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FOREWORD 
 
The research reports and proceedings papers in these volumes were presented at the 

14th Annual Conference on Research in Undergraduate Mathematics Education, which 
took place in Portland, Oregon from February 24 to February 27, 2011.  

 
Volumes 1 and 2, the RUME Conference Proceedings, include conference papers that 

underwent a rigorous review by two or more reviewers. These papers represent current 
important work in the field of undergraduate mathematics education and are elaborations 
of the RUME conference reports.  

 
Volume 1 begins with the winner of the best paper award, an honor bestowed upon 

papers that make a substantial contribution to the field in terms of raising new questions 
or gaining insights into existing research programs.  

 
Volume 3, the RUME Conference Reports, includes the Contributed Research 

Reports that were presented at the conference and that underwent a rigorous review by at 
least three reviewers prior to the conference. Contributed Research Reports discuss 
completed research studies on undergraduate mathematics education and address findings 
from these studies, contemporary theoretical perspectives, and research paradigms. 

 
Volume 4, the RUME Conference Reports, includes the Preliminary Research 

Reports that were presented at the conference and that underwent a rigorous review by at 
least three reviewers prior to the conference.  Preliminary Research Reports discuss 
ongoing and exploratory research studies of undergraduate mathematics education. To 
foster growth in our community, during the conference significant discussion time 
followed each presentation to allow for feedback and suggestions for future directions for 
the research.   

 
We wish to acknowledge the conference program committee and reviewers, for their 

substantial contributions and our institutions, for their support. 
 
Sincerely, 

 
Stacy Brown,  
RUME Organizational Director & Conference Chairperson 
 
Sean Larsen,  
RUME Program Chair 
 
Karen Marrongelle 
RUME Co-coordinator & Conference Local Organizer 
 
Michael Oehrtman 
RUME Coordinator Elect 
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Making the familiar strange: An Analysis of Language in  
Postsecondary Calculus Textbooks then and now 

 
Veda Abu-Bakare  

Simon Fraser University 
 
Three  calculus  textbooks  covering  a  span  of  about  40  years  were  examined  to determine 
whether and how the language used has changed given the reform movement and the impetus 
to make mathematics accessible to all. Placed in a discourse analytic framework using 
Halliday!s  (1978) theory of  functional components –ideational, interpersonal and textual, and 
using the exposition of the concept of a function as a unit of comparison, the study showed that 
language is an integral indicator of the author!s view of mathematics and an important factor for 
textbook adoption in the pursuit of student success. 

 
Keywords: discourse analysis, calculus textbooks, language of mathematical discourse 

 
INTRODUCTION 

In  the  late  1980s,  the  Calculus  Consortium  at  Harvard  (CCH) was  funded  by the 
National  Science  Foundation  to  redesign  the  Calculus  curriculum  with  a  view  to  making 
Calculus more  applied, relevant, and accessible. The intent was to re/think and re/present the 
content  so  as  to  focus  on  real-world  applications,  to  emphasize  concepts  and  graphical 
representations, and to take advantage of the increasingly sophisticated technology. Calculus is 
now presented in a manner radically different  from the  traditional approach  of abstraction, 
formal notation and symbolism, and algebraic conventions. 

The goal of this research is to see whether and how calculus textbooks designed for the 
postsecondary level in „regular! Calculus courses have changed over the years with respect to the 
language used in the exposition  and by inference, the view of mathematics manifested. One 
concept, that of a function and in particular its  definition, is chosen and used to trace  the 
dimensions of the language over the years and the consequent shifts in the view and presentation 
of mathematics in calculus textbooks. The research questions are: Has the language of calculus 
textbooks changed over time and if so, in what ways? Has the language changed from one that is 
exclusive (mathematics as an elite subject with an elite community) to one that is inclusive and 
accessible to all?  From the language, how are the authors! views of mathematics characterized 
and how have they changed over time? 

The three textbooks I have chosen are Calculus by Spivak (1967), The Calculus of a 
Single Variable  with Analytic Geometry, 5th  edition by Leithold (1986), and Single Variable 
Calculus: Early Transcendentals,  5th   edition  by Stewart  (2003).  Textbooks  may be studied 
subjectively  to  describe  the  interaction  between  the  student  and  the  written  material  or  to 
describe teachers! use of textbooks and the subsequent effect on the  teacher (Remillard et al, 
2009). However, following Herbel-Eisenmann (2007), I seek to examine the „voice! of calculus 
textbooks over  the years as objectively given structure (emphasis in the original, p.396). This 
examination will be placed in a discourse analytic framework which attends to the aspects of text 
relating to language, voice, agency and identity. 

 
ANALYTIC FRAMEWORK 

Language  has  been  increasingly seen  as  an  important  issue  relating  to  mathematics 
teaching and learning. Rowland (2000) emphasizes two principles in studying language: the 
linguistic  principle  ( language  as  means  of  accessing  thought )  and  the  deictic  principle 
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 Spivak (1967) Leithold (1986) Stewart (2003) 
Pronouns - 
1st person 

we/us/our 
32 instances 

we/us 
5 instances 

we/us 
24 instances 

Pronouns – 
2nd person 

you 
9 instances 

 
None 

you 
3 instances 

Imperatives 
Inclusive 

let!s 
 
 
 
1 instance 

call,  compare,  let,  note, 
observe, recall 

 
6 instances 

consider, determine, let, 
notice, remember 

 
7 instances 

Imperatives 
Exclusive 

 
None 

find, read 
4 instances 

draw, find, sketch, use 
6 instances 

Modal verbs May 
2 instances 

 
None 

 
None 

Questions 2 None 1 
Conditionals If 

6 instances 
if … then 

10 instances 

Given 
3 instances 
given that 
2 instances 

If 
3 instances 
if … then 

4 instances 
 

(language as a means of communication and a „code to express and point to concepts, meanings 
and attitudes!) (p.  2).   In his Language as a Social Semiotic, Halliday (1978) identifies three 
functional components or functions of language– the ideational, the interpersonal, and the textual 
–from which meaning is apprehended. The ideational functional component of the text answers 
the questions: What is the view of mathematics as presented in the text? How is the subject of 
mathematics envisioned in the mind of the author of the text and in what style is it rendered? The 
interpersonal functional component describes  the  social and personal roles and relationships 
among the authors and readers. Evidence of this function is discerned by considering the use of 
personal pronouns (first, I/we/us/our, and second person, you), imperatives, and modality. The 
textual functional component describes the content matter or the mathematics presented in the 
text, the theme and modes of reasoning, the arguments and their forms, and the narratives of 
mathematical activity. 

Each of the textbooks will be examined as to the “voice” that emerges, the extent of 
agency, and the construction of the identity of the reader by the text. 

 
METHOD 

The data consists of the 10 – 14 pages from the each of the three Calculus textbooks that 
cover the exposition of the concept of a function. Exposition includes the preliminary 
introductory commentary and the definition (or definitions) of a function. I mined the relevant 
pages carefully with respect to the linguistic markers for the three functions as articulated by 
Halliday. 

 
FINDINGS AND DISCUSSION 

Table 1 gives the results of the comparison of the textbooks across markers for the functional 
components of language with respect to the concept of a function. 

Table 1. Comparison across markers for the functional components. 
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Beginning with the interpersonal component, the most striking occurrence is that of 32 
instances of first-person pronouns in Spivak as compared with five in Leithold and 23 in Stewart. 
In Spivak, there were 29 uses of we, two of us and one of our. From the opening paragraph in his 
liberal use of we and us, Spivak sets the tone of including the reader in his deliberations. Spivak 
clearly views the reader as someone who is part of the community of people doing or studying 
mathematics. Another possible reading is that the use of we, us, and our suggests a more general 
form indicative of the register of mathematicians. In comparison, the five occurrences of we in 
Leithold read clinically as in „we see that! or „we observe that!. The use of personal pronouns 
indicates the presence or absence of humans in the activity and the implied distance and degree 
of formal relationship between the author and the reader (Morgan, 1996). Leithold deploys his 
words in a detached „scientific! manner, the very opposite of the kind of writing that Burton and 
Morgan (2000) exhort mathematicians to adopt. 

The frequency of imperatives in a text indicates the degree to which the author wishes to 
draw the reader!s attention to a point in the text (note that, observe that), to encourage the reader 
to reflect (consider, compare, recall, remember), or to give a simple command (find, sketch, use). 
Both Leithold and Stewart use a similar number of imperatives that indicate the usual textbook 
framing (consider, notice, observe, recall) and that  signal the ability of the author (determine, 
evaluate, find, sketch, use) to tell the reader what to do. It is note-worthy that Spivak does not 
use any of these imperatives but still manages by his use of personal pronouns to convey a sense 
of  introducing  the  reader  to  and  including  the  reader  in  the  activity  that  mathematicians 
undertake. 

Modality, as a feature of language, enables authors and speakers to express their feelings, 
values, attitudes, and judgments about the propositions in their texts. Demonstrations of modality 
include modal auxiliary verbs such as „may! and „can!, adverbs relating to the uncertain state of 
knowledge such as „possibly! and „maybe!, the use of moods and tenses, and the use of hedges 
(Rowland, 2000, p. 65). For these three textbooks there was little or no evidence of modality. 
There were two instances of „may! in Spivak („You may feel that we have also reached…! and 
„Two consolations may be offered!, p. 45). These have nothing to do with the mathematics 
involved but indicate concern for and offer solace to the reader. Leithold and Stewart offer no 
suggestion that that there is any uncertainty related to mathematical activity and by their lack of 
use  of  modality,  indicate  a  view  of  mathematics  that  strongly  holds  to  an  absolute,  ideal 
perspective. 

For the textual component, all three authors use the mode of discourse characterized by 
exposition (evident of the raison d'être of the textbook) in laying out a clear and concrete 
treatment of the subject matter.  Questions as evidence of a conversational or dialogic style of 
exposition were barely used; there were two questions in Spivak, none in Leithold and one in 
Stewart. 

The ideational  functional  component  in  each  of  the  three  textbooks  is  very  nearly 
identical in that  the authors! content and meaning are  similar. Each author is interested in 
communicating the content of the concept of a function and introducing the objects and relations 
that are under consideration when discussing the concept of a function. Each encodes in the text 
his individual vision of mathematics. The view of mathematics  evinced in all three is fixed, 
absolute, and formal. 

As  seen  from  these  linguistic  markers,  the  tenor  of  the  language  in  evoking  the 
relationship  between the author and the reader in the three textbooks is markedly different. 
Spivak and Leithold are diametrically opposite in the use of the first and second person pronouns 
and imperatives in engaging and addressing the reader with Stewart striking a moderate note in 
this regard. In summary, the three textbooks are similar in their theme and message but differ 
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considerably in the interpersonal component with Stewart capturing a moderate position between 
what may be considered the extremes of linguistic markers by Spivak and Leithold. 

 
IMPLICATIONS 

The language of mathematics is often seen as foreign with its own lexicon, grammar, and 
modes of argument. More than being able to negotiate the language, students of mathematics 
must become fluent in it.  Bakhtin declares that „[e]ach text presupposes a generally understood 
(that is, conventional within a given collective) system of signs, a language (if only the language 
of art)! (1953/1986, p. 105).  Hence the mathematics textbook has a conventional system of signs 
which is part of a language that is to be understood if  one wishes to be a member of the 
community involved in mathematical activity. 

The differences in language in a textbook account for much of the reader!s regard for the 
textbook. In this  paper I have teased out the subconscious linguistic markings in the text and 
have shown that there is more to the text than meets the eye; that what we have taken as familiar 
is indeed strange: a nebulous complex of beliefs and ideas about mathematics which we adopt 
and perpetuate without realizing the implications and consequences. This analysis suggests that it 
behooves  us  as  teachers  to  re/examine  our  practices  in  making  textbook  choices  for  the 
betterment of ourselves and our students and to be aware of the functions and forms of language 
that subtly maintain hegemonic practices in the teaching and learning of mathematics. 
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The Effectiveness of Blended Instruction in Postsecondary General Education 
Mathematics Courses 

 

Anna Bargagliotti, Fernanda Botelho, Jim Gleason, John Haddock, Alistair Windsor 
 

Abstract 
Despite best efforts, hundreds of thousands of students are not succeeding in 

postsecondary general education mathematics courses each year. Low student success 
rates in these courses are pervasive, and it is well documented that the nation needs to 
improve student success and retention in general mathematics. 

Using data from 11,970 enrollments in College Algebra, Foundations of 
Mathematics, and Elementary Calculus from fall 2007 to spring 2010 at the University of 
Memphis, we compare the impact of the Memphis Mathematics Method (MMM), a 
blended learning instructional model, to the traditional lecture teaching method on 
student performance and retention.  

Our results show the MMM was positive and significant for raising success rates 
particularly in Elementary Calculus. In addition, the results show the MMM as a potential 
vehicle for closing the achievement gap between Black and White students in such 
courses.  
 

Key Words 
Calculus, general education mathematics, classroom research, teaching experiment 

Introduction 
In the U.S., students who pursue a postsecondary baccalaureate degree are required 

to complete at least one general education mathematical science course. Low student 
success rates in these courses are pervasive, and it is well documented that the nation 
needs to improve student success and retention in general mathematics. National 
recognition of the poor success rates has resulted in vigorous debate and a series of 
proposed reform models over the past two decades, usually as curricular reform or 
delivery reform. Particular attention has been paid to reforming College Algebra and 
Calculus curriculum and pedagogies. Technology focused reforms have included 
attempts to change instructional delivery methods by training students to use technology 
to solve problems (Lavicza, 2009; Heid & Edwards, 2001; Smith, 2007), using 
technology as an instructional tool (Peschke, 2009; Judson & Sawada, 2002; Caldwell, 
2007; Fies & Marshall, 2006), or using a technology based assessment system (Zerr, 
2007; Nguyen, Hsieh, & Allen, 2006; Vanlehn, et al., 2005).  

In this paper, we report results comparing the impact of the Memphis Mathematics 
Method (MMM), a blended learning instructional model, to the traditional lecture 
teaching method on student performance and retention in general education mathematics 
courses at the University of Memphis (UM). The comparison includes a total of 11,970 
enrollments in College Algebra, Foundations of Mathematics, and Elementary Calculus 
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from fall 2007 to spring 2010. Results indicate that the MMM is effective in increasing 
student achievement and retention. 

The Memphis Mathematics Method 
The MMM substitutes traditional lecture-style instruction with a brief introduction of 

a topic followed by a laboratory session requiring students to complete classroom-based 
assignments using MyMathLab software. During the short lecture, instructors introduce a 
concept and provide examples that emphasize the use of mathematical techniques to 
solve problems motivated by other sciences. The remaining class time is dedicated to 
solving problems using the MyMathLab software. Over the course of a 15-week 
semester, students log 30 hours of class time practicing problems on MyMathLab. In 
addition to its use as an instructional tool, instructors use MyMathLab for course 
management and grading. 

Data and Methods 
The MMM intervention was piloted at UM in 2007 in a specialized Developmental 

Studies Program in Mathematics (DSPM) College Algebra course, which combined a 
remedial Intermediate Algebra course with a regular College Algebra course. Students 
were eligible for the DSPM course only if their ACT scores would have required them to 
take remedial Intermediate Algebra. Based on positive student outcomes during the initial 
pilot, UM expanded MMM in 2008 to regular sections of College Algebra; regular and 
DSPM sections of Foundations of Mathematics; and regular sections of Elementary 
Calculus. Instructors in both DSPM and regular MMM-taught sections reported anecdotal 
evidence of greater student engagement. There were 11,970 enrollments in the sections 
across the three courses. Of these, 10,424 enrollments were in regular sections while 
1,546 enrollments were in DSPM sections.  

We analyze data from College Algebra, Foundations of Mathematics, and 
Elementary Calculus from fall and spring semesters beginning in 2007 and ending in 
2010. These data contain information about student characteristics, student performance, 
and teaching methodology. 
Dependent variables.  

To gauge student success in the three courses, we define an indicator variable 
“success” coded as 1 if a student obtains a passing grade and 0 otherwise. The variable 
success thus combines the effects of changes in pass rate and changes in dropout rate.  

In addition, we are interested in separately determining the effects of the MMM 
pedagogy on dropout rates. We define an indicator variable “dropout” coded as 1 if a 
student dropped out of a course and 0 if a student completed the course. Success and 
dropout serve as our dependent variables in this study. 
Independent variables.  

We include the student’s gender, the student’s racial/ethnic background (White, 
Black, Hispanic, and Other), and the student’s prior mathematics knowledge as measured 
by their ACT math score, as three independent variables in the analysis. In addition, we 
control for whether a student is repeating the course and define an indicator variable 
“redo” coded as 1 if a student has attempted the course before and 0 if this is their first 
attempt. Also, an indicator variable for whether a student was exposed to the 
conventional or to the MMM pedagogy is included in the analysis.  
Estimation approach.  
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To estimate the effects of MMM on student success and dropout rates in these 
courses, we fit a total of 10 regressions – four interactive models for remedial courses and 
six interactive models for non-remedial courses.  

Results 
Descriptive results. Of the 11,970 enrollments in College Algebra, Foundations of 
Mathematics, and Elementary Calculus at UM from fall 2007 to spring 2010, 5,530 ended 
in a passing grade reflecting a 54% success rate over the three courses.  Of these 11,970 
enrollments 1,596 ended when the student withdrew from the course.  

For every course, we found that the percentage of students who withdrew from the 
MMM classes is lower than in the traditional classes. With respect to performance, more 
students were passing in MMM classes than in traditional classes. In DSPM courses for 
Foundations of Mathematics, for example, 56.7% of students received passing grades, 
while only 60.7% passed the equivalent MMM classes. Furthermore, a striking difference 
of grades across instructional methods is seen in Elementary Calculus. Approximately 
49% of students in traditional courses passed while about 72% passed when exposed to 
the MMM teaching methodology.  

Additionally, we compared the percentage breakdown of student performance and 
retention by racial/ethnic background for each course, and see that racial disparities 
between Black and White students in performance seem to be greatly reduced in the 
MMM classes. For example, across all three regular courses, Black students pass at a rate 
of 39.9% when taught using traditional pedagogy compared to 56.2% when using MMM. 
This difference is staggering. Also, in DSPM courses, Black students dropout at a rate of 
10% for the MMM method compared to a rate of 14% for traditional teaching.  In 
traditional DSPM College Algebra, 49.7% of Black students received passing grades 
compared to 64.4% of White students; that is, there is a 14.7% differential between Black 
and White students. In the equivalent MMM courses, however, this differential is only 
7.7%. In traditional Elementary Calculus, the racial disparity between Blacks and Whites 
is completely erased with 75.7% of Black students and 68.9% of White students 
receiving passing grades.   

With respect to withdrawal rates, in traditional Calculus, 22.4% of Black students 
dropped compared to 15.4% of White students, while in the MMM calculus courses, only 
6.8% of Blacks withdrew compared to 9% of Whites. These results indicate that the 
MMM is a potential vehicle for decreasing the achievement gap. These relationships are 
further examined in the following section using regression.   
Regression results. The regression output is illustrated in Table 1.  

Succeed. Female students in each course have a higher chance at succeeding than 
their male counterparts, and the higher a student’s ACT score the higher the likelihood of 
succeeding in a course. We find that students who were retaking a course have 
significantly lower odds of succeeding compared to those taking a course for the first 
time. With respect to the racial/ethnic disparities, we see that under conventional 
instruction Black students have 38%, 29%, and 49% lower odds of succeeding than 
White students in Foundations, College Algebra, and Elementary Calculus, respectively. 
Other student have 79% higher odds than White students to succeed in Calculus.   

The MMM teaching pedagogy is significantly effective in increasing the odds of 
succeeding in Calculus — students exposed to the MMM have 78% higher odds of 
succeeding than those in traditional Calculus. Furthermore, the large magnitude and 
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significance of the interaction of teaching method and race illustrates a particular benefit 
of this teaching method for Black students. In Elementary Calculus, Black students 
instructed via MMM have 779% (computed as 1.78*4.94 -1) higher odds of succeeding 
than Black students receiving conventional instruction. 

Dropout. Columns 6-8 show that regular female students have a lower probability 
of dropping Calculus compared to male students. We find a strong ACT score effect 
illustrating that students with higher ACT scores have lower odds of dropping out. 
Students who are retaking a course are more likely to persist in Calculus and have 29% 
lower odds of dropping out.  

Black/White differentials persist when comparing the probabilities of dropping 
out. Black students in College Algebra have 31% lower odds of dropping out compared 
to White students. The MMM is positive and significant for students taking Calculus. 
Calculus students in the MMM are about 48% lower odds of dropping out with respect to 
conventionally taught students. This positive finding provides evidence that the MMM is 
effective in increasing retention. 

Discussion & Conclusion 
Despite best efforts, hundreds of thousands of students are not succeeding in 

postsecondary general education mathematics courses each year. Our results suggest that 
MMM was positive and significant for raising success rates particularly in Elementary 
Calculus. In addition, the results show the MMM as a vehicle for closing the achievement 
gap between Black and White students in such courses. Overall, our data suggest that 
MMM increases success and decreases dropout rates for these general education 
mathematics courses. The positive results may be attributed to the structure and 
interactive nature of the MMM which forces a daily involvement on the part of the 
student. This type of active engagement along with the use of technology is in-line with 
reform pedagogy. The MMM implementation has resulted in overall improved student 
success in Elementary Calculus, lower dropout rates in College Algebra, and lower costs.  
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Table 
 

Table. Succeed & Dropout Regressions      

 Succeed Dropout 

 Regular DSPM Regular DSPM 

Variables Foundations Algebra Calculus Foundations Algebra Foundations Algebra Calculus Foundations Algebra 

                      

Female 1.18* 1.38*** 1.47*** 1.89** 1.33** 0.89 0.80* 0.72*** 0.68 0.84 

Act Math 
Score 1.13*** 1.17*** 1.11*** 1.19** 1.15*** 0.93*** 0.88*** 0.93*** 0.79* 0.92 

Redo 0.66*** 0.36*** 0.92 1.06 0.68* 1.27 1.21 0.71** 1.75 1.02 

Black 0.62*** 0.71*** 0.51*** 0.84 0.30*** 0.90 0.69*** 1.33** 0.79 1.98 

Hispanic 0.64 0.66 0.92 0.54 0.91 1.20 0.93 1.88 NA 4.20 

Other 0.98 0.81 1.79** NA 0.24 0.84 1.02 0.65 NA NA 

MMM  1.03 1.24 1.78*** 1.09 0.51* 0.49* 0.21 0.52** 1.55 1.19 

Black*MMM 1.13 1.01 4.94*** 1.06 2.84** 1.78 5.09 0.40* 0.37 0.60 

Hispanic*MMM 1.10 NA 0.82 NA 2.50 1.65 NA 1.31 NA NA 

Other*MMM NA NA 1.00 NA 19.04* NA NA 4.33 NA NA 

Constant 0.14*** 0.06*** 0.11*** 0.05* 0.29 0.58 1.84 0.91 7.31 0.31 

N 2,984 3,102 2,595 309 983 2,984 3,102 2,595 305 959 

*** p<0.01, ** p<0.05, * p<0.1      
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The purpose of this study was to uncover issues and difficulties that come into play as 

mathematics graduate students develop their views of their roles as university teachers 

of mathematics. Over a six-month period conversations were held with mathematics 

graduate students exploring their experiences and perspectives of mathematics teaching. 

Using hermeneutic inquiry and thematic analysis, the conversations were analyzed and 

interpreted with attention to themes and experiences that had the potential to influence 

the graduate students’ ideas about and approaches to teaching. Using Lave and 

Wenger’s notion of legitimate peripheral participation, themes that are explored in this 

paper are the replication of mathematics teaching practice and identity, and resulting 

feelings of resignation. It is hoped that this research will contribute to the understanding 

of teaching and learning in post-secondary mathematics as well as provide guidance in 

structuring post-secondary teacher education in mathematics. 

 

Keywords: post-secondary, mathematics graduate students, community of practice, 

teacher identity 

 

Introduction and Purpose 

Mathematics departments are often one of the largest departments within institutions 

of higher education, providing prerequisite courses for students in diverse disciplines 

such as engineering, psychology, chemistry, business, medicine, and education. Almost 

seventy-five percent of mathematics PhDs will become professors at post-secondary 

institutions dedicated to undergraduate education rather than research (Kirkman et al., 

2006). Consequently, the teaching of mathematics at the university level is quite 

important in undergraduate education, and professors, instructors, and graduate teaching 

assistants in mathematics have a wide-reaching influence on the education of future 

researchers, teachers, and mathematicians (Golde & Walker, 2006). However, the format 

of post-secondary mathematics teaching has remained problematic for undergraduate 

success in mathematics and the sciences (Alsina, 2005; Kyle, 1997; NSF, 1996). 

 The preparation of the future mathematics professoriate has recently become a 

subject of investigation. In particular, the development of mathematics graduate 

students’ teaching practices has become a focus for mathematicians and mathematics 

educators. Recent research into mathematics graduate students’ teaching has examined 

their classroom practices and possible connections between their practices and beliefs 

about teaching and learning. Researchers concluded that newly acquired positive 

attitudes and beliefs about teaching mathematics did not bring about hoped for changes 

to graduate students’ teaching practices (Belnap, 2005; Speer, 2001). Although the 

mathematics graduate students in at least one study developed a new vocabulary for 

discussing teaching, these students also reported that they maintained a lecture-style 

form of instruction (Belnap, 2005). Other research has shown that enrollment in a course 
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in pedagogy also did not produce expected changes to mathematics graduate students’ 

teaching practices (DeFranco and McGivney-Burelle, 2001).  

In light of these conclusions, the purpose of this research study was to learn about 

the obstacles and issues that might exist for mathematics graduate students that could 

prevent teacher preparation programs from taking root and being successful. To uncover 

these potential barriers, this study was undertaken with the following questions in mind: 

How do graduate students come to understand their roles as mathematics teaching 

assistants and possible future professors of mathematics? How might experiences and 

interpretations of experience serve as obstacles to teacher education programs for these 

future teachers of post-secondary mathematics? 

Theoretical Framework 

Lave and Wenger (1991) have offered the term legitimate peripheral participation in 

relation to a community of practice to name one central process by which novices gain 

knowledge and understanding about the practices of a community. Lave and Wenger 

claimed “even in cases where a fixed doctrine is transmitted, the ability of the 

community of practice to reproduce itself through the training process derives not from 

the doctrine, but from the maintenance of certain modes of coparticipation in which it is 

embedded” (p. 16). Moreover, within the framework of legitimate peripheral 

participation exist issues of identity where Lave and Wenger describe how “the 

development of identity is central to the careers of newcomers in communities of 

practice” where “learning and a sense of identity are inseparable” (p. 115). As such, the 

concept of legitimate peripheral participation offers an interesting perspective for 

understanding what might be happening for the mathematics graduate students as they 

progress through their programs. Legitimate peripheral participation prompts an 

interesting question for this study: How might the attention to legitimate peripheral 

participation in a mathematics department prevent graduate students from adopting 

alternate modes of teaching? 

Mode of Inquiry 

As hermeneutics “holds out the promise of providing a deeper understanding of the 

educational process” (Gallagher, 1992, p. 24), hermeneutic inquiry was chosen as the 

mode for exploring the experiences that mathematics graduate students face in their 

programs. Hermeneutics helps to understand how we create and find meaning through 

experience and social engagement (Brown, 2001). Davis (2004) offered a description of 

hermeneutics as a mode of inquiry that asks “What is it that we believe? How did we 

come to think that way?” (p. 206). Hermeneutic inquiry into mathematics graduate 

students’ understanding of their possible future roles as professors compelled a look at 

what is present in departments of mathematics that might cause them to adopt the 

teaching methods that persist as part of their role in maintaining “certain modes of 

coparticipation.”  

Carson (1986) and van Manen (1997) propose conversation as a mode of doing 

research within hermeneutic inquiry to uncover interpretations and understanding of 

experience. For this study, a series of five audio-recorded semi-structured, recursive 

conversations were conducted with the research participants, all of whom were 

mathematics graduate students in a doctorate granting university. Each conversation was 

analyzed by the researcher, who listened for the topics of conversation attended to by the 

research participants. The participants had the opportunity to review the analyses in a 
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collaborative effort to refine the reporting of their experiences. Because of its 

recognition of the interpretive work of data analysis, Braun and Clark’s (2006) six-stage 

process for thematic analysis was coupled with hermeneutic inquiry. The stages of 

thematic analysis are in accord with Laverty’s (2003) description of a hermeneutic 

project where “the multiple stages of interpretation allow patterns to emerge” (p. 23). 

Combining these two notions, the themes and the participants’ comments within each 

theme were analyzed using a hermeneutic, interpretive lens. 

Results 

The participants in this study lacked a forum to discuss their views, explore different 

ideas for teaching, and were not provided mentorship for their teaching duties. They 

were left to creating meaning amongst themselves, relying solely on the reproduction of 

the teaching and a unitary identity they observed. They resigned themselves to a notion 

that there was only one way to teach mathematics and one way to be as a professor of 

mathematics. These conclusions are explored in the themes below. 

Replication of identity and practice 

The replication of mathematics professors’ identity and teaching practices 

resonated in the conversations with the research participants. Similar to Lave and 

Wenger’s (1991) idea that communities “reproduce themselves” (p. 121), the post-

secondary teaching of mathematics, as viewed by the participants, appeared to be a 

practice of replication, a reproduction of others’ teaching. Specifically, one 

participant spoke of the structure of all mathematics courses as “definition, theory, 

example,” while another participant described teaching as “You just do examples,” 

pointing to a replication of the fixed structures of mathematics texts and courses as 

the legitimate form of teaching practice. Other participants acknowledged the 

replication of legitimate practice seen in calculus courses, with one stating “It’s easy 

to keep teaching calculus like this. We’ve been doing it forever” and another asking 

“How many ways can you skin a calculus class?” Beyond replication of teaching 

practice, though, was also a notion of replication of identity. Jardine (2006) has 

written that in mathematics there exists a “mood of detached inevitability: anyone 

could be here in my place and things would proceed identically” (p. 187), signaling 

the replication of identity amongst mathematics teachers. This view echoed in the 

language of professor A and professor B used by one of the participants: “You could 

teach a little bit better, but I don’t know how much variety you can actually put in. 

How much different is professor A from professor B?” which spoke to an 

interchangeability between professors, as though their identities might be so alike or 

the differences so insignificant that it would not matter who was in the classroom.  

Resignation 

The act of replication of mathematics teaching and the thought of taking on a 

particular identity in mathematics evolved into feelings of resignation among the 

participants. With regard to his current role as a graduate student, one participant said, 

“You can’t have an opinion; you can’t have anything except the fact that ‘yeah, this is 

true.’” Here it seemed that this participant was resigned to a passive position within his 

role as mathematics graduate student, and that he must accept the ways he could 

participate in the department. Further, when speaking about the possibilities for his 

future teaching practice and, in particular, about the use of discussion in a mathematics 

classroom, he said, “that’s never going to happen in math,” a statement that expressed a 
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resigned view that there are no alternative possibilities for what can occur in 

mathematics classrooms. Concerning his own observations of the ways in which the 

undergraduates were being taught by professors in the department, another participant 

remarked “I might have the same complaints, but there’s nothing I can do about it,” 

signaling a resignation to being unable to change the way mathematics courses are 

taught or structured. With regard to his own teaching, another participant spoke of how 

he could not work “outside of a certain box” in the department. As a result, he no longer 

appeared to have a concern for his teaching, saying, “I would not be able to change 

things even if I wanted to.” When this participant spoke of his hopes for his future career 

as an academic, teaching was no longer of consequence to his success as a 

mathematician and future professor. In the final year of his doctoral program, this 

participant was an illustration of what Lave and Wenger (1991) refer to as the 

“transformation of newcomers into old-timers” (p. 121) and how “an extended period of 

legitimate peripherality provides learners with opportunities to make the culture of 

practice theirs” (p. 95). 

Implications of the study 

The goal of this project was to understand what the obstacles might be for post-

secondary mathematics teacher education. The participants in this study did not report a 

public statement or acknowledgement that they had to abandon other ideas about 

teaching and that they should no longer consider teaching important, but they interpreted 

their lives in mathematics to be restricted to a particular way of being and of teaching 

mathematics. Thus if the current structures and suggestions of what is important to 

graduate study in mathematics remain in place, it is unlikely that new teacher education 

programs that are established for mathematics graduate students will produce hoped for 

changes to teaching in post-secondary mathematics. 
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Abstract: 
 

The purpose of this study is to create and utilize a tool that evaluates students’ 
comprehension of the logical structure and implications of the formal definition of limit. This 
study continues the trajectory of recent limit research involving classroom-based interventions 
that reveal student metaphors and conceptions (Boester, 2010; Oehrtman, 2009; Roh, 2008, 
2010). The diagnostic tool, based on seven concepts embedded in the formal definition, uses a 
set of delta/epsilon diagrams that students must explain, either accepting them as correct, or 
augmenting them to make them correct. The assessment was used after giving students in a 
conceptually-based calculus class a problem meant to introduce the logical structure of the 
formal definition. While students did not spontaneously show many of the concepts based on the 
problem alone, an interview protocol following the assessment prompted the students to rethink 
the implications of the problem, thus promoting the missing concepts. 

 
Keywords: calculus, limit, assessment, conceptual decomposition 
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Cornu (1991) first summarized research on students’ spontaneous conceptions, mental 
models, and epistemological obstacles concerning the formal definition of limit. Since then, 
research has grown from cataloging misconceptions (Bezuidenhout, 2001; Davis & Vinner, 
1986; Tall & Vinner, 1981) to describing possible frameworks of student conceptions (Cottrill et 
al., 1996; Lakoff & Núñez, 2001; Williams, 1991, 2001). Some of the most recent research 
(Boester, 2010; Oehrtman, 2009; Roh, 2008, 2010) has described classroom-based interventions 
that both further our understanding of students’ conceptions of limit, while documenting how 
and why limits were taught to students using particular problems, activities, or manipulatives. 

In order to assess the effectiveness of emerging pedagogical strategies for limit 
instruction, it would be nice to have a generic tool to gauge students’ comprehension of the logic 
contained within the formal definition. The purpose of this study is to create such a tool, then use 
it to assess students’ comprehension of the logical structure and implications of the formal 
definition of limit following a classroom-based intervention. 
 

Limit Diagnostic Tool 
 

Using the following statement of the formal definition of limit at a point 
 

lim
x!a

f (x) = L  means that  

!" > 0 , !" > 0 , such that 0 < x ! a < " # f (x) ! L < $  
 
the concepts contained within this definition, which should be assessed by the diagnostic tool, 
need to be established. Through discussion with other limit researchers, the following list was 
created: 
 

1) We control delta, not epsilon. 
2) Delta interval must fit inside (cannot be outside) epsilon interval. 
3) Delta interval can be strictly inside epsilon interval. 
4) Delta and epsilon do not have to be equal. 
5) In order for the limit as x approaches a to be L in the continuous case, f(a) = L. 
6) The length of the interval on each side of a / L must be the same, because you 

can be the same distance (delta / epsilon) away in both directions. 
7) For a non-linear graph, one side of the delta interval may be the same as the 

epsilon interval, but for the other side, the delta interval may be strictly inside 
the epsilon interval. 

 
A written assessment, consisting of six standard delta/epsilon diagrams (an example is 

shown in Figure 1), was then created to test for these seven concepts. For each diagram, the 
student must either confirm that this pairing of delta and epsilon in the diagram is appropriate for 
the given graph of a function, or explain why it is not appropriate and correct the diagram to 
create an appropriate pairing. For instance, if a student states that the diagram in Figure 1 is not 
an appropriate pairing, and proposes redrawing the delta interval to “correct” the diagram in 
Figure 2, this would reveal that the student has failed to grasp concept #3, that the delta interval 
can be strictly inside the epsilon interval. A student could alternatively redraw the epsilon 
interval to line up with the delta interval, showing that they have also failed to grasp concept #1, 
that we can only change delta. 
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In addition to the written assessment, an interview protocol was also created. After a few 
preliminary questions eliciting feedback about limits in general, students are asked to explain 
their responses to all six diagrams. The interviewer questions their responses only after the 
student has completed explaining all the diagrams, in order to provide a baseline for their 
responses. For correct responses, the questions probe for recognition of the embedded concepts. 
Did the student actually answer the question following the intent of the concept? In other words, 
were the students’ beliefs robust enough to withstand deeper questioning, or were they easily 
malleable by the researcher? For example, if a student correctly states that the diagram in Figure 
1 follows the definition, the protocol indicates to show the student Figure 2 and ask “Another 
student might say that the delta is too small, and should be bigger to match the epsilon. Do you 
need to do this?” For partially correct or incorrect responses, the questions probed for the related 
concepts in their apparent absence. Would students recognize or maintain their misconceptions 
of the definition? If a student proposed Figure 2 as a correction to Figure 1, the student would be 
asked “Is it ok for the delta interval to be inside of the epsilon interval? Do delta and epsilon 
have to be equal?” (This addresses concept #4, as well as concept #3.) 
 

Implementation of the Tool Following a Classroom Activity 
 

This diagnostic tool was first used in Math 348, Concepts of Calculus for Middle School 
(Pre-Service) Teachers, a course taught by the researcher during the Spring 2010 quarter at a 
mid-size, Midwestern university. Math 348 focuses on the ideas, rather than the procedures, of 
calculus. Even though the goal of the course is to enable students to recognize how the 
fundamental idea of change relates to the functions commonly presented in middle school 
curricula, limits are introduced in the course, mainly to promote derivatives and integrals later 
on. 

Limits were first covered informally, based on a dynamic, approaching conception. 
Students were asked to solve routine limit problems for continuous, discontinuous, and 
piecewise-defined functions. Then the formal definition was introduced through a classroom 
activity centered around a story problem originally created for a teaching experiment (Boester, 
2010). The bolt manufacturing problem allows students to explore the logical structure of the 
formal definition by thinking about the functional relationship between the input and output of a 
factory that makes bolts. After allowing students to discuss the bolt problem in groups, a whole 
class discussion (led by the researcher) was held to come up with the following statement: 
 

For every bolt length tolerance, there exists a raw materials tolerance, so that if an 
amount of raw material that falls within the raw material tolerance is put into the 
machine, the length of the bolt produced falls within the bolt length tolerance. 

 
Written on the board next was a delta/epsilon diagram, whose graph had a slope roughly equal to 
one so that the delta and epsilon intervals would match and be equal. (The researcher tried to 
match the diagrams drawn by the students during their small group discussions of the problem.) 
This diagram was initially labeled with the terms from the bolt problem. The formal definition of 
limit was then written on the board. Finally, the researcher walked the students though a 
mapping of each representation onto the other, showing in particular how the symbols of the 
definition matched the pieces of the statement and the diagram. 
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The concepts on the above list were intentionally not highlighted during instruction. 
While all of these concepts are embedded in the bolt problem, could students actually unpack 
them without further explicit instruction? The students were reminded, however, to think of the 
bolt problem while constructing their answers and explanations for each diagram.  

Students were then given the assessment tool as a written, optional homework assignment 
for extra credit. (Students did not have to agree to participate in the study to complete the 
assignment and receive the extra credit.) Those students who completed the assessment were also 
given the opportunity to be interviewed. Out of 24 students enrolled in the course, 13 returned 
the written survey, and 8 of those sat for a videotaped interview. For the students who were 
interviewed, their remarks were transcribed and compared to their written solutions in two 
passes, once for their initial explanations, and a second time when their responses were probed 
by the researcher. For those students that were not interviewed but turned in the assessment, their 
written remarks were coded as if they had sat for the first pass of the interview.  
 

Results 
 

A preliminary analysis of the results has revealed that the students struggled with the 
assessment. Most students showed that they grasped concept #2, that the delta interval cannot be 
outside the epsilon interval. Interviewed students attributed their explanations of concept #2 to 
the bolt problem, that an amount of raw materials too far away from the target amount would 
produce a bolt with a length outside the acceptable length range. Students also showed that they 
grasped concept #4, that the delta and epsilon intervals do not have to be equal. One student 
explained that delta and epsilon are describing different qualities, so why should they have to be 
equal? 

However, few students expressed knowledge of concepts #1, #3 and #5. Evidence of this 
was shown through changing the epsilon interval to correct a diagram, expanding a delta interval 
to match an epsilon interval (as in Figure 2), and not recognizing that a misalignment of a and L 
in a diagram was a fundamental error, even if the delta interval was still within the epsilon 
interval. The lack of these concepts seemed to hinder their grasp of concepts later on the list (and 
tested in later diagrams in the assessment). While the last two errors could be attributed to 
metaphorical “baggage” of the bolt problem (in the context of the problem, these are acceptable 
or even desired actions), students should have recognized that the bolt manufacturer cannot 
control the customers’ demands on the accuracy of the bolt length (epsilon), only their own 
measurement error of the raw material (delta). 

Even with this disappointing performance, the second pass of the interview showed 
entirely different results. When probed, although a few students backed away from correct 
concepts, every student gained several concepts. The students’ responses to the probes were 
consistently framed in the context of the bolt problem, which clearly helped the students come to 
grasp the concepts they heretofore lacked. Even with the researcher being careful to closely 
adhere to the interview protocol, six of the eight students left the interviews having expressed 
every concept on the list. Thus, while the bolt problem itself may not be sufficient to instill the 
logical structure and implications of the formal definition of limit, the problem clearly primed 
students for a discussion of the diagrams used in the diagnostic tool. This suggests that an 
instructional sequence involving the bolt problem should not be considered complete without an 
assignment like that of the limit diagnostic tool, and a discussion of the assignment that questions 
the reasoning of correct and incorrect responses. 
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Figure 1. The delta/epsilon diagram from 
Question #2. 

