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Abstract: We discuss three ways to coordinate descriptions of mathematical knowledge with 

psychometric models (i.e., statistical models for tests) when building assessments. The three 

examples are sequenced to move from more coarse-grained to more fine-grained descriptions of 

mathematical knowledge and to move from models that simply scale to those that both scale and 

classify. We use tests on rational number developed for in-service middle school teachers to 

illustrate each combination. Our primary goal is to describe and compare several approaches to 

assessment that can inform research in undergraduate mathematics education as well, not to 

describe results of research on teachers in detail. 

 

In this paper we examine different ways that the research base in mathematics education 

can be leveraged to build tests that can be used with large samples. Much of the research on 

mathematical thinking has relied on case-study methods that provide insight into how individuals 

access and use knowledge in the course of reasoning about problem situations. The time and 

effort required to use these methods renders them impractical with large samples. Large-scale 

tests, especially multiple-choice tests, are relatively easy to administer to large samples, but are 

usually insensitive to aspects of reasoning that case-study work has identified as essential for 

understanding what people know and can do mathematically. Recent developments in the fields 

of mathematics education and psychometrics, however, are creating new opportunities for 
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building innovative assessments that can be used with large samples and that are more sensitive 

to aspects of reasoning highlighted in case-study work.  

We illustrate three approaches to coordinating descriptions of mathematical knowledge 

with psychometric models using multiple-choice tests developed for in-service middle school 

teachers. We focus on tests for teachers because several research projects have been coordinating 

descriptions of knowledge with psychometric models in this area. All of the projects are 

investigating knowledge that teachers need to enable their students’ learning, and all of the tests 

include items about rational numbers as treated in the middle school. The three examples are 

sequenced to move from more coarse-grained to more fine-grained descriptions of mathematical 

knowledge and to move from psychometric models that scale based on scores to those that both 

scale and classify teachers into groups. The examples illustrate the range of possibilities for 

working at the intersection of mathematics education and psychometrics. Our primary goal in 

this report is the coordination of descriptions of knowledge with psychometric models. Rather 

than describe results of research on teachers in detail, we focus on approaches to assessment that 

can inform research in undergraduate mathematics education as well. 

Example 1 (Using Item Response Theory models to measure “amounts” of 

mathematical knowledge): The first and best known of our three examples comes from the 

work of Ball and colleagues (e.g., Ball & Bass, 2000; Ball, Thames, & Phelps, 2008; Hill, Sleep, 

Lewis, & Ball, 2007) who have developed a construct termed mathematical knowledge for 

teaching (MKT). In so doing, they have refined Shulman’s (1986) conceptualization of teachers’ 

knowledge in terms of subject-matter knowledge, pedagogical knowledge, pedagogical content 

knowledge, and other categories. One main refinement has been the further subdivision of 

subject-matter knowledge into common content knowledge and specialized content knowledge. 
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Common content knowledge is knowledge of mathematics that many educated adults have and 

use in a variety of professions—for instance, knowledge of procedures for computing with 

fractions. Specialized content knowledge is knowledge of mathematics that is used specifically in 

the work of teaching—for instance, knowledge that would support teachers’ efforts to analyze 

students’ novel approaches to computations and judge whether those approaches would 

generalize to other examples.  

Ball and colleagues have also developed several multiple-choice instruments for 

elementary and middle grades teachers. Much of their effort has gone into developing items that 

measure common content knowledge and specialized content knowledge as defined above. In 

one report, Hill (2007) described a multiple-choice instrument for middle school teachers 

(hereafter referred to as the Learning Mathematics for Teaching, or LMT, instrument) designed 

to measure common content knowledge and specialized content knowledge in number and 

operations and in prealgebra/algebra. When describing the content of the LMT instrument, Hill 

reported: 

The number and operation category includes whole number operations, rational 

number characteristics and operations, integers, ratio and proportion, percent, and 

radicals. In the area of prealgebra/algebra, we included items designed to measure 

teachers’ knowledge of linear, quadratic, and exponential functions; algebraic 

expressions and simple equation solving; inequalities; an absolute value with 

unknowns. (Hill, 2007, p. 99).  

Hill also reported an item domain map with four cells reproduced below in Table 1 (from Hill, 

2007, p. 100). The numbers in Table 1 indicate the number of items on the LMT test for each cell 

of the matrix. In preparation for the later part of our report, we point out that a large swathe of 
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mathematics has been packed into each of the four cells. For this reason, we characterize this 

approach as one based on describing broad categories of knowledge. 

