for a critical race theory of statistics. Race ethnicity and education, 21(2), 158-179.

Gender Frequency %

Female 165 66.5

Male 83 33.5

Total 248 100

Transferred Students General Demographics

Acknowledgement: 
• This material is based upon work supported by the National Science Foundation under Grant No.1937225 and No. 1361522.
• The University of Montana acknowledges that we are in the aboriginal territories of the Salish and Kalispell people. Today, we honor the path they have always shown us in caring for this place for the generations to come. 
• Chief Dull Knife College acknowledges that we are located on the traditional territory of the Northern Cheyenne people. We honor their deep connection to this land and recognize the importance of their culture, history, and traditions. We are committed to working in partnership 

with the Northern Cheyenne people to create a future that is respectful of their sovereignty and self-determination.
• This work was  supported by the Montana Office of the Commissioner of Higher Education (OCHE) and the University of Montana's Department of Mathematical Sciences Summer Research Graduate Scholarship Program. Our sincere thanks for their essential support and resources.

More than 56% of Students Achieved 
Good Standing in the First Term.

Patterns of Successful Students:

• "Success" is identified as tribal college students who transferred to a 4-
year public institution and earned a STEM degree.

• A majority of these successful Native American students are female.
• Successful transfer students often return to CDKC for summer science 

courses.

Discussion:
• Western success measures, such as degree completion times, may not align 

with tribal college experiences.
• The role of tribal colleges extends beyond transfer, supporting students 

through their 4-year institution journey.
• The notable success of Native women in STEM highlights the need to 

explore the participation of other Native demographics.
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Postsecondary Mathematics Teaching Methods and Practices: A National Study

Molly C. Bowen
Baylor University

Introduction
Many students find themselves struggling in college-level coursework despite previous

successful secondary academic experiences and acceptable college entrance exam scores
(Complete College America, 2015; Woods et al., 2018). There have been few studies that
specifically address college mathematics faculty knowledge and utilization of best teaching
methods and practices and their effectiveness (Benken et al., 2015; Cox, 2007). Recent research
has shown that teachers have the greatest impact on student achievement above any other factor
of schooling (Chemosit & Rugutt, 2020; Schriver & Harr Kulynych, 2021). Therefore, the
researcher explored teaching methods and practices utilized by faculty in the U.S.

Literature Review
Many faculty heavily rely on lecturing and/or direct instruction for most to all of the course

and may not know about other teaching methods and/or practices (Blair et al., 2018;
Mathematical Association of America, 2017; Mesa et al., 2014; Ngo, 2020; Oleson & Hora,
2014). Unlike PK-12 teachers, faculty are not required to obtain teaching certifications, licenses,
or participate in internships or mentorships; they are only required to have an advanced degree
(Blair et al., 2018; Chiu & Corrigan, 2019; Gilmore et al., 2014; U.S. Bureau of Labor Statistics,
2016). Inexperience and lack of support may contribute to the heavy use of lecture and/or direct
instruction (Fong & Zientek, 2019; Purnomo et al., 2018).

Methodology
This sequential explanatory mixed methods study took place in postsecondary institutions in

the U.S. Cluster-random sampling was used to select institutions. Mathematics department chairs
were sent a survey containing the TPI (Teaching Practices Inventory), ATI (Approaches to
Teaching Inventory), and demographic questions to forward to faculty (full-time, part-time,
tenure-track, and non-tenure track) (Trigwell & Prosser, 2004; Wieman & Gilbert, 2014). It was
hypothesized that demographic groups would reveal statistically significant differences in TPI
scores, ATI classifications (information-transmission/teacher-focused (ITTF) and conceptual
change/student-focused (CCSF)), and between the TPI and ATI. The research questions (RQ):
(1) Are there statistically significant differences in the TPI score performance between faculty
demographic groups, methods, or practices? (2) What similarities and differences can be found in
the ATI classification between faculty demographic groups, methods, or practices?

Results
There were 113 participants from 37 states. For the first RQ, the significant demographic

group was membership. The testing revealed that faculty who were members were more likely to
utilize more methods and practices that focus on their students. For the second RQ, demographic
groups did not reveal significant findings, but individual methods and practices were significant.
Faculty who reported utilizing the inquiry, problem-based learning and cooperative learning
teaching methods were more likely to be classified by the ATI as CCSF. Also, faculty who
utilized more than three methods were more likely to be classified as CCSF. Qualitative and
mixed method results are still in progress.
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Postsecondary Mathematics Teaching Methods and Practices: A National Study
Molly C. Bowen, Ph.D. Candidate
RUME Conference, Omaha, NE, Feb. 22-24

Background
Many students find themselves struggling in 
college-level mathematics courses (Complete 
College America, 2017; Woods et al., 2018). 

• Teachers have the greatest impact on student 
achievement (Chemosit & Rugutt, 2020; Schriver & 
Harr Kulynych, 2021). 

• There have been few studies that specifically 
address college mathematics faculty knowledge 
(Benken et al., 2015; Cox, 2007). 

Therefore, the researcher explored 
teaching methods and practices utilized by 
faculty in the U.S. 

Methods

This study was conducted using sequential 
explanatory mixed methods. 

• Quantitative Participant Selection Process:

• Items in Survey to Participants:

Results

Discussion

Contact Information

Institution Selection
Chose institution by 
type (2-year, 4-year, 

university) and 
geographic location

Targeted 
Participants

Department chairs 
were notified and 
forwarded the survey 
to the participants

TPI 
Results in a score for 

practices (Wieman & Gilbert, 2014)

ATI
Results in a classification of 
either conceptual-change/student-

focused (CCSF) or information 
transfer/teacher-focused (ITTF)

(Trigwell & Prosser, 2005)

Teaching methods are 
defined by Kilbane and 

Milman (2014)
Teaching practices are 
defined by NCTM (2014). 

Quantitative Research Questions

Most Frequent Methods and Practices

• Direct Method: n=85 (75.2%)
• Lecture Method: n=45 (39.8%)
• Problem-Based Learning Method: n=35 (31.0%)
• Implementing Tasks Practice: n=65 (57.5%)
• Mathematical Representations and Connections 

Practice: n=56 (49.6%)
• Productive Struggle Practice: n=52 (46.0%) 

Chi-squared testing revealed that these variables 
were significant for the ATI classifications. Phi 
coefficients were calculated to determine an 

association, which is similar to a regression score.

• Inquiry, Problem-based learning, 
and Cooperative learning methods

• Use of 3 or more teaching 
methods

Positive Association 
with CCSF (phi > 

0.2)

• Lecture
• Procedural Knowledge from 

Conceptual Understanding

Positive Association 
with ITTF (phi > 

0.2)

• Setting Goals
Negligible 

Association (0< phi 
< 0.2)

Faculty who were student-focused were 
more likely to utilize more practices 
and methods in their classrooms than 

those who were teacher-focused. 
Membership in professional organizations 

also correlated with the use of more 
practices.

Molly C. Bowen
Molly_Bowen1@baylor.edu

33.7

40.6
37.4

33.0

38.2

32.5

37.3

26.9

ITTF CCSF Member Non-Member 3 or more 2 or less 3 or more 2 or less

ATI Classification Membership Methods Count Practices Count

Significant TPI Score Differences

• Faculty who were members of a professional 
organization had statistically significantly higher TPI 
scores, which means more practices are being utilized 
in their classrooms.

• Faculty who reported utilizing the inquiry, problem-
based learning, and cooperative learning teaching 
methods or a combination of multiple methods were 
more likely to be classified as CCSF (conceptual-
change/student-focused) than faculty using other 
methods.

• Qualitative themes emerged and include faculty 
experiences as students, professional development, 
teaching experience, and personal connections.

• Integration of results is in progress.

CCSF Classification Significant Results
Group Chi-Squared 

Value Probability
Lecture (M) 4.36 0.0368
Inquiry (M) 5.39 0.0203

Problem-Based Learning (M) 5.07 0.0243
Cooperative Learning (M) 5.84 0.0157

Goals (P) 4.06 0.0440
Build Procedural Fluency from 
Conceptual Understanding (P) 4.59 0.0322

Method Count (3 or more) 9.03 0.0027
Note: M=Method, P=Practice

ITTF Classification Significant Results
Group Chi-Squared 

Value Probability
Lecture (M) 8.27 0.0040
Inquiry (M) 8.55 0.0035

Problem-Based Learning 
(M) 7.56 0.0060

Cooperative Learning (M) 8.41 0.0037
Goals (P) 4.42 0.0354

Methods Count (3 or more) 11.01 0.0009
Note: M=Method, P=Practice

Scan me for the 
full paper!

1. Are there statistically significant 
differences in the TPI score performance 
between faculty demographic groups, 
methods, or practices? 

2. What similarities and differences exist 
in the ATI classifications Conceptual 
Change/Student-Focused (CCSF) or 
Information Transfer/Teacher-Focused 
(ITTF) between faculty demographic 
groups, methods, or practices?
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Engaging Students as Partners in Critically-Oriented Reform of Postsecondary Mathematics 
 

 Leilani Pai Margaret Ann Bolick Rachel Funk 
 Denison University Clemson University University of Nebraska 
 
 Matthew Voigt Brittany Rader Simone Sisneros-Thiry 
 Clemson University Midland University CSU East Bay 

 
Megan Smith 
CSU East Bay 

Keywords: Critical reforms, Students as Partners, Student voice, Power dynamics 

A growing body of research points to the transformative potential of engaging students as 
partners with faculty to humanize math education (Cook-Sather et al., 2023). Successful 
partnerships follow a principle of reciprocity, in which students and faculty are both positioned 
as having expertise which can be leveraged to improve education (Mercer-Mapstone et al., 
2017). A larger research study was developed to investigate how the use of Networked 
Improvement Communities (NIC) composed of key mathematics stakeholders could work to 
address issues of Diversity, Equity, and Inclusion (DEI) within introductory mathematics courses 
through critically transformative participatory action research. A unique single case-study 
emerged from a NIC that recruited students in addition to the faculty as NIC members. We 
address the following research questions: (a) In what ways was student voice prioritized in the 
NIC? (b) How does the integration of students impact the power dynamics within the NIC? 

This single case study (Yin, 2009) draws from data collected as part of the ACT UP Math 
project which is examining the formation of NICs addressing inequities in introductory math 
courses. Alpha University’s NIC presented a unique case study because of their intentional 
recruitment of students. Out of the eight NIC members, three are students. The NIC met every 
other week for two hours from January-May 2023 and created two action plans informed by 
data: (1) dismantling the placement system for introductory mathematics courses and (2) creating 
programming that connects students to the uses of mathematics. 

We conducted a thematic analysis of structured observational field notes of the NIC 
meetings, semi-structured interviews of NIC members conducted in May 2023, and four 
reflexive journal entries completed by each NIC member. This process generated cross-cutting 
themes relevant to the NIC’s inclusion of student voice and perceptions of power. These themes 
are: (1) the intentions of the NIC to prioritize student voice, (2) the inclusion of students as 
partners (or not) in NIC activities, and (3) reflections on power dynamics by NIC members. 

Findings from this study suggest that although the structure of the NIC was intended to uplift 
student voices and create a space where students and faculty were equal partners, outside power 
structures prevented students from fully viewing themselves as partners with faculty members. 
For example, NIC student members described how having colleagues in the NIC who were also 
course instructors outside of the NIC influenced the ways in which they interacted with each 
other. However, the NIC has made strides mitigating power dynamics over the semester and 
demonstrating the value of student voice. 

This research is funded in part by a grant from the National Science Foundation 
(EDU  2201486). All findings and opinions are those of the researchers, not necessarily those of 
the funding agency. 
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Exploring Undergraduate Students’ Experiences with Standards-Based Grading 
 
 Russ F. deForest Debbie Gaydos Neil J. Hatfield 
Pennsylvania State University Pennsylvania State University Pennsylvania State University 
 Eric Hudson Joseph D. Houck Louis Leblond 
Pennsylvania State University Pennsylvania State University Pennsylvania State University 
 Jennelle Malcos Michael Steward 
 Pennsylvania State University Pennsylvania State University 

Keywords: Standards-Based Grading, Specifications Grading, Student Perceptions, Grounded 
Theory 

Specifications or Standards-based grading (SBG) is a set of grading approaches that focus on 
evaluating students’ proficiency of learning objectives (Campbell et al., 2020). Over the 
academic year of 2022-2023, seven Pennsylvania State University faculty from the departments 
of chemistry, math, physics, and statistics, have implemented SBG in a dozen classes, ranging 
from introductory to upper division and small (<25 students) to large (~500 students).  We 
present preliminary results of an investigation on students’ experience with SBG in these 
settings. There have been only a few such investigations in higher education (e.g., see 
Buckmiller et al., 2017). 

 
Our retrospective qualitative study includes student interviews and focus groups. We selected 

participants from initial survey responses paying attention to diversity among demographics, 
courses, and expressed opinions about SBG. At the time of this submission, 186 students have 
completed the survey, and we have conducted interviews with seven students and two focus 
groups covering seven additional students. While most of the students’ comments in the survey 
describe positive experiences with SBG, we made sure to interview students who described 
negative or particularly unusual experiences. All authors participate in constant comparative 
coding, focused coding, and memo writing (Olson et al., 2016).  

 
As we work towards building a grounded theory of students’ experiences with SBG, we have 

identified several preliminary emergent themes. First, many participants feel that SBG leads to 
deeper learning compared to traditional grading system. Second, students often highlighted the 
flexibility of SBG systems, particularly the common retake policy on proficiency checks or 
quizzes. Some students discussed using this flexibility to have more control over their learning, 
setting up the pace of their study, increasing motivation and reducing stress. One student 
mentioned difficulties that arose from such flexibility as they had to manage procrastination and 
work-avoidance behaviors.  One focus group discussed the stress they felt related to the slow 
pace of progress and/or exhaustion from the large number of quizzes. Almost all participants 
reported some level of initial confusion with how SBG worked. Finally, some participants 
expressed mistrust towards the attribution of grades in traditional grading systems. These 
students conveyed that SBG grades felt more reflective of their actual understanding of the 
material.  

Acknowledgments 
We thank the Penn State Science Education Collaboratory for the teaching innovation award.  
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Non-Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

Students perceive that the control 

and flexibility of standards-based 

grading increases motivation and 

reduces stress but some report 

procrastination and test-reset 

behaviors. 

Specifications or Standards-based grading 
(SBG) is a set of grading approaches that 
focus on evaluating students’ proficiency 
of learning objectives.  Often graded on 
pass/fail or proficient/progressing with 
multiple opportunities for retakes.

Research Question: What are the 
experiences of undergraduate students in 
science and mathematics courses that 
use Standards-Based/Specifications 
Grading?

METHODS
1. Retrospective Survey data (91 
respondents). 
2. Individual and focus group interviews 
(24 students to date).
3. Focused coding, memos. 
4. Work on the grounded theory in 
progress.

Early Findings

SBG = Standards-Based grading
TG = Traditional Grading

Grades as source of motivation
o Trade-offs between minimizing 

effort and maximizing grade
o Striving to reach mastery in SBG, 

not just satisfactory
o Low grades are not damning 

(SBG)
o SBG grades only increase; TG is 

opposite

Understanding material/content
o Test/reset phenomenon, 

chunking
§ Felt in both grading systems
§ TG incentivizes short-term 
learning
§ Some students saw chunking 
as a positive that helped them 
learn

o SBG provided deeper learning
§ Better at recall in SBG

Flexibility of SBG
o Both positive and negative
o Student controls learning in SBG
§ Can lead to procrastination
§ Can lower stress

Stress of grading systems (both)
o Many items tested together TG
o Initial unfamiliarity with SBG

Authors
Russ deForest,  Debbie Gaydos,
Neil Hatfield, Joe Houck, Eric Hudson, 
Louis Leblond, Jennelle Malcos,  
Michael Steward

Building a  grounded theory of 
Students’ Experiences with 
Standards-Based Grading.

The Pennsylvania State University

Courses N Main Assessment
Intro Calculus 238 Learning Target Quizzes

with retakes
Statistics 132 Homework/Projects

Chemistry 739 Learning Target Quizzes
with retakes

Physics 90 Learning Target Quizzes
with retakes

You really had full 
control over what 
grade you were 
going to get.

[…] and just gather 
knowledge at your 
own pace, you know, 
at your own time, and 
stress-free.

You were able to 
just breathe and 
really understand 
the work that you 
were doing 

This Research Is
Proficient Progressing ✅68%

7%

21%
4%

Experiences of SBG 

Positive
Negative
Nuanced
Missing

We thank the Eberly 
College of Science 
for a teaching 
innovation grant.
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Exploring Summer Bridge Program Participants’ Sense of Belonging in Mathematics

Skylyn Irby
The University of Alabama

Keywords: sense of belonging; identity; self-efficacy; diversity; bridge programs

Students often leave STEM majors after taking math courses within the first two years of
college (e.g., Chen et al., 2013), and historically underrepresented college students are less likely
to persist in STEM areas compared to their peers (e.g., Alkhasawneh & Hobson, 2011). A sense
of belonging in math may improve students’ desire to persist in STEM (Good et al. 2012), so
programs that support the development of a math sense of belonging could be a critical
component of STEM retention. Summer bridge programs contribute to retention efforts of
underrepresented STEM students through diverse representation, community, mentorship, and
tutoring. However, little is known about how these programs influence math sense of belonging.
This project explores the development of participants' sense of belonging, confidence, and
identity in math while involved in a summer bridge program. In particular, I ask: (1) How does
the math sense of belonging of bridge program participants change or differ throughout their
participation in a bridge program?, and (2) What aspects of bridge programs do participants
value and why? How do these valued aspects relate to their sense of belonging in math?

Theoretical Framework
This work is grounded in the academic and social integration components of Tinto’s

Conceptual Schema for Dropout from College (1975), which identifies academic and social
systems as contributors to one’s dropout decision. This theoretical framework has been widely
adapted for researching retention in STEM.

Methods
Data were collected using surveys and semi-structured interviews. The survey instrument

included the 30-item Good et al. (2012) sense of belonging in math scale, the six-item Lubienski
et al. (2021) math confidence scale, and short answer questions about students’ identity and
sense of belonging in math. A coding scheme for belonging explanations, adapted from Rainey
et al. (2018), was used for initial content analysis and coding reasons such as math identity,
interpersonal relationships, personal interest, or competence. I used qualitative analysis methods
and descriptive statistics to produce results.

Results and Conclusions
Participants’ feelings of membership and acceptance as measured by the Good et al. (2012)

sense of belonging in mathematics scale, declined between the start and end of the summer
bridge program. However, this decrease may be attributed to the intensive nature of summer
courses. Despite these challenges, students valued the mentoring and program components.

Interviews with one participant revealed confidence in their sense of belonging in math with
the reasoning being personal interest and competence, often feeling reassured by peers and
mentors in the program. Initial findings indicate a decline in students' overall sense of belonging
in math after their first college summer math course. Yet, the positive experiences with the
bridge program suggest that continued participation may lead to an improvement in their sense of
belonging over time.
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1. How does the math sense of belonging of bridge program participants 
change or differ throughout their participation in a bridge program?

2. What aspects of bridge programs do participants value and why? How do 
these valued aspects relate to their sense of belonging in math? 
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STEM retention programs are dynamic environments for integrating 
academic and social systems. This work is grounded in the academic and 
social integration components of Tinto’s Conceptual Schema for Dropout 
from College (1975), which identifies academic and social systems as 
contributors to one’s dropout decision. This theoretical framework has been 
widely adapted for researching retention in STEM.

METHODS

SITE	&	SAMPLE
• Large, graduate degree-granting, research-intensive PWI, Southeastern part 

of the United States
• Louis Stokes Alliance for Minority Participation (LSAMP)

• 4-week Summer Bridge Program
• 16 Underrepresented incoming freshmen in STEM

“I view myself as an 
asset to the Math 

Community”
“I really love math.”

“I'm really 
passionate about 

things that I learned 
in engineering, and 

mathematics.”

“I do enjoy math. 
And that is 

something that I'm 
kind of good at, you 

know.”

Belongs

Initial findings indicate a decline 
in underrepresented STEM 
bridge program participants’ 
overall sense of belonging in 
math after their first college 
summer math course. 

”…making sure that I had that foundation…, really 
contributed to my sense of belonging, because when I 
would get the problems, it would make me feel like, oh, 
wow, I can really do the math. You know, this is 
something I enjoy. It's something I love.”

“…people would tell me, oh the way that she 
thought about that and went to explain that, it 

sounds like you're an engineer, and I'm really 
passionate about things that I learned in 

engineering and mathematics. So overall, it was 
just a combination of things that I'm passionate 

about, things that I enjoy doing.”

“And I wanted to continue in something during my 
undergraduate that has something to do with math. 
And engineering was the one that appeals most to 
me because the careers that it will lead to.”

Coding Scheme for Belonging Explanations (Rainey et al., 2018)
Code Reason for belonging Reason for not belonging

Interpersonal relationships Feels socially connected with peers 
and/or faculty members. May share 
common interest with peers.

Lacks a social connection with peers. 
Feels socially different, does not fit in.

Math Identity Math is a part of their identity as a 
person.

Lacks a personal connection to the 
major or material

Personal Interest Expresses personal interest in course 
subject or major.

Explicit lack of interest. May find the 
material boring or unrelated to their 
reason for choosing their major.

Competence Feels like they understand major-
related material or receives good 
grades in major-related courses.

Feels like they do not understand 
major-related material well or 
receives poor grades in major-related 
courses.

• Participants’ feelings of membership and acceptance as measured by the 
Good et al. (2012) sense of belonging in mathematics scale, declined 
between the start and end of the summer bridge program. 

• Interviews with one participant revealed confidence in their sense of 
belonging in math with the reasoning being personal interest and 
competence, often feeling reassured by peers and mentors in the program.

• Initial findings indicate a decline in students' overall sense of belonging in 
math after their first college summer math course. Yet, positive experiences 
with the bridge program suggest that continued participation in LSAMP may 
lead to an improvement in their sense of belonging over time.

RESULTS
Excerpts of a Student’s Responses

“…my love for that logical and straightforward 
process really contributed to my belonging in math.”

Membership

I feel that I 
belong to the 

math 
community. 

I feel a 
connection 

with the math 
community. 

Acceptance

I feel accepted. 

I feel valued. 

Affect

I feel at ease.

I feel 
comfortable.

Trust

I trust the 
testing 

materials to be 
unbiased. 

Even when I do 
poorly, I trust 
my instructors 
to have faith in 
my potential. 

Desire to 
Fade

I wish I could 
fade into the 
background 
and not be 

noticed 

I try to say as 
little as 

possible. 

Mathematics Sense of Belonging Scale (Good et al., 2012)

When I am in 
a math 

setting,…

Reasons for Belonging

Competence Personal Interest

• More rounds of coding to draw conclusions from interview data and open-
ended survey questions

• Connections among students’ sense of belonging in mathematics, 
mathematics identity, and mathematics confidence

• Longitudinally follow up with participants as they persist through their first 
year of mathematics courses

• Attrition in STEM
• Less than half of American students who enroll in STEM undergraduate 

programs go on to earn a STEM degree (Wilson et al., 2012).  

• Historically underrepresented students are less likely to persist in STEM 
areas in comparison to their counterparts at the postsecondary level 
(Alkasawneh & Hobson, 2011; Riegle-Crumb et al., 2019) 

• Students often leave STEM majors after taking mathematics courses 
within the first two years of college (Chen et al., 2013; Seymour & Hunter, 2019) 

• Research has revealed that the first year of college is a critical period for 
attrition in STEM (Chen, 2013), particularly as the transition to college 
involves students negotiating both academic and personal stressors 
(Ruble & Seidman, 1996). 

• Sense of Belonging (Strayhorn, 2012), Identity (Estrada et al., 2018), and Self-
efficacy/Confidence (Rincón, 2018) are some variables that often impact 
one’s ability to successfully academically and socially integrate in STEM.
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Student’s Understanding of the Time Series and State Space Trajectory of the Solution of a

Differential Equation

Steve Bennoun

UCLA

Keywords: differential equations, mathematical modeling, teaching mathematics

Over the last decades the study of dynamical systems has become an increasingly important 

area in biology and the life sciences. High profile national documents call for the reform the 

mathematics instruction for biology and life sciences students in order to focus on modeling and 

dynamical systems (e.g., National Research Council, 2003). Related to these calls are time series 

and trajectories in the state space. The representations are central to the solutions of the 

differential equations describing a dynamical system as they provide important and 

complementary information about a system’s behavior. It is a critical skill to be able to construct 

the trajectory associated with a given time series, and vice versa. 

In this exploratory study, I analyze to what extent students who have taken an undergraduate 

course focusing on modeling have developed the skill of navigating between these two types of 

representations. I conducted think-aloud interviews with eight students who had completed the 

course. Students were given a time series and asked to construct the associated trajectory. They 

were then asked to do the opposite task. I conducted a thematic analysis (Braun & Clarke, 2006) 

of the interviews focusing on what level of covariational reasoning (Thompson & Carlson, 2017)

the students exhibited when constructing these graphs. Covariational reasoning has been shown 

to be a core competency to understand functions and engage in mathematical reasoning. 

The analysis of the interviews reveals that students showed a variety of levels of 

covariational reasoning when sketching these graphs. For example, when given a time series, 

Stan picked points by “going in units of 5 to make it easy”. He then plotted the points for his 

trajectory and connected them with straight lines, exhibiting what Thompson and Carlson (2017) 

call chunky continuous covariation. When probed about the precision of his trajectory, Stan said 

that to make it more precise “you would go in units of one”. He then indicated that he would pick

more points and still connected them with line segments. In other words, he would use the same 

process but with a smaller time step, further showing chunky continuous covariational reasoning.

When asked how confident he was of his answer he said: “Oh, I am definitely very confident on 

how to do it”. In contrast, Carly picked points where the time series “kind of just change[s] 

direction in general or […] hit[s] a maximum” denoting that she used important features of the 

functions to pick her points rather than simply choosing points at regular intervals. She then 

graphed her trajectory using smooth curves, clearly denoting smooth covariational reasoning. 

Both students also completed the “opposite task” consisting in starting with a trajectory and 

sketching an associated time series. While it could be reasonable to expect students to show the 

same level of covariational reasoning for this new task, the opposite was actually observed. Stan 

continued to pick points at regular intervals but this time he connected them with smooth curves, 

which would suggest smooth covariational reasoning. As for Carly, she picked points at regular 

interval (not based on the shape of the trajectory) and connected them with line segments, 

showing chunky continuous covariational reasoning. These results suggest that students do not 

consistently exhibit the same level of covariational reasoning even if the tasks are related. On the

poster, I will share additional results and discuss implications for practice.

This work is supported by the National Science Foundation grant DUE-2225258.
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An Exploration of Precalculus Students’ Reasoning about Exponential Functions 
 
 Spirit Karcher Susana Brewer Castano 
 Florida State University Florida State University 

Keywords: Exponential Functions, Quantitative and Covariational Reasoning, Precalculus 

In recent years both the teaching and learning of introductory mathematics courses, such as 
Precalculus, have made immense strides to improve students’ understanding of foundational 
skills such as covariational reasoning (e.g., Thompson & Carlson, 2017). Despite the emphasis 
being placed on teaching from a covariational lens, exponential functions continue to be taught 
from a correspondence lens (Ellis et al., 2016). In other words, the focus is on solving an 
algebraic expression that defines a static relationship between two variables instead of the 
underlying covariational relationship between two quantities. This work is a subset of a larger 
project to support students’ covariational reasoning and specifically focuses on exponential 
functions. We are guided by the following questions: What type of covariational reasoning is 
present in students’ responses on exponential growth/decay questions? How do the students’ 
responses align (or not) with the mathematical goals of each lab?  

Methods 
This study is situated at a large R1 university in the American Southeast. In Summer 2022, 

the project began by developing five precalculus lab units based on the findings of small-scale 
teaching studies and other relevant literature on student thinking (e.g., Cobb et al., 2003; Ellis et 
al., 2017; Oehrtman et al., 2008). Each lab consists of a brief pre-lab assignment, a lab activity, 
and an exit ticket. The purpose of this presentation is to detail the ongoing development of two 
labs which were designed to support students’ conceptualization of exponential functions from a 
covariational reasoning lens. Students’ anonymized written work from the two focal labs were 
used as the primary source of data analyzed for this study. There were approximately 480 
students across twenty classes from Fall 2022 and Spring 2023 included in the data set. Data 
analysis began by identifying which questions from each lab most closely aligned with the 
learning goals of the corresponding lab. An a priori codebook was created based on the 
Exponential Growth Learning Trajectory (EGLT) (Ellis et al., 2016). Student responses were 
coded for correctness and salient reasoning in several iterative rounds (Miles et al., 2020).  

 
Findings and Discussion 

One learning goal which we focused on was based on the ninth covariational reasoning 
ability from Ellis et al.’s (2016) EGLT which states that “any constant change in x results in a 
proportional multiplicative constant change in y” (p. 160). The main finding was that the 
majority of students were able to correctly answer questions despite their reasoning not always 
accurately reflecting the exponential relationships. For example, students agreed that halving the 
x value does not halve the y value; however, their explanations did not reference proportional 
multiplicative changes in the y value. Instead, students tended to rely on linear reasoning (i.e., 
additive changes in both x and y values. The misalignment between students’ reasoning and their 
ability to get a “correct” answer implies that there is a disconnect between how the labs are 
currently designed and their intended learning goals.   
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An Exploration of Precalculus Students’ Reasoning about 
Exponential Functions Spirit Karcher and Susana Brewer Castano 

Florida State University

Background
Alice Shrinking is the first of two 50-
minute lessons that were designed 
using the work of Ellis et al.’s (2016) 
Exponential Growth Learning 
trajectory (EGLT) as a guide. The 
two labs are designed to support a 
key shift in student reasoning from 
coordinating constant ratios for x-
value changes larger than 1 to 
constant rations for fractional 
changes (Ellis et al., 2016). 

