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Introduction 

It is well documented that even high performing precalculus and calculus students 

have weak understandings of the function concept (Carlson, 1998). Studies have revealed 

that the ability to reason covariationally (e.g., consider formulas and graphs as 

representing the varying magnitude of two quantities as they change in tandem) is critical 

for understanding functions and central concepts of calculus (Carlson, 1998; Carlson, 

Jacobs, Coe, Larsen, & Hsu, 2002; P. W. Thompson, 1994; Zandieh, 2000) and 

differential equations (Rasmussen, 2001). Drawing from this literature, curriculum and 

instructional supports that take a covariational approach to teach ideas of variable, rate of 

change, function, function composition, function inverse, and exponential growth were 

developed for college algebra. Homework assignments and in class instruction also 

emphasized meaningful communication (both verbal and written) about functions as 

representations of covarying quantities. The purpose of this study was to investigate the 

impact of the curriculum and instructional approach on students’ emerging covariational 

reasoning abilities. 

Background 

The study discussed here is guided by a central topic in college algebra: students’ 

covariational reasoning abilities. Saldanha and Thompson describe understanding 

covariation as “holding in mind a sustained image of two quantities’ values (magnitudes) 

simultaneously” (Saldanha & Thompson, 1998). This image of covariation is considered 
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developmental. In other words, one first coordinates two quantities’ values (e.g., think of 

the first quantity, and then the other, think of the first quantity, and then the other, etc.). 

Then, as a student’s image of covariation develops, her/his understanding of covariation 

begins to involve understanding time as a continuous quantity. Thus, the ability to 

imagine continuous changing quantities begins to form (e.g., as one quantity changes, an 

individual has the realization that the other quantity changes simultaneously). 

Following this call to the importance of the ability to reason covariationally, 

Carlson et al. investigated the complexity of students’ images of covariation. Namely, the 

“construction of mental processes involving the rate of change as it continuously changes 

in a functional relationship” was investigated (2002). The covariational reasoning 

abilities of high-performing 2nd-semester calculus students were and during this 

investigation, a theoretical framework was created and refined. Initially, multiple 

behaviors of students involved in interpreting and representing dynamic function 

situations were identified (Carlson, 1998). In order to classify the behaviors exhibited, a 

framework that consists of five mental actions (MA#) and behaviors associated with 

these actions was developed. This alone was not adequate to describe a student’s 

covariational reasoning ability, which can be inferred from the collection of behaviors 

and mental actions exhibited when responding to a problem. In order to analyze this 

collection, the covariation framework was extended to describe multiple levels (L#) of 

covariational reasoning resulting in a framework consisting of five distinct developmental 

levels that are composed of the five mental actions. One’s covariational reasoning ability 

is said to reach a given level (e.g. L4) when it supports the mental actions associated with 

that level (e.g., MA4) and the mental actions associated with all lower levels (e.g., MA1-
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MA3). For instance, a student who is determined to exhibit L3 reasoning (quantitative 

coordination) is able to reason using MA3 (determining the amount of change of one 

variable with changes in the other variable) as well as MA1 and MA2. In other words, he 

or she is also able to coordinate the direction of change with one variable with changes in 

the other variable. It is noted that the word “levels” entails that higher level reasoning 

(e.g., L5) implies lower level reasoning (e.g., L3). However, this is not the case with the 

mental actions (e.g., an MA5 behavior does not imply the lower mental actions.) 

The study presented here focused on college algebra students’ ability to move 

among mental actions 1, 2 and 3 and identify the level of covariational reasoning relative 

to engaged problems. In order to characterize the students’ development relative to the 

class in which they were enrolled, this investigation involved examining the interaction 

between students’ covariational reasoning abilities and topics covered in the course. Also, 

due to the setting in which the covariational framework was developed (e.g., high 

performing calculus students), the framework remained open to modification and it was 

conjectured that due to the population being analyzed, modification would occur. 

