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Introduction

The concept of limit is fundamental to the studycadculus and to introductory
analysis; this has been noted by many researchAetiiguye, 2000; Bezuidenhout, 2001,
Cornu, 1991; Dorier, 1995). Artigue (ibid) viewsethole of limit in calculus as a
unifying concept as “more important than its role a productive tool for solving
problems” (p.5). Cornu (ibid) echoes that sentimst#ting that the limit “holds a central
position which permeates the whole of mathematellysis — as a foundation of the
theory of approximation, of continuity, and of @iféntial and integral calculus” (p.153).
Indeed, limits arise in these and many other ma#itieal contexts, including the
convergence and divergence of infinite sequencek samies, applications related to
determining measurable quantities of geometric régu(e.g., arc length, area, and
volume), and describing the behavior of real-valfigtttions.

The formal definition of limit is foundational asuslents proceed to more formal,
rigorous mathematics. Indeed, the vast majority topics encountered in an
undergraduate analysis course, where students ghelytheoretical foundations of
calculus, are built upon the formal definition. @anity (both point-wise and uniform),
derivatives, integrals, and Taylor series approxiong are just a few of the topics
studied in an analysis course for which limit senas an indispensable component.
Further, the formal definition of limit often sewe&as a starting point for developing
facility with formal proof techniques, making seneg rigorous, formally-quantified

mathematical statements, and transitioning to abisthinking. Tall (1992) notes that the



ability to think abstractly is a prerequisite fdrettransition to advanced mathematical
thinking, and Ervynck (1981) cites the limit as@portunity for students to develop the
ability to think abstractly. For all of these reaspthe limit concept holds an important
place in pedagogical considerations and as an wlgeaesearch in mathematics
education.
Literature Review

Though there are numerous ways to categorize tistirex research on limit, we
choose to separate the literature into two broddgecaies — informal and formal limit
research. We define informal limit research hereesgarch that does not have, as its
focus, the ways in which students reason aboufaimeal definition of limit. By formal
limit research, we mean research that is focusechmm students reason about or
understand the formal definition. The vast majoatyexisting limit research consists of
the former. These studies have focused largelyhenfdct that informal treatments of
limit often result in students developing miscorteaps (i.e., thinking of the limit as a
bound, as something that cannot be reached, aadsl/an approximation) based on their
interpretation of colloquial language used in th&ssroom to describe limits (Ferrini-
Mundy & Graham, 1994; Frid, 1994; Monaghan, 1994|I,T1992; Williams, 1991).
Other studies have shown that informal methodsatan result in an over-reliance on
simplistic examples used initially to introduce ttancept (Cornu, 1991; Davis & Vinner,
1986; Tall & Vinner, 1981; Tall, ibid). Many of th&udies mentioned above emphasize
what studentslo notknow about the concept of limit, which we referdas adeficit
perspective. A much smaller segment of the inforiinait research literature attempts to

describe what studento understand about limits (Ferrini-Mundy & Grahan§94;



Oehrtman, 2003; Oehrtman, 2004; Williams, 2001thBathan viewing student thinking
as deficient, these researchers describe initiadlesit thinking as entailing natural
informal conceptions that might facilitate the dewenent of strong conceptual
understanding.

In contrast to informal limit research, far feweudies have explored how students
reason about the formal definition of limit. Thadat do, however, suggest that formal
treatments of the concept also often prove unsstweéCornu, 1991; Dorier, 1995;
Gass, 1992; Tall, ibid; Tall & Vinner, 1981; Wilhas, 1991). The formal definition is
rich with quantification and notation, and, accaglito Cornu (ibid), is cognitively
sophisticated for first semester calculus studeBtsrier (ibid) points out that the formal
definition was “conceived for solving more sophaated problems and for unifying all of
them” (p.177), yet at the outset of calculus antboluctory analysis, students likely have
difficulty understanding the importance of a defom designed to unify problems they
have yet to encounter. The message seems cleag fotmal definition of limit is
difficult for students to understand. What is lapparent from the bulk of the literature,
however, is how students might come to reason eaoltlgrabout this difficult concept.
Studies by Cottrill et al. (1996), Larsen (200Inddernandez (2004) have attempted to
answer this question. We discuss these studiesvbmhal in the subsequent section, as
they have had a profound impact on the developwiemtir own research.

