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Semiotic analysis on mathematical discourse contributes to describing prospective 

teachers’ construction and communication of mathematical objects. The purpose of this 

study is to build up a language for use in describing, deliberating, and assessing 

mathematical objects in focus. The data for the study came from observations of two 

mathematics classes for prospective teachers. A preliminary theoretical analysis using 

Gray and Tall’s Procept (1994) framework indicates that there are significant 

discrepancies on participants’ perceptions of signifier-signified-and-referent in 

mathematical discourse. Classroom implications and future directions for this study are 

explored. 

BACKGROUND 

Recently, the mathematics education society at large has paid more and more 

attention to conceptual understanding. The book entitled, “Adding it up: helping children 

learn mathematics” published by the National Research Council (NRC), puts conceptual 

understanding as one of the key strands of mathematical proficiency.  In this book, 

conceptual understanding is defined as “comprehension of mathematical concepts, 

operation, and relations” (Kilpatrick, Swafford, and Findell, 2001).  It seems the majority 

of people in the mathematics education society have been realizing the fragility of 

knowledge accompanied only by procedural knowledge and skills.  Nonetheless, what 

counts as conceptual understanding and how conceptual understanding evolves may 
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remain debatable, as Devlin (2007) criticized NRC’s description of conceptual 

understanding, which barely elaborates the question of what it might be, but not really 

answers the issue of how to acquire the understanding, knowledge and comprehension of 

the mathematical concepts.   

Influenced by Piaget’s idea of how “actions and operations become thematized 

objects of thought” (1972), several theories have been proposed to describe such objects 

of thought, e.g., Dubinsky (1991), Sfard (1991), and Gray & Tall (1991), in which 

transformations performing on physical/mental objects is brought up to our attention.  

While Dubinsky and Sfard emphasize on its developmental stages, e.g., action/process vs. 

object/schema and operational vs. structural, Gray and Tall adopt the idea of procept to 

describe an amalgam of three components: a mathematical concept is produced by a 

process, and the usage of symbol is flexible enough to present its corresponding concept 

and process as well.  In a sense, if a symbol is used as a signifier to refer a signified, i.e., 

procept, a successful learner should be able to see a process acting on an input to produce 

an output as concept. Moreover, later on, the learners can perform 

actions/transformations on the signified they already perceived. A comparison between 

NRC’s conceptual understanding and Gray & Tall’s procept, the idea of procept might 

encompass what NRC refers as concepts, operation, and relation, and, more important, 

could serve as a measurable construct for an occurrence of learning through an analysis 

on discourse to measure to what extent the learner actually see such signified. 

 Another criticism from Devlin to conceptual understanding is his questioning the 

idea of “students who should understand [concept] before they do [mathematics],” which 
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is a common belief of the advocates of conceptual understanding. He proposed functional 

understanding, students’ minimum and sufficient understanding of a mathematical idea, 

to ensure making progress and allowing further refinement and/or correction of their 

understanding. Similar idea was also proposed by Sfard (2000). She suggests that 

students can simply implement mathematical discourse in exchanging meaning before 

they have full understanding of the concept, in which the learners may gradually 

symbolize mathematical reality into being.  In this study, I will refer Gray & Tall’s 

procept and/or Sfard’s mathematical reality as mathematical objects for indicating what 

people talk and write about when they do mathematics.  

Granted Sfard’s claim that the learners approach their understanding of 

mathematical objects through mathematical discourse, it surely is important for 

mathematics researchers to build up a language for describing, deliberating, and assessing 

mathematical objects in focus. That is, it is very possible that far before a mutual 

agreement has been clarified and settled on the referents or the signified in focus among 

the participants, the introduced signifiers have been adopted for operation and/or 

manipulation. How the perception of a sign system evolves in recognizer’s mind would 

be a good indicator to what extent of a mathematical object is constructing. 

