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Abstract
We investigate the interplay between mathematics and physics resources in

intermediate mechanics students. In the mechanics course, the selection and

application of coordinate systems is a consistent thread. Students start the

course with a strong preference to use Cartesian coordinates. In small group

interviews and in homework help sessions, we ask students to define a co-

ordinate system and set up the equations of motion for a simple pendulum

where polar coordinates are more appropriate. We analyze the video data

from these encounters using a combination of Process/Object theory(Sfard,

1991) and Resource Theory(Hammer, 2000). We find that students some-

times persist in using an inappropriate Cartesian system. Furthermore, stu-

dents often derive (rather than recall) the details of the polar coordinate

system, indicating that their knowledge is far from solid.
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As part of ongoing research into cognitive processes and student thought, we investigate

the interplay between mathematics and physics resources in intermediate mechanics students. We

collect data from student interactions to build models of student cognition, which are then used to

inform curriculum development.

Theoretical Development

We use theoretical perspectives from both mathematics education research (Pro-

cess/Object(Sfard, 1991)) and physics education research (Resource Theory(Hammer, 2000)). In

this section, we present an overview of Resource Theory and its connections to Process/Object.

We introduce the idea of plasticity, a continuum which extends Resource Theory to describe the

development of resources. We then present heuristics for identifying resources and their plasticity

in situ.

Resource Theory

Resource Theory is a constructivist schema theory which bridges neuro-cognitive models of

the brain and results from education research to describe the phenomenology of problem solv-

ing(diSessa, 1993). Resources are small, reusable pieces of thought that make up concepts and

arguments. In contrast to Process/Object’s focus on conceptions of mathematical entities, Re-

source Theory focuses on the connections between different ideas in physics.

Examples of resources in the literature primarily focus on primitives(diSessa, 1993). Some

examples include “effect dies away,” which describes the motion of a box sliding on a floor, the

ringing of a struck bell, a person’s motivation, and other phenomena. A mathematical equivalent

exists in symbolic forms(Sherin, 2001). Though most described resources are primitive and thought

of as having no internal structure, we describe a larger resource, coordinate systems, with much

internal structure in this paper.
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As originally published(Hammer, 2000), resources were intentionally vaguely defined. Later

papers elaborate on the theory and make more explicit connections between resources and other

theories(Hammer & Elby, 2003; Hammer, Redish, Elby, & Scherr, 2004; Lising & Elby, 2005;

Redish, 2004; Sabella & Redish, 2005; Sayre, Wittmann, & Thompson, 2003; Tuminaro, 2004;

Wittmann & Morgan, 2004; Wittmann, 2006). As Resource Theory has developed, different as-

pects of student cognition have been found important, including epistemology(Hammer & Elby,

2003), metacognition(Lising & Elby, 2005), physics and mathematics content knowledge(Tuminaro,

2004), and problem solving skills(Sayre et al., 2003). Representations of linked resources have been

described(Wittmann, 2006) and made consistent with the model of coordination classes(diSessa &

Sherin, 1998). Many aspects have not been explored, including their self-efficacy1 and literacy.

Resources serve an adaptive function in thinking by uniting a variety of specific experiences

(e.g., experiences in which effects die away) into a general statement. By doing so, they organize

the experiences into chunks of information for use in working memory. Working memory is fast

but limited; it can hold only a few items at a time, and those only for a few seconds. However, the

items in working memory may encode considerable structure. We model this structure in terms of

resources. Resources may contain resources as elements, in the same fashion. Resources, then, are

blocks of data with which reasoning takes place. Most problem solutions require the coordination

of many resources.

Based on the literature and our own work, we summarize that individual resources and groups

of resources have the following properties:

Resources are small, reusable pieces of thought that make up concepts and arguments(Hammer,

2000). To be considered a resource, an idea must have sufficient duration and stability to be

reused. Resources are individually nameable. Individual students hold resources; they are
1(except inasmuch as it might affect their epistemological resource activations)
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not socially negotiated2 (unlike social norms).

