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1. Introduction and Background 
 
 Because proof is the arbiter of truth for the discipline of mathematics, a major 

goal of undergraduate mathematics programs is to assist undergraduates to develop an 

understanding and appreciation for proofs along with an ability to generate proofs.  Not 

surprisingly, students’ understanding of proof has been the subject of many studies.  

 The many misconceptions students have about what constitutes a proof were 

detailed and categorized by Harel and Sowder (1998).  Weber (2001) found that students 

from secondary school through college have major difficulties with the tasks of proof 

construction and proof validation.  In a study by Recio and Godino (2001), less than 50% 

of 204 beginning students at the University of Cordoba (Spain) produced a substantially 

correct proof of an elementary number theory statement, and 40% relied solely on 

empirical evidence.  Selden and Selden (2002) found that, after an initial reading, eight 

mathematics and secondary math ed majors did no better than chance in determining if a 

proof was valid.  However, the reflection and reconsideration ensuing from a follow-up 

interview subsequently produced an 81% correct determination.  

 In this article we present the results of a study of the evolution of students’ 

understanding of proof as they progress through the mathematics major curriculum at a 

medium-sized comprehensive university.  The study initially attempted to identify which 

courses and learning experiences promote growth in student understanding of proof, and 

was prompted by observing that students in a course designed for beginning mathematics 

majors were all too willing to be convinced by empirical evidence.  To further our 
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investigation we developed a typology of mathematical knowledge that includes six 

cognitive and two affective components. Then the typology was expanded into a 

taxonomy that describes the journey toward proficiency in each of these components, 

resulting in a mathematical knowledge-expertise taxonomy. Finally, we close the paper 

with an application of the taxonomy to an elementary but non-routine problem involving 

a linear system.  

2. Methodology 
 
 The study was cross-sectional, taking a snapshot of students in the major during 

2003-4. The initial approach utilized a survey on proof and problem solving of 50 

students in math major courses that included 42 math majors and 8 computer science 

majors. This same survey was subsequently administered to 16 full-time mathematics 

faculty.  In Section 3.1 we discuss the responses to a question about willingness to accept 

empirical evidence as proof.  The responses indicated that after 4 semesters (beyond our 

“bridge” course) students’ responses become much more similar to faculty responses; and 

that additional evidence would be required to gain a deeper insight into the progression of 

student understanding of proof.   

 In order to learn more about what our students think about proof, how willing 

they are to accept empirical evidence as proof, and whether they think a counterexample 

is still possible after a proof, we developed a “proof-aloud” protocol that employed think-

aloud methodology with pencil and paper available for subject use.  The protocol was 

designed to investigate student understanding of the following: 

o What constitutes a proof?  In particular, is empirical evidence sufficient? 

o Does a proven statement apply in all cases? 
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o Can there be a counterexample to a proven statement?  

Evidence gathered included both what subjects said and what subjects wrote on each 

question or task in the protocol, as well as what courses or other learning experiences 

helped them answer a question or complete a task. 

 We selected 12 mathematics majors, spanning our curriculum from first semester 

in the major through to six months after graduation, to participate. Students were given a 

mathematical situation to examine, one in which they could generate several examples, 

find a pattern, form a conjecture and then decide if the conjecture is true.  They were 

asked how confident they were about their conjecture and what would make them more 

confident. Then they were asked to try to write down a proof for the conjecture (even if 

they had already made a general argument earlier in the proof-aloud) and to evaluate 

several “sample” proofs for correctness.  Finally, students were asked to respond to 

several additional questions related to the statement to check whether they would apply 

the proven result, and if they thought a counterexample was still possible after a proof. 

Later on a faculty member was recruited for the proof-aloud protocol to provide an 

“expert” performance. In Section 3.2 we describe the results of their proof-aloud 

performances. 