In the analysis of a student’s covariational reasoning abilities, Carlson et al. made 

an important observation: students often exhibit behaviors that appear to reveal a high 

level of development (e.g., L5), but when these behaviors are probed, a student may not 

be able to justify or support the reasoning he appeared to display. This occurrence can be 

described as a student exhibiting pseudo-analytical behavior (Vinner, 1997). Pseudo-

analytical behavior is the situation in which a student does not have the understandings 

required to meaningfully describe the behavior in which they exhibited. Thus, we define 

the mental action that produced the behavior as a pseudo-analytical mental action. As 



Moore and Bowling 
Page 4 

  
mentioned, a student is classified as having a specific covariational reasoning ability level 

only if he or she is able to perform the mental action relative to that level and all levels 

below. Thus, if a student reveals MA4, he is only classified as level four if he also 

exhibits MA1-MA3. If he is not able to exhibit MA1-MA3, the MA4 behavior is a 

pseudo-analytical mental action. 

We also conjectured that this population of students would have difficulty during 

the orienting phase of problem solving, as defined in Carlson and Bloom’s 

multidimensional problem-solving framework (2005). Often, the situations presented 

required the identification and use of covarying quantities. Thus, it was necessary that a 

student be able to conceptualize quantities, which is part of the orientation process. 

A meaning of quantity that provides a useful theoretical perspective is that of 

Thompson (1989), where a quantity is defined as being a conceived attribute of 

something (e.g., a perceived situation interpreted from a problem statement) that admits a 

measurement process. This meaning of a quantity as a conceptual entity provides an 

additional perspective for analyzing the orientation phase of students’ problem solving 

behavior by looking at students’ distinction of quantities and the process of 

quantification. Quantification is defined to be the cognitive process of assigning 

numerical values to attributes. In order for an individual to quantify an attribute of a 

conceived situation, one must imagine an explicit or implicit1 act of measuring the 

attribute. It is in this process that an attribute becomes truly quantified. That is, to 

comprehend a quantity, an individual must have a mental image of an object and 

                                                
1 An implicit or explicit measurement act implies that it is not actually making the 
measurement that results in a quantity. Rather, it is conceived ability to make the 
measurement, whether or not it is carried out, that results in a quantity. 
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attributes of this object that can be measured (e.g., a car in a race with attributes weight, 

height, speed, distance traveled, etc.), an implicit or explicit cognitive act of measurement 

that produces the quantity (e.g., measuring distance traveled), and a number, or value, 

which is the result of that measurement. 

Methods 

The subjects and setting in which the data was collected 

The subjects for the study were college algebra students from a large public university. 

The classroom from which the students were drawn was part of a design research study 

where the initial classroom intervention was informed by theory on the processes of 

covariational reasoning and select literature about mathematical discourse and problem-

solving (Carlson & Bloom, 2005; Carlson et al., 2002; Clark, Carlson, & Moore, in 

preparation). The curriculum was in its first iteration for college algebra students and data 

was collected to study its effectiveness relative to these constructs.  The data was 

analyzed to produce both insights about the effectiveness of the interventions and useful 

formative knowledge for their refinement. 

Data collection and analysis methods 

The section of college algebra from which the students were drawn was video 

taped each class session and student written work was collected and digitally scanned. 

Clinical interviews, which are the primary focus of this work, were also conducted with 

ten students. The interviews occurred at least eleven weeks into the semester and were 

composed of four mathematical problems with not more than thirty minutes allocated for 

each problem. The interviews were videotaped and digitized for analysis. The students 

participating in the interviews were monetarily compensated for interview time. 
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Our clinical interview approach followed that described by Clement (2000). This 

clinical interview approach allows the study of knowledge structures and reasoning 

processes through an open-ended questioning technique. Furthermore, when paired with 

appropriately designed tasks, using this approach creates a focus on inferring the 

cognitive actions of the subjects rather than focusing on easily defined outcomes such as 

patterns of correct and incorrect answers by subjects (Goldin, 2000). By engaging in 

construction activities, students are more likely to reveal understandings and conceptions 

they hold, as the student is placed in a situation where mathematizing2 situations is 

promoted. Also, a talk-aloud approach was included in our design, to generate insight 

into the mental processes being performed by the subjects by encouraging students to 

verbalize their approach to the tasks at hand (Carlson & Bloom, 2005). 

