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Introduction

The concept of limit is fundamental to the studycalculus and to introductory analysis; this
has been noted by many researchers (Bezuidenh@@d, Zornu, 1991; Dorier, 1995). Cornu
(ibid) notes that limit “holds a central positionhiwsh permeates the whole of mathematical
analysis — as a foundation of the theory of appnation, of continuity, and of differential and
integral calculus” (p.153). Indeed, limits arisetirese and many other mathematical contexts,
including the convergence and divergence of irdisgquences and series, applications related to
determining measurable quantities of geometric régu and mathematical descriptions of
behavior of real-valued functions.

The formal definition of limit is foundational asuslents proceed to more formal, rigorous
mathematics. The vast majority of topics encounténean undergraduate analysis course, where
students study the theoretical foundations of da;uare built upon the formal definition of
limit. Continuity, derivatives, integrals, and Taylseries approximations are just a few of the
topics in an analysis course for which limit serassan indispensable component. Further, the
formal definition of limit often serves as a stagtipoint for developing facility with formal proof
techniques, making sense of rigorous, formally-gjfiad mathematical statements, and
transitioning to abstract thinking. Tall (1992) estthat the ability to think abstractly is a
prerequisite for the transition to advanced mathalathinking, and Ervynck (1981) cites the

definition of limit as an opportunity for studeritsdevelop the ability to think abstractly. For all



of these reasons, the limit concept holds an inapblace in pedagogical considerations and as

an object of research in mathematics education.

Literature Review

Though there are numerous ways to categorize tiséirexresearch on limit, I have chosen
to separate the literature into two broad categorieesearch on students’ informal notions of
limit andresearch on students’ reasoning about limit in domtext of the formal definitiori
define the former category as research that seettedcribe how students reason about the limit
concept while focusing on the process of findingiticandidates via algebraic, graphical, or
tabular methods. Such research does not haves #&scits, the ways in which students reason
about the formal definition of limit. Bformal limit research| mean research that is focused on
how students reason about or understand the fatefadition of limit. The majority of existing
research on students’ understanding of limit cassiEthe former. These studies have concluded
that informal treatments of limit often result itudents developing misconceptions based on
their interpretation of colloquial language usedtl® classroom to describe limits (Ferrini-
Mundy & Graham, 1994; Monaghan, 1991; Tall, 1992ijli#ns, 1991). Other studies have
shown that informal methods can also result in aer-oeliance on simplistic examples used
initially to introduce the concept (Cornu, 1991;Vvida& Vinner, 1986; Tall & Vinner, 1981;
Tall, ibid). For instance, in an effort to simplithe initial study of limits, students are often
presented with continuous functions whose limit ¢ computed by simply evaluating the
function at the limiting value. As a result, stuttenften conclude that the limit of a function is
simply the function value at the point of interé8e&zuidenhout, 2001; Cottrill et al., 1996; Davis
& Vinner, 1986; Tall, 1992; Williams, 1991). Muchi the literature emphasizes what students

do notknow about the concept of limit. However, some &siéittempt to describe what students



do understand about limits (Ferrini-Mundy & Graham9490ehrtman, 2003; Oehrtman, 2004,
Williams, 2001). Rather than viewing student thimkifrom a deficient perspective, these
researchers describe initial student thinking daikmg natural informal conceptions that might
facilitate the development of strong conceptualarsthnding. For instance, as a departure from
the misconceptions research discussed above, Felumdy and Graham (1994) conducted
clinical interviews in hopes of describing colleggculus students’ understandings of function,
limit, continuity, derivative, and definite integraCentral to Ferrini-Mundy and Graham’s
research is the assumption that students make eétessks based on their own experiences.
[S]tudents’ constructions are rational and subjecexplanation. We view the student’s
constructions not as errors or misconceptions tceetaglicated and replaced with the
‘correct’ and publicly shared interpretations of joraideas, but rather asxpected
phenomenahat are natural in the learning process (p.3@Jids added]
Ferrini-Mundy and Graham provide evidence that estts! interpretations of informal language
that is traditionally used may serve as a tooleveloping eventual understanding. The idea that
students’ informal, and perhaps naive, understgsdsmould not be eradicated, but rather used
as leverage for developing more sophisticated madties understandings was central to my
research. While students’ understanding of limitym#ot perfectly resemble the formal,
mathematical understanding held by experts, it yshbalief that embedded in their informal
viewpoints are valuable ideas and constructs upeichwnew meanings can be built during the
evolution of their understanding of the concept.
In contrast to informal limit research, relativdigw studies have looked directly at how
students reason about or understand the formatitefi of limit. While some have suggested
pedagogical approaches fimachingstudents about the formal definition of limit (Ga4992;

Steinmetz, 1977), very little research exists réggy how students come tanderstandand

reason abouthe formal definition. Existing research to datggests that students, for a variety



of reasons, struggle to understand and reason #t@ddrmal definition of limit (Cornu, 1991,
Cottrill et al., 1996; Vinner, 1991; Gass, ibid;rkan, 2001; Tall, 1992; Tall & Vinner, 1981,
Williams, 1991), which is rich with quantificatioand notation. Cornu (ibid) suggests that the
formal definition of limit is too cognitively sopsticated for first semester calculus students.
Vinner’'s study (ibid) substantiates Cornu’s claimporting that out of fifteen mathematically
gifted calculus students who had spent significemé¢ with the limit concept, only one was able
to provide a formal definition for limit that migimdicate “reasonably deep understanding of the
concept” (p.78), and for this single student, theversal condition ore was not explicit.
Similarly, none of the students in the study condddy Cottrill et al. (ibid) demonstrated the
ability to progress to a point of reasoning formabout the limit concept.