3.  Results 

3.1 Survey Results 

 The first finding related to students’ acceptance of empirical proof from the 

survey was that after taking our bridge course, student responses to the following 

question become very similar to faculty responses. 
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Survey Question 

Respond on a 5-point Likert scale ranging from Strongly Disagree to Strongly Agree:  If I 

see five examples where a formula holds, then I am convinced that formula is true. 
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Figure 1 

The percentage of students indicating a willingness to accept empirical evidence as proof 

(5 examples convinces me a formula is true) declined from 44% to 9% as they moved 

through the major (See Figure 1) with 20% of freshman and 20% of upperclassmen 

remaining neutral. By comparison, 1 of the 16 faculty surveyed would find 5 examples 

convincing.  At first glance it may be disheartening that by senior year nearly 1 in 10 

would still be convinced by empirical evidence, but not even 100% of the faculty gave 

the ‘correct response’ to “5 examples convinces me.” When asked for an explanation, the 

one “agreeing” faculty member stated: 

 ‘Convinced’ does not mean ‘I am certain’ to me, so whenever I am testing 

a formula/conjecture, if it works for about 5 cases, then I try to prove that 

it’s true 
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as the reason for his ‘wrong answer.’ Clearly, a Likert scale response to this type of 

question does not completely reveal a respondent’s thinking.  In the next section we 

present the results of the proof-aloud and the additional insights we gained from it. 

3.2. The Proof-Aloud Results 
 
 The following mathematical situation was used in the proof-aloud protocol. 

Please examine the statements:  

For any two consecutive positive integers, the difference of their squares:   

(a) is an odd number, 

(b) equals the sum of the two consecutive positive integers. 

What can you tell me about these statements? 

 This was the same statement used by Recio and Godino (2001) to investigate 

student proof schemes and what reasons might underlie their choices of non-deductive 

schemes.  However, in their study proving this statement, and others, was presented as a 

written task to several hundred incoming freshman, whereas initially we presented it as a 

statement to investigate and only later gave directions to try to write a proof.  Another 

difference was that our 12 subjects spanned our curriculum from its very beginning 

through just after graduation.  

 Recio and Godino developed a 1 to 5 numeric rubric intended to differentiate 

between students who relied on examples (category 2) vs. students who relied on 

definitions or general results to develop partially (category 4) or substantially correct 

(category 5) proofs. The result of applying their rubric to our students’ proof-aloud 

performances was that all but one of our 12 students fell into the top two categories 

(categories 4 and 5). Moreover, the rubric, designed to distinguish between students using 
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empirical proof schemes and students using deductive proof schemes, did not suffice for 

an in-depth analysis of the multifaceted work that we were able to document with the 

proof-aloud transcripts.   

 We found that, in contrast to Recio & Godino’s results, all of our students realized 

that empirical proofs were insufficient, and all attempted to make some sort of general 

argument, or at least expressed concern that their argument was not general enough.  

However, only two of the twelve students we interviewed were beginning freshmen and 

thus only they were comparable to those in the Cordoba study.  Of those two, one 

produced a very deficient proof, but did so by trying to appeal to general definitions and 

restating the desired conclusions.  

 One of our goals was to see how student’s understanding of proof evolved in the 

major.  Since, relative to proof, there are three critical courses in the curriculum, we 

assigned levels to students’ progression in the major relative to these courses as shown in 

the following chart. 

Level Progression in the Major 
0 Prior to an Introductory Problem Solving & Writing (IPS&W) course 
I Completed IPS&W course the preceding semester 
II Completed a “bridge” course on proofs the preceding semester  
III Completed a real analysis course the preceding semester 
IV Completed a real analysis course a year earlier 
V A graduate from the preceding year 

 
Then various aspects of the students’ performance were analyzed relative to their level in 

the major.  As indicated in the following chart, all but one student placed in the top two 

of five Recio and Godino categories of performance, with 7 of 12 students placing in the 

top category1. 

                                                        
1 The majority of students indicated the IPS&W course as the course that contributed most to 
their ability to respond to the task.  Even students at levels II through V were citing the IPS&W 
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Student\Proof 1 2 3 4 5 
0 X   X  
I    X X 
II     XX 
III    X XX 
IV    X X 
V     X 

 

Consequently, we needed a different way of categorizing the proofs generated by our 12 

students to separate out very definite distinctions we observed in their performances.  We 

required a system that would allow us to describe the following:   

o A Level IV student asked an insightful question about whether the order of 

the numbers in the subtraction mattered, and then, in worrying about that, 

demonstrated both uncertainty and high interest, and ultimately produced a 

partially correct answer. 

