
 

10
th

 Conference on RUME  

 
LEARNING PROOF: FROM TRUTH TOWARDS VALIDITY 

 
Denis TANGUAY 
Département de mathématiques, Section didactique 
Université du Québec à Montréal 
tanguay.denis@uqam.ca 
 
 

Researchers in math education have devoted numerous works to the problem of learning 

proof. Particularly sensitive is the specific role given to propositional logic and formal 

reasoning in teaching devices aimed at learning proof. For Duval (1995), the ability to 

validate reasoning using criteria other than group consensus or empirically induced 

information is a condition necessary for learning formal proof. But “... the knowledge of 

these rules [according to which the propositions are organized in a reasoning intrinsically 

linked to a language, natural or formal] does not necessarily make one aware of the valid 

or non-valid nature of a reasoning, any more than knowledge of grammatical rules 

enables a majority of students to write correctly” (op. cit., p. 212, our translation). 

Although recognized in the French-speaking mathematical community, the work of R. 

Duval is not widespread in the Anglo-Saxon community. While Dreyfus (1999) devotes a 

short paragraph to it in his article/summary, “Why Johnny Can’t Prove”, it is not even 

mentioned in otherwise exhaustive overviews by Hoyles (1997) or Epp (2003). In this 

article, we give an initial account of an experiment, which relies primarily on research 

orientations proposed by Duval (1995; 1991) with some differences, as stated in Tanguay 

(2005, § 4.1), and to which more recent considerations will be added. 
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1. Theoretical setting 

1.1. Argumentation versus Formal Proof 

The reader may refer to Duval (1991; 1995, chap. V) for a detailed characterization of 

argumentation and formal proof, which are, in his view, two radically different types of 

reasoning. Like Balacheff (1987), Duval employs the French term ‘démonstration’ to 

refer to formal proof, establishing that a statement is true in compliance with the rules of 

propositional logic, by deductively chaining other statements either already proved or 

taken for granted as axioms. In argumentation, one tries to convince one’s interlocutor by 

putting forward ‘arguments’, which are propositions combined for the purposes of mutual 

reinforcement or confrontation, according to two points of view: the target-statement is 

either true or false. 

 

Propositions are brought into argumentation for their contents, obey criteria of relevance 

and are organized, as a discourse, by simple accumulation. Formal proof has the more 

uncompromising structure of a (propositional) computation, consisting of chained 

inferences or deductive steps. Each proposition in a given inference has one out of three 

operative statuses: premise (or entry proposition), rule of inference and conclusion (or 

inferred proposition). This status is independent of contents, as a proposition may change 

its status within the same proof; more often, the inferred proposition is ‘recycled’ as a 

premise for the next inference. This explains why a formal proof is referred to as a 

computation: it makes use of substitutions — the terms of the rules are substituted by the 

premises so that the conclusion may be ‘detached’ — and of chaining by transitivity, as 

in an algebraic setting. 
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     Rule of inference 
 
verifying the conditions : 
∆ABC is isoceles 
 
 
 
 
 

    Premise       Conclusion 
 

An Inference, or Deductive Step 

 

Duval’s main thesis regarding the difficulty for students in learning formal proof, is that 

they don’t easily grasp its specific requirements, because they perceive and treat it as if it 

were an argumentation. What are the reasons for this confusion? 

 

First, linguistically, argumentation and formal proof are conveyed in the same way, using 

the same connectors (and, or, but, because, hence, if … then, etc.), their function 

nevertheless differing in each (Duval, 1992-93). Next, whether the source is teacher or 

textbook, because the (local) ternary structure of inferences is almost never explicitly 

stated in formal proofs:  

� the inference is more often reduced to the binary frame of the underlying 

implication, with the inference rule implicit; 

� when two inferences are chained, the common proposition is not repeated; 

� there is no explicit verification that the premises include all terms of application 

of the rule; 

� the theoretical status of the inference rule may not have been previously 

established, as is often the case with proofs using transformational geometry, etc. 