Some scholars (Dorier, 1995; Tall, 1992) suggest tintroductory calculus students’
difficulties with the formal definition of limit nght be attributable to an untimely introduction.
For instance, Tall reports that formal definitioas2 not appropriate as cognitive tools for
developing conceptual understanding:

[Flormal definitions of mathematics...are less appidp as cognitive roots for curriculum

development. Their subtlety and generality are tpeat for the growing mind to

accommodate all at once without a high risk of ton€aused by inadvertent regularities in
the particular experiences encountered (p.508).

Dorier (ibid) points out that historically “lessrfoalized tools were used to solve most of the
problems [related to limits], while thee-6-definition’ was conceived for solving more
sophisticated problems and for unifying all of thefp.177), yet at the outset of calculus and
introductory analysis, students likely have difftguunderstanding the importance of a definition
designed to unify problems they have yet to enaruithe current research, then, suggests that
the formal definition of limit may not be an apprigpe starting point from which to build

intuitive understanding about limit.



Regardless of when students should optimally enteouthe formal definition of limit, the
message seems clear — the formal definition oft isndifficult for students to understand. What
is less apparent from the bulk of the literaturewéver, is how students might come to reason
coherently about this difficult concept. Indeed,d@te, very few studies (Cottrill et al., 1996;
Larsen, 2001) have attempted to model such reagohidiscuss these studies below, as they
have had a profound impact on the development obwryresearch.

Cottrill et al. (1996) provide a genetic decomposiof how students might reason about the
limit concept. This genetic decomposition descritbesprocess a student might experience as he
or she constructs a formal understanding of lirRitior to collecting data, Cottrill et al.
constructed an initial genetic decomposition fowhsiudents may come to understand the limit
concept. This initial framework was subsequentlysed based on analysis of the data collected
in their study. Most notably, data analysis supgbrd more precise articulation of the initial
steps in their seven-step decomposition, seen below

1. The action of evaluatingat a single poink that is considered to be close to, or even
equal toa.

2. The action of evaluating the functiémt a few points, each successive point closer to
than was the previous point.

3. Construction of a coordinated schema as follows.

(a) Interiorization of the action of Step 2 to constracdomain process in whioch
approaches.

(b) Construction of a range process in whyciipproaches.

(c) Coordination of (a), (b) vid That is, the functiofi is applied to the process »f
approaching to obtain the process (k) approaching..

4. Perform actions on the limit concept by talking adofor example, limits of
combinations of functions. In this way, the schesh&tep 3 is encapsulated to become
an object.

5. Reconstruct the processes of Step 3(c) in termstefvals and inequalities. This is
done by introducing numerical estimates of the eless of approach, in symbols,

O<|x-g<dandf(x)-L|<e.
6. Apply a quantification schema to connect the retranted process of the previous step

to obtain the formal definition of limit.
7. A completeck-6 conception applied to a specific situation. (Glbet al., ibid).



While the genetic decomposition offered by Cotteillal. provides important insight into how
students reason informally about limit, it remaimelear how students might develop the type of
formal understanding described in the latter stdpgfie decomposition. The majority of Cottrill
et al’s analysis focused on students’ reasoningthat first three steps in the genetic
decomposition. Unfortunately, there was a lack wllence in the study of students’ thinking
evolving to the point of having a formal conceptuatierstanding of limit.

The genetic decomposition suggested by Cottrill e{1996) served as a useful starting point
for my study. Their research suggests that to dgvalformal understanding of limit, one must
merely formalize one’s informal notions of the cept In the decomposition outlined above,
doing so amounts to formalizing the first threepstespecifically by reconstructing the
coordinated schema described in Step 3c in tern#t@fvals and inequalities. | argue however,
that the formalization process is not so straigitéod — formal understanding does require one
to think in terms of intervals and inequalities{ the transition to formal thinking is not merely a
reconstruction of what is described in the firsteth stages of the genetic decomposition.
Research by Larsen (2001) substantiates this opimitost students in Larsen’s study did not
make connections between their formal understasdengd the rest of their concept image
(Vinner, 1991), which was comprised mostly of imi@ conceptions described in the first three
steps of the genetic decomposition. Larsen sugdkats‘the formal definition is structurally
different from the dynamic conception as descrillydthe first four steps of the genetic
decomposition,” thus making it “unlikely that a dant could successfully interpret the syntax in
terms of their dynamic conception” (p.29). In lighit Larsen’s findings, | offer the following
distinction between informal and formal understagdof limit. In informal treatments of limit,