o A Level I student exhibited advanced mathematical thinking in coming up 

with a novel and valid geometric interpretation but wasn’t able to write 

down a polished proof.  

o A Level III student made a poor strategic choice to use an advanced 

method.  Then he gave up after being stuck for less than two minutes in 

the middle of the proof, saying he really couldn’t see it, couldn’t figure it 

out.  He lacked the confidence needed to deal with the uncertainly of how 

to proceed. 

o After finishing a well-written proof, a Level III student reflected that it 

probably needed refining because it didn’t sound very good, but she 

thought it got the job done, and she wasn’t interested in spending any 
                                                                                                                                                                     
course more frequently than the bridge course.  The impact of the IPS&W course is confirmed by 
the chart. 
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more time on it.  So lack of interest inhibited her from doing an even 

better job.  

 Confidence appeared as a factor in our expert’s performance as well.  Initially, he 

expressed trepidation at being asked to volunteer to be our “expert,” especially since we 

had described the problem as coming from number theory, which was not his field.  

However, when pressed into service, he displayed a sense of assurance as he moved 

through the tasks:  using language carefully, making a smooth and unprompted transition 

from investigating to proving, and writing a clear and correct proof that employed proper 

definitions, notation, organizational features, complete sentences, and detailed algebraic 

steps.  In sum then, these proof-alouds gave us compelling illustrations of the various 

types of knowledge, strategic processing and motivation required to produce a correct 

and well-written proof.  They showed how additional knowledge may sometimes result in 

poorer overall performance and that a student could exhibit both expert and novice 

behavior during the same task.  They also indicated that affects such as confidence and 

interest could influence student performance. 

4. The Mathematical Knowledge-Expertise Taxonomy Matrix 
 
 Our desire to describe the rich detail of these proof-aloud performances both in 

terms of the types of knowledge they document and the levels of expertise exhibited in 

different types of knowledge led us to develop a mathematical knowledge-expertise 

taxonomy matrix (See Figure 2). This taxonomy matrix has two dimensions. The first 

dimension consists of a typology of mathematical knowledge that includes six cognitive 

and two affective components. The six cognitive components were adapted and extended 

from a typology of scientific knowledge developed in response to calls for national K-12  
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Mathematical Knowledge-Expertise Taxonomy Matrix 
 
Affective Acclimation Competence Proficiency 

Interest  

Students are motivated to learn 
by external (often grade-
oriented) reasons that lack any 
direct link to the field of study.  
Students have greater interest in 
concrete problems and special 
cases than abstract or general 
results. 

Students are motivated by both 
internal (e.g., intrigued by the 
problem) and external reasons. 
Students still prefer concrete concepts 
to abstractions, even if the abstraction 
is more useful. 

Students have both internal and 
external motivation. Internal 
motivation comes from an interest in 
the problems from the field, not just 
applications.  Students appreciate 
both concrete and abstract results.  

Confidence 

Students are unlikely to spend 
more than 5 minutes on a 
problem if they cannot solve it. 
Students don't try a new 
approach if first approach fails. 
When given a derivation or 
proof, they want minor steps 
explained. They rarely 
complete problems requiring a 
combination of steps. 

Students spend more time on 
problems. They will often spend 10 
minutes on a problem before quitting 
and seeking external help. They may 
consider a second approach. They are 
more comfortable accepting proofs 
with some steps "left to the reader" if 
they have some experience with the 
missing details.  They can start multi-
step problems, but may have trouble 
completing them. 

Students will spend a great deal of 
time on a problem and try more than 
one approach before going to text or 
instructor. Students will disbelieve 
answers in the back of the book if 
the answer disagrees with something 
they feel they have done correctly.  
Students are accustomed to filling in 
the details of a proof.  They can 
solve multi-step problems.  

Cognitive Acclimation Competence Proficiency 

Factual 
Students start to become aware 
of basic facts of the topic. 

Students have working knowledge of 
the facts of the topic, but may 
struggle to access the knowledge. 

Students have quick access to and 
broad knowledge about the topic. 

Procedural 

Students start to become aware 
of basic procedures. Can begin 
to mimic procedures from the 
text. 

Students have working knowledge of 
the main procedures. Can access them 
without referencing the text, but may 
make errors or have difficulty with 
more complex procedures. 