 

∆ABC such that 
[AB] ≅ [AC] 

Base angles of an isoceles 
triangle are congruent 

∠ B ≅ ∠C 
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Also, the global structure of more-than-one-step formal proofs is too often unintelligible 

to students. This global structure is seldom linear (e. g. the graphs in Annex), but even 

when using the two-column format, (Affirmation 1, Justification 1, Affirmation 2, 

Justification 2…), proofs are displayed in a linear manner, in the mode of spoken or 

written discourse. They are assimilated as such by young students, who have this ‘spoken 

way of coping with the written’ diagnosed by Duval (2001); that is, without pausing, 

without returning to already stated propositions, without taking a step back to get the 

global picture and to grasp elements of macro-organization; without any mental 

reorganization, by which some of the propositions separated out in the text may be 

brought together; in short, without reflection... 

 

Lastly, and perhaps more fundamentally, students must detach themselves from the 

epistemic semantical value (Duval, 1995, p. 222) of the propositions, which is the degree 

of reliability allotted to the content — obvious, certain, plausible, unlikely, impossible… 

— so as to be able to acknowledge the variability of the propositions’ operative status. 

 

1.2. Truth Value as Impediment 

Indeed, it is often stated that in geometry, the perceptive obviousness — the widespread 

‘you can tell from the diagram!’ — hinders students’ reasoning (see for instance Chazan, 

1993). But how is it that so many students who have assimilated the instruction ‘you’re 

not allowed to rely on the diagram’, remain unable to meet the requirements of 

geometrical proof? In Tanguay (2005a), we have asserted that students who succeed at 

stemming the epistemic value of obviousness, must then face a more subtle obstacle, 

which we identify as truth value as impediment. For the sake of explanation, let’s 
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consider Johnny1, a 13-year-old student, who is working with the proof that every kite has 

a pair of congruent opposite angles. 

 
 

[ ] [ ]  is isoceles

,

AD AB ABD

ADB ABD

≅ ⇒ ∆

⇒ ∠ ≅ ∠
 

 

[ ] [ ]  is isoceles

,

CD BC BCD

CDB CBD

≅ ⇒ ∆

⇒ ∠ ≅ ∠
 

 
which implies that  
 
mes mes mes

mes mes

mes .

D ADB CDB

ABD CBD

B

∠ = ∠ + ∠

= ∠ + ∠

= ∠

 

 

A

B

C

D

 

 

To understand the proof, Johnny has to dissociate the truth of the statement ‘∆ABD is 

isoceles’ from the truth of the statement ‘∆ABD is iso-angles’, which in his mind always 

go together. Note indeed that a student of Van Hiele level 22 (e. g. Crowley, 1987 or 

Burger and Shaughnessy, 1986) has a tendency to ‘amalgamate’ properties, and, when 

asked for a definition, to give what Van Hiele has called a ‘litany of properties’, that is, a 

list of all the properties they know which pertain to the object being defined. For instance, 

in defining an isosceles triangle, this student would answer, a triangle with two congruent 

sides, two congruent angles, which possesses a symmetry axis. But to grasp the structure 

of the proof, Johnny must understand that sides [AB] and [AD] are ‘already’ congruent, 

while the base angles are ‘not yet’ congruent, which, to him, is rather bewildering: how 

could the statement ‘∆ABD is isoceles / iso-angles’ be half-true??!!! 

 

                                                 
1 With apologies to Morris Kline and Tommy Dreyfus. 
2 According to the Van Hieles, it is only when reaching level 3 that students become able to follow or 
produce short formal proofs, as well as longer informal jusitifications. 
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He becomes convinced that, as his teachers have repeated year after year, mathematics is 

unique among the sciences in that each statement must be either unambiguously true or 

false. And this sometimes in spite of his own understanding: “Squares are rectangles” is a 

true statement because… (Furinghetti & Paola, 1991); “Prime numbers are odd” is a false 

statement because… (Zazkis & Levy, 2001). He also becomes aware of the pitfalls of 

perceptive obviousness, particularly in geometry, but his textbook argues that ∆ABD is 

indeed isosceles! As long as Johnny perceives the proof as an argumentation, aiming to 

convince that ‘∆ABD is isoceles-isoangles’ is a true statement, this truth will act as a 

screen and impede his reasoning.  