This poster highlights the findings 
from an analysis of Desmos 
responses from 120 students across 
5 classes during a lesson on 
exponential functions from Fall 2022 
titled Alice Shrinking. Student 
responses were assigned codes 
deductively based on the salient 
reasoning in the students’ response 
using the categorizations from Ellis 
et al.’s (2016) EGLT as an a priori 
codebook. 

Scan to read 
our proposal!

When presented with successive additive and multiplicative changes 
in an exponential decay context, most students reasoned using 
repeated multiplication or exponentiation of the scale factor.

Drink Me: After each sip of potion, the drinker shall shrink to 2/3 their current size. 
(1 sip = 0.5 oz.)
-------------------

Your roommate claims that if Alice drinks 1 oz., she would shrink twice as much as if 
she’d only drank 0.5 oz. 

-------------------
Do you agree or disagree? Scan for current 

lesson on Desmos

Examples of Most Common Student Reasoning
(Explicit Coordination for Multiple-Unit Changes) 

Covariation 3: Repeated 
Multiplication defined as 
“coordinating the change in 
y-values for multiple–unit 
changes in x-values, but [the 
student’s] mental imagery is 
grounded in the actions of 
repeated multiplication” 
(Ellis et al., 2016, p. 164). 

Covariation 5: 
Exponentiation Imagery 
defined as the “coordination 
of the ratio of y-values for 
any Δx > 1; students no 
longer rely on repeated 
multiplication imagery” 
(Ellis et al., 2016, p. 169).  

“After drinking 1 ounce of 
potion Alice would shrink 
0.44 times her current height 
because .5 oz = 2/3 h 
(height). meaning 1 oz = 2/3 
* 2/3 h, equaling 4/9.”

“After drinking 1 ounce of 
potion Alice would shrink to 
0.44 times her current height 
because she would be taking 
2 sips; Therefore, she would 
shrink by (2/3)^2.”

Research Question
What types of covariational 
reasoning are salient in 
undergraduate precalculus students’ 
responses to an exponential decay 
question with successive changes of 
an x-value that are greater than 1? 

What type of covariational reasoning is present in students’ 

17
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Equation is non-linear

Pre-Functional Reasoning 1

Correspondence 1

Covariation 1

Covariation 2

Covariation 3

Correspondence 3

Correspondence 4

Covariation 4

Covariation 5

Covariation 7

Covariation 9

Frequency of Codes for Student Reasoning 
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Active Assessment for Active Learning

Simone Sisneros-Thiry
California State University, East Bay

Keywords: Active Assessment, Community of Practice, Active Learning

What does it mean for assessment to be aligned with the values of active learning? What are
the potential benefits and challenges of identifying and defining approaches to assessment
consonant with active learning (i.e., active assessment)? In the last several years, there has been a
surge in interest in developing more flexible assessment structures, with a great deal of
momentum for this movement coming from COVID-19 pandemic equity considerations
(Kadakia & Bradshaw, 2020; Kim, 2020). Conversations about equity and active learning
(Theobald et. al, 2020) and about equity and formative assessment (Kalinec-Craig, 2017) have
opened the door to the consolidation of ideas into a framing of “active assessment”. This poster
focuses on perceived challenges and benefits for defining and designing active assessment. For
example, how active assessments may be more or less equitable than timed, independent, written
exams. This work takes place at an institution with a variety of supports available, and individual
instructors’ consideration and implementation of active assessment occurs within the ongoing
process of professional and pedagogical growth.

This poster presents preliminary results from a qualitative study of exploration of this
question in a professional learning community (the Assessment Community of Practice, or
ACoP). Pulling ideas from discussions of active learning, formative assessment, and alternative
assessment, and from reflections on our own practice, members of the ACoP collaboratively
produced two drafts of a definition of active assessment in Summer 2023. Both drafts of the
definition will be included in the poster. Our goal in developing a shared definition of active
assessment is to support our implementation of assessment strategies that align with the values
and practices of active learning. Throughout the academic year 2023-2024, ACoP members are
implementing a variety of active assessment strategies, including variations on standards-based
grading, group projects and portfolios, in a broad range of courses, from first-year general
education courses through upper division electives for mathematics majors. We continue to
engage in discussion about how the strategies do or don’t align with our current, working
definition. The poster presents preliminary themes that have appeared in these discussions.

Active learning has been defined broadly as instructional activities involving students in
doing things and thinking about what they are doing (Bonwell & Eison, 1991). Our consideration
of active learning includes Laursen and Rasmussen’s four pillars of inquiry-based mathematics
education (2019). The ACoP development of a working definition for active assessment also
included ideas from Black and Wiliam’s (2009) five key aspects of formative assessment and
themes presented in the PRIMUS Curated Collection on Assessment (Katz, 2022).

This poster aims to share the motivation, and initial thoughts on the implementation of active
assessment and present some challenges and questions that have arisen. The conversations
generated through the poster session will inform the ongoing research into the development of
the definition and practice of active assessment.

Acknowledgement
This work is supported by NSF ECR: BCSER #2225295.
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Institutional Context
Regional, public 4-year university, 
primarily undergraduate-serving
● Faculty invested in active learning
● STEM Pathway Community of

Practice
● Coordination of materials and topics

for multi-section courses

Motivation
Create Assessment Community of 
Practice for connecting across context, 
focused on active assessment.    

Evolving Definition of
 Active Assessment

Draft #1 (5/19/2023)
A type of assessment that is rooted in 
● engaging student understanding

equitably,
● reinforcing communication, reflection,

collaboration, and mathematically rich
tasks,

● valuing diversity in expression while
being asset-minded,

● and transferring power to students
and community

And captures student progress and 
facilitates growth in the journey through 
mathematics. 

Draft #2 (7/14/2023)
Active assessment captures student 
progress and facilitates growth in the 
journey through mathematics. Active 
assessment is rooted in 
● engaging student understanding

equitably,
● reinforcing communication, reflection,

collaboration, through mathematically
rich tasks,

● valuing diversity in expression while
being asset-minded, and

● giving students the opportunity to
share, learn, and expand on ideas as
a community.

Yes, we’re starting to 
understand active learning, 
so what does active 
assessment look like?

2023-2024 Assessment Community of 
Practice
● Includes lecturer, pre-tenure faculty,

and tenured faculty
● Wide range of courses and assessment

strategies represented, including:
- Group Projects and Presentations in

upper division Diff. Eq.
- Final Portfolios in Math for the Arts &

Humanities
- Standards-Based Grading in

Precalculus with Algebra

CHALLENGES & NEXT STEPS
● How are current practices

opportunities for active assessment
development?

- Standards-based grading.
- Multiple drafts with collaboration.
- Summative assessment for the course

as formative assessment for students

● How do we operationalize the
definition?

- What does the instructor do?
- What do the students do?

Active Assessment 
for Active Learning

Simone Sisneros-Thiry
simone.sisnerosthiry@csueastbay.edu

Related resources at 
the QR code

RUME 2024

This project is supported by a National Science Foundation grant 
(BCSER #2225295). Any opinions, findings, conclusions or 
recommendations are those of the authors and do not necessarily 
reflect the views of the Federal Government.
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Student Thinking and Challenges when Representing Distance in the Cartesian Plane 
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 Rhodes College Rhodes College 

Keywords: Cartesian connection, difference expressions, magnitude interpretation, graphs of 
functions, survey study 

The purpose of this poster presentation is to highlight the variations in student thinking 
when working with difference expressions in the Cartesian plane — a fundamental skill crucial 
for grasping numerous Calculus concepts illustrated graphically, such as area, volume, and 
difference quotients. Previous research has shown students often struggle to conceptualize and 
express distances in the Cartesian plane (Parr et al., 2021). We view two key understandings, a 
magnitude interpretation, and the Cartesian connection, as prerequisites to this ability. By 
magnitude interpretation, we mean interpreting a difference expression as the magnitude of the 
distance between two corresponding positions in a single dimension (Parr, 2023). The Cartesian 
connection is the connection between pairs of values of x and y that satisfy an equation and the 
ordered pairs of points on the graph of that equation (Moschkovich et al., 1993). 
 The goal of this study was to investigate the prevalence and nature of challenges that 
students face when engaging in tasks to represent distances in the Cartesian plane. To investigate 
this question, we surveyed n=169 undergraduate math students at a private liberal arts college 
located in the southern United States between spring 2022 and fall 2023.  On the survey, students 
were asked to represent distances within the Cartesian plane using expressions in terms of x (part 
A of the task) and in terms of y (part C of the task). 

  
Figure 1. Survey item to represent the length of the segment in black in terms of x and in terms of y. 

 
We found that only 16 students (9.47%) correctly responded to both A and C, 22 students 

(13.02%) correctly answered A but not C, five students (2.96%) correctly answered C but not A, 
and the remaining 126 students (74.56%) answered both questions incorrectly. We further 
analyzed the structure of student responses to see if they contained a difference expression, 
which could indicate the use of a magnitude interpretation. We also analyzed responses for 
evidence of issues related to the Cartesian connection, including when and how to manipulate the 
given equation. Our findings highlight a need for instruction on the skills foundational to 
understanding distances in the Cartesian plane within Calculus education.  
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The manifestation of graph-theoretic methods in mathematics education research:
A metasummary of intercontinental conference proceedings

Haile Gilroy
Auburn University

In this poster, I present a metasummary of articles employing graph-theoretic methods (i.e.,
Graphs, Network Analysis, Maps, etc.) published in proceedings from North American
(SIGMAA-RUME) and European (CERME) mathematics education conferences from 2015 to
2022. I use the results of this metasummary to describe international trends in the choice of
method and prominent research topic themes in mathematics education research amongst
conference proceedings articles employing graph-theoretic methods.

Keywords: meta-analysis, graph theory, research methods, mathematics education research

Leveraging the mathematical definition of a graph (Chartrand et al., 2016), I define a
graph-theoretic method as a research method that makes use of a set of objects and the
relationships between them. In this poster presentation, I answer the following research
questions: (RQ1) What are the graph-theoretic methods present in mathematics education
research (i.e., Graph Theory, Social Networks, Mapping, etc.)? and (RQ2) What topics in
mathematics education research are studied using graph-theoretic methods?

To answer these questions, I conducted a metasummary, a type of qualitative meta-analysis
that relies on descriptions of broad research trends rather than a typical interpretive synthesis
(Timulak, 2014), of prominent intercontinental mathematics education conference proceedings
published in the past eight years. For an article to be included in this analysis, it must (1) be
published in a SIGMAA-RUME or CERME Conference proceeding from 2015 to 2022, a
collection of 3,940 articles, and (2) employ a graph-theoretic method, narrowing the analysis to
80 articles (26 from RUME proceedings and 54 from CERME proceedings). The articles
analyzed represent a diverse, international perspective of 21 countries spanning 5 continents. A
full list of articles analyzed is available at https://aub.ie/1lKIDG.

Open coding (Thornberg & Charmaz, 2014) was used to determine graph-theoretic methods,
while a combination of open coding, thematic analysis (Thornberg & Charmaz, 2014), and social
network analysis (specifically degree centrality) (yEd – graph editor, 3.23.2) was used to extract
prominent research themes. Results of the analysis indicate the existence of 6 graph-theoretic
methods: Network Analysis (Hannula & Moreno-Esteva, 2017), Graphs (Johns et. al., 2016),
Maps (Andrews-Larson & McCrackin, 2018), Grids (Watson & Jones, 2015), Flowcharts (Anwar
& Goedhart, 2020), and Data Visualization (Van Steenbrugge, 2022), which are distributed
differently between RUME and CERME articles. The results also indicate that graph-theoretic
methods are employed in a wide variety of topics across mathematics education research, whose
prominent themes include Teachers (Horsman, 2022), Students (Kanwar & Mesa, 2022),
Mathematics Education Research (Hannula & Moreno-Esteva, 2017), Learning (Lyublinskaya &
Du, 2022), Setting (Funk et. al., 2022), Pedagogy (Andrews-Larson & McCrackin, 2018),
Curriculum (Henriksen, 2022), and Hot Topics (Kim & Andrews-Larson, 2022). The articles
cited here exemplify each type of method and research theme.
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Graph-theoretic methods are
uncommon in Mathematics
Education research. 
However, there is an
overwhelming notion that our
shared knowledge is a graph.
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Mathematics Engagement in College Precalculus: Understanding Students’ Experiences Through
a Graphing Elicitation Tool

Aida Alibek
University of Georgia

Keywords: mathematics engagement, Precalculus, qualitative methods, phenomenology

In recent years, we have witnessed great efforts to improve college-level mathematics
courses by shifting to student-centered instruction and providing better supports for all learners
(e.g., Apkarian et al., 2021; Rasmussen et al., 2019). The implementation of pedagogies like
active learning, inquiry-based learning, or flipped classroom instruction in gateway mathematics
courses highlights the importance of student engagement in improving learning outcomes (Uhing
et al., 2021). To increase student engagement, it is critically important that we understand how
students experience this phenomenon.

Despite its importance in learning, educational researchers have not come to a clear
consensus on a conceptualization of student engagement (e.g., Appleton et al., 2008; Wong &
Liem, 2022). Our colleagues in K-12 mathematics education have been inquiring into students’
mathematics engagement since the 1990’s (Middleton et al., 2017) and a commonly adopted
conceptualization comes from Fredricks et al. (2004) of engagement as a multi-dimensional
meta-construct capturing students’ affect, behavior, and cognition (Middleton et al., 2017).

This poster proposal aims to highlight a part of the methods of a larger study exploring
undergraduate students’ experiences of mathematics engagement in a college Precalculus course.
This study considers students’ mathematics engagement holistically, drawing on engagement
research in K-12 mathematics education for its conceptual framework and acknowledging that
the various dimensions of engagement are interwoven with each other and are extremely
dynamic. The overarching research question is: “What is the story of college students’
mathematical engagement in Precalculus?” The theoretico-methodological framework of the
study is foundationally based in the socio-cultural tradition (Vygotsky, 1978) and built with
hermeneutic phenomenology (van Manen, 2014), which means that the experience of the
phenomenon of engagement is studied against the backdrop of socio-cultural learning theory.

The focus of the proposed poster is on the use of a graphing elicitation tool as part of the
research design, wherein study participants will be asked to sketch a graph of their engagement
in their Precalculus course across the semester over the course of 4 interviews. The sketches
drawn by the participants will provide the participant and interviewer a common representation
to discuss during the conversation and can allow the researcher’s questions to be more specific,
eliciting rich descriptions of the students’ experiences of engagement. In fact, detailed lived
experience descriptions are the main goal of phenomenological interviewing (van Manen, 2014).

During the poster presentation, conference attendees will be able to learn about the
methodology, see examples of student-produced sketches, and discuss the affordances of the
elicitation tool for understanding college students’ engagement in the mathematics classroom.
Affect graphing is not new in mathematics education research (Riske et al., 2021; Satyam et al.,
2022), and pairing the tool with phenomenological interviewing practices can allow us to gain
insight into students’ experiences, grasp aspects of students’ mathematics engagement that are
hard to capture through traditional interviewing methods, and study it as the complex dynamic
multi-dimensional construct that it is.
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Aida Alibek, PhD Candidate

Background
Using graphs as elicitation tools to understand 
students’ affect is not new for mathematics 
education research (Riske et al., 2021; Satyam et 
al., 2022). This study is using the graphing 
engagement tool to solicit students’ self-described 
experiences of mathematics engagement in their 
college Precalculus course.
Engagement is a multi-dimensional meta-
construct (Fredricks et al., 2004; Middleton et al., 
2017). The key dimensions of engagement in 
education research are the affective, behavioral, 
and cognitive dimensions (Appleton et al., 2008; 
Fredricks et al., 2004; Wong & Liem, 2022).

Asking students to graph how their 
engagement in Precalculus shifts throughout 
the semester is a powerful way to elicit rich 

qualitative data.

Stay for a chat if you want to:
• learn how the participants in this study were 

prompted to share their lived experiences of 
engagement through graphs,

• view select examples of student-produced 
graphs with highlighted quotes from interviews,

• discuss the affordances of the elicitation tool for 
understanding undergraduate students’ 
engagement in the college Precalculus 
classroom,

• learn about the phenomenological 
underpinnings of the study design and the 
graphing prompts.

Methods of the overall study
v 12 participants enrolled in Precalculus
v 8 distinct sections taught by 4 instructors
§ 2 lecture-based sections
§ 6 flipped classroom sections 

v partially coordinated Precalculus course

v 4 phenomenological interviews over the 
course of one semester

v during each interview participants sketch a 
segment of their engagement graph

For more information please 
scan the QR code, email me at 
aida.alibek@uga.edu, or visit: 
https://bit.ly/AlibekRUME24

Penelope (she/her)
• Freshman at UGA
• Intended major: 

Accounting
• Switched Precalculus 

sections after 1 week of 
classes

• In a flipped classroom

 
 

“So week 1, I don’t know. 
There was no way I could 
get engaged for real.”
“He didn’t even establish 
 office hours.”

“[New instructor] had 
office hours and that’s 
pretty much all I went to.
I still wasn’t engaged with 
the groupwork or 
  whatever.”

“We’ve been doing 
groupwork, but this is 
when I actually started 
doing it. When it was 
like an incentive to do it”

So what are some ways 
you have engaged in 
your Precalculus course 
this past week?

“I usually go to office hours, but this 
week I didn’t, because I had a lot of 
more stuff to do …  [Precalc] is more 
demanding, so I'm like, okay. It is 
kinda like an opportunity cost. 
Like I'm giving up time for another 
class. I made time for this class. It's 
just, I don't know, I can't find that 
balance right now.”
“I had my RA interview today… I 
don't have nowhere to live on 
campus next semester, for real. I'm 
still a kid. I just turned 19… So it's 
either I go ahead and prep for my 
RA interview… or I'm gonna have to 
sit and study for my test. … I chose 
the housing.”

Aida

Penelope

“[W]eek one of class, not 
much engagement there. 
Really was just kind of 
  sitting through it.”

“I was behind on [the readiness test] and 
actually ended up getting ahead actually 
after that… So I went down a bit there like, 
oh, I've got a while now until anything else. 
So procrastinate a little bit.”

David (he/him)
• Freshman at UGA
• Intended major: Finance
• In a lecture-based 

classroom David

AidaIs there a limit for you in 
terms of engagement in 
this class?

“Maybe around here. Because 
I got four classes. [M]aybe a B 
in this class and getting A’s in 
other classes is just better than 
getting an A in this class and 
two B's or something like that. 
… Two other classes are also 
[business school] 
requirements.”

“Then I had another homework assignment 
that I was still a tiny bit behind on, so it went 
up a bit for that. It just took me a while, cause 
there was one problem I was spending a really 
long time on for some reason. Because I was 
 messing up the tiniest step on it every time.”
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Participant and Designer Competing Goals, Resources, and Orientations for
Professional Development of Faculty Teaching Mathematics to Future K-8 Teachers

Billy Jackson Jenq Jong Tsay Shandy Hauk
University of Illinois, Chicago University of Texas Rio Grande Valley San Francisco State

Keywords: faculty professional development, prospective elementary teacher, provider

There is a documented need for professional learning opportunities to support mathematics
faculty in working with prospective elementary school teachers (Ping et al., 2018). Recent efforts
by the authors and others have generated frameworks for mathematics-faculty-specific,
teaching-focused professional development (TPD) (Jackson et al., 2020; Schoenfeld, 2007). In
particular, the Professional Resources and Inquiry into Mathematics Education for K-8 Teacher
Education (PRIMED) project created and implemented a series of online modules for faculty
new to teaching mathematics courses for future elementary school teachers. The modules
constitute a 15-hour "short-course" for faculty. PRIMED designers had the role of “TPD
Providers” (Yee et al., 2023) whose presence was implicit in the asynchronous short-course.

The theory of change informing the work was based on humanizing mathematics instruction
for future teachers (MacArthur, 2022; Su, 2020). In the short-course setting, attention to student
voices occurred at three levels: children in the future classes of pre-service teachers, the
undergraduate pre-service teachers, and the faculty as learners. Providers of the short-course
were the implicit instructors in the asynchronous online TPD. The framework for examining
designer and faculty views used the resources at the disposal of each (knowledge and material
resources), their orientations (beliefs, preferences, values, etc.), and their goals (which exist at
multiple levels and change dynamically according to evolving events; Schoenfeld, 2023).

In this poster, we explore short-course design and revision spurred by the distinctions in
goals, resources, and orientations of participating novice instructors and Provider-designers. The
poster focuses on how the distinctions shaped redesign of the short-course after the initial pilot.
The data were designer memos, faculty surveys, and faculty interviews to address the questions:

1. Promise: How does the short-course support faculty learning of target content?
2. Feasibility: Are module materials accessible and useful to faculty?
3. Fidelity: What are the supports needed for participation-as-intended by designers?

Previous findings from research on the use of the short-course included the students of
participating faculty demonstrating greater gains in knowledge for teaching mathematics than is
common in courses for pre-service K-8 teachers (Hauk et al., 2023). Also, though
faculty-participants sought the resource of ready-made materials, research suggested that faculty
needed more opportunities to develop the specialized content knowledge used in teaching grades
K-8 in addition to knowledge needed for selecting and orchestrating use of course materials).

The work reported in the poster will contribute to the literature because, to date, studies have
rarely differentiated among what constitute the professional skills needed as an instructor and
professional skills as a teacher-educator, the role of teacher-educator skills in being consumers
and selectors of activities (rather than producers or designers of them), and the still understudied
forms of motivation behind the work of faculty new to being teacher-educators.
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Fostering Set-Based Reasoning for Mathematical Proofs: Student Interaction and Challenges in 
an Inquiry-Oriented, Transition-to-Proof Course 

 
 Kyeong Hah Roh Norman Contreras 
 Arizona State University Arizona State University 
 Olivia Bruner Paul C. Dawkins 
 Arizona State University Texas State University 

Keywords: transition-to-proof course, inquiry-oriented classroom, representations for 
mathematical logic, set-based reasoning  

This poster aims to provide salient insights into an inquiry-oriented transition-to-proof course 
designed to cultivate undergraduate students’ set-based reasoning for mathematical proofs. By 
set-based reasoning, we refer to a person’s reasoning with predicates and relationships between 
predicates and their truth-sets (Dawkins, 2017). The course emphasized learning fundamental 
logical principles – such as non-contradiction, contrapositive equivalence, and converse 
independence – via set-based reasoning. Opportunities were given to students to actively engage 
with their peers and the instructor team, including the primary instructor for whole-class 
discussions and research assistants responsible for facilitating small-group discussions. These 
interactions occurred in the physical classroom and extended to virtual discussion forums.  

We examined several aspects of student engagement: peer-to-peer interaction, interaction 
with the instructor team, assignments and exams, and online discussion forum posts. Our focus 
was on four key areas: (1) students’ participation in building the learning community’s 
acknowledgment of mathematical logic, (2) instructional deliveries in the utilization of set 
operations and set relationships, (3) formative assessment for students’ main takeaways from 
classroom activities, and (4) student challenges.  

Our analysis reveals that (1) students’ active participation in sharing their reasoning and 
reflection on their learning with their peers contributed to developing their collective 
understanding of logic for mathematical statements and proofs. In addition, (2) the incorporation 
of mathematical representations (e.g., Euler diagram) and analogies from everyday language 
(e.g., an empty Hermès Bag for an empty set, fried eggs for proper subset relationships, and 
Mastercard for non-disjoint relationships) served as a valuable pedagogical tool. These aids 
fostered student engagement in set-based reasoning for logic. Furthermore, (3) encouraging 
students to share their main takeaways with their peers in the last five minutes of class and 
through online discussion forums emerged as an effective formative assessment strategy in 
gauging students’ comprehension and progress. We attended to (4) the challenges faced by 
students when conveying their reasoning using set-builder notation and Euler diagram, especially 
those who had prior experience with truth tables for logic and resisted using these new tools 
introduced in the course for set-based reasoning. Addressing these challenges is an ongoing 
focus as we refine the course and support student learning in the inquiry-oriented transition-to-
proof course.  
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Sense of Belonging of Minoritized Female STEM Students in Introductory Mathematics Classes: 
A Mixed Methods Study 

 
Sarah H. Park 

University of Georgia 

Keywords: Sense of Belonging, Minoritized Female Students 

Higher education institutions are becoming increasingly diverse in their undergraduate 
populations, but minoritized female students, especially Black and Latina women, continue to be 
underrepresented in almost all STEM fields (Hatfield, 2022; Ong et al., 2016). Although 
minoritized female students often begin college with a strong interest in STEM, they are more 
likely to leave the STEM major due to an absence of belonging in their introductory courses 
(Rainey et al., 2016). Researchers argue that sense of belonging at the classroom level, is a key 
factor in supporting minoritized student persistence, and it may even improve participation and 
academic performance (Strayhorn, 2019). Understanding female minoritized students’ sense of 
belonging in the introductory mathematics classroom context, therefore, is crucial in better 
understanding their academic experiences, and by extension, understanding how to better support 
their persistence and achievement in STEM (Museus et al., 2017).  

The following research aim will guide this study: How do their identities as female 
minoritized students play a role in their sense of belonging in gateway mathematics classrooms 
at a racially and ethnically diverse open access institution? Specifically, 1. How do Black and 
Latina female students’ sense of belonging in the college algebra and precalculus classrooms 
compare to students in other racial and gender groups? 2. Does Black and Latina female 
students’ sense of belonging in college algebra and precalculus change from the beginning to the 
end of the semester? 3. How do Black and Latina female students describe their college algebra 
and precalculus learning environment, experiences, participation, persistence, support systems 
and challenges as it relates to their sense of belonging?  

Theoretical Perspectives – I frame my study using three conceptual frameworks: (a) sense of 
belonging (Strayhorn, 2019); (b) intersectionality (Crenshaw, 1991); and (c) authorizing student 
perspectives (Cook-Sather, 2006). 

Research methodology – I use a sequential, explanatory mixed methods design (Creswell, 
2015) to conduct quantitative methods using a sense of belonging scale at the beginning and end 
of the semester. I will then follow with qualitative methods (a math autobiography and semi-
structured interviews). Participants in the quantitative phase are students (n=1162) enrolled in 
college algebra and precalculus during the Fall 2023 semester, at a diverse minority-serving 
open-access public college in the Southeast with a student population of about 11,000.  For the 
qualitative phase, participants are 12 Black and Latina female students. 

Results – At the current date of submission, I have analyzed the beginning semester sense of 
belonging scale data. These results indicate no statistically significant difference between the 
mean belonging scores based on students’ race or gender, but there is a statistically significant 
difference in students’ mean belonging scores based on their affinity for mathematics. By the 
date of the poster presentation, I will have also analyzed the end of semester belonging scale data 
and will present findings on how students’ sense of belonging changes throughout the semester 
based on their racial and gender identities. Understanding how sense of belonging changes over 
time in introductory mathematics classes is important, as classroom-level belonging has been 
shown to be a critical element of students’ motivation, participation, aspirations, and success. 
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A General Education Data Literacy and Visualization Course Using Service Learning 
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 University of Nebraska at Omaha University of Nebraska at Omaha 
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Keywords: general education, data literacy, data visualization, service learning 

We report on a new course, Data Literacy and Visualization, that fulfills the university 
general education requirement for quantitative literacy and engages students through service 
learning. Students learn valuable data skills in an authentic context similar to those they would 
encounter in the workplace. Specifically, students work with local non-profit organizations who 
typically have data but lack the in-house expertise to derive value from it.  

Motivation 
At many institutions of higher education across the country, introductory undergraduate 

mathematics courses tend to have high failure rates and present a barrier to success for many 
students (Holm and Saxe 2016). In recent years many institutions have created alternative 
pathways to prepare students with quantitative literacy, and more recently, data literacy, skills 
(Dana Center 2020, Heinzman 2022). Data is ubiquitous in all types of organizations today, and 
individuals who have knowledge and skill in working with data, coupled with discipline-specific 
expertise, are increasingly valuable assets. Service learning is a method of experiential education 
that combines classroom instruction with meaningful, community-identified service. This form 
of engaged teaching and learning emphasizes critical thinking by using reflection to connect 
course context with real-world experiences (Bringle and Hatcher 1996). 

Course Information 
The course begins with an introduction to data and visualizations. Then students learn basic 

statistics including how to compute summary statistics by hand, create histograms, and identify 
normally-distributed data, then explore the concepts of correlation and regression. They then do 
these calculations and generate graphs in Excel. The next four weeks are devoted to learning 
about visualizations in general, including characteristics of good visualizations as well as how 
they can be misleading, and how to use Tableau, the software used for the projects. The final 
third of the semester is devoted to with the community partners.  

Results 
Students leave the course with much more confidence in their mathematical ability than they 

had at the beginning of the semester. They report enjoying the class and finding it more 
interesting than other math courses they’ve taken. In their comments about the course, many 
students specifically state their appreciation for being able to apply the math they’ve learned in a 
real-world context.  
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Digital Task Design to Support Students’ Developing Graphing Meanings 
 

 Claudine Margolis Teo Paoletti Allison Olshefke 
 University of Michigan University of Delaware University of Delaware 
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The ability to construct and interpret graphs is critical for students as learners across STEM 
fields (e.g., Paoletti et al., 2020; Potgieter et al., 2008). However, from algebra through calculus, 
there are well documented difficulties that students experience with graphs and graphing (e.g., 
Glazer, 2011; Thompson et al., 2017). A small but growing body of literature addresses ways to 
support students’ development of graphing meanings by utilizing digital tasks (Ellis et al., 2015; 
Liang & Moore, 2021; Paoletti & Moore, 2017). We describe an emerging digital task design 
principle: That enabling interaction with theoretically salient aspects of a representation directs 
students’ attention there. We use Paoletti et al.’s (2023) framework to determine which aspects 
of the representation are theoretically salient and to analyze students’ activity.  

Building on the research on students’ covariational reasoning and graphing meanings 
(Carlson et al., 2002; Moore, 2021; Moore & Thompson, 2015; Thompson, 2011), Paoletti et al. 
(2023) argue that providing students with repeated opportunities to bridge their meanings for 
quantities in situations and the graphical representations of those quantities is productive for 
developing graphing meanings. This entails constructing quantities from a situation and 
representing the “amount-ness” (Stevens & Moore, 2017) of the quantity as a magnitude bar. A 
different part of the process entails conceiving of a coordinate point as a multiplicative object 
which simultaneously represents the length of magnitude bars along orthogonal axes.  

