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In recent years I have been working on a theoretical framework of long-term 

learning that presents three ways in which mathematical thinking develops that 

operate so differently as to present essentially three distinct ‘worlds of 

mathematics’—conceptual embodiment, proceptual symbolism and axiomatic 

formalism. Long-term human learning is seen to begin with facilities set-before birth 

in the genes and builds on successive constructions based on conceptions met-before 

in development. Thinking becomes increasingly sophisticated through compression 

of knowledge in which important aspects of a (possibly complicated) situation are 

named and built into rich thinkable concepts that are both powerful and simple in 

use. At the same time concepts that were met-before may enhance or impede new 

thinking where the latter requires explicit focus on re-thinking old ideas to develop 

new sophistication. This leads to a wide range of success from those who focus on the 

essential elements that compress into thinkable concepts and those who focus, if at 

all, more on incidental elements that lead to a more diffuse cognitive structure. 

The framework will be exemplified in three important areas—algebra, calculus and 

proof—to reveal how difficulties of algebra relate to the shift from embodiment to 

symbolism which underpins arithmetic but causes difficulty in algebra, how the 

embodied notion of local straightness can give a wider conceptual meaning to the 

calculus complementing the symbolic meaning of local linearity, and how proof 

develops in different ways in each world, with generic examples and thought 

experiments in conceptual embodiment, specific calculation and generic 

manipulation in proceptual symbolism and deduction from concept definitions in 

axiomatic formalism. The paper concludes by considering how formal proof often 

leads to structure theorems that link axiomatic systems back to more sophisticated 

forms of conceptual embodiment and proceptual symbolism. 

INTRODUCTION 

The development in interest in Research in Undergraduate Mathematics Education 

takes us a step further in looking at the whole framework of mathematical 

development from the young child to the research mathematician. It lies at the 

crossroads between school mathematics studying space and number and the formal 

mathematical theories and more sophisticated applications at college and university. 

In recent years I have begun to build a simple framework that starts from the genetic 

inheritance of the newborn child and is broad enough to cover the spectrum of 

development of different individuals as they mature over the longer term. At the root 

of this increasing sophistication is the use of language to compress a complex 

phenomenon into a thinkable concept whose meaning can refined by experience and 
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discussion and connected to other thinkable concepts in rich cognitive schemas. This 

occurs both in the van Hiele development of generic conceptions in geometry and the 

symbolic process-object compression in arithmetic and algebra, leading eventually to 

the major compression of set-theoretic definitions into single axiomatic concepts such 

as infinite cardinal number or complete ordered field.  

Three worlds of mathematics 

The framework is based on three different but intertwined worlds of development, 

two of which dominate elementary mathematics, and the third develops in advanced 

mathematical thinking: 

• the conceptual-embodied (based on perception of and reflection on 

properties of objects); 

• the proceptual-symbolic that grows out of the embodied world through 

action (such as counting) and symbolization into thinkable concepts such as 

number, developing symbols that function both as processes to do and 

concepts to think about (called procepts); 

• the axiomatic-formal (based on formal definitions and proof) which 

reverses the sequence of construction of meaning from definitions based on 

known concepts to formal concepts based on set-theoretic definitions. 

 (Tall, 2004, quoted from Mejia & Tall, 2006) 

Terms such as ‘embodied’, ‘symbolic’, ‘formal’ have all been used in a range of 

different ways. Here I use a technique that arose from my friend and supervisor, the 

late Richard Skemp, in putting two familiar words together in a new way to signal the 

need to establish a new meaning (such as ‘instrumental understanding’ and ‘relational 

understanding’ or ‘concept image’ and ‘concept definition’). 

‘Conceptual embodiment’ refers not to the broader claims of Lakoff that all thinking 

is embodied, but to the more specific idea of embodiment conceptualised through 

thought experiment based on perception and reflection on the properties of objects. 

We conceptually embody a geometric figure, such as a triangle consisting of three 

straight line-segments; we imagine a triangle as such a figure and allow a specific 

triangle to act as a prototype to represent the whole class of triangles. We ‘see’ an 

image of a specific graph as representing a specific or generic function. 