 
1.3. From Truth of Propositions towards Validity of Deductive Steps 

The next example will throw more light on this issue. The following research experiment 

is described in a collective work published under the direction of Jean Piaget. The French 

psychologist B. Matalon (1962) put thirty children, aged 6 to 12, to the following test. 

Two light bulbs, one red and one green, are hidden in a box with flaps, so that the 

researcher can show one light bulb while keeping the other hidden. He gives the 

following instructions: “These two bulbs cannot be turned on whenever and however you 

want. If the red light-bulb is on, then the green light-bulb is on.” The researcher then asks 

the child: 

1. The red light is turned on. [He lifts the corresponding flap]. Is the green light on 

or off? 
2. The red light is turned off. [He lifts the flap]. Is the green light on or off? 
3. The green light is turned on. [He lifts the flap]. Is the red light on or off ? 
4. The green light is turned off. [He lifts the flap]. Is the red light on or off ? 

 

Twenty-seven of the thirty children correctly answered question 1, while fifteen correctly 

answered question 4 (“If the green light is turned off, the red one cannot be on”). 
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Respectively, only six and five children correctly answered questions 2 and 3, a correct 

answer, according to Matalon, being ‘I can’t tell’. But in analyzing the results, Matalon is 

very careful not to conclude that an incorrect answer is necessarily a sign that the 

implication ‘if red is on, then green is on’ is confused with its converse ‘if green is on, 

then red is on’. Initially, he acknowledges that the answer, ‘I can’t tell’, is very difficult 

to obtain from children, who, from school, are accustomed to every question having an 

answer. But according to him, this is not the sole or main reason for this difficulty. 

 

For a mind strongly bound to the concrete, it is difficult to dissociate reality from 

judgment on this reality: while the subject knows well that the light is turned on or 

is turned off, these two states being exclusive, and hence that only one of the two 

answers is ‘true’, we are expecting an answer of an other level, which in fact 

focuses on the knowledge that the subject can have, and not on the condition of 

the equipment (op. cit., p. 79, our translation). 
 

Even though the context here is quite specific, we have arrived at the very core of the 

obstacle to which we are referring. The child stands before a hidden light and this light is 

either on or off. Likewise, the student has two triangles in front of him and these triangles 

are congruent or are not. There is nothing to help either the child or student understand 

that the expected answer is on another level, that we are interested in neither the truth of 

the statement ‘the light is on’ or ‘the triangles are congruent’, but rather in the validity of 

the inferred statement ‘I can conclude absolutely that the light is on’ or ‘I can conclude 

(for example, by SAS) that the triangles are congruent’. Adhering to mechanisms of 

formal proof requires a radical shift in level, from the pragmatic to the theoretical 

Balacheff, 1987). That is, a fundamental re-focusing, from the truth of propositions 

towards the validity of deductive steps in reasoning3. 

                                                 
3 The two thousand year long saga of the Parallel Axiom could well be seen as an epistemological shadow 
of the obstacle we are considering. As long as the truth of the Parallel Axiom — would two indefinitely 
produced parallel lines eventually meet or not? — and its‘provability’ have been the focus of 
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2. Research Hypotheses and Questions; Designing Tasks  

We have adopted some of the research orientations proposed by Duval (1991): to 

dissociate deductive organizational tasks from heuristic tasks; to create interplay between 

a non-discursive representation (via a propositional graph) and a written processing of the 

proof. By momentarily changing register — going from written or spoken natural 

language register, to setting some of the work in the graphic register — we expect 

students to re-evaluate their understanding of proof as argumentation. 

 

But for the student to understand how the necessity of chained propositions creates the 

foundations for the truth of the target-statement, the goal of the ‘geometrical game’, he 

must adhere to that ‘other level’, to a theoretical standpoint where the rules of the game 

are no longer the same. We dissociate ourselves from Duval’s research orientations by 

assuming that students can’t subscribe to this way of reaching the goal until they have, at 

the very least, grasped the (new) rules. We thus consider a sequence of introductory tasks, 

in which students work on already constructed graphs. These tasks consist in the 

reconstruction of a geometrical proof by organizing propositions, handed out higgledy-

piggledy, within the empty boxes of an oriented graph (see below). Students must also 

assign a number to each ‘inference-arrow’, according to the chosen rule of inference (see 

Annex). Once the graph is reconstituted, they must write up the proof ‘in their own 

words’. 