the goal is generally tind a candidate for the limit. Formal understanding tlosm other hand,



typically addresses how one miglalidate the choice of a candidate. Finding and validatirey a
two different processésIn calculus courses, students are taught a vadeétstrategies for
finding candidates for limits — direct substitutjoalgebraic manipulation, and tabular and
graphical inspection. However, none of these satisé formal definition’s requirement of
validation. Research (most notably Cottrill et 4996) provides evidence that when students
select a candidate for the limit of a function ythi® so utilizing what | will refer to as aafirst
perspective. By x-first perspective it is meant that students focus their attentiost fon the inputs
(x-values) and then on the corresponding output&lues). The selection of a candidate is made
based on what numeric value titvalues are getting close to awvalues get closer ta. In
contrast, the validation of a candidate for a limeijuires that one begin with a given candidate.
Hence, the formal definition is dependent upon admate having already been selected.
Validating a candidate, however, relies on oneititgtio reverse his or her thinking. Instead of
imaging what y-valueesultsfrom a particular x-value, a student must firshgider what is
taking place along thg-axis, as Carlson, Oehrtman, and Thompson (20@y)est: “In order to
understand the definition of a limit, a student tragordinate an entire interval of output values,
imagine reversing the function process and detezrtiie corresponding region of input values.”
(p-160). Thus, the process of validating a candidaguires a student to recognize that his/her
customary ritual of first considering input valussno longer appropriate. Instead the student
must consider first a range of output values aralnedcandidate, project back to thexis, and
subsequently determine an interval around the hraitie that will produce outputs within the
pre-selectedr-interval. Larsen’s research (ibid) suggests thatintricacies involved in thig-

first process are arguably far more cognitively dading for students than merely formalizing

Yrernandez (2004) and Juter (2006) have also sughésatvalidating limits involves a process distinct from the
process ofinding limits. Their perspectives, in addition to Larsep&rspective discussed here, have assisted me in
articulating my own thinking on the distinction tveten these two processes.



anx-first process, as Cottrill et al. (ibid) conjectured. Toeplex nature of the formal definition

makes it highly unlikely that a student with a siyoc-first perspective of functions would be

able to conceive of a new concept in sughfiast manner, particularly when students typically
learn first tofind limits, notvalidatethem.

In summary, the genetic decomposition offered bytrilloet al. (1996) has served as a
helpful framework from which to develop my own rasgh. Specifically, their work provides
evidence of how students reason about the infoxAafiedt process of finding limits (Steps 1-3 of
their genetic decomposition); however, there iarth of data describing how students reason
about the formajtfirst process of validating limits. Thus, it seethat more research is needed
to elucidate the latter stages of their geneticodgmosition. The overarching purpose of the
research reported here was to generate such iasagick to move toward the elaboration of a
cognitive model of what might be entailed in comittg understand this formal definition.
Specifically, the intent of the research was:

1. To develop insight into students’ reasoning in tiefato their engagement in tasks
designed to support their reinventing the formdirdgon of limit, and;
2. To inform the design of principled instruction thmaight support students’ attempts to
reinvent the formal definition of limit.
The first objective above was set against the loddckground goal of contributing to an
epistemological analysis (Thompson & Saldanha, P@®®@he concept of limit of a real-valued
function and its formal definition. Also, while ahstudies (e.g., Larsen, 2001; Fernandez, 2004)
have sought to describe how students reason aimoititals theyinterpret the conventionat-o
definition of limit, my research sought to addrésis need by focusing on how students reason
about limit in the context afeinventinga definition which captures the intended meaninthef

conventionak-6 definition. | theorized that interpreting a givieEmmal definition might result in

a very different type of reasoning than the reasgthat might arise while attempting to reinvent



the definition. Hence, the use of an instructiotrajectory designed to support students in
reinventing the formal definition of limit was seas a way to generate insights into students’
thinking that would not be available through intetation tasks. Indeed, the definition of limit

constructed by Cauchy, and subsequently formaliged/eierstrass, was motivated by a need to
specify the local behavior of functions in a precimanner. Neither of the mathematicians’
definitions was a reformulation or an interpretataf the traditional formal definition. On the

contrary, these mathematicians constructed thspeeive definitions in response to an inherent
need to classify functional behavior. | felt, thehat | might learn a great deal about how
students reason about the formal definition of tlihi engaged them in activities designed to

foster their reinvention of the formal definitiof lomit.

Theoretical Perspectives
Ernst von Glasersfeld (1995), drawing on Piage#ndajic epistemology (1971, 1977),
developed a psychological theory of knowing whistknown agadical constructivism (RC).

