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Abstract. This report explores students’ naïve conceptions of infinity as they 

compared the number of points on line segments of different lengths. Their innovative 

resolutions to tensions that arose between intuitions and properties of infinity are 

addressed. Attempting to make sense of such properties, students reduced the level of 

abstraction of tasks by analysing a single number rather than infinitely many. In 

particular, confusion between the infinite magnitude of points and the infinite amount of 

digits in the decimal representation of numbers was observed. Furthermore, students 

struggled to draw a connection between real numbers and their representation on a 

number line. 

The research presented in this paper is part of a broader study that investigates 

changes in students’ conceptions of infinity as personal reflection, instruction, and 

intuitions are combined. It strives to uncover naïve interpretations of a concept that has 

puzzled and intrigued minds for centuries. The counter-intuitive and abstract nature of 

infinity provides a particularly interesting avenue for investigation. Moreover, infinity is 

a concept steeped in personal convictions that may stem from religion or philosophy. 

Consequently mathematical arguments might not be sufficient to convince an individual 

of properties that even Cantor saw but could not believe. 



It has been well established that intuitions are persistent, especially when dealing 

with counter-intuitive concepts (Fischbein, 1987). As a learner’s mathematical 

background increases, so too does his or her reliance on systematic, logical schemes 

(Fischbein, Tirosh, and Hess, 1979). Thus an individual might feel ill equipped to deal 

with the mathematical anomalies that arise with infinity. This study presented 

undergraduate students with a geometric representation of infinity, and observed how 

those students responded to contradictory or inconsistent results that they themselves 

discovered. A benefit of a geometric approach is that it provided a context for 

investigating infinity without the necessity of introducing unfamiliar symbolic 

representations or terminology, such as in a set theoretic approach.  Students were able to 

reflect on and develop their ideas by considering familiar and accessible objects, and with 

minimal instruction. 

THEORETICAL BACKGROUND  

Students’ reasoning concerning the counterintuitive nature of infinity and 

cardinalities of different infinite sets have been a popular foci of current research (see 

among others: Dreyfus and Tsamir 2004, 2002; Fischbein, Tirosh, and Hess, 1979; Tall 

2001; Tsamir, 1999, 2001; Tsamir and Dreyfus, 2002; Tsamir and Tirosh, 1999). To the 

best of my knowledge, only a few studies examine students’ conceptions with regard to 

infinity in a geometrical context (see Dreyfus and Tsamir, 2004; Fischbein, Tirosh, and 

Melamed, 1981; Tall, 1980; Tirosh, 1999; Tsamir and Tirosh, 1996). Tsamir and Tirosh 

(1996), for instance, reported that when infinite sets were represented in a geometrical 

context, such as line segments of different lengths or squares of different perimeters, 

students were more likely to recognize one-to-one correspondence than when similar sets 



were represented numerically. In an earlier study, Fischbein et al. (1979) observed 

students’ intuitive decisions when considering the infinite divisibility of a line segment.  

They concluded that, despite mathematical training, intuitions, such as the finite possible 

divisions of a “limited” line segment, remained unchanged. These conclusions supported 

the claim of Fischbein et al. (1981) that an intuitive leap is necessary to establish meaning 

about infinity. 

In my research, I build on several theoretical perspectives. The first framework 

introduced is Tall’s (1980), which interprets intuitions that extrapolate experiences with 

finite measurements. In Hazzan’s (1999) perspective, the use of familiar procedures to 

make sense of unfamiliar problems is an attempt to reduce the level of abstraction of 

certain concepts. Hazzan described reducing abstraction as a way for students to “cope 

with new concepts” and make them “mentally accessible, so that they [the students] 

would be able to think with them and handle them cognitively” (1999, p.75). 

Furthermore, she suggested that such an attempt to reduce the level of abstraction is 

indicative of a process conception. Process and object conceptions of infinity are 

characterized by APOS theory, another of the theoretical perspectives to which I refer. 

