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Many beginning university students struggle with the new approaches to mathematics that they find in 

their courses due to a shift in presentation of mathematical ideas, from a procedural approach to 

concept definitions and deductive derivations, with ideas building upon each other in quick 

succession. This paper highlights this situation by considering some conceptual processes and 

difficulties students find in learning about eigenvalues and eigenvectors. We use the theoretical 

framework of Tall’s three worlds of mathematics, along with perspectives from process-object and 

representational theory. The results of the study describe the thinking about these concepts of groups 

by first and second year university students, and in particular the obstacles they faced, and the 

emerging links some were constructing between parts of their concept images formed from the 

embodied, symbolic and formal worlds. We also identify some fundamental problems with student 

understanding of the definition of eigenvectors that lead to problems using it, and some of the 

concepts underlying the difficulties. 

Background 
The first year university student who has no prior understanding of linear algebra has a 

long way to go before being able to grasp the full picture. The course appears to them very 

intense, with ideas and definitions introduced very rapidly, with little connection to what 

they already know and can do from school mathematics. Since linear algebra is often the 

first course students encounter that is based on systematically built mathematical theory the 

course is highly demanding cognitively, and it can be a frustrating experience for both 

teachers and students. While some believe that the course is taught too early, Dubinsky's 

(1997) view is that students can develop their conceptual understanding by doing problems 

and making mental constructions of mathematical objects and procedures. 



Two inseparable sources of difficulties with the linear algebra course, identified by 

Dorier and Sierpinska (2001, p. 256), are “the nature of linear algebra itself (conceptual 

difficulties) and the kind of thinking required for the understanding of linear algebra 

(cognitive difficulties)”. Dorier et al. (2000) claim that while many students fear linear 

algebra because of its abstract, esoteric nature, many teachers also suffer because of the 

abstruse reasoning involved. Historically, many of the concepts of linear algebra found their 

final form after several iterations of applications of linear techniques, and with little apparent 

unification. Hence, it is not surprising that many students have real difficulties with 

definitions of such concepts. An important principle enunciated by Skemp (1971, p. 32), and 

illustrating one major problem with definitions, is that “Concepts of a higher order than 

those which a person already has cannot be communicated to him by a definition, but only 

by arranging for him to encounter a suitable collection of examples.” The concepts may be 

presented through a definition in natural language, which may have embedded symbolism, 

or be linked to a symbolic presentation. These definitions are considered to be fundamental 

as a starting point for concept formation and deductive reasoning in advanced mathematics 

(Vinner, 1991; Zaslavsky & Shir, 2005). 

A developing theory by Tall (2004a, b), extending some of the action, process, object, 

schema (APOS) ideas of Dubinsky (Dubinsky, 1991; Dubinsky, & McDonald, 2001), 

proposes that learners of mathematics can benefit from experiencing the results of actions in 

an embodied world, and processes in a symbolic world (or stages), before being able to live 

in the world of formal mathematics. This theoretical position suggests that it would assist 

university students if they were presented with embodied aspects of concepts, and associated 

actions, wherever possible. Extending his idea of an embodied manner of learning about 

differential equations (DE’s) (Tall, 1998) in which an enactive approach builds an embodied 

notion of the solution to a DE before introducing algebraic notions, Tall (Tall, 2004a, b) has 

recently developed these ideas into the beginnings of a theory of the cognitive development 



of mathematical concepts. He describes learning taking place in three worlds: the embodied; 

the symbolic; and the formal. The embodied is where we make use of physical attributes of 

concepts, combined with our sensual experiences to build mental conceptions. The symbolic 

world is where the symbolic representations of concepts are acted upon, or manipulated, 

where it is possible to “switch effortlessly from processes to do mathematics, to concepts to 

think about.” (Tall, 2004a, p. 30). Movement from the embodied world to the symbolic 

changes the focus of learning from changes in physical meaning to the properties of the 

symbols and the relationships between them. The formal world is where properties of objects 

are formalized as axioms, and learning comprises the building and proving of theorems by 

logical deduction from the axioms. This theory of three worlds extends the theoretical 

perspective provided by Dubinsky and others (Cottrill, Dubinsky, Nichols, Schwingendorf, 