Cottrill et al. (1996) provide what they callgenetic decompositioof how students
might reason about the limit concept. This geng¢éicomposition describes the process a
student might experience as he or she constructsral understanding of limit. Cottrill

and his colleagues suggest that the concept of fimght eventually be thought of as a



schema that is the collection of actions, processmes objects The hypothesized

framework for how students may come to understhadimit concept is as follows:

1. The action of evaluatinfjat a single point that is considered to be close to, or even equal t
2. The action of evaluating the functiéat a few points, each successive point closartt@an was
the previous point.
3. Construction of a coordinated schema as follows.
(a) Interiorization of the action of Step 2 to constric domain process in whick
approaches.
(b) Construction of a range process in whyciipproachesk.
(c) Coordination of (a), (b) vid. That is, the functiorf is applied to the process af
approaching to obtain the process f{k) approachind..
4. Perform actions on the limit concept by talking atydor example, limits of combinations of
functions. In this way, the schema of Step 3 isapsalated to become an object.
5. Reconstruct the processes of Step 3(c) in termiatefvals and inequalities. This is done by

introducing numerical estimates of the closenesspgiroach, in symbols) < \x—@ <Jdand
\ f(x)- L\ <eg.
6. Apply a quantification schema to connect the rettoged process of the previous step to obtain

the formal definition of limit.
7. A completeck-6 conception applied to a specific situation.

Evidence led Cottrill et al. to believe that thenstuction of a coordinated schema
happens in a three-part process, the substepd lisider step three above. The majority
of their analysis focused on this third step, all asethe two preceding steps.

None of the students’ thinking in the study condddby Cottrill et al. (1996) evolved
to the point of having a formal conceptual underdtiag of limit. There was also no
evidence that students were able to move to thed téhthinking of the limit as a schema
— that is, a “coherent collection of actions, pssss, objects and other schemas that are
linked in some way and brought to bear upon a prabkituation” (p.172). Further
aspects of this framework will be discussed inrtbet section.

In summary, the majority of the literature focusesinformal, rather than formal,
understanding of the limit concept. While thesal®s indicate that students have great

difficulty reasoning coherently about the formalfidiéion, it remains to be seen how

! This theoretical perspective is commonly refet@ds APOS theory (action-process-object-scherfia).
a detailed description, see Dubinsky (1992).



students might successfully come to understan@hérefore, it is to this area of limit
research, in which there is a paucity of studibat tve direct our investigations. The
research by Cottrill et al. (1996) serves as thengmy framework upon which our
research is based.
Origin of Research Questions

We believe the genetic decomposition suggesteddiirilCet al. (1996) serves as a
particularly useful starting point for studying dants’ formal conceptions of limit. Their
research suggests that to develop a formal undelista of limit, one must merely
formalize one’s informal notions of the concept.the decomposition outlined above,
doing so amounts to formalizing the first threepstespecifically by reconstructing the
coordinated schema described in step 3c in termstervals and inequalities. We argue
however, that the formalization process is nottsaightforward — formal understanding
does require one to think in terms of intervals eredjualities, but the transition to formal
thinking is not merely a reconstruction of whatescribed in the first three stages of the
genetic decomposition. Research by Larsen (2003tantiates this perspective. Most
students in Larsen’s study did not make connecti@t&een their formal understandings
and the rest of their concept image (Vinner, 19%hjch was comprised mostly of
informal conceptions described in the first thréeps of the genetic decomposition.
Larsen suggests that “the formal definition is cwwally different from the dynamic
conception as described by the first four stegh®igenetic decomposition,” thus making
it “unlikely that a student could successfully mmeet the syntax in terms of their
dynamic conception” (p.29). In light of Larsen’sidings, we recommend that a clearer

distinction be made between informal and formal aerathnding of limit. In informal



