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Abstract

This paper describes model analysis, a method of analysis used effectively in physics ed-

ucation research, with particular emphasis on the use of model analysis to study the proof

schemes held by students. Model analysis is a particularly effective way to study student’s

proof schemes because it allows for the fact that student proof schemes may not consistently

fall into a single category. This paper also describes the results of a pilot study in which model

analysis is used to study students proof schemes.

1 Introduction and Background

In recent years, much attention has been paid to students’ understanding of mathematical proof,

both when reading and writing proofs, at different points in students’ eduction (Weber & Alcock,

2004; Solomon, 2006; Ellis, 2007). One framework for studying student understanding of proof is

Harel and Sowder’s taxonomy of proof schemes (Harel & Sowder, 1998, 2007), which categorizes

the arguments an individual (or a community) finds to be convincing when ascertaining the validity

of a theorem, or when persuading another of the validity of the theorem. While the taxonomy

of proof schemes makes a useful framework, there is some evidence to suggest that students’

proof schemes do not always consistently fit into a single category (Housman & Porter, 2003).

However, there is little current research on these inconsistencies. Furthermore, while there has

been a considerable amount of study conducted on the proof schemes held by individuals, there

has been little research on the proof schemes held by communities.

Model analysis, a quantitative analysis technique pioneered by physics education researchers

Bao and Redish (1999; 2001, 2006), can be used to correct both of these deficiencies in the litera-

ture. As described by Bao and Redish, “Model analysis. . . applies qualitative research to establish
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a quantitative representation framework.” (Bao & Redish, 2006) That is, model analysis allows re-

searchers to use a qualitative framework, such as Harel and Sowder’s taxonomy of proof schemes,

to establish a quantitative framework that can be used to study a larger group, such as a community

of students. Furthermore, model analysis specifically allows for, and analyzes, inconsistencies in

students’ responses.

The purpose of this paper is to present an adaptation of Bao and Redish’s model analysis to

the study of proof schemes. The method of model analysis, as applied to proof schemes, will be

discussed, and the results of a small pilot study will be presented.

2 Model Analysis and Proof Schemes

Bao and Redish describe model analysis as a way to investigate students’ mental models, which

they define as “robust and coherent knowledge element[s] or strongly associated set[s] of knowl-

edge elements.” (Bao & Redish, 2006) In the context of students’ understandings of proof, Harel

and Sowder’s concept of proof scheme can be thought of as such a mental model, which can be

analyzed using model analysis. This section contains a description of Bao and Redish’s method of

model analysis, as well as a description of the adaptation of model analysis to the study of proof

schemes.

Bao and Redish describe the method of model analysis as consisting of five steps (2006). In

each of the following subsections, a single step is described.

2.1 Step 1

(i) Through systematic research and detailed student interviews, common student mod-

els are identified and validated so that these models are reliable for a population of

students with a similar background. (Bao & Redish, 2006)

This step describes what Harel and Sowder accomplished when creating their taxonomy of

proof schemes (Harel & Sowder, 1998). The taxonomy is very detailed; in order to effectively
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define usable student models, I will only consider the most basic level of the taxonomy. At this

level, proof schemes fall into three categories: external conviction, empirical, and deductive.

The category of external conviction describes proof schemes held by students who are con-

vinced by something external to the meaning of the theorem or its proof. For example, a student

who holds an external conviction proof scheme may be convinced a theorem is correct based on

the form or symbols used by the proof, or by an outside authority such as an instructor or textbook.

Empirical proof schemes are held by students who are convinced by empirical evidence, such as

examples or a diagram. Finally, students who are convinced by logical reasoning are said to have

deductive proof schemes.

2.2 Step 2

(ii) This knowledge is then used in the design of a multiple-choice instrument. The

distracters are designed to activate the common student models, and the effectiveness

of the questions is validated through research. (Bao & Redish, 2006)

For this step, I created a questionnaire consisting of five theorems, and four purported proofs

of each theorem. Each proof was designed to evoke one of the three categories of proof scheme.

Some theorems had more than one proof fitting a single category, in all, there were seven proofs

evoking the external conviction category of proof scheme, six evoking the empirical category, and

seven evoking the deductive category.

Students were asked to respond to each theorem and its associated proofs in two ways. First,

students were asked to mark all of the proofs they found to be convincing. Students were also

allowed to mark a response of “none of the above.” Second, students were asked to mark the single

proof they found to be the most convincing (again, “none of the above” was allowed).