Thomas, & Vidakovic, 1996; Dubinsky, & McDonald, 2001). They have described how 

actions become interiorised as processes that in turn may be encapsulated as objects, 

forming part of a schema. This is especially important when concepts are presented in a 

symbolic representation, as they often are in linear algebra. Gray and Tall (Gray & Tall, 

1994) have discussed the idea of procepts, where these symbolic forms need to be 

perceivable by students (and experts) in a dual manner, as either process or concept, 

depending on the context. This ability, which forms part of the mathematical versatility 

described by Thomas (2006) is essential to make progress in mathematical thinking in the 

symbolic world. 

In linear algebra too it has been recognised by Hillel (2000) and Sierpinska (2000) that 

conceptual difficulties are often linked to its three kinds of description or representation: the 

general theory; the specific theory of Rn and the geometry of n-space. Forming the links 

between these abstract, algebraic and geometric levels, or representations, is the basis of 

many student problems, and there is a need to make explicit links between them. Addressing 

multiple representations of concepts is important since students require an ability to establish 



meaningful links between representational forms, referred to as representational fluency 

(Lesh, 1999). This notion forms part of representational versatility (Thomas & Hong, 2001; 

Thomas, 2006), which includes a) addressing the links between representations of the same 

concept, b) the need for both conceptual and procedural interactions with any given 

representation, and c) the power of visualization in the use of representations. Such 

understanding is so important that it has been suggested that ‘a central goal’ of mathematics 

education should be to increase the power of students’ representations (Greer & Harel, 1998, 

p. 22). One reason for this strong emphasis is that, according to Lesh (2000, p. 74), the idea 

of representational fluency is “at the heart of what it means to ‘understand’ many of the 

more important underlying mathematical constructs”.  

When eigenvalues and eigenvectors are introduced to students, the formal world concept 

definition may be given in words, but since it has an embedded symbolic form the student is 

soon into symbolic world manipulations of algebraic and matrix representations, e.g. 

transforming 

! 

Ax = "x  to 

! 

A " #I( )x = 0 . In this way the strong visual, or embodied 

metaphorical, image of eigenvectors can be obscured by the strength of the formal and 

symbolic thrust. However, using an enactive, embodied approach first could give a feeling 

for what eigenvalues, and their associated eigenvectors are, and how they relate to the 

algebraic representation. This was an area considered in this research, along with the idea 

that the symbolic world thinking inherent in the manipulation process might be obscuring 

understanding of the concepts of eigenvalue and eigenvector. For example, explanations of 

what an eigenvector is may start with it as an object and then explain the effect of 

performing actions upon it; applying a transformation to it and multiplying it by a scalar. 

However, to find the eigenvector one must first find its associated eigenvalue, holding in 

obeyance any action to be performed upon the eigenvector until it’s found. Hence the 

specific research questions addressed in this study were: 

• How do students think about concepts of eigenvector and eigenvalue? 



• Is their thinking influenced by embodied, or geometric notions? 

• What is the role of definitions in structuring their thinking? 

• How do they cope with the potential process-object obstacle in the eigenvector 

definition? 

Method 
The research project comprised a case study of three groups of students from Auckland 

University. Group A comprised 10 students from Maths 108, a first year computation-to-

abstraction course covering both calculus and elementary linear algebra. Of these students 

six (numbered 1-6 below) had attended the first-named author’s lectures, while the rest 

attended other streams. The teacher-researcher tried to emphasize a geometric, embodied 

approach and she also took the students for two tutorials in a computer laboratory, showing 

them how to use Maple for linear algebra, and highlighting the visual aspects in the lectures. 

In group B were 70 stage one mathematics students taking a core mathematics paper (Maths 

152), covering both calculus an linear algebra, and designed for mathematics majors, and 

hence having more advanced topics than 108. The final group, C, comprised 42 students 

from the second year Maths 208 course. These students had all studied Maths 108 or its 

equivalent. 

