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1. Introduction 
 

The teaching and learning of topics related to the concept of mathematical infinity has been 

researched extensively. Numerous researchers have indicated that infinity in its many forms is 

problematic for students of all ages, and noted that the Cantorian treatment of infinity has proven 

especially difficult because students find it counterintuitive (e.g. Fischbein, Tirosh & Hess, 1979; 

Tall, 1980; Wheeler & Martin, 1988; Falk & Ben-Lavy, 1989; Monaghan, 2001). In the area of 

infinite iteration, existing research involving students up to and including college level suggests that 

the vast majority of students provide non-normative answers to tasks that require them to define a 

state at infinity for an infinite iterative process (Dubinsky et al., 2008; Brown et al., 2008; Dubinsky 

et al., 2005; Stenger et al, 2005; Ely, 2007; Mamolo & Zazkis, 2008). Given that historically, 

infinite iteration played a crucial role in the development of how infinity is treated in mathematics, 

reasoning normatively about infinite iterative processes can help students in developing normative 

conceptions of all aspects of infinity and the many mathematical concepts related to it (e.g., infinite 

sequences and their limits, series, Cantorian set theory) (Dubinsky et al., 2005; Lakoff & Nunez, 

2000). However, there is very little research exploring how students may come to reason about tasks 

involving infinite iteration in a normative manner. Our study aims to start addressing this gap. 

 More specifically, the two research questions addressed by this study are: 

o What are the main types of initial arguments provided by mathematics majors in reasoning 

about infinite iterative processes and their states at infinity? 

o Through what learning paths can mathematics majors come to reason about infinite iteration 

in normative ways? 
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2. Formalizing the definition of state at infinity 
 
 While several researchers have investigated students’ solutions to tasks about infinite 

iterative processes (e.g., Dubinsky et al., 2008; Brown et al., 2008; Stenger et al, 2005; Ely, 2007; 

Mamolo & Zazkis, 2008), none of these studies has defined clearly (from a mathematical point of 

view) what characterizes a normative state at infinity for infinite iteration. In order to avoid this 

ambiguity, in our study we used only infinite iterative processes for which the intermediary states 

are described as sets of objects. More precisely, in this study an infinite iterative process consists of 

an initial set 0S , together with an infinitely countable ordered set of actions { } NnnA ∈ , where an 

action consists of one or finitely many operations on sets. It is assumed that1A  is applied to the 

initial set 0S  producing a set 1S , then 2A  is applied to 1S  and the result is denoted by 2S , and so 

on. For the rest of the paper, we will use the term “intermediary state” to refer to an arbitrarynS . 

 Following Allis & Koetsier (1995), we take the position that the information provided by the 

intermediary states of an infinite iterative process does not logically determine a state at infinity, 

unless we add an assumption that mandates that the objects on which the process acts have 

continuous space-time paths. In other words, we need to assume that: A1) any object that belongs to 

all intermediary states from a step on must belong to the state at infinity; A2) any object that is not 

part of any of the intermediary states from a step on is not part of the state at infinity; and A3) if 

there exists an object that is not part of either of the two previous categories, then by definition there 

is no state at infinity for the process in question. We believe that these three assumptions clearly 

define the notion of state at infinity for infinite iteration. From here on, the phrase “normative 

solutions” will be used to refer to arguments that lead to states at infinity that are in agreement with 

this definition, usage which is consistent with what other researchers have called normative 

solutions to tasks involving infinite iteration. 
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 For an application of this definition to a task involving infinite iteration let us consider what 

we named The Original Tennis Ball Problem, which was borrowed from the existing literature on 

infinite iteration (Falk, 1994; Dubinsky et al, 2005): 

Suppose you are given an infinite set of numbered tennis balls (1, 2, 3,… ) and two bins of 
unlimited capacity, labeled A and B. 

At step 1 you place balls 1 and 2 in bin A and then immediately move ball 1 to bin B.  
At step 2 you place balls 3 and 4 in bin A and immediately move ball 2 to bin B. 

            At step 3 you place balls 5 and 6 in bin A and immediately move ball 3 to bin B.  
      ……………………………………………………………………………………. 
This process is continued in this manner ad infinitum. Now assume that ALL steps have 
been completed. What are the contents of the two bins at this point? 

The pattern implied by the “…” is that at step n (where n is an arbitrary natural number), the two 

balls with the “smallest labels” are taken from outside of the bins and placed in bin A, after which 

the ball with the “smallest label” in bin A is moved to bin B. Assuming this pattern, one can prove 

by induction that for an arbitrary natural number n, at step n ball n is taken out of bin A and placed 

in bin B, and that none of the subsequent steps affects its position. By A1, ball n belongs to the final 

state corresponding to the contents of bin B, and by A2 it does not belong to the final state 

corresponding to the contents of bin A. As n was chosen arbitrarily, we can infer that after all steps 

have been completed, bin A is empty and bin B contains all the balls we started with. 

3. Related literature 

3.1 Early research on infinite iteration 

Piaget and Inhelder (1956) reported on children’s (ages 5-12) understanding of infinite 

divisibility. In this study, the tasks used involved repeatedly splitting a given geometrical figure into 

smaller parts (e.g., a segment was split into smaller segments by halving; a square was split into 4 

smaller squares). The children were asked to predict what would happen if the process of division 

were continued mentally, predict the form of the “final elements” of such a division process, if 

considered completed, and discuss the reconstruction of the original figure starting from the final 

elements. The researchers concluded that only in the abstract (formal) operational thought stage 
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(age 11-12) did children conceptualize the division process as infinite, and the “final elements” as 

points. Fischbein (1963) replicated some of the Piagetian techniques and his results somewhat 

confirmed those obtained by Piaget and Inhelder (1956), but in Fischbein’s study only half of the 

subjects aged 11-12 (which are considered in the abstract operational thought stage, in Piaget terms) 

saw the division process as infinite. 