‘Proceptual symbolism’ refers to the use of symbols that arise from performing an 

action schema, such as counting, where the symbols used become thinkable concepts, 

such as number. A symbol such as 3+2 or 
  

sin x dx  represents both a process to be 

carried out or the thinkable concept produced by that process. Such a combination of 

symbol, process, and concept constructed from the process is called an elementary 

procept; a collection of elementary procepts with the same output concept is called a 

procept (Gray & Tall, 1994). I theorize that it is the flexible use of symbols as 

procepts in arithmetic, algebra, trigonometry, symbolic calculus, and so on, that 

enables the human mind to manipulate such symbols with great power and precision.  
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‘Axiomatic formalism’ refers broadly to the formalism of Hilbert that takes us 

beyond the formal operations of Piaget. In the famous lecture announcing his twenty-

three problems that dominated the twentieth century, Hilbert remarked: 

To new concepts correspond, necessarily, new signs. These we choose in such a way that 

they remind us of the phenomena which were the occasion for the formation of the new 

concepts. So the geometrical figures are signs or mnemonic symbols of space intuition and 

are used as such by all mathematicians. Who does not always use along with the double 

inequality a > b > c the picture of three points following one another on a straight line as the 

geometrical picture of the idea “between”? Hilbert 1900 ICME lecture 

The formal axiomatic world of mathematicians is predicated on giving formal 

definitions to concepts and proving theorems by mathematical proof, but it is also 

underpinned by the experiences of mathematicians that suggests what theorems may 

be worth proving and how the proof might be carried out, which in turn builds on the 

mathematicians’ embodied and symbolic experience. 

The question often arises as to why the framework refers to three worlds of 

mathematics, as opposed to, say, three different modes of operation. The reason is 

because the modes of thinking used in different contexts become more sophisticated 

in each world as the individual matures. For instance, the conceptual-embodied world 

has a long-term development essentially formulated by van Hiele: objects are first 

seen as gestalts, then various properties are described; there is a shift of attention in 

which the objects are defined and new objects tested to see if they fit the definition; 

then these definitions are used in verbal ‘if … then …’ statements that lead to 

Euclidean geometry and beyond. Meanwhile the proceptual-symbolic world grows 

out of embodiment of counting procedures that are compressed into manipulable 

whole number concepts, with successive process–object encapsulations not only in 

whole number arithmetic, but also in broader number systems through fractions, 

negatives, integers, rationals, reals, complex numbers each expanding to the 

generalised arithmetic expressed in algebra and on to the potentially infinite limit 

processes in the calculus (Tall et al., 2001). The fundamental shift to the axiomatic-

formal world occurs through a shift in attention from the focus on properties that 

belong to known objects to properties formulated as concept definitions to define 

mathematical objects. 

Having formulated the terms ‘conceptual-embodied’, ‘proceptual-symbolic’ and 

‘axiomatic-formal’, I make a conceptual compression by using the shortened forms 

‘embodied’, ‘symbolic’ and ‘formal’, with new meanings given to them in the 

theoretical framework of three worlds. This enables us to consider new combinations, 

such as ‘symbolic-embodied’ where symbolism is embodied, ‘embodied-formal’ 

where embodied ideas are translated into formal structures, and ‘symbolic-formal’ 

where symbolic ideas are translated into formalism (figure 1). (Not shown in the 

figure is the supporting language structure which operates in ways appropriate for 

each world and the underlying conscious and sub-conscious mental processing.) 
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Compression, Connection and Thinkable Concepts 

Compression into thinkable concepts occurs in several different ways. One, discussed 

thoroughly by Lakoff (1987) in Women Fire and Dangerous Things, is through 

categorisation where concepts are connected in various ways in a category and the 

category itself becomes a thinkable concept. Another described by Dubinsky and his 

colleagues is APOS theory where an Action is internalised as a Process and is 

encapsulated into an Object, connected to other knowledge within a Schema; a 

schema may also be encapsulated as an object. Following Davis (1983, p. 257) who 

used the term procedure to mean a specific sequence of steps and a process as the 

overall input-output relationship which may be implemented by different procedures, 

Gray, Pitta, Pinto & Tall (1999) represented the successive compression from 

procedure through multi-procedure, process and procept, expanded in figure 2 in 

parallel to the SOLO taxonomy sequence: unistructural, multi-structural, relational, 

extended abstract (Pegg & Tall, 2005). This models the way in which a procedure 

which is thinkable sequence of steps to do in time is steadily enriched to give the 

efficiency of choosing the most suitable procedure to perform the task in a particular 

concept, condensed into a process and compressed as a procept to think about and to 

manipulate mentally in a flexible way. 

