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 Mathematics curricula designed to focus on conceptual rather than procedural 

understanding often engage teachers in activities that are different from those they have 

previously experienced.  This means that teachers often have a difficult time making sense of 

tasks from such a curriculum in the manner intended by the curriculum designer (Lloyd, 1999; 

Wagner et al., 2007).  To that end, we report on a study in which we explored how a 

mathematician made sense of a research-based introductory abstract algebra curriculum while 

implementing it for the first time. 

A research mathematician, John, implemented an innovative research-based 

undergraduate introductory abstract algebra curriculum (Larsen, 2004).  We met with John 

regularly for debriefing and planning sessions, collecting research data both from the classroom 

and our meetings.  One of the most prominent themes that emerged was the complex role of 

mathematical content knowledge in the teaching of this type of curriculum.  On the one hand, 

John’s extensive mathematical training was crucial to his making sense of curricular tasks and 

student thinking.  On the other hand, however, we were able to identify a number of instances in 

which additional kinds of mathematical knowledge could have supported a more successful 

implementation of the curriculum.  We argue that these kinds of knowledge are instances of what 

Ball, Lubienski, & Mewborn (2001) refer to as mathematical knowledge for teaching.  Ball, 



Bass, Hill, & Schilling (2005) hypothesize that mathematical knowledge for teaching includes 

things such as knowledge of content, knowledge of students, and knowledge of tasks.   

In this paper we describe in detail two classroom episodes that illustrate the ways in 

which John drew upon his knowledge of mathematics to make sense of the curriculum and 

students’ thinking, as well as the ways in which additional kinds of mathematical knowledge for 

teaching could have supported his efforts.  We will conclude with a discussion of implications 

for future investigations into supporting teachers (particularly mathematicians) in implementing 

inquiry-based curricula. 

 

Setting and Participants 

The research-based introductory abstract algebra curricular materials used in the study 

were developed by the second author through a series of design experiments (Larsen, 2004; 

Lockwood, Bartlo, & Larsen, 2007).  The goal of the curriculum is to develop the formal 

concepts of group theory by building on students’ thinking.  In its current form, the curriculum 

features three primary instructional sequences, one for each of the main course concepts: group, 

isomorphism, and quotient group.  The materials actively engage students in the development of 

the fundamental concepts of group theory, balancing reinvention phases (in which students 

develop concepts based on their intuition, informal strategies, and prior knowledge) and 

deductive phases (in which students develop deductive proofs of important results based on 

formal definitions and previously established results).  This approach was adopted in light of 

growing evidence that students’ understandings of formal concepts are often disconnected from 

their informal understandings (Edwards & Ward, 2004; Moore, 1994; Tall, 1992; Weber & 

Alcock 2004).   



In order to support the scaling up of the curriculum, we are currently engaged in research 

to 1) identify the challenges and opportunities that are likely to arise as different instructors 

implement the materials, 2) develop instructor support materials to meet these challenges and 

take advantage of these opportunities and, 3) investigate how students’ learning is enhanced by 

the curriculum materials.  

In order to gain insight into how an instructor might interact with the research-based 

introductory abstract algebra curriculum, we partnered with a mathematician, John.  As a first 

step, he agreed to teach the innovative introductory abstract algebra curriculum with an eye 

towards helping us design instructor materials.  We met regularly with John, both to discuss 

upcoming tasks and to hear about his experiences implementing past tasks.  The weekly 

meetings were videotaped, and summary notes were taken during the meetings.  Additionally, 

John sent us mid-week emails about the class sessions between our meetings.  We also 

videotaped several select classroom sessions.    

In some ways, John is a fairly typical mathematics professor.  He is well-published and 

knowledgeable about both general undergraduate-level mathematics and his own research 

interests, and he tends toward a lecture-heavy teaching style.  In other ways, however, John has 

traits that differentiate him from the average mathematics professor.  For example, John is a 

particularly popular teacher and has won several departmental teaching awards.  Furthermore, 

within the last three years John has been involved in a workshop sponsored by the Mathematical 

Association of America, on the topic of the mathematical preparation of teachers.  Moreover, 

John participated in the design and implementation of a mathematics course for K-12 teachers as 

part of an NSF-funded professional development project.  This project involved collaborations 

between mathematicians, mathematics education researchers, community college instructors, and 



K-12 master teachers.  So, going into the project, John had had some experience and training 

with teaching in an inquiry-oriented format.  Therefore, John not only has ample knowledge of 

the content of the mathematics involved in the curriculum, but also he has more experience with 

and knowledge about reform-oriented teaching practices than would a typical mathematics 

professor.   

