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 This paper examines findings from two teaching experiments. The first involved 
undergraduate mathematics and science majors. The second is ongoing and involves 
advanced 6th grade students. The purpose of the paper is to explore similarities and 
differences in the students’ approaches to mathematical induction appropriate tasks and 
then to use the multi-age comparison to explore a potential epistemological obstacle to 
mathematical induction.   
 
Introduction 

 Research on undergraduates’ understandings of proof by mathematical induction 

has shown that undergraduates experience difficulties with this method of proof (Robert 

& Schwarzenberger, 1991, Dubinsky, 1989; Movshovitz-Hadar, 1993a, 199b). Harel and 

Sowder (1998) and Brown (2003) have questioned the extent to which these difficulties 

are due to traditional instructional approaches that tend to hastily introduce the definition 

and that do not facilitate the development of mathematical induction as a means to solve 

a class of problems. In an effort to distinguish between those difficulties that are 

primarily didactical in nature and those that are primarily epistemological, this paper 

examines findings from two teaching experiments. The first involved undergraduate 

mathematics and science majors. The second is ongoing and involves advanced 6th grade 

students. The purpose of the paper is to explore similarities in the students’ approaches to 

PMI-appropriate tasks1 and then to use the multi-age comparison to investigate a 

potential epistemological obstacle to mathematical induction. 

Theoretical Perspective 

 This work is informed by the Theory of Didactical Situations (Brousseau, 1997), 

which views students’ errors and, more generally, their difficulties as being of particular 
                                                
1 The phrase “PMI-appropriate tasks” is used to denote tasks for which mathematical induction is a viable 
proof technique. 
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importance. This position on students’ errors and difficulties stems in part from what 

Balacheff (1990) refers to as the constructivist hypothesis, which is the hypothesis that 

students’ mathematics, even their errors, arises from students adapting their ways of 

knowing to a milieu2. It also stems from an idea central to the Theory of Didactical 

Situations, namely, the idea of an obstacle, as described by Brousseau: 

 … errors and failures do not have the simplified role that we would like 
them to play. Errors are not only the effect of ignorance, of uncertainty, of 
chance … but the effect of a previous piece of knowledge which was 
interesting and successful, but which now is revealed as false or simply 
unadapted. Errors of this type are not erratic and unexpected, they 
constitute obstacles  

(Brousseau, 1997, p. 82) 
  

An obstacle is a way of knowing that functions productively in some settings, while 

supporting the manifestation of errors in others. This productivity or success is said to 

entrench these ways of knowing, and therefore, make them resistant to change -- hence, 

the name “obstacle.” 

 Within the theory, obstacles can take three forms: ontogenic, didactical, and 

epistemological. Ontogenic obstacles are developmental obstacles, that is, they are 

obstacles related to the stages of mental development of the child. Didactical obstacles 

are those that arise as a result of instructional choices and therefore, are avoidable 

through the development of alternative instructional approaches (what Brousseau refers 

to as didactical engineering). Epistemological obstacles, in contrast, are those that arise 

regardless of the instructional approach, for their origin is the concept itself; in other 

words, “to overcome the obstacle is part of the construction of the meaning” of the 

                                                
2 Milieu in this context refers not only to the environment but also the expectations of how one is to 
function in that environment, what other might refer to as socio-cultural norms and practices. 
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concept (Balacheff, 1990). For the purpose of this paper, we will be concerned with 

obstacles of the latter form, namely, epistemological obstacles.  

 The phrase epistemological obstacle often is mistaken for something “bad” -- a 

snag, hindrance, or stumbling block -- as opposed to how it is intended within the theory. 

Namely, it is intended to denote a way of knowing that functions productively in some 

settings and is essential to the development of the concept. Epistemological obstacles can 

be construed as faulty ways of thinking but such a perspective ignores their importance, 

their developmental necessity, and their productivity in specific settings.  

