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1. Introduction

The teaching and learning of topics related toctihrecept of mathematical infinity has been
researched extensively. Numerous researchers hdiaied that infinity in its many forms is
problematic for students of all ages, and notedttteCantorian treatment of infinity has proven
especially difficult because students find it cauimttuitive (e.g. Fischbein, Tirosh & Hess, 1979;
Tall, 1980; Wheeler & Martin, 1988; Falk & Ben-Lgv}989; Monaghan, 2001). In the area of
infinite iteration, existing research involving d&nts up to and including college level suggess th
the vast majority of students provide non-norma#imswers to tasks that require them to define a
state at infinity for an infinite iterative proced3ubinsky et al., 2008; Brown et al., 2008; Duliiyns
et al., 2005; Stenger et al, 2005; Ely, 2007; Man&lZazkis, 2008). Given that historically,
infinite iteration played a crucial role in the @éapment of how infinity is treated in mathematics,
reasoning normatively about infinite iterative pgeses can help students in developing normative
conceptions of all aspects of infinity and the mamthematical concepts related to it (e.g., indinit
sequences and their limits, series, Cantoriarhgetry) (Dubinsky et al., 2005; Lakoff & Nunez,
2000). However, there is very little research ekplphowstudents may come to reason about tasks
involving infinite iteration in a normative mann@ur study aims to start addressing this gap.

More specifically, the two research questions assied by this study are:

o What are the main types of initial arguments predithy mathematics majors in reasoning
about infinite iterative processes and their statasfinity?
o Through what learning paths can mathematics majmrge to reason about infinite iteration

in normative ways?



2. Formalizing the definition dcftate at infinity

While several researchers have investigated stsidasiutions to tasks about infinite
iterative processes (e.g., Dubinsky et al., 20088 et al., 2008; Stenger et al, 2005; Ely, 2007,
Mamolo & Zazkis, 2008), none of these studies ledmdd clearly (from a mathematical point of
view) what characterizes a normative state atityfiior infinite iteration. In order to avoid this
ambiguity, in our study we used only infinite iteva processes for which the intermediary states
are described as sets of objects. More preciselyis study an infinite iterative process consists

an initial setS, , together with an infinitely countable orderetiafeactions{A } ., where an

nON !

action consists of one or finitely many operationssets. It is assumed ti#gtis applied to the
initial setS, producing a se$, , thenA, is applied toS, and the result is denoted By, and so

on. For the rest of the paper, we will use the témermediary state” to refer to an arbitr&y.

Following Allis & Koetsier (1995), we take the piben that the information provided by the
intermediary states of an infinite iterative pracdses not logically determine a state at infinity,
unless we add an assumption that mandates thabjbéets on which the process acts have
continuous space-time paths. In other words, wd teeassume that: A1) any object that belongs to
all intermediary states from a step on must betorthe state at infinity; A2) any object thatot
part of any of the intermediary states from a stejis not part of the state at infinity; and A3) if
there exists an object that is not part of eitli¢he two previous categories, then by definitibare
IS no state at infinity for the process in questife believe that these three assumptions clearly
define the notion of state at infinity for infiniteeration. From here on, the phrase “normative
solutions” will be used to refer to arguments flead to states at infinity that are in agreemeti wi
this definition, usage which is consistent with wbtner researchers have called normative

solutions to tasks involving infinite iteration.



For an application of this definition to a taskafving infinite iteration let us consider what
we named The Original Tennis Ball Problem, whictsWwarrowed from the existing literature on
infinite iteration (Falk, 1994; Dubinsky et al, Z8)0

Suppose you are given an infinite set of numbegadis balls (1, 2, 3,... ) and two bins of

unlimited capacity, labeled A and B.

At step 1 you place balls 1 and 2 in bin A and timmediately move ball 1 to bin B.

At step 2 you place balls 3 and 4 in bin A and irdiately move ball 2 to bin B.
At step 3 you place balls 5 and 6 mAiand immediately move ball 3 to bin B.

This process is continued in this manner ad infimitNow assume that ALL steps have
been completed. What are the contents of the twe ddi this point?

The pattern implied by the “...” is that at step rhése n is an arbitrary natural number), the two
balls with the “smallest labels” are taken fromsidé of the bins and placed in bin A, after which
the ball with the “smallest label” in bin A is mavéo bin B. Assuming this pattern, one can prove
by induction that for an arbitrary natural numbeainstep nball n is taken out of bin A and placed
in bin B, and that none of the subsequent stepsiafits position. By Al, ball n belongs to theafin
state corresponding to the contents of bin B, gnddit doesnot belong to the final state
corresponding to the contents of bin A. As n wasseln arbitrarily, we can infer that after all steps
have been completed, bin A is empty and bin B ¢ostall the balls we started with.
3. Related literature
3.1 Early research on infinite iteration

Piaget and Inhelder (1956) reported on childreageé 5-12) understanding of infinite
divisibility. In this study, the tasks used invaliveepeatedly splitting a given geometrical figuri
smaller parts (e.g., a segment was split into @na#gments by halving; a square was split into 4
smaller squares). The children were asked to prediat would happen if the process of division
were continued mentally, predict the form of thie&f elements” of such a division process, if
considered completed, and discuss the reconstruetithe original figure starting from the final

elements. The researchers concluded that onlyeialtstract (formal) operational thought stage



(age 11-12) did children conceptualize the divigioocess as infinite, and the “final elements” as
points. Fischbein (1963) replicated some of thgé&tian techniques and his results somewhat
confirmed those obtained by Piaget and Inheldebg),%ut in Fischbein’s study only half of the
subjects aged 11-12 (which are considered in thradi operational thought stage, in Piaget terms)
saw the division process as infinite.