In the next section, the results of a pilot study are presented. Because this study was intended as

a pilot study, the effectiveness of the questionnaire was not validated. In order for a model analysis

to yield useful results, the validity of the data must be assured. For this reason, the results of this

study should not be taken as representative. Instead, the results should be taken as an indication of
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the kind of information that can be extracted using model analysis. Further discussion is found in

the final section of this paper.

2.3 Step 3

(iii) One then characterizes a student’s responses with a vector in a linear “model

space” representing the (square roots of the) probabilities that the student will apply

the different common models. (Bao & Redish, 2006)

The model space described in this step is represented mathematically by a linear vector space,

where each common model is represented by an element of an orthonormal basis. That is, each

of the three categories of proof scheme will be assigned a dimension in the vector space. We also

assign a fourth dimension to a “null” model, representing other, less common mental models that

do not easily fit into any of the three categories of proof scheme.

For each student, we will create a vector inside this model space that represents the student’s

responses to the questionnaire. Each entry in the vector is meant to represent the (square root of

the) probability with which the student uses the associated category of proof scheme to respond

to similar types of questions. Of course, these probabilities can only be approximated by the

student’s responses to the questionnaire. The square roots of the probabilities are used for the sake

of making the next step easier, as discussed in the next subsection. There is no real difference in

the information contained by a probability and the square root of the probability.

I calculated the probabilities associated with each category of proof scheme in two ways. First,

I calculated the probabilities using students’ responses to the line in which they marked only the

most convincing proof. The calculated probability for each category of proof scheme was calcu-

lated as the number of responses in the category was divided by the total number of responses

given by the student. Responses of “none of the above” were considered to be in the fourth, “null”

category.

For example, one student marked one external conviction response, one empirical response,
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two deductive responses, and one null response. Her model state is represented as the vector

u =



√
pext

√pemp

√
pded

√
pnul


=



√
1/5√
1/5√
2/5√
1/5


,

where pext , pemp, pded , and pnul represent the calculated probabilities that the student’s response

falls into the external conviction category, empirical category, deductive category, or “null” cate-

gory, respectively.

The above vector calculation was done exactly according to Bao and Redish’s description.

However, this calculation depends on the assumption that students may only mark one response

for each item on the questionnaire. It is reasonable to suppose that students may, simultaneously,

find more than one proof to be convincing. For this reason, students were also asked to mark all of

the proofs they found to be convincing for each theorem.

For this second method of computing a student’s model state vector, each probability was

calculated by dividing the number of proofs found to be convincing from each category by the total

number of proofs the student marked as convincing. In this way, the probabilities for each student

total 1, and each student’s vector has equal weight, whether they found a large number of proofs

to be convincing or a small number to be convincing. This method of computing probabilities for

multiple-response data is most consistent with Bao and Redish’s description of model analysis.

As an example, another student marked five external conviction responses, two empirical re-

sponses, three deductive responses, and one null response (eleven total). His model state is repre-

sented as

u =



√
5/11√
2/11√
3/11√
1/11


.
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These model state vectors will be used as a data point for each student. In the next step, these

data will be combined in order to analyze the models held by the community of students.

2.4 Step 4

(iv) The individual student model states are used to create a “density matrix,” which

is then summed over the class. The off-diagonal elements of this matrix retain in-

formation about the confusions (probabilities of using different models) of individual

students. (Bao & Redish, 2006)

For each model state vector, a density matrix is created by taking the outer product of the model

state vector with itself. That is, for a model state vector, u,

u =



√
pext

√pemp

√
pded

√
pnul


,

the density matrix D is given by

D = u⊗uT

D =



pext
√pext · pemp

√
pext · pded

√
pext · pnul

√pemp · pext pemp
√pemp · pded

√pemp · pnul

√
pded · pext

√pded · pemp pded
√

pded · pnul

√
pnul · pext

√pnul · pemp
√

pnul · pded pnul


.

Notice that the diagonal entries of the density matrix are simply the probabilities calculated in

step (iii). These entries are the squares of the entries in the original vector; this was the reason

for using the square roots of the probabilities to create the model state vector in the previous step.

Also notice that the off-diagonal entries are non-zero only when a student has responses from more

than one category of proof scheme. Thus, when a student is inconsistent, those inconsistencies are
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preserved by the off-diagonal entries of the matrix.