 
 

Figure 2. A proposed student correction to the 
delta/epsilon diagram in Question #2. 
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Abstract: In this study, students in transition-to-proof courses were introduced to equivalence rela-

tions either using a traditional classroom lecture or using small group learning activities. Students’

understanding of equivalence relations were then assessed using task-based interviews aimed at as-

sessing concept image, concept definition, as well as concept usage in terms of writing proofs. The

students involved in small group activities made stronger connections to partitions and were more

successful in writing proofs. In addition, the concrete learning activities gave many participants

a strong prototypical example that aided in encapsulating the essential features of an equivalence

relation.

Key words: transition to proof, classroom teaching experiment, concept definition

The notion of equivalence plays a role in understanding relationships between a wide variety of

mathematical objects, such as fractions, equations, and vectors. This fundamental idea is for-

malized in the notion of an equivalence relation. Students are typically introduced to the formal

definition of an equivalence relation in a transition-to-proof course. In a study involving a transi-

tions course, Chin and Tall (2001) point out that the idea of relations is one of the more difficult

concepts for students to understand. In particular, while many students were able to recall that

equivalence relations must be reflexive, symmetric, and transitive, the standard definition of a re-

lation as a subset of the cross product had little concrete meaning. Further, for most students, the

conceptual link between equivalence relations and partitions was fairly limited. In terms of proofs,

Chin and Tall (2000) also observed that many students attempted demonstrate that a relation was

an equivalence relation using informal rather than formal, definition-based arguments. The goal

of this study is to assess the impact of introducing equivalence relations and partitions using small

group learning activities. In particular, when compared to a standard lecture, do small group ac-

tivities improve student understanding of equivalence relations and partitions? Further, does an

understanding developed through small group interaction lead to greater success in writing formal

proofs?

Background

In his study of a transitions course, Moore (1994) identified several difficulties that students had

in writing proofs. These included not knowing the concept definition, having inadequate concept

images, and not knowing how to use the definitions to structure their proofs. Building on the

distinction between concept definition and concept image, Moore introduced the notion of concept

usage. Concept usage refers to the way one operates with the concept in generating examples or

in writing proofs. Taken together, Moore referred to the concept definition, image, and usage as

the concept-understanding scheme. He noticed that students had difficulty remembering formal,

abstract definitions without an informal understanding of the concept: “The students often needed

to develop their concept images through examples, diagrams, graphs and other means before they

could understand the formal verbal or symbolic definitions” (Moore, 1994, p. 262). In terms of

constructing an understanding of a new concept, Dahlberg and Housman (1997) outlined four basic
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strategies that students use when presented with a new concept definition: example generation,
reformulation, decomposition and synthesis, and memorization. Their research indicated that the
strongest evoked concept image arose from example generation. With this in mind, the group
activities to introduce equivalence relations were designed to help students develop an informal
understanding of the concept definition through example generation and exploration.

Methodology

Participants in the study were undergraduate students enrolled in either a lower division discrete
mathematics course or an upper division transition-to-proof course. During the first year of the
study, students in both courses were introduced to equivalence relations and partitions using a
traditional lecture format, with one fifty minute class period devoted to equivalence relations and
another devoted to partitions. Using the standard definition, equivalence relations were introduced
as a subset of the cross product satisfying the reflexive, symmetric, and transitive properties. The
instructor used several examples to illustrate the meaning of each requirement and how it could
fail. There was good classroom interaction, with a variety of questions and discussion involving
both the instructor and the students. During the second lecture, after defining and illustrating the
notion of a partition, the instructor proved the standard theorem connecting equivalence relations
and partitions. During the second year of the study, students worked in small groups during the
two class periods. Activities on the first day related to equivalence relations while the second
day focused on partitions. Students were given the formal definitions, and the quantifiers in each
requirement were verbally emphasized. After this introduction, the rest of the class period was
devoted to small group interactions. Beginning with a variety of colored shapes, the students were
asked to determine whether “same color” and “differ in exactly one attribute” were equivalence
relations. Using these same shapes, students were asked to formulate other examples and non-
examples of equivalence relations. Students then considered several relations defined symbolically,
such as aRb if and only if a + b = 2n for n ∈ Z, and were asked to convince each other that the
given relations were or were not equivalence relations. Students participated in similar activities
regarding partitions and, using some concrete examples, convinced themselves that equivalence
classes naturally give rise to a partition. In addition, they discovered that a collection of sets that
do not form a partition do not give rise to an equivalence relation. The theorem relating equivalence
relations and partitions was not proven, but was stated as a result that generalized the examples they
had investigated. During the group activities, the instructor spoke with individual groups to help
clarify any questions or to encourage rigor in their arguments.

Assessment

Approximately three to four weeks after the classroom lecture or group activities, students’ under-
standing of equivalence relations was assessed using task-based interviews. 17 students from the
lecture sections and 21 students from the active learning sections participated in the interviews.
These occurred outside of class, lasted approximately a half an hour, and were videotaped for fur-
ther review. Participants were first asked “what is an equivalence relation” and, in attempting to
get a better picture of their concept image, they were asked to describe any other related concepts,
ideas, or illustrations that they thought of when hearing the term “equivalence relation.” In terms
of concept usage, students were given two relations and asked to determine whether or not they
formed equivalence relations. For each relation, participants were first asked to give an example
of two elements that were related and two other elements that were not related. This was to ensure
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that there was no confusion regarding the notation or definition of the relations. Students were
asked to talk out loud as they worked on the problems, and they were prompted for additional
clarification when their reasoning was unclear.

Results

In terms of being able to define an equivalence relation, the vast majority of students in both
courses remembered the three words reflexive, symmetric, and transitive. When asked to describe
each requirement, most students gave symbolic definitions that were largely correct. The most
common mistakes involved the use of quantifiers. This is similar to the results in Chin and Tall
(2000, 2001), and there was little difference between the written definitions given by students in the
traditional lecture sections versus those with small group activities. When asked about any other
related concepts or ideas that popped into their head when they heard the term “equivalence rela-
tion,” there was a difference observed between the lecture sections and the active learning sections.
Partitions were mentioned by only 4 of the 17 participants in the traditional lecture sections, while
10 of the 21 students in the active learning sections made a connection with partitions. Finally,
several students made comments about the examples used in their initial encounter with equiva-
lence relations. Two students in the lecture sections indicated that equivalence relations involved
ordered pairs, while almost a quarter of the students in the active learning sections described sort-
ing colored shapes into related groups of objects. For example, in describing other ideas related to
equivalence relations, one student remarked that “Well, definitely the shape and colors concept is
the strongest ... it does help to remember kind of the flavor of relation that we’re describing.”

In terms of concept usage, students were asked to prove or disprove that two relations formed
equivalence relations. The first relation, aRb if and only if a · b ≥ 0 for a,b ∈ R, is not transitive
(take a = −1, b = 0 and c = 1 so that ab ≥ 0 and bc ≥ 0 but ac � 0). Students in the active
learning sections were more successful at noticing that transitivity fails, with several students im-
mediately considering the transitive property as they suspected it might be problematic. In contrast,
all students in the traditional lecture proceeded by checking reflexive first, symmetry second, and
transitive third. Only one student, a student in the active learning section, made a connection with
partitions before demonstrating that transitivity fails: “Obviously, the negative numbers are related
to each other and also the positive numbers are related to each other. The problem is zero itself
... it doesn’t create a partition because zero is related to any positive or any negative.” The sec-
ond relation participants considered, mRn if and only if m2 = n2 where m,n ∈ Z, does form an
equivalence relation. The students in the active learning sections were more successful at writing a
correct proof of this fact. In particular, only 4 of 17 participants in the lecture sections presented a
correct proof compared with 14 out of 21 in the active learning sections. Finally, in terms of proof
schemes (as described in Harel and Sowder, 2007), almost half of the students in the traditional
lecture sections gave only an empirical argument while almost all of the students in the active
learning sections attempted a deductive argument.

Discussion

When compared with a traditional lecture, small group learning activities involving equivalence
relations and partitions led students to a more interconnected concept image as well as greater
success in writing proofs. In addition, sorting concrete shapes into groups of equivalent objects
seemed to provide many students with a prototypical example that embodied the formal definition
while making a clear link to partitions. Typically, one of the goals of a transitions course is to
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help students in working with abstract mathematical ideas, where meaning is often derived from
the formal definition. In this sense, classroom activities where students are given an opportunity to
explore formal definitions in small groups supports the goals of a transitions course. Further, this
study demonstrates that these same types of activities can help students in taking a more formal,
deductive approach to mathematical argument and proof. Finally, in terms of limitations of this
study, it is important to note that the small group learning activities occurred during two days of a
semester where almost all classes were taught in a modified lecture format. It is unclear how stu-
dents would perform in a course where most classes involved active group learning. However, this
study does suggest that small group activities where students generate and explore mathematical
definitions can be an effective tool for teaching certain concepts within a lecture style transitions
course.
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Surveying Mathematics Departments to Identify Characteristics of Successful  

Programs in College Calculus 
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This report highlights the completion of the first step of a large national investigation of 

mainstream Calculus I that aims to identify the factors that contribute to student success in Calculus 

I.  Calculus I is the critical course on the road to virtually all STEM majors. Even students who do 

well in it often find the experience so discouraging that it leads to a change of career plans. We have 

very little data on the preparation and aspirations of the students who enroll in this course or of the 

factors that contribute to success in calculus. This five-year NSF funded project begins to fill this 

gap in knowledge. 

=-1(#1>+#?(>#+3$41*("(:#$1@(+31#3$1A(+@(departmental and instructional factors that 

influence student persistence and success in college and university calculus.  We also describe the 

processes of developing a suite of six survey instruments to assess the characteristics of calculus 

instruction at colleges and universities across the nation. Since the six surveys (department chair, 

calculus coordinator, instructor pre, instructor post, student pre, and student post) followed the same 

development process we will limit our discussion in this report to the student pre- and post-surveys. 

The survey development process began with the development of a taxonomy of critical attributes of 

successful calculus programs that have been reported in the literature. This was followed by cycles 

of item construction, clinical interviews with survey respondents and item refinement until survey 

items assessed the intended taxonomy variables and the survey question and answer formats were 

interpreted consistently with the designers’ intent. The research that guided the item development, 

including the format choice and validation cycles will be described with findings that reveal items 

that are effective for gaining information about calculus instruction and its impact on students. Pre-

course surveys have been administered to over 10,000 students across the nation and post-survey 

data will be available at the end of the fall, 2010 semester.  
 

Brief Summary of the Literature 

Over the last 25 years, various studies about student persistence in college in general and in 

STEM studies in particular have converged on a nearly common set of clearly identifiable factors 

that contribute to student persistence. Broadly, these factors pertain to (a) a strong sense of 

community and self-perception of identity with that community, (b) departmental or institutional 

supports for learning, and (c) instructional behaviors that meet students’ intellectual needs, promote 

greater learning and develop student self-confidence. In the area of college calculus as well as 

secondary mathematics leading to calculus, research findings also highlight the effect of 

pedagogical issues that affect students’ understanding of the key ideas of the course (e.g., limit, 

derivative). Numerous studies have also highlighted the importance of students’ development of 

problem solving behaviors and habits of mathematical thinking that are consistent with ones held by 

acting mathematicians and scientists. Yet another vast area that has been shown to effect students’ 

learning and mathematical self efficacy include the quality of interactive engagement within the 
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classroom and intellectual demand put on students in homework and within the classroom. (e.g., 

homework, explanations). Other areas that have been particularly influential in affecting student 

persistent include: i) student self-efficacy relative to mathematics, ii) student and teacher beliefs 

about the nature and methods of mathematics, and iii) student self-identity with the culture of 

mathematics.   

Research findings reveal many more variables than are feasible to include on the CSPCC 

Survey. This resulted in our considering the extent to which research indicates that a particular 

variable is a powerful factor in learning calculus or in student persistence in calculus. Other criteria 

we took into account include: (1) How amenable is this factor to actual change or manipulation? 

(i.e. can the instructor or department do anything about it?); (2) How hard is it to answer the 

question? (respondent burden); and (3) How confident are we that students will give us a truthful 

answer? (expected reliability).  

Our literature review (see bibliography) guided our choice of variables to include in our 

surveys. These variables have been articulated in the form of a taxonomy. The student post-survey 

variables characterize both the dependent and independent variables that we hypothesize (based on 

our review of the literature) are critical for student success and continued mathematics study. 

 

Taxonomy Keyed to Student Post-Survey  

What follows is a curtailed taxonomy that shows only the major dimensions. As noted 

below, most dimensions has several subcategories. The full taxonomy will be presented with the 

full report and related to the literature. 
 

Potential Dependent Variables 

A. Course grade and intention to take Calc II (with 4 subcategories) 

B. Impact of Calc I course on student (with 4 subcategories) 

C. Student self-perception of knowledge/skills in calculus 
 

Potential Independent Variables 

A. Student Beliefs and Affect (with 5 subcategories) 

B. Perceived Behaviors and Values of the Calculus Instructor (with 4 subcategories) 

C. The Role of Homework and Exams (with 4 subcategories) 

D. The Role and Behavior of the Student in Learning (with 6 subcategories) 

E. Supports for Students (with 2 subcategories) 

F. Readiness for Calculus (Pre-survey) (with 3 subcategories) 

G. Readiness for Calculus (Post-survey) 
 

Format and Design of Survey 

While the variables embedded in the CSPCC Survey questions relate to factors identified 

from the literature, the format and design of the questions are consistent with recommended practice 

in survey design (Colton & Covert, 2007; Fowler, 1995; Saris & Gallhofer, 2007). Depending on 

the information sought by each question, a specific question format was selected as deemed most 

appropriate (Likert, contrasting alternative, categorical, matrix configuration). Professional advice 

was also sought from Dr. Jillian Kinzie, Associate Director, Indiana University Center for 

Postsecondary Research and NSSE Institute, whose area of expertise is survey design. In addition, 
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we have been in periodic communication with Co-PIs Phil Sadler and Gerhard Sonnet regarding 

survey formatting and data processing plans. They have also reviewed drafts of the survey 

taxonomies and instruments, and have offered suggestions for survey question refinement.  

 

Survey Development  

     The project team developed the following five surveys: i) course coordinator, ii) instructor 

pre- suvey, iii) instructor post-survey, iv) student pre-survey and v) instructor post-survey. The 

development process for each instrument involved cycles of: i) constructing items for each 

taxonomy item for each survey; ii) conducting clinical interviews with a talk-aloud protocol with 

subjects for each of the respective surveys (i.e., course coordinators, instructors and students); 

refining the item questions and answer choices based on analysis of clinical interview data.   

Each survey included multiple question types, including likert, contrasting alternative, and 

categorical. The question format for each taxonomy variable was considered with the format choice 

relying on which format would provide the most valid and reliable data relative to that variable.  As 

one example, the contrasting alternative format is more reliable in instances where likert scales are 

ambiguous because different survey respondents construct different images of what it means to 

select a value in the scale. They are also more valid in instances where the goal is to gain 

information about the relative degree to which students agree with two common alternatives to a 

particular statement. In the case of the contrasting alternative format a brief description is provided 

for each end of the survey scale so that the respondent is clear on what it means to select that 

answer choice. As one example, we devised a contrasting alternative item that provides two 

alternatives about what a score on a mathematics exam is measuring because these two choices 

were revealed during interviews to be the most common uses of exams.  
 

Example constrasting altetnative item type that appears on both the student pre- and post-survey.  

30. My score on my mathematics exam is a measure of how well 

(a) I understand the covered 

material. 

 

1             2            3            4 

O            O           O           O 

(b) I can do things the way the 

teacher wants. 

 

The conference presentation and report will provide additional exemplars of survey items for each 

of the four surveys and some time will be allotted for participants to react to the taxonomy and 

sample items. 

Significance 

 The potential significance of this five-year study is very strong and members of the RUME 

community will be interested in the progress and outcomes of this national project. Through the 

policies and publications of the Mathematical Association of America, the results of this project will 

effect calculus instruction and curricular development across the nation by providing knowledge of 

approaches to teaching calculus that are more successful, with particular attention paid to the 

differential effects of racial/ethic and gender variables. This report represents the first in a series of 

reports at the RUME conference detailing the progress and results of this important work. 

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



Bibliography 
 

American Mathematical Society (2009). Homework Software Survey Report. Providence, RI: 

American Mathematical Society. 

Boaler, J. (1998). Open and closed mathematic: Student experiences and understandings. Journal 

for Research in Mathematics Education, 29(1), 41-62. 

Boaler, J., William, D., & Zevenbergen, R. (2000). The construction of identity in secondary 

mathematics education. Paper presented at the International Mathematics Education and 

Society Conference.  Portugal. 

Carlson, M., Buskirk, T., & Halloun, I. (1999). Assessing College Students' Views about 

Mathematics with the Views About Mathematics Survey. Unpublished manuscript. 

Carlson, M., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent 

multidimensional problem solving framework. Educational Studies in Mathematics, 58, 45-

75. 

Carlson, M., Bloom, I., & Glick, P. (2008). Promoting effective mathematical practices in students: 

Insights from problem solving research. In M. Carlson & C. Rasmussen (Eds.), Making the 

connection: Research and practice in undergraduate mathematics, MAA Notes, Vol. 73 (pp. 

275-288). Washington, DC: Mathematical Association of America. 

Colton, D., & Covert, R. W. (2007). Designing and Constructing Instruments for Social Research 

and Evaluation (Research Methods for the Social Sciences). San Francisco, CA: Jossey-

Bass. 

Datta, D. K. (1993). Math Education at its Best: The Potsdam Model. Framingham, MA: The 

Center for Teaching/Learning Mathematics. 

Davis, R. B., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception 

stages. Journal of Mathematical Behavior, 5, 281-303. 

DeBellis, V. A., & Goldin, G. A. (1999). Aspects of affect: Mathematical intimacy, mathematical 

integrity. Paper presented at the 23rd Annual Meeting of the International Group for the 

Psychology of Mathematics Education, Haifa, Israel. 

DeFranco, T. C. (1996). A perspective on mathematical problem-solving expertise based on the 

performances of male PhD. mathematicians. In Research in collegiate mathematics II (Vol. 

6, pp. 195-213). Providence, RI: American Mathematical Association. 

Fowler, F. J. (1995). Improving Survey Questions: Design and Evaluation. Applied Social Research 

Methods Series, Vol. 38. Thousand Oaks, CA: Sage Publications. 

Galbraith, P. (2002). 'Life wasn't meant to be easy': Separating wheat from chaff in technology 

aided learning. Electronic Proceedings of the Second International Conference on the 

Teaching of Mathematics (at the Undergraduate Level). Hersonissos, Crete, Greece, July, 

2002. 

Geiger, V., & Galbraith, P. (1998). Developing a diagnostic framework for evaluating student 

approaches to applied mathematics problems. International Journal of Mathematics, 

Education, Science and Technology, 29(4), 533-559. 

Gersten, R., Ferrini-Mundy, J., Benbow, C., Clements, D. Loveless, T., Williams, V. et al. (2008). 

Report of the Task Group on Instructional Practices. Retrieved October 27, 2008, from 

http://www.ed.gov/about/bdscomm/list/mathpanel/report/instructional-practices.pdf 

Goos, M., & Galbraith, P. (2000). Reshaping teacher and student roles in technology-enriched 

classrooms. Mathematics Education Research Journal, 12(3), 303-320. 

Hannula, M. S. (2006). Motivation in mathematics: Goals reflected in emotions. Educational 

Studies in Mathematics, 63(2), 165-178 

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



Hsu, E., Murphy, T. J., & Treisman, U. (2008).  Supporting high achievement in introductory 

mathematics courses: What we have learned from 30 years of the Emerging Scholars 

Program.  In M. Carlson & C. Rasmussen (Eds.), Making the connection: Research and 

practice in undergraduate mathematics, MAA Notes, Vol 73 (pp. 205-220).  Washington, 

DC: Mathematical Association of America. 

Keynes, A., & Olson, A. (2001). Professional development for changing undergraduate 

mathematics instruction. In D. Holton (Ed.), The teaching and learning of mathematics at 

university level: An ICMI study (pp. 113-126). Dordrecht, The Netherlands: Kluwer 

Academic Publishers. 

Kokkelenberg, E. C., Dillon, M., & Christy, S. M. (2008). The effects of class size on student 

grades at a public university. Economics of Education Review, 27, 221-233. 

Lewis, J., & Tucker, A. (2009). Report of the AMS First-Year Task Force. Notices of the AMS, 

56(6), 754-760. Providence, RI: American Mathematical Society. 

Martin, J. H., Hands, K. B., Lancaster, S. M., Trytten, D. A., & Murphy, T. J. (2008). Hard but not 

too hard: Challenging courses and engineering students. College Teaching, 56(2), 107-113. 

Mason, J., & Spence, M. (1999). Beyond mere knowledge of mathematics: The importance of 

knowing-to-act in the moment, Educational Studies in Mathematics, 38, 135-161. 

Nickerson, S., & Bowers, J. (2008). Examining interaction patterns in college-level mathematics 

classes: A case study. In M. Carlson & C. Rasmussen (Eds.), Making the connection: 

Research and practice in undergraduate mathematics, MAA Notes, Vol 73 (pp. 179-190). 

Washington, DC: Mathematical Association of America. 

Pajares, F. & Miller, M.D. (1994). Role of self-efficacy and self-concept beliefs in mathematics 

problem solving: A path-analysis. Journal of Educational Psychology, 86(2), 193-203. 

Pierson, J. (2009). Responsiveness and intellectual Work: Characteristics of teachers’ discourse that 

influence student learning. Paper presented at the annual meeting of the American 

Educational Research Association, San Diego, CA. 

Reed-Rhoads, T., Murphy, T. J., & Trytten, D. A. (October 2005). A study of gender parity: 

Department culture from the students' perspective. Proceedings of the 2005 Frontiers in 

Education Conference (pp. F2G1-F2G6). Indianapolis, IN. 

Robst, J., Keil, J., & Russo, D. (1998). The effect of gender composition of faculty on student 

retention. Economics of Education Review, 17(4), 429-439. 

Sabharwal, M. (2005). Factors affecting persistence rates among Arizona State University freshmen 

and Implications for policymaking. Perspectives in Public Affairs, 2, 21-33. 

Saris, W. E., & Gallhofer, I. N. (2007). Design, Evaluation, and Analysis of Questionnaires for 

Survey Research (Wiley Series in Survey Methodology). Hoboken, NJ: Wiley. 

Seymour, E. (1995). The loss of women from science, mathematics, and engineering undergraduate 

majors:  An explanatory account. Science Education, 79(4), 437-473. 

Seymour, E., & Hewitt, N. M. (1997). Talking about leaving: Why undergraduates leave the 

sciences. Boulder, CO: Westview Press. 

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and 

sense-making in mathematics. In D. A. Grouws (Ed.), Handbook for research on 

mathematics teaching and learning (pp. 334-370). New York: Macmillan Publishing 

Company. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 

Researcher, 15(5), 4-14. 

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



Solomon, Y. (2007). Not belonging? What makes a functional learner identity in undergraduate 

mathematics. Studies in Higher Education, 32(1), 79-96. 

Spangler, D. A. (1992). Assessing students’ beliefs about mathematics. Mathematics Educator, 

3(1), 19-23. 

Speer, N, Gutmann, T., & Murphy, T. J. (2005). Mathematics teaching assistant preparation and 

development. College Teaching, 53(2), 75-80. 

Speer, N., & Hald, O. (2008). How do mathematicians learn to teach? Implications from research on 

teachers and teaching for graduate student professional development. In M. Carlson & C. 

Rasmussen (Eds.), Making the connection: Research and practice in undergraduate 

mathematics, MAA Notes, Vol. 73 (pp. 305-317). Washington, DC: Mathematical 

Association of America. 

Spencer, A. (1995). On attracting and retaining mathematics majors – Don’t cancel the human 

factor. Notices of the American Mathematical Society, 42(8), 859-862. 

Tai, R. H., Sadler, P. M., & Loehr, J. F. (2005). Factors influencing success in introductory college 

chemistry. Journal of Research in Science Teaching, 43(9), 987-1012.    

Tall, D. (1992). The transition to advanced mathematical thinking: Functions, infinity, and proof. In 

D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495-

511). New York: Macmillan. 

Thompson, P. W., Castillo-Chavez, C., Culbertson, R. J., Flores, A., Greeley, R., Haag, S., Lawon, 

A. E., Rose, S. D., & Rutowski, R. L. (2007). Failing the future: Problems of persistence and 

retention in science, technology, engineering, and mathematics (STEM) majors at Arizona 

State University. Provost Office Report. Tempe, AZ: Arizona State University. 

Thompson, A. G., Philipp, R. A., Thompson, P. W., & Boyd, B. A. (1994). Calculational and 

conceptual orientations in teaching mathematics. In A. Coxford (Ed.), 1994 Yearbook of the 

NCTM (pp. 79-92). Reston, VA: National Council of Teachers of Mathematics. 

Tinto, V. (1998). Colleges as communities: Taking research on student persistence seriously. The 

Review of Higher Education, 21(2), 167-177. 

Tucker, A. (1995). Models That Work: Case Studies in Effective Undergraduate Mathematics 

Programs: An MAA Project Funded by the National Science Foundation. MAA Notes 

Number 38. Washington, DC: Mathematical Association of America. 

Weko, T., & Chen, X. (2009). Students who study science, technology, engineering, and 

mathematics (STEM) in postsecondary education. Stats in Brief. National Center for 

Education Statistics, Technical Report NCES 2009-161. Washington DC: U.S. Department 

of Education. 

Wood, M., Luttrell, V., Callen, B., Allen, C., & Deeds, D. G. (2007). Assessing students' value for 

science and math literacy. In D. Deeds & B. Callen (Eds.), Proceedings of the National 

STEM Assessment Conference (pp. 314-325), October 2006 in Washington, DC, @Drury 

University. 

Yackel, E., & Rasmussen, C. (2002). Beliefs and norms in the mathematics classroom. In G. C. 

Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics 

education? (pp. 313-330). The Netherlands: Kluwer Academic Publishers. 

Yimer, A., & Ellerton, N. F. (2006). Cognitive and metacognitive aspects of mathematical problem 

solving: An emerging model. Conference Proceedings from MERGA 29 (pp. 575-582). 

Wahroonga, New South Wales, Australia: Mathematics Education Research Group of 

Australasia. !

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



Translating Definitions Between Registers as a Classroom Mathematical Practice
 

Abstract: Many have noted that mathematical definitions constitute a duality between a category 
of objects and the definition that delineates that category (Alcock & Simpson, 2002; Edwards & 
Ward, 2008; Mariotti & Fischbein, 1997; Tall & Vinner, 1981). Prior research has readily 
identified conflict between these two elements of students’ conceptions, but reliable mechanisms 
for explaining and resolving such conflicts are still forthcoming. The present study observed a 
real analysis classroom in which the duality was embodied and addressed directly in class 
dialogue and activities. Particularly, three linguistic registers (metaphorical, common, and 
symbolic) arose to express different aspects of the definitions themselves (conceptual and 
formal). Translation across these registers provided a mechanism by which some students were 
able to segue their concept image and concept definitions successfully. Some students corrected 
errors in their concept image as a result of this practice.  
 

Keywords: mathematical defining, real analysis, translating definitions, harmonisation, 
classroom communication 

 
 Mathematical definitions constitute an integral part of proof-based mathematics, but often 
receive less pedagogical attention than do the theorems and proofs built thereupon. This may 
result from the fact that, in the logical realm, definitions require no proof and do not add to a 
body of deductive theory (nothing is true with a definition that was not true without it) (Mariotti 
& Fischbein, 1997). In the cognitive realm however, nothing can be proven about a category or 
property that has not been defined, thus definitions are of premium pedagogical importance.  
 This emphasizes definition’s role, which is to delineate a particular category of objects or 
aspect of a class of objects. Definitions thus constitute a duality between the class or concept 
being identified and the formal definition used to isolate that class (Alcock & Simpson, 2002; 
Edwards & Ward, 2008; Tall & Vinner, 1981). Many previous studies reveal the pertinence of 
this duality within definitions in light of the conflict and divergence of the two aspects.  
 Mariotti and Fischbein (1997) propose that, at least in the realm of plane geometry, 
concepts have two cognitive aspects: the figural aspect that relates to the concrete and visual 
nature of the concept (members of a category) and the conceptual aspect that expresses the 
abstract and theoretical nature of the concept (the property establishing category membership). 
Though they note the common discord between these two aspects, the authors propose that the 
process of defining involves “harmonisation” between the two aspects by ferrying back and forth 
mentally between the two viewpoints until they can be brought into sufficient agreement. In one 
reported interchange between students, Mariotti and Fischbein (1997) note how one students was 
focusing on the figural aspect while the other focused on the conceptual, such that their dialogue 
embodied direct interaction between these two aspects within the class discussion.  
 The present study identifies a classroom mathematical practice that developed in an 
undergraduate real analysis classroom and provided a mechanism for harmonisation between 
student’s concept image and concept definition. The classroom discourse and activities openly 
addressed the duality that existed within definitions and the classroom mathematical practice of 
translating definitions through three linguistic registers helped them mediate between the aspects.  
Methods 
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 This study represents part of a larger study of classroom communication in undergraduate 
real analysis. This study’s data comes from two 15-week semester courses of real analysis taught 
by the same instructor at a medium sized university in the southwest. The course included a 
proof-based development of real numbers, sequences, limits of functions, continuity, and 
uniform continuity. All class meetings were observed and written records were kept of the 
overall classroom dialogue and activities. A set of student volunteers (about 5 per semester) were 
interviewed weekly throughout the semester regarding their understanding of course content and 
classroom dialogues and activities. The interviews particularly focused on the appearance of 
classroom diagrams, lines of reasoning, and language as students articulated their own 
understanding and reasoning or as they worked on presented tasks.  
Results 
 The three registers of definition articulation appeared early in and throughout each 
semester of study. For example, the class formulated the definition of one-to-one as: 
1. If the function is viewed as arrows being shot from the domain to the target, then no one in 

the target gets hit with two arrows (metaphorical register).  
2. No two inputs have the same output (common register).  
3. For every x1, x2 in the domain such that f(x1)=f(x2), x1=x2 (symbolic register).  
The metaphorical register played different roles in the discussion of different definitions. 
Dawkins (2009) presents a detailed account of these classes’ metaphor use and comprehension.  

During the second semester of study, the professor discussed with the students how the 
limit of a sequence should be defined without presenting the definition itself. One student 
suggested that if the limit was like a party, then you could find the party by seeing where all of 
the people (the elements) are. The professor adopted this language and began to verbally explain 
the sequence definition in terms of people going to a party. She wrote on the board a common 
register definition that stated, “A sequence converges to the real number L if we can make the 
terms of the sequence stay as close to L as we wish by going far enough out in the sequence.” 
She translated this statement verbally into the metaphorical domain saying it is only a party if for 
any size party you pick, after some point everyone shows up at the party. In another formulation, 
she said “only finitely many guys can be outside the room for you to have a party.” She then 
proceeded to translate the common language definition on the board into symbolic language 
replacing “far enough out in the sequence” with index terminology and “as close to L as we 
wish” with epsilon neighborhood terminology. This pattern of translation between the 
metaphorical (party, time), common language (close enough, far in the sequence), and symbolic 
(epsilon intervals, indices) appeared repeatedly in the classroom discussion across the various 
topics of the course and throughout the discussion of sequence limits. 

When asked three days after the introduction of the party metaphor what sequence 
convergence means, Tidus explained the definition primarily in the common language register. 
He did not directly reference the party language, but rather said “at some point” adopting a time-
based metaphor for sequences and said “numbers will be in 4’s neighborhood” treating the 
neighborhood as a place rather than a set.  

When I asked Tidus later in that same interview to explain to me the roles epsilon, K, and 
n played in the definition, he said, “K represents how far n has to go on the number line to get 
into the epsilon neighborhood.” Tidus expressed a correct correspondence between the mixed 
metaphorical and common register explanation he had previously provided of sequence 
convergence and its symbolic register translation in terms of indices.   
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After the class took the test over sequence convergence (about two weeks later), I asked 
Tidus to explain the definition of sequence convergence and he said, “you pick an epsilon. For 
any epsilon that you pick, an infinite amount of terms will be in that epsilon neighborhood and a 
finite amount of terms will be outside.” However, when I asked him about the role of epsilon, K, 
and n, he explained by giving me the formal definition. When asked how he understood the 
definition, he accurately elaborated his understanding in terms of the party metaphor.  

During the first semester, the professor sought to help students identify which functions 
are uniformly continuous by describing that they contained a steepest point. She indicated that 
this distinction showed why is uniformly continuous though  is not. During interviews, 
three students reasoned from this criterion that if the point (0,0) is deleted from , then the 
function no longer uniformly continuous because it has no steepest point. Only one of these 
three, Aerith, then looked at the formal definition and concluded that: 

Well, cause by definition it says x1-x2 will be less than delta and f(x1)-f(x2) will be less 
than epsilon and there is like you can find two points from here and that holds the 
definition. I just think when, it’s like, this thing basically is saying when x1 and x2 getting 
closer, the image of, I mean the value of these two points will getting close, too.  

Aerith translated the formal definition back into the common register and concluded that  
would not cease to be uniformly continuous by the deletion of a point.  
Discussion 
 Both Tidus and Aerith mirrored the classroom mathematical practice of translation across 
registers as they discussed their understanding of analysis definitions. Tidus began expressing 
himself in a mixture of the metaphorical and common registers, and initially was unable to 
articulate the symbolic register definition. He could explain the correspondences between his less 
formal definition and the symbolic definition’s elements. Over time, he constructed his concept 
definition, but did so with strong ties to his concept image expressed in the metaphorical and 
common registers. It appears that the translation process provided a means of harmonisation 
between his concept image and concept definition of sequence convergence. Also, he gave more 
prominence over time to the formal, symbolic definition rather than the metaphorical.  
 Aerith, along with several classmates, developed a misconception in their concept image 
of uniform continuity based upon the professor’s non-standard criterion of a “steepest point.” 
Though not a metaphor per se, this alternate notion does not directly represent the concept or 
definition of uniform continuity and requires some translation. Once Aerith translated the formal 
definition into the common register, she was able to develop an alternative to the “steepest point” 
within her concept image (“when x1 and x2 getting closer, the image of, I mean the value of these 
two points will getting close, too”) that helped her correct her misconception.  
 The professor engaged the class in the process of developing definitions to describe the 
behavior they observed in sets of examples. The dialogue separately referenced the “idea” and 
the “definition.” In this way, she introduced the duality of definitions into the consensual 
domain. The “idea” was usually expressed using the metaphorical or common register, while the 
“definition” arrived by the end of the discussion in the symbolic register. The mathematical 
metaphors (Dawkins, 2009) employed in the classroom such as the party metaphor or the 
steepest point criterion had the effect of helping students develop their concept image of the 
particular concept. Similarly, the common register articulated the “idea” or the concept image. 
Thus, as Figure 1 presents, the dual aspects of definitions were acknowledged in the classroom 
discourse as the “idea” and the “definition.” The linguistic registers embodied the dual aspects in 
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the classroom discussion. The need to coordinate the two aspects (harmonisation) motivated the 
classroom mathematical practice of translation.  
 Thus, the classroom mathematical practice of translation between linguistic registers 
appears a viable tool for guiding students toward harmonising their concept image and concept 
definitions. This appears reasonable in light of the fact that this process encourages students to 
develop their concept definition out of their concept image, or at least with many connections 
between, rather than the two being introduced into the mind separately as when the formal 
definition is introduced in final form at the beginning of the discussion (Pinto & Tall, 2002).  

This point also may explain the difficulty students experienced in working with uniform 
continuity. Most of the course definitions prior to this one had been introduced to students at the 
calculus level such that students already had concept images of function and sequence limits. 
Most students had no exposure to uniform continuity, and so they simultaneously constructed 
their concept image and concept definition from the professor’s explanations and explorations. 
 Mariotti and Fischbein (1997) observed that classroom dialogue in which students 
embodied the different aspects of a definition seemed to promote harmonisation between the 
aspects. The ability of distinct linguistic registers to embody the different aspects of a definition 
appeared to promote similar negotiation both in the classroom setting and for individual students 
as they reasoned about classroom definitions in isolation. Further research is needed to identify 
the reliability of and conditions upon this classroom mathematical practice as a tool for helping 
students construct definition understanding and harmonise the dual aspects thereof.  
 

 
 Figure 1: Dual Aspects of Defining 
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The Role of Conjecturing in Developing Skepticism: 
Reinventing the Dirichlet Function. 

 
Brian Fisher 

Pepperdine University 
 
The study presented in this research report was born out of the desire to develop pathways for 
students from informal to formal modes of thinking.  The data from this report stems from a 
series of small group interviews using a process of guided reinvention incorporating frequent 
student conjectures in order reinvent the definitions of limit and continuity.  During these 
interviews, students used the practice of skepticism in order to suspend judgment on various 
mathematical statements.  In the process of exploring a developed conjecture, the students’ 
suspension of judgment allowed them to alter their initial beliefs about the nature of continuity 
and their interactions with functions. 

 
Keywords:  Conjecturing, Skepticism, Calculus, Continuity, Dirichlet Function 

 
The study reported on in this presentation was born out of the need to develop pathways 

for students from intuitive to advanced mathematical thinking.  As noted by Gravemeijer and 
Doorman (1999) “guided reinvention offers a way out of the generally perceived dilemma of 
how to bridge the gap between informal knowledge and formal mathematics” (p. 112).  In spring 
2010 four small groups of multivariable calculus students participated in a series of eight 
interviews aimed at reinventing the core concepts of limit and continuity.  The groups each 
experienced different levels of uncertainty and skepticism throughout the project and frequently 
used the practice of conjecturing to reframe and clarify their skepticism. 

According to Dewey (1933) uncertainty plays an integral role in cognitive development 
as it is the primary component in reflective thinking, which he describes as “a state of doubt, 
hesitation, perplexity, [and] mental difficulty” (p. 12) accompanied with actions seeking to 
resolve these feelings of doubt and uncertainty.  Similarly Cornu (1991) set forth a model of 
learning marked by overcoming cognitive obstacles which may be characterized in part by the 
uncertainty that they create in those encountering them.The theoretical framework employed in 
this report was set forth by Zaslavsky (2005) and expanded by Brown (2010). 

Zaslavsky (2005), in her work, describes the origins of uncertainty in different 
mathematical tasks.  She details three types of mathematical tasks that lead to different types of 
uncertainty:  competing claims, unknown paths or questionable conclusions, and non-readily 
verifiable outcomes.  Brown (2010) expanded upon Zaslavsky’s work by recognizing that in 
Zaslavsky’s work uncertainty was coupled with a lack of belief about the truth of the premise at 
hand.  Brown went on to define skepticism as doubt coupled with a belief regarding the truth of 
the premise at hand.  She further describes skepticism “as a state of being; that is, a collective or 
individual can, at a particular point in time, both obtain evidence for a conjecture and view the 
conjecture as of unknown truth value” (p. 2).  She goes on to point out that viewed from this 
lens, skepticism can be perceived as the classroom practice of “suspending judgment against a 
backdrop of empirical or experiential evidence” (p. 2). 

This research report presents the results from three of the above mentioned interviews 
during which the students involved spontaneously reinvented the Dirichlet Function, confronting 
several of their preconceived, informal beliefs regarding the concept of function.  Throughout the 
semester, and in particular, throughout the interviews, students were encouraged to develop and 
write conjectures which captured their beliefs about the task.  The students were then encouraged 
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to attempt to either resolve the conjectures or refine their conjectures into new statements to be 
resolved. 

The interviews used in this study were developed from the perspective of guided 
reinvention with the use of both predetermined and spontaneous context problems (Gravemeijer 
and Doorman, 1999).  The context problems provided by the researcher were designed to 
complement the student’s conjecturing activities by providing environments of uncertainty for 
the students.  The students were then asked to participate in the process of creating and resolving 
and refining conjectures in order to address their uncertainty about the problem. 

Much like the students in Brown’s (2010) study, the students observed in this study 
frequently encountered uncertain situations with a well-developed belief about the truth of the 
premise being discussed.  However, through the disciplines of skepticism and conjecturing, they 
were able to suspend their judgment on the premise in order to fully resolve the conjecture at 
hand.  In the three interviews considered for this report, this process of suspending judgment 
allowed the students to further explore and refine their conjectures and eventually demonstrate 
that their initial beliefs about the nature of continuity were false. 

This practice of skepticism and conjecturing exposed several of the students’ naïve 
beliefs about the nature of continuity.  Nunez (1999) in his argument that all mathematics is the 
result of embodied experience proposes two metaphors for continuity based on embodied 
experiences:  natural continuity which is based on the metaphor that a continuous graph is the 
result of motion along that line and Cauchy-Weierstrauss continuity which is based on the 
metaphors that a line is a collection of gapless points with continuity defined as the preservation 
of closeness between those points.  Based on these descriptions, the group in question 
unanimously mirrored the metaphor of natural continuity described by Nunez, thus leading them 
to believe that continuity must only exist on open intervals.  However, though the use skepticism 
this group was able to reinvent the Dirichlet function (a function which takes the value of 1 for 
all rational numbers and 0 for all irrational numbers) and as a result alter their metaphor of 
continuity. 

Additionally, the change in metaphor corresponded to a change in the way the students 
interacted with functions.  The interviews exposed a view of function as existing outside the 
students’ control.  However, the change in metaphor resulted in a shift in control towards the 
students, allowing them to have power over the individual values of the function, thus allowing 
them to embrace the formal definition of function. 

