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Introduction 
 

The concept of limit is fundamental to the study of calculus and to introductory 

analysis; this has been noted by many researchers (Artigue, 2000; Bezuidenhout, 2001; 

Cornu, 1991; Dorier, 1995). Artigue (ibid) views the role of limit in calculus as a 

unifying concept as “more important than its role as a productive tool for solving 

problems” (p.5). Cornu (ibid) echoes that sentiment, stating that the limit “holds a central 

position which permeates the whole of mathematical analysis – as a foundation of the 

theory of approximation, of continuity, and of differential and integral calculus” (p.153). 

Indeed, limits arise in these and many other mathematical contexts, including the 

convergence and divergence of infinite sequences and series, applications related to 

determining measurable quantities of geometric figures (e.g., arc length, area, and 

volume), and describing the behavior of real-valued functions.   

The formal definition of limit is foundational as students proceed to more formal, 

rigorous mathematics. Indeed, the vast majority of topics encountered in an 

undergraduate analysis course, where students study the theoretical foundations of 

calculus, are built upon the formal definition. Continuity (both point-wise and uniform), 

derivatives, integrals, and Taylor series approximations are just a few of the topics 

studied in an analysis course for which limit serves as an indispensable component. 

Further, the formal definition of limit often serves as a starting point for developing 

facility with formal proof techniques, making sense of rigorous, formally-quantified 

mathematical statements, and transitioning to abstract thinking. Tall (1992) notes that the 



ability to think abstractly is a prerequisite for the transition to advanced mathematical 

thinking, and Ervynck (1981) cites the limit as an opportunity for students to develop the 

ability to think abstractly. For all of these reasons, the limit concept holds an important 

place in pedagogical considerations and as an object of research in mathematics 

education.   

Literature Review 

Though there are numerous ways to categorize the existing research on limit, we 

choose to separate the literature into two broad categories – informal and formal limit 

research. We define informal limit research here as research that does not have, as its 

focus, the ways in which students reason about the formal definition of limit. By formal 

limit research, we mean research that is focused on how students reason about or 

understand the formal definition. The vast majority of existing limit research consists of 

the former. These studies have focused largely on the fact that informal treatments of 

limit often result in students developing misconceptions (i.e., thinking of the limit as a 

bound, as something that cannot be reached, and/or as an approximation) based on their 

interpretation of colloquial language used in the classroom to describe limits (Ferrini-

Mundy & Graham, 1994; Frid, 1994; Monaghan, 1991; Tall, 1992; Williams, 1991). 

Other studies have shown that informal methods can also result in an over-reliance on 

simplistic examples used initially to introduce the concept (Cornu, 1991; Davis & Vinner, 

1986; Tall & Vinner, 1981; Tall, ibid). Many of the studies mentioned above emphasize 

what students do not know about the concept of limit, which we refer to as a deficit 

perspective. A much smaller segment of the informal limit research literature attempts to 

describe what students do understand about limits (Ferrini-Mundy & Graham, 1994; 



Oehrtman, 2003; Oehrtman, 2004; Williams, 2001). Rather than viewing student thinking 

as deficient, these researchers describe initial student thinking as entailing natural 

informal conceptions that might facilitate the development of strong conceptual 

understanding.  

In contrast to informal limit research, far fewer studies have explored how students 

reason about the formal definition of limit. Those that do, however, suggest that formal 

treatments of the concept also often prove unsuccessful (Cornu, 1991; Dorier, 1995; 

Gass, 1992; Tall, ibid; Tall & Vinner, 1981; Williams, 1991). The formal definition is 

rich with quantification and notation, and, according to Cornu (ibid), is cognitively 

sophisticated for first semester calculus students.  Dorier (ibid) points out that the formal 

definition was “conceived for solving more sophisticated problems and for unifying all of 

them” (p.177), yet at the outset of calculus and introductory analysis, students likely have 

difficulty understanding the importance of a definition designed to unify problems they 

have yet to encounter. The message seems clear – the formal definition of limit is 

difficult for students to understand. What is less apparent from the bulk of the literature, 

however, is how students might come to reason coherently about this difficult concept. 

Studies by Cottrill et al. (1996), Larsen (2001), and Fernandez (2004) have attempted to 

answer this question. We discuss these studies below and in the subsequent section, as 

they have had a profound impact on the development of our own research.   

Cottrill et al. (1996) provide what they call a genetic decomposition of how students 

might reason about the limit concept. This genetic decomposition describes the process a 

student might experience as he or she constructs a formal understanding of limit. Cottrill 

and his colleagues suggest that the concept of limit might eventually be thought of as a 



schema that is the collection of actions, processes and objects1. The hypothesized 

framework for how students may come to understand the limit concept is as follows: 

1. The action of evaluating f at a single point x that is considered to be close to, or even equal to, a. 
2. The action of evaluating the function f at a few points, each successive point closer to a than was 

the previous point. 
3. Construction of a coordinated schema as follows. 