In order to reveal as much student thinking as possible, our approach to 

conducting the interview (e.g., the place of the interviewer in the interactions) followed 

that of the method described by Goldin (2000). Each task-based interview was conducted 

such that the exploration into the students’ understandings unfolded in the four stages 

described by Goldin. Although each stage is important in the exploration of student 

understandings, it is noted that the first stage (free problem solving) was of most interest. 

By allowing a student free problem solving time, the student was able to act in a manner 

that was not guided or influenced by interviewer questions. 

The covariation framework described by Carlson et al. (2005) provided the 

foundation for the design of the interviews. Although a theoretical framework had been 

                                                
2 Mathematizing situations refers to the process of identifying and conceiving the 
quantities of the situation in a way such that they can be structured using mathematical 
relationships, such as the relationship between distance, time, and speed.  
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chosen, it was possible that the study would result in the generation of a modified 

framework. Thus, open coding (Strauss & Corbin, 1998) was first utilized in an attempt 

to identify and analyze discrete instances of the student’s covariational reasoning abilities 

without being limited to the framework described by Carlson. The framework developed 

by Carlson was compared to the analyzed emerging behaviors. The open coding and axial 

approach was also taken to identify behaviors relative to the orientation process of the 

students. Again, discrete instances of behaviors believed to be part of the orientation 

process were identified and the characteristics of each behavior were analyzed and 

compared. 

In the analysis of the data, a conceptual analysis, described by Thompson (2000), 

was performed using the data collected. The students’ actions were examined in an 

attempt to model and understand the thinking of the subjects. Mathematical thinking is 

dependent on mental operations and thus the goal was to infer, based on student actions, 

what mental operations were producing the behavior of the students. 

In the classification of the mental actions of students, it was important to take into 

account the possibility of pseudo-analytical behavior relative to covariational reasoning 

(Vinner, 1997). These are the cases in which a student appears to show a high level of 

covariational reasoning (e.g., MA5), but if asked to unpack lower level mental actions, he 

or she is unable to do so. Thus, the interviews were designed to reveal these pseudo-

analytical behaviors. This involved persisting in asking for explanations, designing tasks 

that ask for multiple levels of reasoning, etc. 
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Results 

In this study, we present the results of one student’s engagement with the Box 

Problem (Appendix A). This student’s interactions were chosen because they were 

reflective of the performance of the group as a whole. Relative to the student’s general 

behavior during the interview, the student did not appear to reflectively orient himself to 

the problems, which may have caused him difficulty in identifying the quantities of the 

situation. Rather, he worked the problems in a manner such that he chose what 

information he needed from the problem statement as he worked the problem and 

encountered difficulties. Analysis of the interview also revealed insights about the 

student’s covariational reasoning abilities. The student was seen consistently operating on 

the Direction Level (L2) and showed multiple instances of behaviors that were suggestive 

of MA3, MA4, and MA5 reasoning (e.g., speaking of rate, slope, and attempting to 

consider changes in output while considering successive equal changes in input). 

However, when probed about apparent MA5 reasoning, he did not exhibit behaviors 

supported by MA4 and MA3 reasoning. What follows are data that illustrate the student’s 

problem solving behaviors and covariational reasoning ability. 

When engaging in the tasks of the Box Problem, rather than orienting to the 

problem space and planning his approach, Matt appeared to rush to working the problem 

and only chose to use minimal and crude heuristics (e.g., quickly drawing a picture). For 

instance, on Task 2, after reading the problem statement he first referred to volume as 

“height times length times depth,” where he referred to depth as the cutout. After the 

interviewer asked for clarification, the student noticed his duplicate use of height and 
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depth and corrected volume to be height times length times width. He then proceeded to 

use the piece of paper to describe the situation. This interaction occurred as follows. 