Two central tenets of RC are:

1. Knowledge is not passively received either thgtouhe senses or by way of
communication, but is actively built up by the cammg subject.
2. The function of cognition is adaptive, in thelbgical sense of the term, tending

towards fit or viability and serves the subjectiganization of the experiential
world, not the discovery of an objective ontologicaality (von Glasersfeld,
1995, p.51).
In this study, | drew on RC in a couple of impottarays. First, RC functioned as a guiding
framework methodologically, both in regards to tdgnamic | aimed to create between
participants in each of two teaching experimentsriducted, and in regards to how | selected

participants for the teaching experiment phase. Beguence of instructional tasks |

implemented in the two teaching experiments wadgded to create a dynamic in which



students might experience frequent perturbatioms, #aus, have the opportunity to make
cognitive accommodations. Hence, the study’'s metlogy was in line with the two tenets of
RC: instructional activities were designed to matevthe cognizing subject to organize his or her
experiential world and thus, actively build up kriegge. Also, participant selection included a
criterion that participants be active seekers abwity and fit between their mathematical
understandings. An important distinction is wortakimg, however. While | agree with the tacit
assumption in von Glasersfeld’s (ibid) theory thaganisms are coherence-seeking beings, | also
believe that in educative settings, some studemtsrmre coherence-seeking than others. This
belief is reflected in the selection criteria | dder the study. Students selected to participate i
this study had demonstrated a greater effort asdejaelative to other students, to consistently
make sense of their experiential world as it reléecomplex mathematical ideas.

Second, RC served as a lens through which | andiymedata generated in the two teaching
experiments which comprised the study. How onerpméts the tasks he/she is presented is
necessarily dependent upon one’s prior experienges.the students engaged with the
instructional activities, their observable acticrsd behaviors provided evidence of how they
might be interpreting said tasks. In a manner &bast with Steffe and Thompson’s (2000)
description of modeling students’ interpretatiomscompared my models of the students’
interpretations with those targeted in instructiso,that | could make subsequent revisions for
future iterations of the research cycle, and so tbsearch findings could be cast as inferences
about student reasoning given particular interpigeia of instructional tasks. Also, given the
impossibility of discovering ontological realityye intention of data analysis was not to generate
statements of fact about how students reason abounhderstand limits, but rather to generate

viable interpretation®of students’ reasoning and understanding — heerpretations that fit with
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their observed actions/behavior, in the sensewtbeg they to reason in the ways | theorize, those
ways might well express themselves in the obseped@viors.

In addition to the overarching perspective of R®yiefly describe aspects drawn from the
perspective ofdevelopmental researcthat guided the instructional design for my study.
Gravemeijer (1998) describes the goal of developateresearch as follows: “to design
instructional activities that (a) link up with tiheformal situated knowledge of the students, and
(b) enable them to develop more sophisticatedyatisformal knowledge, while (c) complying
with the basic principle of intellectual autonom{.279). | view the goal of developmental
research as being in line with the epistemologstahce of RC, in that developmental research
views knowledge as being constructed by individuzdsed on informal knowledge that is
situated in their own experiences. A heuristic camiy associated with developmental research
is guided reinventionThis well-established heuristic has been emplapedumerous content
areas of postsecondary mathematics education @en, 2004; Marrongelle & Rasmussen,
2006). Guided reinvention is described by Gravesnedt al. (2000) as “a process by which
students formalize their informal understandingd gwtuitions” (p.237). An important aspect of
this process is the identification of plausibletinstional starting points from which students
might naturally formalize their informal understamgs and intuitions. Traditionally, there have
been two approaches for determining appropriatéirsggpoints for instruction — 1) Analyses of
the historical evolution of the mathematical topith an eye toward identifying motivating
problems or contexts for conceptual developmendt, &) Examination of students’ informal
strategies and interpretations of contextual prokl¢éhat are directly related to the mathematical
concept. Gravemeijer et al. (ibid) describe theadnsof mathematics and students’ informal

interpretations as “sources of inspiration” for tesearcher, who “tries to formulate a tentative,

11



potentially revisable learning trajectory along @i collective reinvention...might be
supported” (p. 239). The first approach is intendedassist the researcher in formulating a
learning trajectory in response to historical ctigaibarriers and subsequent discoveries. While
| did not analyze the historical evolution of limvith the aim of formulating a specific learning
trajectory that would mirror the evolution of thencept, | did attempt to create an environment
intended to mimic important aspects of the mathemlasetting that Cauchy and Weierstrass
experienced. That is, students selected for myystodd no prior experience with the
conventionak-6 definition, and were posed with the challengeladracterizing local functional
behavior using precise mathematical language. is Way, the historical evolution of the
definition informed my selection of a starting pofar instruction. The second approach aims to
inform the researcher as to how he/she might peogtdidents with authentic opportunities to
experience perturbations and to make subsequeatmacodations. My examination of existing
research on students’ informal reasoning aboutt lgnided the design of initial instructional

tasks for the teaching experiment phase of theystud

Method

The study was conducted over the course of sevanthmdMay-December) during 2007,
with four students (one female and three maleshfeolarge urban university. Participants for
the study were selected based on the followingriait 1) strong informal understanding of limit;
2) no prior experience with the formal definitiohlonit, be it in high school or other calculus
courses taken at the university level; and, 3) detrated ability to communicate their reasoning
freely and without hesitation. All four participanhad been students in both my Calculus |
course during the Fall of 2006 and Calculus llIrseuduring the Spring of 2007, and three of the

four participants had been students in my Calculesurse during the Winter of 2007. Thus,
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through my interactions with these students overdburse of the academic year, | had ample
data on which to base my selection of these ppdids.