(a) Interiorization of the action of Step 2 to construct a domain process in which x 
approaches a. 

(b)  Construction of a range process in which y approaches L. 
(c) Coordination of (a), (b) via f. That is, the function f is applied to the process of x 

approaching a to obtain the process of f(x) approaching L. 
4. Perform actions on the limit concept by talking about, for example, limits of combinations of 

functions. In this way, the schema of Step 3 is encapsulated to become an object. 
5. Reconstruct the processes of Step 3(c) in terms of intervals and inequalities. This is done by 

introducing numerical estimates of the closeness of approach, in symbols, δ<−< ax0 and 

ε<− Lxf )( . 

6. Apply a quantification schema to connect the reconstructed process of the previous step to obtain 
the formal definition of limit. 

7. A completed ε-δ conception applied to a specific situation. 
 

Evidence led Cottrill et al. to believe that the construction of a coordinated schema 

happens in a three-part process, the substeps listed under step three above. The majority 

of their analysis focused on this third step, as well as the two preceding steps.   

None of the students’ thinking in the study conducted by Cottrill et al. (1996) evolved 

to the point of having a formal conceptual understanding of limit. There was also no 

evidence that students were able to move to the level of thinking of the limit as a schema 

– that is, a “coherent collection of actions, processes, objects and other schemas that are 

linked in some way and brought to bear upon a problem situation” (p.172). Further 

aspects of this framework will be discussed in the next section. 

In summary, the majority of the literature focuses on informal, rather than formal, 

understanding of the limit concept. While these studies indicate that students have great 

difficulty reasoning coherently about the formal definition, it remains to be seen how 

                                                 
1 This theoretical perspective is commonly referred to as APOS theory (action-process-object-schema).  For 
a detailed description, see Dubinsky (1992). 



students might successfully come to understand it. Therefore, it is to this area of limit 

research, in which there is a paucity of studies, that we direct our investigations. The 

research by Cottrill et al. (1996) serves as the primary framework upon which our 

research is based.   

Origin of Research Questions    

We believe the genetic decomposition suggested by Cottrill et al. (1996) serves as a 

particularly useful starting point for studying students’ formal conceptions of limit. Their 

research suggests that to develop a formal understanding of limit, one must merely 

formalize one’s informal notions of the concept. In the decomposition outlined above, 

doing so amounts to formalizing the first three steps, specifically by reconstructing the 

coordinated schema described in step 3c in terms of intervals and inequalities. We argue 

however, that the formalization process is not so straightforward – formal understanding 

does require one to think in terms of intervals and inequalities, but the transition to formal 

thinking is not merely a reconstruction of what is described in the first three stages of the 

genetic decomposition. Research by Larsen (2001) substantiates this perspective. Most 

students in Larsen’s study did not make connections between their formal understandings 

and the rest of their concept image (Vinner, 1991), which was comprised mostly of 

informal conceptions described in the first three steps of the genetic decomposition. 

Larsen suggests that “the formal definition is structurally different from the dynamic 

conception as described by the first four steps of the genetic decomposition,” thus making 

it “unlikely that a student could successfully interpret the syntax in terms of their 

dynamic conception” (p.29). In light of Larsen’s findings, we recommend that a clearer 

distinction be made between informal and formal understanding of limit. In informal 



understanding, the goal is generally to find a candidate for the limit. Formal 

understanding, on the other hand, typically addresses how one might validate the choice 

of a candidate. Finding and validating are two different processes2. In calculus courses, 

students are taught a variety of strategies for finding candidates for limits – direct 

substitution, algebraic manipulation, and tabular and graphical inspection.  However, 

none of these satisfy the formal definition’s requirement of validation. Cottrill et al. 

(1996) provide evidence that when students select a candidate for the limit of a function, 

they do so in a “forward” manner.  By “forward,” it is meant that students focus their 

attention first on inputs (x’s), and then on corresponding outputs (y’s). The selection of a 

candidate is made based on what numeric value the y’s are getting close to as x’s get 

closer to a. If students use the algebraic function or tabular approach to find the limit, 

they plug in x’s and look at corresponding y’s. If students use a graphical approach, an 

“up and over” technique is likely applied, in which students allow inputs along the x-axis 

to get closer to a, and then look at the corresponding outputs (the y’s).  