Fischbein, Tirosh & Hess’ (1979) own infinite iteration study had 470 students in grades 5-9 

solve tasks involving repeated division of a segment as well as other infinite processes set in a 

geometrical context. This study focused more on whether the students viewed these processes as 

finite or infinite, rather than on what a state at infinity would be. Infinitist views were considered to 

be displayed by answers such as “the process never ends” and “the process ends but theoretically it 

is infinite”. At all grade levels, finitist views (“the process comes to an end after finitely many 

steps”) were displayed by the majority of the students. Over all grade levels, 55% of the students 

had finitist views.  

3.2 Recent theoretical studies 

The Basic Metaphor of Infinity.  Lakoff and Nunez (2000) propose that an infinite iterative process 

can be seen as completed if a metaphorical final state is added to it. This addition can be done by 

drawing a parallel between finite processes (that have a well-defined final state) and infinite 

processes. As both types of processes have an initial state and a clear procedure for obtaining the 

next state from an existing state, one can extend the parallel by imagining that the infinite processes 

also have a final, unique state that follows all intermediary state. This extension is what Lakoff and 

Nunez (2000) call the Basic Metaphor of Infinity. The metaphorical process thus obtained has 

infinitely many intermediary states and a metaphorical final state that is unique (that is, there is no 

distinct previous state within the process that both follows the completion stage of the process yet 
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precedes the final state, and there is no other state of the process that both results from the 

completion of the process and follows the final state). 

The APOS approach. Researchers embracing the APOS (Action Process Object Schema) learning 

theory (e.g. Dubinsky et al, 2008; Brown et al., 2008; Steger et al., 2005) propose that in order for 

one to construct an infinite iterative process, one needs to first be able to construct a process of 

iterating completely through N, which can be encapsulated into an object (conventionally labeled ∞) 

as one attempts to apply an action of evaluation to the process in trying to determine “what comes 

next”. Reaching a process view of an arbitrary infinite iterative process then involves coordinating 

this completed iteration through N with a transformation that assigns an object to each natural 

number; an object view of this process (once seen as a totality) is reached by applying an action of 

evaluation to it, the obtained object being “a state at ∞” and understood as beyond the objects that 

correspond to the natural numbers (a transcendent object)  

 Both of these theoretical approaches will be discussed in more detail in the context of the 

empirical studies presented in the next section, as well as in the Discussion section concluding this 

paper. 

3.3 Recent empirical studies 

 Several different studies examined college students’ (mathematics, mathematics education, 

computer science, or engineering majors) reasoning on versions of what we called the Original 

Tennis Ball Problem. Dubinsky et al. (2008) and Mamolo & Zazkis (2008) used timed versions of 

this task (i.e.,  the steps of the process were time-indexed such that each step took half the time 

necessary to complete the previous step, and so infinitely many steps could be completed in finite 

time). Using an APOS perspective, both studies reported that the vast majority of the participants 

had a process view of the infinite iteration involved in the tasks, and either could not conceptualize 

of the infinite process as completed or attempted to do so (and define a state at infinity) in non-
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normative manners; the students in the latter category attempted to describe the state at infinity by 

plugging ""∞ either in the algebraic expression indicating the cardinality of the nth intermediate state 

(obtaining, for example, “∞9 ” as the number of elements in the final state, in the case of the 

problem used by Mamolo & Zaskis), or in the expression that represented the range of balls in bin A 

after n steps (obtaining, for example, ∞−+∞ 21  as the range of balls in bin A “at the end”, in 

Dubinsky et al.’s study).  

Ely (2007) reported similar types of reasoning for the tennis ball problem (out of 225 

Calculus undergraduates, only three solved the problem successfully, while 73% either claimed that 

the process did not end or gave an answer that was categorized as meaning “infinitely many balls in 

bin A”). However, the author suggested that in the case of the students in the “infinitely many” 

category, APOS does not accurately explain their non-normative solutions. Ely (2007) claimed that 

these students did encapsulate the process into an object, but a non-normative object by 

metaphorically extending the “how many” property from the intermediate states to obtain a final 

state, which he interpreted as evidence for that claim that BMI provides a more plausible account 

for the different types of student answers.  

Brown and her colleagues (2008) explored college students’ reasoning on infinite iteration 

by challenging them to prove or disprove U
∞

=

=
1n

)N(P})n,...,3,2,1({P . All twelve students in the 

study attempted to make sense of the infinite union on the left of the equation by approaching it as 

an infinite iterative process and noticed that U
n

1k

})n,...,3,2,1({P})k,...,3,2,1({P
=

= , consequently 

initially deciding that the state at infinity of the infinite iterative process was indeed P(N). 

Interviews of the students in the 6 groups revealed that only one student had an object view of the 

infinite iterative process in this problem (infinite union), and was successful in disproving the given 

statement. The other students in the study gave explanations which were coded as showing an 
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action or process view of the infinite union, and could not successfully complete the problem. The 

authors conclude that the APOS approach to constructing infinite iteration provides adequate terms 

for explaining the various stages of understanding reached by the students in making sense of 

U
∞

=1n

})n,...,3,2,1({P . 

Brown et al. (2008) and Dubinsky et al. (2008) noted that although some aspects of the 

observed student reasoning are consistent with the mode of thinking predicted by BMI, their data 

indicated that successfully solving problems that require defining a resultant final state for infinite 

iteration may require more than metaphorical thinking. 

We will discuss our position with respect to the APOS and BMI approaches in the 

Discussion section, in light of the data obtained in this study. 

4. Research paradigm 

In order to be able to closely examine students’ initial conceptions of infinite iteration as 

well as investigate possible learning paths that students may take toward developing normative 

understandings, we employed a design research paradigm (in the sense of Cobb et al., 2003 and 

Gravemeijer, 1998). This type of research involves a cyclic process in which the researcher 

formulates “the significant disciplinary ideas and forms of reasoning that constitute the prospective 

goals or endpoints for student learning” (Cobb et al., 2003, p.11), after which a hypothetical 

learning trajectory and an associated instructional sequence are designed; the instruction is 

implemented with one or more students and this implementation is carefully observed and analyzed, 

and the hypothetical learning trajectory and instructional activities are subsequently revised based 

on this analysis. These steps are then repeated in a new cycle, with a new student or group of 

students. 