Fischbein, Tirosh & Hess’ (1979) own infinite itéom study had 470 students in grades 5-9
solve tasks involving repeated division of a segnasnwell as other infinite processes set in a
geometrical context. This study focused more ontladrethe students viewed these processes as
finite or infinite, rather than on what a staterdinity would be. Infinitist views were consideré¢al
be displayed by answers such as “the process padst and “the process ends but theoretically it
is infinite”. At all grade levels, finitist viewsthe process comes to an end after finitely many
steps”) were displayed by the majority of the studeOver all grade levels, 55% of the students
had finitist views.
3.2 Recent theoretical studies
The Basic Metaphor of InfinitylLakoff and Nunez (2000) propose that an infiniezdtive process
can be seen as completed if a metaphorical fia& $ added to it. This addition can be done by
drawing a parallel between finite processes (thatela well-defined final state) and infinite
processes. As both types of processes have aal stdite and a clear procedure for obtaining the
next state from an existing state, one can exteagarallel by imagining that the infinite processe
also have a final, unique state that follows akimediary state. This extension is what Lakoff and
Nunez (2000) call the Basic Metaphor of Infinithhéfmetaphorical process thus obtained has
infinitely many intermediary states and a metaptadriinal state that ignique(that is, there is no

distinct previous state within the process thahbollows the completion stage of the process yet



precedes the final state, and there is no other sfahe process that both results from the
completion of the process and follows the finatesta
The APOS approaciResearchers embracing the APOS (Action ProcegctOBchema) learning
theory (e.g. Dubinsky et al, 2008; Brown et al.Q0Steger et al., 2005) propose that in order for
one to construct an infinite iterative process, needs to first be able to construct a process of
iterating completely through N, which can be enaédsd into an object (conventionally labete
as one attempts to apply an action of evaluatidhégrocess in trying to determine “what comes
next”. Reaching a process view of an arbitrarynid iterative process then involves coordinating
this completed iteration through N with a transfation that assigns an object to each natural
number; an object view of this process (once ssemtatality) is reached by applying an action of
evaluation to it, the obtained object being “aestatto” and understood as beyond the objects that
correspond to the natural numbers (a transcendgattd

Both of these theoretical approaches will be dised in more detail in the context of the
empirical studies presented in the next sectiomedksas in the Discussion section concluding this
paper.
3.3 Recent empirical studies

Several different studies examined college stigdémtathematics, mathematics education,
computer science, or engineering majors) reasasinggrsions of what we called the Original
Tennis Ball Problem. Dubinsky et al. (2008) and Méom& Zazkis (2008) used timed versions of
this task (i.e., the steps of the process were-tmdexed such that each step took half the time
necessary to complete the previous step, and isitéhy many steps could be completed in finite
time). Using an APOS perspective, both studiesnteddhat the vast majority of the participants
had a process view of the infinite iteration invadvin the tasks, and either could not conceptualize

of the infinite process as completed or attempoedibt so (and define a state at infinity) in non-



normative manners; the students in the latter cayegftempted to describe the state at infinity by
plugging " «" either in the algebraic expression indicating thelinality of the f intermediate state
(obtaining, for example, 9 " as the number of elements in the final statéhéencase of the

problem used by Mamolo & Zaskis), or in the expi@sshat represented the range of balls in bin A
after n steps (obtaining, for exampte+1- 20 as the range of balls in bin A “at the end”, in
Dubinsky et al.’s study).

Ely (2007) reported similar types of reasoningtfa tennis ball problem (out of 225
Calculus undergraduates, only three solved thelgmobuccessfully, while 73% either claimed that
the process did not end or gave an answer thatatagorized as meaning “infinitely many balls in
bin A”). However, the author suggested that indase of the students in the “infinitely many”
category, APOS does not accurately explain thewrmarmative solutions. Ely (2007) claimed that
these students did encapsulate the process irdbjact, but a non-normative object by
metaphorically extending the “how many” propertyrir the intermediate states to obtain a final
state, which he interpreted as evidence for ttatcthat BMI provides a more plausible account
for the different types of student answers.

Brown and her colleagues (2008) explored collegdesits’ reasoning on infinite iteration

by challenging them to prove or dispro@P({L 2,3,...n}) =P(N). All twelve students in the

n=1

study attempted to make sense of the infinite uniothe left of the equation by approaching it as

an infinite iterative process and noticed th_glP({l 2,3...k}) =P({1, 2,3,....n}) , consequently

k=1
initially deciding that the state at infinity oféhnfinite iterative process was indeed P(N).
Interviews of the students in the 6 groups revetiiat only one student had an object view of the
infinite iterative process in this problem (infi@itinion), and was successful in disproving thergive

statement. The other students in the study gaviamaions which were coded as showing an



action or process view of the infinite union, amdld not successfully complete the problem. The
authors conclude that the APOS approach to constguinfinite iteration provides adequate terms

for explaining the various stages of understandéaghed by the students in making sense of
UPdL 23..n)) .
n=1

Brown et al. (2008) and Dubinsky et al. (2008) ddteat although some aspects of the
observed student reasoning are consistent witmthge of thinking predicted by BMI, their data
indicated that successfully solving problems tleguire defining a resultant final state for infenit
iteration may require more than metaphorical tmgki

We will discuss our position with respect to the@$and BMI approaches in the
Discussion section, in light of the data obtainethis study.