Resources have two states: active, and inactive. The physical context and cognitive state of the

user determine which resources are available to be activated. The activation of resources oc-

curs when their invocation, express or implicit, is used to support or form an argument. Once

activated, they form a network with graph-like structure(Sayre, 2005; Wittmann, 2006), which

is consistent with a model of coordination classes(diSessa & Sherin, 1998). Just as neuronal

links may be excitatory or inhibitory, links between resources may promote or demote acti-

vation(Sabella & Redish, 2005). If the network tends to have the same structure repeatedly,

then it is stable. If not, then it has been built “on the fly”(Hammer, 2000).

Resources are nestable(Sayre, 2005): they may have internal linked structure made up of other

resources. If their internal structure is explorable (but currently not explored) by the user,

they may be called concepts. If their internal structure is no longer explorable, they may be

called primitives. A large body of literature has identified both concepts and some kinds of

primitives(diSessa, 1993).

Resources can be epistemological(Hammer & Elby, 2000, 2002, 2003; Lising & Elby, 2005),

metacognitive, or content-oriented. Multiple kinds of resources are active in any given situa-

tion(Hammer & Elby, 2003). Unlike the concepts in Conceptions, resources are not necessarily

inherently correct or incorrect(diSessa, 1993; Hammer, 2000).

Resource Theory has several strengths. It describes reasoning done by both experts and

novices. It can describe learning in many different curricula(Wittmann, 2006). It is well linked to

2Though individual resources are held by individuals, their expression and use in a specific context may be socially

negotiated. However, we wish to draw a distinction between resources (held individually) and their appropriate

expression (which may be socially determined)
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may other theories of learning and social interaction(Redish, 2004). It builds on a long tradition of

small-scale models of learning(diSessa, 1988; Minstrell, 1992; diSessa, 1993; diSessa & Sherin, 1998)

while generalizing and expanding those theories to more accurately reflect learning in physics.

Plasticity

The plasticity continuum(Sayre, Wittmann, & Donovan, 2007) is an extension to Resources

which describes the generation and development of resources. Simply put, the two directions in

the continuum are more solid and more plastic. (We think of “more plastic” things as if they

are a soft gel, and not yet hardened.) A solid resource can be considered a durable concept: its

connections to other resources are plentiful, and its internal structure is unlikely to change under

typical use(Scherr, 2007). Plastic resources, in contrast, are less durable in time or less stable in

structure; they are not the reified objects that more solid resources are. The more plastic a resource

is, the less likely the user is able to apply it to new situations, and more explanation is needed to

justify and explain its use. The more solid a resource is, the more likely the user is to refer to the

resource in diverse contexts without explaining its internal structure. As with all resources, the

plasticity of a resource is independent of its veracity.

We use the Recognize/Build-With/Construct (RBC) model(Tsamir & Dreyfus, 2002) to in-

form and improve the plasticity continuum, noting that the RBC model was originally intended

to describe the reification and abstraction of concepts and not all resources need be thought of

as concepts. The RBC model proposes three epistemic actions through which abstraction occurs

and which may be inferred from behavior. These three actions - recognizing, building-with, and

constructing - are dynamically nested.

Recognizing, the simplest action of the three, occurs when a student realizes that a “familiar

mathematical notion, process, or idea ... is inherent in a given mathematical situation”(Sfard,
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1991). These recognized cognitive objects may be the resources in Resource Theory. Recognition

is thus synonymous with activation. Content resources such as these need not be restricted to

mathematics; physics is another appropriate subject area. The specifics of which resources are

recognized gives insight into students’ thought structure. Ease of recognition is therefore a marker

of solidity.

Once a familiar idea has been recognized, a student may build-with that idea to solve a

local goal, such as solving a problem or justifying a statement. Several resources may need to be

recognized and built-with at once. Under Resource Theory, activated resources form a web or graph

that may be built on the fly. Thus, building-with is akin to building graphs on the fly. Because

building-with and recognizing are two separate actions, the RBC model can describe behavior when

students mention an idea, but don’t appear to know what to do with it.

