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Introduction 
 

The concept of limit is fundamental to the study of calculus and to introductory analysis; this 

has been noted by many researchers (Bezuidenhout, 2001; Cornu, 1991; Dorier, 1995). Cornu 

(ibid) notes that limit “holds a central position which permeates the whole of mathematical 

analysis – as a foundation of the theory of approximation, of continuity, and of differential and 

integral calculus” (p.153). Indeed, limits arise in these and many other mathematical contexts, 

including the convergence and divergence of infinite sequences and series, applications related to 

determining measurable quantities of geometric figures, and mathematical descriptions of 

behavior of real-valued functions. 

The formal definition of limit is foundational as students proceed to more formal, rigorous 

mathematics. The vast majority of topics encountered in an undergraduate analysis course, where 

students study the theoretical foundations of calculus, are built upon the formal definition of 

limit. Continuity, derivatives, integrals, and Taylor series approximations are just a few of the 

topics in an analysis course for which limit serves as an indispensable component. Further, the 

formal definition of limit often serves as a starting point for developing facility with formal proof 

techniques, making sense of rigorous, formally-quantified mathematical statements, and 

transitioning to abstract thinking. Tall (1992) notes that the ability to think abstractly is a 

prerequisite for the transition to advanced mathematical thinking, and Ervynck (1981) cites the 

definition of limit as an opportunity for students to develop the ability to think abstractly. For all 
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of these reasons, the limit concept holds an important place in pedagogical considerations and as 

an object of research in mathematics education. 

 
Literature Review 
 

Though there are numerous ways to categorize the existing research on limit, I have chosen 

to separate the literature into two broad categories – research on students’ informal notions of 

limit and research on students’ reasoning about limit in the context of the formal definition. I 

define the former category as research that seeks to describe how students reason about the limit 

concept while focusing on the process of finding limit candidates via algebraic, graphical, or 

tabular methods. Such research does not have, as its focus, the ways in which students reason 

about the formal definition of limit. By formal limit research, I mean research that is focused on 

how students reason about or understand the formal definition of limit. The majority of existing 

research on students’ understanding of limit consists of the former. These studies have concluded 

that informal treatments of limit often result in students developing misconceptions based on 

their interpretation of colloquial language used in the classroom to describe limits (Ferrini-

Mundy & Graham, 1994; Monaghan, 1991; Tall, 1992; Williams, 1991). Other studies have 

shown that informal methods can also result in an over-reliance on simplistic examples used 

initially to introduce the concept (Cornu, 1991; Davis & Vinner, 1986; Tall & Vinner, 1981; 

Tall, ibid). For instance, in an effort to simplify the initial study of limits, students are often 

presented with continuous functions whose limit can be computed by simply evaluating the 

function at the limiting value. As a result, students often conclude that the limit of a function is 

simply the function value at the point of interest (Bezuidenhout, 2001; Cottrill et al., 1996; Davis 

& Vinner, 1986; Tall, 1992; Williams, 1991). Much of the literature emphasizes what students 

do not know about the concept of limit. However, some studies attempt to describe what students 
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do understand about limits (Ferrini-Mundy & Graham, 1994; Oehrtman, 2003; Oehrtman, 2004; 

Williams, 2001). Rather than viewing student thinking from a deficient perspective, these 

researchers describe initial student thinking as entailing natural informal conceptions that might 

facilitate the development of strong conceptual understanding. For instance, as a departure from 

the misconceptions research discussed above, Ferrini-Mundy and Graham (1994) conducted 

clinical interviews in hopes of describing college calculus students’ understandings of function, 

limit, continuity, derivative, and definite integral. Central to Ferrini-Mundy and Graham’s 

research is the assumption that students make sense of tasks based on their own experiences.   

[S]tudents’ constructions are rational and subject to explanation. We view the student’s 
constructions not as errors or misconceptions to be eradicated and replaced with the 
‘correct’ and publicly shared interpretations of major ideas, but rather as expected 
phenomena that are natural in the learning process (p.32). [italics added] 

 
Ferrini-Mundy and Graham provide evidence that students’ interpretations of informal language 

that is traditionally used may serve as a tool for developing eventual understanding. The idea that 

students’ informal, and perhaps naïve, understandings should not be eradicated, but rather used 

as leverage for developing more sophisticated mathematics understandings was central to my 

research. While students’ understanding of limit may not perfectly resemble the formal, 

mathematical understanding held by experts, it is my belief that embedded in their informal 

viewpoints are valuable ideas and constructs upon which new meanings can be built during the 

evolution of their understanding of the concept.   