understanding, the goal is generally tmd a candidate for the limit. Formal
understanding, on the other hand, typically adére$®w one mightalidatethe choice
of a candidate. Finding and validating are twoati#ht processésin calculus courses,
students are taught a variety of strategies fodifip candidates for limits — direct
substitution, algebraic manipulation, and tabulad @raphical inspection. However,
none of these satisfy the formal definition’s regment of validation. Cottrill et al.
(1996) provide evidence that when students seleandidate for the limit of a function,
they do so in a “forward” manner. By “forward,” ig meant that students focus their
attention first on inputsx{s), and then on corresponding outpwts), The selection of a
candidate is made based on what numeric valug/thare getting close to ass get
closer toa. If students use the algebraic function or tabalgproach to find the limit,
they plug inx's and look at correspondings. If students use a graphical approach, an
“up and over” technique is likely applied, in whistudents allow inputs along tReaxis
to get closer t@, and then look at the corresponding outputs e

It is worth noting, then, that thealidation of a limit requires that one begin with a
given candidate. Hence, the formal definition ipe®ent upon a candidate having
already been selected. The key to validating aidatel however, is the ability to reverse
one’s thinking (i.e., think in a “backwards” manhdnstead of going fronX's toy's, a
student must first consider what is taking pla@nglthey-axis.

In order to understand the definition of a limistadent must coordinate an entire

interval of output values, imagine reversing thaction process and determine
the corresponding region of input values. Theoactif a function on these values

2 Fernandez (2004) and Juter (2006) have also stegh#mtvalidating limits involves a process distinct
from the process dinding limits. Their perspectives, in addition to Larseperspective discussed here,
have assisted us in articulating our own thinkinglee distinction between these two processes.
Thompson'’s insights (P.W. Thompson, personal conication, March 10, 2006) have also benefited our
thinking on this matter.



must be considered simultaneously since anotheepso(one of reducing the size

of the neighborhood in the range) must be applibdewcoordinating the results

(Carlson, Oehrtman, & Thompson, 2007, p.160).
Thus, the process of validating a candidate reguarestudent to recognize that his/her
customary ritual of first considering input valussno longer appropriate. Instead the
student must think in a reverse manner, considdnisga range of output values around
the candidate, projecting back to tkexis, and subsequently determining an interval
around the limit value that will produce outputsthin the pre-selecteg-interval.
Larsen’s research (2001) suggests that the intesamvolved in this “backwards”
process are arguably far more complex for studiats merely formalizing a “forwards”
process. The very complex nature of the formalrskgdin makes it highly unlikely that a
student with a strong “forwards” view of functiomsuld be able to conceive of a new
concept in such a “backwards” way, particularly whibe focus during a first term
calculus course is dimding limits, notverifyingthem.

In summary, we view the genetic decomposition effieby Cottrill et al. (1996) as a
helpful framework from which to develop our owneasch. Instead of working from a
deficit perspective, their research provides a tp@sidescription of student thought.
Specifically, their work provides evidence of howudents reason about the
informal/forwards process of finding limits (steps3 of their genetic decomposition);
however, due to the complexity of the concept,dhera dearth of data describing how
students reason about the formal/backwards pramfegalidating limits. Thus, it seems
that more research is needed to elucidate the Etges of their genetic decomposition.

The overarching purpose of the research reporteglibdo generate such insights and to



move toward the elaboration of a cognitive modelvbat might be entailed in coming to
understand this formal definition. Specificallyetimtent of this research is:
1. To develop insight into students’ reasoning intrelato their engagement in
instruction designed to support their reinventing tormal definition of limit,
2. 'all'gdi’nform the design of principled instruction thaight support students’
attempts to reinvent the formal definition of limit

To be clear, the first objective listed above ishat foreground of our study. Further,
this first objective is set against the broaderkigamund goal of contributing to an
epistemological analysis (Thompson & Saldanha, 00the concept of limit of a real-
valued function and its formal definition. Also, Wéhother studies (e.g., Larsen, 2001;
Fernandez, 2004) have sought to describe how diidgarpret the formal definition,
our research seeks to address this need by focosingow students reason about the
formal definition of limit in the context afeinvention We contend that interpreting the
definition could result in a very different type oféasoning than would attempting to
reinvent the definition. Indeed, the formal defimit of limit constructed by Cauchy, and
subsequently Weierstrass, was motivated by a neespécify the local behavior of
functions in a precise manner. Neither mathematisiaespective definition was a
reformulation or interpretation of the traditiofaimal definition — on the contrary, these
mathematicians constructed their definitions inpogse to an inherent need to classify
functional behavior. We feel, then, that we migkarh a great deal about how students

reason about the formal definition of limit if waigage them in activities designed to

foster their reinvention of the formal definitioh lomit.