This research report is a case study analysis that took place in the first iteration in a 
process of development research aimed at better understanding how students transition from 
informal to formal understanding of calculus.  The author welcomes all suggestions for 
improvement in future iterations of the study. 
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Toulmin Analysis:  A Tool for Analyzing Teaching and Predicting Student Performance 

n Proof-Based Classes 

 

Abstract:  This paper provides a method for analyzing undergraduate teaching of proof-based 

courses based on Toulmin’s model of argumentation.  The paper then describes how that analysis 

can be used as a predictor of subsequent student proof-writing performance and shows that the 

predictions are reasonable approximations of students’ subsequent proof-writing.  The method of 

analysis was developed via research in a lecture-based abstract algebra class, it has application, 

to any lecture-based, proof-intensive course.  This method provides one possible way to directly 

link classroom teaching activities to subsequent student performance that would force instructors 

to assume more responsibility for their students’ demonstrated end-of-course performance.  
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Introduction and research questions 

It is suggested in numerous studies (Dreyfus, 1999; Dubinsky, et. al, 1994; Leron, 

Hazzan, & Zazkis, 1995; Weber, 2001) that students are not learning at the level that faculty 

desire.  What needs to change?  Advisory reports from national research associations have called 

upon faculty to move away from the lecture format and adopt other teaching methods (National 

Science Foundation (NSF), 1992; Mathematical Sciences Education Board (MSEB), 1991).  

However, instructors often believe that students bear the responsibility of learning (Wu, 1999).  

New insight is needed to help these instructors understand how their actions in the classroom 

affect their students’ ability to master the material. This study will develop new tools needed to 

analyze lecture-based teaching and will directly connect instruction to student learning in proof-

based courses.  In particular the study: 

1) Uses Toulmin’s (1969) model of argumentation to analyze the teaching of 

proof-based undergraduate courses taught via lecture. 

2) Proposes that students in the class will adopt the argumentation methods as 

modeled by their instructor. 

3) Analyzes student work to determine whether the Toulmin-analysis of teaching 

does predict students’ proof-writing behavior. 

!!"#$%&'$(&%!

Despite the lack of use of non-traditional curricula and pedagogies, the NSF and 

professional organizations such as the Mathematical Associan of America (MAA) continue to 

fund the development of new curricula and professional development in the hope of changing 

collegiate mathematics teaching and improving student learning.  Each of these curriculum 

projects has promised to disseminate their work, typically via professional development activities 

at mathematics conferences.  This curriculum development and implementation model almost 

exactly mirrors the process used at the K-12 level in which “many efforts over the past decade or 

so have been aimed at providing well-designed curricula for school mathematics… Each has 

spawned an industry of workshops and conferences focused on helping teachers prepare to use 

the materials in their classrooms” (Sowder, 2007, p. 177).  It has been shown that these efforts 

“have not been particularly successful in educational projects” (Richardson & Placier, 2001, p. 

906); that is, they have not affected meaningful change in teaching practices.   

New studies of pedagogical methods suggest that it is essential that teachers reflect on 

their beliefs and practices in order to affect meaningful change (Richardson & Placier, 2001).  

Yet, at the undergraduate level faculty generally hold the belief that “the professor gives an 

outline of what and how much students should learn, and students do the work on their own 

outside” of the class meetings (Wu, 1999, p. 267).  This contract implies that as long as the 

instructor delivers a clear lecture and communicates appropriately, the students are responsible 

for their own failure to fully comprehend the instructor’s intent or apprehend the deeper structure 

of the material as well as adopt the mathematical behaviors, such as proof-writing strategies, that 

the instructor models.   

I posit that students are appropriating some of the modeled behavior, but not always the 

aspects that faculty believe are most important.  This argument is supported by new research on 

transfer-in-pieces (Wagner, 2006).  This research claims that experts and novices perceive the 

same aspects of an instructor’s presentation as having differing levels of importance, and as a 

result attend to different aspects.  Wagner (2006) then demonstrated that students would transfer 

aspects of a structure from one problem to another, even when then they seem mathematically 

inappropriate from an expert’s perspective.   
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In a proof-based course, such as abstract algebra, the instructors are modeling proof-

writing strategies and the types of arguments that they expect from their students. !"#$%&'(&

$")#*+&,(&-,*(&.)&),$(/0(&'"12"&-$3(2.$&)4&3/))45'/1.167&-6+&.83($&)4&-/7#9(6.$&-/(&

-33/)3/1-.(+&,8&."(&$.#+(6.$:& After analyzing the classroom teaching via Toulmin analysis 

(1969), this paper analyzes student work and then provides a preliminary means of linking the 

analyses of classroom instruction with student learning.   

2 Data and Methodology for analysis  

;&.))<&+(.-1*(+&41(*+&6).($&'"1*(&),$(/0167&=>&2*-$$&9((.167$. I also collected 

demographic information on all students in the class and work from 6 participants of 12 students 

on a content assessment that required them to write a ring-theory proof. 

;&./-6$2/1,(+&-**&.(?.&)6&."(&,)-/+&16&-++1.1)6&.)&2*-$$/))9&+1-*)7#(. I reviewed all 

classroom video recordings and made a log of all episodes that included proof-writing or 

presentation.  Criteria for proof-production or presentation was rather straightforward.  An 

incident was logged as such when any member of the class community was writing or showing a 

formal mathematical proof that drew on symbolic notation and logical reasoning. To pursue the 

question of whether students had appropriated the proof-writing behavior that Dr. Tripp had 

modeled required analysis of the proofs she wrote during class and the student’s work outside of 

class.  I analyzed all such arguments using Toulmin’s (1969) model into one of the following: 

data, warrant, backing, qualifier or conclusion.  I also noted when an aspect of argumentation 

was written or spoken aloud.  In this paper I present two sets of arguments, the first set was 

chosen because, collectively, they were the only observed instance of Dr. Tripp demonstrating all 

of the properties for a sub-ring proof.  The second set of examples was chosen because they 

mirrored the sub-ring property proofs in a different structure.  I employed a Toulmin analysis on 

the student work similar to that used to analyze instruction. 

3 Results 

3.1  Dr. Tripp’s presentation 

In the proof to be discussed in this paper we see the following patterns in Dr. Tripp’s 

written presentation of mathematical property-verification proofs (excluding spoken comments): 

 Data Warrant Backing Qualifier Conclusion 

Written 13 5 0 0 13 

A similar pattern was recapitulated across all of Dr. Tripp’s proof-writing.  When Dr. Tripp 

models proof writing, she always writes the data and conclusion but she was never observed to 

write a backing or a qualifier. Moreover, she only infrequently wrote warrants but, when her 

spoken comments were included in the analysis she included warrants in more than half of all 

arguments.  Because the students were only submitting written work, the table above does not 

take into account the fact that Dr. Tripp always spoke warrants aloud, nor does it reflect any of 

her statements of backing.  

When we consider this mixed pattern of writing out versus only speaking the warrant for 

a particular piece of data as modeling the written arguments that she expected of her students, we 

should expect some mixed results.  In terms of writing the data and conclusions, Dr. Tripp has 

always modeled writing those and, as a result, we should see that students always or almost 

always write the data and conclusion.  But, her mixed writing of warrants may not provide her 

students a consistent model for their own work.  Finally, we should expect that the students 

never, or almost never, write backing or a qualifier in their proofs.   

!"#&&$%&'()%*+,-./0,
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When all the student data on property-verification arguments is aggregated, without 

reference to the validity of the student’s claim, we see the summary of written argument 

elements table below. 

 Data Warrant Backing Qualifier Conclusion 

Stated 32 14 2 1 30 

Implied 1 18 7 4 3 

The first observation is that the students almost universally wrote both the data and conclusion of 

their arguments.  They were much more varied in writing out warrants or, at least, implying 

warrants in their workof the 33 written arguments, only 14 included a written warrant.  Finally, 

the students almost never wrote out a backing or a quantifier, writing only two backings and one 

quantifier out of 33 arguments.    In short, this is exactly what we would have expected from the 

students given Dr. Tripp’s !"#$%&'()&*("++,-&+($-$%./."0%-&01&2("..$%&+(001. 
4 Significance and directions for further research&

This paper makes two significant contributions.  First, I showed one way to draw upon 

Toulmin’s (1969) model of argumentation to analyze proof-based courses including traditional 

taught abstract algebra courses.  Moreover, Toulmin’s model helped explain the relationship 

between the instructor’s written proof and the classroom dialogue that she led.  When Dr. Tripp’s 

presentation is taken as modeling the type of mathematical behavior that she wants her students 

to demonstrate we would infer that she wants her students to always be able to articulate the data, 

warrant and conclusion of an argument.  

Second, 3&/%/456$7&-.87$%.&20(9&:5&/!/"%&7(/2"%!&8+0%&Toulmin’s (1969) model for 

argumentation.  When taken as a whole, the students’ collective proof-writing that they also 

wrote a level of detail similar to that modeled by their instructor and used argumentation 

elements at a similar rate as Dr. Tripp. That is, the students almost perfectly demonstrated that 

they had appropriated Dr. Tripp’s modeled proof-writing in terms of the level of detail that they 

included in their written work.    

 This research immediately suggests two future directions for research; both directed 

towards better understanding the development of students’ mathematical proficiency.  First, this 

use of Toulmin’s framework to analyze teaching was helpful in making sense of some aspects of 

Dr. Tripp’s writing and her classroom dialogue, but cannot explain all aspects of her modeling of 

proof-writing.  We need significant research that studies teaching of proof (Harel & Sowder, 

2007; Harel & Fuller, 2009) and, in particular, lecture-based teaching of proof.  Moreover, we 

need new theoretical lenses to make sense of what lecture-based teachers are doing in classes and 

that also provide a means to explain student mathematical proficiency.  

Furthermore, it is also worth pursuing the idea that teachers consciously model 

appropriate mathematical behavior for their students as a means of making sense of lecture-based 

undergraduate courses.  For example, we should be exploring how instructors model for their 

students other fundamental mathematical skills such as exploring definitions and examples, 

organizing and linking knowledge, and abstraction and generalization from examples to name 

but a few. In general, significantly more research is needed to explain traditional lecture-based 

instruction of proof-based content courses and abstract algebra courses in particular.   

Lastly, in this study I reported seemingly inconsistent behavior on the part of the 

instructor which was linked to inconsistent behavior on the part of the students.  We might 

suggest that classroom professors make explicit statements, like, “listen to the types of questions 

I ask you and ask myself, these are the kinds of things you should be asking while you write 

proofs.” Then, “to decide when you should write down the answers to these questions you should 
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…”  This type of meta-level dialogue could lead the students to a better understanding of when 

warrants and backing need to be explicitly stated in a proof as well as decreasing their writing of 

invalid or incorrect proofs.   
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A Multi-Strand Model for Student Comprehension of the Limit Concept

 

 
Abstract:  In analyzing interview transcripts to assess student understanding of limits for first 
year calculus students, the application of the 7 Step Genetic Decomposition created by Cottrill, 
et. al. (1996) indicated that the interviewed students possessed no higher than a 3rd step 
understanding.  Despite an inability to clearly articulate their understanding in terms of the 
expected lexicon, several students were able to create valid examples and counterexamples while 
justifying their answers. This suggests that these students possessed a better understanding of the 
limit concept than they were able to articulate.  Thus, this study concludes that there exists 
additional criterion that should be taken into account in order to accurately diagnose student 
understanding of the limit concept.  In particular a model for student understanding of limits 
should contain strands reflecting the student’s method for solving a problem involving limits, the 
student’s justification for the solution, and the applicability of the student’s method and 
justification within the context of the problem. 
 
 
Keywords: limits, student understanding, calculus, interview methodology 
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Introduction and research questions 
The failure rate in undergraduate calculus courses is traditionally quite high (Ferrini-

Mundy & Graham, 1991) and many reasons have been offered as explanations for this 
phenomenon.  Insufficient or unsatisfactory background courses and student difficulty with the 
important concepts that form the underpinnings of calculus are just a few of the explanations that 
have been put forth (Burton, 1989; Ferrini-Mundy & Graham, 1991).  In particular, Davis and 
Vinner (1986) point out that students’ troubles with the concept of limits may play a strong role 
in the rate at which they fail out of calculus. Research suggests that a strong conceptual 
understanding of this abstract concept is needed in order for students to understand the topics 
which follow, i.e. derivatives and integrals (Bezuidenhout, 2001; Hardy, 2009; Orton, 1983).  
Since typical undergraduate courses in calculus often rely on the limit concept to explain 
continuity of functions, define derivatives, and define integrals, a student holding misconceptions 
of the limit concept runs the risk of developing flawed conceptions of these later topics that will 
negatively impact the rest of his or her mathematical understanding.  Must this understanding 
include symbolic proficiency with the formal definition of limit or can a student develop a strong 
conceptual understanding of the limit concept that does not rely on the symbolic interpretation? 

Up to now, the most comprehensive model of the stages of understanding students must 
pass through before achieving mastery of the limit concept has been the genetic decomposition 
created by Cottrill, et. al. (1996).  However, this decomposition seems to account for only one 
strand of the many that make up the web of student understanding of the limit concept.  Inspired 
by the model for comprehension of mathematical proof designed by Mejia-Ramos, et. al. (2009), 
this study seeks to identify additional strands of knowledge needed by students to fully master 
the limit concept. 
1 Literature 

Several researchers suggest that most of the research conducted on student understanding 
of the limit concept seems to fall into one of two or three categories.  These classifications can be 
summarized as research on the informal notions of limit held by students, research on how 
students reason about limit in the context of the formal definition, and research into the obstacles 
students face as they try to make sense of the limit concept (Swinyard, 2009; Williams, 2001). 

Much of the research that has been conducted has focused on developing classification 
schemas or identification rubrics to identify commonly held conceptions and describe the levels 
of understanding students might hold regarding the limit concept.  Throughout the available 
research on student understanding of limit the most influential categorization seems to be the 7 
Step Genetic Decomposition devised by Cottrill, et. al. (1996).  Through their work to identify 
student conceptions and misconceptions about the limit concept they developed a 7 step 
classification for the phases students undergo as they make sense of the formal limit definition 
for themselves (pp. 177 - 178). As evidenced by their decomposition, their emphasis is on 
students starting with an x-value understanding which then culminates in a formal definition.   

Swinyard (2009) attempted to enhance their 7 step genetic decomposition by filling in 
more detail in the last few stages of the genetic decomposition, steps 5 – 7, which focus on “the 
transition from informal to formal reasoning” (p. 20).  According to the work of Swinyard these 
stages can be enhanced by the consideration of how students “define limit” and “define closeness 
in a concrete and increasingly restrictive manner” (pp. 22, 24).  This study addresses the 
following questions: Is the genetic decomposition sufficient for determining a student’s 
understanding of the limit concept?  If not, what other strands should be taken into account when 
assessing what a student understands about the limit concept? 
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2 Data collection and methodology for analysis 
 A multiple choice written assessment was administered to 9 recitation sections of a first 
semester undergraduate calculus course.  Individuals that represented low, medium, and high 
levels of understanding based on their assessment responses were then contacted to participate in 
follow up interviews.  During the interviews the students revisited on their answers to the 
assessment items before being presented with two novel tasks. 
 During the first analysis of the transcribed interviews, a combination of both Cottrill, et. 
al.’s (1996) genetic decomposition and Swinyard’s (2009) enhancements was used to interpret 
student answers and to categorize what understandings of the limit concept were held by the 
interviewees.  Though it was possible to identify which stage of understanding the interviewed 
students reached, the decomposition did not seem to take into account several features of the 
students’ explanations.  Thus a second analysis was conducted which focused on identifying and 
defining other strands of knowledge held by the students that could reflect their understanding of 
the limit concept as depicted in their explanations.   
3 Results 

The first analysis of the transcribed interviews suggested that the interviewees had only 
reached the 3rd step of the 7 Step Genetic Decomposition.  This finding was primarily based on 
the student responses to the second task, an item adapted from Bezuidenhout (2001).  In this task 
the students were confronted with the limit of a difference quotient involving a function f and 
asked to determine the value of the limit, if it existed, based on a table of values for the function 
and its derivative.  All interviewed students chose to find the limit of the whole expression rather 
than acknowledging that the problem could be interpreted as the limit of a combination of 
functions.  Thus their answers failed to meet the criteria for step 4 of the genetic decomposition, 
“perform actions on the limit concept by talking about, for example, limits of combinations of 
functions” (Cottrill, et. al., 1996, p. 178). 

However, several aspects of understanding arose during the first analysis of the 
interviews that did not seem to be adequately addressed by the combined genetic decomposition. 
The genetic decomposition did not account for the types of examples the students used during 
their explanations, the high level justifications offered for the existence of a limit, or their choice 
of methods for approaching the task of finding the limit.  The second analysis then focused on 
these issues to identify and define the following strands of knowledge: the student’s method for 
solving the presented task, the student’s justification for the final answer, and the applicability of 
the student’s method and justification in the context of the task.   

There are many valid methods students are taught in order to determine the limit of an 
expression. These methods include the utilization of graphs and tables, but also encompass 
applications of stronger results such as L’Hopital’s Rule.  Thus one strand of student 
understanding addresses sophistication of the method the student selects for evaluating the limit. 
For instance, in one interview a student, Jim, utilized his knowledge that the existence of the 
derivative of the function in the table implied that the function was continuous, and subsequently 
that the limit of the function was equal to the value of the function at the given x value.  This 
method for solution surpassed the demonstrated logic of his interviewed peers who focused on 
values provided in the table when they faced this task.  Hence, there is an argument to be made 
for students’ understanding being reflected by the method of solution they choose. 

Another strand accounts for student justification, that is, the student’s ability to correctly 
use the chosen method based on the information he or she perceived as applicable.  The 
graphical examples and counterexamples offered by the interviewees as they responded to first 
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task would be assessed along this dimension.  The interviewees’ decision to utilize L’Hopital’s 
rule in the second task, after a direct evaluation of the limit of the difference quotient failed, was 
a selection of an appropriate method on the applicable data.  However, as their computations 
were incorrect, they failed to reach the desired result and this would count as a failure of 
justification.  Another example of justification that occurred in the second task was when Jim 
explained his use of the knowledge that the existence of the function’s derivative at 2x =  
implied both the continuity of the function and the existence of its limit. 

The final strand is applicability which addresses the student’s ability to see the relevance 
of given data and his own knowledge in the context of the problem.  It is this factor that 
separated several of the interviewees’ solutions and allowed the second analysis to distinguish 
between their respective understandings of limits.  In one instance two students had provided 
very similar graphical counterexamples to a statement they were trying to prove true.  Only one 
of them recognized the applicability of the counterexample to the task and used it to show the 
statement in question was false.  The other interviewee failed to see the applicability of her 
example to the task at hand and persisted in trying to show the statement was true.  This issue 
was also evident in both Jim’s ability to see the relevance of his knowledge to the solution of the 
second task and Jim’s selection of an inappropriate example for reasoning about the veracity of 
statements in the first task.  
4 Significance and directions for further research 
 This study has opened several avenues for future research.  Of particular importance is 
the consideration that the current genetic decomposition (Cottrill, et. al., 1996) alone is not 
sufficient for determining a student’s understanding of the limit concept.  Student understanding 
is comprised of many different strands and students may have developed methods for solving 
limit problems that do not rely on their appropriation of the formal limit definition.  Are there 
limitations to the types of problems these methods can solve?  Of particular interest would be 
problems that seem to require use of the formal definition but are solvable by students with a 
weak understanding of the formal definition. 

This study suggested at least three strands that are evident when students interact with 
problems involving limits.  Further research is necessary to verify the existence of these strands 
in a larger population and determine whether there are additional strands that need to be added to 
this tentative model. Such research should also refine the currently identified strands, especially 
the applicability strand.  Clearly the function concept is strong for some of the interviewees as 
they constructed clear counterexamples that showed how a function’s limit might not equal the 
value of the function at a particular x-value.  However, the students’ apparent inabilities to 
perceive that these were counterexamples and then use that knowledge to reach the correct 
conclusions in the first interview task is troubling.  Additional study of this strand may also help 
educators understand why students select inappropriate examples when trying to make sense of a 
problem they are trying to solve. 

Ultimately, this multi-strand perspective of student understanding could be a valuable aid 
to teachers.  Knowledge of these strands could be incorporated into assessments which would 
enable instructors to determine their students’ levels of understanding.  Not only would this 
allow instructors to tailor their lectures to address any areas of weak understanding demonstrated 
by the students, but it would also serve as a guide toward the desired level of student 
understanding of the limit concept. 
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Hope Gerson and Elizabeth Bateman 

Brigham Young University 

In 1996, Yackel and Cobb introduced the study of sociomathematical norms in an attempt 
r mathematical 

beliefs and values and to make sense of the complexity of mathematical activity in the 

n other words sociomathematical 
norms can be seen as the reoccurring mathematical aspects of discourse that focus on 
mathematical thinking rather than thinking about mathematics. For example, the social norm that 
you should justify your answer does not, by itself, insure that your justifications will be accurate, 
rigorous, or convincing. However, a sociomathematical norm that defines what constitutes a 
convincing argument can be introduced to set an expectation in the classroom that encourages 
strong mathematical activity in the form of justification (Yackel & Cobb, 1996; Kazemi & 
Stipek, 2001).  

We propose that four components must be identified for an expectation to qualify as a 
sociomathematical norm. The four components of a sociomathematical norm are: 1. a 
mathematical expectation is set forth, 2. a mathematical interpretation of the expectation occurs, 
3. the expectation is agreed upon, and 4. the expectation is validated as legitimate. 

Researchers have documented sociomathematical norms introduced by a research team 
(McClain & Cobb, 2001), teachers (Yackel, Rasmussen, King 2000), or students (Hershkowitz & 
Schwarz, 1999). Once introduced, sociomathematical norms are negotiated and re-negotiated by 
various participants in the class. The negotiation process often allows the expectation, embedded 
within the sociomathematical norm, to become clear and understandable as it is interpreted by 
both teacher and students so that it is genuinely agreed upon. However, recently Levenson, 
Tirosh, and Tsamir, (2009) found that teacher endorsed norms, enacted norms, and student 
perceived norms may all be different within the same classroom. In this case, the expectation in 
teacher endorsed norms was not genuinely agreed upon. 

In previous work, we suggested that authority in the classroom hinges on three major 
concepts: authority relation, legitimacy, and change (Gerson & Bateman, submitted June, 2010).  
The authority relation is a relationship between two or more people, with at least one person 
acting as the bearer of authority and at least one person acting as the receiver of authority. The 
bearer of authority makes a claim; the receiver of authority recognizes the claim as legitimate 
and is influenced to change his or her behavior. In traditional classroom settings, authority is 
usually hierarchal with the teacher acting as bearer of authority and the student acting as receiver 
of authority (Herbel-Eisenmann, Wagner, & Cortes, 2008). In inquiry-based classroom settings 
the bearer and receiver of authority are more fluid roles taken on by both teacher and student at 
different times (Hamm & Perry, 2002; Wilson & Lloyd, 2000). We define legitimacy of 

within an authority relationship (Gerson & Bateman, submitted June 2010).   
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In addition we defined four general types of authority in the mathematics classroom by 
the knowledge, skills, position, or experiences that legitimize the authority: Hierarchal, 
Expertise, Mathematical, and Performative (Gerson & Bateman, submitted 2010). Briefly, 
Hierarchal authority is the authority a person holds because of their position in the class (e.g. as 
an instructor, or presenter). Expertise Authority is legitimized by the perceived expertise of the 
bearer either by proving their mathematics expertise or by having ownership in the creation of a 
solution. Mathematical authority is legitimized by mathematical argument and justification. 
Performative authority is legitimized by the ability to engage the class. These authorities can all 
be held by both instructors and students. 

Method 

 Our research is set in a teaching experiment in a university honors calculus class by Hope 
Gerson and Janet Walter. Students worked on tasks designed or selected to elicit conceptually 
important calculus content without prior instruction. The corpus of data from this study is taken 
from two, 2-hour class periods in Calculus II taught in the fall of 2007. The data were chosen for 
two reasons. First they occurred early in the semester as sociomathematical norms were still 
being actively negotiated. Second, a compelling episode occurred at the beginning of the second 
day, where Michael, a student in the class, introduced a new way of thinking about what 
constitutes a mathematical difference and how mathematical difference should be explored. We 
recognized this episode as pertaining to the negotiation of sociomathematical norms and wanted 
to further understand the dynamics in play, in particular, under what authority are 
sociomathematical norms introduced and negotiated?   

We analyzed four hours of videotape gathered on January 29 and 31, 2007. Members of 
the research team transcribed and independently verified videodata. Together, the authors used 
open coding on one-half hour of videodata to identify key ideas, such as authority, agency, social 
norms, and sociomathematical norms. Later, the authors independently coded surrounding 
episodes. We, then, came back together to build consensus about which codes were important, 
how to define them and how to recognize them in the data. This helped us refine our definition of 
sociomathematical norms and to more accurately recognize them in the data. We then used axial 
coding to look for patterns in the data. 

Analysis and Discussion 

In the following excerpt, after two groups presented their solution to the same task, 
Michael introduced a new expectation (lines 1 and 4) for what constitutes a mathematical 
difference. Heber and Tyler interpreted the expectation and began to negotiate with Michael the 
meaning of the new expectation. 

1 Michael: Now, we it looks like we've got two different equations? [expectation]  
2 Heber:  Yeah. [ interpretation]  
3 Tyler: But they're the same. [ interpretation]  
4 Michael: Um, they're not the same equation, they both model something different, and I'm 

90 percent sure that I know what that is, the difference. [negotiation of meaning]  
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In order for this new expectation 
 needed to be interpreted, 

agreed upon, and legitimized.  
For the next ten minutes, Michael and the class continued to negotiate the meaning of 

 that they explore what the two different equations model. For example in 
the next excerpt, Michael re-states the expectation embedded in a mathematical argument in line 
7, and Robert interprets that to mean solving part a, and express
expectation.  
 
5 Michael: if you just get the volume function and just start evaluating the volume function 

[mathematical argument]  
6 Derrick: [inaudible] you could get a general equation [ interpretation]  
7 Michael: Right, but I'm saying take an indefinite in, er a definite integral of their equation. 

What would that model? What, if you plug in the value of one, into their 
indefinite integral, what does that represent? [mathematical argument and 
restatement of the expectation]  

8 Robert: 'Cause, 'cause do you want me to solve part a? 'cause it [inaudible] [moves thumb 
and index finger together] I see what you're asking. [ interpretation]  

 

supply enough mathematical information for Robert and the rest of the class to build a 
mathematical interpretation of the expectation, nor to judge whether it was legitimate. 
argument both made explicit how he wanted to compare the two equations, and offered 
legitimization of the expectation through mathematical authority. Although Michael held granted 
authority to present his ideas to the class, and expertise authority for his own solution, it was 

ugh his mathematical argument that allowed 
others to interpret and agree on the expectation. 

 
We found similar results with the other sociomathematical norms that were introduced by 

students. The fact that mathematical authority played so large a role in building a mathematical 
interpretation, agreeing on the interpretation , and validating the expectation lead us to believe 
that mathematical authority is important in the negotiation of sociomathematical norms. While 
any authority could validate an expectation, we found that mathematical authority, when 
activated, played a role in every component of the sociomathematical norm.  

When instructors introduce sociomathematical norms, as in the study by Levenson, 
Tirosh, and Tsamir (2009), we suspect that their hierarchal authority and expertise authority 
legitimize the expectation before its meaning is fully interpreted. Therefore students are likely to 
accept the norm before they agree on its mathematical meaning. But when students introduce the 
expectation, it opens the path for mathematical authority to legitimize the claim. We suggest 
creating a classroom environment where students rather than the teacher are encouraged to 
initiate and negotiate sociomathematical norms will lead to better agreement on the expectations 
among the members of the class. We also believe that if teachers introduce a sociomathematical 
norm, they should be aware of the potentially obstructive role their hierarchal authority and 
expertise authority may play in the negotiation of that norm. 
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Student Understanding of Eigenvectors in a DGE:  
Analysing Shifts of Attention and Instrumental Genesis 
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This study examines the potentialities of the theory of instrumental genesis and shifts of 
attention in  analysing students’ evolving understanding as they interacted with a dynamic 
geometry representation of eigenvectors and eigenvalues. Although the former theory provides a 
framework  to  analyse  students’  interactions   with  tools  and  transformation  of  tools  into 
instruments, it makes an assumption about the role of  instrument  in cognitive development. 
According to Verillon and Rabardel (1995), the founders of the theory, the role of instrument in 
cognitive development is a sensitive point. I thus explore the complementary use of the theory of 
instrumental genesis with the theory of shifts of attention to enable an analysis of students’ 
cognitive development in a digital technology environment. 

 

Keywords: Technology, linear algebra, instrument and attention 
 
 

The integration of digital technology in mathematics education has given rise to continuing 
research  concerning  mostly  students’  use  of  digital  tools  to  develop  an  understanding  of 
mathematical ideas and objects. Researchers have proposed several theoretical perspectives for 
analysing the interactions between tools and the student (Guin and Trouche, 1999; Kieran and 
Drijvers, 2006; Arzarello et al., 2002; Falcade et al.,  2007). In this study my focus is on the 
potentialities of the use of the theory of instrumental genesis to analyse students’ mathematical 
knowledge acquisition. 

 

The theory of instrumental genesis (Verillon & Rabardel, 1995) draws on actions and procedures 
taken by a student  to use a tool. The tool can be transformed into an internally oriented tool 
(instrument of semiotic mediation) by the process of internalization (Vygotsky, 1978) that occurs 
through  semiotic  processes.  For  example,  given  a   specific  task  in  a  dynamic  geometry 
environment, the dragging tool can be transformed into a sign referring to the idea of function as 
covariation   between   dependent   and   independent   variables   (Falcade   et   al.,   2007).   The 
development of instrumental genesis is a complex process that depends upon several factors such 
as  potentialities  and constraints of the tool, actions and procedures taken by the student, the 
student’s knowledge of mathematical concept in the task, and also the student’s awareness of the 
affordances   of   the   tool.   The   two   interconnected   components   of   instrumental   genesis, 
instrumentalization and instrumentation, are  used  to  describe the  processes  involved in  the 
interactions between the student and the tool.  The instrumentalization process, directed toward 
the  tool,  involves  the  development  of  skills  to  use  the  tool,  the  personalization  and  the 
transformation of the tool. It is about what the student thinks the tool was designed for and how 
the  student  uses the tool. It therefore calls upon attending to tool use. The instrumentation 
process, directed by the tool, involves the constraints and potentialities of the tool that shapes the 
student’s knowledge acquisition (Trouche, 2005). This involves a shift of attention from tool use 
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to what the tool can do, so that the tool becomes not the object of attention, but something that 
focuses and  directs attention in particular ways, a mediating tool. The two components are 
concerned mostly with processes involved in transforming a tool into an instrument, not the role 
of instrument in knowledge acquisition. As  researchers point out, the role of instrument in 
cognitive development is a sensitive point (Verillon and  Rabardel, 1995), and the theory of 
instrumental genesis has shortfalls in putting forward the potentialities of  instrument in the 
development of mathematical thinking. 

 

On the other hand, among theories on cognition, John Mason’s theory of shifts of attention 
appears to be more descriptive in terms of revealing the developmental process of mathematical 
being. Mason (2008) believes in the power of awareness and its education. Awareness refers to 
what enables us to act, calling upon our conscious and unconscious powers, and sensitivities to 
detect changes and to choose proper actions in certain situations (Gattegno, 1987; Mason, 2008). 
To educate awareness is to draw attention to actions which are being carried out with lesser or 
greater awareness. Attention can be drawn not only to mathematical objects, relationships and 
properties,  but  also  to  manifestations  of  mathematical  themes,  and  to  heuristic  forms  of 
mathematical thinking (Mason, 2008). According to Mason, the structure of attention comprises 
macro and micro levels; what is being attended to is as important as how it is being attended to. 
At the macro level, Mason describes the nature of attention as  follows: “attention can vary in 
multiplicity, locus, focus and sharpness” (p.5). At the micro level, he distinguishes five different 
states of attending: holding wholes, discerning details, recognizing relationships, perceiving 
properties and reasoning on the basis of agreed properties. Holding wholes is when a student 
gazes at a  definition, collection of symbols and/or diagram. The student may not focus on 
anything in particular, while ‘waiting for things to come to mind’. Looking at the wholes, the 
student may discern and identify useful sub-wholes or details. Discerning details is a process that 
participates in and contributes to subsequent attending. As the student discerns details, she may 
recognize  relationships  between  symbolic  and  geometric  representations   of  mathematical 
concepts. When she becomes aware of possible relationships in the particular situation, she may 
perceive these as instantiations of a property.  As she continues attending, she can use the 
perceived properties as a basis for mathematical reasoning. It is noteworthy that the described 
states of attention are not  levelled or ordered. They often last for a few micro-seconds and 
alternate among other states. Those that become stable and robust against alteration for varying 
periods of time may block further development of awareness (Molina and Mason, 2009). 

 

As summarized above, Mason’s theory provides a framework for analysing students’ attention in 
a mathematical activity. However, given the important role of the digital tool in the DGE-based 
activity, I want to take into consideration the interaction between the student and the tool. In the 
context of using DGS then, how might the  relationships between instrument and attention be 
conceived, and, in particular, what might the effect of instrument of semiotic mediation be on 
shifts of attention? 
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To identify the states of attending, one may analyse semiotic resources such as gesture and 
discourse used by a student in a paper-pencil environment. However, my empirical study shows 
that in a digital technology environment, the instrumental genesis also causes shifts of attention. 
This suggests combining the theory of instrumental genesis with the theory of shifts of attention 
to enable analysing cognitive development in a digital technology environment. In particular, my 
empirical data supports the conjecture that analysing processes of  instrumentalization reveals 
evidence of shifts of attention. 

 

I interviewed a total of eight undergraduate linear algebra students who had all successfully 
completed a Linear Algebra course. They were given a worksheet containing a formal definition 
of eigenvectors and eigenvalues. They were then given a sketch designed to enable exploration 
of eigenvectors  and  eigenvalues  for  given 2 ! 2 matrices  using The  Geometer’s  Sketchpad 
software (Jackiw, 1991). As shown in Figure 1, the sketch includes a draggable vector x , as well 
as a non-draggable vector  Ax . As, vector  x is dragged about the screen the vector  Ax moves 
accordingly. The sketch also includes numeric values of the matrix-vector multiplication ( Ax ). 
The user can change the values of matrix A . 

 
3.00   –2.00

 
–0.40

 

Ax=[ 1.00  0.00 ] [ 1.64  ] 
 
 
 
 
 
 
 

x 

o 
Show axes  

Ax 

 
Figure 1. A snapshot of eigen sketch 

 
 
 
In my analysis, I looked at students’ actions with the sketch, different dragging strategies, and 
their ways of communicating orally about their interactions. Mason’s theory of shifts in attention 
enables an analysis of students’  interactions with the sketch as well as a description of their 
mathematical awareness. These shifts were made evident in part by the students’ changing focus 
of attention from the definition to the sketch, but also in their different dragging strategies, which 
they used to identify eigenvectors and to explore the relationship between  eigenvectors and 
eigenvalues. 

 

In my presentation (and my extended paper), I will illustrate details of my analysis of students’ 
actions with the  dragging tool and argue that the dragging tool that was transformed into an 
instrument mediated students’ conceptualization of the concept of eigenvectors and eigenvalues. 
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Abstract 
 
A research study was designed using the conceptual model consisting two cells of 
concept images and concept definition developed by Vinner (1983) and has been used by 
many researchers since then, to investigate students’ understanding of different concepts 
of calculus. A related literature review made us believe that students’ understanding of 
function as one of the pillar of calculus is still problematic. 53 first year university 
students participated in this study that its purpose was to shed more light into the 
students’ understanding of function in terms of their concept images and concept 
definitions. The study showed that the most common concept images of function among 
the students were having a rule, and using a machine as a metaphor for a function. The 
study also indicated that a concept image of having a rule for each function acted as an 
obstacle for students to understand the concept definition of function. 
 
Key words: Conceptual Model, Concept Image, Concept Definition, Function, Calculus..   
     
 
Introduction 
Long time ago (1988), the first author did a research about students’ understanding of 
calculus focusing on two fundamental concepts of calculus that are function and 
derivative. The study carried out at the University of British Columbia in Canada in 
which, the drop out rate of calculus by then was about %50 (1988). For that study, she 
used constructivism (Kilpatrick, 1987) as a general theoretical framework and used task 
based interviews (Jones, 1985) and adopted the idea of teacher as researcher and model 
builder (Cobb & Steffe, 1983) during the interviews. Finally, Gooya (1988) used a 
conceptual model consisting of concept image and concept definition developed by 
Vinner (1983). The finding of that study revealed that the nature of university students’ 
conceptual understanding of function was as follows: 
  

- A number of students held proper concept images of function which should lead to 
the development of an appropriate concept definition. 

- Few of the students, understood function as a relation between two variables 
(without having the restriction that for each x there is only one y.) 

- For some students, a function was only considered to be an algebraic function. 
           (p.104). 

 
In 2008, both authors felt that university students’ understanding of function is still a 
problem! The second author was high school teacher interested to find out that why 

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



despite teaching calculus to students majoring mathematics and physics or natural 
sciences at secondary school, they still have difficulty understanding it and the first 
author’s experience was that this difficulty still exists at the university level as well. And 
this was the beginning of our explicating journey to find out more about this extremely 
important issue in the teaching and learning of calculus. So we did start our journey in the 
following way. 
 
We conducted a study that its main purpose was to investigate the first year university 
students’ understanding of function. 53 first year university students completing Calculus 
1 and Foundation of Mathematics- from three universities in Tehran- participated in this 
study that its aim was to shed more light into university students’ understanding of 
function in terms of their concept images and concept definitions. The research was 
exploratory in nature and the data were collected through 8 carefully designed questions.  
Those who participated in this study were volunteered students majoring mathematics at 
their universities and all studied calculus at high school. For this purpose, we took 
Harel’s (2004) advice and developed aforementioned conceptual model (Vinner, 1983) to 
explore students’ common concept images and concept definitions regarding the concept 
of function. Further, Bingolbali and Monaghan (2007) have also mentioned that this 
conceptual model is still has its own place among mathematics education researchers and 
the first paper that introduced this model is among the classics of mathematics education 
research. The data for this study were collected through a set of eight carefully designed 
questions based on the research findings in this field. For instance, the first three 
questions asked the students to explain that “whether the showing graphs represent a 
function or not and why”, and the fourth question asked “is there exist a function that all 
its values are equal?” The next three questions gave us a chance to explore the students’ 
concept images of the function. The purpose of the last question was to investigate the 
students’ personal concept definitions of function. 
 
After the analysis of the data, the students’ concept images and their personal concept 
definitions were categorized according to the above conceptual model. The result was 
similar in various ways with what was found by Gooya in 1988 and that became our 
concern about teaching and learning of calculus. In particular, the findings showed that 
one of the major concept images among the students was that having a rule for function, 
is a relation between two things, and it is recognized by the test of perpendicular line. 
However, the students did not consider “arbitrariness” as one of the important 
characteristics of function – meaning that the value of a function at any given point is 
independent of the value at other points, and the domain and range can be arbitrary sets. 
Indeed, the idea of having a rule for function was in contradiction with their images about 
the arbitrariness of the correspondence of function. This concept image acted as an 
obstacle for the formation of the formal concept definition of function. In addition, 
“univalence” (meaning that for each element in the domain, there is a unique element in 
the range) as another key element in the formal concept definition of function, had not a 
solid formation in the students’ concept images. Therefore, the students’ concept images 
did not provide a proper foundation for them to understand the two essential features of 
the concept of function namely; the arbitrariness and the univalence. 
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However, there are many potential opportunities in high school and university calculus 
textbooks to develop and enrich students’ concept images but they were mainly used as 
examples for different features and characteristics of the concept of function. Thus to 
conclude, the researchers speculate that teaching plays a major role to cause students’ 
difficulties with understanding function and they suggest further research to attest this 
speculation.           
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Abstract 

Student difficulties with the notion of limit are well-documented by research. These studies 
suggest that students mainly realize limits through dynamic motion, which can hinder further 
realizations of the concept. Some studies mention the overemphasis on the dynamic aspects of 
limits in classrooms but research on the teaching of limits is quite scarce. This work investigates 
the development of discourse on limits in a beginning-level undergraduate calculus classroom 
with a focus on the limit notation and uses a communicational approach to learning, a framework 
developed by Sfard (2008). The study explores how the limit notation is utilized by an instructor 
and his students and compares the realizations of limit in their discourse. The findings indicate 
that the shifts in the instructor's word use when talking about the notation supported students' 
realizations of limit as a process despite the frequency with which the instructor talked about 
limit as a number in his discourse.  

Keywords: teaching of calculus, limits, the limit notation, discourse analysis 
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THE LIMIT NOTATION: WHAT IS IT A REPRESENTATION OF? 

Introduction 
Being the building block of many fundamental calculus concepts, the notion of limit has 

drawn significant attention from researchers and student difficulties about the notion are well-
documented by research. These studies suggest that dynamic motion dominates students' 
realizations of limit, which can interfere with other aspects of limits such as the formal 
realization of the concept (Bezuidenhout, 2001; Tall, 1980; Tall & Schwarzenberger, 1978; Tall 
& Vinner, 1981; Williams, 1991). In particular, the representational tools (e.g., verbal, visual, 
and symbolic) used by students while thinking about limits may lead to additional difficulties 
(Bagni, 2005; Cottrill et al., 1996; Williams, 1991). Further, some of the problems students 
encounter as they work on limits result from difficulties related to the underlying concepts such 
as functions and the notions of infinitely large and small (Parameswaran, 2007; , 
1987). Therefore, the concept of limit presents students with two challenges: the need to make 
the transition from its intuitive to formal realization, and the need to cope with the compatibility 
of the conceptual and representational tools within the intuitively realized aspects of limits.  

Some researchers highlight that the intuitive aspects of limits are perpetuated in teaching and 
curriculum. Parameswaran (2007) considered the reliance of calculus textbooks on graphing as 
problematic since it can lead to the incorrect idea that limit is a process of approximation. Cornu 
(1991) mentioned that "in teaching mathematics, certain aspects of the limit concept are given 
greater emphases, which are revealed by a review of the curriculum, the textbooks and 
examinations" (p. 153). Bezuidenhout (2001) argued the learning and teaching approaches 
stressing the instrumental rather than conceptual aspects of limits can result in students' 
realization of the notion as isolated procedures.  