In contrast to informal limit research, relatively few studies have looked directly at how 

students reason about or understand the formal definition of limit. While some have suggested 

pedagogical approaches for teaching students about the formal definition of limit (Gass, 1992; 

Steinmetz, 1977), very little research exists regarding how students come to understand and 

reason about the formal definition. Existing research to date suggests that students, for a variety 
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of reasons, struggle to understand and reason about the formal definition of limit (Cornu, 1991; 

Cottrill et al., 1996; Vinner, 1991; Gass, ibid; Larsen, 2001; Tall, 1992; Tall & Vinner, 1981; 

Williams, 1991), which is rich with quantification and notation. Cornu (ibid) suggests that the 

formal definition of limit is too cognitively sophisticated for first semester calculus students. 

Vinner’s study (ibid) substantiates Cornu’s claim, reporting that out of fifteen mathematically 

gifted calculus students who had spent significant time with the limit concept, only one was able 

to provide a formal definition for limit that might indicate “reasonably deep understanding of the 

concept” (p.78), and for this single student, the universal condition on ε was not explicit. 

Similarly, none of the students in the study conducted by Cottrill et al. (ibid) demonstrated the 

ability to progress to a point of reasoning formally about the limit concept.  

Some scholars (Dorier, 1995; Tall, 1992) suggest that introductory calculus students’ 

difficulties with the formal definition of limit might be attributable to an untimely introduction.  

For instance, Tall reports that formal definitions are not appropriate as cognitive tools for 

developing conceptual understanding: 

[F]ormal definitions of mathematics…are less appropriate as cognitive roots for curriculum 
development. Their subtlety and generality are too great for the growing mind to 
accommodate all at once without a high risk of conflict caused by inadvertent regularities in 
the particular experiences encountered (p.508). 

Dorier (ibid) points out that historically “less formalized tools were used to solve most of the 

problems [related to limits], while the ‘ε-δ-definition’ was conceived for solving more 

sophisticated problems and for unifying all of them” (p.177), yet at the outset of calculus and 

introductory analysis, students likely have difficulty understanding the importance of a definition 

designed to unify problems they have yet to encounter. The current research, then, suggests that 

the formal definition of limit may not be an appropriate starting point from which to build 

intuitive understanding about limit.  
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Regardless of when students should optimally encounter the formal definition of limit, the 

message seems clear – the formal definition of limit is difficult for students to understand. What 

is less apparent from the bulk of the literature, however, is how students might come to reason 

coherently about this difficult concept. Indeed, to date, very few studies (Cottrill et al., 1996; 

Larsen, 2001) have attempted to model such reasoning. I discuss these studies below, as they 

have had a profound impact on the development of my own research.  

Cottrill et al. (1996) provide a genetic decomposition of how students might reason about the 

limit concept. This genetic decomposition describes the process a student might experience as he 

or she constructs a formal understanding of limit. Prior to collecting data, Cottrill et al. 

constructed an initial genetic decomposition for how students may come to understand the limit 

concept. This initial framework was subsequently revised based on analysis of the data collected 

in their study. Most notably, data analysis supported a more precise articulation of the initial 

steps in their seven-step decomposition, seen below:  

1. The action of evaluating f at a single point x that is considered to be close to, or even 
equal to, a. 

2. The action of evaluating the function f at a few points, each successive point closer to a 
than was the previous point. 

3. Construction of a coordinated schema as follows. 
(a) Interiorization of the action of Step 2 to construct a domain process in which x 

approaches a. 
(b) Construction of a range process in which y approaches L. 
(c) Coordination of (a), (b) via f. That is, the function f is applied to the process of x 

approaching a to obtain the process of f(x) approaching L. 
4. Perform actions on the limit concept by talking about, for example, limits of 

combinations of functions. In this way, the schema of Step 3 is encapsulated to become 
an object. 

5. Reconstruct the processes of Step 3(c) in terms of intervals and inequalities. This is 
done by introducing numerical estimates of the closeness of approach, in symbols, 

δ<−< ax0 and ε<− Lxf )( . 

6. Apply a quantification schema to connect the reconstructed process of the previous step 
to obtain the formal definition of limit. 