THEORECTICAL PERSPECTIVE  

Procept Theory (Gray and Tall, 1994) is adopted as a theoretical framework for this study 

for there is a non-linear progressive and recursive relationship between signifier and 

signified in constructing and communicating a mathematical object.  This study 

investigates symbol-signifier being both a process and a concept in referring to the 
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signified in focus.  Semiotic analysis on mathematical discourse demonstrates discursive 

participants’ adoptions in language, visual images and mathematical symbols to convey 

their perception of mathematical objects in focus in a given context, i.e., a system of 

signs, consisting of signifier and signified, along with the given context as referent.  

SETTING, DATA COLLECTION and METHODOLOGY 

The participants were preservice elementary teachers enrolled in two sections of a 

first-semester mathematics course, belonging to a two-course sequence. Basic course 

topics included quantitative reasoning, meanings of whole numbers/place value with 

operations, meanings of integer with operations, and meanings of rational number with 

operations. Two sections were taught by instructors Mary and Jose, both pseudonyms, 

respectively. Mary had more than twenty years teaching experience in this subject matter, 

while Jose was a Graduate Teaching Assistant with two years middle school and one and 

one half years college teaching experience. One Supplemental Instructor, Robert, was in 

Mary’s class to assist her students after class by creating more comprehensible notes and 

utilize them as a basis of instruction/enhanced tutoring. Jose had been Mary’s 

Supplemental Instructor before he taught this session. 

As manipulatives and cooperative groups become more widely used in elementary 

and middle mathematics classes, these aids and situations are not just learning tools for 

assisting our pre-service teachers learning mathematical concepts but also themselves are 

targeted learning objectives of the preservice teachers.  In Mary’s and Jose’s classes, they 

both adopted hands-on lab activities, which were originally created by Mary. This 

presentation draws upon transcribed video clips from Mary’s and Jose’s lab activities of 
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numeral systems. The main objective of the lab is to develop a better understanding of 

base-ten numeral system by exploring bases other than ten.   

The hands-on lab activity adopted by Mary and Jose for developing a sense of 

numeral system contains three sub-activities: (A) counting by grouping; (B) counting in 

different bases; and (C) converting from one base to another. The manipulatives for 

implementing this lab is multilink cubes set, which consist of 1cm x 1cm x 1cm cubes 

with feature of easy to stack and count exercises. There are three tasks in activity (B), 

which request group of three preservice teachers to execute (1) counting multilinks by 

grouping, say group of five and then group of five of fives; (2) simulating counting 

multilinks by using abacus/counter; and (3) recording the counting procedure 

demonstrating in (1) and (2) by using base-five numeral system. In terms of APOS 

theory, activity (A) is for learner to experience an action performing on multilinks; 

activity (B) is for leaner to perceive the actions as a totality to compress them into an 

object; and activity (C) is for learners to be able to perform actions or transformations on 

the objects constructed in activity (B). 

The data for the study came from observations of classroom events, written 

artifacts, and individual interviews. Discourses between instructors and students were 

video-taped and transcribed verbatim for analyses. The transcriptions of discourses are 

analyzed using the constant comparative method (Lincoln & Guba, 1985) with Gray & 

Tall’s procept theory as a framework. The preliminary result indicates there are 

significant discrepancies on participants’ perceptions of signifier-signified-and-referent in 

mathematical discourse. 
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From the perspectives sketched above, this study poses two leading questions:  

(1) How can we tell if a student constructs a math object through mathematical 

discourse? (2) What does the role of mathematical discourse play in constructing math 

objects? 

DATA and RESULT 

 As described above, Mary is an experienced instructor. During the interview, her 

supplemental instructor Robert and instructor Jose complimented her fluency of dictation, 

which indicates her competence to provide her students with clearer direct instruction and 

to lead her students to have better performance in what she intended. Figure 1 below, 

from Robert’s notebook, shows Mary’s demonstration of activity (A) counting group of 

five and then group of five of fives. Her dictation leaded students to record the 

remainders of all steps of actions as the answer for the number of cubes in base-five. In 

this stage, the learners may not know the reason why together the remainders of actions is 

the answer, although they had experienced the actions. 

