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FOREWORD 
 
The research reports and proceedings papers in these volumes were presented at the 

14th Annual Conference on Research in Undergraduate Mathematics Education, which 
took place in Portland, Oregon from February 24 to February 27, 2011.  

 
Volumes 1 and 2, the RUME Conference Proceedings, include conference papers that 

underwent a rigorous review by two or more reviewers. These papers represent current 
important work in the field of undergraduate mathematics education and are elaborations 
of the RUME conference reports.  

 
Volume 1 begins with the winner of the best paper award, an honor bestowed upon 

papers that make a substantial contribution to the field in terms of raising new questions 
or gaining insights into existing research programs.  

 
Volume 3, the RUME Conference Reports, includes the Contributed Research 

Reports that were presented at the conference and that underwent a rigorous review by at 
least three reviewers prior to the conference. Contributed Research Reports discuss 
completed research studies on undergraduate mathematics education and address findings 
from these studies, contemporary theoretical perspectives, and research paradigms. 

 
Volume 4, the RUME Conference Reports, includes the Preliminary Research 

Reports that were presented at the conference and that underwent a rigorous review by at 
least three reviewers prior to the conference.  Preliminary Research Reports discuss 
ongoing and exploratory research studies of undergraduate mathematics education. To 
foster growth in our community, during the conference significant discussion time 
followed each presentation to allow for feedback and suggestions for future directions for 
the research.   

 
We wish to acknowledge the conference program committee and reviewers, for their 

substantial contributions and our institutions, for their support. 
 
Sincerely, 

 
Stacy Brown,  
RUME Organizational Director & Conference Chairperson 
 
Sean Larsen,  
RUME Program Chair 
 
Karen Marrongelle 
RUME Co-coordinator & Conference Local Organizer 
 
Michael Oehrtman 
RUME Coordinator Elect 
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Teacher efficacy beliefs are considered an important topic of study, in part because of the 

apparent positive correlations between teacher efficacy beliefs and a variety of desirable 

outcomes including student achievement (Ghaith & Yaghi, 1997; Riggs & Enochs, 1990; Ross, 

1992). While there is an increasing body of literature on teacher efficacy beliefs, few researchers 

have examined the potential links between pre-

beliefs and mathematical content knowledge. In fact, investigating the extent to which pre-

 efficacy beliefs are aligned with their mathematical content knowledge 
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for teaching is an important area of research with implications for understanding how teachers 

reflect on and learn from their teaching practices. 

Relation of this work to the research literature 

A process of intentional, careful reflection followed by changes in practice is an 

important part of becoming a more effective teacher (Hiebert et al., 2007). Teachers who already 

believe that they are highly effective would seem to be less likely to engage in this type of 

careful reflection. 

. Then, it is likely that many 

teachers who exhibit high levels of personal teacher efficacy actually view themselves as highly 

effective teachers. As such, teachers with high levels of personal teacher efficacy might see little 

need to engage in careful reflection regarding the extent to which their teaching practices are 

successful. Indeed, previous studies both indicate the benefits of lower teacher efficacy as a 

mechanism for fostering teacher reflection and demonstrate the potential downsides of high 

teacher efficacy (Brodkey, 1993; Wheatley, 2002; Wheatley, 2005). 

Specialized content knowledge (SCK) for teaching mathematics (Ball, 2008) is one 

aspect of teaching about which teachers might need to reflect and improve. Recent research 

mathematical knowledge for teaching, of 

which specialized content knowledge is an important subcomponent (Ball, 2008), might be 

particularly important (Hill, Rowan, & Ball, 2005). 

A connection between teacher efficacy beliefs and specialized content knowledge worthy 

of empirical examination becomes apparent when one considers results from previous empirical 

-assessments of knowledge and their 

performance on various tasks. 
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. Then, it is possible that teachers with low specialized content knowledge for 

teaching mathematics might be overconfident in their teaching abilities, and thus exhibit high 

levels of personal teacher efficacy. 

unaligned with their specialized content knowledge. Indeed, Stevenson et al. (1990) discovered a 

mathematical performance, with American students tending to overestimate their mathematical 

abilities more than students from China or Japan. 

content knowledge are aligned. To begin, teachers with unaligned teacher efficacy beliefs and 

specialized content knowledge might have difficulty in recognizing when they are overconfident 

in their teaching abilities. Kruger and Dunning (1999) found that not only do individuals 

overestimate their abilities in given situations, but that such overestimation might be due in part 

. 

Then, it is possible that teachers with low content knowledge could have difficulty in assessing 

their teaching abilities realistically. 

If this is the case, it is likely that teachers who feel they are highly efficacious yet have 

low specialized content knowledge will exhibit two characteristics. First, they might be less 

effective teachers than they actually believe themselves to be. Second, and more importantly, 

such teachers might not only have insufficient motivation for engaging in reflection on their 

practices, but also have difficulty in assessing when changes in practice are needed even when 

reflection takes place (see, e.g., Borko et al., 1992). 
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Implications for teacher educators 

Pre-service teachers are a particularly important population to study, as the teacher 

efficacy beliefs of these teachers are still developing (Swars, 2005). If it is in fact the case that 

pre-service teachers with high teacher efficacy beliefs and low specialized content knowledge 

have insufficient motivation for engaging in reflection on their practices, and also have difficulty 

in assessing when changes in practice are needed even when they do reflect on their practices, 

teacher educators would surely want to know that this is the case. That is, an efficacy beliefs-

knowledge relationship that hinders rather than promotes teacher reflection is not a relationship 

that will help teachers improve over time. Studies that explore the extent to which pre-service 

potentially unhelpful relationships between teacher efficacy beliefs and content knowledge, and 

-service teachers 

develop more helpful efficacy beliefs-knowledge relationships. 

Thus, the research question of interest in this study is the following: To what extent are 

K-8 pre- personal mathematics teacher efficacy beliefs aligned with their 

content knowledge for teaching mathematics? 

Research methodology 

 The participants were 18 sophomore undergraduates enrolled in a K-8 teacher preparation 

program in a medium-sized state university in a Mid-Atlantic state. All of the participants in this 

study were enrolled in the third course of a three-course sequence of mathematics content 

courses at the time of their participation. These 18 pre-service teachers were selected randomly 

from the total 47 pre-service teachers enrolled in the third content course. 
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   Pre-service teachers first participated in a 90-minute semi-structured interview in which 

they were asked to respond to four written mathematical teaching scenarios, the teaching 

scenario tasks. Each scenario consisted of a written student question about a given fractions task. 

For each of the teaching scenarios, pre-service teachers were first asked to write a written 

response regarding what they would do as the teacher in the given situation. Then, they were 

asked to rank the effectiveness of their response on a scale of one to five, and to list any factors 

that contributed to their rating. Finally, the author asked participants to explain their responses 

verbally.  All interviews were audio-recorded, with the recordings used to supplement written 

pre-service teacher responses. Following the semi-structured interview, pre-service teachers 

completed a 60-minute written assessment containing SCK written tasks. These tasks contained 

the same mathematical content as those used in interviews but contained no teaching context. 

Pre- personal teacher efficacy beliefs were operationalized in two ways. 

For each interview task, pre- s of their effectiveness were taken 

as a measure of their personal mathematics teacher efficacy. Additionally, pre-service teachers  

rankings were coded according to the factors pre-service teachers mentioned as contributing to 

their teacher efficacy. Four categories emerged from the interview data: content knowledge, 

pedagogy, students, and other. Pre-service teachers both mentioned factors that made them feel 

more efficacious and factors that made them feel less efficacious in their responses to teaching 

scenario tasks. 

 Specialized content knowledge (SCK) was operationalized with an approach similar to 

. That is, the author constructed a list of mathematical 

subcomponents relevant to each teaching scenario task. Participants then received a score of 0, 1, 

or 2 for each subcomponent based on the quality of their responses. Five mathematical 
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subcomponents were identified for each of tasks 1 and 2, so SCK scores could range from 0 to 

10 on these tasks. Four subcomponents were identified for tasks 3 and 4, so SCK scores could 

range from 0 to 8 on these tasks. This scoring was computed for both the teaching scenario and 

SCK written tasks. 

Based upon their scores on the teaching scenario tasks, pre-service teachers were 

separated into higher and lower SCK groups for each task using a median split in order to 

examine alignment of beliefs with level of SCK. The same was done for scores on the SCK 

written tasks. Then, pre-service teachers were grouped into four categories for each task: 

higher/higher, higher/lower, lower/higher, and lower/lower. The groups of particular interest 

were the higher/higher and lower/lower groups, as these pre-service teachers displayed a more 

reliable level of SCK across the two assessments.  Additionally, for each task, S

was computed to examine potential correlations between pre-

and their SCK scores. 

 Inter-rater reliability scores for 20% of scores were obtained. The percent agreements 

reported here were computed across the interview and parallel written assessment tasks. The 

agreements for tasks 1, 2, 3, and 4 were 80%, 80%, 81%, and 81% respectively. 

Results of the research 

 Only preliminary results are given here as this study is a work in progress. More detailed 

analyses are currently underway. For task 2, efficacy rankings and SCK scores were significantly 

negatively correlated (rho = -0.486, p = 0.041). That is, apparently, pre-service teachers tended 

to be somewhat overconfident regarding their responses on this task, as pre-service teachers with 

higher confidence ratings tended to exhibit lower levels of SCK in their responses to the teaching 

scenario. 
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 Additionally, the nature of the task apparently influenced the extent to which lower SCK 

pre-service teachers mentioned content knowledge as making them feel less efficacious in their 

teaching scenario responses. The percents of pre-service teachers in the lower/lower SCK group 

that mentioned content knowledge factors making them feel less efficacious on tasks 1-4 were 

50%, 17%, 100%, and 83% respectively. Pre-service teachers with relatively low SCK 

presumably should not mention their own math content knowledge as positively contributing to 

their sense of efficacy, so one could say low SCK pre-service teachers who cited content 

knowledge as making them feel more efficacious exhibit efficacy beliefs that are not aligned 

with their SCK. This might indicate that the extent to which the efficacy beliefs of pre-service 

teachers with lower SCK are aligned with their content knowledge depends upon the contextual 

features of the teaching scenario. 

Questions for the audience 

 What might be the implications of this work for researchers of teacher efficacy beliefs?  

for teacher educators? for designers of professional development? 

 To what extent are the data presented convincing? 

 What additional data would be useful to collect in future work in order to address the 

research question more thoroughly? 
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$ Over the past 15 years, mathematics departments at colleges and universities have begun to 

incorporate the use of online homework systems in a variety of lower-level mathematics courses. Several 

online or web-based homework systems exist, including WebAssign, MyMath, DRILL, and WeBWorK, 

and most have been developed by textbook companies for use in introductory college-level mathematics 

courses. Web-based homework systems typically allow the instructor to create homework sets from a list 

of problems that have been pulled from the textbook. While all students typically receive the same set of 

problems, the numbers present in the problem will typically be randomized for each student (Denny & 

Yackel, 2005). The instructor may limit the number of attempts the student will be allowed on each 

problem and can specify the amount, and type, of feedback the student receives after an incorrect attempt. 

Typically, the numbers within a given problem are randomized so that different students will be working 

slightly different exercises. Overall, the purpose of the online homework system is to provide students 

with multifaceted, technology-based opportunities, rich with immediate feedback, to engage with course 

material outside of class. 

 Several studies have found that online or web-based homework systems effectively promote 

engagement with course material and may result in gains in both knowledge and skill, as they are 

measured inside the classroom. Denny & Yackel (2005) found that students attempt online homework 

problems at very high rates and their increased practice may translate into greater content-related 

knowledge and skill. Zerr (2007) found that by providing students with detailed feedback for incorrect 

responses when using the online system, and allowing several attempts for successful completion of each 

online assignment, that student learning in an introductory calculus course improved. When students are 

allowed several attempts at answering a question, without penalty, they may develop the tenacity required 

to solve more complex problems (Denny & Yackel, 2005). Moreover, the participants in Zerr’s (2007) 

study overwhelmingly indicated that they felt their time spent using the online homework system was 

productive and worthwhile.  

 Web-based homework systems may not work equally well for all students, in all mathematics 

classes, however. Hirsch and Weibel (2003) found that the effectiveness of online homework greatly 

depended on the number of problems that students attempted; the more problems attempted the more 

correct answers students were able to provide. Zerr (2007) also noted that web-based homework systems 

may be most beneficial for students without prior college experience. Students with prior college 

experience using a web-based homework system actually tended to perform more poorly on exams and 

quizzes than students completing homework in a more traditional format (Zerr, 2007). The fact that 

students have occasionally been found to have lower performance when engaging with web-based 

homework systems may be accounted for, in part, by the fact that with web-based homework systems 

there is little opportunity for instructors to provide students with the tools they need to further their 

conceptual understanding of topics (Hauk & Segalla, 2005). On web-based homework, students will not 

receive credit based on work shown or not shown. When the work for a problem is not examined or 

graded by an instructor, it might be difficult for an instructor to pinpoint the conceptual issues a student is 

having. And, many instructors in mathematics would agree that an emphasis of product over process is 
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misplaced.  When a student performs poorly on an online homework assignment, it would likely be the 

student’s responsibility to seek out the instructor’s expertise since the instructor need not be a part of the 

homework feedback loop if a web-based homework system is in use. In this way, online homework 

systems may actually inhibit collaboration between students and instructors. Hauk and Segalla (2005) 

found no significant difference between the performance of web-based and traditional homework sections 

of students taking college algebra. Moreover, web-based homework systems may do little to challenge the 

commonly-held notion that mastery of college-level mathematics involves little more than rote 

computation (Hauk & Segalla, 2005).   

There are aspects of web-based homework systems that make them very attractive for instructors 

and administrators. From the instructor’s perspective, they spare the teacher the time and tedium inherent 

in collecting and grading paper-based homework (Denny & Yackel, 2005; Hauk & Segalla, 2005). In 

addition, these online tools can be programmed to prompt students who have answered a question 

incorrectly to ‘watch’ a similar problem be worked through online or to look at a certain example in the 

text that will provide some guidance on the problem. In effect, online homework students may save the 

instructor some of the time and effort they typically exert in addressing students’ more basic questions 

about course content (Hauk & Segalla, 2005). Meanwhile, administrators may appreciate the online 

system since it means they will not have to hire graders, and such systems may be perceived by students 

as an appropriate and forward-thinking use of technology. In addition, the cost of the product is paid 

directly by the student.  

Even though colleges and universities have been using web-based homework systems in 

introductory mathematics classes for more than a decade, consensus has yet to be reached on how, or 

even whether, web-based homework systems compare to that of more traditional approaches in 

facilitating student learning outcomes. Although some researchers have found benefits for both students 

and instructors using web-based approaches, others have found none; hence, questions remain concerning 

the effectiveness of such a tool. It is possible students using an online homework system are not 

encouraged to be systematic in their approach to problems, as written evidence of their process is not 

required when using an online homework system. Moreover, if students are not thoroughly documenting 

the process used to solve a problem, they will not be able to use their work as a study prep. Nor would 

they readily and easily be able to communicate with their instructor about the difficulties they are having 

either in computation, process, or conception. A final cause for concern not already addressed in the 

literature is the student’s awareness of their level of understanding of the material. Allowing a student 

multiple attempts on online homework problems is valuable in that it allows students the opportunity to 

immediately learn from their mistakes, correct themselves, and be rewarded for this effort. This often 

means the students’ online homework scores are quite high (90% and higher is common). Is it possible 

that, as a result of high on-line homework scores, students feel they understand the material at a higher 

level than they actually do? These students may be developing a false sense of confidence after earning 

high homework scores, only to be defeated on exam day. These are the kinds of observations that are 

routinely made by instructors teaching courses that contain a web-based homework component.  

Our study seeks to add to the body of research examining the effectiveness of web-based 

homework systems by examining the performance of students taking Finite Mathematics at a medium-

sized private university in the Midwest. One group of 24 students was assigned homework using a web-

based homework system (WebAssign); the other group of 24 students completed and turned in tradition 
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pencil and paper homework which was graded by the instructor. Both groups were assigned the same set 

of problems, simply in different formats. Both sections were taught by the same instructor and in the same 

format; common exams were given to both sections. This study will investigate the effectiveness of the 

online homework system by comparing the individual final exam items and overall exam performance of 

the students in the web-based and traditional homework sections. This analysis will be completed in order 

to better understand whether web-based homework is equivalent to (or better than) traditional homework 

for facilitating learning overall. Additionally, the researchers will examine and compare the types of 

questions that traditional and web-based homework students tend to get correct (or incorrect) in order to 

gain insight into the depth of learning that may be promoted using either homework system. Student 

perceptions of how the class structure, materials, and assigned work impact their learning and classroom 

experience will also be analyzed and compared in an attempt to gain greater insight into the learning 

preferences of the contemporary undergraduate student in entry-level mathematics courses. This study is 

preliminary and data is currently being analyzed; statistical results and relevant recommendations for 

practice and further study will be forthcoming. 

Questions for audience consideration: 

1. From the professor’s perspective, what are the biggest benefits and drawbacks to web-based 

homework systems and traditional homework formats? 

2. From the student’s perspective, what are the biggest benefits and drawbacks to web-based 

homework systems and traditional homework formats? 

3. What are the benefits and drawbacks of each system in facilitating breadth of learning? 

4. What are the benefits and drawbacks of each system in facilitating depth of learning? 

5. Do web-based systems promote the kind of engagement that leads to long-term learning or 

just short-term competency, and how could we capture this information? 

6. Can we identify categories of questions that are better served by using web-based systems, 

traditional systems? 

7. How would we go about this categorization? 
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Over the past decade, a growing trend has been to center instruction around student
learning, rather than teacher performance. Such instruction often elicits student partici-
pation through various classroom activities: answering questions; solving problems; having
students do board work; working on collaborative tasks in groups or pairs; making and
testing conjectures; presenting ideas, proofs, and solutions; and debating. Through these
and other classroom activities, students are expected to engage in the learning process,
participate in mathematical thinking, and contribute to classroom discourse.

The presence of these instructional forms in the classroom does not always indicate
quality instruction or guarantee quality student involvement. Cursory classroom obser-
vations might not reveal students’ mathematical thinking or engagement. For example,
working in groups, carrying on discussions, or answering questions does not necessarily
mean that they are engaged in mathematical thought. We would need to know: What is
the nature of the group’s task? What are they discussing? How thought provoking are the
questions? and What is the nature of students’ responses?

In general, determining the quality of student involvement and their role in building
classroom knowledge requires us to answer deeper questions about the discourse: How
are learners contributing to the discussion? What is the nature of those contributions?
What role are they playing in the discussion? and What significance and impact do their
contributions have on the developing content? Addressing these questions for discussions
in the mathematics classroom setting is the aim of this paper.

Within a different context and social group, I was recently able to address these
exact questions, while developing an analytical framework. While studying discussions
among practicing teachers who participated in a professional development program, Belnap
and Withers developed an analytical framework for identifying the origin of a discussion’s
content and how each individual contributed to that knowledge (Belnap & Withers, 2010).

This framework is based on a view of discourse that integrates aspects of various
learning perspectives: constructivism (Cobb, 1994; Cobb & Yackel, 1996; Ernest, 1996;
Sfard, 1998; Zevenbergen, 1996), the social perspective (Cobb, 1994; Cobb & Yackel, 1996;
Lerman, 1998, 2000; Sfard, 1998), socioconstructivism (Lerman, 1998, 2000; Cobb & Yackel,
1996; Cobb, Jaworski, & Presmeg, 1996), and agency (Walter & Gerson, 2007). This view
is that discourse involves the mutual construction of both individual and social knowledge;
it is a social activity shaped by participants’ involvement. At the same time, participants
willfully act and construct their own knowledge from their involvement in the discourse.

4-24

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



BUILDING KNOWLEDGE WITHIN CLASSROOM MATHEMATICS DISCUSSIONS 2

From this perspective, the discussion’s text represents a form of social knowledge

constructed by the willful actions of its contributors. Stemming from social linguistics and

the work of Nassaji and Wells (2000), Wells (1996), the framework Belnap and Withers

developed both grew from and illuminates this idea. It describes how each individual’s

contribution links to the contributions of other participants, building the conversation’s

content (Belnap & Withers, 2010; Belnap, 2010).

As detailed in Belnap (2010), when individuals take turns in a discussion, they make

willful contributions to the growing text, making moves. In building the discussion’s content,

each move has a function, determined by its action (i.e. how it affects the growing text)

and its target (i.e. any content receiving the action).

Based on function, there are 13 different move (or function) categories, clustered into

five main groups or types: anchoring, valuing, altering, requesting, and contentless moves.

Anchoring moves present new ideas, opening potential lines of discussion. Valuing moves
address the value, validity, or correctness of existing contributions, focusing on assessing,

supporting, refuting, or otherwise affecting the credibility of prior contributions. Altering
moves develop the content of existing contributions by adding to, modifying, or clarifying

it. Requesting moves (including, but not limited to questions) solicit content. Finally,

contentless moves either do not directly develop a discussion’s content or are counted as

such.

This framework provides a means of ascertaining the discussion’s content structure.

Each move’s action and target describes a linkage between moves. Using these linkages to

chain moves together breaks the discussion into fibers, each representing the development

of a single idea.

Using this framework allowed me to see both the structure and individual contribu-

tions’ roles in content development. Identifying fibers allowed me to distinguish separate

ideas or topics in complex conversations, facilitating the identification of productive con-

versations (i.e. those relevant to the purpose of the PD program). The distinctions among

moves provided a means of identifying substantive contributions to the conversation; by

counting this information for individual participants and contrasting the results, I ascer-

tained the extent and nature of their involvement.

As a particular example, using this framework allowed me to determine information

about participant involvement, individual conversational roles, and discussion characteris-

tics in a recent analysis of one professional development session. Specific data and details

are provided in Belnap (2010).

The framework provided an overview of participant involvement in the session. I

found that all participants took an active role in developing the discussion’s content. Each

participant initiated some conversational fibers. All listened to and built off of the ideas

of others. Finally, they each made efforts to explain and support their own and others’

contributions.

On a more specific level, the framework revealed the nature and extent of individual

involvement. I found that the facilitator’s involvement mainly consisted of initiating and

soliciting content; the extent of this involvement was limited, as he often took a back

seat, avoiding direct control of the content, and allowing it to develop at the participants’

discretion. Other participants took an active role in the conversation, with no one clear

discussion leader. One (while not dominating the conversation) did play a leading role,
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initiating conversational fibers, conveying information, evaluating/refuting contributions,
and integrating and building ideas, all more so than any other participant. By contrast,
two participants seemed to hold back and contribute much less.

In addition to individual involvement, by revealing the conversation’s composition,
the framework provided the means of characterizing the discussion overall. The discussion
could be characterized by conveyance, slight developing, and justifying a wide variety of
ideas and opinions, with almost no discussion, change, and deliberation of ideas. A common
pattern was that a conversational fiber consisted of an initial idea, justification with some
addition of ideas or details, and then a topic shift. Little time was spent deeply investigating
the many ideas initiated. Most content arose from spontaneous comments. There was a
profound lack of inquiry and little disagreement and resolution of differences.

It is plausible that this framework can be used to answer similar questions and provide
similar information regarding mathematical classroom discussions; this is the goal of this
study. At the same time, differences in these contexts (the mathematics classroom verses
a professional development program for teachers) are great, including: strongly rooted
cultural norms, roles, responsibilities, and expectations; differences in the nature of the
discussed content; and typical goals and objectives for the two contexts. With such strong
differences, it is plausible that the framework may need to be modified to accurately reflect
the content development of mathematical conversations.

Based on discussion and feedback from members of the research community, I am
conducting a pilot study, to see how the framework can describe content development in a
mathematics classroom. To do this, I have purposively selected a mathematics teacher who
is well known for effectively engaging students in investigative tasks, orchestrating student
centered classroom discussion, and establishing classroom discourse in which students listen
to and respond to each other.

To test the analytical framework using typical qualitative methods. I will video
tape an hour long class and apply the framework to the coding of the class’ transcript,
looking for contributions whose function may not be described well by the framework,
modifying and reconceptualizing the move categories as necessary to account for these
differences. Once I have completed analysis of the class, I will discuss the results with
another researcher to gain an outside perspective and find concepts and ideas that may be
missed, adjusting the framework as necessary. Next, to test the modified framework, I will
apply the framework to the transcript of a second class to see if the framework accurately
describes the discussion. Finally, I will analyze the resulting data to determine the extent
to which the framework facilitates answering the questions posed earlier: How are learners
contributing to the discussion? What is the nature of those contributions? What role
are the students playing in the discussion? and What significance and impact do their
contributions have on the developing content?

Data collection is currently beginning and preliminary results will be reached during
December 2010 and January 2011. This paper and presentation will focus on discussing
these preliminary results, examining potential information they give about the mathematics
classroom, and beginning to contrast this with other frameworks that examine classroom
discourse. As a preliminary presentation, participant discussion will also center on feedback,
ideas, observations, and additional viewpoints on these same three issues. In particular, I
will pose questions for discussion such as: What useful information can this framework pro-
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vide for us as researchers? What interesting research questions could be answered utilizing
this framework? How may this framework relate to other analytical or theoretical work?
and What details may I have overlooked?
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Abstract 
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Students in integral calculus often face difficulties in problems involving applications to 
physics like work and pressure problems. It is unclear whether their difficulties are due to lack of 
understanding of the definition of the definite integral as a limit of Riemann sums or whether it is 
difficulty in actually applying the concept to a physical situation like a work problem. This study 
is a preliminary report of an investigation conducted using the think aloud (or protocol analysis) 
technique with second semester calculus students at a two year campus of the University of 
Wisconsin.  

 
Think alouds are a research tool originally developed by cognitive psychologists for the 

purpose of studying how people solve problems. The basic idea being that if a subject can be 
trained to think out aloud while completing a certain task then the introspections can be analyzed 
and may provide insights into  misunderstandings as well as higher thinking.  Schoenfeld(1) has 
used verbal transcripts and protocol analysis to study mathematical problem solving . 

The goal of this study was to answer the question “Why do calculus II students have 
difficulty solving Work problems?”. This was a qualitative study. Six students of varying 
abilities were selected to participate in the study. Students were first trained to think aloud by 
being asked to solve simple linear equations. They were then given a series of work problems 
ranging from the simplest kind with a fixed force and a fixed distance to the more involved that 
had a variable force and/or a variable distance. The sessions were video recorded. During the 
sessions the students were not prompted in any way and nor were any interventions introduced. 
The only comments made by the instructor were to request the student to verbalize their thoughts 
if and when the student fell silent. The recordings were transcribed and screen shots of the 
diagrams were taken. The transcriptions were coded and analyzed.  
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A coding scheme (see Appendix 1) was developed to code the verbalizations using 
Polya’s four step problem solving process. Next we needed to identify the codes that would 
enable us to answer our question. We highlighted three codes, strategy, mathematical argument 
and logical inference. These codes reflect the thought process of a mathematician while problem 
solving. Each problem was then assigned a rating from 1-5 for each of the selected codes using a 
rubric (see Appendix 2 for the rubric), with 5 representing the score of a mathematician and 1that 
of a novice problem solver. These ratings helped to identify possible bottlenecks in the problem 
solving process. 

Preliminary analysis indicates that the students who got “1” under strategy had a common 
trait. They headed straight for the fluid slice in the pool type problems but were then confused as 
to what to do next. Therefore one possible bottleneck is students memorizing a fragment of the 
instructor’s strategy without understanding the underlying connections. Four of the six students 
seemed to have a significant strategy but were unable to solve the problem correctly due to 
mistakes in calculating the volume of a generic slice or incorrectly calculating the weight of the 
slice. This suggests that students do not have a good handle on the basic mathematical tools that 
are considered essential at this level.  

During regular assessment students often erase their wrong work, so we only see the end 
product which doesn’t always help us to identify the bottleneck. With a think aloud we are able 
to see much more of the problem solving process, the students’ struggles in formulating 
strategies and mathematical arguments and thus make the thinking process more visible. 

Questions for discussion 

1. Can we make our think aloud coding list portable for problem solving across the university 
mathematics curriculum? 

2. As an intervention for lack of strategy, will a grading rubric which will ask students to 
actually write down the strategy (before starting the mathematics), encourage students to 
strategize more ? 

3. Strategy, Mathematical Argument and Logical Inference are key thought processes of a 
Mathematician solving problems. Are there any others that should be considered in this 
analysis? 
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Appendix 1: Coding Sheet based on Polya's four steps 
A. Understanding the problem 

I. Understanding the problem   UP  
II. Recall  RE 

 
B. Devising a plan  

I.  Initial   Plan DP 
II. Alternate Plan DAP 

 
C. Carrying out the plan 

I. Setting up the variable SV 
II. Mathematical argument MA 

III. Mathematical argument (In correct, ) 
MA_I 

IV. Questioning  (Q) 
V. Guess (G) 

VI. Recognizing limits (H) 
VII. Narration (N) 

VIII. Uncategorized (X) 
IX. Strategizing (ST) 
X. Strategizing with Reflection  (ST_R) 

XI. Inference (geometry) I_G 
XII. Inference (Reflexive) I_R 

XIII. Inference (Previous) I_P 
XIV. Rearranging Terms R_T 
XV. Calculation (C) 

 
D. Looking Back 

XVI. Revision (R) 
XVII. Reflection on concept (R_C) 

XVIII. Reflection( Rf) 

Appendix 2: Mathematical Argument Rubric 

Representative Thought Points 
Focal mathematical Argument  executed(correct) early, i.e. Mathematical procedures 
applied correctly at the appropriate steps to solve the problem correctly 
 

5 

Focal mathematical Argument  executed(correct) , late  
Or 
Focal Mathematical Argument executed (correct )early except for non-conceptual 
mistakes 

4 

Mathematical argument with some focus correctness but has significant mistakes 
Could not completely carry out mathematical procedures 

3 

Mathematical argument , with little focus with minor parts which are correct 2 
Unfocussed Mathematical argument containing a few correct components. 1 
 

Strategy Rubric 

Representative Thought Points 
Focal Strategy achieved early (professional) 5 
Focal Strategy achieved  4 
Focal Strategy achieved with uncertainties  3 
Indication of a strategy in the problem solving process but is not the focal strategy 
nor does it contain parts of the focal strategy 

2 

Unfocussed /unsignificant strategy , i.e.No evidence of a strategy or procedure 1 
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An Investigation of Students’ Proof Preferences: The Case of Indirect Proofs 
 

Stacy Brown 
Pitzer College 

 
Abstract: This paper reports findings from an exploratory study regarding undergraduate natural 
sciences students’ proof preferences, as they relate to indirect proof. While many agree that 
students dislike indirect proofs and fail to find them convincing, quantitative studies of students’ 
proof preferences have not been conducted. The purpose of this study is to build on the existing 
qualitative research base and to determine if the identified preferences and conviction levels can 
be established as general tendencies among undergraduates. Specifically, the aim of the study is 
to explore two common claims: (1) students experience a lack of conviction when presented with 
indirect proofs; and (2) students prefer direct and causal arguments, as opposed to indirect 
arguments. The purpose of this preliminary report is to share findings from the proof preference 
pilot study. 
 

 “Why do I have to start with something that is not? …  … However, the final gap is 
the worst, … … it is a logical gap, an act of faith that I must do, a sacrifice I make. 
The gaps, the sacrifices, if they are small I can do them, when they all add up they are 
too big.” 

(Fabio quoted in Antonini & Mariotti, 2008) 
 

“The proof is by reductio ad absurdum, and reductio ad absurdum, which Euclid 
loved so much, is one of a mathematician’s finest weapons” 

(G. H. Hardy, A Mathematican’s Apology, 2005/194, p. 19) 
 
Research Goals & Questions 
 Research on undergraduate mathematics students’ understandings of proof has 
continuously demonstrated that proof represents a significant barrier within the undergraduate 
mathematics curriculum (Selden & Selden, 2003; Harel & Sowder, 1998). Research suggests that 
students experience a variety of difficulties, including but not limited to difficulties moving 
between syntactic and semantic proofs (Weber & Alcock, 2004), transitioning from 
computational courses to proof-centered courses and topics (Moore, 1995), reading mathematical 
proofs (Selden & Selden, 2003), understanding the logical structure of proofs (Selden & Selden, 
1995), developing appropriate proof schemes (Harel and Sowder, 1998), and interpreting proofs 
(Weber, 2001). Beyond difficulties producing and understanding proof, research suggests that 
not all forms of proof are equally difficult for students, with the most problematic being 
Mathematical Induction (Dubinsky, 1986, 1989; Movshovitz-Hadar, 1993a, 1993b; Fischbein & 
Engel, 1989; Harel, 2001; Brown, 2003; Harel and Brown, 2008) and Proof by Contradiction 
(Harel & Sowder, 1998; Antonini & Mariotti, 2008). Thus, little has changed since Robert and 
Schwarzenberger (1991) noted, “Research into students’ ability to follow or produce proofs … 
confirms that students find proof difficult, with proofs by (mathematical) induction and proofs by 
contradiction presenting particular difficulties” (p. 130). Interestingly, the two forms of proof 
that Robert and Schwarzenberger (1991) highlight – proof by mathematical induction and proof 
by contradiction – are likely to be the two most ubiquitous forms of mathematical proof in the 
undergraduate mathematics curriculum. Thus, it seems likely that identifying factors contributing 
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to students’ difficulties with these particular forms might be critical to developing instructional 
innovations that foster students’ transition to proof. 
 
 
The Case of Indirect Proof 

In relation to indirect proof, which we will take to include both proof of the 
contrapositive and proof by contradiction, qualitative studies have demonstrated that students 
experience a lack of conviction with respect to such proofs (Harel & Sowder, 1998; Antonini & 
Mariotti, 2008; and Leron, 1985). For example, Harel and Sowder (1998) found that many 
students in their teaching experiments preferred constructive proofs – proofs that directly 
construct mathematical objects rather than solely justify existence – and dislike proofs by 
contradiction.  The following remark, made by a student, Dean, is provided as a typical example 
of students’ views towards this form of proof: “I really don’t like proof by contradiction. I have 
never understood proofs by contradiction, they never made sense” (Harel & Sowder, 1998, p. 
272). In more recent work by Antonini and Mariotti (2008), involving clinical interviews with 
Italian secondary school and university students, it is argued that students’ dislike of indirect 
proofs may be tied to a lack of intuitive acceptance regarding the equivalence of a particular 
mathematical statement and its contrapositive; that is, while students recognize the contrapositive 
and can evaluate the proof of the contrapositive, they find it difficult to accept such proofs as 
proofs of the original theorem, as indicated by Fabio’s remarks at the beginning of this paper. 
Such an interpretation fits well with others’ comments regarding indirect proofs. For instance, 
Leron (1985) argued that when engaging in such proofs “we must be satisfied that the 
contradiction has indeed established the truth of the theorem (having falsified its negation), but 
psychologically, many questions remain unanswered” (p. 323). Antonini and Mariotti (2008) 
suggest that in the case of statements for which there exists a direct proof, students may find the 
direct proof more intuitively acceptable.  

 While many agree that students dislike such proofs and fail to find them convincing, 
quantitative studies of students’ proof preferences and conviction levels have not been 
conducted. The purpose of this study is to build on the existing qualitative research base and to 
determine if the identified preferences and conviction levels can be established as general 
tendencies among undergraduate natural sciences students. Specifically, the aim of the study is to 
conduct a quantitative validation study of two claims: (1) Students experience a lack of 
conviction when presented with indirect proofs; and (2) Students prefer direct and causal 
arguments rather than indirect arguments. The purpose of this preliminary report is to share 
findings from the pilot survey, which explored claim (2). 
Considerations Regarding Indirect Proof 
 Indirect proofs, according to many (e.g., see Polya, 1957), occur in two forms: (a) proof 
by contraposition; and (b) proof by contradiction. The two forms of proof prove different yet 
logically equivalent statements. In the case of proof by contraposition, one proves the 
contrapositive of a statement rather than the original statement; i.e., one proves ~ Q ! ~P, rather 
than P ! Q. Proof by contradiction, also referred to as reductio ad absurdum, entails proving 
P"~ Q ! Q"~ Q or that P"~ Q ! P"~ P. Others studying indirect proof have opted to group 
the two forms of proof together (See Antonni and Mariotti, 2008). In the context of this study, 
the two forms of indirect proof are viewed as distinct in terms of their structure. This is not to say 
that the proofs do not overlap but rather that they do not lie in complete bijection. This follows 
from consideration of what one can assume at the outset of constructing such proofs. Here we 
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see that one can assume ~Q, when constructing a proof by contraposition, while one can assume 
P!~ Q, when constructing a proof by contradiction.  

It is possible that being able to assume more initially (P!~ Q) might better enable novices 
to construct such proofs. On the other hand, such proofs require one to assume “the absurd,” 
which might make such proofs especially difficult for novices, for they require purely 
hypothetico-deductive thinking in the sense of Piaget. Another complicating factor is that 
indirect proofs take multiple and varied forms and are sometimes the only apparent or feasible 
approach. Take, for example, the task of proving the irrationality of the !2. One can either prove 
that for every pair of integers, p and q, !2 " p/q or one can assume there exists integers p and q 
such that !2 = p/q and arrive at a contradiction. To the experienced proof writer, the later may 
seem easier.  
 Finally, "#$%&'#()**+,!%"-!.)%"-.)%#($!(&../0#%+!")$!"-*1!1#$('-2)0%!3#-4$!&5!2'&&5!
6+!(&0%')1#(%#&0!&'!7#01#'-(%!2'&&589!:&'!#0$%)0(-,!%"-!5).&/$!.)%"-.)%#(#)0,!;8!<8!<)'1+!

1-$('#6-$!!"#$%&'()#()*+$!#$,!)$!7&0-!&5!)!.)%"-.)%#(#)0=$!5#0-$%!4-)2&0$9!>28!?@A8!B0!
(&0%')$%,!C&*+)!>?@DEA,!#0!"#$!1#$(/$$#&0!&5!7F6G-(%#&0$9!%&!#01#'-(%!2'&&5,!$%)%-$,!74-!$"&/*1!
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Methodology 
 To explore the claim that students prefer direct and causal arguments rather than indirect 
arguments an 8-item indirect proof survey was developed. This survey included three types of 
proof comparison tasks. Type I tasks as participants to compare a direct proof to an indirect 
proof and to indicate which argument they found more convincing. For example, a participant 
might be asked to compare a proof by induction (direct proof) to a proof that relied on the Well-
ordering Principal (proof by contradiction). Type II tasks asked participants to compare a Proof 
by Construction, in which a mathematical object is constructed, to an Existence Proof; that is, to 
a non-constructive, indirect proof of existence. Type III tasks explored the idea that there might 
be psychological distinctions to be made between the two forms of indirect proof, and asked 
participants to compare a proof by contraposition to a proof by contradiction. In addition to the 
comparison tasks, Type IV tasks asked participants to select from among three statements which 
statement they would choose to prove. Specifically, students were asked to indicate: (a) if a 
given theorem could be proved by proving an alternative statement of the theorem; and, (b) 
which among the potential alternative statements they would choose to prove. Alternative 
statements were of the form ~ Q " ~P and “there exists no P such that, P!~ Q.” Participants of 
the study were undergraduate mathematics students, enrolled in post-calculus collegiate 
mathematics courses such as differential geometry, linear algebra, and knot theory. Responses 
were anonymous, with respondents simply indicating their major and year in school. 
Findings  
 Preliminary findings from a cohort of students (n = 20) drawn from four advanced 
mathematics courses indicates that advanced, undergraduate mathematics students’ proof 
preferences are not consistent across comparison type. In comparison tasks of Type I, 
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participants preferred direct proofs, which relied on the Principal of Mathematics Induction, 
when such proofs were contrasted with a proof by contradiction, which relied on the Well-
Ordering Principal. In comparison tasks of Type II, students overwhelmingly selected an 
existence argument, with an implicit proof by contradiction, when compared with a constructive 
proof. This finding conflicts with prior qualitative research. No trends were observed in Type III 
comparison tasks. Finally, regarding Type IV survey items, students overwhelming selected 
direct statements; that is, statements which did not include a negation. This finding aligns with 
prior qualitative research on indirect proofs. 
Discussion 
 This paper presents a novel approach to studying students’ proof preferences related to 
indirect proof. The findings reported in this paper are preliminary and should be viewed as such, 
in part, because the result are drawn from a small sample of advanced students and because the 
work is preliminary. Further work is needed both with this population and with other 
populations. Indeed, novice proof writers, students at the beginning of the undergraduate studies, 
may exhibit different proof preferences. It is interesting, however, that much of the qualitative 
work on indirect proof has stressed that students prefer direct and constructive arguments (Harel 
& Sowder, 1998; Antonini & Mariotti, 2008) yet, in the context of the survey, students responses 
indicated a preference for the existence proof. Finally, variations in students’ proof preferences 
across task type suggest that students’ proof preferences may be more nuanced than indicated by 
prior characterizations.  
 
Audience Questions 

1. Students’ proof preferences appear to be linked, in some cases, to students’ self-reported 
“comfort level” with particular forms of proof (e.g., induction proofs), as indicated by 
students’ survey comments. In such cases, is “preference” an appropriate 
characterization of students’ responses? 
 

2. Several students noted in the comment section that they prefer direct proofs to indirect 
proofs. Yet, these same students selected the existence argument, with an implicit indirect 
proof, over a direct, constructive proof. What can we infer from instances in which 
students’ comments do not align with trends in their proof preferences?   

 
References 
Antonini, S., & Mariotti, M. A. (2008). Indirect Proof: What is specific to this way of 

proving? ZDM – The International Journal on Mathematics Education, 40, 401 – 412. 
 
Brown, S. (2003). The evolution of students understanding of mathematical induction: A 

teaching experiment. Unpublished doctoral dissertation, University of California, San 
Diego and San Diego State University. 

 
Harel, G. (2007). Students’ proof schemes revisited. In P. Boero (Eds.), Theorems in 

school: from history, epistemology and cognition to classroom practice (pp. 65–78). 
Rotterdam: Sense Publishers. 
 

Mancosu, P. (1996). Philosophy of mathematical practice in the 17th century. New York: Oxford 
  University Press. 

4-34

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



!

 
Dubinsky, E. (1986). Teaching Mathematical Induction I. Journal of Mathematical Behavior, 5, 
  305-317. 
 
Dubinsky, E. (1989). Teaching Mathematical Induction II. Journal of Mathematical Behavior, 8, 
  285-304. 
 
Fischbein, E., & Engel, I. (1989). Psychological Difficulties in Understanding the Principle of 
  Mathematical Induction. In Vergenaud, G., et als. (Eds.): Proceedings of the 13th 

International Conference for the Psychology of Mathematics Education (pp.276-282). 
Paris, France. 

 
Harel, G. (2001). The Development of Mathematical Induction as a Proof Scheme: A Model for 

DNR-Based Instruction. In S.R. Campbell and R. Zazkis (Eds.), Learning and Teaching 
Number Theory: Research in Cognition and Instruction. Monograph Series of the Journal 
of Mathematical Behavior, Vol. 2., 185-212.  

 
Harel, G. & Brown, S. (2008). Mathematical induction: Cognitive and instructional 

considerations. In M. Carlson & C. Rasmussen (Eds.), Making the Connection: Research 
and Practice in Undergraduate Mathematics. Mathematical Association of America, 
111-123. 

 
Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. 

Schoenfeld, J. Kaput, &  E. Dubinsky (Eds.) Research on Collegiate Mathematics 
Education III. (pp. 234-283). Providence, RI: American Mathematical Society. 

 
Leron, U. (1985). A direct approach to indirect proofs. Educational Studies in Mathematics, 
  16(3), 321 – 325. 
 
Moore, R. (1995). Making the transition to formal proof. Educational Studies in Mathematics, 
  27, 249-266. 

 
Movshovitz-Hadar, N. (1993a). Mathematical Induction: A Focus on the Conceptual Framework. 
  School Science and Mathematics, 93(8), 408-417. 
 
Movshovitz-Hadar, N. (1993b). The False Coin Problem, Mathematical Induction and 
  Knowledge Fragility. Journal of Mathematical Behavior, 12, 253-268. 
 
Polya, G. (1957). How to Solve It. Princeton University Press.  
 
Robert, A., & Schwarzenberger, R. (1991). Research in Teaching and Learning Mathematics at 

an Advanced Level. In D. Tall  (Ed.), Advanced Mathematical Thinking. (pp. 127-139). 
Dordrecht, Netherlands: Kluwer. 

 
Selden, A., & Selden, J.  (1995). Unpacking the logical of mathematical statements. Educational 

Studies in Mathematics, 29, 123 – 151.    

4-35

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



!

 
Selden, A., & Selden, J.  (2003).   Validations of proofs considered as texts:  Can undergraduates 

tell whether an argument proves a theorem?  Journal for Research in Mathematics 
Education, 34, 4-36. 

 
Weber, K.  (2001). Student difficulty in constructing proof: The need for strategic knowledge. 

Educational Studies in Mathematics, 48, 101-119. 
 
Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies 

in Mathematics, 56, 209 – 234.  
 

4-36

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



Counting problems, which ask the solver to determine the number of possible ways to fulfill

a set of requirements, are an important type of problem in combinatorics and discrete probabil-

ity. Solving such problems involves combinatorial ideas such as the multiplication principle (also

known as the basic counting principle), combination formula, permutation formula, or a mixture

of any of these. These topics are included in the typical introductory material of probability and

combinatorics courses at the undergraduate level, and of second-year algebra and statistics courses

at the secondary school level.

Solving such counting problems can be quite troublesome for students. It can be very diffi-

cult to determine the combinatorial ideas that are appropriate for solving a given problem. (This

problem is compounded by the fact that there are several different ways to solve most counting

problems.) Suppose we consider the number of arrangements of r objects selected from a set of n

distinct objects. Students are often taught a common heuristic for solving counting problems: for

ordered arrangements, use the permutation formula n!/(n− r)!; for selections that are unordered,

use the combination formula n!/(n− r)!r!. However, this heuristic can be unhelpful or even mis-

leading in certain contexts. In order to successfully and consistently solve counting problems,

students must have a much richer knowledge of these combinatorial ideas.

Therefore, it is important that preservice teachers, in particular, be able to confidently solve

counting problems. Furthermore, it is critical that they be able to choose an appropriate strategy

for solving a given problem. By strategy, in this context, we mean the combinatorial constructions

(such as the aforementioned basic counting principle, combination formula, or permutation for-

mula) applied in order to solve the problem. Currently, there is very little research that has been

done in this area. Therefore, we are currently conducting a study to investigate the counting prob-

lem strategies used by preservice teachers. We are currently in the beginning stages of this project,

but we will have collected a significant amount of data by the end of the current semester. We

propose to speak on the design and preliminary results of this study at the upcoming conference
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on RUME.

There is a small body of recent literature on the strategies used in solving counting problems.

Annin and Lai (2010) have identified some common errors made by students when solving particu-

lar types of counting problems. Godino et al. (2005) have looked at counting problems through an

ontological-semiotic model. Two of the same authors examined the responses of secondary school

students’ responses in an earlier paper (Batanero et al., 1997).

At our institution (a large public university in the Southwest United States), there are several

mathematics and education classes intended for preservice teachers at the secondary or community

college levels. During the current semester, these courses include two undergraduate “capstone”

courses for students in the teaching option of the mathematics major, two graduate courses in the

master’s degree program in teaching mathematics, two courses in the post-baccalaureate teaching

credential program, and a workshop for current teaching assistants at the university. We will give a

short “quiz” of six counting problems to students in each class. (There are some students who are

enrolled in more than one of these courses; we will ask these students to take the quiz more than

once, if they are willing. This will give us data on the consistency of the students’ strategies.) We

expect that all of the participants will have encountered the basic combinatorial ideas necessary

to solve counting problems in at least one high-school level course and at least one college-level

course.

The six problems chosen for the quiz are given below:

1) A scientist has six test tubes, labeled A-F. Each tube contains one liquid: water, sugar solution,

hydrochloric acid, or chocolate milk. In how many ways can the scientist place liquids in the

tubes so that exactly two tubes contain water?

2) A bag contains 26 marbles, labeled A through Z. In how many ways can six marbles be cho-

sen, where each of the six chosen marbles is different and the order in which they are chosen

matters?

3) Six college freshmen must each be assigned to one of ten available academic advisors. If each

student is to receive exactly one advisor, and each is assigned to a different advisor, in how

many ways can these assignments be made?

4) A painter has twelve colors of paint available. When painting a house, she needs to choose a

main color, trim color, accent color, and siding color, and all of these colors must be different

from one another. How many ways are there for the painter to pick colors for the house?

5) A youth hockey team has twelve members. How many ways are there to choose a starting

lineup of center, left wing, right wing, left defense, right defense, and goalie, if the order in

which these positions are filled does not matter?
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6) A toddler is stacking colored blocks, which can be red, white, blue, or green. If the toddler
makes a stack of eight blocks, how many ways are there to stack the blocks so that exactly three
blocks are red? (The order in which the blocks are arranged matters.)

The problems chosen are intended to be unfamiliar to the participants, as we did not want
the participants to rely on previously memorized strategies. Each of these six problems can be
solved using several different strategies. Three of the problems make an explicit statement of
whether or not “order matters” (that is, whether or not rearrangements of objects are to be counted
separately), but are otherwise “pairwise isomorphic” to the three problems that do not include
a specific statement about order: problems 1) and 6) are essentially the same, as are the pair
2) and 3) and the pair 4) and 5). All six problems are really asking for a number of possible
permutations; Problems 1) and 6) allow for repetition. The statements regarding order in problems
5) and 6) are deliberately misleading. In this way, we intend to investigate how the context and
wording of a counting problem, particularly the inclusion of an explicit statement about order,
affect the strategies used by the participants. We expect that at least some of the participants will
rely heavily on the heuristic of using a permutation formula when explicitly told that order matters,
and a combination formula when explicitly told that order does not matter. We are interested to
see how widespread the use of this heuristic is in our data, and the strategies used when an explicit
statement of order is not given by the problem.

The challenges of teaching combinatorics, particularly the strategies for solving counting prob-
lems, are not surprising– few formulas and set procedures can be blindly applied without a careful
understanding of the delicacies that exist. Subtle differences in wording or interpretation of the
questions can lead to vastly different solution techniques and answers. This research attempts to
gain a foothold on some of the challenges in this area with a vision of enhancing the quality of
instruction in the area of counting problems and bringing to light some new ideas on how teachers
can help students avoid the pitfalls described above.

Questions for the Audience:

• What other studies have examined the strategies used by students and teachers to solve count-
ing problems?

• What other difficulties are often encountered in solving counting problems?

• What other heuristics are used to solve counting problems?
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 ABSTRACT: It seems clear that students’ activity while working with definitions differs 

from that of mathematicians. The constructs of concept definition and concept image have served 

to support analyses of both mathematicians’ and students’ work with definitions (c.f. Edwards & 

Ward, 2004; Tall & Vinner, 1981). As part of an ongoing study, we chose to look closely at how 

mathematicians make sense of definitions in hopes of informing the ways in which we interpret 

students’ activity and support their understanding of definitions. We conducted interviews with 

mathematicians in an attempt to reveal their process when making sense of definitions. A 

striking observation relates to the role of examples. We will share a preliminary analysis of these 

interviews and engage the audience in reflecting on the ideas. 