It is worth noting, then, that the validation of a limit requires that one begin with a 

given candidate. Hence, the formal definition is dependent upon a candidate having 

already been selected. The key to validating a candidate, however, is the ability to reverse 

one’s thinking (i.e., think in a “backwards” manner). Instead of going from x’s to y’s, a 

student must first consider what is taking place along the y-axis.   

In order to understand the definition of a limit, a student must coordinate an entire 
interval of output values, imagine reversing the function process and determine 
the corresponding region of input values.  The action of a function on these values 

                                                 
2 Fernandez (2004) and Juter (2006) have also suggested that validating limits involves a process distinct 
from the process of finding limits.  Their perspectives, in addition to Larsen’s perspective discussed here, 
have assisted us in articulating our own thinking on the distinction between these two processes.  
Thompson’s insights (P.W. Thompson, personal communication, March 10, 2006) have also benefited our 
thinking on this matter. 



must be considered simultaneously since another process (one of reducing the size 
of the neighborhood in the range) must be applied while coordinating the results 
(Carlson, Oehrtman, & Thompson, 2007, p.160). 
 

Thus, the process of validating a candidate requires a student to recognize that his/her 

customary ritual of first considering input values is no longer appropriate. Instead the 

student must think in a reverse manner, considering first a range of output values around 

the candidate, projecting back to the x-axis, and subsequently determining an interval 

around the limit value that will produce outputs within the pre-selected y-interval. 

Larsen’s research (2001) suggests that the intricacies involved in this “backwards” 

process are arguably far more complex for students than merely formalizing a “forwards” 

process. The very complex nature of the formal definition makes it highly unlikely that a 

student with a strong “forwards” view of functions would be able to conceive of a new 

concept in such a “backwards” way, particularly when the focus during a first term 

calculus course is on finding limits, not verifying them.  

In summary, we view the genetic decomposition offered by Cottrill et al. (1996) as a 

helpful framework from which to develop our own research. Instead of working from a 

deficit perspective, their research provides a positive description of student thought. 

Specifically, their work provides evidence of how students reason about the 

informal/forwards process of finding limits (steps 1-3 of their genetic decomposition); 

however, due to the complexity of the concept, there is a dearth of data describing how 

students reason about the formal/backwards process of validating limits. Thus, it seems 

that more research is needed to elucidate the latter stages of their genetic decomposition. 

The overarching purpose of the research reported here is to generate such insights and to 



move toward the elaboration of a cognitive model of what might be entailed in coming to 

understand this formal definition. Specifically, the intent of this research is:   

1. To develop insight into students’ reasoning in relation to their engagement in 
instruction designed to support their reinventing the formal definition of limit, 
and; 

2. To inform the design of principled instruction that might support students’ 
attempts to reinvent the formal definition of limit  

  
To be clear, the first objective listed above is at the foreground of our study.  Further, 

this first objective is set against the broader background goal of contributing to an 

epistemological analysis (Thompson & Saldanha, 2000) of the concept of limit of a real-

valued function and its formal definition. Also, while other studies (e.g., Larsen, 2001; 

Fernandez, 2004) have sought to describe how students interpret the formal definition, 

our research seeks to address this need by focusing on how students reason about the 

formal definition of limit in the context of reinvention. We contend that interpreting the 

definition could result in a very different type of reasoning than would attempting to 

reinvent the definition. Indeed, the formal definition of limit constructed by Cauchy, and 

subsequently Weierstrass, was motivated by a need to specify the local behavior of 

functions in a precise manner. Neither mathematician’s respective definition was a 

reformulation or interpretation of the traditional formal definition – on the contrary, these 

mathematicians constructed their definitions in response to an inherent need to classify 

functional behavior. We feel, then, that we might learn a great deal about how students 

reason about the formal definition of limit if we engage them in activities designed to 

foster their reinvention of the formal definition of limit.  

 



Theoretical Perspective 
 

Ernst von Glasersfeld (1995), drawing on Piaget’s genetic epistemology (1971, 

1977), developed a psychological theory of knowing which is known as radical 

constructivism (RC).  Two central tenets of RC are: 

1.   Knowledge is not passively received either through the senses or by way of 
communication, but is actively built up by the cognizing subject. 

2. The function of cognition is adaptive, in the biological sense of the term, 
tending towards fit or viability and serves the subject’s organization of the 
experiential world, not the discovery of an objective ontological reality (von 
Glasersfeld, 1995, p.51). 