 

 

 

According to task description of activity (B), learners in this stage were supposed to 

reflect on the performed actions and to compress them into an object-like of thought.  

Figure 2 shows example of Mary’s demonstration of counting by base-five numeral 

 
Figure 1. Counting by grouping 
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system. As usual, Mary made a demonstration with a fluent manner. Nonetheless, she 

never introduced or mentioned the terms or names, formal or informal, regarding place 

value. Mary put some particular emphasis on the expressions, such as “no numeral name 

as 5 in base-five system” and “five groups of fives and so on.” In an informal 

conversation after session, she seemed to believe that students should perceive the 

announced rule of “and so on” and connect the recursive pattern to the concept of place 

value. She also considered that the introduction of any new terms or names related place 

value burdens the learners’ cognitive demand, for students already struggled in grasping 

the meaning behind the lab activities.  

 

 

 

 

 

Activity (C) is to convert the expressions of numbers from one base to another, such as 

converting the number expressed by (123) 5  to the expression of base-ten. The 

demonstration of Mary was mainly algorithmic, e.g., (123) 5 = 1(5 2 )+ 2 (51 )+ 3(1) = 33.  

From the observation of Mary’s lab practice, besides it going smoothly, it is not 

easy to tell what student actually gained from the lesson. Indeed, in interviews with 

students from Mary’s class, it was found that students did not see the connection between 

 
Figure 2. Mary’s demonstration of counting and recording 
by base-five numeral system: the sketch here only partial of 
the demonstration to emphasizes the concept of grouping, 
i.e., place value. 
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the algorithm, e.g., (123) 5 = 1(5 2 )+ 2(51 )+ 3(1) = 33, and the multilink cubes, e.g., group 

of five and group of five of fives. At least, the students did not have the language to 

describe the connection, if they ever made any. 

Jose’s lab implementation did not go as smooth as Mary did, which is not a 

surprise, since he was less experienced in classroom delivering than Mary was. Jose 

basically went through the same procedures like Mary did, but with a vaguer direct 

instruction and combining activities (A) and (B) together as one shoot. In a twenty-five 

minutes small group activity, Jose had to go back and forth to the front of the class to 

provide more instruction of what to go next. Generally, most of the students had no clue 

why the digits ended at 4 in base-five and could not do the grouping beyond the second 

place value, which is exactly what happened to Mary’s students who were in the 

interviews mentioned above. With Jose’s assistance, his students seemed to be able to 

following the instruction toward the end of this period. 

Although Jose had always been in a hurry during this summer session worrying 

about not covering enough course material, out of my surprise on the next day, Jose 

picked up the lab activities (B) again, by saying: 

I don’t want to take the whole time for the lab but I do want you to get the practice. So follow the 
instructions on the lab. Don’t just say here is a group of five, here a group of five, no do what it is 
telling you. Count one, two, three, four, one zero, one one, one two, one three, one four, two zero. 
Actually go through the motion and there is a reason for that … 

This time, he insisted (1) all three members in a triplet group have to go through all three 

tasks simultaneously: counting multilinks by grouping, simulating counting by using 

counters, and recording the counting procedure; and (2) communicate with a set of 

informal terms, e.g., units, longs (group of five), and flat (group of five of fives). During 
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the interview, Jose expressed his frustration of two things. First, Jose was reluctant to 

provide his students with direction hoping his students can figure out the underlying 

structure of the lab activity, which his students failed to. Second, Jose felt awkward in 

communication with no names or terms to refer to what he was talking about. Although 

not all the students follow his instruction of going through the motion of linking the 

multilinks, we could observe, from the following excerpts, some changes since then. 

Day 1: 
Student: For five of these [five groups fives] it will be one of these [one five-fives] …. 
Jose: For these fives groups of fives…you group the fives into fives… and then you group those 

fives into what… fives right. 
 
Day 3: 
Jose: In our base five system we have ones units then we have not tens like in our base ten, but…. 
Student: longs  
Jose: Ok, we have fives or longs. That is why we did the lab. So we can picture what is going on. 