TABLE 1: Item domain map for the MKT/LMT instrument 

 Common Content 

Knowledge 

Specialized Content 

Knowledge 

Total 

Number & Operations 22 22 44 

Prealgebra/Algebra 17 31 48 

Total 39 53 92 

 

Ball and colleagues have coordinated broad categories of knowledge with traditional item 

response theory (IRT) models (e.g., Hill, 2007; Hill, Ball, & Schilling 2008; Hill, Schilling, & 

Ball, 2004). In so doing, they have measured overall “amounts” of knowledge that teachers 

possess either within one or across several such categories. For our purposes here, discussing the 

most basic item response theory model suffices. (Item response theory encompasses a family of 

related models.)  

Using traditional item response theory models, these researchers administer tests like the 

one described by Hill (2007) and discussed above. Responses are scored dichotomously (e.g., 1 

for a correct response and 0 for an incorrect response). The data are then used to estimate a set of 

parameters that make the observed responses most likely. The parameters include an “ability” 

parameter for each teacher and a “location” parameter for each item. The ability parameters, , 

are standard scores describing the overall “amount” of mathematical knowledge possessed by 

each teacher. The scale is centered at 0:  = 0 can be interpreted to mean that teacher j 

possesses the average amount of knowledge. Teachers with above average amounts of 

knowledge have positive ability (  > 0). Teachers with below average amounts of knowledge 
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have negative ability (  < 0). Units of measurement are in standard deviations. IRT models are 

based on scaling because they order teachers along a common scale represented by the number 

line. For instance, these models allow researchers to say that a given teacher is a certain number of 

standard deviations above or below the mean on the number and operations scale or along the 

prealgebra/algebra scale. 

The location parameters describe the relative difficulty of each item. Each item has its 

own item characteristic curve that models the probability that teachers will get the item correct as 

a function of their “ability,” as represented by the s. IRT models use one of several different 

forms for these functions. For the Rasch model (a one-parameter logistic model), the functions 

are of the following form:  

 

€ 

Pi(θ) =
1

1+ exp(–(θ − bi))
  (1) 

The location parameters  (also called the difficulty parameters) describe points on the ability 

scale. The subscript, i, indicates that each item has its own location. If a teacher has ability equal 

to the difficulty of a particular item, , then  = 0.5. Thus, an item location parameter of –1 

(see Figure 1) means that, according to the model, a teacher with ability one standard deviation 

below the population mean (θ = –1) has a 50-50 chance of answering the item correctly. A 

teacher with more ability (θ > –1) would have a better than 50-50 chance of answering the item 

correctly, and so on. From this it follows that harder items have higher locations on the ability 

scale, and easier items have lower locations on the ability scale. (For the interested reader, 

Hambleton, Swaminathan, and Rogers, 1991, provide a good introduction to IRT.) The third 

example that we discuss in a subsequent section of the paper uses very different functions to 

model the probability that a teacher will answer an item correctly.  
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Figure 1. A Rasch model item characteristic curve with a location parameter of – 1. 

Example 2 (Using mixture IRT models to detect systematically different 

understandings of mathematics): The second example comes from the on-going NSF-funded 

research project called Does it Work?: Building Methods for Understanding Effects of 

Professional Development (DiW). Orrill is principal investigator; Izsák and Cohen are co-

principal investigators. One main difference between this project and the MKT/LMT work 

summarized above is that we examine a narrower slice of mathematical content in greater detail. 

At the center of the DiW project is a professional development course designed to help in-service 

middle grades teachers develop their capacities to reason about arithmetic with fractions, 

decimals, and proportions that are embedded in problem situations—for instance, as drawn 

length or area quantities. Numerous studies have reported that teachers struggle to justify 

numeric procedures in this domain (e.g., Ball, 1990; Borko et al., 1992; Ma, 1999; Sowder, 

Philipp, Armstrong, & Schappelle, 1998; Tirosh, 2000; Tirosh & Graeber, 1990).  

An essential mathematical issue that surfaces when numbers are used to describe physical 

quantities is that of referent units. To illustrate, consider the following two problems:  
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1. Carrie has run 1/2 mile. If she walks another 1/3 mile, how far has she traveled? 

2. John has 1/2 cup of flour for baking cookies. If each recipe requires 1/3 cup of 

flour, how many recipes can he make?  