 
In our study, we drew upon RC in two important ways. First, RC served as a guiding 

framework methodologically, both in regards to the dynamic we intended to create 

between participants and in regards to how we selected participants. For example, the 

instructional sequence was designed to create a dynamic in which students might 

experience frequent perturbations, thus providing them with opportunities to make 

cognitive accommodations. In this way, the students were motivated to organize their 

experiential world and thus actively build up knowledge. Second, RC served as a lens 

through which we analyzed the data generated in the study. For example, in our analyses 

of the data, we paid particular attention to students’ personal interpretations of the tasks, 

looking for evidence of how they compared with those targeted in instruction. In so 

doing, we could make subsequent revisions for future iterations of the research cycle, and 

our research findings could be cast as inferences about student reasoning given particular 

interpretations of instructional tasks. Given RC’s perspective on ontological reality, we 

believe the intention of data analysis is not to generate statements of fact about how 

students reason about or understand limits, but rather to generate viable interpretations of 

students’ reasoning and understanding.  



In addition to the overarching perspective of radical constructivism, we briefly 

describe aspects drawn from the perspectives of developmental research and the teaching 

experiment methodology that guided the instructional design for our study. The goal of 

developmental research is to “design instructional activities that (a) link up with the 

informal situated knowledge of the students, and (b) enable them to develop more 

sophisticated, abstract, formal knowledge, while (c) complying with the basic principle of 

intellectual autonomy” (Gravemeijer, 1998, p.279). Developmental research in education 

typically unfolds in cycles that are driven by two reflexively related phases – a 

developmental phase and a research phase. The former is characterized by the 

development of instructional activities designed to assist students in progressing toward 

previously identified understandings related to a particular mathematical concept. The 

instructional activities are developed based on a local instructional theory. The latter 

research phase is characterized by analysis of student activity and reasoning as they 

engage in the instructional activities. This analysis, in turn, then serves as a guide in 

further developing the local instructional theory and in refining the instructional activities 

to be implemented in subsequent research cycles. 

A heuristic commonly associated with developmental research is guided reinvention. 

This well-established heuristic has been employed in numerous content areas of post-

secondary mathematics education (see Larsen, 2004; Marrongelle & Rasmussen, 2006; 

Weber & Larsen, 2005). Guided reinvention is described by Gravemeijer et al. (2000) as 

“a process by which students formalize their informal understandings and intuitions” 

(p.237). An important aspect of this process is the identification of plausible instructional 



starting points from which students might naturally formalize their informal 

understandings and intuitions.   

The focus of our research is on modeling student thinking, along the lines articulated 

by proponents of the teaching experiment methodology (Steffe & Thompson, 2000). An 

important aspect of the teaching experiment methodology is the distinction that is made 

between students’ mathematics and mathematics of students, which Steffe and Thompson 

explicate below.   

[W]e have to accept the student’s mathematical reality as being distinct from ours. 
We call those mathematical realities “students’ mathematics,” whatever they 
might be. Students’ mathematics is indicated by what they say and do as they 
engage in mathematical activity, and a basic goal of the researchers in a teaching 
experiment is to construct models of students’ mathematics. “Mathematics of 
students” refers to these models, and it includes the modifications students make 
in their ways of operating (p.269).  

 
Hence, the researcher’s central purpose in a teaching experiment is to construct a model 

of student thinking or reasoning in relation to a particular concept or idea. In this way, the 

teaching experiment methodology is an appropriate framework to help us address the 

second purpose of our research described above.  

In summary, we intend to model students’ reasoning in relation to their engagement 

in instruction designed to guide them in reinventing the formal definition of limit. The 

teaching experiment methodology serves as an orienting and guiding framework for this 

central research objective. Our research objective is also in line with the goal of 

developmental research – to design instructional activities that allow students to 

autonomously build upon their informal knowledge as they develop more sophisticated, 

abstract, formal knowledge. Finally, the guided reinvention principle orients our selection 



of starting points for instruction – students’ informal interpretations of the concept will 

guide the development of instruction.   

Method 

The study was conducted during the summer of 2006, with four introductory analysis 

students (two females and two males) from a large, urban university. We chose 

introductory analysis students because we presumed they would a) have been exposed to 

limit and functions in a variety of contexts; b) have a strong informal sense of limit; and, 

c) not yet have seen the formal definition of limit. The four students were selected based 

on the extent to which they demonstrated a willingness to communicate their conceptual 

understandings of calculus concepts. The study consisted of interviewing each student 

twice. These interviews were videotaped and took place over the course of two weeks. 

Each interview lasted approximately 55 to 75 minutes. The interviews were conducted by 

the first author and videotaped by the second author. Students A and D were interviewed 

individually, while Students B and C were interviewed as a pair. All four students were 

filmed a second time in the same groupings during the following week. Each interview 

proceeded in a similar format – the researchers presented tasks (described below) and 

asked questions related to those tasks and the students talked and worked through 

responses on a whiteboard.   