Some students who may have difficulty with the procedure may become entrenched 

at the procedural level, perhaps reaching the multi-procedural stage that can lead to 

procedural efficiency. Others who focus on procedures as overall processes and then 

as flexible procepts can lead to a far more sophisticated proceptual level of operation.  

 

Figure 1: Cognitive development through three worlds of mathematics 
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The earlier work of Dubinsky and his colleagues (e.g. Cottrill et al., 1996) focused 

mainly on a symbolic approach by programming a procedure as a function and using 

the function as the input to another function. The data shows that, while the process 

level was often attained, encapsulation from process to object was more problematic. 

The symbolic compression from procedure to process to object has an embodied 

counterpart. The move from procedure to process simply involves shifting the focus 

of attention from the steps of a procedure to the effect of the procedure. For example, 

a translation of an object on a plane is an action in which each point of the object is 

moved in the same direction by the same magnitude. Any arrow of that given 

magnitude and direction represents the effect of the action and can be imagined as a 

single free vector that may be moved to any point to show how that point moves. The 

free vector is a conceptual embodiment of the vector translation as an object. Adding 

free vectors as objects by placing them nose to tail gives the unique free vector that 

has the same effect as the two following one after the other. 

In this way, we see a parallel between symbolic compression in APOS theory and 

embodied compression through shifting attention from the steps of an action to the 

effect and imagining the effect as an embodied object. This link between symbolism 

and embodiment can play its part in the compression of process into object, enabling 

the individual to refer mentally to the encapsulated process as a conceptual 

embodiment. From this viewpoint, conceptual knowledge makes links between 

thinkable concepts, not only with ‘real world’ applications, but also within and 

between proceptual symbolism and conceptual embodiment. 

 

Figure 2: Spectrum of outcomes from increasing compression of symbolism 

(expanded from Gray, Pitta, Pinto & Tall, 1999, p.121). 
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Figure 3: Procedural knowledge as part of conceptual knowledge (from Tall, 2006) 

As different individuals follow through a mathematics curriculum that introduces 

ideas in increasing levels of sophistication, they cope with it in different ways. Piaget 

hypothesised that all individuals pass through the same sequence of stages at different 

rates but Gray and Tall (1994) observed the proceptual divide in which children 

develop in different ways, some clinging to the security of known step-by-step 

procedures, while others compress their knowledge into the flexible use of symbols 

as process and concept (procepts). Procedures occur in time and work in limited cases 

but are not sufficiently compressed into thinkable concepts to be used flexibly for 

more sophisticated thinking. 

Set-befores and met-befores 

Long-term human learning is based on a combination of facilities set-before birth in 

the genes and builds on successive constructions based on conceptions met-before in 

development. For instance, the visual structure of the brain has built-in systems to 

identify colours and shades, with structures to see changes in shade, identifying 

edges, coordinating the edges to see objects stand out from the visual background. 

Thus the child is born with a generic system to recognise small numbers of objects 

(one, two, or perhaps three) which gives a set-before for the concept of ‘twoness’ 

before building the counting schema that is compressed into the number concept. 

In our analysis we will mainly focus on met-befores where previously constructed 

cognitive connections are used to interpret new situations. Sometimes a met-before is 

consistent with the new situation, sometimes it is inconsistent. For instance, the met-

before ‘2+2 makes 4’ is experienced in whole number arithmetic and continues to be 

consistent with the arithmetic of fractions, positive and negative integers, rationals, 
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reals and complex numbers. But the met-before ‘taking away gives less’ remains 

consistent with (positive) fractions, but is inconsistent with negatives where taking 

away –2 gives more. The same met-before works consistently with finite sets, where 

taking away a subset leaves a smaller number of elements, but is inconsistent in the 

context of infinite sets, where removing the even numbers from the counting numbers 

still leaves the odd numbers with the same cardinality. In this way, met-befores can 

operate covertly affecting the way that individuals interpret new mathematics, 

causing internal confusion that impedes learning. 

As we look at the framework of development through three distinct worlds of 

mathematics, we need to take into account the actual learning of students at 

successive stages and the met-befores they have available to make sense of new 

experiences, particularly those which become inconsistent with a new experience. 

Written curricula almost always focus on met-befores that remain consistent in the 

new context; problems occur with subtle met-befores that are inconsistent. 