While teaching the introductory abstract algebra course in an inquiry format for the first 

time, John had an undergraduate student assisting him with the class.  She had experienced the 

innovative curriculum as a student but did not have previous experience teaching in a classroom 

setting.  In addition to helping answer questions and facilitate group work during the class, she 

took notes about each class period and also attended the weekly debriefing meetings.   

 

Results 

The data corpus for this study consisted of the digitized video recordings of the weekly 

debrief meetings (there were 10), notes taken during the meetings, John’s weekly emails, and the 

videotaped class sessions.  We had all attended all weekly meetings and selected class sessions, 

and we all read John’s weekly emails.  This served as a preliminary phase of analysis.  In the 

second phase of analysis, we individually watched all of the videotaped meetings and read 

through the meeting notes and the weekly emails.  While doing this, we looked for incidents that 

shed light on how John made sense of the curriculum while implementing it for the first time.  

We also tried to pick up on any other themes that might pertain to this issue.  In subsequent 

analysis, we discussed and reviewed these themes.  In particular, we jointly re-watched some of 

the videos of the meetings and of relevant classroom sessions in order to identify and analyze 1) 

instances in which John was able to use his mathematical knowledge effectively and 2) instances 



in which additional kinds of mathematical knowledge would have been beneficial.  We focused 

on instances in which we could observe John’s attempts to make sense of and respond to student 

thinking and curricular tasks.  We present our findings in the form of two case studies: The Case 

of Characterizing Evenness and The Case of Defining Isomorphism.  

 

The Case of Characterizing Evenness 

 In this case, John encountered a surprising mathematical idea suggested by a student.  By 

analyzing this particular incident, we learned about how John made sense of an unexpected 

student response.  During class, when the student shared his idea, John was able to make sense of 

the student’s idea to some extent, but was unable to capitalize on the idea and connect it with the 

instructional sequence.  However, after class John continued to think about the student’s idea, 

eventually connecting it to some sophisticated group theoretic concepts. 

 This case occurred during one of the early tasks in the sequence in which students learn 

about quotient groups.  The basic approach of the sequence was to have students generalize the 

idea of parity.  In particular, the students considered a Cayley table (Figure 1) showing what 

happens when even numbers and odd numbers are added together and explained why this table 

represents a group. 

 

+ Even Odd 

Even Even Odd 

Odd Odd Even 

 

Figure 1.  The table students completed when exploring evens and odds. 

 



The first task was to try to make sense of the idea of parity in the context of the group of 

symmetries of a square, a group with which the students were already familiar. The students had 

created their own system of symbolizing symmetries and had symbolized the symmetries of a 

square as follows: {I, R, R2, R3, F, FR, FR2, FR3}.  In their symbols the I is the identity element, 

the F is a flip across the vertical axis, the R is a rotation of 90 degrees, and the rest of the 

symbols are created from using F and R as generators.  The students had also explored the set of 

even numbers and the set of odd numbers, realizing that the set containing those two elements 

formed a group under addition. 

In the incident we will discuss, the students were looking for a way to break the 

symmetries of a square up into “evens” and “odds.”  This group has three subgroups of order 4 

({I, R, R2, R3}, {I, F, R2, FR2}, {I, R2, FR, FR3}), any of which can be used to partition the group 

into a quotient group. At this point the students were not aware that they were trying to create a 

quotient group, rather they were simply looking for “evens” and “odds” in D8 (the symmetries of 

a square).   

The Case of Characterizing Evenness begins with a group of students explaining how 

they see {I, R2, FR, FR3} as a set of “evens.”  The students had created a table (Figure 2) that 

showed that this partition created a group.   

 

 {I, R2, FR, FR3} { R, R3, F, FR2} 

{I, R2, FR, FR3} { I, R2, FR, FR3} {R, R3, F, FR2} 

{R, R3, F, FR2} { R, R3, F, FR2} { I, R2, FR, FR3} 

 

Figure 2. The table the students created to show “evens” and “odds” in D8.  