To study a large number of data points, the density matrices will be averaged together: that

is, the entries in each position are added together and divided by the total number of data points.

Bao and Redish refer to the resulting matrix as the class density matrix. The diagonal elements of

the class density matrix give the average of the probabilities that a student response falls into each

category of proof scheme.

The class density matrix yields valuable information regarding the inconsistencies of students.

As noted earlier, any time a student uses more than one category of proof scheme, than inconsis-

tency is preserved by the off-diagonal elements. When the class density matrix is created, non-zero

off-diagonal elements indicate that some of the students have responded using more than one cate-

gory of proof scheme. When the off-diagonal elements are large, the class density matrix indicates

a high degree of inconsistency in the students. Bao and Redish suggest that an off-diagonal ele-

ment is sufficiently “large” when the off-diagonal element exceeds half of the product of the square

roots of the two corresponding diagonal elements.

2.5 Step 5

(v) The eigenvalues and eigenvectors of the class density matrix give information not

only how many students got correct answers, but about the level of confusion in the

state of the class’s knowledge. (Bao & Redish, 2006)

The class density matrix contains information on the students’ responses to the questionnaire.

An eigenvalue decomposition allows for trends in the data to be identified. In particular, Bao and

Redish identify two situations in which an eigenvalue decomposition is particularly useful. First,

if a large majority of the students have similar model states, the eigenvalue decomposition will

yield one large eigenvalue, and the eigenvector associated with this value will be indicative of the

model state vectors held by the majority. In this context, an eigenvalue is considered “large” if it

is greater than 0.65. Second, if there are two subgroups of students whose collective model state

vectors are close to orthogonal, the eigenvalue decomposition will yield two dominant eigenvalues,
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and the associated eigenvectors will be indicative of the model state vectors held by each subgroup

of students. In this way, the eigenvalue decomposition allows for information about the class as a

whole to be extracted from the data.

3 Results of a Pilot Study

In order to study the utility of model analysis in analyzing proof schemes, a small pilot study was

conducted. This study was conducted in two sections of an introductory proof writing course at a

large public university in California. The questionnaire described in Step 2, above, was distributed

to students in both sections at the beginning and again at the end of the semester. A total of

thirty-four students completed the questionnaire at both times.

The model analysis yields class density matrices and eigenvalue decompositions. Recall that in

Step 3 of the model analysis, two data sets were created: the first data set uses responses in which

only the most convincing proof was marked by the student, and the second uses responses in which

the student marked all of the proof he or she found to be convincing. I will refer to the first data

set as the “single-response” data set, and the second as the “multiple-response” data set.

The results of the model analysis using the single-response data set are below:

Pre-test class density matrix:



0.2176 0.0982 0.2499 0.0485

0.0982 0.1353 0.1224 0.0420

0.2499 0.1224 0.5647 0.0774

0.0485 0.0420 0.0774 0.0824



Post-test class density matrix:



0.2059 0.0176 0.2851 0.0083

0.0176 0.0176 0.0185 0

0.2851 0.0185 0.7118 0.0751

0.0083 0 0.0751 0.0588
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Pre-test eigenvalue decomposition:

0.7497 0.1262 0.0690 0.0552

0.4550 0.4209 0.6655 0.4158

0.2505 0.7097 −0.2361 −0.6147

0.8419 −0.4882 −0.1699 −0.1552

0.1465 0.2845 −0.6874 0.6520

Post-test eigenvalue decomposition:

0.8472 0.0923 0.0389 0.0157

0.4060 0.8006 0.4153 0.1472

0.0289 0.1121 0.1056 −0.9876

0.9089 −0.3113 −0.2749 −0.0381

0.0908 −0.4995 0.8607 0.0380

The model analysis provides a large amount of information, so some interpretation is necessary.

The diagonal entries of the pre-test class density matrix show that even at the beginning of the

course, the student’s model space vectors were largely in the direction of the deductive category

of proof scheme, but that there was a significant element of external conviction proof scheme

in the model space vectors as well. Furthermore, the off-diagonal entry “0.2499” shows that a

number of students were inconsistent; these students marked both external conviction responses

as well as deductive responses. The off-diagonal entry “0.0982” also exceeds half the product of

the square roots of the corresponding diagonal entries, indicating that a portion of students marked

both external conviction and empirical responses to the questionnaire.