 For example, one can argue that students’ production of solutions to PMI-

appropriate tasks that do not include a base case are a result of ways of knowing 

mathematical induction that arise from didactical choices and therefore, are indicative of 

a didactical obstacle. The claim stems from the results of teaching experiments (Brown, 

2003) in which these particular ways of knowing were not observed and in which 

students quickly identified the error in false proofs, whose flaw related to the omission of 

a base case. In other words, the irreproducibility of the results of Dubinsky (1989), who 

reported on students’ omission of and difficulty with the base case, suggests that this way 

of knowing is a didactical, as opposed to epistemological, obstacle. On the other hand, 

conceiving of a limit as something that is never reached may be an epistemological 

obstacle (Sierpinska, 1987). 3 There are limits that you cannot “reach,” for example, 

! 

lim
x"#

e
$x , and limits that you can, for example 

! 

lim
x"2
3x #1. Making sense of the latter 

example, when one’s way of knowing the concept of limit are rooted in the idea that a 

limit is something that is never reached, therefore, requires shifts in ones ways of 

                                                
3 I would like to thank Anna Sierpinska for the discussions at the RUME 2008 conference about 
epistemological obstacles to the notion of limit that are the basis for this portion of the paper. 
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knowing limits that were productive in some settings, potentially necessary, and are now 

producing errors. To progress, as argued by Sierpinska, “the student will have to rise 

above his convictions, to analyse from outside the means he had used to solve problems 

in order to formulate the hypotheses he had admitted tacitly so far, and become aware of 

the possibility of rival hypotheses” (Sierpinska, 1987, p. 374).  

 One can gather evidence of epistemological obstacles through historical analyses 

(Brousseau, 1997; Sierpinska, 1987). The reason for this being, modern notions of the 

concept in question must either have arose from the resolution and evolution of the 

epistemological obstacle, that is, the particular ways of knowing, or have arisen from 

some historical trajectory which avoided these ways of knowing. Thus, either the obstacle 

is unavoidable and it was encountered at some point in the history of the concept or the 

obstacle is avoidable.4 The position taken in this paper is, in addition to historical 

analyses, researchers can further elaborate the nature of potential epistemological 

obstacles through the analysis of teaching experiments that modify instructional settings 

and approaches. This position aligns with Sierpinska’s, who has explored epistemological 

obstacles related to limits by modifying instructional settings (Sierpinska, 1987). This is 

not to say that by modifying instructional approaches (or settings) we do not create anew 

the same didactical obstacles but rather that by altering instructional approaches (or 

settings), we can attempt to reduce the likelihood of perpetuating these obstacles, while 

increasing the likelihood of their identification. 

 

 

                                                
4 One can argue that this is a false dichotomy, for an epistemological obstacle can be exaggerated by one’s 
didactical choices. Harel and Sowder have made a similar point (Harel & Sowder, 2005).  
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Background  

 The work described in this paper is ongoing. It began with a series of teaching 

experiments that employed alternative instructional approaches to mathematical 

induction. These teaching experiments (a total of 5) involved small cohorts of 

undergraduate mathematics and science majors between the years of 1999 and 2001. 

These teaching experiments were a reaction to two aspects of then current research on 

mathematical induction. First, research in this area tended to focus on the identification of 

student difficulties (see for example, Dubinsky, 1986,1989; Movshovitz-Hadar, 1993a, 

1993b; Reid, 1992). Much of this research, however, was conducted post-instruction and 

therefore, students’ difficulties were described apart from the particular curricular and 

pedagogical choices involved. Consequently, the students’ understandings, or in this case, 

misunderstandings were portrayed as “a phenomenon of the student; that is, as being 

independent of the students’ interactions with teachers, other students, curricula, 

classroom discussions, classroom materials and of the problems the student has solved 