Although existing studies imply possible links between instruction and students' realizations 
of the limit concept, there is not extensive research on the teaching of limits to justify these 
claims. This work is part of a case study that investigates the development of the discourse on 
limits in a beginning-level undergraduate calculus classroom. The study uses a communicational 
approach to learning, a framework developed by Sfard (2008), to focus on the elements of one 
instructor's and his students' discourse on limits. In this paper, the main focus is on the limit 
notation as a symbolic representational tool in the discourse of limits since, besides graphing, it 
is the main visual mediator with which ideas about limit are communicated. The study addresses 
the following questions: (a) How is the limit notation utilized by the instructor in a beginning-
level undergraduate calculus course and what kinds of realizations of limit does the notation 
support?, and (b) How do the elements of the instructor's discourse on the limit notation compare 
and contrast with the students' discourse?  

 
Theoretical framework 

One of the highlights of the commognitive framework (Sfard, 2008) is the interrelationship 
between communication and thinking. By defining thinking as the individualized form of 
communication, Sfard (2008) argues that the "cognitive processes and interpersonal 
communication processes are thus but different manifestations of basically the same 
phenomenon" (p. 83). Given this, the term commognitive entails the combination of the terms 
cognitive and communicational. This framework considers discourse as its central unit of 
analysis in which the main focus is on activities, patterns of interaction and communicational 
failures. Sfard (2008) defines the term discourse as " the different types of communication set 
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apart by their objects, the kinds of mediators used, and the rules followed by participants and 
thus defining different communities of communicating actors" (p. 93).  

The commognitive framework views mathematics as a particular type of discourse, which is 
distinguishable by its word use, visual mediators, routines, and narratives. Although number or 
quantity related words can be found frequently in daily life, "mathematical discourses as 
practiced in schools or in academia dictate their own, more disciplined uses of these words" 
(Sfard, 2008, p. 133). Given the abstract nature of mathematical objects, word use is a critical 
element of a mathematical discourse because possible differences in participants' use of those 
words can hinder mathematical communication. An important feature of mathematical word use 
is objectification. Objectification results in replacing the talk about processes and actions with 
states and objects (Sfard, 2008). For a mathematical discourse, objectification is a means for 
formalization and enhances the effectiveness of our communication. However, the objectified 
mathematical discourse is abstract and hides the discursive layers and metaphors it is composed 
of. Therefore, being explicit about the underling discourses and metaphors of an objectified 
mathematical concept can be quite important for students at the beginning stages of their 
learning.  

Visual mediators refer to the visible objects created and operated upon for the sake of 
communication. Daily life discourses are generally mediated by the images of concrete objects 
whereas mathematical and scientific discourses are often mediated by symbolic artifacts. 
Routines refer to the set of metarules that characterize the patterns in the activity of participants 
of a discourse. Narrative iption of objects, of 
relations between objects, or of processes with or by objects, that is subject to endorsement or 
rejection with the help of discourse-
italics in original). Narratives of a given discourse that are endorsed by the majority of the 

 
The focus of this paper is on one instructor's and his students' use of the limit notation as a 

visual mediator as well as their word use and endorsed narratives associated with the notation to 
explore the similarities and differences between the instructor's and students' discourse.  

 
Research methodology 

The participants of this study were one calculus instructor and his section of undergraduate 
students taking a beginning-level calculus course in a large Midwestern university. For the 
instructor's discourse, the data consisted of video-taped classroom observations and field notes. 
The observation data consisted of eight 50-minute sessions in which the instructor discussed 
limits and continuity. For the students' discourse, part of the data included 23 students' responses 
to a diagnostic survey, which was taken from Williams (2001). The survey informed the 
selection of four students for an individual task-based interview session. The data for the analysis 
of the interviews came from students' written work and field notes taken during the interviews. 
The interviews were audio-taped and lasted between 53-76 minutes. Participation in the survey 
and the task-based interviews was voluntary.  

The transcripts for the video and audio-taped sessions included what the participants said and 
what they did. Therefore, the transcripts also coded participants' actions as they were referring to 
the limit notation. For this study, the units of analyses were the instructor's and students' word 
use, and the limit notation as a visual mediator. Both the instructor's and the students' word use 
was analyzed with respect to the degree of objectification in their discourse on limits. The word 
use on limits was considered objectified if the participants talked about limit as an end-state or a 
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number; it was considered operational if participants talked about limit as a process. Particular 
attention was also given to the use of metaphors and endorsed narratives underlying participants' 
word use. The analysis then focused on the similarities and differences between the instructor's 
and the students' discourse on the limit notation.  

Results 
The analysis of the instructor's overall discourse on limits revealed that he mostly talked 

about limit as an end-state of the limiting process: a specific number. In the context of the limit 
notation, however, he shifted his word use and referred to limit as a process based on dynamic 
motion. The analysis also showed that the instructor's word use on the limit notation depended 
on the following three mathematical contexts: computing limit at a point; limit at infinity; and 
infinite limits. In each of these contexts, the ways he talked about limits and infinity as end-states 
or processes differed. However, the shifts in his word use remained implicit for the students.  

The analysis of the diagnostic survey and the individual interview sessions showed that, 
unlike the instructor, students rarely referred to the limit L as a number when talking about the 
limit notation Lxf

ax
)(lim . Instead, they adopted the elements of the instructor's discourse that 

referred to limit and infinity as processes. Therefore, although the instructor could flexibly talk 
about limit and infinity as processes or as end-states depending on the context, the notions 
remained as processes in students' discourse.  

In summary, although the instructor's discourse on limits was mainly objectified, the shifts in 
his word use when talking about the limit notation supported students' operational word use. As a 
result, the students heavily relied on the metaphor of continuous motion whereas the instructor 
alternated between the metaphors of motion and discreteness. Moreover, the students only 
endorsed the narrative limit is a process, whereas the instructor mainly endorsed limit is a 
number.    

 
Conclusions and implications for mathematics education 

The students in the study developed the realization of limit as a process despite the 
instructor's general word use on limits, which was objectified. Talking about the limit notation 
was one mathematical context in which the instructor's word use alternated between the 
objectified and operational aspects of limits. Note also that the operational and objectified word 
use on limits utilize distinct metaphors: the former is based on the metaphor of continuous 
motion whereas the latter is based on the metaphor of discreteness. The tacit nature of these 
metaphors and students' adoption of the instructor's operational word use as the dominant means 
with which to talk about limits signal the importance of explicitness during instruction. As the 
insiders and the experts of the mathematical discourse, instructors can  ability to see as 

This study provides 
evidence of the ways in which connected aspects of a mathematical concept can remain distinct 
and implicit for learners.  

In addition, the study problematizes the utilization of the limit notation. The instructor 
primarily used the limit notation Lxf

ax
)(lim  to represent the end result of a limiting process 

(the limit is equal to L). Yet, students used it to represent the limiting process f(x) 
(Hughes-Hallett et al., 2008; Thomas et al., 2008). 

So, although a symbolic and abstract visual representation, the limit notation might inevitably 
support dynamic motion and assumptions about continuity that underlie students' intuitive 
realization of limits. 
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Student Outcomes from Inquiry-Based College Mathematics Courses:  
Benefits of IBL for Students from Under-Served Groups 

Marja-Liisa Hassi, Marina Kogan, Sandra Laursen 

 

Abstract 

Our large, mixed-methods study examines cognitive and affective outcomes of inquiry-based 
learning (IBL) in a variety of undergraduate mathematics courses at four universities.  Student 
outcomes are measured by pre/post-survey items, self-reported gains and historical transcript 
data.  Students in IBL courses report higher cognitive and affective gains than do non-IBL 
students.  IBL students also report increase in motivation and interest, whereas non-IBL 
students’ motivation drops after mathematics courses.  The historical transcript data also shows 
IBL students’ higher interest compared to their non-IBL peers.  These benefits of IBL instruction 
are especially important for women and low achieving students, who are often under-served by 
the traditional college mathematics courses.  Our findings suggest that IBL instructional methods 
support positive learning outcomes in various groups of students, including those under-served 
and under-supported by the traditional college mathematics courses. 

Keywords: inquiry-based learning, mixed methods, learning outcomes, undergraduate students  

Introduction 

Inquiry-based learning (IBL) refers to teaching and learning approaches that engage 
undergraduates in learning new mathematics by exploring mathematical problems, proposing 
and testing conjectures, developing proofs or solutions, and explaining their ideas.  Thus students 
both “learn new mathematics through engagement in genuine argumentation” and come to “see 
themselves as capable of reinventing mathematics and to see mathematics itself as a human 
activity” (Rasmussen & Kwon, 2007, p. 190).  Such approaches are supported by current socio-
constructivist views of learning that emphasize individual constructions and ways of thinking 
and learning developed in social interactions in classrooms (Bransford et al.,1998; Cobb et al., 
2000; Davis, et al., 1990).  For college students in science and engineering, inquiry appears to be 
more effective than traditional instruction at improving academic achievement and developing 
problem-solving (Prince & Felder, 2007).  However, fairly little empirical evidence exists to 
demonstrate the impact of IBL methods on student learning in college mathematics.  Exceptions 
include studies by Smith (2006), Jensen (2006), Kwon, Rasmussen and Allen (2005), Ju and 
Kwon (2007), and Rasmussen et al. (2006).  These studies suggest that undergraduate students’ 
ideas of mathematics, proofs, and their own role in doing mathematics can be affected by the 
social norms and classroom practices that emphasize student activity, problem-based learning, 
and classroom discussions.  This raises interesting new questions: how and to what extent do IBL 
experiences influence undergraduate students’ motivation, achievements, and choices in learning 
mathematics? 

Our group has conducted a large, mixed-methods study of IBL mathematics courses 
taught at four campuses where “IBL Centers” have been established.  The courses range from 
introductory to advanced college mathematics and target varied audiences including math 
majors, science and engineering majors, and pre-service teachers.  Observation, survey, 
interview and test data were gathered from over 100 course sections across two years, most from 
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IBL sections but also from non-IBL sections of the same courses, where these were available.  In 
addition, student academic records for over 5000 students were obtained so that we could 
examine patterns in student achievement and course-taking following an IBL (or non-IBL 
comparative) course.  In this report, we consider multiple measures of two main types of 
outcomes, broadly described as cognitive and affective outcomes, for students from these IBL 
courses and comparison sections.  We examine key differences among student groups that 
suggest that IBL methods particularly benefit some groups of students who are often under-
served by traditionally taught college mathematics courses: women and low-achieving students. 

Methods 

The study used several different measures for cognitive outcomes, including self-reported 
learning gains from surveys, academic achievement measures from transcripts, and test data from 
a subset of courses.  Multiple measures for affective outcomes included self-reported affective 
changes from pre/post survey items and pursuit of additional mathematics courses, which we 
took as a proxy for increased interest in mathematics or commitment to it as a discipline, in 
parallel to survey items that explored these interests.  We also explored cognitive and affective 
gains, and how these came about, in interviews with 68 IBL students. 

Pre- and post-surveys were obtained from 800 IBL and 400 non-IBL students on 
cognitive, affective and social aspects of student learning and experiences during their math 
course. Longitudinal measures are based on pre/post items grounded in theory and constructed to 
probe students’ mathematical beliefs, affect, goals and strategies of learning and problem solving 
on a seven-point Likert scale. Gains in understanding, thinking, attitudes, confidence and 
capabilities are measured at the end of courses on a five-point scale from “no gain” to “great 
gains” that is based on the SALG instrument (Student Assessment of their Learning Gains, 
2008), developed to gather formative and summative data on classroom practices.  The 
composite variables were constructed on the basis of the designed scales, exploratory factor 
analyses, and item analyses.  The surveys also gathered information on students’ personal and 
mathematical backgrounds and were matched using a unique identifier.   

Historical transcript data for 5563 students at 3 campuses included mathematics courses 
taken, grades obtained, majors and minors, and some backgrounds (by academic term) for 
samples of students who took an IBL or non-IBL version of the same course in specific 
semesters, and allowing time for most students to complete subsequent mathematics courses and 
college degrees.  Composite variables were constructed to measure students’ incoming 
mathematical background, overall academic preparation, course outcomes, and post-course 
outcomes, such as number of additional math courses taken, average grades in all, required, and 
elective courses.  For both survey and transcript data, results are based on statistical analysis 
including descriptive statistics and parametric or non-parametric tests. 

Findings 

Survey measures provide the strongest measures of both cognitive and affective 
outcomes for IBL students, but academic records and test data provide several points of 
corroborating evidence.  Overall, IBL students reported higher gains than their non-IBL peers on 
both cognitive and affective survey measures. For example, IBL students reported higher gains 
in understanding concepts, mathematical thinking, confidence in doing and communicating about 
mathematics, persistence, and positive attitude about mathematics learning. Moreover, IBL 
students preserved their high motivation and increased their interest in college mathematics, 
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whereas non-IBL students’ motivation to graduate in mathematics clearly dropped during a 
conventional course. Pre-service teachers benefited less from the IBL instructional approaches 
than the non-teaching track IBL students.   

Some IBL instructors interviewed for this study hypothesized that women would 
especially benefit from the collaborative style and confidence-building typical of IBL courses.  
They suggested that, while high-achieving students were not harmed by IBL courses, and often 
enjoyed them very much, students with more modest records of achievement would benefit most 
from this teaching style.  We thus examined survey data for these sub-groups.  Both men and 
women in IBL courses reported higher learning gains than their non-IBL peers, but the gains for 
women were striking. IBL women scored high on all cognitive and affective gains, whereas non-
IBL women reported the lowest gains. This strongly indicates that women are underserved by 
non-IBL courses, whereas they clearly benefit from the IBL experience.  

 

 

Differences 
between IBL and 
non-IBL students 
are statistically 
highly significant 
(p<.001) both 
among men and 
women. 

    

 

 

 

 

 

 

 

 

 

Breaking out the students by prior achievement levels (using their self-reported college 
GPAs) is also illuminating.  We divided the groups in rough thirds, according to their self-
reported college GPA: top (!3.8), high (3.0-3.79), and moderate or low (<3.0). It appeared that 
lower achieving students’ cognitive gains were higher in IBL courses. The results indicate that 
traditional methods benefit stronger students the most. While IBL methods are beneficial to all 
types of students, the learning gains are greater for IBL students who started with the lower 
scores. These differences in gains were particularly apparent among pre-service teachers. 
However, as first-year students did not report a previous college GPA, the sample size is smaller 
for this result and do not reflect situation for all students.  

Analysis of academic records data indicates that some of these gains may outlast the 
course itself.  For example, for one campus with large IBL enrollments, we divided students in 
rough thirds based on their math GPA prior to the IBL class (or comparable non-IBL section): 
high (>3.4), medium (2.5-3.4), and low (<2.5).  Our analysis shows that the low-scoring IBL 
students get higher average grade on the later required math courses than their non-IBL peers.  
Thus, IBL experience boosts achievement for the initially low-achieving students, while 
traditional courses show no such benefit.  On the other hand, there is no evidence that the IBL 
methods disadvantage medium and high-achieving students.  On the contrary, our analysis 
indicates that high-achieving IBL students take significantly more IBL-method math classes than 
their non-IBL peers.  As greater number of math classes taken (including IBL-style) represents 
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greater interest in mathematics, the analysis shows that taking an IBL course fosters greater 
interest in mathematics among high-achieving students.  In sum, the previously low-scoring 
students benefit in achievement, while the high-scoring student get a boost in interest and 
motivation.  Thus, the faculty prediction on the benefits of IBL is supported by our transcript 
data.  

The evidence to date from math test results is less detailed.  However, the above findings 
are corroborated by results of a pre/post test of mathematical knowledge for teaching (Hill, 
Schilling & Ball, 2004) given to students in IBL courses for pre-service teachers.  The pre-to-
post improvement in test score was greatest for students who answered fewer than 50% of items 
correct on the pre-test. That is, low-achieving students in IBL math courses for teacher 
preparation made greater gains than did their higher-scoring peers. 

In sum, multiple measures of students’ cognitive and affective outcomes from college 
mathematics courses taught with IBL methods indicate that students benefit from these 
approaches to teaching and learning.  Indeed, in no case do the student outcomes favor the non-
IBL group.  And two groups of students who are often under-served by traditional courses 
benefit in particular from their experiences in IBL classrooms:  women, who in many 
departments are underrepresented in mathematics, and students who are not already high-
achievers in mathematics.  Such positive outcomes of IBL instruction in college mathematics 
should justifiably get attention of undergraduate mathematics educators.  IBL provides powerful 
tools for enhancing learning outcomes of undergraduate mathematics students, especially those 
under-served by the traditional college mathematics courses. 
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On exemplification of probability zero events. 

Simin Chavoshi Jolfaee 

 

Abstract: In this study the example space of pre-service secondary teachers on probability zero 

events is examined. Different aspects of such events as perceived by the respondents are 

discussed and their perception of impossible events versus improbable is studied. The examples 

are categorised in terms of the type of sample space and once again categorised in terms of how 

do they fit the classic definition of probability. The role of measure theory to approach 

probability is briefly looked at via the examples. Meanwhile the participants’ understanding of 

“more complicated” is explored and different ways they add complexity to their examples are 

analysed. 

Keywords: example space, classic probability, impossible events. 

 

Background 

Extended attention to probability and statistics in school curriculum resulted in renewed interest 

in these topics in mathematics education research. Despite the variety of studies that explore 

understanding of probability concepts among students and teachers, (Lester 2006), little or no 

attention has been paid to zero probability events.  My study aims at addressing this deficiency.  

 

Theoretical framework  

The importance of experiencing with examples has always been dealt with in theories and 

frameworks for describing the learning of mathematics. Watson & Mason (2005) define a 

concept as being aware of dimensions of possible variation and with each dimension, a range of 

permissible change within which an object remains an example of the concept. They also 

develop the idea of example space as collections of certain types of examples and suggest this 

idea as central in teaching and learning. Another study highlights that when invited to construct 

their own examples, learners both extend and enrich their personal example space, but also 

reveal something of the sophistication of their awareness of the concept or technique (Bills, 

2006). 

Goldenberg and Mason shed more light on the construct of example space and on how it can 

inform research and practice in the teaching and learning of mathematical concepts (Goldenberg, 

2008).  

 

Methodology: Participants and Task  

The participants of this study were pre-service secondary school teachers (n=30), holding Majors 

or minors in mathematics or majors in science. There were asked to respond in writing to the 

following task. The time for completing the task was not limited.  

Give an example of an event with probability zero. 

Give an example of a more complicated event with probability zero. 

The task was followed by classroom discussion around the general notion of probability zero 

events and the given examples. 

The research questions were:  

How do pre-service teachers interpret and exemplify probability zero events in variety of 

situations? 

What is their personal example space with regard to events with probability zero? 
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Data analysis: First examples 

The data were first analysed in terms of the respondents’ perception of probability, which 

appeared to be in accord with the classical interpretation. The reasoning behind the given 

examples made it explicit that their common perception of probability is of a fraction (the ration 

of favourable events to all possible events). According to the different ways a fraction could be 

equal to zero (exactly or approximately), the examples were categorised into three groups: 

• Zero divided by a non-zero: this type of examples was called “logically impossible” events. 

This category dominated the participants’ example spaces. (Example: Rolling a 7 with a 

standard die for instance). Number of examples in this category: 50. 

• A non-zero number divided by a constant large number: this type was referred to as  

“estimated to be zero” probability events. (Example: Flipping 10 coins all sitting in heads, an 

event with a probability 0.00097, which is estimated to be zero). Number of examples in this 

category: 3.  

• A nonzero number divided by a sequence of numbers tending to infinity: this group of 

examples was called “events with probability converging to zero at limit”. (Example: tossing 

a fair coin infinitely many times, all of them sitting in head). Number of examples in this 

category: 5 

 

From a theoretical account a fourth type of examples was introduced as “measure-theoretically 

explainable probability zero”. (Example: picking a certain number from a given interval of real 

numbers.)  Two examples could fit this category, however, no evidence to a reference to 

measures in the sense that distinguishes a set of countable points versus a set of uncountable 

points was given. However, the classroom discussion suggested that this type of probability zero 

events could be understood from the point of view of each of the three aforementioned 

categories.  

Moreover, the examples were examined in terms of the probability generators used to make a 

random experiment. The impact of classical textbook objects for teaching probability on the 

example space of the teachers is conspicuous. 

From 60 examples, 32 use dice, 14 use coins, 8 use marbles in a bag (or equivalent variations of 

it), one uses a spinner, one uses a deck of cards, 2 use picking random numbers and 2 use real 

life objects such as vending machine and street crossway. 

 

Data analysis: Second examples 

Watson and Mason (2005) discuss the “give another example” strategy as a powerful 

instructional tool.  From the examination of second examples in this study it turned out that in 24 

out of 30 cases the first and second examples fell in the same category. I further examined how 

the participants have made their second example “more complicated”.   

It turned out that combining is quite a popular technique to get more complicated events.  A total 

of 20 examples out of 30 were combining two events in order to give an example of a more 

complicated event. 

Three different types of combination have been recognizable from the data: 

The impossible-possible combination: 

In this type of examples the impossible event described in first example is frequently used as the 

impossible component; first example is rolling a 7 with a fair die while second example is asking 

for rolling a 5 and then rolling a 7 with a fair die. 
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The impossible-impossible combination: 

Some participants have conceived “more complicated” as an event even less likely to happen 

than their first impossible event. The second example is a combination of two probability zero 

events. 

First example: Getting infinitely many 1’s when rolling a fair die infinitely many times1. 

Second example: Getting all faces when flipping a coin infinitely many times while getting 

infinitely many 1’s when rolling a fair die at the same time. 

The possible-possible combination with empty intersection: 

Another way to get a “complicated” event was to combine the possible events in the sample 

space such that their intersection is empty, which at the same time makes the event logically 

impossible. The frequent example of this type was getting both 3 and 4 at the same time when 

rolling a fair die once.  

As a second technique to add more complexity, some participants have used generalization; the 

second example is a generalized form of the first, so it is perceived to be both a zero probability 

event and a more complicated one. First example: rolling two dice and getting (6,7), second 

example: Rolling two dice and getting (i,j) such that i+j=13, for example.  As Watson & Mason 

suggest, leading the learners toward generalization is one of the merits of asking for another or 

for a more complicated example. 

 

Data Analysis: Number treatment 

Any task designed for different research questions that deals in a way with numbers could reveal 

some by-product facts about people’s perceptions on numbers and part of their real number 

sense. The task described in this proposal is no exception. One of such interesting by-products is 

the different treatment of numbers found in two of the examples: in both examples the random 

experiment wsa to pick a random number from a real interval and the probability zero event was 

to pick a certain pre-determined number, 4.3275 and 1.0000097 respectively. It could not be 

helped but notice that the examples are of the same nature: they provide “safe” examples of 

numbers that are not likely to be picked. However, both respondents were aware of the fact that 

picking any number has the same probability zero, but they might feel that the numbers like 0,1,2 

or 1/3 are not safe enough to mention. My conjecture is that the reason for such preference may 

be in that frequently students are asked to locate integers and simple fractions on the number 

line, but they are never asked to locate 1.0000097. The first numbers are then analogous to big 

bold dots or thick dashes on the number line; they are ‘exposed’ numbers as opposed to 

‘anonymous’ numbers living safely in the oblivion of atom-size inseparable habitants of real line.  

 

An interesting issue related to the definition of probability zero event surfaced in a discussion 

with participants and will be included in my presentation.  

 

Summary: 

The example space of 30 pre-service secondary teachers on probability zero events was studied 

through the examples they were asked to generate. Their example space was found to be rather 

limited and dominated by the standard probability teaching examples. Also the ‘expert’ example 

space appeared to be missing. ‘Complicatedness’ of examples was mostly represented in 

combination and generalization.  

                                           
!
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After the graduate assistantship program was founded in the late 1800s, several 
researchers increased their interests in mathematics teaching assistants (MTAs) regarding diverse 
roles in universities and their potential influence on undergraduate education (Belnap, & Allred, 
2006; McGivney-Burelle, DeFranco, Vinsonhaler, & Santucci, 2001; Latulippe 2007; Speer, 
Gutmann, & Murphy, 2005). Because MTAs teach a substantial portion of undergraduate 
students
perspective on mathematics and achievement in mathematics education (Commander, Hart & 
Singer, 2000; Speer, Gutmann, & Murphy, 2005). International MTAs also have become an 
indispensable part of mathematics departments. In the last two decades, international MTAs have 
been counted as a high percentage 
departments in the U.S. Being interested in MTAs, I studied th

2005, 2008; Thompson 1984, 1992).  Because McGivney-Burelle, DeFranco, Vinsonhaler, & 
Santucci (2001) and Twale, Shannon, and Moore (1997) suggest that different educational 
experiences and philosophies pedagogical methods, I believe that 
there are significant differences in beliefs and teaching practices between international and U.S. 
domestic MTAs. The aim of this research is to answer the following two research questions: 1) 
What are the differences in beliefs and teaching practices between international and U.S. 
domestic M  To 
adequately answer these research questions, definitions and classifications of beliefs from the 
literature were used. In mathematics education, researchers defined beliefs as personal 
philosophical conceptions, ideologies, worldviews and values that shape practice and orient 
knowledge (Aguirre and Speer, 1999; Ernest, 1989; Speer, 2005). According to their definitions, 
beliefs are classified based on beliefs about mathematics, teaching, student learning and students 
(Cooney 2003; Cooney et al. 1998; Cross, 2009; Ernest 1989; Speer 2005, 2008; Thompson 
1992).  

To obtain my theoretical framework, b
objectivism view in epistemology. Since phenomena have meaningful entities of consciousness 
and experience, respectively, researchers find the objective truth and meaning of certain 
phenomena (Crotty, 1998, p.6). When certain phenomena are verified, the statement becomes 
meaningful and truthful. Even though research is able to attain the cause of the origin by being 
verified, I believe it is impossible to be only verified by experience based on Crotty s 
explanation about postpositivism. Researchers can only uncover approximate truth of 
phenomena instead of not finding the accurate truth with certainty of phenomena in the human 
experiences (Crotty, 1998, p29). Therefore, as a postpositivist, I believe that knowledge is 
created by the approximate cause or truth of phenomena through uncovering. Although 
phenomena cannot be verified by accurate truths or meanings, the research of the phenomena is 
important for the postpositivism perspective because researchers will discover approximate 
meanings and truths. Thus, the research explains well the phenomena and provides opportunities 
for readers to understand and accept these as knowledge. It is hard to determine the truths of the 
differences even though I discover regular patterns of the differences between MTAs  beliefs and 
teaching practices. For example, we do not have tools to determine accurately MTAs  beliefs. In 
addition, their beliefs often are inconsistent with their behaviors. Even though my research will 
not be verifying truths of the differences, I am able to discover regular differences. Through 
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postpositivism and the uncovering of the differences in MTAs  beliefs and teaching practices, the 
answers to my research questions become knowledge and may help us understand what the 
differences in beliefs and teaching practices between international and U.S. domestic MTAs are. 

As a case study in a qualitative research project, this study uses purposeful sampling 
(Creswell, 2007, p. 125). According to criterion sampling (Creswell, 2007, p.127), based on 
three criteria, I selected my participants: twelve MTAs that consist of six international and six 
U.S. domestic MTAs at the University of Oklahoma. The first criterion was that MTAs were in 
the Mathematics department at the University of Oklahoma. The second was 
nationalities, such as international and U.S. domestic MTAs. One of the two groups was U.S. 
domestic MTAs who were born in the U.S., completed high school in the U.S., and spoke 
English as their native language. The other group was international MTAs who were born 
outside of the U.S., completed high school out of the U.S., and were non-native speakers of 
English. The third was that MTAs taught their own class during the spring semester of 2010.  

Through triangulating (Creswell, 2007, p.209), I employed three different data sources: 
observation, questionnaires, and interviews with a digital voice recorder. From these three 
research instruments, data were gathered with the following procedures: 1) Observations and 
making condensed field notes and expanded field notes, 2) Questionnaires, and 3) Interviews 
with the participants with a digital recorder and transcripts of the digital voice recorder. After 
teaching observations, data were collected by using the aforementioned preceding, followed by 
an interview to not influence the participant s teaching.  First, I observed my participants  classes 
for one class period during the spring semester in 2010 at the University of Oklahoma. I did not 
participate in their classes and made condensed field notes. I gathered the data of the 
questionnaire and then interviewed them in my office or their offices. The total time of the 
questionnaire (less than 15 minutes) and interview (less than 45 minutes) was less than one hour. 
I provided the questionnaire first because my participants were able to readily think about their 
teaching practices and beliefs before the interview. The interview was semi-structured with 12 
open-ended questions with a digital voice recorder. The interview questions were six questions 
about their teaching practices and six questions about beliefs. I took notes in shorthand during 
the interviews. In addition, I did appropriate reaction and follow-up to probe questions to 
elaborate meanings of their responses.   

I conducted my research with the intent of finding patterns and finally identify salient 
themes by inductive analysis. I frequently looked over the expanded field notes from 
observations, transcripts from interviews, and questionnaires. Using NVivo 8, software for 
analysis, through the transcripts, I made twelve sections based on the number of interview 
questions. In addition, I put codes on the expanded field notes to find their pattern about teaching 
practices. From the questionnaires, I could support the data of beliefs on the transcripts. I 
identified tentative codes from the database and reduced and combined the codes as I continued 
to review and re-review my database. 

From analysis of the data, I have found the significant differences in teaching practices 
and beliefs between the two groups centered on how they taught students to understand 
definitions and problems and how they motivated students to learn mathematics. The 
international MTAs believed that understanding concepts were fundamental to learn mathematics. 
If students knew and understood concepts, they could solve all kinds of problems. According to 
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the international MTAs  beliefs about teaching, they believed that teachers  abilities (background 
knowledge) and preparations of brief explanations of concepts were important for effective 
teaching of mathematics. In the literature reviews, beliefs strongly influence teaching practices. 
My results also support the statement. In addition, , teaching, 

Thus, there is 
consistence between beliefs and teaching practices of international and U.S. domestic MTAs.  

The international MTAs used problems as supplements to help students understand 
concepts because their intent was more for students to understand concepts, not problem solving. 
To help students to understand concepts, the international MTAs emphasized clear explanations 
of concepts and adjusted to the students  level. On the other hand, the U.S. domestic MTAs 
taught students to understand material by solving problems for students instead of spending 
much time explaining concepts. In addition, through solving problems, they showed that 
mathematics is useful and valuable. The U.S. domestic MTAs provided problems as much as 
they could that stressed main points because they wanted their students to understand concepts 
from the problems. In addition, the U.S. domestic MTAs believed that students were able to 
improve pattern recognition by solving many problems. 

Regarding methods of how to motivate their students to pay attention in class and learn 
mathematics, the international MTAs used simple examples for motivation and asked students to 
solve them because the international MTAs focused on students understanding concepts. On the 
other hand, the U.S. domestic MTAs focused on explaining why concepts were useful and 
valuable to motivat ation for 
learning mathematics and paying attention in class through explaining why these concepts are 
needed and why these problems are important. The U.S. domestic MTAs emphasized reasons to 
learn mathematics. Therefore, the different beliefs about mathematics, teaching, learning, and 
students significantly influence different teaching practices between international and U.S. 
domestic MTAs. 

I anticipate that from the findings of the first research question, people in the academic 
community will gain an increased awareness of 

s and beliefs. The findings of the second research 

 addition, I believe that this study will contribute essential resources for the 
body of knowledge about MTAs and the creation or adaptation of professional development 

instructional practices and beliefs, mathematics departments will gain insight into the proper 
support needed by MTAs to improve their teaching methods. This information provides a good 
opportunity for readers to understand the differences between international and U.S. domestic 

. This research will 
knowledge, and will encourage faculty to be interested in the professional development of MTAs.  
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Improving the Quality of Proofs for Pedagogical Purposes: A Quantitative Study 
 

 

. 
Key words: proof evaluation, mathematicians, proof revision, quantitative study. 

1. Introduction 
 In university mathematics courses, a primary means of conveying mathematical 
information is by mathematical proof. We hope that these proofs can convince students 
that a theorem is true, illustrate why a theorem is true, or illustrate new methods of 
reasoning (e.g., de Villiers, 1990; Hanna, 1990; Hanna & Barbeau, 2008). Unfortunately, 
both empirical and anecdotal evidence indicate that these learning goals often are not 
realized. Selden and Selden (2003) argue that as undergraduates do not have the ability to 
differentiate valid and invalid proofs (Selden & Selden, 2003; Weber, 2010), they cannot 
be gaining legitimate mathematical conviction from the proofs that they read. Many 
researchers report that students find the proofs they read to be confusing or pointless 
(e.g., Harel, 1998; Hersh, 1993; Porteous, 1986; Rowland, 2001). 
 A common suggestion to improve this situation is to increase the quality of the 
proofs that we present to students. For instance, some researchers argue that proofs 
should be more closely tied to informal arguments (Hersh, 1993), make explicit the 
proof’s overarching structure while suppressing logical details (Leron, 1983), or 
illustrated with a carefully chosen generic example (Rowland, 2001). We attempt to build 
on this work by addressing the question: What types of modifications do mathematicians 
believe will improve the quality of a proof for pedagogical purposes? 
 Last year, at the 2010 RUME Conference, we presented the results of a qualitative 
study in which we asked eight mathematicians to revise two proofs intended for a 
calculus course for second- or third-year mathematics majors. We suggested a number of 
features in proofs that mathematicians find pedagogically valuable (see Lai & Weber, 
2010). However, due to small sample sizes and the qualitative nature of our study, we 
qualified our findings as “grounded hypotheses”. The goal of this study is to test these 
hypotheses with a larger number of mathematicians. Specifically, we aim to test the 
following hypotheses: 
(H1) A proof for undergraduates can be improved if a hypothesis and conclusion 
statements are added to the proof that make explicit the proof framework (in the sense of 
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Selden & Selden, 1995) being employed. (In many undergraduate proofs, these are not 
explicitly stated and the proof framework is implicit). 
(H2)  Emphasizing important equations in a proof via typesetting will improve the 
quality of the proof because it will make clear the proof’s main ideas. 
(H3) Adding extra justification to support an assertion can improve the clarity of a proof 
if that justification might be difficult for a student to infer on their own. 
(H4) Including unnecessary irrelevant computations or assumptions in a proof will make 
the proof worse since this will unnecessarily lengthen the proof and confuse students. 
2. Theoretical assumptions 
 This work is based on three theoretical assumptions. First, understanding 
teachers’ pedagogical beliefs is essential for modifying teachers’ behavior (e.g., Aguirre 
& Speer, 1996). It follows that understanding what mathematicians believe constitutes a 
good proof for pedagogical purposes is necessary if we want to change the way that 
proofs are presented in university classrooms. Second, as experienced practitioners, 
mathematicians are a useful source of pedagogical content knowledge (Alcock, 2010). 
Consequently, mathematicians’ views on how proofs might be improved are useful 
considerations for mathematics educators to consider. Third, small-scale qualitative 
studies are essential for developing grounded hypotheses in mathematics education 
research; however, these hypotheses need to be rigorously tested. 
3. Methods 
 To test the hypotheses, we conducted an internet-based study. To seek 
participants, we sent e-mail requests to 28 mathematics departments inviting their faculty 
members, post-docs, and Ph.D students to participate in our study, providing a link to the 
website that they could click on to participate in the study. 110 mathematicians chose to 
participate. Methodological details about measures we took to insure the validity of this 
study, as well as empirical evidence that this approach is valid, are similar to the methods 
and arguments given in Inglis and Mejia-Ramos (2009).  
 In this study, participants were then shown the “master proof” below and told they 
would be asked whether changes to the proof would make it “less or more understandable 
to second or third year undergraduate students”. 

 
Figure: “master proof” shown to participants. 

The participants were then shown a screen with the master proof on top and a modified 
version of the master proof with the modifications in blue at the bottom and were asked 
to judge whether the changes made the proof “significantly better”, “somewhat better”, 
“the proofs were the same”, “somewhat worse”, or “significantly worse” (which we 
coded as 2, 1, 0, -1, or -2 respectively). This process was repeated five times with five 
different modified proofs. The order in which each proof was received was randomized. 
(M1) We presented a proof where we added the sentence, “To show f is injective, we 
must show that f(x1)!f(x2) after the first sentence of the master proof and the sentence “It 
follows that f is injective” as the last sentence of the proof. If H1 is correct, the 
participants should judge M1 to be an improvement over the master proof. 
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(M2) The formulas, f’(x3) = f(x2) – f(x1)/(x2 – x1) and f(x2) – f(x1) = f’(x3)(x2-x1) > 0, 
were re-formatted to appear centered as their own lines. If H2 is correct, the participants 
should judge M2 to be an improvement over the master proof. 
(M3) The last sentence of the proof was re-written as “Since f(x2) – f(x1) ! 0, f(x2) ! 
f(x1)”. This added an extra justification that had previously been implicit to the proof. If 
H3 is correct, participants should judge M3 to be an improvement over the master proof. 
(M4) We added the phrase “so x2 – x1 = f(x2) – f(x1)/f’(x3)” immediately before the 
sentence beginning with “Since”. While this inference is correct, it is not useful in the 
proof. If H4 is correct, participants should judge M4 as worse than the master proof. 
(M5) We added the phrase “f is a real valued function” after the phrase “Since, by 
hypothesis”. This assumption was not relevant to the subsequent argumentation. If H4 is 
correct, participants should judge M5 as worse than the master proof. 
Finally, we gave the participants the option of commenting on why they made the 
judgment that they did. 
 
3. Results 
 A repeated measures ANOVA revealed a main effect based on the modifications 
the participants’ received (F(327, 4) = 231.7, p<0.001), meaning participants did not 
judge all modifications to be of equal quality. A summary of the results is given in the 
table below. 

    # participants who # participants who 
    thought proof was thought proof was 
Condition Mean score better   worse    
M1  1.29*  97   4 
M2  1.05*  88   2 
M3  0.02  41   40 
M4  -1.66*  6   98 
M5  -1.12*  7   94 
* Indicates a mean score statistically different than zero with p<0.001. 

 
 These results confirm the predictions based on H1, H2, and H4. However, 
participants’ responses for M3 fail to confirm H3 (the hypothesis that an extra 
justification will help students). Among the participants, 41 mathematicians thought 
adding the extra justification in M3 to the proof would make it better, with some giving 
reasons such as “I can imagine students being confused by the last step and this change 
would make it clearer”. The 41 who thought the change lowered the quality of the proof 
gave responses that they thought students should make this inference easily, that students 
should be pushed to make these inferences on their own, or that the inference added was 
worded poorly. This suggests there is not a consensus among mathematicians for what 
level of justification is desirable or necessary for the purposes of teaching 
undergraduates. 
4. Significance and future research 
 These results confirm several of the hypotheses proposed by the authors based on 
a qualitative study at last year’s RUME conference (Lai & Weber, 2010). In particular, 
mathematicians believe that, for purposes of pedagogy, brevity is a desirable attribute of 
a proof but adding proof frameworks improves their quality. Formatting a proof by 
centering important equations also improves their quality. An interesting future research 
question is if the changes the mathematicians endorse would improve students’ 
comprehension of proofs. 
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Abstract: In this talk, we characterize the nature of students’ thinking about real-world 
problem situations that mathematicians might choose to reason about using ideas from 
linear algebra such as eigen theory, matrix equations, and/or systems of linear equations.  
We documented students working in groups on the “Car Rental Problem,” a task that our 
research team specifically designed to elicit students’ thinking about problem contexts 
that might be modeled in the aforementioned ways.  We will describe the models students 
create to reason in this problem context, illustrating the variety in the final solutions of 
four different groups of linear algebra students and discuss the trends that appeared 
across the four groups as they worked toward their solution. Our analysis follows Lesh & 
Kelly’s (2000) multi-tiered approach, and will focus on the mathematical topic areas 
drawn upon, the inscriptions created, and the quantitative reasoning that the students 
engaged in as they worked toward a solution. 
 
Key Words: Linear Algebra, Modeling, Student Thinking 
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Students’ Modeling of Linear Systems: The Car Rental Problem 

Introduction: 
Linear algebra has the potential to provide students with powerful tools for analyzing and 
understanding systemic problems in many areas of mathematics, engineering, and 
sciences.  These tools include the use of systems of linear equations, matrices, and eigen 
theory for modeling real world phenomena.  Research shows that students struggle to 
bridge their informal and intuitive ways of thinking with the formalization of concepts in 
linear algebra (Carlson, 1993; Dorier, Robert, Robinet & Rogalski, 2000). 
 
Research Objective: 
The central objective of this work is to characterize the nature of students’ thinking about 
real-world problem situations that mathematicians might choose to reason about using 
ideas from linear algebra such as eigen theory, matrix equations, and/or systems of linear 
equations.  The reason for this is two-fold: first, it offers insight into what it means to 
understand these ideas at a very fundamental level.  Second, it offers insight into the 
informal and intuitive ways students have for thinking about these ideas -- ways that 
might then be leveraged instructionally.  To this end, we documented students working in 
groups on a task that our research team specifically designed to elicit students’ thinking 
about problem contexts that might be modeled in the aforementioned ways.  We will 
refer to this task as the Car Rental Problem.  In our talk, we will describe the models 
students create to reason in this problem context.  We will illustrate the variety in the 
final solutions of four different groups of students and discuss the trends that appeared 
across the four groups as they worked toward their solution.  The three questions that will 
guide our analysis are: (1) What mathematical topic areas do students draw upon to 
reason about such situations?  (2) What are the nature and role of the inscriptions students 
develop to structure their thinking about such situations? (3) What role does quantitative 
reasoning play in the development of students’ solutions? 
 