 For this particular study (which focuses only on the first cycle of a multi-cycle teaching 

experiment), our instructional goals were for the participants to be able to conceptualize an infinite 
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iterative process as completed (that is, be able to imagine infinitely many steps as having been 

performed) and provide normative arguments regarding the state at infinity of an infinite iterative 

process across a variety of tasks. The sequence of tasks we used was semi-structured (i.e., some 

tasks were designed before the study to address common non-normative answers documented in the 

literature, while others were added during the study in response to the specific types of arguments 

displayed by the participating students), and was created by formulating variations of tasks such as 

the Original Tennis Ball Problem described above, as well as geometrical construction tasks 

inspired by the work of Fischbein, Tirosh & Hess (1979). In addition to the types of tasks already 

used by other researchers, we also used tasks in which the described process did not have a state at 

infinity (in the sense described in section 2). The rationale behind the creation of these variations 

was to obtain a collection of tasks that were similar enough to each other to inspire students to make 

connections between the types of reasoning used for each task, but also different enough to 

potentially trigger a variety of types of student arguments, which we as researchers could use to 

create cognitive conflict for the students. Our hope was that the students’ attempts to resolve such 

conflict would lead to conceptual changes, as Piaget (1963) suggests.  

 The learning environment created for this study was typical of student-centered instruction, 

following Maher (2002). The participating students were encouraged to work together on tasks, to 

provide justifications for their answers, and to question the correctness of their answers as well as 

those of their partner. At the same time, the researcher did not validate or invalidate the answers 

given by the students, and did not force the students’ investigations in predetermined directions. 

Instead, the researcher asked clarifying questions regarding the students’ answers, and at times 

pointed out a conflict in the ideas presented and encouraged the students to discuss how the conflict 

could be resolved. 
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5. Methods 

5.1 Participants 

A written pre-test containing the Original Tennis Ball Problem was administered to fourteen 

mathematics majors1 enrolled in a Problem Solving course at a large university in northeastern 

United States. Out of the thirteen students who provided non-normative answers to this problem, 

two2 were randomly chosen. Both of these students, which we will call Max (a junior) and Tom3 (a 

senior) for the purpose of this study, had already completed the Calculus 1-3 sequence, Linear 

Algebra, and a proof techniques course.  

5.2 Procedure 

 Following the written pre-test, Max and Tom were interviewed separately by the first author 

and asked to explain in detail their reasoning on the pre-test problem. The two students then worked 

collaboratively for a total of six problem-solving sessions lasting approximately two hours each, 

during which they progressed through the task sequence at their own pace. These sessions, as well 

as the initial interviews, were videotaped. The students were then individually administered a 

written post-test containing tasks similar to those used in the main task sequence.  

5.3 Data Analysis 
 

 The pre-test interviews and the six problem-solving sessions (totaling 14 hours of 

video) were transcribed. These transcripts, together with the worksheets used by the students, were 

used to identify chains of critical events (in the sense of Powell, Francisco & Maher, 2003) with 

respect to the nature of each student’s initial arguments for each task, as well as the context in 

which changes in each student’s reasoning occurred, if any. As the analysis progressed, we noted  

                                                 
1 We decided to work with mathematics majors in order to ensure that the participants had a certain maturity regarding 
proof techniques, and also because a mathematics major would have already been exposed to a wide variety of 
mathematical concepts, which gave us more mathematical contexts to choose from for our task variations. 
2 We worked only with two students at a time in order to be able to closely follow each student’s reasoning, both during 
each session and later during data analysis.  
3 All student names are pseudonyms. 
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that students’ reasoning was consistent with the behavior suggested by Wagner’s (2006) “transfer in 

pieces” theory. Wagner proposes that transfer of knowledge is a complex process during which an 

initially topical set of principles is constantly refined to account for (and not ignore) the new 

contexts of the new problems encountered. Thus, the acquisition of abstract knowledge is a 

consequence of transfer and not a required initial component for it to happen. Furthermore, 

according to Wagner (2006), deciding what the mathematical structure of a problem is and whether 

it is structurally similar to a previously encountered problem is intimately connected with the 

problem-solving process itself; as a working set of principles is refined to account for new contexts, 

structural commonalities of the growing class of examples are gradually formulated, which in turn 

helps with the formulation of an abstract principle or set of principles applicable to the entire class. 

This view of knowledge transfer served as a guide as we revisited and refined our previous analysis. 

6. Results 
 
 The first half of this section describes the main types of arguments displayed by the students 

when challenged to describe a “final state” for an infinite iterative process. In the second half we 

discuss the various ways in which the students employed references to other tasks (whether from 

this study or their previous mathematical experience), and how these references often triggered 

changes in the students’ conceptions of completed infinite iteration. 

6.1. Initial types of arguments 

6.1.1 Generalizing global properties from the intermediary states to the final state 

 When confronted with a new task, the students attempted to define a state at infinity for 

the infinite iterative process in question by extracting patterns observed in certain global4 properties 

                                                 
4 Here the term “global” is used in reference to an intermediate state. A set’s cardinality describes a global aspect of it, 
as it refers to all the elements in the set. Noting that a set contains only even numbers also refers to a global property of 
it. In contrast, “the set contains the number 5” is a local property as it does not make a statement regarding all the 
elements of the set. 
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of the sets obtained after finitely many steps and claiming that these patterns needed to be respected 

by the state at infinity.  

Cardinality. Although in the tasks we used the objects produced at each intermediate step were sets, 

the participating students initially tended to focus on answering the question “How many?” instead 

of “Which elements?” when attempting to define a state at infinity for an infinite iterative process. 

We present two instances of this type of argument. 