 



They then explained that the set {I, R2, FR, FR3} represents the evens because its elements are 

comprised of an even number of generators (e.g. R2 is made of two R’s and FR is made up of two 

generators, an F and an R), and that {R, R3, F, FR2}, the remaining elements, are odd because 

they are comprised of an odd number of generators. 

 

S:  It was the number of operations.  In the first case you have an even number of 
operations, and in the second case you have an odd number of operations.   
 
J: So, if you take the generators F and R, and you look at how many of them occur in 
each element, I guess you could characterize these two sets, the first one (points to the 
subset containing {I, R2, FR, FR3}) as being those that are an even number of 
operations, those that are a product of an even number of generators.   And the 
elements in this set (points to the set containing {R, R3, F, FR2}) are R, so one 
element, R3 so a product of 3 generators, F, which is the product of one generator, and 
FR2, that’s three generators multiplied together.  So that’s a fair characterization of 
these, except for zero maybe… 
 
S: That’s zero 
 
J: Which is zero of them, or F times F maybe.  So I think you can make a case that 
that’s a fair description.  So does that explain then why this table should hold? 
 
S: No.  

 

The episode ends with John asking if the explanation the students offered sheds light on 

why this partition creates a group that works like the even/odd group (Figure 1).  However, John 

allowed almost no time for students to respond to his question.  We interpret this as an indication 

that at the time it was not immediately clear to him why this kind of “local evenness” described 

by the student guaranteed the global parity seen in the resulting quotient group.  In fact, the 

global parity is a consequence of the fact that both the sum of two odd numbers and the sum of 

two even numbers (in this case the number of generators) is an even number.   

During the debrief it was clear that John’s interest about this particular interaction was 

piqued.  He had continued to think about the student’s suggestion in the time between class and 



the debriefing meeting, and in fact during the debrief he raised the issue on his own.  He 

explained that in the moment, during class, he had realized that the partition that the students 

came up with would work in the current case they had been discussing.  But he had decided not 

to push the students on this issue.   

 

J: For them there was a point that was raised that was pretty cool … oh you could 
think about the evens and odds here as the things that are a product of an even 
number of generators and a product of an odd number of generators, and at first I 
thought that that’s kind of cool, its quirky, it works in this case, I don’t think it 
works in the triangle for example, but it works in a square, and then I was thinking I 
don’t think it works in a pentagon, but it probably works in a hexagon. 

 

Ultimately, John was able to make sense of the student’s suggestion in terms of his 

knowledge of permutation groups and alternating groups.  John realized that the characteristic of 

this subgroup that the student focused on is analogous to the defining property of the alternating 

subgroup of a permutation group.  Permutation groups are generated by transpositions 

(permutations that simply swap two elements), and the alternating subgroup consists of those 

permutations that are generated by an even number of transpositions.  So the alternating 

subgroup is “even” in the local sense described by the student.  It is also “even” in the sense that 

it can be used to decompose the permutation group into a quotient group consisting of two 

elements (“evens” and “odds”).  

 

J: And then I started thinking a little more, like it’s a reasonable thing for them to be 
thinking about.  Like if you went a little farther, these are symmetry groups, so they 
are naturally part of the symmetric group.  And you always have the even 
permutations versus the odd permutations, and I think it’s just making that split.  So 
any time you have a subgroup of a symmetric group, you can always make the odd 
permutations versus the even permutation split that behave like this.  So that’s 
really what they’ve been looking at is symmetric groups.   

 



When presented with a surprising student response, John turned to his mathematical 

content knowledge and searched for a connection between mathematics that he knows and the 

idea the student suggested.  Ultimately, he made that connection via permutation groups.  John’s 

content knowledge, specifically his knowledge about permutation groups, allowed him to 

consider the student’s idea and to make sense of their answer in his own terms.  From this 

excerpt we see that John truly wanted to understand the student’s answer and was able to do so 

by using his content knowledge.  In fact, John’s analysis suggests a possible path for us to pursue 

in the ongoing development of the curriculum (perhaps a short unit on permutation groups could 

draw on this idea as a starting point).   