 

KEY WORDS: mathematical definitions, advanced mathematical thinking, 

mathematicians’ practice, examples 

 

How do we come to understand mathematical definitions? Is the process different for 

students than it is for mathematicians? What can be learned from the practice of mathematicians 

that could support students’ learning? In their chapter on advanced mathematical thinking, Harel, 

Selden, & Selden (2006) identified mathematical definitions as one area of focus when 

comparing the activity of students with the practice of mathematicians. The constructs of concept 

definition and concept image have served to support analyses of both mathematicians’ and 

students’ work with definitions (c.f. Edwards & Ward, 2004; Tall & Vinner, 1981). Our current 

research attempts to bring such ideas together into explanatory models for mathematicians’ and 

students’ activity. In this presentation we will focus on mathematicians and how their ability to 

build adequate concept images might develop.  

Mathematicians encounter definitions in their work in a variety of ways. There are 

definitions included in courses they teach, definitions proposed by other mathematicians, and 

perhaps even new definitions created in the course of their own research work. In instructional 

settings, mathematicians must decide how to present definitions to students. In the context of 

current mathematical work, mathematicians must judge the clarity and appropriateness of stated 

definitions. In preparing to share proposed definitions, mathematicians must also consider 

presentation, clarity, and usefulness. Each of these settings requires some level of making sense 

of a given definition within a mathematical setting. We set out to create an interview context in 

which aspects of this activity were brought out and thus became accessible for analysis. The 

interviews provided opportunities for the mathematicians to articulate their perspectives on 

making sense of definitions and to participate in definition-related tasks (Watson & Mason, 

2005).  

In the interviews, participants were first asked to describe how they make sense of new 

mathematical definitions and to provide a recent example of doing this, if possible. The second 

interview question asked participants to share how they support students’ work with definitions. 

Participants were then asked to engage in an example-generation activity, and finally were given 

a formal definition from an unfamiliar context and asked to share how they would go about 
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making sense of the definition. We will focus on participants’ articulated and observed sense-

making process and possible connections to their articulation of instructional practice. 

Participants described their process of making sense of a new definition by sharing 

insights from a range of activities, including reading papers or textbooks and creating definitions 

within their research work. When presented with the unfamiliar definition, participants reflected 

on their thinking, identifying what they found challenging about the task, and what next steps 

they would take. Participants were told that additional information was available and would be 

provided if requested. 

One of our main observations concerns the use of examples. When asked how they make 

sense of a new definition, participants immediately referred to the use of examples and repeated 

the importance of examples when describing their teaching. Given their emphasis on examples, it 

was reasonable to expect participants to use an example when presented with a new definition. 

Rather, participants focused on specific terms or notations within the statement, either working 

through these on their own or asking for supporting information. Given the immediacy of their 

reference to examples previously in the interviews, we found the tendency to not ask for an 

example initially surprising. Our analysis needed to account for this expressed relevance of 

examples and the seemingly contradictory behavior of not actually asking for an example. Two 

themes emerged from the analysis that served to coordinate our observations. We will present 

these themes first as an explanatory model and then compare the model to what the 

mathematicians said about their instructional practice. 

Mathematicians make sense of definitions by situating the definition within a particular 

mathematical setting and considering the usefulness of the definition within that setting. Placing 

a definition within a setting involves a progression of previous definitions, notations, and 

examples. When presented with the unfamiliar definition, participants began by sorting through 

the specific terms and notations within the statement. This involved requesting and receiving 

various supporting definitions. Within this process, participants made references to their own 

previous knowledge or to contexts with which they were familiar. In particular, participants 

questioned things such as why some terms were presented in a specific way, or whether the 

definition needed to be as general as it appeared to be. In most cases, participants did not ask to 

see an example as part of this process. We see this as the mathematicians needing to situate the 

statement of the definition clearly within a mathematical setting to judge the value or usefulness 

of the definition.  

Mathematicians use examples as a tool for understanding definitions. In discussing both 

their own work and their work with students, participants spoke about examples as key to 

building understanding. Examples should be chosen carefully so that they serve to draw attention 

to important aspects. In making sense of definitions, the participants said they use examples to 

confirm their understanding, often choosing “messy” examples to be sure they had not 

introduced inappropriate assumptions. Creating or considering non-examples was considered an 

essential component of understanding: “and the only way to get there is look at concrete 

examples and look at concrete non-examples.” The use of examples and non-examples seemed 

critical for their own understanding and how they support students’ understanding.  

In this study, mathematicians placed definitions within a particular mathematical setting; 

in their general practice and in their instruction, this setting is already set. When teaching, they 

attend to presenting ideas in a logical progression so that students have the necessary pieces to 

understand definitions. In their own work, they are familiar with current terms and notations 

within their field, so the setting and progression are understood. Within the setting, examples and 
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non-examples serve to spotlight key features of the definition; using a non-example can help to 

clarify why certain aspects of the definition are needed (why does the function need to be 

continuous here?). When we presented mathematicians with an unfamiliar definition, it was not 

situated within a particular setting. Therefore, they needed to understand the key components of 

the statement before they could use examples as a tool. That is, examples do not “carry” the 

definition entirely. 

In the presentation we will engage the audience with the topic by asking them to reflect 

on their own practice, provide background on our study, share our preliminary analysis, and 

finally, ask the audience to provide feedback. The following prompts will be used. 

1. Take a minute to think about what you do when you want to make sense of a new 

definition. How do you know when you understand a definition? 

2. Take a minute to think about what you do to support students’ understanding of 

mathematical definitions. How does this compare to what you do for yourself? 

3. Do these themes resonate with your experience? How does this help us interpret students’ 

mathematical activity and inform instructional practice? 
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Introduction 

 
A tension has always existed between the advocates of mathematics as being more of a 

mental discipline and, both academics and pedagogues, who consider the physical role of 

objects, materials or machines playing a formative role in the learning of mathematics.  

While both sides recognize that tools play their role in the practice of mathematics, the 

mental mathematicians may consider that tools or machines play a small role to either 

simplify a calculation to arrive at a particular theorem or merely serve as a vessel that 

serves the sole purpose of “getting” to the mathematics.  This attitude is not so much 

explicitly stated as it is practiced.  Whether stemming from Plato’s vision of mathematics 

as a separate, distinct and pure discipline, that is accessible solely through contemplation 

(Tarnas, p. 6), mathematical production acts often state no reference to materials or tools 
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used in the process.  While mental discipline advocates argue tools can cloud the very 

nature of mathematics, advocates for an object-oriented inquiry argue that tools or 

machines influence how we learn mathematics (Turkle, 2007) and are consequently 

worthy of study.   

Analytic Framework 

The implementation of tools or machines into mathematics classrooms and how they are 

used is a topic of interest:  if mathematics learning is to be fully understood, the tools 

used in mathematical activity are not to be reduced to an avoidable step.  Wertsch claims 

that one of Vygotsky’s major themes in his theoretical approach was “…that an adequate 

account of human mental functioning must be grounded in an analysis of the tools and 

signs that mediate it” (in Daniels, 2008, p. 4). The framework that I would like to propose 

for analyzing tools in mathematics education is based on Pickering’s distinction of 

agencies. Pickering (1995) has classified 3 types of agency: individual, disciplinary and 

material.  While one would not usually think of materials or disciplines as having agency, 

Pickering describes the individual engagement with either of these agencies as a 

“…dialectic of resistance and accommodation” (p. 52).  Pickering has referred to this 

interplay of resistance and accommodation as a “dance of agency”.  His view is that 

mathematics is a product of human activity and therefore individual agency plays a major 

role in any conceptual and/or material advancement.  However, engagement with 

materials or conceptual systems is not a one-sided affair.  In his argument for disciplinary 

agency Pickering describes how a conceptual system can “…carry human conceptual 

practices along…independently of individual wishes and intents” (p. 115).  So although 

individuals exercise their agency in their intentions and actions, they are often met with 
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resistance or an obstacle .  This resistance is the agency of the material or conceptual 

system.  The dance of agency is then enacted by having the individual accommodate their 

actions to appropriate the resistance.  This dialectical interaction is the framework from 

which I would begin.  When a student of mathematics is interacting with an object and an 

attempt is made by the individual to achieve a goal, any resistance to that goal is an 

example of material agency. 

 

Boaler uses this framework to argue that disciplinary agency dominates the practices in a 

traditional classroom.  Pickering sees this disciplinary agency as the negotiated rules and 

algorithms of mathematics.  Thus if student are not given the chance to act, the math is 

given the status to direct and determine the practices of math classroom activity.  Boaler 

argues that good classroom teaching would entertain a balance between the two agencies 

for both are important and essential.  Both Pickering and Boaler however do not refer to 

material agency in mathematics.  Pickering offers material agency as only being evident 

in scientific advancements.  So while Pickering is focusing on the emergence of new 

ideas, theories, and practices I hypothesize that material agency does have significance in 

the practices of mathematics. Wagner also uses Pickering’s framework by acknowledging 

disciplinary agency but appeals to material agency in mathematics and poses the 

question:  “What is the nature of material agency in mathematics?” (Wagner, p. 43).  I 

borrow from Wagner and ask the question:  what is the nature and implication of material 

agency when students of mathematics are engaged in using a tool.  
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Proposed Study 

While there are many tools and/or artifacts that have found themselves in different ways 

into the mathematical community I am choosing what could be termed a technological 

artifact.  A dynamic geometry software (DGS) can be said to have been made to elicit 

determined geometrical principles.  DGS’s options and many features such as built in 

tools offer many choices for students to engage with.  It is the choices they have that 

allows for them to exercise their own agency.  This dialectic engagement is what I choose 

to focus on.  While teaching an education class of pre-service mathematics teachers I will 

analyze their interactions in solving a problem by analyzing the data in terms of the 

different types of agencies, based mainly on their spoken words as well as their actions in 

using the program.  Informal, ad hoc studies using Jing as a way of capturing both their 

dialogue as well as their activity within the program show evidence of material agency.   

 

Questions 

What does this framework offer that appropriation does not?   

Is this a viable framework in mathematics education?  How best to capture data for 

material agency? Does a DGS afford the opportunity to observe individual agency 

alongside material agency?  How can one distinguish between disciplinary and material 

agency in the context of a DGS? 
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The Impact of Instruction Designed to Support Development of Stochastic Understanding 
of Probability Distribution 

 
 

 
 
Abstract: 

   
 
Key words:  Probability distribution, stochastic reasoning, technology-based instruction, 
instructional intervention. 
 
Statement of research issue: 

Large numbers of university students study probability and statistics (Moore & Cobb, 
2000), but research indicates that many of these students exhibit difficulties in learning and 
applying probabilistic and statistical concepts (Garfield & Ben-Zvi, 2007; Shaughnessy, 1992, 
2007).  Inappropriate reasoning in probability and statistics is widespread and persistent across 
all age levels.  After probability instruction, many post-calculus students demonstrate merely 
instrumental understanding (Skemp, 1976) and present notions about probability that are not 
aligned with formal probabilistic concepts (Barragues, Guisasola, & Morais, 2007).  This study 
draws on constructivist and situated learning perspectives and assumes understandings are built 
through learning experiences, which are impacted by the learner, teachers, and the instructional 
material. The study assumes that:  (1) teaching impacts learning and can facilitate learning with 
understanding; (2) effective teaching elicits students’ pre-existing understandings and builds on 
that understanding; (3) effective teaching helps students develop deep knowledge connections in 
the context of a conceptual frame for the content domain (Bransford, Brown, & Cocking, 2000). 
This research was designed to evaluate the effectiveness of an instructional intervention that 
builds on students’ initial understandings of probability and statistics and facilitates student 
understanding of content within a connected conceptual framework.  The study seeks to measure 
and describe individual understandings of probability distribution. 

The concept of probability distribution is a powerful springboard for the development of 
stochastic reasoning as it may facilitate making deep conceptual connections around probabilistic 
understandings related to variability, independence, sample space, and distribution (Liu & 
Thompson, 2007).  Principled knowledge (Spillane, 2000) refers to an understanding of the ideas 
and concepts that support mathematical procedures.  Principled knowledge of probability 
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distribution not only refers to a conceptual understanding of the mathematical procedures used 
when solving probability problems, but also an understanding of connections between and within 
the constructs of probability, variability, and distribution. 

This large-scale control-treatment study investigated the impact of an instructional 
intervention on post-calculus students’ understandings of probability distribution.  The treatment 
intervention consisted of lab materials designed to address stochastic reasoning and to support 
students’ principled knowledge of probability distribution.  The control lab materials reviewed 
prerequisite calculus content which students encounter in the course, thus controlling for quantity 
of instruction.  This study addressed the following question:  What is the impact of an 
instructional intervention designed to support development of stochastic understanding of 
probability distribution of undergraduate students enrolled in an introductory calculus-based 
probability and statistics course?   
 
Summary of Related Research 

Stochastic reasoning is grounded in conceptual connections between probability and 
statistics.  To reason stochastically means conceiving of an observed outcome as but one 
expression of an underlying repeatable process that will produce a stable distribution of 
outcomes in the long run (Liu & Thompson, 2007).  One reason why learners may experience 
difficulty with stochastic reasoning is because learning about random experiments through 
simulation or experimentation is not connected to learning about combinatorial schemes or tools 
such as tree diagrams in probability (Batanero, Godino, & Roa, 2004).  Also, intuitive thinking 
based on experience with random generators appears to be disconnected to formal mathematical 
thinking about probability (Abrahamson, 2007).  Making statistical inferences requires 
application of stochastic thinking for correct interpretation, and a stochastic conception of 
probability supports thinking about formal statistical inference (Liu & Thompson, 2007).   

Research indicates that many post-calculus students, who are either currently enrolled in 
or have recently completed introductory probability and statistics courses, demonstrate 
probabilistic thinking and heuristical biases that are aligned with the thinking of novice learners 
in algebra-based classes and high school students (Abrahamson, 2007; Barragues, et al., 2007; 
Lunsford, Rowell, & Goodson-Espy, 2006).  Even after instruction addressing probability, many 
post-calculus students still exhibit poor understandings of random phenomena and present 
mistaken conceptions of random sequences, insensitivity to sample size, and a deterministic bias.  
Research shows that post-calculus students who have completed a probability/statistics course 
still have difficulty with a modeling viewpoint and struggle to discriminate between empirical 
distributions and theoretical probability distributions (Barragues, et al., 2007).  Research 
suggests that after completing an introductory, calculus-based probability and statistics course, 
most students are comfortable with formal mathematical manipulations of probability 
distributions and master algorithmic techniques, but they lack stochastic conceptions and deep 
conceptual understanding of probability distribution. 

Research investigating development of post-calculus students’ understanding of 
probabilistic concepts indicates that teaching is an important factor related to students’ 
understandings of probability.  Teaching which emphasizes procedures tends to result in 
instrumental understanding, whereas teaching which facilitates learner explorations of 
conceptual notions of probability as a distribution and its connection to mathematical theorems 
offers opportunities for students to build relational understanding (Skemp, 1976) in probability 
and statistics.  A study of post-calculus engineering students’ conceptions of probability found 
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that conventional teaching can have a poor effect on students’ probabilistic reasoning 
(Barragues, et al., 2007).  Although not conducted in a classroom, the work of Abrahamson 
(2007) indicates that post-calculus learners can consolidate their intuitive notions of probability 
with their formal mathematical knowledge in the context of probability distribution.  Still other 
research points to the promise of learners’ engagement in tasks utilizing a computer-based 
dynamic statistical environment as a means towards facilitating development of notions of 
sampling distribution, variability, and inferential reasoning (Meletiou-Mavrotheris, 2003; 
Sanchez & Inzunsa, 2006). 

 
Research Methodology: 

This study compared the impact of differing instructional lab materials.  The subjects 
were approximately 200 students enrolled in a calculus-based introductory probability and 
statistics course at a large, public university.  The course setting consisted of two lectures with 
the same syllabus taught by mathematicians who covered the same content.  Teaching assistants 
led accompanying recitations. One lecture had six recitations sections, and the other had four.  
Students were randomly assigned to a recitation section via their course registration.  Each 
recitation section associated with a given lecturer was randomly assigned to either the treatment 
or control condition whereby a teaching assistant had both treatment and control recitations.  
This assignment balanced the treatment and control across lectures and recitation sites in order to 
mitigate confounding variables due to differences in teaching between the lecturers and between 
the teaching assistants.  All students enrolled in a particular recitation received one type of lab 
material.  The treatment group received lab materials designed to support stochastic reasoning, 
and the control group received lab materials which consisted of a review of calculus content used 
in the course.  Students’ understanding was measured via conceptual assessments in the form of 
an extra-credit quiz and course examinations.  At the end of the study, selected students 
participated in interviews designed to provide insight into students’ thinking and reasoning about 
conceptual assessment items.   
 
Framework for Instructional Intervention: 

The treatment instructional intervention implemented in this study consisted of six 
supplemental lab assignments aimed at the development of stochastic reasoning in the context of 
probability distribution.  The design of these tasks was based on a hypothetical learning 
trajectory (Simon, 1995) of students’ stochastic conceptions of probability (Liu & Thompson, 
2007) which was adapted for use in the context of probability distribution.  This study extended 
the research investigating the impact of bridging tools (Abrahamson & Wilensky, 2007) on 
college students’ understanding of probability distribution into a classroom setting.  Learners in 
the treatment sections engaged in technology-supported simulation tasks designed to elicit prior 
understandings of probability.  These tasks required learners to consider juxtaposed constructs in 
the domain, such as theoretical versus empirical probability and independent versus dependent 
events.  The approach was to have the learner decompose domain constructs into idea 
components and then use conceptual bridging tools to recompose the constructs using their 
intuitive and analytic resources.  In order to control for instructional time, the control group 
received tasks which reviewed calculus content used in the course and covered topics such as 
integration using substitution and integration by parts.  The instructional intervention material 
was designed to prepare students to learn from the lectures and therefore provide greater 
opportunity for students to make deeper conceptual connections (Schwartz & Bransford, 1998). 
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Implications of this research: 

Given the evidence that many college students in probability and statistics classes are not 
learning with understanding, it is critical to investigate the effectiveness of approaches for 
teaching probability and statistics in ways that build on students’ initial understandings and helps 
students understand the content not merely as facts to be memorized, but as connected concepts 
within a conceptual framework.  Knowledge of whether instruction which is aimed at fostering 
stochastic reasoning impacts learners’ understandings of probability distribution could inform 
future design of instruction and development of instructional materials in probability and 
statistics. 

 
Discussion Questions: 

 How might this framework (to be shared in the presentation) be extended for use when 
planning instructional strategies or in designing instructional material?  

 How might this framework further inform the analysis of the conceptual assessment 
items? (preliminary findings and planned analysis will be presented) 

 What are the further implications of these preliminary findings for instruction in 
probability and statistics?  

 What are the advantages/disadvantages of utilizing technology-based instructional 
material to support lecture/recitation delivery of course material? 

 What other issues related to student understanding of probability and statistics might be 
informed by this study? 

 What are the implications of the degree of student understanding of prerequisite calculus 
procedures/concepts (as revealed in the control labs) for those teaching probability and 
statistics as well as for the teaching of calculus? 
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Supplemental Instruction and Related Rates Problems
Nicole Engelke, California State University, Fullerton

Todd CadwalladerOlsker, California State University, Fullerton

In this study, we observed first semester calculus students solving related rates problems in a peer-

led collaborative learning environment. The development of a robust mental model has been shown

to be a critical part of the solution process for such problems. We are interested in determining

whether the collaborative learning environment promotes the development of such a mental model.

Through our observations, we were able to determine the amount of time students spent engaging

with the diagrams they drew to model the problem situation. Our analysis strove to also determine

the quality of the student interactions with their diagrams. This analysis provided insights about

the mental models with which the students were working. Engaging students with complex, non-

routine problems resulted in the students spending more time developing robust mental models.

Background
Supplemental Instruction (SI) workshops, based on the work of Uri Treisman in the early 1980s

and developed by the University of Missouri, Kansas City (UMKC), have been highly successful

at campuses across the country and also in neighboring campuses with student populations like

those at our institution. The UMKC SI workshop is a structured learning environment where

students gain additional experience in the subject matter taught in the course to which it is linked

(Bonsangue, 1994). From these models, we have developed a version of the SI workshops that

meets our students’ needs. Students do not simply review course material or do homework in SI

workshops, but undertake additional, challenging problems or assignments to build confidence in

their abilities and to gain self-reliance. They engage in active and cooperative learning activities,

utilizing peer facilitators as resource persons. The peer facilitator attends each class lecture so

that the workshop problems are relevant to course assignments. In doing so, the peer facilitator

also serves as a role model for SI students and creates an increased culture of accountability in the

classroom.

In the Spring 2009 semester, our institution began expanding our workshop program, particu-

larly in calculus. We ran 3 successful pilot SI workshops for first semester calculus. The success

of those courses led us to run 4 and 5 first semester calculus SI workshops, respectively, in the Fall

2009 and Spring 2010 semesters. Our workshop model is such that two calculus courses (usually)

taught by the same instructor feed into one SI workshop. The workshop is an optional one semester

credit hour course; it is hosted by a junior or senior level math major and graded credit/no credit

based solely on attendance and participation. In each workshop session, the peer-mentor facili-

tates student group work on topics that have been recently presented in lecture. During the Fall

2009 and Spring 2010 semesters, we observed how students solve related rates problems in this

peer-led instructional setting with the purpose of examining how students think about and solve
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application problems. We were particularly interested in whether the collaborative environment

of the workshop setting promoted the development of the students mental model of the problem

situation.

Theoretical Perspective
White and Mitchelmore (1996) studied students understanding of related rates and max/min

calculus problems. Their study used differently worded versions of four problems, which ranged

from a word problem that required the student to model the situation and come up with the ap-

propriate relation to an almost strictly symbolic version that merely needed to be manipulated. It

was found that students performed better when there was less need for translation from words to

symbols.

White and Mitchelmores study showed that students have a tendency for a manipulation focus,

in which they base decisions about which procedure to apply on the given symbols and ignore the

meaning behind the symbols. Interview comments showed that manipulation focus errors were not

just bad luck, but that students were actively looking for symbols to which they could apply known

manipulations.(p. 88) The researchers further described two other forms of the manipulation focus:

1) the x, y syndrome, in which students remember a procedure in terms of the symbols first used to

introduce the concept without understanding the meaning of the symbols; and 2) the students fail

to distinguish a general relationship from a specific value.

In her studies, Engelke (2004, 2007a, 2007b) found that students fixated on procedural steps

which prevented them from building a mental model of the situation. Without having a men-

tal model of the situation, the students were less likely to engage in transformational (Simon,

1996) and covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002) about the problem

situation. The ability to engage in transformational and covariational reasoning appeared to be

necessary to identify relevant functional relationships. She suggested that a robust mental model

facilitated being able to move flexibly between the geometric and algebraic representations which

fostered being able to construct an appropriate formula in which one can think of each of the

variables as a function of time.

Methods
In our study, the students are first semester calculus students that are coming from two or

more standard lecture courses and have the option to participate in a Supplemental Instruction

(SI) workshop. The SI sessions are hosted by junior/senior level math majors and are intended to

further develop the students understanding of the material presented in the regular class sessions.

During the SI sessions the students worked in small groups to solve problems provided by the SI

leaders. During their time in the SI workshop, the students were filmed over several days, in which

the students covered the chain rule, implicit differentiation, and related rates problems. Since the

students were vocalizing and writing their ideas and thought processes, we were able to determine

what types of reasoning structures the students were utilizing. These videos were transcribed for

analysis, using pseudonyms for the students names. The coding process was done using atlas-ti

software.

Results
The students were given the following problem: A plane flying horizontally at an altitude of
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3 miles and a speed of 600 mi/hr passes directly over a radar station. When the plane is 5 miles
away from the station, at what rate is the distance from the plane to the station increasing?

As we see in the transcript excerpt below, the students began by drawing a diagram to represent

the problem situation and labeled the sides of the triangle that is being formed by the plane and

the radar station with the variables l, h, and d. It was also determined that they should use the

Pythagorean Theorem to relate the variables in the problem.

Student 3: The distance over time. Its miles like the island...okay so a plane is flying horizontally

at an altitude of 3 miles [labels with d], at a speed 600 miles per hour. Passes directly over the

radio station then is 5 miles away from the radio station, 5 miles. [calling the diagonal distance

l = 5 miles] what is the rate, at what rate is the is the distance from the plane to the radio

station increasing? [Also wrote
dd
dt = 600 mi/hr and

dr
dt =? under the diagram] Ok. Were going

to call this h [the vertical height of 3 mi]. Ok, someone. [Passing the chalk as per instructions

from the SI leaders] Wait, wait, I forgot to do...never mind, the equation, the equation we are

going to use to relate it all is the Pythagorean Theorem exactly.

Student 2: Does that look good? [wrote 32 + d2 = 52
to fill in d = 4 on the diagram]

Student 1: It looks great; I am just trying to

Student 3: Ok, can we just use 3 squared plus d squared is x squared, yes.

Student 2: Should I do like, should I differentiate it? ...

Student 1: Let me know if I am doing this right. We are looking for
dd
dt , dont we need a derivative?

[starts differentiating the Pythagorean theorem which he wrote as a2 + b2 = c2
]

Student 3: Why do a, b, c? I think it should really be the letters we have.

Student 4: Do we have this? We don’t have this. [referring to
da
dt ]

Student 2: What we have is the second one.

Student 3: This still...if this still says a, I feel that this should say h, right? Not a right?

As the students start to incorporate the Pythagorean Theorem into the solution, there is some

debate on the notation that is being used. Student 3 used d, h, and l as the variables, and Student

1 is now using a, b, and c. Even after Student 4 starts working, Student 3 is still worried about the

mixed up variables.

There are three different ideas of what the Pythagorean Theorem should look like at this point

in the problem solving process. Student 3 starts using 32 + d2 = x2
, but then changes her mind

and thinks it should use the variables they have in their diagram. Student 1 is using a2 + b2 = c2
.
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The variables used to write down the formula for the problem appear to be based on what has been

used in previous problems for Student 1 and Student 3. However, Student 3 shifted her thinking to

wanting the variables used in the formula to match the variables used in the diagram to represent

the problem situation. In the end, it was decided that the variables in the formula should match the

variables they had used in their diagram to get 32 + d2 = l2. They differentiated their formula to

obtain: 2ddd
dt = 2l dr

dt . This brings up the question, where did the
dr
dt come from? Recall that when

Student 3 drew the diagram at the very beginning of the problem solving process, she labeled

dr
dt =? under her picture. This could be an instance of the x, y syndrome described by White and

Mitchelmore as the students wrote this for every problem. The students seemed to associate
dr
dt =?

with the unknown rate regardless of which variables they had used in their diagram, so when they

differentiated their formula, they had to accommodate this notation. The students successfully

solved the problem; reporting that
dr
dt = 480 mi/hr.

In their diagrams, these students were inconsistent in their use of variables, frequently not rep-

resenting any of the changing quantities with variables but only labeling quantities with numerical

values. While diagrams are being drawn, the students seem to be choosing a formula for the prob-

lem based on keywords about the “shape” that is mentioned in the problem rather than on the

relationships that exist between variables in the problem. The absence of a robust mental model

that incorporates variable names for changing quantities could be why the students had no issues

writing down
dr
dt =? for each problem they solved. This was merely the notation for what they

wanted to find rather than a representation of a rate connected to a particular changing quantity.

These observations support Engelke’s (2004, 2007a, 2007b) results that students are not adept at

building mental models that support the problem solving process when solving related rates prob-

lems. Based on this evidence, we suggest that more time should be allotted for engaging students

in building robust mental models that incorporate the relationships that exist between the diagram

that is drawn, the variables that represent changing quantities, and an appropriate formula. We will

present some ideas about how to improve students’ mental models.

Questions for the audience:

1. What qualitative studies have been done on peer-led instructional settings, in calculus?

2. Is the problem solving process that occurs in peer-led instructional settings reflective of what

occurs in the classroom?

3. How do you promote students’ building of robust mental models?
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Exploring student’s spontaneous and scientific concepts in understanding solution 

to linear single differential equations 

     Arlene M Evangelista 
School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287. 

 

In this study, we use the zone of proximal development to characterize students’ 

spontaneous and scientific concepts of rate of change, rate proportional to amount, 

exponential function and long-term behavior of solutions for a system of one and two 

linear autonomous differential equations. Our focus on the dynamics of the differential 

equation systems is to investigate how these spontaneous and scientific concepts are 

incorporated from a system one linear differential equation into a larger system of two 

linear differential equations. We use and adapt previously used instructional activities 

from an inquiry-oriented differential equation course to help us gather our data by doing 

semi-structured interviews with five students. We present only preliminary findings on 

student’s thinking of solutions mainly for single differential equations, with some insights 

of student thinking of solutions on a system of two differential equations. 

 

KEYWORDS: Differential equations, solutions, rate of change, zone of proximal 

development 

 

Research on the teaching and learning of differential equation concepts has 

recently appeared within the last decade (Habre 2000, Rasmussen, 2000, 2001, 2003, 

Rowland, 2006, and Rasmussen and Blumenfeld, 2007).   These last studies show that 

students have difficulties acquiring meaningful understanding of the concept of derivative 

even though students can manipulate formulas algebraically or geometrically.  For 

example, students have misconceptions in understanding the different components of a 

differential equation, such as having difficulties describing what the rate of change, 

variable and solution means within the context of the differential equation (Habre, 2000; 

Rasmussen and King, 2000; Rasmussen 2001). Rasmussen and Whitehead (2003) 

reported that similar cognitive difficulties were observed when students have to interpret 

solutions or varying rates for a system of two equations. In 2007, Rasmussen and 

Blumenfeld describe a teaching experiment about a spring-mass problem where students 

invented their own intuitive method for finding the eigenvectors for a system of two 

linear differential equations with constant coefficients. The authors found that students 

used proportional reasoning to help them understand the concept of eigenvectors. 

However, studies at this level, with a system of two differential equations, are very 

scarce. 

This paper presents the preliminary results of an ongoing research investigation 

about the difficulties and ways of reasoning associated with understanding the dynamics 

of solutions and long term behavior of the autonomous linear system with one or two 

equations within different context representations (numerical, graphical, and algebraic). 

More specifically, these are the two main questions we want to explore: 
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1. What are students’ spontaneous concepts about rate of change, “rate 

proportional to amount”, exponential function, and long-term behavior of 

solutions to differential equations for systems of one and two equations?   

2. Given a specific set of activities
1
, what is the interplay between spontaneous 

and scientific concepts (within our focus)? 

 

Our main motivation for this study is to explore student thinking and reasoning of rate 

proportional to amount in systems of linear differential equation with one and two 

equations.  We used different mathematical representations so that students not only 

algebraically solve differential equations, but also given the opportunity to understand 

different patterns and relationships, and to model and predict general and qualitative 

behavior about solutions. We want to investigate the interplay of student’s spontaneous 

and scientific concepts about rate of change, rate proportional to amount, and exponential 

function in connection to solutions to differential equations within both dimensions.  

The theoretical foundations for this study follows: Vygotsky(1987)’s zone of 

proximal development and Steffe and Thompson (2000)’s teaching experiments. We use 

the framework of teaching experiments (Steffe and Thompson, 2000) not only to see first 

hand how students are constructing knowledge, but also to follow and not necessarily test 

a learning trajectory. According to Vygotsky, a learner develops meaning and 

understanding from mental processes and from a concept system (or from a structured 

concept system of ideas), in which both spontaneous and scientific concepts follow an 

interdependence learning development of a concept.  A spontaneous concept originates 

when a person first encounters the new concept within empirical situations, while a 

scientific concept originates when a person first encounters the new concept in its 

generalized form. Both concepts follow interdependent paths of development in 

associating an object to its associated generalized concept. One of the attributes of a 

scientific concept is that it has to exist within a concept system so that connections of 

mental process can be made and generalized. Another attribute is that the learner has to 

operate with conscious awareness and volition in their thinking process. In contrast to all 

of these main attributes for the scientific concept, a spontaneous concept exist outside a 

concept system, it lacks some level of conscious awareness, with no generality and 

voluntary control involved.  

Going back to our research questions, the second question is a very important 

question because not only we want to investigate characterization of spontaneous 

concepts to scientific concepts but also their influence on each other. Both spontaneous 

and scientific concepts required further thinking and reflection, so we anticipate these 

instructional activities will helps us get at those instances in students’ learning 

development.  We want to investigate what students can do with these concepts so that 

concepts are used consciously and with purpose (i.e. voluntary control). With “what can 

students do” we are referring to those mental images students developed in their learning 

process mediated by the spontaneous and scientific concepts. Hence, we are interested in 

the characterization of the zone of proximal development when learning differential 

equations given a specific set of instructional activities, and how certain concepts 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1
 This specific set of activities were mainly developed by professor Chris Rasmussen  
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(especially rate and rate proportional to amount) are later incorporated into a more 

advanced system consisting of two differential equations.   

 

For this paper, we will present preliminary findings with respect to our first 

question and some insights with respect to question two. Our preliminary findings 

indicate that students use differential equations (with one equation), 

! 

dp /dt = f (p) as a 

mathematical tool to predict numerical or graphical solutions, as reported in other prior 

studies. (Habre, 2000, Rasmussen, 2001, 2003, Rasmussen and Stephan, 2002). In 

general we expect students to be able to solve linear differential equations algebraically 

and qualitatively, but maybe not be consciously aware of why methods worked or what 

the solution actually means. We expect to see more cognitive difficulties when students 

make the transition from working with single differential equation to a system of two 

differential equations. Our long term goal for the study is to explore the effect of focusing 

on these different concepts given a set of particular set of instructional activities, and how 

it can help in improving the teaching and learning of differential equations. 

 

 

Question for discussion: 

1. Why is it useful to characterize spontaneous or a scientific concept of solutions in 

a single differential equation or from a system of two differential equations? 

 

2. What is involved in creating a coherent learning trajectory for student when 

learning solutions from a single differential equation into a system of two 

differential equations? And what do we mean with a coherent learning trajectory? 
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Concepts Fundamental to an Applicable Understanding of Calculus 
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Abstract:  Calculus is an important tool for building mathematical models of the world around us 
and is thus used in a variety of disciplines, such as physics and engineering.  These disciplines 
rely on calculus courses to provide the mathematical foundation needed for success in their 
discipline courses.  Unfortunately, many students leave calculus with an exceptionally primitive 
understanding and are ill-prepared for discipline courses.  This study seeks to identify the 
fundamental calculus concepts necessary for successful academic pursuits outside the 
undergraduate mathematics classroom, describe appropriate understanding of these concepts, and 
collect tasks that elicit, document, and measure this understanding.  Data were collected through 
a series of interviews with select undergraduate mathematics and other discipline faculty 
members.  The data were used to build descriptions of and frameworks for understanding the 
calculus concepts and generate the pool of tasks.  Implications of these findings for calculus 
curriculum are presented. 

Keywords:  Calculus, understanding, design research 
 
 

Introduction 
 
According to Ganter and Barker (2004): 

Mathematics can and should play an important role in the education of 
undergraduate students. In fact, few educators would dispute that students who can think 
mathematically and reason through problems are better able to face the challenges of 
careers in other disciplines—including those in non-scientific areas. Add to these skills 
the appropriate use of technology, the ability to model complex situations, and an 
understanding and appreciation of the specific mathematics appropriate to their chosen 
fields, and students are then equipped with powerful tools for the future. 

Unfortunately, many mathematics courses are not successful in achieving these 
goals. Students do not see the connections between mathematics and their chosen 
disciplines; instead, they leave mathematics courses with a set of skills that they are 
unable to apply in non-routine settings and whose importance to their future careers is 
not appreciated. Indeed, the mathematics many students are taught often is not the most 
relevant to their chosen fields. For these reasons, faculty members outside mathematics 
often perceive the mathematics community as uninterested in the needs of non-
mathematics majors, especially those in introductory courses. 

The mathematics community ignores this situation at its own peril since 
approximately 95% of the students in first-year mathematics courses go on to major in 
other disciplines. The challenge, therefore, is to provide mathematical experiences that 
are true to the spirit of mathematics yet also relevant to students’ futures in other fields. 
The question then is not whether they need mathematics, but what mathematics is needed 
and in what context.  (p. 1) 
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These claims detail the rationale for The Mathematical Association of America’s (MAA) 
Curriculum Foundations Project (http://www.maa.org/cupm/crafty/cf_project.html).  This project 
studied the first two years of undergraduate mathematics curriculum.  Portions of the 
mathematics community and its partner disciplines (e.g., biology, business, chemistry, computer 
science, several areas of engineering) worked together to generate a set of recommendations that 
have assisted mathematics departments plan their programs to better serve the needs of its 
partner or client disciplines (Ferrini-Mundy & Gücler, 2009). 

The push to better serve the needs of client disciplines stemmed from the calculus reform 
efforts.  Between the mid 1980’s and the early 1990’s, the undergraduate mathematics 
community engaged in a concentrated effort to overhaul the teaching and curriculum of 
beginning calculus (Ferrini-Mundy & Gücler, 2009).  The heart of the reform was the concern 
over the depth and breadth of students’ understanding of calculus (Douglas, 1986).  This lack of 
understanding became especially apparent when students were asked to apply calculus in 
unfamiliar situations (Hughes Hallett, 2000). 

As Ganter and Barker (2004) implied, client department faculty often complain that 
students are unable to apply calculus in the client coursework.  Sometime this coursework asks 
students to use the calculus concepts in ways not familiar to them.  For example, the 
minimization of average cost is done symbolically in calculus, whereas it is usually done 
graphically in economics (Lovell, 2004).  At other times, even when the concept is used in a 
similar fashion, differences in notation or a lack of familiar cues (e.g., “maximum” or 
“minimum” in an optimization problem) derails students.  Such difficulties in transferring 
knowledge between disciplines are stark indicators of a lack of understanding (Hughes Hallett, 
2000).  Thus, the reform called for fundamental changes in curriculum and pedagogy of 
beginning calculus.  These changes emphasized conceptual understanding rather than procedural 
skills 1 (Ferrini-Mundy & Gücler, 2009). 
 

Description of Study 
 

The changes that have taken place during the reform years have placed greater emphasis 
on conceptual understanding (Hughes Hallett, 2000), but as Ganter and Barker (2004) point out, 
it has not been enough.  So the question remains:  what mathematics is needed and in what 
context?  Following in the footsteps of the MAA’s Curriculum Foundations Project, this study 
began exploring the potential disconnect between the calculus taught in the mathematics 
classrooms and the calculus needed outside the mathematics classroom at a particular 
undergraduate institution.  Through exploring the disconnect, this study was able to identify 
some fundamental calculus concepts students need for successful academic pursuits outside the 
undergraduate calculus classroom, describe what it means to understand these concepts, and 
collect tasks that elicit, document, and measure student understanding of these concepts. 

Describing the fundamental/core calculus concepts and creating the pool of 
tasks/activities constituted a design research study (Collins, 1992).  In design research, the goal 

                                                      
1 Ferrini-Mundy an d Gücler did not define either conceptual understanding or procedural skills.  To establish a 
common definition, for the purposes of this discussion, I refer the reader to the definitions offered by the MAA’s 
Curriculum Foundations Project.  Conceptual understanding is defined as the “broad understanding encompassing 
logical reasoning, generalization, and abstraction” (Kasube & McCallum, 2004, p. 109).  Procedural skills are 
equated with computational ability (Kasube & McCallum, 2004, p. 109). 
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is to put people with different perspectives into situations that require them to express not only 
how they think about a concept, but to express it in a way that requires them to test and revise 
their way of thinking (Lesh, 2002).  As such, each cycle included divergent ways of thinking, 
selection criteria for the most useful ways of thinking, and sufficient means of carrying forward 
the ways of thinking so they may be tested during the next cycle.  Diversity, selection, and 
accumulation are necessary for iterative revisions to be passed forward. 

Select faculty members at an engineering undergraduate institution participated in an 
iterative series of interviews during which they expressed, tested, and revised the descriptions of 
the fundamental calculus concepts, frameworks for understanding each concept, and associated 
tasks/activities.  At this institution, all students are required to take two semesters of calculus and 
several calculus-based science and engineering courses.  Mathematics and client department 
faculty were selected based on their proximity to the calculus courses and the client courses. 

The interviews were designed around a series of concept descriptions, frameworks, and 
tasks developed by the researchers and/or adapted from the research of others.  The intention was 
to provide scaffolding for the faculty to evaluate and recognize not only the necessary calculus 
concepts, but the ways in which the concepts need to be understood.  Additionally, the tasks 
provided to and elicited from the faculty themselves served to provide a means to elicit, 
document, and measure the understanding students have of these concepts. 

 
Results 

 
The rounds of interviews addressed content and understanding.  When faculty from 

mathematics and client departments were asked questions such as:2 
• What conceptual calculus concepts must students master to be success in disciplines 

outside mathematics? 
• What calculus (or mathematical) problem solving skills must students master to be 

success in disciplines outside mathematics? 
• What broad mathematical topics must students master in the first two years?  What 

priorities exist between these topics? 
• What is the desired balance between theoretical understanding and computational skill?  

How is this balance achieved? 
a dialogue centered on the fundamental calculus concepts emerged.  This study will report on the 
blossoming of this dialogue into descriptions of essential calculus concepts and frameworks used 
to assess understanding of these concepts.  For some of the concepts, tasks that elicit, document, 
and measure student understanding of the concepts were discussed and analyzed. 
 

Implications 
 
 As stated before, calculus is an important tool for building mathematical models of the 
world around us and is thus used in a variety of disciplines, such as physics and engineering.  
These disciplines rely on calculus courses to provide the mathematical foundation needed for 
success in their discipline courses.  Therefore, this study offers a collective vision to focus the 
content of beginning calculus courses on the meeting the needs of client disciplines.  In the end, 
it is the mathematicians that have the responsibility to create courses and curricula that embrace 
the spirit of this vision while maintaining the intellectual integrity of mathematics.  By explicitly 
                                                      
2 Questions adapted from the MAA’s Curriculum Foundations Project workshop questions (Ganter & Barker, 2004). 
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knowing what and how students should be prepared for client courses, teachers and curriculum 
developers of both calculus and client disciplines can work together to prepare students for 
academic success. 
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Abstract:

.

Keywords: business calculus, social constructivism, classroom technology, iPad

Proposal: For the past half-century mathematics educators have been contemplating the role of
technology in mathematics education. Recent decades have seen significant growth in student
access to technology in the classroom. Among the key strands of research are:

• Handheld devices and calculators, e.g. (Burrill et al., 2002).

• Technology designed to accumulate real data for student exploration, e.g. (Konold & Pollat-
sek, 2002).

• Dynamic geometry software and other microworlds, e.g. (Jones, 2000).

Like the strands mentioned above, the bulk of research on technology in mathematics education
focuses on interactions between the user and the technology. Little is known about how individuals
use technology to interact with one another. However, the current generation of undergraduates
is likely to incorporate technology throughout their social interactions with one another. In this
preliminary report we will explore how students use handheld tablet devices while negotiating
mathematical meaning in a community of learners.

Our theoretical perspective is built upon the significant body of research which views learning
as an inherently social process, e.g. (Vygotsky, 1978; Cobb & Yackel, 1996; Stephan & Ras-
mussen, 2002). From this perspective, knowledge is socially constructed through interactions with
other members of a learning community. Classroom technology may take on many different roles
inside the community of learners, such as: a tool for computation, a medium for communication,
a microworld for exploration, or an extension of the individual’s voice in negotiating meaning. In
particular, it is this final role that we intend to describe in greater detail through the results of a
ongoing study into the use of iPads in undergraduate mathematics.

In the fall of 2010, two sections of Calculus for Business and Economics were chosen to be
part of a university wide study of the effectiveness of the iPad as a classroom tool. The university
distributed iPads to one section of 20 students along with two applications, a spreadsheet program
called Numbers and a graphing calculator called Graphing Calculator HD. Students were able to
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use the iPads both inside and outside the classroom for the entire semester and returned them after

the final exam. The second section of the course is using laptops throughout the course with Excel

and a java graphing applet developed by one of our faculty members. The instructor, textbook,

homework, quizzes, tests and in-class activities are identical for both sections. The course itself

designed to allow students to reconstruct mathematical principles within a small group setting.

This report is focused on the degree to which the iPad enhances the classroom dialogue. We

are using the following qualitative methods to conduct this study:

1. Classroom Observations: We are conducting classroom observations of both classes through-

out the semester. We are most interested in recording student behavior during in-class ac-

tivities in order to understand how the students work together within each section of the

course.

2. Group interviews: We are meeting with a small group of 2-4 students and asking them to

solve several questions related to the course. The focus is on how they use technology to

help solve problems and whether the technology has an effect on their interactions.

3. Activity Logs: We are asking the students to keep a log of their use of any technology over

the course of a few days. This helps us understand how students use technology in general,

as well as specific technology for the course, on a daily basis.

Of particular interest to us is a series of small-group interviews focusing on the concepts of

local and global extrema. Students often approach these concepts from a purely computational

perspective, but would benefit from the use of technology to visualize the problem. This is an ex-

cellent opportunity to observe whether students will incorporate technology while negotiating the

problem with their classmates. These sessions have been designed to illuminate student interaction

involving technology.

Through classroom observations, we have already seen evidence of the positive role that the

iPad can play in the classroom. In early lessons that did not necessarily require the use of tech-

nology, students chose to turn on the devices and explore the graphs of cost, revenue and profit

functions without prior instruction on the application. We also observed a lesson on limits where a

spreadsheet and graphing calculator is required. During the course of the lesson, we witnessed that

the size and portability of the iPad allowed students to share their screens as part of their dialogue.

The fact that the class is using a uniform device also facilitated students assisting each other in the

learning process. Throughout the class activities the students were fully engaged and did not stray

to online distractions.

Based on our experiences this semester, we would like to ask for feedback on future iterations

of this study. We ask the audience to consider the following questions:

• Is there relevant literature that we have not considered?

• Are there other means of collecting data that we have not considered?

• Are there other topics in the business calculus curriculum that would help illuminate student

interactions with technology?

• The university conducted a survey of general technology use for the students involved in the

study. Should we use these surveys to classify students by technological comfort and track

how that influences student interaction with the technology and each other?
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• The criteria for the university-wide study included having one section taught with iPads and

one section taught without. Is the comparison between the iPad section and the section where

students use personal laptops of interest to the mathematical education community?
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Abstract: In advanced undergraduate mathematics, students are expected to make sense of 

abstract definitions of mathematical concepts, to create conjectures about those concepts, and to 

write proofs and exhibit counter-examples of these abstract concepts.  In all of these actions, 

students must be able to draw upon a rich store of examples in order to make meaningful 

progress.   

We have created a methodology to evaluate what students might learn from a particular 

course by describing and analyzing the enacted example space (Mason & Watson, 2008) for a 

particular concept.  This method will both give a means to create testable hypotheses about 

individual student learning as well as provide a way to compare disparate pedagogical treatments 

of the same content.  Here, we describe and assess the enacted example space by studying the 

teaching of abstract algebra. 

 

Keywords: example spaces, classroom research, teaching, evaluation, mathematical quality of 

instruction 
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0 Studying teaching and the quality of instruction 

There is a desire to evaluate the quality of instruction and to compare teachers based on 

their classroom effectiveness.  The interest in evaluating the quality of instruction has 

engendered papers exploring the concept of quality of teaching via conceptual and empirical 

processes (i.e., Fenstermacher, & Richardson, 2005), and handbooks for undergraduate faculty 

that present ways that they may evaluate their teaching (i.e., Angleo & Cross, 1993). 

The desire to evaluate the quality of instruction is made more difficult when the 

pedagogical techniques that different teachers use are vastly different.  Consider the case of two 

instructors teaching an undergraduate abstract algebra course; one employs a standard lecture 

method, whereas the other adopts an inquiry-based pedagogy.  One series of assessment 

instruments has been created that measures how closely teachers follow the tenets of process-

product instruction (e.g., Brophy & Good, 1986); these can inform the quality of lecture-based 

teaching.  A second set of instruments measures how closely teachers follow reform-oriented 

practices (e.g., Horizon, 2000; Sawada & Pilburn, 2000).  However, neither the measures of the 

process-product tradition nor those of the reform tradition would allow for meaningful judgments 

to be made about the quality of instruction offered to these two groups of students, who are 

learning under instructors with contrasting pedagogies.  Yet, given the proliferation of inquiry-

based curricula for undergraduate courses and the continuing predominance of the lecture 

method (Pemberton, et al., 2004), this is exactly the situation that we are faced with. 

The Learning Mathematics for Teaching Project (LMTP) has argued that we should shift 

our attention away from these instruments, due to their failure to take into account “one critical 

aspect of mathematics instruction: its mathematical quality” (2010, p. 2).  Following the LMTP 

definition, when we refer to the mathematical quality of instruction we mean “the nature of the 

mathematical content available to students during instruction” (LMTP, 2010, p, 6).  This is 

meant to be independent of the instructional format, classroom environment, or level of 

discourse.  We do not believe that these are unimportant to student learning.  We believe that the 

quality and range of mathematical ideas that comprise a classroom experience have direct 

bearing on students’ ability to develop a rich understanding of mathematics regardless of the 

instructor’s pedagogical preferences.   

 

1 Example spaces—Students’ range of thought, knowing what can vary, knowing what 

must stay the same 

 In advanced undergraduate courses, especially proof-based courses, increasing emphasis 

is placed on using examples as a pedagogical tool.  For example, Alcock and Inglish (2008) 

examined doctoral students’ use of examples in evaluating the truth value of claims, Dahlberg 

and Housman (1997) found that students who generated their own examples were more likely to 

develop initial understandings of concepts, and Mason and Watson (2008) described ways to 

make use of the range of possible variation for pedagogical purposes.   

We draw upon the enacted example space to measure and compare mathematical quality 

of instruction and resulting potential for student learning.  We argue that this is an appropriate 

measure of quality due to the importance of examples for student understanding in proof-based 

courses, and assert that this measure is meaningful across pedagogical styles.  We outline a 

methodology for using the enacted example space to describe potential and probable student 

learning, and finally we show the value of this methodology by using it to analyze one aspect of 

instruction in an introductory abstract algebra courses. 
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An example space is the “experience of having come to mind one or more classes of 

mathematics objects together with construction methods and associations” (Goldenberg & 

Mason, 2008, p. 189).  This example space may include relatively frequently accessed members 

of the classes and less accessed members of the classes, and, via the construction methods, may 

include new members of the classes.  The first important feature of an example space is that it 

purposefully includes construction methods and associations such as links to important theorems 

and relations to other constructs.  These allow mathematicians to create new examples that meet 

specific criteria of theorems and to determine which classes of objects are most relevant in 

particular situations.   

Mason and Watson (2008) point out two other important features of example spaces: 

what aspects of the examples the learner realizes can be varied, and what range of variation the 

learner believes is appropriate.  For example, in the case of the definition of a group, when 

thinking about the possible aspects of a group it is possible to think about characteristics of the 

underlying set, the group itself, or of the behavior of specific elements.  

2 Our methodology 

Video data was digitized and Transana was used to code all incidents where an example or non-

example was shown, constructed or analyzed in class.  We created an example log, similar to 

Stephan and Rasmussen’s (2008) argument log which characterized each example or non-

example in four columns.   

• Column 1: each example or non-example of the particular construct (in this case, an 

algebraic group).   

• Column 2: counts the number of class meetings since the formal definition of a group (a 

written homework assignment was coded as occurring on the day that it was assigned).   

• Column 3: description of the qualities of the example or non-example.  In the case of 

examples, the third column described any additional qualities that the example possessed 

from a list that would be known to first semester algebra students by the midpoint of the 

semester (e.g., being a commutative group, a finite group, or a cyclic group).  In the case 

of non-examples we described any properties of the construct that were missing as well 

as additional properties that the non-example possessed from the list above.   

• Column 4: description of the manner in which the example or non-example was made 

part of the classroom discourse. 