4. Research paradigm

In order to be able to closely examine studenttialinrconceptions of infinite iteration as
well as investigate possible learning paths thatestts may take toward developing normative
understandings, we employed a design researchigardioh the sense of Cobb et al., 2003 and
Gravemeijer, 1998). This type of research involeyclic process in which the researcher
formulates “the significant disciplinary ideas dondms of reasoning that constitute the prospective
goals or endpoints for student learning” (Cobblet2903, p.11), after which a hypothetical
learning trajectory and an associated instructiseglience are designed; the instruction is
implemented with one or more students and thisemehtation is carefully observed and analyzed,
and the hypothetical learning trajectory and ircttamal activities are subsequently revised based
on this analysis. These steps are then repeatedew cycle, with a new student or group of
students.

For this particular study (which focuses only ba first cycle of a multi-cycle teaching

experiment), our instructional goals were for taetigipants to be able to conceptualize an infinite
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iterative process as completed (that is, be ahlmagine infinitely many steps as having been
performed) and provide normative arguments reggrttia state at infinity of an infinite iterative
process across a variety of tasks. The sequenrtesks we used was semi-structured (i.e., some
tasks were designed before the study to addressnoamon-normative answers documented in the
literature, while others were added during the windesponse to the specific types of arguments
displayed by the participating students), and waated by formulating variations of tasks such as
the Original Tennis Ball Problem described abogeyall as geometrical construction tasks
inspired by the work of Fischbein, Tirosh & Hes872). In addition to the types of tasks already
used by other researchers, we also used tasksiah Wie described process did not have a state at
infinity (in the sense described in section 2). Tégonale behind the creation of these variations
was to obtain a collection of tasks that were siméinough to each other to inspire students to make
connections between the types of reasoning useshfdr task, but also different enough to
potentially trigger a variety of types of studerguaments, which we as researchers could use to
create cognitive conflict for the students. Our &egs that the students’ attempts to resolve such
conflict would lead to conceptual changes, as Rigf63) suggests.

The learning environment created for this studg tyaical of student-centered instruction,
following Maher (2002). The participating studemsre encouraged to work together on tasks, to
provide justifications for their answers, and t@sfion the correctness of their answers as well as
those of their partner. At the same time, the meteas did not validate or invalidate the answers
given by the students, and did not force the stisd@nvestigations in predetermined directions.
Instead, the researcher asked clarifying questiegerding the students’ answers, and at times
pointed out a conflict in the ideas presented armberaged the students to discuss how the conflict

could be resolved.



5. Methods
5.1 Participants

A written pre-test containing the Original TennialBProblem was administered to fourteen
mathematics majotenrolled in a Problem Solving course at a largearsity in northeastern
United States. Out of the thirteen students wheigeal non-normative answers to this problem,
two® were randomly chosen. Both of these students,hmhiewill call Max (a junior) and Tofna
senior) for the purpose of this study, had alrezmiypleted the Calculus 1-3 sequence, Linear
Algebra, and a proof techniques course.
5.2 Procedure

Following the written pre-test, Max and Tom werterviewed separately by the first author
and asked to explain in detail their reasoninghenpre-test problem. The two students then worked
collaboratively for a total of six problem-solvisgssions lasting approximately two hours each,
during which they progressed through the task serpiat their own pace. These sessions, as well
as the initial interviews, were videotaped. Thealstus were then individually administered a
written post-test containing tasks similar to thased in the main task sequence.
5.3 Data Analysis

The pre-test interviews and the six problem-sa)\sassions (totaling 14 hours of

video) were transcribed. These transcripts, togetitla the worksheets used by the students, were
used to identify chains of critical events (in #ense of Powell, Francisco & Maher, 2003) with
respect to the nature of each student’s initialiargnts for each task, as well as the context in

which changes in each student’s reasoning occufrady. As the analysis progressed, we noted

! We decided to work with mathematics majors in otdeensure that the participants had a certaimritatregarding
proof techniques, and also because a mathematjos wiauld have already been exposed to a wide weoie
mathematical concepts, which gave us more matheahatntexts to choose from for our task variations

2 We worked only with two students at a time in oraebe able to closely follow each student’s re@sg, both during
each session and later during data analysis.

3 All student names are pseudonyms.



that students’ reasoning was consistent with ti@ber suggested by Wagner’'s (2006) “transfer in
pieces” theory. Wagner proposes that transfer olk@dge is a complex process during which an
initially topical set of principles is constantlgfimed toaccount for(and not ignore) the new
contexts of the new problems encountered. Thusadhaisition of abstract knowledge is a
consequencef transfer and not a required initial componemtif to happen. Furthermore,
according to Wagner (2006), deciding what the nratteal structure of a problem is and whether
it is structurally similar to a previously encourge problem is intimately connected with the
problem-solving process itself; as a working sgbrriciples is refined to account for new contexts,
structural commonalities of the growing class ddmples are gradually formulated, which in turn
helps with the formulation of an abstract principteset of principles applicable to the entire glas
This view of knowledge transfer served as a gugl@arevisited and refined our previous analysis.
6. Results

The first half of this section describes the ntges of arguments displayed by the students
when challenged to describe a “final state” foirdmite iterative process. In the second half we
discuss the various ways in which the students eyepl references to other tasks (whether from
this study or their previous mathematical expe@nand how these references often triggered
changes in the students’ conceptions of completiuite iteration.
6.1. Initial types of arguments
6.1.1 Generalizing global properties from the intediary states to the final state

When confronted with a new task, the studentsrgited to define a state at infinity for

the infinite iterative process in question by estireg patterns observed in certain gldi@ioperties

* Here the term “global” is used in reference tdraarmediate state. A set’s cardinality describgtohal aspect of it,
as it refers to all the elements in the set. Notivag a set contains only even numbers also réfeagglobal property of
it. In contrast, “the set contains the number & Iscal property as it does not make a statenegatrding all the
elements of the set.
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of the sets obtained after finitely many steps @adning that these patterns needed to be respected

by the state at infinity.