Dubinsky, Weller, McDonald, and Brown (2005) proposed that process and object 

conceptions of infinity correspond, respectively, to an understanding of potential and 

actual infinity. Extending on these topics, my study examines students’ naïve responses 

to tasks such as considering the number of points “missing” from the shorter of two line 

segments.  



Tall’s “Measuring Infinity” 

As indicated, much of current research on infinity in mathematics education 

focuses on students’ understanding of cardinal infinity. Tall (1980) suggested an 

alternative framework for interpreting intuitions of infinity that instead extrapolates 

measuring properties of numbers. Many of our everyday experiences with measurement 

and comparison associate “longer” with “more.”  For example, a longer inseam on a pair 

of pants corresponds to more material. Likewise, a longer distance to travel corresponds 

to more steps one must walk. Tall (1980) proposed extrapolating this notion can lead to 

an intuition of infinities of “different sizes,” but one that is contrary to cardinal infinity.  

A measuring intuition of infinity coincides with the notion that although any line 

segment has infinitely many points, the longer of two line segments will have a “larger” 

infinite number of points. Tall (1980) called this notion “measuring infinity” and 

suggested it is a reasonable, and indeed natural, interpretation of infinite quantities, 

especially when dealing with measurable entities such as line segments and points. With 

this interpretation, if a line segment has א many points, then a segment twice as long has 

2א  many points. Conversely, properties of cardinal infinity assert that any two line 

segments have the same number of points, א, regardless of length. One of the definitions 

of an infinite set is that it can be put into a one-to-one correspondence with one of its 

proper subsets.  Thus, although a shorter line segment might be viewed as a subset of a 

longer one, they nevertheless contain the same number of points.  Certainly, cardinal 

infinity does admit different infinite magnitudes – the natural numbers, for example, have 

cardinality less than that of the real numbers. 



While at first, a measuring interpretation of infinity may seem at odds with 

cardinal infinity, they are linked via properties such as א = 2א  . Moreover, Tall’s 

measuring infinity is consistent with non-standard analysis, a branch of mathematics 

concerned with properties of the superreals, a field extension of the real numbers that 

includes infinitesimals as well as infinitely large numbers. Recognizing properties of 

transfinite numbers such as the equality mentioned above might be a fundamental aspect 

of encapsulating infinity, as explained in APOS theory in the next section.  

APOS Analysis of Infinity 

Dubinsky et al. (2005) proposed an APOS analysis of conceptions of cardinal 

infinity. They suggested that interiorising infinity to a process corresponds to an 

understanding of potential infinity, while encapsulating to an object corresponds to actual 

infinity. For instance, potential infinity could be described by the process of, say, creating 

as many points as desired on a line segment to account for their infinite number. Whereas 

actual infinity would describe the infinite number of points on a line segment as a 

complete entity. Dubinsky et al. suggested encapsulation occurs once one is able to think 

of infinite quantities “as objects to which actions and processes (e.g., arithmetic 

operations, comparison of sets) could be applied” (2005, p.346). Dubinsky et al. also 

suggested that encapsulation of infinity entails “a radical shift in the nature of one’s 

conceptualisation” (2005, p.347) and might be quite difficult to achieve. This theoretical 

perspective, as well as Tall’s (1980) “measuring infinity,” will be used throughout the 

study to interpret students’ intuitions, and their attempts to reduce the level of abstraction 

of properties of infinity.   



SETTING AND METHODOLOGY  

The participants of this study were 24 first-year undergraduate university students 

enrolled in a foundations course in analytic and quantitative reasoning. This introductory 

mathematics course was designed as an upgrade for students who lacked a sufficient 

mathematical background for level one courses. The course met twice a week for two-

hour sessions over 13 weeks. Students had no prior experience investigating properties of 

infinity in a mathematical context and none were in a mathematics program.  

Data collection relied primarily on a series of written questionnaires intended to 

elicit students’ naïve conceptions of infinity. One of the aims of this study was to 

determine what sort of connection, if any, participants made between a geometrical 

representation of infinity and a numerical one. In other words, the question of whether 

students were associating points on a line with values on a number line was considered. 