In contrast to building-with, constructing has purpose and duration beyond solving a local

goal. Constructing creates a less-local, more abstract entity. As a construction becomes more

durable, it becomes more consolidated and is no longer necessarily built on the fly. It becomes a

resource in its own right, and therefore can be recognized or built-with in later local goals. The

new-formed resource may be quite plastic, but as further constructions are added to it and as it

compiles further, it can become more solid. Thus constructing is a mechanism for increasing the

solidity of specific resources. Extremely solid resources – rigid resources – have been so tightly

compiled that their internal structure is not readily accessible to the user.

The process of abstracting and consolidating resources can be of long duration.

Heuristics

We have heuristics for defining the plasticity of a resource, as described below. Examples for

many are given elsewhere(Sayre et al., 2007) and in this paper:
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P1. Ease of use. The more solid a resource is, the more easily it can be recognized or built-with.

This ease of use is directly related to the number and strength of connections that a resource

has. Well-connected resources are more likely to activate in a variety of situations.

P2. Recency of construction. Often, but not always, the more recently a resource was constructed,

the more plastic it will be. Counter-examples include infrequently used resources, which may

be old but plastic (like a physics professor’s criterion for critically damped harmonic motion),

or recently constructed “flashbulb” resources, which are so vivid that, despite their newness,

they are etched solidly upon the mind.

P3. Need for elaboration to evaluate. Users need to explicitly test plastic resources against other

(often more solid) resources to determine if the plastic ones should be used in a given context.

These tests often take the form of elaborative sense-making. In contrast, solid resources can

be apprehended whole and are often quickly recognized without elaboration.

P4. Justification. Because plastic resources often are tested against solid ones, solid resources can

justify the use of plastic ones. The degree to which a resource justifies another can be used

to see how nearby the two resources are and their relative solidity.

P5. Need rejustification or rederivation for extended use.

Research Setting

Intermediate mechanics is a particularly rich place to study the interplay between physics

and mathematics ideas, as students often enter with a solid intuitive grasp of the physics (which

may be incorrect), but have not yet applied sophisticated mathematics. At the University of Maine,

intermediate mechanics is a one-semester physics course which meets for three one-hour periods

each week. Generally, one of those periods is devoted to small-group work on research-based guided-
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inquiry tutorials. The other two are lecture-based. Though there is not a formal discussion section,

an optional Homework Help Session runs once weekly for students to ask a graduate student for

help on their homework. In Spring 2006, the course followed a typical intermediate mechanics

schedule, starting with air resistance and continuing to damped and driven harmonic motion,

energy considerations, Lagrangians, and rotational motion. Typically, about half of the students

are concurrently enrolled in Differential Equations; the other half have already taken it.

One thread that runs through the entire course is the selection and application of coordinate

systems. Upon starting the course, students have a strong preference to use a Cartesian coordinate

system where the positive directions are up and to the right. However, many problems in physics

can be made simpler through using other coordinate systems. For example, finding the position of

a pendulum a function of time is simplest using polar coordinates. As these students develop as

physicists, choosing appropriate coordinates for a problem becomes more important.

A problem involving coordinate systems

To investigate students’ developing understanding of coordinate systems, as well as other

questions, we collect video data from the Homework Help Sessions, from weekly small group short

interviews, and from class discussion. We also collect written data in the form of pretest, homework,

and exams. In this paper, we focus on video data from one pair of students during short group

interviews in weeks 4 and 10 during the Spring 2006 semester.

The two students, “Derek” and “Wes”, volunteered to be interviewed together. Derek was

a conscientious student who submitted thorough solutions to assigned problems. He started the

semester averse to small-group tutorial work, and finished a loyal supporter. In contrast, Wes rarely

submitted complete solutions and had a poor work ethic.

In both interviews, students are presented with the same problem: given a (drawing of) a
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simple pendulum (Figure 1, with polar coordinates shown), find the position of the pendulum bob

as a function of time. So that students do not spend time figuring out the forces on the bob, and to

predispose the students into thinking of force-based solutions, the forces on the bob (a weight force

and a tension force) are given diagrammatically. So as not to predispose students into choosing a

particular coordinate system, the forces are not described as being “vertically downwards” (weight

force) or “radially inwards” (tension force).