 

 

                                                                                                                                                  
mathematicians such as Khayyam, Saccheri or Legendre, the statement itself has created short circuits and 
flaws in reasoning. It is only when the focus shifted toward the Parallel Axiom’s operative status within 
different possible geometries that the problem of its independence was definitively solved. 
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The oriented graph on a large display 

 

The research questions are the following: 

• Are tasks such as these likely to help students in meeting the requirements of 

formal proof? 

• Do such tasks foster this necessary re-focusing, from the pragmatic to the 

theoretical, from the truth of propositions towards the validity of inferences? 

• To what extent do they contribute to better mastery: 

o of the deductive structure? 

o of the logical rules necessary for formal reasoning? 

 

The target-statements dealt with in the sequence have been chosen because their proofs 

require subtle coordination of implications and converses (see Annex). This research is 

part of a larger project conducted according to the methodology of Design Research (e.g. 

Edelson, 2002 or Steffe & Thompson, 2000). 
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3. The Research Experiment 

3.1. Setting and Data 

The sequence of tasks (see Annex) was conducted with one grade ten class (15-16 years 

old) in May 2005 and two grade eleven classes (16-17 years old) in May 2006. Students 

worked in teams, of two or, for the most part, three. The grade ten class was allotted a 

fifty-five minute period for each task, one per day for three days in a row. The two grade 

eleven classes worked on the three tasks consecutively, during a two and a half hour time 

segment. The collected data consist of: 

− video recordings of two teams in each class;  

− photographs of the large displays (with the graphs sketched on them) ; 

− researcher’s notes; 

− some of the written proofs (not all teams had time to finish the writing). 

 

The data were analyzed according to a qualitative perspective (Patton, 1990). 

 
3.2. Some Excerpts from the Data and Conclusions from their Analysis 

Let us first mention that except for one team doing the first task and one team doing the 

third task, all twenty teams managed to fulfill the reconstruction of the graphs, with, in 

some instances, hints from the researcher or his assistant. It is striking that, when they 

arrive at the correct reconstruction, the students are absolutely convinced that they got it 

right. They also appeared to enjoy the tasks.  

 

1. The deductive structure, consisting of chained inferences, is neither spontaneously 

nor easily understood by many students. 

 

� Irrelevant aspects are taken into account, e.g. searching for symmetry in the 

graph. For instance: 
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Searching for symmetry in the graph 

 
� Statements are ‘flattened out’, are put on the same level, as in an 

argumentation. For instance, even though members of Team 6 acknowledged 

early that ‘W is a point on l’ was the proposition to be proved in Task 1, 

student Will4 places ‘l is the bisector of [AC]’ in the last box, stating: “It’s 

because they are three [referring to m, n and l]. We have to prove that this one 

is the perpendicular bisector. That’s it, isn’t it?” It seems that from Will’s 

point of view, showing ‘W is a point on l’ and showing ‘l is the perpendicular 

bisector of [AC]’ amounts to the same thing. He has certainly lost sight of 

which propositions belong to the hypothesis (the given). In analyzing the 

discussion between the three members of Team 6, in spite of its awkwardness, 

we are able to evaluate the extent to which a difficult and subtle coordination 

of the geometrical and logical aspects is required in order to understand 

organization of the proof. Will shows a clear lack of such coordination, and 

                                                 
4 The names are fictitious. 
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dealing with one aspect at a time, is led to propose a solution such as graph 

15, above. Xavier draws his own diagram, trying hard to see it in relation to 

Rules � and �. He attempts to understand the logical organization and says, 

in response to Will’s proposal (Graph 15, above): “But you don’t know that 

measure of [AB] equals measure of [AC]! Where does it come from if you 

place it on the left side [of the graph] ?” It took one half-hour and twenty 

different transitory states of their graph, but members of Team 6 did arrive at 

the correct one. Xavier then validated their solution by verbalizing aloud each 

inference while keeping track with his own diagram. 