The group A students sat a test designed to assess student understanding of the concepts 

of eigenvectors and eigenvalue, and their ability to carry out the process of finding them for 

a given 2x2 matrix (see Figure 1). The group B students completed a test designed to assess 

student understanding of linear algebra, including eigenvectors, in each of the geometric, 

matrix and algebraic representations. Group C students sat a linear algebra test on the 

concept of eigenvalues and eigenvectors (see Figure 1) also examining students’ geometric, 

matrix and algebraic understanding rather than simply their procedural abilities.  



 

 Maths 108 Questions 
1. Describe the definitions of eigenvalues and eigenvectors in your own words. 

2. Let 
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A =
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'   be a 2 × 2 matrix. What are the eigenvalues and eigenvectors of matrix A?  

 [This is a worked example in the course manual.] 

3. Suppose A is a matrix representing a transformation and:
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' . What does this tell us  

    about the 3? Describe this geometrically. 
 
4. How can we decide whether a given vector is an eigenvector of a matrix? Explain this in your  
    own words. 
 
8. How many different eigenvectors are there associated with a given eigenvalue? 
 
11. Describe what the following diagram may represent as best as you can. 

 

 

Maths 208 Questions 
1. Define the notion of eigenvalues and eigenvectors in your own words. 
2. Can 

! 

3

"4

# 

$ 
% 

& 

' 
(  and 

! 

"3

4

# 

$ 
% 

& 

' 
(  both be eigenvectors for a given matrix? Explain your answer. 

3.   Concepts maps are often a good way of 
learning about a  new concept. Here is a 
concept map for the derivative of a 
function. Draw one below for eigenvectors 
and eigenvalues. 

 

4. If A is a 2 by 2 matrix, explain why the 
picture below is not possible. 
 

 
5. If Ax =  λx  put in all the necessary steps in order to show that 

(A–λI) x = 0. 
6.  (a) What do these all have in common? Explain. 
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        (b) Fill in values a,b,c,d that do not follow the above pattern.   
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   Some formatting changed. 

Figure 1.  The Maths 108 and 208 test questions. 



This compares with courses designed in such a way that students are able to pass them 

simply by knowing routine processes, and not necessarily understanding ideas. Only the 

questions relating to eigenvalue and eigenvector are discussed in this paper. 

Results 
Embodied, geometric conceptions 

We were aware that approaches to eigenvalue and eigenvector often ignore the 

embodied, geometric aspects of learning this topic, especially in our university courses, but 

wondered if the students could be encouraged to think this way. For the first year students, 

meeting linear algebra for the first time, there were some indications in the test responses 

that they were using the embodied world to help build their thinking about eigenvalues and 

eigenvectors. For example question one asked them to describe the terms in their own words. 

Three of the students (1, 6, 8) mentioned the idea of the ‘direction’ of a vector. Although 

student 1 did not use it correctly, the other two had a clearer embodied aspect to their 

concept image of eigenvector. 

Student 6:  After transformation the direction of eigenvectors will not change. 
Student 8: Eigenvector is a vector which does not change its direction when multiplied (or transformed) 

by a particular matrix. An eigenvector can change in length, but not in direction. 

We see that student 8 has also added the embodied notion of change of length to her 

thinking. While the other students who answered the question referred to the procedural, 

symbolic manipulations in their answers, two of them (5 and 9) had formed a mental model 

of the structure of this (see Figure 2). 

  
Figure 2. Students 5 and 9 use a structural model of the algebra. 

In the answers to question 3 we also saw examples of the embodied nature of the 

students’ thinking. Student 1 explains that “the eigenvalue changes the vector’s direction. ie 

more steep.”, using the embodied notions of ‘change of direction’ and ‘steepness’. Student 4 



also said that “3 is not an eigenvalue of the equation. Hence it changes the direction of the 

original vector.” Student 6 had similar recourse to the embodied idea of change of direction 

of the vector, drawing the picture in Figure 3. 

 
Figure 3. Student 6’s embodied notions of ‘change of direction’ and ‘steepness’. 