Figure 1. The forces on a simple pendulum, with a physicist’s polar coordinate system shown.

To solve for the position of the bob as a function of time, a physicist would first write

Newton’s Second Law for the system, a vector second-order differential equation for an unspecified

coordinate x :

∑
F = W + T = m

d2x
d2t

(1)

The physicist would then choose a polar coordinate system where the radial coordinate,

r, points outwards from the attachment point of the pendulum and the angular coordinate, θ,

is measured counter-clockwise from the equilibrium position of the bob (straight down). This

coordinate system takes advantage of the natural geometry and symmetry of the situation, and it
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is a calculationally easy choice. With the coordinate system in place, the vector equation of motion

can be split into two scalar differential equations, and then solved. As the focus of the interviews was

on the coordinate system choice, the students were not expected to solve the differential equations.

We note that these students have encountered the pendulum problem in some detail in a

calculus-based introductory physics course. The pendulum is but one (relatively simple) example

of harmonic motion, one of the most important models taught in an undergraduate physics major.

We expected students to be familiar with the problem but to have forgotten the specifics of the

modeling they previously did.

The resource structure of coordinate systems

One property of resources is that they are nestable: one resource may contain graphs of other

resources. As researchers, therefore, we choose a level of specificity to examine, noting that other

levels are possible and may yield interesting results. We designed the research task to match our

investigation of the structure and development of resources.

We break the coordinate systems resource into three subgraphs of resources nested within it:

• Properties resources, which describe general properties that coordinate systems bear;

• Use resources, which describe when to use coordinate systems and which coordinate sys-

tems to use; and

• Case resources, which hold the specifics of given coordinate systems.

An example of resources in each subgraph is available in Table 1. Some common case resources

are also listed; the list is meant to be suggestive, not exhaustive. The exact breakdown of which

resources belong in which sub-graphs, as well as the inter- and intra-subgraph connection details,

are user specific and time specific. However, naming the one possible set of components and their

interplay gives a baseline against which users’ ideas can be tested.
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Table 1: Subgraphs in Coordinate Systems

Properties directionality positive and negative, forward and backward

orthogonality each coordinate cannot be obtained through linear combination

of other coordinates in the same system.

span a set of all coordinates expresses all possible dimensions of the

space.

equivalency different coordinate systems are interchangeable

Use choice coordinate systems must be chosen

explicitness use may be implicit or explicit

natural “preferred” coordinate system based on geometry

ease “preferred” coordinate system based on calculational ease

arbitrariness choice of coordinate system is not predetermined

consistency Within a problem, coordinate systems should not change

Case Cartesian A rectilinear coordinate system (x, y, z)

polar A circular coordinate system in two dimensions (r, θ)

numberline A one-dimensional coordinate system

phase space A coordinate system where coordinates do not refer to locations

. . . Presented are examples only; others abound.
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Using our breakdown of subgraphs within coordinate systems, it is possible to examine which

resources activate in given situations and show intra-coordinate systems linkages. It is unreasonable

to expect that all of these resources would activate in every episode; typically, only a few need be

active, depending on the context.

In this paper, we focus on only a few examples of resources which are closely tied to the pen-

dulum problem. The case resources commonly activated in this problem are Cartesian and polar.

These are often activated because they are natural to the geometry or easy to use mathematically.

Finally, the issue of span arises in determining whether the chosen coordinate system can actually

describe the entire system (and the space in which movement occurs) appropriately.

Data

Though coordinate systems contains a large number of other resources, not all of them are

activated in the interviews discussed here. In addition, a great many resources unrelated to coordi-

nate systems are activated. To help focus the discussion, we restrict the analysis to looking at the

activation of and connections between five resources within coordinate systems (polar, Cartesian,

natural, ease, and span) and the plasticity of only two resources (polar and Cartesian) for each

student. In the process, we draw resource graphs of these five resources for each student.