7. A completed ε-δ conception applied to a specific situation. (Cottrill et al., ibid). 
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While the genetic decomposition offered by Cottrill et al. provides important insight into how 

students reason informally about limit, it remains unclear how students might develop the type of 

formal understanding described in the latter steps of the decomposition. The majority of Cottrill 

et al.’s analysis focused on students’ reasoning at the first three steps in the genetic 

decomposition. Unfortunately, there was a lack of evidence in the study of students’ thinking 

evolving to the point of having a formal conceptual understanding of limit.  

The genetic decomposition suggested by Cottrill et al. (1996) served as a useful starting point 

for my study. Their research suggests that to develop a formal understanding of limit, one must 

merely formalize one’s informal notions of the concept. In the decomposition outlined above, 

doing so amounts to formalizing the first three steps, specifically by reconstructing the 

coordinated schema described in Step 3c in terms of intervals and inequalities. I argue however, 

that the formalization process is not so straightforward – formal understanding does require one 

to think in terms of intervals and inequalities, but the transition to formal thinking is not merely a 

reconstruction of what is described in the first three stages of the genetic decomposition. 

Research by Larsen (2001) substantiates this opinion. Most students in Larsen’s study did not 

make connections between their formal understandings and the rest of their concept image 

(Vinner, 1991), which was comprised mostly of informal conceptions described in the first three 

steps of the genetic decomposition. Larsen suggests that “the formal definition is structurally 

different from the dynamic conception as described by the first four steps of the genetic 

decomposition,” thus making it “unlikely that a student could successfully interpret the syntax in 

terms of their dynamic conception” (p.29). In light of Larsen’s findings, I offer the following 

distinction between informal and formal understanding of limit. In informal treatments of limit, 

the goal is generally to find a candidate for the limit. Formal understanding, on the other hand, 
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typically addresses how one might validate the choice of a candidate. Finding and validating are 

two different processes1. In calculus courses, students are taught a variety of strategies for 

finding candidates for limits – direct substitution, algebraic manipulation, and tabular and 

graphical inspection. However, none of these satisfy the formal definition’s requirement of 

validation. Research (most notably Cottrill et al., 1996) provides evidence that when students 

select a candidate for the limit of a function, they do so utilizing what I will refer to as an x-first 

perspective. By x-first perspective it is meant that students focus their attention first on the inputs 

(x-values) and then on the corresponding outputs (y-values). The selection of a candidate is made 

based on what numeric value the y-values are getting close to as x-values get closer to a. In 

contrast, the validation of a candidate for a limit requires that one begin with a given candidate. 

Hence, the formal definition is dependent upon a candidate having already been selected. 

Validating a candidate, however, relies on one’s ability to reverse his or her thinking. Instead of 

imaging what y-value results from a particular x-value, a student must first consider what is 

taking place along the y-axis, as Carlson, Oehrtman, and Thompson (2007) suggest: “In order to 

understand the definition of a limit, a student must coordinate an entire interval of output values, 

imagine reversing the function process and determine the corresponding region of input values.” 

(p.160). Thus, the process of validating a candidate requires a student to recognize that his/her 

customary ritual of first considering input values is no longer appropriate. Instead the student 

must consider first a range of output values around the candidate, project back to the x-axis, and 

subsequently determine an interval around the limit value that will produce outputs within the 

pre-selected y-interval. Larsen’s research (ibid) suggests that the intricacies involved in this y-

first process are arguably far more cognitively demanding for students than merely formalizing 

                                                 
1Fernandez (2004) and Juter (2006) have also suggested that validating limits involves a process distinct from the 
process of finding limits. Their perspectives, in addition to Larsen’s perspective discussed here, have assisted me in 
articulating my own thinking on the distinction between these two processes.  
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an x-first process, as Cottrill et al. (ibid) conjectured. The complex nature of the formal definition 

makes it highly unlikely that a student with a strong x-first perspective of functions would be 

able to conceive of a new concept in such a y-first manner, particularly when students typically 

learn first to find limits, not validate them.  

In summary, the genetic decomposition offered by Cottrill et al. (1996) has served as a 

helpful framework from which to develop my own research. Specifically, their work provides 

evidence of how students reason about the informal/x-first process of finding limits (Steps 1-3 of 

their genetic decomposition); however, there is a dearth of data describing how students reason 

about the formal/y-first process of validating limits. Thus, it seems that more research is needed 

to elucidate the latter stages of their genetic decomposition. The overarching purpose of the 

research reported here was to generate such insights and to move toward the elaboration of a 

cognitive model of what might be entailed in coming to understand this formal definition. 