(or failed to solve)” (Brown, 2003, p. 1).  Second, research in this area had yet to produce 

a model of students’ development of mathematical induction rooted in students’ evolving 

conceptions of what is means to solve PMI-appropriate tasks.5 

 Since these experiments, models of the evolution of students’ understanding of 

mathematical induction have been proposed (Harel, 2002; Brown, 2003; Harel & Brown, 

in press). In Brown (2003), in addition to identifying a model of the evolution of 

students’ understanding of mathematical induction, potential epistemological obstacles to 

mathematical induction were explicitly identified. Building on this work, I report in this 

                                                
5 Dubinsky and Lewin (1986) had put forth a genetic decomposition of mathematical induction. This is, 
however, a decomposing of mathematical induction in terms of the relevant mathematical concepts not a 
developmental model of students’ conceptions of what entails solving PMI-appropriate tasks. 
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paper on an ongoing teaching experiment involving mathematically advanced 6th grade 

students – students whose mathematical backgrounds differ significantly6 from typical 

undergraduate students. The aim of this project is to analyze the students’ responses to 

PMI-appropriate tasks, contrast them to the undergraduates’ responses, and to use this 

analysis to further explore potential epistemological obstacles to mathematical induction.  

Operationalizing the Notion of an Epistemological Obstacle 

  Epistemological obstacles are ways of knowing that function productively in 

some settings, while fostering errors in others (Brousseau, 1997; Balacheff, 1990). What 

is the form of such ways of knowing? Sierpinska argued that there is a “property of 

duality of epistemological obstacles” (1987, p. 5), that is, that epistemological obstacles 

can manifest themselves in terms of coupled ways of knowing, which are incompatible. 

Furthermore, Sierpinska demonstrated how obstacles can be characterized in terms of 

coexisting conceptual understandings and perspectives of mathematical knowledge. From 

this viewpoint, it is important when exploring epistemological obstacles to identify 

potentially incompatible ways of knowing, and they ways in which students’ conceptual 

understandings relate to particular perspectives of mathematical knowledge.  

 The idea that ways of knowing function within a system of coexisting conceptual 

understandings and perspectives of mathematical knowledge aligns well with Harel’s 

(1998) Dual Assertion; the idea that not only do students’ ways of thinking affect the 

meanings students attribute to mathematical concepts (ways of understanding), but also 

that students’ ways of understanding affect their ways of thinking. Thus Sierpinska’s 

approach can be viewed as supporting the exploration of epistemological obstacles 

through the consideration of students’ ways of thinking and ways of understanding.  It is 
                                                
6 Consider, for example, a simple measure such as years of schooling in mathematics. 
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this approach that was taken in Brown (2003), and in the work described in this paper, 

when describing epistemological obstacles to mathematical induction.  

Data Collection 

 Data collection for the teaching experiments with undergraduate mathematics and 

science students (UGS) occurred during a series of five teaching experiments conducted 

at two, large, urban state universities. All experiments were either audio or videotaped 

and occurred in the context of either a seminar offered within a mathematics department 

or one of four teaching experiments in the form of 6-week experimental courses for 

undergraduate students who were concurrently enrolled in the second semester of 

calculus.  Between 3-8 students were enrolled in the seminar and courses. All participants 

were asked to complete a Curricular History Questionnaire and to respond to a Pre-

Experiment Assessment. These documents were aimed at identifying students who had 

previously received instruction on mathematical induction through explicit questions and 

through tasks that would prompt use of mathematical induction, as indicated by prior 

pilot work with undergraduates. Enrollment in the experimental courses was limited to 

undergraduates whose responses to the Curricular History Questionnaire and to the Pre-

Experiment Assessment indicated no prior exposure to mathematical induction. Data 

collected for these experiments includes audio or videotapes of all sessions, transcripts of 

each session, students’ written work, and instructor field notes. 

 Data collection for the teaching experiment with advanced 6th grade students 

occurred in the context of a supplemental math course at a public elementary school, 

during the students’ normal school day. This course was offered to 6th grade students who 

completed the 6th grade curriculum as 5th graders. This work is ongoing. Students meet 
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with the instructor (the author) twice a week for 1-hour. Data collected for this 

experiment includes students’ written work, field notes, and instructor notes. 