Cardinality. Although in the tasks we used the objects prodate@ach intermediate step were sets,

the participating students initially tended to fe@n answering the question “How many?” instead

of “Which elements?” when attempting to defineatestat infinity for an infinite iterative process.

We present two instances of this type of argument.

Episode 1 Consider the following excerpt from Tom’s Pre-Tieserview, during which he was

working on a problem equivalent to the Original fisrBall Problem which also had a time index

for the process (the Original 10 Marble Problem
Tom: Maybe if we have a sequence that for everm isran expression of the size...[...].
The way we defined the sequence in the end it goieginity...in the sense that it's
monotonic increasing and it's not upbounded any@h$o...I think there should be as
many marbles in the jar as there are natural nusnk@early there aren't finitely many
marbles in the jar at t=1 because if there weligefynmany marbles that would mean our
sequenceavould converge to a particular number that wowddhe size of the number of
marbles at t=1. But we already know that the seqeieliverges. So now you know the size
of the marbles is infinite.

Episode 2Similarly, in the case of the Original Tennis BRibblem, Max noticed that both bin A

and bin B contained n balls after n steps had peéiormed, and for this reason claimed that both

bins should have infinitely many balls after ak tsteps of the process had been performed.

Arguments of this type have already been docundentthe literature in the context of

these two specific problems (e.g. Dubinsky et @02 Ely, 2007; Dubinsky et al, 2008; Mamolo &

Zazkis, 2008), so our students’ initial reactiomshtese tasks did not come as a surprise. However,

° The Original 10 Marble ProblenSuppose there is a jar capable of containing itefipimany marbles and an infinite
collection of marbles labeled 1, 2, 3, and so drtirAet = 0, marbles 1 through 10 are placed in the jdrraarble 1 is
taken out. At = 0.5, marbles 11 through 20 are placed in thajarmarble 2 is taken out;tat 0.75, marbles 21
through 30 are put in the jar and marble 3 is takaenand in general at time= 1 — 0.5, marbles 10 + 1 through 10

+ 10 are placed in the jar and marble 1 is taken out. How many marbles are in thefjaimet = 17

11



the variety of tasks used in our research allowgetbdind instances of this type of argumentation i
the context of other tasks as well, as describédamext episode.

Episode 3Consider the case of the 1/2 Marble Problem, iitlvhn infinite iterative process is
defined such that the contents of a jar oscillatsvben {marble “1"} and {marble “2"}. The

students were asked what was in the jar aftehalkteps had been performed. Max concluded that
the jar contained exactly one marble whose labeldcoot be determined because “you always
have one marble in the jar, either 1 or 2.

The students’ initial tendencies to extract a sege of numbers (indicating the
cardinalities of the sets representing the interargctates of the process) from the problems,
instead of focusing on the sequence of sets itsedfiit be an instance of an attempt to reduce the
level of abstraction, in the sense of Hazzan (199%inite numerical sequences are introduced in
Pre-Algebra and Pre-Calculus courses in K-12, wthigenotion of the limit of an infinite sequence
of numbers is treated by high school and collegell€alculus courses. Mathematics majors are
thus likely to have developed a familiarity witHimte numerical sequences, and there is evidence
in the literature that some think of the limit ohamerical sequence as a “last element” (Mamona
Downs, 2001). Thus, when students are asked toidescfinal state for a sequence of sets, it ts no
entirely surprising that some choose to focus oasmociated numerical sequence and its limit.
Generalizing other global properties from the imtezdiarye states to the final state some of the
variations of the Original Tennis Ball Problem tkaa used, one easy way to describe the contents
of the two bins (after an arbitrary finite stepwgs through the means of a property shared by all
the balls in a bin. For example, in the case ofafrthe post-test problems, after any finite stage
bin contained only balls with even labels, while tither bin contained only balls with odd labels.
When such patterns were present in a task, oucipamts tended to claim that the observed

patterns needed to hold for the final state.
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Episode 4In session 4 the students worked on the Bin Simgppennis Ball Problem, which was
defined such that after n steps (where n is atrarginatural number), one bin contained only the
ball labeled 1, while the other contained the balth labels 2, 3, .,.n; however, the contents of
the two bins were swapped at every odd step. Bath &hd Tom reasoned that because of this
observed pattern in the labels on the balls fonrehich bin after finitely many steps, “at the end”
one bin must contain the ball labeled “1” while titeer bin must contain all of the other balls fwit
labels in N\{1}). The fact that the process desedly the problem caused the contents of the bins
to be swapped at every odd step was not deemezlabdreat importance by the students, who
accounted for it by claiming that it was not pobsiio determine “which bin contains what” at the
end, while still maintaining that a final state g®id in the form of the partition (of the initiatof
balls) mentioned above.