Specifically, the intent of the research was: 

1. To develop insight into students’ reasoning in relation to their engagement in tasks 
designed to support their reinventing the formal definition of limit, and; 

2. To inform the design of principled instruction that might support students’ attempts to 
reinvent the formal definition of limit. 

 
The first objective above was set against the broader background goal of contributing to an 

epistemological analysis (Thompson & Saldanha, 2000) of the concept of limit of a real-valued 

function and its formal definition. Also, while other studies (e.g., Larsen, 2001; Fernandez, 2004) 

have sought to describe how students reason about limit as they interpret the conventional ε-δ 

definition of limit, my research sought to address this need by focusing on how students reason 

about limit in the context of reinventing a definition which captures the intended meaning of the 

conventional ε-δ definition. I theorized that interpreting a given formal definition might result in 

a very different type of reasoning than the reasoning that might arise while attempting to reinvent 



9 
 

the definition. Hence, the use of an instructional trajectory designed to support students in 

reinventing the formal definition of limit was seen as a way to generate insights into students’ 

thinking that would not be available through interpretation tasks. Indeed, the definition of limit 

constructed by Cauchy, and subsequently formalized by Weierstrass, was motivated by a need to 

specify the local behavior of functions in a precise manner. Neither of the mathematicians’ 

definitions was a reformulation or an interpretation of the traditional formal definition.  On the 

contrary, these mathematicians constructed their respective definitions in response to an inherent 

need to classify functional behavior. I felt, then, that I might learn a great deal about how 

students reason about the formal definition of limit if I engaged them in activities designed to 

foster their reinvention of the formal definition of limit.  

 
Theoretical Perspectives  
 

Ernst von Glasersfeld (1995), drawing on Piaget’s genetic epistemology (1971, 1977), 

developed a psychological theory of knowing which is known as radical constructivism (RC). 

Two central tenets of RC are: 

1. Knowledge is not passively received either through the senses or by way of 
communication, but is actively built up by the cognizing subject. 

2.  The function of cognition is adaptive, in the biological sense of the term, tending 
towards fit or viability and serves the subject’s organization of the experiential 
world, not the discovery of an objective ontological reality (von Glasersfeld, 
1995, p.51). 

 
In this study, I drew on RC in a couple of important ways. First, RC functioned as a guiding 

framework methodologically, both in regards to the dynamic I aimed to create between 

participants in each of two teaching experiments I conducted, and in regards to how I selected 

participants for the teaching experiment phase. The sequence of instructional tasks I 

implemented in the two teaching experiments was designed to create a dynamic in which 
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students might experience frequent perturbations, and thus, have the opportunity to make 

cognitive accommodations. Hence, the study’s methodology was in line with the two tenets of 

RC: instructional activities were designed to motivate the cognizing subject to organize his or her 

experiential world and thus, actively build up knowledge. Also, participant selection included a 

criterion that participants be active seekers of viability and fit between their mathematical 

understandings. An important distinction is worth making, however. While I agree with the tacit 

assumption in von Glasersfeld’s (ibid) theory that organisms are coherence-seeking beings, I also 

believe that in educative settings, some students are more coherence-seeking than others. This 

belief is reflected in the selection criteria I used for the study. Students selected to participate in 

this study had demonstrated a greater effort and desire, relative to other students, to consistently 

make sense of their experiential world as it relates to complex mathematical ideas.  

Second, RC served as a lens through which I analyzed the data generated in the two teaching 

experiments which comprised the study. How one interprets the tasks he/she is presented is 

necessarily dependent upon one’s prior experiences. As the students engaged with the 

instructional activities, their observable actions and behaviors provided evidence of how they 

might be interpreting said tasks. In a manner consistent with Steffe and Thompson’s (2000) 

description of modeling students’ interpretations, I compared my models of the students’ 

interpretations with those targeted in instruction, so that I could make subsequent revisions for 

future iterations of the research cycle, and so that research findings could be cast as inferences 

about student reasoning given particular interpretations of instructional tasks. Also, given the 

impossibility of discovering ontological reality, the intention of data analysis was not to generate 

statements of fact about how students reason about or understand limits, but rather to generate 

viable interpretations of students’ reasoning and understanding – i.e., interpretations that fit with 
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their observed actions/behavior, in the sense that were they to reason in the ways I theorize, those 

ways might well express themselves in the observed behaviors.    