Theoretical Perspective

Ernst von Glasersfeld (1995), drawing on Piagetnhegic epistemology (1971,
1977), developed a psychological theory of knowiwgich is known asradical
constructivism(RC). Two central tenets of RC are:

1. Knowledge is not passively received eitheotlgh the senses or by way of
communication, but is actively built up by the camgmg subject.

2. The function of cognition is adaptive, in the bigikkal sense of the term,
tending towards fit or viability and serves the jsgbs organization of the
experiential world, not the discovery of an objeetontological reality (von
Glasersfeld, 1995, p.51).

In our study, we drew upon RC in two important walygst, RC served as a guiding
framework methodologically, both in regards to thgnamic we intended to create
between participants and in regards to how we sleparticipants. For example, the
instructional sequence was designed to create antignin which students might
experience frequent perturbations, thus providihgnt with opportunities to make
cognitive accommodations. In this way, the studemse motivated to organize their
experiential world and thus actively build up knedde. Second, RC served as a lens
through which we analyzed the data generated istindy. For example, in our analyses
of the data, we paid particular attention to stusfgoersonal interpretations of the tasks,
looking for evidence of how they compared with #hdargeted in instruction. In so
doing, we could make subsequent revisions for &uit@rations of the research cycle, and
our research findings could be cast as inferenbesatastudent reasoning given particular
interpretations of instructional tasks. Given R@&rspective on ontological reality, we
believe the intention of data analysis is not toegate statements of fact about how

students reason about or understand limits, bherdab generateiable interpretationof

students’ reasoning and understanding.



In addition to the overarching perspective of raticonstructivism, we briefly
describe aspects drawn from the perspectiveeeélopmental researcdnd theeaching
experiment methodologyat guided the instructional design for our stu@llge goal of
developmental researcis to “design instructional activities that (apKi up with the
informal situated knowledge of the students, any g€bable them to develop more
sophisticated, abstract, formal knowledge, whilecmplying with the basic principle of
intellectual autonomy” (Gravemeijer, 1998, p.27M¢velopmental research in education
typically unfolds in cycles that are driven by tweflexively related phases — a
developmental phas@and aresearch phase The former is characterized by the
development of instructional activities designedassist students in progressing toward
previously identified understandings related toaatipular mathematical concept. The
instructional activities are developed based olecal instructional theory The latter
research phase is characterized by analysis okwstuactivity and reasoning as they
engage in the instructional activities. This aniglyg turn, then serves as a guide in
further developing the local instructional theondan refining the instructional activities
to be implemented in subsequent research cycles.

A heuristic commonly associated with developmergakarch iguided reinvention
This well-established heuristic has been employedumerous content areas of post-
secondary mathematics education (see Larsen, 20@kpngelle & Rasmussen, 2006;
Weber & Larsen, 2005). Guided reinvention is démaiby Gravemeijer et al. (2000) as
“a process by which students formalize their infarranderstandings and intuitions”

(p-237). An important aspect of this process isideatification of plausible instructional



starting points from which students might naturalfgrmalize their informal
understandings and intuitions.

The focus of our research is on modeling studankittg, along the lines articulated
by proponents of theeaching experiment methodolo@teffe & Thompson, 2000). An
important aspect of the teaching experiment metloggois the distinction that is made
betweenstudents’ mathemati@ndmathematics of studentshich Steffe and Thompson
explicate below.

[W]e have to accept the student’s mathematicaltyeas$ being distinct from ours.
We call those mathematical realities “students’ hwatatics,” whatever they
might be. Students’ mathematics is indicated bytwhay say and do as they
engage in mathematical activity, and a basic gb#he researchers in a teaching
experiment is to construct models of students’ maidtics. “Mathematics of
students” refers to these models, and it includlesmodifications students make
in their ways of operating (p.269).
Hence, the researcher’s central purpose in a tegehiperiment is to construct a model
of student thinking or reasoning in relation toaatjgular concept or idea. In this way, the
teaching experiment methodology is an appropriedenéwork to help us address the
second purpose of our research described above.