Fives are longs. Five units linked together. And then we have flats, which are what?  
Student: Five longs, or 25 units. 
Jose: Twenty-fives units, right. And, then after that we have our blocks, which is what?  
Students: 125’s   
Jose: And so on and so forth 

In Day 3, a teaching episode from Jose’s demonstration of converting (12344) 5  into 

base-ten numeral system ( 4321 515253544 ×+×+×+×+ ) shows how students were 

constructing the object of place value in the fifth place of numeral display: 

Jose: … We have 4 ones 4 longs 3 flats and 2 cubes. What does this look like 625, in base five? 
Cindy: six flats 
Gina: no, four of the cubes 

 
Students already had experience about ones, longs, flats, and cubes, which they had 

performed actions on multilinks. For them, the new unit, consisting of 625, was new to 

them. Their intuitive guess of 625 as six groups of 25 or as four groups of 25 (the rule of 

no more than four) indicates they did have some sort of understanding in this regard. 

Jose: (Does some arithmetic: 625 / 125 = 5)… How many cubes do we have?  
Gina: Its five cubes. 
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Jose: What it is, we have five cubes right, if we put five cubes together what does that look like? 
Student: (Inaudible) 
Jose: Is it going to make a bigger cube? 
Student: Yes. 
Gina: Long 
Jose: What it is going to do is [to] make a long. If we put five cubes together, we get a long. Right. 
So it is a long made of cubes (showing the gestures of putting cubes together and creating the long 
made of cubes). What’s after that? 
Student: Another long. 
Jose: What happens when we put five 625’s together we get an F… (starts with an F). 
Student: Flat 
Jose: We get a five by five made of cubes right. Of those one-zero-zero-zero-flats, first we get a 
long. And with five of these we get a flat. (Start drawing a picture). Each of those squares, five-
by-five (cubes), one-zero-zero-zero, three zeros, makes the flat. 
Gina: Like we were doing yesterday staking them. 
(Gestures before the response: she pinched her fingers slightly and she moved her hand forward 
five times as if she was constructing a long.  She then responds to Juan by saying “like we were 
doing yesterday staking them.” She said this while simultaneously using both hands as if she were 
handling flats and stacking them upon on another higher and higher as if she was creating a 
cube.) 

What Gina did was to perform a mental action on a mental object (a 5x5x5 cube) to 

construct new mathematical objects, e.g., long made of cubes (625 units), flat made of 

cubes, and so on.  

The result stated above shows somewhat convincing information that Jose’s 

students seemed to be able to construct mathematical objects which we did not observe in 

Mary’s class. This behooves us to wonder what actually happened in Jose’s class, but not 

in Mary’s class, so that such object construction occurred. 

TENTATIVE CONCLUSIONS and FUTHER RESEARCHES 

Cottrill et al. (1996) mentioned there are at least two ways of constructing objects- 

from processes and from schemas. In this study, we find it quit difficult to tell whether 

students constructed a mathematical object from compressing a series of process into an 

object or just simply performed action following the instructor’s dictation. However, it is 

much easier for us to tell whether the learners construct a mathematical object through an 

action performing on object constructed. The example mentioned above shows students’ 
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(potential) construction of long made of cubes and flat made of cubes through 

mathematical discourse. This observation may lead to the answer to our first research 

question, “How to tell if a student constructs a mathematical object through mathematical 

discourse.” For further researches, a protocol involving the construction of new 

mathematical object from schema, if any, could serve as a research tool and/or a teaching 

tool to evaluate or enhance such construction. 

Nonetheless, to have tentative hypotheses to our second question, “the role of 

mathematical discourse plays in constructing math objects,” is still not so clear. Our 

tentative hypothesis is the naming activity, e.g., calling the products as long, flat, etc., and 

using the terms for exchanging and negotiating their ideas. Our further research design 

may plan to involve students in the process of creating their signifiers for communication 

and negotiation, and to observe this involvement interacting with mathematical objects 

construction. 
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