Table 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Matt:  The length is going to be this (pointing to the length of the paper), the 11 
inches, the width is going to be 8 inches (point to the width of the paper), and 
the depth, or height, is going to be x 

Int:   Ok. 
Matt:  (Pause) So write a formula that predict (long pause). So then, if you had, if 

you had like, if you say the cutout was 1 inch, so that would mean, that 
would mean, 7 times 10 times 1. Because you know that if 1 inch has been 
cut off, or if .5 inches have been cut off, because .5 .5 (pointing to the two 
corners of the paper), this would be .5. 

 

In this interaction, Matt decided to use the piece of paper to illustrate the 

dimensions that he was defining (1-3). However, he did not decide to label the paper that 

he used to model the situation, nor did he draw a separate picture of the situation or label 

each dimension and how it was related to the cutout. Also, when speaking of the width 

and length of the box, he referred to the original width and length rather than the resulting 

box’s width and length (he also referred to the width incorrectly, using 8 inches rather 

than 8.5 inches) (1-2). Next, he decided to use a specific cutout of 1 inch to discuss the 

dimensions of the resulting box rather than a general formula (6-8). It appeared that he 

did this in order to describe the situation first using a static image, as this may have 

initially been easier for him. Yet, he first described the situation incorrectly, as revealed 

by his calculating the length and width using a cutout of .5 inches rather than 1 inch. He 

realized this mistake and immediately corrected himself by stating that the cutout is .5 

inches (8-9). These inconsistencies - referring to the length and width of the box as the 

length and width of the paper - are possibly due to a lack of quantification. It appeared 
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that the student had not conceived of a measurement process when determining the length 

and width of the box, and instead used the original length and width of the paper. These 

mistakes in quantity distinction (e.g., interchanging the length and width of the box with 

the length and width of the paper) could likely be caused by his inattentiveness to 

forming a formal image of creating the box. As the interaction above revealed, Matt used 

a crude representation of the situation by quickly describing, but not recording, the 

dimensions using the piece of paper given. Also, when attempting to describe a static 

situation, he incorrectly described this static relationship between the cutout and resulting 

dimensions. 

Immediately following this interaction, he was asked to describe the situation 

again. At this time, he still only used the paper given to him to describe the situation, but 

made moves to describe cutting away from both sides and how this influences the 

dimensions of the box, thus revealing he had formed an image of the corners being cut 

away and at least a partially developed measurement process. Yet, when he attempted to 

formulate the volume as a function of the cutout, he first wrote 

! 

(8.5 " x)(11" x)x =V . He 

described x as the cutout and height, but at first did not realize his error of using x rather 

than 2x, since double the cutout is removed from the length and width of the box. 

Eventually, when describing the formula, he caught his mistake and defined the correct 

formula. This again is a small error that could have possibly been caused by his hastiness 

when working through the problem and an informal mental image of the quantities 

involved.  
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In addition to revealing orientation behaviors of the student, the Box Problem also 

offered insight into the student’s covariational reasoning abilities. For instance, the 

following interaction occurred when responding to Task 1. 

Table 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Int:   Ok, so do you remember like the little tool, the finger tool we used? 
Matt:  Ya. 
Int:   Could you maybe do it describing that, maybe use it? 
Matt:  So, uh, ok, we'll make this finger cutout (referring to his right finger). Which 

is the x-axes, cause that's the input I guess, and you get out the volume, 
which would be y. 

Int:   Mm K. 
Matt:  So it would go, if the cutout is going like this (moving his right finger to his 

right), the volume would be going like this (moving his left finger up). And 
then once the cutout starts going like this (continuing to move his finger to 
the right after slightly moving it left), the volume becomes to drop again 
(moving is left finger down). 

Int:   Ok, so when you say the cutout's going like this, what do you mean, what's 
going on? 