ILLUSTRATIONS OF THE FRAMEWORK IN ACTION 

To illustrate the framework of three worlds and the related ideas of cognitive 

compression and met-before, we consider college algebra, calculus, and proof. 

College Algebra 

Algebra is a nightmare for many adults: 

For some, audits and root canals hurt less than algebra. Brian White hated it. It made 

Julie Beall cry. Tim Broneck got an F-minus. Tina Casale failed seven times. And 

Mollie Burrows just never saw the point. This is not a collection of wayward 

students, of unproductive losers in life. They are regular people […] with jobs and 

families, hobbies and homes. And a common nightmare in their past.  

 (Deb Kollar, Sacramento Bee (California), December 11, 2000.) 

Why does algebra cause so much anguish? Its predecessor, arithmetic is built on 

embodiment: collecting objects into sets and counting them, putting them together to 

add, dividing them into equal size subsets to share, putting them in order of size, 

measuring lengths, adding lengths by putting them one after another. Some aspects of 

algebra can be embodied, for example, the expression    2a + 3b+ 4a  can be 

simplified by ‘picking up the 4a and moving it next to the 2a’ then grouping them 

together as 6a, to give    6a + 3b . This ‘fruit salad’ version of algebra, treating letters 

as objects (apples and bananas), works in simple cases but soon fails. If we have ‘six 

apples and three bananas’ then we have ‘nine apples and bananas’, but do we write it 

as ‘9 a b’. What does    6a 3b  mean? How can we take 3 bananas from 6 apples? 

Expressions like 3+2x may not be understood and the student may do what s/he 

knows (adding 3 and 2), leaving the x that makes no sense to write 5x. For many 

struggling to find meaning, algebra is a minefield of dysfunctional met-befores. 

Equations bring new problems. There is the long-standing observation (christened the 

‘didactic cut’ by Filloy and Rojano, 1989) that an equation such as    5x + 3= 13  with 
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an expression equal to a number is easier to solve than an equation with the unknown 

on both sides such    5x + 3= 9x 5. The former may be seen as an operation which 

can be ‘undone’ by taking off 3 from the 13, and then dividing by 5 to get x is 2. 

According to APOS theory, the latter would be more sophisticated because it requires 

the two sides to be seen as equal expressions that need to be manipulated as objects. 

Instead of a process-object interpretation, equations can be seen as a ‘balance’, with 

the operations on both sides embodied as a strategy to maintain the balance. This 

makes sense to a wide range of the population when algebraic equations are first 

introduced (Vlassis, 2002). However, it soon fails with equations with negative terms 

or negative solutions. Introducing this embodiment can act as a met-before that 

enhances meaning for those that focus on the principle ‘do the same thing to both 

sides’ but acts as an impediment for cannot imagine it working with negative terms. 

Lima & Tall (2006) reveals data that suggests that neither process-object 

compression nor the embodied balance approach covers the full range of cases. The 

students were taught to maintain the balance by ‘doing the same thing to both sides’.  

In interview, it transpired that many students focused not on the general principle, but 

on two specific principles: shifting 3 in the equation    2x + 3= 9  to the other side by 

‘change sides, change sign’ and shifting 2 to the other side in    2x = 6  by ‘shift it over 

and put it underneath’. Instead of the balance embodiment, many students combined 

an embodied shifting of terms with added ‘magic’ of rules that made no sense to 

them. The ‘didactic cut’ (and the related APOS interpretation) was not applicable 

because the students had similar proportion of success and failure solving the two 

equations 835 =t  and xx += 313 .
 

While the students did not appear to be using a conceptual embodiment such as a 

balance, they were performing a mental action corresponding to shifting the symbols 

around from one place in the equation to another, with added rules. Lakoff (1987, 

p.12,13) makes a distinction between conceptual embodiment and functional 

embodiment. He does not expand on this distinction later in the book, nor in his other 

books (Lakoff & Johnson, 1999; Lakoff & Nunez, 2000). However, if ‘conceptual 

embodiment’ is interpreted in terms of thought experiments and ‘functional 

embodiment’ in terms of functioning as a human being, then the mental shifting of 

terms may be a functional embodiment. In this way there may be a broader link 

between the three worlds of mathematics and Lakoff’s theory. However, Lakoff 

makes no explicit mention of compression of knowledge and APOS theory focuses 

more on compression of symbolic knowledge rather than embodiment. 