In this poster, we address the question: How does Paoletti et al.’s (2023) framework inform 
the iterative design of digital tasks intended to support students’ developing graphing meanings? 
We use data collected during a two-year design experiment (Cobb et al., 2003) consisting of 
multiple teaching experiments (Steffe & Thompson, 2000). We describe how Paoletti et al.’s 
(2023) framework supported iterative cycles of task design, fine-grained analysis of students’ 
activity, and task revision. We draw on examples in which our task design resulted in students’ 
activity that we did not intend. We describe 1) how we use the framework to determine where 
students' attention could be directed to better elicit the intended activity, and 2) how we applied 
this emerging digital task design principle to direct students’ attention in those ways. 

For example, we designed a task to support students’ conceiving of a coordinate point as a 
multiplicative object. We first prompted students to drag dots along the vertical axis to represent 
increases in one quantity for equal increases in the other. Later in the task, we prompt them to do 
this again, but also show the related coordinate point in the plane. We intended for students to 
notice the coordinate points’ movement as they manipulated the dots along the vertical axis, but 
their attention was not drawn to the coordinate point. When revising, we wanted students to 
attend to the relationship between the coordinate point and the length of the related magnitude 
bar along the vertical axis. We prompted them to accomplish a familiar goal (arrange dots along 
the vertical axis to represent a changing situational quantity) through a new type of interaction 
with the graphical representation (dragging a coordinate point in the plane). We provide 
implications for teachers and researchers as they adapt or design digital graphing tasks. 
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Digital Task Design to Support Students’ 
Developing Graphing Meanings

Claudine Margolis

Teo Paoletti
Allison Olshefke

Study Goal: Develop an instructional 
sequence that supports 6th graders (11-12 
years old) in developing emergent graphical 
shape thinking (Moore & Thompson, 2015). 

Methodological Context: Design-based 
research study (Cobb et al., 2003) with multiple 
rounds of small-group teaching experiments 
(Steffe & Thompson, 2000).

Framework: Provide repeated opportunities 
to develop meanings for situations (MS), 
develop meanings for graphical 
representations (MR), and bridge those 
meanings (MS ←→ MR).

Partial LIT for EGST (Paoletti et al., 2023)

Direct students’ attention to 
theoretically salient aspects
of a representation by 
making it interactable.

Use visual feedback 
to represent intended 
ways of thinking.

E M E R G I N G    P R I N C I P L E S    O F    D I G I T A L    T A S K    D E S I G N

M.S. - Situational 
quantitative and 
covariational reasoning

M.R. - Reasoning with graphical 
representations of covarying 
quantities

M.S.1 - Construct quantities 
in a contextualized or 
decontextualized situation.

M.S.2 - Coordinate how two 
quantities change in relation 
to each other.

M.S.3 - Develop an operative 
image of covariation that 
entails a multiplicative object.

M.R.1 - Consider a varying 
segment length as representing a 
quantity’s magnitude.

M.R.2 - Consider variations in two 
orthogonal segment lengths on 
axes in a coordinate system in 
relation to two covarying quantities.

M.R.3 - Conceive of or anticipate a 
point as a multiplicative object in 
the coordinate system 
simultaneously representing the 
two segments’ magnitudes.

Goal: MS1

New Interactions:
● Measure weight of 

mystery animals
● Construct magnitude 

bar representations 
by dragging

Goal: MS2

New Interactions:
● Drag Base Length
● Construct a table to 

coordinate values

Goal: MS3←→MR3

New Interaction:
● Drag coordinate 

point to arrange 
orthogonal 
magnitude bars

Visual Feedback: visual information provided 
automatically in response to student actions 
with potential for mathematical meaning 
(Margolis & Boyce, in press).

Feedback Design:
Click “Check It.”  
Magnitude  bars 
reorder to reflect 
the student’s 
selection.

Feedback Design:
Drag coordinate point 
to create the graph via 
dynamic trace. 
See mag. bars on 
the axes follow the 
motion of the point.

Feedback Design:
Drag mag. bars to 
  estimate amts. 
   Press “Check It” 
  and see dotted 
 lines extend 
toward point.
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Speaking into the silence: Using multilingual students’ own words through poetic transcription to
tell their stories within introductory college mathematics education

Keywords:Multilingualism, student voice, equity, introductory mathematics

As universities continue to become more multicultural, a growing body of literature
recognizes the important role that language plays in students’ undergraduate mathematics
educational experiences (Hwang et al., 2021; Rios, 2023). For example, language mediates how
students think, learn, make sense of the world, and socialize (Barwell, 2015). In addition,
language, as it intersects with other social identities, positions people within social power
hierarchies (Rios, 2023). Driven by these motivations, and within the context of a larger study
examining 28 multilingual students’ experiences in introductory mathematics, we explore the
question:What are the stories of multilingual students in introductory mathematics?

We use poetic transcription (Glesne, 1997; Prendergast, 2009; Tremaine, 2022) to showcase
the stories of multilingual students of color within these courses. Poetic transcription is an
arts-based methodological tool that re-presents interviewees’ words in the form of a poem; this
allows the interviewee’s own words to be used to tell their story while also bringing in space for
the researcher’s interpretation and analysis, which are used to decide how to present the
interviewee’s words. In this analysis, our focus is on how experiences of “silence” show up
within these experiences, both of being silenced by others and how students use silence as a
response for navigating the sociopolitical contexts of the classroom (Mills, 2006). Our results
come in the form of poems from each of the six interviews involved in this analysis, chosen
because of their discussion of silence. Here, we present an excerpt of one poem to illustrate the
power of this methodology. This poem comes from Qamar (she/her), a Syrian refugee living in
Saudi Arabia while enrolled as an international student at a large US university, and illustrates
her experience of being silenced by multiple calculus instructors at various times.

When I asked that question
She muted me.
She asked, “Does anyone have any other questions?”
Yeah, I have my question,
but you muted me.
You just don't want to speak to me
You’re muting me.
I’ll stay silent.

On our poster, we will present all six poems in full, and highlight the ways in which silence
acts as a navigational response and form of resistance for these multilingual students in
undergraduate introductory math courses.

Jocelyn Rios
Colorado State University

Jessica Ellis Hagman
Colorado State University

Rachel Tremaine
Colorado State University

Kaylee Fantin-Hardesty
Colorado State University

Sarah Lutz
Colorado State University

Kimberly Espinoza
Colorado State University
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Speaking into silence: 
Using multilingual students’ 
own words through poetic 
transcription to tell their 
stories within introductory 
college mathematics 
education

Intro
● As universities become more multicultural, 

language plays an increasingly important role in 
students’ undergraduate mathematics educational 
experiences (Hwang et al., 2021; Rios, 2023)

● Language is both a resource that supports learning 
of mathematics, and is tied to power, how social 
interactions unfold, and who has access to speak 
and have their voices heard (Planas & Civil, 2013)

Methods
● Poetic transcription (Glesne, 1997) allowed us to 

use the students’ own words to describe their 
experiences of silence in college math (Mills, 2006)

● Within the context of a larger study examining 28 
multilingual students’ experiences in introductory 
mathematics, we explore: What are the stories of 
multilingual students in introductory mathematics?

Discussion
● The theme of silence and being silenced was a 

salient part of how multilingual students of color 
described experiencing their introductory math 
courses

● Students described using silence in various ways to 
navigate their undergraduate mathematics 
classrooms, including navigating: 

○ feeling uncomfortable speaking, feeling like 
their contributions were not listened to or 
valued, and feeling like they were treated 
differently than peers

● Students used silence as a form of resistance to 
empower their own voices, and discussed their 
aspirations related to using their voices

● These poems highlight the importance, from an 
instructor standpoint, of recognizing the role 
silence plays in navigating the classroom, along 
with the need to make the mathematics classroom 
more inclusive for multilingual students

Multilingual students of color 
experienced being silenced and 
using silence in ways that are 
interwoven with their linguistic, 
navigational, resistance, and 
aspirational capital (Yosso, 2005)

Nader
(he/him) is an international student from Iran. He is 
one of few international students at this school who 
started in Precalculus instead of Calculus. 

I’m a silent person
most of the time.
I prefer to work myself.

Nader, do you have any questions? 
Ask it,               
don’t be shy.

No,
I’m okay.
I can work on it–
I can figure it out myself.
It's really hard for me to start talking so much in the 
group.

I don't feel good when I ask a lot. 
The students 
-don't like- 
when a student asks lots of questions.
When I want to explain complicated things,
people couldn't understand.
My English is not perfect.
I was talking to my classmates
I just said something very weird in Farsi.
No, no I mean, nah, sorry–
I just said nah–
it was no in Farsi–
She was just like,

What?
I said nothing.
It's hard to speak another language.

…Some part of it was bad
Some part of it was good…

When you talk to teacher
and you feel that teachers 
-likes- 
to communicate with you in class.
She let us to do whatever we want,
how we are comfortable to do things.
I have good communication with my teacher.
I think that makes it much easier.

My friends, they say,
Yeah, we were like you for the first year.
And we get through it.

I was able to get through it.
At the middle of the semester, I feel much better,
I feel more comfortable.
I’ve been working on it;
I think I might be ready by fall to talk with people 
and communicate.

Scan to read more poems

Jocelyn Rios, Jess Ellis Hagman, Rachel 
Tremaine, Kaylee Fantin-Hardesty, Sarah 
Lutz, Kimberly Espinoza, & Hanna Medina
Colorado State University
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Proportional Reasoning as a Tool to Understand Structural Racism in a Senior Capstone Course

Molly Robinson Eva Thanheiser
Portland State University Portland State University

Keywords: Social Justice, Instructional Activities and Practices

Teaching mathematics in exclusively de-contextualized ways sends students the message that
mathematics is not a tool that people can use to make sense of or change the world (Aguirre et
al., 2019; Stephan et al., 2021). Lord (2020) found that the perception that mathematics is not
useful in making the world better is one reason that some girls who achieved high levels of
mathematical success choose not to pursue mathematics in college. Students of Color have
shared that the ways mathematics can be used to impact their lives was missing from their
secondary mathematics experiences, and that they wanted to use mathematics to promote social
justice (Jett, 2019; Rodriguez et al., 2020; Varley Gutierrez, 2009). Adult undergraduate learners
have lower levels of math self-efficacy than more “traditional” college students in mathematics
content that is perceived as academic, but similar levels when math is seen as useful (Jameson &
Fusco, 2014). So, learning about how mathematics can be used in social justice contexts can
support students in choosing to continue their mathematics education.

Mathematics is a tool that humans have developed for specific purposes as the needs and
wants of their communities have changed over time (Joseph, 2011), including making sense of
social justice issues. Proportional reasoning in particular is the foundation of most arguments
about equitable treatment and outcomes in politics, media, and education (e.g. Crenshaw, 1989).
But students may understand concepts like percentages and ratios procedurally without being
able to apply them in social justice contexts (Simic-Muller, 2015). Given the primacy of this
content in understanding (in)justice, we wanted to study how a group of college students in a
course titled “The Mathematics of Racism” made sense of ratios and racism together. We
developed a lesson in which students explored claims in newspaper articles about the election of
Indigenous Congresspeople through making sense of proportions. Our research question is: To
what extent do students see mathematics as connected to social justice issues after the lesson?

Methods and Preliminary Results
The lesson was developed for a synchronous online senior capstone course at a public

university in the Pacific Northwest in the Spring of 2023. The data were all 10 participating
students’ recorded video reflections on the lesson captured in FlipGrid in response to three
questions: What did you learn about mathematics? What did you learn about racism? What do
you want to know more about? We analyzed the data by identifying which features of Gutstein’s
(2006) teaching mathematics for social justice framework and Kokka’s (2020) critical
mathematics consciousness were indicated by students’ video reflections.

Students did connect their mathematical learning to social justice by helping them see how
mathematics can help them make sense of the world and advocate for change. Every student
referred to at least one issue of the representation of Indigenous people in Congress that they
thought was unfair or wrong, and all but one student shared that mathematics helped them make
sense of the (un)fairness they saw. This is an example of what Gutstein (2006) describes as
reading the world with mathematics. Also, 7 students expressed a desire to have things change or
to be part of the change themselves, suggesting that students developed their sense of being
agents for social change as described by Kokka (2020).
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Cafecito con Matemática: A bilingual mathematics outreach event that centers family, culture, 
and community 

 
 Jocelyn Rios Elizabeth G. Arnold Kimberly Espinoza 
 Colorado State University Colorado State University Colorado State University 

Keywords: Outreach, Bilingual mathematics education, Hispanic/Latino communities, Design 
principles 

With the growing emphasis on supporting and celebrating diversity in mathematics, it is 
important for mathematics departments to build responsible partnerships with local communities 
and schools. In the context of the Southwest, extant research has documented how outreach 
initiatives can create bridges between families, school, and universities, helping to facilitate the 
mathematical participation of students and parents from Hispanic/Latino communities (Civil et 
al., 2005) and mathematics pre-service teacher professional development (Stoehr et al., 2022). 
Moreover, research demonstrates the importance of using culturally responsive practices and 
creating bilingual spaces that affirm Spanish as a valid language for teaching and learning 
mathematics (Civil, 2007; Civil & Andrade, 2002; Turner et al., 2013). 

In this poster, we present Cafecito con Matemática (CM), a bilingual mathematics outreach 
event run by Colorado State University. This event is hosted at a local bilingual elementary 
school that serves predominantly Hispanic/Latino communities. Occurring monthly during the 
evenings, CM first provides students and their families with dinner and then engages everyone in 
fun, culturally relevant mathematics games and activities which are facilitated by school teachers 
and university members (including mathematics graduate students and pre-service teachers who 
gain valuable experience interacting with students and their families). All materials for CM are 
provided in English and Spanish to create accessibility and promote bilingualism. Ultimately, 
CM creates a space which validates and leverages families’ language and mathematical 
knowledge, while also providing them with resources to help their children develop their 
learning of, excitement for, and curiosity within mathematics.  

Additionally, CM creates a space that celebrates the home languages of our Spanish-speaking 
mathematics pre-service teachers and graduate students. By intentionally recruiting Spanish 
speakers to be involved in CM, we are positioning their home language as a valuable resource 
that strengthens their ability to teach and mentor diverse communities. Through this event these 
pre-service teachers and graduate students represent the department in a teaching role, serve as 
role models to the community, and have a space to interact with school students in their home 
language, and celebrate their culture alongside community members.  

In this poster, we further describe the guiding features and implementation of CM in an effort 
to support others interested in developing similar outreach events within their local communities. 
We blend a mathematical approach that focuses on hands-on learning experiences with a 
culturally responsive approach that features mathematics games and activities that draw 
inspiration from Hispano cultures, communities, and traditions (e.g., Lotería and traditional 
games from Latin America). We conclude with initial findings from an examination of the 
benefits of implementing such an event. We focus on multiple perspectives, providing excerpts 
from students and their families, from the teachers and administration within the schools, and 
from the mathematics pre-service teachers and graduate students who serve as teaching assistants 
for CM. We have found that this event is meaningful in many ways for those involved and serves 
as a way to celebrate culture and diversity in mathematics education. 
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Statistical Literacy of College Students in a Simulation-Based Introductory Statistics Course 
 

Samuel Waters 
University of Northern Colorado 

Keywords: Statistical Literacy, Statistics Education, Simulation-Based Curriculum  

The news media is the primary source of information about social and scientific issues for 
most adults (Bissonnette et al., 2021). Statistical and mathematical products in the news take on 
many forms, requiring multiple inter-related skills to appropriately comprehend and evaluate 
(Gal & Geiger, 2022). Additionally, messages in the news are often shaped by political, 
commercial, or other agendas contributing to inaccurate, misleading, or intentionally 
manipulative messages (Mehta & Guzmán, 2018). As such, increasing emphasis exists in the 
literature regarding the need to develop students’ critical capabilities in understanding how 
mathematics and statistics are used (Gal & Geiger, 2022). Hence, this qualitative pilot study 
investigated the question: what, if any, statistical concepts do students in an introductory 
statistics course utilizing a simulation-based curriculum apply when critiquing statistics in the 
news media? 

Current trends in statistics education include the use of technology to provide students with 
dynamic, interactive simulations and the importance of attending to risk, critical literacy, and 
communication in contexts such as the media (Burrill & Pfannkuch, 2023). Previous studies have 
utilized media-based tasks to investigate student statistical literacy (e.g., Kaplan & Thorpe, 
2010). Other studies found simulation-based curricula improve student outcomes on topics such 
as confidence intervals, significance testing, and data collection (e.g., Chance et al., 2022). This 
study extends existing research by investigating how a simulation-based curriculum prepares 
students to use critical questioning when engaging with news media. 

The conceptual framework of this study draws from Watson and Callingham’s (2003) six-
level construct of statistical literacy. Gal’s (2002) characterization of critical questioning, and 
Gal and Geiger’s (2022) nine categories of statistical and mathematical products in the news 
informed the development of tasks. Five participants, who were enrolled in an introductory 
statistics course at a mid-sized university, completed task-based interviews during which they 
commented on three mock news headlines and accompanying articles. Interviews took place 
after the simulation-based inference topics were covered in class. Participant responses will be 
coded, after transcription, for the six levels of statistical literacy and how statistical concepts 
were utilized throughout the task. 

Current analysis includes identification of themes in students’ responses. Initial findings 
indicate participants mentioned sampling, study design, and hypothesis tests with additional 
themes including wanting more information, relying on non-statistical arguments, and struggling 
to connect statistical ideas to critical questions. During the poster session, further results of the 
pilot study will be shared and ideas for future directions and adjustments to tasks will be 
discussed.  
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Conceptualizing and Representing the Cartesian Connection in Calculus 
 

 Shayla Garrison Erika David Parr 
 Rhodes College Rhodes College 

Keywords: Cartesian Connection, Graphical Representations, Conceptual Analysis, Theoretical 
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Calculus concepts require students to express and interpret distances in the Cartesian plane. 
Yet previous research shows that many students are not easily able to do so (Parr et al., 2021). 
To effectively represent distances, students must be able to understand and apply the Cartesian 
connection, that a point is on graph A if and only if its coordinates (x, y) satisfy the equation of A 
(Moschkovich et al., 1993). This connection requires students to draw on algebraic and graphical 
concepts to conceive of coordinate points as pairs of distances rather than simply a location on a 
graph (Parr et al., 2021). Students should also be able to flexibly move between using a graph 
and its equation to represent distances both in terms of x and y or determine if points lie on a line 
(Knuth, 2000). We are interested in why some student may not display this flexibility and what 
underlying issues are preventing students from making the Cartesian Connection.  

In this poster, we explore the following research question: What types of reasoning, 
successes, and challenges arise when undergraduate students engage in tasks meant to develop 
their ability to make the Cartesian Connection to represent distances? To answer this question, 
we presented surveys to 169 undergraduate students at a small private college to assess their 
ability to represent distance in the Cartesian plane both in terms of x and in terms of y. We 
selected 9 students who did not correctly complete the tasks to conduct exploratory teaching 
interviews. During the interviews, students worked through a series of tasks to represent distance 
in the Cartesian plane while thinking out loud and explaining their thought process and 
reasoning. We analyzed the students’ interviews using theoretical sampling (Corbin & Strauss, 
2014). Our results highlighted that whether students can make the Cartesian Connection is not a 
yes or no question, but rather better represented by a spectrum of student thinking. We broke up 
the Cartesian Connection into 3 components: (1) the definition, (2) the underlying algebraic 
meanings, (3) the underlying graphical meanings. As part of our results, we offer a conceptual 
analysis (Thompson, 2008) identifying the mental operations needed to make the Cartesian 
Connection in this context.  

Many different types of student reasoning emerged, yet we found similar obstacles that 
students encountered when representing distances in the Cartesian plane. Some common 
obstacles were students having difficulty understanding the phrase “in terms of” as well as 
students having difficulty associating distance in terms of y for a horizontal segment. We 
analyzed students’ responses according to two dimensions: 1) categories encapsulating all the 
mental processes needed to make the Cartesian Connection to represent distances and 2) the 
extent to which students were reliant on either algebraic expressions or graphical representations. 
This poster will give an overview of the spectrum of student thinking that highlights the 
complexity and nuance of the Cartesian Connection. We will also describe the implications of 
our findings for teaching and research.  
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Holding on to Reasoning and Proving While Navigating Professional Obligations: Secondary 
Teachers’ Transition from University to Schools    
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Transitioning between university teacher preparation programs and secondary schools is a 
complex process, fraught with many challenges for beginning mathematics teachers (Klein, 
1932/2016). During this transition, many of the ambitious teaching practices experienced in 
teacher preparation programs may be absent (e.g., Stokking et al., 2003), but some may reemerge 
later (Grossman et al., 2000). Herbst and Chazan’s (2003) theory of practical rationality allows 
for conceptualizing this transitioning process as the socialization of beginning teachers into the 
profession, as they adopt a decision-making framework rooted in norms and four professional 
obligations. These obligations are to the discipline of mathematics, to students as individuals 
with unique needs, interpersonal obligations to the entire class, and obligations to follow the 
institutional policies, curricula, and practices of schools.  

To explore how beginning teachers negotiate between their formal education and the realities 
of classroom practice, specifically, how they integrate reasoning and proving into their teaching, 
we followed three beginning teachers: Nancy, Olive, and Diane for three years. First, as PSTs in 
the capstone course Mathematical Reasoning and Proving for Secondary Teachers (Buchbinder 
& McCrone, 2020), then as interns (INTs), and then as novice teachers (NTs) in their own 
classrooms. For each teacher, we collected observations, lesson plans, and interviews (3-4 in 
each setting) and analyzed them in terms of four professional obligations (Chazan et al., 2016) 
and personal beliefs. Here, we report in aggregate the observed percentages of coded utterances. 

As INTs, the participants’ discourse was dominated by institutional obligation (39%) evident 
in the expressed need to adhere to the school rules, curriculum, and the cooperating teacher’s 
traditional practices (e.g., “she [the CT] has a system that tends to work for her. So that's what 
I've been doing”). Disciplinary obligation is only expressed in visionary terms – a wish to have 
students do more explorations. As INTs gained more experience their focus on institutional 
obligation decreased to 17.7% in favor of exposing students to disciplinary practices (percent 
increase of 19) like exploring, conjecturing, and justifying. Having their own classrooms as NTs 
was characterized by renewed increased interpersonal obligation for the classroom (percent 
increase of 21.5). Despite the added responsibilities, the NTs continued to incorporate reasoning 
and proof, for example, by including discovery activities. By the end of year 1 the disciplinary 
and individual obligations were most prominent, about 30% each. These findings shed light on 
the process of reconciling various professional obligations while maintaining some focus on 
reasoning and proof. The findings have implications for those who work to support beginning 
teachers in their effort to create more reasoning and proof-oriented classrooms. 
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Holding on to Reasoning and Proving While Navigating Professional Obligations: 
Secondary Teachers’ Transition from University to Schools

Sophia Brisard, Rebecca Butler, & Orly Buchbinder
University of New Hampshire

• Transitioning between university teacher preparation 
programs and secondary schools is a complex process, 
fraught with many challenges for beginning mathematics 
teachers (Klein, 1932/2016; Smagorinsky et al., 2004).

• Challenges emerge in balancing commitments to the 
university, the cooperation teacher, while developing one’s 
own teaching identity (Bieda et al., 2015).

• The process of socializing in teaching profession 
involves developing a decision-making framework that takes 
into account four professional obligations: to the discipline of 
mathematics, to individual students, to students as a class 
and to the institution of schooling (Herbst & Chazan, 2003).

Theoretical FrameworkBackground Conclusions

Results

• Bieda, K. N., Sela, H., & Chazan, D. (2015). “You are learning well my dear”: Shifts in 
novice teachers’ talk about teaching during their internship.  Journal of Teacher 
Education, 66(2), 150-169. Buchbinder, O. & McCrone, S. (2020). Preservice teachers 
learning to teach proof through classroom implementation: Successes and challenges. 
Journal of Mathematical Behavior, 58, 100779. 

• Grossman, P. L., Valencia, S. W., Evans, K., Thompson, C., Martin, S., & Place, N. 
(2000). Transitions into teaching: Learning to teach writing in teacher education and 
beyond. Journal of Literacy Research, 32(4), 631-662. 

• Herbst, P., & Chazan, D. (2003). Exploring the practical rationality of mathematics 
teaching through conversations about videotaped episodes: The case of engaging 
students in proving. For the learning of Mathematics, 23(1), 2-14.

• Klein, F. (2016). Elementary mathematics from a higher standpoint: Volume I: Arithmetic, 
algebra, analysis. Springer. (Original work published 1932).

• Smagorinsky, P., Cook, L. S., Moore, C., Jackson, A. Y., & Fry, P. G. (2004). Tensions in 
learning to teach: Accommodation and the development of a teaching identity. Journal of 
Teacher Education, 55(1), 8-24. 
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Goal: To explore how beginning teachers negotiate the 
four professional obligations as they transition from 
university to classroom practice; specifically, how they 
uphold disciplinary obligation by integrating reasoning 
and proving into their teaching.

Obligation to follow 
institutional

policies, curricula, 
and practices of 

school

Interpersonal
obligations to the 

entire class

Obligations to 
students as 

individuals with 
unique needs

Obligations to the 
discipline of 
mathematics

Professional Obligations (Herbst & Chazan, 2003)

Intern 
Lesson 1

Year 1 
Follow-up

Novice 
Teacher 
Lesson 1

Intern Solo 
Week

Teacher Preparation 
Programs

Supervised Teaching 
Experience

Novice Teaching 
Experience

As interns, the participant’s discourse was dominated by institutional 
obligation evident in the expressed need to adhere to the school rules, 

curriculum, and the cooperating teachers' traditional practices. The interns 
have a desire to implement more exploratory activities. 

With more experience, the interns started to focus less on 
Institutional obligations and more on disciplinary obligations 

(exploring, conjecturing, and justifying).

As novice teachers, they concentrated more on their 
interpersonal obligation to the classroom while still having a 

strong desire to implement reasoning and proof activities. 

By the end of their first year of teaching, the disciplinary and 
individual obligations were more prominent.  

[The CT] has a system that tends 
to work for her. So that’s what 

I’ve been doing.
In my head, [students] are doing 

explorations all the time.

I pushed to do an [exploration activity] because in the original lesson plan that [CT] had 
written like for years prior the idea of flipping the inequality sign is not really explored at 

all…I wanted [students] to see it for themselves and to understand why that was the case.

Classroom management pieces were 
overwhelming in the beginning….But 
[students] have been really patient 

with me. 

I want to do more like group activities in the 
class, and less like direct instruction…and I’d 

like to do more exploratory stuff

The set of notes I had was this long, dreary 
like list of properties. So, I’m going to let 

them do this [exploration] activity instead.

The advanced group of kids, I like to confuse them because I 
like for them to unconfuse themselves because I find that’s 

when they really understand something.
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Participants: Three beginning teachers: Olive, Nancy, & Diane
Setting: The study is part of a longitudinal project that 
investigates beginning teachers’ expertise to teach 
mathematics via reasoning and proving.
• Each participant took a capstone course Mathematical 

Reasoning and Proving for Secondary Teachers (Buchbinder 
& McCrone, 2020) in their teacher preparation program.

Data sources for each participant:
• Lesson plans and observations
• Lesson debrief interviews (3-4 for each participant). 

Data analysis:
• Transcribed interviews were coded by three researchers for 

instances of the four professional obligations. 
• For each participant and for each lesson, we aggregated the 

codes into a single score on each obligation. 
• Percentages were calculated to identify trends across 

lessons and participants. 
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Teaching

First Year of 
Teaching 
own class
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Lesson
 Key

Olive

Diane

Nancy

Olive begins by focusing on institutional obligation,
then moves toward individual, and finally shifts 

toward disciplinary and interpersonal

Nancy begins by focusing on institutional 
obligation, then moves toward individual, and

then shifts back to institutional followed by 
disciplinary

Diane begins by focusing on disciplinary and 
institutional obligation, then moves 

toward disciplinary, and in the follow-up 
interview mostly focuses on individual obligation
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AI-Facilitated Cross-Cultural Problem-Solving in Calculus

Tuto Lopez-Gonzalez Michael Todd Edwards Zheng Yang
San Francisco State University Miami University (Ohio) SCUPI

Keywords: Artificial Intelligence, Cross-Cultural Collaboration, Calculus

Artificial Intelligence agents are used by undergraduates to support their doing of
mathematics (D'Mello et al., 2023; Isgandarli, 2022; Khazanchi et al., 2023). For example,
ChatGPT is increasingly used by undergraduates and their professors (Davies et al. 2021; Li et
al., 2023). How can this reality be leveraged to improve the mathematical learning experiences
of students in the U.S. and globally? (Almoubayyed et al., 2023).

The authors report preliminary findings of a research project that explored Large Language
Models (LLM) as tools for facilitating cross-cultural discussions about the "big ideas" of
calculus. The following question guided the study: (Q1) What impact do LLMs have on the
collaboration and mathematical problem-solving of calculus and precalculus students in an
international context?

In the study, two precalculus students from a state university in the United States (SFSU)
and two calculus students from a state university in China (SCUPI) worked collaboratively to
solve rich mathematics tasks. Four students participated, two from each university. Across three
90 minute sessions, the students met online (via ZOOM) and engaged in three types of
collaborative mathematics tasks---namely, (1) a computational task, (2) an applied problem, and
(3) a conceptually-oriented question. At the end of each session, students completed a short exit
survey consisting of Likert-style and open-ended prompts that asked about the nature and quality
of their interactions with each other and AI as well as their mathematical learning. An AI
assistant facilitated the meetings in a student breakout room, with human instructors available as
needed (in the main ZOOM room). The online meetings were recorded for further analysis.