2.1  Our theory of measuring the enacted example space 

We use three filters to assess the enacted example space and to describe the set of 

examples in that space: (1) example neighborhood, (2) example construction, and (3) example 

function.  We define the example neighborhood as the entire collection of examples that the 

students are exposed to during the course of their studies. These may be concrete examples or 

relevant non-examples of a given concept.  We analyze how the examples are organized on four 

levels: (1) who’s on first? (2) temporal proximity  (3) permissible variation and (4) variation 

constraint.  We pay particular attention to the first few examples as instructors believe they are 

often the ones that students most closely link with a concept (Zodik & Zaslavsky, 2008). Dienes  

(1963) argued that students should see examples that vary only in a constrained manner so that 

they are able to determine what is structural and what is allowed to vary as well as to 

comprehend the range of permissible variation.  Then, they should see other examples that vary 

along a different dimension.  As a result, we argue that early examples that vary along too many 

dimensions may actually lower the mathematical quality of instruction. Similarly, a collection of 
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examples that fails to support student construction of critical aspects of the construct will also 

lead to lower mathematical quality of instruction. 

Secondly, we examine the example construction to support a particular concept. Example 

construction focuses on the range of possible variation to be included in the neighborhood of a 

particular example space.  The analysis of example construction focuses on how particular 

examples are created and examines the tools for creating additional examples that students may 

derive from the creation of examples.  The construct of example construction also makes 

possible mapping from concrete examples to a broad description of the example space that 

students may have the (perhaps untapped) ability to populate for themselves. In this way, the 

example space explicitly includes both the examples and the means of construction (Goldenberg 

& Mason, 2008). 

Finally, example function situates the example in a particular area of the example space 

based on its frequency of use and exemplar status.  In short, example function analyzes and 

describes how frequently a particular example or set of examples it called upon and in what 

contexts. In particular, we examine which examples are most frequently called upon.  Frequently 

used examples may obtain “ready access” status for students (linked to Vinner’s (1991) concept 

of evoked concept image).  The frequency of use not only gives us a means to assess or predict 

the student’s perception of the relative importance of each of the examples, but also a means to 

predict which examples can most readily function as an example for them.  We assess separately 

using each filter, and then read them together to analyze the example space. 

3 Using the method 

The presentation will include a preliminary analysis of the teaching of one abstract 

algebra class.  While data analysis has begun, it is not yet complete.  Preliminary results include 

the fact that in one traditionally taught abstract algebra course, the example neighborhood for 

group was:   and .  For both of the multiplicative 

groups, the instructor initially proposed using the complete set of rational or real numbers and 

then noted that zero does not have a multiplicative inverse.  He then demonstrated the 

construction of a new set, without zero, such that all elements have multiplicative inverses.  

Similarly, he introduced the set  and as part of the class, constructed an operation, 

*, such that (A, *) is a group.  We claim that the instructor demonstrated examples of groups as 

well as two different construction methods that are likely to have become part of the students’ 

example spaces.  But, we claim that the example space will not strongly support evaluation of 

conjectures because all of the examples are commutative groups.   

4 Questions for discussion 

1) While we believe this a helpful methodology for assessing the quality of instruction and, 

potentially, comparing different pedagogical treatments, we wonder if it is too narrow of 

a lens? 

2) Similarly, is it too time-intensive to be useable? 

3) Besides glaringly obvious teaching suggestions like, “include non-commutative examples 

early and often,” what potential does this have for affecting instruction of either lecture or 

Inquiry based teaching?  Further research? 

4) What more should we be doing? 

5) Can this methodology be adapted to other topics such as teaching proof?  
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 One of the ultimate goals for general technology use, regardless of the subject, is the 
level of relevance to the s This research focuses on creating a 
framework evaluating the effectiveness of technology, utilized in teaching, learning, and 
curriculum development.  There were two major questions that were central to this presentation: 
is technology use beneficial the classroom, and how exactly is it effective?  During the course of 
the research, approximately 300 articles were reviewed, all of which being NCTM publications, 
PME proceedings, or ERIC database articles.   

 It is worth noting here that a major difficulty throughout these article reviews was due to 
the vague interpretations of the results.  Others have expressed their difficulty in answering 
open-

Many of these research-based studies do not completely answer the question of effectiveness, 
provide an adequate amount of quantitative results, nor show favor for technology use.  The crux 
of the research focused on the effectiveness of technology, and even with the limited studies 
available on the topic of technology in the math classroom, fewer articles stress exactly how 
technology is beneficial in the classroom.     

 Our research project began with the review of over 300 articles that focus on technology 
and mathematics education.  These studies were classified into five groups, revealing 
effectiveness of technological use to students learning of mathematics.  First, technology has the 
capacity of providing instantaneous visual feedback, allowing the student to observe how a 
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correct or incorrect input will alter the solution.  Second, the use of technology assist in design of 
student-centered learning environments, allowing the student essentially personalize curriculum, 
focusing on student  individual needs.  Third, technology provides multiple representations for 
the same content, allowing students to utilize a variety of tools, methods and algorithms to 
investigate mathematics, otherwise unavailable.  Fourth, the combination of learning 
environments (technology and non-technology or two different technology programs) helps 
students create generalization of problems and allow them to solve similar yet more advanced 
problems.  Finally, through the use of history, recordings and other technological remembering 
(memory) tools, students are able to retrace the steps and reevaluate the solutions to identify 
past mistakes and recognize patterns that will achieve success in the future.  

   

 The breakdown of the five subgroups is illustrated in figures 1 and 2:                  

 

Figure 1: 

Topic  Number of Articles Percentage!out of 300) 
Instantaneous visual feedback 8 4.67 
Individualize curriculum 7 2.33 
Multiple 
representations/multiple 
intelligences 

20 6.67 

Combination of environments 
and generalizations 

15 5.00 

Tools (history, save, etc.) 6 2.00 
Research without explicit 
assessment of technological 
benefits 

244 80.33 
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  The aim of this presentation is to discuss one of the most popular and best represented 
categories of the five subgroups: multiple representations.  This domain of the research focuses 
on a particular result of effective technology use; articles stress how technology deepens 
students  of mathematical concepts due to multiple ways of learning.   

 A number of positive results were discovered, revealing how technology supports the 
learning environments that accommodate diverse intelligence levels.  Several examples 
are discussed, illustrating commonalities among outcomes. First is an experiment conducted by 
Pitta-Pantazi and Christou (2009).  A pre- and post-test was administrated to forty nine 6th 
graders before and after using dynamic geometry software Euclidraw Jr.  After the pre-test, 
lessons focused on constructing lines, shapes, and angles were implemented.  The students then 
took a posttest, which focused its results on how students did on the topic of area of triangles and 
parallelograms. From the results of the posttest, taken without a computer, students, who used 
the dynamic geometry in class, increased their scores compared to the pretest by a mean score of 
.10 to .25.  What is unique about this study is that it focuses on multiple intelligence levels and 

students, regardless of their primary method of learning, increased their mean scores compared 
to the pretest.  In another experiment, Dugdale (1994, 2008) used the program Green Globs with 
49 students, 25 in a geometry class and 24 in an Algebra II class.  Students were to create 
functions, located in the designated place on the Cartesian plane, working for approximately 
three hours over a three-week span.  After administering a pre- and posttest, students increased 
mean scores in both the Algebra and Geometry classes by 15% and 42%, respectively (2008). 
The Green Globs program allowed students to work on an individual basis and small group 
settings, and was able to contribute to the learning of both Algebra II and Geometry classes, 
according to the increase in the pre- and posttest.  Finally, Borba and Confrey (1993) look at a 
case study and the uses of Function Probe 
ability to make transformations of graphs and the corresponding tabular values.  It this case 
study, participants were asked to predict tabular values from graph manipulation, and during 
each interview the  algebraic language increased.  One particular individual was able 
to hypothesize about different properties of quadratics, using primarily the correlation between 
graph and table, and understanding their interdependence.  These are a few examples of research 
on the topic, all of which highlight the effectiveness of using technology to enable the design of 
multiple representations to enhance learning. 

 Technologically enhanced learning environments impact the quality of student learning 
mathematics.  By identifying ways that technology has proven to be effective, a foundation for 
bettering technological methodology can emerge.  This presentation is a part of a larger research 
study that focuses on the design of the system of interpretive frameworks that enable the design 
of   meaningful assessment of technological impact, and effective technologically-based learning 
situations. It will also enable us develop a better understanding of the terms of cyberlearning and 
cyberteaching. 
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Tests comprise a major component of mathematics classes at the undergraduate level, 

particularly first and second year courses. The grades on tests range from 30% clear up to 100% 
of a student’s final grade. However, very little is known about the reliability of such tests that 
can dictate whether students pass or fail a course, or can cause a student to need an additional 
year to complete college, adding thousands of dollars to the student’s college expenses. Through 
an analysis of final exams in College Algebra and Business Calculus using a three-parameter 
item response theory (IRT) model for 1438 and 524 students, respectively, we have found 
that for a student receiving the border-line score to advance to the next course of 70%, the 
standard error is between 10% and 14%. In other words, the student’s actual score is somewhere 
between an F and a B when taking into account measurement error. This type of reliability 
is unacceptable for such a high stakes exam. The goal of this current research program is to 
determine the characteristics of test items that contribute the most to improving this reliability. 

There are several ways to test a student’s knowledge of a particular subject, with multiple-
choice and constructed response the two most popular. Constructed response items include 
any assessment where the test taker does not have a list of formulated responses from which 
to choose. These types of questions require more resources to administer and grade than 
multiple-choice with a constructed response test of equivalent reliability to a multiple-choice 
test taking from 4 to 40 times as long to administer and is typically thousands of times more 
expensive (Wainer & Thissen, 1993; Lukhele, Thissen, & Wainer, 1994). However, with the 
rise of homework response systems, this difference in administration and grading is becoming 
negligible. Our analysis includes both constructed response and multiple choice items used on 
tests in Remedial Mathematics, Intermediate Algebra, Finite Mathematics, College Algebra, and 
Business Calculus.

This study uses 695 items from twenty-five tests from five different first year mathematics 
courses to determine what characteristics contribute the most to the item providing information 
contributing to a test’s reliability. Of these items, 18% were constructed response, 3% were 
true/false or yes/no items, and the remaining 79% were multiple-choice. For each test, a three-
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parameter IRT model (van der Linden & Hambleton, 1997, pp. 13-17) was used to determine the 
appropriate difficulty and discrimination parameters for the items, with the guessing parameter 
fixed at 0 for constructed response items, 0.25 for multiple choice items with four choices, and 
0.5 for dichotomous response items. Using the parameters generated from the model, the item 
information function for each item was multiplied by the student ability distribution function for 
the corresponding test and then integrated over the range of student abilities to generate an item 
information index.

The item information indices ranged from essentially zero to 5.948, with a mean of 0.332, 
a standard deviation of 0.397, and a median of 0.251. Additionally, 60% of the items had an 
information index less than the mean, implying that less that 40%% of the items contributed 
nearly all of the reliability for each test. If instructors could know which attributes contributed 
to items having a high item information index, then more mathematics tests would have the 
reliability appropriate for such high-stakes testing.

During the presentation, we will study the items with high item information indices while 
answering the following questions.

 
1 . What are the cognitive categories that might be contributing to an item’s high information 

index?
 

These cognitive categories could be based upon the structure of the observed 
learning outcome (SOLO) taxonomy (Biggs & Collis, 1982), Bloom’s taxonomy 
(Engelhart, Furst, Hill, & Krathwohl, 1956), or the mathematical tasks framework 
(Stein & Smith, 1998). The challenge is that these taxonomies were designed for 
situations other than analyzing test items, with some of the taxonomies shown to 
actually be ineffective in accurately categorizing items to predict student cognitive 
processes as they work on such items (Chan, Tsui, Chan, & Hong, 2002; Gierl, 1997). 
However, this does not exclude them from possible effectiveness in the current context.
 

2 . What are the content oriented categories that might be contributing to an item’s high 
information index? 
 

While the goal of the current project is to discover ways of analyzing items that 
are independent of the mathematical topics assessed, there may be content oriented 
categorizations which contribute to an item’s information index. One such possible 
example is rational expressions. Student’s regularly have difficulty with fractions 
(Brown & Quinn, 2006), which may cause them to shut down when encountering 
rational expressions on a test and so may not perform as expected on such items even 
if the main goal of the item is to measure mathematical task distinct from rational 
expressions. On the other hand, such difficulty may contribute to the ability to 
differentiate students of various ability levels. Other similar topics may also exist and 
will be discussed among the participants.
 

3 . What are the linguistic descriptors that might be contributing to an item’s high information 
index?
 

Translating between mathematical language, visual information, and descriptive 
language is challenging for many students (Arcavi, 2003; Capraro & Joffrion, 2006; 
Radford & Puig, 2007). This challenge may contribute to the ability to distinguish 
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between top students and weaker students and so may contribute to an item’s 
information index.
 

4 . Are there other constructs or lenses through which the test items may be analyzed?
 

Other constructs exist that the researchers have not thought about and will be 
sought from the participants in the conference presentation.

 
While the line of research proposed for this conference presentation is very undeveloped, 

it is an area with great promise due to the increase in information provided by the use of 
computerized assessment systems used in large settings and has the potential to greatly influence 
the future of classroom assessment in the college mathematics classroom.
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Introduction and Background 
This research project arose out of a need for stronger basic math skills in developmental 

mathematics needed by students in Health Sciences, who were preparing for courses in introductory 
statistics.  The initial focus was on two groups of students: 2-year diploma students studying Health 
Information Management (HIM) at George Brown College, and degree students in Nursing at George 
Brown College and York University all in Toronto, Canada. 
 HIM students have a one-semester course in foundations (developmental) math while Nursing 
students have no direct mathematics instruction as part of their coursework.  In both cases the 
professors noticed that those students who struggled with basic math skills (e.g. fractions and  percents) 
also struggled within the programs in general and in the introduction to statistics courses in particular.  
The hypothesis that strong basic math skills are a good predictor of success in introductory statistics 
was validated in research (Johnson&Kuennen 2006), thus our project was born.   Introductory statistics 
is a key part of the program of study in HIM and Nursing even though their roles in the delivery of 
health care cannot be different.  As front line patient care providers, nurses nevertheless need to be 
numerate and research savvy.  HIM professionals as information managers, not only collect and 
prepare data for analysis, but participate in its dissemination and presentation as well. 
 Although the researchers recognize that some aspects of constructivist pedagogy are legitimate, 
especially in introductory statistics education (real data, problem based learning, emergent solutions to 
problems) this project has as one of its pillars the notion that many basic mathematical skills which are 
needed for introductory statistics education (e.g. fractions), need direct instruction and practice.  The 
key seems to be in distinguishing which skills are biologically primary vs. secondary (Geary 1995).   

becomes clear that many cognitive abilities (e.g. language comprehension, habitat 
representation) are universal, whereas other abilities (e.g. word decoding in reading, 
geometry  (Geary 1995 pg. 26)  

Universal abilities are categorized as biologically primary and emerge without formal instruction and 
practice, whereas biologically secondary activities would be less likely to occur without instruction and 
practice.   Counting the number of apples in a bag and dividing them among 3 friends is much closer to 
biologically primary  .   

We are firm believers in practice and formal instruction where warranted, and some of our 
students were actually demanding more practice. Instead of churning out paper practice sheets, we 
scoured the internet and for web-sties that could be accessible to our students.  The only quality on-line 
practice vehicles that we encountered were tied to textbooks that were not appropriate to our students, 
and with a myriad web-instruction math sites providing only 5 or so practice questions, we embarked 
on the development of our own online resource. With funding from George Brown College, York 
University and the Inukshuk Foundation, a web-site On-line Math review Tool (OMT) was designed 
and developed in order to provide practice as well as instruction/review in basic mathematics skills. 

We thought the OMT to be innovative, but were not sure about its utility.  How to measure 
effectiveness of the site was a natural next step.  Because no evaluation model existed for an 
educational technology that was unique in itself,  we created our own.  A review of the literature found 
many models for the evaluation and effectiveness of online courses, but not one geared specifically to 
on-line stand-alone educational technologies.  We have reproduced our model below.   Given the 
computing power available in contemporary web-site technologies, many aspects of our evaluation 
model were built into the OMT itself.  It is important to note that we have recently discovered a paper 
by leading researchers in statistics education, Ooms and Garfield (2008) which describes a model that 
fits with ours very closely. 
 

Basic principles of the On-line Math review Tool (OMT) (www.mathessentials.ca) 
Format:  Our basic principle in the development of the OMT was to make the site use voluntary, easily 
accessible (online and free), to provide the student with an experience that is individualized (choose 
which topics needed) and interactive (with multiple modes of interaction) and to provide the student 
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with many randomly generated practice questions (at a variety of levels of difficulty) to work with.    It 
was also necessary to develop an OMT that could be integrated into the curriculum of a course in 
foundational mathematics, or as an external add on to an introductory course. 
The reasons for the format parameters, stem from the experience of teaching developmental math at the 
college level.  Even among those students who come into post secondary math (or math oriented)  
courses with solid foundations, many have gaps in one or another of the basic topics, and come to us 
with a myriad of learning styles and educational backgrounds.  The OMT must be flexible and 
accommodating of the diversity of those who will use it.   
Content:  Since our focus was on improving the mathematics skills of students preparing for 
introductory statistics the content consisted of topics identified by research (and the investigators) as 
good predictors of success in introductory statistics.  (Johnson&Kuennen 2006)  A total of 17 modules 
with 6 submodules became the content of the mathessentials site. 
 
Research Questions: a model for evaluating the On-Line Math review Tool (OMT) 
1.  Peer evaluation: used the electronic Learning Object Peer Evaluation questionnaire  ( eLOPE) 

designed by the researchers .           
2.  Volume of use.          
3.  Which aspects will students use?     
4.  Percent score in practice question usage broken up by difficulty level. 
5.  How do students see  usefulness? Utilized the Math Essentials usability  (Meuse)  tool 

developed by our team.  
6.  Improvement in test score (post  pre) based on (Johnson&Kuennen 2006).    
7.  Can we predict improvement in the pre/post test scores using any combination of 2,3,4 from above? 
8.  Will the tool be effective in improving the mathematical skills in the pre/post test?     
9.  Will student perceptions of OMT usefulness (Meuse) be related to any combination of  ? 
 

 
Conceptual model for evaluation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preliminary Results:  The results are very preliminary as data collection is ongoing, with this round 
ending in December 2010.  Currently a class of 58 students has been invited to use the site in a research 
capacity and we have 56 registered.  We can report on the volume and aspects of use, while the more 
interesting questions will be answered after the end of semester and can be presented thereafter. 
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Volume and aspects of use as of Oct. 7, 2010.   
Practice questions.  2284 practice questions attempted, 1160 of those are by 1 user, which is 

unexpected to say the least.  The top 10 users make up 90.67% of the usage of the practice 
question portion of the site.  35 users have registered and completed the pretest, but have not tried 
any practice questions at all. 

Videos:  there were 43 video views in all, 2 students viewed all or part of >2 videos (16, 18) and 52 
students watched 0 videos,   

Games:  10 games were played in total as of Oct.7, 2010 
 

Implications for teaching practice or further research 
 The implications presented herein come from the literature and from immersing ourselves in the 

process of developing and test running the OMT.  We will be adding to the list as results become more 
firm. 

For teaching: 
1.  We suggest that the results from a variation of the evaluation model by Ooms and Garfield(2008) be 

presented before we introduce new technologies in the classroom, or as peripherals to the classroom 
experience.  All too often, we are expected to implement technologies based on anecdotal evidence. 

2.  We must be wary about the introduction of new technologies and strive as much as possible to study 
the way our students use these technologies.  The surprising preliminary results 
(e.g. 1 person responsible for over 50% of the usage) are any indication, simply providing access to 
learning technologies is not enough. 

3.  There is a potential for expanding the scope and capacity of the mathessentials.ca model, but we 
need to have evidence that it is needed. 

 
For research: 
1.  Although Ooms and Garfield s (2008) iterative evaluation model may need to be adapted  to make it 

useful to a wider range of educational technologies, we suggest that some form of hybrid of our 
model and theirs nline educational resources be 
evaluated. 
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Abstract 

We apply a Vygotskian perspective on the interplay between spontaneous and scientific concepts 
to identify and characterize calculus students’ idiosyncratic use of examples in the process of 
trying to formulate a rigorous definition for convergence of a sequence. Our data is drawn from a 
larger teaching experiment, but analyzed for this study to address questions of the origins, nature, 
and implications of students’ nonstandard ways of reasoning. We observed two students 
interpreting a damped oscillating sequence as divergent, drawing from considerations from an 
initial, intuitively-framed definition, but remaining persistent and consistent over the duration of 
multiple sessions. We also trace some of the implications of their idiosyncratic reasoning for 
their reasoning and ultimately for their definition of convergence. We conclude by posing several 
questions about the nature of such example use in terms of our Vygotskian perspective. 

Keywords: Limits, Definition, Examples, Spontaneous and Scientific Concepts 

Introduction and Research Questions 

The research literature on students’ understanding of limit concepts in introductory 
calculus courses is replete with idiosyncratic imagery related to informal notions and ontological 
commitments regarding infinity (Sierpinska, 1987; Tall, 1992; Tirosh, 1991), infinitesimals 
(Artigue, 1991; Tall, 1990, Oehrtman, 2009), the structure of the real numbers (Cornu, 1991; 
Tall & Schwarzenberger, 1978), incidental and misleading aspects of graphical representations 
(Monk, 1994; Orton, 1983), nonmathematical concepts such as speed limits, physical barriers, 
and motion (Davis & Vinner, 1986; Frid, 1994; Oehrtman, 2009; Tall, 1992; Tall & Vinner, 
1981; Thompson, 1994; Williams, 1991), and epistemological beliefs about mathematics in 
general (Sierpinska, 1987; Szydlick, 2000; Williams, 1991, 2001). Little research, however, has 
provided an in-depth look at the origins, nature, and implications of a single idiosyncratic image 
over the course of significant reasoning and problem-solving activity. As part of a larger 
teaching experiment, we established protocols to attempt to identify idiosyncratic images, should 
they appear, as calculus students try to formulate a precise definition of convergence of a 
sequence. The aim of this study was to address the following research questions:  

1. What idiosyncratic examples do students construct as the wrestle with reinventing a 
formal definition for sequence convergence? 

2. What are the origins of these idiosyncratic examples? 
3. What are the effects of students’ idiosyncratic examples on their emerging understanding 

of a formal definition for sequence convergence? 
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Theoretical Perspective 

We base our study design and analysis on Lev Vygotsky’s (1978, 1987) characterization 
of conceptual development as a complex interplay between intuitive (spontaneous) and formally 
structured (scientific) thought. These two types of thought are distinguished by their relationship 
to the objects of reference and by the nature of thought available to them. Spontaneous concepts 
develop first through a direct encounter with the object and form the basis of experiential 
knowledge developed informally over long periods of time. They are intuitive in nature and can 
be applied spontaneously, without conscious reflection on their meaning, but are not available 
for application to problems in non-concrete situations. Scientific concepts emerge later through a 
mediated relationship to the object, such as a verbal definition. They are expressed and initially 
applied only in abstract ways affording quick mastery of operations and relationships, but they 
are disconnected from personal experience or meaning. 

Especially within a field as structurally rich as mathematics, scientific concepts are 
distinguished by their systematicity. Within a spontaneous concept system, where the only 
relationships possible are relationships between objects (and not between concepts), verbal 
thinking is governed by the logic of graphic imagery and thus is highly dependent on perception. 
Corresponding concepts are presyncretic, that is, they are not tied to other concepts in 
meaningful ways. It is the appearance of higher order concepts that allows this to change; the 
unification of concepts within a single structure allows for the comparison and analysis of 
subordinate concepts. To recognize contradictions or evaluate one conceptualization against 
another, the individual must understand two different concepts as relating to the same thing 
within a single superordinate structure. Comprehending the structure of a scientific concept, 
therefore, requires the learner to develop higher levels of reasoning, to form new categories of 
relationships, and to generalize.  

The strengths of the scientific concept are the weaknesses of the spontaneous concept, 
and vice-versa. By means of their complementarities, each one lays the foundation for the 
development of the other. The development of the scientific concept is mediated by the 
spontaneous concept as intuitive modes of analysis become available to it. The spontaneous 
concept is in turn transformed through this mediation much in the same way that one’s native 
language is transformed when it mediates the learning of a foreign language. The structure 
provided by the scientific concept enables the spontaneous concept to grow and become more 
available to abstract functioning. 

Outpacing of development, one purpose of instruction is to encourage in the student 
conscious awareness and volitional use of their spontaneous knowledge. This occurs as thinking 
is modeled within a system that is just beyond the current comprehension of the student but 
within their ability to imitate. Vygotsky argues that imitation is not an act of thoughtless mimicry 
but rather requires a beginning grasp of the structure of the system, noting that animals cannot 
imitate except through training. As opposed to performing a trained behavior, a student can only 
spontaneously imitate if the task lies within the zone of his or her own intellectual potential, the 
so-called “zone of proximal development.” 

Methods 

The authors conducted a multi-day teaching experiment with two calculus students at a 
large, southwest, urban university. For this presentation, we report results from the first two 90-
minute sessions of the study. The central objective of this portion of the teaching experiment was 
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for the students to generate rigorous definitions of sequence convergence based on initial activity 
in which they generated examples of sequences that converge to 5 and sequences that do not 
converge to 5. These examples were then intended to i) motivate a need to generate a statement 
that was true of all sequences that converge to 5 but false of all sequences that do not converge to 
5, ii) serve as images of their intuitive understanding of convergence against which they could 
test their definition, and iii) identify ways in which their definition needed refinement. The 
sessions were videotaped and transcribed, and we analyzed the data to first identify any 
examples of sequences that were improperly classified relative to their convergence or that were 
characterized in non-standard ways. We then identified all passages in the transcripts where 
students referred to these examples and looked for evidence of the origins of their non-standard 
interpretations, details of the ways in which they used these examples, and implications of their 
use of these examples. 

Results 

The students participating in the teaching 
experiment, pseudonyms Megan and Belinda, 
described several examples of sequence in non-
standard ways during the teaching experiment, but 
most of these descriptions were not persistent. Nor 
did they use most of their idiosyncratic images to 
explicitly draw inferences about their definitions. 
One example, however, persisted over time and 
had wide-ranging implications for their reasoning 
and ultimately for their definition of a convergent 
sequence. Megan and Belinda both agreed that 
their example of a damped oscillating series (see 
Figure) would not converge because they noted 

Megan: No matter how close it gets though there's going to be a point, you know where 
Belinda: Where it's still moving away 
Megan: It's still gonna come away every so often. And that, that coming away feels like 

it's not convergent.  

 Megan first suggested that this series would be divergent after trying to apply an early 
definition including the phrase “at some point N, it becomes closer and closer” to the example 
and concluding that since it was originally in their list of examples that converge to 5, it must 
eventually become monotonic. When one of the researchers asked “What if it continued to go 
away and come back and go away, but always going away less, would it be convergent?” she 
insisted it must then be placed in the category of examples not converging to 5, to which Belinda 
strongly agreed. Subsequently, both students continually returned to this example during the first 
two days of the teaching experiment and cited it’s divergence as a reason to include statements 
like “and always gets closer to 5” or “|5 – an+1|< |5 – an|” in their definition of a sequence {an} 
converging to 5. Even though they recognized that “for any chosen acceptable error range, there 
would be some point after which |5 – an| does not exceed [that bound],” they still insisted that 
this sequence was divergent since the “errors don’t get smaller.” 

 Megan and Belinda were amazingly consistent in their nonstandard interpretation of this 
example and raised logical counterarguments to any suggestions made by the researchers why 
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one might consider the damped oscillating series to be convergent. They even suggested adding 
the phrase “or is always 5” to their definition to include the constant sequence an=5 as 
convergent but still be able to keep their statement “|5 – an+1|< |5 – an|.” Thus we see that 
although their reasoning is highly idiosyncratic, it is also systematically structured and applied 
volitionally with conscious awareness. 

Questions 

In our presentation, we will show video clips tracing the origins of Megan and Belinda’s 
idiosyncratic interpretation of the convergence for a damped oscillating sequence, the nature of 
their arguments about the sequence, the effects they had on their definitions, and finally the 
method by which we convinced the students to alter their definition to include this sequence as 
convergent. We are interested on feedback from the audience on the following questions: 

1. Is the reasoning of these students appropriately characterized as spontaneous, scientific, 
or neither? What are the implications of this? 

2. Given the idiosyncratic but logical and consistent reasoning illustrated, what is the nature 
of the zone of proximal development for these students? 

3. How might instruction mediate a productive interaction for these students with the 
standard interpretation held by the mathematics community? 
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Abstract 

We report on our work to build an applied theory for intercultural competence development for 

mathematics teaching and learning in secondary and tertiary settings. Based on social 

anthropology and communications research, we investigate the nature of intercultural 

competence development for mathematics instruction among in-service secondary mathematics 

teachers and college faculty participating in a university-based mathematics teacher professional 

development program. We present results from quantitative and qualitative inquiry into the 

intercultural orientations of individuals and subgroups (teachers, teacher-leaders, university 

faculty and graduate students) and offer details on the development of case stories for use in the 

professional development of mathematics university teacher educators, in-service teacher 

leaders, and secondary school teachers. 
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Transitioning from Cultural Diversity to Intercultural Competence in Mathematics Instruction 

Preliminary Research Report
1
 

 
I wanted to explain why some people seem to get a lot better at communicating across cultural 

boundaries while other people didn’t improve at all, and I thought that if I were able to explain why this 
happened, educators could to a better job of preparing people for cross-cultural encounters.  

(Bennett, 2004, p. 62). 

Relation of the Work to the Research Literature 

While the significance of diversity as a factor in the education of children has been widely 

discussed for many years, the nature of “diversity” continues to evolve in U.S. classrooms (Aud, 

Fox, & KewalRamani, 2010). And, though a similar evolution in diversity is evident in school 

staffing among paraprofessionals, the teacher and principal 

populations continue to be more homogeneous than varied in 

terms of government-surveyed categories such as race, 

education, and socialization (Strizek, Pittsonberger, Riordan, 

Lyter, & Orlofsky, 2006). Since “culture” can include 

professional and classroom environments as well as personal 

or home experience, responding to it is a multi-faceted 

challenge (Greer, Nelson-Barber, Powell, & Mukhopadhyay, 

2009). As Stigler and Hiebert (1999) noted after an 

international study of instruction, “teaching is a cultural activity…[and] recognizing the cultural 

nature of teaching gives us new insights into what we need to do if we wish to improve it” (p. 

12). From anti-racism training to culturally responsive pedagogies, teacher education efforts 

have emerged largely from the same arena as teacher education itself: psychology. Yet, there is 

another area of the academy from which educators can draw great insight: anthropology 

(Ladson-Billings, 2001). That is, while psychology tackles the issue through a developmental 

approach to changing classroom disposition based on behavior, social anthropology provides a 

developmental continuum of orientation from a focus on communication. Several frameworks 

currently exist for professional contexts that involve understanding, interacting, and 

communicating with people from various cultures (e.g., from healthcare professions and 

international relations by governments; Bennett, 1993, 2004; Hammer, 2005, 2009; Kramsch, 

1998; Leininger, 2002; Wolfel, 2008).  

Conceptual Framework 

Our work to build an applied theory for intercultural competence development for mathematics 

teaching and learning in secondary and tertiary settings is based on the Developmental Model of 

Intercultural Sensitivity (Bennett & Bennett, 2004). As a developmental model, it includes lower 

and upper anchor orientations, intermediate orientations, and descriptions of the transitions 

among the orientations. Additionally, we attend to discourse with the framing of communication 

dimensions for intercultural conflict resolution (Hammer, 2005). The continuum begins with a 

monocultural view based on the premise “Everybody is like me.” This “denial” orientation (see 

Figure 1) may recognize observable cultural differences (e.g., distinctions in food or dress) but 

not notice complex difference (e.g., in values, beliefs, or communication norms) and will avoid 

or express disinterest in cultural difference. The transition to the next orientation comes with the 

                                                
1
 This material is based upon work supported by the National Science Foundation under Grant No. DUE0832026.  

Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and 

do not necessarily reflect the views of the National Science Foundation. 

Short definition of culture: A 
dynamic social system of values, 
beliefs, behaviors, and norms for 
a specific group, organization, or 
other collectivity; the shared 
values, beliefs, behaviors, and 
norms are learned, internalized, 
and changeable by members of 
the society (Hammer, 2009). 
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recognition of difference, of light and dark in a situation (e.g., Figure 1a). The “polarization” 

orientation is driven by the assimilative assumption “Everybody should be like me and my 

group” and is an orientation that views cultural differences in terms of “us” and “them.” 

Polarization can take the form of defense or reversal. Defense is an uncritical view toward one’s 

own values and practices and an overly critical view towards others’. Reversal is a negatively 

judgmental take on the values and practices of the group with which one identifies and an 

uncritical view towards others’. Transitioning to the next level of development involves attention 

to nuance and awareness of norms. This middle orientation is “minimization,” a lens for 

experience based on the notion that “Despite some differences, we really are all the same, deep 

down.” Minimization attends to commonality and presumed universals (e.g., biological – we all 

eat and sleep; and values – we all know the difference between good and evil). The minimization 

orientation will, however, be blind to deeper recognition and appreciation of difference (e.g., 

Figure 1b, literally a “colorblind” view). Transition from minimization to an “acceptance” 

orientation involves mindful awareness of oneself as having a culture and interacting with other 

cultures (plural). While an acceptance orientation is aware of difference and the importance of 

relative context, how to respond and what to respond to, in the moment of interaction is still 

elusive. The transition to “adaptation” involves developing ethnorelative frameworks for 

perception that are responsive to a broad spectrum of intercultural interaction (e.g., the detailed 

and contextualized view in Figure 1c). Adaptation is an orientation wherein one may shift 

perspective, without losing or violating one’s authentic self, and adjust communication and 

behavior in culturally appropriate ways. There are several ways that knowing one’s orientation, 

or the normative orientation of a group, can inform teacher and researcher work. 

Research Question & Methods 

What is the nature of intercultural competence development for mathematics instruction among 

in-service secondary mathematics teachers and college faculty participating in a university-based 

mathematics teacher professional development program? Participants to date have been 26 in-

service K-12 teachers and teacher leaders and18 university faculty and graduate students. All 

completed the Intercultural Development Inventory (IDI), a reliable and validated instrument for 

ascertaining a person’s intercultural orientation and eliciting intercultural development goals (50 

Likert-like items and 4 open ended items; Hammer, 2009). Each report from the IDI includes 

responses to open ended items along with quantitative information about developmental 

orientation (the orientation most likely at work in day-do-day interactions with others), 

perceived orientation (this is often a more advanced than the developmental orientation) as well 

as trailing orientation (a fallback that may come into play in situations high in conflict or stress) 

and leading orientation (often aligned with perceived orientation, this is at the leading edge of 

 

Figure 1a. Figure 1b. Figure 1c. 
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someone’s intercultural competence and the target for development). We are using descriptive 

statistics, constant comparative coding, and cross coding to examine individual orientation 

profile results as well as group profiles for the teachers, teacher-leaders, and university staff. Our 

plan is to use case methods to link participant stories of intercultural challenges in teaching 

mathematics to activities for increasing intentionality for intercultural development. Ultimately, 

the results will include stories that illuminate aspects of orientations and transitions. 

Results 

In Figure 2 are the distributions among orientations for three groups. As a group, the teachers’ 

orientation was normatively in polarization while the teacher leaders, as a group, were largely at 

the lower end of minimization and the university folk were largely in minimization. 

 
Figure 2. Distribution of Participant Developmental Orientations 

Case stories are under development and will be completed and expanded for the final report and 

presentation. Below we offer one example. As part of the research process, we conducted group 

profile debriefing sessions with teachers, teacher leaders, and university staff. When debriefing, 

three common goals emerged from participants: (1) build awareness of self as having a cultural 

lens for viewing the world. (2) find guidance in the transitions from polarization through 

minimization and into acceptance, particularly how to be mindful of one’s cultural filter(s) for 

interacting with the world; and (3) engage in building a knowledge base about equity.  

 Example Case Story. Helen is a public high school mathematics teacher in a socio-

economically and culturally diverse community. She is teaching a consumer mathematics 
class with mostly seniors. Helen wants all her students to believe they have what it takes to 

succeed in college, so she has each student create a personal career finances portfolio. 

Students choose a job and a place to live after college. The portfolio is a report about living 

and working in this potential future career: starting pay for the job in that location, education 
required for that job, the cost of living in that location – including a budget for housing, food, 

transportation, and leisure. Helen’s grading rubric has points for turning in a rough draft. 

Her intention is to provide opportunities for students: (1) to see themselves as college 
graduates, (2) to work with real-world values in creating a budget, and (3) to receive 

feedback on a draft so the final report will have a high score. Helen asks the class how the 

assignment is going and several student express frustration and confusion. She announces 
that she will be available after school to help in office hours and is disappointed that 

students do not take advantage of this opportunity. Helen gets frustrated when several 

students, who are not doing well, do not turn in a draft and do not come for help.  

[Pause here and discuss what elements of the transition from polarization to minimization might 

support Helen to find a more satisfactory approach; what questions might need to be asked (and 

why)? What advice might Helen be ready to hear and act on?] 
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 Helen’s colleague Lee offered her own experience from high school, explaining that 

“going to office hours” in her middle school was a form of punishment for misbehavior or 
low grades. In her first year of high school, the idea of going to a teacher’s office hours 

voluntarily made no sense to her: “Why would someone purposely take what amounted to 

an oral exam? Just to let the teacher know what she did not know and then be criticized for 

not knowing it?” Helen’s first reaction was to dismiss Lee’s story. “That’s not what my office 
hours are like, that’s not what I do!” Lee nodded and said, “Yes, I know. But I’m not 

completely sure how I learned that what it meant in high school to seek help from a teacher 

could be different from what it meant in middle school. I’ve heard students talk about 
different reasons for not going to get help from teachers – like having a job or working with 

parents or friends instead or because there was difficulty communicating with the teacher. 

So, I’m not sure why your current batch of students is not coming to you for help, but there 
are probably lots of good reasons. Good to them, I mean.” Helen shook her head, “That’s 

too bad. Students should feel comfortable going to the teacher for help. Well, I can’t help 

them if they don’t come to see me. And, they won’t come see me.” 

Indicators that Helen has an orientation of polarization–defense include her view that she is 

offering “opportunities” whether or not they are seen as opportunities by students. It could be 

that some of what Lee suggests is true, or that students in Helen’s class were uncomfortable with 

her seeing their development process, or something else entirely. Discuss, again, what elements 

of the transition from polarization to minimization might help Helen, what questions might need 

to be asked (and why) along with advice Helen might be ready to hear and act on in the situation. 

Implications/Applications for Research and Practice  

A perennial challenge for any instructor is: how do I teach so that my students surpass me? What 

help in transitioning to global and ethnorelative mindsets can teacher educators offer if their own 

developmental orientations are more monocultural than intercultural? In terms of implications 

for research, what can researchers do to support their own growth as interculturally adaptive? For 

example, if researchers have a polarization orientation – where differentiating is essential – 

would instruments and observation protocols they designed do a good job of capturing the views 

and practices of teacher leaders in a minimization orientation (or vice versa)?  

Questions for the Audience 

1. The example given here is largely independent of mathematics content. What kind of story 

might foreground the intersection of content and culture in secondary mathematics, for example 

with the framing of teacher response to a student’s questions about generating a polynomial from 

a graph where the x-intercepts are marked and labeled versus just marked.  

2. In an editorial, Ball, Goffney, and Bass (2005) have argued that in addition to teachers being 

culturally aware, that it is important for students to build adaptive competence for mathematics:  
In a democratic society, how disagreements are reconciled is crucial. But mathematics offers 

one set of experiences and norms for doing so, and other academic studies and experiences 
provide others. In literature, differences of interpretation need not be reconciled, in 

mathematics common consensus matters. In this way, mathematics contributes to young 

people’s capacity for participation in a diverse society in which conflicts are not only an 
inescapable part of life, but their resolution, in disciplined ways, is a major source of growing 

new knowledge and practice. … Important to our argument is that these skills and practices 

that are central to mathematical work are ones that can contribute to the cultivation of skills, 

habits, and dispositions for participation in a diverse democracy. (p. 4) 

How might this perspective need to be revised or framed to be accessible to a teacher with a 

denial orientation? A polarization orientation? A minimization orientation? 

3. How about new/pre-service teachers?  
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The Treatment of Composition the Secondary and Early College Mathematics Curriculum 
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While many studies have focused on student knowledge of function, few studies have focused on 
composition. This report describes a curriculum analysis of the treatment of composition in the 
secondary (algebra, geometry, algebra 2, precalculus) and early college (precalculus, calculus) 
mathematics curriculum. In this study composition is conceptualized as a sequence of functions 
and as a binary operation on functions. The curriculum analysis utilizes a framework of 
conceptual, procedural, and conventional knowledge elements as well as representations and 
types of functions. Preliminary data will be presented during the session and a discussion will 
center on conceptual, procedural, and conventional knowledge elements for composition. 
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*%#04?(%9#*-(0;&M<*&0(*&*(&0<9M2%4@&P+-"2&2$<.#*-(0#"&%242#%.+2%4&+#)2&2N*204-)2"5&4*<$-2$&
4*<$20*&=0(7"2$/2&(?&?<0.*-(0&BQ#%"4(0;&CDDER&S)20;&CDDT;&CDDER&A2%%-0-I,<0$5&U&V%#+#9;&
CDDCR&W2-0+#%$*;&X#4"#)4=5;&U&1*2-0;&CDDTR&,(0=;&CDDYR&Z2+%*9#0;&Q#%"4(0;&U&>+(9:4(0;&
LTTER&[-002%&U&\%25?<4;&CDEDG;&%242#%.+&(0&*+2&*2#.+-0/&#0$&"2#%0-0/&(?&*+2&(:2%#*-(0&(?&
.(9:(4-*-(0&+#4&%2.2-)2$&"-**"2&#**20*-(0&BS0/2"=2;&Z2+%*9#0;&#0$&Q#%"4(0;&LTTKG@&

>+2&2N-4*-0/&%242#%.+&(0&.(9:(4-*-(0&+#4&$(.<920*2$&*+#*&*+2&"2#%0-0/&(?&.(9:(4-*-(0&-4&
0(0*%-)-#"&?(%&4*<$20*4@&]242#%.+&(0&*+2&"2#%0-0/&(?&*(:-.4&M<-"*&<:(0&.(9:(4-*-(0&B-@2@;&.+#-0&
%<"2G&+#4&%2:(%*2$&*+#*&4*<$20*4^&$-??-.<"*-24&#%2&%2"#*2$&*(&#&72#=&?(<0$#*-(0&(?&.(9:(4-*-(0&
BQ"#%=&2*&#"@;&CDD_R&'(%)#*+;&LTTEG@&1*<$-24&(?&.(9:(4-*-(0&+#)2&?(.<42$&(0&4*<$20*&=0(7"2$/2&
(%&*+2&(<*:<*&(?&"2#%0-0/@&`(02&+#)2&%2:(%*2$&(0&*+2&*2#.+-0/&(?&.(9:(4-*-(0&(%&(0&*+2&7%-**20&
.<%%-.<"<9&(%&*+2&-0:<*&(?&"2#%0-0/&2N.2:*&?(%&(02&4*<$5&*+#*&?(.<42$&(0&*+2&/202*-.&
$2.(9:(4-*-(0&B!52%4&2*&#"@;&CDEEG@&>+2&4*<$5&%2:(%*2$&+2%2&-4&#&M2/-00-0/&*(&?-""&*+-4&/#:&*+%(</+&
#&.<%%-.<"<9&#0#"54-4&(0&*+2&*%2#*920*&(?&.(9:(4-*-(0&-0&42.(0$#%5&B#"/2M%#;&/2(92*%5;&#"/2M%#&
L;&:%2.#".<"<4G&#0$&2#%"5&.(""2/-#*2&B:%2.#".<"<4;&.#".<"<4G&9#*+29#*-.4&*2N*M((=4@&P+-"2&*+2&
7%-**20&.<%%-.<"<9&$(24&0(*&$2*2%9-02&7+#*&*2#.+2%4&*2#.+&(%&7+#*&4*<$20*4&"2#%0;&*+2&7%-**20&
.<%%-.<"<9&-0?"<20.24&M(*+&B]29-""#%$;&'2%M2"IS-4209#00;&U&W"(5$;&LTTDG@&>+2&%242#%.+&
a<24*-(04&/<-$-0/&*+-4&7(%=&#%28&b0&7+#*&7#54&-4&*+2&.(0.2:*&(?&.(9:(4-*-(0&$2)2"(:2$&#.%(44&
*+2&#"/2M%#&*(&.#".<"<4&.<%%-.<"<9c&b4&*+2%2&#&$-??2%20.2&M2*7220&*+2&7#5&.(9:(4-*-(0&-4&*%2#*2$&
-0&*+2&42.(0$#%5&.<%%-.<"<9&#0$&.(""2/2&:%2.#".<"<4&#0$&.#".<"<4&.<%%-.<"<9&#0$&-?&4(;&7+#*&#%2&
*+2&.+#%#.*2%-4*-.4&(?&*+#*&/#:c&&

b0&*+-4&4*<$5&.(9:(4-*-(0&-4&.(0.2:*<#"-d2$&-0&*7(&7#54&7+-.+&%2"#*2&*(&*+2&0(*#*-(04&(?&
gBf BxGG&#0$&Bg& &fGBxG@&A-%4*&-4&*+2&sequence view of composition@&b0&*+-4&)-27;&gBf BxGG&$20(*24&#&
42a<20.2&(?&?<0.*-(04&7+2%2&f&.(%%24:(0$4&x&*( f&BxG&#0$&g&.(%%24:(0$4&f&BxG&*(&gBf BxGG@&>+<4;&*+2&
(<*:<*&(?&f; f&BxG;&-4&*+2&-0:<*&(?&g&#0$&-*&-4&*+2&2"2920*4&x&#0$&f BxG&*+#*&#%2&M2-0/&#.*2$&<:(0@&b0&
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!"#"$%&'()*+,(-+".(/0(1/23/,+)+/#(4",1$+5",(1/23/,+)+/#(%,(%(,"67"#1"(/0($"17$,+-"($"&%)+/#,(
8+#1&74+#!(07#1)+/#,9(.*"$"()*"(+#37)(/0()*"(n)*()"$2(+,()*"(/7)37)(/0()*"(8n-19)*()"$2:(;%$&,/#'(
<"*$)2%#'(%#4(=#!"&>"(8?@A@9(4",1$+5"4()*+,(%,(%(3$/1",,(-+".(/0(1/23/,+)+/#'(.*+&"(B%$"&(%#4(
C%37)(8ADDA9($"0"$$"4()/()*+,(3$/1",,(/0(E%1)+#!(/#(+#4+-+47%&("&"2"#),(/0(F)*"G(4/2%+#H(%#4(
1%&&"4(+)(%(point-wise operation(83:(IJ9:((

K*"(/)*"$(1/#1"3)7%&+L%)+/#(/0(1/23/,+)+/#(+,()*"(operation view of function:(M#()*+,(
-+".'(8g( (f98x9(+,(%(5+#%$N(/3"$%)+/#(/#()./(07#1)+/#,'(f(%#4(g'($",7&)+#!(+#(%(#".(07#1)+/#(g( (f:(M#(
)*+,(1%,"(07#1)+/#,(%$"()*"(/5O"1),(5"+#!(%1)"4(73/#(%#4(#/)(,+23&N()*"+$(4/2%+#(%#4($%#!"(
"&"2"#),:(<)*"$,(.*/(*%-"(.$+))"#(%5/7)($"3&%1+#!(3$/1",,",(.+)*(/5O"1),(+#1&74"(P,+%&%(")(%&:(
8ADDQ9(7,+#!()*"()"$2("#1%3,7&%)+/#'(R0%$4(8?@@I9(7,+#!()*"()"$2($"+0+1%)+/#'(%#4(S%$)+#(8ADDA9(
7,+#!()*"()"$2(/0(#/2+#%&+L%)+/#(.*+1*(+,(%(,3"1+0+1(1%,"(/0(B%&&+4%NT,(8ADIU'(ADDU9(!$%22%)+1%&(
2")%3*/$:(K*"(1/22/#(0"%)7$"(%2/#!()*","(3"$,3"1)+-",(+,()*%)(3$/1",,",(8/$(-"$5,9(%$"()$"%)"4(
%,("#)+)+",(8/$(#/7#,9(.*+1*(5"1/2"()*"(/5O"1),(/0(/)*"$(%1)+/#,(%#4(3$/1"47$",(8/$(-"$5,9:(V/$(
"W%23&"'()*"(07#1)+/#(f(8x9(X(x?(1%#(5"(-+"."4(%,()*"(3$/1",,(/0(1/$$",3/#4+#!(%#N(#725"$()/(+),(
,67%$":((;/23/,+#!()*"(07#1)+/#(g8x9(X(?x(Y(J(.+)*(f(8x9(1%#(5"(-+"."4(%,(E3&7!!+#!(+#H(f8x9(+#)/(
)*"(xT,(+#()*"(g8x9(07#1)+/#($",7&)+#!(+#(g8f 8x99(X(?8f 8x99(Y(J(/$(g8f 8x99(X(?8x?9(Y(J:(M#()*+,(
,+)7%)+/#'(f(8x9(+,()$"%)"4(%,(%#(/5O"1)(%#4(#/)(%,(%(1/$$",3/#4"#1"(5").""#(+),(4/2%+#(%#4($%#!":(

Z","%$1*(/#()*"(,"67"#1"(-+".(/0(1/23/,+)+/#(*%,($"3/$)"4(,)74"#),(*%-"(+#)"$3$")"4()*"(
1/23/,+)+/#(,)%)"2"#)(/0(f(8!8[9(%,()*"(27&)+3&+1%)+/#(,)%)"2"#)(/0(f(8[9(\(g8[9(8=#!"&>"(")(%&:'(
?@@U'(S""&(ADDD9:(K*","(,)74+",(*%-"($"3/$)"4(,)74"#),(+#)"$3$")+#!(1/23/,+)+/#(%,(
27&)+3&+1%)+/#(.*+&"(7,+#!(0/$27&%,'(!$%3*,'(%#4()%5&",:(Z","%$1*(*%,(%&,/(,*/.#()*%)(,)74"#),(
*%-"(4+00"$"#)(,711",,($%)",(/#(1/23/,+)+/#(3$/5&"2,(+#(4+00"$"#)($"3$","#)%)+/#,:((]*"#(%,>"4(
)/("-%&7%)"(g8f(8?9'(;%$&,/#(")(%&:(8?@A@9($"3/$)"4()*%)(DJ^(/0(,)74"#),(."$"(,711",,07&&N(!+-"#(
)./(%&!"5$%+1(07#1)+/#,'(U@^(.+)*(!$%3*+1%&(07#1)+/#,(%#4(J_^(.+)*()%57&%$(07#1)+/#,:(B%,,%#+(
8ADDI9($"3/$)"4(,)74"#),T(,711",,($%)",(%,(IJ^'(A@^'(%#4(&",,()*%#(U@^(0/$(%&!"5$%+1'(!$%3*+1%&'(
%#4()%57&%$'($",3"1)+-"&N:(]*"#()*"()%,>(.%,($"3*$%,"4()/("-%&7%)"(8g( (f(98?9()*"(,711",,($%)",(/0(
,)74"#),(+#(B%,,%#+T,(,)74N(1*%#!"4()/([U^'(?U^(%#4([[^'($",3"1)+-"&N:(M#(%#(+#)"$-+".(.+)*(%(
,)74"#)(+#(%(4"-"&/32"#)%&(%&!"5$%(1/7$,"(`"S%$/+,(a(K%&&(8ADDQ9($"3/$)"4()*%)(*"(.%,(%5&"()/(
1/23&")"(%(1/23/,+)+/#()%,>(7,+#!()*"()%5&"(.+)*(1/#,+4"$%5&"(!7+4%#1"(0$/2()*"(+#)"$-+".'(.%,(
)*"#(7#%5&"()/(5"!+#(!$%3*+1%&(1/23/,+)+/#()%,>'(57)(0/&&/.+#!()*%)(*"(.%,(,711",,07&(.+)*(
2+#+2%&(!7+4%#1"(/#()*"(%&!"5$%+1(1/23/,+)+/#()%,>:(K*+,($","%$1*(+23&+",()*%)(%&!"5$%+1(
1/23/,+)+/#()%,>,(%$"("%,+"$(0/$(,)74"#),()*%#(/)*"$($"3$","#)%)+/#,:(<#"("W3&%#%)+/#(*%,(1&%+2"4(
)*%)()*+,(+,(47"()/(%(17$$+17&72()*%)(+,(*"%-+&N(%&!"5$%+1(%#4()*%)(,)74"#),(*%-"(*%4(2/$"("W3/,7$"(
%#4("W3"$+"#1"(.+)*(4"%&+#!(.+)*()*"(%&!"5$%+1($"3$","#)%)+/#(8B+))'(ADDI9:(B/."-"$'(%(
17$$+17&72(%#%&N,+,(*%,(#/)(5""#(1/#471)"4()/("23+$+1%&&N(-%&+4%)"(,71*(1&%+2,:(