The rationale behind administering a series of questionnaires throughout the span of 

several weeks was to determine if and in what ways students’ ideas may change as a 

result of personal reflection. In order to avoid swaying students’ responses, very little 

instruction was provided and it was made clear that there was no one “right” answer 

being sought.   

The questionnaires were designed in such a way as to provide students with an 

opportunity to reflect and build on their previous ideas. Tasks were developed based on 

students’ responses and aimed to unravel some of their shared conceptions. Certain 

questions recalled students’ previous responses and presented them with a slight twist. 

The rationale for this was to confront students with some of the counterintuitive 

properties of actual infinity that they unearthed. Questions also took the form of 



presenting students with an argument that claimed to be from one of their peers. Students 

were then asked to assess and discuss the ideas involved. The basis for this style of 

question was to avoid presenting an authoritative position. It was imperative to this study 

that students’ responses were not affected by seemingly correct solutions. The students 

addressed each issue based on its appeal to their own naïve ideas.  

Due to the nature of the tasks, details concerning specific questions are developed 

in the following section. The primary focus of this paper is on students’ responses to two 

questions in particular. The first question (Q1) that is analyzed in detail confronted 

students with an idiosyncrasy of infinite quantities and asked for an explanation. Of 

particular interest was the response of one participant, Lily. Her attempt to formulate an 

argument that was consistent with her experiences and intuitions prompted a follow up to 

this questionnaire. In Q2 students were asked to respond to Lily’s argument as well as to 

a variation of it. 

RESULTS AND ANALYSIS  

Q0, Lily, and her classmates 

From the early stages of the study, a clear lack of connection between points on a 

real number line and numerical values was observed. One of the first questionnaires 

administered (Q0) was intended to establish some preliminary concepts as well as 

introduce students to the style of tasks in the study. Students were asked to identify the 

number of points on line segments and speculate on the relationship between number of 

points and length.  Their responses revealed interesting conceptions concerning the 

distinction between points and values for those points.  For instance, 70% of participants 

indicated that points were either the places that a line segment starts and ends, or else 



they were markers that partition a line segment into equal units. Conversely, these 

students recognized and were able to justify the infinite number of possible partitions of a 

line segment, as well as the infinite number of rational numbers between any two 

numbers. These initial responses indicated misconceptions about the geometry of points, 

and prompted the only instance in the study of instructor intervention. A brief description 

of points and lines complemented a class discussion that addressed questions such as, if 

points are only indicators of the start and end of a line segment, then what lies in 

between?    

Lily’s responses to the early questionnaires were characteristic of these conceptions. 

Though not particularly confident in her mathematical abilities, Lily was a thoughtful 

student who was eager to share and reflect on her conceptions of infinity. Various 

changes in her responses were observed throughout the course of the study. For instance, 

in Q0, Lily stated that the length of a line segment was equal to its number of points:  

There are a total of 3 points on the line segment… I think I know this because [the 

question] states that [the line segment is] 3 units long; therefore, I just divided the 

line segment into 3 parts. 

During the class discussion that followed, she reasoned that it was possible to divide a 

line segment “into many different partitions” and concluded there must be “an infinite of 

points on any line segment.”  

 Once a shared understanding, to use the term loosely, of the infinite magnitude of 

a line segment was established, a connection between point and number began to 

develop. During students’ attempts to justify the infinite number of points, the notion of 

point size came about. Lily remarked, “In a line, there can be many points present 

because the size of the points have no limit.  It could be an extremely big point or a 



microscopic size point.”  Conceptions of point size might develop because “[p]hysical 

points have size when they are marked with the stroke of a pen” (Tall, 1980, p.272). 

Alternatively, some students’ ideas of point size stemmed from an association that 

students were making between point and number.  This perspective was exemplified in 

Dylan’s statement: 

0, 1, 2 those would be big points, or you could have 0, 0.5, 1, 1.5, then those would 

be smaller points.  And you could go smaller or bigger depending on what you 

want to do. 

Thus, a microscopic point might be associated with, say, the number 0.00…001, whereas 

“big points” were associated with whole numbers.   