In addition to the students' written work on tasks, responses on exit surveys, and ZOOM
recordings, the authors report participant responses on a recruitment survey. These four data
sources comprise all of the data sources for the study. The research team at SCUPI followed the
ethical guidelines and standards established by SFSU.

Data analysis is ongoing at the time of this writing and will include thematic coding of
student activities during the meetings, and a discussion analysis using Techno-Mathematical
Discourse (TMD) framework, focusing on the AI assistant's role in facilitating discussions
including the nature and depth of the mathematical and cultural conversations. The authors
compare and contrast interactions of students with each other and AI both within and across
cultures as they consider the research question (Q1).

The poster will include illustrations of the AI assistant-in-use, further details of the
research protocol, and QR code for accessing the research study AI agent directly. Poster-side
conversation will focus on the design of the study, lessons learned about cross-cultural aspects
from the first use of the protocol, and advice for revising the protocol.
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AI-Facilitated Cross 
Cultural Problem 
Solving in Calculus
PRESENTERS
Tuto LopezGonzalez
Todd Edwards
Zheng Yang

AI has potential as a supportive educational 

tool. Students used the AI agent to assist in 

understanding and solving calculus problems. 

Open tasks provide better contexts for AI 

learning agents to assists students.

“We ask the AI to help us understand and see 

ways to solve open problems"

PROJECT OVERVIEW
We engaged in a case study with four 
undergraduates--two from San Francisco State University 
(USA) and two from Sichuan University (China) who 
worked (via ZOOM) on collaborative calculus tasks 
assisted by an AI agent embedded into the sessions. The 
study explored the impact that the AI-based agent had 
on students' understanding of foundational ideas of 
calculus.

THE TASK
In particular, three types of collaborative mathematics 
tasks were explored in the sessions: (1) a computational 
task, (2) an applied problem, and (3) a 
conceptually-oriented question. At the end of each 
session, students completed a short exit survey about 
their interactions and their mathematical learning. 

THE AGENT
The Agent has a focus on mathematical guidance and 
cultural insight. It has three functions: (1) leads math 
discussions, (2) engages in discussions embodying 
historical mathematicians, and (3) helps create examples. 
The adaptive and inclusive approach aims to provide a 
friendly learning experience.

The agent is programmed using prompt engineering 
techniques such as algorithm of thoughts (AoT) (Bilgehan 
et al., 2023), program simulation (Scalamogna), and 
chain-of-thought (CoT). 
The result is a single prompt that starts the agent when 
entered to a large language model (LLM) to initiate the 
assistant. Note: An LLM is a mathematical construct 
employing transformer-based neural networks to model 
probability distributions over sequences of words. 

DATA COLLECTED
Zoom recordings, Students' work on tasks, Conversation 
with AI assistant, Responses on surveys

MEETING SUMMARIES

First meeting: Meeting each other
The focus was to meet each other, explain the objectives of 
the study, and provide context on technology setup. Students 
completed 2 ice-breaker tasks and explored the agent.

Second meeting: Derivative - Optimization
Students explored the notion of derivative  and 
collaboratively solved the Fenced Vegetable Garden task 
(Find dimensions would maximize the area of the vegetable 
garden). We used knowledge gained in this session to inform 
the revision of our AI-based agent for our final meeting. 

Third meeting: Integral - Area
Students engaged mathematically and culturally through a 
study of Eastern and Western contributions to calculus. 
Students calculated areas under curves, comparing methods 
used by 16-17th century mathematicians. Students 
constructed an example "where the value of the area under 
the graph of a function may not be found" and explain why.

REFERENCES
● D'Mello, S. K., & Graesser, A. (2023). Intelligent tutoring 

systems: How computers achieve learning gains that rival 
human tutors. In Handbook of educational psychology (pp. 
603-629). Routledge.

● Isgandarli, E. (2022). The Relationship Between Student 
Performance on Aleks Software and Standardized Tests. 
University of Missouri-Kansas City.

Scan the code to access the 
agent through GPT-4

FINDINGS
The Agent Matters: Sometimes the AI leaves out important 
steps in the calculations. For example, the agent described 
how Isaac Newton would have calculated the area under f(x) 
not explaining the evaluation of the anti-derivative at the 
limits of integration. “if we think, his approach is not very 
clear. Shall we ask the agent to explain more about that?”

IMPACT
The combination of the AI-agent and tasks designed to 
engage students' vocational aspirations strengthened 
student understanding of calculus and culture in ways not 
always possible with more traditional methods. This 
highlights the relevance of culturally responsive teaching.
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Discourse Between Learning Assistants and Calculus Students on Implicit Differentiation 
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Learning assistants (LAs) are undergraduate near-peer tutors who, having previously been 
successful in some course, aid in the instruction of that course, typically by interacting with 
individual students or groups (Otero et al., 2010). It has been shown that LAs’ presence in 
classrooms is associated with positive student outcomes (Barrasso & Spilios, 2021), but there is 
little understanding of how LAs contribute to such outcomes. While there are some action-
focused categorizations of LA practices, e.g., providing feedback and increasing discussion time 
(Knight et al., 2015; Thompson et al., 2020) they are not tied to specific content areas. This study 
contributes a subject-specific perspective on LA classroom practice by examining discourse 
between LAs and students on the topic of implicit differentiation in a Calculus I course.  

LAs were incorporated into the course as one part of a cross-departmental effort to transform 
introductory STEM courses at a large, public, northeastern university. This Calculus I course 
consisted of a lecture (~160 students) taught by a faculty member and recitations (~20 students) 
taught by a graduate teaching assistant. LAs were present only in recitations, and their role was 
to facilitate small group discussions during work on conceptually oriented activities. This study 
is focused on one recitation lesson on implicit differentiation. Data consists of 360-video 
recordings of small groups and students’ written work on the activity. Video clips were selected 
for analysis based upon the presence of the LA with the small group and conversation focus on 
implicit differentiation. Through this process, 19 clips (~25 minutes of video data) were 
identified for five LAs across two semesters. LA and student speech were transcribed and 
analyzed at the turn of talk level for mathematical content and discursive actions. Mathematical 
content was analyzed using components of a hypothetical learning trajectory (HLT) for implicit 
differentiation (Buchbinder & Allen, 2024). Discursive actions of LAs were analyzed using 
Thompson et al.’s (2020) Action Taxonomy for Learning Assistants while those of students were 
coded using an open process under the constant comparative method (Strauss & Corbin, 1998).  

Initial analysis indicates that LAs aid students in learning this topic by coordinating across 
multiple components of the HLT and integrating previous calculus content knowledge into these 
components. For example, one LA shared their conceptualization of implicit differentiation as 
the chain rule, rewriting y as y(x), while another LA described the implicit differentiation 
procedures as the “normal” derivative then “multiplying by dy/dx”. While students tended to ask 
LAs questions about algebraic procedures, LAs reoriented these questions toward sensemaking 
across graphical and symbolic representations of implicit equations.  

This analysis of LA-student interactions around implicit differentiation sheds light on the 
nuances of how LAs support student mathematical learning of that content. The study has the 
potential to bolster our understanding of student learning of the topic of implicit differentiation 
and gain insight into LAs’ instructional moves as they interact with students. 
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Discourse Between Learning Assistants and Calculus 
Students on Implicit Differentiation

Rebecca Butler & Orly Buchbinder
University of New Hampshire

Background

NSF Award No. 2013427. The opinions 
expressed herein are those of the authors and do not 
necessarily reflect the views of the National Science 

Foundation.  

Theoretical Framework

The Learning Assistant (LA) Model 
(Otero et al., 2010)

Motivation: Students in LA-supported courses show more 
positive content-related outcomes compared to students 
without LA support (Barrasso & Spilios, 2021), but little is 
known about how LAs facilitate positive student outcomes. 
Students struggle with implicit differentiation (Martin, 2000; 
Chu, 2019) offering opportunities for LAs to authentically aid 
student learning.

Learning Assistant: A current undergraduate student who has passed 
some course and who aids in the instruction of that course. 
• Practice: LAs help teach students in Calculus I recitations
• Content: Weekly meeting with course instructor to refresh course 

content 
• Pedagogy: Weekly meetings with a mentor to discuss educational 

topics (e.g., metacognition)

The Study
Setting: Part of a multi-disciplinary project for reforming introductory 
STEM courses at a large, public, northeastern university. 
LAs teach in Calculus I recitations (~20 students each), facilitating 
small group discussions about conceptually rich activities.
Participants: 5 LAs and 7 different small groups of students; 3-4 
students per group.
Data sources: 22 different 360°-video recordings of LA-student 
conversations on the topic of implicit differentiation
~25 mins of video data across two semesters.

LA Graduate TA

Calculus I 
Recitation

Responding to the Research Question

Research Question
What mathematical aspects of implicit differentiation 

do students and LAs discuss during their 
interactions in Calculus I recitations and how do 

they discuss them? 

ID Topics (N=250)

LAs’ Actions (N=140)

Students’ Actions (N= 110)

Example of Discourse
Student Actions LA Actions

Confirm 
correctness

Explain next 
step

Ask for 
directions

Confirm 
correctness

Explain next 
step

Point out 
incorrectness

Elicit student 
thinking

Checking work

Examine student 
work

Explain next 
step

Explain thinking

Vygotsky’s (1978) Sociocultural Theory
Learning is fundamentally social and 

mediated by language use

Critical 
Discourse 
Analysis 

(Gee, 
2014)

Saying
(Information)

Doing
(Action)

Being
(Identity)

Utterances coded for topic of implicit differentiation 
discussed (Buchbinder & Allen, 2024)

Utterances coded for student actions (open coding)
and LA actions via ATLA (Thompson et al., 2019)

Speech interpreted within the context of near-peer 
tutoring in Calculus 1

Symbolic 
Evaluation

Graphic 
Coordination

Symbolic 
Evaluation

Link to paper PDF

Ø LA-Student discourse is often pragmatic, focusing on correctness of 
mathematical procedures and connections to previous knowledge.

Ø Implicit differentiation topics: graphs in connection to computations.  
Ø Students ask LAs questions about next steps, follow LAs’ explanations, 

but also explain their thinking.
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ID Topic
Graphical

37%
Symbolic

26%
Algebra

24%
Calculus

13%

Guided facilitation
13%

Directed facilitation
52%

Feedback 
33%

Advice
2%

Ask for directions or reassurance
44%

Following LA Instruction
32%

Explaining work or thinking
24%

!"
!# =

1
5"! − 15"" + 4

# = "# − 5"$ + 4" “How do you draw 
the tangent line?”

“At each point of 
inflection…””So, what is the 

meaning of dy/dx?”

Significance
The student begins at the symbolic level, 

but the LA engages with graphical 
representations in complex ways, 

before returning to the pragmatic matter 
of symbols

Trend: Conversations focus on prior knowledge and symbolic representations, graphs discussed in connection to computations.   

Trend: LAs tend to explain concepts and give feedback (e.g., correcting, confirming) on students’ work.

Trend: Students seek out LAs to ask questions about next steps. They follow LAs’ explanations, but also explain their thinking.

“So, if you solve this plugging in 
one for all the y's, you'll get it.”

“You can use the quadratic 
equation to solve for y squared”

“Yeah, um, I think you just forgot to 
add the powers at the end, right?”

“Yeah, that's what you did there. 
Oh, so yes, this is correct.”

“Do you see any other points that 
look like they behave the same way?”

“So, how would you draw the 
tangent line there?”

“Is this right? Like am I 
on the right track?”

“How do you draw the 
tangent line?

“That would make 
a lot more sense!”

“Oh, my gosh. 
You're so right.”

“So, I said the derivative of y in 
terms of x the x derivative.“

“Okay, I did the (0,-1), but 
didn't get the same.“

Are there other points on the graph, 
where the slope of the tangent line 
is the same as you found at (0,1)? 

Respond using the graph, and then 
verify algebraically.
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Results of Analysis Using the Social Justice Syllabus Design Tool
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The re-humanizing of mathematics calls for a variety of classroom-level changes (Su, 2020).
Supporting faculty to transform their views of self, students, and authority can begin with the
course syllabus (Palmer et al., 2016). This report gives results of the authors’ analysis of 39
mathematics class syllabi, from 27 instructors, based on the Social Justice Syllabus Design Tool
(Taylor et al., 2019). The tool has 25 questions, each aligned with at least one of three categories:
community, process, relationships. In using the tool to design a syllabus, one answers reflection
questions and makes adjustments to bring the syllabus into greater alignment with recommended
practices (i.e., an answer of “Yes”). For this analysis, reviewers answered each of the tool’s
questions with Yes (1) or No (0) and had the option of offering notes about their selection (e.g.,
statements from the syllabus that prompted a “Yes” or "No").

On the tool were 10 questions aligned with the community category so 10 opportunities on
each syllabus for a “1” in community, 4 opportunities in process, and 11 in the relationship
category. Some questions were reverse-coded (i.e., where “No” indicated the presence of
justice-supportive language). Thus, there were 10+4+11=25 “points” possible for each syllabus.

As an example of poster content, across the 19 syllabi that were for 100-level courses, there
were 25*19=475 points possible. The leftmost chart in Figure 1 indicates the proportion of
points, out of all 475 possible, aligned with each of the three categories (the gray area indicates
the remaining proportion of potential points---social justice foci not present). Similar analysis of
nine 200-level course syllabi led to the rightmost chart in Figure 1.

Figure 1. Charts for 100-level and 200-level courses.

In addition to other visuals and comparisons, the poster shares wording. For example, the
following illustrate justice-aligned wording (coded with the answer "No" on the reverse-scored
question "Does the syllabus read like a legal contract?"):

This course aims to offer a joyful, meaningful, and empowering experience to every
participant.

We (you, your classmates and I) will experience many different class relationships and
mathematical ideas this semester. This syllabus documents significant goals and expectations
for our class and is a resource for the development of our particular Statistics learning
community. 
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International and Non-International Students’ Experiences in Chavrusa-Style Mathematics 
Courses 

 
 Baldwin Mei Mine Cekin 
 Columbia University Columbia University 

Keywords: Chavrusa, International Students, Collaborative Learning 

A significant group within increasingly diverse U.S. classrooms is international students, 
whose learning success involves social elements such as ensuring feelings of belonging, respect 
for one’s knowledge, and creative, effective, and confident participation in one’s learning 
environment (Ryan and Viete, 2009). Collaborative learning methods are effective pedagogical 
techniques to address these needs as they allow learners to interact with each other and build a 
sense of belonging while exposing each other to varied socio-cultural perspectives (Huijser et al., 
2008; Barkley & Cross, 2014). Chavrusa-style learning, modeled after Jewish Talmudic 
instruction, is a pedagogical technique where students are paired long term and asked to 
construct understanding from learning materials through debate (Pace, 1992; Kent, 2010). 
Research by Flint & Mei (2020) indicated that when implemented in mathematics courses, 
students felt chavrusa-style learning (MathChavrusa) broke down classroom barriers and 
improved the overall course experience. Due to the heavily social nature of MathChavrusa, it 
was hypothesized that this method may impact international and non-international students 
differently. Thus, the purpose of this research was to understand the experiences of international 
and non-international students in chavrusa-style mathematics courses. 

Method 
Participants consisted of a total of six international (3) and non-international (3) students who 

had taken graduate mathematics courses using chavrusa-style learning in the Fall 2021 semester. 
Data collection consisted of one online semi-structured interview for each participant and eight 
optional in-person classroom observations. The interview covered participant’s impressions of 
MathChavrusa and perceptions of how it impacted their learning and socialization experiences. 
Classroom observations focused on partner interactions and were recorded using field notes. 
Data analysis consisted of coding interview transcripts and field notes using provisional and in 
vivo coding to develop themes of participants’ learning and socialization experiences. 

Findings and Future Research 
International and non-international students perceived MathChavrusa to be beneficial when 

developing their mathematical understanding as it provided students with easily accessible 
sources of support when grappling with new material. Social and schedule compatibility of 
MathChavrusa partners were issues raised by all participants. The former was influenced by the 
mode in which MathChavrusa was implemented (i.e., in-person, hybrid, and online learning), 
with participants noting hybrid learning particularly undermined collaboration and socialization. 
A benefit noted exclusively by international student participants was that the long-term nature of 
partnerships allowed them to more easily build relationships that extended beyond the classroom 
and course. The poster will provide more granular descriptions and discussions of participants’ 
experiences, including the impact of modes of instruction, participant pairings, and individual 
preferences. In the future, we hope to examine differences in MathChavrusa when used in 
specific modes of instruction. 
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A Growing Need for Asian (American) Perspectives in Math Education

Matt Furuta Park Inyoung Lee
Virginia Tech Arizona State University

Undergraduate mathematics features a significant presence of Asian1 students, whether
international or American (NCES). These students naturally bring their views on learning
mathematics from their cultural experiences. However, researchers often adopt theories of
learning and teaching that may not fully incorporate the students’ viewpoints when developing
instructional materials and analyzing student reasoning. This proposal aims to foreground Asian
scholarship by reviewing existing literature in this regard and intends to open a venue for
discussing ways the RUME community could begin addressing this issue.

Keywords: Asian perspectives, Cultural differences, Dispositions, Equity

Despite the prominence of Asian (American) students in STEM classrooms, and Leung’s
(2001) declaration that an awareness of Asian scholarship “should contribute in a more
meaningful way to a sharing of best practices with other cultural traditions,” studies rarely reflect
the nuanced views they bring when learning mathematics. To address this issue, we focus on two
aspects: 1) dispositions - exploring instances where Asian (American) students may uniquely
experience mathematics, and 2) the Asian Classroom Paradox - examining the perspectives of
math education researchers that render their common frameworks inadequate.

Dispositions.
We explore instances that may be interpreted differently among students. When teaching

undergraduate students in the US classroom, we often encounter concerns expressed by those
who struggle in mathematics, such as ‘math is not my thing.’ (Nisbett, 2003; Whang, 1994) The
researchers observed that Asian students facing challenges in mathematics tend to perceive it as
requiring additional effort, while others may view it as a lack of inherent mathematical ability.
Such differences also extend to classroom behavior. (Ing & Victorino, 2016; Kim, 2002) We
found literature that may help locate the roots of these dispositions among Asian (American)
students, emphasizing memorization, practice, and a perception of education rooted in Confucian
dialectics instead of Socratic dialectics. (Fan et al., 2021; Kitayama et al., 2003; Marton et. al,
2005; Wang & Cai, 2007)

Asian Classroom Paradox.
Next, we draw particular attention to studies concerning student-teacher dynamics in Asian

mathematics classrooms. This paradox involves a disconnect between assumptions regarding
Asian classroom environments and their associated mathematical performance. Western
researchers have viewed the Asian classroom as less autonomous than the US classroom pointing
out the prevalence of directive lectures from teachers as the primary mode of learning. However,
recent studies (Zhou et al., 2012) claim that such a finding is only paradoxical because cultural
differences are not accounted for. These studies found that a Confucian framework describes
such lectures as student-centered and better discerns the relationship that Asian students have
with authority figures like teachers. (Jiang et al., 2021; Li, 2016; Chan et al., 2017)

1 Asian students include students from Southeast Asia (Philippines, Singapore, Malaysia etc…), South Asia (India,
Pakistan, Nepal, etc…), and East Asia (Korea, Japan, China etc…). Due to the positionality of the authors, this
proposal is mainly focused on East Asian scholarship.
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The Need for
Asian Perspec-
tives in RUME
Matt Furuta Park
Inyoung Lee

Introduction
“There exists an East Asian identity in
mathematics education, and an aware-
ness of that identity should contribute
in a more meaningful way to a sharing
of best practices with other cultural tra-
ditions” -Leung (2001)

Examples
These papers are examples of those
which touch on their given construct,
yet lack solid epistemological founda-
tions by Western standards.
•Mimicry/Imitation (Zhou, J., Guo, W.
(2016). Imitation in Undergraduate
Teaching and Learning. Journal of Ef-
fective Teaching, 16(3), 5-27.)

•Practice (Wang, T., Cai, J. (2007). Chi-
nese (Mainland) teachers’ views of
e�ective mathematics teaching and
learning. ZDM, 39, 287-300.)

•Memorization (Marton, F., Wen, Q.,
Wong, K. C. (2005). ‘Read a hun-
dred times and the meaning will ap-
pear...’Changes in Chinese University
students’ views of the temporal struc-
ture of learning. Higher Education, 49,
291-318.)

Conclusion
The RUME community should incorpo-
rate more non-Western philosophy to
enrich our learning theories.

Math education research from the West

touches upon constructs or phenomena

that is not well represented in the literature.

Ideas from Asia can help �ll in such theoret-

ical gaps. Please join our working group if

you are interested in such work.

Full Paper Survey Working Group

Additional Readings

•Ausman, M. C., Zhu, Q. (2023). Il-
luminating the APIDA Experience in
Engineering Education: A Scoping Re-
view. 2023 Collaborative Network for
Computing and Engineering Diversity
(CoNECD).

•Okura, K. (2021). There are no Asians
in China: the racialization of Chinese
international students in the United
States. Identities, 28(2), 147-165.

Additional Information
Take our survey
•What are some things in math educa-
tion that you feel are important but
underrepresented in howmath educa-
tion research is done in the West?

•Brie�y describe American cultural
practices or attitudes regarding teach-
ing and learning that initially surprised
you.

Working Group Goals
•Host a Working Group at the next
RUME.

•Get a talk submitted to PMENA and
RUME.

•Draft at least two papers integrating
the constructs on the left into existing,
popular epistemological frameworks.
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Argument Mapping for Proof Comprehension 
 

Andrew Baas 
Texas State University 

Keywords: argument mapping; proofs; proof comprehension 

Proof comprehension has long been recognized as a critical skill for mathematics students 
(Conradie & Frith, 2000; Cowen, 1991). Cowen specifically states that, while most students will 
not be proving theorems after graduation, many will need to be able to read and understand 
mathematical writing. While undergraduate proof comprehension has historically received little 
attention from researchers (Mejía-Ramos & Inglis, 2009), this has begun to change in the last 
decade due to theoretical-methodological advancements like the assessment model developed by 
Mejía-Ramos et al. (2012). These models have overcome challenges inherent to measuring 
students’ proof comprehension, enabling researchers to evaluate efficacy of methods developed 
to improve students’ proof comprehension. For example, two empirical studies have shown that 
proof presentations which have been assumed to improve proof comprehension (Alcock & 
Inglis, 2008; Rowland, 2002) actually fail to improve student proof comprehension compared to 
traditional proof presentations (Lew et al., 2020; Roy et al., 2017). 

Borrowing from research in philosophy education, I present argument mapping as a 
promising instructional technique for improving students’ proof comprehension. Argument 
mapping (also called argument diagramming) is the practice of converting a written argument 
into a graph-like representation which depicts the logical relationships among statements within 
the argument. One form of argument mapping, Toulmin diagrams, has been extensively studied 
both as an analytic tool to investigate proof production (e.g. Aberdein, 2006; Corneli et al., 2019; 
Pease et al., 2009) and as structured representation to facilitate collaborative argumentation 
(Wagner et al., 2014; Zambak & Magiera, 2020). Researchers in philosophy education have 
investigated how argument mapping techniques can improve students’ critical thinking (Harrell, 
2012; Twardy, 2004). Twardy (2004) demonstrated that first year philosophy students who were 
taught argument mapping had significantly higher gains on the California Critical Thinking 
Skills Test (CCTST) than those taught traditionally. Similarly, Harrell (2012) showed that 
students taking an introduction to philosophy course which taught argument mapping had 
significantly higher gains on a critical thinking-focused pre/post-test than those who had 
traditional instruction. While critical thinking in philosophy is not identical to proof 
comprehension, the skills measured by the CCTST and by Harrell’s critical thinking test seem to 
align with some of the dimensions of proof comprehension laid out by Mejia-Ramos et al. 
(2012). For example, one goal of Harrell’s test was to test whether students were able to 
“determine how the premises are supposed to support the conclusion” (2012, p. 34), which aligns 
with the dimension of comprehension “justification of claims” (Mejía-Ramos et al., 2012, p. 9). 

Based on this research in the field of philosophy education, argument mapping has the 
potential to improve student comprehension of proofs. For this poster, I will report a literature 
review of the current use of argument diagramming in mathematics education and in adjacent 
fields (like philosophy and logic) and present a study design which seeks to address the question: 
how does diagramming the argument of a proof impact a student’s comprehension of that proof?  
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Distributed Leadership in Action: The PAC-Math NIC 
 

          Jack Bookman              Emily Braley 
             Duke University                            Johns Hopkins University 

 
Jeneva Clark     Erica Slate 

  University of Tennessee, Knoxville       Appalachian State University.  
 
Keywords: Distributed Leadership, Networked Improvement Communities 
 
 Distributed leadership (DL) abandons the heroism of an individual leader, and instead, 
capitalizes on participants’ expertise by creating structures that encourage collaboration among 
an overlapping web of leaders and followers. Our prior work presented a new way of framing 
DL as ‘flipping the spider’ of traditional organizational hierarchy (Clark et al., 2022). Our 
previous research explored how DL-informed workshops can motivate faculty development 
(Clark et al., 2022) and teacher education (Miller & Braley, 2021). In our current project, we 
build on this and expand the work to explore how DL works within a Networked Improvement 
Community (NIC) (Bryk et al., 2015). NICs are described by four key characteristics: (1) the 
community aims to accomplish a clearly defined outcome, (2) members have a deep 
understanding of the common challenges of the community and are poised to adapt and create to 
make progress towards addressing needs, (3) the community action is informed by improvement 
science and strives for continuous inquiry and learning, and (4) members are coordinated to 
maximize effort towards addressing complex problems (LaMahieu, 2015). The DL structure 
provides opportunities for members to step into leadership roles according to their self-identified 
strengths and curiosities, while a core group of organizers and facilitators provide infrastructure 
and support.  

In October 2023, the Program Assessment Conference for Mathematics (PAC-Math) 
(NSF award #2306211) brought together mathematics professional development practitioners, 
evaluation professionals, and higher education administrators to develop a flexible protocol for 
mathematics departments to use for self-evaluations of their Professional Development for 
Teaching (PDT) programs for graduate student teaching assistants (GTAs). By replicating the 
DL model in this NIC context, we aim to provide more nuanced descriptions of the DL anatomy. 
PAC-Math will advance the frontiers of knowledge about how DL supports NICs.  

In this poster, we will review research about DL and describe how DL principles were 
applied in the planning of the PAC-Math conference by involving all participants. We will 
highlight how the DL model capitalized on the diversity of voices and shared expertise of 
participants. We will present some of the outcomes of the conference, conclusions of the external 
conference evaluation, and how the results of the conference will inform how DL might interplay 
differently in a NIC than in faculty development. We look forward to hearing from the RUME 
community about their insights into and experiences with DL and working in NICs. 
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Assessing Graduate Student Professional Development for Teaching: 
Needs and Progress With PAC-Math 

 
    Jack Bookman  Emily Braley    Jeneva Clark 

Duke University Johns Hopkins University U. of Tennessee Knoxville 
 

The Program Assessment Conference in Mathematics (PAC-Math, DUE# 2036211) was hosted 
in October 2023 at the University of Tennessee Knoxville. The conference produced key 
components to build a protocol for mathematics departments to self-assess their professional 
development for teaching provided to graduate students in mathematics. We describe previously 
presented results of a census survey of mathematics PhD programs conducted in Fall 2021 that 
reinforces the need in higher-ed mathematics for tools to do this assessment work, confirming 
results from a similar survey conducted in 2015. In this poster we outline the protocol, 
departmental resources needed to undertake this assessment work and questions of interest for 
the RUME community.  
 
Keywords: Graduate Student Teaching Assistants, Professional Development, Program 
Assessment 
 

Most PhD-granting mathematics departments provide Professional Development for 
Teaching (PDT) to Graduate student Teaching Assistants (GTAs) (Braley et al., 2023; 
Rasmussen et al., 2019). To sustain and improve these programs, departments and administrators 
need to be able to assess program effectiveness and establish assessment cycles that inform 
continuous improvement. From surveys conducted in 2015, in partnership between the CoMInDs 
project (NSF#1432381) and Progress Through Calculus project (NSF#1430540), and in 2021 by 
the CoMInDS project, we know that evaluation of GTA PDT has been extremely limited. For 
example, despite reservations of their validity, student evaluations of teaching are used as a 
primary evidence source to assess ongoing teacher training efforts (Braley et al., 2023; Speer et 
al., 2017). Survey respondents also indicated that tools for evaluation would be the one of the 
most valuable resources to help improve PDT programs.  

The PAC-Math (Program Assessment Conference in Mathematics, DUE# 2036211) 
project aims to improve program assessment practices for PDT programs for GTAs in 
mathematics. PAC-Math convened a diverse group of experts and oriented them to (1) the 
current landscape of GTA PDT in PhD granting mathematics departments and (2) the need and 
desire in the mathematics community to assess PDT. In October 2023 PAC-Math participants 
met in-person to draft a flexible assessment protocol for self-assessment of PDT programs.  

This poster will describe the background and evidence supporting the mathematics 
community’s need for GTA PDT assessment tools or guides. It will provide an outline of the 
draft protocol developed through the work of the PAC-Math participants with a focus on 
stakeholders roles and needs, as well as the differing needs at various institutions. We invite the 
RUME community to scrutinize our results and make suggestions for improving the PAC-Math 
Protocol. We hope to recruit partners for future work in this area.  
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Mathematics Motivation in Students Enrolled in an Introductory Biology Course 
 

 Sophia Brisard Melissa Aikens 
 University of New Hampshire University of New Hampshire 

Keywords: Mathematics Student Motivation, Quantitative Biology, Task Value, Self-Efficacy 

Over the last two decades, the field of biology has become increasingly more quantitative 
leading to more mathematics being integrated into biology education curriculum (Brewer & 
Smith, 2011). However, students enrolled in biology courses often report having negative 
feelings towards mathematics, resulting in them being resistant to learning course material 
(Thompson et al., 2013). To understand these negative feelings, this study focuses on identifying 
patterns of mathematics motivation among undergraduate students enrolled in a gateway biology 
course. To do this, the study utilizes Expectancy Value Theory (EVT; Eccles et al., 1983), which 
proposes that an individual’s expectancy for success and their subjective task values are 
predictors of academic choice, persistence, and performance. Subcomponents of values are (1) 
utility value, or how useful the task is for future goals, (2) interest value, or the intrinsic interest 
of a task, (3) attainment value, or the importance of doing well, and (4) cost, or the accumulated 
negative aspects of engaging in the task. This study looks at two dimensions of cost: emotional 
cost and effort required to complete the task (Wigfield & Eccles, 2000). 