In the first problem, 1/2, 1/3, and the answer, 5/6, all refer to the same unit: one mile. In the 

second problem, 1/2 refers to the cups of flour John has, 1/3 refers to the cups of flour required 

per recipe, and the answer, 3/2, refers to the number of recipes that he can make. In contrast to 

Problem 1, each number in Problem 2 refers to a different unit. A main goal for the professional 

development at the center of the DiW project was to help teachers improve their capacity to 

reason with referent units consistently and appropriately across situations.  

We emphasize that, in contrast to broad categories such as common content knowledge 

and specialized content knowledge of number and operations, we focused on a more fine-grained 

understanding when emphasizing referent units. Furthermore, we attended explicitly to the fact 

that knowledge use is context sensitive: A teacher might reason with referent units appropriately 

in one situation but not another. Thus, a valid measure requires providing teachers with 

opportunities to reason about referent units in several different situations and examining their 

performance across those situations. Our attention to context sensitivity is reflected in the 

domain map we used to develop the professional development course (see Table 2).  

First, we divided the content into two large categories, fractions and decimals. We then 

subdivided these categories into two further categories based on referent units for numbers. The 

first category includes those tasks where the referent unit is the same for all fractions or decimals 

(similar to Problem 1). These include tasks that involve comparing sizes (or ordering), reasoning 

about parts of one fixed whole, and adding and subtracting (white cells). Tasks in the second 
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category include those where different numbers refer to different referent units (similar to 

Problem 2). These include multiplication, division, and ratio and proportion tasks (gray cells).  

TABLE 2: Item domain map for the Does it Work? instrument 

  Numeric Verbal Drawing 

Compare/Part Whole 2 7 1 

Addition and 

subtraction 

1 4 (2) 

Multiplication 2 2 2 (5) 

Division 1 4 (3) 

Fr
ac

tio
ns

 

an
d 

Pe
rc

en
t 

Ratio and proportion 1 1 (4) (4) 

Compare/Place Value 1 (1) - 5 

Addition and 

subtraction 

1 - - 

Multiplication 1 - 4 D
ec

im
al

s  

Division 1 4 - 

 

We then crossed the nine rows with three columns. For each row, we considered items 

that were about numeric methods, items in which numbers referred to quantities presented 

verbally (i.e., word problems), and items in which numbers referred to quantities presented 

visually (i.e., drawings of lengths, areas, or volumes). Originally we planned to use the LMT 

instrument reported by Hill (2007), but it was not adequately aligned with our course. With the 

generous permission of Hill, Ball, and colleagues we constructed our own assessment by 

combining items from the LMT instrument with items that we developed. Table 2 shows the 

distribution of the 64 items on the DiW instrument. The numbers indicate the number of items in 

each cell. Numbers without parentheses count items from the LMT instrument (45 in all), and 

numbers in parentheses count items developed for DiW (19 in all). In contrast to the LMT 

instrument (see Table 1), the DiW instrument takes a narrower slice of mathematical content and 
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deliberately builds in multiple, diverse contexts in which teachers can reason about referent 

units.  

Ms. Lovejoy gave her students the following problem to solve: 

The distance from John’s to Susan’s house is 2/3 of a mile. If he started out from his 

house and has 1/4 of a mile still to go, how far has he already walked?  

She had students use the number line so that they could draw the lengths. Which of the 

following diagrams shows the solution? Assume all intervals are subdivided equally.  

 
a) 

 

b) 

 

c) 

 

d) 

Figure 2. A DiW subtraction item. 

Figure 2 shows a demonstration item similar to one we developed for the DiW test 

(actual test items are secure). In Table 2, this item would be in the addition and subtraction row 

and in the drawing column. The correct response is (d). A teacher who chose (a) or (b) would 

likely be unclear about the referent unit for 1/4: (a) shows 2/3 minus 1/4 of 2/3, and (b) shows 

2/3 minus 1/4 of 1/3. A teacher who re-expressed 1/4 as 3/12 would still have to choose between 

(c) and (d) because both choices show 3 parts removed from an interval of length 1/3. To 

discriminate between these choices, a teacher could subdivide the unit interval using the partition 

of the second interval as a guide. In case of (c), the result is 3 groups of 5 pieces that create 15ths. 
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In case of (d), the result is 3 groups of 4 pieces that create 12ths. Thus, choice (d) is consistent 

with identifying the correct referent unit for 1/4 and subdividing intervals appropriately. Notice 

that selecting the correct choice requires attending not only to referent units but also to 

multiplicatively nested units. We will return to this point when discussing the third approach to 

coordinating descriptions of mathematical knowledge with psychometric models.  