After thinking about the teaching of algebra for many years, I have a sense that both 

embodiment and symbolism play essential roles. The met-befores from arithmetic 

often have embodied underpinnings while the embodiments applied to algebra—such 

as the balance model for equations, or a pictorial representation of    a
2

b
2
 as the 

difference of two squares —only copes with positive values. Students with a 

proceptual sense of arithmetic are very likely to find algebra a natural generalisation 
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of their arithmetic knowledge, but those already limited to procedural operations and 

hampered by a lack of embodied meaning are likely to be limited to the fragility of 

learned procedures supported by meaningless rules such as ‘change sides, change 

signs’ or ‘move it over and put it underneath.’ 

Calculus 

The categorisation of mathematical thinking into embodied, symbolic and formal is 

particularly appropriate in the calculus. Reform calculus in the USA builds on 

combining graphic, symbolic and analytic representations of functions using 

computer software and graphical calculators. However, those of us occupied in 

research in undergraduate mathematics need to look a little deeper into how the 

concepts of calculus are constructed. Mathematicians, who live in a world built on 

the met-before of the limit concept have a view of calculus that sees the need to 

introduce the limit concept explicitly at the beginning of the calculus sequence. My 

own view is different. For students building on the embodiment and symbolism of 

school mathematics, I see a more natural route into the calculus that has the full 

potential to lead either to standard mathematical analysis, non-standard infinitesimal 

analysis, or practical calculus in applications. 

There is an essential difference between the embodied notion of local straightness and 
the symbolic notion of local linearity. Local straightness involves an embodied 

thought experiment looking closely at graphs to see that, as small portions of certain 

graphs are highly magnified, they look straight. Of course, this is difficult to 
formalise at first encounter. But it makes sense to students as they look at a computer 

screen successively magnifying a graph of a familiar function composed of 

polynomials, trigonometric functions, exponentials or logarithms. It also makes sense 
that a function like 

  
sin x  has a corner at every multiple of  so that on can begin to 

imagine not only local straightness, but also situations that are not locally straight. It 

is also relatively simple to give an embodied proof with hand gestures, that the 
recursive blancmange function is everywhere continuous, but nowhere differentiable. 

Here magnification of the graph shows tiny blancmanges growing everywhere, so the 

magnification never looks straight (Figure 4). 

 

Figure 4: A graph that nowhere looks straight under magnification 



 

 10 

The arguments and pictures are found in several of my papers (see for example, Tall 

1982, 2003). Defining the ‘nasty function’    n(x) = bl(1000x) / 1000  then   sin x , and 

   sin x + n(x)  look the same when drawn on a computer over a range say –5 to 5, but 

one is differentiable everywhere and the other is differentiable nowhere! This gives 

an embodied insight into the concept of differentiability as a global phenomenon: it is 

the slope of the graph and you can see the changing slope as the eye follows the 

curve looking at its changing slope as a function of the position of the graph. 

Local linearity, on the other hand, is a symbolic concept, seeking the best linear 

approximation to the curve at a single point. It involves an explicit limiting concept 

from the start instead of an implicit limiting concept that occurs when zooming in to 

see how steep the curve is over a short interval. Non-differentiability is the non-

existence of a limit, which lacks the immediacy of the embodied idea of not being 

locally straight, which applies just as easily at a point as it does over an interval. 

More generally, the function 
   
a(x) = bl(t) dt

0

x

 is differentiable once everywhere 

and twice nowhere. When I showed a class of students the graph of   a(x)  calculated 

numerically by a computer program, one of the students (not a mathematics major) 

said, ‘you mean that function is differentiable once but not twice.’ If you know of any 

other mathematics professor who has had a student imagine a function that is 

differentiable once and not twice, tell him or her to e-mail me. 

Local straightness is particularly apt when dealing with differential equations. A 

differential equation    dy / dx = F(x, y)  tells us the slope of a locally straight curve at 

a point   (x, y)  is   F(x, y) , so it is easy to program software to draw a small segment of 

the appropriate slope when the mouse points to   (x, y)  and by depositing such a 

solution end to end, this constructs an approximate solution. This was done in the 

Solution Sketcher (Tall, 1990) and has been implemented in the currently available 

Graphic Calculus software (Blokland & Giessen, 2000, figure 5). 