Episode 1. Consider the following excerpt from Tom’s Pre-Test interview, during which he was 

working on a problem equivalent to the Original Tennis Ball Problem which also had a time index 

for the process (the Original 10 Marble Problem5) 

Tom: Maybe if we have a sequence that for every term is an expression of the size…[…]. 
The way we defined the sequence in the end it goes to infinity…in the sense that it’s 
monotonic increasing and it’s not upbounded anywhere. So…I think there should be as 
many marbles in the jar as there are natural numbers. Clearly there aren’t finitely many 
marbles in the jar at t=1 because if there were finitely many marbles that would mean our 
sequence an would converge to a particular number that would be the size of the number of 
marbles at t=1. But we already know that the sequence diverges. So now you know the size 
of the marbles is infinite.  

 
Episode 2. Similarly, in the case of the Original Tennis Ball Problem, Max noticed that both bin A 

and bin B contained n balls after n steps had been performed, and for this reason claimed that both 

bins should have infinitely many balls after all the steps of the process had been performed.  

 Arguments of this type have already been documented in the literature in the context of 

these two specific problems (e.g. Dubinsky et al, 2005; Ely, 2007; Dubinsky et al, 2008; Mamolo & 

Zazkis, 2008), so our students’ initial reactions to these tasks did not come as a surprise. However, 

                                                 

5 The Original 10 Marble Problem. Suppose there is a jar capable of containing infinitely many marbles and an infinite 
collection of marbles labeled 1, 2, 3, and so on. At time t = 0, marbles 1 through 10 are placed in the jar and marble 1 is 
taken out. At t = 0.5, marbles 11 through 20 are placed in the jar and marble 2 is taken out; at t = 0.75, marbles 21 
through 30 are put in the jar and marble 3 is taken out; and in general at time t = 1 − 0.5n, marbles 10n + 1 through 10n 
+ 10 are placed in the jar and marble n + 1 is taken out. How many marbles are in the jar at time t = 1? 
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the variety of tasks used in our research allowed us to find instances of this type of argumentation in 

the context of other tasks as well, as described in the next episode.  

Episode 3. Consider the case of the 1/2 Marble Problem, in which an infinite iterative process is 

defined such that the contents of a jar oscillate between {marble “1”} and {marble “2”}. The 

students were asked what was in the jar after all the steps had been performed. Max concluded that 

the jar contained exactly one marble whose label could not be determined because “you always 

have one marble in the jar, either 1 or 2”. 

 The students’ initial tendencies to extract a sequence of numbers (indicating the 

cardinalities of the sets representing the intermediary states of the process) from the problems, 

instead of focusing on the sequence of sets itself, might be an instance of an attempt to reduce the 

level of abstraction, in the sense of Hazzan (1999). Infinite numerical sequences are introduced in 

Pre-Algebra and Pre-Calculus courses in K-12, while the notion of the limit of an infinite sequence 

of numbers is treated by high school and college level Calculus courses.  Mathematics majors are 

thus likely to have developed a familiarity with infinite numerical sequences, and there is evidence 

in the literature that some think of the limit of a numerical sequence as a “last element” (Mamona 

Downs, 2001). Thus, when students are asked to describe a final state for a sequence of sets, it is not 

entirely surprising that some choose to focus on an associated numerical sequence and its limit. 

Generalizing other global properties from the intermediarye states to the final state. In some of the 

variations of the Original Tennis Ball Problem that we used, one easy way to describe the contents 

of the two bins (after an arbitrary finite step n) was through the means of a property shared by all 

the balls in a bin. For example, in the case of one of the post-test problems, after any finite step, one 

bin contained only balls with even labels, while the other bin contained only balls with odd labels. 

When such patterns were present in a task, our participants tended to claim that the observed 

patterns needed to hold for the final state. 
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Episode 4. In session 4 the students worked on the Bin Swapping Tennis Ball Problem, which was 

defined such that after n steps (where n is an arbitrary natural number), one bin contained only the 

ball labeled 1, while the other contained the balls with labels 2, 3, …, n; however, the contents of 

the two bins were swapped at every odd step. Both Max and Tom reasoned that because of this 

observed pattern in the labels on the balls found in each bin after finitely many steps, “at the end” 

one bin must contain the ball labeled “1” while the other bin must contain all of the other balls (with 

labels in N\{1}). The fact that the process described by the problem caused the contents of the bins 

to be swapped at every odd step was not deemed to be of great importance by the students, who 

accounted for it by claiming that it was not possible to determine “which bin contains what” at the 

end, while still maintaining that a final state existed in the form of the partition (of the initial set of 

balls) mentioned above. 

 This type of argument resembles, to some degree, what was reported by Brown, 

McDonald & Weller (2008). In that study, students reasoned that because 

U
n

1k

})n,...,3,2,1({P})k,...,3,2,1({P
=

= , it must be true that U
∞

=

=
1n

)N(P})n,...,3,2,1({P . The power set 

form of each intermediate state (of the infinite iterative process students used to make sense of the 

infinite union in this problem) is a global property of that state, and the students reasoned that the 

final state of this process needed to be a power set as well, despite evidence that the students knew 

and were able to apply all the theoretical definitions necessary to make sense of U
∞

=1n

})n,...,3,2,1({P . 

This provides supporting evidence that the students’ tendency to employ “generalizing global 

properties” types of arguments may not be restricted to tasks set in pseudo-real world contexts 

(which are likely to trigger arguments based on real-life expectations and intuitions, as suggested by 

Mamolo & Zazkis, 2008), but influence students’ reasoning on entirely abstract tasks as well. 
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6.1.2. The “reaching the limit” argument 

 Another type of argument that the students employed repeatedly surfaced in the context of 

geometrical construction tasks, in which a set of points on the real line or in the two-dimensional 

plane was defined by an infinite iterative process. In such situations, there were several instances in 

which the students claimed that besides the union6 of all the sets representing the intermediate 

states, the final state needed to also contain the limit points of this union, if any.  