Question 4 saw students 4 and 8 also refer to the idea of direction to decide on whether a 

vector is an eigenvector. In question 11, all the students except 7 and 10 linked the diagram 

to a vector (1,1), an eigenvalue of 3 and a final vector (3,3). In doing so they again used 

embodied terms such as “being stretched” (1), “it makes eigenvector longer” (3), and 

“stretch the length of (1,1)” (5). It seems that the researcher’s students did make more use of 

embodied ideas than the others. 

The section on eigenvectors and eigenvalues in the second year, Maths 208, coursebook 

does not contain a single diagram, and thus totally ignores the embodied aspects of learning 

this topic. Hence we expected that students would not have these ideas. An embodied 

concept we investigated was whether the students had abstracted and assimilated to their 

eigenvector schema the geometric idea that when an eigenvector is multiplied by the 

transformation matrix it ends up in the same direction  (but not necessarily the same sense). 

To answer question 4 (Figure 1) in their test the students had to see geometrically that each 

of the three vectors satisfied the eigenvector definition, link this to the data from the matrix 

size, and use this inter-representational reasoning to see there is a contradiction, since a 2x2 

matrix can not have three independent eigenvectors. Of the 42 students 14 were unable to 

answer the question at all, and only 6 gave a correct explanation of why the diagram was not 

possible. These included student E, who wrote “The picture above implies A has 3 



eigenvectors of different directions (but if A is 2x2, it has a maximum of 2 eigenvectors of 

different directions.)”, student F who said “If A is 2x2 matrix, it can have maximum of 2 

linearly independent vectors in its basis. Therefore one of Aw, Au and Av must be 

impossible.” and student V “Diagram shows 3 eigenvalues/eigenvectors a 2x2 matrix should 

have only 2.” Others (brackets contain the student code) were unable to relate the picture to 

the concept of eigenvector, and instead a number seemed to relate it to the basis for a space, 

which may have been the place where they had seen a similar diagram. They wrote 

comments such as “Since there are only 3 vectors it will generate a space.” (Q), “because 

you don’t need that many vectors to span the plane” (U), “Maybe too many dimensions?” 

(AC), “⇒ linearly dependent” (AE) and “It’s got way to [sic] many vectors in it.” (AD). 

Some appeared confused and wrote, for example “The picture shows scalar multiplication 

which should not occur in a 2x2 matrix.” (L), “Because w is in a different direction.” (W) 

and “because the vectors are on different planes.” (X). 

We asked question 2 in order to see if the students’ understanding of eigenvectors was 

limited to the algebraic and matrix (vector) representations or whether they used embodied, 

visual explanations in their answers. Of the 42 students, 14 correctly answered the question, 

while 4 could not write anything. However, of those who were correct 13 used only an 

algebraic or matrix procedural explanation, often involving multiples, such as “Yes 
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” (T) “Yes they are merely a factor of –1 of each other” (A), “Yes, since the 

eigenvalues are –1 and 1” (Q) and “Yes. Eigenvectors of a given eigenvalue is any multiple 

of any given eigenvector.” (E). Only very occasionally was a geometric comment made, 

such as “Yes as 
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 are multiples of each other in the opposite directions” (C). Some 

confusion again showed through between different eigenvectors and multiples of an 

eigenvector, with 7 students commenting on eigenvectors having to be independent “No, 

because there is a linear relationship between them.” (K) and “No, eigenvectors of a matrix 



should be linearly independent.” (L). Of course, this does not mean that the students 

answering in a non-geometric manner were not able to think geometrically. However, it does 

imply that this embodied, visual mode of thinking is definitely not at the forefront of their 

approach when the question is presented in a matrix format.  

This lack of a link to a geometric perspective was certainly confirmed by the definitions 

in question 1 and the concept maps drawn in question 3. The first question asked students to 

relate their understanding of the formal definition, but without repeating it. Of the question 1 

responses 16 did not write anything (or wrote ‘no idea’), 17 gave a procedural response 

based on the equation 

! 