We coordinated our description of mathematical knowledge that emphasized context 

sensitive attention to referent units with a psychometric model that combines classification with 

the Rasch model. In particular, the mixture Rasch model allows one to ask whether, when 

estimating ability and location parameters as discussed above, the best model fit occurs when all 

teachers are treated as a single group, two groups, three groups, etc. The model detects groups 

based on homogeneities in response patterns. Different patterns of correct and incorrect 

responses are thought to correspond to different underlying cognitive strategies (Bolt, Cohen, & 

Wollack, 2001). As the name suggests, for each item the mixture Rasch model fits a function of 

the form shown in Equation 1 to each group. Classification occurs when the model assigns to 

each teacher a probability that he or she is a member of a particular group. Scaling occurs when 

the model locates a teacher’s ability on a scale centered at 0 and measured in standard deviations. 

We administered the DiW test to a sample of 201 teachers spread over 13 school districts 

in 4 states, used the mixture Rasch model to analyze our data, and found two groups (Izsák, 

Orrill, Cohen, Brown, 2008). Simply knowing that the best model fit occurred when teachers 

were classified as members of one of two groups did not tell us by itself what underlying 

differences in reasoning might account for those groups. Therefore, we conducted further 

analyses of raw test response data for the complete sample and of interview data from a subset of 

16 teachers. We found that one group contained a much higher concentration of teachers who 



Psychometric Models and Assessments of Teacher Knowledge    11 

reasoned about referent units appropriately across a range of situations. (Items that made 

differences between the groups particularly visible were located in several different white and 

gray cells in Table 2.) Thus, group membership provided good indication of a teacher’s capacity 

to reason about referent units. This is a first step toward squeezing out more fine-grained 

information about teachers’ reasoning with numbers as quantities than is possible when using 

traditional IRT models to measure overall “amounts” of knowledge within broad categories such 

as common content knowledge and specialized content knowledge.  

Example 3 (Using Diagnostic Classification Models to assess components of 

reasoning): The third example comes from a new NSF-funded project called Diagnosing 

Teachers’ Multiplicative Reasoning (DTMR). Izsák is principal investigator, and the other 

authors of this report are co-principal investigators. The mathematical content at the center of 

this project is very similar to that of the DiW project. In particular, we are concentrating on 

reasoning about fractions, decimals, and ratios embedded in problem situations, oftentimes as 

drawn length or area quantities. This time we are coordinating a more elaborated description of 

fine-grained rational number knowledge with Diagnostic Classification Models (DCMs).  

DCMs are a family of recently developed models that are being actively researched by 

psychometricians. Some DCMs combine scaling with classifying, others classify only. What 

distinguishes DCMs from the psychometric models discussed above is that DCMs provide a 

“profile” of “attributes” that a person has “mastered.” A main point is that the profiles generated 

by DCMs provide substantially more information than other psychometric models about 

teachers’ fine-grained attributes. The following paragraphs explain how we interpret the terms 

“profile,” “attribute,” and “mastery” in our work.  



Psychometric Models and Assessments of Teacher Knowledge    12 

When using DCMs to construct multiple-choice tests, content experts first specify 

“attributes” which are components of reasoning in a given domain. Test question are then 

constructed around different subsets of attributes so that any given response, whether correct or 

incorrect, provides information about those attributes to which the teacher may be attending. 

Responses across all items on a test provide information about whether a teacher is or is not a 

“master” of each attribute. We interpret the statement that a teacher is a master of a particular 

attribute to mean that the teacher consistently uses that component of reasoning appropriately 

across situations. This is consistent with a description of knowledge that emphasizes context 

sensitive use of fine-grained understandings. Notice that because each attribute serves as a 

dichotomous categorical variable (a person either is or is not a “master” of that attribute), a test 

built around K attributes defines 2K groups to which a teacher might possibly belong. Each group 

corresponds to a different “profile” that describes those attributes that teacher has and has not 

“mastered.” Thus, DCMs classify teachers in ways that provide information about multiple 

strengths and weaknesses in understanding.  

In our application of DCMs, we are using as attributes several components of reasoning 

that have been identified as important in the research base on students’ and teachers’ thinking 

with fractions, decimals, and ratios. Three of these attributes are: 

Norming: Establishing standard units for measurement from alternate choices. 

Referent Units: Attending to the units to which numbers refer. 

Nested Units: Constructing and interpreting multi-level unit structures. 

We are in the process of developing a pool of items similar in spirit to the item shown in Figure 2 

where each answer choice provides information about these and other attributes to which the 

teacher is attending. The final pool of test items will be summarized by what is called a Q-
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matrix. Columns in the matrix correspond to attributes, rows correspond to items. The Q-matrix 

is completed by using a 1 to indicate that a given item requires a particular attribute and a 0 to 

indicate that a given item does not require that attribute. Figure 3 shows a hypothetical Q-matrix. 