Participants include 538 students in an introductory biology course at a large research-
intensive university. At the start of the course, students completed a 7-point Likert Scale survey 
that examined six variables including self-efficacy, emotional cost, effort cost, intrinsic value, 
mathematics attainment value, and utility value. Self-efficacy was measured as an indicator of 
expectancy of success (Eccles & Wigfield, 1995). Each subscale was taken or modified from 
previously validated surveys (Andrews et al., 2017; Flake et al., 2015; Gaspard et al., 2015; 
Glynn et al., 2011). The study used Confirmatory Factor Analysis, with “lavaan” R package 
(Rosseel, 2012) with maximum likelihood robust estimation (Knekta et al., 2019) to verify the 
factor structure of the variables. All fit indices (CFI, TLI, RMSEA, SRMR) were within 
suggested cutoff values as suggested by Hu & Bentler (1999) and Steiger (2007). 

This study used hierarchical cluster analysis (Wards method and Euclidean distance), to find 
students with similar motivation characteristics based on task values (mathematics attainment, 
utility, and intrinsic value), cost (emotional and effort) and self-efficacy (expectancy of success). 
Using the “NbClust” package (Charrad et al., 2014), we found three different patterns of 
mathematics motivation within the data: low, moderate and high. The low group includes 45 
students that place low value on mathematics (range of task value means: 1.76 - 3.91) and do not 
feel confident to complete the mathematics required in the course (self-efficacy mean: 2.93). 
Also, low motivation students felt that mathematics had high costs (emotional and effort cost 
means > 5.55). In contrast, the high group (164 students) place high value on mathematics and 
are more confident in the subject (task values and self-efficacy means > 5.60). In addition, 
students believe mathematics in the course has low costs (means < 2.50). The final group, 
moderate, is composed of 319 students who are moderately motivated to do mathematics. In this 
group, mathematics attainment value and utility value had higher means of 5.42 and 5.18, 
respectively. All other variable means were relatively close to 4. The findings show that students 
in the introductory biology course can be clustered into three groups (low, moderate, and high), 
with over half in the moderate cluster. For future analysis, we plan to further examine each 
cluster, with more of a focus on the moderate cluster. 
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 Over the last two decades, the field of biology has become 
increasingly more quantitative leading to more mathematics 
being integrated into the biology curriculum (Brewer & Smith, 
2011). 

 However, students enrolled in biology courses often report 
having negative feelings towards mathematics, resulting in them 
not fully engaging in quantitative tasks (Thompson et al., 2013). 

Data

Expectancy Value Theory (Eccles et al., 1983; Wigfield & Eccles, 2000)Introduction Multinominal Logistic Regression Results

Conclusions

Data Analysis

Cluster Analyis Results
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Instrument & Variables Measured

Setting and Participants
 Course: Introductory biology course 
 Six sections over 2 years

 Data consists of 473 student survey responses who were life-
science majors enrolled in the course.
 Gender: Male = 121 & Female = 352
 Pre-Professional Status: Pre-Professional = 211 & Non-Pre-

Professional = 262
 Highest math class taken in High School: Algebra, 

Geometry or Trigonometry = 70, Pre-Calculus = 202, & 
Calculus = 201

Construct 2: 
Utility value of 

mathematics for a 
career in life science

Construct 3:
 Attainment value – 
importance of doing 

the mathematics 
well

Construct 5: 
Effort required to do 
mathematics in the 

biology course

Construct 4: 
Emotional Cost of 
using mathematics 

in the biology 
course

Construct 6: 
Expectations for 
success in using 
mathematics in 

biology courses - 
measured by self-
efficacy (Eccles & 

Wigfield, 1995)

 The survey is made up of 28 7-point Likert-type items taken or 
modified from previously published surveys (Andrews et al., 
2017; Flake et al., 2015; Gaspard et al., 2015; Glynn et al., 
2011). 

 The instrument contains items that relate to six constructs:

 Confirmatory Factor Analysis with maximum likelihood robust 
estimation (Knekta et al., 2019) verified that all fit indices (CFI, 
TLI, RMSEA, SRMR) were within suggested cutoff values as 
suggested by Hu & Bentler (1999) and Steiger (2007). 

What are the mathematics motivational 
patterns among undergraduate    
students who are enrolled in a gateway 
biology course?

 Agglomerative Hierarchical Clustering using Wards method as the algorithm and 
Euclidean distance as the distance measure.

 Bootstrapping was used to determine the optimal number of clusters.

To what extent is gender and pre-
professional status related to these 
patterns?

 Multinominal Logistic Regression Analysis
 Outcome Variable: Cluster 
 Independent Variables: Gender (male or female) and Pre-Professional 

Status (pre-professional or non-pre-professional) 
 Control Variable: Highest Mathematics Course Taken in High School         

(Algebra/Geometry/Trigonometry, Pre-Calculus, or Calculus)

Research Questions:
1. What are the mathematics motivational patterns among 

undergraduate students who are enrolled in a gateway 
biology course?

2. To what extent is gender and pre-professional status 
related to these motivational patterns?

Achievement Motivation & Task Completion

Task Values
 Intrinsic Value
 Utility Value
 Attainment Value
 Emotional Cost
 Effort Cost

Expectancy of 
Success
 Self-Efficacy

Construct 1: 
Intrinsic value - 
interest in using 
mathematics to 

understand biology

Figure 1: Percent chance each predictor variable category is in 
low, moderate and high motivation cluster.

Cluster 
Variable

Low 
Motivation

N = 45 

Moderate 
Motivation

N = 319

High
Motivation

N = 164

Intrinsic Value 1.76
(± 0.65)

3.56
(± 1.23)

5.62
(± 0.77)

Utility Value 3.76
(± 1.23)

5.42
(± 0.99)

6.20
(± 0.81)

Mathematics Attainment 
Value

3.91
(± 1.07)

5.18
(± 1.02)

6.13
(± 0.77)

Emotional Cost 6.11
(± 0.60)

4.32
(± 1.05)

2.33 
(± 0.91)

Effort Cost 5.55
(± 0.76)

3.74
(± 0.98)

2.10
(± 0.72)

Self-Efficacy 2.93
(± 1.17)

4.72
(± 1.05)

5.98
(± 0.84)

 Students in the introductory biology course can be clustered into three 
groups of motivation (low, moderate, and high), with over half in the 
moderate cluster.

 Gender and pre-professional status were not statistically significant in 
predicting motivational patterns.

 Controlling for highest mathematics course taken in High School, the 
probability that a female will be in the high motivation cluster is 27.8%. In 
comparison, the probability that a male will be in the high motivation cluster 
is 40.9%.

 Pre-Professional majors have a 35.7% chance of being in the high 
motivation cluster while non-pre-professional majors have a 27.3% of being 
in the high motivation cluster while controlling for highest mathematics 
course taken in High School.

 Next Steps: Investigate whether students’ motivational patterns change as 
they complete the biology course?Table 1: Means and Standard Deviations of the six affective variables in each motivation cluster.
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INTRODUCTION
What is …… 

★Quantitative Literacy (QL): the ability to 
understand, interpret, and apply numerical and 
mathematical information across various 
contexts. 
★Physics Quantitative Literacy (PQL):  the 

blending of conceptual and procedural 
mathematics to generate and apply quantitative 
models of physical phenomena. 
★Physics Inventory for Quantitative Literacy 

(PIQL): a multiple-choice test designed to 
assess PQL in everyday and abstract contexts.

MORE RESULTS
Physics majors develop algebraic reasoning 

but 
they don’t perceive it as “doing physics”

For more information 
and list of references, 

check out the QR code!→

METHOD 
★Where: University of Washington 

★When: between 2020 - 2023 

★Who: Matched groups of physics majors 
(anonymized by code) from 3 levels of courses 
✴Number of people in each matched set: 

          100 - 200 Level: 198 

          200 - 300 Level: 60 

          All Three Levels: 42 

★How: 
✴Quantitative: We group students by thirds 

according to their pretest scores and use 
the same breakdown for posttest. 

✴Qualitative: Free response survey collected 
from 102 students after they took the PIQL.

DISCUSSION 
What are we doing next: 
★ Collect more data and look more closely into students who change 

their groups and who stay in the same groups 

★ Compare students’ PIQL scores with their course grade and see if 
there is a connection

Are physics majors surprised that students don't typically 
reason math better after taking introductory physics?

Students' transitions between low, medium, and high scoring groups.

42.9%

28.6%

28.6%

21.4%

16.7%

61.9%

Why do they think so? 
✴ “…in my experience UW physics does not teach math 

reasoning skills” 
✴ “…the intro physics courses are more about learning the 

details of the physics rather than broader math reasoning 
skills” 

✴ “…intro physics is too dense with memorizing equations, it 
does not introduce mathematical creativity very much for 
better or worse” 

✴ “…the intro series of physics courses is also pretty poor at 
building up mathematical reasoning skills, …, with the math 
consistently being the most difficult part as well as the most 
glossed over part of these courses”

What they saw →

100 → 200 Level 200 → 300 Level

100 → 200 → 300 Level

100-200 Number of 
People

Average 
Score

Percentage Number of 
People

Average 
Score

Percentage

Low (2 - 10) 73 7.43 36.1 57 8.59 28.2

Medium (11 - 14) 71 12.5 35.1 64 13.9 31.7

High (15 - 20) 58 16.7 20.8 81 17.9 40.1

200-300 Number of 
People

Average 
Score

Percentage Number of 
People

Average 
Score

Percentage

Low (4 - 12) 21 8.48 35 15 7.93 25

Medium (13 - 15) 23 13.8 38.3 16 13.9 26.7

High (16 - 20) 16 17.1 26.7 29 17.6 48.3

100-300 Number 
of People

Average 
Score

Percentag
e

Number 
of People

Average 
Score

Percentag
e

Number 
of People

Average 
Score

Percentag
e

Low (3 - 12) 18 9.33 42.9 14 9 33.3 9 8.44 21.4

Medium (13 - 14) 12 13.4 28.6 12 13.5 13.4 7 13.7 16.7

High (15 - 20) 12 16.3 28.6 16 16.6 38.1 26 17.1 61.9

Max score = 20

Percentage of students 
(Score Range)  

Max score = 20

(2 - 10)

(11 - 14)

(15 - 20)

(2 - 10)

(11 - 14)

(15 - 20)

Physics courses don't 
teach math reasoning

People get bored of 
repeated PIQL tests

People forget what 
they learned

Math reasoning 
cannot be taught

PIQL test is more about 
math than physics

Statistical reason

Other reasons

WHY?
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Proof Writing and Comprehension in Topology

Caleb Judkins Sepideh Stewart
The University of Oklahoma The University of Oklahoma

Keywords: Topology, mathematics communication, APOS, Tall’s worlds of mathematical
thinking, proof

The pedagogy of proof has been a topic of research interest in mathematics education
literature (e.g., Melhuish et al., 2022). While proof writing is a formal and abstract topic for
many students, topology proofs typically demand a level of visual comprehension as well, which
places topology in a spot of particular interest. Many argue that learning topology relies on
spatial reasoning, yet others have noted that students’ shortcomings are typically in the formal,
proof-based aspects of problems (e.g., Narli, 2010). Various researchers have sought to
understand how we can teach topology by studying how learning takes place (e.g., Cook et al.,
2017; Wilkerson-Jerde & Wilensky, 2011), what methods of teaching can support this learning
(e.g., Griffiths, 1971; Deogratias, 2022; Estabrooks & McArdle, 2022; Stewart, 2000), and what
concepts students typically understand (e.g., Aksu, Gedik, & Konyalioglu, 2021; Cheshire, 2017;
Gallager & Infante, 2019). However, there is a lack of research into how students perceive their
own experiences in learning topology.

We seek to build a model based on Tall’s (2008; 2013) framework of mathematical thinking
and APOS theory in order to gain insights into the cognition of topology. In addition, we will
examine how students communicate their experiences and think about topology. Tall’s three
worlds suggests that modes of thinking can be described as three different “worlds” of thought:
the embodied, symbolic, and formal worlds (Tall, 2008; 2013). The embodied world refers to
aspects of thought informed by perception, the symbolic world contains the thinkable concepts as
generalized objects, and the formal, axiomatic world derives meaning from definitions and
formal constructions. APOS theory refers to the depth of understanding that learners may
demonstrate as they come to understand a topic (Dubinsky & McDonald, 2001). Using the three
worlds of mathematical thinking and the action, process, and object levels from APOS, we will
create a table synthesizing both ideas inside a grid (APOS on the first column, three worlds on
the top row). Networking these theories gives language to what behaviors are exhibited in proof
as the writer transitions across various types of thinking and levels of complexity. Changes
throughout a proof would be characterized as transitions of thought, demonstrating how various
ideas are handled, transformed, or ignored. We will demonstrate this model with a particular
example from topology and elaborate on the mathematics behind it in order to develop it.

This three worlds-APOS model can be employed as novice graduate students complete work
in topology. Students may understand concepts as actions, then generalized processes, then
complete objects, and have a schema to allow them to transition between all three worlds of
mathematical thinking. This research study is sought to determine students’ struggles and
experiences with topology using the model. We seek to answer the following questions: How
can this model be used to examine the level of understanding of topology? What improvements
can be made to this model? What topics in topology does this model reveal that are typically
neglected on the formal level? What topics in topology are transitioned into spatial reasoning?
What topics in topology are kept on the formal level of understanding?
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INTRODUCTION
The pedagogy of proof has been a topic of research interest in mathematics education 
literature (e.g., Melhuish et al., 2022). While proof writing is a formal and abstract topic for 
many students, topology proofs typically demand a level of visual comprehension as well, which 
places topology in a spot of particular interest. Many argue that learning topology relies on 
spatial reasoning, yet others have noted that students’ shortcomings are typically in the formal, 
proof-based aspects of problems (e.g., Narli, 2010).A portion of the literature can be 
summarized with the following:

Caleb Judkins & Sepideh Stewart
University of Oklahoma

Proof  Writing and Comprehension in Topology

THEORETICAL BACKGROUND

APPLYING THE MODEL:  TASK AND SAMPLE SOLUTION

 Why are there no formal actions?
 The world with the most behavior is the symbolic, 

the stage most referenced is object. Does the 
performance on this question support this?

 When do transitions from worlds/stages happen?

What do students 
struggle with?

What methods of 
teaching can help 
students?

How do students 
develop 
understanding?

How can we 
reinvent how 
topology is taught?

Countable 
unions/intersections
Non-metrizable spaces
Escaping the usual 
topologies
Applying topology to 
geometry

Topology can be taught 
motivated from 
analysis
General topologies are 
abstractions of metric 
spaces
Physical objects can be 
helpful, though 
sometimes confusing

Students reinvent and 
adapt their own 
axiomatic systems
Students reconcile 
misconceptions
Experts learn well 
from proofs

Classes based around 
students discovering 
the concepts do 
incredibly well
Motivations for 
topology exist in 
games/art

e.g., Deogratias 2022; 
Aksu et al. 2021; 
Cheshire 2017; 
Gallagher 2019;
Narli 2010

e.g., Shipman & 
Stephenson 2022; 
Helmstutler et al. 2012; 
Griffiths 1971

e.g., Cheshire 2017; 
Wilkerson-Jerde, 
Michelle, & Wilensky 
2011

e.g., Estabrooks & 
Mcardle 2022; Cook et 
al. 2017; Stewart 2000; 
Poggi 1985

To help identify when transitions are made, the order of the items are numbered with superscripts.
Question 1:  Give a metric on the set ( -1 ,1) that induces the usual topology and is complete.

Action Process Object

Embodied -1→ -∞, 1→∞
6

(-1,1)→R sends 
points to infinity

4
Graph of Tan is 
infinite 1-manifold

1.5

Symbolic Compose distance 
with Tan

9
d(a,b)=|a-b|

8
R ≅ (a,b)

1

Metric has 2 inputs
7

Formal f(x)=Tan(x*pi/2)
5

Reals are complete
2

(-1,1) doesn’t have its 
limits

3

What is the usual topology on this interval? It’s the same as the reals, as is any basic open interval (via some variation on tangent). I must 
come up with a metric that induces the usual topology but is complete as a metric space, so I ask if the space is usually complete. The reals 
are complete with the usual metric, but clearly, as is the concept of the question, the interval given is not complete with the same metric. 
So, comparing the two spaces, how are they different from a metric standpoint:  While the interval is finite in length, the reals are infinite, 
so we just need to identify how the interval is sent to the reals via tangent, then combine that with the usual metric on the reals.  

Action Process Object

Embodied Path-Connectedness 
is embedding lines 
throughout the space

2

Symbolic Compliment of (0,a) 
is [a, ∞)

5
Closed sets of R

6

Formal Courser topologies 
are not always subset 
topologies

1

Definitions:  Topology 
as a set-family

1.5
, path-

connected
3
, 

continuous function
4

While being a subset of the reals, this is not given the subspace topology, so I need to be mindful of that distinction as I think of this space. 
My usual intuition for path-connectedness fails since this is not the usual topology. I fall back on the definition of path-connected, and, 
wanting to make a path between any two points, I realize I’m not sure what a continuous function into this space should look like. The 
definition of continuous is the preimage of closed sets are closed, so I need to know what sets are closed in this topology. Since these are 
just compliments of the open sets given to me, they all look the same as [a, ∞). These sets are already closed in the usual topology, so the 
usual paths are already continuous here, so any straight-line path is a path from any two points of the space, thus the space is path-
connected.

DESIGN OF THE MODEL AND RESEARCH QUESTIONS

 Why was this mostly a symbolic and object oriented 
proof?

 Does the lack of varying concepts reflect a lack of 
understanding or completion?

Tall’s Three Worlds of Mathematical Thinking suggests that modes of thinking can be 
described as three different “worlds” of thought:  the embodied, symbolic, and formal worlds 
(Tall, 2008; 2013). The embodied world refers to aspects of thought informed by perception, 
the symbolic world contains the thinkable concepts as generalized objects, and the formal, 
axiomatic world derives meaning from definitions and formal constructions.
APOS theory refers to the depth of understanding that learners may demonstrate as they 
come to understand a topic (Dubinsky & McDonald, 2001). First, there are actions taken. 
Processes are actions that are repeated and reflected upon, which then are encapsulated into 
objects that can be acted on. The schema is the collection of all of these. 

Seeking to gain insight into how students perceive their own actions in their topology proof 
writing, we network Tall’s Three Worlds and APOS Theory together to develop a model. 
Putting these together gives a holistic perspective of the learner’s thoughts and actions. We 
perform this networking by combining both theories into a single table with APOS columns 
and Tall’s Three Worlds rows.  With this model in mind, we seek to answer the following 
research questions:
How can this model be used to examine students’ understanding of topology? 
What topics in topology does this model reveal that are typically neglected on the 
formal level? What topics in topology are transitioned into spatial reasoning? What 
topics in topology are kept on the formal level of understanding? What are the 
limitations of this model and what improvements can be made?

Still, there is a lack of research into how students navigate transitions from the spatial concepts 
to formal logic and how they perceive their own actions in topology.

REFLECTION
Please visit: 
https://sites.google.com/view/
proofwritingandcomp

Question 2:  Is the topology given by T={ (0,a) ≤ R+ | 0 < a } path connected?

Although the model is adequate at showing how students think about concepts in topology in terms of 
complexity and form, as the examples above show a lack of formal actions, it needs more research directed 
towards questions demanding those behaviors.
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Recently, there has been a surge in interest in developing more flexible assessment structures,
with a great deal of momentum for this movement from COVID-19 pandemic equity
considerations (Kadakia & Bradshaw, 2020; Kim, 2020). Active-learning-based instructional
practices are now established in undergraduate education (Laursen & Rasmussen, 2019). Yet,
how to align assessment with those practices is still developing. The ideas presented are part of a
larger project that explores instructor and student perspectives on active assessment, assessment
strategies grounded in the values and practices of active learning, including attention to equity.
The authors are participants in the project. This poster will focus on challenges and benefits that
have appeared in the first year for the authors, as a community of practice (CoP), designing and
implementing active assessment.

Members of the CoP are mathematics instructors in a variety of career stages and positions,
teaching courses from introductory-level courses with co-requisite support, through upper
division electives for math majors. This work takes place at an institution with a variety of
supports available, and individual instructors’ consideration and implementation of active
assessment occurs within the ongoing process of CoP professional and pedagogical growth.

This poster will share stories about our motivation as well as initial and in-progress thoughts
on implementation. It will include details on class sizes and examples of active assessments as
well as notes on how they are administered. The stories generated some questions related to
equity and the challenges and benefits of active assessment:

● We have noticed a challenge in structuring projects as a form of active assessment. Thus,
a focal question for the group is: How do we balance promoting group projects and
offering individual options for projects in response to the needs and preferences of
students?

● Using assessments involving short- and long-answer responses, we noticed students gave
short, surface-level responses. This led to another question for the CoP to address: How
can we leverage assessment strategies and give qualitative feedback that supports
students in engaging with written assignments in a meaningful way?

● Peer feedback on assessments can help students plan their learning and identify strengths
and areas for growth. How can we evoke critical peer feedback that encourages students
to reflect more deeply on the quality of their work?

In all of these questions, we aim to center equity and access to rich mathematical
experiences. A goal of this poster is to generate critical conversations that will inform our
ongoing research and practice.
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By using assessment 
strategies
aligned with active learning, 
we uncover more about 
students’ learning process.

Implementing Active Assessment: 
Stories from an Instructor Learning Community

Mikahl Banwarth-Kuhn
Tu Hoang
Ryan Moruzzi Jr.
Simone Sisneros-Thiry

Projects: 
Finite Math for Business
Business Majors, 35 students
Students chose to either use 
real data from a company that 
produces and sells items or to 
estimate data from an 
imaginary future business. 
Groups built models of 
business functions and used 
platforms such as Desmos to 
make a presentation that 
explains important points in the 
model and provide the best 
consulting solution for the 
business by mathematics.
● Reducing stress compared to 

a traditional test.
● Challenging if students 

cannot work in groups for any 
reason.

● How flexible we can be if 
students can’t work in project 
for any reason?

2023-2024 Assessment 
Community of Practice
● Includes lecturer, 

pre-tenure, and tenured 
faculty.

● Wide range of courses and 
assessment strategies 
represented.

● Focus on active 
assessment across 
different contexts. 

Written Responses:
Math for the Arts and Humanities
Non-STEM majors, 35 students
Students compiled portfolios of 
their work. As part of the 
portfolio, students had to write 
summaries of mathematical 
content from topics covered in 
class. 
● Writing summaries helps 

students reinforce content and 
encourages students to write 
mathematical ideas in their 
own words. 

● Students typically gave surface 
level responses and had a 
difficult time synthesizing 
material. 

● How can we prepare students 
in a math class to engage in 
writing at a deeper level? 

Peer Feedback:
Intro to differential Equations
STEM Majors, 20 students
Students created mini lessons to 
teach each other techniques for 
solving ODEs. They were 
required to give feedback on 
their classmates’ mini lessons, 
and use feedback they received 
to revise their work.
● Student presentations 

provided insight into their 
thinking and how they 
approached each problem.

● Peer feedback did not promote 
deeper reflection or increase 
progress toward the learning 
objectives for either learner.

● How can we evoke critical 
peer feedback that 
encourages students to reflect 
more deeply on the quality of 
their work?

I feel more 
invested.

I’m not sure 
how to 

grade this!

This is not 
what I was 
expecting.

I feel less 
anxious.

I can see 
more of the 

steps.

There’s not 
enough math!

I learn better 
on my own.

This project is supported by a National Science 
Foundation grant (BCSER #2225295). Any opinions, 
findings, conclusions or recommendations are those of 
the authors and do not necessarily reflect the views of 
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Is There an Interrelation Between Graduate Students’ Teaching of Undergraduate Courses and 
Their Own Learning of Advanced Mathematics? 

 
 Anna Mikulo Sepideh Stewart 
 University of Oklahoma University of Oklahoma 

Keywords: mathematics graduate students, teaching, leaning, ROG, PCK 

The academic role of mathematics graduate students is complex, as it entails being 
simultaneously a student, a teacher, and a researcher. The three roles are inseparable from the 
graduate school experience and shape graduate students’ professional identity (Colbeck, 2008). 
Some studies (e.g., Lai et al., 2016; Speer & Hald, 2008; Schoenfeld, 2015) suggest a deeper 
consideration of the connection between teaching, research, and learning among graduate 
students. Furthermore, Beisiegel (2019) believes that some mathematics graduate students 
perceive teaching and research as contrasting and contradicting roles.  

The purpose of this poster is to build and discuss a model of “Interrelation Between Teaching 
and Learning Mathematics of Graduate Students”, based on Schoenfeld’s (2015) “Resources, 
Orientations, and Goals” model along with Ball et al.’s (2008) “Pedagogical Content 
Knowledge” theoretical framework. As a teacher and researcher, being a student is an 
inseparable part of graduate students’ professional identity (Colbeck, 2008); hence, constant 
learning is inevitably a part of graduate students’ lives, resulting in the accumulation of 
mathematical knowledge. The framework of “Resources, Orientation, Goals, and Decision-
Making” (ROGs) was developed to predict and map one’s professional behavior (Schoenfeld, 
2015). Schoenfeld’s framework made knowledge to be the resource in focus, which, in the 
presented model, graduate students rely on the most. According to Schoenfeld, “an individual 
enters into a particular context with a specific body of resources, goals, and orientations” (p. 
347), they observe and orient the situation, establish or re-establish goals, and make decisions as 
a result of this internal analysis (Schoenfeld, 2015). In teaching undergraduate courses, graduate 
students’ decisions and choices are impacted by their previously acquired knowledge. The choice 
of lecture style, problems solved, examples, and explanations given are based on graduate 
students’ mathematical knowledge acquired through their prior learning. For example, upon 
completing Real Analysis, graduate students’ teaching of limits and integrals may be enhanced 
by their theory encountered in the class. In addition to mathematical knowledge, teachers have a 
pedagogical content knowledge acquired through teaching (Ball et al., 2008). As teachers, 
graduate students have a developed intuition about problems and concepts that are challenging 
for students and are “able to hear and interpret students’ emerging and incomplete thinking” (p. 
401) (Ball et al., 2008). The knowledge of the origin of common mistakes and misconceptions 
among students allows teachers to reliably identify students’ thought processes behind solving 
math problems. The awareness of multiple ways to approach solving a problem, the knowledge 
behind made choices, and recognition of different strategies applied in the solution are a product 
of pedagogical content knowledge (PCK). Such gained skill set is expected to help graduate 
students with answering challenging homework problems in their classes by revealing alternative 
approaches.  In light of the proposed model, our research questions to guide this study are: Does 
the pedagogical content knowledge gained from teaching undergraduate courses affect graduate 
students’ learning of advanced mathematics? Does the knowledge acquired while studying for 
graduate courses impact the graduate students’ teaching? 
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INTRODUCTION 
The academic role of mathematics graduate 
students is complex, as it entails being 
simultaneously a student, a teacher, and a 
researcher. The three roles are inseparable 
from the graduate school experience and 
shape graduate students’ professional identity 
(Colbeck, 2008). A study by Beisiegel (2019) 
reveal mathematics graduate students’ view 
of the relation between teaching and 
research, where studied participants 
perceived two roles being “totally different” (p. 
494). This perception could lead to research 
and teaching requiring separately invested  
time and energy, leaving graduate students 
with no choice but under-commit to one of the 
roles. The purpose of this poster is to build 
and discuss a model of “Interrelation Between 
Teaching and Learning Mathematics of 
Graduate Students”, based on Schoenfeld’s 
(2015) ROGs model along with Ball et al.’s 
(2008) PCK theoretical framework. 

DESCRIPTION OF THE MODEL 
This model relies on two theoretical frameworks: PCK (Ball et al., 2008) and ROGs 
(Schoenfeld, 2015). During teaching, graduate students acquire pedagogical content 
knowledge, which enhances their understanding of the material taught and introduces them 
to different solution approaches undergraduate students take. With wider exposure to 
problem-solving techniques, we conjecture that producing proofs may become clearer for 
graduate students. On the other hand,  while learning advanced mathematical content, 
graduate students expand their knowledge, which is the primary resource of their reliance. 
With knowledge as a resource, according to ROGs, graduate students’ decisions in teaching 
change correspondingly to the resource. Hence, graduate courses students take influence 
their choices of material presentation, solution approaches, and variety of examples 
provided.
The model aims to track and establish the existence of a relation between teaching and 
learning, which would help to understand graduate students’ experience as teachers and 
students and help them witness the influence of this interrelation. 

PROFESSIONAL IDENTITY

Teacher

Researcher

Student
RESEARCH QUESTIONS
Ø Does the pedagogical content knowledge 

gained from teaching undergraduate 
courses affect graduate students’ learning 
of advanced mathematics?

Ø Does the knowledge acquired while 
studying for graduate courses impact the 
graduate students’ teaching? 