Episode 5. In session 3 the students worked on the zn Problem, in which z is a complex number of 

norm strictly less than 1 (and greater than 0) and an infinite iterative process is defined such that at 

step n the process defines a complex number n
n zz = . The students were asked whether the set of 

points in the plane corresponding to the set of complex numbers produced by the completed process 

contained the origin, (0, 0) or equivalently, whether 0 belonged to the set of complex numbers 

produced by the completed process. Both students claimed that the sequence of complex numbers 

produced by the successive steps of the process converged to 0 and acknowledged that there was no 

natural number n such that zn equaled 0. However, they could not agree on an answer to the main 

question of the problem. It is in this context that the following dialogue took place: 

Max: If we finish the process we’re at the limit. That’s the only way you finish the 
process. 
Tom: When I think of the set produced by the process, I think of every zn where n is a 
natural number… 
Max: The only way you can finish the process is if you reach the origin. ‘Cause if you’re 
not, then you’re not done yet!  

 
Tom claimed that the final state for this process is the collection of all complex numbers of the form 

zn (where n is a natural number), while Max believed that the set defined by the completed process” 

contained all the elements in { }Nn|zn ∈  and the complex number 0, which is a limit point 

for{ }Nn|zn ∈ . Later in that session Max commented that after all the steps of the process had been 

                                                 
6 In all the geometrical construction tasks, the process was defined in such a way that any intermediate state was 

included in the subsequent one (so ...S...SS n10 ⊆⊆⊆⊆ ). 
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performed, “you’re sitting on top of the origin”, which he interpreted as 0 being “reached” by the 

process, and thus being part of the set of points produced by the process. Max’s inclination to use a 

“reaching the limit” type of argument here (and in the rest of the geometrical tasks) may be 

explained by the fact that in the case of a convergent (infinite) series ∑
∞

=1n
na , its sum can be 

conceptualized as the state at infinity of an infinite iterative process that at step n, adds na  to the 

already computed ∑
−

=

1n

1k
ka , and this state at infinity is the limit of the sequence of numbers produced 

by the process. Thus, it is possible that the “reaching the limit” and “cardinality” (see 6.1.1) types of 

arguments are both manifestations of the same phenomenon, which is that students tend to work 

with sequences of sets as if they were sequences of numbers. 

 This concludes our discussion of the main types of initial arguments displayed by the 

students in response to our tasks. Table 1 on page 16 provides a summary of which type of 

argument was initially used by each student in response to each task7 (the tasks are listed in 

chronological order). 

 The next subsection of the paper looks at the various ways in which the students employed 

references across tasks and examines how such references helped the students refine their 

conceptions of completed infinite iteration and states at infinity. 

6.2. References to other tasks/mathematical contexts 

 The two students in this study often made references to problems or contexts other than 

the problem that they were working on at the time; these references involved comparing two or 

more problems in terms of what the students perceived as structural similarities or differences, and 

                                                 
7 The Relabeled 10 Marble Problem, the 1nn +→ Marble Problem, and the Writer Problem were all isomorphic to 
the Original Tennis Ball/10 Marble problems. Our data suggests that the students’ normative reasoning on these three 
problems was largely due to the fact that they were placed after the Vector Problem in the task sequence.  See section 
6.2.2 for more details on the Vector Problem. 
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were used for at least three different purposes: a) to reformulate the current problem using a new 

context, in hope that the new context will bring additional insight; b) to revisit a previously 

addressed problem, when working on the current problem provided insight that put the correctness 

of the solution given to the previous task under question; and c) to refute or support an existing 

argument for the current problem. 

6.2.1. Reformulating the current problem 

Episode 6. Let us consider again the Original 10 Marble Problem, which Tom worked on during the 

Pre-Test interview. His initial response to this problem was that there were infinitely many marbles 

in the jar at t=1, as mentioned in section 6.1.1. After the interviewer asked him whether he could 
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name a specific marble found in the jar at t=1 and he started being troubled by the fact that he could 

not, he proposed the following: 

 Tom: I’m thinking right now of an analogy. When I took Math 300… you know the infinity 
hotel? This is sort of like if you have rooms 1 through 10, and you move 10 people in there, 
put 1 person in each room, then person in room 1 moves out, right? So you just redefine the 
question in terms of hotel rooms. […] It makes me think of a wave – people are moving 
down the corridor of the hotel… but it’s getting bigger as it slides across. If you have this 
increasing wave going down, that would be as you’re approaching 1 [t=1], not when you’re 
at 1. Cuz once you get to 1, the wave would be stopped. Because you’re done with your 
operations, you’re not performing anymore. So… it’s sort of like you have this 
infinity…’cause the wave is increasing… so if you get to 1, then at that point you have 
infinitely many people in the hotel. But that infinity of people you would never find if you 
walked down the corridor. For any room, that person would have been taken out.  

While Tom’s reformulation of the Original 10 Marble Problem using the context of Hilbert’s Hotel 

did not help him to entirely resolve the cognitive conflict he was experiencing, it did provide a new 

way for him to explain his reasoning. It also provided a context that potentially draws the solver’s 

attention more towards the “which ones” question: the “sliding wave” metaphor stressed the fact 

that although the number of the people in the hotel was constantly increasing, they were also 

moving further and further away from an imaginary “beginning” of the hotel; with the ever-

increasing pile of marbles, it may be easier to overlook the fact that the collection of marbles in the 

jar also “slides along N”.  