In the car rental problem, students are presented with a scenario where there is a car 
rental company that has three locations in a city.  Patrons of the company are allowed to 
return cars at any of the three locations and the problem describes what percent of cars 
from each location are returned where (see Figure 1).  
 

 
Figure 1: Diagram of Redistribution Rates in the Car Rental Problem 
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In particular, each week, about 95% of the vehicles rented from the Airport location are 
returned at the Airport location, about 3% rented at the Airport are returned Downtown, 
and about 2% of the cars rented from the Airport location are returned at the Metro 
location.  Students are given an initial distribution of cars, and asked to describe the long-
term distribution of the cars if the cars are returned at the described rates.  They are also 
asked whether changing the initial distribution of cars would change the long-term 
distribution, and told to develop a business plan for the company so that they do not have 
to keep reshuffling the cars. 
 
Theoretical Lens: Modeling & Quantitative Reasoning 
The Models and Modeling (M&M) perspective adopts the view that many 
mathematically significant ideas that need to be learned by students originate from real 
world contexts, and that meaningful learning occurs when students are given the chance 
to reason about such ideas in their rich contexts (Lesh & Doerr, 2003).  This work draws 
heavily on the literature and research tools developed in association with the M&M 
perspective in two important ways.  First, we appeal to Lesh and Doerr’s characterization 
of a model: “Models are conceptual systems… that are expressed using external notation 
systems, and that are used to construct, describe, or explain the behaviors of other 
system(s) – perhaps so that the other system can be manipulated or predicted 
intelligently” (2003, p. 10).  Second, we have relied on the design principles associated 
with this perspective to inform the design of the task posed to students in this study.  
 
In order to simplify our analysis of students’ problem-solving efforts, we decided to focus 
largely on the quantitative reasoning that was related to each group’s final solution.  
According to Kaput (1998), “Quantitative reasoning… can be regarded as modeling – 
building, usually in several cycles of improvement and interpretation, mathematical 
systems that act to describe and help reasoning about phenomena arising in situations” (p. 
16).  In our analysis we chose to use Smith and Thompson’s (2008) description of 
quantitative reasoning; namely, quantitative reasoning is reasoning with and about 
quantities, where quantities “are measureable attributes of objects or phenomena; it is our 
capacity to measure them – whether we have carried out those measurements or not – that 
makes them quantities” (p. 10). 
 
Methods 
The students in this study were enrolled in an introductory undergraduate linear algebra 
course at a public university in the southwestern United States during the Spring of 2007.  
Successful completion of two semesters of calculus was prerequisite to the course, so 
students had a strong mathematical background.  There were 32 students in the class, 8 of 
whom participated in the problem-solving interviews used as data for this study.  
Information is not available on the breakdown of the majors of the students in the class as 
a whole.  However, of the 8 participants, 4 were electrical or computer engineering 
majors (one of whom had a double major in mathematics), 3 were computer science 
majors, and 1 was a graduate student in the business school.  In the problem solving 
interviews, students worked in groups of 2-3 (although one student ended up working 
individually because the others in his group did not show up for their interview) for 
approximately 90 minutes.  Data were collected on four groups of students working on 
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the car rental problem.  The first two groups completed the task about halfway through 
the semester, and the other two groups completed the task at the end of the semester.  The 
interviews were videotaped and student work was collected.  
 
Data were analyzed using Lesh and Kelly’s (2000) multi-tiered approach to create 
accounts of the models created by each group of students. While our accounts of each 
group individually focus primarily on their final solution to the problem, we looked for 
themes across the problem solving sessions in order to identify points of commonality 
among the groups with regards topic areas, inscriptions, and quantitative reasoning.   
 
Results 
In the interest of space, we will focus our discussion here on just the first of our three 
research questions.  Our first question is “What mathematical topic areas do students 
draw upon to reason about such situations?”  Viewing each group’s final solution 
individually illustrates the variety of topic areas that students drew upon.  The students in 
Group 1 drew heavily on ideas from calculus to reason about the patterns they saw, 
considering them as sequences whose rates of change were decreasing.  The students in 
Group 2 drew on their knowledge of computer programming and created general 
algebraic expressions for the computations to be performed.  The students in Group 3 
focused on a (perceived as constant) weekly rate of cars gained or lost, and drew on ideas 
from psychology and business (considering customer’s needs and desires and working to 
meet them while maintaining a profit).  The student in Group 4 drew primarily upon ideas 
from linear algebra, using a matrix to model the system of linear equations and reason 
about the system’s behavior. 
 
However, looking across the problem-solving activity of all groups showed that Group 
1’s idea from calculus (namely the general idea that ‘if the change in the number of cars 
from one week to the next is decreasing, then the number of cars must converge’) was 
echoed by nearly every group, even though none of the other groups appealed to the 
argument in their final solution.  For example, early in his interview Matthew (Group 4) 
made a passing comment “Metro looks like it’s decreasing the amount it’s going down.  
Downtown is decreasing the amount it’s going up, and so is airport.  It seems like they’re 
going to converge somewhere maybe.”  Group 3 offered a similar explanation very late in 
their interview (after they had written their final solution and been pushed by the 
interviewer to try to extend and generalize their argument).  The only group that did not 
offer an argument of this nature was Group 2, who had focused their efforts on their 
computer simulation and never considered the difference in cars from one week to the 
next at a given location as a quantity of interest. 
 
In our talk, we will delve into the second and third research questions as well, using 
examples of student work to illustrate themes that emerged across groups.  We will 
illustrate the ways in which students’ inscriptions (especially their symbolic expressions) 
served to support their quantitative reasoning.  We will also argue that in students’ 
solutions, quantitative reasoning served as a basis for the aforementioned symbolic 
expressions students developed to aid computation and further symbolization.  Across 
groups, we show how the inter-relatedness of the quantities created a need for 
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computational efficiency as well as symbolism that (1) supports computational needs, (2) 
represents interrelatedness of quantities, and (3) aids in conceptualization of the system 
as a whole. 
 
Final Remarks 
In a way, this work serves to illustrate the ways in which students draw on their 
experiences and coordinate multiple topic areas as they engage in new mathematical 
problems.  Here, this highlights the need for students to expand their mathematical 
horizons with the additional computational and notational tools linear algebra has to 
offer.  Having conducted this analysis, we are now exploring ways in which this task can 
be leveraged to help students develop ideas about matrix multiplication as a tool to aid in 
computation and modeling of systemic level change.   
 
 

References 
 
Carlson, D. (1993). Teaching linear algebra: Must the fog always roll in? The College 

Mathematical Journal, 24(1), 29-40.  
Dorier, J. L., Robert, A., Robinet, J. & Rogalski, M. (2000). The obstacles of formalism 

in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 85- 
124). Dordrecht: Kluwer.  

Kaput, J. (1998). Transforming algebra from an engine of inequity to an engine of 
mathematical power by "algebrafying" the K-12 curriculum. In National Council 
of Teachers of Mathematics & Mathematical Sciences Education Board (Eds.), 
The nature and role of algebra in the K-14 curriculum: Proceedings of a National 
Symposium (pp. 25-26). Washington, DC: National Research Council, National 
Academy Press. 

Lesh, R. & Doerr, H.M (2003). Foundations of a models and modeling perspective on 
mathematics teaching, learning, and problem solving. In R. Lesh and H.M. Doerr 
(Eds.), Beyond constructivism: Models and modeling perspective on mathematics 
teaching, learning, and problem solving (pp. 3 – 33). Mahwah, NJ: Lawrence 
Erlbaum Associates.  

Lesh, R., & Kelly, A., (2000) Multitiered Teaching Experiments. In A. Kelly, R. Lesh 
(Eds.), Research Design in Mathematics and Science Education. (pp. 197-230). 
Lawrence Erlbaum Associates, Mahwah, New Jersey. 

Smith III, J., & Thompson, P. W. (2008). Quantitative reasoning and the development of 
algebraic reasoning. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), 
Algebra in the Early Grades (pp. 95-132). New York, NY: Lawrence Erlbaum 
Associates.  

 

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



 

Sandra Laursen, Marja-Liisa Hassi, and Anne-Barrie Hunter 

University of Colorado at Boulder 

 

 

Abstract

Inquiry-based learning (IBL) approaches engage college mathematics students in analyzing and 

solving problems and inventing and testing mathematical ideas for themselves.  But to 

effectively apply IBL teaching methods, instructors must make good decisions both in planning 

their syllabus, assignments, and assessment before the term begins, and in the moment, as they 

monitor classroom progress, manage interpersonal dynamics, and decide what to do when things 

do not go as planned.  Using interview data from 40 IBL instructors at four campuses, including 

graduate teaching assistants and faculty at a range of experience levels, we identify critical 

instructional decisions that can affect the success of IBL classes.  We describe why these 

decisions are more salient in IBL classrooms than in those using lecture-based methods, and we 

examine patterns in instructors’ ability to identify these issues for themselves and suggest 

appropriately nuanced solutions to common IBL classroom dilemmas. 

Keywords:  inquiry-based learning, teaching assistants, faculty, qualitative methods, instructional 

methods 

Introduction 

The term inquiry-based learning (IBL) is used to describe approaches to college 

mathematics that place student discovery of mathematical ideas at the center of the classroom.  

Rather than emphasizing rote memorization and computation skills, IBL methods seek to help 

students develop critical thought processes by exploring ill-defined problems, applying logic, 

making and analyzing arguments.  Moreover, by building students’ confidence in their abilities 

to generate and critique ideas and to solve problems independently, IBL methods help to foster 

students’ creativity, persistence and intellectual growth (e.g., Buch & Wolff, 2000).  Like 

"discovery learning" (Bruner, 1961), "problem-based learning" (Savin-Baden & Major, 2004), 

and other "inductive teaching" approaches (Prince & Felder, 2007), IBL invites students to work 

out ill-structured but meaningful challenges.  In mathematics, IBL approaches are often derived 

from the work of Texas mathematician R. L. Moore, but while Moore emphasized individual 

learning, modern implementations of IBL in mathematics draw importantly on social learning 

perspectives (e.g., Lave & Wenger, 1991; Vygotsky, 1978). 

Our research group has studied IBL classrooms at four university “IBL Centers” funded 

by a private foundation.  Since 2004, a cadre of faculty on each campus has been engaged in 

developing inquiry-based undergraduate mathematics courses for upper- and lower-division 

mathematics majors, science and engineering students taking math as a cognate, and pre-service 

teachers.  These courses engage students in creating, exploring and communicating mathematical 

ideas, guided by faculty and critiqued by peers. Our large, mixed-methods study of these courses 

includes two years’ of survey, interview, and test data from over 100 discrete class sections, and 
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academic records from over 6000 students.  Much of our study focuses on student outcomes of 

IBL courses; here we highlight instructors’ experiences in teaching IBL mathematics courses. 

Methods 

Interviews were conducted with 40 IBL instructors at four campuses,18 graduate student 

teaching assistants (TAs) and 22 faculty.  The general term ‘instructors’ recognizes the range of 

classroom roles represented; some graduate students were lead instructors, and others, though 

nominally TAs, had more IBL teaching experience than did their faculty member.  Faculty 

included pre-tenure, tenured, non-tenure-track, and visiting (postdoctoral) faculty. The semi-

structured interview protocol established instructors’ career status and IBL involvement; 

explored instructors’ teaching style, beliefs, and specific classroom practices; and asked for their 

observations of student learning gains (or lack of gain) and personal or professional benefits and 

costs to themselves. Most of the interviews were conducted in person; a few were done by 

phone. Interviews of 45-70 minutes were digitally recorded and transcribed verbatim.  These 

data are complemented by a set of individual and focus group interviews with 68 IBL students. 

The text data were coded using a mix of inductive and deductive codes.  A total of 164 

codes were generated under six main domains (Spradley, 1980). Instructors’ observations of 

student learning gains and learning processes were coded using a scheme previously developed 

for coding student data, so that these two data sets could be compared.  Instructors’ reports about 

their own teaching practices, context, and educational beliefs, and about the outcomes of IBL 

teaching for themselves and their departments, were coded and subjected to taxonomic analysis 

to develop sub-categories and identify analytical themes. Here we focus on the broad category of 

codes labeled as “teaching processes”; this category included 14 subcategories and constituted 

the bulk of the coded data, over 900 coded passages or individual instructor observations. 

Findings 

In interviews, instructors often told us in copious detail about specific practices, such as 

how they graded homework assignments, how they assigned class participation points, or how 

they selected students to present at the board. After puzzling for a while over the evident 

importance of these details to instructors, we came to recognize that, collectively, these reports 

delimited a shared set of teaching concerns. Each instructor described an idiosyncratic practice 

developed for a particular course, student audience, and personal style, and seldom couched 

these in philosophical terms; but as analysts, we could abstract from these narratives the teaching 

dilemmas that every instructor had to resolve.  The general issues do not differ from those 

encountered by more traditional instructors—choices about curriculum, classroom atmosphere 

and management, and student assessment.  But for IBL instructors, these become “critical 

instructional decisions” that are especially salient for several reasons:  

• Most decisions become more explicit:  Traditional teaching may be based on received 

wisdom held by both students and instructors, often unquestioned, about how things are or 

should be.  Instructors may not have faced these choices explicitly in prior teaching. 

• Decision-making becomes more dynamic:  With class activities and pacing often in students’ 

hands, IBL instructors must respond in the moment rather than follow prepared notes.  This 

requires alertness to the classroom atmosphere and attention to student responses. 

• Some aspects of class are more sensitive to teaching decisions: Because IBL classrooms rely 

more on collaborative learning, decisions that affect student participation and the classroom 
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atmosphere may have greater consequences for the success of a course.  Choices about these 

factors intersect extensively with issues of individual accountability and work load.  With 

greater responsibility for everyday work, students’ need for available and appropriate help 

can become more acute, affecting the use and tenor of office hours. 

• Some issues require that new solutions be found:  As learning goals shift away from content 

coverage and toward skills such as constructing and communicating mathematical 

arguments, past solutions (e.g., assessing learning by timed, individual tests) may no longer 

measure what instructors value or may not mesh well with students’ experience of the class 

as a whole. 

We will present a research-based framework, drawn from the interview data, that 

organizes the critical decisions that IBL instructors must make in designing and running their 

courses, including setting the tone and expectations for students; managing interpersonal 

dynamics; balancing student accountability and participation; setting curriculum; and evaluating 

student learning.  We will use examples from student and instructor interviews to show how and 

why instructors’ decisions on these points become critical for the effectiveness of an IBL class.  

In some cases, the decisions are highly interdependent. For example, practices intended to 

increase student accountability for the homework that is the basis of the next day’s class work 

can make it difficult to establish a positive and collaborative classroom atmosphere, but too little 

attention to accountability can lead to student over-dependence on others to do the work and 

thereby reduce the level of class participation.  The instructor is thus easily caught between a 

rock and a hard place—the straits noted in the title. 

The interview data also indicate some group differences in instructors’ decision-making.  

For example, local “styles” of IBL teaching on each campus affected the choices that instructors 

made.  Sometimes these shared styles meant that colleagues were good sources of teaching 

advice and wisdom, but sometimes they also constrained the solution space, restricting the range 

of teaching choices that were seen as possible or desirable.  Instructors also varied in their ability 

to identify critical classroom issues for themselves. TAs in particular were often able to identify 

subtleties in how classroom decisions affected student behavior.  For example, in explaining 

“what worked” or did not work in their classroom, TAs were more likely to offer explanations 

that hinged on the nature of instructional decisions or the quality of their implementation, while 

faculty more often gave explanations in terms of student characteristics, such as work ethic, 

ability and preparation.  TAs’ distinctive perspective appeared to arise from multiple sources: 

their dual classroom roles as teachers and observers; their nearness to the student experience—

both as recent undergraduates themselves and from direct work with students in office hours or 

help sessions; and their lower identity investment in the perceived success of the course.  

Previous studies have taken a close look at particular instructors’ practices in one or two 

classrooms (e.g. Weber, 2004; Rasmussen & Marrongelle, 2006).  Here, by examining the 

practices of a large sample of teachers and across a wide range of IBL styles, we establish that 

certain teaching issues are quite commonly confronted by IBL instructors.  Knowing what these 

issues are, and how they appear to mathematics instructors, we have the chance to better 

understand how particular instructional choices may affect student outcomes in positive or 

negative ways.  The findings thus contribute to the small existing body of empirical research on 

the “unexamined practice” of college mathematics teaching (Speer, Smith & Horvath, 2010).  

Lastly, our findings have significant practical implications for designing professional 

development to increase the uptake and improve the implementation of IBL methods across the 
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U.S.  We seek to develop a framework that can help IBL instructors consider and analyze their 

instructional decisions, and predict (or at least attend to) the classroom consequences of their 

choices; and that can provide them with a common language to recognize shared problems and 

swap solutions despite differences in student audience, course content, and institutional setting.  
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Introduction 
Generally speaking, Australian Universities impose or very strongly encourage the use of criterion 
referenced or standards based assessment in the courses that they offer. At the authors’ home 
institution this is no different with the University’s Manual of Policies and Procedures stating that the 
University “has adopted a criterion-referenced approach to assessment where assessment is based on 
pre-determined and clearly articulated criteria and associated standards of knowledge, skills, 
competencies and/or capabilities.” In a sense, this directive has been largely ignored in the context of 
many quantitative courses such as those in mathematics and science by offering justifications that in 
quantitative studies assessment responses are either right or they are wrong and that is sufficient for a 
criterion. In this study we report on the successful implementation of elements of criterion referenced 
assessment into a Differential Equations course that goes beyond simple “right-wrong” criteria while 
maintaining the mathematical integrity of the assessment program. Furthermore, we present findings 
based on quantitative and qualitative feedback from students regarding their perceptions of criterion 
referencing and how it is used in guiding their learning throughout the course. 
 
It is important to place this study in context by comparing the assessment experiment with the 
methods previously used to assess students in the course. Over approximately the past 10 years, the 
course has been taught by a number of people, however the assessment strategy has essentially been 
to employ 1-2 assignments (problem solving tasks with a 2-4 week completion timeframe) and a mid-
semester and final examination. These tasks generally contribute 30-40% (assignment) and 60-70% 
(examination) of the final grade for the course, respectively. Grading of all tasks has been quite 
traditional in the sense that the academic responsible for assessment writes their own set of “correct” 
solutions and assigns points or marks throughout the solutions corresponding with reaching certain 
points in the solution process. 
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In the assessment experiment reported on in this paper, we have attempted to maintain the previously 
employed assessment program as much as possible. In particular, we maintained progressive, non-
examination assessment of 40% and used mid-semester and final examination contributing 60% of 
the students’ final grades. However, we implemented an explicit criterion referenced method of 
grading students in the assignment tasks completed during semester. This involved presenting 
students with a set of criteria and standard definitions in addition to the actual problems to be solved. 
Students were provided with details of exactly how responses to the mathematical problems would be 
graded and how translation between the mathematics and the standards and criteria would be carried 
out. 
 
Our goals in conducting this experiment fall into two main areas: to gauge students’ perceptions 
regarding criterion referenced assessment and its usefulness, and to a lesser extent, effecting culture 
change among mathematics academics. With regard to students’ perceptions, we investigated how 
students viewed the understandability and the usefulness of criterion referencing and how they 
employed the additional information provided to them via the criteria and standards definitions in 
directing their learning and assessment responses. Implicitly, we believe that such an investigation 
and its results can then be used to effect culture change among mathematics teachers at universities 
by changing the way they view criterion referenced assessment, taking CRA from a directive 
imposed by administrators to a useful tool for mathematics learning. 
 
Introductory literature review and placement of this research 
Niss (1998, in Pegg 2003, p.228) notes that mathematics assessment identifies and appraises the 
knowledge, insight, understanding, skill and performance of a student. Pegg however points out that 
this is not in fact the reality of assessment in mathematics and that rather, it is most often concerned 
with reproduction of facts and computational skills or algorithms (Pegg 2003). It is our contention 
that this is how previous years’ assessment programs for the course under investigation have been 
presented to students. In the assessment experiment discussed in this report, we attempt to explicitly 
link the subtasks of the assessment activities with the learning outcomes of the course, which include 
such concepts as knowledge, insight and understanding in addition to skills. In this way we believe 
that our assessment becomes more of an educational tool for students than it has been in previous 
versions of the course, and that it allows for a more “constructive alignment” (in the sense of Biggs, 
1996) of the content, pedagogy and assessment. 
 
Criterion referenced assessment involves determining the extent to which a learner achieves certain 
predetermined goals or criteria, importantly, without reference to the performance of others (Brown, 
1988; Harvey, 2004; TEDI, 2006). The implementation of CRA involves the design or statement of a 
set of learning outcomes for a course, design of a program of assessment to obtain information about 
a student’s performance in relation to the learning outcomes, and the presentation of a criteria set and 
definition of standards which serves to both inform students how their performance will be judged 
and to provide directions for assessors. 
 
Pegg (2003) notes that while the movement towards assessment based on outcomes and standards 
(rather than individual comparison) did initially have some basis in research regarding student 
learning, the links remain tenuous. As such, there is debate among teachers and academics alike as to 
whether the claims regarding the benefits of criterion referenced assessment are supported by strong 
research. Through research such as that presented in this study, we attempt to provide a research base 
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that advocates the benefits and warns of the pitfalls of criterion referenced assessment in the 
undergraduate mathematics classroom. 
 
Theoretical perspective/conceptual framework 
In this study we carry out descriptive research related to questions around student perceptions and 
criterion referenced assessment. This descriptive research involves statistical and textual 
analysis/synthesis of data collected from a student population undertaking a course in differential 
equations in an attempt to understand student perceptions and provide guidance for academic staff in 
undertaking more useful assessment in mathematics courses. 
 
Methods 
We have used two primary data sources, one quantitative and one qualitative, in an attempt to address 
our research goals regarding student perceptions of criterion referenced assessment. The first source 
was a survey allowing free-text responses on two questions of interest, while the second was a 10-
item survey using a 5 level Likert scale. Both surveys were conducted at the end of the course of 
study, following the provision of feedback to students on the criterion referenced items and also 
following the post mid-semester exam feedback sessions. All 56 students in the cohort were offered 
the chance to respond, with a 30% response rate achieved. Another source of data that will be 
commented upon, although to a lesser extent, are the assessment responses themselves. Numerical 
and statistical analyses of the Likert-survey were conducted, while textual analysis and synthesis was 
carried out on the free-text responses. 
 
Results 
Quantitative data collected via the second of the student surveys indicates that while students found 
assessment criteria easy to understand and useful in informing them as to how they would be graded, 
it did not alter the way the actually approached the assessment activity. Qualitative feedback from 
almost 100% of respondents indicated that in general the criteria provided were not used to determine 
how a student would approach individual questions or the assessment tasks as a whole. Interestingly, 
a similar percentage of students stated that they found CRA beneficial as it made the process of 
allocating scores by graders much clearer. A small percentage of students indicated that they did refer 
to the criteria sheets after the tasks were graded in order to get a different, higher level representation 
of where they had made errors in their responses. 
 
Implications/Applications 
This research study has opened up new questions for future research. For example, we are now 
considering the impact on graders/academics and the usefulness they perceive in employing criterion 
referenced assessment.  
 
With regard to application in the classroom in the future, both the qualitative and quantitative data 
indicate that students and graders alike, need to be explicitly informed exactly why they are provided 
with criteria and how they can be used to assist learning. In particular, guiding them in their response 
attempts (showing them what the grader will deem to be “important”) and also aiding them in 
understanding the feedback they receive following the grading of their work. Furthermore, the actual 
construction of the criteria and standards is by no means straight forward – but it is important, 
because these are exactly the types of judgements we are normally making in an implicit, content-
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centred manner.  Academic staff need to be closely guided in the development of these elements of 
any criterion referenced assessment strategy. 
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Knowledge at the mathematical horizon is a category of teacher’s knowledge included by Hill, 
Ball and Schilling (2008) in their refinement of Shulman’s classic categorization of teacher’s 
Subject Matter Knowledge (SMK) and Pedagogical Content Knowledge (PCK). While Hill et al. 
(2008) develop several subcategories of SMK and PCK, they omit elaboration on KMH – 
Knowledge at the Mathematical Horizon. Our interest, in this paper, is to explore the idea of 
teachers’ knowledge at the mathematical horizon, what is there, how it may be used, and to what 
benefit. We develop a notion of KMH, which is influenced by educational and philosophical 
perspectives, and explore examples that illustrate how KMH in conjunction with knowledge 
acquired in undergraduate studies at university or college – that is, Advanced Mathematical 
Knowledge, AMK (Zazkis and Leikin, in press) – may be used to advantage in teaching and in 
teacher education.  
 
At the horizon of teachers’ knowledge 
Ball, Thames, and Phelps (2008) describe horizon knowledge as “an awareness of how 
mathematical topics are related over the span of mathematics included in the curriculum (p. 403), 
while Ball and Bass (2009) explain in more detail the notion of mathematical horizon: 

We define horizon knowledge as an awareness – more as an experienced and appreciative 
tourist than as a tour guide – of the large mathematical landscape in which the present 
experience and instruction is situated. It engages those aspects of the mathematics that, 
while perhaps not contained in the curriculum, are nonetheless useful to pupils’ present 
learning, that illuminate and confer a comprehensible sense of the larger significance of 
what may be only partially revealed in the mathematics of the moment (p. 6). 

They further describe their idea of horizon knowledge as consisting of four elements (ibid): 
1) A sense of the mathematical environment surrounding the current “location” in 

instruction. 
2) Major disciplinary ideas and structures 
3) Key mathematical practices 
4) Core mathematical values and sensibilities 

Their attention, however, seems to be focused on teachers’ knowledge of students’ mathematical 
horizon. For instance, they remark, “that teaching can be more skillful when teachers have 
mathematical perspective on what lies in all directions, behind as well as ahead, for their pupils, 
that can serve to orient their navigation of the territory” (p.11).  
 Horizon knowledge also has philosophical roots in Husserl’s notions of ‘inner’ and 
‘outer’ horizon. Briefly, Husserl’s notion of inner horizon corresponds to aspects of an object 
that are not at the focus of attention but that are also intended, while the outer horizon of an 
object includes features which are not in themselves aspects of the object, but which are 
connected to the world in which the object exists (Follesdal, 1998, 2003). Connecting this notion 
to mathematics, and to Ball and Bass’s (2009) description, we interpret the inner horizon of a 
mathematical object as the features of the object which are not at the focus of attention, but 
which surround its current “location”, and this includes major disciplinary ideas and structures. 
The outer horizon, that which is not part of the object but is connected to the ‘world’, includes 
key mathematical practices, values, and sensibilities.  

In this paper we extend the idea of knowledge at the mathematical horizon by focusing 
on teachers’ ‘inner’ horizon knowledge and exemplifying the value of knowledge acquired 
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during teachers’ undergraduate studies in mathematics (their AMK) as it informs their 
understanding of the mathematical environment and major disciplinary ideas and structures. 
 
Horizon and AMK 
Teachers’ horizon knowledge is, for us, deeply connected to their knowledge of advanced 
(university/college level) mathematics – that is, to their AMK (Zazkis and Leikin, in press). We 
consider application of AMK in a teaching situation as an instantiation of KMH. Our view is 
influenced by the metaphor of horizon as a place “where the land meets the sky” and we interpret 
this as the place where advanced mathematical knowledge of a teacher (the sky) appears to meet 
mathematical knowledge reflected in school mathematical content (the land). In what follows, 
we offer two examples of teachers’ KMH. 

 
Example 1 
Miss Scarlett’s Grade 12 students had just finished a unit on inverse functions. The unit test had 
been poorly done; Miss Scarlett observed several instances of confusion in notation and this was 
leading to miscalculations among other errors. The majority of her students were writing 1/f(x) 
where they meant f -1(x), and she suspected that students were unclear as to when the reciprocal 
of a function was, or was not, also its inverse. 

Miss Scarlett decided to take time clarifying this confusion when taking up the test. She 
illustrated with a handful of examples instances when the reciprocal and the inverse are the same 
function and when they are not. She also recalled students’ work with reciprocal and inverse of 
numbers, noting that the reciprocal of a number depends on the operation of multiplication, but 
that the inverse of a number can refer to its additive inverse or its multiplicative inverse (the 
latter being equivalent to the reciprocal).  

The concept of inverse is one that is prevalent in many mathematics courses, however it 
was during a university course in group theory that Miss Scarlett acquired an understanding of 
the inverse of a group element with respect to the particular operation of that group. For 
example, the set of integers with a corresponding operation of addition has a group structure – it 
includes an identity element, is closed with respect to addition, and necessarily contains inverses 
but not reciprocals. Miss Scarlett drew on this understanding to help her address her students’ 
confusion. A similar instance of confusion and resolution was reported in (Zazkis and Zazkis, 
2011) where a teacher used her understanding of group theory to help her student interpret the 
meaning of an exponent of negative one. 
 
Example 2 
During a lesson on applications of derivatives, Mrs. Peacock’s pre-calculus students were given 
a set of ‘real-world’ problem in which they were to take derivatives of various formulae. The 
lesson was designed to reinforce calculation techniques through application to standard word 
problems. The students were unfamiliar with limits, as it was not part of the course curriculum. 

As the class worked on their exercises, one student noticed when working with the sphere 
and circle, that the derivative of the volume formula yielded the formula for surface area, and the 
derivative of the area formula yielded the formula for circumference, respectively. That is, 

 and  . The student asked why this relationship 
held for the sphere and the circle, and not in other cases such as with the cube and square. 

The connection between surface area and volume is one that Mrs. Peacock made during a 
university calculus course. She recalled a geometric representation for the derivative of a circle’s 
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area, and was aware of an analogous argument for the derivative of a sphere’s volume. Mrs. 
Peacock understood the significance of the diagram: 
 

and knew that the derivative of the volume (for e.g.) could then be defined 
as: 

 
 
 

She further knew that it was possible to similarly represent and define the derivative of the 
volume of a cube. She recalled the figure: 

 
where w is equal to half the length of one side. From this diagram, she knew 
that the derivative of the volume of the cube could be written as: 
 

 
 

 
While it was beyond the scope of the lesson to introduce the definition and calculation of 

limits in this class, Mrs. Peacock gave an intuitive and geometric explanation for why this 
relationship holds. It was her knowledge of mathematics acquired in her university studies that 
heightened her awareness of the important observations her student had made and of the 
potential connections that might result.  
 
Discussion 
The two examples presented above illustrate how teachers’ knowledge of major disciplinary 
ideas and structures beyond what was addressed in the secondary school curriculum (e.g. group 
structures and inverses; derivatives and geometric interpretations of limits) were useful in a 
teaching situation. The knowledge they acquired in university – their AMK – was not at the 
focus of their attention, however they were able to recognize its applicability and connection to 
the mathematics in question, and to access it easily and flexibly in order to address students’ 
questions. In particular, Miss Scarlet and Mrs. Peacock were able to apply their AMK in a way 
that resonated with their students, and that showed their “sense of the mathematical environment 
surrounding the current ‘location’ in instruction” (Ball and Bass, 2009, p.6). 
 Although related to the work of Ball and Bass (2009), our notion of knowledge at the 
mathematical horizon differs from what they describe as “a kind of elementary perspective on 
advanced knowledge” (2009, p. 10). Rather, we see it as an advanced perspective on elementary 
knowledge. That is, as advanced mathematical knowledge (AMK) applied to ideas in the 
elementary or secondary (or undergraduate) curriculum. The two examples focus on what we 
interpret as the “inner” horizon of function or derivative – aspects of these mathematical objects 
that are beyond the scope of the student, but that are fundamental to the object and within the 
grasp of the teacher. We seek to further explore teachers’ and prospective teachers’ KMH with a 
particular focus on what could be included in undergraduate mathematics education and teacher 
preparation in order to encourage a flexible use of KMH. 
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The purpose of this research was to gain insights into how calculus students might come to 
understand the formal definitions of sequence, series, and pointwise convergence. In this paper 
we discuss how one pair of students constructed a formal !-N definition of series convergence 
following their prior reinvention of the formal definition of convergence for sequences. Their 
prior reinvention experience with sequences supported them to construct a series convergence 
definition and unpack its meaning. We then detail how their reinvention of a formal definition of 
series convergence aided them in the reinvention of pointwise convergence in the context of 
Taylor series. Focusing on particular x-values and describing the details of series convergence 
on vertical number lines helped students to transition to a definition of pointwise convergence. 
We claim that the instructional guidance provided to the students during the teaching experiment 
successfully supported them in meaningful reinvention of these definitions. 
 
Keywords: Reinvention of Definitions, Series Convergence, Pointwise Convergence, Taylor 
Series 
 
Introduction and Research Questions 

How students come to reason coherently about the formal definition of series and pointwise 
convergence is a topic that has not be investigated in great detail. Research into how students 
develop an understanding of formal limit definitions has been largely restricted to either the limit 
of a function (Cottrill et al., 1996; Swinyard, in press) or the limit of a sequence (Roh, 2010). 
The general consensus among the few studies in this area is that calculus students have great 
difficulty reasoning coherently about formal definitions of limit (Bezuidenhout, 2001; Cornu, 
1991; Tall, 1992; Williams, 1991). The majority of existing research literature on students’ 
understanding of sequences and series concentrates on informal notions of convergence 
(Przenioslo, 2004) or the influence of visual reasoning or beliefs (Alcock & Simpson, 2004, 
2005). Literature on pointwise convergence is typically in the context of Taylor series addressing 
student understanding of various convergence tests (Kung & Speer, 2010), the categorization of 
various conceptual images of convergence (Martin, 2009), the influence of visual images on 
student learning (Kidron & Zehavi, 2002), and the effects of metaphorical reasoning (Martin & 
Oehrtman, 2010). We recruited a pair of students from a second-semester calculus course 
incorporating approximation and error analysis as a coherent approach to developing the 
concepts in calculus defined in terms of limits (Oehrtman, 2008). The goal that they reinvent the 
formal definitions of sequence, series, and pointwise convergence. For this paper we posed: 

1. What are the challenges that students encountered during guided reinvention of the 
definitions for series and pointwise convergence? 
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2. What aspects of the students’ definition of sequence convergence supported their 
reinvention of series convergence? What aspects of the students’ definition of series 
convergence supported their reinvention of the definition of pointwise convergence? 

 
Theoretical Perspective and Methods 

To investigate our research questions, we adopted a developmental research design, 
described by Gravemeijer (1998) “to design instructional activities that (a) link up with the 
informal situated knowledge of the students, and (b) enable them to develop more sophisticated, 
abstract, formal knowledge, while (c) complying with the basic principle of intellectual 
autonomy” (p.279). Task design was supported by the guided reinvention heuristic, rooted in the 
theory of Realistic Mathematics Education (Freudenthal, 1973). Guided reinvention is described 
by Gravemeijer, K., Cobb, P., Bowers, J., and Whitenack, J. (2000) as “a process by which 
students formalize their informal understandings and intuitions” (p.237).  

The authors conducted a six-day teaching experiment with two students at a large, southwest, 
urban university. The full teaching experiment was comprised of six, 90-120 minute sessions 
with a pair of students who were currently taking a Calculus course whose topics included 
sequences, series, and Taylor series. The central objective of the teaching experiment was for the 
students to generate rigorous definitions of sequence convergence, series convergence, and 
pointwise convergence. The research reported here focuses on the evolution of the two students’ 
definitions of series and pointwise convergence over the course of the last three sessions of the 
teaching experiment following the students’ reinvention of a formal definition of sequence 
convergence. The design of the instructional activities was inspired by the proofs and refutations 
design heuristic adapted by Larsen and Zandieh (2007) based on Lakatos’ (1976) framework for 
historical mathematical discovery.  

The teaching experiment activities on series began with students producing and subsequently 
unpacking details of convergent series graphically. We then asked the students to generate a 
definition by completing the statement, “A series converges when…” To address pointwise 
convergence, we asked the students to produce a graph of ex with several approximating Taylor 
polynomials and discuss several details of convergence on the graph. The students where then 
prompted to talk about what Taylor series were, and finally instructed to produce a definition for 
Taylor series convergence. The majority of each session consisted of students’ iterative 
refinement of a definition and the unpacking of their intended meanings for individual elements 
within each definition.  
 
Results 

The reinvention of series convergence began at the end of day 3 and continued on into the 4th 
day. The students initially drew a graph of an alternating series, and after considering the 
harmonic series, they remembered that the series was divergent. When considering other 
formulas they were unable to produce another graph besides alternating series graphs. However, 
when prompted to not focus on finding a formula, the students compared these graphs to 
sequences and expressed that series graphs “are harder to throw out there.” After they stopped  
focusing a formula they were able to produce a series graph increasing toward 7 and partial sums 
eventually became constant. Afterwards, these graphs were available for the students to refer to 
when defining series convergence. The students’ initial definition of series convergence to 7 was 
simply that a series converges when “the an’s are going to 0 and sn’s are going to 7.”  On day 4, 
after briefly looking at their graphs of series from the previous day, the students almost 
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immediately started to perceive “graphically” series as “very similar to sequences because you 
could still set the error bound within certain- whatever range you want- any error bound, and 
then determine the point N where all the partial sums are within the error bound.” Likewise, the 
students stated the meaning of series convergence in terms of terminologies and notations from 
the approximation frame. They also reinterpreted each element (N, error bounds, quantifiers) 
from their prior definition of sequence convergence as elements in a definition for series 
convergence. Furthermore, they recognized the need to replace an with the partial sum sn. 
However, the students did not just change an to sn, they considered each dot in the series graph as 
representative of partial sums, “You’re adding a1 to a2 to a3 to get each one of these dots on the 
graph of a series.” After a few revisions, they constructed a definition for series convergence as 
follows: "A series converges to U when !" > 0 , there exists some N s.t. !n " N  U ! Sn " # ."  

In initially discussing Taylor series, the students employed informal reasoning as they 
described various graphical attributes of Taylor polynomials approaching ex. While giving these 
informal descriptions the students were not attending to the convergence of Taylor series for 
particular values of the independent variable. When they were prompted to discus error, 
however, one of the students suggested considering a specific point, and they subsequently 
highlighted errors as vertical distances between the values of ex and a Taylor polynomial at a 
particular x-value. Even though their focus had moved to a particular x-value, they continued to 
employ informal reasoning that entailed Taylor polynomials and generating functions as being 
exactly the same once the graphs were “on” each other. They reasoned that this “on-ness” would 
occur for a Taylor polynomial of relatively low degree for x-values close to the center while a 
larger degree was needed for x-values away from the center. Only once they had used a Taylor 
series equation for ex to find an explicit series for e did they realize that a finite number of terms 
merely approximated ex because the remaining terms not used in the approximation “had value.” 

Once the students recognized that focusing on a single x-value produced a series, they 
attempted to leverage their definition of series convergence to define Taylor series convergence. 
During this process they demonstrated considerable confusion between the independent variable, 
x, and the index, n. One of the students questioned the existence of an N for which all subsequent 
Taylor polynomial approximations would be within a given error bound of ex, but in her 
explanation N appeared to correspond to some lower bound of x-values rather than n-values. 
After being instructed to explain their definition of series convergence using only a vertical 
number line, the students recognized the role of N on a vertical number line. This shift to 
viewing series in a vertical orientation eventually freed them to see the graphs of Taylor series as 
comprised of convergent series at each x-value where N is dependent upon x as well as !. 
Subsequently they expressed a need to “expand” their series definition to capture all x-values. In 
their first attempt they simply added !x  at the end of their definition, but they later expressed 
discomfort with finding one N such that all subsequent Taylor polynomials would be within ! of 
ex for all x. The students then quickly latched onto a suggestion to move !x  to the beginning of 
their definition, acknowledging how this movement expressed the dependence of N upon x. Their 
final definition of pointwise convergence in the context of a Taylor series with an infinite 
interval of convergence was as follows: “A Taylor series converges to  when ,  
there exists some N such that  .” 