This type of argument resembles, to some degrieat was reported by Brown,

McDonald & Weller (2008). In that study, studergasoned that because
P{1 2,3...k}) =P({1, 2.3...n}) , it must be true that JP({1, 2,3,...n}) =P(N). The power set
k=1 n=1

form of each intermediate state (of the infinierdtive process students used to make sense of the
infinite union in this problem) is a global propedf that state, and the students reasoned that the

final state of this process needed to be a povteasseell, despite evidence that the students knew

and were able to apply all the theoretical defimisi necessary to make sensé §®({1, 2,3....n}) .

n=1
This provides supporting evidence that the studésnslency to employ “generalizing global
properties” types of arguments may not be resttitdeasks set in pseudo-real world contexts
(which are likely to trigger arguments based or-liEaexpectations and intuitions, as suggested by

Mamolo & Zazkis, 2008), but influence students’s@aing on entirely abstract tasks as well.
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6.1.2. The “reaching the limit” argument

Another type of argument that the students emplogpeatedly surfaced in the context of
geometrical construction tasks, in which a setan{s on the real line or in the two-dimensional
plane was defined by an infinite iterative procéssuch situations, there were several instances i
which the students claimed that besides the Griball the sets representing the intermediate
states, the final state needed to also contaihrttiiepoints of this union, if any.
Episode 5In session 3 the students worked on thRrpblem, in which z is a complex number of

norm strictly less than 1 (and greater than O)amdhfinite iterative process is defined such #tat
step n the process defines a complex nunzher z". The students were asked whether the set of

points in the plane corresponding to the set ofglerinumbers produced by the completed process
contained the origin, (0, 0) or equivalently, whestB belonged to the set of complex numbers
produced by the completed process. Both studeaitmet that the sequence of complex numbers
produced by the successive steps of the proces®iged to 0 and acknowledged that there was no
natural number n such thdtequaled 0. However, they could not agree on awemn® the main
guestion of the problem. It is in this context ttie following dialogue took place:

Max: If we finish the process we’re at the limihat's the only way you finish the

process.

Tom: When | think of the set produced by the preceshink of every Zwhere nis a

natural number...

Max: The only way you can finish the process igoifi reach the origin. ‘Cause if you're

not, then you're not done yet!

Tom claimed that the final state for this procesthe collection of all complex numbers of the form

Z" (where n is a natural number), while Max belietteat the set defined by the completed process”

contained all the elements {z” [nO N} andthe complex number 0, which is a limit point

for{zn [nO N}. Later in that session Max commented that aftehalsteps of the process had been

® In all the geometrical construction tasks, thecpss was defined in such a way that any intermestate was
included in the subsequent one Sp1S, [I...00S, ...).
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performed, “you’re sitting on top of the origin” hich he interpreted as 0 being “reached” by the
process, and thus being part of the set of pormasyzed by the process. Max’s inclination to use a

“reaching the limit” type of argument here (andhe rest of the geometrical tasks) may be

explained by the fact that in the case of a corergr@nfinite) seriesz a, , its sum can be
n=1

conceptualized as the state at infinity of an itdifterative process that at step n, adgsto the

n-1
already compute(i a, , and this state at infinitg the limit of the sequence of numbers produced
k=1

by the process. Thus, it is possible that the ‘maagthe limit” and “cardinality” (see 6.1.1) types
arguments are both manifestations of the same pheman, which is that students tend to work
with sequences of sets as if they were sequencasnabers.

This concludes our discussion of the main typdgitél arguments displayed by the
students in response to our tasks. Table 1 on pageovides a summary of which type of
argument was initially used by each student inoasp to each taSkthe tasks are listed in
chronological order).

The next subsection of the paper looks at theouarways in which the students employed
references across tasks and examines how suckmeésrhelped the students refine their
conceptions of completed infinite iteration andesaat infinity.

6.2. References to other tasks/mathematical cantext

The two students in this study often made refezeneo problems or contexts other than

the problem that they were working on at the tithese references involved comparing two or

more problems in terms of what the students peeceas structural similarities or differences, and

" The Relabeled 10 Marble Problem, the— n +1Marble Problem, and the Writer Problem were alirisgphic to
the Original Tennis Ball/10 Marble problems. Outadsuggests that the students’ normative reasamintgese three
problems was largely due to the fact that they vpémeed after the Vector Problem in the task seceleiBee section
6.2.2 for more details on the Vector Problem.
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Tasks Tom oz
The Criginal Tennis Ballf10 Marble Ph. CAED CAERED
The Vector Problem NOEM NOEM
The Eelabeled 10 WMarble Problem NOEM NOEM
The n —n +1Marble Problem NOEM NOEM
The ¥ Markle Problem TIndecided GEMN-C
The 1+1/n Marble Problem GEM-C, LI GEM-C, LI
The Writer Froblem NOEM NOEM
The Midpoint Problem LI Tndecided
The £ Problem NOEM LIng
The Triangle Problem HOEM LI
The Latnp Problem Tndecided GEM-O
The Bin Swapping Tenniz Ball Pb. GEN-O GEN-0

Table 1. Students’ initial responses to each task

Legend

HNOEW — MNormative solution

GEM-C — Generalizing the cardinality pattern observed among the intermediary states to
the state at infinity (as discussed in section 6.1.1)

GEM-0O — Generalizing patterns other than cardinality observed among the intermediary
states to the state at infinity (as discussed in section 6.1.1)

LI — “Eeaching the limit™ argument (as discussed in section 6.1.2)

were used for at least three different purposet sgformulate the current problem using a new
context, in hope that the new context will bringlgidnal insight; b) to revisit a previously
addressed problem, when working on the currentlenolprovided insight that put the correctness
of the solution given to the previous task undexgfon; and c) to refute or support an existing
argument for the current problem.