THE MODEL: INTERRELATION BETWEEN TEACHING AND LEARNING 
MATHEMATICS OF GRADUATE STUDENTS

Interrelation Between Teaching and Learning Mathematics of Graduate Students
Anna Mikulo & Sepideh Stewart

THEORETICAL BACKGROUND
The framework of ROGs was developed to predict and map one’s professional behavior (Schoenfeld, 2015). Schoenfeld’s 
framework made knowledge to be the resource in focus, which, in the presented model, graduate students rely on the most. 
According to Schoenfeld, “an individual enters into a particular context” (p. 347), they observe the situation, establish goals, and 
make decisions as a result of this internal analysis (Schoenfeld, 2015). In teaching undergraduate courses, graduate students’ 
decisions and choices are impacted by their previously acquired knowledge. 
As teachers, graduate students have a developed intuition about problems and concepts that are challenging for students and are 
“able to hear and interpret students’ emerging and incomplete thinking” (p. 401) (Ball et al., 2008). The awareness of multiple 
ways to approach solving a problem, the knowledge behind made choices, and recognition of different strategies applied in the 
solution are a product of PCK. Such gained skill set is expected to help graduate students with answering challenging homework 
problems in their classes by revealing alternative approaches. 
Graduate students observe norms of social interactions in their professional environment, interpret them based on their personal 
experience, and adapt such norms according to how they see themselves fit in that professional environment. Adapting Colbeck’s 
definition (2008), the identity is “‘what it means to be who one is’” (p. 10) and “individuals’ identities are often associated with 
labels for social positions or roles” (p. 10) (Colbeck, 2008). So, having a professional identity as a graduate student entails having 
teacher, student, researcher, mathematician, tutor, grader, and TA as part of their professional identities.

Teaching Learning

Ø Acquiring Pedagogical 
Content Knowledge (PCK)

Ø Enhancing problem 
solving skills’

Ø Relying on knowledge as a 
resource during decision 
making 

Ø Utilizing gained problem-
solving skills 

Ø Relying on strengthened 
mathematical foundation

Ø Acquiring mathematical 
knowledge

FUTURE STUDY
To test the developing model, the future research may 
be a case study using a qualitative research 
approach and it may be carried out in two phases. 
The fist phase will investigate the relation between 
teaching and graduate students’ learning where the 
participants will be University of Oklahoma 
mathematics graduate students two have taken Real 
Analysis sequence, have no prior experience 
teaching Calculus, and are assigned to teach 
Calculus I or Calculus II. Before the semester of 
teaching, graduate students will be asked to answer a 
list of Real Analysis questions that relate to Calculus 
topics other advanced Real Analysis questions. At the 
end of the semester, graduate students will be asked 
a set of similar questions to gage any enhancement 
of understanding of Real Analysis concepts. 
REAL ANALYSIS TEST

The second phase will consist of exploring ways 
studying advanced mathematics may influence 
teaching undergraduate courses. The participants will 
be mathematics graduate students who have not 
taken Real Analysis sequence and they will be 
interviewed before and after the sequence. The 
interview questions will target graduate students’ 
approach to teaching Calculus I or II related topics. 
The Interviews will be conducted and after before 
taking Real Analysis sequence.

INTERVIEW QUESTIONS RELATED TO TEACHING

REFERENCES AND CONTACT
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Creating Statistically Equivalent Versions of a Test of Quantitative Literacy in Physics Contexts 
 

 Trevor I. Smith Zachary Bischoff Brett Boyle 
 Rowan University Rowan University Rowan University 

 Jack Sayers Charlotte Zimmerman Philip Eaton 
 Rowan University University of Washington Stockton University 

 Alexis Olsho Suzanne White Brahmia 
 United States Air Force Academy University of Washington 

Keywords: quantitative literacy, assessment, physics 

The Physics Inventory of Quantitative Literacy (PIQL) is a 20-item multiple-choice test 
designed to measure the development of students’ physics quantitative literacy (PQL) across 
multiple physics courses (Olsho et al., 2023; Smith et al., 2020; White Brahmia et al., 2021). 
Repeated testing, coupled with requiring up to 40 minutes for students to complete the test, could 
lead to testing fatigue and unreliable results. We seek to create two shorter versions of the PIQL 
(a.k.a. piqlets) that are statistically equivalent to each other in terms of student performance on 
three facets of PQL (ratios and proportions, covariation, and signs and negativity).  

Han et al. (2015) used a large data set of student responses to a 30-item conceptual physics 
test to identify combinations of items that produced testlets with the most similar average student 
scores. They demonstrated the equivalence of the testlets using item response theory (IRT) and 
correlating individual students’ scores across versions. We follow their example by creating 12-
item piqlets that each contain four overlapping anchor items (to facilitate comparisons between 
versions) and eight distinct items. Our work was guided by these research questions: 

1) Which combination of items produces piqlets with the smallest score differences?  
2) How does the reliability of these piqlets compare to each other and to the PIQL? 
3) How similar are the psychometric parameters for the anchor items across piqlets? 
Data were collected using the full PIQL in three introductory physics courses at a large 

public university in the western US (2100–3200 students in each data set). We considered 240 
combinations of items for the piqlet versions, subject to constraints that both the content and the 
format of items were equivalent across the two versions. We calculated a total test score for each 
piqlet based on the average percentage of items answered correctly, as well as subscores for the 
three facets of PQL. For each of our three data sets we determined the average score difference 
between the piqlets, calculated Cronbach’s ⍺ for each piqlet, and applied IRT analyses to each. 

The combinations of items that we identified as being the most similar had overall average 
score differences from 0.6–1.3%. Cronbach’s ⍺	values ranged from 0.67 to 0.75, with differences 
less than 0.01 between versions. We see strong correlations between individual student scores on 
the two piqlets, with 0.79 ≤ r ≤ 0.85. The IRT parameters support the statistical equivalence of 
the piqlets with parameters of overlapping items agreeing to within 0.1. These preliminary 
results suggest a strong potential for identifying piqlets that are statistically equivalent for the 
broader population of mathematics and physics students based on a larger, more diverse, data set. 
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Creating Statistically Equivalent Versions of a Test
of Quantitative Literacy in Physics Contexts
Trevor I. Smith1, Zachary Bischoff1, Brett Boyle1, Jack Sayers1,
Charlotte Zimmerman2, Philip Eaton3, Alexis Olsho4, and
Suzanne White Brahmia2

Introduction

• Improving students’ physics quantitative literacy (PQL) is a goal for many
physics instructors.

• PQL is the blended relationship between students’ general mathematical
reasoning and conceptual understanding of physics.

• The Physics Inventory of Quantitative Literacy (PIQL) is a 20-item
multiple-choice test designed to measure PQL across three facets (Ol-
sho et al., 2023; Smith et al., 2020; White Brahmia et al., 2021).

• PIQL used in multiple physics courses to track student growth
• Some items are multiple-choice-multiple-response (MCMR)
• Known Problems:

– The PIQL takes a long time to complete (40 minutes on average)
– Repeated testing risks memorization and reduced efficacy

• GOAL: Create two shorter versions of the PIQL (a.k.a.

PIQLets) that are statistically and psychometrically

equivalent

Research Questions

1. Which combination of items produces PIQLets with the smallest score
differences? (Figure 1, central Venn diagram)

2. How does the reliability of these PIQLets compare to each other and to
the PIQL? (Table 1)

3. How similar are the psychometric parameters for the anchor items across
PIQLets? (Table 3)

Constraints and Criteria

• Constraints: each pair of PIQLets must have:
– 12 items on each PIQLet: 4 anchor items in common, 8 unique items
– the same number of items (anchor and unique) testing each PQL facet
– the same number of items in each format (single response or MCMR)

• Criteria: the best pair of PIQLets should have:
– similar total average scores for all three data sets
– similar average subscores for all three facets
– good test reliability (Cronbach’s a)
– similar item response theory (IRT) parameters for anchor items

Methods

• Followed example of Han et al. (2015)

• Full 20-item PIQL administered 3 times during introductory physics
course sequence at a public university in the Western US
– Before mechanics (PreMech, N = 3206)
– After mechanics, before electricity & magnetism (PostMech, N = 2580)
– After electricity & magnetism (PostEM, N = 2136)

• Each item categorized based on content and format

• Identified 5 candidates for anchor items based on prior analyses

• Identified all combinations of items based on constraints (240 total)

• For each combination of items:
– Split the full data set into two parts
– Calculated the differences in the mean total score and mean subscores

for each facet for each data set (total of 12 average score differences)
– Calculate the mean h�i and the root-mean-squared �rms of the 12

score differences as measures of the total difference between the
PIQLets

• Identified a handful of combinations that had the lowest �rms and h�i
close to zero.
– Calculated Cronbach’s a for each PIQLet for each data set
– Identified the combination with the most similar a values

• For the single most similar PIQLet pair:
– Applied a three-parameter logistic (3PL) model to calculate IRT item

parameters
– Compared parameters for anchor items between the two PIQLets

• All analyses performed using the r computing environment (R Core
Team, 2019), specifically using the mirt and tidyverse packages

Certain combinations of PIQL

test items create statistically

equivalent testlets

Items on PIQLet 1 Items on PIQLet 2

1: Plant Growth

3: Fish

6: Inverse g

12: Squareness

13: Olive oil

14: Charge

17*: Flag of Bhutan

19*: E-field

7: Joggers

10: Slides

15*: Internal Energy

20*: Velocity

2: Miner

4: Hooke’s Law

5: Ferris Wheel

8: Spherical Bottle

9: mkp

11: Odometer
16*: Quarks &

Nucleons

18*: Work

Ratios and Proportions
Covariation
Signed Quantities and Negativity
*MCMR Items

Scan for poster
PIQL on PhysPort

https://www.physport.org

1
DUE-1832470, DUE-2214283, DUE-
2214765; NRC Research Associateship

2 3 4

Scores

0

10

20

30

40

50

−10 −5 0 5 10
Mean Score Difference

R
oo

t−
M

ea
n−

Sq
ua

re
 S

co
re

 D
iff

er
en

ce

0

4

8

12

0 4 8 12
Score on PIQLet Version 1

Sc
or

e 
on

 P
IQ

Le
t V

er
si

on
 2

Figure 1. Mean percentage score differ-
ence h�i and root-mean-square score dif-
ference �rms for all PIQLet item combina-
tions. Red points have anchor items 7, 10,
15, and 20; blue points have anchor items
1, 10, 15, and 20.

Figure 2. Comparison of PreMech stu-
dents’ scores on the PIQLets. The blue
line shows the relationship between the
scores on the two versions. The black
dashed line represents equal scores on the
two versions.

Chosen pair

For the chosen pair of PIQLets: the mean total score difference for PreMech
data is 1.6%, the mean difference for PostMech data is 1.1%, and the mean
difference for PostEM data is 1.3%. In all three data sets PIQLet 2 has the
higher mean score.

Statistical Comparisons

Test PreMech PostMech PostEM
PIQL 0.76 0.80 0.82
PIQLet 1 0.68 0.73 0.75
PIQLet 2 0.67 0.72 0.75

Table 1. Cronbach’s a for the full PIQL and
the closest combination of PIQLets.

Comparison PreMech PostMech PostEM
PIQLet 1 v. P2 0.79 0.82 0.84
PIQL v. P1 0.94 0.94 0.95
PIQL v. P2 0.93 0.94 0.95

Table 2. Pearson’s r correlation between
scores on the two PIQLet versions, as well as
between each PIQLet and the full PIQL.

IRT Parameters

3PL Model: Pi ,j (1|✓i) = cj +
1 – cj

1 + e–1.7aj (✓i–bj )

The probability that student i answers item j correctly, given their overall
ability and understanding ✓i (i.e., PQL). Each item has three estimated pa-
rameters: discrimination aj , difficulty bj , and guessing cj .

Discrimination aj Difficulty bj Guessing cj
Item PIQL P1 P2 PIQL P1 P2 PIQL P1 P2

7 0.72 0.73 0.75 -0.27 -0.28 -0.22 0.01 0.00 0.03
10 1.10 1.14 1.09 -0.78 -0.77 -0.79 0.00 0.00 0.00
15 0.93 0.99 0.89 0.40 0.43 0.40 0.01 0.03 0.01
20 1.02 1.08 1.06 0.01 0.03 0.00 0.00 0.01 0.00

Table 3. 3PL IRT parameters for anchor items for the full PIQL and each
PIQLet version for our chosen combination.

Summary

• Categorizing testlet similarity by mean scores yielded a pair of PIQLets
with very small differences in mean scores, but these differences vary
greatly across item combinations (Figure 1).

• Scores are less similar for students at the high and low ends (Figure 2).
• Cronbach’s a is very similar across the chosen pair of PIQLets, but slightly
smaller than the total PIQL (Table 1). This is expected, given the smaller
number of items (Streiner, 2003).

• Student scores across PIQLet versions are strongly correlated (Table 2).
• IRTparameter values for the anchor items are very similar across the two
chosen PIQLet versions: aj differs by 0.1 or less, bj by 0.06 or less, and
cj by 0.03 or less (Table 3).

Next Steps

• Define difference between PIQLets based on more than mean scores
• Use IRT analyses to compare other PIQLet items based on IRT parame-
ters for anchors items and overall distribution of parameters

• Apply the Stocking-Lord method to define transformations between
PIQLets, looking for combinations that require the smallest adjustments
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Introduction
Professional development (PD) workshops on teaching have been shown to effectively

increase undergraduate math instructors’ use of research-based instructional strategies (Archie et
al., 2022). However, face-to-face PD is not accessible for all math instructors, including those
with young families, those at under-resourced institutions, and those concerned about the
environmental impacts of travel. In response to these constraints, the Mathematical Association
of America (MAA) sponsored a series of nine online PD workshops in summer 2022. The MAA
solicited proposals and selected teams to lead workshops on a variety of mathematics teaching
topics. These teams participated in planning sessions in winter 2022 to prepare their workshops
and implement best practices in workshop design (Daly et al., 2021). The workshops served 25
participants each over 24-27 contact hours, conducted via Zoom in two formats: a one-week
intensive model and a mini-course format spread over three weeks. The purpose of this
preliminary research was to explore the outcomes of the 2022 workshops.

Methods
Participants completed surveys about one month before their workshop (pre), immediately

after (post), and 12 months later (follow-up). Survey measures probed instructors’ current
capacities (knowledge, skill, attitude, and motivation) related to the workshop topic (pre, post),
perceptions of workshop quality (post), planned implementation (post) and implementation at
one year, and what workshop features helped them learn (post). 119 instructors responded to all
three surveys, out of 203 instructors who completed workshops.

Results and Discussion
Overall, participants rated the workshops favorably and reported strong gains in knowledge

and skills related to the workshop topic. Most (83%) indicated they would likely implement what
they learned in the workshop. Indeed, at the one-year follow-up, 84% of respondents reported
some degree of implementation, which is comparable to implementation after face-to-face
workshops (Archie et al., 2022). When survey non-responders are included in the total, the
self-reported implementation rate drops to 50%. As a group, participants identified the
atmosphere, their interactions with others, practical examples, facilitator modeling, and working
and connecting with other participants as workshop features that helped them learn the most.
Together, these findings suggest that well-designed online professional development can help
instructors implement what they learned at the workshops.
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Method
Pre survey and Post Survey

Instructors’ current capacities (knowledge, 
skill, attitude and motivation) related to the 

workshop topic

Observations and surveys 
show that online workshops 

support implementation

v

Need
Professional development (PD) workshops have been found to 
effectively increase undergraduate math instructors use of 
research-based instructional strategies1.

Benefits of online PD
• Under-resourced institutions
• Instructors with young families
• Environmental impact of travel

v

During the Summer of 2022, the Mathematical Association of America (MAA) sponsored a set of 
eight virtual PD workshops to address these needs.

Workshop Features
• Facilitators participated in Winter trainings based on PD best practices 

http://tinyurl.com/2p83ayry
• Conducted via Zoom in two formats: one week intensive model & mini course spread over 

three weeks
• 25 participants / workshops through 24-27 contact hours
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We thank the MAA OPEN Math leadership team and all the workshop leaders and participants who shared their work and thinking. 
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Results & Discussion
Takeaways

Overall, participants rated the workshops favorably and reported strong gains 
in knowledge and skills related to the workshop topic. 
• Most helpful workshop features included: supportive atmosphere, 

interactions with others, practical examples, facilitator modeling and 
collaborating (working & connecting) with other participants

• 83% indicated they would likely implement what they learned in the 
workshop.

• 84% of respondents reported some degree of implementation at the one-
year follow up.

• The high degree of implementation reported by participants is comparable 
to implementation after face-to-face workshops (Archie et al., 2022), 
helping to indicate that high quality online PD can be a more accessible 
form of PD.

Workshops gains, implementation, and observations are 
correlated

   Gains in knowledge    Gains in skill

Workshop Participant Gains

Follow Up Survey
Implementation at one year

119 out of 203 instructors 
who completed workshops responded to 

all three surveys

Online Professional Development 
Observational Checklist (OPDOC)

19 item rubric that assesses workshop features 
and provides a quantitative score 

(https://tinyurl.com/27tcrhe6)

Workshops

References
Archie, T., Hayward, C. N., Yoshinobu, S., & Laursen, S. L. (2022). Investigating 

the linkage between professional development and mathematics instructors’ use of 
teaching practices using the theory of planned behavior. Plos One, 17(4), e0267097.

Daly, D., Ethnography & Evaluation Research, and the Academy of Inquiry 
Based Learning (2021, June). AIBL Handbook for Online Professional 
Development: Lessons Learned from PRODUCT Workshops. Boulder, CO, and San 
Luis Obispo, CA: University of Colorado Boulder, Ethnography & Evaluation 
Research; and Academy of Inquiry Based Learning. 
https://tinyurl.com/AIBLHandbook

26th Annual Conference on Research in Undergraduate Mathematics Education 1452



Novice Statistics Students’ Forms of Reasoning When Reasoning About and With Sampling 
Distributions 

 
Claire Miller  

University of Georgia 

Keywords: statistics education, sampling distribution, deductive reasoning, inductive reasoning, 
abductive reasoning 

Understanding ideas of sampling, sampling distributions, and statistical inference are 
important for improving students’ statistical literacy and productive citizenship, particularly 
given calls for students to become “critical consumers of statistically-based results reported in 
populator media” (GAISE College Report ASA Revision Committee, 2016, p. 8). Despite the 
importance of understanding statistical inference and sampling distributions, research suggests 
that students struggle with these ideas (Sotos et al., 2007). One reason for this difficulty stems 
from the complex and abstract concept of sampling distribution, which requires the coordination 
of multiple statistical ideas, including distribution, the relationship between sample and 
population, sampling variability, randomness, and probability (Chance et al., 2004; Saldanha & 
Thompson, 2002; Noll & Shaughnessy, 2012). I hypothesize that another reason students 
experience difficulty understanding sampling distributions and statistical inference is because 
these ideas require students to reason with uncertainty, a kind of reasoning that differs greatly 
from the forms of reasoning that are expected and highlighted in mathematics, such as deductive 
and inductive reasoning.  

Deduction, induction, and abduction are three classic forms of reasoning that can be modeled 
with a triadic structure involving a case, rule, and result. (Peirce, 1878; Reid & Knipping, 2010). 
A case is a specific observation that a condition holds. A condition describes an attribute of 
something, or a relation between things. A rule is a general proposition that states that if one 
condition occurs then another one will also occur. A result is a specific observation, similar to a 
case, but referring to a condition that depends on another one linked to it by a rule. The order in 
which one links a case, rule, and result determines the kind of inference—deduction, induction, 
or abduction—needed to gain more knowledge about the situation. 

Using this triadic structure, I examined the forms of reasoning—deductive, inductive, and 
abductive—that novice statistics employed when reasoning about and with sampling 
distributions. The data come from two clinical interviews, each 60-75 minutes in length, with 
undergraduate students who recently completed an introductory statistics course. Participants 
were asked to work through a series of statistical tasks related to sampling distributions. I 
identified reasoning excerpts—instances in which participants provided justification or an 
explanation for a claim—from the interview transcripts. Within each reasoning excerpt, I 
identified case, rule, and result, then examined how the participant linked them, which provided 
evidence for the form of reasoning they employed. 

Preliminary results indicate that participants used all three forms of reasoning when 
reasoning about and with sampling distributions, though not all three forms were productive 
ways of reasoning. However, abductive reasoning was powerful for some participants when 
making inferences from sample data to an unknown population of interest. In this poster 
presentation, I will provide examples of reasoning excerpts from a small subset of the 
participants and discuss possible implications for this work.  
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Data are everywhere. Being able to make sense of 
data collected from samples is important for 
improving students’ statistical literacy and their 
ability to critically evaluate data-based claims.

Inductive reasoning is useful when estimating 
sampling variability, and abductive reasoning is 
powerful when estimating an unknown population 
parameter.

PARTICIPANTS
Undergraduate 
students, with 
varying majors, who 
recently completed 
an introductory 
statistics course

Lyla induced a range for a single sample outcome from observing a pattern in multiple sample outcomes. 

PEIRCE’S (1878) FORMS OF INFERENTIAL REASONING
Identified case, rule, and result in each reasoning excerpt 
and examined how the participant linked them to infer 
the form of reasoning (deductive, inductive, or abductive) 
they employed

CLINICAL INTERVIEWS
Two task-based clinical 
interviews designed to 
examine participants’ 
existing ways of 
reasoning about 
sampling distributions

Forms of Reasoning

“I would say between 10 and 30. And 
really just from the samples we've 
taken so far, we've taken a lot, we 
haven't seen many go above 30. I don't 
know if we've seen one. I've seen we've 
reached 30, but I don't think we've 
gone above 30 and we haven't really 
gone below 10 besides these two in 
500 [samples].”

Lorraine abduced that her sample could have come from a population with a parameter of 60%.

“It looks like [my sample outcome of] 
52 would be reasonable. There's a 
pretty significant number of results 
that are 52. And then past that is where 
[the distribution] tends to kind of taper 
out. So maybe if the true proportion 
were 60, the lower bound would be like 
48 or so.”

Very few samples produced 
a number of business 
majors that was less than 
10 or greater than 30

A random sample drawn from a 
population with an unknown 
proportion of business majors 
produced a sample outcome of 
52 business majors

I expect that any one single 
random sample of 100 

undergraduates drawn from this 
population will produce between 

10 and 30 business majors

Many random samples 
drawn from a population 
of undergraduates with 
20% business majors

INDUCTION

ABDUCTION
A result and a 

rule infer a case

DEDUCTION
A rule and a case 
conclude a result

INDUCTION
A case and a result 

lead to a rule

rule case

result

A population with 60% 
business majors produced 

several sample outcomes of 52

The sample I drew 
could have come from 
a population with 60% 
business majors

ABDUCTION

PA
PE

R

FR
AM

EW
OR

K

Abductive reasoning is powerful 
when making inferences from 
sample data.
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As the body of research in the RUME community grows, synthesizing   data across these 
studies becomes more important. This goal can be accomplished through meta-research,  a 
method for aggregating studies in a field of research involving both meta-analysis and meta-
synthesis. A meta-analysis consists of a systematic search, data extraction, and aggregation of 
quantitative data to explain phenomena in greater detail than individual studies alone (Cooper, 
2017).  Meta-synthesis is the qualitative partner to meta-analysis, and involves a “deliberate 
process of selecting studies with an emphasis on synthesizing, analyzing, and interpreting across 
the selected studies” (Thunder & Berry, 2016). Qualitative data is then extracted from the 
articles, appraised for quality, and then analyzed using any of the traditional qualitative 
techniques. The results of a meta-synthesis can highlight gaps in a given field, look for themes 
across studies, and condense swaths of research, making it more useful for practitioners (Erwin 
et al., 2011).  

Participatory synthesis (Wimpenny & Savin-Baden, 2012) takes the perspective that by 
engaging various participants in the process of meta-research, a study can “ensure all voices are 
heard”, present the “possibility of reciprocal learning”, and “progress knowledge within a field” 
(p.697). For educational research, this presents a great opportunity for pre-service teachers. By 
participating in meta-research, a pre-service teacher can be exposed to research and interventions 
that might be relevant to their future classrooms. At the same time, the results of the research can 
be made richer by incorporating their viewpoints into topics they view as relevant and 
knowledge they consider useful for the classroom. In addition, if the team is diverse, it presents 
the opportunity to make the work more equitable by incorporating decisions from a diverse range 
of viewpoints.  

This poster has two purposes. First, we will describe some of the latest techniques of meta-
analysis and meta-synthesis through the lens of a current project (Sharpe et al., in prep) looking 
at algebraic teaching interventions for grades K-12. This includes illustrating the use of cutting-
edge software for conducting a meta-synthesis such as Covidence and Raayan and looking at a 
new technique for extracting qualitative data from an article using artificial intelligence. Second, 
we will describe some of the challenges and opportunities that have resulted from this process to 
highlight how pre-service teachers and researchers could benefit. This includes discussions about 
the definition of an algebraic teaching intervention for screening, a look at some of the 
interventions that were discovered during search/screening that might be applicable for teaching, 
and a discussion about what information from an article would be useful for a practicing 
educator. Our hope is that this poster and the resulting discussion will encourage others to 
engage in meta-research and consider pre-service teachers as undergraduate researchers for such 
projects. 
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Participatory Meta-Research can 
provide a rich research 

experience for undergraduate 
pre-service teachers/mathematics 

students while incorporating 
valuable perspectives into the 

research synthesis process.Meta-Research Process

What is Meta-Research?

A “meta-analysis uses a statistical 
procedure that aggregates and 
condenses a body of Quantitative 
research studies to a common standard 
metric, such as a mean effect size” 
(Finlayson & Dixon, 2008; Thunder & 
Berry, 2016, p.319). 

A qualitative meta-synthesis uses a 
“deliberate process of selecting 
[qualitative research] studies with an 
emphasis on synthesizing, analyzing, 
and interpreting findings across the 
selected studies” (Thunder & Berry, 
2016, p.319). 

Participatory Meta-Research
Participatory synthesis (Wimpenny & Savin-Baden, 2012) 

takes the perspective that by engaging various participants in 
the process of meta-research (p.697), a study can 
• “ensure all voices are heard.”
• present the “possibility of reciprocal learning.” 
•  “progress knowledge within a field.” 

Tools for Meta-Research

Participatory Meta-Research: Opportunities 
for Engaging Pre-Service Teachers in 

Educational Research

Searching:
• Citationchaser.com
• AI assisted 

Searching/ChatGPT

Screening
• Raayan.ai
• Covidence
• AI Screening

Extraction
• Meta-Reviewer
• AI Supported 
    Memo’ing
• Covidence

Analysis
• R
• Nvivo

• Exposure to research and 
interventions for the 
classroom.

• The ability to influence the 
direction of research.

• Engage with under-
represented perspectives and 
provide their own perspective.

For Pre-Service teachers this might mean:
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Many students experience difficulties with fractions (Mesa et al., 2014; Ngo, 2019). Thus, it 
is unsurprising that fractions act as a gatekeeper for college-level mathematics courses (Ngo, 
2019). Research on how undergraduate developmental mathematics students understand 
fractions is scarce (Alexander, 2013; Mesa et al., 2014). Moreover, existing studies in this area 
seem to take a deficit perspective, focusing more on what students in this demographic do not 
understand about fractions rather than reporting what is productive in their thinking (Alexander, 
2013; Baker et al., 2012; Doyle et al., 2015).  

In this poster, I will report on tasks that I developed to examine the fraction thinking that 
undergraduate developmental mathematics students can utilize. I implemented these tasks during 
clinical interviews (Ginsberg, 1997), which come from a larger dissertation study that was 
designed to (a) examine how undergraduate developmental mathematics students understand 
fractions and (b) explore pathways to support fraction understandings that will help the student to 
be successful in future mathematics courses. In designing the tasks, I drew from existing K–12 
fraction literature, including Lamon’s (2020) fraction understandings and Steffe & Olive’s 
(2010) fraction schemes, which I will explain in the poster. In short, Lamon’s fraction 
understandings include part-whole, operators, quotients, measures, and ratio understandings. 
Fraction schemes I attend to include part-whole, partitive, and iterative fraction schemes (Steffe 
& Olive, 2010).  

Twelve fraction tasks are spread over two 45-minute sessions for this clinical interview 
(Ginsberg, 1997).  The interview tasks were designed to help me answer the following research 
question: How do undergraduate developmental mathematics students understand fractions? 
Specifically, (a) which of the five fraction understandings outlined by Lamon (2020) do the 
students operate with, and how do they support their fraction understandings; and (b) which of 
the fraction schemes outlined by Steffe & Olive (2010) do the students operate with and how do 
they support their fraction understandings?  

In this poster, first, I will present an overview of Lamon’s (2020) five fraction 
understandings, three of Steffe & Olive’s (2010) fraction schemes, and how I correlated these 
views of fractions. Second, I will present examples of the tasks that I developed. I will identify 
which of Lamon’s fraction understandings or Steffe & Olive’s fraction schemes were intended to 
be elicited from each task. I will also provide the goals and design principles, as well as follow-
up questions for these tasks. Finally, I will discuss some of the affordances and limitations of 
each task after implementing them in three clinical interviews (Ginsberg, 1997). For example, I 
designed a number line task that targets the measure understanding of fractions (Lamon, 2020). 
This task provides insight into the participants’ fraction thinking beyond measures. However, 
due to the complexity of the measure understanding, the task may not reveal enough information 
to definitively say that the participant has constructed the measure fraction understanding 
(Lamon, 2020). I hope to provide examples of productive mathematical thinking that 
undergraduate developmental mathematics students have about fractions. This study aims to 
counter the deficit narrative prevalent in developmental mathematics. 

26th Annual Conference on Research in Undergraduate Mathematics Education 1459



References 
Alexander, C. M. (2013). Community college developmental education students' understanding 

of foundational fraction concepts. (Publication No. 3614168). [Doctoral dissertation, 
University of California, Davis]. ProQuest One Academic.  

Baker, W. J., Czarnocha, B., Dias, O., Doyle, K., Kennis, J. R. & Prabhu, V. (2012). Procedural 
and conceptual knowledge: Adults reviewing fractions. Adults Learning Mathematics: An 
International Journal, 7(2), 39–65. 

Doyle, K. M., Dias, O., Kennis, J. R., Czarnocha, B., & Baker, W. (2015). The rational number 
sub-constructs as a foundation for problem solving. Adults Learning Mathematics: An 
International Journal, 11(1), 21–42. 

Ginsburg, H. (1997). Entering the child’s mind: The clinical interview in psychological research 
and practice. Cambridge University Press. 

Lamon, S. J. (2020). Teaching fractions and ratios for understanding: Essential content 
knowledge and instructional strategies for teachers (4th ed.). Taylor & Francis.  