Z","%$1*(/#()*"(/3"$%)+/#(-+".(/0(1/23/,+)+/#(*%,($"3/$)"4()*%)(,)74"#),(0$"67"#)&N(
+23&"2"#)()*+,(-+".(5N(3&7!!+#!(+#(/$(,75,)+)7)+#!()*"(/#"(07#1)+/#(0/$(%(-%$+%5&"(+#()*"(/)*"$(
07#1)+/#(8PN"$,'(")(%&:'(ADIIb(;%$&,/#'(ADDIb(B/$-%)*'(?@A@b(cN!7$(a(<L4%,'(?@@_9(/$(5N(
+#)"$3$")+#!(1/23/,+)+/#(%,(27&)+3&+1%)+/#(8B/$-%)*'(?@A@b(S""&'(ADDD9:(K*"(4+00"$"#1"(+#()*"(
27&)+3&+1%)+/#(5").""#()*"(,"67"#1"(-+".(%#4()*"(/3"$%)+/#(-+".(+,()*%)(,)74"#),(#/)(/#&N(
27&)+3&N(#725"$,'(57)(%$"(%&,/(27&)+3&N+#!(/5O"1),(,71*(%,(07#1)+/#,:(K*+,(+#)"$3$")%)+/#(%33"%$,(
,N25/&+1%&&N(%,(8f( (g98x9(X(f(8x9(\(g8x9:((

K*+,(,)74N(7,",()*"(1/#1"3)7%&(>#/.&"4!"(%#4(3$/1"47$%&(0&7"#1N(0$%2"./$>()/(,)74N(
17$$+17&72(2%)"$+%&,:(S%#N(,1*/&%$,(*%-"(3%$)+1+3%)"4(+#()*"(4"5%)"(/0(1/#1"3)7%&(%#4(
3$/1"47$%&(>#/.&"4!":((d+%!")'(K7&-+#!'(P#4"$,/#'(R1*"00&"$'(%#4(R>"23(%$"(%(0".(.*/(*%-"(
4/#"(,/:((B+"5"$)(%#4(e"0"-$"(8ADIQ9(4",1$+5"4(1/#1"3)7%&(>#/.&"4!"(%,(>#/.&"4!"()*%)(+,($+1*(
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!"#$%&'(!)"*+!,*#'"-#!*#&!.%#'#"%(/)$.#/+%$%#0)(+#(+%#1%$(!2%*#'"-#(+%#%-3%*#4/)$-*#('.%"#5$)6#
7$',+#8+%)$9:#'$%#%**%"(!'&#'"-#)5#%;<'&#!6,)$('"2%=##>?"#5'2(@#'#<"!(#)5#2)"2%,(<'&#.")/&%-3%#
2'"")(#0%#'"#!*)&'(%-#,!%2%#)5#!"5)$6'(!)"A#'"-#(+%#!"-!1!-<'&#6<*(#2)"*2!)<*&9#$%2)3"!B%#&!".*#
()#)(+%$#!"5)$6'(!)"#4,=#C:=##8+%9#-%*2$!0%-#,$)2%-<$'&#.")/&%-3%#!"#(/)#2)6,)"%"(*=#>D"%#,'$(#
!*#2)6,)*%-#)5#(+%#5)$6'&#&'"3<'3%@#)$#*960)&#$%,$%*%"('(!)"#*9*(%6@#)5#6'(+%6'(!2*=##8+%#
)(+%$#,'$(#2)"*!*(*#)5#(+%#'&3)$!(+6*@#)$#$<&%*@#5)$#2)6,&%(!"3#6'(+%6'(!2'&#('*.*A#4,=#E:=###

F)$#(+!*#*(<-9#)5#2<$$!2<&<6#2)"2%,(<'&#.")/&%-3%#!"2&<-%*#-%5!"!(!)"*#'"-#,$),%$(!%*#)5#
2)6,)*!(!)"#*<2+#'*#(+%#'**)2!'(!1!(9#'"-#2)66<('(!1!(9#4!"#$'$%#*!(<'(!)"*:@#(+%#")"G<"!;<%"%**#
)5#-%2)6,)*!(!)"@#%(2=#H$)2%-<$'&#5&<%"29#%&%6%"(*#,%$5)$6'"2%#)5#,$)2%-<$%*#'"-#'&3)$!(+6*#
*<2+#'*#%1'&<'(%#(+%#2)6,)*!(!)"@#5!"-#(+%#-)6'!"@#-%2)6,)*%#'#5<"2(!)"@#%(2=#I)2'0<&'$9#)5#
!6,)$('"(#(%$6*#'"-#")('(!)"#!*#,&'2%-#<"-%$#(+%#*%,'$'(%#2'(%3)$9#2'&&%-#J)"1%"(!)"'&#
K")/&%-3%#L&%6%"(*=#8+!*#/)<&-#!"2&<-%#!(%6*#*<2+#'*#(+%#,'$%"(+%(!2#f4g4x::#'"-#2!$2&%@#f# #g@#
")('(!)"*#'"-#/+'(#)0M%2(*#'$%#-%*2$!0%-#'*#0%!"3#>2)6,)*!(%=A#D(+%$#6'M)$#2'(%3)$!%*#!"#(+!*#
*(<-9N*#5$'6%/)$.#'$%#O%,$%*%"('(!)"#4!=%=@#'&3%0$'!2@#3$',+@#('0&%:#'"-#F<"2(!)"#89,%#4!=%=@#
,)&9")6!'&@#($!3)")6%($!2@#%P,)"%"(!'&@#&)3'$!(+6!2@#,!%2%G/!*%:=#

Q%(+)-#
?"#)$-%$#()#0%((%$#<"-%$*('"-#(+%#,)(%"(!'&#!"5&<%"2%#)5#(+%#/$!((%"#2<$$!2<&<6#)"#/+'(#

),,)$(<"!(!%*#()#&%'$"#*(<-%"(*#+'1%@#(+!*#*(<-9#'"'&9B%*#(+%#-%1%&),6%"(#)5#(+%#2)"2%,(#)5#
5<"2(!)"#2)6,)*!(!)"#!"#/$!((%"#2<$$!2<&<6#)1%$#(+%#*,'"#5$)6#R&3%0$'#()#J'&2<&<*=#S!3+#*2+))&#
2<$$!2<&'#/!&&#0%#'"'&9B%-#()#*(<-9#%P'6,&%*#)5#(+%#/'9*#!"#/+!2+#*(<-%"(*#'$%#!"($)-<2%-#()#
2)6,)*!(!)"#!"#+!3+#*2+))&#4JJTTGQ@#UVWV:=#8+%#(%P(*#()#0%#'"'&9B%-#/!&&#!"2&<-%#%"(!$%#*%$!%*#
)5#R&3%0$'#W#'"-#U@#7%)6%($9@#'"-#H$%2'&2<&<*=#8+%#")(!)"#)5#2)6,)*!(!)"#!*#-%1%&),%-#5<$(+%$#
!"#2'&2<&<*#/+!2+#6'"9#*(<-%"(*#*(<-9#!"#2)&&%3%=#8+<*@#2)&&%3!'(%#H$%2'&2<&<*#'"-#J'&2<&<*#(%P(*#
/!&&#'&*)#0%#'"'&9B%-=#8+%#-<,&!2'(!)"#)5#(+%#,$%2'&2<&<*#(%P(#'(#0)(+#(+%#+!3+#*2+))&#'"-#2)&&%3%#
&%1%&#/!&&#+%&,#!-%"(!59#'"9#-!55%$%"2%*#0%(/%%"#(+%#,$%,'$'(!)"#5)$#2'&2<&<*#'(#(+%#-!55%$%"(#
&%1%&*=#

8+%#(/)#*%2)"-'$9#6'(+%6'(!2*#2<$$!2<&<6#*%$!%*#()#0%#'"'&9B%-#'$%#Glencoe/McGraw 
Hill Mathematics#4UVWVXUVWW:#'"-#(+%#CME Project#4UVVY:=#7&%"2)%#Q'(+%6'(!2*#/'*#2+)*%"#
-<%#()#!(*#&'$3%#*+'$%#)5#(+%#*%2)"-'$9#*2+))&#6'$.%(#4*%%#Z)**%9#%(#'&=@#UVV[:=##8+%#CME Project#
6'(%$!'&*#/%$%#2+)*%"#()#0%#(+%#*%2)"-#*%$!%*#0%2'<*%#!(#+'*#0%%"#-%1%&),%-#6)$%#$%2%"(&9#'"-#
+'1%#-!55%$%"(#5%'(<$%*#(+'(#,$)1!-%#'#0$)'-%$#1!%/#)5#(+%#($%'(6%"(#)5#2)6,)*!(!)"#'2$)**#
2<$$!2<&'=#R(#(+%#2)&&%3!'(%#&%1%&@#'#/!-%&9#<*%-#,$%2'&2<&<*#'"-#2'&2<&<*#*%$!%*#/'*#-%(%$6!"%-#
09#*<$1%9!"3#',,$)P!6'(%&9#WVV#Z%,'$(6%"(#)5#Q'(+%6'(!2*N#/%0*!(%*#'"-#!-%"(!59!"3#(+%#(%P(*#
<*%-#5)$#2'&2<&<*#'"-#,$%2'&2<&<*#2)<$*%*=#8+%#!"*(!(<(!)"*#2+)*%"#5)$#(+%#*<$1%9#'$%#(+)*%#
2&'**!5!%-#'*#1%$9#$%*%'$2+#!"(%"*!1%#!"#(+%#J'$"%3!%#J&'**!5!2'(!)"=8+!*#*<$1%9#/'*#2)"-<2(%-#!"#
\<"%#UVWV=#8+%#*<$1%9#$%*<&(*#!-%"(!5!%-#Calculus: Early Transcendentals,#6th edition#4UVV[:#09#
T(%/'$(#'"-#Precalculus: Mathematics for Calculus, 5th edition#4UVVE:#09#T(%/'$(@#O%-&!"@#'"-#
]'(*)"#'*#(+%#6)*(#/!-%&9#<*%-#2'&2<&<*#'"-#,$%2'&2<&<*#(%P(*@#$%*,%2(!1%&9=#8+% *%2)"-#
,$%2'&2<&<*#'"-#2'&2<&<*#(%P(#()#0%#'"'&9B%-#!*#Functions Modeling Change: A Preparation for 
Calculus, 4th edition#4UVWW:#09#J)""'&&9@#S<3+%*GS'&&%((@#7&%'*)"@#%(#'&=#'"-#Calculus,#5th 
edition#4UVVY:#09#S<3+%*GS'&&%((@#7&%'*)"@#Q2J'&&<6@#%(#'&=@#$%*,%2(!1%&9=#

8+%#2)"(%"(#!"2&<-%-#!"#(+%#'"'&9*!*#/'*#-%(%$6!"%-#09#(+%#5)&&)/!"3#2$!(%$!'=#8+%*%#
2$!(%$!'#!"2&<-%#0)(+#(+%#%P,&!2!(#-%1%&),6%"(#'"-#!6,&!2!(#<*%#)5#2)6,)*!(!)"=#R"9#&%**)"#(+'(#
!"2&<-%*#%P,)*!(!)"#$%3'$-!"3#5<"2(!)"#2)6,)*!(!)"#!"#(+%#*(<-%"(#)$#(%'2+%$#%-!(!)"#!*#2)"*!-%$%-#
()#0%#%P,&!2!(&9#-%1%&),!"3#(+%#2)"2%,(#)5#2)6,)*!(!)"=##?"#(+)*%#*!(<'(!)"*#(+%#%"(!$%#&%**)"#/'*#
!"2&<-%-#!"#(+%#'"'&9*!*=##^%**)"*#)"#5<"2(!)"#),%$'(!)"*@#!"1%$*%#5<"2(!)"@#'"-#2)6,)*!(!)"#)5#
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!"#$"%&'()%&*+,-#&$*%'#+,)*&")".*$/0",)#-)"./0'('%)1"2"0#/$"+%3)4#&)'$/0'('%)5,",)#-)
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Abstract.  The article reviews efforts to develop an observation protocol to assess the 

pedagogical content knowledge (PCK) and sociomathematical norms (SMN) that middle and 

high school teachers may develop over time as part of their participation in a master’s program 

for secondary mathematics teachers.  We observed each of 16 teachers in real time using the 

instrument, before involvement in the project and again after one year. Aspects of the protocol 

measure four critical components of PCK including curricular content, discourse, anticipatory, 

and implementation knowledge as well as some sociomathematical classroom norms. We present 

preliminary quantitative and qualitative analysis of the observations and discuss various 

challenges faced in the instrument development and its relation to similar protocols used by 

others previously. 

 

Key Words: Pedagogical content knowledge, sociomathematical norms, inter-rater reliability, 

teaching moves 

 

 

There have been several approaches to measuring the pedagogical content knowledge (PCK) of 

practicing teachers.  Indeed, Hill, Ball, and Schilling (2008) and Hauk, Jackson, and Noblet 

(2010) have documented their development of written instruments designed to assess aspects of 

PCK.  Both groups have developed theoretical frameworks for PCK that have similarities and 

some differences.  One of the principle differences is that the Hill, Ball and Schilling linear 

model seeks to measure each of their proposed categories of PCK as distinct from each other, 

while Hauk, Jackson, and Noblet take a non-linear approach that presumes measurement overlap 

among categories. 

 Hauk, Jackson, and Noblet discuss PCK in terms of four components: curricular content, 

discourse, anticipatory, and implementation (action) knowledge. Curricular content knowledge  

is “substantive knowledge about topics, procedures, and concepts along with a comprehension of 

the relationships among them as they are offered in school curricula” (p. 2).  Discourse 

knowledge “is about the culturally embedded nature of inquiry and forms of communication in 

mathematics (both in and out of educational settings” (p.2), and as such includes knowledge of 

mathematical syntax as a sub-category. Anticipatory knowledge “is an awareness of, and 

responsiveness to, the diverse ways in which learners may engage with content, processes, and 

concepts” (p. 3).  Implementation or action knowledge “includes knowledge about how to adapt 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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teaching according to content and socio-cultural context and enact in the classroom the decisions 

informed by content, discourse, and anticipatory understandings” (p. 3). 

 Both groups’ written assessments use multiple choice items and are limited in 

measurement of action knowledge.  Implementation knowledge is more challenging to assess as 

this type of knowledge requires actions executed in the classroom (i.e., teacher moves).  That is, 

the written assessments could not test for this type of knowledge because it requires that the 

teacher act “in the moment.”  At best, any written item could only gauge what a teacher might do 

in certain situations (e.g., see Ball, Hill, & Schilling, 2008). 

 In order to validate their written instrument, Ball and others (Learning Mathematics for 

Teaching (LMT), 2006) developed another instrument aimed at quantitatively measuring aspects 

of elementary and middle school teachers’ classroom practice.  Ten K-8 teachers who had taken 

a PCK test were videotaped for 3 times prior to, during, and after participation in professional 

development.  Over the course of a year, a team of mathematicians, mathematics educators, 

mathematics teachers, and non-specialists analyzed the videos for various aspects of mathematics 

and mathematics teaching present in each lesson. A rubric was developed containing several 

items and video reviewers trained for and then coded each 5 minute segment of each lesson for X 

different categories of teacher move or classroom interaction. Each category had four possible 

codes: Present and Appropriate (PA), Present and Inappropriate (PI), Not Present and 

Appropriate (NPA) and Not Present and Inappropriate (NPI).  LMT team leaders noticed early 

on a wide variability in how individuals coded lessons based upon the individuals’ own 

professional backgrounds, and so to help ensure inter-rater reliability, the lessons were all 

recoded in pairs.  A glossary describing each category (column) in the observation rubric was 

written, with each description giving some detail on when each code should be assigned during a 

segment.  

Theoretical Perspective 

Our research blends the Hauk et al., framework for PCK and the LMT instrument designed by 

the research team at the University of Michigan.  We take the view that the teacher actions or 

moves (or the absence thereof) in the LMT protocol can be observed in the classroom, and that 

such actions or moves can be described (at least approximately) in a predetermined coding 

format independently of the researcher involved.  Now, this is not to say that two different 

researchers may not observe and record different things (as frequently happened with the team at 

the University of Michigan and for our team) for a given segment, but, like the LMT tool, for an 

observation we would expect overall variation between observers to be minimal. 

 We use here the typologies of Hauk, Jackson, and Noblet.  The reason is that any 

particular move that a teacher makes in the classroom can demonstrate multiple facets of PCK 

simultaneously, and hence we take their view that the strands of PCK are interwoven during 

instruction.  Also, Hauk, Jackson, and Noblet make cultures in the classroom an explicit part of 

their definitions, which in turn may be part of teacher decisions to make certain moves in 

response to them. 

 The research questions for the work reported here are:  How might we track the effects of 

professional development through changes in observed PCK and SMN?  If traceable, how might 

professional development be designed to foster particular classroom moves through changes in 

PCK and SMN?  Work on both of these questions continues, and we will primarily address the 

first here but some attention will be given to implications of current results for the second. 

 

Methods 
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The research team at the University of Michigan point out in their technical report that there is a 

need to develop an instrument for doing observations in real time (Learning Mathematics for 

Teaching, 2006, p. 20).  In order to address this need, we examined their observation protocol in 

some depth and determined which items were most appropriate given our focus on observing in 

secondary mathematics classrooms in real time (the LMT work was in grades K-8).  Their 

protocol contained over 30 categories. To streamline for real-time observation we shortened to a 

protocol containing 20 items.  Some of their categories were replaced or condensed in our 

version.  For example, in the LMT version, the researchers created columns for the following: 

selection of correct manipulatives, and other visual and concrete models to represent 

mathematical ideas (their column II.e on sheet 2) and multiple models (column II.f on sheet 2).  

In our version, these two columns were condensed into the column that we titled multiple 

representations, which could include all of the things that the LMT team was looking for in II.e 

and f.. 

 Great care was taken in finding an appropriate length of a segment to be viewed during 

the class.  The team started with the 5 minute length that the LMT used for recorded sessions, but 

it soon became clear that a “5 minute on, 5 minute off” strategy in which the researcher would 

observe for 5 minutes and then record tallys on the protocol during the next 5 minute interval 

would result in 5 or fewer codings per class period for each category.  Eventually, the team 

agreed upon observing for 3 minutes, and then recording for 3 minutes. 

 After the team started using the protocol, we began to reexamine the glossary that the 

LMT team had developed.  We found that trying to use the instrument in real time created new 

challenges with respect to inter-rater reliability.  In particular, the words “explicit” and 

“inappropriate” leave much room for interpretation even in the definitions provided by the LMT 

team.  Though we used many of the same column categories and indentifying language as they 

did, we also saw it was important to craft definitions and create a new glossary.  The idea was to 

create an instrument with sufficient examples and non-examples for each category that it could 

act as a coding book: a guide to the intended viewpoint of the protocol and how to observe 

through a particular lens.  The eventual goal is to have an instrument that is terse but of sufficient 

detail that individuals can observe classrooms after a short calibration training paired with a 

practiced observer. 

 For example, while our glossary continues to be refined, we felt a need to be, well, more 

explicit about what “explicit talk about a topic or subject” meant. Currently, our glossary 

description of this category is: any utterance from student or teacher in which a topic or subject 

is stated verbally or in writing or by reference to a clear written or verbal precursor familiar to 

people in the room. In-vivo exemplars have been included in our glossary to demonstrate 

categories.  For example, during one 3-minute segment, the teacher presented the Fundamental 

Theorem of Algebra.  The exercise the teacher assigned called for students to find a polynomial 

of lowest degree with real coefficients that had certain prescribed roots.  At one point, an 

exercise asked for a polynomial with roots 3

! 

i , 4, and 5.  The teacher produced a monic degree 4 

polynomial with these 3 prescribed roots, and a student asked why it was necessary to have -3

! 

i  

as a root when this number was not contained in the list.  The teacher responded that since 3

! 

i  

was a root, its conjugate -3i also had to be a root.  The student again asked why this must be true 

when -3i was not listed, and the teacher replied “because conjugates are always roots.”  The 

researcher coded this particular segment as NPI in the explicit talk about ways of reasoning 

column due to the teacher’s not addressing directly the student’s question (e.g., the idea that the 
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requirement that the coefficients of the polynomial be real was connected to the need for the use 

of conjugate roots).  

 Each column of the protocol was assigned a quadruplet of the form (c, d, a, i) where the 

values of c, d, a, i were determined by the research team based on the descriptions of the 

categories Curricular Content, Discourse, Anticipatory, Implementation and the glossary 

description of the category represented by the column. The possible values for c, d, a, and i were 

1 if a particular kind of knowledge was present in the observable category and a value of 0 

otherwise.  Research team members spent a significant amount of time on coming to a consensus 

on implementation knowledge and trying to understand how it actually gets demonstrated in the 

classroom.  One challenge in defining this particular type of knowledge is that the other three are 

interwoven with it so much that at times it can be difficult to “tease apart” implementation 

knowledge from say anticipatory knowledge.  After much discussion, we began to understand 

that implementation knowledge had to meet both criteria given in the definition by Hauk, 

Jackson, and Noblet (i.e., satisfying only one of the two pieces was not enough). This categorical 

inductive coding left some of the columns without non-zero alignment to any PCK codes. In 

reviewing what was left uncoded, it was apparent that all of these were related to the establishing 

of sociomathematical norms. One such example is the column titled “instructional time is spent 

on mathematics (>75%)” in which a segment being marked as PA indicates nothing in particular 

about a teacher’s knowledge of teaching mathematics, but rather indicates something about what 

the teacher and students treat as acceptable time to spend on mathematics instruction, fitting 

Yackel and Cobb’s (1996) classic definition of sociomathematical norm.  One particularly 

interesting column titled “encourages diverse mathematical competencies” has a unique feature: 

we determined that this column loaded heavily on PCK by assigning it a quadruplet of (1,1,1,1) 

(and hence having all four components of PCK) as well as being a sociomathematical norm.  The 

item loads in discourse because of the communication about the mathematics that occurs 

between a teacher and student or among students when the item is present, and it loads on 

curricular content knowledge as a teacher must know about the connections among different 

procedures and solutions that students may use in solving problems.  This previous statement 

also shows that a teacher will demonstrate anticipatory knowledge in this item’s presence as she 

must be aware of how the students may interact with the problem at hand in order to encourage 

the competencies (i.e. curricular content and anticipatory knowledge overlap for this category).  

The teacher then uses her curricular content and anticipatory knowledge to adapt her teaching in 

response to the diverse competencies that arise as well making choices for her instruction in 

encouraging these competencies, thereby demonstrating her implementation knowledge.  The 

item is also a SMN since the presence of the item in a segment is illustrative of a shared meaning 

between teacher and student of what diverse competencies in the classroom are.  

 

Results 

As indicated above, the research is currently in the data analysis stage, which will be complete 

by January, and a summary of results will be offered at the conference.  

 

Questions (a handout of the protocol will be provided to the audience) 

1. If the goal of observation of teaching is basic research about the nature of teacher enactment of 

PCK and SMN for secondary mathematics instruction, what are the implications of the realities 

of classroom practice for the revision of the protocol? 
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2. If the goal of the observation is evaluation of the impacts of a professional development (PD) 

program in which the teacher has been participating (PD focused on PCK growth), what are the 

audience suggestions for the revision/streamlining of the protocol? 

3. How might such a protocol be used to help pre-service and practicum teacher candidates to 

think about and prepare for teaching? 
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Abstract: Teachers implementing inquiry-oriented, discourse-promoting tasks can face a number 

of challenges (Speer & Wagner, 2009; Ball, 1993). In this study we will examine the challenges 

faced by two community college instructors as they implement such a task in a “transition to 

proof” course. In this task students initially use their informal ideas of symmetry to develop a 

criteria to quantify the symmetry of six figures (see Larsen & Bartlo, 2009), these criteria are 

then formalized into definitions for symmetry and equivalent symmetries. During this task a 

number of conflicts arise, and to resolve these conflicts the students engage in rich mathematical 

discourse. While this task and ensuing discourse offer opportunities for learning mathematics, 

they also offer significant challenges for effective implementation. We aim to identifying these 

challenges and the ways in which these challenges were navigated as the class worked towards 

formal definitions of symmetry and equivalent symmetries. 

While working on a project aimed to develop a community college “transition to proof” 

course, bases on an inquiry-oriented abstract algebra curriculum, we began to wonder what sort 

of challenges the community college instructors would face as they navigated the curriculum. In 

order to begin looking at this question we decided to focus our attention on an inquiry-oriented 

task in which the students reinvent and define the concepts of symmetry and equivalent 

symmetries.  

In this task students are initially given six shapes (see figure below) and are asked to 

arrange the figures from least to most symmetric. The students work on this task individually and 

then in small groups prior to a whole class discussion. The groups share how they ordered the 

figures and how they came to that decision. The students are then asked to determine a way to 

quantify the symmetry of each figure and, using their quantification criteria, the groups rank the 

figures and present both their criteria and their ranking to the whole class. Following these 

presentations the groups work to develop both a definition of what a symmetry is and what 

makes two symmetries equivalent (see Larsen & Bartlo, 2009).  

 
Fig. 1 Symmetry Task Launch 
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This task typically promotes rich mathematical discourse (Larsen & Bartlo, 2009) as the 

students work to resolve ranking discrepancies and develop definitions. Common points of 

contention are whether “doing nothing” should be counted as a symmetry, if a symmetry is a 

property of a shape or a function acting on the shape, and if symmetries are equivalent when they 

produce the same result or when the action done to the figure is the same (essentially making 

equality the criteria for equivalence).   

By engaging in rich mathematical discourse, including questioning, challenging, and 

justifying, students can learn what it means to do mathematics (Stein, 2007). However, managing 

and facilitating student discourse comes with an array of challenges, such as respecting students 

as mathematical thinkers, even when their ideas are not in alignment with standard mathematics 

(Ball, 1993), and providing analytic scaffolding during whole class discussions to move the 

mathematical agenda forward (Speer & Wagner, 2009).  

While such challenges have been documented and analyzed at the elementary and 

undergraduate level, in this study we are looking at how these challenges are addressed and 

negotiated by community college instructors, specifically related to this symmetry task. Through 

our analysis we aim to answer the following research questions:  

1) What challenges do the two community college instructors we were working with 

face as they facilitate this discourse-prompting task?  

2) How did these two community college instructors navigate and manage these 

challenges?  

 

To answer these questions video data of the classrooms of the two community college 

instructors will be analyzed through iterative stages (Lesh & Lehrer, 2000). This analysis will 

focus on how the instructors implemented this task and facilitated the ensuing class discussion. 

Specifically, we will look at how the classes arrived at their formal definitions of symmetry and 

equivalent symmetries and how instructors use student thinking to formalize these definitions. 

 

 

Questions for the Audience:  

 

We had considered using data from a university professor’s introduction to group theory 

classroom for comparison purposes.  

• Would in make sense to compare how this task unfolded given the different student 

populations?  

• Would it make sense to compare the two different teaching populations?  

• If so, how might we compare between community college instructors and university 

professors in a way that does not cast the university instructor as the 'expert'? 
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Linking Instructor Moves to Classroom Discourse and Student Learning in Differential 
Equations Clas

 

more student-centered instruction, teachers’ moves foster mathematical discourse among 
students and teachers as a way to further the mathematics. While some are studying these teacher 
moves in K-12 classrooms, there seems to be little research focusing on this in the university 
classroom. We define a pedagogical content move to be a discursive or inscriptive act by an 
instructor that is purposely used to promote or further the mathematical agenda in the classroom 
(Lee, Keene, Lee, Holstein, Early& Ely, 2009).  In an earlier paper, we presented several of these 
moves as identified in our data collection and analysis.  In this proposal, we further this research 
by answering the question:   

What specific links can be described between university professors’ instructional moves 
and the discourse and learning in a classroom about one particular mathematical concept? 

We have chosen parametric curves as the specific content to embed our work for two 
reasons.  First of all, it is an overarching and important mathematics concept which appears in 
mathematics from precalculus through university level mathematics analysis.  Specifically, in 
differential equations, as students learn how to find solutions, they are often represented as 
parametric equations and visualized as curves in two or three dimensions.  Secondly, the authors 
have previously reported on research about how student come to visualize curves that are 
parameterized over time (Keene, 2007).    

 
Literature Review 

 
Parameter and parmetric curves.  We define the concept of “parametric curves” to be 
representations in 2 or more dimensions of functions defined by two or more equations with the 
same independent variable.  Often in differential equations this variable is time, but it is not a 
requirement to be a parametric curve.  Research about student learning of parameter and 
parametric equations is limited. Student understanding of parameter was studied by Drijver 
(2001) who discusses how students understand parameter as place holder, changing quantity, and 
as generalizer.  Keene (2007) also discusses the notion of parametric reasoning with time as the 
dynamic parameter. She provides the notion that parametric reasoning includes students’ making 
time an explicit quantity, using and connecting qualitative and quantitative reasoning, and 
imagining the motion.  Engelke (2007) introduces a framework for student understanding of 
related rates (of change), which closely links to the idea of parameter.   
 The idea that parametric curves are important to many areas of advanced mathematics 
has not led to significant research in their understanding.  Some publishing appears about how to 
teach parametric equations using technology ( Drivjers, 2001) but how students learn them in a 
classroom situation is missing. 
 
Teacher pedagogy, discourse, and student understanding at the undergraduate level. Some prior 
research has begun to focus on pedagogical issues related to mathematics instruction at the 
undergraduate level. For example, in studying the implementation of the same differential 
equations curriculum materials, Wagner et al (2007) analyzed the specific problems a professor 
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encountered in facilitating mathematical discussions. The professor in that study had taught DEs 
for many years from a traditional perspective and was new to inquiry-oriented instruction. In 
particular they found that the professor struggled to respond to unexpected student responses 
during whole class discussions. This is similar to the work of Bartlo et al (2008) that shows that 
the mathematics knowledge that a professor brings to an abstract algebra classroom is broad in 
certain ways but that there are pedagogical situations when building content connections and 
understanding student thinking is a challenge.   

Additionally, other researchers have focused on discourse practices and moves in the 
mathematics classroom in K-12, as well as some at the university level. While general practices 
such as telling or revoicing have been carefully analyzed for their effects on the mathematical 
discussion (e.g., O’Conner & Michaels, 1993) most do not focus on the ways in which the 
instructor draws upon specific content knowledge when making a discursive move. Rasmussen, 
Marrongelle, & Kwon (2008) have developed an IODM (Inquiry Oriented Discursive Move) 
framework to analyze mathematical discourse. We are interested in using and modifying this 
framework to identify and analyze moves used by an instructor to introduce such tools and the 
mathematical content understandings that drive the move, specifically in terms of parametric 
equations and their representations as curves.  
 

Methodology 
Data collection was conducted in Spring 2008 in a college level Differential Equations 

class in the southeastern United States (enrollment of 25) using a classroom teaching experiment 
methodology (Cobb, 2000).  Most students in the class were mathematics, science, or 
engineering majors, had finished Calculus III, and about one third of the students had taken at 
least one prior course with this particular mathematics professor. The professor had been using 
inquiry-oriented strategies in his other courses (e.g., Abstract Algebra, Mathematical Reasoning) 
for several years, but had only taught Differential Equations once about 7 years prior and was 
implementing an inquiry-oriented differential equations materials (Rasmussen, 2003) for the first 
time that semester. Prior to many teaching sessions, the professor met with one of the researchers 
to discuss the material to be taught and make a planned trajectory. They also met immediately 
after class for debriefing sessions to reflect on the lesson and discuss any issues or questions that 
arose that may affect the content and teaching strategies used for the next class. 

The class was designed to be student centered and inquiry-oriented with each class 
session involving cycles of learning: whole class discussion, followed by small group discussion, 
followed by whole class discussion.  The learning environment of the classroom established by 
the professor required students to discuss the mathematics they were learning, express their own 
ideas, and make sense of, and agree or disagree with others’ ideas.  

The data used for analysis for this paper was drawn from the videotaped class episodes, 
field notes from a non-participant observer, video/audio taped debriefing sessions held 
immediately after class and student work. To begin our analysis, we reviewed videotapes and 
field notes of class sessions throughout the semester.   We identified episodes (short periods of 
classroom video) where it was noted that the class was discussing ideas about parametric 
equations, time as a parameter, graphing of parametric equations as curves or related ideas. Once 
these episodes where identified, we used a coding scheme that was both top-down (Miles and 
Huberman, 1994) and generative in nature (Strauss & Corbin, 1990). It was top-down in the 
sense that we used research in prior literature (Rasmussen, Marrongelle, & Kwon, 2008; 
Whitacre & Nickerson, 2009) to identify instances where the instructor was initiating a 
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conversation, possibly using one of the typical discursive moves such as telling or questioning, 
interjecting something in a conversation using revoicing or using pedagogical content moves 
(Rasmussen & Marrongelle,2006;).  The coding was generative in nature as we created and used 
codes of ways the instructor was drawing upon his own knowledge and what discourse the 
students and teacher participated in.  After identifying these episodes, we used a comparison 
method to establish links in teacher moves and the discourse.  One assumption we made in the 
analysis is that discourse is one lens on student thinking and that communication is thinking 
(Pea, 1993; Lampert & Cobb, 2003).  After the links were established, we triangulated the 
analysis results with students’ work we collected. 

 
Results 

The results of the analysis are not finished at this time; currently, we have linked at least 
two of the teacher moves to the discourse and student reasoning. By the conference, we plan to 
have more evidence to support these linkages and others. 

First, the teacher focuses and uses student ideas and builds upon them in ways that allows 
the students in the classroom to understand.  For example, if a student mentions in classroom 
conversation that they remember x=f(t) and y=g(t) when asked if they know about parametric 
equations, but cannot remember what they mean, then the teachers brings that idea to the front of 
the class (either himself or the student may speak, either might be appropriate). Because he 
knows that it is from a student, he then asks questions to either small groups or the whole class to 
elicit ideas.  He then creates and asks a question (the teacher move) that engages students in 
thinking about this so they can reconstruct understandings and participate in the discourse around 
the concept. 

Second, the teacher focuses on eliciting ideas from students that will allow them to build 
up their mathematical habits of mind. These habits of mind for this particular teacher involve 
developing an intuition to recognize when mathematical ideas are present in the current 
mathematical agenda that can connect on concepts from their earlier learning.  We provide 
examples of this in detail and other results of the analysis. 

 
Implications 

By identifying one particular mathematical content strand that weaves through many 
areas of mathematics, this research is a good model for those interested in finding ways to 
strengthen student understandings across mathematics as a discipline.  Additionally, offering 
ways that teachers can make explicit pedagogical moves in a university level classroom, whether 
it be student centered or more teacher centered, provides new ways to improve mathematics 
teaching at the undergraduate level. For example, if mathematics instructors think about specific 
ways they can order student answers that allows discourse and reasoning to move forward 
mathematically, this could be an important area for future research and professional 
development. 

Additionally, another area for future research is pointed to by this report.  
Mathematicians are interested in how to assure that mathematics majors at the university have 
long lasting understandings that span the curriculum.  If thinking deeply about one particular 
topic, and ways that teachers can support learning of that, is useful, then researchers may be able 
to use the technique in other mathematical conceptual areas. 
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Understanding and Overcoming Difficulties with Building Mathematical Models in       

Engineering: Using Visualization to Aide in Optimization Courses.  

Rachael Kenney, Nelson Uhan, Ji Soo Yi, Sung-Hee Kim, Mohan Gopaladesikan,  

Aiman Shamsul and Amit Hundia 

 

Introduction 

Operations research—and in particular, optimization—is one of the key courses in many 

universities’ engineering curricula. An optimization model (or mathematical program) is a 

mathematical representation of a decision-making problem, consisting of variables that reflect 

the decisions to be made, and an objective function to be minimized or maximized, subject to a 

set of mathematical constraints on the variables. Formulating a valid optimization model from a 

verbal description of a decision-making, problem is perhaps the most important skill taught in an 

optimization course aimed at undergraduate students, since excellent modeling skills are vital to 

putting optimization techniques into practice. However, though undergraduate engineering 

students have been engaging in modeling activities (i.e., mathematical “word” or “story” 

problems) since elementary school, many students find it difficult to learn how to build good 

optimization models. Many educators in operations research anecdotally report this phenomenon 

(e.g., Sokol 2005), but little work has been done on systematically understanding why 

optimization modeling is such a difficult skill to learn and how such insights can lead to effective 

modeling pedagogies. By effectively teaching optimization modeling skills, we can provide our 

students with a powerful set of tools that can help solve important, complex problems in 

engineering, mathematics, and management. 

The objective of this study is to help undergraduate engineering students overcome their 

difficulties in optimization modeling by 

• determining and understanding commonly made mistakes in optimization modeling; 

• developing a visual, web-based environment that teaches students to formulate valid and 

tractable optimization models; and  

• evaluating the effectiveness of the developed visual, web-based environment on learning 

modeling in optimization. 

This preliminary proposal is intended to share work completed on the first two objectives and 

to generate discussions to help us better conceptualize the next stages of our project. 

Literature Review 

A modeling approach to teaching in engineering or mathematics puts the focus in problem 

solving on creating a system of relationships that is generalizable and reusable (Doerr & English, 

2003). Contemporary approaches to solving mathematical story problems have emphasized the 

need for a proper conceptual understanding of the problem. However, the factors that inhibit 

such conceptual understanding are quite complex. Lucangelli, Tressoldi, and Cendron (1998) 

suggest that problem solving with modeling problems is more difficult than solving algorithms 

because it requires (a) comprehension of the text, (b) ability to visualize the data provided, (c) 

capacity to recognize the underlying structure, (d) ability to correctly sequence solution 

activities, and (e) ability to evaluate the procedures used. These skills are especially important 

when solving college-level word problems in engineering where the problem complexity is often 

increased, contributing to learners’ difficulties with problem solving (Jonassen, 2000). 

The ability to translate from one representation of a mathematical problem to another is 

critical to the problem solving process (Janvier, 1987). However, it has been shown that even 

after several years of schooling in algebra or calculus, students often cannot engage successfully 
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in this translation (Clement, Lochhead, & Monk, 1981; Clement, 1982; Janvier, 1987; Arcavi, 

1994). Learners need a way of “developing a cognitive representation of information in the 

story” (Jonassen, 2000, p. 79). That is, in order to be successful, problem solvers must have an 

accurate mental representation of the pattern of information indicated by the story problem 

(Hayes & Simon, 1976; Riley & Greeno, 1988; Jonassen, 2000). 

Researchers have discussed the role of visual diagrams as a conceptual tool that promote 

students’ construction of flexible and applicable concept images that allow for flexible problem 

solving and connection making (e.g. Dreyfus, 1994; Koedinger, 1994; Larkin & Simon, 1987). 

According to Dreyfus (1994), computer-designed diagrams can be thought of as cognitive tools 

that make it possible to represent mathematics with an amount of visual structure that we cannot 

readily achieve with any other medium. Koedinger (1994) has identified emergent properties of 

diagrams that that make them superior to a linear representation of information for many learning 

and reasoning activities. For example, they provide the potential for students to recognize 

relationships that may have otherwise gone unnoticed in a verbal or symbolic representation. 

This supports earlier findings from Larkin and Simon (1987) who identified a diagrams’ 

superiority to verbal problem descriptions due to their usefulness for grouping together all useful 

information and for supporting a large number of perceptual inferences. Koedinger (1994) 

suggests that students are more practiced in relying on perceptual inferences than the 

corresponding symbolic inferences, making the former often seem easier for the learner. 

Methodology and Preliminary Findings 

One end-goal for our study is to develop a visualization tool that can aid in modeling. Before 

fully developing this tool, we first need to better understand students’ experiences and practices 

when solving optimization modeling problems (specifically linear programming problems) and 

to identify common errors that a visualization tool could help correct. The following sections 

outline our procedures and findings for the first three phases of our work.  

Taxonomy of Optimization Modeling Word Problems 

As a first step, we looked at five optimization textbooks (Hillier and Lieberman 1995, 2001; 

Rardin, 1997; Srinivasan, 2007, Winston, 1994) to determine their categorizations of different 

linear programming models. After comparing these categorizations, we developed a preliminary, 

unified taxonomy of word problems, based on the types of constraints a problem requires (i.e., 

the constraint patterns). Then, we tested the validity of this taxonomy by solving approximately 

35 word problems from the different textbooks and examining how each problem fit into our 

taxonomy. Throughout this process, we discovered that some constraint patterns needed to be 

more specific, and so we revised our taxonomy accordingly. 

Our current version of the constraint pattern taxonomy consists of five categories: (a) 

composition constraints (indicated by terms such as “meets”, “has only”, and “more than”); (b) 

balance constraints (e.g. “Each A requires x number of…”); (c) ratio constraints (often includes 

a mixture of A and B); (d) pattern-covering constraints (“x people work this type of shift”); and 

(e) time-based constraints (e.g. investment problems). By identifying and categorizing the 

different types of constraints, we propose that we may be able to develop a more generalizable 

method for formulating mathematical models across all problem types. 

Taxonomy of Common Student Errors 

To identify students’ common errors and difficulties with modeling problems, we analyzed 

three sets of quizzes (one question each) from two sections of an optimization course and three 

sets of similar word problems, given to students on their final exams in three different semesters. 

We first studied each response and recorded the specific errors each response contained, keeping 
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track of similar errors between students. We then categorized these errors broadly, depending on 

where they appeared in the model: the decision variables, the objective function, or the 

constraints. During this process, we also kept track of summary statistics for each type of error. 

The analysis of students’ responses showed mistakes on 84% of the 374 total responses 

analyzed. We identified five categories for the taxonomy of mistakes: (a) mathematical notation 

errors indicate errors associated with, for example, missing or having too many summation 

signs, or reversing indices; (b) comparison errors indicate mistakes in the direction of the 

inequality sign; (c) flow errors usually occur when multiple statements relate to one constraint 

but students forget to take that into consideration; (d) missing information errors suggest a 

student ignored the type of constraint construction, such as a profit function equation where you 

need the revenue and cost equations; and (e) decision variable errors included missing decision 

variables from the objective function or constraints, replacing a decision variable with some 

other variable, or using incorrect parameters. We found that the majority of mistakes fit into 

either the mathematical notation error (25.40%) or decision variable error (20.32%) categories. 

Comparison errors were found least (4.55%). Our current data on student errors comes from 

students’ work on only one type of constraint pattern – composition constraints. As our work 

continues, we will collect and analyze data related to other types of constraint patterns. 

Development of a Visualization Tool 

Based on these taxonomies, we designed a preliminary visualization scheme that could help 

students gain a better conceptual understanding of optimization modeling problems and that 

could diminish the types of mistakes typically made on these problems. We have considered 

several visualization types, including node-link diagrams, tables, and timeline diagrams, by 

solving different word problems using these visualizations. After reviewing a number of 

different types of problems and student work, we found that node-link diagrams provided a 

possible basis for a robust visualization scheme to represent the conceptual ideas in a wide range 

of word problems. We are currently developing a prototype of an interactive visualization web 

tool (shown in Figure 1) based on our investigation of students work on a composition constraint 

pattern problem. The tool is intended to guide the students by letting them interact with the 

question (given in written form at the top) by allowing them to form node-link diagrams that 

represent their conceptual understanding of the problem. This is to help students understand the 

flow of the problem and identify the constraints available in the question. 

At this point, our data collection has only included quantitative data from textbooks and 

student work samples. This data has provided us with an informative view of students’ 

experiences in modeling in linear programming, but it is incomplete. In the next stages of our 

project, we will conduct qualitative interviews to further understand difficulties in modeling, 

begin to test our prototype of the visualization tool with students, and expand the tool to include 

additional feedback capabilities and to handle several different constraint pattern problems.  

Questions for Consideration 

Our team would be interested in discussing the following questions during the conference:  

1. What approaches should we use to investigate the underlying causes of the mistakes that 

many students make in order to inform the design of our visualization tool? 

2. How can we most effectively study the usefulness of the tool with students?  

3. How can we ensure that the skills that the students learn through our tool (if any) are 

generalizable beyond the types of problems for which the tool is designed? 

4. What are best practices for incorporating an interactive learning tool into a traditional 

lecture-driven course? What would make such a tool appealing to other instructors? 
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Figure 1. Screenshot of the visualization tool prototype 
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Student Approaches and Difficulties in
Understanding and Using of Vectors

Oh Hoon Kwon
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Michigan State University

Abstract

A configuration of vector representations based on multiple represen-
tation, cognitive development, and mathematical conceptualization, to
serve as a new unifying framework for studying undergraduate student
approaches and difficulties in understanding and using of vectors is
proposed. Using this configuration, the study will explore 5 impor-
tant transitions, ‘physics to mathematics’, ‘arithmetic to algebraic’,
‘analytic to synthetic’, ‘geometric to symbolic’, ‘concrete to abstract’,
and corresponding student difficulties along epistemological and
ontological axes. As a part of validation of the framework, a study on
undergraduate students’ approaches and difficulties in understanding
and using of vectors with both quantitative and qualitative methods
will be introduced, and we will see how useful this new framework is
to analyze student approaches and difficulties in understanding and
using of vectors.

Keywords: Vector, Representation, Vector Representation, Undergraduate
Mathematics Education
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Introduction

Undergraduate students usually experienced vectors in school physics and school

mathematics. When students study undergraduate mathematics, they see vectors

again in multivariable calculus, linear algebra, abstract algebra and geometry courses.

(Figure 1) Some students see vectors in introductory physics or engineering courses

while they are studying vectors in mathematics. Although undergraduate students’

experiences with the concept of a vector varied, students still have difficulties in

understanding and using vectors in various situations. In this research, we are going

to explore the following: (1) constructing a framework to analyze student approaches

and difficulties in understanding and using of vectors, (2) classifying approaches and

difficulties, (3) seeing how much one approach prevails over the others in student

thinking and in school and undergraduate mathematics curricula, and (4) locating

the sources of student difficulties.

Root of a Theoretical Framework

Most of the studies about multiple representations are centered on the concept

of a function (Janvier, 1987; NCTM, 2000). Unlike the representations of a function,

vector representations have a hierarchy and are strongly dependent on the contexts of

given questions. To grasp what student approaches and difficulties are in understand-

ing and using of vector representations, many different contexts and different levels

of sophistication should be considered. Many mathematics teachers and professors

already knew student difficulties from their experience of teaching. However, those

difficulties are not classified systematically and they are very scattered and isolated.

As Tall (1992) mentioned, “the idea of looking for difficulties, then teaching to re-

duce or avoid them, is a somewhat negative metaphor for education. It is a physician

metaphor - look for the illness and try to cure it. Far better is a positive attitude

developing a theory of cognitive development aimed at an improved form of learn-

ing.” To have more positive attitude, we need to have more deeper understanding of

student approaches and difficulties on vector representations to the level of the theory

of cognitive development.

Most studies about vectors are from physics point of views related with physical

quantities and by physics educators. J. Aguirre and Erickson (1984); J. M. Aguirre

(1988); Knight (1995); Nguyen and Meltzer (2003) are just a few of them. Some

studies such as Watson and Tall (2002); Watson, Spyrou, and Tall (2003) attempted

to analyze student approaches and difficulties on vector representations with more

mathematical point of views. However, their studies cover only secondary level math-

ematics and the transition from physical thinking to mathematical thinking. This

brings up a necessity of the new framework for investigating vector concepts that can

cover vectors in more advanced and wider levels of undergraduate mathematics as

well as in physics and secondary level mathematics.

Student approaches and difficulties in learning and using of vectors in under-
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graduate mathematics are very complex issues which have not yet definitely resolved.

Dorier (2002) brought up these issues and analyzed them with a series of research.

However this book placed the focus at linear algebra so that vectors in geometry were

covered very briefly. Linear algebra courses are just one of the fields that requires

the concept of vectors frequently, but most studies on the concept of a vector so far

are regarded as parts of bigger topic research on linear algebra (Dorier, 2002; Harel,

1989; Dorier & Sierpinska, 2001).

Lesh, Post, and Behr (1987) pointed out five outer representations including real

world object representation, concrete representation, arithmetic symbol representa-

tion, spoken-language representation and picture or graphic representation. Among

them, the last three are more abstract and at a higher level of representations for

mathematical problem solving (Johnson, 1998; Kaput, 1987). However, in most

cases, picture representation is not geometric enough to show geometric structure,

and graphical representation does not reflect synthetic geometry point of views but

rather analytic.

The problem of vector representations lies not only on the multiple representa-

tions but also on the translations. Sfard and Thompson (1994); Yerushalmy (1997) are

based on the assumption that students ability to understand mathematical concepts

depends on their ability to make translations among several modes of representa-

tions. Tall, Thomas, Davis, Gray, and Simpson (1999) analyzed several theories of

these. These transitions are referred to as “encapsulation” by Dubinsky (1991) and

“reification” by Sfard (1991). The proposed framework tries to reflects this idea of

encapsulation or reification not just in symbolic modes of representation but also in

geometric modes of representation that has not been studied much along with algebra

view point (Meissner, 2001b, 2001a; Meissner, Tall, et al., 2006).

Construction of a Framework to Analyze

In this research, a configuration of vector representations based on multiple rep-

resentations, cognitive development, and mathematical conceptualization, to serve as

a new unifying framework for studying student approaches and difficulties in un-

derstanding and using of vectors is proposed. Using this configuration, the study

will explore five important transitions, ‘physics to mathematics’, ‘arithmetic to al-

gebraic’, ‘analytic to synthetic’, ‘geometric to symbolic’, ‘concrete to abstract’, and

corresponding student difficulties along epistemological and ontological axes. (See

figure 2.) As Zandieh (2000) stated in her study on the framework for the concept

of a function, “The framework is not meant to explain how or why students learn as

they do, nor to predict a learning trajectory. Rather the framework is a ‘map of the

territory,’ a tool of a certain grain size that we, as teachers, researchers and curricu-

lum developers, can yield as we organize our thinking about teaching and learning

the concept...”, this new framework serves as a ‘map of the territory’. Therefore, with

this new framework, we will classify approaches and difficulties, see how much one

approach prevails over the others in student thinking and in mathematics curricula,
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and locate the sources of student difficulties.