6.2.1. Reformulating the current problem

Episode 6Let us consider again the Original 10 Marble ot which Tom worked on during the
Pre-Test interview. His initial response to thiskgem was that there were infinitely many marbles

in the jar at t=1, as mentioned in section 6.1 fierthe interviewer asked him whether he could
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name a specific marble found in the jar at t=1 la@dtarted being troubled by the fact that he could

not, he proposed the following:
Tom: I'm thinking right now of an analogy. Whetobk Math 300... you know the infinity
hotel? This is sort of like if you have rooms laingh 10, and you move 10 people in there,
put 1 person in each room, then person in roomJesiout, right? So you just redefine the
guestion in terms of hotel rooms. [...] It makes imek of a wave — people are moving
down the corridor of the hotel.but it's getting bigger as it slides across. lbywve this
increasing wave going down, that would be as yoajmeroaching 1 [t=1], not when you're
at 1. Cuz once you get to 1, the wave would bepgtdpBecause you’re done with your
operations, you're not performing anymore. So...stst of like you have this
infinity... ’cause the wave is increasing... so if you get tihén at that point you have

infinitely many people in the hotel. But that infynof people you would never find if you
walked down the corridor. For any room, that personld have been taken out.

While Tom’s reformulation of the Original 10 Marlf¥oblem using the context of Hilbert's Hotel
did not help him to entirely resolve the cognitoanflict he was experiencing, it did provide a new
way for him to explain his reasoning. It also po®d a context that potentially draws the solver’s
attention more towards the “which ones” questibi: ‘sliding wave” metaphor stressed the fact
that although the number of the people in the hets constantly increasing, they were also
moving further and further away from an imaginagginning” of the hotel; with the ever-
increasing pile of marbles, it may be easier tarloek the fact that the collection of marbles ie th
jar also “slides along N”.

Note that in this case, the problem referencethbystudent was not part of the task
sequence used in this study, but one encounter@giior mathematics class. Other instances in
which the students reformulated the problem at havalved using real-life contexts (e.g,
comparing the situation in the Original 10 Marbltelem with a savings account in which one
repeatedly deposits $10 and takes out $1 and & point is left with nothing), or entirely abstract
terms (e.g., claiming that the 1/2 Marble Probleaswquivalent to asking what the limit of the

numerical sequence “1, 2, 1, 2, 1, 2,...” was).
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6.2.2. Revisiting a previously addressed problesmfthe task sequence

Episode 7 The Vector Problem (the first task in Sessiowa3} designed with the purpose of having
students focus on the “which ones” question meetiogarlier. As pre-test data as well as previous
studies (e.g. Mamolo & Zazkis, 2008) suggestedshatents’ real-life expectations and intuitions
often triggered non-normative types of argumeihis, task was formulated in more abstract terms

than the Original 10 Marble/Tennis Ball problems.

The Vector Problem_et v= (1,0,0,..)0N". You are going to “edit” this vector step by
step.

e Stepliv=(01 200,..)

e Step2:v= (0,01 230,0,..)

e Step3:iv= (0,001 23 4,00..)
This process is continued ad infinitum. Now asséhk steps have been completed.
Describe v at this point.

Upon starting working on the vector problem, witseconds the students commented on
its similarity to the Pre-test marble/tennis bablldems and the Hilbert’s hotel formulation of the
marble problem, noting that the string of non-zemtries “moves across the vector” in a manner
similar to the wave of people from the hotel foratidn of the Original 10 Marble Problem.
Continuing to work on the vector problem, Tom comted that “for any entry, at some point it’s
going to go to 0 and stay there, so if you're daiite your process it’s just going to be the 0
vector”. Max wondered momentarily whether the “fimactor” wouldn’t contain “all the natural
numbers between the zeros”, but then proceedexptaie that cannot be the case as there would
be no specific position in the vector at which $tréng of natural numbers could start. Having
agreed on the “0 vector” answer to the Vector Rnoblthe two students revisited the Original 10
Marble Problem:

Max: If that’s true, then all the marbles are reem¥rom the jar would be the right
answer. [...] ‘Cause you're removing them 1, theth2n 3, eventually you would

remove them all if you finish the process. You dotl say any numbers that are in the
jar, ‘cause you'’re going to exhaust all the numbfrise interviewer points out that
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during the pre-test, not being able to name anylesiin the jar did not mean to him
that the jar was empty.] Yeah, but | kind of chathgey mind. [I: Why?] ‘Cause even if
you say that number is there at this step, at ¢éxé step it might not be there so if you
do finish the process, there’s not going to be ingtthere. There can’t be any numbers
left, any natural numbers, so that can’t happen.

Tom: If somebody asked me to write an argumenwtoy there were no marbles in the
jar at t=1 | think | could do it.[...] Whereas | darthink | could come up with one for
why it should be infinity, because | have no iddseve they are, because they’re not in
the rooms of the hotel.[...] My first intuition walsat there were infinitely many
marbles, but where are they, | mean which onetharel think would be the question.
Because if you say marble 2371 is part of the ityfimo it's not because it's been
removed. You can say that about any marble. Btill have this intuition that if it's
getting larger there should be infinitely many...

The abstractness of the Vector problem, togetlidgr avformulation that had students
focus on individual elements/positions as opposdti¢ cardinality of a set, appears to have helped
the students move towards a more logical appraatg set of problems and resolve the cognitive
conflict by choosing the solution for which theytfiney could write a convincing argument, while
at the same time acknowledging that the “logicafjument seemed counterintuitive.