 Note that in this case, the problem referenced by the student was not part of the task 

sequence used in this study, but one encountered in a prior mathematics class. Other instances in 

which the students reformulated the problem at hand involved using real-life contexts (e.g, 

comparing the situation in the Original 10 Marble Problem with a savings account in which one 

repeatedly deposits $10 and takes out $1 and at some point is left with nothing), or entirely abstract 

terms (e.g., claiming that the 1/2 Marble Problem was equivalent to asking what the limit of the 

numerical sequence “1, 2, 1, 2, 1, 2,…” was). 
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6.2.2. Revisiting a previously addressed problem from the task sequence 

Episode 7. The Vector Problem (the first task in Session 1) was designed with the purpose of having 

students focus on the “which ones” question mentioned earlier. As pre-test data as well as previous 

studies (e.g. Mamolo & Zazkis, 2008) suggested that students’ real-life expectations and intuitions 

often triggered non-normative types of arguments, this task was formulated in more abstract terms 

than the Original 10 Marble/Tennis Ball problems.   

The Vector Problem. Let NN...),0,0,1(v ∈= . You are going to “edit” this vector step by 
step. 

• Step 1: ...),0,0,2,1,0(v =  

• Step 2: ...),0,0,3,2,1,0,0(v =  

• Step 3: ...)0,0,4,3,2,1,0,0,0(v =  
………………………………….. 

This process is continued ad infinitum. Now assume ALL steps have been completed.  
Describe v at this point. 

 Upon starting working on the vector problem, within seconds the students commented on 

its similarity to the Pre-test marble/tennis ball problems and the Hilbert’s hotel formulation of the 

marble problem, noting that the string of non-zero entries “moves across the vector” in a manner 

similar to the wave of people from the hotel formulation of the Original 10 Marble Problem. 

Continuing to work on the vector problem, Tom commented that “for any entry, at some point it’s 

going to go to 0 and stay there, so if you’re done with your process it’s just going to be the 0 

vector”. Max wondered momentarily whether the “final vector” wouldn’t contain “all the natural 

numbers between the zeros”, but then proceeded to explain that cannot be the case as there would 

be no specific position in the vector at which the string of natural numbers could start. Having 

agreed on the “0 vector” answer to the Vector Problem, the two students revisited the Original 10 

Marble Problem: 

Max: If that’s true, then all the marbles are removed from the jar would be the right 
answer. […] ‘Cause you’re removing them 1, then 2, then 3, eventually you would 
remove them all if you finish the process. You couldn’t say any numbers that are in the 
jar, ‘cause you’re going to exhaust all the numbers. [The interviewer points out that 
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during the pre-test, not being able to name any marbles in the jar did not mean to him 
that the jar was empty.] Yeah, but I kind of changed my mind. [I: Why?] ‘Cause even if 
you say that number is there at this step, at the next step it might not be there so if you 
do finish the process, there’s not going to be nothing there. There can’t be any numbers 
left, any natural numbers, so that can’t happen. 
Tom: If somebody asked me to write an argument for why there were no marbles in the 
jar at t=1 I think I could do it.[…] Whereas I don’t think I could come up with one for 
why it should be infinity, because I have no idea where they are, because they’re not in 
the rooms of the hotel.[…] My first intuition was that there were infinitely many 
marbles, but where are they, I mean which ones are they, I think would be the question. 
Because if you say marble 2371 is part of the infinity, no it’s not because it’s been 
removed. You can say that about any marble. But I still have this intuition that if it’s 
getting larger there should be infinitely many… 

 
 The abstractness of the Vector problem, together with a formulation that had students 

focus on individual elements/positions as opposed to the cardinality of a set, appears to have helped 

the students move towards a more logical approach to this set of problems and resolve the cognitive 

conflict by choosing the solution for which they felt they could write a convincing argument, while 

at the same time acknowledging that the “logical” argument seemed counterintuitive. 

6.2.3 Referencing another problem to refute or support an existing argument 

Episode 8. As already discussed in section 6.1.2, Max and Tom disagreed on the zn Problem (with 

respect to whether the complex number 0, or equivalently the (0, 0) point, belonged to the set of 

points defined by the completed process): Max strongly believed that it did, while Tom argued the 

opposite. It is in this context that the following exchange took place: 

Max: then how can you tell me this equals 1 [referring to 1+1/n Marble Problem8], and 
you’re trying to tell me that 0 [does not belong to the set]? 
Tom: Yeah, it is kind of inconsistent reasoning. Because when I gave that example with 
the balls, I was kind of thinking… 
Max: When we had this one, we ended up saying at the end we had 1 on the ball. Well, I 
say we have 0 right now. We’re AT the origin! 
Tom: Yeah, I mean, yeah, it depends…if we use that reasoning, which I recall being what 
we agreed on, then I guess you’d have to say that the origin, the zero vector is in your set. 

                                                 
8 The 1+1/n Marble Problem was formulated by Tom in Session 1. It involves an ω -type set of marbles in which the nth 
marble was labeled with “1+1/n” (so the sequence of labels was 1+1/1, 1+1/2, 1+1/3, …). The infinite process in this 
problem involved starting with the first marble and placing it in a jar, then replacing it with the 2nd one, which at its turn 
is replaced by the 3rd one, and so on. Both students strongly believed that after all steps had been completed, the jar 
contained a marble labeled “1”. 
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But on the other hand I am not really sure I agree with that [the solution given to the 1+1/n 
problem] anymore. 

Interestingly, while both students acknowledged some type of structural similarity between these 

two problems, they reacted in different ways to the acknowledgement: Max believed even more 

strongly in his “0 belongs to the final set” position on the zn Problem, while Tom started 

questioning the validity of the previously agreed upon solution for the 1+1/n Marble Problem and 

continued to argue for “0 not part of the final set” in the case of the zn Problem. Although in this 

episode the two students reacted differently to the reference made to another task, it is important to 

note that both Max and Tom displayed concern for reasoning in a consistent manner across tasks.   

6.3 Charting the flow of ideas 

 As the data discussed in 6.2 suggests, the students’ progress through the task sequence 

designed for this study was far from linear. There were numerous instances when previously 

addressed tasks were referenced or revisited, and problems or mathematical contexts from the 

students’ mathematical background were brought up as the students strived to develop a conception 

of completed infinite iteration that was, in their view, consistent across tasks. Figure 1 contains a 

representation of our view of the “web of connections” built by Max and Tom through the course of 

the pre-test and the first five of the problem-solving sessions. As this diagram indicates, the “web of 

connections” entangles all but one of the problems in our task sequence. Back-references to five of 

the tasks led to solution changes (for the referenced tasks) on the part of either one or both students.  