Ax = "x  or ‘multiples’ of a vector, and only two made any mention of 

geometric idea, either correctly stating for the vector space Rn that “A matrix ‘A’ when 

multiplied by a vector ‘v’, the resulting vector has the same direction as the original vector 

‘v’.”(E) or wrongly saying that they “generate a plane” (T). In addition there was one 

vaguely conceptual answer and 6 that we were unable to categorise. In question 3 not a 

single student put anything even remotely linked to geometry in their concept map for 

eigenvector and eigenvalue. 18 of the students did not draw anything at all, and of the 

remainder 21 drew a procedural map and 3 a conceptual one, with few, or no, action verbs. 

Figure 4 gives a typical example of the procedural concept maps, and one of the rarer 

concept ones. Student E sees the actions in the solving process as the only relevant detail, 

while student G presents only concepts, including a link to one from another part of the 

course. 

 

 
Student E Student G 

Figure 4. Procedural and conceptual concept maps. 



Procedural, process and structural conceptions 

Group B, comprising more advanced first year students, were asked, among other things, 

to give in their own words, a definition of eigenvector. Of the 60% (42) who responded, 43% 

gave one of the following procedurally-based or symbolic world answers: a vector that when 

multiplied by a particular matrix will equal a multiple of itself; or Ax = λx where x is the 

eigenvector. A further example of this emphasis on procedures was the fact that 9% of the 

students answered by indicating that an eigenvector is constructed from an eigenvalue. One 

student commented that he couldn’t explain but only knew ‘how to calculate’ (see Figure 5). 

This is evidence that such students’ thinking is firmly based in the symbolic world. 

 
Figure 5.  A student’s response for a definition of eigenvector. 

Figure 6 again shows this predilection for symbolic world procedures in the response of 

another student who instead of defining, tried to illustrate how to find the eigenvectors.  

 
Figure 6.  A student’s procedural response when asked for a definition of eigenvector. 

It appears that many students realise that definitions are important and valuable, stating 

for example that “I think it's quite important to understand the definitions, otherwise you are 

completely lost further on”, however they find them too difficult (“I think one of the hardest 

things to understand is the definitions...If you don't know the definitions, then you can't 

answer the question”), and they often believe that they don't need to know them to solve 

problems. A view typified by the statement “I can solve linear algebra questions even though 

I don't know the exact definition”. Generally definitions arise from formal world thinking 



and many of these university students are not yet thinking in this way so the full value of the 

definitions often eludes them. 

A second question for the group B students asked them “If a linear transformation is 

represented by a matrix Q, and a vector P exists such that QP = 3P, what does the 3 tell us 

about this transformation?” It was interesting in this question, which was presented using 

algebraic and symbolic representation of vectors and matrices, that while 25.7% did not 

answer this question, many did, with the most common responses, ‘3 is the eigenvalue’ 

(57.7%), ‘3 times longer’, ‘expanded by 3’, ‘Q= 3’, ‘3 is invertible’, and ‘QP is in the same 

direction as P but 3 times longer’. Here again we see embodied constructs such as ‘longer’, 

‘expanded’ and ‘same direction’ coming to the fore. Thus, while some of these answers are 

not correct, a good percentage of students managed to interpret the symbols in question 8 

well, in spite of the words ‘linear transformation’ that may have hindered some students. It 

may be that an algebraic context links better with the symbolic world procedural emphasis 

that we see many students prefer, even when the question is conceptual in nature. This is 

further confirmed by responses to the question in Figure 7. Here only 11% of the students 

mentioned either word eigenvectors or eigenvalues. Hence, although they may be familiar 

with the notion of eigenvector, and most likely can solve standard problems relating to the 

topic, they were not able to relate to them in a different, geometric, representation.  

Which concept in linear algebra does this diagram refer to? 

 
 

Figure 7.  A question on eigenvector employing a graphical representation. 

As we see above, students whose thinking is in the symbolic world often prefer a 

procedural approach, but they also often have difficulties with this too. Of the ten students 

we considered in detail from group A, 5 were able to find correctly both the eigenvalues and 



eigenvectors for the matrix 
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'  in question 2. Of the others, two (students 2 and 9) 

found the eigenvalues but were unable to find the corresponding eigenvectors, and three 

(students 1, 3 and 10) were unable to make any progress. Student 3 wrote “I just forgot 

conseption [sic] of it” and student 10 “I would like to do this with the help of Maple.” 

