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Abstract 

In this paper, we briefly describe a local instructional theory that has resulted from a series of 

design experiments focused on the quotient group concept. This local instructional theory will 

consist of 1) a generalized instructional sequence intended to support the guided reinvention of 

the quotient group concept and 2) a theoretical and empirical rationale for this generalized 

instructional sequence. We will describe the design experiments that informed the development 

of the instructional sequence and, in order to illustrate and motivate the local instructional 

theory, we will describe key aspects of the reinvention process in terms of the participating 

students’ mathematical activity.  

 

Introduction 
 

This research reported here is part of a larger project that has as its goal the creation of an 

innovative research-based inquiry-oriented curriculum for abstract algebra. Here we will focus 

on the research and design work that supported the development of the quotient group unit of the 

curriculum. Our primary purpose will be to describe the resulting local instructional theory 

(Gravemeijer, 1998) for supporting the guided reinvention of the quotient group concept.  

It has been observed that students struggle with the quotient group concept (Dubinsky, 

Dautermann, Leron, and Zazkis, 1994). Burn (1996) noted that the quotient group can be seen in 

the elementary example of even/odd parity which suggests that in some sense the concept may 



be accessible to students at least in an informal sense. Of course it has also been noted that 

“seeing the general in the particular’ is one of the most mysterious and difficult learning tasks 

students have to perform.” (Mason & Pimm, 1984). The goal of our research was to develop 

instruction that would support students in reinventing the quotient group concept by building on 

their intuitive notions of parity.  

 

Theoretical Perspective 
 

This research was influenced by the instructional design theory of Realistic Mathematics 

Education (RME) in three ways. First, the primary goal of the project is to develop an approach 

to the teaching of the quotient group concept that is consistent with the RME idea of guided 

reinvention. Gravemeijer and Doorman (1999) explain that the idea of guided reinvention “is to 

allow learners to come to regard the knowledge that they acquire as their own private knowledge, 

knowledge for which they themselves are responsible” (p. 116). Second, our analysis of the 

participating students’ mathematical activity and our design efforts were guided by 

Gravemeijer’s (1999) description of the ingredients of a local instructional theory. In particular, 

we worked to: 

1) Identify student ideas and strategies that anticipated the quotient group concept. 
2) Learn how these ideas and strategies could be evoked. 
3) Learn how these ideas and strategies could be leveraged to support the reinvention of the 
quotient group concept.  
 

Additionally, our research and design work was influenced by two RME related 

theoretical ideas. The first is the emergent models design heuristic from RME. According to 

Gravemeijer (1999) emergent models are used in the RME approach to promote the evolution of 

formal knowledge from students’ informal knowledge. The idea is that the model initially 

emerges as a model-of students’ activity in experientially real problem situations and the model 



later evolves into a model-for more formal activity. The second specific RME related theoretical 

idea that guided our work is Lakatos’ (1976) framework for mathematical discovery, the process 

of proofs and refutations. This framework was developed to explain historical processes of 

mathematical discovery and was adapted by Larsen & Zandieh (2007) to explain processes of 

guided reinvention in undergraduate mathematics education. Briefly, the process of proofs and 

refutations is one in which conjectures are revised (and concepts developed) as proofs are 

analyzed in light of counterexamples. Larsen & Zandieh argued that this framework could also 

serve as a suite of instructional design heuristics. These two design heuristics were used to 

develop initial conjectures as to how the quotient group concept might be reinvented.  

We conjectured that the quotient group concept could emerge as a model-of the students’ 

informal mathematical activity as they searched for parity in the group D8 (the symmetries of a 

square). We expected that the students could then further mathematize this activity by first 

considering whether the even/odd partition they found formed a group in some sense, and then 

by generalizing to more complex groups of partitions (e.g. partitions into four subsets consisting 

of pairs of elements). Then as the students analyzed various partitions we conjectured that, in 

light of examples that did and did not work, the students might develop conjectures as to what 

conditions are needed to make a partition function as a group. Then through the process of proofs 

and refutations, we imagined that the concept of normality (among others) might be reinvented 

as a condition needed to prove a given partition formed a group.  