� The strict ‘algorithmic nature’ of inferences — which would enable a 

computer or a robot to find the inferred statement, having the rule and the 

premises — is not well understood. Deductive shortcuts and redundancies (see 

below) are indicators of this misunderstanding. Understanding the algorithmic 

nature of inferences — in particular, realizing that each inference is 

independent of the others and can be validated separately — did help several 

teams5. 

 

                                                 
5 The researcher and his assistant had decided that, when asked for validation by a team, they would isolate 
two inferences, one good and one bad, and ask the student to explain them in their own words. To at least 
one team, the researcher gave the additional explicit hint: ‘You should be able to validate each deductive 
step independently’, after which the team quickly came unblocked. 
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Misunderstandings of the algorithmic nature of inferences 

 
2. Working backwards from the end to the beginning leads to better and faster 

achievements. Working this way, one team took less than 15 minutes to reconstruct 

each proof, 2 and 3. The researcher did witness two teams getting unblocked after he 

suggested they work this way. 

3. The role played by rules of inference is underestimated. Teams who (tried to) 

establish the rules after the fact were generally very slow achievers, and wandered a 

lot before they grasped some of the proof’s organizational elements. In at least two 

clear cases, according to the data, we have seen students getting unblocked in their 

reconstruction of the proof, as they began to take the rules into account and make the 

effort to understand their precise meaning. 

4. The logical confusion between implications and converses did not emerge in the 

specific context of solving these tasks. For instance, no team proposed a solution for 

the first task in which inference rules � and � would be interchanged6. Without 

being conclusive, this fact nevertheless suggests, as in Durand-Guerrier (2003), 

                                                 
6 In one of the videos, we do hear a girl talking about the rules and saying: “It seems to me that � and �, 
they are alike. […] They seem to say the same thing.” Unfortunately for the researcher, her two partners 
didn’t notice or discuss the subject any further. 
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Dumont (1982) or Matalon as we quote him in § 1.3, that contexts and standpoints are 

factors of predominant influence on students’ achievements involving logic and that 

in any case, imputing poor performance in proving to a lack of mere logical skill is an 

over-simplification. This issue certainly deserves further investigation. 

5. From a research perspective, the written proofs are not conclusive. In the case of the 

grade ten class, there was not sufficient time, while the students of the two grade 

eleven classes didn’t take the writing assignment seriously. We refer the reader to 

Tanguay (2005a; 2005b) for a lengthier discussion of writing assignments related to 

this type of tasks.  

 

4. Conclusion 

The discussion among team members (see, for instance, Xavier’s response to Will’s 

proposal, § 3.2.1) is focused by these tasks on the precise, acute elements of the deductive 

structure. Notwithstanding the need for more research and experimentation — for 

instance a comparative study measuring the impact of such activities on learning formal 

proof — the aforementioned observation suggests that work required by the proposed 

tasks contributes to students’ better understanding of formal proofs’ deductive structure. 

This involves much more than being fussy about formalism. The transfer, from what 

appears to be a satisfactory understanding of a proof and of how the general ideas are 

linked in it, to a logically written and controlled production of the proof, constitutes a 

fundamental leap for students and hinges on their mastery of the deductive structure. 

Here, we meet up with Dreyfus’ concern: “Why [are] the students unable to give a decent 

explanation in spite of the fact that they seem to have a satisfactory understanding of the 

question and its answer (or of the problem and its solution)?” (1999, p. 87). 
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In light of this experiment, what we have called the ‘algorithmic nature of inferences’ 

(third item in § 3.2.1) is a crucial issue. These tasks allow students to work specifically on 

this issue, as a fundamental characteristic of formal proof. We suggest that instructions 

such as 

• the inferred statement can be algorithmically determined by a computer having 

the rule and the premises in its memory; or 

• each deductive step is independent of the others and may be validated separately 

should be explicitly stated and discussed in class, during what is called by French 

didacticiens the ‘institutionalization-phase’ of such activities. 