   
Figure 8. Student 9’s working to find the eigenvectors. 

Student 9’s working as she tries to find the eigenvectors is shown in Figure 8. The 

arithmetic and symbolic manipulation here contains a number of errors (1–(–1)=0; 

0+2v2=0⇒v2=1/2; 4v1+4v2=0⇒4v1=4v2; and v2=2v1⇒eigenvector is (0.5, 2)), showing a 

weakness in such symbolic manipulation, rather than in the understanding of the conceptual 

process. Student 2 made a similar manipulation error, moving from writing the matrix 
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The fact that the working in the final stages of the process of finding the eigenvector 

caused some problems is not surprising when we look at the course manual. We can see 

from Figure 9 that the final steps in the method are not delineated, but are presumably left 

for the student to complete.  

 
Figure 9. Part of the course manual’s method for finding an eigenvector. 



As we can see, they sometimes find this a problem. This omission proves, we think, to 

be even more costly in terms of conceptual understanding. Questions 4 and 8 in the test 

addressed the conceptual nature of the eigenvector by considering two of its properties. A 

student with a structural, or object, perspective of eigenvector might be expected to describe 

whether a vector is an eigenvector or not, without resorting to a procedural calculation (Q4), 

and to say that any scalar multiple of the eigenvector will also be an eigenvector (Q8). 

Students 2, 4, 5, 6, 7, and 8 correctly found the eigenvectors from the procedure. Of these 

three (5, 6 and 7) gave a procedural response to question 4, referring to key aspects in the 

symbolic world, rather than giving an object-oriented answer. 

Student 5: First let the matrix times the vector…If the answer equal to 
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'  is an eigenvector of the matrix. 

Student 6: Using the equation Ab=λb to confirm the relation. 

Student 7: Use the formular [sic] Av=λv. 

In contrast, the others gave replies based on the word definition, showing some move 

away from the need only to employ the symbolic world towards inclusion of some embodied 

thinking, with concepts such as ‘direction’ and ‘expanded’: 

Student 4: When a given vector multiply with a matrix, if the direction of the vector doesn’t change, 

only expanded or shrinked [sic] we can say the given vector is the eigenvector. 

Student 8: When its direction isn’t changed when it’s multiplied by the matrix.  

In their responses to question 8, students 1, 2, 4, 5, and 9 stated that there is only one 

eigenvector associated with each eigenvalue. Stating, for example, “Each instance of an 

eigenvalue has one and only one eigenvector associated with it.” (student 2) and  “One 

eigenvector is associated to one eigenvalue.” (student 9). However, students 3 and 7 said that 

there were an infinite number, writing “I think that for any eigenvalue can be infinitely [sic] 

number of eigenvector because [blank].” (4) and “infinity” (7).  

As mentioned above (see Figure 9) the course manual did not put in all the details at the 

end of the method to find the eigenvector. 2 students (2 and 6,) followed this pattern and 



tried to write down the vectors from the matrix form of 
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A " #I( )x = 0, one succeeding (6) 

and the other not (2). Others (students 7, 8), went further, and were sometimes unsuccessful 

due to manipulation errors (7, 9—see Figure 6), or managed it correctly (5, 8). In the case of 

student 5 this was accomplished using v1 and v2, but giving them the values 1 and 2 at a 

crucial point. However, only one student (4) managed to write the eigenvectors in the form 
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(  before getting the eigenvectors correct. Unfortunately, this 

student was not among the two who were able to say that there are an infinite number of 

possible eigenvectors. This step of seeing that any scalar multiple v1 of the vector satisfies 

the equation may be a direct consequence of understanding this last step in the symbolic 

world manipulation, missing from the manual. 

A process-object problem 

One of the early tensions in eigenvector study that we have uncovered in our work 

involves the basic equation 

! 