Students can use procedures without 
reference to external sources or 
struggle. Students are able to fill in 
missing steps in procedures. 

Schematic 

Students begin to combine facts 
and procedures into packets. 
They use surface level features 
to form schema. 

Students have working packets of 
knowledge that tie together ideas with 
common theme, method, and/or 
proof. 

Students have put knowledge 
together in packets that correspond 
to common theme, method, or proof, 
together with an understanding of 
the method. 

Strategic 

Students use surface level 
features of problems to choose 
between schema, or they apply 
the most recent method. 

Students choose schema to apply 
based on just a few heuristic 
strategies. Students are slow to 
abandon a non-productive approach. 

Students choose schema to apply 
based on many different heuristic 
strategies. Students self-monitor and 
abandon a nonproductive approach 
for an alternate. 

Epistemic 

Students begin to understand 
what constitutes 'evidence' in 
the field. They begin to 
recognize that a valid proof 
cannot have a counterexample. 
They are likely to believe based 
on 5 examples; however, they 
may be skeptical. 

Students are more strongly aware that 
a valid proof cannot have 
counterexamples. They use examples 
to decide on the truth of a statement, 
but require a proof for certainty. 

Students recognize that proofs don't 
have counterexamples, are 
distrustful of 5 examples, see that 
general proofs apply to special 
cases, and are more likely to use 
"hedging" words to describe 
statements they suspect to be true 
but have not yet verified. 

Social 

Students will struggle to write a 
proof and include more algebra 
or computations than words.  
Only partial sentences will be 
written, even if they say full 
sentences. Variables will 
seldom be defined, and proofs 
lack logical connectors. 

Students are likely to use an informal 
shorthand that can be read like 
sentences for writing a proof. They 
may employ connectors, but writing 
lacks clarity often due to reliance on 
pronouns or inappropriate use or lack 
of mathematical terminology. 

Students in this stage write proofs 
with complete sentences. They use 
clear concise sentences and employ 
correct terminology. They use 
variables correctly. 

Figure 2 
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science assessment (Shavelson, 2003). Richard Shavelson developed his typology of 

scientific knowledge, in part, to make the point that multiple choice testing will not 

accurately assess the complete spectrum of scientific knowledge we want our K-12 

students to attain by graduation.  The second dimension describes student progression 

toward proficiency using the language of a K-12 classroom-based theory of expertise 

development that arose from studies of student learning in academic domains, such as 

reading, history, physics, and biology (Alexander, 2003). 

4.1 A Typology of Mathematical Knowledge 
 
 The descriptions provided by Shavelson for the six types of scientific knowledge 

– factual, procedural, schematic, strategic, epistemic, and social (R. Shavelson, personal 

communication, April, 2004) – were readily adapted to mathematical knowledge. For 

example, epistemic knowledge or how one decides if a statement is true in the discipline 

changed from the scientific method to proof.  

 Here we give general descriptions of each of the six cognitive components of 

mathematics learning2.  In Section 5.1 we will provide more detailed descriptions for one 

particular topic (systems of linear equations).  Factual knowledge is the knowledge of 

specific facts of a topic.  In mathematics, this might be described in terms of definitions 

or stated theorems, and represented by such questions as "Do students know what the 

sum of the angle measurements of a (Euclidean) triangle is?" or "What are the steps of 

mathematical induction?"  Without factual knowledge, students cannot proceed in 

                                                        
 2 We observe that these six cognitive components encompass the five strands of K-8 
mathematical proficiency (conceptual understanding, procedural fluency, strategic competence, 
adaptive reasoning and productive disposition) delineated in Adding It Up (National Research 
Council, 2001, p. 116). We believe the taxonomy matrix can be viewed as an extension of Adding 
It Up's intertwined strands of elementary school mathematical proficiency (p. 117) to the 
development of mathematical proficiency in the undergraduate mathematics major. 
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mathematics. However, as is true in every field, facts by themselves are of little use, and 

are generally not retained for very long beyond the classroom.   