We do not give direct quotes from the interviews for several reasons. First, space restricts

us from the full transcript. Second, Wes and Derek were good friends whose interactions included

much banter; their language was often not appropriate for the general public. We describe their

actions as best possible, as a result.

Preliminary resource graphs and plasticity, Week 4

In the first interview (Week 4), after presenting the problem described in Figure 1, the

interviewer asks the students about their coordinate system. Wes replies that he’s using “the



INTERMEDIATE MECHANICS STUDENTS’ COORDINATE SYSTEM CHOICE 13

standard Cartesian [system]”, and draws coordinate axes next to the diagram, indicating that the

positive directions are up and to the right. Derek immediately interjects with, “Why not use

polar?”, supporting his assertion with the claim that the angles are changing. Wes objects, but he

redefines his coordinate system, relabeling the upward-pointing y-axis as the r-axis, and defining

the angle between the x-axis and r-axis as θ.

After some discussion, the interviewer asks Wes and Derek to apply their coordinate system,

which is drawn next to the sketch of the pendulum, to the sketch itself. Wes labels the polar angle

as measuring counterclockwise from horizontal to the position of the bob, and both students readily

volunteer that r should be measured outwards from the attachment point of the pendulum.

Because Wes’s definition of θ indicates a curved path, but unit vectors are always drawn

as straight lines, the interviewer presses Wes to show the direction of θ at the instant shown,

hoping that he will choose a direction tangent to the path. Wes demurs, asserting again that θ is

“counterclockwise”.

We interpret this interchange as showing Derek and Wes using a different natural coordinate

system, polar for Derek and Cartesian for Wes. Furthermore, polar coordinates are connected to

physical examples for Derek. They are less connected for Wes, for whom Cartesian coordinates

are “standard” for any given problem and polar coordinates are not well defined. This indicates

differing levels of plasticity: Cartesian coordinates are more solid for Wes, polar coordinates more

plastic, and polar coordinates are more solid for Derek than they are for Wes.

Their coordinate system defined, the students move on to discussing how to solve for the

position as a function of time. Wes asks for clarification about the task: does the interviewer want

to know the up-down position of the bob, or the side-to-side position of the bob? He explains that

he “[doesn’t] know any functions that would give you two parameters” and thus he can’t solve the

two-dimensional problem using the traditional x-y coordinate system.
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Figure 2. A resource graph describing Wes’s use of coordinate systems in the Week 4 pendulum interview.

Note the explicit lack of connection between ease and Cartesian resources.

Wes then wonders if it would be smarter to measure position based on displacement from

starting angle. When the interviewer asks if knowing the angle as a function of time is sufficient,

Wes replies that he doesn’t know and that he’d “have to figure that out”. When the same question

is put to Derek, he replies quickly that “yes, of course” knowing θ(t) is sufficient.

From the continuing interchange, we have more evidence that Wes’s polar resource is not

well connected to other resources. He seems to have activated span as a relevant measure of

modeling, but is unable to find a natural or easy connection based on his chosen coordinates and

the mathematical models available to him. He explicitly speaks against the calculational ease

of using Cartesian coordinates. Derek, on the other hand, sees the span of polar and Cartesian

coordinates as sufficient for this problem and sees polar coordinates as natural for this problem.

We represent this description of Wes’s and Derek’s resource use in Figures 2 and 3. Note that

one arrow is drawn to indicate the explicit lack of connection between Wes’s ease and Cartesian

resources.
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Figure 3. A resource graph describing Derek’s use of coordinate systems in the Week 4 pendulum interview

Revisiting polar coordinates, Week 10

In Week 10, the task in Figure 1 is posed to the students again. In the intervening weeks,

students have studied damped and driven harmonic motion in class, and have been assigned a

homework problem on this question. Their responses typify their approaches to the class: Wes says

that he “tried to use radians, but got stuck and gave up”; Derek says that to solve this problem,

he would just “assume a solution”.

When the interviewer asks them to define a coordinate system, Derek chooses a polar coor-

dinate system for the same reasons he did in week 4. Wes once again chooses a Cartesian system.