Instructional Considerations 

 The teaching experiments reported in this paper were conducted with an 

alternative instructional treatment – a didactical engineering of mathematical induction – 

that was deeply rooted in ideas described in Harel and Sowder’s (1998) discussion of 

mathematical induction task sequencing.7 In addition to the use of an alternative 

sequencing of tasks, didactical situations were designed to address the development of 

two intellectual needs: the development of an intellectual need for non-empirical 

reasoning; and, the development of an intellectual need for hypothetico-deductive 

reasoning in the context of mathematical proof (Brown, 2003). In addition to selecting 

and designing tasks to support the development of specific didactical situations, steps 

were taken to foster a local didactical contract that placed the verification and 

justification of solutions in the hands of the students. A full discussion of the 

development of this local didactical contract is beyond the scope of this paper, so it will 

not be discussed here. However, it is important to note that the theoretical perspective 

taken in this work does not place the development of the need for justification solely in 

the realm of social considerations – but rather views it as a result of the creation of a 

milieu in which students can engage in mathematics that warrants such practices.  

Findings  

 The purpose of this paper, and this comparison, is to explore the extent to which a 

potential epistemological obstacle identified with undergraduate students (UGS) arose or 

                                                
7 For more information about the alternative task sequencing, see also Harel (2002), Brown (2003) and 
Harel and Brown (in press). 
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was observed with the 6th grade students (6GS). To fully describe the potential 

epistemological obstacle it is important to first note at which stage in students’ 

development of mathematical induction the obstacle arises. To do this, I will first briefly 

describe the model. Brown’s (2003) model of the evolution of students’ understanding of 

mathematical induction is a model of students’ evolving conceptions of what constitutes a 

general solution to a PMI-appropriate task; in other words, it is a model of how 

mathematical induction might arise as a means to solve a class of problem. This model 

describes students’ conceptions as progressing through three stages: the pre-

transformational stage, the restrictive transformation stage, and transformational stage. 

 Key to the transition from one stage to the next is the overcoming of obstacles 

related to students’ conceptions at that stage. During the restrictive transformational 

stage, students’ approaches to PMI-appropriate tasks do not entail reasoning from 

empirically verified patterns (as is the case in the pre-transformational stage) but rather 

entails focusing on relations between consecutive cases. In other words, during the 

restrictive transformational stage students begin to attend to structural relations between 

consecutive cases. Their ways of understanding these relations, however, foster 

difficulties with particular PMI-appropriate tasks and are indicative of a potential 

epistemological obstacle to mathematical induction – the infinite processes obstacle. 

Thus, the transition from the restrictive transformational stage to the transformational 

stage is marked by shifts in the students’ ways of knowing infinite processes. To illustrate 

how the infinite processes obstacle manifests itself after the students have advanced 

beyond purely empirical approaches, I will describe the UGS and 6GS responses to the 

L-tiling task. 
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The L-Tiling Task 

 In each of the UGS teaching experiments and in the 6GS teaching experiment, 

students worked in groups to solve what I will refer to as the L-tiling task (see Figure 1.) 

 

L-Tiling Task: For any positive integer n, can a 2nx2n grid with one 
square removed be tiled with L-tiles (shown below)? 
 
 

 
Figure 1. The L-Tiling Task 

 
In the series of UGS teaching experiments, it was found that, after an initial exploratory 

phase, UGS tend to approach the question of how to tile an infinite collect of grids first 

by using a divisibility argument and then a decomposition approach. The divisibility 

argument UGS propose begins with students arguing that an L-tile is composed of 3 

square tiles. The students then argue that the area of the 2nx2n grid with one square 

removed, is (2nx2n)-1. Thus, one simply needs to verify that (2nx2n)-1 is divisible by 3.  