The study consisted of two separate teaching exeats (Steffe & Thompson, 2000) — one
for each pair of students. Each teaching experinmahided ten sessions, or teaching episodes,
with approximately one session per week. Theseimesaere videotaped and each lasted
approximately 60 to 100 minutes. Each session paee in a similar format — the students
responded to written and verbal tasks | presentdilhg on the roles of botbonjecturerand
refute?. The second teaching experiment was based oniaesisnade to the instructional

trajectory as a result of analyzing the data predwturing the first teaching experiment.

Instructional Trajectory

Following some initial attempts at definitighit at a point | asked the first pair of students
to definelimit at infinity. My decision to have them first pin down a preasénition oflimit at
infinity was based on my conjecture that the formal dedmiof limit at infinity is cognitively
less complex than the formal definitionlghit at a point In the case diimit at infinity, one is
only required to describe closeness alongyth&is, whereas in the caselwhit at a point one
must describe closeness along both axes. | antdphat this sequence would provide a natural
progression allowing students to use their debnitiof limit at infinity in reinventing the
definition of limit at a point Thus, based upon this conjecture, the followiagks, listed in
sequential order, formed the structure of the feathing experiment:

* Attempts to motivate the need for a rigorous dabniof limit at a point
» Generation of examples and counterexampldisnitf at a point

2 At the outset of each teaching experiment, | eramged the respective pair of students each to daakboth of
these roles at various times for the duration ef tlaching experiment. | told them that the rolecafijecturer
entailed proposing thoughts and ideas they werebaeven if those thoughts and ideas were noy folimulated.
| told them that the role ofefuter meant taking on a contrarian role wherever waedniseeking logical
inconsistencies in each other’s ideas, so thasidgght be refined.
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* Initial attempts to precisely defilienit at a point

* Generation of examples and counterexampléisnitf at infinity

* Reinvention of the definition dimit at infinity through a process of refinement

» Reinvention of the definition dimit at a pointusing the definition ofimit at infinity as a

foundation and motivation for continued refinement

A post analysis of the first teaching experimeninfex to particularly useful elements of the
instructional trajectory, as well as pedagogicgleass that were less fruitful. This analysis
influenced the structure of the second teachingexent. Further, | viewed the second teaching
experiment as an opportunity to explore “other pathsuccess” — in particular, 1 wondered if
the second pair of students could reinvent a dedmiof limit capturing the intended meaning of
the conventional definition without first defininignit at infinity. Thus, the following tasks,

listed in sequential order, formed the structuréhefsecond teaching experiment:

* Generation of examples and counterexampldisnitf at a point

 Initial attempts to precisely defiienit at a point

* Attempts to defineloseincrementally in an increasingly restrictive faghi

* Reinvention of the definition ofimit at a point using the definition ofclose as a

foundation for describingfinite closeness

In sum, the central instructional goal for eachch#ag experiment was for the students to
generate a precise definition bimit at a point The students’ generation of examples and
counterexamples of limit served as a starting pbimin which to proceed in reinventing the

formal definition. The students used these exampled counterexamples as a source of

motivation for refining their definition throughottie respective teaching experiments.

Data Analysis

The analytic approach | utilized is consistent wifounded theory methods (Glaser &
Strauss, 1967), wherein data analysis is a cyehcgss in which hypotheses about students’
reasoning are generated, reflected upon, and suéstdy refined until increasingly stable and
viable hypotheses emerge. The analysis of datarieztat a variety of levels. As each teaching
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experiment was unfolding, | conductedgoing analysis, which informed my decisions about
subsequent sessions within the same teaching exgrari Ongoing analysis consisted of: 1)
transcribing each session; 2) constructingoatent log which contained descriptive notes
characterizing what | was asking the students tarderences about the students’ interpretations
of what | was asking them to do, and conjecture@meal conceptual entailments of students’
reasoning about limit in the context of reinventiamd, 3) composing an 8-10 page document
outlining my instructional goals and conjecturegk&for the upcoming session, as well as my
rationale for those tasks. Following the completidreach teaching experiment, | conducted a
post analysis of the data generated by each pair oests. This provided me an opportunity to
analyze each data set more deeply, so as to begievelop themes present throughout the data
set. Post analysis consisted of reviewing the wWdand transcriptions of all ten sessions,
highlighting noteworthy excerpts, and making cohjees about thematic elements of student
reasoning. Finally, following the completion of hoteaching experiments, | conducted a
retrospective analysis (Cobb, 2000), in which | was able to gnalthe entire corpus of datat a
deeper level than the preceding analyses. Retrogpamalysis consisted of reviewing the post
analyses of both teaching experiments, comparidgcantrasting student reasoning between the
four students. Doing so led to a refinement of megatliption of thematic elements present in
student reasoning. At all three levels of analybiaas engaged in frequent discussions with
other mathematics educators who had intimate krdiydeof the study in an effort to reach

consensus about the data.