Even though this definition for Taylor series convergence captures much the formal meaning 
of pointwise convergence, one student commented that the consecutive universal quantifiers felt 
“goofy.” Even so, they continued to view it as best capturing Taylor series convergence. 
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Conclusion and Discussion 
It is remarkable that the students reinvented and unpacked the formal definition of series and 

pointwise convergence within such a short time. The students faced challenges that ranged from 
seeing graphical attributes of series and Taylor series to the ordering of quantifiers. We claim 
that the instructional guidance provided to the students during the teaching experiment 
successfully supported them engaging these challenges and their subsequent reinvention of these 
definitions.  First of all, the instructors’ asking students to produce graphs of series and Taylor 
series convergence gave students a reference point for which they could refer to during the 
construction of their definitions. Second, the prior activity of defining sequence convergence 
became a means for supporting the students’ definition of series convergence as they recognized 
similarities between sequence and series convergence in the context of their graphs and their 
definitions. Similarly, their prior activity of defining sequence and series convergence supported 
students’ definition of pointwise convergence. Finally, their emerging approximation scheme 
helped the students to meaningfully recognize similarities between definitions and interpret each 
component within a definition. The approximation terminology that they had learned from class 
allowed them to meaningfully interpret the role of approximations, error, and error bounds in and 
across definitions.  
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We report on an investigation of the quality of instructional materials available to students in 
community colleges as part of a larger research study that seeks to characterize mathematics 
instruction in community college with courses that prepare students to take a calculus sequence. 
One of such courses is College Algebra. 
The rising costs of higher education have made the community college a natural, and in many 
cases, the only, option for completing postsecondary studies (Dowd et al., 2006). This makes 
analysis of the resources used in mathematics instruction timely. We focus on College Algebra, 
because the number of students taking this class is large, the cost of teaching the course is 
relatively low, and many programs have College Algebra as a prerequisite to other mathematics 
courses and to courses outside of mathematics (Gordon, 2008; Katz, 2007, Lutzer, Rodi, 
Kirkman, & Maxwell, 2007). Also, the influence of introductory courses such as College 
Algebra is significant to a student’s life-long attitude to mathematics (Barker, Bressoud, Ganter, 
Haver, & Pollatsek, 2004).  
Textbooks are an important resource for students and instructors in community colleges. We 
focus on textbooks because they portray information that is presumed to be relevant for learning 
about the subject matter (Herbel-Eisenmann, 2007; Howson, 1995; Love & Pimm, 1996) and 
because they are a source of examples and exercises for instruction; as such, however, they 
afford probabilistic rather than deterministic opportunities to learn mathematics (Mesa, 2004; 
Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002). Thus what we infer are possibilities rather 
than definitive influences on teaching and learning.  
We focus on the examples within the textbook for three reasons. First, they are usually intended 
to be representative of the work that students need to do–they correspond to those portions of the 
textbook “that demonstrate the use of specific techniques” (Watson & Mason, 2005, p. 3)—and 
as such, they are most likely to contain explicit information that will help students in solving 
similar problems. Second, instructors use examples in the textbook as part of their lectures, some 
times changing them slightly, so that students have later access to more than one illustration of 
how to solve a given problem. Third, instructors indicate that students, rather than reading the 
exposition, rely primarily on examples in order to work out homework problems (Mesa & 
Griffiths, 2010). Thus, if examples are to be used by students as models of thinking through 
problems, we ask, what the cognitive demands of the examples are, to what extent can they assist 
students in learning strategies for controlling the solutions to mathematical problems, what are 
the types of answer students are expected to generate, and what are the connections made among 
different representations. This study explores what textbooks offer and what they omit. We 
believe that by understanding the characteristics of textbooks, instructors can gain a clearer 
perspective on how this resource supports their practice. 
Methods  
We focus on seven College Algebra textbooks used by at least twelve large community colleges 
used in a Midwester state. We concentrated on three topics--transformation of graphs, 
exponential functions, and logarithmic functions--because they are both foundational for further 
study of calculus and emerge as key in solving many mathematical and “real world” 
applications. All text identified in the corresponding sections of each textbook as examples was 
analyzed using four frameworks. Cognitive Demand captures the level of complexity of tasks 
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using four categories, Memorization, Procedures Without Connections, Procedures With 
Connections, and Doing Mathematics (Stein, Smith, Henningsen, & Silver, 2000). The second 
framework, Controlling the Work, examines explicitness of solutions, and focused on only four 
aspects: Further Elaboration, Correctness, Suggestion to Check, and Plausibility or Interpretation 
(Mesa, 2010). The third framework is Types of Representation and we sought to determine how 
frequently different representations (symbols, tables, graphs, numbers, and verbal) are given in 
statements of the examples and in their solutions. The last framework we applied is Types of 
Response. We sought to characterize the type of answer expected: Only Answer, Answer and 
Mathematical Sentence, Answer and Graph, Explanation or Justification, and Making a Choice 
(Charalambous, Delaney, Hsu, & Mesa, 2010). These analyses were chosen, because as a group 
they speak about the complexity of mathematical activity that is offered to students in the 
examples. The inter-rater reliability between two coders ranged from 74% to 96% across 
analyses. 
Results 
 

1. Cognitive Demand (N=348) 
Memorization 0 (0%) 
Procedures Without Connections 312 (90%) 
Procedures With Connections 34 (10%) 
Doing Mathematics 2 (1%)  

 
2. Controlling the Work (N=348) 
Further Elaboration 33 (9%) 
Correctness 32 (9%) 
Suggestion to Check 8 (2%) 
Plausibility or Interpretation 0 (0%)  

 
3. Types of Response (N=348) 
Only Answer 176 (51%) 
Answer and Mathematical 
Sentence 53 (15%) 
Answer and Graph 102 (29%) 
Explanation or Justification 21 (6%) 
Make a Choice 6 (2%)  

 
4. Types of Representation (N=348) 
 In the Statement In the Solution 
Symbols 254 (73%) 145 (42%) 
Tables 17 (5%) 42 (12%) 
Graphs 36 (10%) 130 (37%) 
Numbers 107 (31%) 248 (71%) 
Verbal 68 (20%) 31 (9%)  

Figure 1. Results from the four analyses with the seven textbooks. 
We found no memorization examples in these seven college algebra textbooks. However, nearly 
90% of the examples were coded as procedures without connections and very few examples that 
would be categorized as more demanding. This trend was observed in all seven textbooks, with 
the percentage of examples requiring procedures without connections ranging from 75% to 
100%. Only 2 examples were open enough to be coded as doing mathematics, and these 
appeared in one textbook. 
Across textbooks, less than 10% of the examples modeled the four strategies that allow the 
solver to control their work. There were differences at the textbook level, with one textbook 
including seven Further Elaboration examples, but no Correctness examples and two textbooks 
accounting for seven of the eight Suggestion to Check examples in the corpus. Thus, in spite of 
these examples using real world applications, very little of that content was used to control the 
correctness of the solution.  
We also found that 46% of the examples expected an answer only response. Examples asking for 
explanation or justification and asking for making a choice were relatively rare (from 0% to 15% 
and 0% to 6%, respectively) across all seven textbooks. All the textbooks had more Answer and 
Graph responses than Answer and Mathematical Sentence response. 
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Finally, symbols were most frequently used in the example statements, and numbers are most 
frequently requested in the solution. The second most dominant form of representation was 
numbers in the statement and the symbols in the solution. Tables, graphs, and verbal 
representations appeared less frequently in both the statement and the solution. With a couple of 
exceptions, the use of symbols and numbers in the statement and solution was common. 
Discussion 
In many cases, examples applied the concepts or formulas explained in the textbook. Although 
we found several examples that had features of reform-oriented tasks (e.g., ‘real-world’ contexts 
or use of technology), not all of those problems had high-cognitive demand tasks. While 
applying procedures without connections is an important activity, concentrating only on these 
less demanding examples can restrict students’ perception on what mathematics is (Stein et al., 
2000). One possible reason for these results might be that the reform movement for two-year 
colleges (Blair, 2006) has not yet influenced the textbooks, in spite of this document being 
available for authors. Another possibility is that instructors and colleges might prefer to adopt 
textbooks that are more traditional, or that they, in making decisions, focus on other aspects such 
as the number of problems for the students. 
The analysis of strategies for controlling the work shows that in general the examples do not 
provide explicit information about the meanings of an answer or about ways to make sure 
answers are correct, which reduces students’ opportunities to learn to use these strategies when 
solving problems. It might be possible that authors expect instructors teach these strategies 
during instruction; however, if it is true that students rely on examples to learn to do homework, 
an important opportunity is missed by not adding this information to the examples. Considering 
that students tend to go back to examples when they meet difficulties doing homework, 
increasing the frequency of further elaboration, checking or suggesting correctness, 
interpretation, and examining plausibility could be a way to enhance students’ learning of these 
strategies.  
Textbooks in this study have a large number of examples looking for only answer and few asking 
for explanations or justifications. Considering that students rely on examples to learn and 
practice the mathematics they are not yet competent with, having them paying more attention to 
explanation and justification will help students and instructors uncover misconceptions. 
Sometimes, students arrive at the right answers with erroneous understanding (Erlwanger, 1973). 
In addition it will be difficult to gain proficiency in explaining and justifying when the focus is 
mostly on finding an answer to a problem. Using problems that has explanation or justification as 
the type of response is also beneficial to teachers in terms of the acquisition of pedagogical 
content knowledge (Cohen, Raudenbush, & Ball, 2003). Attention to explanation and 
justification gives teachers a better access to their students’ struggles, by making explicit the path 
students took to find the answer. 
While the analysis of the expected response type contains some information about 
representations, our final analysis provides a better picture. The low percentage of tables, graphs, 
and verbal representation suggests that few connections are made across these types of 
representations. What is desirable for students is not only to become proficient at interpreting a 
situation with multiple representations, but also to generate models of real-life situation using 
multiple representations (NCTM, 2000). The ability of using numerical, graphical, symbolic, and 
verbal representations is expected to the students taking mathematics-intense courses in 
community colleges (Blair, 2006). 
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Our findings suggest that examples in these textbooks are not very demanding and that they do 
not assist students in developing strategies for controlling their work. Moreover, students are not 
asked to reflect their reasoning nor to actively make connections among different 
representations. While these findings are particular to College Algebra textbooks used in 
community colleges it would be important to know if that is the case for other college textbooks. 
Research is needed to find out whether this is the case for other textbooks for different topics at 
the community college level (horizontal) and different levels of algebra courses (vertical, at 
different institutions). How to introduce these changes needs to be researched, in order to provide 
instructors guideline for improving opportunities for students to learn college algebra in 
community colleges.  
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Promoting Success in College Algebra by Using Worked Examples  
in Weekly Active Group Work Sessions 

 
David Miller and Matthew Schraeder 

West Virginia University 
 
At a research university near the east coast, researchers have restructured a College 
Algebra course by formatting the course into two large lectures a week, an active 
recitation size laboratory class once a week, and an extra day devoted to active group 
work called Supplemental Practice (SP). SP was added as an extra day of class where the 
SP leader has students to work in groups on a worksheet of examples and problems, 
based off of worked example research, that were covered in the previous week’s class 
material. Two sections of the course was randomly chosen to be the experimental group 
and the other section was the control group. The experimental group was given the SP 
worksheets and the control group a question and answer session. The experimental group 
significantly outperformed the control on a variety of components in the course, 
especially when SP attendance was factored into the analysis.   
 

: College Algebra, Cognitive Science, Worked Examples, Large Lecture 
Supplemental Sessions 
 

INTRODUCTION 
A Commitment to America's Future: Responding to the Crisis in Mathematics and 

Science Education states that ``nationally 22% of all college freshman fail to meet the 
performance levels required for entry level mathematics courses and must begin their 
college experience in remedial courses'' (p. 6). The enrollment in college algebra has 
grown recently to the point that nationally there are estimated 650,000 to 750,000 
students per year (Haver, 2007) and has surpassed the enrollment in Calculus recently. 
Although there are almost three fourths of 1 million students enrolling in college algebra, 
it is estimated conservatively that 45% of these students fail to receive a grade of A, B, or 
C and can reach percentages in the sixties at some colleges. To address this non-success 
of students at a large research university in the eastern part of the United States, faculty 
members teaching Applied College Algebra have implemented a new structure in the 
course that emphasizes active learning through a day called Supplemental Practice. 

 
BACKGROUND AND BRIEF LITERATURE REVIEW 

Supplemental Practice Structure 
 The idea of Supplemental Practice, denoted SP, was implemented during the fall 
2004 and was modeled after Supplemental Instruction (Arendale, 1994; SI Staff, 1997). 
The normal structure of the Applied Algebra Class that consisted of three lectures a week 
morphed into a structure of two lectures a week in a large lecture room, and an active 
laboratory class once a week in computer classrooms where students meet in smaller 
groups. The lab class was held on Tuesdays while the lecture class was held on Mondays 
and Fridays. The SP days on Wednesdays were originally added to the weeks’ schedule 
to help lower-achieving students. This was done by requiring students that scored lower 
than an 80 on a placement exam or scored lower than a 70 on any regular exam, to attend 
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the SP sessions. Starting in the fall 2006 semester, the SP sessions have since morphed 
into active problem session days modeled after the cognitive science “worked-out 
example” research. The worked-out example research ask students to study a worked out 
example for a particular topic, ask questions about anything in the example that they do 
not understand, and finally work a similar example without reference to the worked out 
example nor other outside sources (Cooper and Sweller, 1985; Ward and Sweller, 1990; 
Zhu and Simon, 1987; Carroll, 1994, Tarmizi and Sweller, 1988). Most all of “worked-
out example” research has been in a laboratory setting rather than in classroom settings. 
In this research, the researcher randomly designated one of the course sections as the 
control group and the other two sections as the experimental group. In the experimental 
group, the students were given a worksheet at the beginning of the SP day and ask to 
work in groups to complete the worksheet. Three to four class assistants circulated 
around the room to answer any student questions about the worksheet. In the control 
group, a graduate student organized a question and answer session during the extra day 
instead of giving a worksheet to the students. Students were able to get any question 
answered, but the graduate student only answered student questions and did not generate 
questions themselves. For the most part, the graduate student spent all of the class time 
answering student generated questions. The research questions that will be addressed in 
the research are the following: 
 

1. Do students in the experimental group earn a significantly different course 
grade/exam scores/quiz scores/etc… than students in the control group?  

2. What are students overall perceptions and experiences of the SP sessions? 
 

Past research on worked-out examples in mathematics has been conducted in a 
laboratory setting. This research is conducted in a large lecture classroom setting and 
concentrates on determining if worked-out examples helps promotes success in the 
course. In addition, past worked-out example research in mathematics has not dealt with 
college mathematics courses, classes in a large lecture setting, or implementing an extra 
day of class to focus on working with students to master material. The research could be 
valuable to other researchers that are working to promote student success in large lecture 
classes.    

METHODOLOGY 
 

 The setting for the research was a college algebra course with an annual 
enrollment of around 1000 students. This course is one of three different types of college 
algebra courses at the university. One type of college algebra is called a 3-day algebra 
course that comprises of two lectures a week in a large lecture setting and one day a week 
in the lab where students actively work in smaller group math labs. The second type is 
the college algebra 4-day course in which this study took place in. The 4-day college 
algebra course is the same as the 3-day except the 4th day is spent in SP.  The final type is 
a 5-day college algebra course that is comprised of 5 lectures a week in a class size of 
approximately 40 students. Each type of college requires specific placement exams 
scores. The 3-day algebra course requires the highest placement score and the 5-day 
algebra course requiring the lowest placement score.  
 One of the three sections of College Algebra was randomly selected as the control 
group and the other two sections served as the experimental group. Quantitative data 
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(course scores, supplemental days attended, class attendance, total points,…) was 
collected for each student in both the control and experimental groups and analyzed at the 
end of the semester. There were similar demographics in both the control and 
experimental groups. 

RESULTS 
 

 The researcher compared the data for the control and experimental groups to 
determine whether there was any significance in total course points, exam scores, quiz 
scores, and lab scores. Students in the experimental group significantly outperformed 
students in the control group on total points on exams and quizzes, final exam, exam 3, 
and quizzes (p < 0.05) using a t-test. Using previous data on SP sessions, the researcher 
has established in previous semesters that students who voluntarily attend eight or more 
SP sessions are more successful on passing the class than students who attend seven or 
less days of SP sessions. When the researcher includes only the students that have 
attended eight or more SP sessions in the experimental group and compares these 
students to the control group, students in the experimental group significantly outperform 
(p < 0.01) students in the control group on everything (total course points, each exam, 
final, laboratories, and quizzes)  except on the first exam using a t-test. The researcher 
believes that the reason the first exam is not being significant is because students are just 
being introduced to the active SP sessions and worked-example worksheets and there are 
only two active SP sessions before the first exam. 
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Abstract: This presentation reports on the results of a study into precalculus students’ reasoning 
when solving novel problems. The study intended to identify students’ mental actions that 
support or hinder their ability to provide meaningful and correct solutions, while also 
characterizing the role of quantitative reasoning in the students’ solutions. Analysis of clinical 
interviews with each student revealed that a student’s propensity to reason about quantities and a 
problem’s context significantly influenced his or her problem solving approach. Students who 
spent a significant amount of time orienting to a problem by identifying quantities and 
relationships between quantities leveraged the resulting mental images throughout their problem 
solving activity. Contrary to this, students who focused on recalling procedures and performing 
calculations spent little time reasoning about a problem’s context and encountered difficulty 
providing meaningful and correct solutions. These findings offer insights into the relationship 
between students’ reasoning and their problem solving behaviors.  
 
Key Words: Precalculus, Problem Solving, Student Reasoning, Quantitative Reasoning 
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Introduction 
Problem solving has been a focus of mathematicians and mathematics educators for well 

over the past half-century. The focus on problem solving has ranged from suggesting that 
curricula be designed to promote learning through problem solving (NCTM, 2000) to 
characterizing the problem solving processes and performance of students and mathematicians 
(M. Carlson, 1999; M. P. Carlson & Bloom, 2005; Lester Jr., 1994; Pólya, 1957; Schoenfeld, 
2007). Such investigations have labeled problem solving as a complex process of interrelated 
factors and phases, including planning, monitoring, affect, and orienting. Recent studies (M. 
Carlson, 1999; M. P. Carlson & Bloom, 2005; Schoenfeld, 2007) have begun revealing the 
intricate role these factors play in problem solving, while emphasizing the importance of 
exploring students’ problem solving behaviors and the role of problem solving in learning 
mathematics. 

Contributing to the body of research on problem solving, recent reports (Moore, Carlson, & 
Oehrtman, 2009; Smith III & Thompson, 2008) have illustrated the importance of quantitative 
reasoning in students solving novel problems. These reports describe that a student’s mental 
image of a problem’s context (e.g., a mental scene consisting of quantities and relationships 
between quantities) significantly influences his or her solution to the problem. This finding 
highlights the delicate and complex nature of problem solving, and advocates the need to further 
investigate the role of quantitative reasoning in problem solving and learning mathematics. 

This study sought to build on the current body of problem solving research by investigating 
precalculus students’ reasoning as they engaged in problem solving activity. The goal of the 
study was to identify relationships between quantitative reasoning and students’ behaviors during 
the various problem solving phases identified by Carlson and Bloom (2005). In doing so, this 
study’s findings add to the limited knowledge on students’ problem solving behaviors at the 
secondary and undergraduate mathematics level. The results presented in this paper focus on 
various behaviors that occur during the problem solving phases, and how a student’s propensity 
to reason quantitatively influences the mental actions driving these behaviors. These results offer 
insights into the types of reasoning that either hinder or support students’ problem solving 
abilities, and how these reasoning patterns influence each problem solving phase. 

Background 
In an attempt to provide a finer characterization of problem solvers’ cognitive processes, 

Carlson and Bloom (2005) investigated the problem solving activity of 12 mathematicians. 
Drawing from analysis of interviews with the mathematicians, as well as previous research on 
problem solving (Lester Jr., 1994; Pólya, 1957; Schoenfeld, 2007), the authors created the 
Multidimensional Problem-Solving Framework. This framework identifies multiple problem 
solving cycles within four problem solving phases: orientation, planning, executing, and 
checking. Additionally, Carlson and Bloom’s study revealed various problem solving attributes 
(e.g., monitoring and affect) that influence a problem solver’s behaviors. 

Carlson and Bloom (2005) noted that much is still to be learned relative to the problem 
solving processes of students, as their study focused on mathematicians. In response to this call, 
Moore, Carlson, and Oehrtman (2009) examined precalculus students’ problem solving 
behaviors. Findings from this study identified the critical role of quantitative reasoning (Smith III 
& Thompson, 2008) when a student orients to a novel problem. The students involved in the 
study often constructed incorrect mental images of a problem’s context when orienting to a 
problem. The students subsequently constructed incorrect solutions, where these solutions were 
consistent with their images of the problem’s context. After the students reflected on their 
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solutions and refined their images of a problem’s context, they corrected their solutions to reflect 
their modified quantitative structures. These actions enabled the students to provide meaningful 
explanations of their corrected solutions. These findings illustrate the importance of the 
orientation phase, as well as a need to further explore the role of quantitative reasoning in 
problem solving. 

Methods and Subjects 
The subjects of this study were nine undergraduate precalculus and college algebra students 

at a large public university in the southwest United States. The students were chosen on a 
voluntary basis and they received monetary compensation for their participation. Clinical 
interviews (Clement, 2000; Goldin, 2000) were conducted with each student, during which they 
were asked to solve a set of novel problems. During the interviews, the interviewer prompted the 
students to explain their thinking in order to gain insights into the reasoning processes driving 
their problem solving behaviors. Due to the cognitive nature of problem solving, the clinical 
interview setting was critical in identifying reasoning that would not have been revealed in a 
classroom setting or collected student work. Also, this study rested on the stance that each 
student engages in unique reasoning, and hence the clinical interview methodology offered data 
that enabled characterizing each student’s reasoning processes. 

The data was analyzed following an open coding approach (Strauss & Corbin, 1998). The 
students’ behaviors were analyzed in an attempt to determine the mental actions that contributed 
to their solutions. The mental actions inferred from the students’ behaviors were then 
characterized in terms of the problem solving phases identified by Carlson and Bloom (2005). 
This phase of the data analysis involved identifying how the students’ mental actions influenced 
their behaviors during the four problem solving phases. This approach to analyzing the data 
enabled classifying how various reasoning patterns related to the students’ problem solving 
behaviors. Lastly, the students’ mental actions and problem solving behaviors were compared 
and contrasted. This stage of analysis led to the finding that the students held varying problem 
solving dispositions that paralleled their propensity to engage in quantitative reasoning. 

Results 
Analysis of the students’ solutions revealed that their propensity to engage in quantitative 

reasoning significantly influenced the nature of their problem solving behaviors and their ability 
to provide meaningful solutions. Students who extensively focused on a problem’s context 
developed a mental image of the context that they leveraged during the problem solving phases. 
Contrary to this, when students focused on performing procedures and calculations, they did not 
build an image of a problem’s context that supported their solution process. 

When orienting to a problem, students with a propensity to focus on a problem’s context 
frequently drew and labeled a diagram of the situation. This act included identifying known and 
unknown measurements and discussing various relationships between quantities. As these 
students continued to focus on a problem’s context, they were observed revisiting the problem 
statement to identify the goal (and sub-goals) of a problem in terms of the quantities of the 
situation. During the planning phase of problem solving, they continued to spend a significant 
amount of time reasoning about a problem’s context. They planned their solutions by identifying 
relationships between quantities and reasoning about these relationships in ways that enabled 
them to anticipate performing calculations. By reasoning about relationships between quantities 
without performing numerical operations, the students were able to engage in the conjecture-
imagine-evaluate cycle identified by Carlson and Bloom (2005) to mentally play out their 
solutions. Similarly, these students recalled formulas during the planning phase and described 
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these formulas in terms of the quantities of the situation. This enabled the students to use 
formulas to represent relationships between values without having to evaluate the formulas. 

When executing their planned solutions, the students described calculations in terms of the 
quantities of the situation and consistently illustrated the quantity referenced by a newly obtained 
value. Also, due to their calculations being grounded in quantitative relationships, the students 
constructed a quantitative meaning for a value before obtaining a numerical result. That is, the 
students did not need to determine the meaning of a result of calculating, as they had developed a 
meaning previous to the calculation. The students’ images of the problems’ contexts also 
supported their monitoring the appropriateness of the calculated values. When they obtained 
values that were not consistent with their image of a problem’s context, the students returned to 
the context to further orient to the problem, check their solution, and modify their solution if 
needed. These actions enabled the students to identify incorrect solutions and use the context of 
the problem to justify alterations to their solution. 

Students with a propensity to reason about calculations and procedures engaged in problem 
solving behaviors significantly different to the behaviors previously outlined. When orienting to 
a problem, students with a tendency to focus on calculations and procedures often drew a 
diagram, but they infrequently labeled known and unknown values on the diagram and spent 
limited time verbally discussing a problem’s context. Instead, they regularly referred to 
previously completed problems deemed similar to the current problem. Subsequently, these 
students attempted to recall the steps or calculations made when solving a similar problem. In the 
cases that they recalled previous solutions, the students progressed to the executing phase 
without further explaining or analyzing the recalled solution. In the cases that they could not 
recall a previous solution, they experienced difficulty progressing and suggested calculations to 
the interviewer (who did not provide feedback). When asked to explain a meaning of their 
suggested calculations, these students expressed a need to first calculate a numerical value, as 
opposed to attempting to explain the calculation previous to performing the calculation. 

After executing a suggested calculation, the students experienced difficulty determining how 
the obtained value related to a problem’s context or the goal of the problem. The students 
frequently gave multiple meanings to the determined numbers (e.g., using a number to refer to 
multiple lengths), and the students relied on the aesthetic quality of their answers (e.g., values 
not “too big” or “too small”) to check their solutions. In the cases that the students believed their 
solution was incorrect, they looked to the interviewer for assistance or attempted to recall 
another procedure. 

Conclusions and Implications 
The varying problem solving approaches exhibited by the students of this study reveal how a 

student’s problem solving disposition can influence his or her ability to solve novel problems. 
These insights should inform curriculum designers and teachers about the reasoning abilities and 
problem solving behaviors they should strive to engender in students. Also, students were 
sometimes observed alternating problem solving dispositions from problem to problem, as well 
as within a single problem. Further research should explore reasons for such transitions, and the 
instruction necessary to promote students developing a disposition that supports their 
constructing meaningful and correct solutions to novel problems. Students with a quantitative 
disposition also appeared to be more reflective during their problem solving activity. This may 
have been a result of their reasoning creating a foundation for reflective actions. Future research 
should investigate this phenomenon, and its implications for using problem solving to promote 
students learning mathematics. 

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



References 
Carlson, M. (1999). The mathematical behavior of six successful mathematics graduate students: 

Influencs leading to mathematical success. Educational Studies in Mathematics, 40(3), 
237-258. 

Carlson, M. P., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent 
multidimensional problem-solving framework. Educational Studies in Mathematics, 
58(1), 45-75. 

Clement, J. (2000). Analysis of clinical interviews: Foundations and model viability. In A. E. 
Kelly & R. A. Lesh (Eds.), Handbook of Research Design in Mathematics and Science 
Education (pp. 547-589). Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in 
mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of 
Research Design in Mathematics and Science Education (pp. 517-545). Mahwah, NJ: 
Lawrence Erlbaum Associates, Inc. 

Lester Jr., F. K. (1994). Musings about mathematical problem-solving research. Journal for 
Research in Mathematics Education, 25(6), 660-675. 

Moore, K. C., Carlson, M. P., & Oehrtman, M. (2009). The role of quantitative reasoning in 
solving applied precalculus problems. Paper presented at the Twelfth Annual Special 
Interest Group of the Mathematical Association of America on Research in 
Undergraduate Mathematics Education (SIGMAA on RUME) Conference, Raleigh, NC: 
North Carolina State University. 

NCTM. (2000). Principles and standards for school mathematics. Reston, VA: NCTM. 
Pólya, G. (1957). How to Solve It, A New Aspect of Mathematical Method (2 ed.). Princeton, NJ: 

Princeton University Press. 
Schoenfeld, A. H. (2007). Problem solving in the United States, 1970-2008: research and theory, 

practice and politics. ZDM Mathematics Education, 2007(39), 537-551. 
Smith III, J., & Thompson, P. W. (2008). Quantitative reasoning and the development of 

algebraic reasoning. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in 
the Early Grades (pp. 95-132). New York, NY: Lawrence Erlbaum Associates. 

Strauss, A. L., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and 
procedures for developing grounded theory (2nd ed.). Thousand Oaks: Sage Publications. 

 
 

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



 

s 
 

Ricardo Nemirovsky 
San Diego State University 

 
Michael Smith 

San Diego State University & University of California San Diego 
 
The way people use symbols and drawings has an intrinsic physicality.  Viewed as an extension 
of gesture-making, symbol-use can give us insight into how symbol-users experience the 
mathematics at hand.  Using a theoretical framework of embodied cognition, we explore this 
matter by conducting a phenomenological analysis of a 2-minute selection from an interview 
with a topologist about one of his published papers.  We propose an interpretation of the 
mathematician’s symbol-use in terms of two related constructs: realms of possibility in what the 
mathematician perceives as available to him and paths within and between these realms.  Both of 
these are projected onto the writing surface and embodied through gestures, speech, eye gaze, 
and many other means.  We explore the origins and relevance of these in our presentation. 
 
Keywords: Embodied cognition, phenomenology, gesture, mathematicians 
 
 
Traditionally, concepts have been understood in contrast to percepts (e.g. Kant, 1998).  A 
growing body of research questions this division suggesting that the way we think about 
something, the way we perceive it, and the way we can and do physically interact with it are all 
inextricably intertwined (Noe, 2006).  For instance, when we first learn to drive, the car feels like 
a foreign object and other vehicles suddenly seem much larger and more dangerous than when 
we were passengers.  Yet as we become more familiar with driving, the car comes to feel like an 
extension of us and we learn to perceive and think about vehicles with a different sense of 
ourselves than when we were passengers or students of driving. 
 
The split between concepts and percepts has been reflected in cognitive science as an opposition 
between modal (i.e. perceptual) and amodal (i.e. conceptual) systems (Barsalou, 1999).  One way 
to argue for the inseparability between concepts and percets is to state there are no amodal 
systems in which we do logical reasoning, inference and so on, but instead that all activity is 
perceptuo-motor activity.  Our reasoning about even the most highly abstract topics manifests 
through a partially covert sense of what we can do and perceive with the representations we use 
for said topics.  It is in this sense that we say that cognition is embodied. 
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This leaves us with a question: How do those who are skilled in highly abstract forms of 
reasoning embody their thinking about those abstract topics?  We know that this must occur 
through their interactions with the representations they use for the ideas in question, but how do 
those interactions contribute to the way in which the abstractions are understood and used? 
 
We explore these questions in a case study of a mathematician explaining an aspect of his 
published work.  We asked him to choose a paper he considered interesting or significant, did 
our best to understand the paper over the course of a few weeks, and then conducted a video-
recorded unstructured interview (Bernard, 1988) in which we asked him to explain the paper as 
he thought of it.  We watched the subsequent video several times to select segments for 
microanalysis (Erickson, 2004), choosing the segments based on which ones seemed most likely 
to give fruitful insight into the embodiment of abstract mathematics.  With the 2-minute segment 
in question, we alternated between examining the microanalysis individually and discussing our 
examinations as a team.  In our individual examinations, we would generate possible 
descriptions of the mathematician’s actions based on what we knew about his background, the 
demands of ongoing circumstances (e.g. his reacting to the interviewer’s questions), and the 
multiple unintended contingencies arising moment by moment.  In our collective discussions we 
would share each other’s examinations and explore the implications of one another’s 
observations in light of the data on hand, with the goal of generating compelling and viable 
accounts of this mathematician’s experiences allowing us insight into the nature of how abstract 
thought can be embodied.  While this is an case study of a single subject, a microethnographic 
analysis has the potential to broaden our perspectives and to suggest new interpretations which 
may enrich our understanding of how anyone grapples with mathematical problem solving. 
 
Our analysis has highlighted two related constructs that we’d like to share in this presentation.  
The first we term realms of possibility. A crucial observation arising from numerous 
phenomenological investigations is that what we perceive is not given merely by light, sound, 
and so on but is also saturated with our anticipations of how we might be able to interact with 
and change that which we perceive (Gallagher & Zahavi, 2008; Husserl, 1913/1983; Merleau-
Ponty, 1962).  The collection of such anticipations often presents itself to the individual as being 
a kind of space, just as we have a sense of the space in which we could move a chair and sit 
ourselves upon it.  But just as there are limitations to how you anticipate being able to move a 
given chair, these realms of possibility have a kind of boundary, which Husserl (1913/1983,  
p.52) referred to as a “horizon”.  We find that the mathematician in our study consistently 
defined these horizons between realms as he experienced them by creating gaps in the 
blackboard or drawing dividing lines on it and reinforcing them with his gestures, gaze, and 
placement and orientation of his body. 
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The second construct is that of paths, both within and between realms of possibility.  In order to 
actualize his explanations, the mathematician has to “travel” within the realms he describes. This 
“travel” occurs via gestures, speech, gaze trajectory, inscription on the blackboard, and so on.  
Some of these paths follow the symbols and drawings in the order in which they were inscribed, 
whereas others get overlaid on an existing inscriptional surface along temporal sequences that 
differ significantly from the order in which they were generated.  Both the travel along and 
redefinition of paths occurs through the mathematician’s physical interactions with the symbols, 
such as when he seemingly runs into a difficulty with his exposition, physically steps away from 
the blackboard to gesture an explanation that gets around the difficulty, and then physically 
returns to the blackboard and manually puts his explanation into the symbols already written.  
The accompanying speech makes a corresponding shift as well; in this particular example, the 
mathematician switched to the subjunctive (“If you wanted to…”) until he physically 
reconnected his talk and gesture back to the symbols on the board with which he was making his 
original point.  This is just one of several different kinds and uses of paths that we’ve noticed as 
defining methods of travel within and between realms of possibility in this episode. 
 
In exploring these matters, we hope to contribute to basic research that can help frame 
mathematical activity in ways that are both practical for researchers and consistent with the 
mounting evidence supporting the close connection between concepts, perception, and physical 
action.  These theoretical constructs – realms of possibility and paths within and between them – 
provide us with a way of perceiving some of the bodily interactions that individuals can have 
with mathematical entities.  Further exploration of these and related constructs has the potential 
to provide a rich account of how collegiate mathematics is practiced while remaining true to the 
inseparability of mind and body. 
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Abstract 

Little research exists on the ways in which students may develop an understanding of formal 
limit definitions. We conducted a study to i) generate insights into how students might leverage 
their intuitive understandings of sequence convergence to construct a formal definition and 
ii) assess the extent to which a previously established approximation scheme may support 
students in constructing their definition. Our research is rooted in the theory of Realistic 
Mathematics Education and employed the methodology of guided reinvention in a teaching 
experiment. In three 90-minute sessions, two students, neither of whom had previously seen a 
formal definition of sequence convergence, constructed a rigorous definition using formal 
mathematical notation and quantification nearly identical to the conventional definition. The 
students’ use of an approximation scheme and concrete examples were both central to their 
progress, and each portion of their definition emerged in response to overcoming specific 
cognitive challenges. 

 
Keywords: Limits, Definition, Guided Reinvention, Approximation, Examples 
 
Introduction and Research Questions 

A robust understanding of formal limit definitions is foundational for undergraduate 
mathematics students proceeding to upper-division analysis-based courses. Definitions of limits 
often serve as a starting point for developing facility with formal proof techniques, making sense 
of rigorous, formally-quantified mathematical statements, and transitioning to abstract thinking. 
The majority of the literature on students’ understanding of limits (Bezuidenhout, 2001; Cornu, 
1991; Davis & Vinner, 1986; Monaghan, 1991; Tall, 1992; Williams, 1991) describes informal 
student reasoning about limits, with particular attention given to the myriad of student 
misconceptions. However, there is a paucity of research on student reasoning about formal 
definitions of limits. The general consensus among the few studies in this area seems clear – 
calculus students have great difficulty reasoning coherently about the formal definition (Artigue, 
2000; Bezuidenhout, 2001; Cornu, 1991; Tall, 1992; Williams, 1991). What is less clear, 
however, is how students come to understand the formal definition. Indeed, this is an open 
question with few empirical insights from research to inform it (Cottrill et al., 1996; Roh, 2008; 
Swinyard, in press). Oehrtman (2008) proposed a coherent approach to developing the concepts 
in calculus through a conceptually accessible framework for limits in terms of approximation and 
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error analysis. Students were recruited to participate in our study from a course that relied 
heavily on Oehrtman’s approach. This study addressed the following research questions: 

1. What are the cognitive challenges that students encounter during a process of guided 
reinvention of the formal definition for sequence convergence? 

2. What aspects of their concept images do students evoke during this reinvention? 
3. How do students’ evoked concept images and their solutions to cognitive challenges 

encountered support more advanced mathematical thinking about limits of sequences? 

Theoretical Perspective and Methods 

We adopted a developmental research design, described by Gravemeijer (1998) “to design 
instructional activities that (a) link up with the informal situated knowledge of the students, and 
(b) enable them to develop more sophisticated, abstract, formal knowledge, while (c) complying 
with the basic principle of intellectual autonomy” (p.279). Task design was supported by the 
guided reinvention heuristic, rooted in the theory of Realistic Mathematics Education 
(Freudenthal, 1973). Guided reinvention is described by Gravemeijer, K., Cobb, P., Bowers, J., 
and Whitenack, J. (2000) as “a process by which students formalize their informal 
understandings and intuitions” (p.237).  

The authors conducted a six-day teaching experiment with two students at a large, southwest, 
urban university. The full teaching experiment was comprised of six 90-120 minute sessions with 
a pair of students currently taking a Calculus course whose topics included sequences, series, and 
Taylor series. The central objective of the teaching experiment was for the students to generate 
rigorous definitions of sequence, series, and pointwise convergence. The research reported here 
focuses on the evolution of the two students’ definition of sequence convergence over the course 
of the first three sessions of the teaching experiment. The design of the instructional activities 
was inspired by the proofs and refutations design heuristic adapted by Larsen and Zandieh 
(2007) based on Lakatos’ (1976) framework for historical mathematical discovery. Activities 
commenced with students generating prototypical examples of sequences that converge to 5 and 
sequences that do not converge to 5. The majority of each session then consisted of the students’ 
iterative refinement of a definition to fully characterize sequence convergence. The students 
were to evaluate their own progress by determining whether their definition included all of the 
examples of convergent sequences and excluded all of the non-examples.  

Results 

Three broad areas of findings emerged from our data analysis: the role of students’ use of 
examples, the effect of a scheme for limits based on approximation language, and the students’ 
adoption and appreciation of quantifiers and efficient mathematical expressions.  

The Role of Examples. The students’ reinvention efforts were aided considerably by the 
presence of the examples they constructed at the start of the experiment. These examples served 
as sources of cognitive conflict when their definition failed to fully capture the necessary and 
sufficient conditions under which sequences converge. For example, the students’ initial 
definitions were predictably couched in language that was vague, intuitive, and dynamic. Their 
first written definition was “A sequence converges to 5 as n ∞ provided that the number 
approaches or is 5 and no other number.” The students immediately identified weaknesses in this 
definition as they applied it to their examples that increase monotonically to 4, alternate around 5 
or behave erratically before eventually looking like a standard example of a convergent 
sequence. Having identified these weaknesses, they also looked to their examples to provide 
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direction for their revisions. This pattern of evaluating and refining their definitions against the 
examples repeated over 18 cycles during the first three days of the teaching experiment. 

The Effect of an Approximation Scheme for Limits. The students’ familiarity with a 
previously established approximation scheme mirroring the structure of the formal definition but 
framed in more accessible terms (Oehrtman, 2008) provided students significant leverage for i) 
focusing on relevant quantities in the formal definition, ii) fluently working with the 
relationships between these quantities, and iii) making the necessary but difficult cognitive shift 

to focus on N as a function of ε (Roh, 2008; Swinyard, in press). For example, during the first 12 
minutes of the teaching experiment, the students did not invoke language about approximations 
to describe aspects of a sequence {an}. During this time they did not discuss or represent the 
quantity |an – 5| in any form and all descriptions of convergence involved informal dynamic 
language. But once they invoked an approximation scheme, they described the limit as the value 
being approximated, the terms an as the approximations and the distance between them as the 
error which they immediately represented as |an – 5|. These ideas became an integral part of their 
arguments and the students shifted to discussing how close the terms needed to get to 5 to 
consider the sequence convergent. After another 14 minutes, the students invoked the idea of an 

error bound (corresponding to ε in the formal definition) to address this question and focused on 
how to make the error smaller than this bound. Nine minutes later, they introduced the idea of 
there being “some point n” (corresponding to N in the formal definition) at which this must 
happen. Afterwards, they consistently reasoned that this “point n depends [on] what the 
acceptable error is.” For the remainder of Day 1 and throughout Days 2 and 3 of the teaching 
experiment, the students continued to rely on this approximation scheme to describe the relevant 
quantities and to keep track of the relationships among them.  

Adoption of Quantifiers and Mathematical Expressions. Powerful use of logical quantifiers 
and mathematical expressions emerged only after the students had i) fully developed the 
underlying conceptual structure of convergence in informal terms, ii) wrestled with the problem 
of how to rigorously express those ideas, and iii) seen the quantifiers and expressions as viable 
solutions to these problems. Early in the first day of the teaching experiment, one student 
recalled the use of universal and existential quantifiers. While she used them correctly neither 
student applied them to resolve any problem they were wrestling with and they soon dropped the 
quantifiers. On Day 3 of the teaching experiment, the students were consistently verbalizing all 
elements and appropriate logic of the ε-N definition, but lacked the terminology or notation to 
construct what they considered an acceptable written definition. As they struggled with these 
issues, brief reminders of the quantifiers they had used earlier but discarded were seized upon as 
perfect solutions to their difficulties. Ultimately the students settled on the definition 
 

“A sequence converges to U when  ε, there exists some N,  n  N, |U – an|<ε.” 

The students expressed strong appreciation for the power of the quantifiers and mathematical 
notation in their definition, citing multiple problems that each part efficiently resolved.  

Limitations, Implications and Conclusions 

The two students in this teaching experiment had only experienced instruction aimed at 
developing a systematic approximation scheme for reasoning about limits for a portion of one 
calculus course. Consequently, it is not surprising that they did not immediately invoke this 
scheme as they began to wrestle with generating a definition of sequence convergence and that 
the scheme emerged in pieces. Nevertheless, it did not take them long to turn to approximation 
ideas, and each portion of their evoked scheme emerged in response to particular problems for 
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which it was well-suited to address. We note that these students progressed much more quickly 
towards a formal definition and through resolving several cognitive challenges than students not 
introduced to the approximation framework (Swinyard, in press). Once evoked, the students’ 
ideas about approximation remained consistent, and their images and application of their scheme 
was sufficiently strong to provide them considerable guidance and conceptual support for 
reasoning about the formal definition. 