In summary, we intend to model students’ reasomnigelation to their engagement
in instruction designed to guide them in reinvegitthe formal definition of limit. The
teaching experiment methodologgrves as an orienting and guiding framework lics t
central research objective. Our research objecsvalso in line with the goal of
developmental research to design instructional activities that allowudnts to

autonomously build upon their informal knowledgetlasy develop more sophisticated,

abstract, formal knowledge. Finally, thaided reinvention principlerients our selection



of starting points for instruction — students’ infal interpretations of the concept will
guide the development of instruction.
Method

The study was conducted during the summer of 2@, four introductory analysis
students (two females and two males) from a lawgban university. We chose
introductory analysis students because we presuhagdwould a) have been exposed to
limit and functions in a variety of contexts; beaa strong informal sense of limit; and,
c) not yet have seen the formal definition of limiihe four students were selected based
on the extent to which they demonstrated a willeggto communicate their conceptual
understandings of calculus concepts. The studyisteasof interviewing each student
twice. These interviews were videotaped and to@acelover the course of two weeks.
Each interview lasted approximately 55 to 75 miauiéhe interviews were conducted by
the first author and videotaped by the second austadents A and D were interviewed
individually, while Students B and C were intervegvas a pair. All four students were
filmed a second time in the same groupings durirggfollowing week. Each interview
proceeded in a similar format — the researchersepted tasks (described below) and
asked questions related to those tasks and theergtudalked and worked through
responses on a whiteboard.

The purpose of the first interview was for studdntseinvent the formal definition of

limit at infinity (lim f(x) =L); the purpose of the second interview was foidents to
reinvent the formal definition of limit at a poigim f (x) = L). Ultimately, the purpose

of the task in the first interview was to provideafolding for the task in the second

interview. In both of these tasks the students vasieed to come up with the formal



definition of limit as it pertained to the respeetisituation. The rationale was that in the
first scenario, students would only have to descdloseness along tlyeaxis; and in the
second scenario, students would have to descrdsemeéss along both axes. We hoped
that this sequence would provide a natural progyresalowing students to use their first
definition in reinventing the second.
Data Analysis

Analysis of the videos proceeded in two stageshénfirst viewing, descriptive notes
on each interview were taken so as to: a) chatiaetarhat the students were being asked
to do in each interview; b) make inferences abbat dtudents’ interpretations of what
they were being asked to do in each interview; endonjecture potential conceptual
entailments of students’ reasoning about the fowhe&hition. In the second viewing, the
videos were reviewed for evidence that might sulistte the conjectures. Throughout
the analysis of data, both researchers were frelyuemgaged in discussion in an effort
to reach consensus about the data.
Discussion/Results

Analyses of data from the first iteration of ousearch cycle (in conjunction with an
a priori mathematical-conceptual analysis of timaeitliconcept and its formal definition)
led us to identify components of the formal defomtthat we conjecture are primary in
reasoning coherently about it and should thus bgetad in instruction. These
‘conjectured conceptual entailments’ may servelicidate the latter steps of the genetic
decomposition proposed by Cottrill et al. (1996)e Wst them below and subsequently

discuss each of them in connection to the data.



Conjectured conceptual entailments of the forméhdaen of limit:

1) The purposes of a mathematical definition

2) The purpose of this particular definition

3) The individual components of the definition (i.an understanding of how to
describe getting close to bdthanda)

4) The role of an implication in the definition

5) The quantifier orx is universal (i.e., it has to work for ALx# a within delta
of a, not for just a single)

6) The types of quantifiers in the definition (i.exjstential and universal)

7) The role of quantifier structure in the definition

1) Purposes of a mathematical definition

We conjecture that the successful reinventioarof mathematical definition necessarily
requires some understanding of the purposes ofthematical definition. In particular, a
mathematical definition is designed to describeidea in a precise manner, so that
examples of the idea are retained while countergiesrof the idea are excluded. Those
students in our study who demonstrated an awareidgbe purposes of a mathematical
definition were most successful in their reinventié-or instance, in the first interview,
Student A appeared to have a clear understandiaig his goal was to characterize
precisely what it means for a function to have ratdi limit at infinity. In the excerpt
below, the interviewer had written Student A’s défon for limit at infinity on the
board, “For alle, there exists aa such thak>a implies 50— & < L <50+ ¢,” and began
asking Student A questions about his definition.tdNan particular, the highlighted
portions where Student A appears to exhibit undadihg of the purposes of a
mathematical definition.