% The data corpus for analysis consisted of twemtytideotaped sessions each lasting 60-100 minutes.
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Discussion/Results

Analysis of the data generated in the two teackkpgeriments point to two central findings:
1) students are likely to employ affirst perspective in their initial attempts to ohef limit and
to view the utilization of g-first perspective as counterintuitive; and, 2)dstouts are prone to
reason initially from apotential infinity perspective during the reinvention process, ang ma
experience difficulty in finding a suitable altetive to such a perspective. The first of these
findings is detailed in an earlier paper (Swiny&@08a). The results presented in this discussion

focus primarily on the second finding.

A Suitable Alternative to a Potential Infinity Ppestive

A considerable hindrance to the students’ effartseinvent the definition of limit was their
struggle to find a suitable alternative to tbagential infinity perspective they initially utilized
during the reinvention process. Tirosh (198&kscribegotential infinityandactual infinity, in
relation to the history of mathematical developmastfollows — “[T]he two competing ideas of
infinity were potential infinityin which a mathematical process can be carriedayuds long as
required to approach a desired objective, anthial infinity in which one contemplates the
totality of infinity, through, for example, concang the totality ofall natural numbers at one
time” (p.200). Evidence in both teaching experinsesuggests that students are prone to reason
initially from a potential infinity perspective dag the reinvention process, and may experience
difficulty in finding a suitable alternative to su@ perspective. Both pairs of students’ initial
definitions focused heavily on the act of carrymgf an infinite process. Below are two such
examples from the first teaching experiment.

Pair #1, Definition #2: If you could zoom forever and always get closeatandL, then
you have a limit(Session 4)
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Pair #1, Definition #3: A function has a limitL at a when zooming in FOREVER both

horizontally and vertically yields no gaps that @éaength > 0
AND that it looks like it approaches a finite numie(Session 5)

For the second pair of students, a potential ityfiperspective persisted throughout the teaching

experiment, as is evidenced by their final defomtof limit.

Pair #2, Definition #9: 1) Come up with a gueds,
2) Determine a closeness intertat z around your guess.
3) If there exists anxa such that L+z>f(x)>L-z is true for all x

between xand a AND an »a such that L+z>f(x)>L-z is true
for all x between xand a then shrink your closeness interval and
try again. If you can't shrink your interval anyreorthen L is
your limit.

If not, then L is not your limit(Session 10)

To be clear, then, both pairs of students appdarettially follow the same reasoning trajectory

in regards to

issues related to infinity — bothrpdiegan by reasoning from a potential infinity

perspective, with their focus on describing therentental completion of the infinite limiting

process. Both pairs of students subsequently reoedrihe limitations of such a perspective,

noting in distinct ways the impossibility of compigy an infinite process in a finite amount of

time. The following excerpt illustrates this realion for one of the students in the first pair.

Amy*:

Craig:
Amy:

I don’'t know, it seems like we keep dancing ambsome kind of concept that we
have to talk about in a series of...analogies or thgtaal situations, you know?
Like...the hypothetical situation in which you areirtp something forever....I
guess like the first thing that leaps to mind far im that we’re trying to parse out
what we mean by, by these impossible processes te describing
for...whether we have a limit.

And you're saying impossible there why?

Because you can’t zoom in forever...[Y]ou camd something an infinite number
of times....[A]ll you can do is find...the level of ex@nation which disproves
your idea but you can’t ever get to where you camctusively prove it through
the methods we’ve been discussing...l have a hard getting too worked up
over the language about what it means to zoom drad we're looking for when
we zoom when we have lurking in the back this gopssition that whatever that
means to zoom,...we have to repeat that procesdiaitemumber of times.

* To provide anonymity, all student names preseintekiis report are pseudonyms.
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Likewise, the second pair of students expressedatissaction with a potential infinity
perspective.
Jason: And what we’'re trying to do with all thisndwsing language is describe in words
what that function does in the vicinity af
Chris: Asx gets closer ta,...I don't want to say close, because how closéoise®
Jason: Fantastic point...You could always get clog@jhere’s an infinite amount of
closers between close and close enough....I'm raiaimgbjection now to the
idea of “close enough”. | don’t think that thesg'close enough,” because of the
idea that there’s always a closer. So if there'sirdmite number of closers
between close and close enough, how can close bremay exist?
This dissatisfaction with describing the incremémrtampletion of an infinite process led both
pairs of students to seek a suitable alternativepeetive. At this point, the two pairs diverged in
their reasoning. During the seventh session, tisegair of students spontaneously employed the
notion of arbitrary closenesgo encapsulate the infinite limiting process, whidtimately led

them to the following definition.