Ax = "x  used in defining the concept. Here the two sides of the 

equation represent quite different mathematical processes, but each has to be encapsulated to 

give equivalent mathematical objects. In this case the left hand side is the process of 

multiplying (on the left) a vector (or matrix) by a matrix, while the right hand side is the 

process of multiplying a vector by a scalar. Yet in each case the final object is the same 

vector. 

A teaching presentation of the transformation of this equation to the form 
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A " #I( )x = 0, 

required in order to carry out the process of finding the eigenvalue λ, may tend not to make 

explicit the change from λ to λI, from a scalar to a matrix. The section of the first year 

course manual of group A where this is done is shown in Figure 10a. We see that the 

problem is skated over and in the line moving from 
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Ax = "x  to 
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A " #I( )x = 0 the comment is 

simply made “note the use of I here.” In Figure 10b we see the example of student 6 who 

explicitly replaces the 5 and –1 in 5b and –1b on the right of the equation with the matrices 



5I and –I.  This no doubt helped him with equating the objects constructed from the 

processes, but thinking of 
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( x  may be an obstacle to understanding 

how the definition of an eigenvector relates to the algebraic representation. We note that he 

has not used the version in the manual but needed to make the processes the same in the first 

line. Also, on obtaining the solution student 6 has employed embodied thinking to draw a 

graph of the solution set. 

 

 
  

a. b. 

Figure 10. The course manual dealing with the two processes and Student 6’s solution to the problem. 

Is the above a problem that soon dissipates, or does it still exist with students in their 

second year? To answer this we asked the second year group, C, about the same issue (Q5 in 

Figure1). Moreover, we noticed that the coursebook for Maths 208 (group C) also glossed 

over the steps required to go from 

! 

Ax = "x  to 

! 

A " #I( )x = 0. Figure 11 shows the section of 

this coursebook where it is presented. On the surface there seems a subtle change of object 

from a scalar λ to a matrix λI, but the nature of I in terms of the field it belongs to is not 

discussed. The bottom part of the figure shows the corresponding section from the textbook 

(Anton & Busby, 2003) used, and here a small step is inserted, showing Ax = λIx, but it is 

not emphasised that it comes from λ(Ix). This has the effect of changing the process on the 

right hand side to one very similar to that on the left, namely multiplication of a vector (or 

matrix) by a matrix (and then by a scalar afterwards). 



 

 

Figure 11. The coursebook and textbook explanations of the move from 

! 

Ax = "x  to 

! 

A " #I( )x = 0 . 

We wanted to know how the student perspective on this equation-changing would 

influence their ability to perform the task, and hence the question. In the event it proved to 

be quite revealing. It was clear that 12 of the students did not understand what the I was, 

where it came from, and why it was there. We see in Figure 12 that this affected their ability 

to complete the relatively simple three-line transformation of the equations. These three 

students, A, K and S, either ignored the identity matrix (S) or simply inserted it in the final 

line (A and K).  

 
Student S  

Student A  
Student K 

Figure 12. Working of students A, K and S on question 5. 

Some evidence of what was causing the difficulty was found in the explanations of other 

students. Figure 13 shows the work of four more students, C, J, L and P. Here students C and 

J are finding it difficult to explain why the λ seems to become λI. Student J tries to explain, 

with little understanding, that “E[igen]-values must have Identity matrix, otherwise can not 

be expressed.” and hence the I has to be inserted. However, students L and P have both 

decided that A – λ cannot be accomplished (“can’t work”) since they are of different types—

“A is a matrix λ is a number”—and so it is necessary to “multiply [λ] by the identity matrix” 



to solve this problem, and P almost correctly performs this. On the other hand, student C is 

clearly struggling with the idea that the order of λx will not be the same as that of A, but is 

happier that λI is also an nxn matrix. To overcome the difficulty he has focussed on the input 

objects on each side of the equation that are operated on, rather than the object produced by 

the process, and the processes are still causing cognitive conflict.  

 
Student J 

 
Student C 

 
Student L  

Student P 
Figure 13. Working of students C, J, L and P on question 5. 