This association between point size and numeric value, although different from the 

conventional one, was a connection nevertheless. Moreover, it seemed to indicate a 

change in students’ conceptions. However, subsequent questionnaires revealed that 

students’ point-number correspondence was flawed and inconsistent if it was made at all.  

The questionnaire directly preceding Q1 expanded on the relationship between 

points and line segments in two ways.  First, students were asked to compare the number 

of points on line segments of different lengths, and then students were asked to reflect on 

the number of points “missing” from the shorter of the two segments. Then, in order to 

probe students’ rationale when comparing the number of points on line segments of 

different lengths, Q1 presented their conclusions with a slight twist.  

Q1 and analysis of Lily’s response  

  In an effort to investigate conceptions of what it may mean for a line segment to 

have infinitely many points, students were asked to reflect on their previous arguments 

concerning the number of “extra” points on the longer of two line segments. 



Q1. On a previous question, you reasoned that two line segments A and C both 

have infinitely many points.   

     
Suppose that the length of A is equal to the length of C + x, where x is some 

number greater than zero. You also previously suggested that the segment with 

length x has infinitely many points. That is, the ∞ points on A minus the ∞ points 

on C leaves an ∞ number of points on the segment with length x. Put another way,  

∞ - ∞ = ∞. 

Do you agree with this statement? Please explain. 

Of the various responses to this question, Lily’s stood out. In her response, she disagreed 

with the possibility that ∞ - ∞ = ∞. She wrote: 

I disagree with this statement. For example, π is an infinite (on going) number. If 

we subtract π – π the answer is 0, NOT ∞. But, if there is a restriction that says we 

can’t subtract by the same number it could still be an infinite number, but just a 

smaller value. For example, π – 2π = -π, is still an infinite number, only negative. 

Lily reasoned that since π is an “infinite (on going) number” and π – π = 0, then the 

difference ∞ - ∞ must also be 0. In Lily’s conception, an “infinite number” appears to be 

a number that has an infinite decimal representation. Her objection to Q1 seems to stem 

from confusion between an infinite magnitude, such as the number of points on a line 

segment, and the infinite number of digits in the decimal representation of π. Her use of π 

to justify claims about infinite magnitudes suggests a disconnect between points on a line 

segment and real numbers. Not only did she overlook the particular value of π itself, but 

she also failed to distinguish the differences between acting on one specific element as 

opposed to infinitely many. 

Lily’s generalization of properties of π to draw conclusions about the entire set of 

points is likely an attempt to reduce the level of abstraction of dealing with an infinite 



number of elements. The use of one number to explain properties of infinitely many 

coincides with Hazzan’s (1999) observation that students will try to reduce the level of 

abstraction of a set by examining one of its elements rather than all of them. It is possible 

that addressing the entire set of points on a line segment as an entity itself may not be 

feasible at this stage of Lily’s concept formation. Her use of the qualifier “on going” to 

describe her notion of an “infinite number” is further evidence that she maintains a 

process conception of infinity.  

Another interesting aspect of Lily’s response was her use of “restrictions.” She 

proposed that the difference of two “infinite numbers” might be another “infinite 

number” if there are appropriate restrictions placed on the quantities. By restricting the 

“values of infinity” she reasoned that it is possible to attain “an infinite number, it [will] 

just be a smaller value.” For instance, she noted that a line segment with “missing points” 

may still have infinitely many points, just fewer than the longer segment. This idea is 

consistent with an intuition of measuring infinity (Tall, 1980). Also, Lily’s response is 

consistent with the observation that students’ conceptions of infinity tend to arise by 

reflecting on their knowledge of finite concepts and extending these familiar properties to 

the infinite case (Dubinsky et al. 2005; Dreyfus and Tsamir 2004; Tall 2001; Fischbein 

2001; Fischbein, Tirosh and Hess 1979). The use of familiar concepts and procedures to 

describe the unfamiliar properties of infinity is yet another example of Hazzan’s (1999) 

“reducing abstraction”. In this case, Lily applies the familiar procedure of subtraction not 

to the transfinite number א, but to the real number π, thereby reducing the level of 

abstraction of working with the infinite number of points on a line segment. 