Pair #1, Definition #9: lim f (x) = L provided that: given any arbitrarily smalk#we can

find an @x0) such thatl]-f(x)| < A for all x in that interval except
possiblyx=a. (Session 9 — Final Definition)

The decision to operationalizefinite closenessia the notion ofarbitrary closenessnarked a
watershed moment in the first pair's reinventiortted formal definition of limit. In contrast, the
second pair of students did not utilize the notdrarbitrary closenessand instead swept the
cognitive issues of a potential infinity perspeetitunder the rug,” in the sense that they
superficially resolved the cognitive dilemma of girang the carrying out of an infinite process
by simply accepting that the end of the processt musiehow mysteriously happen. The reader
will note that the second pair’s final definitioeh©wn previously) is expressed from a potential
infinity perspective and does not adequately addhesv the infinite limiting process might be
encapsulated. Further, when asked to interprefitdtepair’s final definition of limit, the second

pair of students interpreted the notionaobitrarily small as representing sngle definition of
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closeness, as opposedalb definitions of closeness. This interpretationratitely hindered the

second pair in reinventing a definition of limit wh encapsulated the infinite limiting process.

Operationalizing Infinite Closeness

A related finding bears mentioning. Definimtpsenesgrior to defininginfinite closeness
proved to be a critical moment in both teaching esxpents. Albeit under different
circumstances, both pairs of students defidledenes®utside of the context dimit at a point
and subsequently used that definition to operalimaanfinite closeness the context ofimit at
a point The first pair of students defin@tbsenessn the context ofimit at infinity, while the
second pair of students definetbsenescompletely outside of the context of lithitn both
cases, definingclosenessin an incrementally restrictive fashion (i.e., 185, 1.5, .5, etc.)
appeared to initiate important cognitive shifts fioe students. First, the iterative nature of this
defining process gave the students a way to imdgimeone might definelosenesst any level
of desired specificity, thus allowing them to thiokinfinite closenesss a notion that can be
characterized in a hypothetical manner (i.e.clasenessat any level of desired specificity).
While only the first pair of students subsequemihgapsulated the limiting process by utilizing
the notion ofarbitrary closenessoperationalizingnfinite closenessy first definingcloseness
appeared to support both pairs of students in ngakignificant and profound refinements to

their respective definitions of limit.

Contributing to an Epistemological Analysis

To contribute to an epistemological analysis the sense of Thompson & Saldanha, 2000) is

to gain insight into what is entailed in comingunderstand a particular mathematical idea in

° i.e., in response to the prompt, “[F]or every singhe of itsx-values, how would you write out what it means for
that function to be&lose to a pre-determined valle”
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relation to engagement in instruction designedufgpsrt the development of that understanding.
The central objective of this study was to devalopght into students’ reasoning in relation to
their engagement in instruction designed to supfieir reinventing the formal definition of
limit. This objective was set against the broadeckground goal of contributing to an
epistemological analysis of the concept of limitl ais formal definition.

The genetic decomposition offered by Cottrill et(&P96) can be thought of as a conjectured
model of how students may come to formalize theiderstanding of limit. In this sense, a
genetic decomposition can be thought of as a dmrion to an epistemological analysis.
Previously, | noted the ways in which the genetcamposition proposed by Cottrill et al.
lacked empirical evidence that could inform theelastages of their model of student reasoning.
The aim of my research was to help elucidate thetser stages. In Figures 1 and 2, | provide a
portior? of my own genetic decomposition, based on dathegetl during the two teaching
experiments which formed this stUdy few details are worth noting. First, unlike thenetic
decomposition presented by Cottrill et al., theagendecomposition presented here focuses only
on the transition from informal to formal reasoniing., stages 5-7 in the genetic decomposition
offered by Cottrill et al.). Thus, this genetic degosition is based on the assumption that
students already have an informal understandingrof. Specifically, this means that students
are able to:

1) Discuss when a limit does exist and why
2) Discuss when a limit does not exist and why

3) Determine limits for both finite and infinite sitii@ans
4) Sketch graphs satisfying given conditions relatelddth finite and infinite limits

® The complete genetic decomposition | propose atidresses students’ transition from safirst to a y-first
perspective. See Swinyard (2008b) for the detditeefull genetic decomposition.

"It is worth noting that the methodology employedthis study was different than that utilized ire tetudy
conducted by Cottrill et al. (1996), in that stuteeasoning about limit in my study was in the estof
reinvention, as opposed to interpretation, of tivenfl definition. Hence, the genetic decomposipoesented here
was based on data collected in an experimentahgetistinct from that experienced by the studémthe Cottrill et
al. study.
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5) Provide an informal definition of limit that demdretes viable conceptual
understanding

Second, | choose to split the genetic decomposititmtwo parts. Part 1 characterizes student
reasoning prior to the instructional interventidneacouraging the students to defitleseness
Conversely, Part 2 characterizes students’ reag@uhsequent to this instructional intervention.
Third, unlike the genetic decomposition proposedCoytrill et al., the one presented here is not
in a strict numeric stage format, but instead sspnted in the form of a flow chart. This was
done to maximize the explanatory power of the cignimodel. In particular, this form allows
for the complete genetic decomposition (see Swihyad008b) to capture multiple cognitive
difficulties being experienced by the students $iameously. A description of each part of the

genetic decomposition follows.
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Genetic Decomposition — Part 1