However, by the end of the semester, very few students marked empirical responses at all,

as indicated by the diagonal entry corresponding to the empirical category. The strength of the

deductive category increases, but there was very little change in the level of external conviction

responses. In fact, there was a slight increase in the entry showing student inconsistencies between

the external conviction and deductive categories.

The eigenvalue decompositions show similar information about the class. Both the pre-test and

post-test show that the class largely had a single dominant eigenvector, indicating that a majority of

students had similar model state vectors, with a large entry in the deductive category and a smaller

entry in the external conviction category.

The results from the multiple-response data are similar, except for a higher rate of empirical
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responses in both the pre-test and post-test. The class density matrices and eigenvalue decomposi-

tions are below:

Pre-test class density matrix:



0.2146 0.1946 0.2905 0.0528

0.1946 0.2221 0.2985 0.0489

0.2905 0.2985 0.5182 0.0608

0.0528 0.0489 0.0608 0.0450



Post-test class density matrix:



0.2254 0.1204 0.3240 0.0254

0.1204 0.1168 0.1932 0.0152

0.3240 0.1932 0.6140 0.0640

0.0254 0.0152 0.0640 0.0438



Pre-test eigenvalue decomposition:

0.8956 0.0553 0.0271 0.0220

0.4606 0.4680 0.0772 0.7503

0.4710 0.3450 −0.6864 −0.4337

0.7445 −0.5897 0.2896 −0.1190

0.1088 0.5606 0.6626 −0.4846

Post-test eigenvalue decomposition:

0.8724 0.0592 0.0386 0.0298

0.4720 0.4397 0.4927 0.5840

0.2888 0.6547 −0.6820 −0.1510

0.8287 −0.4347 0.0116 −0.3524

0.0838 −0.4348 −0.5403 0.7156

These results show that at the beginning of the semester, students marked empirical responses

with almost equal probability to external conviction responses. Furthermore, there was a high

level of interaction between the empirical category and deductive category, between the external

conviction and empirical categories, and between the external conviction and deductive categories.

This shows an extremely high level of inconsistency in student responses.

A comparison of these results to those of the single-response data shows that the empirical

category is stronger in the multiple-response results. This indicates that students were willing to

mark empirical responses as convincing, but not as the most convincing argument. The eigenvalue

decomposition shows a similar increase in the empirical direction. Also, the largest eigenvalue is

quite large in both the pre- and post-test results.
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4 Discussion

While the results of the pilot study are interesting, caution should be taken when interpreting the

results. Because the questionnaire has not been validated through student interviews, the results

should not be considered to be an accurate description of the proof schemes used by the students.

In particular, the high level of inconsistency indicated by the multiple-response results suggests

that the questionnaire may not accurately reflect student proof schemes. Instead, the results should

be thought of as a sort of “proof of concept” for model analysis. That is, the results show that

model analysis can be a valuable way to examine the proof schemes held by students.

The students’ responses to a questionnaire like the one used in this study can be analyzed in

many other, more traditional ways. For instance, the pre- and post- data can be analyzed to see if

there are any significant changes in the rate of responses in any of the categories of proof scheme.

What model analysis adds is the ability to analyze students inconsistencies. The results of this pilot

study show a high level of inconsistency in students, particularly between the external conviction

and deductive categories of proof scheme, which is not captured by simpler quantitative analysis.

The eigenvalue decompositions make a significant contribution as well. In the results of this

pilot study, the dominant eigenvectors indicate that the class had a single dominant understanding

of proof schemes, rather than one group holding deductive proof schemes and a second group hold-

ing external conviction proof schemes. The ability to distinguish between a uniform community

of students and a split community is very valuable, and is not captured by traditional statistical

methods.

In order to conduct a proper model analysis of proof schemes, a questionnaire needs be de-

veloped and validated. Once we can be sure that the questionnaire accurately reflects student

thought, model analysis will allow for a new way of capturing important information about the

proof schemes of students.

It should be noted that the method of model analysis, as described here, can only measure

students responses to proofs written by others, rather than the proofs that students write themselves.

That is, it is possible to use model analysis to measure the proof schemes that students use when
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ascertaining the validity of a proof, but not when trying to persuade another of the truth of a

theorem.

Even with this limitation, model analysis appears to be a valuable method for analyzing student

proof schemes. When a reliable instrument for gathering data is available, model analysis will give

valuable insights into the proof schemes held by students.
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