Paula: Aren’t they all divisible by three though? … (pause) … like four 
squared and you take a, like four squared is sixteen. You take away one, 
so you’d have a total of fifteen. 
[…] 
Paula: Just divide by three and it gives you an even number like for all of 
them so it would always work. 
Susan: That’s true. 

 

Through algebraic work, the students verified that 3 divides (2nx2n)-1. After which the 

students were asked to consider the geometry of the grid and whether or not a “different” 

grid of 15 squares could be L-tiled (see Figure 2). These explorations led the students to 

reject the divisibility argument as a general solution to the L-tiling task.   
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Figure 2. 15-Square Grid 

 The decomposition approach proposed by UGS begins with the students using 

examples to show how one can partition a grid into four quadrants, each of which either 

has no square removed, a corner square removed, or a non-corner square removed. In the 

case with a non-corner square removed, the students continue to partition that quadrant of 

the grid into four smaller quadrants until the missing square is in the corner of one of the 

smaller quadrants (see Figure 3).  

 

  

 

 

Figure 3. Example of Partition of 23 × 23 Grids 

After which, the students claimed that the grid with the missing square can be tiled with a 

previously L-tiled grid with a corner removed and that the remaining quadrants can be 

“built up” by arranging three grids with corners removed in such a way that the removed 

squares form an L-tile (see Figure 4).  

 It is interesting that in several of the teaching experiments the decomposition 

approach to the L-tiling task was the only acceptable solution for many of the students; 

for even after another student suggested an alternative solution that entailed selecting the 

appropriate 2n-1 × 2n-1 grid to tile the quadrant with the missing tile rather than partitioning 

that quadrant into smaller and smaller grids, as is done with the decomposition approach, 
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the students maintained that the decomposition approach was the only “convincing” 

solution. 

 

  

 

 

 

Figure 4. L-tiling of quadrants with no missing tile (n = 3). 

 Surprisingly, the 6GS problem solving trajectory with the L-tiling task, and often 

other PMI-appropriate tasks, mirrored the UGS students’ trajectory. In the case of the L-

tiling task, after having explored a series of grids (e.g., n = 1,2,3) and L-tiling various 

collections or classes of grids (e.g., the class of all 22 × 22 grids) the 6GS recognized that 

as n increases, the number of grids being considered increases and that the question 

concerned an infinite collection of grids, whose dimensions are of the form 2n × 2n. 

Recognizing that one cannot produce infinitely many L-tiled grid, groups of students then 

suggested the divisibility argument, as described above. Also like the UGS, once the 

divisibility argument was rejected the students developed the decomposition approach. 

For example, Tina used the 24 × 24 grid as a generic example and argued: 

Tina: you have a 16×16 grid. Obviously, one-fourth of the grid is an 8×8 
grid. That’s the one with the real square missing. 

 

Tina then continued by explaining that the 8×8 grids consist of four 4×4 grids, the 4×4 

grids consists of 2×2 grids. She then argued: 
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Tina: Obviously, we can L-tile this (points to an L-tiled 2×2 grid) case. 
And by knowing I can L-tile this case, I know I can L-tile any two to the n 
(2n) case. 
  

Furthermore, when the 6GS engaged in a whole class discussion of their solutions to the 

L-tiling task, three of the four student groups (with each group having 3-4 students) 

presented the decomposition approach. Interestingly, only one student, Joel, argued that it 

would be easier to “just use whatever grid you need from before,” in other words, to 

select the appropriate grid from the class of 2n-1×2n-1 grids to tile the quadrant with the 

missing square. Joel, however, remained in the minority, with the majority of 6GS 

preferring the decomposition approach solution, as was the case with the UGS. 