1% Can epsilon equal zero?

SA:  Uh, no.

l: And why can epsilon not equal zero?

SA: Because then...if it's for all epsilon greateregualto zero, then it's true
for zero.

3 For all interview transcripts included in this cep | stands for the interviewer, which in all easvas the
first author, while SA stands for Student A, SBnstsifor Student B, and so forth.



I: Okay.

SA: If it's true for zero that means that umm,rethexists a numbex such that
X is greater thama means that it's trapped between 50 and 50, whieans
that it's constant for everything after that. $@tt would not be true for
this one feferring to the dampened sine wgvbecause this is never
constant. It's always fluctuating a little bit.

I: Okay. So you don’t want to include epsilon dq@ zero in your
definition because that does work for functiong thacome constant...

SA:  Yeah, constant, but others don't.

I: Do all functions whose limit equal 50 become stamt?

SA: No....That would be sort of a useless definition

K Okay, why would it be useless? What do you miaathat?

SA: Because if there’'s a useful function...if younvao find that something
converges to something, then if there’s some fonctihat after a while it
just equalst, then why do you mess with the other stuff? Whg'tlyou
just take umm,x>a and then you'd have it exactly...If that's your
definition then, well almost nothing would converge

Student A’'s comments imply that he is aware thdefnition of “limit at infinity” that
allows e to equal zero would over-restrict his characteioraof the concept he is trying
to capture. That is, such a definition would onggcribe functions which are constant for
x>a. However, he is aware of other functions (e.gmpened sine waves) which are not
constant forx>a yet have a finite limit at infinity. In contrasither students, when asked
to define what it means for a function to haveratdi limit at infinity (and, later, at a
finite point), appeared confused about the purpafs¢heir efforts, and consequently
struggled to propose a viable definition. We conjex that instruction designed to
support the development of this first conceptuahidment would greatly benefit students
in developing subsequent conceptual entailmertedliigbove.
2) Purpose of this particular definition

We remind the reader that there is an importartindison between the process of
finding candidates for limits and subsequentérifying that such a candidate is indeed

the limit. There are a variety of approaches usedfifating candidates for limits (i.e.,



algebraic techniques that allow for direct subsbty as well as graphical and tabular
techniques that help make potential candidateseatjdbut the formal definition is not
one of them. Indeed, the stated definition onlyegiva mechanism forerifying that a
given candidate L is a limit; it gives no mechanifon finding candidates for L. We
hypothesize that students are often unaware ofdiktsction and that understanding the
purpose of the formal definition of limit (i.e.sitole as a mechanism for verifying) is a
conceptual entailment of coherent understandinge €kcerpt below illustrates one
student’s difficulty to understand the purpose tod formal definition of limit. In the
paired interview (Students B and C), Student C Wwatten down a formal definition of
limit, and the interviewer asked the other stud@tudent B) what he thought of this
definition.

SB: This feferring to Student C’'s written formal definitiohis like a
memorized definition, | suppose; it doesn't meanit's not as
meaningful....]| mean to us pictorially if you look it [the limit] is the
point that everything kind of approaches as it getgshe place you're
interested in.

Later, during the same interview, the studentsinaet to reason about their reinvented
formal definition of limit, and ultimately appearéd both reason coherently about the
definition. And yet, at the end of the interview avhthe first author asked Student B to
reflect upon the written, formal definition in rétn to the traditionak-o picture to
which Students B and C had been referring, Studnrdid not acknowledge any
increased appreciation for the usefulness of tliaiten.

I: If you look at this situation, and you look this [the definition], how do
you think of — as you read this — how do you thaikthis in light of the
picture?

SB: Iwouldn't.

I: Okay. How would you think of — if you were de#xng limits, how would
you describe them?