This study drew from data collected in a teaching experiment with only two students and we 
acknowledge that each individual will follow unique paths. Further, orchestrating this type of 
discussion for an entire class will certainly involve significant differences from what was 
possible with focused attention on two students. Nevertheless, these students’ reinvention of the 
definition serves not only as an existence proof that students can construct a coherent definition 
of sequence convergence, but also as an illustration of how students might reason as they do so. 
Our findings shed light on several relevant cognitive challenges engaged by the students, how 
they resolved these difficulties, and the resulting conceptual power derived from their solutions. 
These results are guiding our future work to develop, evaluate and refine classroom activities for 
introductory analysis courses. 
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This report describes a case study in an undergraduate elementary linear algebra class about the 
relationship between students’ understanding of span and linear independence and their intuition 
and language use. The study participants were seven students with a range of understanding 
levels. The purpose of the research was to explore the relationship between students’ “natural” 
thinking and their conceptual development of formal mathematics and the role of language in 
this conceptual development. Findings indicate that students with low indicators of intuition and 
stronger language skills developed better understanding of span and linear independence. The 
report includes possible instructional implications. 
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In an essay about his experiences teaching linear algebra, David Carlson (1997) posed a 

question that has become emblematic of students’ learning in linear algebra: Must the fog always 
roll in? This question, he writes, 

refers to something that seems to happen whenever I teach linear algebra. My students first 
learn how to solve systems of linear equations, and how to calculate products of matrices. 
These are easy for them. But when we get to subspaces, spanning, and linear independence, 
my students become confused and disoriented. It is as if a heavy fog rolled over them, and 
they cannot see where they are or where they are going. (p. 39) 

Research into the teaching and learning of linear algebra has spanned several decades, but the 
issue of how to clear the fog for students is still outstanding. In this report, I describe a research 
study designed to contribute to the understanding of how students learn concepts in linear 
algebra.  

The purpose of this study was to address two outstanding issues in the learning of 
advanced mathematics. The first issue is a theoretical difference between the ways in which 
students learn “naturally” and the formal structure of mathematics, and how this difference may 
or may not influence students’ mathematical understanding. The second issue is the relationship 
between students’ language use and their mathematical understanding and how this might relate 
to students’ natural ways of learning. My research question was: 

How do students’ intuition and language use relate to the nature of their understanding of 
span and linear independence in an elementary linear algebra class? 
Existing research supports the existence of the issues this study was designed to address. 

In his epilogue of Advanced Mathematical Thinking, Tall (1991) noted that many of the book’s 
contributors believed students’ difficulties in learning advanced mathematics could be explained 
by the discrepancies between the way students viewed mathematics and classroom instruction, 
which is often based on the formal structure of mathematics. More recently, in their discussion of 
advanced mathematical thinking, Mamona-Downs and Downs (2002) suggested traditional 
teaching of mathematics does not “connect with the students’ need to develop their own 
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intuitions and ways of thinking” (p. 170). An impediment to developing instructional theory 
based on students’ intuitions is an incomplete understanding of how people develop abstract 
mathematical knowledge. Pegg and Tall (2005) compared several theories of concept 
development and derived a fundamental cycle of concept construction underlying each of the 
theories. However, there is no consensus on the mechanism of how this concept development 
occurs. Some evidence exists to suggest language may play a role in this development (Dehaene, 
Spelke, Pinel, Stanescu, & Tsivkin, 1999; Devlin, 2000). Pugalee (2007) contends “language and 
competence in mathematics are not separable” (p. 1). MacGregor and Price (1999) and Boero, 
Douek, and Ferrari (2002) believe that metalinguistic awareness is necessary for students to 
coordinate the various notation systems in mathematics. Yet, little research exists that explores 
the relationship between students’ language abilities and mathematics learning (Barwell, 2005; 
Huang & Normandia, 2007; MacGregor & Price). Interestingly, though, just as mathematics 
education researchers have found a contrast between intuitive thinking and formal mathematics, 
language researchers have found this same contrast between everyday language use and the 
demands of formal school language (Schleppegrell, 2001, 2007). It is possible, then, that 
language plays an important role in how students move from intuitive, everyday thinking to 
understanding formal mathematical concepts and theory.  
 The literature about learning linear algebra in general and learning about span and linear 
independence specifically reflects the issues reported in the literature about intuition in learning 
mathematics. This includes students’ difficulty with understanding and using formal definitions 
(Medina, 2000) and students relying upon surface features, prototypical examples, and intuitive 
models rather than conceptual understanding (Harel, 1999; Hristovitch, 2001; Medina). Lacking 
in this literature, though, is a clear picture of the interaction between instruction, students’ 
intuition, and the nature of students’ understanding. In particular, it does not reveal the 
components of understanding of span and linear independence that are sufficient for an 
elementary linear algebra class nor the individual differences in intuition and language use that 
may account for variation in student learning. 

The theoretical perspective for this research was the emergent perspective described by 
Cobb and Yackel (Cobb, 1995; Cobb & Yackel, 1996; Yackel & Cobb, 1996). The emergent 
perspective is a type of social constructivism that coordinates the social and psychological 
(individual) views (Cobb & Yackel). The interactionist view of classroom processes (Bauersfeld, 
Krummheuer, & Voigt, 1988) represents the social perspective, while a constructivist view of 
individuals’ (both students and teacher) activity (von Glasersfeld, 1984, 1987) represents the 
psychological perspective. I used the case study methodology for this research and delimited the 
setting of the study to one elementary linear algebra class. Broadly, the unit of analysis for this 
study was individual students. However, in alignment with my research question, I focused my 
analysis on students’ understanding of span and linear independence and on their intuition and 
language use related to these understandings. I analyzed the overall level of students’ 
understanding for the first four weeks of the course and then selected a set of seven students to 
represent as much as possible maximum variation in understanding levels.  

This research depended on being able to operationalize the constructs of understanding, 
intuition, and language use. Based on the literature and the nature of my data, I found each of 
these constructs to be multi-dimensional. I defined understanding as the composition of 
definitional understanding and problem solving skills. Each of these elements had multiple 
components. Intuitions fell into two categories: self-evident intuitions and surface intuitions, 
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with each category consisting of three different sub-types of intuitions. The salient characteristics 
of language use were understandability, completeness, and vocabulary use. 

The overall findings of this research indicated an association between the quality of 
students’ language use and the quality of their understanding. That is, the students with stronger 
language skills generally exhibited better understanding of span and linear independence. There 
was also an association between the degree to which a student’s cognition had intuitive 
indicators and the quality of his/her understanding. The more a student’s thinking had intuitive 
characteristics, the less likely he/she was to develop good understanding of span and linear 
independence.  

A more detailed picture of the findings is as follows. Students’ understanding was either 
functional or problematic. Students with fair or weak problem solving skills were classified as 
having problematic understanding, while those with good or strong problem solving skills were 
classified as having functional understanding. The quality of students’ definitional understanding 
determined the level of understanding within each category. Within the functional category, 
students had strong, good, or fair definitional understanding. Within the problematic category, 
students had weak or poor definitional understanding. Students with functional understanding 
had low self-evident intuition indicators, while students with problematic understanding had 
medium or high self-evident intuition indicators. Students with fair, weak, or poor definitional 
understanding had more surface intuition indicators than students with strong or good 
definitional understanding. The quality of students’ written explanations was associated with the 
students’ level of understanding. However, language use quality more closely aligned with 
students’ definitional understanding than with their problem solving skills.  

There were several finding about the nature of students’ learning of span and linear 
independence. While many students could learn the procedures related span and linear 
independence, some students struggled to develop conceptual understanding.  In addition, many 
students eschewed knowing and understanding formal definitions in favor of using their own 
intuitive pseudo-definitions. Students who failed to develop conceptual understanding of 
foundational concepts, such as linear combination and solution, failed to develop conceptual 
understanding of span and linear independence. Students who were unclear about the objects 
associated with span and linear independence (e.g., did not associate linear independence with a 
set of vectors) did not reify these concepts, but instead viewed these concepts primarily as 
procedures. 

The findings suggest possible classroom implications. While none of the instructional 
methods are new, this research may underscore their validity in supporting students’ learning of 
mathematics by reducing the role of interfering intuitions. Instructional recommendations 
include helping students develop metacognitive awareness (Fischbein, 1987) and implementing 
compare and contrast activities (Marzano, Pickering, & Pollock, 2001). Several researchers have 
outlined more elaborate instructional tools. These include the instructional practices developed 
by researchers studying the role of beliefs in mathematics (Muis, 2004), conceptual change in 
science and mathematics (Vosniadou & Vamvakoussi, 2006), and in reducing misconceptions in 
mathematics (Stavy & Tirosh, 2000). In order to help students develop their language skills, 
which in turn may support their mathematical learning, it may be helpful to provide opportunities 
for students to engage oral and written language practice.  

The study has several limitations. Because it was conducted in a single class, the findings 
may have limited transferability. Also, the nature of the data sources (student work and student 
interviews) may have limited the validity of the findings. Future research may refine or extend 
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this study’s findings in other linear algebra classes. It may also be fruitful to explore this research 
question in other advanced mathematics classes, such as abstract algebra and analysis. 
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 The advances in online technology continue to transform how university faculty can 
provide teacher professional development (Hramiak, 2010). Advocates of online teacher 
education maintain that it holds the possibility of developing not only vibrant explorations of 
knowledge and practice in the content area, but also communities of learners and practice, and 
lifelong learning perspectives and skills  p. 224). Concurrently, problems in the 
design and implementation of online courses may hinder learners in these environments. Given 
the demand for high-quality teachers, online courses appear to be an increasingly popular way to 
provide teacher professional development (Signer, 2008). However, there is a clear need for 
continuing research in online teacher professional development to ensure that it is meeting the 
professional needs of teachers (Dede, Ketelhut, Whitehouse, Breit, & McCloskey, 2009). 
 The purpose of this paper is to present results of an investigation into the design and 
implementation of an online mathematics teacher education course for secondary inservice 
teachers as part of the Mathematics Teacher Leadership Center (Math TLC). The Math TLC is a 
collaboration among the University of Northern Colorado, the University of Wyoming, and 
partner school districts in Colorado and Wyoming in the United States and is funded by a 
National Science Foundation1 Mathematics and Science Partnership. One goal is to help develop 
culturally competent master teachers to work locally, regionally, and nationally to improve 
teacher practice and student achievement. Designers of the course relied on recommendations 
from the literature including purposeful attention to instructor roles and community. Researchers 
administered a survey to course participants to obtain feedback from teacher-participants about 
their attitudes about the impact of technology on their learning. With these empirical results as 
well as observations and notes taken during the semester the instructor offers recommendations 
to improve the mathematics education course he taught. 

Literature 
 In examining the available literature concerning online teacher education programs, two 
emerging themes are particularly helpful to frame the design of the teaching geometry course: 
instructor roles and community. The roles of distance education instructors, while similar to 
face-to-face instructor roles, have the added dimension of the necessary use of technology. Maor 
(2003) and Johnson and Green (2007) categorized the roles of distance education instructors as 
pedagogical, managerial, social, and technical. The pedagogical role entails all of the abilities 
involved in delivery of content, included the ability to make instructional decisions, develop 
appropriate learning tasks, facilitate learning, and assess for understanding. The managerial role 
comprises the abilities to administer the course, including the skills plan the scope and sequence 
of the online course, monitor the teaching and learning processes, and manage the constraints of 
the course, including the timeline. The social role includes the ability to provide one-on-one, 
emotional support and advising to participants. The technical role includes the proficiencies 
involved in the decision-making process of selecting technology, the aptitude to use technology, 
and the ability to trouble-shoot problems with the technology quickly so that participants may 
remain focused on learning the material. Each of these roles  pedagogical, managerial, social, 
and technical  is thought to encompass the duties and tasks of the instructor and, when 
performed professionally and proficiently, is assumed to ensure a positive learning environment.  

Equally important to the success of online courses is the presence of sense of 
community, which is typically defined as feelings of trust, belonging, commitment, and shared 

                                                 
1 This material is based upon work supported by the National Science Foundation under Grant No. DUE0832026. 
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and 
do not necessarily reflect the views of the National Science Foundation. 
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goals among online learners (Shea, Li, Swan, & Pickett, 2002). Rovai (2002b) claims the sense 
of connection among learners helps overcome feelings of isolation caused by physical distance. 
Other researchers find that graduate students in online programs that have a higher sense of 
community also have lower attrition rates, increased student learning outcomes, and higher levels 
of satisfaction and engagement (Lui, Magjuka, Bonk, & Seung-hee, 2007; Shea et al., 2006).  

Research Methods 
There were 22 participants in the course consisting of inservice secondary (grades 7-12) 

Because of the 
relatively sparsely populated nature of northern Colorado and Wyoming, the participants were 
spread out geographically over the two states, though all learners were within 250 miles of one 
other. The participants had met in person during a six-week session the previous summer, about 
seven months prior to the start of the course. 

The teaching geometry course took place during a 15-week semester in the spring of 
2010 and focused on current research and practices of teaching, learning, and assessing geometry 
in secondary schools. The course was conducted completely online with both asynchronous and 
synchronous components. Participants used the course management system Blackboard to access 
course materials and submit assignments as well as to post occasionally on assigned discussion 
board topics. The participants of the course used the online collaboration software Elluminate to 
meet virtually every Monday night in a webinar, where live audio and video conferencing was 
used to facilitate real-time class discussions, small group work, and lecture. The instructor 
frequently used Elluminate to poll participants for informal feedback as well as put participants 
into small groups for discussion, followed by whole-group discussion 
PowerPoint slides visible to everyone. Participants received the PowerPoint slides and other 
required readings electronically, prior to the start of the webinar as recommended by Hofmann 
(2004). Virtual office hours were held on Elluminate and email was used regularly for the 
instructor and participants to communicate.  

Survey data were collected at the end of the semester through an electronic survey with 
quantitative questions. Thirteen of the 22 participants completed the survey, with questions 
focusing on the implemented technology of the course. The instructor and graduate assistant of 
the course took notes during the semester about the structure and effectiveness of the course 
webinars and recorded the webinars for later viewing. Both qualitative and quantitative data were 
used in the investigation.  

Results  
 Overall findings from the survey and observational data indicated participants had 
successful learning experiences with the class. Most participants indicated they were satisfied 
with all four roles of the instructor; specifically participants rated technological and pedagogical 
roles highest, with social and managerial roles receiving positive but more widely distributed 
responses. Positive feelings of community were indicated by most participants, though one 
individual reported feelings of isolation from the rest of the class. In addition to the survey 
results from the participants, the instructor provided reflective comments on the four roles based 
on the survey results. 

With respect to the pedagogical role, course participants generally held favorable views 
of the course design, including learning tasks and weekly webinar interactions. The instructor 
was a veteran instructor of the teaching geometry course.  However, the instructor felt this role 
was time consuming mainly because the course expectations were set too high. The time 
commitment involved for the instructor, as well as the participants, exceeded that of a two-credit 
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-level course, including the design of the weekly tasks and the assessment of 
Additionally, a few participants indicated they were only sometimes satisfied 

with the amount of contact they had with the instructor. On reflection, the instructor indicated 
this is an aspect that needs improvement, as research indicates online instructors must work 
harder than face-to-face instructors to establish rapport and open lines of communication with 
learners (Rovai 2001, 2002a, 2002b; Shea et al., 2006). 

The technical role was also a significant aspect of the duties of the instructor. Course 
participants generally thought that technology was used to promote learning. Although the 
instructor was a novice user of Elluminate, the instructor felt that decisions involving the use of 
polling as a formative assessment, the use of breakout rooms for small-group discussion, and the 
capability of multiple video and audio interactions contributed to these positive learning 
experiences. Additionally, a majority of participants indicated that technology concerns 
sometimes interfered with their understanding. The instructor felt that more experience with the 
technology may increase his ability to act as technical advisor and be a better initial source for 
solving technical problems. 

The managerial and social roles had the added restriction of the separation between the 
instructor and the participants compared to face-to-face instruction. For example, managing the 
weekly webinars required explicit attention to environmental norms, such as the use of the chat 
box and the use of video for course discussion; whereas in face-to-face instruction most 
classroom norms in college classrooms are implicit based on common educational experiences. 

interactions during the webinars. Participants, however, generally viewed the social role of the 
instructor as favorable. 

Implications and Future Research 
 From the data gathered over the duration of the semester, the instructor compiled 
recommendations for future instructors of online mathematics education courses in this program. 
The use of break-out sessions and polling in the course was deemed important by both instructor 
and participants not only as tools for learning but also for community building. Teacher-
participants considered a sense of community an important factor in their learning, a finding 
supported by literature (Rovai 2001, 2002a). The results indicated most learners were satisfied 
with the amount of community they felt, though a few were only slightly satisfied. Now aware of 
both the importance and the challenge of building community in online courses, the instructor 
suggests that this aspect of the course be a focus in the future.  
 Overall, the instructor and the participants thought that the course was educationally 
successful. In the future, the instructor plans to continue incorporating technology that fosters 
knowledge and community building. Evaluating his own teaching using the four instructor roles 
was helpful in identifying strengths and areas for improvement in the online course, and he 
recommends this approach for other educators. 
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1. Introduction 

 Teacher educators and teachers alike 
especially their teaching internship experience, as one of the most important and influential 
experiences in their teacher education programs (Byrd & McIntyre, 1996; Wilson, Floden, & 
Ferrini-Mundy, 2002). Despite the importance of teaching internships, there has been little 
research on prospective teachers teaching internship experience (Peterson, Williams, & Durrant, 
2005; Wilson, et al., 2002). Although this lack of research exists across disciplines, it is 
especially acute in secondary mathematics education (Mtetwa & Thomspon, 2000; Rhoads, 
Radu, & Weber, in press). We seek to address this void with the present study. 

The teaching internship is a time in which many teachers develop their philosophy of 
teaching. The cooperating teacher with whom a student teacher is placed may contribute to the 
development of this philosophy. In a survey of 63 secondary mathematics student teachers, 
interns cited their cooperating teacher as having the greatest influence on their teaching 
philosophy (Frykholm, 1999). However, sometimes this influence may not be a positive one. 
Ensor (2001) described how one secondary mathematics student teacher rarely taught in a 
manner that aligned with her own teaching philosophy. Ensor hypothesized that this may have 

. In a more recent study with nine 
secondary mathematics student teachers, Rhoads, Radu, and Weber (in press) found that student 
teachers felt that having teaching philosophies that differed from their cooperating teacher was 
not problematic, as long as they were given freedom to try out their own teaching methods.  

pedagogical and mathematical development. Peterson and Williams (2008) presented a case 
study of two secondary mathematics student teachers. One teacher was paired with a mentor who 
challenged her to think deeply about the mathematics she was teaching, but the other student 
teacher was paired with a cooperating teacher whose feedback focused on classroom 
management issues. This second student teacher missed key opportunities to develop his 
mathematical knowledge for teaching. Other researchers have suggested that mathematics-
specific feedback is rare in the student teaching experience (Fernandez & Erlbigin, 2009). 

Freedom of teaching methods and the feedback that student teachers receive from their 

In a previous study, we found a wide variance in the quality 
experiences (Rhoads, et al., in press). Some students reported having positive experiences where 
they learned a great deal. Others reported having negative experiences where they had tense 
relationships with their cooperating teachers and felt constrained in the teaching methods they 
were allowed to apply. The purpose of this paper is to understand such a negative relationship in 
more detail. We do this by presenting a case study of a student teacher and a cooperating teacher 
who had a difficult relationship, focusing on what issues may have contributed to these 
difficulties. 
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2. Research methods 

Context. This data came from a larger study that took place at a large northeastern state 
university. In the fall of 2009, there were seven prospective high school mathematics teachers 
enrolled in a five-year mathematics education program at this university. To understand their 
teaching internship experiences, we interviewed all seven of these students, along with six of 
their cooperating teachers and three of their supervisors, about their teaching internship 
experience. In this paper, we focus on one student, Luis, and his cooperating teacher, Sheri. (Luis 
and Sheri are pseudonyms.)  

Luis and Sheri. Luis worked with two cooperating teachers, Sheri and Anya. Anya declined to be 
interviewed but gave Luis very favorable evaluations. By most accounts, Luis was an 
exceptional student. His GPA as a mathematics major was nearly 3.9; of his 
teacher education classes, and the teachers of his mathematics education classes raved about his 
performance; and his student-teaching supervisor gave him very high evaluations, saying he 

an effective teacher; by her account, she had worked successfully with two student-teachers in 
the past. 

Data and analysis. At the end of the semester, Luis and Sheri individually met with the first 
author for a semi-str -internship. 
Questions were based on the preliminary findings reported in Rhoads, et al. (in press) and 
focused on their overall experience, their relationships with one another, the freedom Luis was 
permitted in the classroom, and the feedback Luis received. Analysis of these interviews was 
conducted by the authors in the style of Strauss and Corbin (1990); the findings of this analysis 

l as written artifacts that we 
-written feedback 

that Sheri provided to Luis). Once our tentative conclusions were reached, the first author again 
interviewed Luis to see if he felt these findings were accurate and to ask about issues we found 
ambiguous. This data was used to amend our findings. 

3. Results 

 Although Luis and Sheri both professed to respect one another and not dislike each other 
personally, each reported having a difficult internship experience. We identified seven causes of 
tension between them: (a) different perspectives on how much freedom Luis was allowed, (b) 

to unde
propensity to interrupt Luis during his lessons, (f) Luis receiving little feedback from Sheri late 
in the semester, and (g) a tense personal relationship between them. 

 In the presentation, we will illustrate each of these points in detail. For the sake of 
brevity, we discuss only three in this proposal.  

Freedom of teaching methods. Sheri taught primarily with the use of PowerPoint slides. She also 
required that Luis have his notes prepared in a format that could be readily displayed to students. 
However, Sheri felt Luis had freedom because he could prepare his notes and solutions to in-
class problems using PowerPoint, overhead slides, or in some other format. In this way, Sheri 
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In contrast, Luis felt 
constrained that he could not be responsive to the students, in part because he could not work 
through in-class problems in real time. This cause of tension suggests that what might constitute 
freedom to a cooperating teacher might be quite restrictive for a student teacher. 

What mathematical topics should receive emphasis. Luis taught precalculus with Sheri and 
believed it was important to prepare the students mathematically for higher courses, such as 
calculus. For example, when Luis taught addition of functions, he encouraged students to think 
critically about the domain of a sum of two functions with different domains. During this lesson, 
Sheri interru
Sheri expressed that many of her students were not going to take calculus and so the ideas that 
Luis emphasized were unnecessary, confusing to students, and too time consuming. Many 
mathematics educators would likely prefer the ideas that Luis emphasized in his teaching, and 
this points to the possible conflicts between the goals of mathematics educators and those of 
cooperating teachers in the internship experience. 

Common difficulties of beginning teachers. Both Sheri and Luis acknowledged Luis had 
difficulty with time management and understanding student thinking. However, Luis was not 
alone in this regard. All the student teachers that we interviewed had similar difficulties, and 
other cooperating teachers and supervisors found this to be normal. One difference in Sheri and 

teaching her class competently. 

4. Significance 

 Typically, in the United States, cooperating teachers receive little or no formal 
preparation informing them of how to be effective cooperating teachers or even telling them 
what to expect (Giebelhaus & Bowman, 2002). Recently, some researchers have urged for the 
development of such preparation programs (Feiman-Nemser, 2001; Giebelhaus & Bowman, 
2002). Our results suggest what might be included in such programs. First, cooperating teachers 
should be aware of what difficulties student interns are likely to have so they do not find these 
difficulties to be problematic. Second, cooperating teachers should be encouraged to allow 
student teachers sufficient freedom to try out the ideas they learned in their teacher education 
programs. Third, mathematics educators and cooperating teachers should be encouraged to 
discuss their philosophies and goals regarding the student-teaching experience. Such 
conversations may not lead to consensus, but could lead to a mutual understanding and help to 
avoid some of the tension that we saw with Luis and Sheri. 
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The aim of this presentation is to introduce the Mayan activity as an instructional intervention 
and to examine how the Mayan activity promotes students’ reflective thinking of multiple 
quantifications in the context of the limit of a sequence. The students initially experienced a 
difficulty due to the lack of understanding of the meaning of the order of variables in the 
definition of convergence. However, such a difficulty experienced was resolved as they engaged 
in the Mayan activity. The students also came to understand that the independence of the variable 

N is determined by the order of these variables in the definition. The results 
indicate the Mayan activity promoted students’ reflective thinking of the independence of 
the variable N and helped them understand why the order of variables matters in proving limits 
of sequences. 
 
Keywords: Quantification, Reflective Thinking, Proof Evaluation, Convergent Sequence, 
Cauchy Sequence 

Introduction 

The purpose of this paper is to introduce the Mayan activity as an instructional 
intervention and to give an account of its effect on students’ understanding of multiple 
quantifications in the context of the limit of a sequence. The -N definition of the limit of a 
sequence is of fundamental importance and is very useful in studying advanced mathematics; 
however, many students encounter difficulties when learning the -N definition (e.g., Mamona-
Downs, 2001; Roh, 2009, 2010). In particular, students’ difficulty is caused by their lack of 
understanding of multiple quantifications in general (Dubnisky & Yiparaki, 2000) as well as the 
logical structure of the -N definition (Durand-Guerrier & Arsac, 2005). Many students cannot 
perceive the importance of the order between  and N in the -N definition, and they cannot 
recognize the independence of from N (Roh, 2010, Roh & Lee, in press). Accordingly, in order 
to improve students’ understanding of the -N definition of limit, it is important to enable the 
students to understand the role of multiple quantifiers in the definition. The Mayan activity is 
specially designed with the intention of helping students understand the independence of  from 
N in the -N definition of the limit of a sequence. By comparing students’ responses before and 
after the Mayan activity, this study addresses the following research question: How do students 
develop their understanding of the role of the order of variables in the -N definition via the 
Mayan activity? 

Theoretical Perspective 

The theoretical perspective is based on Dewey’s theory of reflective thinking. According 
to Dewey (1933), when an individual is opposed to his or her knowledge or belief, he or she 
experiences perplexity, difficulty, or frustration; then in the process of resolving it, the reflective 
thinking is necessarily accompanied. Dewey divides reflective thinking into three situations as 
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follows: The pre-reflective situation, a situation experiencing perplexity, confusion, or doubts; 
the post-reflective situation, a situation in which such perplexity, confusion, or doubts are 
dispelled; and the reflective situation, a transitive situation from the pre-reflective situation to the 
post-reflective situation. In addition, Dewey characterized the reflective situation in terms of 
suggestions, intellectualization, hypotheses, reasoning, and tests of hypotheses by actions, which 
are not always in the order but some phases can be omitted or include sub-phases. In line with 
this perspective, the Mayan activity introduced in this paper was designed to provide arguments 
described in a way that  is selected depending on N and against student knowledge or belief 
about limit, and to present a tractable context later in which the students can properly activate 
their reasoning and perceive the independence of  from N, hence resolve their perplexity, 
difficulty, or frustration about their problem.  

Research Methodology 

The research was conducted as part of a design experiment (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003) at a public university in the USA. The tasks designed were iterated 4 
times from fall 2006 to spring 2010. Such an iterative nature of the design experiment allowed 
for frequent cycles of prediction of student learning, analysis of student actual learning, and 
revision of the tasks. This paper reports two studies from the design experiment: Study 1 in the 
fall semester of 2006 and Study 2 in the spring semester of 2010. The participants were 
mathematics students or preserive mathematics teachers, and had already completed calculus and 
a transition-to-proof course. The author of this paper served as the instructor in both studies. The 
classes in both studies mainly followed an inquiry approach, in which students often made 
conjectures, verified their argument, or evaluated whether given arguments were legitimate as 
mathematical proofs. In this manner, the students studied the limit of a sequence and its related 
properties, in particular, the -N definition, and its negation, and limit proofs using the -N 
definition. Also, the similar discussions related to Cauchy sequences followed prior to the days 
of this study.  

In Study 1, the instructor asked the students to evaluate Statement 1: If a sequence 

1{ }n na in  is a Cauchy sequence, then for any 0 , there exists N  such that for all 

n N , 1| |n na a . After the group discussion about Statement 1, the instructor asked the 
students to evaluate Ben’s argument: Consider 1/na n  for any n . Since the sequence 

1{ }n na is convergent to 0, it is a Cauchy sequence in . Let 1/{( 1)( 2)}N N  for all 
N . Let 1n N . Then n N . But 1 1 2| | | | 1/{( 1)( 2)}n n N Na a a a N N . 
Therefore, Statement 1 is false.  

On the other hand, the Mayan activity (Roh & Lee, in press) implemented in Study 2 
consists of three steps: The first is to evaluate Sam’s argument and Bill’s argument. Sam’s 
argument is a proper argument showing the sequence 1{1/ }nn converges to 0 whereas Bill’s 

argument draws an erroneous conclusion that 1{1/ }nn does not converge to 0 by selecting 
dependently on N; the second is to evaluate the Mayan stonecutter story (see Figure 1) in which 
the priest’s argument is compatible to Bill’s argument, but is relatively easier than Bill’s or Ben’s 
argument to track on the logical error made by reversing the order of two variables from the 
craftsman’s argument in the story; and the third is to evaluate Statement 1and Ben’s argument to 
Statement, which were used in Study 1. Comparing results from Study 1 with those from Study 2, 
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this !"!#$ addresses the role of the Mayan activity as an instructional intervention in promoting 
students’ reflective thinking of the independence of  from N. 

The Mayan stonecutter story 
One of the famous Mayan architectural techniques is to build a structure with stones. These 
stones were ground so smoothly that there was almost no gap between two stones. It was even 
hard to put a razor blade between them. One day a priest came to a craftsman to request smooth 
stones. 
Craftsman: No matter how small of a gap you request, I can make stones as flat as you request 

if you give me some time. 
Priest:  I do not believe you can do it. If I ask you to flatten stones within 0.01 mm, you 

won’t be able to do it. 
 Craftsman:  Give me 10 days, and you will receive stones as flat as within 0.01 mm. 
Ten days later, the craftsman made two stones so flat that the gap between them was within 0.01 
mm. On the 11th day, the priest came to see the stones and argued that, 
Priest:  These stones are not flat within 0.001 mm. What I actually need are stones as flat as 

within 0.001 mm. 
Craftsman:  Okay, if you give me 5 more days, I can make the stones as flat as within 0.001 mm. 
Five days later, the craftsman made the two stones so flat that the gap between them was within 
0.001 mm. On the 16th day, the priest came to see the stones and argued that, 
Priest:  But these stones are not flat within 0.0001 mm and I meant 0.0001 mm. You don’t 

have that kind of skill, do you? 
If the priest keeps arguing this way, is the priest really fair showing that the craftsman does not 
have the ability to flatten stones within any margin of error? 
Figure 1. The Mayan stonecutter story.  

Results and Discussions 

It is expected that when two conflict arguments to each other are suggested, students can 
recognize that at least one of the arguments is false. However, it is not assured that they will 
select the true statement between the two conflict arguments. In Study 1, many students initially 
accepted Statement 1 as a true statement, but they reversed their determination of Statement 1 to 
accept Ben’s argument. Although the students had considerable experiences with rigorous proofs 
about the convergence of sequences and their reasoning was proper in deriving the truth of 
Statement 1, they had deficiency of perception of the independence of  from N, and could not 
give their refutation against invalid conclusions derived from allowing  to be selected 
dependently on N.  This result from Study 1 indicates that in order to properly promote students’ 
reflective thinking of the independence of  from N, it is needed to exclude the possibility that 
students can accept an argument, such as Ben’s argument, that is described by choosing  
dependent on N, hence to be false.  

In Step 1 of the Mayan activity implemented in Study 2, two conflict arguments were 
also given to students: One is Sam’s argument that students can be convinced of the truth of its 
conclusion, and the other is Bill’s argument that is contradictory to Sam’s argument by choosing 
 dependent on N. Unlike Study 1, students in Study 2 could perceive that Bill’s argument 

induces an erroneous conclusion. Pointing out that a negation was attempted in Bill’s argument, 
the students also intellectualized the problem of Bill’s argument, and took note of that a negation 
was tried in Bill’s argument. It indicates that they were beyond just suggesting the invalidity of 
Bill’s argument, but further explored intellectually the problem of Bill’s argument. Nonetheless, 
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similar to the students in Study 1, the students in Study 2 were unable to find the logical fallacy 
in Bill’s argument. When a student Matt asked “how did he [Bill] not correctly [conclude] it? I 
guess that’s part of the question here,” other students encountered a difficulty in explaining the 
reason why such an erroneous conclusion could be derived. These students did not develop any 
proper hypothesis and did not make any proper reasoning, to the problem of Bill’s argument. 
Consequently, they failed to resolve their perplexity caused from Bill’s argument. 

It is worth noting that in Step 2 of the Mayan activity while evaluating the priest’s 
argument in the Mayan stonecutter story, the students in Study 2 instantly suggested the priest 
unfair. In addition, they perceived that the priest attempted to disprove the craftsman’s claim, 
and intellectualized that in order to disprove the craftsman’s claim, the priest should prove the 
negation of the craftsman’s claim. After comparing the negation of the craftsman’s claim and the 
priest’s argument in terms of quantified statements, the students recognized that the order 
between the margin of error and time in the priest’s argument was reversed from that in the 
negation of the craftsman’s claim. The students then hypothesized that the reversal of the 
quantifiers in the priest’s argument entailed the illogical conclusion that the priest made. They 
also reasoned out that while attempting to disprove the craftsman’s claim, the priest generated an 
irrelevant argument to the negation of the craftsman’s claim. Eventually the students found why 
the priest’s argument is invalid. As a consequence, they came to understand why the order of 
variables in these arguments is improperly determined. Furthermore, in Step 3 of the Mayan 
activity, the students were convinced of their reasoning by confirming that the reversal of the 
order of the variables in Ben’s arguments is the same logical problem as that in priest’s 
argument.  

The results from this study indicate that the Mayan activity played a crucial role as an 
instructional intervention in promoting students’ reflective thinking and helping them understand 
the role of the order of variables in the -N definition. The Mayan activity enables students to 
experience first-hand the meaning of the independence of  from N. In fact, the activity 
introduces the Mayan stonecutter story from which students concretely realize the problem of 
describing  dependently on N. In addition, the priest’s argument is logically compatible with 
Bill’s argument but is tractable so that students easily understand the logical structure and 
perceive the logical fallacy in the argument. Furthermore, the stonecutter story is a transferrable 
context in the sense that students can properly link the variables (gaps between stones and days) 
in the priest’s argument to the variables (  and N) in Bill’s argument.  
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1. Introduction 
 -level mathematics courses is 
to improve their abilities to construct formal proofs. Unfortunately, numerous studies 
reveal that mathematics majors have serious difficulties with this task (e.g., Moore, 1994; 

difficulties with proof construction, research on how undergraduates can or do 
successfully construct proofs has been limited.  

One approach that several researchers recommend is for students to base their 
formal proofs on diagrams and other informal arguments (e.g., Gibson, 1998; Raman, 
2003). These recommendations are supported by the theoretical advantages afforded by 
visual reasoning (Alcock & Simpson, 2004; Gibson, 1998), successful illustrations of 
students using visual arguments as a basis for formal arguments (e.g., Alcock & Weber, 
2010; Gibson, 1998), and the fact that mathematicians claim to use diagrams extensively 
in their own work. 

However, for this to be useful pedagogical advice, more research is needed on 
how students can effectively use diagrams in their proof construction. Researchers such 
as Pedemonte (2007) and Alcock and Weber (2010) have noted that students find it 
difficult to translate an informal visual argument a formal proof. Also, several studies 

success in proof-writing (e.g., Alcock & Simpson, 2004; Alcock & Weber, 2010; Pinto & 
Tall, 1999). If undergraduates are to successfully use diagrams as a basis for their proofs, 
they need to have a better understanding of how diagrams can be useful in proof 
construction and the skills needed to express and justify inferences drawn from a diagram 
in the language of formal mathematical proof. The goal of this presentation is to 

non-trivial proof construction task that invites the construction and use of a graph. 
 

2. Theoretical assumptions 
 This paper is based on the assumption that a goal of instruction in advanced 
mathematics courses is to lead students to reason like mathematicians with respect to 
proof (a position endorsed by Harel & Sowder, 2007), realizing these goals requires 
having a more accurate understanding of mathematical practice than we currently have (a 
position argued by the RAND Mathematics Study Panel, 2003), and we can improve our 
understanding of mathematical practice by carefully observing mathematicians engaged 
in mathematical tasks (see Schoenfeld, 1992). 
 
3. Research Methods 
Data collection. Ten mathematicians participated in a study in which they were asked to 

ion was not injective on any interval of 

textbook for second and third year mathematics majors. This task was chosen because we 
anticipated the participants would likely draw a graph of the sine function, quickly 
become convinced that the theorem was true as a result of inspecting this graph (or prior 
to constructing it), but nonetheless have some difficulty producing a formal argument that 
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this was true. We note in the results section that our assumptions proved to be accurate. 
All interviews were videotaped. 
Analysis. Analysis was conducted in the style of Weber and Mejia-Ramos (2009). We 
first noted every inference the participant made while constructing the proof, where an 

-sin x), a proving approach 
(e.g., use a proof by cases, use a calculus-based derivative argument), or an evaluation of 

-sin x is true but not useful to prove the 
claim). For each inference, we coded whether the inference was made from inspecting the 
appearance of the graph, a logical deduction from some other inference, recall, or from 
some other source (e.g., a metaphor, some other diagram they constructed). Also, for 
each inference, we noted what previous inferences that the new inference was based 
upon. Once this was coded, we looked at the final proof and determined the chain of 
inferences used to produce this written argument. Consequently, for each inference we 
coded, we determined whether it was part of a chain of argumentation that led to the final 

-
argument). Finally, for each inference that was based on a graph, we used an open-coding 
scheme to categorize how the graph was used to support this inference. 
 
4. Results 
 This was a surprisingly challenging task for mathematicians. One participant was 
unable to complete it successfully and several other mathematicians produced invalid 
proofs. Nine of the ten participants spent between 9 and 40 minutes in completing this 
task. During their proof construction processes, most drew inferences or suggested proof 
approaches that did not play a role in the construction of the proofs they wound up 
producing, suggesting that translating the conviction they obtained from the graph to a 
formal proof was not direct or straightforward. 
 The participants used the graph for six purposes:  
(a) noticing properties and generating conjectures of the sine function that might be 

 
(b) representing or instantiating an assertion or an idea on the graph, 
(c) disconfirming conjectures that are not true (e.g., one participant initially conjectured 

 
(d) verifying properties that they deduced through logic,  
(e) suggesting proving techniques (such as using the periodicity of the sine function or 
forming a case-based argument) to prove the theorem, 
(f) using the graphs as a justification for claims they wished to make (e.g., noting that a 
student could see that a claim was true by inspecting the graph). 

The extent of graph usage varied greatly by 
participant, with some frequently interacting with the diagram and others making little 
use of the diagram after it was drawn. Some proofs were not based on any inferences that 
were derived from the graph, suggesting that not all mathematicians write their proofs 
based on the visual arguments they used to obtain conviction. 
Skills needed to use visual diagrams in proof-writing. We identified a number of skills 
that the participant used to utilize the graphical inferences they made into their formal 
proofs. These skills included access to a number of domain specific proving strategies 
(e.g., for a continuous function, proving injectivity and monotonicity are equivalent), 
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fluency in algebraic manipulations, and translating logical statements into equivalent 
statements that are easier to work with. 
The limited use of the graph in the final product.  Only one participant included the 
diagram in the proof that he would present in the textbook. This illustrates how 
mathematicians may, perhaps unintentionally, mask the informal processes they use to 
create formal arguments when presenting proofs to their students. When this was pointed 
out to them, some viewed the lack of a graph as a shortcoming of their presentations 
while others did not. 
  
5. Significance 
 
formal proof on visual evidence. Hence, it should be no surprise that students also find 
this process difficult. This study describes the specific ways in which the visual diagrams 
were used by the participants to construct their proofs. It can be beneficial for instructors 
to make students aware of these purposes. The variance in the extent of graphical usage is 
consistent with the arguments of others that there is no single way that mathematicians 
engage in doing mathematics; some mathematicians use diagrams regularly in their 
mathematical work while others do not (e.g., Pinto & Tall, 1999; Alcock & Inglis, 2008). 
Finally, the skills that we outlined are important for students to master if they are to 
successfully use diagrams in their own proof-writing. 
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This research was conducted as a quantitative study using a pre- and a posttest design 

with a convenience sampling as defined by Creswell (2005). The participants were from two 
geometry classes, in consecutive calendar years, in a four-year Master’s granting university 
located in the central coast of California.  Only one section of the course is offered per calendar 
year and every student enrolled was offered to participate in this study.  Twenty-one students 
participated in the data collection from the first class and 24 students participated from the 
second class. Of the 45 participants from the two classes the majority had declared an interest in 
teaching secondary mathematics and some were considering teaching at the community college 
level. The course was taught each time over a ten-week period, and met four times a week for 
50-minute sessions. The prerequisites for this geometry course included a course in methods of 
proof in mathematics, which focuses on instruction of logic and proof techniques. In addition, 
this geometry course is mandatory for mathematics majors in the teaching concentration while 
open to other students who have met the prerequisites. The purpose of this study was to assess 
whether a proof-intensive geometry course, taught from an inquiry-oriented, technology-based 
perspective, has any influence on the van Hiele levels of prospective mathematics teachers and 
whether the influence, if any, varies by gender. 

In 1957, Pierre Marie van Hiele and Dina van Hiele-Geldof, mathematics educators in the 
Netherlands, developed a learning model for geometry as their doctoral thesis. They defined 
what are known as “the van Hiele levels of development in geometry”, which, according to van 
Hiele-Geldof’s thesis, are hierarchical (cited in Fuys, Geddes, & Tischler, 1984).  Altogether, 
there are five van Hiele levels (VHLs): 1) visualization - students visualize geometrical figures 
as a whole and recognize them by their particular shape; 2) analysis - students recognize the 
geometric properties of the different figures and are able to analyze the figures separately, but do 
not yet make connections between figures; 3) abstraction - students recognize relationships 
between figures and between properties of different figures; 4) formal deduction - students can 
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write proofs and should provide justifications for each step in the proof; 5) rigor - “… student 
understands the formal aspect of deduction… [and] should understand the role and necessity of 
indirect proof and proof by contrapositive” (Mayberry, 1983, p. 59), and students can understand 
non-Euclidean geometries. These definitions were gathered from several authors’ interpretations 
of the five van Hiele levels (Burger & Shaughnessy, 1986; Mayberry, 1983; Mistretta, 2000). 
Exact definitions can be found in van Hiele-Geldof’s doctoral thesis (Fuys et al., 1984), and a 
more detailed list of behaviors at each level can be found in Usiskin (1982, pp. 9-12). 