 Procedural knowledge relates to the knowledge of how to complete the 

procedures related to a topic.  Thus, procedural knowledge would be addressed by 

questions such as "Can students find the measurement of one angle of a triangle knowing 

the measurements of the other two angles?" or "Can students properly set up the two 

steps in an induction proof?"   Procedural knowledge is often at the high end of what is 

taught in the secondary school mathematics curriculum as is noted by Stigler and Hiebert 

(1999) when they describe mathematics teaching in the US as being mostly "practices 

and procedures." 

 The third cognitive component, schematic knowledge, encompasses the 

connections between facts, procedures, methods, and underlying reasons. This echoes the 

“schema” of APOS theory (Dubinsky and McDonald, 2001). It can involve un-packing 

procedures (Ball, 2003) or be thought of as the knowledge packets described by Ma 

(1999).  Questions about schematic knowledge in mathematics might be "Can students 

use the knowledge about triangles to answer questions arising in circular trigonometry?" 

or "Can students provide a geometric interpretation for the solution of a quadratic 

equation?"  Work has shown (Schoenfeld, 1985) that students have different schema from 

faculty, and clearly an important part of mathematics learning centers around helping 

students develop richer schema.  However, Schoenfeld has also argued that students often 

do not learn how or when to apply these schemas. 

 This brings us to the fourth component of mathematical knowledge, strategic 

knowledge.  Strategic knowledge in mathematics involves the heuristics used to make 
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decisions about approaching new (to the individual) problems, including which schema to 

apply. The component mirrors the knowledge of heuristics and how to solve problems as 

described by Polya (1945).  The questions that one might ask about students' heuristic 

knowledge would include, "Can students select a useful schema to solve a nonstandard 

problem?" or "How do students decide which proof method is likely to be appropriate or 

effective for proving a particular statement?"  

 Epistemic knowledge refers to how one decides what is true in the discipline.  In 

mathematics, epistemic knowledge encompasses knowledge of proof and logical 

argumentation, including understanding the necessity for proof, various proof techniques 

and implications of having proven a statement. Thus, epistemic knowledge in 

mathematics would correspond to the questions like "Do students recognize the role of 

proof in problem solving or its necessity for determining the truth of a mathematical 

statement?" or "Can students use their disciplinary knowledge to decide upon whether a 

mathematical statement is correct and/or has been correctly proven?" or "Do students 

understand that a proven statement cannot have counterexamples?"   

 Finally, social knowledge comprises the accepted ways to communicate truth or 

knowledge (which can vary in formality depending on the audience and purpose).  This 

component might be described as the knowledge of discourse appropriate for the 

community.  Thus it is the social knowledge of the discipline that allows one to carry on 

work jointly with others and to convince others with our arguments.  In mathematics this 

knowledge encompasses the accepted rules of exposition in the discipline.  Questions that 

correspond to this knowledge domain might be "Can students write proofs that follow the 

norms and conventions of mathematics?"  or "Are students able to communicate their 
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knowledge to their peers and those in the mathematical community in a way that will 

allow others to understand, accept, and use that knowledge?"  

 The last two components, epistemic and social knowledge, were the content core 

of our proof-aloud investigation; namely, how do students know something is true and 

how do they communicate that knowledge. The first four components encompass the 

knowledge and strategic processing portions of Alexander's model, which we will 

describe in the next section, after examining two influential affects.  

 Our proof-alouds indicated that in addition to these six cognitive components of 

knowledge, two affective components, interest and confidence, influenced students’ 

performance. Interest plays an important role in moving students toward proficiency 

(Alexander, 2003) and is often cited as a motivating factor in learning (Bains, 2004; 

Harel, In Press). Confidence is less frequently considered, but we posit it plays a very 

important role in students’ willingness to persist in the face of “not-knowing” (Feito, 

personal communication, 2004; Schoenfeld, 1985). 