However, instead of choosing the standard system where positive is up and to the right as he did in

week 4, he tailors his system to the problem at hand, defining positive down and to the right. The

downward direction is consistent with the weight vector, showing a better match of coordinates to

physical situation.

At the interviewer’s prompting, Wes continues to write Newton’s Second Law for the system

and starts to break the forces into components, defining θ as the angle between the horizontal and
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the position of the bob (θ1 in Figure 4) . His choice of Cartesian coordinate system complicates

the problem, and he gets stuck.

Derek uses Wes’ confusion as evidence that a Cartesian system is inappropriate. As illustra-

tion, he writes Newton’s Second Law (Equation 1) and breaks it into r and θ components. Derek

writes, ∑
Fx = m

d2θx

dt2
(2)

T cos θ = m
d2θx

dt2
(3)

After writing the Equations 2 and 3, Derek reads them aloud. In reading them, he corrects himself:

because θ is a coordinate in its own right, he does not need to use the subscript x. His equation,

amended, reads

T cos θ = m
d2θ

dt2
. (4)

This equation differs from the standard physics equation because the angle they have defined

as θ is the complement of the typically chosen angle. Furthermore, it is dimensionally inconsistent:

the left-hand side has units of force (Newtons) and the right-hand side has units of mass per time

squared (or Newtons/meter). These differences aside, Derek’s equation has the right form of the

differential equation.

An equation in place, the interviewer again asks the students to label their coordinates on

their diagram. Derek first copies over Wes’ definition of θ, (θ1 on Figure 4), then argues that by

alternate interior angles, it is equal to θ2. The interviewer asks where θ is equal to zero, and Derek

redefines θ to be θ3, the common and calculationally easy physicist response. When the interviewer

asks the direction of θ at the instant shown, Derek argues that the bob is moving in a circular

arc and that, at any point along the arc, θ is tangent to the arc. He draws θ4. With all four θ

definitions arrayed before him, Derek expresses doubt that he has a sensical answer.
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Figure 4. Derek and Wes use four definitions of θ.

We interpret the evidence from the week 10 group interview to indicate even more strongly

that Wes’s polar resource is very plastic. It is not well connected to other resources, in particular

with calculational ease. Derek, whose polar resource seemed solid, shows evidence of problems

with the ease of applying the natural coordinates for this problem. We represent this description

of Wes’s and Derek’s resource use in Figures 5 and 6. Because span was not a topic of the Week

10 interviews, we have left that resource out of our graphs.

Figure 5. A resource graph describing Wes’s use of coordinate systems in the Week 10 pendulum interview.

Note the explicit lack of connection between ease and polar resources.



INTERMEDIATE MECHANICS STUDENTS’ COORDINATE SYSTEM CHOICE 18

Figure 6. A resource graph describing Derek’s use of coordinate systems in the Week 10 pendulum interview

Discussion

In this paper, we hope to have fulfilled two separate tasks. The first is to introduce a

theoretical structure by which we can understand the use of mathematics when reasoning about

intermediate and advanced physics topics. We build off Resource Theory, but add ideas from

Process/Object and RBC theory to help us develop observable tools for understanding the plasticity

of resources as they develop over time. One of the elements of Resource Theory is that resources

can be nested, containing other resources. We represent some of this structure through resource

graphs.

To show that our first task can be fulfilled, we have applied our theoretical structure to help

explain student reasoning about coordinate systems in a canonical physics problem that nevertheless

presents difficulties to students. We have shown resource graphs of two students applying resources

that are parts of the coordinate systems resource, and used these graphs to indicate the level of

plasticity of the different sub-resources with coordinate systems.

We find that students sometimes persist in using an inappropriate Cartesian system despite

professed knowledge of polar coordinates, indicating that Cartesian coordinates are quite solid to

these students. Furthermore, students must rederive (rather than recall) the details of the polar
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coordinate system, indicating that polar coordinates are quite plastic. Detailing the interactions

between resources gives us better insight into the working of student minds and lets us build better

models of our students and their learning. These models may lead to better curricular design.
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