Discussion of UGS and 6GS Student Responses 

 It is surprising that, having recognized the need for a general solution, both the 

UGS and 6GS restricted their explorations to the numeric aspects of the L-tiling task, as 

opposed to jointly considering both the geometric and the numeric. With both the UGS 

and 6GS teaching experiments, however, the divisibility approach arose after the students 

indicated an awareness of two issue related to the L-tiling task; namely, that the question 

concerned an infinite set of objects and that one cannot verify each element (in this case, 

grid) of the set. Thus, it appears that the students neglected the geometric aspects of the 

task and reduced the task to an algebraic question in order to address issues of generality. 

Moreover, I would also argue that the divisibility argument allowed them to address these 

concerns, while also enabling the students to avoid hypothesizing the existence of a 

collection or class of L-tiled grids.  

 Having rejected the divisibility argument, the students are left having to address 

the question of whether or not one can L-tile an infinite collection of grids, without a 



Proceedings of the 11th Conference for Research on Undergraduate Mathematics Education 
February 28 – March 2, 2008; San Diego, CA 

 

 14 

means to reduce the question to a single statement or diagram. Student initiated 

discussions about how to create “larger” grids from smaller grids, however, quickly 

enabled the students to recognize a structural relation between consecutive cases when 

restricting one’s considerations to the grid with a corner square removed. Unlike other 

cases, one can “build” an infinite sequence of grids with a corner square removed, simply 

by iterating the process illustrated in Figure 5.  

 

 

 

Figure 5. Constructing Grids with Corners Removed. 

This leads to the following question, what distinguishes the solution for an arbitrary grid 

from the solution for the grid with a corner square removed? What is it that supports 

students reducing the problem to this particular case? The position taken in this paper is 

that the decomposition approach provides the means, from the students’ perspective, to 

“construct” any grid from known objects. In contrast, a general solution that does not rely 

on such a decomposition necessarily entails partitioning an arbitrary 2n×2n grid into four 

2n-1×2n-1 grids, tiling three of the four quadrants using the 2n-1×2n-1 grid with a corner tile 

removed, and then tiling the remaining quadrant by assuming the existence of the class of 

L-tiled 2n-1×2n-1 grids with a square removed, without having “constructed” this class of 

objects. In other words, one must engage in hypothetico-deductive thinking about a 

collection of objects of which only a subset has been “constructed.” The decomposition 

approach, therefore, allows students to avoid such reasoning in favor of constructive 

approaches. Thus, the decomposition approach is indicative of students’ use of the 
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constructive proof scheme, where “students doubts are removed by the actual 

construction of objects – as opposed to mere justification of the existence of objects” 

(Harel & Sowder, 1998, p. 272). It is also, I would argue, indicative of the infinite 

processes obstacle. 

The Infinite Processes Obstacle 

 The infinite processes obstacle consists of a way of thinking about iterative 

processes and a way of understanding implications. The way of thinking about iterative 

processes manifests itself when one recognizes an imperfective, iterative process and then 

uses the process to attribute the property in question to the entire set. As such, this way of 

thinking about iterative processes relates to Lakoff and Nunez’s (2000) description of the 

basic metaphor for infinity. The way of understanding implications is that implications 

are causal relationships; a way of understanding implications that, as noted by Harel 

(1999), has historical precedents within the context of mathematics. 

 Having recognized the need for a general solution both the UGS and the 6GS 

turned to an approach that would enable them to avoid assuming the existence of an 

infinite class of objects, with the exception of the instance in which they recognized an 

imperfective, iterative process for generating L-tilings for grids with corner squares 

removed. Thus, it appears that the recognition of such a process enabled the students to 

attribute the property in question to the infinite collection of grids with corner squares 

removed. Building upon this basis of belief, the remaining grids are then reduced to 

elements of this collection. In other words, it is the existence of such a process that 

enables the students to verify the entire collection of grids. But why not simply assume 

that the previous class of objects exists? Why rely on “constructed” objects? One cannot 
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assume the existence of a class of objects, for instance, the class of all 23 × 23 grids, use 

these grids to construct the class of all 24 × 24 grids and then know that the class of all 24 

× 24 grids actually exists, if implications are viewed as causal relationships. In other 

words, if a→ b or “a causes b” then a must exist for b to exist; that is, I must be able to 

construct a, as opposed to assume the existence of a, in order to know b. 