 In the final session, the first author adopted a more teacher-like role with the purpose of 

engaging the students in reflection with respect to the strategies they used in determining whether a 

task was similar or different from another one, and consequently whether the reasoning used for one 

task was applicable to another. This intervention, as well as the two students’ performance on the 

post-test, is discussed in the next section. 
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6.4. Our intervention and post-test results 

 At the end of five problem-solving sessions, both students displayed changes in their 

reasoning about infinite iteration, compared to their initial responses to our tasks. In the case of 

problems such as the Original 10 Marble Problem and the Original Tennis Ball Problem, both 

students had moved from non-normative to normative solutions. With respect to the geometrical 

construction problems, Tom had settled on normative solutions after originally being the one to 

 

                  

    Figure 1. Student references across tasks 
 
Legend 

:yx →  While discussing x, problem y was referenced 

Bold arrow: the reference caused one or both of the students to change their solution  
      to the referenced problem 
Dashed line box: the problem in the box was proposed by one of the students    
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propose the “reaching the limit” type of argument, while Max was increasingly drawn towards 

“reaching the limit” arguments as the study progressed. Finally, on “no final state” tasks both 

students exhibited “generalizing global properties” tendencies, although Tom displayed more 

discomfort with them than Max. 

 In the final session, the first author drew the students’ attention back to the Original Tennis 

Ball Problem (which they had solved normatively by the end of the first session) and pointed out 

that the solution they had agreed upon implicitly used the “continuity assumptions” described in 

section 2. The students were then encouraged to revisit the other problems in the task sequence and 

investigate whether the final state they had defined in each case was consistent with these 

assumptions. 

 The ensuing reflection on the task sequence with the continuity assumptions in mind 

affected the students’ conceptions of infinite iteration differently. For Tom, it led to normative 

solutions to all the tasks in the sequence. In contrast, Max accepted the continuity assumptions as 

sensible for the subclass of problems isomorphic to the Original Tennis Ball Problem, but claimed 

that they were “not applicable” or “incomplete” in the case of each task where considering them 

seemed to point to a different answer than the one Max believed to be correct.  Throughout this final 

discussion he continued to display a concern for consistent reasoning across tasks, but was unable to 

formulate a set of assumptions that would produce a set of final states matching the ones he claimed 

were “the correct ones” for the whole task sequence. 

 Table 2 summarizes each student’s final position on each task used in the problem solving 

sessions, as well as on the Post-Test tasks (“x≈y” means “problem x is isomorphic to problem y”). 
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7. Discussion 

The main findings of this study are: 

o Students’ initial metaphors for the final state of an infinite iterative process were strongly 

influenced by generalizing global properties from intermediary states to the final state (for 

the ball/marble-manipulation problems) and the “reaching the limit” approach in the case of 

the geometrical construction problems 

o References across tasks were used spontaneously by the students for a variety of purposes 

and at times led to changes in the students’ reasoning on one or all of the tasks involved in 

the comparison 

o Each student displayed a concern for reasoning consistently across tasks and constantly 

adjusted his arguments to the given tasks to achieve what he perceived to be consistent 

reasoning in light of the structural similarities and differences identified among the tasks 

 As noted earlier, our students’ initial responses to the Original 10 Marble/Tennis Ball 

problems (episodes 1 and 2) are in agreement with what has been reported by other studies of 
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college students’ reasoning on these tasks (Dubinsky et al, 2008; Mamolo & Zazkis, 2008). 

Additionally, our study examined students’ reasoning on “no final state” tasks and geometrical 

construction tasks, and identified the main types of arguments employed by the students in these 

contexts (episodes 3-5).  

 Our analysis suggests that the initial metaphors created by the students for states at infinity 

are highly context dependent, which echoes the findings reported by Tirosh & Tsamir (1996) 

regarding the effect of task context and task representation on student reasoning (in the context of  

tasks involving size comparison of infinite sets). As discussed in episode 7, the Vector Problem led 

the students to reason in a normative manner without any external intervention, while the Original 

Tennis Ball Problem (an isomorphic problem) did not; additionally, geometrical contexts seemed to 

trigger student conceptions of the state at infinity that were greatly influenced by the limiting 

behavior of the points constructed by the process (episode 5). This data supports the conjecture that 

students do have the ability to reason normatively about states at infinity when the task context or 

task representation evoke the right schema, normative solutions that can then be used as “building 

blocks” in the development of normative conceptions of infinite iteration at large. 

 Considering our students’ conceptual journeys through the course of the study, we propose 

that one way in which students can learn to reason normatively about infinite iteration is to refine 

their initial conceptions of the state at infinity by working through a complex class of related 

infinite iteration tasks. The students in our study did so by spontaneously employing perceived 

similarities or differences among the presented tasks to constantly adjust the types of arguments 

used for each task in order to maintain consistent reasoning across tasks (see episodes 6-8); this, in 

turn, changed the way the students perceived structural similarity among tasks, which is in 

agreement with Wagner’s (2006) claim that the gradual formulation of a set of abstract principles 

applicable to a class of problems is intimately connected with the process of determining structural 
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similarity. This learning environment, coupled with the first author’s initiative to focus the students’ 

attention on a normative type of reasoning and encouraging them to relate it to the other types of 

arguments displayed by the students, proved to be extremely effective in Tom’s case, and partially 

effective in Max’s case (see Table 2, in comparison to Table 1). 

 Regarding Lakoff and Nunez’s (2000) basic metaphor of infinity, we acknowledge that the 

initial types of reasoning displayed by the students in our study produced topical (task dependent) 

metaphorical final states that were grounded in embodied experience (as described in episodes 1-3). 