Item 1 could be the fraction subtraction item shown in Figure 2 because, as discussed above, 

discriminating between choices (c) and (d) requires reasoning about referent units and nested 

units. Item 2 and Item 3 illustrate the feature that each item can load onto different combinations 

of attributes. 

 Norming Referent 
Units 

Nested 
Units 

Item 1 0 1 1 

Item 2 1 1 0 

Item 3 1 0 1 

…    

Item i 

€ 

qi1 

€ 

qi2 

€ 

qi3 

…    

Figure 3. A Q-matrix with three attributes. 

As mentioned above, diagnostic classification models contain a family of related models. 

Once again, we limit our discussion to one model. As in the case of item response theory, tests 

are administered to teachers and responses are scored dichotomously. The data are then used to 

estimate group membership for each teacher (that is probabilities are assigned to each teacher 

that describe how likely that teacher is a member of a particular group). In our example with 

three attributes, there are eight possible groups that correspond to having mastered each possible 

combination of norming, referent units, and nested units. Thus, classification occurs according to 

the attributes built into the test.  
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One important feature of the DCM approach is that the probability of a particular teacher 

getting a specific item correct is no longer modeled by a function of a continuous independent 

variable, θ. Instead, the probability is conditional on the set of attributes that the teacher posses. 

Equation 2 shows how one diagnostic classification model (called the reduced re-parameterized 

unified model, or reduced RUM; DiBello, Stout, & Roussos, 2007) does this:  

  (2) 

Equation 2 says that the probability that person j gets item i correct depends on , where  is 

a k-tuple of 0’s and 1’s describing which attributes the person has mastered or, in other words, to 

which group he or she belongs. The probability is expressed as a product of  (the probability 

that a person with mastery of all the required attributes gets the item correct) and “penalties” . 

Notice that exponents of these penalties are either 0 or 1, and they are one when the item requires 

an attribute ( ) but the person does not have that attribute ( ). Figure 4 shows a graph 

of a hypothetical function that could model the probability of getting the fraction subtraction 

item correct (see Figure 2). Recall that this is Item 1 in the Q-matrix (see Figure 3). We 

generated this function using the following values: 

€ 

π1
*  = 0.8, 

€ 

r12 = 0.5 (penalty for not 

“mastering” referent units), 

€ 

r13 = 0.6 (penalty for not “mastering” nested units). The function is 

hypothetical in the sense that we have not estimated any of the parameters in Equation 2 by 

applying the reduced RUM model to an actual dataset.  
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Figure 4. A hypothetical reduced RUM model item characteristic curve. 

If we are able to develop a pool of multiple-choice items that effectively separate teachers 

into different groups that correspond to distinct profiles, we will be able to squeeze significantly 

more information about strengths and weaknesses in teachers’ capacities to use things like 

norming, referent units, and nested units than we were able to achieve with the mixture Rasch 

model. Such information would be very useful for tailoring and focusing goals for professional 

development.  

Implications for Research in Undergraduate Mathematics Education: The examples 

presented here demonstrate that there are a variety of options for combining descriptions of 

mathematical knowledge with psychometric models. Different options are likely to be useful for 

different kinds of research questions. Measuring overall “amounts” of common content 

knowledge and specialized content knowledge using item response theory models is useful for 

research that informs educational policy and the design of teacher education programs. This 

same approach, however, is likely to be insensitive to growth and change that might occur in 

teachers’ knowledge during a professional development course. For this purpose, the second and 

third approaches hold more promise. Whether this promise can be realized hinges on the ability 
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of researchers to harness more recently developed psychometric models, such as the diagnostic 

classification models.  

Although the examples we have discussed are all based on multiple-choice tests for 

teachers, neither the item format nor the population of examinees are required. The psychometric 

models only require a reliable scoring system and could be used with multiple-choice or 

constructed-response items. What is required to extend the classification approaches presented 

here to research in undergraduate mathematics education is a research base that allows 

researchers to identify key components of reasoning in a particular content area. Finally, 

although we are working with very fine-grained components of reasoning such as norming, 

referent units, and nested units, it is possible that the classification models could be used in 

conjunction with attributes at a somewhat coarser grain-size. The essential criteria is that, 

whatever the grain size, an item pool can be developed that separates examinees into different 

groups each with a distinct profile.  
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