In addition to the overarching perspective of RC, I briefly describe aspects drawn from the 

perspective of developmental research that guided the instructional design for my study. 

Gravemeijer (1998) describes the goal of developmental research as follows: “to design 

instructional activities that (a) link up with the informal situated knowledge of the students, and 

(b) enable them to develop more sophisticated, abstract, formal knowledge, while (c) complying 

with the basic principle of intellectual autonomy” (p.279). I view the goal of developmental 

research as being in line with the epistemological stance of RC, in that developmental research 

views knowledge as being constructed by individuals based on informal knowledge that is 

situated in their own experiences. A heuristic commonly associated with developmental research 

is guided reinvention. This well-established heuristic has been employed in numerous content 

areas of postsecondary mathematics education (see Larsen, 2004; Marrongelle & Rasmussen, 

2006). Guided reinvention is described by Gravemeijer et al. (2000) as “a process by which 

students formalize their informal understandings and intuitions” (p.237). An important aspect of 

this process is the identification of plausible instructional starting points from which students 

might naturally formalize their informal understandings and intuitions. Traditionally, there have 

been two approaches for determining appropriate starting points for instruction – 1) Analyses of 

the historical evolution of the mathematical topic with an eye toward identifying motivating 

problems or contexts for conceptual development; and, 2) Examination of students’ informal 

strategies and interpretations of contextual problems that are directly related to the mathematical 

concept. Gravemeijer et al. (ibid) describe the history of mathematics and students’ informal 

interpretations as “sources of inspiration” for the researcher, who “tries to formulate a tentative, 
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potentially revisable learning trajectory along which collective reinvention…might be 

supported” (p. 239). The first approach is intended to assist the researcher in formulating a 

learning trajectory in response to historical cognitive barriers and subsequent discoveries. While 

I did not analyze the historical evolution of limit with the aim of formulating a specific learning 

trajectory that would mirror the evolution of the concept, I did attempt to create an environment 

intended to mimic important aspects of the mathematical setting that Cauchy and Weierstrass 

experienced. That is, students selected for my study had no prior experience with the 

conventional ε-δ definition, and were posed with the challenge of characterizing local functional 

behavior using precise mathematical language. In this way, the historical evolution of the 

definition informed my selection of a starting point for instruction. The second approach aims to 

inform the researcher as to how he/she might provide students with authentic opportunities to 

experience perturbations and to make subsequent accommodations. My examination of existing 

research on students’ informal reasoning about limit guided the design of initial instructional 

tasks for the teaching experiment phase of the study.  

 
Method 
 

The study was conducted over the course of seven months (May-December) during 2007, 

with four students (one female and three males) from a large urban university. Participants for 

the study were selected based on the following criteria: 1) strong informal understanding of limit; 

2) no prior experience with the formal definition of limit, be it in high school or other calculus 

courses taken at the university level; and, 3) demonstrated ability to communicate their reasoning 

freely and without hesitation. All four participants had been students in both my Calculus I 

course during the Fall of 2006 and Calculus III course during the Spring of 2007, and three of the 

four participants had been students in my Calculus II course during the Winter of 2007. Thus, 
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through my interactions with these students over the course of the academic year, I had ample 

data on which to base my selection of these participants.  

The study consisted of two separate teaching experiments (Steffe & Thompson, 2000) – one 

for each pair of students. Each teaching experiment included ten sessions, or teaching episodes, 

with approximately one session per week. These sessions were videotaped and each lasted 

approximately 60 to 100 minutes. Each session proceeded in a similar format – the students 

responded to written and verbal tasks I presented, taking on the roles of both conjecturer and 

refuter2. The second teaching experiment was based on revisions made to the instructional 

trajectory as a result of analyzing the data produced during the first teaching experiment.  