The purpose of the first interview was for students to reinvent the formal definition of 

limit at infinity ( Lxf
x

=
∞→

)(lim ); the purpose of the second interview was for students to 

reinvent the formal definition of limit at a point ( Lxf
ax

=
→

)(lim ). Ultimately, the purpose 

of the task in the first interview was to provide scaffolding for the task in the second 

interview. In both of these tasks the students were asked to come up with the formal 



definition of limit as it pertained to the respective situation. The rationale was that in the 

first scenario, students would only have to describe closeness along the y-axis; and in the 

second scenario, students would have to describe closeness along both axes. We hoped 

that this sequence would provide a natural progression allowing students to use their first 

definition in reinventing the second.  

Data Analysis 

Analysis of the videos proceeded in two stages. In the first viewing, descriptive notes 

on each interview were taken so as to: a) characterize what the students were being asked 

to do in each interview; b) make inferences about the students’ interpretations of what 

they were being asked to do in each interview; and c) conjecture potential conceptual 

entailments of students’ reasoning about the formal definition. In the second viewing, the 

videos were reviewed for evidence that might substantiate the conjectures. Throughout 

the analysis of data, both researchers were frequently engaged in discussion in an effort 

to reach consensus about the data.   

Discussion/Results 

Analyses of data from the first iteration of our research cycle (in conjunction with an 

a priori mathematical-conceptual analysis of the limit concept and its formal definition) 

led us to identify components of the formal definition that we conjecture are primary in 

reasoning coherently about it and should thus be targeted in instruction. These 

‘conjectured conceptual entailments’ may serve to elucidate the latter steps of the genetic 

decomposition proposed by Cottrill et al. (1996). We list them below and subsequently 

discuss each of them in connection to the data. 

 



Conjectured conceptual entailments of the formal definition of limit: 
1) The purposes of a mathematical definition  
2) The purpose of this particular definition 
3) The individual components of the definition (i.e., an understanding of how to 

describe getting close to both L and a) 
4) The role of an implication in the definition 
5) The quantifier on x is universal (i.e., it has to work for ALL x ≠ a within delta 

of a, not for just a single x) 
6) The types of quantifiers in the definition (i.e., existential and universal) 
7) The role of quantifier structure in the definition  

 
1) Purposes of a mathematical definition 
 
We conjecture that the successful reinvention of any mathematical definition necessarily 

requires some understanding of the purposes of a mathematical definition. In particular, a 

mathematical definition is designed to describe an idea in a precise manner, so that 

examples of the idea are retained while counterexamples of the idea are excluded. Those 

students in our study who demonstrated an awareness of the purposes of a mathematical 

definition were most successful in their reinvention. For instance, in the first interview, 

Student A appeared to have a clear understanding that his goal was to characterize 

precisely what it means for a function to have a finite limit at infinity. In the excerpt 

below, the interviewer had written Student A’s definition for limit at infinity on the 

board, “For all ε, there exists an a such that x>a implies εε +<<− 5050 L ,” and began 

asking Student A questions about his definition. Note, in particular, the highlighted 

portions where Student A appears to exhibit understanding of the purposes of a 

mathematical definition.   

I3: Can epsilon equal zero? 
SA: Uh, no. 
I:  And why can epsilon not equal zero? 
SA:  Because then…if it’s for all epsilon greater or equal to zero, then it’s true 

for zero. 

                                                 
3 For all interview transcripts included in this report, I stands for the interviewer, which in all cases was the 
first author, while SA stands for Student A, SB stands for Student B, and so forth. 



I:  Okay. 
SA:  If it’s true for zero that means that umm, there exists a number a such that 

x is greater than a means that it’s trapped between 50 and 50, which means 
that it’s constant for everything after  that. So that would not be true for 
this one [referring to the dampened sine wave] because this is never 
constant. It’s always fluctuating a little bit. 

I:  Okay. So you don’t want to include epsilon equaling zero in your 
definition because that does work for functions that become constant… 

SA:  Yeah, constant, but others don’t. 
I: Do all functions whose limit equal 50 become constant? 
SA:  No….That would be sort of a useless definition. 
I:  Okay, why would it be useless?  What do you mean by that? 
SA:  Because if there’s a useful function…if you want to find that something 

converges to something, then if there’s some function that after a while it 
just equals π, then why do you mess with the other stuff?  Why don’t you 
just take umm, x>a and then you’d have it exactly…If that’s your 
definition then, well almost nothing would converge. 