 However, we also found that John missed an important opportunity during the lesson to 

integrate the student’s idea into the instructional sequence.  Given the fact that this “local 

evenness” described by the student could be directly connected to the “global evenness” that was 

the focus of the task, John could have capitalized on the opportunity provided by the student’s 

contribution.  In particular, John could have followed through on his question about whether 

there was such a connection.   

The Case of Defining Isomorphism 

This was a significant episode for us because it was particularly informative for our goal 

of developing instructor support materials to accompany the curriculum.  In this example John 

deviated from the implementation plan that we had suggested, and this provided us with the 

opportunity to explore why he did this and what kinds of consequences arose in terms of student 

learning.  Exploring those issues helped us to think about how to create instructor materials that 

would enable instructors to understand the intent of the tasks in the curriculum.   



In this episode, the students’ task was to define isomorphism.  Recall that two groups, (G, 

•) and (H, *), are isomorphic if there exists a bijection, φ, from G to H such that that φ(a)•φ( b)= 

φ( a * b) for all a and b in G.  This last condition formalizes the idea that the operation must be 

preserved by the mapping (the operation works the same in both groups).  The instructional 

sequence begins with having the students explore isomorphism informally.  They are presented 

with an operation table of a group with 6 elements (Figure 3a) and are then asked if the group 

could be D6 (the symmetries of a triangle, Figure 3b).  

 

 

* 

 

A B C D E G 

A B A D C G E 

B A B C D E G 

C G C B E D A 

D E D A G C B 

E D E G A B C 

G C G E B A D 
 

 

 

 

 

I R R2 F FR FR2 

I I R R2 F FR FR2 

R R R2 I FR2 F FR 

R2 R2 I R FR FR2 F 

F F FR FR2 I R R2 

FR FR FR2 F R2 I R 

FR2 FR2 F FR R R2 I 
 

 
Figure 3a. The 6 element “mystery table”  

 

 
Figure 3b. The operation table for D6  

 
Students typically begin this task by looking for a mapping between the symbols in the 

mystery table and the symbols they use to represent the symmetries of a triangle.  They usually 

begin by figuring out which element is the identity.  They then determine which elements are 

self-inverses in order to figure out which elements in the mystery table can be flips (the rest must 

be the non-trivial rotations).  Then some students will arbitrarily assign elements according to 

these rules (this has a 50% chance of success).  If the students are actually trying to prove that 

their mapping works, those mappings that do not work will break down quickly.  However, some 



students will use the preservation of the operation implicitly to generate their mappings.  A 

primary purpose of this task is to have the students begin to uncover their intuitive notions about 

isomorphism.  

In the next task the students are given a mapping (A ↔ F, B ↔ I, C ↔ FR2, D ↔ R, E ↔ 

FR, G ↔ R2) and are asked why it does not work to show that the mystery table is D6 (i.e. why it 

is not an isomorphism).  Although this is a bijective mapping in which the orders of the elements 

are preserved, the operation itself is not preserved.  The students can figure this out by 

considering corresponding products in the two tables.  For instance, A times D is C, but C does 

not correspond to FR even though A corresponds to F and D corresponds to R.  When the 

students address why this mapping does not work, the idea of operation preservation becomes an 

explicit topic of discussion.   

The next task also pushes the students to think more explicitly about the idea of operation 

preservation.  In this task the generators are assigned to specific elements (C ↔ F and G ↔ R), 

and the students are asked to find the rest of the correspondences given those pairings.  The 

students use the idea that the operation must be preserved to assign the rest of the elements, 

making this important property more explicit in their discussions.   

In the final task of this sequence the students are given an informal definition of 

isomorphism (“We use the term isomorphic to express the idea that two groups are essentially 

the same. So the group given by the mystery table is isomorphic to D6”) and are asked to 

formalize the definition (Write a definition for isomorphic.  Definition: Let (G, •) and (H, *) be 

groups.  G is isomorphic to H if…).   

 In the notes that accompanied the task we explained that “the preservation of the 

operation will be implicit in their work in the first part, more explicit in the second part (they will 



realize it breaks in a specific case), and very explicit in the third part (they use it to assign the 

remaining elements).”   We also mentioned that “at this point the students should be ready to 

write a definition with a bit of help.”  To that end we gave specific suggestions on how to 

implement the last task, the one in which the students define isomorphism (Figure 4).   