4.2 Describing the Journey Toward Mathematical Expertise 
 
 To describe our students’ growth in understanding of proof, we turned to 

Alexander’s (2003) Model of Domain Learning (MDL).  MDL is a perspective on 

expertise theory that arose from studies of student learning in academic domains, such as 

reading, history, physics and biology (Alexander, 2003).  MDL does not see someone as 

either a novice or an expert, but rather is concerned with the journey from novice to 

expert.  It looks at three stages of learning.  The initial stage is acclimation wherein the 

learner is orienting to a complex, unfamiliar domain.  The next stage is competence, and 

the final is proficiency/expertise. Occupants of this latter stage are characterized by 
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having a depth and breadth of knowledge, a mastery of methodologies, and an ability to 

contribute new knowledge to the field.  MDL focuses on three components that play a 

role in the journey toward expertise in academic domains:  knowledge (which roughly 

corresponds to factual and procedural knowledge in our typology), strategic processing 

(corresponding to schematic, strategic and, potentially, epistemic knowledge) and interest 

(an affective component).  Alexander’s (2003) work was applied to K-12 teaching and 

learning, with competence in academic domains seen as an attainable goal for most high 

school graduates.  When MDL is applied to the academic domain of mathematics, given 

the specialized knowledge, advanced heuristic knowledge, and high interest of an expert 

mathematician, reaching the level of proficiency/expertise is unrealistic for the collegiate 

mathematics major.  We can report that MDL has proven useful in describing 

performance on mathematical tasks across our typology of mathematical knowledge 

components.  To illustrate how it applies, we will describe in more detail the three stages 

of learning in the epistemic and social/communication knowledge components. 

 A student in the Acclimation stage relative to epistemic knowledge would often 

depend solely on examples to test the truth of a statement, or rely on external authority to 

validate a claim.  Thus, students at this stage would be likely to respond that to be certain 

of a statement they would ask a professor or look in a book.  Students moving through 

this stage are beginning to recognize that a conjecture with a valid proof cannot have 

counterexamples, and they might be skeptical, at times of the validity of a statement only 

having seen five examples where it holds.  In contrast, students at the Competence stage 

in epistemic knowledge will still use examples, but then will express a desire for a proof 

in order to be certain.  These students recognize that a general proof will apply to special 
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cases.  They are also more strongly aware that a proven conjecture cannot have 

counterexamples, at least in specific case of proofs they have seen.  Experts (at this level) 

in the epistemic domain recognize that truth is decided by proof, and that given a valid 

proof there can be no counterexample.  They are quick to see that given a general 

argument, it can be applied to special cases.  Moreover, experts refuse to take five 

examples as evidence of truth.  In addition, in their language, experts are more likely to 

make distinctions between proven and conjectured statements.  Experts use hedging 

language, words and phrases like “conjecture,” “plausible,” and “seem to be true,” to 

describe statements they are validating until they arrive at a proof. 

 In applying these stages, one finds a lack of knowledge in one of the components 

might affect the ability of a student to progress in another.  Surprisingly, however, an 

increase in knowledge in one component might hamper a student in another.  For 

example, one of the students in our study, showed poor strategic knowledge on the proof-

aloud due to a greater factual knowledge about mathematical induction as a method of 

proof.  This notion of backwards motion in understanding is reminiscent of many other 

theories of learning.  In particular, in Piaget’s work, accommodation, that is, making 

room for new ideas that do not fit with previously held notions, may cause students to 

temporarily regress in their understanding of something. Pirie and Kieren (1989) and 

Dubinsky (1991) also argue that accommodating new ideas will cause students to go 

through a retrenchment of their understandings.  In addition, the assignment of a stage of 

expertise is often very particular to the aspect of the task under consideration or to the 

person being examined.  One may exhibit expert traits on some aspects and acclimating 

traits on others.  The acclimating to expertise continuum that we describe in Figure 2 is 
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comprised of typical college mathematics majors, rather than mathematicians as a whole. 

 In the social/communication knowledge component, a student in the acclimation 

or orienting stage will struggle to write a proof.  Most will write down very few words, 

even though in a proof-aloud they might actually say the words and use full sentences.  If 

they use algebraic expressions, the variables will not be explicitly defined for the reader.  

Their written proof will lack logical connectors, careful definitions, equal signs, and 

organizational labels or features such as centering equations.  Students in the competence 

stage may write in an informal shorthand that can be read as full sentences. They may 

employ connectors but their writing will lack clarity, often because pronouns or non-

mathematical language (“it works”) are substituted for accurate mathematical 

terminology.  By contrast, experts will write clear, concise sentences, use logical 

connecters and employ mathematical terminology.  They will define variables and use 

them appropriately.  Their writing will be formatted for easy reading. 