 
Student A’s comments imply that he is aware that a definition of “limit at infinity” that 

allows ε to equal zero would over-restrict his characterization of the concept he is trying 

to capture. That is, such a definition would only describe functions which are constant for 

x>a. However, he is aware of other functions (e.g., dampened sine waves) which are not 

constant for x>a yet have a finite limit at infinity. In contrast, other students, when asked 

to define what it means for a function to have a finite limit at infinity (and, later, at a 

finite point), appeared confused about the purpose of their efforts, and consequently 

struggled to propose a viable definition. We conjecture that instruction designed to 

support the development of this first conceptual entailment would greatly benefit students 

in developing subsequent conceptual entailments listed above. 

2) Purpose of this particular definition 
 

We remind the reader that there is an important distinction between the process of 

finding candidates for limits and subsequently verifying that such a candidate is indeed 

the limit. There are a variety of approaches used for finding candidates for limits (i.e., 



algebraic techniques that allow for direct substitution, as well as graphical and tabular 

techniques that help make potential candidates evident), but the formal definition is not 

one of them. Indeed, the stated definition only gives a mechanism for verifying that a 

given candidate L is a limit; it gives no mechanism for finding candidates for L. We 

hypothesize that students are often unaware of this distinction and that understanding the 

purpose of the formal definition of limit (i.e., its role as a mechanism for verifying) is a 

conceptual entailment of coherent understanding. The excerpt below illustrates one 

student’s difficulty to understand the purpose of the formal definition of limit. In the 

paired interview (Students B and C), Student C had written down a formal definition of 

limit, and the interviewer asked the other student (Student B) what he thought of this 

definition.   

SB: This [referring to Student C’s written formal definition] is like a 
memorized definition, I suppose; it doesn’t mean - it’s not as 
meaningful.…I mean to us pictorially if you look at it, [the limit] is the 
point that everything kind of approaches as it gets to the place you’re 
interested in. 

 
Later, during the same interview, the students continued to reason about their reinvented 

formal definition of limit, and ultimately appeared to both reason coherently about the 

definition. And yet, at the end of the interview when the first author asked Student B to 

reflect upon the written, formal definition in relation to the traditional ε-δ picture to 

which Students B and C had been referring, Student B did not acknowledge any 

increased appreciation for the usefulness of the definition.   

I:   If you look at this situation, and you look at this [the definition], how do 
you think of – as you read this – how do you think of this in light of the 
picture? 

SB: I wouldn’t. 
I: Okay. How would you think of – if you were describing limits, how would 

you describe them? 



SB: I would, I think that to me it seems easier to say that there’s a sequence of 
numbers on that function that is approaching – or a sequence of outputs I 
guess you would call it for the function that approaches the limit. But I 
mean pictorially this [referring to the definition] wouldn’t necessarily 
mean anything to me. 

 
In the excerpts above, it appears that Student B is thinking in a “forwards” manner, 

considering x-values first and only then corresponding y-values. As we have discussed in 

earlier sections of this report, we believe the formal definition requires one to think in a 

“backwards” manner. We conjecture that students may view the formal definition as 

useless if they fail to recognize its role as a mechanism for verifying candidates for limits, 

as well as the corresponding mental shift (from thinking in a “forwards” manner to 

thinking in a “backwards” manner) that is needed when reasoning about the formal 

definition. 

3)  Individual components of the definition 
4)  Role of an implication in the definition 
5)  The variable x is universally quantified 
 

For the sake of brevity, we describe the next three conceptual entailments together. 

Evidence from our study suggests that an important element of reinventing the formal 

definition of limit is carefully describing the individual components of the definition. 

Specifically, it seems important for students to characterize what it means for function 

values f(x) to get arbitrarily close to the limit L as x gets sufficiently close to a. In the 

study, students either used absolute value statements like those traditionally employed in 

the formal definition, or synonymous inequality statements, to describe closeness to a and 

L along the x- and y-axes respectively. Evidence from the study suggests that students 

made use of their definitions of limit at infinity (which requires one to describe closeness 

only along the y-axis) from the first task when constructing their definitions of limit at a 



point in the second task. As students constructed their definitions of limit at a point, they 

simply made adjustments to their first definitions to incorporate the idea of closeness 

along the x-axis. This lends credence to including both tasks in our study in subsequent 

instructional sequences.   

Evidence from the study also suggests that once students describe the individual 

components of the definition, it is important that they understand the role of the 

implication in the definition. That is, it appeared to be important that students become 

aware that restricting the distance between x and a results in the ability to restrict the 

distance between f(x) and L. Likewise, it was evident that coherent reasoning relied on 

students’ understanding that the implication introduces a universal quantifier on x, 

meaning that the implication holds not just for a single x-value in a δ-neighborhood of a, 

but for every x-value in that δ-neighborhood (except possibly a). Initially, some student’s 

definitions only required that a single x-value in a δ-neighborhood of a result in a 

corresponding function value in a pre-determined ε-neighborhood of L. 