 

Figure 5: building the solution of a differential equation 

by following its given slope (Blokland & Giessen, 2000). 
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The Reform Calculus Movement in the USA focuses on the notion of local linearity, 

where the derivative is introduced as the best linear approximation to the curve at a 

single point. It seeks a symbolic representation at a point, using a limiting procedure 

to calculate the best linear fit perhaps even with a formal epsilon-delta construction. 

Then the fixed point is varied to give the global derivative function. I cannot imagine 

a worse approach to the concept to present to beginning calculus students. 

Thurston (1994) imaginatively suggests seven different ways of thinking about the 

derivative, as distinct from different logical definitions: 

(1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to 

the infinitesimal change in a function. 

(2) Symbolic: the derivative of  x
n

 is   nx
n 1

, the derivative of sin(x) is cos(x), the 

derivative of   f g  is  f g g , etc. 

(3) Logical:    f (x) = d  if and only if for every  there is a  such that when 

    
0 < x < , then 

    

f (x + x) f (x)

x
d < .      

(4) Geometric: the derivative is the slope of a line tangent to the graph of the 

function, if the graph has a tangent. 

(5) Rate: the instantaneous speed of f(t), when t is time. 

(6) Approximation: The derivative of a function is the best linear approximation to 

the function near a point. 

(7) Microscopic: The derivative of a function is the limit of what you get by looking 

at it under a microscope of higher and higher power.                (from Thurston, 1994) 

Such a list is built by a great mathematician looking down from the formal world at a 

range of possible meaning which include local straightness (item 7). However, I 

suggested long ago (Tall, 1982) that the conception of derivative of a real function 

can be built from an even more primitive notion, from which all others grow: 

(0) Embodied: the (changing) slope of the graph itself. 

Mathematicians, with their met-befores based on the limit concept have long passed 

beyond this missing level 0. Learners without experience of the limit concept may 

benefit from such an embodied introduction. In a range of papers, I have shown how 

such an embodied beginning can lead either to a standard analysis approach, a non-

standard infinitesimal approach or a more practical combination of embodiment and 

symbolism taken in applications by engineers, biologists, economists and so on. 

Those applying the calculus are more likely to use a combination of embodiment to 

imagine a situation and symbolism to model it to seek a solution while rarely using 

the formalism of mathematical analysis. 

It is my contention (Mejia and Tall, 2004) that the calculus belongs not to the formal 

world of analysis, ‘looking down’ on it from above; it belongs in the vision of 
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Newton and Leibniz, looking up from met-befores in embodiment and symbolism 

used appropriately. The framework of embodiment, symbolism and formalism 

suggests how learners may be mentored to comprehend the calculus, building up to 

the limit concept from experience rather than down from the formal definition.  

Using a framework of embodiment and symbolism, Hahkiöniëmi (2006) studied his 
own calculus teaching to find students following different developments, including 

an embodied route, a symbolic route and various combinations of the two. He found 

that ‘the embodied world offers powerful thinking tools for students’ who ‘consider 
the derivative as an object at an early stage.’ 

This simple observation is at variance with APOS theory suggesting the building up 

of the limit concept from (symbolic) Action to Process and then to Object. It 
questions Sfard’s (1991) theory of structural and operational thinking that suggests 

that operational thinking invariably must precede structural. Using a computer to 

zoom in to magnify a graph, students do perform actions and do operate and then 
begin to conceptualise the graph of the changing slope as an object in itself. But it is 

still an embodied object in a thought experiment imagining the relationship between 

the graph and its slope. If one can see it, then one can attempt to calculate it, 
numerically or symbolically. Here embodiment gives meaning and symbolism gives 

precision of numeric computation and symbolic representation. 

Given the complexity of the concept of the derivative, human meaning needs to be 

created in a way that makes sense. Hahkiöniëmi proposes a learning framework in 

which the teacher is responsible for guiding the student through the ideas, taking 

account of different possible conceptual routes rather than seeking a single genetic 

decomposition characteristic of APOS theory. (Figure 6.) 

 

 

Figure 6: Hypothesised learning framework (Hahkiöniëmi, 2006). 
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Proof 

Proof is handled differently in each of the three worlds. In the embodied world it is 

handled initially in terms of thought experiment and later, as language takes over 

from description to definition, the properties of figures and their relationships are 

verbalised as in Euclidean proof, which is an example of embodied-formal thinking. 