Q2 and Lily’s classmates  

Lily’s confusion between an infinite number of elements and an infinite number of 

digits in one particular element provoked my curiosity. The question of whether other 

students shared Lily’s ideas naturally arose. Thus, a follow up questionnaire (Q2) recalled 

Q1, presented Lily’s argument verbatim, as well as a similar one, and asked students to 

elaborate on whether or not they agreed with the arguments.  

Q2. Recall Q1. 

Student X: [Lily’s response as quoted above] 

Student Y:  I disagree with this statement. You can subtract two infinite numbers 

and NOT end up with ∞. For example, 1/3 is an infinite number, but 1/3 – 1/3 = 0, 

NOT ∞. Also, 4/6 and 1/6 are both infinite (on going) numbers, but if we subtract 

4/6 – 1/6 = 3/6 = ½ = 0.5, which is not an infinite number. But sometimes it’s 

possible to subtract two infinite numbers and get an infinite number. For example, 

1/3 – 1/6 = 1/6, which is infinite and smaller than 1/3. So, sometimes ∞ - ∞ = ∞, 

but usually not. 

Interestingly, most participants agreed with at least one of the arguments above. The 

failure to distinguish between infinite magnitude and infinite decimal representation was 

shared by 22 of the 24 participants in this study. Two distinct interpretations of “infinite 

numbers” were observed. For the students who agreed with both arguments, confusion 

between infinite magnitude and infinite decimal representation was broad: they ignored 

the finite magnitude of both rational and irrational numbers. For instance, Jack wrote: 

4/6 and 1/6 are both infinite (on going) numbers but when subtracting them your 

result is ½ which is not infinite. This proves that an infinite number subtracting by 

another infinite number is not always another infinite number. As a result the 

statement ∞ - ∞ = ∞ is not true because sometimes the result is infinite but a 

different value and other times the result is not infinite. 

Again it is clear that the differences between a specific (finite) value and an infinite 

quantity are being neglected. Also, this response highlights the common notion that 



infinity has no specific value. In particular, Jack seems to use the ∞ symbol to represent 

numbers of different magnitude. This and similar responses revealed that students were 

not only extrapolating their experiences with finite quantities, but they were using them 

explicitly (though perhaps unknowingly) to justify their intuitions of infinity. 

Conversely, there were students who recognized rational numbers as finite 

quantities but confused irrational numbers with infinite quantities: 

4/6 and 1/6 are not infinite numbers. They are both ongoing but have a set pattern; 

the definition on infinite is a number with ongoing decimal digits that have no set 

pattern such as π. 

Students who agreed with Lily’s argument but disagreed with Student Y associated 

rational numbers with points on a number line but did not make the same association with 

irrational numbers. This interpretation was exemplified in Rosemary’s response to Q2: 

π – π = 0 that is correct because one is taking away the same amount of points from 

what they initially began with will give 0, but in the line segment question, the 

amount of points in x (which is ∞ amount) is much less than the amount of points 

in A and C. Which because of this, I agree with Student X’s second statement of 

how there should be restrictions. In this case, points in x are less than points in A or 

C. Student Y states: 1/3 – 1/6 = 1/6 (which is an ∞ number) but 4/6 – 1/6 = 3/6 

(which is only 0.5 and not an ∞ number). Well, when we represent these numbers 

on a number line [drew two line segments, one from 0 to 1/6 and one from 0 to ½, 

and labelled the segments A and B, respectively] then won’t both line segments 

have ∞ points? (But of course segment B will have more than segment A) 

Rosemary was a high-achiever who had consistently expressed the opinion that line 

segments had infinitely many points. She had realized prior to Q1 that her arguments 

supported the counterintuitive ∞ - ∞ = ∞, and after reflecting, rationalized the expression 

by invoking a measuring intuition. In her response to Q1, she claimed that while any line 

segment will have infinitely many points, a longer segment would have a larger infinite 

number of points. She also alleged that subtracting an infinite quantity from another 



(albeit “larger”) infinite quantity would leave “a lot of points… extending into infinity,” 

and “it will take forever” to count them. These last two statements pertain to a notion of 

potential infinity, and suggest a process conception. 