Comparison with Other Frameworks

This new framework has some important features. First, it suggests that the
interplay between ontological aspect and epistemological aspect is critical in under-
standing and using of vectors and the key transitions between representations require
both ontological and epistemological aspects of understanding simultaneously. Sec-
ond, it can distinguish and put greater emphasis on difference between analytic geo-
metric representations of vectors and synthetic geometric representations of vectors.
It can also distinguish and put greater emphasis on difference between physical rep-
resentations of vectors and mathematical representations of vectors. Furthermore, it
distinguishes/shows/embeds/connects parallel developments of symbolic representa-
tions and geometric representations along with cognitive development theories such
as reification, or APOS theory. And finally it systematizes the transitions between
various representations of vectors.

Research Questions

This research focuses on specific issues arising when representations for vectors
are utilized in undergraduate mathematics instruction: (1) What student approaches
and difficulties can be identified in understanding and using of vectors?, and (2) How
is the students understanding and using of vectors similar to and different from vectors
as seen in the written curricula? By proposing the configuration of vector represen-
tations, related with the above issues of vector representations, we hypothesize that
students difficulties lies on ontological and epistemological jumps in the configuration
of vector representations, and students have more difficulties in geometric represen-
tations of vectors than symbolic representations at some levels. Hence, the following
will be the research questions that we will investigate in this study:(1) What is the
theory that explains the process of undergraduate students understanding and using
of vectors?, (2) Do students tend to use particular vector representations more?, (3)
Do students tend to use vector representations in particular developmental order?,
(4) Do different representations of vectors constitute different entities that may not
convey the expected vector concepts?

Questions for Discussion

(1) What are the better ways of validating this framework both qualitatively and quan-
titatively?

(2) Can we think of any philosophical considerations on the framework? (wording issues
such as ontological, epistemological, etc.)

(3) What are the views from mathematicians, mathematics educators, physicists?
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Elaine Lande 

 
Abstract: I propose the use of systemic functional linguistics (SFL) as a tool to better understand 
how mathematical ideas are conveyed through multiple semiotic resources. To demonstrate the 
tools that SFL offers, mathematical symbols and written language in college beginning algebra 
textbooks will be examined. I argue that using SFL to research how mathematical content is 
communicated to undergraduate students can expose important nuances that may otherwise go 
unnoticed. 
Key Words: Beginning Algebra, Language and Mathematics, Mathematical Symbolism, 
Systemic Functional Linguistics, Textbooks 
 
How well do college beginning algebra textbooks integrate mathematical symbolism and 
language? To answer this question I will use systemic functional linguistics (SFL) to link the 
mathematical symbolism to language. To make this connection, two topics will be focused on: 
the use of the hyphen, as both an operator for subtraction and modifier for the opposite; and the 
simplification of algebraic expressions.  These topics were chosen not only because many 
students in these courses struggle with them, but because their simplicity can reveal how SFL 
can be used as an aid for researcher to tease out subtle distinctions in a subject matter that is so 
clear in their minds that they might otherwise be overlooked. 

This research is extended from the work of Kay O’Halloran (i.e. 2000; 2005) which looks at the 
multisemiotic nature of mathematics through the systemic functional linguistic perspective. My 
research differs from much of the linguistic research in mathematics education (i.e. Herbel-
Eisenmann, 2007; Mesa & Change, 2010; Wagner & Herbal-Eisenmann, 2008) in that it looks at 
the linguistic nature of the mathematical symbols alongside the use of language with a focus on 
content. 

The choice to examine college beginning algebra textbooks comes from of the lack of research in 
teaching and learning in college development mathematics (Stigler, Givvin, Thompson, 2010) 
despite the need, and the potential role of the textbook. 

Developmental mathematics  

The number of college students needing developmental mathematics is larger than many realize. 
More than one out of five students entering college are required to take a developmental 
mathematics course and in two-year public institutions more than one out of every three students 
needs to take at least one developmental mathematics course (NCES, 2003). Developmental 
college mathematics courses include arithmetic, beginning algebra, and intermediate algebra, and 
are labeled developmental or remedial because it is expected that students would have acquired 
this knowledge in high school or earlier. Compounding this issue, the a majority of students 
(70%) taking developmental mathematics courses need more than one attempt to pass these 
courses (Attewell, et al., 2006).  
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While community colleges are open-access1 institutions which offer individuals a means of 
upward social mobility (Cohen & Brawer, 2008), developmental education plays an important 
role within the colleges by increasing access and equity for underprepared students (Perin & 
Charron, 2006). Developmental mathematics courses (or the equivalent knowledge) are required 
for future college courses in science, technology, and engineering, and for those students who 
intent to transfer—over 90% of four-year colleges have a quantitative component to their general 
education requirements to obtain bachelor’s degree (Lutzer, Rodi, Kirkman & Maxwell, 2007, 
pg. 64). 

Textbooks 

I have chosen to examine textbooks because they are a resource for both the student and teacher. 
The textbook represents part of the intended curriculum that is a source of potential learning for 
the student (Mesa, 2004) and support for the teacher (Newton & Newton, 2006). While the 
resources a part-time faculty member or even a full-time faculty member has available varies by 
individual and college, the textbook is one resource that is always available. As a result the 
textbook may even guide the content and methods of a course. 

There are over 60 textbooks available for beginning algebra at the college level published in a 
number of different formats2. The textbooks I have chosen are based on their use (by number of 
students and number of colleges) in Michigan community colleges. Within each textbook the 
sections on subtraction of numbers, negative numbers, order of operations, combining like terms, 
and simplification of expressions will be identified for analysis. 

SFL Tools 

So far, I have obtained 5 textbooks and am exploring which SFL tools will be most useful.  To 
date I have identified several SFL tool to use. 

To explore the use of the hyphen as subtraction and the opposite of, analyzing cohesion of the 
text through reference chains, conjunctions, and lexical chains will show how the text uses and 
develops the hyphen as a symbol and what language accompanies its use.  This analysis will 
make explicit and highlight the two uses of the hyphen, particularly if they are interchanged and 
how they are related.  An important aspect of how I want to explore the cohesion of the text is to 
analyze not only the mathematical symbolism and the written language, but also how they 
interact. In my initial examination of the texts, there is often a crossing of the two meanings of 
the hyphen with out explanation and there are occasions when the mathematical symbols have 
one meaning but the words express or imply the other. 

To explore the order of operations, combining like terms and simplifying expressions looking at 
rank-shift, in addition to the cohesion of the text is of interest. The notion of rank-shift is of 
particular interest for these topics because of how lexically dense and highly embedded 
mathematical symbolism can be and using written or spoken language to describe this can be 
very difficult. 
                                                 
1 Jackson Community College, Jackson, MI has recently moved away from this trend. Any student scoring below a 
certain grade level in reading, writing, or mathematics will not be admitted to the college. 
2 Only textbooks with different author/title combinations were counted. Textbooks of different editions, packaging 
(i.e. with solutions manual, online access), bindings or combined course (i.e. beginning and intermediate algebra) 
were not counted. This was brief survey was done using Amazon and four publisher websites. The publishers were 
chosen based on those books found in the Amazon search and were Pearson Higher Education, McGraw Hill Higher 
Education, Cengage Higher Education, and Kendal/Hunt Publishing. 
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Further Research 

The textbook is simply one form of mathematical discourse to be examined. Further research 
could explore using SFL to parallel the spoken and written language and mathematical 
symbolism in lectures.  It could also be used to compare how these semiotic resources are used 
by teachers and students. 

 

In presenting my preliminary findings, I will give examples of the different SFL tools I have 
used and show findings of interest.  I seek general input and interpretations of my work so far, 
what others see as the potential for using these tools, and suggestions for further steps  

Questions 

How could the SFL tools presented be useful in exploring higher level undergraduate 
mathematics? 

Are there other SFL tools that could be used to further explore the connections in mathematical 
content between the different semiotic resources? 

Does SFL seem like an appropriate tool to explore the similarities and differences between how 
instructors and undergraduate students use the different semiotic resources? How could research 
of this sort contribute to our understanding of the differences in how mathematicians and novices 
(undergraduate students) think about mathematics?  

How can these SFL tools be used to better understand how undergraduate students make sense of 
and make connections between the different semiotic resources? 
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This study seeks to contribute to research on the teaching and learning of combinatorics at the 
undergraduate level. In particular, the authors draw upon a distinction characterized in 
combinatorial texts between set-oriented and process-oriented definitions of basic counting 
principles. The aim of the study is to situate the dichotomy of set-oriented versus process-oriented 
thinking within the domain-specific combinatorial problem-solving activity of students. The authors 
interviewed post-secondary students as they solved counting problems and examined alternative 
solutions. Data was analyzed using grounded theory, and a number of preliminary themes were 
developed. The primary theme reported in this study is that students showed a strong tendency to 
utilize set-oriented thinking during the problem-solving phase that Carlson & Bloom (2005) refer to 
as checking, especially when they engaged in the evaluation of alternative solutions.  
 
Keywords: combinatorics, counting, problem-solving, grounded theory 
 

Introduction and Motivation
students tend to experience a great deal of difficulty as they encounter increasingly complex 
counting problems. These difficulties are well-documented in the mathematics education research 
literature (Batanero, Navarro-Pelayo, & Godino, 1997; English, 2005; Kavousian, 2006). Also well-
established is the relevance of combinatorics in the K-12 and undergraduate curricula (Batanero, 
Navarro-Pelayo, et al., 1997; English, 1991; NCTM, 2000), particularly because of its applications 
in probability and computer science. English (1993) emphasizes the value in studying combinatorics 
education
math
combinatorial topics in the classroom (Kenney & Hirsch, 1991; NCTM, 2000), but in spite of such 
efforts, students overwhelmingly struggle with understanding the concepts that underpin this 
growing field. Batanero, Godino and Navarro-Pelayo (1997, p. 182) make the following claim: 

ombinatorics is a field that most pupils find very difficult. Two fundamental steps for 
making the learning of this subject easier are unders
solving combinatorial problems and identifying the variables that might influence this difficulty.  

This call by Batanero, Godino et al. acknowledges the difficulties described above, and it also 
highlights a nee ways of thinking that will help researchers 
comprehend the nature of their mistakes.  

work, which examines 
two particular ways of combinatorial thinking. The aim of the study is to situate the dichotomy of 
set-oriented versus process-oriented thinking within  domain-specific combinatorial 
problem-solving activity. Combinatorics textbooks (e.g., Brualdi, 2004; Tucker, 2002) tend to 
formulate two foundational counting principles  the addition and multiplication principles  in one 
of two different ways: either they employ set-theoretic language or they describe them using 
process-oriented language. For example, as found in Tucker (p. 170, emphasis in original) the exact 
statements of each principle are: 

The addition principle: If there are r1 different objects in the first set, r2 different objects in the 
rm different objects in the mth set, and if the different sets are disjoint, then 

the number of ways to select an object from one of the m sets is mrrr ...21 . 
The multiplication principle: Suppose a procedure can be broken into m successive (ordered) 
stages, with r1 different outcomes in the first stage, r2 different outcomes in the second stage, 
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rm  different outcomes in the mth stage.  If the number of outcomes at each stage is 
independent of the choices in the previous stages and if the composite outcomes are all distinct, 
then the total procedure has mrrr ...21  different composite outcomes.   

reflects a fundamental conception of counting as the enumeration of the number of objects in a set. 
In his definition of the multiplication principle, however, counting is framed as the completion of a 
task consisting of successive stages. Other authors reflect this distinction as well; some (e.g., 
Brualdi, 2004; Rosen, 2007) include two different definitions of each principle, one in terms of sets, 
and the other in terms of processes.  

This dichotomy in the way mathematicians present these basic principles suggests that a 
relevant distinction could be manifested in student approaches to counting problems. The literature 
does not address this issue  only a handful of studies in combinatorics education (English, 1991; 
Hadar & Hadass, 1981) refer to the distinction between sets and processes at all, but no study has 
explicitly addressed this phenomenon cing this 
distinction between sets and processes has led the authors to study whether these two formulations 
indicate any differences in the ways students think about and approach counting problems.  

Design and methodology. In designing the study, based on her experiences, the first author 
suspected that students may draw more heavily on set-oriented thinking when asked to justify 
whether an answer is right or wrong. Therefore, in an attempt to narrow the scope, she purposefully 
put students in situations in which they had to evaluate alternative solutions (thus engaging in error 
detection and correction). Furthermore, for efficiency, she focused on counting problems that are 
commonly susceptible to errors  problems that have incorrect solutions that frequently seem 
correct to students. Problems were drawn from Martin (2001) and Tucker (2002).  

In the study reported here, eight students were interviewed individually in two 60-90 minute, 
videotaped sessions. The students were drawn from an upper-division mathematics courses at a 
large urban university and included mathematics majors, computer science majors, and post-
baccalaureate students. In order to accomplish the goals above, the general interview protocol was 
as follows. In Interview 1, the subjects were given five to seven counting problems and were 
instructed to solve them as they naturally would (some talked with the author during this time, 
others were silent). Then, they were asked to explain their thought process and were posed 
questions about their work. At no point in either interview were they told whether or not a given 
answer was correct. In Interview 2, students were given alternative answers to the same problems 
they had solved in Interview 1. They were asked to evaluate the new answers, explore how the new 
answer compared to their original answer, and determine which answer they thought was correct.  

The videotape of each interview was viewed repeatedly and transcribed. The methodological 
framework of grounded theory (Strauss & Corbin, 1998; Auerbach & Silverstein, 2003) was 
implemented in order to code the data. Coding consisted of the initial identification of repeated 
ideas (Auerbach & Silverstein, Ibid) and phenomena, which were then consolidated into themes 
related to the set/process distinction. 
problem solving cycle (which consists of four major stages: orienting, planning, executing, and 
checking) for analysis purposes. Coding thus took place along two dimensions: based on 
phenomena that the authors observed and categorized, and according to the problem-solving stages 
put forth by Carlson & Bloom.  

Results. Preliminary analysis of the data indicates promising themes about the occurrences of 
set- and process-oriented thinking as students solve counting problems. In some contexts, there does 
indeed seem to be some correlation between the types of counting activity students carry out as they 
draw upon certain kinds of thinking. The primary theme reported in this study is that students show 
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a strong tendency toward set-oriented thinking during the checking problem-solving phase, 
particularly when they engage in the evaluation of alternative solutions. Specifically, there is 
evidence of students categorizing an answer as incorrect by identifying a particular object that was 
counted more than once. Additionally, there are cases in which students identified two different 
answers as the same when they evaluated the process  it was not until they adopted a set-oriented 
perspective that they could explain the different numerical results.  

While not all of these findings may be explored in this proposal, an example of student work on 
one problem is discussed below. The Test Questions problem states A student must answer five out 
of ten questions on a test, including at least two of the first five questions. How many subsets of five 
questions can be answered? One solution to this problem utilizes a case breakdown, based on 
whether exactly two, three, four, or five of the first five questions are answered, yielding 
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5
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5
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5

3
5

3
5

2
5

. A common incorrect answer is
3
8

2
5

, which is 

obtained by first choosing two of the first five questions to answer, and then choosing any three of 

nd thus any remaining choice of three problems will 
still satisfy the constraint of the problem. The trouble with this strategy, however, is that some of 
the possible outcomes can be counted more than once. For example, in utilizing this strategy, 
suppose problems 1 and 2 are chosen as the first step. Then, in the next step, problems 3, 7 and 8 are 
chosen as the second step. Thus, the subset of five questions to be answered is {1, 2, 3, 7, 8}. 
However, this subset could be found in a different way using the same counting strategy, namely, 
by first choosing problems 1 and 3, and then choosing problems 2, 7, 8. Thus, the expression 

3
8

2
5

 actually counts some solutions more than once and is therefore incorrect. If the students 

solved this problem correctly initially, they were given the common incorrect answer in Interview 2. 
If they first arrived at an incorrect answer, they were asked to examine the correct solution.  

Don was a student who displayed both set and process-oriented thinking at various times. In the 
excerpt below, while working on the Test Questions problem Don decides that the incorrect 
expression is too big. In justifying this belief, he appeals to two sets of questions generated by the 

incorrect attempt that are in fact the same. That is, in order to show that 
3
8

2
5

 is incorrect, he 

identifies a particular set of questions (a1, a2, a3, a9, a10) that is counted more than once. 
Don: And  [he writes down the numbers as h
talking], and then I also have a3, a9, and a10. But then, add up all these combinations again, you 
know next time I might have a1, and a3, and then a2 and a9 and a10, and, so this is the same, 
and this [the incorrect attempt] um, p account for that. 
 

enumeration of objects  he is counting objects in a set, and he identified one object that was 
counted too many times. Set-oriented thinking was his chosen way of justifying to himself that the 
incorrect attempt was too big.  

Conclusion. The study described here suggests that students draw upon set-oriented thinking 
during particular moments in their combinatorial problem solving. These findings stand to inform 
current understandings of student thinking about counting, offering a meaningful contribution to the 
field of mathematics education. Subsequent research will include an additional round of data 
collection based on the preliminary themes identified in this study. The authors will continue to 
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examine the data and make connections among themes that emerge in the new data set, coordinating 
new and existing themes appropriately. The first author also hopes to conduct further studies that 
address similar issues, perhaps investigating ways in which combinatorial mathematicians view the 
domain specific set versus process dichotomy. 
 
Questions: 

1) Is the distinction between sets and processes, as it relates to combinatorics, a relationship 
that teachers of combinatorics have noticed? 

2) In what ways can the process-oriented thinking, as specified here, be related to other themes 
 

3) For what other areas of combinatorics and discrete mathematics might this distinction be 
relevant, and in what ways?  

4) What would a domain-specific problem-solving framework for combinatorics look like? 
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  Elizabeth J. Malloy, Virginia (Lyn) Stallings, Frances Van Dyke 

  

There is an abundance of recommendations and articles that extol the virtues of writing in the 
mathematics classroom.  The National Council of Teachers of Mathematics encouraged 
mathematical communication in its 1989 Standards for School Mathematics and again in its 
update of the Standards (2000).  The Mathematical Association of America (2004) underscored 
the need for developing communication skills in mathematics and was joined by a host of other 
countries that encouraged writing (Ntenza, 2006).  Yet, with twenty years of advocacy by 
researchers and policy-makers, very few students have experience with mathematical writing 
when they come to college (Borasi & Rose, 1989; Ntenza, 2006, Pugalee, 2004).    
 
In an earlier study, the authors of this preliminary research report modeled their writing 
assignments after a writing heuristic that used concept mapping, resources, and refinement 
(Keys, Hand, Prain, & Collins, 1999).  Our experimental groups did eight graded writing 
assignments, each composed of two parts; an initial intuitive piece and a subsequent theme.  The 
writing assignments were oriented toward concept(s) that were currently being taught in the 
course.  The intuitive piece was designed to be a structured concept mapping that would allow 
students to reflect on the vocabulary, relate the concept to prior knowledge, consult resources, 
provide examples and counter-examples, and identify areas of confusion.  Then the students 
wrote a theme that was designed to answer specific questions related to the concept explored in 
the intuitive piece.    Each theme assignment was also presented to the control group as an in-
class exploration with the discussion ultimately leading to a solution.  Thus, all students in the 

; the students in the control group did homework problems 
related to the concepts, while the students in the experimental group did fewer problems but 
wrote about the concepts. 

We found the writing groups improved more than their control group counterparts numerically 
on a post test; but the difference was not significant overall except in the case of the lower level 
mathematics class.  Furthermore, the authors found that within the groups who wrote about 
mathematical concepts:  1) females had more negative attitudes about communicating 
mathematically than males, and 2) students who were the most diligent in their writing about 
concepts had significantly more negative attitudes about their ability to do mathematics which 
seemed to correspond with the adage, The more I learn, the less I know,   
 
While the concepts were related to those taught in the courses, the construct of the questions on 
the pre- and post-tests were wholly different from the in-class conceptual writing assignments.  
We concluded:  

In providing structure for the assignments and aiding in the planning stage (Flower & 
Hayes, 1980) we hoped to encourage students to produce well-thought out, carefully 
revised pieces but it may be that they would be more invested if the assignment was of an 
argumentative nature where students are asked to defend divergent views. Motivation in 
argumentative writing has been shown to be a key factor in cognitive gains. (Voss, 
Wiley, & Sandak, 1999) It may be possible that brief conceptual pieces that allow for 
arguing a position would be more effective. (Authors, submitted for publication) 
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The authors believe that more focused writing is key to conceptual understanding and are now in 
the process of piloting particular writing assignment questions.  For example, one writing 
assignment question will be motivational in its challenge to argue a position on why students 
tend to miss particular concepts within a problem.  Another writing assignment question will be 
direct in asking students to explain what concepts are important in the context of a given 
problem.  When we have determined the type of question that elicits the most effective response, 
we will replicate our study on a larger scale using focused conceptual writing.  Our research 
questions will be the same as our previous study. 
 

 Do students in a course that requires writing do better than students in the same course 
that requires no writing?  

 Do students who write about concepts regularly improve more on a visual skills 
assessment than their counterparts who did not write about concepts on a regular basis? 

 If students write regularly about concepts in a mathematics class, does their attitude 
toward mathematics change?  

 Do students believe the writing assignments help them understand the material better? 
 

The Literature 
Although much has been written about the benefits of writing in the classroom, the results are 
mixed from the relatively few studies that compare the learning of students who write with 
students who do not write.  One such study was done by Pugalee in which one group of high 
school algebra students provided written descriptions of problem solving processes and the other 

ir thinking 
were significantly more successful in the problem solving tasks (p<.05) than students who 

(Pugalee, 2004, p. 27).  Two comparative studies from the early 
 did better on algebra skills 

exams (Guckin, 1992; Youngberg, 1990).  Porter and Masingila (2000) collected data from two 
sections of calculus. One section of students wrote about their activities and the other did not. 
Categorizing errors from in-class and final examinations to assess procedural and conceptual 
understanding, they found no significant difference between the writing and the non-writing 
groups.  Their conclusion was that the nature of the activities may be more important than the 
writing itself.  There is also very little research about attitudes toward writing in mathematics 
courses and the impact writing has on attitude toward mathematics and most of the evidence is 
anecdotal.   

 
Theoretical perspective  
A great deal of research exists on the cognitive processes involved in the act of writing. A 
classical model was developed by Flower and Hayes (1981) and confirmed by many later 
studies.(Alamargot and Chanquoy, 2001) Successful writers are seen as going through recursive 
stages of planning, then translating , and finally revising and reviewing.  The planning stage  
entails generating ideas using memory and resources, organizing the ideas and setting goals. Our 
experimental treatment, having students write about mathematical concepts that had been 
discussed, aided students in the planning stage. The assignments were selected as a possible tool 

ability to solve problems that stem from a familiar context or routine algorithm and the distinctly 
higher, more flexible, conceptual ability to solve complex, non-routine problems independently 
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(Sierpinska, 1992).  The possibility that students could demonstrate conceptual understanding by 
being able to apply what was learned to a visual skills assessment that was not directly related to 
the course should not be construed as a permanent and all-encompassing ability to solve 
problems independently.  However, if it could be demonstrated that students who write about 
mathematics show evidence of significant gains over their non-writing counterparts on such an 
instrument, then the persuasiveness of using writing as an instructional device would be more 
compelling. 

 
Research methodology 
Our previous study was small with participation by two faculty members and their students in 
two Finite Mathematics classes and two Applied Calculus classes.  We plan to conduct the next 
study with a larger group involving college-level mathematics courses from other universities in 
the area.  We will have an experimental and control group and will change the treatment to more 
focused conceptual writing.  There will be a pre-test and a post-test using a visual skills 
assessment of 10 or more items that concentrate on four areas; Cartesian Connection, Slope, 
Function Notation, and Monotonicity.   This assessment was designed to measure the comfort 
level of students entering calculus with the Cartesian Connection and Basic Principles of 
Graphing (Van Dyke & White, 2004).   
 
As an example, see Figure 1 below.  We put the point very close to the equation and used 
coordinates that do not call for burdensome arithmetic.  If the test takers understand the Cartesian 
Connection, they should be able to easily provide the correct answer to the question. 
 
 Figure 1 
Consider the following equation along with its graph. 
 
                              3x-7y=29 

!"

!

 
Choose one of the following statements. 
a) An obvious solution in integers to the equation 3x-7y=29 is_______. 
b) I see no obvious solution in integers to the equation 3x-7y=29. 
 
Our conjecture is that conceptual writing is not routinely practiced at the grade-levels where it 
can quite possibly have the most impact; middle school through high school.  If the indicators for 
using conceptual writing are positive, there will be more impetus for encouraging this pedagogy 
early and regularly.  This, in turn, may help with the phenomenon that we observed in our 
students  expressed belief that writing in math was not appropriate.   Both students and teachers 
stand to gain if writing becomes a regular part of the mathematics curriculum. 

!"#$"%&
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An Exploration of the Transition to Graduate School in Mathematics 
 

Sarah L. Marsh 
University of Oklahoma 

 
In recent years, researchers have given much attention to the new mathematics graduate student 
as a mathematics instructor. In contrast, this study explores the academic side of the transition to 
graduate school in mathematics—the struggles students face, the expectations they must meet, 
and the strategies they use to deal with this new chapter in their academic experience. This talk 
will look at preliminary results and analysis from a qualitative study designed to explore these 
aspects of the transition to graduate school in mathematics from a post-positivist perspective. In 
order to explore the transition as fully as possible, interview data from a varied sample of 
graduate students and faculty members at one university are being incorporated to gain multiple 
perspectives on the transition experience. Potential implications for graduate recruitment, 
retention, and program protocols in mathematics will be discussed. 
 
Keywords:  graduate students, academic transition, semi-structured interview, case study 
 
 
Research Problem 

Students entering graduate programs in mathematics often experience an “abrupt change 
of status” during this transition (Bozeman & Hughes, 1999, p. 347). While their undergraduate 
records may be exemplary, these students often have trouble adjusting to the rigorous new 
environment of graduate school in mathematics. Setbacks, such as insufficient prerequisite 
knowledge or an inability to discern or meet a professor’s expectations, may generate diminished 
self-esteem or even a desire to drop out of the program. 

These issues impact departments as well: Students’ struggles with the transition to 
graduate mathematics may negatively affect program recruitment as admissions committees are 
less likely to admit applicants with similar backgrounds in the future. Retention is also impacted 
across the discipline as promising students may incorrectly assume they lack mathematical 
ability and leave the field forever. Finally, these struggles can affect the representation of women 
and minorities in such programs, as these groups are less likely to find the support structures they 
need to survive graduate school (Bozeman & Hughes, 1999).  

Literature. Several researchers have explored issues related to this transition. For 
instance, Duffin and Simpson’s (2006) interviews with Ph.D. students explored the transition 
from undergraduate to graduate work in mathematics in the United Kingdom’s educational 
system. The authors concluded that both undergraduate and graduate education could be 
modified to smooth this transition for different types of learners. Marilyn Carlson (1999) 
explored the problem-solving behaviors and mathematical beliefs of mathematics graduate 
students who were considered “successful” in their programs. Persistence, high levels of 
confidence, and the presence of a mentor during key periods of mathematical development (often 
as early as high school) all played a role in these students’ “success.” While much of the work in 
these studies was done with students already securely in a graduate program, they may still have 
implications for the transition to graduate school: Encouraging new graduate students to develop 
the good habits of thriving students in their program may help smooth the transition into 
graduate school in mathematics. 
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In 2002, Herzig qualitatively examined persistence specific to graduate school in 
mathematics by conducting a case study of one mathematics department. She interviewed both 
current students in the doctoral program and some who had left the program, as well as faculty 
members in this department, to investigate factors influencing doctoral student persistence and 
attrition. Herzig found that legitimate peripheral participation both in departmental life and in the 
field itself encouraged persistence in a doctoral mathematics program.  

Useful work has also been done in recent years regarding the transition from secondary to 
tertiary mathematics as colleges and universities have tried to narrow the gap among various 
groups of incoming college freshmen. For instance, Selden (2005) discussed this transition to 
collegiate mathematics, noting that new college students must often reconceptualize ideas from 
previous mathematical training (such as the idea of a tangent line) in order to incorporate them 
into the new, demanding educational structure they have encountered. As another example, 
Kajander and Lovric (2005) detail McMaster University’s efforts to address this transition 
through surveys of students’ mathematical backgrounds, course redesign, and provision of a 
departmental review manual to enable students’ voluntary preparation for their mathematics 
courses. They noted that students’ motivation, ability to delve beyond surface learning, and 
secondary school preparation in mathematics were all key to the transition process. Transferring 
the ideas from these two studies to the transition to graduate school in mathematics identifies 
several relevant issues in this transition process: undergraduate preparation, ability to both 
reconceptualize prior knowledge and dig deeply into new mathematical material, and a “bridge” 
review process prior to graduate work. 

Research questions. Building on the aforementioned work, I seek to establish a clear 
picture of what happens during the transition to graduate school in mathematics in the United 
States so that further research can be done on the impact of various aspects of or changes to this 
process. Accordingly, the purpose of this study is to explore the academic transition to graduate 
school in mathematics—the struggles students face, the expectations they must meet, and the 
strategies they use to deal with this new chapter in their academic experience. In particular, I am 
seeking answers to the following exploratory research questions: What happens during the 
academic transition from undergraduate student to graduate student in mathematics? How do 
professors’ expectations of new graduate students’ mathematical knowledge affect students’ 
success? How do new graduate students in mathematics adjust to the rigors of graduate school 
and/or compensate for prior knowledge deficiencies? How do attitudes, beliefs, and relationships 
play a role in the success of new graduate students in mathematics? I hope that this research will 
provide a more accurate picture of graduate student preparation for and experiences in graduate 
school in mathematics; then, we can work to modify resources for prospective and current 
graduate students accordingly to help make the transition as smooth as possible. 
Research Design 

I have chosen to conduct an exploratory single-case study to delve into the in-depth 
meanings of one mathematics department’s experiences with the transition to teaching. To fully 
explore these experiences, I am following Herzig (2002) and conducting interviews with both 
graduate students and faculty members in this department. In keeping with a post-positivist 
stance, I am striving for a rigorous, scientific approach to my research (Creswell, 2007) while 
allowing a place for intuition (Crotty, 1998). Furthermore, the “truth” derived from participants’ 
experiences will not be absolute, but my data can still show how participants describe and 
perceive aspects of their transition experiences. These data can also help construct a valuable 
portrait of this experience to aid admissions, advising, graduate student life, and other aspects of 
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mathematics departments’ and universities’ preparation for and support of new graduate students 
in mathematics. 

Both graduate student and faculty semi-structured interviews are centered around the 
research questions given above, with probing questions included as needed. The student 
interviews are allowing me to ask specific questions about my participants’ experiences 
surrounding the transition to graduate school, while the faculty interviews will provide a new 
perspective on the same aspects of the transition experience. Graduate student interviewees are 
being selected from among those who had taken core courses in the Ph.D. track at this university 
and who were interested in participating in the study (as indicated in a brief online survey). 
Based on these survey responses, maximal variation sampling (Creswell, 2007) ensures that 
selected participants vary along characteristics such as gender, year of program entry, year core 
courses were taken, and degree sought to avoid highlighting issues specific to any particular 
subgroup. Faculty interviewees will be selected from those who had recently held positions 
related to graduate students—such as Chair, Associate Chair, Graduate Director, or core course 
instructor—and who are willing to participate. As interviews and transcription are completed, I 
will use an open coding procedure (Strauss & Corbin, 1990) to build a structure to this transition 
that is grounded in participants’ views (Creswell, 2007). Preliminary codes will be merged to 
identify themes in the data; this analytic inductive process (LeCompte & Preissle, 1993) should 
help me discover areas of this academic transition that are impacting students’ success, as well as 
recruitment, retention, and other areas. 
Results and Implications 

As of the submission of this proposal, data collection is still ongoing, so any statement of 
results would be premature. However, based on the literature, preliminary data collection, and 
personal experience, I expect to identify themes in the transition experience that have 
implications for recruitment, retention, and other graduate program protocols and policies. Also, 
the generation of a clear portrait of the transition experience can help inform future research 
questions and methods in this area. Preliminary results and implications based on student 
interview data will be complete in time for the conference. I hope to generate a conversation with 
other researchers interested in this topic to help me refine the themes and conclusions I am 
drawing from my data. 
Questions 

During the presentation of this preliminary research report, the following questions will 
be posed to audience members to generate discussion useful to the continuation of analysis and 
to other future work in this area: 
 

• What other data might be useful to help complete a picture of this transition experience in 
this department? 

• What other implications might the results hold for recruitment, retention, departmental 
policy, or other aspects of the graduate student experience? 

• What other pieces of literature, frameworks, or research contacts might be relevant to or 
helpful for my work?  

• Based on your experience, what things should I have considered (or reconsidered) in 
conducting this study?  That is, what general feedback can you give for current or future 
work? 
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John C. Mayer, Rachel D. Cochran*, Jason S. Fulmore*, Thomas O. Ingram*, Laura R. Stansell, 
and William O. Bond 

University of Alabama at Birmingham (UAB) 
*Center for Educational Accountability (CEA) 

One direction taken by course reform over the past few years has been the development of 
sophisticated computer-assisted instruction.  This approach has been applied to large-enrollment 
service courses in mathematics, including algebra.   Elementary algebra is typically taken by 
under-graduate students who do not place into a credit-bearing course.   Traditionally, the goal of 
such a developmental algebra course has been to enhance studen for example, 
dealing procedurally with rational numbers and expressions. Higher-order thinking may be 
largely absent.  Alternately, one might focus on developing quantitative reasoning and 
communications skills, rather than, or in addition to, training to acquire a set of specific algebraic 
skills (Wiggins, 1989; Blais, 1988). Our position is that incorporating an inquiry-based 
component, either together with, or in place of, a didactic component, into a computer-assisted 
instructional environment may enhance student learning.  Two previous studies in the literature 
bear this out (Mayer, 2009, 2010). 

Fundamental Question.   We compare three treatments in a quasi-experimental design: (1) two 
weekly inquiry-based class meetings, (2) two weekly lecture meetings, and (3) one of each 
meeting weekly.  The computer-assisted component is the same for all treatments.  Our 
hypothesis is that, of the three treatments, the one affording the most inquiry-based involvement 
to the students will differentially benefit the students in terms of mathematical content 
knowledge, reasoning and problem-solving ability, and communications. 

Prior Research.  Prior to the two most recent studies (Mayer, 2009, 2010), the methodology of 
simultaneously comparing different pedagogies within one semester, had few direct comparisons 
in the literature (Doorn, 2007).  Some studies have compared different pedagogies over a longer 
time frame (Gautreau, 1997; Hoellwarth, 2005).  The results of the quasi-experimental studies in 
(Mayer, 2009) of a finite mathematic course, and in (Mayer, 2010) of an elementary algebra 
course showed in both cases that students in the inquiry-based treatment did significantly better 
(p<0.05) comparing pre-test and post-test performance in the areas of problem identification, 
problem-solving, and explanation.  Moreover, students, regardless of treatment, performed 
similarly (no statistically significant differences) when compared on the basis of course test 
scores.  Outcomes of the two studies differed in gain in accuracy, pre- to post-test: in the finite 
mathematics study, there was no significant difference between treatments; in the elementary 
algebra study there was a significant difference between treatments in favor of the inquiry-based 
treatment.  A limitation of both studies by Mayer was that accuracy was assessed on a small set 
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of open-ended problems.  The previous studies also did not test a blend of inquiry-based and 
traditional class meetings in a single treatment (Marrongelle, 2008). 

Research Methodology.  Our methodology is quasi-experimental in that it seeks to remove from 
consideration as many confounding factors as possible, and to assign treatment on as random a 
basis as possible, constrained only by students being able to choose the time slot in which they 
take the course.  All students involved in the courses have identical computer-assisted instruction 
provided in a mathematics learning laboratory.  86% of the grade in the course is determined by 
evaluation in the computer-assisted context (online homework and supervised online quizzes and 
tests).  The remaining 14% of the grade is determined by one of three pedagogical treatments, 
described below. Students registered for one of three time periods in the Fall 2010 semester 
schedule, a 9:00 AM, 10:00 AM or noon time slot, for three days a week (MWF), for their 50 
minute class meetings and 50 minute required lab meeting.  Students in each time slot were 
randomly assigned to one of the three treatments for the semester. Three instructors agreed to 
participate in the experiment.  Each instructor teaches in three time slots. In one slot the 
instructor administers the twice-weekly inquiry-based treatment, in another time slot, the twice 
weekly lecture treatment, and in a third time slot, the blended treatment.  The three instructors 
consist of a full professor, a regular full-time instructor, and a graduate student with prior 
teaching experience.  All instructors had previous experience in both didactic and inquiry-based 
teaching, and in computer-assisted instruction. A graduate teaching assistant works with each 
instructor in the inquiry-based meetings, and in evaluating written student work product from 
such meetings.  Each instructor also meets with each class in the mathematics computer lab.  The 
computer lab meeting for all treatments occurs on Wednesday. 

The three pedagogies to be compared are: (1) two sessions weekly of  inquiry-based 
group work (random, weekly changing, groups of four) without prior instruction, on problems 
intended to motivate the topics to be covered in computer-assisted instruction; (2) two sessions 
weekly of traditional summary lecture with teacher-presented examples on the topics to be 
covered in computer-assisted instruction, and (3) a blend of treatments (1) and (2), with one 
weekly meeting traditional lecture, and one weekly meeting inquiry-based group work.  In the 
inquiry-based treatments, each student turns in each class meeting a written report on his/her 
investigation and solution of the problem(s) posed in that class period.  This report is evaluated 
based upon the same rubric as the open-ended items on the pre/post-test.  Students are aware of 
the rubric and receive written feedback consistent with the rubric.  In the lecture treatment, the 
instructor gives a traditional lecture on the upcoming material.  All instructors operate from the 
same outline of topics for each lecture. The 14% (140 of 1000 points) of the final grade 
determined by the class meetings differs among the three treatments as follows: (1) 5 points are 
earned for each of the two weekly reports on the group work; (2) 5 points are earned for 
attendance at each class meeting; (3) 5 points are earned for the one weekly report on the group 
work meeting, and 5 points are earned for attendance at the lecture meeting. 
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The research is underway in Fall, 2010.  Data to be gathered includes (1) course grades 
and test scores, (2) pre-test and post-test of content knowledge based upon a test which 
incorporates three open-ended problems, evaluated on rubric dimensions of conceptual 
understanding, evidence of problem-solving, and adequacy of explanation (3) pre-test and post-
test of content knowledge based upon a test consisting of 25 objective questions, (3) focus 
groups selected from each of the nine class sections, (4) student course evaluations using the 
online IDEA system (IDEA, 2010), and (5) RTOP observations of the instructors in each of the 
nine class sections (RTOP, 2010; Sawada, 2002).  The above data will be gathered and analyzed 
and will form the basis of the proposed preliminary report.  Data and preliminary analysis will be 
available by December 15, 2010 should this be needed by the committee reviewing proposals. 

A limitation of the studies by Mayer (2009, 2010) is that the pre/post-test consisted of 
only three or four open-ended problems which made a reliable evaluation of accuracy gains, if 
any, problematic.  The pre/post-test in the study described herein consists of two parts: (A) three 
open-ended problems, evaluated by a rubric as described above, and (B) 25 objective questions 
which have been validated for testing algebraic content knowledge in previous studies.  A battery 
of the previously validated (for content) objective questions was piloted in Summer 2010 on 
students in the same course, and item analysis was used to select the items for the pre/post-test in 
this study.  As a result of the more careful test design, we expect that differential gains in 
accuracy between treatments, if present, will be more detectable than in the two earlier studies 
cited. 

Questions that we pose to ourselves and the audience are as follows: 
 Will all treatments result in similar course grades and course test scores? 
 Will all treatments result in similar gains in accuracy on the objective pre/post-test? 
 Will the inquiry-based and blended treatments result in differentially improved 

conceptual understanding, problem-solving ability, and mathematics communications 
skills, as assessed by the open-ended pre/post-test? 

 Do students perceive any value in the inquiry-based components of the treatment? 
We expect this research to inform our teaching of elementary algebra.  Moreover, we expect to 
extend this study in subsequent years to credit courses such as intermediate algebra, college 
algebra, and pre-calculus (Oehtrman, 2008). 
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Do Leron’s structured proofs improve proof comprehension? 

 

  

In undergraduate mathematics courses, proofs are regularly employed to convey 

mathematics to students. However, research has shown that students find proofs to be 

difficult to comprehend. Some mathematicians and mathematics educators attribute this 

confusion to the formal and linear style in which proofs are generally written. To address 

this difficulty, Leron (1983) suggested an alternative format for presenting proofs, named 

structured proofs, designed to enable students to perceive the main ideas of the proof 

without getting lost in its logical details. However, we are not aware of any empirical 

evidence that such format actually helps students comprehend proofs. In this presentation 

we report preliminary results of a study that employs a recent model of proof 

comprehension to assess the extent to which Leron’s format help students comprehend 

proofs. 

 

1. Introduction 

 In advanced mathematics courses, proofs are a primary way that teachers and 

textbooks convey mathematics to students. However, researchers note that students find 

proofs to be confusing or pointless (e.g., Harel, 1998; Porteous, 1986; Rowland, 2001) 

and undergraduates cannot distinguish a valid proof from an invalid argument (Selden & 

Selden, 2003; Weber, 2009). Some mathematicians and mathematics educators attribute 

students’ difficulties in understanding proofs to the formal and linear style in which 

proofs are written (e.g., Thurston, 1994; Rowland, 2001). 

 To address this difficulty, several mathematics educators have suggested 

alternative formats for presenting proofs, such as using generic proofs (e.g., Rowland, 

2001), e-proofs (Alcock, 2009), explanatory proofs emphasizing informal argumentation 

(e.g., Hanna, 1990; Hersh, 1993), and structured proofs (Leron, 1983). These suggestions 

have an obvious appeal; if changing the format of a proof can increase students’ 

understanding of its content, then these alternative proof formats provide a practical way 

to improve the effectiveness of lectures and textbooks in advanced mathematics courses. 

However, we are not aware of any empirical evidence that suggests any of the proposed 

formats above actually increase students’ understandings of the proofs they read or 

observe. In fact, at least one study suggests the opposite. When Roy, Alcock, and Inglis 

(2010) attempted to see if Alcock’s (2009) e-proofs improve students’ comprehension of 

proofs in a pilot study, they found that students who studied an e-proof surprisingly 

performed significantly worse on a post-test than students who studied the same proof 

from a lecture or textbook. 

 The goal of this study is to examine the extent to which Leron’s (1983) structured 

proofs will improve student understanding. Leron (1983) suggests that linear proofs limit 

students’ understanding because this format masks the overarching structure of the proof 

and the methods and variables introduced in a linear proof appear to come out of thin air. 

He suggests instead organizing a proof into levels with Level 1 providing a summary of 

the main ideas of the proof (without going into detail at his level into how they will be 

implemented), Level 2 giving a summary of how each of the main ideas is implemented, 

and successively lower levels filling in more of the details of the proof. In some cases, an 
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“elevator” between levels provides an informal rationale for why the proof is proceeding 

the way that it is. This format enables the reader to perceive the main ideas of the proof 

without getting lost in its logical details, but still allows the reader to read about or verify 

these logical details if he or she desires to do so. 

 Although several mathematics education researchers cite Leron’s structured 

proofs as a possible way to improve proof presentation (e.g., Alibert & Thomas, 1991; 

Hersh, 1993; Movshovits-Hadar, 1988), we are not aware of any empirical evidence that 

such proofs will help students. Indeed, in an exploratory study, Cairns and Gow (2003) 

present theoretical difficulties that students may encounter with a structure proof and 

illustrate how some students experience these difficulties based on interviews with three 

students. They concluded a structured proof “is not a fortiori the best presentation for 

proofs” (p. 186). 

 

2. Theoretical perspective 

 Our model and means of assessing proof comprehension is based on Mejia-

Ramos et al’s (2010) presentation at last year’s RUME conference. This model posits that 

students’ proof comprehension can be measured along six dimensions: (a) understanding 

of terms and statements in the proof, (b) ability to cite justifications for statements in the 

proof, (c) the logical structure of the proof, (d) the high-level ideas of the proof, (e) the 

method used in the proof, and (f) how the proof relates to examples or informal images. 

Our assessment of students’ proof comprehension was based on this model. 

 

3. Methods 

 For this study, we recruited two groups of six students. Each participant met 

individually with one of the co-authors of this paper. The participants were asked to study 

a proof and were told they would be asked a series of questions about the proof. After 

they studied the proof to their satisfaction, they returned the proof to the interviewer. The 

participants were asked on a scale of 1 through 5 how well they understood the proof, 

with a 5 indicating they understood the proof completely. They were then asked an open-

ended question about the proof (e.g., “How was the fact that f’(x)>0 used in the proof?”) 

followed by a multiple-choice question of the same item. After they answered all the 

questions, the proof was returned and they were permitted to change their answers. This 

process was repeated with a second proof. The assessment questions were based on the 

model of Mejia-Ramos et al (2010). 

 Participants in the first group (Group A) first studied a linear presentation of a 

proof of the assertion “The only solution to the equation x
3
 + 5x = x

2
 + sin x” (from here 

on Proof 1). They then studied a structured proof of the statement “There are infinitely 

many primes of the form 4k+3”. Participants in the second group (Group B) studied a 

structured version of Proof 1 and a linear version of Proof 2. The structured and linear 

versions of Proof 2 were taken with minor modifications from Leron (1983). If 

participants read a structured proof, they were also asked about their opinions of the 

proof, what (if anything) they found positive about it, and what (if anything) they found 

negative about it. 

 Our analysis focuses on: (a) how well participants felt they understood the proofs 

they read, (b) participants’ performance on the open-ended questions that they answered 
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immediately after reading the proof (without having the proof to refer to), and (c) 

participants’ comments on the benefits and drawbacks of structured proofs. 

 

4. Results 

 For Proof 1, Group A (who received the linear version of the proof) appeared to 

perform better than Group B (who received the structured version) on the assessment 

items. On average, they answered 5 of the 8 assessment questions correctly (63%) while 

the students in Group B answered only 2.33 questions correctly (29%). Group A and 

Group B reported nearly equal levels of understanding Proof 1 (4.17 vs. 4.00).  

 For Proof 2, Group A (who received the structured version of this proof) 

performed slightly better than Group B (who received the linear version). They answered 

2.5 of the 7 assessment questions correctly (36%) while Group B answered 2 questions 

correctly (29%). Group B reported a higher level of understanding than Group A for 

Proof 2 (3.83 vs. 2.33). 

 Combining across proofs, participants studying the linear proofs reported a mean 

understanding of 4.00 and answered an average of 7 of the 15 assessment questions 

correctly (47%), while students studying structured proofs reported a mean understanding 

of 3.13 and answered 4.83 out of 15 assessment questions correctly (32%). 

 Among the 12 participants, two reacted positively to the structured proof format, 

citing that it made explicit the goals of proof and the relationships between its different 

parts. The remaining 10 participants cited drawbacks with the approach, with some 

claiming they found it generally confusing. 

 

5. Discussion 

 In summary, this study did not find evidence that structured proofs improved 

students’ comprehension of proofs. When the participants read a structured proof as 

opposed to a linear proof, they reported less understanding and performed worse on the 

assessment questions. Only two participants cited more benefits of structured proofs than 

drawbacks, with the remaining participants citing that the difficulties in following the 

structured proofs hindered their understanding. 

 Of course, it is imperative to note our study does not demonstrate that structured 

proofs are ineffective as the design of our study could be criticized on several grounds. 

Most importantly, our sample size was limited and we cannot infer that the results of our 

study would not change if we expanded our sample. We also note that there are threats to 

the construct validity of our study. In mathematics classes, students are not given a short 

period of time to read a proof and then are given a test on it; they are often given a proof 

and expected to study it for a longer time over several days. Finally students’ difficulty 

may have been due to the novelty of the structured format. Perhaps giving students more 

exposure to structured proofs, or instruction on reading them, may have improved their 

performance. 

 On the other hand, Roy, Alcock, and Inglis (2010) illustrate how a theoretically 

motivated alternative proof presentation format can, in some cases, decrease students’ 

understanding of the proof. We note that our results about students’ difficulties with 

structured proofs are consistent with the findings of Cairns and Gow (2003). Finally, we 

also note there are no empirical studies that offer any evidence that structured proofs do 

improve understanding. 
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 We are not arguing such studies cannot be done, but we believe they would take 

careful thought to design, and would likely include instruction for students on how a 

structured proof should be read. We contend such studies are necessary if structured 

proofs are to continue to be proposed as a means of increasing students’ proof 

comprehension, both because claims of this type in mathematics education should require 

empirical support and because a study of this type can offer practical pedagogical 

direction for teachers who wish to incorporate pedagogical proofs in their own 

classrooms. 

 

6. Questions for audience 

Under what conditions might we see the benefits of structured proofs? What type of 

evidence would be required to convince the community that structured proofs (or, more 

generally, any pedagogical suggestion) might not be effective? 
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Abstract 

 In this study we compare teaching approaches of 14 community college mathematics 
instructors with their classroom questioning and their classroom non-mathematical discursive 
interactions. The teaching approaches were drawn from interviews and the application of an 
analytical framework derived from the higher education literature. The questioning and the non-
mathematical discursive interactions were characterized using transcripts of classroom 
observations and the application of an analytical framework derived from the mathematics 
education and higher education literature. From the interviews, we found a wide range of 
espoused teaching approaches, although the majority of instructors favored instructor-centered 
approaches. From the observations, we found that these instructors ask a large amount of 
questions, a sizable proportion of which generate opportunities for students to engage with 
authentic mathematical knowledge. Also, we found that these espoused teaching approaches are 
related to observed non-mathematical discursive interactions.  
 
Keywords: classroom research, community college, mathematics teaching   
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Teaching Approaches of Community College Mathematics Faculty:  
Do Teaching Conceptions and Approaches Relate to Classroom Practices? 