Matt:  So now, from 0 to like 4 inches, or like 1 inch or 2 inches, as it's increasing in 
inches, the volume increases until it reaches a certain number (moving his 
right finger to the right and his left finger up), and then the volume comes 
back down even though the cutout is increasing (moving his right finger to 
the right and his left finger down) (MA2). 

 

The interviewer asked the student to use the “finger tool” (1), a tool that was 

presented in class in order to track the variation of one quantity or the covariation of two 

quantities. The tool involves tracking the magnitude of one quantity with the right index 

finger (e.g., moving your finger right is increasing) and tracking the magnitude of another 

quantity with the left index finger (e.g., moving your finger up is increasing). Initially, 

the student described the volume and cutout varying in terms of his movements (e.g., 

“cutout starts going like this”); thus, not revealing his understanding of the covariation of 

the two quantities (8-12). When asked to describe what “going like this” referred to, he 
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was able to explain that the volume increases and then “comes back down even though 

the cutout is increasing” while coordinating his fingers properly (15-19). These actions 

exhibit MA2, and due to his verbalizing of the coordination of two quantities, he can be 

classified as exhibiting L2 covariational reasoning. 

Although the student exhibited only L2 covariational reasoning behaviors, at 

times he appeared to exhibit MA3-MA5 behaviors. He described functions using 

instantaneous rates (MA5) (e.g., decreasing at an increasing rate), but was unable to 

unpack this efficiently using MA3 or MA4 reasoning. This was revealed on Task 3 of the 

Box Problem after the student correctly described that the volume decreased as the length 

of the cutout increased from 1.8 to 1.9 inches. This was followed by a question that 

prompted him to describe how the volume decreased. This caused the student to segment 

several successive intervals of input on the graph and consider how the output changed. 

The student then mentioned steady rate and was asked to explain more. 

Table 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Matt: And see that if every line is equivalently apart (referring to changes in 
output). 

Int:   And so if every line... 
Matt:  Is equivalently apart, then the more you go up (pointing to the x-axis), it goes 

down at a steady rate (making hand motions going down) (MA4). For every 
increment that you go up, it goes down an increment (pointing to the x-axis 
and then y-axis) (MA3). 

Int:   It goes down an increment. And that would tell us what? 
Matt:  That every inch that you cut out, it varies with the volume (MA1). 
Int:   Ok, and now, how does it vary with the volume? (Pause) So you said it 

varied steady and that, so what exactly do you mean by steady? 
Matt:  That means if you go down from 1.8 to 1.9, this is if it is steady, or if you go 

from 3.0 to 3.1, it's going to be the same increment of decrease in volume 
(MA3). 
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The student revealed that he was able to discuss incremental changes of input and 

how the output would change if the relationship had a constant, or “steady,” rate (MA3, 

4-7, 12-14). Thus, relative to constant rate, this suggests that the student was able to 

engage in L3 covariational reasoning behaviors. This leads to the question of whether or 

not the student’s covariational reasoning abilities can be classified, relative to this 

problem, as L3 for varying rates. The following interaction sheds light into this question, 

with the interaction occurring immediately after the above interaction. 

Table 4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Int:   What if it wasn't a steady change? 
Matt:  Then it wouldn't go down in an equal increment every time. 
Int:   Ok, so how might it go down? 
Matt:  Uh, it might go down at a decreasing, increasing rate (MA5). 
Int:   And so what would that maybe look like? 
Matt:  Uh, the line would go down like that (drawing a decreasing, concave down 

sketch), steeper steeper steeper steeper. 
Int:   Ok, so how's that tell us we have... 
Matt:  Because it's going down, when it gets steeper, it's going down more over less 

time. So, that's weird. When it goes down steeper, here it's going down less 
as steep, so it's going down less as much. Here it's going down steeper, 
because it's getting more straight, it's going dramatically down (student 
comparing a section that isn't as steep to a section of the graph that is 
steeper) (MA5). 