  In her response to Q2, Rosemary related Lily’s notion of restrictions to her own 

measuring conception. Placing restrictions on the symbol used to represent the infinite 

number of points on each line segment accommodated the possibility that a longer line 

segment will have a greater number of points. Like Lily, Rosemary used π to reduce the 

level of abstraction of ∞ - ∞ = ∞. As she stated, “taking away the same amount of points 

[…] will give 0” just as π – π = 0.  

Rosemary also reiterated her thoughts regarding measuring infinity when she 

addressed Student Y’s argument. In this case, however, she did not use the rational 

numbers analogously with infinite quantities, as she had used π. Although Rosemary 

stated that 1/6 was an “infinite number,” she observed its specific value on the number 

line. Similarly, she remarked that though ½ was not infinite itself, when represented on a 

number line there were still infinitely many points between 0 and ½. This distinct 

handling of rational and irrational numbers suggests a misconception about real numbers: 

whereas rational numbers were associated with points, irrational numbers were not. 

Furthermore, Rosemary seemed to use the words “infinite number” in two different ways: 

to represent a number with infinitely many (nonzero) digits in a decimal representation, 

as well as to represent the number of points in a line segment. It would be interesting to 

see if Rosemary’s measuring conception would be so resilient had she not applied the 

same terminology to two distinct notions. 



CONCLUSION 

This paper presents some naïve conceptions of undergraduate students concerning 

infinity, and attempts to interpret their understanding as those ideas evolved. During their 

attempts to merge intuition with formal mathematics, students discovered some features 

of cardinal infinity that were at odds with their personal experiences and logical 

schemata. As they struggled to make sense of the material, students revealed interesting 

ways to cope with the abstract concepts. Students’ attempts to make material more 

comprehensible suggested their ideas of infinity developed in part from misconceptions 

concerning the magnitude of numbers that have an infinite decimal representation. 

Furthermore, these conceptions contributed to a disconnect between geometric and 

numeric representations of infinity. 

The confusion between the infinite magnitude of points on a line segment and the 

infinite decimal representation of particular numbers is indeed an obstacle to students’ 

understanding of certain mathematical concepts. Not only does it hinder an appreciation 

or even recognition of properties of actual (cardinal) infinity, but it also demonstrates a 

shortcoming in the conception of number. The use of a finite quantity to explain 

phenomena of infinite ones misguides students’ intuitions and ultimately their 

understanding. While “measuring infinity” may indeed have a distinguished place in 

mathematics research, intuitions that rely on numbers, or merely a number, are clearly 

hazardous to the progress of mathematical reasoning about infinity. The various attempts 

to reduce the level of abstraction of infinitely many points by considering properties of a 

single point have, in the cases discussed here, revealed an intuition of infinity that may be 

at odds with future instruction on limits and set theory.  



Certainly, the importance of establishing an apt understanding of number, 

magnitude, and infinite quantities that is consistent with the mathematically accepted 

notions is not trivial. It has been well established that when formal notions are 

counterintuitive, primary, inaccurate intuitions tend to persist (see, among others, 

Fischbein et al., 1979). Furthermore, individuals may adapt their formal knowledge in 

order to maintain consistent intuitions (Fischbein, 1987). Fischbein et al. (1981) stressed 

that intuitive interpretations are active during our attempts to solve, understand, or create 

in mathematics, so it is clear that for the sake of advancing mathematical understanding, 

adequate intuitions must be developed.   

This study opens the door for further investigation of some issues that may be 

taken for granted, such as the relationship between magnitude and representation, and the 

connection between points on a line and numbers. Future research will attend to the prior 

experiences and constructions that might have impacted students’ naïve perceptions of 

infinity as well as their approaches to resolving the questions addressed in this study. 
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