 But why consider such ways of thinking and ways of understanding an obstacle? 

How is it that they function productively? Where do they lead students to errors? I would 

argue that the students’ decomposition approach is an example of the infinite processes 

obstacle functioning productively, for it led the students to produce a viable solution –one 

reminiscent of the method of infinite descent. I would also argue, and as was the case 

with the UGS, that it inhibits the production of solutions that rely on the students’ ability 

to engage in hypothetico-deductive reasoning. For example, when asked to solve the 

Two-Color problem (Figure 6), many undergraduates view each class of maps as 

consisting of infinitely many possibilities due to potential variations in the points of 

intersection.8  

The Two Color Problem: Consider any “map” formed by drawing n 
straight lines in a plane to represent boundaries. Is it possible to color 
the countries using two colors, if no two adjoining countries (those 
with a line segment as a common border) have the same color? 

 

Figure 6. The Two-Color Problem 

Thus, to generate a general solution to the Two-Color Problem, the student must 

recognize the need to assume the existence of a collection of objects that have not been 

                                                
8 Clearly, a mathematician would recognize that, for example, for the case n = 2 there are only two 
possibilities. However, this is often not the perspective of undergraduates and the issue here is not 
mathematical but psychological. 
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constructed either directly or through an imperfective, iterative process. In other words, 

the student must overcome the infinite processes obstacle. This claim stems from data 

collected in the UGS teaching experiments where the Two-Color Problem was used to 

create an intellectual need for including an inductive hypothesis and was, for the students, 

the final step towards formulating the method of proof. 

Discussion  

 The similarities in the UGS and 6GS approaches to the L-tiling task, and other 

tasks not discussed here, support the claim that the development of mathematical 

induction as a means to solve a class of problems necessarily entails shift in students 

ways of knowing infinite processes – in particular, their ways of thinking about iterative 

processes and ways of understanding implications. As such, this work aligns well with 

prior work on students’ difficulties with mathematical induction (Dubinsky, 1989; 

Movshovitz-Hadar, 1993b) that has indicated students’ struggle to understand, describe, 

and use the inductive step, in particular, the inductive hypothesis. 

 The findings also indicate two areas that need further elaboration. First, and as 

suggested in Brown (2003), it appears that PMI-appropriate tasks that involve class-to-

class sequences may pose unique epistemological issues for students not encountered 

with case-to-case PMI-tasks. A PMI-appropriate task that involves class-to-class 

sequences is a task that concerns relations between consecutive classes of objects, as 

opposed to specific cases. For instance, the L-tiling task concerns relations between the 

class of 2n-1 × 2n-1 grids (which consists of 22(n-1) grids) and the class of 2n × 2n grids 

(which consists of 22n grids) whereas, tasks such as the Towers of Hanoi concern the 

relationship between the case of n-1 disks and the case of n disks. Thus, this finding 
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indicates either an alternative categorization of PMI-appropriate tasks or a need to further 

elaborate or extend Harel’s (2002) dichotomy of PMI-appropriate tasks, which focuses on 

the distinction between explicit and implicit recursion and non-recursion tasks. Second, 

the comparison of UGS and 6GS provides further evidence indicating a potential 

epistemological obstacle to mathematical induction, which, in turn, suggests that 

instructional approaches to mathematical induction should aim to support shifts in 

students’ ways of knowing infinite processes. As such, this work has implications for the 

development of and necessity for alternative curricular approaches to mathematical 

induction. Finally, it is noteworthy that the results with the 6GS mirrored those of the 

UGS. Certainly, one can argue that the 6GS provide an example of what Harel and 

Sowder (2005) refer to as “advanced mathematical thinking at any age.”  