However, a good number of these topical metaphors corresponded to non-normative final states, 

which is why we agree with Dubinsky et al. (2008) and Brown et al. (2008) that BMI does not 

accurately explain how one may reach normative conceptions of infinite iteration. Our data suggests 

that the refinement of the collection of topical metaphors into a global, normative one can be 

facilitated by providing the students with an "anchor" in the form of a task that did trigger 

normative reasoning in students, and encouraging them to relate and refine their metaphorical final 

states to other tasks in relation to the “anchor” line of reasoning (as described in section 6.4). 

 Lastly, our findings suggest that by focusing on analyzing student reasoning on infinite 

iteration in the context of only one task, empirical studies conducted from an APOS perspective 

(such as Brown et al. 2008) risk overlooking a possible learning path towards normative 

understandings such as the one proposed by this study. Furthermore, explaining a student’s non-

normative reasoning on an infinite iteration task by the lack of a certain type of mental construction 

that APOS posits to be necessary for a normative conception of infinite iteration seems to suggest a 

deficit approach that risks to ignore what students do “bring to the table” – initial topical metaphors 

of final states that, normative or not, represent the students’ current view of what a state at infinity 

is and should be taken into consideration and built upon by any instructional intervention, not 

avoided for fear of future misconceptions.  



 26 

 

References 

Allis, V. and Koetsier, T. (1995). On Some Paradoxes of the Infinite II. British Journal  
for the Philosophy of Science, 46, 235-247  

 
Brown, A., McDonald, M.A.,& Weller, K. (to appear). Step by step: Infinite iterative  

processes and actual infinity. In F. Hitt, D. Holton, P. Thompson (Eds.), Research in 
Collegiate Mathematics Education VII. Providence: Amer. Math. Soc. 

 
Cobb, P., Confrey, J., deSessa, A., Lehrer, R., & Schauble, L. (2003). Design  

experiments in educational research. Educational Researcher, 32(1), 9-13. 
 
Dubinsky, E., Weller, K., Mcdonald, M. A., & Brown, A. (2005). Some Historical Issues  

and Paradoxes Regarding the Concept of Infinity: An APOS Analysis: Part 2. Educational 
Studies in Mathematics 60, 253-266 

 
Dubinsky, E., Weller, K., Stenger, C., & Vidakovic, D. (2008). Infinite iterative  

processes: The Tennis Ball Problem. European Journal Of Pure And Applied Mathematics, 
1(1), 99-121 

 
Ely, R. (2007). Nonstandard models of arithmetic found in student conceptions of infinite 

processes. Proceedings of the 29th Annual Meeting of the PME-NA. University of Nevada, 
Reno 

  
Falk, R. (1994). Infinity: A cognitive challenge. Theory & Psychology, 4(1), 35-60. 
 
Falk, R. and Ben-Lavy, S. (1989) How big is an infinite set? Exploration of children's  

ideas. In Proceedings of the Thirteenth Annual Conference of the International Group for 
the Psychology of Mathematics Education, Paris 

 
Fischbein, E. (1963). Conceptele Figurale. Bucuresti: Editura Academiei R.S.R. 
 
Fischbein, E., Tirosh., D., & Hess P. (1979). The Intuition of Infinity. Educational Studies in 

Mathematics. 10(1), 3-40. 
 
Gravemeijer, K. (1998). Developmental research as a research method. In A. Sierpinska 

& J. Kilpatrick (Eds.), Mathematics Education as a Research Domain: A Search 
for Identity (pp. 277-296). Dordrecht, The Netherlands: Kluwer. 
 

Hazzan, O. (1999). Reducing abstraction level when studying abstract algebra concepts.  
Educational Studies in Mathematics, 10, 3-40. 

 
Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: how the embodied  mind  

brings mathematics into being. New York, NY: Basic Books. 
 



 27 

 
 
Maher, C.A. (2002). How students structure their own investigations and educate us: What we’ve   

learned from a fourteen-year case study. In A.D. Cockburn & E. Nardi (Eds.), Proceedings 
of the 26th Annual Meeting of the International Group for the Psychology of Mathematics 
Education, 1, 31-46. Norwich, England. 

 
Mamolo, A., & Zazkis, R. (2008). Paradoxes as a window to infinity. Research in Mathematics  

Education, 10(2), 167-182.  
 
Mamona-Downs, J. (2001). Letting the intuitive bear upon the formal: A didactical approach 

for the understanding of the limit of a sequence. Educational Studies in Mathematics 
48(2/3), 259–288. 

Monaghan, J. (2001). Young peoples' ideas of infinity. Educational Studies in Mathematics,  
48(2/3), 239-258 

 
Piaget, J., & Inhelder, B. (1956). The Child’s Conception of Space. Routledge & Kegan  

Paul, London 
 
Piaget, J (1963). The Origins of Intelligence in Children. New York: W.W. Norton. 
 
Powell, A. B., Francisco, J. M., & Maher, C. A. (2003). An analytical model for studying  

the development of learners' mathematical ideas and reasoning using videotape data. Journal 
of Mathematical Behavior, 22(4), 405-435. 

 
Stenger, C., Vidakovic, D., & Weller, K. (2005) Student’s conceptions of infinite  

iteration: A follow-up study. Presented at the SIGMAA on RUME conference, Phoenix, AZ, 
February 24-27. 

 
Tall, D. (1980). The notion of infinite measuring number and its relevance in the intuition  of 
infinity. Educational Studies in Mathematics, 11(3), 271-284. 
 
Tirosh, D., & Tsamir, P. (1996). The role of representations in students’ intuitive thinking  

about infinity. International Journal of Mathematics Education in Science and Technology 
27, 33-40.  

 
Wagner, J. F. (2006). Transfer in pieces. Cognition and Instruction, 24(1), 1--71.  
 
Wheeler M.M. & Martin W.G. (1988). Explicit Knowledge of Infinity. Proceedings of  

the 10th Annual Meeting of the  PME-NA. Dekalb, Illinois. 
 
 