 

When asked to describe a situation that didn’t have a constant rate of change, the 

student described that this means the decrease of output wouldn’t be the same (2).  This 

revealed possible MA3 behavior relative to changing rates. However, after drawing a 

decreasing at an increasing rate graph, the student described it using the shape of the 

graph, or steepness of the graph (7, 10-14). The student first mentioned that it went down 

“less as much” (11), but did not compare this amount of change to other amounts of 

change in order to describe what the change was “less as much” relative to. Instead, the 
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student chose to speak of the steepness of the graph and use relative terms such as 

dramatically down, possibly revealing a pseudo-analytical L5 behavior, as it was not 

clear if the student was continuing to attend to the covariation of the quantities involved 

or remained focused on solely the shape of the graph (shape thinking). The student’s 

conception of the situation was further revealed as the interaction continued. 

Table 5 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Int:   Ok. Is there any way, so here we talked about well, if we go the same, we 
have the same (referring to the steady rate conversation and work), so how 
can we describe this situation in terms like that? 

Matt: It terms of what, this? I don't know, because I haven't checked if it goes down 
the entire way equally, the whole time. But if it did then for every increment 
here, there is an equal increment going down. But if it didn't, then for every 
increment going across (pointing to x-axis), there might be a different 
increment in decrease (pointing to y-axis) (MA3). 

Int:   Ok, so lets say that this graph was doing that, then what would happen as... 
Matt: Well, then it depends, if the graph was getting steeper, but I can't tell by the 

naked eye. 
Int:   So lets just say, lets draw a new graph in there that is steeper by your 

definition. 
Matt: I draw it? So if it was going down like that (draws a decreasing, concave 

down graph), then we know for every increment (pointing to the x-axis), it's 
not going down for a certain increment here (pointing to the y-axis). It’s 
going to start increasing faster and faster, so it's going to go down faster 
(making motions down the y-axis). But if the graph was going like (draws a 
decreasing, concave down graph, but not as steep as previous graph) this, 
then it would be going down even slower. It would still be going down, but 
slower. But if the graph went down, in an exact, every increment (pointing to 
x-axis) a certain increment (pointing at y-axis) which maybe would look 
more symmetrical, and everything like that, then we would know it was 
going down at a certain increment (pointing to x-axis) for every increment in 
volume (pointing to y-axis) (MA3). 

 

The student was again able to describe constant rate using MA3 behavior (5-6) 

and when probed further to describe a graph that is decreasing and concave down, the 

student referred to increments of input (15) and attempted to describe changes in output 
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(16-21) relative to these increments of input. During this description, the student 

described “it,” which could refer to the output or shape of the graph, as “going to go 

down faster.” Thus, it appeared the student was possibly considering changes of output 

for equal changes of input, an MA3 behavior and thus a L3 classification. However, the 

student then revealed that he was likely shape thinking when using the phrase “going to 

go down faster” (18-21). After drawing another graph that was decreasing and concave 

down (but not as steep as the previous graph), the student appeared to describe this graph 

relative to the previous graph, explaining it “would still be going down, but slower.” His 

shape thinking was further revealed after this interaction when the student incorrectly 

described the second graph created as decreasing at a decreasing rate and then incorrectly 

explained that the change in output was decreasing for successive changes of input 

because it wasn’t as steep as the first decreasing and concave down graph he drew. 

Although the student appeared to exhibited MA3-MA5 behaviors, his difficulty to unpack 

these behaviors and his tendency to focus on the shape of the graph limited his 

covariational reasoning behaviors relative to this task to L2.  