References 

Balacheff, N. (1990). Towards a Problematique for Research on Mathematics Teaching. 
Journal for Research in Mathematics Education. 1990, Vol. 21, No. 4, 258-272. 
 
Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Dordrecht, 
Netherlands: Kluwer. 
 
Brown, S. (2003). The Evolution of Students’ Understanding of Mathematical Induction: 
A Teaching Experiment. Unpublished Doctoral Dissertation. 
 
Dubinsky, E., & Lewin, P. (1986). Reflective Abstraction and Mathematics Education: 
The Genetic Decomposition of Induction and Compactness. Journal of Mathematical 
Behavior, 5, 55-92. 
 
Dubinsky, E. (1989). Teaching Mathematical Induction II. Journal of Mathematical 
Behavior, 8, 285-304. 
 
Harel, G. (1998). Two Dual Assertions: The First on Learning and the Second on 
Teaching (or Vice Versa). American Mathematical Monthly, 105(6), 497-507 
 
Harel, G. (1999). Students’ understanding of proofs: a historical analysis and implications 
for the teaching of geometry and linear algebra. Linear Algebra and Its Applications.  
301-303 (1999) 601-613. 



Proceedings of the 11th Conference for Research on Undergraduate Mathematics Education 
February 28 – March 2, 2008; San Diego, CA 

 

 19 

 
Harel, G. (2002). The Development of Mathematical Induction as a Proof Scheme: A 
Model for DNR-based Instruction. In S.R. Campbell and R. Zazkis (Eds.), Learning and 
Teaching Number Theory: Research on Cognition and Instruction. Monograph Series of 
the Journal of Mathematical Behavior, Vol. 2., 185-212. 
 
Harel, G. & Brown, S. (in press). Mathematical Induction Cognitive and Instructional 
Considerations. In M. Carlson and C. Rasmussen (Eds.) Making the Connection: 
Research to Practice in Undergraduate Mathematics Education, MAA Notes #73. USA: 
Mathematical Association of America 
 
Harel, G. & Sowder, L. (1998). Students’ Proof Schemes. In E. Dubinsky, A. Schoenfeld, 
and J. Kaput (Eds.) Research on Collegiate Mathematics Education, 234-283. USA: 
American Mathematical Society. 
 
Harel, G. & Sowder, L. (2005). Advanced Mathematical Thinking at Any Age: Its Nature 
and Its Development. Mathematical Thinking and Learning, 7(1), 27-50. 
 
Lakoff, G., & Núñez, R. (2000). Where Mathematics Comes From. New York: Basic 
Books. 
 
Movshovitz-Hadar, N. (1993a). Mathematical Induction: A Focus on the Conceptual 
Framework. School Science and Mathematics, 93(8), 408-417. 
 
Movshovitz-Hadar, N. (1993b). The False Coin Problem, Mathematical Induction and 
Knowledge Fragility. Journal of Mathematical Behavior, 12, 253-268. 
 
Piaget, J. (1968). Six Psychological Studies. New York: Vintage Books. 
 
Robert, A. & Schwarzenberger, R. (1991). Research in Teaching and Learning 
Mathematics at an Advanced Level. In D. Tall (Ed.), Advanced Mathematical Thinking. 
(pp. 127–139). Dordrecht, Netherlands: Kluwer. 
 
Reid, D. (1992). Mathematical Induction: An Epistemological Study with Consequences 
for Teaching. Unpublished Thesis, Canada: Concordia University. 
 
Robert, A., & Schwarzenberger, R. (1991). Research in Teaching and Learning 
Mathematics at an Advanced Level. In D. Tall  (Ed.), Advanced Mathematical Thinking. 
(pp. 127-139). Dordrecht, Netherlands: Kluwer. 
 
Sierpinska, A. (1987). Humanities Students and Epistemological Obstacles Related to 
Limits. Educational Studies, Vol. 18, No. 4, 371 – 397. 