As seen in past research, the van Hiele level or the level of competence in geometry of 
some teachers is not at the highest level (Mayberry, 1983, pp. 67-68; Sharp, 2001, p. 201; 
Swafford, Jones, & Thornton, 1997, pp.469-470), thus possibly hindering the learning of 
geometry of some students. A conflict may arise when there is a discrepancy between the van 
Hiele level of the teacher and the zone of proximal development (ZPD) (Vygotsky, 1987) of the 
student.  We expect this conflict to be mitigated if a teacher is at VHL 5. 

While it is ideal for all prospective teachers to be at VHL 5, gender differences favoring 
males are almost twice as large in geometry as in other areas of mathematics (Leahey & Guo, 
2001). Furthermore, even though the findings reported in the literature suggest variations in 
gender differences, the differences are mostly in spatial visualization tasks (Battista, 1990). Senk 
and Usiskin (1983) studied high school geometric proof writing abilities, which they consider as 
a high-level cognitive task requiring some spatial ability. However, while overall geometry 
performance has not been analyzed by gender, they found no gender differences in achievement 
in geometric proof writing at the end of a one-year geometry course even though females started 
the year with generally less geometry knowledge (p. 193). 

This review of literature only found a few peer-reviewed published studies involving the 
level of content knowledge in geometry of prospective or practicing teachers. Among them, one 
study has been conducted on VHLs of prospective elementary teachers (Mayberry, 1983), one on 
VHLs of practicing middle-grade teachers (Swafford et al., 1997), and one on developing the 
geometric thinking of practicing K-7 teachers (Sharp, 2001), but none on the influence of an 
inquiry-oriented, technology-based, proof-intensive geometry course on VHLs of prospective 
secondary mathematics teachers. 

After examining several documents written by the van Hieles and describing behaviors at 
each van Hiele level, Usiskin (1982) developed a 25-item test instrument to assess the van Hiele 
level of an individual. Although this instrument was primarily devised with high school students 
in mind, it has been used, with permission from the authors, for this study (S. Senk, personal 
communication, November 19, 2007).  Whether the subjects involved would constitute an 
appropriate reference base for the study using Usiskin’s test was considered since the subjects 
involved have all completed a one-year high school geometry course. However, even though the 
van Hiele levels have been defined while studying high school students, Pierre-Marie van Hiele, 
as quoted by Usiskin, believed that the highest level is “hardly attainable in secondary teaching” 
(1982, p. 12). Furthermore, Mayberry (1983), who devised her own test instrument, found that 
“70% of the response patterns of the students who had taken high school geometry were below 
Level III” (equivalent to level 4 in this study), and “only 30% were at Level III” (pp.67-68). 
Time constraints in preparing a VHL test and in-class time usage were also key factors in the 
selection of a test instrument. Burger and Shaughnessy (1986), as cited by Jaime and Gutiérrez 
(1994, p. 41), developed a test to assess VHLs, but its administration, through an interview, 
requires more time to conduct. Mayberry’s (1983) 128-item test was discarded for the same 
reason. Usiskin’s test was readily available and it is a timed-test limited to 35 minutes. 
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Finally, in 1990, Usiskin and Senk confirmed the validity of Usiskin’s test even though 
they were aware of a better instrument, the RUMEUS (Research Unit for Mathematics Education 
at the University of Stellenbosch) test. Smith, as cited by Usiskin and Senk (1990), admitted that 
Usiskin’s test was quicker and more convenient to apply in addition to being shorter than the 
RUMEUS test which he had used in a comparative study with Usiskin’s test (p.245). It was thus 
decided to move forward with Usiskin’s test to assess the van Hiele levels of development in 
geometry in a post-secondary setting. 

Usiskin’s test was administered during the first and last class meetings as a pre- and 
posttest. During class, students typically worked on inquiry-oriented activities using the dynamic 
geometry program The Geometer’s Sketchpad (GSP) (KCP Technologies, 2006). The activities 
were generally completed in groups and provided the foundation for the inquiry-oriented, 
technology-based nature of the class as participants were expected to make and prove 
conjectures from their exploration with the dynamic geometry software. After students engaged 
with the activities, they were regularly asked to present their conjectures and proofs to the class, 
which often resulted in multiple avenues to prove the conjectures being explored. These 
activities, presentations, and class assignments make up the proof-intensive nature of the course. 

Before analyzing the data with respect to our research purpose, we became interested in 
verifying the hierarchical nature of Usiskin’s van Hiele test (1982) with our participants. We 
implemented a Guttman scalogram analysis similar to that of Mayberry (1983) to determine 
whether the VHLs as tested by Usiskin’s test form a hierarchy. The scalogram analysis implied 
that Usiskin’s van Hiele test operated adequately for both of our sets of participants in terms of 
the hierarchical nature of the VHLs. 

To interpret the results of the pre- and posttests, each participant was assigned a raw 
score (out of 25) and a VHL similar to what Usiskin (1982) calls a “classical van Hiele level” (p. 
25). The 4-item criterion (p. 24) was used since random guessing was not expected from the 
participants in this study and a higher mastery level was expected considering all the participants 
had completed a high school geometry course. Each group of five questions in Usiskin’s test 
corresponds to a different VHL (questions 1 to 5 correspond to VHL 1, questions 6 to 10 to VHL 
2, and so on). For a participant to be assigned a level, say n, at least four items must have been 
answered correctly at level n and at each preceding level. If a participant answered less than four 
questions correctly at level 1, then level 0 was assigned.  The table below summarizes the raw 
scores and VHLs from both sets of data. 
 

 Data Set 1 Data Set 2 
 Male Female Male Female 
 Pre Post Pre Post Pre Post Pre Post 

Raw Score 21.08 20.92 19.44 21.22 20.75 22.375 19.69 21.375 
VHL 3.67 3.25 2.56 3.44 3.0 3.875 2.875 3.56 

 
 Beyond the analysis of raw scores and VHLs, we decided to look at the data by VHL to 
document changes, especially related to the proof-based nature of the course, levels 4 and 5.  For 
both sets of participants, the females made statistically significant gains at VHL 4 and little 
change at all other VHLs.  For the first group of participants, the males made statistically 
significant gains at VHL 5 with very little change at any other VHL.  Similarly, although not 
statistically significant, the male participants in the second group made substantial gains at 
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VHL5 with their average increasing from 3.5 out of 5 questions correct to 4.25 out of 5 questions 
correct. 

Some findings in this research are consistent with the findings of prior research. For 
instance, the results on the pretest are consistent with Leahey’s and Guo’s (2001) findings where 
male students did better than female students in geometry at the end of high school (p.721). As in 
Senk and Usiskin (1983), females and males performed (almost) equally well in geometric proof 
writing at the end of a geometry course. Additionally, as in this study where, in general, the 
females’ performance has improved substantially, Ferrini-Mundy and Tarte, as cited by Leahey 
and Guo (p. 721), found that girls’ performance improved after learning spatial-related strategies. 
This may correspond to the use of The Geometer’s Sketchpad in this course and other teaching 
strategies used by the professor including the inquiry-oriented nature of the course.  While the 
results of this research suggest a positive change in participants’ VHLs, the small number of 
participants at VHL 5 continues to raise the question about the best manner to assess prospective 
teachers’ preparedness to teach geometry.  
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Introduction 
 
Several researchers (Dorier, Robert, Robinet, & Rogalski, 2000; Harel, 1989, 1990; Harel & 
Kaput, 2002; Hillel, 2000; Sierpinska, 2000) have indicated the need to integrate students 
understanding of algebra, geometry and symbolic formalism in order to help students use linear 
algebra to solve problems and do proofs.  The results from these studies provide powerful 
evidence of students’ difficulties and the challenges inherent in learning linear algebra.  
Recently, researchers (Larson, Nelipovich, Rasmussen, Smith, & Zandieh, 2008; Possani, 
Trigueros, Preciado, & Lozano, 2009) have used modeling and instructional design based upon 
realistic situations in order to deal with integrating the algebraic, geometric and formal aspects of 
linear algebra .  These approaches to teaching linear algebra allow for students to interact with 
one another, examine the situation from a variety of mathematical positions, and create meaning 
that is integrated and deep.  In this talk, I will answer two questions: What are the activities that 
students engage in as they learn to symbolize vector spaces in Rn using realistic situations 
intended to promote the integration of formal linear algebra, algebraic symbolism and geometric 
intuition? And, what is the process by which the classroom community developed these activities 
and how does this process reflect the moment-to-moment and context dependent needs of that 
community?  Answering these questions can provide teachers the ability to be responsive to 
student needs and thinking as they lead their classrooms in symbolizing vectors and vector 
equations.  As well, it can provide instructional designers with valuable insight into how 
classroom communities integrate informal and formal aspects of linear algebra. 
 
Theoretical Perspective 
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A potential consequence of researching student work on complex activities in complex 
mathematics is that classroom mathematical activity from this perspective requires examining 
how meaning for mathematical objects gets generated over time as a process of collective action 
and negotiation.  In undergraduate mathematics, several studies have examined how classroom 
communities generate meaning for mathematics (Rasmussen & Blumenfeld, 2007; Rasmussen, 
Zandieh, King, & Teppo, 2005; Rasmussen, Zandieh, & Wawro, 2009; Stephan & Rasmussen, 
2002) and the role that gesture plays in argumentation(Marrongelle, 2007; Rasmussen, Stephan, 
& Allen, 2004). Because of the multiple voices present in the classroom, meaning from a 
collective perspective is never really fixed.  At a given moment, for a given task, the researcher 
might be able to say that students are utilizing a certain meaning or engaging in a certain activity, 
but that meaning is undergoing a constant process of construction and deconstruction. According 
to Wenger (1998), the process by which members of a community come to understand a 
particular artifact or concept is via the process of the negotiation of meaning.  Negotiation of 
meaning implies that meaning is created over time as a process of give and take between 
members of the community.   The classroom community I examined spent several class periods 
discussing and arguing about the creation, use and interpretation of symbols in the classroom.  
 In this analysis, I use the term activity to signify the collections of meanings and practices 
that students created, used and yielded as interpretations when working with vector spaces in Rn.  
The use of the term activity is purposeful here as it indicates a frame for action that is both goal 
directed and the product of cultural mediation(Lave & Rogoff, 1984).   As well, any set of 
activities has associated with a set of goal directed actions that make up that particular activity.  
Hence, when characterizing an activity, it is essential to indicate not only what is being done, but 
also to what end is that action being done. 
 
Methods 
  
 The following analysis is based upon data gathered during a classroom teaching 
experiment (Cobb, 2000) conducted at a southwestern research university.   This study was part 
of a larger study that followed an introductory linear algebra course over the course of an entire 
semester. The study examined eight days from that semester-long class, focusing on classroom 
sessions that dealt with material germane to the study, including vectors, vector equations, linear 
dependence/ independence, span and basis.  Each classroom session was videotaped and student 
work and daily reflections were collected and used for triangulation purposes.  . The classroom 
sessions in this study focused on two sets of tasks.  The first set of tasks, which took place over 
the first 3 weeks, involved an imagined scenario involving two or three modes of transportation, 
symbolized by vectors, and the ability of a rider to get around in two and three dimensions using 
these modes.  This scenario was used to teach the symbolic system of vectors and vector 
equations, solution methods using Gaussian elimination, linear independence and dependence, 
and span.  It also served as a springboard for formalized linear algebra.  The second set of tasks, 
which took place in the 13th and 14th weeks, focused on basis and change of basis and integrated 
the language and imagery from the first set of tasks into class discussion. Furthermore, in the 
third and fourth week of the semester, 3 focus group interviews were conducted, and in the final 
week of semester, three more were conducted.   The focus groups had students address the norms 
of the classroom and their understanding and use of symbolic expressions.  Focus group 
participants were chosen reflect various ability levels and because of their membership in various 
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small groups in the class.  Video-recordings were made for these focus groups and written work 
was collected 
 Analysis of this data was three-phased.  In phase-one, the six focus group interviews were 
analyzed with regards to students’ creation, use and interpretation of vectors and vector 
equations. Then, whole class and small group episodes were coded using a modified Toulmin 
scheme (Rasmussen & Stephan, 2008).  The use of this scheme was intended to locate meanings 
that were functioning-as-if-shared in the classroom community by identifying data, claims, 
warrants or backings that either shift roles within a chain of arguments or cease to require further 
justification by members of the classroom as they are used in later arguments. The analysis of 
argumentation focused on activity with students’ symbolizing, but also included meanings 
generated by students with regard to these symbols. This analysis was compared against the 
focus group analysis creating a narrative for the meanings that these students developed for the 
symbolic system.  This narrative illustrated what the meanings were, how they came to be and 
the ways that students used them to solve problems in linear algebra. Finally, the whole class 
analysis was compared against the focus group analysis in order to insure that the two analyses 
were consistent.   
 
Results and conclusions 
 
  Analysis of the focus group interviews and whole class sessions yielded three distinct, 
but integrated activities for the symbols for vector spaces in Rn.   
 

• Drawing and Interpreting Lines In Space 
• Coordinating Slopes 
• Generating Linear Combinations   

 
The first activity, called “drawing and interpreting lines in space” was utilized as students were 
constructing geometric intuitions and was most prevalent when working directly with the 
geometry of R2 and R3.  When engaged in this activity, students coordinated the lines in space in 
order to reach specific destinations or to generally specify where on the plane a set of vectors 
could reach.  The directionality of the vector specifies where on the plane or in 3-space a vector 
allows the student to reach a destination. The use of this meaning was prevalent when discussing 
the parallelogram rule for vector addition and early in the class when solving for scalar multiples.  
Scalars were used to represent numbers of iterations of these vectors, while addition of the 
vectors is used in order to coordinate discrete distances in potentially differing directions.   

The second activity: “coordinating slopes”: reflects the use of vectors component-wise 
and grouping them together by common ratios.  Frequently, the goal for this activity was to 
create relationships between two or more vectors and draw conclusions based upon those 
relationships. Although the term slopes often indicates geometric interpretations, for this class 
the term was more algebraic in its connotation.  A slope was the specific relationship between 
the components of a vector.  However, students did not find these slopes for individual vectors, 
but rather established a vectors slope as an equivalence class.  If one vector could be expressed 
as a scalar times another vector, then those two vectors were members of the same equivalence 
class, called like “slopes.” Vectors with like ratios between their components supplied redundant 
information, as they did not allow for movement in differing directions.  This redundancy of 
information became a precursor for students’ meanings for linear dependence, as students 
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noticed that vectors that had like slopes allowed for movement away from the origin in one 
direction and movement back to the origin by multiplying by a negative scalar.  

The classroom community developed the third activity, generating linear combinations, 
when they needed to create more generalized meanings and communicate those meanings with 
others.  From a student perspective, algebraic relationships or geometric interpretations are either 
too imprecise or lack the ability to communicate an entire range of possibilities that a set of 
vectors might provide.  Thus, the language of linear combinations provided a precise and fully 
generalized way of expressing mathematical solutions and relationships.  It is important to note, 
however, that these relationships did not begin formal in nature, but instead became formal as 
students developed meaning for formal definitions and notation. When engaged in this activity, 
students used scalar multiplication and addition in conjunction with one another to identify 
specific properties of sets of vectors, including whether or not the set of vectors was linearly 
dependent or independent and what space the set might span.   
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Abstract:  The Mathematical Sophistication Instrument (MSI) measures the extent to 

mathematical community based on eight interwoven categories: patterns, conjectures, 
definitions, examples and models, relationships, arguments, language, and notation. In 

on the MSI improved during their introductory college mathematics courses. A large 
sample of five sections of a first course for elementary education majors, five sections of 
College Algebra, and seven sections of mathematics for liberal arts majors completed the 
instrument both at the start and end of the spring 2009 term. Results showed that students 
in courses where instructors used inquiry-based pedagogies scored markedly higher on 
the instrument at the end of the semester than at the start. In courses where instructors 
used traditional pedagogies, only slight changes in scores were observed.  

Keywords: inquiry-based pedagogy, teacher knowledge, mathematical enculturation, 
autonomy, mathematical sophistication  

Background and Framework: In previous research (Seaman & Szydlik, 2007), we 
studied the ways in which preservice teachers learned mathematics by observing their 
attempts to understand ideas in arithmetic and number theory using a teacher resource 
website. Results suggested that our participants were profoundly mathematically 
unsophisticated; they displayed a set of values and tools for learning mathematics that 
was so different from that of the mathematical community, and so impoverished, that 
they were essentially helpless to create fundamental mathematical understandings.  
 
Based on our comparison of the 2007 
with those of mathematicians, we created a framework to define a construct that we 
termed mathematical sophistication. The construct is defined in terms of beliefs about the 
nature of mathematical behavior, values concerning what it means to know mathematics, 
avenues of experiencing mathematical objects, and distinctions about language and 
notation. Specifically, we proposed the following list of values and behaviors that 
indicate mathematical sophistication.  
 

1) Seeking to understand patterns based on underlying structure. 
2) Making and testing conjectures about mathematical objects and structures.  
3) Creating mental (and physical) models and examples and non-examples of 

mathematical objects.  
4) Using and valuing precise mathematical definitions of objects. 
5) Valuing an understanding of why relationships make sense. 
6) Using and valuing logical arguments and counterexamples. 
7) Using and valuing precise language and having distinctions about language.  
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8) Using and valuing symbolic representations of, and notation for, objects and 
ideas. 

 
I tical sophistication became an articulated goal of the 
mathematics for elementary education sequence at our university. All instructors of those 
courses committed to using inquiry-based pedagogies; their students solved novel 
problems in small groups and then discussed their solutions, strategies, and reasoning as a 
class. Furthermore, instructors made the values of the mathematical community more 
overt. For example, making sense of definitions, discussing the value of pattern-seeking 
and generalization, and studying distinctions between inductive and deductive reasoning 
became explicit topics of that sequence. These goals are aligned with demands that 
teachers understand the rich connections among mathematical ideas; bridge gaps between 

d language; and model and 
request the mathematical behaviors of sense making, conjecturing, and reasoning 
(CBMS, 2001). (For a comprehensive overview of the literature on teacher knowledge 
see Hill et. al., 2007.) 
 
In order to measure changes in mathematical sophistication in our students, we developed a 
twenty-five item, multiple-choice, paper-and-pencil Mathematical Sophistication Instrument 
(MSI) based on the above framework. Items were developed by, or in consultation with, eight 
mathematicians. Our attempt was to make the items substantially free of specific mathematics 
content. 
make sense of a new definition and the meaning of  

 
A number is called normal if it is less than 10 or even.  According to this definition,  
of the numbers 5, 8, and 24,  

a) Only 5 and 8 are normal. 
b) Only 8 is normal. 
c) Only 5 and 24 are normal. 
d) All of these numbers are normal. 

 
In Fall 2007 a large sample of students in their mathematics for elementary teachers 
courses completed the instrument during the first month of the semester. Twelve students 
(four who scored in the top quartile, four who scored in the middle half and four who 
scored in the lower quartile on the instrument) were interviewed to determine whether the 
level of sophistication shown by the students as they explained their thinking was 
reflected by their performance on the items. The MSI was revised based on that data.  
 
In fall 2009 we assessed both the validity and reliability of the updated instrument with a 
large sample of undergraduates at a Midwestern comprehensive state university (Szydlik, 
Kuennen, & Seaman, 2010). In order to assess the validity of the instrument, course 
instructors rated the mathematical sophistication of their students based on our 
framework, and instructor ratings were compared with student scores on the items. 
Results suggest that the MSI is a valid measure of sophistication as defined by the eight 
categories. In pilot testing, the MSI has obtained Kronbach Alphas between .053 and 
0.73.  
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Methods for the Current Study: In spring 2010 we sought to investigate whether 
scores on the MSI improved during their first course for preservice teachers: 

Number Systems. That semester Number Systems was taught by four different 
instructors, and all sections (116 students) participated. We formed two comparison 
groups for the research: a sample of 116 students taking a first liberal arts mathematics 
course (with four different instructors), and a sample 97 of students taking college 
algebra (with two different instructors). All three courses had the same prerequisite. The 
MSI was administered in classes at both the start and at the end of the semester in all 
participating sections. Almost all students present chose to participate.    
 
Results: Each MSI item was scored 1 point for the most sophisticated answer (as 
determined by the mathematicians) and 0 points for all other response options. 
Cumulative pre-test scores ranged 1 to 19 (out of 25 points) and post-test scores ranged 
from 2 to 19 points. Students in all groups showed significant gains on the MSI during 
the spring 2010 term. This is not surprising; since the same instrument was used for both 
the pre- and post-tests, we expected gains. However, as shown in the table below, 
students in both Number Systems and the liberal arts mathematics course obtained 
important and highly significant gains on the MSI (p < .0001), whereas the students in 
College Algebra showed only modest changes. These results remained even upon 
deleting four MSI items with mathematics content explicitly addressed in one or more 
sections. For example, one instructor of liberal arts mathematics included a graph theory 
unit, and since two graph theory items appeared 
to make sense of a new definition, those items were deleted (for everyone) in a reanalysis 
of the data. 
 

Course 
 

MSI  Score at the 
start of the term 

MSI Score at the 
end of the term 

p-value 

Number Systems 
(n = 116) 

    Mean = 7.74 
Stand. Dev. = 2.83  

    Mean = 10.01 
Stand. Dev. = 3.65 

p < 0.00001 

Liberal Arts Math 
(n = 116) 

    Mean =  8.11 
Stand. Dev. = 3.42 

     Mean = 9.12 
Stand. Dev. = 3.60 

p <  0.0001 

College Algebra 
(n = 97) 

    Mean =  7.37 
Stand. Dev. = 3.09 

     Mean = 7.90 
Stand. Dev. = 3.17 

p < 0.04  

MSI Scores by Course 
 
Conclusions: Because the instrument is substantially free of relevant mathematics 
content topics, we assert that gains on the MSI are due primarily to differences in the 
ways students in the courses experienced mathematics. According to an instructor 
questionnaire, and informal observations and discussions of teaching, inquiry-based 
pedagogies were used almost exclusively by instructors in all sections of Number 
Systems and were used on most days by the instructors of liberal arts mathematics. 
College Algebra was taught using traditional lectures.  
 
This work suggests two conclusions. First, measurable changes in student sophistication 
can be affected during the course of a semester; and second, those changes appear to be 
the result of the students having engaged in mathematically authentic behaviors in the 
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classroom. In our presentation we will share our instrument, and we will discuss possible 

MSI. 
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Individual and Collective Analysis of the Genesis of Student Reasoning Regarding the 
Invertible Matrix Theorem in Linear Algebra 

 
 

Megan Wawro 
San Diego State University & 
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Abstract: I present research regarding the development of mathematical meaning in an 
introductory linear algebra class. In particular, I present analysis regarding how students–both 
individually and collectively–reasoned about the Invertible Matrix Theorem over the course 
of a semester. To do so, I coordinate the analytical tools of adjacency matrices and Toulmin’s 
(1969) model of argumentation at given instances as well as over time. Synthesis and 
elaboration of these analyses was facilitated by microgenetic and ontogenetic analyses (Saxe, 
2002). The cross-comparison of results from the two analytical tools, adjacency matrices and 
Toulmin’s model, reveals rich descriptions of the content and structure of arguments offered 
by both individuals and the collective. Finally, a coordination of both the microgenetic and 
ontogenetic progressions illuminates the strengths and limitations of utilizing both analytical 
tools in parallel on the given data set. These and other results, as well as the methodological 
approach, will be discussed in the presentation. 
 
Key words: linear algebra, individual and collective, genetic analysis, argumentation, 
Toulmin scheme, adjacency matrices.
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 The Linear Algebra Curriculum Study Group (Carlson, Johnson, Lay, & Porter, 1993) 
named the following as topics necessary to be included in any syllabus for a first course in 
undergraduate linear algebra: matrix addition and multiplication, systems of linear equations, 
determinants, properties of Rn, and eigenvectors and eigenvalues. Some of the specific 
concepts involved in the aforementioned topics are: (a) span, (b) linear independence, (c) 
pivots, (d) row equivalence, (e) determinants, (f) existence and uniqueness of solutions to 
systems of equations, (g) transformational properties of one-to-one and onto, and (h) 
invertibility. These concepts, in addition to others, are the very ones addressed and linked 
together in what is referred to as the Invertible Matrix Theorem (see Figure 1). The Invertible 
Matrix Theorem (IMT), which consists of seventeen equivalent statements, is a core theorem 
for a first course in linear algebra in that it connects the fundamental concepts of the course.  

I take the perspective that the emergence and development of mathematical ideas 
occurs not only for each individual student but also for the classroom as a collective whole. 
Many researchers acknowledge in the role of the collective on the mathematical development 
of a learner and vice versa (Hershkowitz, Hadas, Dreyfus, & Schwarz, 2007; Rasmussen & 
Stephan, 2008; Saxe, 2002). Through this viewpoint, the interrelatedness of the individual 
and the collective come to the fore, highlighting how the activity of one necessarily affects 
that of the other. These two forms of knowledge genesis—on an individual and on a 
collective level—are inextricably bound together in their respective developments. Therefore, 
in order to gain the most fully developed understanding of the emergence, development, and 
spread of ideas in a particular classroom, analysis along both individual and collective levels, 
over the course of the semester, is warranted and necessary. 

This presentation will highlight portions of my dissertation research, which has two 
main aspects: (a) research into the learning and teaching of linear algebra, and (b) research 
into analyzing the development of mathematical meaning for both students and the classroom 
over time. The two research questions that guide my dissertation work are the following:  

1. How do students –both individually and collectively—reason about the 
Invertible Matrix Theorem over time?  

2. How do students—both individually and collectively—reason with the 
Invertible Matrix Theorem when trying to solve novel problems? 

The first research question investigates the connections that are made, on both the individual 
and the collective level, between the various statements in the IMT. The second research 
question investigates the ways in which students, on both the individual and the collective 
level, use the IMT as a tool for reasoning about new problems. During my presentation, I will 
discuss results from both individual and collective-level analyses from question one. 
 
Background and Methodology 

The theoretical perspective on learning that undergirds my work is the emergent 
perspective (Cobb & Yackel, 1996), which coordinates psychological constructivism (von 
Glasersfeld, 1995) and interactionism (Forman, 2003; Vygotsky, 1987). In honoring the 
importance of both psychological and social processes, the emergent perspective posits that: 

The basic relationship posited between students’ constructive activities and the social 
processes in which they participate in the classroom is one of reflexivity in which 
neither is given preeminence over the other...A basic assumption of the emergent 
perspective is, therefore, that neither individual students’ activities nor classroom 
mathematical practices can be accounted for adequately except in relation to the 
other.” (Cobb, 2000, p, 310) 

From the perspective that learning is both an individual and a social process, investigating the 
mathematical development of students necessarily involves considering the individual 
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development of students as well as the collective activity and progression of the community 
of learners in which the individuals learners participate. Thus, in studying the development of 
reasoning regarding the Invertible Matrix Theorem, both levels of development will be 
analyzed.  

The overarching structure of my analysis is influenced by a framework of genetic 
analysis that delineates multiple levels of investigation. Saxe (2002) and his colleagues (Saxe 
& Esmonde, 2005; Saxe, Gearhart, Shaughnessy, Earnest, Cremer, Sitabkhan, et al., 2009) 
investigated knowledge development through the notion of cultural change. Particular to 
development in the classroom, the authors investigated how researchers could collect data 
(how much, from what sources, etc.) and conduct analyses that would allow them to make 
descriptions of how individuals’ ideas develop in the classroom over time, given that the 
classroom is also changing over time. As a response, they suggested analyzing human 
development over time from three different strands, providing researchers a way to account 
for some of the complex factors of development. Microgenesis is defined as the short-term 
process by which individuals construct meaningful representations in activity, ontogenesis as 
the shifts in patterns of thinking over the development of individuals, and sociogenesis as the 
reproduction and alteration of representational forms that enable communication among 
participants in a community (Saxe et al., 2009, p. 208). I focus on and adapt the first two 
strands in my own analysis. 

The data for this study comes from a semester-long classroom teaching experiment 
(Cobb, 2000) conducted in a linear algebra course at a large university in the southwestern 
United States. Students enrolled in the course had generally completed three semesters of 
calculus and were in their second, third, or fourth year of university. Furthermore, the 
majority of students enrolled in the course had chosen engineering (computer, mechanical, or 
electrical), mathematics, or computer science as their major course of study at the university.  

In order to address the individual components in the proposed research questions, I 
focused on five of the students enrolled in the linear algebra course. All five sat at the same 
table during class, which is one of three tables that are videorecorded during every class 
period for the duration of the semester. In order to collect data relevant to these five 
individuals and their establishment of meaning regarding the IMT, I collected four sources of 
data: video and transcript of whole class discussion, video and transcript of their small group 
work, video and transcript from their individual interviews, and various written work. 
Individual interview data comes from two semi-structured (Bernard, 1988) interviews, one 
conducted midway through the semester and one conducted at the end of the semester.  

In order to collect data relevant to the collective establishment of meaning regarding 
the IMT, I collected video and transcript of whole class discussion and small group work, 
photos of whiteboard work, and written work from in-class activities. As stated, portions of 
12 class days are analyzed, which were the days that the IMT was explicitly addressed during 
whole class discussion.  

In order to investigate how students reasoned about the IMT over time, I utilize five 
analytical phases, and each has both an individual and a collective level. The five phases are: 
1) Microgenetic analysis via the construction of adjacency matrices; 2) Microgenetic analysis 
via the construction of Toulmin schemes of argumentation; 3) Ontogenetic analysis of 
constructed adjacency matrices; 4) Ontogenetic analysis of constructed Toulmin schemes,; 
and 5) Coordination of analysis across the two analytical tools. As highlighted in the five 
phases, I employ two main analytical tools: adjacency matrices and Toulmin’s (1969) model 
of argumentation. Adjacency matrices are representational tools from graph theory used to 
depict how the vertices of a particular graph are connected (e.g., Frost, 1992). These matrices 
can be used to represent data from a variety of graph forms. In my dissertation, I create 
adjacency matrices that correspond to directed graphs in which the vertices are the statements 
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in the Invertible Matrix Theorem (or students’ explanations of those statements) and the 
edges are directed in such a way as to match the implication offered by the student. The 
developed adjacency matrices are n x n, where n is the number of recorded relevant yet 
distinct statements made by students in any given explanation. The rows are the ‘p’ and the 
columns are the ‘q’ in statements of the form “p implies q” or “another way to say p is q.” 
Adjacency matrices are used as a tool to analyze explanations that explicitly address how 
students connect the ideas of the Invertible Matrix Theorem, as well as to analyze arguments 
made at the collective level during whole class discussion. These arguments are comprised of 
statements from one or many students in the class as meaning is negotiated collectively 
through participation in the classroom.  

The second main analytical tool I use is Toulmin’s (1969) model of argumentation, 
which describes six main components of an argument: claim, data, warrant, backing, 
qualifier, and rebuttal. The first three of these—claim, data, and warrant—are seen as the 
core of an argument. According to this scheme, the claim is the conclusion that is being 
justified, whereas the data is the evidence that demonstrates that claim’s truth. The warrant is 
seen as the explanation of how the given data supports the claim, and the backing, if 
provided, demonstrates why the warrant has authority to support the data-claim pair. This 
work has been adapted by many in the fields of mathematics and science education research 
as a tool to assess the quality or structure of a specific mathematical or scientific argument 
and to analyze students’ evolving conceptions by documenting their collective argumentation 
(Erduran, Simon, & Osborne, 2004; Krummheuer, 1995; Rasmussen & Stephan, 2008; 
Yackel, 2001). While the Toulmin model has proven a useful tool for documenting 
mathematical development at a collective level (e.g., Stephan & Rasmussen, 2002), I utilize 
Toulmin’s model to analyze structure of individual and collective exchanges both in isolation 
and as they shift over time.  

While Phases 1 and 2 are comprised of many discrete analyses, Phases 3 and 4 are 
compiled from the results of Phases 1 and 2. In Phase 3, shifts in form and function of how 
students reason about reason with the various concepts in the IMT over time are analyzed by 
considering qualitative changes in constructed adjacency matrices from Phase 2. This type of 
analysis is what Saxe (2002) refers to as ontogenetic analysis. Phase 4, on the other hand, 
considers the individually constructed Toulmin schemes from Phase 2 as a whole. This sort 
of analysis, at the collective level, is consistent with the work of Rasmussen and Stephan 
(2008) in identifying classroom mathematics practices. Finally, Phase 5 combines the work 
done in parallel with adjacency matrices and Toulmin schemes on both the microgenetic level 
(comparing the results of Phases 1 and 2) and the ontogenetic level (Phases 3 and 4). In other 
words, Phase 5 consists of cross-comparative analyses, for any given argument or collection 
of arguments, of the results from both analytical tools (adjacency matrices and Toulmin 
schemes).  

 
Results 

The cross-comparison of results from the two analytical tools, adjacency matrices and 
Toulmin’s model, provides a rich way to investigate the content and structure of arguments 
offered by both individuals and the collective. A coordination of both the microgenetic and 
ontogenetic progressions illuminates the strengths and limitations of utilizing both analytical 
tools in parallel on the given data set. Analysis reveals rich student reasoning about the IMT 
that may not be apparent through use of only one analytical tool. For instance, adjacency 
matrices proved an effective analytical tool on arguments consisting of multiple connections 
that were for explanation, whereas Toulmin models proved illuminating for arguments with 
complex structure for the purposes of conviction. These and other results, as well as my 
methodological approach, will be discussed during my presentation. 
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Figure One: The Invertible Matrix Theorem 
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A prominent problem in the teaching and learning of K-16 mathematics is how to build on 
students’ current ways of reasoning to develop more generalizable and abstract ways of 
reasoning. This problem is particularly pressing in undergraduate courses that often serve as a 
transitional point for students as they attempt to progress from more computationally based 
courses to more abstract courses that feature proof construction and reasoning with formal 
definitions. One such course is that of introductory linear algebra. A promising aspect of linear 
algebra, however, is that it presents an array of applications to science, engineering, and 
economics, providing instructional designers with opportunities to use these applications to 
motivate and develop mathematical ideas. The purpose of this talk is to report on student 
reasoning as they reinvented the concepts of span and linear independence. The reinvention of 
these concepts was guided by an innovative instructional sequence known as the Magic Carpet 
Ride problem, whose creation was framed by the emergent models heuristic (Gravemeijer, 1999) 
of the instructional design theory of Realistic Mathematics Education (Freudenthal, 1991). The 
sequence makes use of an experientially real problem setting (in the sense that students can 
readily engage in the task) and aids students in developing more formal ways of reasoning about 
vectors and vector equations. Thus, during our talk we will: 

1. Explain how this instructional sequence differs from a popular “systems of equations 
first” approach and why this conscious change was made; 

2. Present the instructional sequence via the framing of the emergent models heuristic; and  
3. Provide samples of students’ sophisticated thinking and reasoning. 

 
Literature Review 

In addition to research that categorizes student difficulties in linear algebra (e.g., Dorier, 
1995; Harel, 1989; Hillel, 2000), more recent work has examined the productive and creative 
ways that students are able to interact with the ideas of linear algebra. For instance, Possani, 
Trigueros, Preciado, and Lozano (2010) analyzed the use of a teaching sequence that began with 
a real life problem and reported on student progress as they advanced through different solution 
strategies. In a similar spirit, Larson, Zandieh, and Rasmussen (2008) reported a key idea that 
emerged as a central and powerful way in which students came to reason and eventually develop 
the formal ideas and procedures for eigenvalues and eigenvectors. Complementary to these two 
veins of research, we report on students’ activity as they both reinvent and reason with the 
notions of span and linear independence. 

The instructional sequence that was developed to foster student reinvention of these ideas 
does so within the first five days of the course, prior to any explicit treatment of Gaussian 
elimination. This is in contrast to a widespread tendency to begin the semester with systems of 
linear equations and Gaussian elimination (e.g., Anton, 2010; Lay, 2003). One possible reason 
for beginning the course in this manner is to build from students’ prior experiences with solving 
systems of linear equations. We strongly agree with beginning a course with content that has an 
intuitive basis for students. Our instructional sequence, however, relies on a different intuitive 
background from which to build and structure an introductory linear algebra course. Our 
approach begins by focusing on vectors, their algebraic and geometric representations in R2 and 
R3, and their properties as sets. We contend that this switch not only fosters the development of 
formal ways of reasoning about the ‘objects’ of linear algebra, namely vectors and vector 
equations, but also instigates an intellectual need (Harel, 2000) for sophisticated solution 
strategies, such as Gaussian elimination. These aspects will be elaborated upon during the 
presentation.  
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Theoretical Background 

Drawing on the work of Freudenthal (1991) and the instructional design theory of Realistic 
Mathematics Education (RME), we take the perspective that mathematics is first and foremost a 
human activity of organizing mathematical experiences in increasingly sophisticated ways. A 
central RME heuristic that captures this perspective is referred to as “emergent models.” This 
heuristic offers researchers and teachers a way to design and trace ways that students can build 
on their current ways to reasoning to develop rather formal mathematics. In RME the term model 
has a specific meaning. In particular, Zandieh and Rasmussen (2010) define models as student-
generated ways of organizing their activity with observable and mental tools. Observable tools 
refer to things in the environment, such as graphs, diagrams, explicitly stated definitions, 
physical objects, etc. Mental tools refer to ways in which students think and reason as they solve 
problems—their mental organizing activity. Following Zandieh and Rasmussen, we make no 
sharp distinction between the diversity of student reasoning and the things in their environment 
that afford and constrain their reasoning. 

The emergent model heuristic involves the following four layers of increasingly sophisticated 
mathematical activity: Situational, Referential, General, and Formal. Situational activity involves 
students working toward mathematical goals in an experientially real setting. Referential activity 
involves models-of that refer (implicitly or explicitly) to physical and mental activity in the 
original task setting. General activity involves models-for that facilitate a focus on interpretations 
and solutions independent of the original task setting. Formal activity involves students 
reasoning in ways that reflect the emergence of a new mathematical reality and consequently no 
longer require support of prior models-for activity. The model-of/model for transition is 
therefore concurrent with the creation of a new mathematical reality.  

Methods 
The classroom sessions analyzed for this presentation come from a classroom teaching 

experiment (Cobb, 2000) conducted in the spring of 2010 at a southwestern research university. 
This classroom was the third iteration of a semester-long classroom teaching experiment in linear 
algebra. Video-recordings were made of each classroom episode. Transcriptions were then made 
from the videos. Daily reflections and homework were also collected.   
 
Results 

This section discusses how student reasoning progressed through each of the four levels of 
activity throughout the semester, but especially in relationship to the tasks that students worked 
on during the first five days of class.  Given space limitations, we provide more detail on student 
reasoning at the beginning of the task sequence.  Note that we spent approximately one day per 
task during the semester.   

Situational and Referential Activity. The student thinking on the first two tasks was 
primarily Situational activity in that students focused on engaging in solving problems in the 
Magic Carpet Ride task setting. However, even at this level students were developing symbolic 
and graphical inscriptions that were models of their thinking and that the teacher was able to 
label with the terminology of the mathematical community such as linear combination and span.  
During the third and fourth tasks, student reasoning was more explicitly Referential as students 
used their experience in the Magic Carpet Ride setting to create a definition for the linear 
dependence of two vectors and as they worked to interpret the definition of linear independence 
in terms of the Magic Carpet Ride scenario. 

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



TASK 1. You are given a hover board and a magic carpet. The hover board can move 
according to <3, 1> and the magic carpet according to <1, 2>. If Old Man Gauss lives in 
a cabin 107 miles East and 64 miles North, can you get there with the board and carpet?   

This activity helped students explore the notion of a linear combination of one or two vectors in 
R2, including its symbolic and graphical representations. The figure below provides two 
examples of student thinking on this problem. On the left students use a non-standard symbolic 
vector notation and a guess and check methodology. On the right the students converted their 
vector equation into a system of equations and solved for the appropriate weights. 

 

 
Guess and check via vector weighting 

 
Vector equation then system 

 
TASK 2. Are there some locations where Gauss can hide and you cannot reach him from 
your home with these two modes of transportation?  

This extension pushes students to explore how a linear combination of two vectors can 
encompass all points in R2 and introduces the term span. The figure below provides two 
examples of student thinking on this problem.  Notice that the board on the left indicates that this 
group of students thought that they could only get to points within the double funnel using the 
two modes of transportation, whereas the group on the right used a grid to illustrate that they 
could reach any point on the plane. 

 

 
The Double Funnel 

 
The Grid 

 
TASK 3. You still have two modes of transportation, but now you cannot get everywhere. 
What are the possible vectors for the movement of the hover board and magic carpet 
now?   
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In discussing which sets of vectors span all of R2 and which do not, students defined linear 
dependence for pairs of vectors. In particular, students determined that if two vectors are 
multiples of each other, then they are linearly dependent. 

TASK 4. You may travel each mode of transportation only once.  Can you start and end 
back at home?   

This activity allows for the introduction of the formal definition of linear independence. Students 
were asked to interpret this formal definition in terms of the Magic Carpet Ride task.   

General Activity. In task 5, students are given a series of questions that asks them to create a 
linearly independent (or dependent) set of 2 (or 3 or 4) vectors in R3. Some students were able to 
develop conjectures about what must be true a set of vectors to span a space. One such 
conjecture was that to span Rn, one must have n vectors and they must be linearly independent. 
This is General activity since the students are now working with vectors without referring back 
explicitly to the Magic Carpet activity as they explore properties of these sets of vectors.  !

Formal Activity. Formal activity occurs much later in the term as students are able to use 
definitions of span or linear independence in the service of making other arguments without 
having to explicitly recreate or reinterpret those definitions.   

!
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