 

Relationship to the Research Literature 

  This research fits within a growing body of research that is exploring the utility of RME 

for supporting the learning of undergraduate mathematics. For example, there are ongoing RME-

guided instructional design projects at the undergraduate level in the areas of geometry (Zandieh 



and Rasmussen, 2007) and differential equations (Rasmussen and King, 2000). Like these 

projects, the present project aims to contribute specific knowledge about the learning and 

teaching of particular mathematical topic (quotient groups), and contribute to the ongoing 

development of RME. For example, our findings suggest that the process of proofs and 

refutations might represent a productive approach by which to support the transition from model-

of to model-for. In this case, we will see that a process akin to that described by Lakatos (1976) 

supported students in fleshing out the details of their emerging quotient group concept.  

 

Research Method 

  The research reported here consists of a series of design experiments. Analyses of data 

collected during each experiment informed the ongoing development of the emerging local 

instructional theory and the design of specific instructional tasks. Here we focus on the first two 

phases of the research and design cycle:  

o The first experiment was conducted with a pair of undergraduate students. We met with 

these students for ten 60-90 minute sessions.  

o The second experiment consisted of two implementations of the emerging instructional 

sequence in a group theory course, one taught by a research mathematician.  

The resulting data corpus is being subjected to multiple cycles of iterative analysis. One of the 

purposes of this analysis is to further refine and articulate the local instructional theory for the 

guided reinvention of the quotient group concept.  

 

Results 

In this section we describe five key steps in the reinvention process and illustrate these 

with examples from the design experiment data. These five steps constitute the framework for 



our local instructional theory and represent a generalized instructional sequence by which the 

concept of quotient group might be reinvented by building on students’ understanding of parity.  

 

Step 1: Identifying Evens and Odds in a Finite Group 

 In each of the design experiments, the first step in the reinvention process was the 

identification of something like even/odd parity in the group of symmetries of a square (a group 

that was very familiar to the participating students). The students (Rick and Sara) who 

participated in the first design experiment had developed their own set of symbols for the 

symmetries of a square, using additive notation: {0, R, 2R, 3R, F, F+R, F+2R, F+3R}. Here R 

represents a 90-degree clockwise rotation and F represents a flip across a vertical axis.  

Rick:  Evens are those moves that added to themselves give the moves in that same 
group that we called even. Odds are moves when we add them to other [moves] in the 
odd group we get evens.  
 
Researcher: So which ones are the odds and which ones are the evens?  
 
Rick:  The evens are 0, 2R, F, and F+2R. The odds are R, 3R, F+R, and F+3R.  

 

Note that Rick describes “evenness” in terms of the operation and not in terms of the form of 

individual elements. This is important because it highlights the group structure of the resulting 

partition, setting the stage for generalizing to more complex groups of subsets. The realization 

that the even/odd partitions in fact form groups whose elements are subsets is a key. In the 

following excerpt we see Sara and Rick coming to terms with this idea. (During this interaction 

the students have two operation tables in front of them, one was the full table for D8 and the 

other was a 2x2 table representing the partition of D8 into flips and rotations. See Figure 1.) 



 

 

Figure 1. A 2x2 flip/rotation table and the full 8-element operation table for D8.  

 

Researcher: ...[Points to the full D8 table] How many elements does this group have in it?  
 
Rick:  Eight.  
 
Researcher: How many does this one have [points to the 2x2 table]? 
 
Rick:  I don’t think this is a group. I don’t think. 
  
Sara:  It does have eight. 
 
Researcher: What if I said it had two? 
  
Rick:  Then it wouldn’t be a group. 
 
Sara:  Well if you want to make meta-groups. 
  
Researcher: Ok, let’s make meta-groups.  
  
Rick:  No wait, maybe it would be a group. It would be a group for me.  
 
Sara:  Yeah.  
 



Researcher: What would the elements of the group be? 
  
Rick: Rotations and flips. My identity would be rotations.  

 

Step 2: Conjecturing and Proving that One of the Subsets Must be a Subgroup 

 We found in the design experiments that the students very quickly conjectured that one 

of the subsets must be a subgroup in order for a partitioning to form a group (or partition into 

evens/odds). In the following excerpt from the second design experiment (in the group theory 

course) a student explains that there can be no more than three ways to partition D8 into evens 

and odds because D8 has only three subgroups of order four.  

Erin:  There’s not going to be any more because you have to have one be a subgroup… 
 
Teacher:  So the claim is that one of the two sets actually has to be a subgroup… Why do 

you think that one of them needs to be a subgroup? 
 