The Box Problem offered insight into both the student’s problem solving 

behaviors and his covariational reasoning abilities. First, the student did not appear to 

participate in meaningful and descriptive orientation behaviors. Rather, he used crude 

heuristics, such as drawing a rough sketch, with which he did not explicitly identify each 

quantity of the situation. This, in turn, may have limited his conception of the varying 

quantities as processes of measurement and his understandings of the relationships 

between these quantities; thus causing quantity distinction and identification issues. For 

instance, when describing the created box, he was able to describe the height as the 
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cutout, but described the length and width as the original paper’s length and width. It 

appeared that rather than constructing a well-developed mental image of the box and its 

construction, the student instead relied on only briefly referring to the situation. Also, it is 

noted that the student’s description that occurred during Task 2, where the student was 

asked to determine a formula, differed from his description on Task 1. Of importance was 

that on Task 1, the student gave a very descriptive explanation of the dynamic situation 

(Table 2) but then appeared to abandon this image on Task 2. Relative to the student’s 

covariational reasoning ability, Matt was able to reason at L2 of the framework. He was 

able to describe the direction of change in volume as the length of the cutout increased. 

He also appeared to reveal pseudo-analytical behaviors where at times he exhibited what 

may have been MA3-MA5 behaviors, but when he attempted to unpack these ideas and 

describe the covariation of the quantities, he revealed behaviors that implied he was using 

the shape of the graph to describe the quantities, rather than the magnitudes of the two 

quantities. For instance, he described two decreasing, concave down graphs differently. 

According to the student, the steeper graph was decreasing at an increasing rate and the 

other graph was decreasing at a decreasing rate because it was going down “slower.” 

Discussion 

It was not unexpected that the students showed difficulty exhibiting higher than 

L2-L3 covariational reasoning behaviors. This is consistent with observations of high-

performing 2nd semester calculus students made by Carlson et al. (2002). Similar to the 

study of the calculus students, students consistently made attempts to coordinate the 

amount of change of the output variable while considering changes in the input variable 

(MA3; Tables 3 & 5). However, when probed further, the students had difficulty 
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speaking of amounts of change when describing the coordination of the two quantities, 

especially in the cases of varying rates (Tables 4-5). 

An unexpected finding was the emergence of the importance of quantification. 

Our analysis suggests that the students exhibited few behaviors indicative of building a 

mental image of the values and variables of the situations as quantities (attributes 

admitting some conceived measurement process). This caused the students to incorrectly 

identify and describe various quantities in the situation (Table 1). This raises the question 

of why the student did not participate in reflective orientation behaviors in order to build 

a meaningful image of the situations and the quantities involved. It is possible that they 

were accustomed to traditional mathematics courses where procedures are the primary 

focus, and the students are unintentionally trained to devalue modeling situations in order 

to mathematize the situation. 

Future Research 

This research provides useful knowledge about both college algebra students’ 

ability to reason covariationally and students’ orientation behaviors. Carlson et al.’s 

(2002) covariational framework was extended to describe the reasoning of college 

algebra students and insight was gained relative to the orientation process of students. 

Specifically, the act of quantification emerged as a critical aspect of the orientation 

process and a necessary prerequisite to covariational reasoning. Identifying and 

promoting students’ processes of quantification promises to be an important and useful 

area of research. This research is also relevant to the continued investigation of students’ 

ability to reason covariationally when presented with problems that involve real-world 

situations. In order to reason covariationally about dynamic real-world situations, it is 
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necessary to identify and quantify the variables of a situation. The results above revealed 

a needed focus on modeling and quantifying situations. The construct of quantification 

also should be useful in identifying and promoting the development of students’ ability to 

build meaningful mathematical representations of physical situations. 
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Appendix A – The Box Problem 

 
 
Starting with an 8.5” x 11” sheet of paper, a box is formed by cutting equal-sized 
squares from each corner of the paper and folding the sides up. 
 
 
Task 1:  Describe to me how the length of the side of the cutout and the volume of the 
box covary. 
 
 
 
Task 2:  Write a formula that predicts the volume of the box from the length of the side of 
the cutout. 
 
 
 
Task 3:  Given a graph, describe how you would use this graph to describe how the 
volume changes as the length of the side of the cutout varies from 1.8 inches to 1.9 
inches. 
 
 

 
 
  