 

We are not saying that every geometrical proof should involve such activities. In our 

view, they are designed as a trigger, a ‘transitional object’ (Duval & Egret, 1989, p. 35) 

which should later evolve, as students are increasingly assigned components of the task: 

choosing and stating the rules, constructing the graph, choosing and stating propositions 

We are convinced that the target-statements should then be chosen in such a way that 

students work ‘backward’, from a relatively sophisticated statement, to less sophisticated 

statements, as in the sequence proposed here. The more sophisticated statement would be 

non-intuitively attainable, not immediately considered to be true; a statement that gives 

rise to a real ‘enjeu de vérité’ (Grenier & Payan, 1998). The less intuitively demanding 

statements would then be those arising naturally, due to the need to formally prove the 

initial statement. This way of functioning being the most common in mathematical 

research, we expect that such an approach would evoke the epistemological justification 

(Harel, 2007, RUME opening plenary talk) necessary to gain students’ involvement and 

commitment. 
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ANNEX :  The Sequence of Three Tasks 

 

Note: In the list of justifications given to students in the first task, only justifications �, 
� and � appear. 

 
List of justifications 

� Transitivity of equality: if  x = y  and  y = z,  then  x = z. 
� A point on the perpendicular bisector of any segment [PQ] is necessarily 

equidistant from the end-points P and Q. 
� A point equidistant from two points P and Q is necessarily on the perpendicular 

bisector of segment [PQ]. 
� Definition of perpendicular bisector of [PQ]: the unique line passing through the 

mid-point of [PQ] and making a right angle with PQ. 
� Definition of mid-point of [PQ]: the point between P and Q on line PQ, 

equidistant from P and Q. 
� Definition of congruence between two triangles: two triangles are congruent when 

their homologous elements (sides and angles) have the same measurement. 
� The SSS criterion: if the three sides of a triangle have respectively same 

measurement as the three sides of another triangle, then the two triangles are 
congruent. 

	 The SAS criterion: if two sides and the included angle of one triangle have 
respectively the same measurement as the two sides and included angle of another 
triangle, then the two triangles are congruent. 


 The ASA criterion: if two angles and their shared side of one triangle have 
respectively the same measurement as the two angles and shared side of another 
triangle, then the two triangles are congruent. 

� If point O is between P and Q on line PQ, then any point Z outside PQ determine 
angles ∠ZOP and ∠ZOQ, which are supplementary. 

⑪ Definition of right angle: an angle having the same measurement as its 
supplementary. 

 

Before asking students to reconstruct the first propositional graph, the researcher presents 
an example of a deductive step and introduces the initial target-statement: the three 

perpendicular bisectors of any triangle meet in one point. He then gives the following 
explanation, while drawing the geometrical diagram on the blackboard: 
 

“Let ∆ABC be any triangle. Let M be the mid-point of [AB], N the mid-point of 
[BC] and L the mid-point of [AC]. Let m be the perpendicular bisector of [AB], n 
the perpendicular bisector of [BC] and l the perpendicular bisector of [AC]. Being 
respectively perpendicular to lines AB and BC, which have point B in common, m 
and n cannot be parallel. Let W be their point of intersection. You must reconstruct 
the deductive chaining which shows that W is also a point of l.” 
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The geometrical diagram 

 

Solution for the first task 

 
 
It should be mentioned that, at the start, a definition was the only information the students 
had regarding perpendicular bisectors. The second and third tasks on which students were 
later asked to work, consisted of showing each of statements � and � in the list of 
justifications.  
 

Before asking the students to reconstruct the second propositional graph, the researcher 
introduced the target-statement with the following explanation: 
 

 “Let M be the mid-point of [AB] and m be the perpendicular bisector of [AB]. You 
must reconstruct the deductive chaining which shows that any point X on m is 
equidistant from end-points A and B. If X is the mid-point M, there is nothing to 
prove, as M is equidistant from A and B by definition of a mid-point. So you may 
consider that X is different from M.” 
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Solution for the Second Task 

 
 

Before asking students to reconstruct the third propositional graph, the researcher 
introduces the target-statement with the following explanation: 
 

 “Just as before, M is the mid-point of [AB] and m is its perpendicular bisector. 
You must reconstruct the deductive chaining which shows that any point Y at 
equal distance from the end-points A and B is necessarily on m. You may consider 
that Y is not on line AB, since the only point on AB equidistant from A and B is the 
mid-point M, and M is on m by definition of a perpendicular bisector.” 

 
Solution for the third task 
The last proposition (the bolder box) is already written in the (otherwise) empty graph. 
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