Erin:  If it’s a subgroup, then it with itself is just going to make that subgroup back… 
 
Teacher: The evens with itself is the evens. Ok, so you claim that based on that reason 

that some element with itself has to equal itself.  You’re making the case that you 
need to have a subgroup to be one of your sets 

 
Erin:  Yeah, so that subgroup will act as the identity. 
 

The idea that this subgroup must act as an identity subset is crucial throughout the reinvention 

process. Below, we will see that this idea can be used to build the idea of coset formation and to 

formulate a necessary condition for a partition (into cosets) to form a group (normality).  

 

Step 3: Generalizing to More Complex Groups of Subsets 

The third step in the reinvention process is to generalize by shifting the focus from parity 

to the group structure. In our design experiments, the students were asked to find other ways to 

subdivide the group of symmetries of a square to form groups with more than two elements.  



This step is non-trivial. We found that the students struggled to move beyond the notion of 

parity. Those students who had not attended to the fact that the even/odd partitions they had 

found earlier were actually groups (whose two elements were actually subsets) needed to shift 

their way of thinking as they engaged with this new task. In each of our design experiments, the 

students identified the one partition into four subsets that actually forms a group. (Note that the 

students “multiplied” subsets by taking each element of one subset and multiplying it by each 

element of the second subset, and this “worked” if the result was one of the subsets in the 

partition.) In addition to this one partition that works, the students typically try out a number of 

other partitions that do not work, setting the stage for identifying necessary conditions.  

 

Step 4: Determining How to Partition the Rest of the Group 

 After it has been established that one of the subsets must be a subgroup, the next step is 

to determine how to partition the rest of the group. It turns out that there is only one way to do 

this (by forming cosets). In the Figure 2 we see Rick’s algorithm for partitioning the group.  

 

Figure 2. Rick’s algorithm for partitioning a group. 

 

In this example, Rick started with the subgroup {0, 2R} of D8. He then chose the element 

F from outside the subgroup. He stated that the result of combining the subset {F, _} with the 



identity subset {0, 2R} must be the subset {F, _}. Then adding F to F and F to 2R, he obtained 

the subset {F, F + 2R} and then deduced that F must be paired with F + 2R. Notice that this 

algorithm can easily be used to formulate the definition of coset.  

 

Step 5: Finding a Necessary Condition for a Partition of Cosets to Form a Group  

After it has been determined that the only way to successfully partition a group to form a 

group of subsets is by forming cosets, the final step of the reinvention process is to determine 

what additional condition is needed to ensure that such a partition forms a group. Again this can 

be done by focusing on the need for the subgroup to act as the identity element. In the following 

excerpt from the group theory course, two students formulate such a condition and explain why it 

is needed in a specific case.  

Chuck: I think that I got a pretty good explanation. The left coset and the right 
coset don’t match.  
 
Luc: Yeah 
 
Chuck: Just use the one element and you get that. I used R and … I did RI and 
RFR and I got these, and then I did IR FRR and I got these two. So you can’t have 
F be a part of this subset and FR2 be a part of … it doesn’t work…You started 
generating a ton of elements 
 
Luc: and it doesn’t work it on the right. It creates the yellow-purple group. Instead 
of just… 
 
 
Here the students are considering the subgroup H = {I, FR}. They then consider 

the subset that contains the element R.  Multiplying R through in both directions, they 

generate four different elements. However, since H must work like the identity element 

these products should produce only elements from the two-element coset that contains R. 

Thus they conclude that the subgroup H did not behave like an identity element because 



the right cosets did not equal the left cosets. Once this condition gets established (and 

used to define normality) the formal details of the quotient group can be worked out. For 

example, one can show that the set of cosets is closed under the set multiplication 

operation by proving that two cosets of a normal subgroup aH and bH will multiply to 

produce the coset abH. This result can motivate the idea of multiplying cosets by 

representatives (which can be shown to be well-defined when the subgroup is normal), 

which in turn can be used to simplify the rest of the formalization of the theory, including 

the proof that normality is a sufficient condition.   

 

Conclusions 

Through a sequence of design experiments we have developed a local instructional theory 

for supporting the guided reinvention of the quotient group concept. In this paper we have briefly 

described and illustrated this instructional theory in the form of five key steps in the reinvention 

process.  
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