Preliminary Research Report 
This study explores the consistence between community colleges mathematics instructors’ 
descriptions about their teaching and a subset of their classroom practices. With this paper we 
seek to create a bridge between the literature on teaching that exists in higher education and in 
mathematics education. We believe that it is important to understand how the same 
phenomenon—instruction—is conceived in each field and seek commonalities and ways to bring 
these traditions together. 
Our investigation started with an analysis of prominent frameworks that have been used in higher 
education to characterize instruction. In this field the research has focused on “teaching 
conceptions” and “teaching approaches” (Prosser & Trigwell, 1999; Kember & Kwan, 2000) 
suggesting that approaches that have a student focus can be more effective than ‘traditional’ 
approaches that tend to be instructor- or content-centered (Kember & Gow, 1994; Kember, 1997; 
Prosser & Trigwell, 1999; Åkerlind, 2003). Most of the studies about teaching approaches are 
based on analysis of students’ perceptions about their learning processes or considering 
instructors’ orientations to teach, obtained mainly through interviews and inventories (Meyer & 
Eley, 2006; Ashwin, 2009). It is less common to find literature that illustrates teaching 
approaches based on actual interaction between instructors and students (Ashwin, 2009), and far 
less common to find studies that look at specific disciplines, such as mathematics.  
The literature on teaching in mathematics education is, in contrast more extensive, and is mostly 
based on in-depth analysis of classroom observations; interviews and inventories are usually 
subsidiaries to what happens in the classroom. In mathematics education, an important focus has 
been on the quality of the interactions between teacher, the students, and the mathematical 
content (Cohen, Raudenbush, & Ball, 2003). Earlier studies of what instructors say in interviews 
and what they actually do, framed under the agendas of reform promoted by the National 
Council of Teachers of Mathematics [NCTM] (1989, 2000), highlighted discrepancies that 
pointed at instructors’ difficulties in implementing reform (Cohen, 1990). When looking at 
instruction in undergraduate mathematics, there are very few of these accounts; the most 
prominent come from studies with teaching assistants (Speer, 2005; Speer, Gutman, & Murphy, 
2005), or with mathematicians (Nardi, Jaworksi, & Hegedus, 2005; Speer & Wagner, 2009; 
Stephan & Rasmussen, 2002).  
We sought to combine these two traditions in an analysis of teaching practices of a group of 14 
community colleges mathematics instructors. We sought to investigate, using the frameworks 
from higher education and from mathematics education, what their teaching approaches were by 
looking at both, their descriptions of teaching stated during interviews, and their enactments of 
those approaches in their classrooms. In looking at the work in the classroom, we focused on the 
mathematical questions that were posed and on other discursive interactions between instructors 
and the students that were not necessarily mathematical in nature. We wanted to determine the 
extent to which there was consistency between what instructors declared to be their teaching 
approaches and what we observed in the classroom. Because of the extensive body of literature 
in mathematics education, we anticipated discrepancies between the two analyses. 
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Methods 

The data come from a larger study that seeks to characterize community college mathematics 
instruction. We used interviews and class observations of 14 mathematics instructors (six full-
time) at a large suburban community college in the Midwest. Although the observations come 
from a wide range of courses, half of them were trigonometry courses. The instructors 
volunteered to participate in the study. The instructors were interviewed prior to the observations 
to obtain their views about teaching and learning, awareness of context, and institutional support 
for instruction. The instructors were observed at least three times during the term in which they 
were teaching. The classes were audio recorded and extensive field notes were collected. 
Pseudonyms were assigned to each instructor.  
To analyze the interviews and non-mathematical discursive interactions of the classroom 
observations, we used a framework to characterize teaching approaches derived from higher 
education. The classroom observations were further analyzed using a framework developed for 
the study that characterizes the questions posed in the classroom. Reliability in using these 
frameworks to code the data ranged from 69% to 93%.  
Teaching approaches framework: We created a six-category framework combining three 
different perspectives on teaching approaches. For purposes of the comparisons studied in this 
report, we mainly focus on Grubb and colleagues’ (1999) three approaches to teaching at 
community colleges, “Traditional,” “Meaning Making,” and “Student Support.” The 
“Traditional” approach would be the most common in community colleges, and among its more 
frequent actions are controlling time, making reference to higher math courses, and covering the 
material. The “meaning making” approach can be associated to many names in the literature, 
such as “progressive,” “constructivist,” or “student-centered” (p. 31). This approach emphasizes 
that students are able to construct meaning for themselves through strategies such as seat- and 
group-work or connecting the content with real context. The “student support” approach seeks to 
empower students and to increase their autonomy and self-confidence. In this approach, 
mastering the subject content is secondary.  
Questioning framework: This framework emerged as a synthesis of frameworks that analyze 
interaction in mathematics classrooms (Nathan & Kim, 2009; Truxaw & DeFranco, 2008; Wells, 
1993; Wells & Arauz 2006). With this framework we sought to characterize the opportunities 
that students have to express their thinking about doing mathematics and to contribute 
mathematics that is new to the class (Mesa & Lande, 2010) and we focused on questioning 
strategies. In particular we describe two types of questions, routine and novel. To answer a 
routine question (e.g., “what is the common denominator here”), students are expected to know 
the answer to or know how to procedurally figure out the answer. Novel questions (e.g., “under 
what conditions would the orbit [of the satellite] have been hyperbolic?”) require the students to 
give an opinion or to connect different pieces of knowledge in order to provide an answer that is 
not already known. Novel questions represent opportunities for the students to engage in 
mathematical work and to obtain meaning of what they are learning.  
We sought then to contrast instructors’ declared approaches with their interaction in the 
classroom, in terms of the types of questions they asked and their non-mathematical discursive 
interactions. We anticipated seeing instructors distributed along the spectrum of teaching 
approaches, and expected to see an association between the types of questions and the declared 
teaching approaches, with teachers espousing a ‘meaning-making’ or a ‘student support’ focus 
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asking more novel questions, and with teachers espousing a more traditional approach asking 
more routine questions. 
Results 

Table 1 shows the comparison between the coding approaches and the percentage of instructor 
and student questions. The three first columns after the instructors’ names represent the coding 
approaches drawn from the interviews. We considered an instructor holding one of the 
approaches when more than 10 percent of the codes fell in that category. As a result, we found 
four groups of instructors. In the first group are four instructors (Evan, Ernest, Emmet, and 
Elijah) that only hold a Traditional approach to teaching. In addition to a traditional approach, 
three instructors (Elliot, Edwina, and Elrod) exhibit a Meaning Making approach. A third group 
(Elizabeth, Edward, Earl, and Emily) holds all the three approaches. Finally, three instructors 
(Elena, Erin, and Erik) exhibit only Meaning Making and Student Support approaches, excluding 
a Traditional approach to teaching. Table 1 is organized from the more instructor-centered to the 
more student-centered instructors. The next three columns present the same three approaches but 
reflected in non-mathematical discursive interactions. So far, eight instructors have been coded. 
The shaded circles represent fifths of the relative proportion of the number of non-mathematical 
discursive interactions classified into one approach out of the total of discursive interactions 
coded for each instructor. For instance, in the case of Elrod, he exhibits 53% (40 to 59% range) 
of Traditional strategies, 29% of Meaning Making (20 to 39% range), and 18% of Student 
Support (0 to 19% range). These preliminary results show certain association between the 
declared approaches and the non-mathematical discursive interactions observed in the 
classrooms. Traditional instructors tended to use more traditional discursive interactions, such as 
following the book and covering the material, whereas instructors at the bottom of Table 1 used 
more Meaning Making and Student Support discursive interactions, such as making connection 
to real context and praising students.  
Regarding classroom questioning, first, it is important to notice the large number of questions 
that instructors asked in these classrooms: on average instructors asked 90 questions per period 
(85 min long), with four instructors asking less than half of those per class. Other data (not 
included in Table 1) reveal that students ask 17 questions on average, which is consistent with a 
Traditional approach, in which the instructor holds the authority for managing interaction. From 
Table 1 we see a less clear pattern regarding the proportion of novel questions and instructors’ 
declared approaches, although it appears that the Student Support group of instructors ask 
relatively fewer novel questions than instructors in the other groups.  
In this preliminary analysis we found alignment between instructors’ approaches to teaching 
derived from the interviews and their non-mathematical classroom discursive interactions, which 
was anticipated by the higher education literature. However, when looking at the proportions of 
novel questions asked, we do not see an association between the number of novel questions and 
the espoused teaching approaches. Our math education frameworks would have predicted larger 
proportions in the meaning making and student support categories. Our preliminary results hint 
at gaps in both traditions in analyzing instruction. For higher education researchers, instructors’ 
espoused concepts and approaches to teaching are related to what instructors do in classroom, 
but they do not necessarily relate to mathematics content and mathematics learning 
opportunities. On the other hand, for mathematics researches is important to notice that although 
instructors’ espoused theories might not be not related to mathematics content, they have an 
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effect in the classroom. To understand the extent to which these non-mathematical discursive 
interactions of instruction have an effect in college math education we require further research.  

Table 1: Comparison between teaching approaches and classroom practices a 

 
 

Notes: a. Because some of the instructors were observed in more than three times, the percentages of 
questions were obtained from the average of the amount of questions that instructors asked during each observed 
period. b. These categories represent the percentage by fifths of non-mathematical discursive interactions in the 
observed classrooms. c. A class period corresponds to 85 minutes. d. These percentages represent the number of 
novel questions out of routine and novel questions asked by each instructor. n.a.: not available for this preliminary 
report. 

 

Instructor Traditional
Meaning 
Making

Student 
Support

Traditional 
classroomb

Meaning 
Making 

classroomb

Student 
Support 

classroomb

Total 
Instructor 
Questions 
per class 

periodc 

Instructor 
Novel 

Questionsd

Evan ! n.a. n.a. n.a. 46 26%

Ernest ! n.a. n.a. n.a. 99 27%

Emmet ! 44 33%

Elijah ! 90 12%

Elliot ! ! n.a. n.a. n.a. 89 16%

Edwina ! ! n.a. n.a. n.a. 17 12%

Elrod ! ! 109 43%

Elizabeth ! ! ! n.a. n.a. n.a. 73 35%

Edward ! ! ! n.a. n.a. n.a. 85 28%

Earl ! ! ! 123 21%

Emily ! ! ! 92 14%

Elena ! ! 176 16%

Erin ! ! 148 18%

Erik ! ! 163 3%

0-19% 20-39% 40-59% 60-79% 80-100%
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Representations of teaching can be seen not only as cases of practice but also as probes on the 
rationality that practitioners use as they teach (Herbst & Chazan, 2003). Herbst and Chazan have 
developed a new kind of representation of teaching—animations of classroom scenarios, 
deliberately designed to probe some of the unspoken norms of classroom practice. Herbst and 
Miyakawa (2008) provided some details of how those animations are produced to be prototypes 
of models of instructional situations: Instructional situations are identified and modeled by 
hypothesizing the norms or tacit responsibilities of classroom participants in a situation, then 
scenarios are created that fulfill some of those norms but breach others; finally those scenarios 
are prototyped in a cartoon animation. Herbst, Nachlieli, and Chazan (in press) have shown how 
such animations can elicit data that informs about the rationality of teaching. 

We describe how we applied those ideas in designing a research instrument that would be 
used to elicit community college teachers’ practical rationality apropos of the knowledge 
management demands when solving problems on the board.  We use the situation of ‘finding 
vales of trigonometric functions’ as context for this inquiry into the rationality that sustain larger 
contractual norms.   The animations are meant to be representations of trigonometry teaching 
that occurs in a hypothetical community college that is similar to other large community colleges 
in the United States. Trigonometry is one of the mathematical domains conventionally taught in 
community colleges, either as a separate course or incorporated into other courses that are 
prerequisites to calculus (Lutzer, Rodi, Kirkman, & Maxwell, 2007). The course can be 
perceived as a skills- and knowledge-building course, in which the purpose is to ensure that 
students demonstrate competence in solving standard problems of trigonometry and familiarity 
with the definition and properties of the trigonometric functions. In the college where we 
collected the intact classroom data, the course has a guiding textbook and a master syllabus that 
outlines the knowledge for which students and instructors are held accountable.  

The core question that we want to answer with the tool that we designed is: How much and what 
kinds of student participation do instructors perceive as feasible to handle when they work 
through examples at the board in a trigonometry class?  

Identifying Key Norms of the Trigonometry Contract  

The following describes our observations of the didactical contract in community college 
Trigonometry courses. The instructor is responsible for presenting the material and solving 
examples on the board. Students are responsible for doing homework, showing up for class, 
asking questions whenever they do not understand something, taking tests, and participating in 
class as demanded by the instructor. Students work under the assumption that their teachers are 
there to help them gain competence with the material and in general expect that their teachers 
press them for doing challenging work and believe that they are capable of doing what it takes to 
be successful (Mesa, 2010). The instructors are aware of the multiple demands that their students 
have on their time due to work and family responsibilities and have learned to not take it 
personally when students stop coming to their class (Grubb & Associates, 1999; Seidman, 1985). 
Instructors are also aware of the “holes” that students have in their mathematical preparation that 
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hinder their opportunities to learn the content. They are also conscious that they have limited 
amount of time to ensure students’ development of competence with the material. 

When examining intact lessons’ excerpts in which exemplification occurs, we have noticed the 
following:  

• Instructors rarely ask questions regarding the plausibility or correctness of a response or a 
final solution to a problem;  

• Instructors engage the students by asking questions about how to apply known 
procedures but they rarely, if ever, ask them to decide what procedure to apply; 

• Instructors offer as examples problems that admit only one solution. 

We hypothesize that these observations respond to contractual norms, that is, to tacit rules of the 
didactical contract. The instructional situation that has been chosen as context to explore the 
normative nature of those observations deals with solving the following problem: 

Using Fundamental Identities, find the exact values of the remaining trig 
functions given 

The original transcript of the class where the solution of this problem takes place illustrates what 
we believe are norms regarding exchange, division of labor, and organization of time. Exchange 
norms refer to what needs to be done, what it counts as, and what is not done; division of labor 
norms indicate who has the responsibility to do what, and norms of organization of time establish 
when things need to be done and how long they take. This particular problem calls for making a 
decision regarding the quadrant where the angle would be located, which permits the 
determination of the appropriate sign for the value of cosine of the angle, which is used to derive 
the value for the secant of the angle. As the solution unfolds, asking for justification of the steps 
or whether the answers make sense is not done; it appears that there is no explicitly assigned 
responsibility for justifying steps in the process and that the instructor alone determines how the 
solution unfolds; we also believe that the swiftness with which the problem is solved is related to 
the need of conveying the idea that problems are easy and that the homework won’t take long. 
To test whether these are reasonable hypothesis, we created alternative scenarios in which some 
of the hypothesized norms are breached and we seek input from instructors regarding those 
breaches. 

Consider the following scenario: 

Teacher:   So we know sine and cotangent, what do you think we should do now?  
Male1:  We can draw the unit circle and put these ratios in… 
M2:  We could draw the graphs of sin and cot and see what x gives us those 

values… 
Female1: Nah, I think it is simpler than that. We could use that thing about the 

quadrants and the signs of the functions… 
F2: We could use a circle with radius 5 and, then sin -5 over 4 is saying that the 

opposite is -4… so the angle must be somewhere here [on Quadrants 3 or 4], 
then the adjacent is…. 

M1:  The point must be (3, -4) because of the cotangent; that’s quadrant four. 

  

! 

sin x = "
4

5
cot x =

"3

4
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M2: We could flip sine x to get -5/4 for cosecant 
F2: and tangent would be flipping cotangent… 
M2: so cosine is…  is three over five. 
F1:  and cosecant is just flipping that one. We’re done, we got them all. 
T:  that’s OK, but, … 

This scenario is meant to address the issue of control over the solution process, with students 
answering the problem using ‘old’ rather than the current material (‘fundamental [trig] 
identities’). We anticipate that teachers won’t see it feasible to relinquish control for two reasons. 
First, teachers perceive students as expecting the instructor to be in control, showing how things 
are done, and with the responsibility of explaining the content; in principle students are 
perceived as capable of negative reactions to what other students have to say, because they do 
not see their peers as having authority of knowledge to do that (Cox, 2009). Second, there is too 
much material to cover and a very efficient way to handle it in reasonable time is for the 
instructor to illustrate the process so students can mimic it later (Grubb & Associates, 1999). In 
this scenario, the students have ‘solved’ the problem but it is of less value or import, because it 
does not use the content of the unit. The instructor will need to validate the solution given by the 
students or to reject it as inadequate for the expected use of the new content. Thus, if the teacher 
gives control of the solution to the students he or she risks loosing control of the exchange value 
of the problem/solution. In either case, we hypothesize, the instructors would make sure that in 
addition to the proposed solution, the students would also see how the new content is used.  

With scenarios such as these we expect to be able to uncover the resources instructors have at 
their disposal for making decisions regarding how to manage similar situations. They would 
either align with or distance from the teacher in the scenario and in that process they would make 
explicit what they do that the animated teacher does not. The information that we gather in this 
way, will allow us to map out community college instructors’ rationality in teaching 
trigonometry with examples, as we test these animations with groups of faculty. 

During our presentation in the conference we want to share a preview of the animation illustrated 
above and get input from the audience regarding its use as a research tool; if available—the 
animations are being produced now—we will share preliminary data illustrating teacher’s 
reactions to the animations, and how the analysis allows us to formulate more specific 
conjectures regarding the reasons for the level of student participation that instructors perceive as 
feasible to handle when they work through examples at the board in a trigonometry class.  

Answering this question is fundamental to understand the extent to which calls for reform of 
undergraduate college math classes (Blair, 2006), in which students play a more significant role 
in the construction of knowledge, can be effectively carried out at the community college level.  

4-162

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



    

References 

!"#$%&'()'*+,)-)'*.//0-)'!"#$%&'()$**)$+&*,'-./0"."%12%3'.+14".+12(*'*1+%&+)&*'2%'14"'52)*1'16$'#"+)*'$5'($00"3")'
12345$6&'789':32%$;#<'1#=523#=$;#"':66>;$#=$><'>?'7@>'A2#%'B>""2C26)'

!%>D662#D&' E)' *FGGH-)' 74"$)#' $5' &2&+(12(' *218+12$%*' 2%' .+14".+12(*' *8)' !#"#;52??&' 7%#<6)-)' I>%,%2;5=&'
82=52%"#<,69'J"D@2%)'

B>K&'()'I)'*.//G-)'74"'($00"3"'5"+)'5+(1$),'9$6'*18&"%1*'+%&'/)$5"**$)*'.2*8%&")*1+%&'$%"'+%$14"))'!>6=><&'1:9'
L#%M#%,'N<$M2%6$=O'P%266)'

E%DQQ&'8)'R)&'S':66>;$#=26)' *FGGG-)'9$%$)"&' :81' 2%;2*2:0",' <%' 2%*2&"' 0$$=' +1' 1"+(42%3' 2%' ($..8%21#' ($00"3"*)'
82@'A>%T9'(>D="2,C2)'

L2%Q6=&'P)&'S'B5#U#<&'I)'*.//V-)'74>?+7,'74$8341'>@/")2."%1*'2%'?+14".+12(*'7"+(42%39'8WX'(262#%;5'C%#<='
4%>4>6#"9'+WYZ/V[V.\[)'

L2%Q6=&' P)&' S' 1$O#T#@#&' 7)' *.//\-)' R52<&' 5>@&' #<,' @5O' 4%>M2' =52>%2369' :' 32=5,>">CO' =>' 6=D,O' =52'
42%642;=$M2'>?'C2>32=%O'=2#;52%6)'AB?'74"'-%1")%+12$%+0'C$8)%+0'$%'?+14".+12(*'>&8(+12$%D'EF&']0GZ
]\0)'

L2%Q6=&' P)&'8#;5"$2"$&' 7)&'S'B5#U#<&'I)' *$<'4%266-)' W=D,O$<C' =52'4%#;=$;#"' %#=$><#"$=O'>?'3#=523#=$;6' =2#;5$<C9'
R5#='C>26'$<=>'^$<6=#""$<C^'#'=52>%23'$<'C2>32=%O_'G$3%212$%'+%&'-%*1)8(12$%)'

`D=U2%&'I)'a)&'(>,$&'W)'!)&'J$%T3#<&'+)'+)&'S'1#K@2""&'a)'R)'*.//H-)'H1+12*12(+0'+:*1)+(1'$5'8%&")3)+&8+1"'/)$3)+.*'
2%'14"'.+14".+12(+0'*(2"%("*'2%'14"'I%21"&'H1+1"*,'J+00'KFFL'G!?H'H8);"#)'R#65$<C=><&'IB9':32%$;#<'
1#=523#=$;#"'W>;$2=O)'

126#&' b)' *./F/-)' <(42";"."%1' 3$+0' $)2"%1+12$%' $5' ($..8%21#' ($00"3"' .+14".+12(*' *18&"%1*' +%&' 14"'
.2*+023%."%1' $5' 2%*1)8(1$)*M' /")("/12$%*' *1#<D6;%$4=' D<,2%' %2M$2@-)' :<<' :%Q>%&' 1Y9' N<$M2%6$=O' >?'
1$;5$C#<)'

W2$,3#<&'+)'*FG\[-)'-%'14"'6$)&*'$5'14"'5+(801#,'N")*/"(12;"*'$%'2./)$;2%3'1"+(42%3'+%&'"&8(+12$%+0'O8+021#'2%'
($..8%21#'($00"3"*)'W#<'X%#<;$6;>&'B:9'a>662OZ!#66)'

'

 

4-163

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



 

 

 

Keywords: professional development, undergraduate mathematics instruction, teaching 
resources, mixed methods research   

 

Learning and making sense of mathematics is a complex psychological, cognitive, and 
social process. Research suggests that mathematics content knowledge is not sufficient for 
teaching, even at the earliest stages of schooling (Hill, Rowan, & Ball,, 2005). Darling 
Hammond argues o have more preparation for teaching are more confident and 

pg. 167, 2000). Why should 
college-level mathematics instruction be any different? New faculty members face the same 
challenges of developing, testing, and honing their teaching skills; more experienced faculty 
members may need to adapt their current skills to accommodate a new generation of learners 
who may have graduated from reformed and technology rich high school classrooms. 
Understanding if and how college mathematics faculty members pursue various supports when 
coping with these challenges can serve an important role in the design of future professional 
development materials. It is possible that without external supports some college mathematics 
faculty learn from their own teaching by planning, executing, reflecting on and revising lessons, 
a method similar to that described by Hiebert, Morris, Berk and Jansen (2007).  

According to notion of the apprenticeship of observation (1975), teachers 
develop beliefs, ideas, and images of the work of teaching as they observe their own teachers 
teach during their many years as school and university students. Analysis of interview data from 
a pilot study I conducted last year indicated that the same was true for many mathematics college 
instructors. Without formal training in education, it is not surprising that faculty members often 
rely on their own experiences as students in undergraduate and graduate mathematics courses to 
build a vision of how college mathematics instruction should or should not look. This can be 
problematic because faculty with advanced degrees in mathematics may not have ever 
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experienced the struggles their undergraduate students often  
undergraduate mathematics classes.  

My research investigates if, how, and where mathematics faculty find supports for 
developing and honing their skills for teaching undergraduate mathematics, and which faculty 
members are most likely to seek out this type of support. In particular, this research study was 
designed to pursue the following research questions, working with a population of mathematics 
faculty members at one research university: (1) What efforts, if any, do mathematics faculty at 
employ to improve their teaching of undergraduate mathematics?, (2) What ideas do 

, and what do 
they take as evidence that  teaching has improved?, and (3) What demographic trends, if 
any, exist among faculty members who report interest in improving their teaching? These 
questions lead to a mixed methods approach which is exploratory rather than evaluative in 
nature. In this study, I use a combination of surveys and interviews to understand what resources 
mathematics faculty at one research university have explored and which resources they have 
found most useful. In the first phase of the study, I sent an email invitation to all faculty in the 
mathematics department at one research university to participate in an online-survey. The survey 
consisted of four parts. The first part consisted of items designed to collect demographic data 
from the survey participants, such as their current position in the department, their years of 
teaching experience, and their education background. The second part consisted of eight Likert 
scale questions about their beliefs about teaching undergraduate mathematics courses and about 
improving teaching. The third section of the survey contained a few free response questions 
about their efforts and opportunities to learn about and improve their teaching. The final section 
asked participants if they would be willing to participate in a follow-up survey, and if so, to 
provide their contact information. At this point in time, I have sent the email invitation to the 
mathematics faculty members in the department to complete the online survey. Another e-mail 
will be sent approximately two weeks from now as a gentle reminder to those who have not 
completed the survey.   

The second phase of the study consists of conducting follow-up audio-taped interviews 
with at least eight of the faculty members who completed the survey and agree to be interviewed. 
The faculty who are interviewed will be chosen to best represent the overall population of those 
who responded to the survey. The follow up interview will include three parts. The first set of 
interview questions provides an opportunity for the participant to reflect on and share 
information about their own teaching practice and their efforts to improve their teaching. The 
second part of the interview asks the participant to read and analyze a brief written vignette from 
a hypothetical undergraduate mathematics class. The third and final part of the interview 
provides an opportunity for me to follow up on specific responses the participant provided on the 
survey. The interviews will be completed no later than December of this year. Thus, by the time 
of the conference I will have gathered and conducted at least a preliminary analysis of all of my 
data. 

The survey and interview data will be analyzed to explore trends observed through an 
initial review of the data. The majority of the analysis will be qualitative in nature, but some 
simple quantitative analyses may be performed to indicate frequency of particular types of 
responses or the mean and standard deviation of certain categories of responses to certain items. I 
will aim to develop group-level, sub-group level, and individual-level claims from the analyses. 

4-165

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



For example, I hope to disaggregate specific demographic 
features such as the number of years of teaching experience or amount of formal training in 
education. This will highlight major themes in the responses including which resources and 
strategies for improving teaching are most frequently mentioned and which strategies and 
resources faculty report as most helpful. The exploratory nature of this research makes it difficult 
to provide more specific details about the analysis.  

Depending on the final response rate to the survey, I may choose to proceed beyond this 
study in multiple ways. Ideally I will have a large response and a rich data set which I can use as 
the basis of my dissertation research. There are several other options I am considering which I 
can pursue whether my data is as rich as I anticipate or not. One option would be to use the 
information from this survey to construct a more targeted and detailed survey to be used with the 
mathematics department at another research university. Another option would be to focus in on 
the practice of one faculty member as he/she endeavors to institute changes to improve his/her 
teaching practice. I also could repeat this data collection and analysis at a teaching-focused 
college or university and/or at a community college and then compare and contrast the responses.  

 

Discussion Questions 

 Based on the preliminary analysis provided, what additional queries would you have 
about trends in the data? What story about the data would you like to hear? 

 If I were to conduct an additional interview with one or more of my participants, what 
kinds of questions should I ask? Which of my participants might be a good choice for 
targeted case studies? 

 What journals might be a good fit to publish this research in? Would the results of my 
research would be useful to practitioners? 

 How do the mathematics faculty members in attendance feel about the goals, methods, 
and results of this study? Do they relate to it? Object to it? Find it surprising or typical? 

 How might the findings from this study and follow-up studies inform the development of 
future professional development programs for college mathematics faculty? 
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Abstract: 

Little is known about how mathematicians present proofs in undergraduate courses. This 
descriptive study uses ethnographic methods to explore proof presentations at a large 
comprehensive research university in the Midwest. We will investigate three research questions: 
What pedagogical moves do mathematics faculty members make when presenting proofs in a 
traditional undergraduate classroom?  What do mathematics faculty members contemplate as 
they plan lectures that include proof presentations? To what degree and in what ways do faculty 
members engage students when presenting proofs? To pursue these questions, four faculty 
members who were teaching proof-based mathematics courses were interviewed and 6-7 
observations of each classroom were conducted throughout the course of the semester. The data 
were analyzed to identify some of the pedagogical content tools that were used, to develop an 
observation instrument, and to understand how mathematicians think about the pedagogy of 
proof presentation. 

Keywords: proof presentation, pedagogical content tools, teaching proof, ethnographic methods 

Literature Review: 

It has been well documented that students struggle with mathematical proof (Grassl & 
Mingus, 2007; Larsen, 2009; Larsen & Zandieh, 2008; Selden & Selden, 2003). The transition 
from computational mathematics to formal mathematics is a dramatic shift (Tall, 1997). 
Undergraduate level proof-based mathematics courses have been studied by mathematics 
educators for the past few decades. This research mostly comes in two flavors: investigating 
student thinking (Knuth, 2002; Larsen, 2009; Simpson & Stehlikova, 2006; Healey & Hoyles, 
2000; Almeida, 2000; Selden & Selden, 2003) and developmental research projects 
(Gravemeijer, 1994) that focus on developing innovative ways to teach proof (Leron and 
Dubinski,1992; Larsen, 2009; Weber, 2006). These studies shed light on teaching and learning in 
the context of mathematical proof, but it is often difficult to translate these findings into 
widespread changes in teaching.  

It is generally acknowledged that lecture is the norm in most university classrooms. The 
lecture style has been criticized by many, especially by those who propose alternative, more 
interactive teaching methods (Leron & Dubinski, 1995; Leron, 1985; Larsen, 2009). Leron 
(1985) called for a divergence from a linear proof presentation method in favor of “heuristic” 
presentations, which give the audience a better idea of how the ideas were constructed. The 
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“pure telling” lecture-style format has generally been contrasted with inquiry-oriented teaching 
(Rasmussen & Marrongelle, 2006), but personal experience tells us that many instructors are 
somewhere in between those two extremes. Little is known about how variations within the 
lecture style of proof presentation affect student understanding. 

 There are very few research projects directed at what is currently going on in a traditional 
university classroom. In the area of geoscience education (Markley, Miller, Kneeshaw & 
Herbert, 2009), a study was done to study the relationship between instructors’ conceptions and 
practice in the classroom. There were interviews with the faculty members about their 
perceptions of teaching and learning, and then there were observations of their classrooms. The 
observation data focused on how the instructor interacted with students and whether or not the 
classrooms were student centered. In mathematics education, a recent study addressed the issue 
of proof presentation by interviewing nine mathematics faculty members to explore their 
pedagogical decisions concerning proof presentations (Weber, 2010). Fukawa-Connelly (2010) 
observed a mathematics faculty member over the course of a semester in a traditionally taught 
abstract algebra course. He analyzed classroom dialogue through the lens of pedagogical content 
tools, looking for instances in which the faculty member ‘modeled mathematical behaviors.’ This 
study gives an existence proof that university mathematics professors do not always use a “pure 
telling” method of proof presentation. 

While some studies are beginning to address proof presentation, much more work needs 
to be done. Most of these proof-based courses are taught by working mathematicians, who are 
likely unfamiliar with current mathematics education research. Though an instructor identifies 
himself as traditional, he may still make efforts to involve and engage students in proof 
construction, but may not be familiar enough with the language of mathematics education to 
describe his pedagogical moves. This study will combine faculty interviews with classroom 
observations to explore not only how mathematics faculty members think about presenting proof, 
but also what they do in practice.  

This study has several goals; one is to investigate how the faculty members’ pedagogical 
ideas about proof presentations manifest themselves in the classroom. Another aim is to analyze 
the nuances of traditional teaching methods in regard to proof presentation, and to identify some 
of the tools that mathematics faculty members currently use to help students understand proof 
and write their own proofs. A final goal is to develop an observation instrument to simplify data 
collection and analysis. The video data will be useful both to develop an observation instrument 
and to minimize validity concerns, since the instrument is in the developmental stages.  

Research Questions: 

What pedagogical moves do mathematics faculty members make when presenting proofs 
in a traditional undergraduate classroom?  What do mathematics faculty members contemplate as 
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they plan lectures that include proof presentations? To what degree and in what ways do faculty 
members engage students when presenting proofs?  

Methodology: 

 Since the teaching and learning of mathematics can be viewed as an enculturation 
process, we will view the data through an interpretivist lens, which “looks for culturally derived 
and historically situated interpretations of the social real world” (Crotty, 1998, p. 72). The 
instructor is viewed as an expert in the discourse on mathematical proof, trying to help the 
“newcomers” enter into the discourse community (Sfard, 2008). This discourse can be analyzed 
through symbolic interactionism, because the language and other communicative tools that the 
professor is using to help the students understand will be studied (Crotty, 1998). Since the 
classroom is studied as a culture, pragmatism will be our theoretical perspective (Morgan, 2007), 
which is generally associated with the ethnographic methods that will be used.  

The first phase will be semi-structured interviews with four faculty members at a large 
comprehensive research university in the Midwest. These faculty members are currently teaching 
undergraduate level math courses that emphasize mathematical proof. The interviews will 
address what the instructors do when they present proofs in class, why they make those choices, 
and what they do to help students understand their presentation of proofs in class. The interview 
data will be analyzed for emergent themes.  

Throughout the semester, 6-7 observations of each classroom will be conducted and 
analyzed in detail. Three of the participants agreed to allow the observations to be video-taped, 
and for the fourth, we will analyze field notes collected with an observation instrument. Though 
much of the data analysis will be qualitative, some of the qualitative observation data can be 
quantified (Chi, 2007) to more easily see the trends that occur. The researcher is developing an 
observation instrument to collect data about proof presentations. The first draft of the instrument 
was based solely on the researcher’s experience as an observer and as a student in proof based 
mathematics courses. The themes from the interviews will be used to modify the observation 
instrument, and as the observations occur throughout the semester, the observation instrument 
will evolve. Because the instrument is not in its final form, video data is crucial, because the 
researcher may need to go back to look at earlier observations.  

Before the final data analysis, there will be an additional interview with the faculty 
members for a member check. At this time, the participants will be able to see the themes and 
trends that have emerged, and they will have the opportunity to give an insider’s perspective into 
the data. Since the researchers are constructing their own knowledge about how proofs are 
presented in class (VonGlassersfeld, 1996), the input of the participants will be a valuable 
resource for data analysis.  
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Applications to Further Research: 

 As we work to describe how faculty members present proofs in class and what they think 
about the pedagogy of proof presentation, we hope to be able to identify more pedagogical 
content tools (Rasmussen & Marrongelle, 2006) that they use to train students in reading and 
writing proof, and to help students enter into the culture of mathematical proof. Once we are able 
to identify some of these tools, we hope to be able to design some studies that can investigate 
their value. The recent work of Mejia-Ramos, Weber, Fuller, Samkoff, Search, & Rhoads, 
(2010), has designed a model for proof comprehension with six different dimensions that can be 
assessed by a quiz. Future research will combine their method of assessment with the results of 
this study to evaluate the efficacy of different methods of proof presentation in a traditionally 
taught proof-based course.  

Questions: 

Do you have any suggestions about how to analyze the data from the classroom where I was not 
video-taping? Should that data be thrown out entirely? 

Are there suggestions for the observation instrument? Have any of you used an observation 
instrument in the past? 

We plan to design a study to evaluate the pedagogical content tools we have identified. Any 
suggestions about study design? 
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For this preliminary research report, I have two goals:  a) to present initial findings from 

the pilot study, and b) to use feedback from the session to design a more robust follow-up 

study. 

 

The following research question formed the basis of the pilot study: 

 

To what extent can students improve their abilities in geometric reasoning and 

proof through learning experiences that combine dynamic geometry software and 

traditional compass and straightedge constructions? 

 

 

Students were provided an inquiry-oriented, construction-based experience dealing with 

Euclidean geometry topics.  Researchers hoped to demonstrate that such an experience 

can gain increase students' ability to write deductive proofs.  A learning environment was 

created that involved extensive work with constructions using traditional compass and 

straightedge techniques as well as with dynamic geometry software.  A major piece of the 

work was a rigorous program of “deconstructions” whereby participants gave written and 

oral validations of  each construction.  A pre-test/post test consisting of formal, written 

proofs served as one assessment instrument.  

 

Building on the work of Hollebrands (2003; 2004) and Galindo (1998), written response 

analysis was used to determine students’ understandings and attainment of reasoning 

abilities related to transformational geometry.  I propose in the follow-up study to use a 

mixed-method approach, adding task-based interviews. 

A case study methodology, as described by Gall, Borg, and Gall (1996) and Lincoln and 

Guba (1985) will be particularly helpful in producing a detailed description of a 

phenomenon.  In this instance, the specific phenomenon under study is geometric 

reasoning and proof, situated within the context of a technological learning environment.  

Since part of the goal of the research is to describe the interaction of traditional and 

modern construction techniques as they related to concept development, case study is 

particularly useful (Yin, 1994). 

 

In addition, a quantitative analysis will be utilized.  The construct of “normalized gain,” 

initially described by Hake (1998) is appropriate in this setting.  Widely duplicated (e.g. 

Fagen, Crouch & Mazure, 2002), normalized gain has been shown to provide meaningful 

data on changes in student achievement.  A small number of students in the pilot 
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completed a pre-test/posttest inventory (Usiskin, 1982) designed to assess how students’ 

levels of geometric reasoning is affected by particular, targeted instruction. This 

inventory is supported by a large reliability and validity database.   Preliminary results 

will be reported, although the overarching goal is to administer such an instrument to a 

larger number of participants in the future. 

 

This proposal is for a work in progress.  Data from the pilot study have been collected, 

but not yet fully analyzed.  I anticipate analyzing these data shortly.  A follow-up study is 

planned for late spring or summer of 2011. 

 

The need for studying geometric learning is great.  Clements (2003) points out in 

compelling detail the generally poor performance of students in the field of geometry. 

Other researchers have found limited success in improving particular aspects of student 

work.  Pandiscio (2002) found that participants can fundamentally alter their view of 

proof as it relates to inductive reasoning through targeted instruction.   Hiebert (2003) 

describes how students “learn what they have the opportunity to learn,” citing the success 

of focused outcomes aligned with particular instructional settings.  Other studies have 

determined that proportional and conceptual reasoning can be enhance through curricular 

modifications (Ben-Chaim, et. al., 1998).  Battista and Clements (1995) posit that 

alternatives to axiomatic approaches may lead to greater success in students’ proof and 

reasoning abilities, and cite Geometer’s Sketchpad as viable platform.  With the 

development of GeoGebra (Hohenwarter, 2002) we now have a freely available, open 

source software that combines many features of dynamic geometry software and 

computer algebra systems into a single package.  Hohenwarter and Jones (2007) have 

posited great potential for helping students to visualize mathematics through GeoGebra.  

Based on this, a rationale exists to examine the stated research questions. 

 

Preliminary questions for the audience: 

1.  Does the essential research question have enough merit to justify a follow-up study? 

2.  Does anyone know of empirical evidence to support the intuitive suggestion that by 

deliberately strengthening inductive reasoning, students will increase their proficiency at 

formal geometric deduction? 

3.  How do I address the concern that it is unlikely to have more than 10-12 students 

participate in a follow-up study that requires a substantial commitment of time on the part 

of the students? 

4.  Are there well-designed instruments to measure student's ability at writing formal 

geometric proofs? 

5.  How likely is it that task-based interviews will reveal student reasoning about 

geometric ideas 
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Abstract 

A group of mathematicians and mathematics educators are collaborating in the fine-

grained examination of selected ‘slices’ of video recordings of lectures drawing on 

Schoenfeld’s KOG framework of teaching-in-context. We seek to examine ways in 

which this model can be extended to examine university lecturing. In the process we 

have identified a number of lecturer behaviours There are times when, in what 

appears to be an internal dialogue, lecturing decisions are driven by the 

mathematician within the lecturer despite the pre-stated intentions of the lecturer to be 

a teacher. 

 

Introduction 

In contrast with the manner in which a school teacher’s Knowledge, Orientation and 

Goals (KOGs) determine their decision making, we present evidence that for 

mathematicians this decision making is additionally complicated by an inner 

argument between the lecturer-as-mathematician and the lecturer-as-teacher. Are 

there conflicting orientations and goals active in the decision moment? The way in 

which the decisions play out is thus a function not only of the lecturer’s knowledge of 

mathematics but of the way they work mathematically. 

 

Research base 

This paper reports on an aspect of a project that explores how Schoenfeld’s KOGs 

may be used to direct lecturers’ attention to aspects of their decision-making in the 

lecture theatre as a professional development activity. The project is informed by 

research concerning how a teacher’s knowledge, orientations or beliefs and goals 

impact on their teaching practice (Schoenfeld, 2007; Ball, Bass & Hill, 2004; 

Shulman, 1986; Speer, Smith & Horvath, 2010; Torner, Tolka, Rosken & Sriraman, 

2010) However, these are studies of teacher practice in primary and secondary 

schools and similar work at the college level is ‘virtually non-existent’ (Speer et al, 

2010, p 99). The project is also designed to build on the effectiveness of communities 

of practice (Lave & Wenger, 1999) and a culture of enquiring conversation (Rowland, 

2000) for professional development. The project is described in more detail in Barton, 

Oates, Paterson and Thomas (to be published).  

 

Structure of project and data collection 

A group of four mathematicians and four mathematics educators are collaborating in 

the fine-grained examination and discussion of lecturer actions in video recordings of 

lectures (Kazemi, Franke, Lampert, 2009; Prushiek, McCarty, & Mcintyre, 2001). 

The theoretical approach draws on Schoenfeld’s theory of teaching-in-context  

(Schoenfeld, 2002). The data for each lecture consists of videotape, an observer 

record, and a written lecturer-KOG (a statement by the lecturer of the knowledge 

used, orientation held, and goals, both specific goals intended for the lecture and more 
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general educational goals). A section of the lecture is chosen for discussion by the 

lecturer and is transcribed along with all discussion of the lecture. 

 

The project aims to examine ways in which Schoenfeld’s model can be used and 

extended to examine university lecturing and to support the professional development 

of lecturers (Van Ort, Woodtli, Hazard, 1991)) In the process we have identified a 

number of lecturer behaviours one of which is discussed in this paper. 

 

Observations and Discussion 

Schoenfeld (2007) argues that 

 
Teaching, …… depends on a large skill and knowledge base … its practice involves a 

significant amount of routine activity punctuated by occasional and at times unplanned but 

critically important decision making – decision making that can determine the success or 

failure of the effort. (p 33) 

 

We have observed a number of instances of what appears to be an inner argument, or 

regulation by an inner voice, in the lecturer’s communication with the class. In 

subsequent group discussion it has become clear that many lecturers are aware of this. 

 

The example below is from a lecture to a general education first year course in which 

the students are introduced to the Fibonacci sequence and the golden ratio. In her 

personal KOG, written before the lecture, the lecturer stated: 

 
Knowledge I need includes: knowledge of the subject material, knowledge of the levels of 

the students. 

 

Orientation: I see this whole course partially as an exercise in ‘public understanding of 

mathematics’, and so try to treat the lectures as such – rarely going into much depth 

mathematically, and trying to keep everyone engaged and interested. 

 

Goals: for the students to appreciate the appearance of Fibonacci numbers in nature. To 

keep all the students engaged throughout the lecture. 

 

In the lecture, once they have found the sequence of numbers, a recursive formula for 

the sequence, and arranged them in a table she says to the students: 

 
ML1: Then compute the ratio as you go down for each one. So for instance I have got 

1divided by 1 is 1, 2 divided by 1 is 2 and this next one will be 3 divided by 2 which is 1.5. 

If you have a calculator you can calculate what they are otherwise you can leave them as 

fractions and I’ll write down what they are in decimal notation.” 

 

After they have worked them out she continues: 

 
ML1: What’s 5 divided by 3? 

Student: 1.6 

ML1: 1.6 recurring so I’ll put 1.667 

(looks at it a brief moment) dot dot dot” 

 

As a group we examined what caused her to pause and decided it appeared that she 

felt that the fact 5/3 was a recurring decimal had to be acknowledged. It led to the 

following exchange: 

 
ML2: I do this kind of thing all the time, I think it’s really distracting because you’ve gone 
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out and tried to make your big point and then you get all flustered over some detail and you 

say oh sorry you know, you have to get it right and the students go “what the hell is going 

on and now I’m completely confused because it sounded really simple.” 

ML1: So should you just ignore that corner and just hope that it’s not noticed but then is 

that bad because you’ve somehow told them something incorrect? 

 

We saw another instance of the lecturer’s need for rigor later in the lecture. Note that 

nowhere in her written KOG does she mention rigor, on the contrary she says, “rarely 

going into much depth mathematically”. 

 

She is proving that the value for fn+1 divided by fn is the golden ratio, !. There is 

some literal hand-waving as it is established that the values oscillate about 1.6 

something and then she says 

 
OK suppose you want to compute what this number actually is 

And it seems to be converging – and it does actually converge (who is she reassuring?) 

So you know that fn+1 is bigger than fn so this is going to be a number that is bigger than 1 

Right? (sounds as if she hears herself and adds this) Or equal to 1. 

So ..If I am thinking about what this ratio becomes as n gets really, really big 

So, for any specific n these 2 things are going to be different 

Right? 

Because for one thing it was 1.6 and for the next one it was 1.625 

So for any specific n it’s going to be different 

 

In this interlude we see and hear her spending a lot of time emphasising that for 

particular values of n the values of fn and fn+1 are different and under what 

circumstances they are justified in making the approximation: 

 
But as n gets bigger and bigger and bigger these 2 things are going to get closer and closer 

together 

As long as n is big enough 

So we will assume that we are in a place where n is big enough then we can make this 

approximation 

 

The highlighted language in this excerpt shows her need to be mathematically 

explicit; hand waving will not do even in a class that is ‘an exercise in public 

understanding of mathematics.’ 

 

Further examples seem to indicate that the manner in which the inner argument 

manifests appears to differ depending on the research field of the mathematician. A 

pure mathematician in the group spent a long time disentangling notation to ensure 

that a proof held together effectively even while he had stated that he believed the 

students were capable of deriving it for themselves. When discussing these actions he 

spoke of ”KOG dissonance” to refer to his actions in contradiction of his stated 

intentions. An applied mathematician had a similarly mathematician-inspired 

interaction with a Matlab generated display that did not show what he knew it should 

show about the number of bifurcations in a logistic equations. 

 

Conclusion 

It is not our argument that schoolteachers do not have an inner mathematical voice but 

we contend that in their case their motivation is the elucidation of the content so that 

the students can understand it better. In the case of the research mathematicians in a 

university environment we argue that they are concerned that the mathematics be 
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appropriately presented, or at least not be misrepresented, because their relationship to 

it and the way in which they work with it demands this. There is evidence that there 

are times when, in what appears to be an internal dialogue, decisions are driven by 

either the mathematician, or the teacher, within the lecturer persona. We suggest that 

these two personae may have different orientations and goals, affecting the decisions 

reached at critical points and consequently influencing student learning. This teacher-

mathematician interplay might prove to be a productive construct to work with in the 

professional development of lecturers. 

 

Questions: 

Q1 As a mathematics lecturer are you aware of this tension? Have you caught 

yourself listening to an inner voice in the middle of a lecture? 

Q2 Do you think it would be useful for your lecturing to consider this phenomenon 

explicitly as part of your professional development? 

Q3 Do you have alternative suggestions for aspects of your lecturing to focus upon in 

professional development sessions? 

 

References: 

 

Ball, D., Bass, H., & Hill, H. (2004). Knowing and using mathematical knowledge in 

teaching: Learning what matters. Paper presented at the South African 

Association for Research in Mathematics, Science and Technology Education. 

Durban. 

Barton, B., Oates, G., Paterson, J. &Thomas, M. (accepted for publication) The 

Datum Project. Community for Undergraduate Learning in Mathematics 

Newsletter, Auckland, New Zealand  

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. 

Cambridge: Cambridge University Press. 

Kazemi, E., Franke, M. & Lampert, M. (2009) Developing Pedagogies in Teacher 

Education to Support Novice Teachers’ Ability to Enact Ambitious Instruction 
In Roberta Hunter, Brenda Bicknell, Tim Burgess (Eds), Crossing Divides, 

Proceedings  of the 32nd Annual Conference of The Mathematics Education 

Research Group of Australasia, Vol 1, pp. 11-29. Palmerston North, New 

Zealand: Mathematics Education Research Group of Australasia 

Prushiek, J., McCarty, B., & Mcintyre, S. (2001). Transforming professional 

development for preservice, inservice and university teachers through a 

collaborative capstone experience. Education, 121 (4), 704-712. 

Rowland, S. (2000) The Enquiring University Teacher. Open University Press, 

Philadelphia, PA 

Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in 

Education, 4, 1-94. 

Schoenfeld, A. H. (2002). A highly interactive discourse structure. In J. Brophy (Ed.), 

Social Constructivist Teaching: Its Affordances and Constraints (Volume 9 of 

the series Advances in Research on Teaching, pp. 131–169). Amsterdam: JAI 

Press. 

Schoenfeld, A. (2007) A theory of teaching and its applications. In Commemoration 

of Guenter Toerner’s 60th Birthday The Montana Mathematics Enthusiast, 

ISSN 1551-3440, Monograph 3, The Montana Council of Teachers of 

Mathematics, pp.33-38 

4-180

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



Shulman, L. (1986). Those who understand: Knowledge growth in teaching. 

Educational Researcher, 15(2), 4-14. 

Speer, N.M., Smith, J.P & Horvath, A. (2010) Collegiate mathematics teaching: An 

unexamined practice. Journal of Mathematical Behavior , 29. pp 99–114 

Torner, G., Rolka, K., Rosken, B. & Sriraman, B. (2010) Understanding a Teacher’s 

Actions in the Classroom b Applying Schoenfeld’s Theory Teaching-in-

Context: Reflecting on Goals and Beliefs. In B. Sriraman and L. English 

(Eds.) Theories of Mathematics Education. Seeking the New Frontiers (pp. 

401-420) Heidelberg/Dordrecht/London/New York: Springer 

Van Ort S, Woodtli A, Hazard ME. (1991) Microteaching: developing tomorrow's 

teachers. Nurse Education, (16) 

4-181

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



 
 

1.  Introduction and Research Questions 

Mathematical knowledge for teaching (MKT) has been a central topic of recent research 
in mathematics education (e.g., Ball, Thames, & Phelps, 2008; Ma, 1999). However, most of this 
research has focused on elementary or middle school mathematics. Few researchers have 
investigated the specific content knowledge needed to teach high school mathematics. Although 
most high school math teachers complete an undergraduate major in mathematics, some 
researchers have argued that high school teachers should receive content preparation specific to 
teaching (e.g., Moriera & David, 2008). In order to determine exactly what this content 
preparation should be, more research is needed on high school mathematics teacher knowledge. 

Ball, et al. (2008) suggested building a theory of teacher knowledge by beginning with 
classroom episodes and observations of effective teaching in order to analyze the knowledge 
teachers need for such endeavors. This study also begins with effective teaching to build theory, 
but rather than observing teachers, it seeks the perspectives of exemplary high school 

practice that researchers may not recognize or understand (Cochran-Smith & Donnell, 2006). 

views on the subject matter components of MKT. Subject matter components are aspects of 
mathematical knowledge that are not necessarily pedagogical (Ball, et al., 2008). The following 
research questions guided this study: (a) What subject matter components of MKT do exemplary 
high school teachers believe are important in their practice? (b) When and how do these teachers 
believe that their MKT developed?  

2. Related Literature and Theoretical Framework 

This study draws on the model of Mathematical Knowledge for Teaching proposed by 
Ball, Bass, and colleagues (e.g., Ball et al., 2008). In this model, MKT is comprised of subject 
matter knowledge and pedagogical content knowledge. Both types of knowledge are specific to 
mathematics content, but pedagogical content knowledge is knowledge of mathematics 
pedagogy, and subject matter knowledge is knowledge of content that is not necessarily 
pedagogical. The purpose of this study is to explore aspects of the latter.  

Research focusing specifically on the subject matter components of MKT has explored 
how teachers understand particular concepts. Even (1990) synthesized research on teacher 
knowledge and conjectured that there are six 
particular concept. These are knowing, with regards to the concept, (a) essential features, (b) 
different representations, (c) multiple perspectives and applications, (d) unique characteristics, 
(e) a basic repertiore of examples, and (f) a conceptual understanding. Even added that teachers 
must also have knowledge of mathematics as a discipline. Other similar frameworks have been 
developed in the content strand of geometry (Chinnapan & Lawson, 2005) and for both 
mathematics and science teaching (Kennedy, 1998). The goal of this study is to further explore 

by talking to exemplary teachers rather than 
from systematically reviewing the research literature. 

on the use of advanced mathematical knowledge (i.e., undergraduate-level matheamtics) in their 
teaching. Zazkis and Leikin (2010) surveyed 52 secondary matheamtics teachers and found that, 
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even for teachers who claimed to use their advanced mathematical knowledge often, they could 
rarely cite a specific example of the use of this knowledge. Recognizing the fact that teachers 
may have difficulty describing their subject matter knowledge and its use, this study takes into 
account both teachers  explicit statements of their subject matter knowledge as well as elements 
of their subject matter knowledge that are revealed through analysis of written lesson plans. 