5. Applying the Taxonomy 
 
 In this section we use the cognitive components of the mathematical typology 

dimension of taxonomy matrix to unpack the underlying mathematical knowledge in non-

standard problem involving a system of two linear equations.  

Problem 

For what value(s) of p will the system have no, one or more than one solution? 

3x + 6y = 12 

  x + py = 4 

5.1 The Six Cognitive Components of the Problem 

We now describe each of the cognitive components of the typology relative to the topic 

of this problem – linear systems.  
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Factual knowledge essential for this problem includes knowing what a linear 

system is and what constitutes a solution to a system of equations.  Knowing 

important aspects of a line (slope, intercepts) and standard forms for linear 

equations could also be useful factual knowledge. 

Procedural knowledge could be algebraic in nature, such as how to change an 

equation from one form to another, or how to find the slope and intercepts for 

each line.  It could include the knowledge of graphical, substitution, elimination 

or matrix methods for solving a pair of equations. 

Schematic knowledge for this problem could consist of one or more of the 

following packets.  (For an expert, all three of these packets would be 

interconnected and incorporated into one big schema.) 

     Geometric packet 

 Points on each line are solutions to a single equation 

 Points of intersection of graphs correspond to solutions to the system 

 Possible cases for intersections of two lines 

     Algebraic packet 

 Interpretations of the possible outcomes (e.g., 0 = 0, x = 0, or 0 = 4) for  

  elimination or substitution methods 

     Matrix packet 

 Interpretations of the possible outcomes 

Strategic knowledge refers to the decision process involved in choosing an 

approach to use. Students partial to geometric approaches might begin by solving 
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for slopes and equate the two expressions, while those more comfortable with 

algebra might immediately begin with elimination of variables or substitution. 

Epistemic knowledge for this problem requires that a student know why the 

answer is correct. The validity of the geometric solution can be traced back to 

Euclid’s 5th postulate, while the validity of an algebraic or matrix solution is 

based on a deep understanding of the definition of “equivalent equations.” 

Social knowledge enables a student to communicate (orally or in writing) the 

solution, its process and the rationale behind it. 

The taxonomy allows analysis of both student work and instructor responses on this 

problem.  Movement from acclimation toward competence is often a result of instructor 

intervention.3 

 This problem was assigned in the introductory problem solving and writing class, 

and in examining student-generated solutions, we found it most illuminating to 

concentrate on the epistemic and social knowledge components in terms of expertise 

theory, and so we will follow that here. 

Epistemic Knowledge: Students in Acclimation often produced an answer simply by 

writing down a list of equations with no reasons given for their final answer.  On further 

probing, the students would simply say that when an equation deduces to 0 = 0 there are 

infinitely many solutions.  Students in the Competence stage were more likely to try to 

explain why the equations showed one or infinitely many solutions, but would gloss over 

key ideas or be stumped when asked why they could make certain assumptions.  Students 

                                                        
3 The class that used this problem allowed students multiple tries at writing up their solutions to 
meet writing standards set out for the course (which are based on Price, 1989).  Instructors 
generally write brief Socratic comments to guide students in their rewriting.  The intent of these 
comments can also be categorized by the taxonomy matrix. 
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in the Proficiency stage showed a clear understanding of the relationship between 

reducing to the equation 0 = 0, and why this implies infinitely many solutions exist. 

Social Knowledge:  Acclimating students used few words in their solutions, and expected 

readers to put together the steps of a solution, while students moving to the Competence 

stage were more likely to attempt to indicate which previous statement they were 

referring to after having written a sequence of equations.  Finally Proficient students 

wrote clear and concise arguments using correct mathematical terminology. 

6. Implications for Teaching 

 We have shown how the Mathematical Knowledge-Expertise Taxonomy Matrix 

developed in our study can provide a multifaceted way of analyzing student performance 

on mathematical tasks.   This compound way of looking at mathematical learning can 

assist instructors in targeting instruction to meet students’ needs and move them along the 

path toward proficiency.  It may also help with writing rubrics. Our data gives clear 

evidence that a lack of knowledge can inhibit acclimation and an increase in one 

knowledge component can cause a student to regress in others, something that teachers 

need to be aware of. Increased awareness of the special needs that acclimating students 

have is another potential result of access to the taxonomy matrix.  
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