In the symbolic world, proof is first by arithmetic calculation, (first specific then 

generic), then by algebraic manipulation. Many formal proofs, such as counting 

arguments using, say, the pigeon-hole principle, essentially lie in the symbolic-formal 

world. (See figure 1.) 

In considering the development of proof at the undergraduate level, account should 

be taken of earlier forms of argument, such as embodied arguments using 

prototypical generic examples on the one hand and symbolic developments starting 

from specific arithmetic calculations seen as generic arguments and then moving to 

symbolic arguments using algebraic manipulation. 

The major shift in proof occurs from the embodiment and symbolism of school 

mathematics to the formalism of advanced mathematical thinking (Tall, 1991). Proof 

in the embodied and symbolic worlds is based on concepts that are given definitions, 

so the concepts underpin any sense of proof. Proof in the formal world is ostensibly 

based only on set-theoretic definitions and mathematical deduction. However, as 

students come to appreciate formal proof, they build on their previous experience. 

My colleague and PhD student, Marcia Pinto (1998) followed through students 

learning concepts in formal mathematical analysis and found there were two distinct 

routes, one a ‘natural’ route giving meaning to definitions from the met-befores of the 

individual’s concept image (including both embodiment and symbolism), the other a 

‘formal’ route extracting meaning from the concept definition (figure 7). 

 
Figure 7: natural thinking building on embodiment and symbolism, 

formal thinking building on concept definition 

Weber (2004) added to this framework a procedural approach that simply involves 

learning the proof by rote. This fits into our framework with a procedural approach 

corresponding to a more primitive action-schema form of learning while natural and 

formal thinkers attempting to build up knowledge schemas based on concept image 

and/or concept definition. 
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FROM FORMAL PROOF BACK TO EMBODIMENT AND SYMBOLISM 

A major goal in building axiomatic theories is to construct a structure theorem, which 

essentially reveals aspects of the mathematical structure in embodied and symbolic 

ways. Typical examples of such structure theorems are: 

• An equivalence relation on a set A corresponds to a partition of A; 

• A finite dimensional vector space over a field F is isomorphic to Fn
; 

• Every finite group is isomorphic to a group of permutations; 

• Any complete ordered field is isomorphic to the real numbers. 

In every case, the structure theorem tells us that the formally defined axiomatic 

structure can be conceived an embodied way and in the last three cases there is a 

corresponding manipulable symbolism. 

Thus, not only do embodiment and symbolism act as a foundation for ideas that are 

formalized in the formal-axiomatic world, structure theorems can also lead back from 

the formal world to the worlds of embodiment and symbolism. These new 

embodiments are fundamentally different with their structure built using concept 

definitions and formal deduction. They lead to greater sophistication and future 

development leavened with the insights and flaws of human thinking. 

REFLECTIONS 

The final return of formalism to a more sophisticated form of embodiment and 

symbolism through structure theorems leads me to see the three worlds of 

mathematics as a natural structure through which the biological brain builds a 

mathematical mind. 

At the point were undergraduates study mathematics there is a range of questions to 

address. In college algebra we need to have a far better insight into the underlying 

problems that cause students anxiety. I suggest that this is a problem in the transition 

between embodiment and symbolism. The embodiments of arithmetic work well with 

whole numbers and fractions but need modification for negative numbers and have 

limited application in algebra. My own view is that the major shift from arithmetic to 

algebra is far easier when the student has a flexible proceptual view of arithmetic and 

can easily shift to algebra as generalised arithmetic. 

An embodied approach has a so-far-untapped potential to give meaning in college 

calculus. The met-befores of mathematicians give a view of the subject based at the 

very start on the limit concept computed at a fixed point that is then allowed to vary. 

An embodied locally linear approach gives the student the vision to see the whole 

derivative function as the graph of the changing slope. 

The development of proof is seen as generic proof in embodiment and manipulative 

proof in symbolism, first through specific calculations, then generic arithmetic, then 

general algebra, and, as the framework of relationships between properties grows, it 

becomes possible to base proofs on set-theoretic definitions of axiomatic systems. 
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Proof as conceived by university mathematicians grows from embodiment and 

symbolism and has structure theorems that can take us on to more sophisticated 

embodiment and symbolism. A theoretical framework of conceptual embodiment, 

proceptual symbolism and axiomatic formalism provides a rich structure in which to 

interpret mathematical learning and thinking at all levels, and in particular in 

undergraduate mathematics. 
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