3.  Methodology 

3.1. Participants. Eleven high school mathematics teachers from one state participated in the 
study. These teachers received at least one of three prestigious honors in the state: Between 2000 
and 2010, these teachers (a) were state or national finalists for the Presidential Award for 
Mathematics and Science Teaching (NSF, 2009), (b) were named County Teacher of the Year in 
their county, or (c) were National Board Certified Teachers in Adolescent and Early Adulthood 
Mathematics (NBPTS, 2010). The 27 teachers in the state who met these criteria were invited to 
participate, and 11 teachers accepted the invitation. Of these 11 teachers, four received the 
Presidential Award for Mathematics and Science Teaching, three were named County Teacher of 
the Year, and seven were National Board Certified. (Some teachers met more than one criterion.) 

Eight of the participants taught at public schools and three taught at private schools or 
vocational schools. The eight teachers at public schools were well distributed among a range of 
schools in terms of socioeconomic status and student success rates. Similar statistics for the 
private schools were unavailable. 

3.2. Data collection. Two sources of data were obtained for this study: (a) lesson plans and (b) 
interviews. Researchers have argued that MKT may be tacit (e.g., Zazkis & Leikin, 2010). 
Hence, lesson plans were used as stimuli during interviews in order to help teachers recall and 
discuss aspects of their content knowledge (Meade & McMeniman, 1992). Each participant was 
asked to submit one lesson plan from a traditional high school course (i.e., not college-level 
courses such as AP Statistics or AP Calculus). Lesson plans were obtained approximately one 
week before the interviews in order to tailor interview questions to the lesson where appropriate.  

The main data source was individual interviews with participants. Interviews were semi-
structured and lasted approximately one hour. Participants were asked about their background in 
mathematics education, the specialized content knowledge that went into the lesson that they 
shared, and general aspects of their mathematical knowledge as it related to their practice.  

3.3. Data analysis. All interviews were audiotaped and fully transcribed for analysis. A grounded 
theory approach to analysis was used in the style of Strauss and Corbin (1990). After listening to 
the interviews and reading through the transcripts, initial codes were assigned to episodes that 

categories using the constant-comparative method (Strauss & Corbin, 1990). Each transcript was 
then revisited individually. Categories were refined and new codes and categories were formed 
when appropriate. 

Next, lesson plans were revisited. Elements of the lesson plan which pointed to MKT 
were coded according to the categories developed from interview analysis. In most cases, the 
analysis of lesson plans supported interview data. In cases where the lesson plans provided 
disconfirming evidence, codes and categories were revised to accommodate the data from the 
lesson plans or led to proposed explanations for why the disconfirming evidence existed 
(Creswell, 2007). 
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4.  Results 

4.1. Essential aspects of subject matter knowledge. The results of our preliminary analysis 
include five aspects of subject matter knowledge that the exemplary teachers in this study found 
to be essential.  

First, teachers believed that connections between mathematical ideas were important for 
teaching. Teachers claimed to be able to help students see basic mathematical ideas within a 
complicated mathematical concept and connect different mathematical concepts to help students 
understand mathematics more completely. In addition, they were able to connect the topics they 
were teaching to higher-level courses, such as calculus or non-Euclidean geometry. 

Second, teachers believed that knowing the key examples of a concept was an important 
piece of MKT. When presenting mathematical concepts to their students, these teachers 
considered all cases of a concept or challenged their students to consider for which cases the 
concept would hold. In addition, the teachers had a flexible knowledge of cases of mathematical 
concepts so that they could create interesting and intriguing examples when necessary. 

Third, understanding where mathematical concepts could be applied was an important 
piece of MKT for these teachers. They were knowledgeable of applications of the concepts they 
were teaching that were relevant to everyday life (and hence the students they were teaching). 
Fourth, teachers were aware of many techniques for problem-solving that were sometimes 
unusual or unique. Fifth, teachers recognized several representations of a concept and understood 
the ways in which a concept could be interpreted through these representations. 

 
4.2. Development of MKT. Teachers also discussed ways in which they believed their MKT 
developed. These were through (a) formal courses, (b) professional experiences, and (c) personal 
experiences. Although some teachers spoke of individual courses as being influential to their 
thinking, most teachers did not cite formal coursework as a main source of MKT. Teachers 
overwhelmingly felt that their experience teaching a variety of courses and working with a 
variety of students helped them to develop MKT. In addition, several teachers mentioned that 
they individually sought to improve their practice through reading, conducting research, or 
applying for National Board Certification, and these activities helped develop MKT. 

5. Significance 

The teachers in this study appeared to understand the mathematics that they were 
teaching in a deep way. Many of the elements of their subject matter knowledge aligned with 
Even s (1990) framework for understanding of a concept, but the teachers  emphasis on 
connections between mathematical topics is important to note. Teachers overwhelmingly 
indicated that their MKT was developed through practice, not formal coursework. Hence, these 
findings can inform design of undergraduate mathematics courses for teachers. An important 
open question is whether courses that aim to develop these elements of subject matter knowledge 
are more productive for future teachers than traditional undergraduate mathematics courses. 

6.  Questions for Discussion 

What aspects of MKT might be tacit? What research methods might help in exposing this 
knowledge? Which aspects of MKT (if any) might be specific to high school teaching? What 
might mathematics courses for teachers look like if they were to help teachers gain a depth of 
understanding? What specific parts of undergraduate-level mathematics are relevant to teachers? 
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The purpose of this presentation is to es when 
they attempt to write proofs about inequalities involving absolute values. We employ the theory 
of conceptual blending to analyze the cognitive process behind the final proof of 
inequalities. Two undergraduate students from transition-to-proof courses participated in the 
study. Although the instruction about inequalities was given graphically, the students recruited 
algebraic ideas mainly when they attempted to construct a proof for the inequality. We illustrate 
how students apply the algebraic ideas and proving structures for their mental activity in their 
proving activity.   

Keywords: proof construction, inequalities, absolute values, conceptual blending,  
Introduction and Research Questions 

The purpose of this presentation is to focus on 
processes when they attempt to write a proof about an inequality. An understanding of 
inequalities plays an important role in comparing two quantities and identifying quantitative 
relationships between them. Research in mathematics education has paid little attention to 
students  ways of thinking and their difficulties with inequalities although some research reports 
that students encounter difficulties understanding the meaning of inequalities and their solutions 
(Tsamir & Almog, 2001; Tsamir & Bazzini, 2004; Vaiyavutjamai & Clements, 2006). In this 
presentation, we discuss the following research questions:  

1. 
proving inequalities?  

2. What are the students  cognitive processes behind their final proofs of inequalities 
involving absolute values? 

The research literature indicates that undergraduate students struggle with proof writing 
(e.g. Selden & Selden, 2008). Students tend to structure their proofs in the chronological order of 
their thought process instead of reorganizing it with proper implications (Dreyfus, 1999). Also, 
students have difficulty with utilizing conceptual ideas strategically to generate their proof 
(Weber, 2001). Therefore, students  challenges are related to how to structure a proof, construct 
a key idea, and strategically use their key idea in their proof structure (Zandieh, Knapp, & Roh, 
2008). This research cognitive process when 
proving inequalities involving absolute values, which have not been much addressed in previous 
work.  

Theoretical Framework 
We employ theory of conceptual blending to analyze our 

data. This theory postulates the existence of a subconscious process in which an individual 
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combines elements of current knowledge in order to build new knowledge. An individual may 
use their knowledge to form one or more mental spaces (referred to as input spaces), each of 
which involves an array of elements and their relationships to one another. Some elements of one 
input space may be matched with similar elements of another (we refer this as cross matching in 
this study). Such a cognitive process entails the blending of two or more input spaces to form a 
new mental space (called the blended space) as follows (Zandieh et al., 2008): Once the 
individual considers elements in each input space as important, he or she is mapping them into 
the blended space. As he or she organizes information in the blended space, they are completing 
the blend.  This may be done by the use of knowledge outside of the input spaces (called a 
conceptual frame) to organize the blended space. Following this is called running the blend, 
which is a simulation or manipulation of the information in order to make inferences. In this 
presentation we will illustrate how students are constructing input spaces, cross-matching 
elements between the two input spaces, mapping from the input spaces to the blended space, 
applying a conceptual frame to complete the blend, and running the blend. We extend the idea of 

 
involving the absolute value.  

Research Methodology 
Data for this study comes from a teaching experiment (Steffe & Thompson, 2000) 

conducted at a southwestern university in the USA. The teaching experiment involved two 
undergraduates who were enrolled in different sections of a transition to proof course at the time. 
Both were strong students in their transition-to-proof courses and neither had instruction in real 
analysis before this. As a research team, we (identified as Instructor and TA in this study) met to 
design tasks prior to the teaching sessions, and team-taught during the teaching sessions. The 
tasks were also served to gauge students  reasoning and their understanding of topics.  The data 
include transcripts of videotapes from the teaching sessions, photo-copies of 
proofs and scratch work, and student reflections. In their reflections, the students reported 
aspects of the task or topic they found most interesting or challenging. 

In this presentation we focus on the first session with the students, in which they were 
asked to prove an inequality involving absolute values. The session began with Instructor 
introducing the definition of the absolute value function and its graph. Instructor then presented 
properties of absolute values including the Triangle Inequality: For any ,a b , 
| | | | | |a b a b . The students used several values of a and b to make sense of the properties of 
absolute values. Instructor left the definition and theorems out for the students and told them that 
they may refer to it while working on problems with TA. TA then led the student discussion 
about how to construct a proof for the exercise statement: , , ,a b c  then
| | | | | | .a b a c c b  

For our data analysis, we identified each s key mathematical ideas and their 
proving frame when proving the inequality. In terms of the theory of conceptual blending, we 
then identified how each student formed inputs and cross-matched elements from one space to 
another. We examined how the student is mapping the cross-matched elements into to the 
blended space, and how the student uses proving frames and his key mathematics ideas as he is 
completing the blend and running the blend, respectively.  
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Results and Discussions 
When the students attempted to construct a proof for the inequality, their key 

mathematical ideas were mainly algebraic although the instruction about inequalities was given 
graphically. Accordingly, we identified three algebraic ideas used by the students: The first one 
was observed when a student considered an element of one input space to be identical to the 
corresponding element of the other input space. The corresponding elements were therefore 
considered as equal so he could 
substitution , in which a student introduced a new object and substituted it with an element in 

an input space (e.g., substitute a variable x for the variable a in the triangle inequality
| | | | | |a b a b ). - dded in 
something equal to zero (e.g., adding c c  to a b).  

We also found that students set up a conditional statement of form a conditional implies a 
conditional statement ( ) ( )p q r s , and manipulated premises and conclusions p, q, r, 
and s. They then framed their proof in terms of what is called a Conditional Implies a 
Conditional Frame (CICF) as Zandieh et al. (2008): a student assumes r, then induces p. 
Applying p q , he  concludes s (Zandieh et al., 2008). However, there was some variation in 
recruiting CICF in proving the inequality. In particular, a student assumed all of all of p, q, and r, 
then induced s.  

Example. We identified six episodes through our data coding procedure 
conceptual frames. Usually their conceptual frame consisted of one key algebraic idea and one 
proving frame. Here, we illustrate how conceptual blending can be used to describe the cognitive 
process in the second episode. In this episode, a student Jon stated: What if we substitute this 
like: ,  a a c b c b? a a c. Can we do this? b c b.

  a b a c c b  then crossed out  c    a c c b  to induce a b. One might note 
that Jon actually wrote   a b a c c b, and crossing out the c he stated that he will have 
a-b. This calculation is incorrect. However, since he says that the c , it is probable 
that he meant  a c c b a b . The analysis below reflects this conjecture.  

Analysis. We characterize Jon  conceptual frame in the second episode as a combination 
of replacing  and CICF, and describe his conceptual blending as follows: To begin, he 
identified the exercise statement as one of his input spaces, say Input A. He used the statement of 
the Triangular Inequality as his strategic knowledge (Weber, 2001) to create another input space, 
say Input B. He then cross-matched |a|, |b|, and |a+b| in Input A with ,  ,a c c b and a b  in 
Input B, respectively. Identifying the elements he viewed as important ( ,  ,  and a c c b a b
from Input A, and a, b, and a+b from Input B), Jon was mapping the cross-matched elements 
into his blended space. Then Jon was completing his blend by recruiting his conceptual frame: he 
decided that he would begin with  and a c c b , and manipulate these elements  
to construct a b. Finally, Jon was running the blend in four steps. First, he replaced  a cand 
c b from Input A with a and b, respectively. Thus, he had constructed a and b in Input B. 
Second, he created a+b in Input B by adding these two elements. Third, by replacing  again, he 
constructed .a c c b  Finally, his fourth step is to simplify this to eliminate the c  and 
construct a b  (See Figure 1). 
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!
Figure 1: Jon's blending in the second episode  

We found that the theory of conceptual blending accounts 
processes behind their reasoning in proving inequalities involving absolute values. In particular, 
it sheds light on why and how students come to ignore the inequality when they prove or solve 
problems about inequalities. In fact, the students did not map the inequalities and the absolute 
value symbol into blended spaces, and hence they were not integrated in the blended spaces. In 
addition, logical structures in the input spaces were often dropped from the process of mapping 
to the blend, and as a consequence implication structures were obscured in the blended space. 
(e.g., conditionals p q in input spaces were treated as p and q in the blended space.) Finally, 
the students also carried out algebraic ideas improperly while they recruited these ideas as their 
conceptual frames. (e.g., when running the blend, Jon recruited his key algebraic idea and hence 
identified the cross-matched elements into his blended space instead of using a proper 
substitution.)     

Discussion Questions 

1. What are the areas of research that are related to the proving of inequalities, but which 
are not considered in this study? 

2. What are alternative frameworks for 
proofs and how are they going to be useful to explore our research question?   
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Where is the Logic in Proofs? 
Preliminary Research Report 

Milos Savic 
New Mexico State University 
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Often university mathematics departments teach some formal logic early in a transition-
to-proof course in preparation for teaching undergraduate students to construct proofs. Logic, in 
some form, does seem to play a crucial role in constructing proofs. Yet, this study of 43 student-
constructed proofs of theorems about sets, functions, real analysis, abstract algebra, and 
topology, found that only 1.7% of proof lines involved logic beyond common sense reasoning. 
Where is the logic? How much of it is just common sense? Does proving involve forms of 
deductive reasoning that are logic-like, but are not immediately derivable from predicate or 
propositional calculus? Also, can the needed logic be taught in context while teaching proof-
construction instead of first teaching it in an abstract, disembodied way? Through a theoretical 
framework emerging from a line-by-line analysis of proofs and task-based interviews with 
students, I try to shed light on these questions. 

Keywords: Logic, transition-to-proof courses, analysis of proofs, task-based interviews 

 To obtain a Masters or Ph.D. in Mathematics, one must be able to construct original 
proofs. This process of proof construction is usually explicitly taught, if at all, to undergraduates 
in a transition-to-proof or  such courses, teachers often 
include some formal logic, but how it should be taught is not so clear. Epp (2003) stated 
believe in presenting logic in a manner that continually links it to language and to both real 
world and mathematical subject matt 95). However, some mathematics education 
researchers maintain that there is a danger in relating logic too closely 
example of mother and sweets 1 episode, for instance, which is 
other hand, compatible with norms of argumentation in everyday discourse, expresses the 
sizeable discrepancy between formal thinking and natural thinking & Even, 2008, p. 
245). 

There are also those who do not think that logic needs to be explicitly introduced. For 
example, Hanna and de Villiers (2008) stated
teaching formal logic to students or to prospective teachers, particularly because mathematicians 
have readily admitted that they seldom use formal logic in their research (p. 311). Selden and 
Selden (2009) claimed 
[but] [w]here logic does occur within proofs, it plays an important role 47). Taken together, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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these views suggest that it would be useful for mathematics education researchers to further 
examine the role of logic and logic-like reasoning within proofs.  

In this paper, I begin the logic in  proofs
first searching for uses of logic in a line-by-line analysis of 43 student-constructed proofs in 
various areas of mathematics, and then examining the actions of the proving process in search of 
additional uses of logic. This research was done in conjunction with a 
and Constructing P , at a large Southwestern state university, giving Masters and Ph.D. s in 
mathematics. Students in the course were first-year mathematics graduate students along with a 
few undergraduates. Topics covered included sets, functions, real analysis, algebra, and 
topology. The 43 proofs analyzed were all of the student-constructed proofs in the course. The 
professors verified all of these as correct. For example, some theorems that were proved by the 
students included:   

  

In the process of coding the lines of the proofs, a theoretical framework emerged. 
Twenty-three categories were developed and used to code the lines. Here I will describe just four 
categories: informal inference, formal logic, interior reference, and use of definition; and the 
others will be in the research report. Informal inference is a category that refers to a line of a 
proof that depends on common sense reasoning. I view informal inference as being logic-like, as 
it seems that when one uses common sense, one does so automatically and does not consciously 
bring to mind formal logic. For example, given  and , one gets  as a common 
sense conclusion, which need not call on formal logic such as Modus Ponens. By formal logic, in 
this report I mean conscious use of predicate and propositional calculus beyond common sense. 
Interior reference is the category for a line in the proof that uses a previous line as a warrant for 
a conclusion. For example, if there were a line indicating  earlier in the proof, then 
subsequently Since later in the proof would be an interior reference. Lastly, 
use of definition or definition of refers to when a line in the proof calls on the definition of a 
mathematical term. For example, consider the line  or , then
conclusion implicitly calling on the definition of union. 

In the line-by-line analysis of the proofs, 14% of the 630 lines were informal inference, 
and less than 2% of the lines were formal logic . In 
fact, collecting all the logic-like categories together, I found that only 18% of the lines were 
logic-like. These logic-like categories included induction cases, induction hypothesis, induction 
conclusion, contradiction hypothesis, contradiction conclusion, informal inference, and formal 
logic. If only 18% of the lines were logic-like, what were the rest of the lines of the proofs like? I 
found that 21% of the lines were use of definition, 15% were interior reference, and 13% were 
categorized as assumption, meaning that the proof-writer introduced a new object into the proof. 
Thus, use of definition, interior reference, and assumption accounted for 49% of the lines in the 
analyzed proofs. While most of the lines of a proof may aid reasoning, they are not themselves 
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logic-like. Also, in a randomly selected line, there is about a 98% chance that there is no formal 
logic. 

Is logic that might not appear in the finished proofs called on by the actions of the 
proving process? To begin to answer this question, five proofs were selected and the possible 
actions a student might take in the proving process were hypothesized and analyzed. There were 
also task-based interviews with three students who had taken the Understanding and 
Constructing P course one year earlier to observe their actions while proving one of the 
theorems. A one-page set of notes was given to the students (excerpted from the course notes 
they had used), starting with the definition of a semigroup, and ending with the theorem to prove, 

The students were videoed while they thought 
aloud and attempted to prove the theorem at the blackboard. An interesting result was that these 
students took three different approaches to the proof, including voicing different concept images 
for concept definitions. For example, in the notes there was a definition of a 

dered Venn diagrams while reflecting on the definition, while 
the other two students stated in a subsequent debriefing that they had not thought of using a 
diagram. 

Another result was that the actions hypothesized for the proof construction did not match 
the actual actions of the interviewed students. For example, I had hypothesized that the students 
would write the first line or assumptions, leave a space, and then would write the last line of 
what was to be proved Understanding and 
Constructing Proofs ourse). This is a proving technique (Downs & Mamona-Downs, 2005) 
that is not often taught. While all three interviewed students wrote  
almost immediately at the beginning of their proofs, only one student wrote the conclusion after 
playing a bit with the algebra of a semigroup. An analysis of the proof actions in another 

 interview revealed that she wanted to understand and write definitions on scratch work 
before attempting the proof. She then attempted to comprehend what a minimal ideal is, because 
she had previously assumed  were minimal ideals and intended to arrive at the 
conclusion . She then used the definition of minimal ideal to claim (without justification) 
that either  or . After using a theorem listed in the notes, she concluded , 
which in her mind finished the proof. Most of the above mentioned actions (e.g., assuming two 
minimal ideals, deriving a conclusion, and using modus ponens with a theorem) are examples of 
logic-like actions in the proving process. 

An implication for teaching that arises out of this study is that it might be useful for 
teachers to explicitly attend to students  logic-like actions in the proving process. Also, because 
formal logic occurs fairly rarely, one could teach it in context as the need arises. In addition, it 
would be good to explicitly help students to learn how to read and understand definitions, and 
when to introduce mathematical objects into a proof, because these together with interior 
reference constituted 49% of the lines analyzed. Some interesting questions arise from this study: 
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How many beginning graduate students need a course specifically devoted to improving their 
proving skills? Can one identify a range of logic-like actions that students most often need to use 
in constructing proofs? Would a structural analysis of proofs, in contrast to a line-by-line 
analysis, yield different results? In particular, is it reasonable to regard certain structures in a 
proof as logic-like? For example, knowing one can prove  or  by supposing not  and arriving 
at  has the effect of using logic. So is it reasonable to regard not  as a logic-like 
structure in a proof of  or ? 
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Introduction 
 Many would agree that reading is critical for gaining understanding within a discipline, 
and that students will not reap the full benefits of their studies if they skim through (or worse yet, 
ignore) their reading assignments.  Even in quantitative disciplines such as mathematics, teachers 
may assign readings from the textbook with the intent of having students come to class more 
prepared and giving them exposure to more material than can be taught in the time allotted to 
class meetings.  However, few teachers would be so naïve as to believe that students actually 
read the text, and often complain about the unpreparedness of the students for instruction. On 
their part, students complain about how hard it is to read mathematics textbooks, perhaps 
because they lack appropriate reading strategies that might remedy the situation. Indeed, even 
first-year undergraduate who are good general readers do not read mathematics textbooks well 
(Shepherd, Selden & Selden, 2009).  
 One solution to the problem of getting students to read mathematics texts effectively, 
despite their deeply instilled poor reading habits, is to harness technology.  Online mathematics 
textbooks are a fairly recent (and increasingly popular) addition to the available set of 
instructional resources.  In contrast to physical textbooks, online texts have affordances for 
interactive and responsive engagement. In particular, online texts can include activities that 
foster effective reading through embedded tasks that provide feedback and hints. The purpose of 
this project is to begin to understand how readers interact with an online mathematics textbook in 
a quasi-authentic setting, and to study the effects of some scaffolded online activities intended to 
help students monitor their comprehension of what is read. 
 
Literature & Theoretical Perspective 
 Reading involves both decoding and comprehension. On the comprehension side of the 
coin, research has identified several strategies that good readers employ as they engage with a 
text (Flood & Lapp, 1990; Palincsar & Brown, 1984; Pressley & Afflerbach, 1995).  Of course, 
these strategies depend on the individual reader, the reader’s goals, and the material being read. 
Mathematics textbooks, in particular, are “closed texts” in the sense that they seek to elicit a 
well-defined, “precise” response that is not open to differing interpretations from readers 
(Weinberg & Wiesner, in press). Yet, many students have not been taught how to read their 
mathematics textbooks, and do not read them as intended. For instance, authors of mathematics 
texts include expository material to help students develop a deeper understanding of the 
mathematical concepts. Yet, despite the fact that an overwhelming percentage of students claim 
to read their mathematics textbooks for understanding, few students report attempts at reading 
the expository sections (Weinberg, in press). Our research addresses how students who are 
making an attempt to read their textbooks engage in this process, and how they might be better 
supported in their endeavors.      
 Our theoretical perspective is aligned with the view that reading is an active process of 
meaning-making in which knowledge of language and the world are used to construct and 
negotiate interpretations of texts (Flood & Lapp, 1990; Palincsar & Brown, 1984; Rosenblatt, 
1994). In helping students navigate mathematics texts, we advocate reading strategies that stem 
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from the Constructively Responsive Reading framework (CRR) that was developed in reading 
comprehension research (Pressley & Afflerbach, 1995). These strategies are intended to help 
students maximize their construction of knowledge from texts. In addition, we place an emphasis 
on cautious reading (Shepherd, Selden & Selden, under review) that helps students minimize 
inappropriate interpretations of their mathematics texts by detecting and correcting errors, 
misunderstandings, and confusions. Taken together, CRR-based strategies and cautious reading 
advocate encouraging students to carefully read expository text and check the correspondence 
between the inferences they have drawn and the author’s intent, and discouraging students from 
forging ahead without carrying out and evaluating their performance on tasks provided by the 
authors. 

 
Research Methods 

The participants are 30 students enrolled in sections of a redesigned precalculus course at 
a large southwestern university. The course uses an online text, Precalculus: Pathways to 
Calculus, which was developed at Arizona State University and was designed to foster students’ 
ability to reason conceptually about functions and quantity (Carlson & Oehrtman, 2009). 
Students were recruited to volunteer for participation in seven Study Hall sessions once weekly 
of approximately 1.5 hours each. Approximately half of the students received reading instruction 
prior to their participation in the research project. This reading instruction consisted of reading 
guides stepping them through how to read each of the first several sections of the online course 
text, and a 40-minute one-on-one reading session of one section of the text with the 
researcher/instructor that was carried out about 1/3 of the way through the semester. During the 
Study Hall sessions, students were asked to complete their current reading assignment on the 
computers provided. In order to investigate authentic student reading habits as closely as 
possible, nonintrusive screen capture software was used to measure activities such as scrolling, 
latency, and browsing. In addition, prior to and following their reading of the text at each Study 
Hall session, students completed short mathematical assessments based on the relevant text 
material. Other data sources included brief surveys addressing reading habits, and, for most 
students, admissions testing scores (SAT/ACT) as a control for mathematical and reading 
preparedness. Finally, half of the participants from each reading instruction group (received/did 
not receive) were randomly assigned during the final four Study Hall sessions to a version of the 
text in which questions with pop-down solutions (e.g., hidden answers) were replaced with 
scaffolded tasks that provided students with right/wrong feedback and sequences of hints1 (see 
Figure 1). 

 

                                                
1 The authoring tools for these activities were developed by the Open Learning Initiative at 
Carnegie Mellon University. 
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Figure 1. Example of pop-down activity (left) and scaffolded task with hint sequence (right). 

 
Implications for Further Research & Teaching  
 This research project is a preliminary step for identifying and constructing activities that 
promote effective reading strategies and that can be embedded in online mathematics textbooks. 
At this stage, we are restricting our activities to multiple-choice questions. There is a need for 
research that identifies statistically valid response choices that capture common student errors 
and ways of thinking so that appropriate sequences of hints can be designed. For instance, certain 
incorrect answers might be best addressed by posing hints that promote cognitive conflict with 
that particular way of reasoning. 
 We would also like to explore how students who rely on embedded scaffolded tasks to 
read their textbooks effectively can be graduated to the adoption of their own reading strategies 
that are consistent with reading for understanding. To address this issue, both the timing and 
manner in which the activities are faded need to be investigated.  
 Finally, this research has implications for how teachers can connect with the reading 
aspect of their students’ instruction. At present, in order to check whether students have 
completed a reading assignment, many teachers resort to giving quizzes during (valuable) class 
time on the relevant material. Online texts can be designed to capture and log student actions, 
and so provide indicators of whether (and how) students are completing their reading 
assignments. 
 
Summary 
 At the heart of our project is the goal of helping students become more effective readers 
of introductory level mathematics texts. In order to achieve this goal, we are harnessing the 
affordances of technology, and exploring the ways that activities can be embedded within online 
textbooks. Although the goal of these activities is to foster reading with understanding, we do not 
anticipate that they will produce “cautious readers.” Instead, our much more modest hope is that 
we can help students turn over a new page in the way they interact with their textbooks.  

 
Discussion Questions  

1. Traditional texts: We chose a text with a large amount of exposition and in which 
examples function as checks of understanding rather than as analogies, which is the case 
in traditional precalculus texts. Since online versions of traditional textbooks are also 
becoming more popular, how might we support students reading these texts? 

2. Fading: How might readers be weaned from having to engage in embedded activities in 
order to read effectively to adopting their own strategies for reading with understanding? 
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Calculus appeared from the real world application, has a real world context, and is fundamentally a 
dynamic conception; this is why the framework of Realistic Mathematics Education (RME) should 
be the most efficient approach to teaching and learning calculus. The current study is devoted to 
investigation of the computer simulated bodily path optimization calculus. I adapted the conception 
of ‘tacit intuitive model’ for the particular calculus task of path optimizations. My hypothesis is that 
tacit mental modeling takes place with the allocentric frame of reference. I designed a paradigm in 
the Second Life virtual environment which allows simulating the navigational task of path 
optimization with two different mediums and with voluntary choice between allocentric/egocentric 
views.  The reinventing the calculus problem of path optimization from the virtual navigation and its 
mathematizing would give a powerful intuitive link between the everyday real world problem and 
its symbolic arithmetic. 
   
 Key words: calculus, virtual navigation, egocentric/allocentric view, tacit intuitive model, Realistic 
Mathematics Education 

Introduction 

In the late 1980s the ‘Calculus Reform Movement’ began in the USA. The Calculus Consortium at 
Harvard (CCH) was funded by the National Science Foundation to redesign the Calculus curriculum 
with a view of making Calculus more applied, relevant, and more understandable for a wider range 
of students.  

The didactical goal of the present study is to help learners to ‘unearth’ (Torkildsen, 2006) a 
calculus path optimization problem from the real world navigation problem simulated in the Second 
Life (SL) virtual reality.  The learners would reinvent the calculus problem by controlling computer 
simulated body movements with either egocentric or allocentric views. The egocentric view 
provides the perception of ‘being’ within the virtual environment and seeing objects from the ‘first 
person’ view. The allocentric view is provided when the learner’s avatar is present in the 
environment and the learner controls the avatar navigation: in this case the virtual reality objects are 
spatially related to the avatar. This enactive computer paradigm would allow the learners to explore 
mathematical ideas being engaged immediately into the optimal navigation problem. Since the 
designed virtual environment contains two different mediums, the task of path optimization should 
involve the intuitive anticipation of speed difference in different mediums: when being on land and 
when being in water; thus, the intuitively planned optimal path will be based on this speed 
difference anticipation. After a few trials of virtual navigating, the learner should reinvent the 
calculus path optimization problem and should try to mathematize it.  When the problem has been 
mathematized the learner can connect and compare the intuitive understanding of the problem with 
its symbolic arithmetic. According to Tall (1991), “by providing a suitably powerful context, 
intuition naturally leads into the rigor of mathematical proof” (p.20). Since this paradigm gives a 
strong link between the everyday real world problem and its symbolic formal representation, it 
strongly relates to the theoretical framework of RME (Freudenthal, 1991; Freudenthal, 1973; 
Freudenthal, 1968).  
 The research goal of the study is to explore how egocentric and allocentric frames of references 
relate to different phases of optimal path problem solving, which, in turn, would provide better 
understanding of mental processes during the particular calculus problem solving.   
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Theoretical perspective and related literature 

Navigation consists of two aspects: a topographic aspect and a procedural aspect that represents the 
trip itself (Besthoz, 2000). The topographic aspect is connected with a construction of cognitive 
map; the procedural aspect is connected with actual movements.  Both topographical and procedural 
navigations include spatial orientation (ibid). Virtual navigation differs from real navigation: it 
doesn’t involve vestibular, translation, or locomotor memory which, according to Berthoz (2000), is 
inherent to real space body navigation.  In virtual environment the visual system plays the main and 
crucial role.  
The new virtual paradigm of optimal path navigation is intrinsically of enactive nature. Tall (1997), 
in his turn, asserted that “the calculus concepts are starting from enactive experiences as an intuitive 
basis” (p.4). So, the optimal path virtual navigation paradigm is in accordance with his 
schematization of building of the concepts of calculus.   
On the other hand, the computer simulation of body movements expressed either by an egocentric 
view of ‘being’ in the environment or by an allocentric view trough controlling the avatar 
navigation, provides an explicit perception of ‘bodily’ navigation which can be expressed in terms 
of embodiment. Tall (2007) categorizes mathematical thinking into three intertwined worlds: the 
conceptual-embodied, the proceptual-symbolic and the axiomatic-formal. He considers such 
categorization particularly appropriate in the calculus. According to Tall (2007), the conceptual-
embodied world of mathematics is based on perception of and reflection on properties of objects. 
For the particular dynamic tasks of optimal navigation and taking into account the dynamic nature of 
calculus, I modify a conceptual-embodied world into ‘procedural- conceptual-embodied’ world, 
reflecting embodied dynamism of body movement. This extended world is based not only on 
perception of and reflection on properties of objects, but also on an active body experience in its 
dynamism such as change of body position, speed, and acceleration.  
For the navigational type of tasks, we first, mentally simulate the trajectory, and then we compare 
the actual movement with the predicted movement (Berthoz, 2000). For the mental simulation stage 
of navigation I adopted the conception of ‘tacit intuitive model’ introduced by Fischbein (1989).  
The common characteristics of the tacit intuitive models are that they have structural entity; they are 
of practical and behavioral nature; they are mental, intuitive, and primitive; they are representable in 
terms of action; they are autonomous entity with their own rules; they are not perceived consciously 
by an individual. The important characteristic of the intuitive mental model is its robustness and its 
capacity to survive long after it no longer corresponds to the formal knowledge (ibid).  For the case 
of optimal path navigation the last characteristic should be omitted and the tacit intuitive model 
should be modified. As Cazzato, Basso, Cutini, & Bisiacchi (2010) pointed out: people produce 
incomplete plans at the beginning of a route and continuously make decisions along the trajectory of 
navigation. So, the tacit intuitive model should be modified into a more flexible conception, 
reflecting dynamism and procedural nature of continuous adjustment according to the model’s 
effectiveness. The term of ‘tacit dynamics simulation’ would reflect both the procedural embodied 
world, on the basis of which the kind of tacit model is constructed, and flexibility and procedural 
character of such intuitive modeling.  
The hypotheses of the research are: 1) the tacit dynamics simulation   of finding the optimal path 
takes place with allocentric frame of reference even when the environment is viewed egocentrically; 
2) the topographic phase of navigation also takes place with allocentric frame of reference, even if 
the virtual environment is viewed egocentrically; 3) the procedural phase of navigation can involve 
both frames of references in parallel, which is in accordance with Burgess’s (2006) assertion.  
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Experimental design and methodology 

The designed in SL virtual environment paradigm contains a big water pool with a platform, located 
at B (Figure 1). The paradigm is related directly to the calculus problem of finding the optimal path 
from an initial position A to the platform B under the condition that available paths must transverse 
two different mediums, involving different rates of speed (Figure 1).  

 

 

 

 

 

 

 
 

Figure 1:  Paths to the platform (adopted from Pennings, 2003) 

 There are three phases in the experimental paradigm: 1) the exploration phase which allows the 
participant to learn how to control the avatar, and how to interchange between egocentric and 
allocentric views; 2) the topographic phase of staying on the platform and memorizing its location 
with the egocentric view; 3) the procedural phase of reaching the invisible platform from the beach 
position A as fast as possible; the participant can choose between the egocentric and the allocentric 
views; 4) repeating the topographic and the procedural phases with changed location of the platform 
B; 5) the problem mathematizing phase.   

The last phase 5) includes the following reasoning. Let T(y) represents the time of reaching the 
platform. Let the participant decides to get into water at D, which is of y meters from C. Let z 
represents the entire distance from A to C; r is the running/ walking speed on land; s is the speed in 
water. To minimize T(y) means that T/(y)=0, then  
  

;    T/(y)=0,  which gives   

The learners can see from the formula that since r and s are fixed, y is proportional to x. They can 
compare this result with their virtual navigation based on their intuitive mental simulation. 
The measurements to be analyzed include: distance between B and C for every changed location of 
platform B, distance between A and D, choice of view (allocentric or egocentric) during the 
procedural phase of navigation, and after experiment interview data, which include the following 
questions:  a) What view did you choose (allocentric or egocentric) and why ? b) What did you have 
in mind choosing your particular path to the hidden platform? c) How mathematics describing the 
process corresponds to your intuitively simulated optimal path? 
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Conclusion 

This research is aimed to “un-earth” calculus from a virtual optimal path navigation problem. The 
study can have an important learning effect due to enactive nature of revealing the innate capacities 
of tacit intuitive simulation of optimal path.  Mathematizing the problem has a certain didactical 
value as a particular case of RME. Choice of view at the procedural stage of navigation should serve 
as an indirect indication of what frame of reference is utilized while constructing cognitive map and 
simulating mentally the optimal path. The offered study can have an important learning effect from 
the viewpoint of developing intuitive understanding of the calculus problem due to active 
participation of learners in reinventing it from the real life situation. 

Questions to the audience:  

1) The SL virtual environment implies the same speeds in water and on land. What is better: to 
program different speeds in different mediums or let learners reveal themselves after a few 
trials that the speeds in the SL are the same and let learners explore this special case 
mathematically? 

2) To what extent voluntary choice between egocentric and allocentric views in the SL virtual 
environment reflects corresponding frames of references as the brain encodings? 

3) Do the number and quality of distant cues influence the path choice?  
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Quantitative reasoning combined with gestures, visual representations, or mental images has 

been at the center of much research in the field of mathematics education. In this report we 

extend these studies to include complex numbers and complex variables. We provide a construct 

analysis for the teaching and learning of complex variables, which includes a description of 

existing frameworks that hypothesize about how students can best comprehend the arithmetic 

operations of complex numbers. In order to test these conjectures, we interviewed 

mathematicians, physicists, and electrical engineers to explore how they perceive complex 

variables content. Through phenomenolgogical and microethnography analysis methods we 

found how these experts integrate perceptuo-motor activity and metaphors into their descriptions.   

  

Keywords: Complex variables, Operational components, Perceptuo-motor activity, Structural 

components 

 

 

The study of learning about numbers and their arithmetic operations is one of the best-

developed fields in mathematics education research. The literature goes beyond the four basic 

operations to include composing and decomposing of whole numbers (Kilpatrick, Swafford, & 

Findell, 2001), verbal number competencies (Baroody, Benson, & Lai, 2003), ordering and 

comparing (Brannon, 2002), modeling and visual representations of the operations of whole 

numbers (Sowder, 1992). The research is not limited to whole numbers; rational numbers are 

part of the extensive literature related to number sense (Steffe & Olive, 2010). The studies on 

rational numbers entail investigating students’ ability to create word problems that require 

division or multiplication of two fractions as well as students’ visual representations of 

multiplication and division of two fractions. Studies of quantitative reasoning have elaborated 

the role of forming a mental image of the measurable attributes in a situation and conceiving of 

the relevant operations and relationships among these quantities (Thompson, 1994; Moore, 

Carlson, & Oehrtman, 2009). A natural extension to these studies is to investigate similar 

characteristics in the teaching and learning of complex numbers.  

The main purpose of this preliminary report is to share a construct analysis for 

understanding complex numbers and variables. A secondary purpose is to describe how experts 

such as mathematicians, engineers, and physicists conceive of complex variables in both 

contextual and purely mathematical problems. Methodologically, we explore their use of 

geometric representations, gestures, verbiage, and symbolism to support their reasoning and 

convey their understanding. Our construct analysis is based on the few existing pieces of 

literature that hypothesize about students’ understanding of complex numbers and a couple of 
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studies that begin to provide empirical evidence about students’ perspective for adding and 

multiplying complex numbers. We also include a description on how historical perspectives may 

influence the teaching and learning of complex variables.  

Sfard (1999) argued for the need for students to become more flexible in moving between 

operational and structural conceptions of complex numbers. She encouraged viewing the 

operational and structural components of complex numbers as complementary pieces rather than 

as dichotomous. Researchers and instructors could support this perspective by integrating the 

two representations, for example through geometric illustrations of the operations since 

“visualization, … makes abstract ideas more tangible, and encourages treating them almost as if 

they were material entities” (Sfard p. 6). In order to transition from an operational to a structural 

perspective of complex numbers, Sfard posed three stages that students must navigate in order to 

develop their understanding of complex numbers. 

 The first stage is interiorization, which occurs when a process is performed on a familiar 

object. For the case of complex numbers Sfard claimed students who are just becoming 

proficient in using square roots, would be at the interiorization stage. Condensation is the second 

stage and it occurs when the learner is able to view a process as a whole without the tedious 

details. For example, students may continue to view 5+2i as a shorthand for certain procedures, 

but they would still be able to use this symbol in multi-step algorithms. The third stage, 

reification, is achieved when the learner has the ability to view a novel entity as an object-like 

whole. Learners who are at this stage would recognize 5+2i as a legitimate object that is an 

element of a well-defined set. According to Sfard (1999) this stage occurs as an “instantaneous 

leap” much like an “aha moment.” Although the stages presented by Sfard are insightful, they do 

not provide empirical evidence that students actually follow these stages in learning complex 

variables. Furthermore, Sfard’s analysis is restricted to introductory-level conceptions about 

complex numbers. We intend to elaborate the interplay between more advanced applications and 

learners’ evolving conception of complex numbers/variables. 

 Lakoff and Núñez (2000) also offered a framework for the conceptual development of 

complex numbers. Their framework entails a conceptual blend of the real number line, the 

Cartesian plane, and rotations combined with the use of metaphor for number and number 

operations. Similar to historical descriptions, they portrayed multiplication of a real number x by 

–1 as a rotation of 180° to obtain –x. Thus, multiplying a number by i is equivalent to rotating by 

90° counterclockwise. The beauty of this description is that it works mathematically, but 

empirical evidence suggests students do not view multiplying a number by –1 as a rotation of 

180°, rather they perceive it as a reflection (Conner, Rasmussen, Zandieh, & Smith, 2007). This 

might be explained by the fact that students are focused on the real number line rather than the 

Cartesian plane. 

 In a more recent study, Nemirovsky, Rasmussen, Sweeney, and Wawro (in press) 

described the results of a teaching experiment with prospective secondary teachers enrolled in a 

capstone course. The goal of the teaching experiment was to create an instructional sequence that 

allowed students to create and discover the conceptual meaning behind adding and multiplying 

complex numbers. In this phenomenological study, the researchers incorporated 

microethnography to portray students’ body activities over short time periods. These depictions 

included language use, gaze, gestures, posture, facial expressions, tone of voice, etc. As a result 

of their study, the researchers found: 

1. mathematical conceptualization of adding and multiplying complex numbers was 

communicated through and comprised of perceptuo-motor activity, and 
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2. perceptuo-motor activity situated by the learning environment and the setting influenced 

the learning about the structural components behind adding and multiplying complex 

numbers. 

This study is the first to provide hypotheses about how students make sense of arithmetic 

operations of complex numbers with supporting empirical data. As such it may provide insight 

into how best to introduce complex numbers to students besides as a mechanism for solving 

! 

x
2

+1= 0 . Incorporating reconstructed historical pieces of the development of complex numbers 

may also engender structural understanding of this area of mathematics (Glas, 1998).   

Historically, the introduction and initial development of complex numbers was purely 

algebraic to resolve the issue of finding the real solution to certain cubic equations. Even after 

the square root of negative numbers was introduced, mathematicians such as Cardan found such 

numbers to be sophistic because they could not attach a physical meaning to these numbers 

(Nahin, 1998). These mathematicians tended to ignore the conceptual difficulties of these 

numbers and proceeded to apply the procedures “mechanically” (Glas, 1998, p. 368). It was 

Wallis who first dedicated much of his career attempting to represent the square root of a 

negative number through geometric constructions. Although, Wallis made progress his work was 

not convincing to other mathematicians or himself. It was more than a hundred years later that 

Wessel introduced the interpretation of placing   at a unit distance from the origin on an 

axis perpendicular to the real number line to form the complex plane and that multiplying by i 

geometrically represents a rotation of 90º counterclockwise. This representation allowed 

mathematicians to begin to think about complex numbers as vectors, which in turn led to 

geometric representations of the arithmetic operations of complex numbers. These models were 

essential for mathematicians to prove that extended theories of complex numbers (i.e., 

quaternions, Cauchy-Riemann equations) are consistent and preserve the structure of the 

complex number system. Such historical developments may provide insights into how “concepts 

and theories can be best brought to light” for students (Glas, 1998, p. 377).  

From the literature and personal reflection we hypothesize a framework in which learners 

may gain a better understanding of complex numbers and complex valued functions if they have 

opportunities to visualize arithmetic operations of two complex numbers, complex valued 

solutions to a quadratic equation, mappings of complex-valued function, poles, geometrical 

illustrations of theorems, etc. In order to better prepare ourselves to conduct teaching 

experiments that corroborate this hypothesis, we began our investigation by interviewing 

“experts.” We used phenomenological methods with microethnography to synthesize their 

responses and to describe how they integrate perceptuo-motor activity and metaphors. We have 

chosen to interview experts since a goal of this research program is to eventually build a theory 

that describes how students understand the structural components of complex variables beyond 

the arithmetic operations of two complex numbers. Our hope is that this framework informed by 

experts’ perceptions will help inform our future research.  

As part of our presentation, we will show video clips of our interviewees so that the 

audience has an opportunity to confirm or argue against our interpretations.  Questions for our 

audience are: 

1. How can the interview questions be improved? 

2. Is there another framework for data interpretation besides microethnography that 

might be more appropriate? 

3. What impact might social constructivism have on student responses that are not 

evident in expert responses? 
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4. How might recognizing the structural component of complex numbers and/ or 

complex variables contribute to understanding the abstract facets of this mathematical 

domain?   
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Spanning set: an analysis of mental constructions of undergraduate students 
 

 
María Trigueros, Asuman Oktaç, Darly Kú 

 
Abstract 
 
In this study we use APOS theory to propose a genetic decomposition for the concept of 
spanning set in Linear Algebra. We give examples of interviews that were conducted 
with a group of university students who were taking an analytic geometry course and 
their analysis in relation to our genetic decomposition. We also comment on the nature 
of difficulties that students experience in constructing this notion. One of the results that 
are obtained in this research that is in line with previous results reported in the literature 
is the difficulty in distinguishing a spanning set from a basis. Another aspect is that 
students have varying levels of difficulty when working with different types of vector 
spaces. As was expected, the concept of linear combination plays a very important role 
in the understanding of the notion of spanning.  
 
Keywords: Spanning set, APOS Theory 
 
 
Introduction and research objective 
 
In an earlier study about the construction of the concept of basis in Linear Algebra (Kú, 
Trigueros and Oktaç, 2008) we observed the difficulties that students have with the 
concept of spanning set and the coordination of the underlying process with the process 
related to linear independence. These difficulties seemed to interfere in a serious 
manner with the construction of an object conception of basis of a vector space. As a 
result we decided to carry out research in order to look at these concepts separately, so 
that we could offer an explanation about the construction of each concept and related 
problems. 
 
Some literature published previously touch certain issues related to the learning of 
spanning sets focusing on task design, cognitive difficulties and suggestions for 
teaching (Nardi, 1997; Ball et al., 1998; Dorier et al., 2000; Rogalski, 2000). What we 
are interested in with this research is to offer a viable path that students may follow in 
order to construct this concept as well as explaining the nature of related difficulties 
while learning it. Informed by our theoretical analysis and empirical data, we also focus 
on making pedagogical suggestions. 
 
Theoretical framework and methodology 
 
APOS theory has been used successfully in explaining the construction of several 
concepts in undergraduate mathematics curriculum. Its use with Linear Algebra 
concepts is more recent (Roa-Fuentes and Oktaç, 2010; Parraguez and Oktaç; 2009; 
Trigueros, Oktaç and Manzanero, 2007). We continue with this line of research and 
study the mental constructions and mechanisms involved in the learning of spanning 
sets. 
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The steps that are followed in APOS-related methodology are given in Asiala, Brown, 
DeVries, Dubinsky, Mathews and Thomas (1996). In line with this methodology, our 
research starts with a theoretical analysis which consists in a genetic decomposition as a 
possible way to construct the concept of spanning set. This is done in terms of mental 
constructions (actions, processes, objects, schemas) and mechanisms (interiorization, 
coordination, encapsulation, assimilation) that students might employ when learning 
this concept. We then designed an interview that consists in 7 questions, in order to test 
the viability of our genetic decomposition. This instrument was applied to a group of 11 
undergraduate students who were taking an analytic geometry course at a Mexican 
university. These interviews are analyzed according to our theoretical framework (we 
are at this stage of our research). We will revisit the preliminary genetic decomposition 
and make the necessary modifications. Finally we hope to make some suggestions as to 
the didactical strategies to be employed, in order to facilitate the construction of this 
concept. 
 
In our design of the interview questions we took into account different aspects of a 
spanning set. We asked questions of the type whether a certain set spans a given vector 
space, but we also asked the construction type of questions, namely given a vector space 
identifying possible spanning sets for it. We also asked the students to compare the 
vector spaces generated by different spanning sets. By dealing with different aspects of 
the concept of spanning set in this manner, we hope to shed light on where the 
difficulties lie and verifying the mental constructions involved in its learning.  
 
Some results 
 
One of the results that are obtained in this research that is in line with previous results 
reported in the literature (Nardi, 1997) is the difficulty in distinguishing a spanning set 
from a basis. Another aspect is that students have varying levels of difficulty when 
working with different types of vector spaces. In particular, when the vector space is not 
Rn, the interpretation of a spanning set becomes problematic. On the other hand, as was 
expected, we confirmed that the concept of linear combination plays a very important 
role in the understanding of the notion of spanning. We are also exploring the 
connections that students seem to make among the concepts of linear 
independence/dependence, basis, linear combination, dimension, spanning set and 
generated vector space. Our analysis so far indicates that it will be necessary to make 
certain modifications in the preliminary genetic decomposition, but the general model is 
in line with data. 
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The Construction of Limit Proofs in Free, Open, Online, Help Forums 
 

Carla van de Sande & Kyeong Hah Roh 
Arizona State University 

 
Abstract: Free, open, online, help forums are found on public websites and allow students to post 
queries from their course assignments that can be responded to asynchronously by anonymous 
others. Several of these forums are tailored to helping students with mathematics assignments 
from various courses, and Calculus, in particular, is a heavily trafficked area. Students use the 
forums when they have reached an impasse, either in constructing or understanding a solution to 
an exercise that they have encountered, or to seek verification of their own reasoning. The 
queries posted by students include both computational tasks as well as proof constructions. In 
this project, we examine threads on limit proofs for single-variable functions from two popular 
online forums. Our goal is twofold: to characterize the help students are receiving as they wrestle 
with using the formal definition of limit, and to compare the construction of proof to other tasks 
in online forums. 
 
Keywords: computer-mediated discourse; limits; online help; student understanding of proof 
 
Introduction 

As students tackle assignments or struggle to understand their coursework, they seek 
access to a large and varied set of resources. One such resource that has emerged fairly recently 
and appears quite popular is found on the Internet. Free, open, online, help forums are located on 
public websites and allow students to post queries from their course assignments or materials that 
can be responded to asynchronously by anonymous volunteers.  Help forums exist for many 
subject areas and grade levels, with mathematics, in general, (and Calculus, in particular) 
receiving much traffic. Students use the forums to post questions from exercises and examples 
that they encounter in their material classrooms. These include both computational or procedural 
tasks, as well as proofs. It is the help seeking for the construction and comprehension of proofs 
in the forums that has drawn our attention. Of the many proof types that surface on the forums, 
we focus on limit proofs for single-variable functions. This type of proof serves as students’ first 
introduction to rigorous proof in Calculus, but is challenging and often poorly understood. Our 
goals are to characterize the help that students are receiving as they wrestle with examples and 
exercises of proofs using the formal definition of limit, and to compare help seeking on proof to 
that on other types of exercises in online forums. 
 
Literature & Theoretical Perspective 

In contrast to being cheat sites, there is evidence that many forums profess the intent to 
assist students rather than to do their exercises for them (van de Sande & Leinhardt, 2007). In 
such forums, students, instead of simply publishing the problem statement, are more prone to 
demonstrate understanding of the exercise (e.g., what they have tried) and contribute to the 
construction of the solution (e.g., by responding to helpers). Students also take more 
responsibility for initiating resolution by communicating how the interaction was helpful. In 
terms of the helpers, in some forums, they exhibit a strong sense of community, as they correct 
one another, work collectively to help individual students, and engage in collegial banter. The 
students and helpers who participate in these forums are using technology to engage with one 
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another on the mathematics that students are expected to perform. Proof is an example of one 
such activity that students face. 