6)  Types of quantifiers 
7)  Role of quantifier structure in the definition 
 

Results from the study corroborate findings regarding the struggle students 

experience in understanding mathematically quantified statements (Dubinsky, Elterman, 

& Gong, 1989; Dubinsky & Yiparaki, 2000; S. Larsen, personal communication, 

December 20, 2006; Zaslavsky & Shir, 2005). Specifically, students had difficulty 

determining both the types of quantifiers appropriate for ε and δ (i.e., existential vs. 

universal) and the appropriate quantification structure (i.e., “For all/there exists” vs. 

“There exists/for all”). Some students believed no difference exists between the two 

quantification structures and did not understand the role quantification structure plays in 



the definition. These students struggled to reinvent a coherent formal definition. One 

student seemed to be quite cognizant of the difference between quantification structures 

and had little difficulty reasoning coherently about his reinvented definition of limit.  Of 

the conceptual entailments discussed in this section, we conjecture that issues with 

quantification may be most difficult for students to resolve.    

 
Looking Ahead 
 

The seven conceptual entailments discussed in the previous section guided our 

formulation of a ‘hypothetical learning trajectory’ (Simon, 1995) and led to the 

development of an instructional sequence intended to support students’ reinvention of the 

formal definition of limit under instructional guidance. Specifically, the initial 

instructional sequence was refined to support coherent student reasoning with respect to 

the conceptual entailments listed above. The first author will carry out a second iteration 

of the research cycle during the spring and summer of 2007. In this second iteration of 

the research cycle, students will be engaged in a newly-refined instructional sequence 

with two central goals: 1) to inform and refine the initial conceptual entailments listed 

above (e.g., confirm their viability and explain interrelations among them); and 2) to 

inform the design of principled instruction in relation to these conceptual entailments.  

We view the research reported here, as well as the forthcoming second iteration of the 

research cycle, as potentially elucidating the latter steps of the genetic decomposition 

proposed by Cottrill et al. (1996).   



References 
 
Artigue, M. (2000). Teaching and learning calculus: What can be learned from education 

research and curricular changes in France?  In E. Dubinsky & A. Schoenfeld & J.J. 
Kaput (Eds.) Research in collegiate mathematics education IV (Vol. 8, pp.1-15). 
Providence: American mathematical society. 

 
Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year students. 

International journal of mathematical education in science and technology, 32, 4, 
487-500. 

 
Carlson, M. P., Oehrtman, M. C., & Thompson, P. W. (2007). Key aspects of knowing 

and learning the concept of function. In M. P. Carlson & C. Rasmussen (Eds.), 
Making the connection: Research and practice in undergraduate mathematics (pp. 
150-171). Washington, DC: Mathematical Association of America.  

 
Cornu, B. (1991). Limits. In D. Tall (Ed.) Advanced Mathematical Thinking. Dordrecht, 

The Netherlands: Kluwer Academic Publishers, 153-166. 
 
Cottrill, J., Dubinsky, E., Nichols, D., Schwinngendorf, K., Thomas, K., & Vidakovic, D. 

(1996). Understanding the limit concept: Beginning with a coordinated process 
schema. Journal of mathematical behavior, 15, 167-192. 

 
Davis, R., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable 

misconception stages. Journal of mathematical behavior, 5, 281-303. 
 
Dorier, J. (1995). Meta level in the teaching of unifying and generalizing concepts in 

mathematics. Educational studies in mathematics, 29, 175-197. 
 
Dubinsky, E. (1992).  Reflective abstraction in advanced mathematical thinking.  In D. 

Tall (Ed.), Advanced mathematical thinking (pp. 95-126). Dordrecht, The 
Netherlands: Kluwer Academic. 

 
Dubinsky, E., Elterman, F., & Gong, C. (1988). The student’s construction of 

quantification. For the learning of mathematics – An international journal of 
mathematics education, 8, 44-51.  

 
Dubinsky, E. and Yiparaki, O. (2000). On student understanding of AE and EA 

quantification. CBMS Issues in Mathematics Education. Vol. 8., 239-289. 
 
Ervynck, G. (1981). Conceptual difficulties for first year university students in the 

acquisition of limit of a function. Proceedings of the Psychology of Mathematics 
Education, 5 (pp. 330-333), Grenoble, France. 

 
Fernandez, E. (2004). The students’ take on the epsilon-delta definition of a limit. 

Primus, 14, 1, 43-54. 



 
Ferrini-Mundy, J., & Graham, K. (1994). Research in calculus learning: Understanding of 

limits, derivatives, and integrals. In E. Dubinsky & J.J. Kaput (Eds.) Research issues 
in undergraduate mathematics learning: Preliminary analyses and results. 
Washington D.C.: MAA, 31-45. 