SB: 1would, I think that to me it seems easiesag that there’s a sequence of
numbers on that function that is approaching — seguence of outputs |
guess you would call it for the function that apioes the limit. But |
mean pictorially this [referring to the definitionjouldn’t necessarily
mean anything to me.

In the excerpts above, it appears that Student Birking in a “forwards” manner,
consideringx-values first and only then correspondirgalues. As we have discussed in
earlier sections of this report, we believe therfak definition requires one to think in a
“backwards” manner. We conjecture that students wiaw the formal definition as
useless if they fail to recognize its role as amaatsm for verifying candidates for limits,
as well as the corresponding mental shift (frormking in a “forwards” manner to
thinking in a “backwards” manner) that is neededewhreasoning about the formal
definition.
3) Individual components of the definition
4) Role of an implication in the definition
5) The variable x is universally quantified

For the sake of brevity, we describe the next tlo@eceptual entailments together.
Evidence from our study suggests that an importdernent of reinventing the formal
definition of limit is carefully describing the inddual components of the definition.
Specifically, it seems important for students t@relcterize what it means for function
valuesf(x) to get arbitrarily close to the limit L asgets sufficiently close ta. In the
study, students either used absolute value statsrlika those traditionally employed in
the formal definition, or synonymous inequalitytetaents, to describe closenesa tnd
L along thex- andy-axes respectively. Evidence from the study suggtsit students

made use of their definitions of limit at infinifywhich requires one to describe closeness

only along they-axis) from the first task when constructing thaéfinitions of limit at a



point in the second task. As students construdtenl tefinitions of limit at a point, they
simply made adjustments to their first definitiotmsincorporate the idea of closeness
along thex-axis. This lends credence to including both tasksur study in subsequent
instructional sequences.

Evidence from the study also suggests that onceesta describe the individual
components of the definition, it is important thiey understand the role of the
implication in the definition. That is, it appearea be important that students become
aware that restricting the distance betwa&esnda resultsin the ability to restrict the
distance betweef(x) and L. Likewise, it was evident that coherentsmrang relied on
students’ understanding that the implication introes a universal quantifier ox
meaning that the implication holds not just forregke x-value in ad-neighborhood o8,
but for everyx-value in thab-neighborhood (except possikdy. Initially, some student’s
definitions only required that a singbevalue in ad-neighborhood ofa result in a
corresponding function value in a pre-determiaagtighborhood of L.

6) Types of quantifiers
7) Role of quantifier structure in the definition

Results from the study corroborate findings regaydithe struggle students
experience in understanding mathematically quaatiBtatements (Dubinsky, Elterman,
& Gong, 1989; Dubinsky & Yiparaki, 2000; S. Larsepersonal communication,
December 20, 2006; Zaslavsky & Shir, 2005). Spedliify, students had difficulty
determining both the types of quantifiers apprdpritor ¢ and s (i.e., existential vs.
universal) and the appropriate quantification dtree (i.e., “For all/there exists” vs.
“There exists/for all’). Some students believed ditference exists between the two

guantification structures and did not understarartile quantification structure plays in



the definition. These students struggled to reibwercoherent formal definition. One
student seemed to be quite cognizant of the diffardbetween quantification structures
and had little difficulty reasoning coherently abdis reinvented definition of limit. Of

the conceptual entailments discussed in this gsectice conjecture that issues with

guantification may be most difficult for studentsresolve.

Looking Ahead

The seven conceptual entailments discussed in theigos section guided our
formulation of a ‘hypothetical learning trajectorySimon, 1995) and led to the
development of an instructional sequence intendesipport students’ reinvention of the
formal definition of limit under instructional guatice. Specifically, the initial
instructional sequence was refined to support @ftestudent reasoning with respect to
the conceptual entailments listed above. The &whor will carry out a second iteration
of the research cycle during the spring and sunoh@007. In this second iteration of
the research cycle, students will be engaged ievalyarefined instructional sequence
with two central goals: 1) to inform and refine timitial conceptual entailments listed
above (e.g., confirm their viability and explaintarrelations among them); and 2) to
inform the design of principled instruction in redte to these conceptual entailments.
We view the research reported here, as well agaftlecoming second iteration of the
research cycle, as potentially elucidating theetaiteps of the genetic decomposition

proposed by Cottrill et al. (1996).
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