 

 

 

 

 

 

Figure 4. Notes accompanying the isomorphism task (bold and underlining added) 

  

The intention of this plan was to have students begin to explicate the processes they were 

using in the earlier tasks and then to work on how to notate those ideas.  Although the students 

use operation preservation in the earlier tasks, they generally do not immediately include it in 

their definition.  Therefore, the task is designed so the students can first share the important 

characteristics of the isomorphism concept that are salient to them (such as the fact that the 

isomorphic groups must have the same number of elements), and to begin to formulate a 

definition based on these characteristics.  The instructional goal is then to have the students 

realize that additional criteria (other than, say, the existence of a bijection between the groups) 

are necessary to ensure that two groups are isomorphic.  The students can discover this by 

reflecting on the earlier tasks in the sequence.  Thus the stage is set for the students to focus on 

recognizing and articulating the remaining condition (namely the preservation of the 

operation)that must be met by such a bijection in order for it to show that two groups are 

o Have them think for a couple of minutes about what is needed to finish the definition  
o Then have some student share ideas. Someone should suggest a bijective function. You 

can use this to start the definition.  
o Ask if this condition is enough. Someone should say no! Ask for an example that shows 

this is not good enough. The example in task 3 is one! It is bijective but doesn’t work.  
o Someone should say something in the ballpark of the answers have to work out, or the 

operation has to work the same. Remind them of task 4 again. 
o Have them try to express the condition they used in task 4 using function notation. 

You might give them a hint to try to write an equation or equations.  
 



isomorphic. This can be a difficult task, since formally expressing the operation preservation 

property is not easy for students, even when they are aware that this property is necessary.   

Rather than following the suggested plan, however, John and his teaching assistant 

developed their own implementation plan on the fly.  They had the students write the entire 

definition at once on transparencies.  However, this meant that the students focused mainly on 

the fact that the two groups have to have the same number of elements to be isomorphic, and 

they were not pushed to think about what their definition was missing.  Therefore, students that 

did not immediately think to include operation preservation were not pushed to do so.  

Furthermore, few of the students thought about how to express operation preservation, and those 

that did were not given the advice to use function notation or to write equations.   

We suspect that the reason the instructors deviated from the plan was two-fold.  First of 

all, the instructional materials for each day include a lot of information, and it was a tall order to 

expect that John could have taken in all of that information.  In fact, it was not uncommon for the 

curriculum designer to tell John that a particular suggestion or part of a task could be changed or 

ignored.  John and his teaching assistant had learned, then, that some of the suggestions included 

were more important than others.  Thus, it may have been difficult for them to know that this 

specific information related to defining isomorphism was particularly essential.   

Secondly, it is important to note that this task was expressly designed in light of literature 

on students’ difficulty with isomorphism (Leron, Hazzan, & Zazkis,1995) and in light of prior 

work by Larsen (2004).  Specifically, the students in Larsen’s early teaching experiments had 

struggled with defining isomorphism, and thus the isomorphism-defining task had been tailored 

to help future students overcome these struggles.  In particular, the task was designed to help 

students recognize the need to address all of the important aspects of the definition and to focus 



their attention on the difficult parts of symbolizing those characteristics.  Instructional 

interventions were included to help create opportunities for each of those things to happen and to 

provide support for students in the process.   

It is important to note, however, that John was not aware of Larsen’s experience with his 

students, nor was he explicitly aware of the literature on isomorphism.  He thus underestimated 

the difficulties that students would have with this definition.  When teaching in a traditional 

format, the students are often given the operation preservation condition, and they are given it in 

function notation.  So it did not occur to John that the students would not immediately attend to 

the operation preservation part of the definition, nor did he predict that function notation would 

not be the students’ default way of symbolizing the definition.  He also did not anticipate how 

hard it would be for students to symbolize the operation preservation aspect of the definition 

once they were aware of it.    