There were 5 students who either performed an operation that they were used to and 

understood, namely multiplying the equation through by I (and assuming associativity) or 

replaced x by Ix. Both x’s were replaced immediately by student B, but student Q, like P, 

multiplied by I only when there was clearly a problem with the A–λ (see Figure 14), and 

may not have fully understood. On the other hand, student E chose to follow the textbook 

and replaced x by Ix.  

 
Student E 

 
Student Q 

 
Student B 

Figure 14. Different strategies from students B, E and Q on question 5. 



The above scenario demonstrates that paying attention to the surface features of 

manipulations in the symbolic world, looking at, in the words of Mason (1992, 1995), has 

led some of these students to a situation where they are faced with a cognitive obstacle due 

to an apparent contradiction, namely subtracting a scalar from a matrix. In order to cope with 

such a problem it is necessary to look deeper, to look though (Mason, 1992, 1995) the 

symbolism at the conceptual meaning of the objects (c.f Ainley, et al., 2002). For example, 

in the above one needs to see the I as the identity in the field of matrices rather than real 

numbers, and to appreciate that Ix=x, for all x, is a property of this object. Even the 

‘successful’ students above have not clearly identified in their working the precise nature of 

the identity I that they have used. In general, the difficulties described above show that while 

the symbolic world thinking stresses manipulation of algebraic symbols it is important for 

students to have a clear understanding of what it is that those symbols represent and how 

they interact with one another in order to build understanding of why the manipulations are 

acceptable or not. 

Conclusions 
This study suggests that students tend to think about the concepts of eigenvector and 

eigenvalue in a primarily symbolic way. They prefer to think of linear algebra as the 

application of a set of procedures, which if learned will enable them to solve given problems, 

rather than to think about concepts. While they may know that formal ideas such as those 

presented in definitions are important, they do not like them, and do not seem to learn them 

or quote them. Not surprisingly, this means that they do not understand the meaning of 

definitions and are unable to apply them even in simple situations.  

Our data also appear to show some aspects that seem important for the teaching of 

eigenvectors and eigenvalues in linear algebra. One is the importance of explicitly presenting 

complete procedures for finding eigenvectors, and of linking these to conceptual ideas such 

as the number of possible eigenvectors. Another is that students seem reasonably confident 



with the algebraic and matrix procedures, but the vast majority had no geometric, embodied 

view of eigenvectors or eigenvalues, and could not reason on the relationship between a 

diagram and eigenvectors, to their detriment. This is not surprising since our coursebooks 

did not present such a view, and it appears that the lecturers did not do so either. In addition, 

we found some limited evidence to suggest that students who received encouragement to 

think in an embodied way about eigenvectors found it a useful adjunct to the procedural 

calculations they carry out in the symbolic world. This may be because these manipulations 

in the matrix and algebraic domains cause some conflict with understanding the natural 

language definition of eigenvalues and eigenvectors, and that an embodied approach may 

mediate initial understanding. Hence, since embodied notions of mathematics are regularly 

employed at all levels of mathematical thinking it is something that teachers should consider 

putting in place. This is in agreement with the suggestion of Harel (2000), who, while 

cautioning that some students persist in seeing a geometric object as the actual mathematical 

object and not as a representation of it, maintains that “In elementary linear algebra, there 

should be one world–Rn–at least during the early period of the course.” (p. 185). When asked 

whether they thought computers should be used in linear algebra lectures the majority of 

students agreed that such work was beneficial, and this may provide a way to introduce this 

geometric thinking. 

Another key finding of this study is that the two different processes in 

! 

Ax = "x  may be 

preventing understanding of ideas such as the algebraic progression, in the symbolic world, 

from 

! 

Ax = "x  to 

! 

A " #I( )x = 0 . Many students do not perceive this as straightforward. The 

different processes in the first equation may prevent students knowing what identity the I 

refers to, and the teaching may tend to move the focus of attention to 

! 

"I  rather than 

! 

Ix . 

Since students seem to lack the understanding of how the second equation is obtained from 

the first, this implies a need to make it explicit in teaching, explaining that the identity being 



used in the process is an nxn matrix, and it is the x that is being multiplied by this identity. 

This will also solve the process problem with the first equation, if it’s done immediately.  
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