 
Frid, S. (1994). Three approaches to undergraduate calculus instruction: Their nature and 

potential impact on students’ language use and sources of conviction. In E. Dubinsky 
& A. Schoenfeld & J.J. Kaput (Eds.) Research in collegiate mathematics education 
IV (Vol. 4, pp.69-100). Providence: American mathematical society. 

 
Gass, F. (1992). Limits via graphing technology. Primus, 2, 1, 9-15. 
 
Gravemeijer, K. (1998). Developmental research as a research method. In J. Kilpatrick & 

A.Sierpinska (Eds.), Mathematics Education as a Research Domain: A Search for 
Identity (ICMI Study Publication) (Book 2, pp. 277-297). Dordrecht, The 
Netherlands: Kluwer. 

 
Gravemeijer, K., Cobb, P., Bowers, J., and Whitenack, J. (2000). Symbolizing, modeling 

and instructional design.  In P. Cobb, E. Yackel and K. McClain (Eds.), Symbolizing 
and Communicating in Mathematics Classrooms, Erlbaum, Mahwah, NJ, pp. 225–
273. 

 
Juter, K. (2006). Limits of functions as they developed through time and as students learn 

them today. Mathematical thinking and learning, 8, 4, 407-431. 
 
Larsen, S. (2001). Understanding the formal definition of limit. Unpublished manuscript, 

Arizona State University. 
 
Larsen, S. (2004).  Supporting the guided reinvention of the concepts of group and 

isomorphism: A developmental research project (Doctoral dissertation, Arizona State 
University, 2004) Dissertation Abstracts International, B65/02, 781. 

 
Marrongelle, K., & Rasmussen, C. (2006). Pedagogical content tools: Integrating student 

reasoning and mathematics in instruction. Journal for research in mathematics 
education, 37, 5, pp. 388-420  

 
Monaghan, J. (1991). Problems with the language of limits. For the learning of 

mathematics, 11, 3, 20-24. 
 
Oehrtman, M. (2003). Strong and weak metaphors for limits, Proceedings of the 27th 

Conference of the International Group for the Psychology of Mathematics Education 
held jointly with the 25th Conference of PME-NA, Vol 3, (pp. 397-404). Honolulu, 
HI. 

 



Oehrtman, M. (2004). Approximation as a foundation for understanding limit concepts. 
Proceedings of the Psychology of Mathematics Education North American Chapter, 
23 (pp. 95-102), Snowbird, UT. 

 
Piaget, J. (1971). Genetic epistemology. New York: W. W. Norton. 
 
Piaget, J. (1977). Psychology and epistemology: Towards a theory of knowledge. New 

York: Penguin. 
 
Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist 

perspective. Journal for Research in Mathematics Education, 26, 2, 114-145. 
 
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 

principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in 
mathematics and science education (pp. 267-307). Hillsdale, NJ: Erlbaum. 

 
Tall, D.O. (1992). The transition to advanced mathematical thinking: Functions, limits, 

infinity, and proof. In D.A. Grouws (Ed.) Handbook of research on mathematics 
teaching and learning. New York: Macmillan, 495-511. 

 
Tall, D.O., & Vinner, S. (1981). Concept image and concept definition in mathematics 

with particular reference to limits and continuity. Educational studies in mathematics, 
12, 151-169. 

 
Thompson, P. W. & Saldanha, L. (2000). Epistemological analyses of mathematical 

ideas: A research methodology. Proceedings of the Twenty-second Annual Meeting of 
the International Group for the Psychology of Mathematics Education. Tucson, 
Arizona. 

 
Vinner, S. (1991).  The role of definitions in the teaching and learning of mathematics. In 

D. Tall (Ed.), Advanced Mathematical Thinking  (pp. 65-81). Boston:  Kluwer. 
 
von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning, 

Falmer Press, London. 
 
Weber, K., and Larsen, S. (2005). Teaching and learning group theory. To appear in 

forthcoming MAA Notes volume, Making the Connection: Research and Teaching in 
Undergraduate Mathematics. Mathematical Association of America. Manuscript 
submitted for publication. 

 
Williams, S. (1991). Models of limit held by college calculus students. Journal for 

research in mathematics education, 22, 3, 219-236. 
 
Williams, S. (2001). Predications of the limit concept: An Application of repertory grids. 

Journal for research in mathematics education, 32, 4, 343-367. 
 



Zaslavsky & Shir (2005). Students’ conceptions of a mathematical definition. Journal for 
research in mathematics education, 36, 4, 317-346. 

 