Goal:
Define Limit

(—

Vague Descriptions of
I nfinite Closeness

-

Focus on Process Leadd
to use of Potential
Infinity Perspective

-

Recognition of Limitations
of Potential Infinity
Perspective and Desire for
New Perspective

-

Figure 1 — Genetic Decompositioh— Part 1
The first part of the genetic decomposition carstb@marized as follows: Evidence from this
study suggests that in response to being chargddtie task of defining what it means for a
function to have a limit at x=a, students’ initial characterizations are likelyitzlude vague
descriptions ofinfinite closenessThe first definition provided by Amy and Mike e such
example:f has a limitL at x=a provided asx-values get closer ta, y-values get closer ta. Upon
recognizing that vague descriptionsiufinite closenessnischaracterize particular functions as

having limits atx-values for which no limit exists (e.g., functiomsth jump discontinuities),

8 Shaded boxes and arrows denote noteworthy insinadtinterventions, and thus, are not, strictlgaiing, part of
the genetic decomposition. However, given the disdébetween student reasoning and instructiois, ikasonable,
given the study’s methodology, to include the alitiask which situated student reasoning, and,airt P of the
genetic decomposition, the instructional intervemtivhich initiated the resolution of students’ cibige difficulties.
The un-shaded boxes and arrows in this diagrammapiesentation represent the students’ ways aoreag in
the context of reinventing the formal definitionlwhit, and thus, constitute the core of this gendecomposition.
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students attempt to flesh out what they meam-tiglues getting closer @ andy-values getting
closer toL. In their attempts to descrilafinite closenessvith greater precision, students’ focus
appears to turn to describing the limiting proceéstsempts to summarize the infinite limiting
process appear to lead students to subsequenlizeudi potential infinity perspective. The
inability to describe the completion of an infinjpeocess in a finite amount of time appears to
raise students’ awareness of the limitations ofotential infinity perspective, and in turn,
motivate the students to seek a new perspectiveeler, despite the motivation to adopt a new
perspective, all four students in this study hafficdity finding a suitable alternative to the
potential infinity perspective they initially empled.

Evidence from the study suggests that in respoons¢éhe difficulties described in the
preceding paragraph, students may benefit greatiy foeing asked to defindosenessn a
concrete and increasingly restrictive manner. Radf the genetic decomposition, shown in
Figure 2, illustrates the continued evolution afd&nt reasoning about limit in the context of

reinvention.
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Genetic Decomposition — Part 2

Instructional Intervention:
Define Closeness in a Concrete
and Increasingly Restrictive
Manner

Mv/

Recognition of how to
Operationalize I nfinite
Closeness via Closeness

oy

Arbitrary Closeness
Perspective

ay

Definition Synonymous to
Conventional -6 Definition

Figure 2 — Genetic Decomposition — Part 2

Defining closenessappears to initiate a significant cognitive shift student reasoning.
Defining closenessn a concrete and increasingly restrictive marapgears to lead students to
recognize how to operationalizdinite closenessWhereas prior to the instructional intervention
students in this study expressed frustration omend to defineinfinite closenessthe act of
defining closenessn a concrete and increasingly restrictive maraygyeared to allow them to
momentarily set aside the challenge of having taaly complete the infinite limiting process.
Shifting their attention away from the insurmourealtask of describing the incremental
completion of an infinite limiting process appeatedprovide the students a suitable mental
environment for recognizing that they could usertbgon ofarbitrary closenesso encapsulate

the infinite limiting process. The adoption of arbirary closeness perspective appears to
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support students in reinventing, and reasoning rewitly about, a definition synonymous to the

conventionak-o definition.

Pedagogical Implications

The findings presented here inform pedagogy inupleoof important ways. First, evidence
from both teaching experiments underscores theevafthaving students defirdosenessn a
concrete and increasingly restrictive manner. girtattempts to define limit, the students in this
study became paralyzed by the prospect of characigmnwhat it means to be infinitely close.
However, when they were able to set aside the tiwgnidilemma of incrementally completing
an infinite process, and were asked only to defvhat it means to be close (in a concrete and
finite sense) to a particulgrvalue,L, the students were then able to recognize how itgint
operationalizenfinite closenes®y use of their definition oflosenessHaving students define
what it means to be close to some pre-determinégke\tg either in the context of limits at
infinity or in the context of, say, a step functionay support them in reasoning coherently about
infinite closeness. Second, evidence from the studjgests that students may not interpret the
phrase “an arbitrary small number” as represenghigsmall numbers, but rather may view
“arbitrary” as a referent to single, fixed small number. Such an interpretation cledwhs an
adverse effect on one’s ability to interpret thevantional formal definition of limit. It appears,
then, that pedagogical interventions designed ppat students in developing coherence with

the “arbitrary” construct would be constructive.
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