Mesa, V., Wladis, C., & Watkins, L. (2014). Research problems in community college 
mathematics education: Testing the boundaries of K–12 research. Journal for Research in 
Mathematics Education, 45(2), 173–192.  

Ngo, F. (2019). Fractions in college: How basic math remediation impacts community college 
students. Research in Higher Education, 60, 485–520. https://doi.org/10.1007/s11162-018-
9519-x 

Steffe, L. P. & Olive, J. (2010). Children’s fractional knowledge. New York: Springer. 
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 

principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research 
design in mathematics and science education (pp. 267–307). Mahwah: Lawrence Erlbaum.  

 
  

26th Annual Conference on Research in Undergraduate Mathematics Education 1460



Tasks for Fraction Understandings of Undergraduate Developmental Mathematics Students
Lucinda Ford
Department of Mathematics, College of Science and Engineering, Graduate College, Texas State University

Background and Goals

• Many students experience difficulties with fractions (Mesa 
et al., 2014; Ngo, 2019). 

• Fractions act as a gatekeeper for college-level mathematics 
courses (Ngo, 2019). 

• Research on the way that undergraduate developmental 
mathematics students understand fractions is scarce 
(Alexander, 2013; Mesa et al., 2014).

• Existing studies in this area focus more on what these 
students do not understand about fractions (Alexander, 
2013; Baker et al., 2012; Doyle et al., 2015). 

• Goals: (1) Build models of developmental math students’ 
fraction understandings (Lamon, 2020; Steffe & Olive, 
2010). (2) Explore pathways to support fraction 
understandings that help the student to be successful in 
future mathematics courses.

 

Analysis Framework
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Task Design Overview

Methods
• Clinical interviews (Ginsberg, 1997) 
• 12 questions over two 45-minute sessions
• Video recorded from multiple angles
• 8-12 participants 
• Ongoing  and retrospective analysis (Steffe & Thompson, 

2000)

Potential Paths According to Students’ Responses

Measure

Directions: Give the participant four index cards marked with 
1/2, 2/3, 3/8, and 7/6, respectively.

Without using decimals, put these fractions in order from 
least to greatest.

[Goal] To examine whether the student has a measurement 
understanding of fractions.

a.If student indicates they do not know how to do this 
without fractions, ask the student to give me their best 
guess.

b.What were you thinking as you ordered the fractions?
c. Give the participant a piece of aper with a line across it 

lengthwise. If this is a number line, where would you 
place the fractions as accurately as you can?

d.Offer sticky flags for placing numbers (they are 
moveable).

e.Pay attention to whether the participant marks 0, 1, etc. 
and/or benchmarks on the number line.

• Affordances: Operator understanding, commensurate 
fractions, percentage thinking, and benchmarks

• Limitations: May need further questioning due to the 
complexities of the measurement understanding

Research Questions

1.How do undergraduate developmental mathematics 
students understand fractions?

a.Specifically, which of the five fraction understandings 
outlined by Lamon (2020) do the students operate with 
and how do they support their fraction understandings?

b.Which of the fraction schemes outlined by Steffe & Olive 
(2010) do the students operate with and how do they 
support their fraction understandings?

2.What ways of fraction thinking are present (from RQ1) that 
could specifically help to further the participant’s measure 
fraction understanding?

Lamon’s Five Understandings Steffe & Olive’s Fraction Schemes
Part-Whole: Relating the number of 
equal parts of a unit to the unit

Partitioning: Splitting the unit into 
equal parts

Iterating: Creating copies of the 
unit fraction

Partitioning and Iterating Beyond 
the Whole: Creating copies of the 
unit fraction beyond what is 
necessary to construct a figure 
that is equivalent to the whole

Part-Whole Fraction Scheme: 
Simultaneously partitioning the whole 
into equal distant, connected, lengths
Partitive Fraction Scheme: The first 
true fraction scheme involves 
comparing the part to the whole. 
Note: The part-whole fraction scheme 
is a pre-requisite for the partitive 
fraction scheme.

Iterative Fraction Scheme (beyond the 
whole): Taking a unit fraction or a 
complex unit and iterating it to create 
a composite unit. Note 1: The 
partitive fraction scheme is a pre-
requisite for the iterative fraction 
scheme. Note 2: This generally 
requires coordinating 3 levels of units.

Operator: Viewing a fraction as a 
calculation(s) to be done 

(e.g., ࢇ
࢈
ȉ  means ࢇ ȉ ÷ (࢈

Note: the above fraction schemes are 
part of measurement thinking (Steffe 
& Olive, 2010, p. 121).

Quotient: Not only viewing a fraction 
as a set of instructions for calculation 
but assigning meaning to the result

Measure: This is a geometric meaning 
of a fraction that involves magnitudes, 
or lengths, of intervals.

Magnitude recognition: 
Recognizing that relative size 
needs to be taken into account
when working with the fraction

Ratio: This fraction meaning can be 
comparative of the numerator and 
denominator as ordered pairs. Note: 
Not all ratios are fractions.

Opening Tasks

What does 2/3 mean to you?

[Goal] To examine students’ initial immediate response 
regarding their fraction conception without further prompting 
that targets specific fraction understandings, as in the 
following tasks. The student is being asked to read the task 
prompt to gather more information about how they read/write 
a fraction.

a.Can you draw me a picture to show me the 2/3? (Make 
sure to follow the student’s language.)

b.Are there any other ways you can think about this 
fraction (2/3)?

c. Keep going until you exhaust this line of thinking. 

What does 7/3 mean to you?
[Goal] To examine whether they iterate the 1/3 beyond the 
whole. How they would make sense of an improper fraction in 
relation to their fraction conception.

a.Can you draw a picture of 7/3 (if not done already-use 
their language)?

b.How do you know that’s 7/3 and not 7/9?
• Affordance: Initial reaction before targeted tasks
• Limitation: Not a full story of their understanding

Iterating Beyond the Whole

This figure represents a whole. Draw [     ]

[Goal] To examine whether the student has a partitive unit 
fraction scheme with a whole greater than one. 

a.If student has difficulty, with #2, start with 4/6.
b.Can you show me 1/6 in your figure? 
c. Round 2: Let’s try another one. Our figure still 

represents a whole. Draw 15/6.
• Affordance: Fractions beyond the whole in action
• Limitation: 15/6 may not provide further information if the 

participant is still constructing an understanding of 
improper fractions.

Quotient

Jade shared 5 candies (cherry, chocolate, cinnamon, lime, and 
peppermint) among 3 friends. What amount of candy did each 
friend get?

[Goal] To examine whether the student has a quotient 
understanding of fractions.

a.Have index cards labeled with the candy flavors for the 
participant to demonstrate the sharing process.

b.If student can do the mental calculations and say that 
each person gets 5/3 candies each, ask student to use the 
index cards to show their thinking.

c. If student struggles, ask Can you show me how to share 
these candies using the index cards? 

• Affordances: 
• Fair sharing (whole number not divisible by the 

number of people). 
• Partitioning an object into thirds. 
• Operator vs. quotient understanding

• Limitation: Consideration of number choices 

This table shows how I correlate Lamon’s (2020) fraction understandings with Steffe & 
Olive’s (2010) fraction schemes.
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Comparing Calculus Students’ Use of Problem-Solving Strategies on Related Rates of Change 
Problems in a Traditional versus Online Homework Format 

 
 Tyson C. Bailey James A. M. Álvarez 
 The University of Texas at Arlington The University of Texas at Arlington 

Keywords: problem-solving, related rates, calculus, online-homework 

With the advent of many online platforms for assigning and grading homework, more and 
more of the homework in calculus no longer entails paper-and-pencil homework (Dorko, 2020). 
As such, with the prevalence of associated scaffolding embedded in these platforms, more needs 
to be understood about whether this tends to over-proceduralize topics, such as related rates of 
change (RRC), and undermine roles these topics may have in further developing students’ 
capacity in mathematical problem solving or mathematical reasoning. Engelke (2008) maintains 
that to successfully solve RRC problems, students require well-developed mathematical 
problem-solving skills. However, Mkhatshwa (2020) asserts that few studies have explored 
students’ reasoning on solving RRC problems. The purpose of this investigation is to explore 
how problem-solving strategies (PSS) may differ when solving RRC problems presented in a 
traditional paper-and-pencil format versus RRC problems presented in an online platform which 
includes typical options for scaffolding help as well as “view an example” features. In this 
poster, we address the following research questions: (1) How do students’ PSS when working 
online homework on RRC problems compare with their PSS when working paper-and-pencil 
homework RRC problems? (2) What influence does the ‘view an example’ feature in online 
homework have on a student’s PSS when working an online RRC homework problem? 

This study takes place at a large, urban research university located in the southwestern 
United States during a 15-week first-semester calculus course which incorporated the use of an 
online platform for homework. After scoring 318 participants’ written work on a free response 
RRC common midterm exam problem for the extent to which their work exhibited processes for 
productive problem solving of RRC problems (Engelke, 2008), participants were invited for 
task-based interviews using a scheme aimed at ensuring that participants from different score 
ranges would be included in the interviews. Fourteen participated in task-based interviews. 
Because we were interested in comparing PSS when working paper-and-pencil versus online 
homework problems, the task-based interviews included four RRC problems, two sets of paired 
tasks of a paper-and-pencil format problem and a similar problem on the online platform. 
Qualitative data analysis software was used to code the data using a priori codes from Álvarez et 
al. (2019) and Carlson and Bloom (2005). Common themes were identified using thematic 
analysis (Braun and Clark, 2016). 

Data analysis reveals more instances of PSS from the exemplary group (top quartile scorers 
on midterm RRC problem) when compared to the other groups. In addition, participants used 
more PSS when solving paper-and-pencil RRC problems than when solving online RRC 
problems. Further, participant’s use of PSS decreased when using the ‘view an example’ feature 
in the online format. Three categories emerged on participant use of the ‘view an example’ 
feature (1) those who mimic the example (ME), (2) those who use the example to learn the 
process (LP), and (3) those who refuse to use the feature (RF). Participants using this feature for 
ME used fewer PSS than those whose use was classified as LP or RF. Findings suggest that the 
format of and resources for online homework RRC problems may need to change to ensure that 
students engage in using PSS in a manner comparable to traditional paper-and-pencil homework.   
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Comparing Calculus 
Students’ Use of Problem-
Solving Strategies on 
Related Rates of Change 
Problems in a Traditional 
versus Online Homework 
Format

With the advent of many online platforms for 
assigning and grading homework, more and 
more of the homework in calculus no longer 
entails paper-and-pencil homework (Dorko, 
2020). As such, with the prevalence of associated 
scaffolding embedded in these platforms, more 
needs to be understood about whether this 
tends to over-proceduralize topics, such as 
related rates of change (RRC), and undermine 
roles these topics may have in further developing 
students’ capacity in mathematical problem 
solving or mathematical reasoning. Engelke 
(2008) maintains that to successfully solve RRC 
problems, students require well-developed 
mathematical problem-solving skills. However, 
Mkhatshwa (2020) asserts that few studies have 
explored students’ reasoning on solving RRC 
problems. 

The purpose of this investigation is to explore 
how mathematical problem-solving strategies 
(MPSS) may differ when solving RRC problems 
presented in a traditional paper-and-pencil 
format versus RRC problems presented in an 
online platform which includes typical options 
for scaffolding help as well as “view an example” 
features.

Methods
We used student (n=338) departmental 
midterm performance levels on RRC problems to 
select participants for task-based interviews. 
Participants were drawn from three groups, based 
upon their performance and problem-solving 
score quartile on the midterm RRC problems. 

Of the 14 participants consenting into the study, 
six came from the fourth quartile, six came from 
the third quartile, and two came from the second 
quartile. The task-based interviews entailed 
solving two pairs of RRC problems (textbook-to-
online, online-to-textbook). 

Transcripts were coded using thematic analysis 
techniques (Braun & Clarke, 2006) with a priori 
codes from Alvarez et al. (2019) and Carlson and 
Bloom (2005) and also examined for emergent 
codes. 
• The problem-solving codes used included 

orienting/sense-making, planning, representing 
and connecting, executing, reviewing, 
justifying, checking. 

• Emergent codes included the use of view an 
example for process, to mimic, or for sense-
making.

Phase 1: Textbook Problem to Online Problem

Introduction

Frequency of Problem-Solving 
Strategies Utilized in Phase 1

Frequency of Problem-Solving 
Strategies Utilized in Phase 2

Participants appear to use MPS strategies 
more frequently when solving the traditional 
paper and pencil-related rates of change of 
problems.

The findings suggest that students may 
be using features of online homework 
platforms on RRC problems in a manner that 
circumvents the use of MPSS. That is, ‘view 
an example’ feature in online homework may 
be scaffolding the problem-solving process in 
a manner that leads to students missing 
opportunities to further develop their MPSS.

Phase 2: Online Problem to Textbook Problem

Findings

Research Questions
(1) How do students’ mathematical problem-
solving strategies when working an online 
homework related-rates of change problems 
compare with their mathematical problem-
solving strategies when working paper-and-
pencil related-rates of change 
homework problems? 

(2) What influence does the ‘view an example’ 
feature in online homework have on a student’s 
mathematical problem-solving strategies when 
working an online related-rates of change 
homework problem?

Student Q1 Q2

Echo 6 4
Eboy 4 3
Earl 22 0
Ed 5 3
Elsa 12 13
Eve 5 3
Pamela 5 0
Paris 8 4
Pat 7 4
Penny 8 8
Percy 5 0
Peter 8 0
David 4 5
Donald 8 2

Student Q3 Q4
Echo 8 8
Eboy 3 2
Earl 15 13
Ed 1 6
Elsa 10 11
Eve 3 7
Pamela 1 4
Paris 1 4
Pat 4 5
Penny 8 5
Percy 0 4
Peter 0 1
David 4 4
Donald 0 5

Tyson C. Bailey 
James A. M. Álvarez

http://tinyurl.com/4f9s57cc
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Biologists and Mathematicians
tell very different

stories of the definite integral.

Goal: Explore variation in the presentation of the definite integral in calculus texts 

written by mathematicians and those written by biologists.

Corpus: (biology- oriented texts are classified by authorship teams + preface materials).

[Mathematician's Calculus.] James Stewart. (2016). Calculus: Early 

transcendentals (8th Ed.). Cengage Learning.

[Mathematicians' Biocalculus.] James Stewart & Troy Day. (2015). Biocalculus: 

Calculus for Life Sciences. Cengage Learning.

[Biomathematicians' Biocalculus (Example 1).] Claudia Neuhauser & Marcus L. 

Roper. (2018). Calculus for biology and medicine. Upper Saddle River: Pearson.

[Biomathematicians' Biocalculus (Example 2).] Erin N. Bodine, Suzanne 

Lenhart, & Louis J. Gross. (2014). Mathematics for the life sciences. Princeton 

University Press.

[Biologists' Biocalculus.] Alan Garfinkel, Jane Shevtsov, & Yina Guo. (2017). 

Modeling life: the mathematics of biological systems. Springer International 

Publishing AG.

Framework: Analysis via literary tradition of narrative.

Established use in studying mathematics curriculum (e.g. see Dietiker, 2013; 

Dietiker, 2015; and Miežys 2023).

I'm following Netz (2005) - mathematics texts tell a story:

"Some passages - descriptive - add detail to the fictional world, 

constructing its underpinning of reality; other passages - narrative - 

unfold the plot that takes place in that fictional world" (2005, p. 262).

Final product of analysis - a set of chronological diagrams that position the 

mathematical concepts (descriptions) along a story arc to convey how narrative 

relates these topics.

How to interpret diagrams:

General features. 

Upward slope (rising action) indicates a concept building on another concept.

Horizontal lines (a climax or false- climax) are concepts that were separated from 

the general text as important (e.g. by a box.)

Downward slope (denouement) indicates a closing thought.

Notable combinations of general features. 

A horizontal line that ends without a decent immediately following it indicates a 

split narrative, where the reader is to keep this train of ideas in mind, but we start 

again at height zero to build up another sequence of concepts.

A horizontal line appearing at a height greater than zero without an upward sloping 

line preceding it indicates a deus ex machina, or the abrupt introduction of a 

concept in a climactic role without narrative connection to proceeding concepts:

  

Note. The deus ex machina is a popular narrative device in stories of the derivative, e.g., 

to introduce the derivative function in Biomathematicians' Biocalculus (Example 1).

Future Directions. 

[1] Explore the scope and rigidity of student's structural expectations and how this 

impacts learning. 

[2] Explore other fruitful constructs from literature, e.g., the analytic tool of implied 

reader inspired implied student (Ulriksen; 2009). 

(Surprising) Finding 1:
No narratives used a deus ex machina to reach the definite integral.

On Narratives of the Definite Integral in Biocalculus
Melinda Lanius, Auburn University

(Surprising) Finding 2:
In some narratives, the definite integral was not a climax.
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Using a Rubric from Pedagogical Partnership to Improve the Accessibility and 
Usability of Desmos Activities for Students in Calculus 1 

 
 Tabitha Mingus Melinda Koelling 
 Western Michigan University Western Michigan University 

 Elisha Hall Jessyca Olvera Yaronn James Arciaga 
 Western Michigan University Western Michigan University Western Michigan University 

Keywords: Desmos, Pedagogy, Interactive  

 There was a successful departmental effort to improve the calculus DFWI rates at a 
midwestern university (Mingus & Koelling, 2021). To maintain this change during the 
pandemic, instructors developed Desmos-based activities to encourage student engagement and 
active learning. This platform allows students to interact with tools on activities designed by 
their instructors. Since the implementation, instructors sought feedback from the students on the 
digital experience. This study focuses on a partnership between the students and the instructors 
to develop a rubric to evaluate Desmos activities for the Calculus course. 

 Our goal is to understand how students interact with digital platforms to further improve 
students’ learning experience. To accomplish this, a pedagogical partnership with undergraduate 
students was created with the intent to co-develop a rubric to evaluate activities. Pedagogical 
research with students provides benefits to both the students and instructors. The students gain a 
greater understanding of course content, learning, teaching, and improved agency. The instructor 
gains a greater understanding of student thinking and feedback on how to meet student needs. 
(Bovill et al., 2011, Cook-Sather & Motz-Storey, 2016, Partridge & Sandover, 2010) 

An initial rubric was created as a result after the first focus group interview. The rubric 
consists of three categories: Overall, Between the Slides, and On Each Slide. The Overall 
category addresses the content in the whole Desmos activity. The Between the Slides category 
addresses the transitions of the content within the Desmos activity. The On Each Slide category 
addresses the content within the individual slide.  

The poster will consist of the rubric and slides from an activity before and after the 
application of the rubric. It will be discussed how the team has used the rubric to modify Desmos 
activities to improve their accessibility and usability for students.  
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Using a Rubric from Pedagogical Partnership to Improve the Accessibility and Usability of 
Desmos Activities for Students in Calculus 1

Tabitha Mingus, Melinda Koelling,
Elisha Hall, Jessyca Olvera, Yaronn James Arciaga

Western Michigan University

Introduction Rubric

Slide from
Desmos Activity 5

Student A: “I guess if you're able to zoom 
in, you get more clear understanding of 
graph. Sometimes, I probably would fall 
into that route to keep going in and out. If 
I got bored or distracted in class.”

● DFWI rates decreased after 
previous course redesign [3]. 
Success of the course redesign 
motivated implementation of 
Desmos activities.

● Student response to the 
implementation of activities 
motivated pedagogical 
partnership.

● Goal was to create a rubric which 
instructors could use to evaluate 
the effectiveness of Desmos 
activities. 

Study Design

● Student discussions 
underscored the necessity for 
equitable learning material

● Using students as an authority 
to their experience in the 
classroom helps us build better 
curriculum materials. 

● The study had to adapt to 
real-life constraints including 
availability, student interest, and 
fluctuations in student turnover.

Purpose: Evaluate the Desmos 

Activities to improve students’ 

learning

Breakdown:

○ Overall 

○ Between Slides 

○ On each Slide 

● Students were 
selected from 
calculus courses 
taught the 
semester prior

● Interviews, rubric 
creation, and slide 
edits were 
conducted outside 
of the classroom

Data Sample DiscussionScan for References & 
Supplemental Materials

Students below are 
discussing the slide 

shown during a focus 
group session after the 

creation of the initial 
rubric. 

Student B: “Well, I guess it's just a give and 
take. I feel like it would be a distraction, but 
it's the kind of distraction that could be 
learned from…”
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Transformations in the Plane: Towards Interpretations and Proofs of Linearity

Anairis de la Cruz Benito Christine Andrews-Larson
Florida State University Florida State University

Keywords: linear algebra, linear transformations, proof

In recent years, student reasoning in linear algebra has been a rich area of research, but
relatively few studies have focused on linearity and proof in this area (Stewart et al., 2019). In
this study, our research questions are: (1) What are students’ evoked concept images of linear
transformations in the context of a Desmos module focused on transformations in the plane? (2)
What do students report finding helpful in this module?

Existing literature has examined how students conceive of linear transformations in
relation to their interpretations of functions in prior coursework, and how students shift from
local to global views of linear transformations (Zandieh et al., 2017; Andrews-Larson et al.,
2017), but there is limited work on how students make sense of the properties of linearity,
particularly in relation to their proof activity. For our analysis, we draw on the notion of concept
image from Tall and Vinner (1981) who described a person’s concept image for a particular
concept as “the total cognitive structure that is associated with the concept, which includes all the
mental pictures and associated properties and processes” (Tall & Vinner, 1981, p. 152).

The data for this report comes from Desmos activity completed by 54 U.S. undergraduate
linear algebra students at the end of a unit on linear transformations. The goals of this activity
were to help students identify and prove whether or not given transformations in the plane were
linear. We analyzed our data by first developing data-driven codes (deCuir-Gunby et al., 2011)
for students’ responses to the questions “Explain in your own words what it means for a
transformation to be linear and why it matters whether a transformation is linear,” and “Which
of the examples or slides in this Desmos activity did you find most helpful for your learning and
why?” We aim to develop theory-driven codes to relate our findings to those of Zandieh et al.
(2017), particularly identifying aspects of students’ concept images of linear transformations in
terms of: computations, properties, and clusters of metaphorical expressions.

We identified three broad categories of responses regarding the meaning of linear
transformations that relate to students’ concept images: references to the formal definition,
preservation of straightness and parallelism of lines, and references to uniformity in how an
image is transformed (e.g. points affected equally, retaining proportional changes in position and
magnitude, reversibility, and preservation of orientation). We identified four primary aspects of
the Desmos activity that students reported finding helpful: features that helped students develop
intuition for linear transformation (e.g. via visualization and distinguishing examples from
non-examples), features that helped students relate algebraic to geometric interpretations of
linear transformations, and features that helped students make sense of the formal definition and
proof methods (e.g., separating out interpretations of the two properties of linear transformations;
providing examples of correct proofs and prompts to write a proof). In our poster, we will
examine relationships among the meanings students ascribe to linear transformations, what
students found helpful, and existing literature.
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Transformations in the Plane: 
Towards Interpretations and Proofs 
of Linearity

Anairis de la Cruz Benito ad19cc@fsu.edu 
Christine Andrews-Larson

NSF grant #1914793

MOTIVATION
In recent years, student reasoning in 
linear algebra has been a rich area of 
research, but relatively few studies 
have focused on linearity and proof in 
this area (Stewart et al., 2019). 

RESEARCH QUESTIONS
(1) What are students’ evoked concept 

images of linear transformations in 
the context of a Desmos module 
focused on transformations in the 
plane? 

(2) What do students report finding 
helpful in this module? 

PARTICIPANTS
53 undergraduate linear algebra students.

RESULTS
We identified three categories of 
responses that relate to students’ concept 
images based on: 

• references to the formal definition, 

• preservation of straightness and 
parallelism of lines, and 

• references to uniformity in how an 
image is transformed (e.g. points 
affected equally, retaining 
proportional changes in position and 
magnitude, reversibility, and 
preservation of orientation). 

Based on student reports, useful features 
of the module were those that helped 
students: 

• develop intuition for linear 
transformations (e.g. via 
visualization; distinguishing 
examples from non-examples), 

• relate algebraic to geometric 
interpretations of linear 
transformations, and 

• make sense of the formal definition

• model appropriate proof methods 
(e.g., separating interpretations of two 
properties of linear transformations; 
providing examples of correct proofs) 

METHODS
We analyzed developed data-driven 
codes (deCuir-Gunby et al., 2011) for 
students’ responses to prompts in the 
Desmos module.

Take a picture to access the Desmos 
unit on Linear Transformations

Visualization can help students 
make sense of the formal 
definition of linear 
transformations; students take 
away a variety of interpretations 
from visualization activities.

P005: This means that the order of operations of 
T(V1) + T(V2), and T(V1 +V2) does not matter. 
You can transform then add or add then 
transform. Also applies to scaling with constant 
c. Scale before the transformation or after, it 
should be the same in a linear transformation. 

P009: For a transformation to 
be linear, it has to be able to 
be written linearly in an 
algebraic form. This is made 
evident in the formal 
definition. 

P0028.  A linear transformation is a transformation that keeps the 
origin the same, straight lines remain straight, and parallel lines 
remain parallel. It also follows the properties T(V1+V2) = 
T(V1)+T(V2) and cT(u)= T(cu). It matter whether a transformation is 
linear because it helps us understand the nature of transformation 
and it does not completely change the original thing. 

P0018.  A transformation is linear when a vector's position relative to other 
vectors is the same from before the transformation to after, both additively and 
multiplicatively. It matters because it means the transformation is reversible, and 
that the relationships between vectors are maintained from before to after the 
transformation. 

WHAT DOES IT MEAN FOR A TRANSFORMATION TO BE LINEAR?

WHICH 
TRANSFORMATION 
IS LINEAR?

26th Annual Conference on Research in Undergraduate Mathematics Education 1471



Exploring Mathematical Intuition and its Role in Physics Problem-Solving 
 

 Ella Henry Charlotte Zimmerman 
 University of Washington University of Washington 
 
 John Goldak Suzanne White Brahmia 
 University of Washington University of Washington 

A large body of work in both mathematics and physics education research has explored 
mathematical reasoning in physics contexts (Redish & Kuo, 2015; Van den Eynde et al., 2020; 
Serbin & Wawro, 2022; Zimmerman et al. 2023b). Studies show that expert reasoning in physics 
problem-solving is not purely physical or mathematical, but a blended way of thinking (Redish 
& Kuo, 2015; Schermerhorn & Thompson, 2023). In this study, we build on the recent work of 
Zimmerman et al. who observed that one way physics experts reason while modeling is by 
“mathematical riffing”–manipulating familiar physical models, having a feel for when one might 
be useful, and quickly rejecting those that are not (Zimmerman et al., 2023a). Just as jazz might 
seem random and unpredictable to the untrained ear, mathematical riffing is hard to pinpoint and 
practice for physicists-in-training, even at the graduate level. There is no direct instruction to 
develop this kind of mathematical intuition on which experts rely to propel their thinking.  

While the physics community values mathematical intuition as a mark of expertise, little 
work has been done to understand what it looks like, or what role it plays in generating 
quantitative physics models. To better understand mathematical intuition and its role in physics 
problem-solving, we conducted a pilot study in which we interviewed three physics graduate 
students after completion of their first year PhD coursework. We asked the interviewees to think 
aloud while solving unfamiliar graduate-level physics problems that relied on familiar 
mathematics. The data were coded using a grounded theory approach (Glaser & Strauss, 1967). 
This poster describes the study and its preliminary findings. 

We identified three ways that mathematical ideas drive physics reasoning that, collectively, 
we call mathematical impetus. We see mathematical impetus as part of the set of behaviors 
associated with riffing. Each feature relies on interactions with symbols and is associated with 
having an expectation of an outcome without feeling the need to prove it mathematically. We 
also developed a description of a few distinct ways that graduate students act on mathematical 
impetus in tandem with other problem-solving skills. These findings help characterize problem-
solving approaches that are typical in graduate classrooms, and can help inform instruction, 
making expert mathematical intuition more transparent to the learner.  
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Further Work
■ “Mathematical intuition” as a way of knowing is 

poorly understood and extremely important in 
physics. There is no direct instruction to develop it 
in our classrooms.

■ Toward a characterization of mathematical impetus 
we will:
1. continue the analysis of the transcripts to 

uncover the diverse ways that graduate 
students use mathematical impetus when 
solving new physics.

2. use the codebook developed in this project to 
study how experts engage with mathematical 
impetus in generating new physics.

Methodology
■ Interviewed 3 first year graduate students at University 

of Washington in July 2023.
■ Think-aloud interviews that included  solving the 

following classical mechanics problem [2]:

■ Unfamiliar physics topic that relied on familiar 
mathematical tools.

■ Data coded using a grounded theory; results are 
emergent from the data.

Background
■ This study: We explore the “mathematical intuition” 

experts rely on to propel their thinking, and the role it 
plays in generating quantitative physics models.

■ Analysis framework: Zimmerman et al. physics 
expert way of reasoning–“mathematical riffing”

○ manipulate familiar physical models, recognize when 
one might be useful, and quickly reject those that are 
not [1].

○ analogous to jazz: seems random and unpredictable 
to physicists-in-training

Preliminary Results 
■ 3 emergent ways of symbolic reasoning drive 

physics reasoning; we call this driver 
mathematical impetus:
○ associated with mathematical riffing. 
○ interactions with symbols with an 

expectation of an outcome without feeling 
the need to prove it mathematically. 

■ We are embarking on a case study analysis of the 
individual graduate students to characterize their 
unique ways of blending mathematical impetus 
with other problem-solving skills.

Exploring “Mathematical Intuition” and its Role in Physics Problem-Solving
Ella Henry, Charlotte Zimmerman, John Goldak, Suzanne White Brahmia | University of Washington, Department of Physics

Some Emergent Ways of Symbolic 
Reasoning

Examples of “mathematical impetus” from the transcripts

Symbols-motivated 
process choosing

Extracting physical 
meaning Expected outcome

"But then usually, when I 
encounter [...] a differential 

equation like this, [...], where 
I'm like, fairly certain that 

there's no closed form 
solution--- um, we should just 

linearize? I think?"