However, students have little experience knowing what counts as mathematical proof and 
how these differ from common sense proofs. Unlike the logical deduction used by 
mathematicians, undergraduates consider specific cases to constitute proof (Harel & Sowder, 
1998). Even for students who possess an accurate conception of mathematical proofs, proof 
writing is challenging  (Selden & Selden, 2008). One of the main difficulties occurs when 
students structure their proofs in terms of the chronological order of their thought process instead 
of rearranging them with careful consideration on proper implications (Dreyfus, 1999).  It is also 
a challenge for students to transform informally written statements into mathematically formally 
structured ones in calculus (Selden & Selden, 1995). In addition, students have difficulty in 
relating conceptual ideas that can help them generate their proofs. Knowing formal definitions or 
theorems is insufficient for students to construct a proof (Weber, 2001). Research calls attention 
to personal heuristic knowledge of mathematical concepts (Roh, in press), and the connection of 
heuristic ideas about mathematical concepts to proof construction (Raman & Weber, 2006; 
Raman & Zandieh, 2009). 

We hold that help seeking is an important strategy that can be instrumental in the 
development of autonomous skill and ability (Nelson-LeGall, 1985). In terms of constructing 
limit proofs, this ability requires not only deductive reasoning, but also abductive reasoning to 
extract a pattern from observations, measurements, or events in a holistic manner, and inductive 
reasoning to identify or synthesize common regularities across several events.  

 
Research Methods 

Our general methodology is one that has been applied in the context of open, online, help 
forum research (van de Sande & Leinhardt, 2007). It involves selecting an online forum(s) as a 
research site, searching the archives using keywords (such as “epsilon” and “prove”), and 
selecting threads from the search that match a particular target (here, limit proofs for single-
variable functions). We have adopted this observational methodology for ethical reasons and 
because of the exploratory nature of the research.  

For this project, we selected two online mathematics help forums, located at 
www.freemathhelp.com (FMH) and www.sosmath.com (SOS). Both forums allow any member 
to contribute (as a helper) to any ongoing thread (as opposed to restricting the set of helpers or 
assigning incoming queries to one particular helper). This participation structure allows multiple 
helpers to be involved and interact in a given thread. In addition, member status in both forums 
depends only on the number of individual threads to which one has contributed (as opposed to 
depending on others’ ratings of one’s contributions). Finally, both forums are functional and 
active in the sense of daily postings and membership, and have existed for about a decade. 

Our search and selection process in the current FMH and SOS archives netted 73 threads 
involving limit proofs for single-variable functions: FMH, n=19, dated 8/30/05-6/13/10 and 
SOH, n=48, dated 6/1/03-5/26/10.  

 
Preliminary Results  

We analyze the types of query in terms of (Q1) functions (linear or nonlinear functions), 
(Q2) layers of quantification (e.g., in finding a value of ! for a given value of !, or for any !), and 
(Q3) student need (how to prove or why we prove what we prove). We also analyze the types of 
help in terms of (H1) representations (algebraic or graphical approach) and their connections, 
(H2) reasoning promoted by helpers (inductive, abductive, or deductive reasoning), and (H3) 
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pedagogical moves (lecturing, scaffolding, or hinting). Finally, we analyze levels of resolution 
from the student perspective. 
 
Example: On September 30, 2009, a student pomar posted a problem on SOS “Use the given 
graph of f(x) = !x to find a number " that fulfills the following condition. If absolute value(x-4) < 
delta then absolute value(sqrt(x)) - 2) < 0.4, " =” with a message “I do not know how to solve 
this problem can you please show the steps to solve this problem and explain why you did what 
you did.” Pomar received 3 responses from two different helpers, Jack and measurable, as 
follows: 
! Jack: “It’s easy enough to do directly: If |x-4|<", then |!x+2| |!x-2|<".” (September 30, 2009) 
! measurable: “It is obvious that " = would do.” (October 1, 2009) 
! Jack: “Expanding on my earlier answer... If |!x-2|<0.4, then -0.4<\!x -2<0.4, so 1.6<\!x 

<2.4. Now, add 2 to get 3.6 <!x +2<4.4. The part I care about is the upper bound of 4.4. 
Since we are adding and !x  0, then !x +2<4.4 is equivalent to |\!x +2|<4.4, so |!x -2|<0.4 
=> |x-4| = |!x -2| |!x +2| < (0.4)(4.4) =1.76. Thus " =1.76 or any other smaller number will 
do, such as measurable’s answer.” (October 1, 2009) 
 

We claim that this exchange exhibits the following characteristics: 
! (H1) Focus on algebraic manipulations without connections to graphical meaning (Even the 

graph that the student mentions is never addressed.) 
! (H2) Improper use of abductive reasoning (Jack) or inductive reasoning (measurable)  
! (H3) Restricted range of pedagogical moves (Scaffolding and hinting are not in evidence.) 
! Low level of resolution from perspective of student (Student need to know how and why we 

construct " that way is not addressed.) 
 
Implications for Further Research 

Students are using open, online help forums to seek advice on comprehending and 
constructing proofs requiring the formal definition of limit. Our preliminary findings suggest that 
the help they are receiving from this resource is unsatisfactory based on our understanding of 
proof construction, the formal definition of limit, and student reasoning. This work points to the 
need to either develop new, or modify existing, theory-based approaches to teaching limit proofs 
in response to student queries in an online forum environment. Furthermore, the major limitation 
of our methodology, namely that using observations alone severely restricts the analysis of 
student and helper thinking, calls for experimental studies that link activity on the forum to 
mathematical understanding and performance.  

 
Discussion Questions 
1. Can you suggest relevant analytical frameworks for our observational research project? 
2. How do you envision a trajectory from an observational to an experimental research program? 
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The van Hiele Theory Through the Discursive Lens: 

Prospective Teachers’ Geometric Discourses 

 

Sasha Wang  

Michigan State University  

 

Abstract 

This project investigates changes in prospective elementary and middle school teachers’ van 

Hieles levels, and in their geometric discourses, on classifying, defining and constructing proofs 

with geometric figures, resulting from their participation in a university geometry course. The 

project uses the van Hiele Geometry Test from the Cognitive Development and Achievement in 

Secondary School Geometry (CDASSG) project, in a pretest and posttest, to predict prospective 

teachers’ van Hiele levels (Usiskin, 1982), and also uses Sfard’s (2008) framework to analyze 

these same prospective teachers’ geometric discourses based on in-depth individual interviews. 

Additionally, the project produces a translation of van Hiele levels into a detailed model that 

describes students’ levels of geometric thinking in discursive terms. The discussion will focus on 

studying college students’ reasoning and methods of proof regarding geometric figures in 

Euclidean geometry. 

 

Keywords: prospective teachers, Euclidean geometry, mathematical discourse, the van Hiele 

Theory 

 

Over the past decade, there has been an increasing push in the mathematics education research 

community to study students’ reasoning and understanding in the teaching and learning of 

mathematics, and to examine issues emphasizing the use of vocabulary and terminology in the 

mathematics classroom. In response, this project investigates the changes in prospective 

teachers’ levels of geometric thinking, and the development of their geometric discourses, in the 

classification of quadrilaterals.  

 

Theoretical Framework 

In Sfard’s (2008) Thinking as Communicating: Human Development, the Growth of Discourses, 

and Mathematizing, she introduces her commognitive framework, a systematic approach to 

analyzing the discursive features of mathematical thinking, including word use, visual mediators, 

routines, and endorsed narratives. To examine thinking about geometry, this project connects 

Sfard’s analytic framework to another, namely the van Hiele theory (see van Hiele, 1959/1985). 

The van Hiele theory describes the development of students’ five levels of thinking in geometry. 

The levels 1 to 5 are described as visual, descriptive, theoretical, formal logic and rigor. In 

addition, this project produces, on the basis of theoretical understandings and of empirical data, a 

detailed model, namely, the Development of Geometric Discourse. This model translates the five 

van Hiele levels into five discursive stages of geometric discourses with respect to word use, 

visual mediators, routines, and endorsed narratives at each van Hiele level.    

 

Three overarching questions guide the project: (1) How do prospective teachers’ familiarities 

with basic geometric shapes, abilities to formulate conjectures, and abilities to derive geometry 

propositions from other geometry propositions change as a result of their participation in a 

university geometry course? (2) What are the changes in prospective teachers’ geometric 
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thinking with regard to the van Hiele Levels? (3) How do the findings help to revise the 

proposed model of geometric discourse development?  

 

Method 

Guided by these research questions, the process of inquiry includes the data collection and 

analysis of a pretest and posttest, each of which is followed by the collection and analysis of 

interview data. Seventy-four college students who enrolled in a college mathematics content 

course for elementary and middle school teachers participated in the pretest and posttest. 

Twenty-one of these 74  students participated in the interviews. Data for this project comes from 

three resources: (1) Written responses to the van Hiele Geometry Test (see Usiskin, 1982) (from 

pretest and posttest), (2) Transcripts (from two in-depth interviews, the first interview conducted 

right after pretest, and the second right after posttest), (3) Other written artifacts (students’ 

written statements, and answer sheets to the tasks during the interviews). 

 

Data collection takes place in four phases: (1) the pretest is administered to all students during 

class time in the first week of the semester, (2) Student volunteers are interviewed a week after 

they participae in the pretest, (3) All students participate in the posttest at the end of the 

semester, (4) Students who participated in the interviews at the beginning of the semester are 

interviewed once more. All tests are collected and analyzed. All interviews are video and audio 

recorded. All interview data are transcribed and analyzed. 

 

Results 

Preliminary results suggest that most students in the project have moved one or two van Hiele 

levels, and the majority of the students’ levels of geometry thinking are at van Hiele levels 2 or 3 

after their participation in a college geometry course. However, when comparing a student’s 

written response in the van Hiele Geometry Test with his/her interview response, it appears that 

the van Hiele level of a student determined by the written test is not always coherent with 

expected geometric discourse at the given level described in the model of the Development of 

Geometric Discourse. For example, after being assigned to van Hiele level 3 based on his/her 

written response in the van Hiele Geometry Test, the student is interviewed. Analysis of the 

student’s geometric discourse with respect to his/her word use, routines, visual mediators and 

endorsed narratives shows that the student’s van Hiele level is at level 2 instead of level 3. This 

result does not indicate that the van Hiele Geometry Test is inaccurate in determining students’ 

van Hiele levels, but rather suggests that using a discursive lens to analyze students’ geometric 

discourses at each van Hiele level provides additional information about the student’s levels of 

geometric thinking, and detects information which has been missed in the van Hiele Geometry 

Test. 

 

Educational Significance 

The project provides a better understanding of what prospective teachers know about geometric 

figures such as triangles, quadrilaterals and their properties, and of prospective teachers’ abilities 

in mathematical reasoning, conjecturing, and proving. The project also sheds light on prospective 

teachers’ use of mathematical terminologies and definitions related to triangles and 

quadrilaterals, through their geometric discourses. This information about prospective teachers’ 

competencies in geometry helps to improve the teacher preparation program with regard to their 

mathematical content knowledge. Additionally, the project produces, on the basis of theoretical 
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understandings and empirical data, a detailed model, the Development of Geometric Discourse. 

This model helps to identify additional information that are missed, or not clearly presented, in 

the general description of van Hiele levels through the analyses of geometric discourse. In 

practice, distinguishing students’ levels of geometric thinking helps to recognize obstacles faced 

by students, and provides information for instructors teaching prospective teachers, to help 

improve classroom interactions and instructions.  

 

I am interested in feedback from the audience about (1) the issues of students’ abilities in 

reasoning and proof in introductory undergraduate geometry courses; (2) students’ ways of using 

mathematical terminologies, definitions and propositions in mathematics classrooms; and (3) 

comments on the model, the Development of Geometry Discourses. 
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Title: Function Composition and the Chain Rule in Calculus 
Preliminary Report 
 
Aaron Wangberg, Winona State University 
Nicole Engelke, California State University Fullerton 
Gulden Karakok , UMERC (Umeå Mathematics Education Research Centre) , Umea University 
 

The chain rule is a calculus concept that causes difficulties for many students. While several 
studies focus on other aspects of calculus, there is little research that focuses specifically on the 
chain rule. To address this gap in the research, we are studying how students use and interpret 
the chain rule while working in an online homework environment. We are particularly interested 

 functions play a role in their understanding and 
ability to use chain rule in calculus? 

 
Keywords: Calculus, precalculus, procedural knowledge, conceptual knowledge, technology 
 
Literature Review 

Studies have indicated that success in calculus is likely linked to a robust understanding of 
the concept of function (Carlson, Oehrtman, & Engelke, 2010; Ferrini-Mundy & Gaudard, 
1992). Unfortunately, many students enter calculus with a weak understanding of the concept of 
function. Carlson (1998) investigated and described what is required for students to gain a 
mature understanding of the concept of function and concluded that a mature concept of function 
is slow to develop, even in strong students. Studies have also show that function composition is 
particularly problematic for students (Engelke, Oehrtman, & Carlson, 2005). 

There have been a number of studies that focus on what it means to understand the concept 
of derivative (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997; Ferrini-Mundy & Gaudard, 
1992; Orton, 1983; Zandieh, 2000). 
differentiation as a rule to be applied without much attempt to reveal the reasons for and 

(Orton, 1983, p. 242) In fact, many first semester calculus 
students earn a passing grade without ever achieving a conceptual understanding of the 
derivative. Students are adept at using rules to find the derivative function and using this result to 
compute the desired answer. When asked about the chain rule, most students will simply provide 
an example of what it is rather than explain how it works (Clark et al., 1997; Cottrill, 1999). The 
literature related to studies in calculus provide evidence that students develop more procedural 
understanding than conceptual in differentiation. However, there is a gap in the studies 
investigating the characteristics n of functions and the 
chain rule. We aim to provide a description of the possible relationships among these 
understandings.  
 
Theoretical Perspective 

Star (2005) carefully examines the existing literature on procedural and conceptual 
understanding in mathematics education and points out the necessity to develop broader 
frameworks to investigate both procedural and conceptual knowledge and understanding. Since 
the publication of Hiebert studies 
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have used the definitions and the framework (Rittle-Johnson, Siegler & Alibali, 2001). Hiebert 
and Lefevre state that conceptual knowledge is characterized most clearly as knowledge that is 

procedural knowledge consists of rules and procedures for 
. Star (2005) suggests broadening these 

definitions in order to provide more in depth analysis of both procedural and conceptual 
understanding. He criticizes earlier research studies not providing in depth analysis of these 
concepts but rather focusing on the order of them: Which comes first: procedural or conceptual 

 
toward procedural and conceptual knowledge and 

understanding to map out the s and the chain 
rule. We aim to describe possible characteristics of students surface and deep procedural 
knowledge and understanding of composition of functions and the chain rule by examining 
student work.  
 
Methodology 

The 41 students in this study are first semester calculus students enrolled at a large 
Midwestern University who regularly take online quizzes using tablet computers. Student work 
on several function composition and chain rule problems was collected using a modified online 
homework system and digital ink. The system records and replays, in real-time, the work each 
student did to complete the problem. Students had three opportunities to submit each problem. 
The system also collected how they modified the problem, enabling us to focus on students 
whose initial work was incorrect and to identify the steps they thought needed to be fixed in 
order to answer the problem correctly.  

Student ability to complete precalculus tasks, including the chain rule, was measured during 
the first four weeks of the semester. Students were given pre-tests including both the Pre 
Calculus Concept Assessment (PCA) Instrument (Carlson et al., 2010) and an 84-item 
precalculus assessment focusing on procedural knowledge. Students were allowed to practice 
items from the procedural assessment during the subsequent two weeks, and completed a post-
test involving the PCA and the procedural assessment during the fourth week. This data helps 
identify strengths and weaknesses in various students and as baseline data for our analysis of the 
student work gathered by the online homework system.  

 
Results 

Students completed function composition and chain rule problems during the first week and 
seventh week quizzes. For the purposes of this study, students are classified as strong, average, 
or weak according to their ability to work with function composition as measured by their initial 
and final scores on the PCA. The study is still collecting and analyzing data, some of which is 
shared below. 

The students were given the following problem during the first week of the semester: The 
graph of y=f(x) and y=g(x) are shown below. Calculate f(f(-2) and f(g(2)). Figure 1 shows a 
work map of Student 1 and Student 2, selected from the strong and weak groups.  Vertical bars 
on the work map indicate when the student was drawing, graphing, erasing, adding images, 
navigating between problems, and submitting correct or incorrect answers for a problem. Figure 
2 shows part of the work done by each student. From our initial observation of Student 1 and 
Student 2 work, we noticed the procedurally more proficient student (Student 1) was capable of 
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using a graphical representation of a function to find the composition of function. This could be a 
possible characteristic needed for a deep procedural knowledge of a composition of function. 

Student 1: 

 

Student 2: 

 

Figure 1:  Work maps of Student 1 and Student 2 on Function Composition Problem. 

 

 
 

Figure 2: (Partial) work of Student 1 and Student 2 on Function Composition Problem. 

 
During the seventh week of the semester, students were asked: Find the derivative of R(x) = 

26  . Initial observations show that students who consistently scored high on the 
function composition problems on the PCA correctly apply the chain rule in this simple case, 
while students from the moderate and weak groups typically failed to recognize that 
differentiating  required the use of the chain rule. Replay of student work shows many 
students struggling with function manipulations involving signs, addition, and multiplication. For 
instance, Figure 3 shows three separate attempts by Student 2 to solve the problem. In each case, 
the student struggled with the application of an incorrect procedure but failed to address the use 
of the chain rule. 

In this study we would like to investigate these cases further in depth to elicit more features 
of surface and deep procedural knowledge and understanding. Also, we plan to include 
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Work before first attempt: 
17(-sin(pi x)) 

Work before second attempt: 
17 - sin(pi x) 

Work before third attempt: 
17cos(pi x) + 26 - 9 - sin(pi x) 

Figure 3: Student 2 work on solving a simple chain rule problem 

 
Questions for the audience: 

 What would you like the technology to be able to do? 
 How would you envision using the work map? 
 What does a  and conceptual knowledge? 
 We are currently looking at this as further refining some of the procedural/conceptual 

frameworks that have come before now. Is there a better theoretical perspective that we 
could be working with? 
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Abstract. Proof is a dominant means of conveying mathematics to undergraduates in their 

advanced mathematics courses, yet research suggests that students learn little from the proofs 

they read and find proofs to be confusing and pointless. In this presentation, we examine the 

behavior of two successful mathematics majors as they studied six proofs to identify 

productive proof comprehensive strategies. Prior to reading a proof, these students would 

attempt to understand the theorem by rephrasing and trying to determine why it was true. 

While reading a proof, these students would partition the proof into sections, attend to the 

proof framework being employed, and illustrate confusing aspects of the proof with 

examples. Implications and limitations of this study will be discussed. 

 

Keywords: Proof, proof reading, proof comprehension. 

 

 

1. Introduction 

 In advanced mathematics courses, much of students’ time is spent observing their 

professor present proofs of theorems during course lectures and reading proofs in their 

textbooks. The implicit assumption underlying this practice is that students can 

effectively learn mathematics by studying proofs. However, many researchers in 

mathematics education question this assumption, noting that undergraduate mathematics 

majors often find the process of reading proofs to be confusing and pointless (e.g., Harel, 

1998; Rowland, 2001) and students often do not develop an adequate understanding of a 

proof after reading it (e.g., Conradie & Frith, 2000). One area that has received little 

attention in mathematics education research is how students should read and study a 

proof to foster comprehension. The present study seeks to address this void in the 

literature by describing the proof reading strategies of two successful mathematics 

majors. 

 

2. Related literature 

 In the mathematics education research literature, there is a great deal of research 

on mathematical proof. In analyzing this research, Mejia-Ramos and Inglis (2009) 

observed that the large majority of empirical studies on proof in mathematics education 

concerned students’ construction of proofs rather than their reading of proofs. Mejia-

Ramos and Inglis further noted that most studies focusing on students’ reading of proofs 

analyzed the way students evaluated mathematical arguments; these studies, for instance, 

asked students if they found an argument to be convincing or if they thought the 

argument would qualify as a proof. There were few studies that concerned students’ 

comprehension of proofs. As a main goal of presenting proofs to students in their 

advanced mathematics courses is to increase their understanding of mathematics, the lack 

of research into this area represents an important void in the literature. 

 

3. Theoretical perspective 
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 In the reading comprehension literature, it is widely accepted that the meaning 

that an individual obtains from a text is based on three factors: the individual, the text, 

and the way the individual interacts with the text (e.g., Alexander & Fox, 2004). While 

reading comprehension can be improved by improving the background knowledge of the 

reader or the quality of the text, it is also worthwhile to improve the ways that individuals 

interact with the text. A common approach to conducting research in this area is to 

identify strategies that effective readers use to comprehend text and to then instruct less 

successful readers on how to use these strategies (e.g., Palinscar & Brown, 1984; Chi et 

al, 1994). The study reported here is consistent with this research paradigm. 

 

4. Methods 

 Two students, with the pseudonyms Kevin and Tim, from a large state university 

agreed to participate in this study. Both students were mathematics majors in their senior 

year; these students were also both simultaneously enrolled in a secondary mathematics 

teacher preparation program. They were invited to participate in this study because they 

performed well in their mathematics education courses, they were articulate, and they had 

successfully participated in mathematics education research studies in the past. 

 The participants met as a pair with the first author of this paper for two 2-hour 

videotaped task-based interviews. The participants were initially given a proof. They 

were asked to “think out loud” as they read and studied the proof. They were told to study 

the proof until they felt they understood it and informed they would be asked questions to 

assess their comprehension after they read the proof and they would not have the proof to 

refer to while they answered these questions. This process was repeated for each of the 

six proofs. Each proof was chosen so that it was of moderate length (between 4 and 20 

lines), was based on calculus or basic number theory (to insure Kevin and Tim had an 

adequate background knowledge to comprehend the proof), and employed a novel 

technique.  

 As noted in the introduction, there are few research articles on proof 

comprehension (Mejia-Ramos & Inglis, 2009) and we are not aware of any research on 

the strategies that students should use to read proofs for comprehension. Consequently, 

we did not have any pre-existing categories in mind when analyzing this data and opted 

to use an open coding scheme in the style of Strauss and Corbin (1990). 

 In a first pass through the data, we independently noted each attempt that Kevin 

and Tim made to make sense of the theorem statement or the proof and provided a 

summary of the students’ behavior. (Here, “attempt” was construed broadly to mean 

anything beyond a literal reading of the text). After these summaries were produced, the 

authors met to discuss their findings.  

 From here, it was noted that Kevin and Tim’s proof reading could be divided into 

four phases: (a) studying the theorem, (b) reading the proof, (c) re-reading and 

summarizing the proof, and (d) critically evaluating the proof.Within each phase, similar 

proof-reading attempts were grouped together to form categories of the proof reading 

strategies that Kevin and Tim employed. After categories were named and defined, we 

again independently viewed the videotape, coding for each instance of the proof reading 

strategies. We then compared notes and discussed disagreements until they were 

resolved. Most disagreements were the result of oversight on one of our parts. After our 
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coding, Kevin and Tim were again interviewed about whether the strategies we observed 

were commonly used and why they engaged in those proof-reading strategies. 

 

4. Results 

 Kevin and Tim spent considerable time studying the proofs, with the time spent 

on each proof ranging between 3 minutes and 16 minutes, with an average of 7 minutes 

and 20 seconds per proof. We note this is significantly longer than other studies on 

undergraduates’ proof reading (e.g., Selden & Selden, 2003; Weber, 2009). It is not clear 

if Kevin and Tim spent more time reading the proof was due to them being unusually 

thoughtful and deliberate or because of the task design (they were given an assessment 

test after reading each proof).  

 Kevin and Tim averaged nearly three minutes studying the theorem prior to 

reading its proof, in one case spending nearly six minutes studying the theorem. This 

finding suggests that in examining that strategies for proof comprehension should not 

focus only on how students interact with proofs, but also the things they do to understand 

theorems. 

 Kevin and Tim would attempt to understand the theorem by rephrasing the 

theorem and by attempting to see why the theorem was true for themselves before 

reading the proof. The latter was done for each of the six theorem-proof pairs that Kevin 

and Tim read. They cited numerous benefits to trying to see why a theorem was true, both 

in terms of understanding the proof and motivating the need to read the proof. 

 When reading the proof, Kevin and Tim would explicitly attend to the proof 

framework (in the sense of Selden and Selden, 1995) employed (for example, by once 

engaging in a lengthy process where they verified that the assumptions and conclusions 

of the proof actually satisfied the framework for proof by contraposition), partition the 

proof into sections to verify it, and check problematic assertions in the proof with 

examples. 

 After reading the proof, Kevin and Tim would sometimes re-read the proof, 

summarizing the proof based on its high-level ideas. In other cases, Tim would point out 

assertions within the proof that appeared to be inconsistent (either with other assertions or 

his own mathematical understanding), at which point he and Kevin would resolve these 

apparent inconsistencies together. 

 

5. Significance 

 This presentation outlines strategies that the two successful mathematics majors 

used to effectively comprehend six proofs. Clearly, due to limitations of the study (in 

particular, only using two students and six proofs), no definitive claims can be made. The 

purpose of this presentation is to make a contribution to the literature by suggesting 

strategies that other students can be taught to use to improve proof comprehension. 

 

6. Questions for the audience 

+ This study will be replicated with another pair of successful students. How can this 

study be modified to elicit more proof reading strategies? 

+ What other types of methodologies can be used to investigate the successful proof 

reading strategies of these students? 

+ What types of classroom environments might foster the use of these strategies? 
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Student Understanding of Integration in the Context and Notation of

Thermodynamics:  Concepts, Representations, and Transfer

Preliminary Research Report

Thomas Wemyss, Rabindra Bajracharya, John Thompson

University of Maine

Joseph Wagner
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Students are expected to apply the mathematics learned in their mathematics courses

to concepts and problems in physics.  Little empirical research has investigated how

readily students are able to “transfer” their mathematical knowledge and skills from their

mathematics classes to other courses.  In physics education research (PER), few studies

have distinguished between difficulties students have with physics concepts and those

with either the mathematics concepts, application of those concepts, or the

representations used to connect the math and the physics.  We report on empirical studies

of student conceptual difficulties with (single-variable) integration on mathematics

questions that are analogous to canonical questions in thermodynamics.  We interpret our

results considering the representations used as well as the lens of knowledge transfer,

with attention to how students solve problems involving the same mathematical

principles in the differing contexts of their physics and mathematics classes.

Keywords:  Physics, integrals, conceptual understanding, representations, transfer
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Mathematics is a vital part of how physics concepts are represented (e.g. equations,

graphs and diagrams), manipulated and how problems are solved, from the introductory

to the upper level.  It allows students to simplify the analysis of complex problems by

representing complicated conceptual physics problems as a relatively simple relationship

between variables.  Appropriate interpretation of these representations requires

recognition of the connections between the physics and the mathematics built into the

representation and subsequent application of the related mathematical concepts (Redish,

2005).  Students are expected to apply the mathematics learned in their mathematics

courses to concepts and problems in physics.  Despite the fact that students are expected

to carry out such interdisciplinary study as a matter of course, little empirical research has

investigated how readily students are able to “transfer” their mathematical knowledge

and skills from their mathematics classes to other courses.

With many physics areas, specific mathematical concepts are required for a complete

understanding and appreciation of the physics.  Meltzer (2002) has shown a link between

mathematical acumen and success in an algebra-based physics class.  Tuminaro and

Redish (2007) have combined the frameworks of resources (Hammer, 1996), epistemic

games, and framing to analyze student use of mathematics in physics.  To date, however,

there have only been a few PER studies exploring physics students’ difficulties with

calculus concepts (Pollock et al., 2007; Rebello et al., 2007, Black and Wittmann, 2009).

Our work aims to identify the extent to which mathematical knowledge and

understanding affects physics conceptual knowledge, specifically in the context of upper-

level thermal physics.  We have two main research questions:  What difficulties do

advanced-level undergraduate students have when learning thermal physics concepts?  To

what extent does students’ mathematical knowledge and understanding influence their

responses to physics questions?

The empirical framework that guides descriptions of student reasoning in our research

is that of specific difficulties (Heron, 2003).  We start with targeted, context-dependent

results and then generalize across contexts, seeking larger patterns of student responses in

our data.  Our emphasis is on gathering and interpreting empirical data that can act as a

foundation for future studies on reasoning in physics and for curriculum development to

address specific difficulties.  The more cognitive framework, ideally suited for the study

of knowledge transfer and the context-sensitivity of mathematical knowledge, is that of

transfer in pieces (Wagner, 2006).

A key feature of thermal physics is the reliance on many ways of thinking about

integration.  In physics in general, the idea of an integral is tied closely with a graphical

interpretation as the area under the curve.

Previous findings on student understanding of integral calculus concepts in

mathematics education research indicate that students do not possess the necessary

knowledge to allow them to successfully complete problems involving concepts of

integration, especially with regard to considering the integral as the area under the curve.

The literature in mathematics education repeatedly documents the lack of student

understanding of the relationship between a definite integral and the area under the curve

(Orton, 1983; Vinner, 1989; Thompson, 1994; Grundmeier, 2006).  These include student

difficulties with recognition of integrals as limits of (Riemann) sums (Orton 1983,

Sealey, 2006); student confusion about the concept of “negative area” for integrals of

curves that fall below the x-axis either conceptually (Bezuidenhout and Olivier, 2000),
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computationally (Orton, 1983; Rasslan & Tall, 2002) or both (Hall, 2010).  Thompson

and Silverman (2008) showed that the reliance on area under curve reasoning may limit

applicability of the conception of integrals.

In our current research, we seek to isolate mathematical difficulties that may underlie

observed physics difficulties by asking physics questions that are completely stripped of

their content, and focus on the calculus concepts under investigation (e.g., integration and

partial differentiation).  We call these physicsless physics questions, since they typically

use notation that is more consistent with representations used in physics rather than

following the conventions of mathematics (Christensen & Thompson, 2010).

We administered the physics questions as well as the analogous physicsless questions

to the students in our thermodynamics course.  Data have been obtained from written

responses to ungraded free-response questions, and interviews have been conducted on

physics students at various levels.  Student responses to the physics questions were

compared to reported categories in the literature (Loverude et al. 2002, Meltzer 2004).

Responses to the physicsless questions were analyzed for patterns and categorized; the

categories were then compared to those from the (paired) physics questions.  The results

from the paired physics and math questions among physics students show that some of

the difficulties that arise when comparing thermodynamic work based on a pressure-

volume (P-V) diagram may be attributed to difficulties with the mathematical aspect of

the diagram, in particular with the correct application of an understanding of integrals,

rather than physics conceptual difficulties (e.g., treating work as an equilibrium state

function). These results suggest that some students aren’t necessarily attributing state

function properties to work so much as failing to recognize the same variable as two

different functions during integration.

To further explore the question of transfer closer to the source of the concept of

integration (and area under the curve), we asked the physicsless integral questions near

the end of a multivariable calculus class to over 150 calculus students from 3 different

semesters.  These results from the multivariable calculus course suggest that the observed

mathematical difficulties are not just with transfer of math knowledge to physics

contexts.  Some of these difficulties seem to have origins in the understanding of the

math concepts themselves.

We have recently extended this work to vary the features of the representation(s) used

in the math-based question, with the goal of exploring the extent to which students are

using features of the representation – either tacitly or explicitly – to interpret the question

being asked.

In one case, different formats of the basic question discussed (Figures 1a and b) were

administered near the end of a few recitation sections of calculus classes, both

introductory integral

calculus (Calculus II) and

multivariable calculus

(Calculus III).  The

questions asked students

to compare the absolute

value of the definite

in tegra l s  fo r  two

functions, f(y) and g(y) on Figure 1(a) Figure 1(b)
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a qualitative graph.

The reasoning given with answers was not always clear, but they could roughly be put

into a number of categories: area under the curve, position of the function, curvature of

the curve, slope of the line.  Just over 50% explicitly used the word “area” in their

reasoning.  While there is evidence of these categories of reasoning, it does not provide

definitive proof that students have a concept image that is consistent with their

explanations.  One interesting result is that calculus 2 students outperformed calculus 3

students on the question, with nearly all of calculus 2 students giving the correct answer

and 60% of calculus 3 students successfully able to compare the absolute values for the

integrals.  Building on these results, clinical interviews are being carried out to explore

the nature of students’ concept image (Vinner, 1989) of the integral in variations of the

same question.

Furthermore, we are interpreting many of the above results through the lens of

knowledge transfer, with attention to how students solve problems involving the same

mathematical principles in the differing contexts of their physics and mathematics

classes.  Existing data are being examined through a transfer-in-pieces framework,

initially to consider how student performance may be influenced by the different

representational forms used in the domains of mathematics and physics.  This analysis

complements existing analyses in ways that suggest further research tasks.  This research

angle focuses on how undergraduate students come to see contextually different problems

or situations as “alike,” in that they demonstrate instances of the same mathematical

principle.  This perspective complements and expands the initial research questions about

how students recognize and understand the relationship between the concepts of physics

and the mathematics that underlies them.

Questions for audience

What are the implications for the teaching of these topics, both in mathematics and in

physics?

We intend to continue research along this vein of the mathematics-physics

connections.  We recognize that our questions aren’t presented in rigorous mathematical

notation; how reasonable are our questions in the opinion of mathematicians, given their

relevance to the way physicists use and apply the mathematics?

Even if students come out of their mathematics classes with a good mathematical

understanding of the principles at stake, it is reasonable to expect that transferring their

mathematical knowledge into a physics context should be unproblematic?
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Abstract 

We report on results of the implementation of a local instruction theory for 

number sense development in a course for prospective elementary teachers. 

Students involved in an earlier teaching experiment developed improved number 

sense, particularly in the form of flexible mental computation. The previous 

research was informed by a conjectured local instruction theory and informed the 

refinement and elaboration of that local instruction theory. The present study 

concerns a recent iteration of the classroom teaching experiment, in which the 

local instruction theory guided instructional planning. In the recent iteration, the 

local instruction theory was extended from the whole-number portion of the 

course to the rational-number portion. Envisioned learning routes that were 

developed in the context of mental computation and estimation were applied to 

reasoning about fraction size. In this way, the application of the local instruction 

theory was extended from whole-number sense to rational-number sense.  

 

Keywords: Local instruction theory, number sense, prospective teachers, rational number 

  
We report on results of the implementation of a local instruction theory for number sense 

development in a mathematics content course for prospective elementary teachers. Our previous 

research showed that students involved in an earlier teaching experiment developed improved 

number sense, particularly in the form of flexible mental computation (Whitacre, 2007). The 

previous research was informed by a conjectured local instruction theory and informed the 

refinement and elaboration of that local instruction theory (Nickerson & Whitacre, 2010). The 

present study concerns a recent iteration of the classroom teaching experiment, in which the local 

instruction theory guided instructional planning. In the recent iteration, the local instruction 

theory was extended from the whole-number portion of the course to the rational-number 

portion. In particular, envisioned learning routes that were developed in the context of mental 

computation and estimation were applied to reasoning about fraction size. In this way, the 

application of the local instruction theory was extended from whole-number sense to rational-

number sense. 

 

Instruction 

The course was intended to foster the development of number sense. In particular, the 

broad instructional intent was for students to come to act in a mathematical environment in 

which the properties of numbers and operations afforded a variety of calculative strategies, as 

opposed to one in which mathematical operations map directly to particular algorithms (Greeno, 

1991). The mathematics content course is the first course in a four-course sequence. There are 

multiple sections of the course, and a common final exam is used. Topics in the curriculum 

include quantitative reasoning, place value, meanings for operations, children’s thinking, 

standard and alternative algorithms, representations of rational numbers, and operations 

involving fractions. We have adapted the course in such a way as to engage students in authentic 

computational reasoning throughout the semester. This includes such activities as mental 

computation, estimation, and reasoning about the relative magnitudes of fractions and decimals. 
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By authentic, we mean that students encounter the need for computational reasoning in the 

process of their work on larger tasks. For example, in the process of solving a story problem, 

computations naturally arise, and students are expected to solve these mentally. Particular 

students’ strategies are discussed by the class, and a set of established strategies gradually builds.  

 

Local Instruction Theory 

 A local instruction theory refers to “the description of, and rationale for, the envisioned 

learning route as it relates to a set of instructional activities for a specific topic” (Gravemeijer, 

2004, p. 107). Note that a local instruction theory (LIT) is distinct from a hypothetical learning 

trajectory (HLT). Gravemeijer (1999) identifies two key distinctions between these related 

constructs: (1) an LIT tends to describe an instructional sequence of longer duration; (2) an HLT 

is situated in a particular classroom, whereas an LIT is not. 

We have described elsewhere our local instruction theory for the development of number 

sense (Nickerson & Whitacre, 2010). Here, we briefly list the three major goals around which 

this LIT is organized: (1) Students capitalize on opportunities to use number-sensible strategies; 

(2) Students develop a repertoire of number-sensible strategies; (3) Students develop the ability 

to reason with models. In the proposed session, we focus primarily on the second of these goals. 

 

Design Research 

We conduct design research in the form of classroom teaching experiments, which are 

reflexively related to theory building (Cobb & Bowers, 1999). In this case, our LIT was 

developed and refined in the context of a classroom teaching experiment in a course for 

prospective elementary teachers. The previous experiment focused on mental computation and 

estimation, primarily with whole numbers. In the present iteration, the LIT guides instruction 

throughout the same content course, including instruction concerning rational numbers. We 

describe how the LIT has guided instructional planning for a sequence concerning reasoning 

about fraction size. By the time of the conference, we will be able to report on how this sequence 

played out in the classroom. 

 

Applying the LIT to Reasoning about Fraction Size 

We focus on the goal of students developing a repertoire of number-sensible strategies, 

particularly those strategies involved in comparing fractions and otherwise reasoning about 

fraction size. The framework of Smith (1995) informed our thinking about these strategies and 

influenced the planning of the instructional sequence. Our pilot and pre-instruction interviews, as 

well as the findings of other researchers, such as Newton (2008), suggested that these students 

would come to the course with standard algorithms for comparing fractions. Smith describes the 

strategies of converting to a common denominator or converting to a decimal as belonging to the 

Transform Perspective. We also expected students to come to instruction with a meaning for 

fractions as indicating a number of parts of a whole (e.g., so many slices of a pie). In Smith’s 

terms, this is an example of the Parts Perspective. 

Tasks were designed and sequenced so as to begin with students’ current ways of 

reasoning and to provide opportunities for reasoning about fraction size in new ways. In 

particular, we sought to engage students in reasoning about fraction size from Smith’s Reference 

Point and Components perspectives. The Reference Point Perspective involves reasoning about 

fraction size on the basis of proximity to reference numbers, or benchmarks (Parker & Leinhardt, 

1995). The Components Perspective involves making comparisons within or between the two 
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fractions, as in coordinating multiplicative comparisons of numerators and denominators. The 

design and sequencing of tasks involved consideration of these perspectives relative to number 

choices, contexts, and anticipated student reasoning, and guided by the envisioned learning 

routes described in our LIT. Although Smith (1995) does not describe the perspectives or 

particular strategies belonging to his framework in a hierarchical way, we view the Reference 

Point and Components perspectives as generally more sophisticated categories of reasoning 

about fraction size. Thus, in our instructional sequence, we aim for these more sophisticated 

strategies to be used by students and established for the class by mathematical argumentation. 

 

Questions for Discussion 

 By the time of the conference, we will be prepared to report on how the instructional 

sequence played out, although formal analysis of collective activity will be ongoing. Questions 

for discussion specific to the fraction-size sequence concern productive models for reasoning 

about fraction size, as well as our conjectured trajectory of strategies. We welcome suggestions 

concerning tasks and ordering of tasks in the instructional sequence. More broadly, we are 

interested in discussion local instruction theories, their relationship to hypothetical learning 

trajectories, and the notion of extending an LIT to new topics or implementing it in new contexts. 
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Background and perspectives 

The supply of qualified, competent mathematics majors entering secondary teaching 

professions is not keeping pace with demand (Liu et al., 2008; National Research 

Council, 2002). According to Ingersoll and Perda (2009), the problem is more than a 

number game. Part of the problem resides in the fact that teachers are not happy with the 

profession once they are out in the fields, causing the number of teaching leaving the 

profession to be greater than the number of teachers entering the profession. This is 

especially the case in low-income areas where they are 77% more likely to be taught by 

out of field teachers compared to students from high socioeconomic backgrounds 

(Ingersoll, 2003). Attrition is also a compounding factor as recent research reveals 20 to 

30% of teachers have left the profession within the first five years (Darling-Hammond, 

2001).  

 

The NSF Robert Noyce Scholars Program seeks to help address these issues through a 

scholarship program aimed at recruiting and retaining secondary mathematics teachers 

for high needs school districts. Districts experiencing high teacher turnover rates, 

teachers teaching in areas outside of their content area, and high poverty rates all meet the 

condition of high needs for this program. 

 

Specifically, this preliminary report discusses how the Rocky Mountain Noyce Scholars 

Program (RM-NSP), a five-year National Science Foundation scholarship grant for 

undergraduate pre-service secondary mathematics teachers, aims to target undergraduate 

education as part of the solution. The central tenant is that if we recruit teachers who are 

strong in their content area and also dedicated to serving students in high needs school 

districts that the attrition rates may decrease.  If we also help prepare and support our 

teachers well (both in the areas of mathematics and pedagogy), they will hopefully have 

high job satisfaction rates and be effective classroom teachers.  
 

Adhering to these ideals in the undergraduate education of pre-service secondary 

mathematics teachers, the RM-NSP has been a catalyst for revision of the undergraduate 

secondary mathematics teacher preparation program. We discuss one component of this 

revision in detail in conjunction with preliminary results from the first year of the 

program.  In our presentation, we will seek advice from our audience members on future 

research steps and data collection to strengthen the preliminary results.  

 

Program, participants, and context 
A novel component of this revision is a college internship experience for the pre-service 

teachers.  The idea for this project was adapted from Hodge’s (in press) idea of a 

Teaching Algebra Seminar. This was part of the goal of having the pre-service teachers 

experience teaching not only at the level they eventually plan to teach at, the secondary 

level, but also at the level beyond, namely introductory college courses.  We thought that 

this experience would provide them exposure to common algebra misconceptions, 

experience facilitating guided problem-solving groups, deeper involvement with the 

university and the Department of Mathematical and Statistical Sciences, a deeper 

knowledge of the algebraic and geometric reasoning skills students need for success in 

trigonometry, and an exploration of historical importance of trigonometry. 4-239

Proceedings of the 14th Annual Conference on Research in Undergraduate Mathematics Education



 
During this internship, they act as recitation instructors for a section of college 

trigonometry.  This is an optional, but highly attended, one-hour session before each hour 

of lecture.  It should be noted that prior to this program, recitations were not held for 

college trigonometry classes at this university. During the pilot semester of this, 6 pre-

service teachers participated.  They were grouped into threes based on their individual 

class schedules and placed into two recitation sections.   Both sections had the same 

instructor for the lecture portion of class – a full time instructor from the Department of 

Mathematical and Statistical Sciences.  During the pilot, the pre-service teachers did not 

receive any credit for the experience.  Rather, it was a condition of accepting the 

scholarship, and for two of them, a volunteer experience. 

 

Duties of the recitation instructors included: attending lectures by the instructor, leading 

associated recitation sections, designing activities, handouts, and review activities, 

working with students on an individual basis, grading and providing feedback on student 

work, facilitating technology-driven application problems and attending a weekly 

seminar on teaching trigonometry. 

 

Data collection and data analysis  

Since this was a pilot study, some of our outcomes were unexpected and data collection 

went beyond what we had anticipated.  We were attempting to gather data on the impact 

of the recitation program on the pre-service teachers.  However, early in the semester the 

instructor began noticing changes in the performance of the trigonometry students 

compared with previous semester.  We monitored these changes throughout the semester. 

The instructor also began to observe changes in his approach to the class, and began to 

consciously reflect on this.  In future semesters, we would like to pursue these effects in 

more depth and with more intentionality of research design. We will seek input from the 

audience on how to best research the input on the trigonometry students and on the 

instructor’s changes in practice.  

 

As we began to notice changes, we began to collect data in multiple ways.  First, we 

collected scores of the trigonometry students on each of their three exams and the final 

and compared theses to prior semesters of trigonometry taught by the same instructor.  

Once we noticed the significant increase in performance on the first exam, we began to 

intentionally gather data on the remaining exams for comparison purposes.  The 

instructor also began to pay more attention to how the experience was affecting his 

teaching.  The external evaluator of the grant interviewed him about this experience and 

its impact on him.  A large part of our desire to give this talk is to solicit audience input 

on how to more methodically pursue our investigation of this trigonometry internship 

experience. 

 

 

Preliminary results of programmatic change 

One of the first outcomes of this that we noticed was that scores by the trigonometry 

students were considerably higher than they had been in past semesters.  Specifically, the 

median score on each exam increased by 8-10%. This is a comparison among college 
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trigonometry classes taught by the same instructor at the same university.  The instructor 

considered the exams very similar each semester, with the Spring 2010 exam actually 

more difficult.  We will be having a group of “experts” look over the exams to see which 

ones they would consider more difficult. 

 

Additionally, the class has three technology-driven application problems.   The 

application problems require the students to synthesize their knowledge of the material 

and apply mathematics to real world scenarios.  The percentage of students who 

completed these went up considerably with the implementation of the trigonometry 

recitation sections, from approximately a 75% completion rate to a 100% completion rate 

 

In addition to impacting both the trigonometry students and the pre-service teachers, we 

found that this class had a significant impact on the instructor.  In an interview with the 

external evaluator, he reported a renewed focus on conceptual understanding of the 

material, consistent feedback and insight from recitation instructors, a deeper 

understanding of individual trigonometry student’s strengths and weaknesses, and a 

greater understanding of the historical background of trigonometry and its connections 

with other fields.  

 

Discussion and implications 

Some of the noted impacts could be explained simply by the fact that students who have 

more support in classes can be expected to perform better.  However, the magnitude of 

these changes seems to indicate that something more is occurring.  There is walk-in 

tutoring available for all of the lower level math courses in the Math Education Resource 

Center, staffed by undergraduate and graduate math students, and there are recitation 

sessions available for other lower level math courses, specifically College Algebra and 

Calculus I.  Neither of these support structures seems to have the same impact on student 

achievement. 

 

Some questions that arise and may be good for discussion include: 

 

1. How can we better analyze what is leading to this improvement in student 

achievement in trigonometry? 

2. Can this internship be leveraged to impact student achievement more broadly in 

the lower level math classes? 

3. Does the impact on the instructor transfer to increased student achievement in his 

other lower level classes?  If so, how could this be measured? 

4. How might we isolate the components of this internship that are central to the 

increase in student achievement? 
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Redefining Integral: Preparing for a New Approach to Undergraduate Calculus 

 

Abstract: This study is a pilot to a larger design research project that aims to explore an 

alternative approach to teaching a Calculus I course. Central to this approach is the 

introduction of the integral first, utilizing a non-standard definition, but which is 

equivalent to the standard definition. This is immediately followed by the introduction of 

derivative. This approach allows methods of derivation and integration, which are 

analogs of one another to be introduced in close succession, allowing the relationships 

between these methods to be a major theme of the course. The alternative definition of 

integral is the focus of this study. I present preliminary results of a teaching experiment 

that explores how students develop an understanding of this alternative definition of 

integral and how these understandings relate to prerequisite notions, such as area and 

arithmetic mean.  

Keywords: Calculus, arithmetic mean,!new methodology, teaching experiment.  

Introduction 

In the late 1980s and early 1990s the NSF responded to growing concerns regarding 

student success in Calculus by moving considerable resources into Calculus curricular 

reform efforts. The National Research Council (1991) followed suit issuing a challenge to 

“revitalize undergraduate mathematics.” In spite of efforts which these initiatives 

sprouted student success remains much the same today as it did in the early 90’s 

(Seymour, 2006). The larger research project – to which this study is a pilot – aims to 

work toward addressing this issue by developing and implementing a set of innovative 

course materials for a first course in Calculus and by studying the impact these have on 

student learning, disposition, and retention.  

The Definition of Integral 

The definition of integral utilized in the proposed reformed Calculus curriculum does not 

rely on the notion of Riemann sum. Instead, the definition relies on the mean of a uniform 

sample of n heights of a function: 

Uniform Sampling: , where  

Sample Data:   

Statistical Mean:  
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Definition of integral:  is the integral of f(x) over the interval [a, b]. 

This is written as . 

The Teaching Experiment 

In order to explore how students come to interpret and understand this definition, a 

teaching experiment (Steffe & Thompson, 2000) was conducted with a group of students 

who typically do not take Calculus, pre-service elementary school teachers. This choice 

of participants exaggerates the potential struggles, misinterpretations and conceptual 

hurdles, providing a richer picture of what Calculus students are likely to encounter. 

Since pre-service elementary teachers likely have no prior exposure to Calculus, 

interference from previous instruction is limited.  

The teaching experiment took place over four 50-minute sessions, conducted biweekly 

with a group of four students. The instructional sequence used student concepts and 

reasoning as the starting point, from which more complex and formal reasoning 

developed. Developing and understanding of the relationship between mean and area was 

the goal of the first session. Students were prompted to develop a standardized technique 

for finding the area of a display of uniform width columns. This served as a catalyst for 

gaining an understanding of why the method of multiplying the mean height of the 

columns by the width of the figure yields the area. The next session focused on 

estimating the area of more rounded figures utilizing a sample of their heights, which was 

obtained manually using a ruler. These figures were then replaced by functions in the 

subsequent session, where instead of finding heights manually the function values are 

utilized. Formal notation was then introduced. The final session explored students’ 

conceptions of what happens as the sample size is increased. This culminated in the 

definition of integration. These sessions were video-taped and preliminary analysis will 

be presented.  

The Questionnaire on Understanding Mean 

An understanding of the alternative definition of integral relies heavily on a non-

procedural understanding of mean. In the definition, the mean of a sample of heights of a 

function is abstract—not tied to any specific function. Hence, in order to understand the 

definition, students must be able to consider the abstract properties of mean. To explore 
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understandings of mean amongst potential Calculus students, a questionnaire was 

designed and administered with pre-Calculus students. It included questions that could be 

approached both using procedural methods and non-procedural understandings of mean. 

For example, one such question shows two triangles and asks about the mean measure of 

their six angles. Another question involves a circle that is divided into several sectors. 

Students were asked to determine the average measure of the area of these sectors. In 

both problems the specific sizes of the angles are given, but are not necessary in order to 

find the solution. To account for students that possess conceptual understanding but 

prefer procedural solutions to demonstrate their method, as well as for students that 

develop conceptual insight after completing a procedural solution, students are prompted 

for an additional solution after each of the tasks. The results of this questionnaire will be 

presented.  

Synopsis 

This pilot study focuses on how students’ develop an understanding of the alternative 

definition of integral and the hurdles they encounter along the way. Additionally, 

students’ conceptions of mean, as well as how those conceptions relate to area, are 

explored. This additional focus is included in order to paint a better picture—one which 

includes an exploration of the kind of relevant tools students bring into the new Calculus 

curriculum. In the session participants will have the opportunity to reflect on and discuss 

the following questions related to the study: 

• What student difficulties have you observed/experienced with the conventional 

definition of integral? What difficulties do you foresee (or have experienced) with the 

alternative definition of integral?  

• What lens/framework do you suggest for the in-depth analysis of the teaching 

experiment? 
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