6.2.3 Referencing another problem to refute or etpgn existing argument

Episode 8As already discussed in section 6.1.2, Max anm @isagreed on thé' Problem (with
respect to whether the complex number 0, or egemiil the (0, 0) point, belonged to the set of
points defined by the completed process): Max gfisobelieved that it did, while Tom argued the
opposite. It is in this context that the followiagchange took place:

Max: then how can you tell me this equals 1 [réfierto 1+1/n Marble Problefh and

you're trying to tell me that O [does not belonghe set]?

Tom: Yeah, it is kind of inconsistent reasoningc&ese when | gave that example with

the balls, | was kind of thinking...

Max: When we had this one, we ended up sayingea¢tid we had 1 on the ball. Well, |

say we have 0 right now. We’re AT the origin!

Tom: Yeah, | mean, yeah, it depends...if we userdagoning, which | recall being what
we agreed on, then | guess you'd have to say lieabttigin, the zero vector is in your set.

® The 1+1/n Marble Problem was formulated by TorBéssion 1. It involves at-type set of marbles in which th& n
marble was labeled with “1+1/n” (so the sequencialoéls was 1+1/1, 1+1/2, 1+1/3, ...). The infinitegess in this
problem involved starting with the first marble guidcing it in a jar, then replacing it with th& 2ne, which at its turn
is replaced by theBone, and so on. Both students strongly believatiafter all steps had been completed, the jar
contained a marble labeled “1”.
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But on the other hand | am not really sure | agvitle that [the solution given to the 1+1/n
problem] anymore.

Interestingly, while both students acknowledged sdype of structural similarity between these
two problems, they reacted in different ways todbknowledgement: Max believed even more
strongly in his “0 belongs to the final set” position the ZProblem, while Tom started
guestioning the validity of the previously agregun solution for the 1+1/n Marble Problem and
continued to argue for “0 not part of the final’datthe case of the"2roblem. Although in this
episode the two students reacted differently ta¢fierence made to another task, it is important to
note that both Max and Tom displayed concern fasoaing in a consistent manner across tasks.
6.3 Charting the flow of ideas

As the data discussed in 6.2 suggests, the sgigeogress through the task sequence
designed for this study was far from linear. Theege numerous instances when previously
addressed tasks were referenced or revisited, ratdiepns or mathematical contexts from the
students’ mathematical background were broughtsupe students strived to develop a conception
of completed infinite iteration that was, in theiew, consistent across tasks. Figure 1 contains a
representation of our view of the “web of conneasibbuilt by Max and Tom through the course of
the pre-test and the first five of the problem-gavsessions. As this diagram indicates, the “wieb o
connections” entangles all but one of the problenwur task sequence. Back-references to five of
the tasks led to solution changes (for the refexdnasks) on the part of either one or both stident

In the final session, the first author adoptedasenteacher-like role with the purpose of
engaging the students in reflection with respethéostrategies they used in determining whether a
task was similar or different from another one, aodsequently whether the reasoning used for one
task was applicable to another. This interventasnwell as the two students’ performance on the

post-test, is discussed in the next section.
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Pre-Test Otiginal Tennis Original 10 Martle |/} 2278 |
Ball Problem Broblem \(_l___._____'
I g TE
i Hilbert’s |
i Hotel |
Session 1 Vector Problem
Relabeled 10
Marble Problem,
‘ g—sn+ 1 Marble Problem ‘
| 1/2sequence |
‘ 142, Marble Problem hsno it |
{ 1+1/nMarhle Problem |
Segsion 2 The Writer Problem
Midpoint Problem
Session3d | N #* Prmblem -
\ 2 rationall |
---------- bl
Session 4 ‘ The Triangle Problem | 1z graph !
T ! Frobability of picking a i
1 The Lamp Prablem ‘ o SRR [ Ry )
i Bin Swapping Tennis
<
S Pall Problem

Figure 1. Student references across tasks

Legend
X — Y While discussing x, problem y was referenced

Bold arrow: the reference caused one or both oftheents to change their solution
to the referenced problem
Dashed line box: the problem in the box was progdseone of the students

6.4. Our intervention and post-test results

At the end of five problem-solving sessions, k&ttidents displayed changes in their
reasoning about infinite iteration, compared tarthetial responses to our tasks. In the case of
problems such as the Original 10 Marble Problemthadriginal Tennis Ball Problem, both
students had moved from non-normative to normatolations. With respect to the geometrical

construction problems, Tom had settled on normatolations after originally being the one to
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propose the “reaching the limit” type of argumemibjle Max was increasingly drawn towards
“reaching the limit” arguments as the study progeeks Finally, on “no final state” tasks both
students exhibited “generalizing global propertigsidencies, although Tom displayed more
discomfort with them than Max.

In the final session, the first author drew thedsnts’ attention back to the Original Tennis
Ball Problem (which they had solved normativelytbg end of the first session) and pointed out
that the solution they had agreed upon implicidgd the “continuity assumptions” described in
section 2. The students were then encouraged isitréhe other problems in the task sequence and
investigate whether the final state they had defineeach case was consistent with these
assumptions.