Apparently, as a consequence of the modified implementation of the task, the definitions 

the students wrote focused mainly on the bijective portion of the isomorphism definition.  Since 

the students were not pushed to address the operation preservation part explicitly, it was 

generally left out of their definitions.  Additionally, the students who did attend to operation 

preservation did not formulate this property in the standard way (using function notation).  

Uncomfortable with the students’ understanding of the definition, John spent part of the 

following class period trying to connect the students’ informal notions of isomorphism to the 

formal definition via a mini-lecture.  This differed from the intention of the task in that John was 

attempting to connect students’ informal reasoning to the formal definition, whereas the intention 

of the task was to build up the formal ideas from students’ intuition (Gravemeijer, Cobb, Bowers, 

& Whitenack 2000).  Consequently, the students had to try to reconcile their informal reasoning 



with the formal definition rather than formalizing their intuitive notions to create a formal 

definition.   

Although most of the students did not focus on the operation preservation aspect of the 

definition, a few of them did.  However, when it was attended to, it was not written in a 

conventional format (Figure 5, for example).  Therefore, it was difficult for John to recognize 

that they were attending to it.  He did say that “you could argue that some of them were correct.” 

However, the fact that he included that qualification suggests that he had a hard time seeing them 

as such.   

 

 

 

 

 

Figure 5. An example of a student attending to operation preservation in an unconventional way. 

  

Discussion and Conclusion 

 The two episodes that we have described illustrate a number of significant issues 

regarding John’s experience implementing the innovative introductory abstract algebra 

curriculum.  These issues suggest a number of productive avenues for further research and have 

implications for the design of instructor materials to accompany the curriculum.  

Mathematical knowledge for teaching is said to include things such as knowledge of 

content, knowledge of students, and knowledge of tasks (Ball, Bass, Hill, & Schilling, 2005).  

This type of knowledge is presumed to help instructors explain terms and concepts, interpret 

students’ statements and solutions, as well as make sense of curricular treatments of topics (Hill, 



Rowan, & Ball, 2005).  The two cases that we described above illustrate the importance of this 

type of mathematical knowledge. 

The Case of Characterizing Evenness illustrated the importance of John’s mathematical 

content knowledge in making sense of student thinking.  This case also illustrates the distinction 

between what is traditionally considered to be mathematical content knowledge and 

mathematical knowledge for teaching (Ball, Lubienski, & Mewborn, 2001).  In particular, while 

John’s significant content knowledge helped him make sense of the student’s response, this 

knowledge did not support him in making the most of the student’s contribution.  However, we 

also saw John’ understanding of the intention of the task grow as he continued to make sense of 

the student’s idea.   

The Case of Defining Isomorphism illustrated another aspect of mathematical knowledge 

for teaching.  It seems likely that the root of John’s difficulty implementing this task was that he 

was unaware of the difficulties that students have with the isomorphism concept (and the 

function concept as well).  Not being aware of these difficulties (in particular how difficult it 

would be for students to become explicitly aware of the operation preserving property and then 

to formalize this property), John failed to recognize the significance of the two activities that 

followed the Mystery Table task, and also failed to see the significance of the implementation 

approach suggested for the Defining Isomorphism task.  

 In terms of developing instructor materials, our study suggests (among other things) that 

it is important to engage instructors in making sense of student thinking as they prepare to 

implement the curriculum.  As instructors work to interpret samples of student thinking in 

response to tasks from the curriculum, they will engage their own knowledge of mathematics and 

likely draw on this content knowledge to actively make sense of the curriculum in a new way 



(one that is connected to student thinking).  The activity of making sense of student thinking may 

also stimulate an interest in the research literature on teaching and learning, thus linking selected 

findings from the literature to specific samples of student work could be a powerful way to 

increase the instructor’s mathematical knowledge for teaching.  

 Finally, we note that our project may contribute to the research on teachers’ knowledge 

for teaching in unique and important ways.  Because in our reserach we are working with 

teachers who are exceptionally well prepared in terms of their knowledge of mathematics, we 

will have the opportunity to tease out the aspects of mathematical knowledge of teaching that are 

distinct from what has been traditionally referred to as mathematical content knowledge.  Thus 

our project can help to identify aspects of teachers’ mathematical development that are unlikely 

to be supported by traditional training in mathematics, setting the stage for the design of relevant 

mathematics education experiences for teachers.  
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