"And then we know 
that DL dt is going to 

be zero. So this is 
going to be, um, 
constant in time."

"yes, that like decouples the set 
of equations very nicely. Like 

with this, you get, instead of the 
nasty i j omega j within the, um, 

in the differenti---in the 
differential equations I got, I'll 

just get a bunch of like 
[...]decoupled equations."

M
at

h
em

at
ic

al
 I

m
p

et
u

s

Defining quantities
providing a working definition or understanding 
of what a symbol represents

Analogous symbols
using familiar quantities to understand new or 
unfamiliar ones

Symbols-guided 
math doing

doing algebraic manipulations, guided by 
symbols' meanings, interpretations, 
implications

Symbols-motivated 
process choosing

choosing a process to move forward in 
problem solving, cued by symbols' meanings, 
interpretations, implications

Extracting physical 
meaning

coming up with a physical interpretation for a 
mathematical result

Expected outcome
having an expectation for the 
mathematical/physics implications based on 
symbols
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Pirates, Wobbly Jelly, and Bunnies … Analyzing Applets and Video Games from the Perspective
of RME

Matthew Mauntel Michelle Zandieh David Plaxco
University of New Hampshire Arizona State University Clayton State University

Keywords: Linear Algebra, Technology, Realistic Mathematics Education, Game-based
Learning, Dynamic Geometry Software

Realistic Mathematics Education (RME) is a curricular design theory that involves designing
materials with realistic starting points and guiding students through four levels of activity:
situational, referential, general, and formal (Gravemeijer, 2020, 1999). This theory has been used
to develop a multitude of curricular materials including ones that incorporate technology. This
poster investigates the design of three different technologies (video games, GeoGebra, and
applets) designed to elicit different forms of activity in an RME sequence. Each technology has a
2D and a 3D version and was either could be used or was designed to be used in a linear algebra
classroom. This poster will present the design heuristics of each type of technology that lend
themselves to a particular type of activity to be evoked with the goal of providing insight into
designing technology for use in an RME-type sequence.

The first technology we analyze is a 2D video game called Vector Unknown which was
designed to convey a realistic starting part for situational activity. Vector Unknown was designed
to mimic the first task from the Inquiry-Oriented Linear Algebra (IOLA) Magic Carpet Ride
Sequence (Wawro et al., 2013). Mauntel et al. (2021) explored the student strategies from the
game. Vector Unknown gave rise to a new 3D video game called Vector Unknown: Echelon Seas
(Plaxco et al., 2023). The video game added a new dimension to gameplay and a different design
and environment. This new design generated different strategies including the need to adjust the
viewpoint in 3D environments.

Mauntel (2023) built upon the foundations of the game Vector Unknown and used an open
GeoGebra environment for students to analyze and refer (referential activity) to the game.
GeoGebra was intended to be a tool that would help students analyze the game and explore linear
combinations more extensively. One issue with this implementation was that students
experienced the technology differently as GeoGebra presented linear combinations to students
differently depending upon how they entered them into GeoGebra which created some conflicts
with how the game presented linear combinations. We investigate this issue, as it is important to
consider when technology supplements an already existing phenomenon as opposed to becoming
a new phenomenon itself. In this case, for some students, the GeoGebra open environment
became a new realistic starting point as opposed to a tool for referring to the video game.

The final context was the use of GeoGebra applets for a sequence on determinants (Wawro et
al., 2023) which were used at the end of an RME sequence to promote generalizations. In this
case, there were two applets that were explored, 2D and 3D. This allowed students to make
generalizations within a context and between contexts. This poster will look at all three
technologies and discuss design choices made in each concerning their alignment along an RME
sequence and its relation to student activity.
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Carefully designed digital 
environments can serve as 
realistic starting points for 
student exploration and 

promote generalizing 
activity.

This material is based upon work supported by the National Science Foundation under grant # DUE-1712524, 1915156, 1914841, 1914793.  Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Pirates, Wobbly Jelly, and Bunnies 
… Analyzing Applets and Video 
Games from the Perspective of 

Realistic Mathematics Education 
(RME)

Matthew 
Mauntel

David 
Plaxco

Michelle 
Zandieh

Vector Unknown 
(VU)

Vector Unknown: 
Echelon Seas (VUES)

GeoGebra (3D)

Observations Related to RME
1. Applets and video games can be great realistic starting 

points for RME activities. If multiple digital environments 
are used, it is important to consider the connections 
between design. For example, the student who played VU 
and then used the GeoGebra applet considered the contexts 
different and built-up separate strategies.

2. Randomization can be a great tool for generating examples 
for generalization and for designers to scaffold learning. VU 
has a difficulty setting (easy) with 0 as an entry because we 
observed student play and choosing vectors with 0s.

Moving the blue
points to adjust

pre-images.

Colored Arrows
correspond with their

images.

MulƟple
RepresentaƟons

of Area

Dynamic Adjustment
of the Matrix

Changes color
Red = negaƟve

Det(M)
Green = PosiƟve

Det(M)

Movable Green
Points to adjust

the image

OpƟon to Swap
Rows and
Columns

Column Color Corresponds
to Image of Column Vectors

Generates a
Random Matrix

or IdenƟty
Matrix

Color Changes
depending on
the sign of the
Determinant

Dynamic
CalculaƟon of

the Determinant

Connections
1. In the 2D and 3D applets we build connections between 

the matrix, determinant, and associated images using 
colors and dynamic color change associated with the    
sign of the determinant.

2. The Movable Green Points were designed to allow 
students to create biconditional generalizations. We 
noticed that without the ability to change the images, 
most generalizations originated with the matrix.

3. Having the option to switch rows/columns hints at the 
importance of row/column operations.

2D Determinant 
Applet

3D Determinant 
Applet

Comparing Contexts
1. Some student strategies between VU and 

VUES differed because of the presence of the 
green laser and white line. Some students 
tried to move the green laser onto the white 
line.

2. After playing VU, a student explored linear 
combinations with GeoGebra 3D. They found 
they could rotate the result of a linear 
combination by changing the scalars. This had 
implications for how they thought about all 
possible linear combinations.
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Exploring The Role of Undergraduate and Graduate Real Analysis Experiences in the 
Mathematical Trajectories of Women Mathematicians from Historically Disenfranchised 

Groups: The Cases of Anna and Sasha 
 
 Te’a S. Riley James A. M. Álvarez 
 The University of Texas at Arlington The University of Texas at Arlington  

Keywords:  real analysis, classroom practices, equity, mathematical identity 

As the population of the United States becomes increasingly diverse, more attention to 
efforts aimed at understanding ways in which colleges and universities can achieve equity in 
science, technology, engineering, and mathematics (STEM) education is needed to maintain 
global competitiveness in STEM (Henthorne, 2023; Office of Science and Technology Policy, 
2022). As such, since courses in real analysis (undergraduate and graduate or similar courses)—
typically required in the undergraduate and graduate mathematics programs in the US—often 
pose significant challenges to progressing in mathematics (Lew et al., 2016; Weber, 2004), we 
explore the cases of Anna and Sasha, part of a larger research study exploring the experiences of 
women mathematicians who come from groups historically disenfranchised in STEM (HDG), 
with a focus on undergraduate and graduate real analysis.   

To investigate the mathematicians’ experiences in real analysis, participants completed a 
90-minute interview which included questions about their undergraduate and graduate classroom 
environments, their recollections of important concepts, and the role of their experiences in the 
development of their mathematical identity. This poster focuses on the following research 
questions: (1) What belief structures about how participants think of themselves as 
mathematicians were evoked by their experiences? (2) To what extent did their courses or 
experiences in real analysis advance their development as mathematicians? Using CRT as a 
theoretical base, my conceptual framework also incorporates factors that emerge from research 
literature associated with graduate school experiences of students from HDG (Borum & Walker, 
2012; Johnson-Bailey et al., 2009; McAfee & Ferguson, 2006; McGee & Martin, 2011).    

For both Anna and Sasha, interview analysis reveals the classroom environment in their 
real analysis courses negatively affected their identity as a “strong mathematician” even after 
completing their doctorate. Sasha had the unique experience of having taken real analysis at the 
undergraduate level in Latin America as well as in the US. She completed her undergraduate and 
graduate studies in the US and reported that she did well in the courses. She “loved analysis” and 
incorporates some of the teaching strategies used by her professors in her current teaching. In 
contrast, Anna describes undergraduate real analysis as not particularly challenging and that she 
earned “about a B.” However, she explained that she failed her graduate course in real analysis 
because of the amount of information she had to “memorize.” Although their performance levels 
in the courses were distinct, other messages received from their professors and classmates 
contributed to a similar cost to their identities as mathematicians. Both experienced isolation 
because of their race or gender throughout their academic career, but Anna experienced it in her 
analysis class directly. This contributed to Anna’s choice to avoid more analysis classes as she 
“wanted absolutely nothing to do with it,” and this continues in her role as a faculty member. 
The stories of Anna and Sasha compel mathematicians to re-examine the role of real analysis in 
the curriculum and to integrate anti-deficit strategies that foster a supportive learning 
environment.  
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An overwhelming 52% of declared mathematics majors nationwide change their major in the 
course of their college career (Leu, 2017). To better understand retention and attrition in the 
mathematics major, our research team launched the Mathematics Journeys of Retention: Why 
Individuals Shift Educational Paths (MAJORWISE) project. In this poster, we will address the 
question: Why do students choose to stay in and leave the mathematics major?   

Background 
Although several studies have investigated patterns of retention and attrition using 

quantitative measures (e.g., Rask, 2010; Rasmussen & Ellis, 2013), qualitative studies provide a 
deeper look into the reasons students provide for leaving mathematics. International qualitative 
studies have indicated students become disaffected with mathematics at the undergraduate level 
because they dislike lecture-based instruction and feel their courses place a strong emphasis on 
memorization (Hall et al., 2022; Rodd & Bartholomew, 2006; Ward-Penny et al., 2011).  

Methods 
During October 2023, we carried out a nationwide survey in the United States with free-

response items of students who have been enrolled in a mathematics major during the years 
2013-2023. In addition to demographic information, this survey solicited information such as 
reasons for enrolling in a mathematics major and timing of and reasons for deciding to either 
leave or stay in the mathematics major. We recruited participants through professional networks, 
social media, and snowball recruitment (requesting participants share the survey with others).  

We analyzed free-response survey items using a predetermined coding scheme framed by 
Self-Determination Theory (Ryan & Deci, 2000), with codes for autonomy, relatedness, and 
competency. We then conducted an inductive analysis of responses in each category to describe 
specific experiences relevant to choosing to leave or stay in the mathematics major. 

Presentation of Findings and Implications 
The MAJORWISE online survey received 147 applicable responses. In our poster, we will 

report detailed findings from our analysis. For example, out of 40 responses to the question, 
“Why did you consider leaving the mathematics major?,” 22 (55%) were related to autonomy (or 
a lack thereof), 7 (17.5%) indicated a lack of relatedness, 15 (37.5%) concerned competence, and 
13 (32.5%) cited sources of extrinsic motivation (e.g., job opportunities). These findings, along 
with our in-depth inductive analysis, provide insight into how relevant stakeholders can best 
promote the motivation and retention of mathematics majors.  
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An overwhelming 52% of declared mathematics majors 
nationwide change their major in the course of their 
college career (Leu, 2017). In this study, we report results of 
the MAJORWISE nationwide survey study investigating the 
reasons students give for choosing to major in 
mathematics, leave the mathematics major, consider 
leaving the mathematics major, and ultimately stay in the 
mathematics major.

Amanda Lake Heath
Middle Tennessee State University 

Jordan E. Kirby
Francis Marion University

The MAJORWISE Survey Study: 
Why Students Leave and Stay 
in the Mathematics Major

Sarah K. Bleiler-Baxter
Middle Tennessee State University 

Jennifer Webster
Harpeth Hall School; Nashville, TN

Adapted from "Beginning College Students Who Change Their Majors within 3 Years of Enrollment.” by Leu, K., 
2017, in Data Point. NCES 2018-434. Copyright 2017 by National Center for Education Statistics.

 Demographic Information: Race/Ethnicity, Gender, 
Institution Type

 Basic Major Information: Years enrolled as a mathematics 
major, mathematics courses taken at the undergraduate 
level, time of major declaration, title of degree program, 
status with major (completed, still completing, considered 
switching, switched), current occupation

 Open-Response Questions for Applicable Participants

 Recruited participants through professional networks (e.g., 
RUME, EDGE, Jerry Becker ListServ), social media (e.g., 
Twitter/X, Facebook), and snowball recruitment.

 The survey received 147 applicable responses out of 176 
total responses across 23 states. 

When Participants Considered Leaving the 
Mathematics Major

Conference Paper, 
Contact Information, 

References, 
and Other Resources

Students leave 
mathematics for more 
reasons than you think.
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Online vs Face-to-Face Instruction: Affordances and Interactions 
 

Valentina Postelnicu 
Governors State University 

Keywords: online instruction, affordances, interactions 

The study reported focuses on the affordances of online instruction (Day & Lloyd, 2007), 
compared with face-to-face instruction. Participants were 51 undergraduate students, STEM 
majors, enrolled in two Discrete Mathematics sections, taught by the author, at a four-year 
university in the United States. In spring 2020, the COVID-19 pandemic changed the course 
instruction from face-to-face to online. The  change affected the students’ and the instructor’s 
interactions with each other and with the mathematical content (Cohen, Raudenbush,  Ball, 2003, 
p. 122). The following research questions are addressed: 

1. How does the instructor use the online affordances to meet the students' learning needs? 
2. How do the students use online affordances? 
3. How does the online instruction of the course compare with the face-to-face instruction of 

the course with respect to meeting  the students' learning needs, as perceived by instructor and 
students?  

4. How does the online instruction of the course compare with the face-to-face instruction of 
the course with respect to students' success, as measured by their performance on the final exam? 

The following data were collected: Student Questionnaire (SQ), Instructor Questionnaire 
(IQ), Blackboard Discussion Forum (BB Discussion Forum), and students’ answers on the final 
exam.  

SQ included questions related to how students interacted with the mathematical content, the 
instructor, and their colleagues during the face-to-face and online course instruction, as well as 
questions about satisfaction with specific instructional elements and preferences for future 
interactions. 

 IQ  was a self-administered instrument. For both the face-to-face and the online instruction 
of the course, the questionnaire asked the instructor to rate her satisfaction with the convenience 
of the interaction with the mathematical content and the students, the quality of the interaction 
and the time spent, as well as to propose changes to better serve the students’ learning needs.  

Students posted their homework in Blackboard/Discussion Forum and were required to read 
their colleagues’ postings and comment on one or two of their colleagues’ answers. Data 
collected for this study came from two homework assignments with four tasks related to 
mathematical induction.  

Students’ answers on the final exam on two tasks referring to mathematical induction were 
scored and compared with  previous scores from the final exams administered during the 
previous three semesters, when the course was delivered face-to-face. The scoring rubric for 
induction tasks was based on the mathematical and pedagogical considerations stated by Ernest 
(1984).  

Data were analyzed using statistics, and social network analysis (Chai, Le, Lee & Lo, 2019; 
Ye & Pennisi, 2022).  

The findings will be discussed and will inform recommendations for practitioners and 
directions for new research. Among those findings will be those referring to the importance of 
the BB Discussion Forum as a learning resource for students during the online delivery of the 
course, and the patterns of interaction between students.  
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We describe evidence of the usefulness of the Comparative Judgment (CJ) approach to assess 
the quality of explanations in mathematics. In philosophy, some study how certain types of 
mathematics offer explanations of other mathematical phenomena. In the field of education, 
offering explanations is a central part of teaching mathematics, and understanding those 
explanations is a vital activity for learners. So, what makes a good explanation in mathematics? 

In the philosophy of mathematics, explanation quality has been traditionally studied by 
investigating the properties of what are deemed to be exemplars of mathematical explanations 
(e.g., Steiner, 1978), often mathematical proofs. In education, the approach has been to use 
general frameworks (i.e., non-math specific) describing the features that high-quality 
instructional explanations may have (e.g., Wittwer & Renkl, 2008). 

We propose a different approach: using the CJ method to explore the notion of explanation 
quality as it exists among mathematicians and undergraduate students. CJ approaches to 
understanding human judgment exploit the finding that people are better at comparing two 
objects against each other than at evaluating one object against specific criteria (Thurstone, 
1927). Modern uses of comparative judgment in assessment rely upon the Bradley-Terry model 
(Bradley & Terry, 1952), which assumes that each stimulus has a numerical parameter which 
captures its quality on the dimension of interest. By presenting judges with repeated pairs of 
stimuli and asking them to assess which they would rate higher on the given dimension, 
empirical estimates of these parameters can be obtained. 

Recent empirical studies (Mejía Ramos et al., 2021; Evans et al., 2022) have used the CJ 
approach to study the extent to which mathematicians and students can reliably judge the quality 
of explanations in mathematics. In the first study, 38 mathematicians made a total of 760 
comparisons between two proofs of the same proposition. For each judgment, two proofs were 
randomly selected and positioned side-by-side for the participant to think about and select which 
argument best explained why the proposition holds (without focusing on how the proof might be 
received by a particular audience), an instruction aimed at investigating the more philosophical 
sense of explanation described above. Using a similar procedure, in the second study we asked 
32 undergraduate students who had taken a Linear Algebra course and 16 mathematicians to 
judge explanations meant for a hypothetical mathematics undergraduate student who did not 
understand the concept of an abstract vector space, an instruction aimed at investigating the more 
pedagogical sense of explanation described above. Using split-half inter-reliability coefficients, 
we report very high levels of reliability in participants’ judgments of explanation quality for both 
mathematicians and students. Furthermore, in the second study we found a very high correlation 
between the parameter estimates for mathematicians and those for students. Overall, these 
studies provide evidence of high level of agreement among participants regarding what makes a 
good explanation in mathematics. This method opens fascinating avenues for future research on 
the notion of explanation in mathematics. 
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Within the context of science, technology, engineering, and mathematics (STEM) many 
studies have shown the reality of the “leaky pipeline” with students dropping out of STEM 
majors along the way to completing a degree or dropping out of school (Flynn, 2016). 
Addressing the issues creating the leaky pipeline and students not persisting in STEM degrees is 
crucial to improving broader issues of diversity in STEM especially for students starting their 
academic journeys in community colleges.   
 

Theoretical Framework 
This work uses the framework of the ‘warm demander’ (Kleinfeld, 1975) from culturally 

relevant pedagogy to examine the teaching style and pedagogical choices of the instructor.  A 
‘warm demander’ is an instructor that holds high standards for their students since they know 
reaching these standards is important for their academic success, but they also create a caring and 
supportive environment in the classroom.   
 

Research Questions 
This work is focused on the case of an effective community college math instructor and 

considers what instructional moves appear to be driving increased student success.  The research 
question is: What pedagogical choices of an experienced community college math instructor 
appear to be leading to increased student persistence in STEM trajectories?   

 
Methods and Data 

The instructor at the center of this study is an experienced community college math faculty 
member who has success in increasing student success rates.  Success was defined through 
increased pass rates and persistence of students in follow on courses even if passing courses 
required multiple attempts.  The success of students was defined both from institutional data and 
through interviews of students and alumni about their experiences and trajectories.  Classroom 
videos were analyzed to understand the pedagogy of the instructor.   
 

Findings and Discussion 
The analysis shows that this instructor exhibits many characteristics of a ‘warm demander.’  

He brings deliberate language of care into the classroom, not only in communicating his care to 
students but encouraging them to care about one another.  The instructor also creates a warm 
environment through humor and encouragement.  At the same time, he maintains high standards 
for students, pushing them to come to class on time, engage with the materials and pass 
demanding quizzes and tests.  Powerfully, this combination seems to help students see their own 
potential even when they struggle.  This aspect of instruction should be studied further to see 
how it may be enacted by other successful instructors and how professional development could 
be created to teach more instructors how to include warmth and standards in their math 
classrooms.  
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Carless & Boud (2018) capture the definition of feedback best as “a process through
which learners make sense of information… use it to enhance their work or learning strategies.”
This definition goes beyond feedback solely being the role of teachers and highlights the student
component in making sense of the feedback (Carless & Boud, 2018). A more specific type of
feedback that will be used in this study involves “actionable feedback” which allows the student
more agency to revise their work independently (Hattie & Timperley, 2007).

Research Questions
1. What are the feedback types commonly used by instructors within a student homework

sample?
2. Do the feedback types that instructors provide match those that the students prefer/find

useful?

Methods, Results, and Benefits
Boise State University instructors were asked to complete an online questionnaire and to

grade and leave written feedback on student work samples of the same task. No rubric was
provided. A thematic analysis was conducted on their feedback practices and word choice to then
classify into groups. The classification of feedback was based on a combination of Wahyuni
(2023) and Lyster & Ranta (1997) written feedback clarification. Students’ perceptions about
feedback were gathered through a questionnaire to gain insight on how they use feedback, how
highly they value it, and which feedback type they find most useful.

Results are currently pending, but preliminary results suggest that most instructors use a
wide-variety of different feedback types. Most tend to be non-actionable feedback, while there is
almost always at least one piece of feedback that provides the student with the agency to help
revise their response. Instructors commonly followed a close pattern of feedback across their
students.

This study is focused on BSU’s Math Department, and as a result, we may be able to
identify certain trends within the ways courses are currently taught and provide more awareness
to better inform our department's grading practices across our entry level math courses. This
information could be especially beneficial to present as training material for new GTAs.
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● Instructors across every discipline, especially 
those in entry-level courses, act as one of the key 
players in a beginning college student’s journey 
into their course of study and play a pivotal role in 
students' personal and academic development. 

● Their actions and choices in the classroom can 
highly influence a student’s path in college, even 
including their use of feedback.

● Feedback is “a process through which learners 
make sense of information from various sources 
and use it to enhance their work or learning 
strategies” [2]. This goes beyond it solely being the 
role of teachers and highlights the student 
component in making sense of the information.
We consider feedback to include teachers’ 
comments, questions, and markings (such as 
check marks, X’s, and addition of math content).

● Actionable Feedback allows the student the 
opportunity to identify an error and strategize 
about how to correct it themselves [3][4]. This type 
of feedback promotes student agency and 
independence.

Research Questions

References

Acknowledgements

Conclusions

Classification

1) What are the feedback types commonly used by 
instructors within a student homework sample?

2) Do the feedback types that instructors provide 
match those that the students prefer/find useful?

Defining Feedback

Feedback Type Actionable? Justification Example

Indication Non-Actionable
No words are included; it 
can be unclear to students 
how to proceed.

Praise Non-Actionable
Adds no mathematical 
comments; only offers 
positive words.

Recast

1 Non-Actionable 

A correction is only 
provided with no reason as 
to why there was an error.

2 Non-Actionable

All of the work is provided 
in the feedback, with no 
reason as to why there was 
an error.

Clarification 
Request In Between

Comment suggests that the 
student’s work is 
“ill-informed”; a revision is 
encouraged.

Summative
 1 Non-Actionable

A comment about a specific 
performance acts similarly 
to Praise, as it is only 
acknowledging the work that 
was done.

 2 Actionable 

This feedback offers a 
comment about a certain 
action to be more aware of 
in the future. 

Metalinguistic 
Feedback Actionable

Feedback is offered about 
specific word choice used; 
correction may encourage 
students to use that 
terminology in the future.

Explicit 
Correction Actionable

Feedback includes the error 
detection as well as the 
reason why it was incorrect.

Elicitation Actionable

Feedback is in the form of a 
question or general comment 
with instructions on how to 
complete a given task.

Reference Actionable

This directs a student to a 
certain reference, such as the 
instructor or a page in the 
textbook. 

1. Amrhein, H.R., & Nassaji, H. (2010). Written Corrective Feedback: What Do Students and Teachers Think is Right 
and Why? Canadian Journal of Applied Linguistics/Revue canadienne de linguistique appliquee, 13(2), 77-101

2. Carless, D., Boud, D. (2018) The development of student feedback literacy: enabling uptake of feedback, 
Assessment & Evaluation in Higher Education, 43:8, 1315-1325, DOI: 10.1080/02602938.2018.1463354

3. Griffiths, Mutoni., Murdock-Perriera, L., & L Eberhardt, J. (2023). “Can you tell me more about this?”: Agentic 
written feedback, teacher expectations, and student learning. Contemporary Educational Psychology, 73, 102145. 
https://doi.org/10.1016/j.cedpsych.2022.102145 

4. Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 77(1), 81-112. 
https://doi.org/10.3102/003465430298487

5. Lyster, R., & Ranta, L. (1997). Corrective feedback and learner uptake: Negotiation of form in communicative 
classrooms. Studies in Second Language Acquisition, 20, 37-66

6. Wahyuni, N. (2023). Investigation on an Implementation of Mastery Grading Utilizing Revision and Oral  
Follow-Up Assessment in an Introduction-to-Proof Course (dissertation).

Methods
8 Boise State instructors (below Calculus level) 
completed 2 phases: 

● online questionnaire about their grading 
practices 

● a task involving grading and leaving feedback 
on 7 student work samples

22 Boise State students completed an anonymous 
questionnaire asking their preferences of feedback. Table 1.1 Nine feedback types are categorized as being actionable or non-actionable.

This study used a 9-category classification, extended 
from Lyster & Ranta (1997) and Wahyuni (2023) 
[5][6].

Introduction Results

A huge thank you to Dr. Kinzell, my committee, the participants, and the Boise State Math Department for 
their support on my thesis research!

Research Question 1: Feedback Types

Research Question 2: A Match Between 
Instructor and Student?

The results indicated that instructor feedback was 
overall actionable, which students preferred. This 
study found harmony among these two populations, 
inconsistent with other findings where teachers 
believe actionable feedback is less desired by 
students[1].

220 Instances of Feedback Present
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Outside of geometry, United States high school students have few opportunities to engage 
with proof (Thompson et al., 2012; Otten et al., 2014). It is therefore likely that for most 
precalculus students, proving trigonometric identities represents a significant departure from 
familiar modes of reasoning. As both a thorough understanding of the relationships between 
trigonometric functions and the ability to reason deductively are critical in undergraduate 
mathematics, learning trigonometric identities may be an opportune time for students to develop 
skills at all levels of Stylianides’ (2009) taxonomy of reasoning-and-proving (RP) activities. 

This poster will summarize a study that examined five precalculus textbooks for the 
opportunities they afford students to engage in RP activity in the context of trigonometric 
identities. One textbook was selected from each decade from the 1970s to the 2010s, and each 
represents a distinct instructional approach (Stylianides, 2008). The research questions were: 

1. Across the five textbooks, what opportunities do students have to derive or prove 
essential trigonometric identities? 

2. Across the five textbooks, what types of RP activity, and in what amounts, are expected 
of students in the context of learning to apply and verify trigonometric identities? 

Twenty trigonometric identities were identified as essential (defined as necessary in future 
problems and/or in proofs of other identities). Each textbook’s presentation of each identity was 
assigned one of six author-created codes, capturing the extent to which the text solicited student 
involvement in deriving it. A modified version of Otten et al.’s (2014) framework for coding RP 
opportunities in geometry textbooks was used to code justification-based problems in lessons 
about trigonometric identities. Percentages of items marked with each code were tabulated and 
trends identified. The poster will report on those trends, of which two were most salient: 

1. In nearly all instances of an opportunity to derive an essential identity, the text provided 
enough guiding detail that a student would not bear the cognitive load of creating a proof. 

2. The two 21st century textbooks afforded noticeably more frequent opportunities to make 
graphical arguments than the three 20th century textbooks. 

The second finding is particularly significant in light of Stylianides’ (2008) comments on the 
potential curricular effects of the 2000 NCTM Standards’ unified view of reasoning and proof. 
Because of the small sample of textbooks under analysis, a natural next step would be to repeat 
the analysis with the precalculus and trigonometry textbooks that have been most popular over 
time. Significance tests of the differences in proportions of codes could show with greater clarity 
how responsive trigonometry curricula have been to long-term trends in instructional approaches. 
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Students in undergraduate mathematics classes are using online resources to support their 
learning with increasing frequency (Erickson, 2019, 2020). The use of such online resources has 
not proven to be straightforward for students. Undergraduate students have well-documented 
difficulties locating, evaluating, and making use of information sources regardless of the topic 
area in question (Scott & O’Sullivan, 2005; Walraven, Brand-Gruwel, & Boshiuzen, 2008). 
These difficulties may vary depending on a student’s familiarity or comfort with the field 
(Brand-Gruwel, Wopereis, & Vermetten, 2005). Thus, it is important to develop subject-specific 
models of student information-seeking. This is particularly important for the field of 
mathematics due to the role that lower-division math classes have often played as a gatekeeper 
for entry into STEM majors (Martin, Gholson, & Leonard, 2010).  

This poster will present findings from a nationwide mixed method research project that has 
collected surveys from over 300 students across the country and follow-up semi-structured 
interviews with over 60 students intended to assess how students currently make use of online 
resources to support their learning in lower-division mathematics classes. These findings 
specifically address the following questions: 

1. From the students’ perspective, what does it mean to efficiently use online resources 
to study mathematics? 

2. From the students’ perspective, what does it mean to ethically use online resources to 
study mathematics?  

These findings also include a mid-range theory of students’ use of online resources based on 
a grounded theory (Strauss & Corbin, 1994) analysis of the interview transcripts. The poster will 
present this theoretical model in which we identify triggers for the use of online resources, along 
with the most common types of resources used and the accompanying goals. For example, 
students commonly make use of online video lectures if they are having trouble understanding 
what their instructor is saying in class or look up solutions in an answer engine when they feel 
that they need to double-check their homework.  

We present evidence that students are generally conscientious in their use of such resources, 
struggling both with how to maximize their efficiency while also expressing concern that their 
practices are ethical. These two concerns are sometimes balanced against one another as is 
evidenced by a recurring student suggestion for their peers: start by learning on your own and 
only make use of online resources when you struggle.  

Finally, our poster will present several representative cases in order to better capture the way 
in which students balance these concerns in different types of mathematics classes. These 
narratives have the potential to be used in classroom settings in order to help students become 
more effective and ethical users of online resources. 
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