The ensuing reflection on the task sequence Wwétcontinuity assumptions in mind
affected the students’ conceptions of infiniteatern differently. For Tom, it led to normative
solutions to all the tasks in the sequence. InreghtMax accepted the continuity assumptions as
sensible for the subclass of problems isomorphtbédOriginal Tennis Ball Problem, but claimed
that they were “not applicable” or “incomplete”time case of each task where considering them
seemed to point to a different answer than thehave believed to be correct. Throughout this final
discussion he continued to display a concern fosistent reasoning across tasks, but was unable to
formulate a set of assumptions that would produset &f final states matching the ones he claimed
were “the correct ones” for the whole task sequence

Table 2 summarizes each student’s final positioeach task used in the problem solving

sessions, as well as on the Post-Test tasksy(“xneans “problem x is isomorphic to problem y”).
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Tasks Tom Ilaz
The Criginal Tennis Ballf10 Marble Pb. HOEM HOEM
The Vector Problem HOEM HOEM
The Eelabeled 10 Marble Problem HOEM HOEM
The n —+n+1Marble Problem HOEM HOEM
The ¥: Marble Problem HOEM GEM-C
The 1+1/n Marble Problem WNOEM GEM-C, LI
The Writer Problem HOEM HOEM
The Midpoint Problem HOEM LIt
The 2 Problem HOEM LI
The Triangle Problem HOEM LI
The Lamp Problem HOEM GEM-O
The Bin Swapping Tenniz Ball Pb. HOEM GEM-O

Post-Test Problems

Pb. = The Original Tenniz Ball Pb. NOEM NOERM
Pb. =The Bin Swapping Tenniz Ball Phb. NOEM GEMN-O
b = The Mudpoint Problem NOEM LIt

Table 2. Students” final solutions on each task (including post-test tasks)
7. Discussion
The main findings of this study are:

o Students’ initial metaphors for the final stateaafinfinite iterative process were strongly
influenced by generalizing global properties frartermediary states to the final state (for
the ball/marble-manipulation problems) and the ¢haiag the limit” approach in the case of
the geometrical construction problems

0 References across tasks were used spontaneousiyg biudents for a variety of purposes
and at times led to changes in the students’ réagam one or all of the tasks involved in
the comparison

o Each student displayed a concern for reasoningstensly across tasks and constantly
adjusted his arguments to the given tasks to aehidat he perceived to be consistent
reasoning in light of the structural similaritiesdadifferences identified among the tasks

As noted earlier, our students’ initial responethe Original 10 Marble/Tennis Ball

problems (episodes 1 and 2) are in agreement wWitlt has been reported by other studies of
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college students’ reasoning on these tasks (Dubieskl, 2008; Mamolo & Zazkis, 2008).
Additionally, our study examined students’ reasgron “no final state” tasks and geometrical
construction tasks, and identified the main typearguments employed by the students in these
contexts (episodes 3-5).

Our analysis suggests that the initial metaphigated by the students for states at infinity
are highly context dependent, which echoes therfgedreported by Tirosh & Tsamir (1996)
regarding the effect of task context and task isgm&ation on student reasoning (in the context of
tasks involving size comparison of infinite ses3.discussed in episode 7, the Vector Problem led
the students to reason in a normative manner wittioy external intervention, while the Original
Tennis Ball Problem (an isomorphic problem) did; ralditionally, geometrical contexts seemed to
trigger student conceptions of the state at infithat were greatly influenced by the limiting
behavior of the points constructed by the procepsde 5). This data supports the conjecture that
studentslo havethe ability to reason normatively about statesfatity when the task context or
task representation evoke the right schema, novematlutions that can then be used as “building
blocks” in the development of normative conceptiohmfinite iteration at large.

Considering our students’ conceptual journeysughothe course of the study, we propose
that one way in which students can learn to reasomatively about infinite iteration is to refine
their initial conceptions of the state at infinily working through a complex class of related
infinite iteration tasks. The students in our stddy so by spontaneously employing perceived
similarities or differences among the presenteklstés constantly adjust the types of arguments
used for each task in order to maintain consistsa®oning across tasks (see episodes 6-8); this, in
turn, changed the way the students perceived gmalcimilarity among tasks, which is in
agreement with Wagner’s (2006) claim that the gahétrmulation of a set of abstract principles

applicable to a class of problems is intimatelyremeted with the process of determining structural
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similarity. This learning environment, coupled witte first author’s initiative to focus the studgnt
attention on a normative type of reasoning and eragpng them to relate it to the other types of
arguments displayed by the students, proved txtrereely effective in Tom’s case, and partially
effective in Max’s case (see Table 2, in comparigohable 1).

Regarding Lakoff and Nunez’'s (2000) basic metaanfinity, we acknowledge that the
initial types of reasoning displayed by the studentour study produced topical (task dependent)
metaphorical final states that were grounded incdidal experience (as described in episodes 1-3).
However, a good number of these topical metaphmresponded to non-normative final states,
which is why we agree with Dubinsky et al. (20083 8rown et al. (2008) that BMI does not
accurately explain how one may reach normative eptans of infinite iteration. Our data suggests
that the refinement of the collection of topicaltaghors into a global, normative one can be
facilitated by providing the students with an "aochn the form of a task that did trigger
normative reasoning in students, and encouragie tio relate and refine their metaphorical final
states to other tasks in relation to the “anchio€ bf reasoning (as described in section 6.4).

Lastly, our findings suggest that by focusing oalgzing student reasoning on infinite
iteration in the context of only one task, empirstdies conducted from an APOS perspective
(such as Brown et al. 2008) risk overlooking a gmedearning path towards normative
understandings such as the one proposed by thig. $turthermore, explaining a student’s non-
normative reasoning on an infinite iteration tagklie lack of a certain type of mental construction
that APOS posits to be necessary for a normativeeqtion of infinite iteration seems to suggest a
deficit approach that risks to ignore what studelatsbring to the table” — initial topical metapisor
of final states that, normative or not, represhatdtudents’ current view of what a state at itini
is and should be taken into consideration and bpitin by any instructional intervention, not

avoided for fear of future misconceptions.
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