 
Instructional Trajectory 

Following some initial attempts at defining limit at a point, I asked the first pair of students 

to define limit at infinity. My decision to have them first pin down a precise definition of limit at 

infinity was based on my conjecture that the formal definition of limit at infinity is cognitively 

less complex than the formal definition of limit at a point. In the case of limit at infinity, one is 

only required to describe closeness along the y-axis, whereas in the case of limit at a point, one 

must describe closeness along both axes. I anticipated that this sequence would provide a natural 

progression allowing students to use their definition of limit at infinity in reinventing the 

definition of limit at a point. Thus, based upon this conjecture, the following tasks, listed in 

sequential order, formed the structure of the first teaching experiment: 

• Attempts to motivate the need for a rigorous definition of limit at a point 
• Generation of examples and counterexamples of limit at a point 

                                                 
2 At the outset of each teaching experiment, I encouraged the respective pair of students each to take on both of 
these roles at various times for the duration of the teaching experiment. I told them that the role of conjecturer 
entailed proposing thoughts and ideas they were having, even if those thoughts and ideas were not fully formulated. 
I told them that the role of refuter meant taking on a contrarian role wherever warranted, seeking logical 
inconsistencies in each other’s ideas, so that ideas might be refined. 
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• Initial attempts to precisely define limit at a point 
• Generation of examples and counterexamples of limit at infinity 
• Reinvention of the definition of limit at infinity through a process of refinement 
• Reinvention of the definition of limit at a point using the definition of limit at infinity as a 

foundation and motivation for continued refinement 
 

A post analysis of the first teaching experiment pointed to particularly useful elements of the 

instructional trajectory, as well as pedagogical aspects that were less fruitful. This analysis 

influenced the structure of the second teaching experiment. Further, I viewed the second teaching 

experiment as an opportunity to explore “other paths to success” – in particular, I wondered if 

the second pair of students could reinvent a definition of limit capturing the intended meaning of 

the conventional definition without first defining limit at infinity. Thus, the following tasks, 

listed in sequential order, formed the structure of the second teaching experiment: 

• Generation of examples and counterexamples of limit at a point 
• Initial attempts to precisely define limit at a point 
• Attempts to define close incrementally in an increasingly restrictive fashion 
• Reinvention of the definition of limit at a point using the definition of close as a 

foundation for describing infinite closeness 
 

In sum, the central instructional goal for each teaching experiment was for the students to 

generate a precise definition of limit at a point. The students’ generation of examples and 

counterexamples of limit served as a starting point from which to proceed in reinventing the 

formal definition. The students used these examples and counterexamples as a source of 

motivation for refining their definition throughout the respective teaching experiments.  

 
Data Analysis 
 

The analytic approach I utilized is consistent with grounded theory methods (Glaser & 

Strauss, 1967), wherein data analysis is a cyclic process in which hypotheses about students’ 

reasoning are generated, reflected upon, and subsequently refined until increasingly stable and 

viable hypotheses emerge. The analysis of data occurred at a variety of levels. As each teaching 
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experiment was unfolding, I conducted ongoing analysis, which informed my decisions about 

subsequent sessions within the same teaching experiment. Ongoing analysis consisted of: 1) 

transcribing each session; 2) constructing a content log, which contained descriptive notes 

characterizing what I was asking the students to do, inferences about the students’ interpretations 

of what I was asking them to do, and conjectured potential conceptual entailments of students’ 

reasoning about limit in the context of reinvention; and, 3) composing an 8-10 page document 

outlining my instructional goals and conjectured tasks for the upcoming session, as well as my 

rationale for those tasks. Following the completion of each teaching experiment, I conducted a 

post analysis of the data generated by each pair of students. This provided me an opportunity to 

analyze each data set more deeply, so as to begin to develop themes present throughout the data 

set. Post analysis consisted of reviewing the videos and transcriptions of all ten sessions, 

highlighting noteworthy excerpts, and making conjectures about thematic elements of student 

reasoning. Finally, following the completion of both teaching experiments, I conducted a 

retrospective analysis (Cobb, 2000), in which I was able to analyze the entire corpus of data3 at a 

deeper level than the preceding analyses. Retrospective analysis consisted of reviewing the post 

analyses of both teaching experiments, comparing and contrasting student reasoning between the 

four students. Doing so led to a refinement of my description of thematic elements present in 

student reasoning. At all three levels of analysis, I was engaged in frequent discussions with 

other mathematics educators who had intimate knowledge of the study in an effort to reach 

consensus about the data. 

 
 
 
 
 
                                                 
3 The data corpus for analysis consisted of twenty two videotaped sessions each lasting 60-100 minutes. 
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Discussion/Results 
 

Analysis of the data generated in the two teaching experiments point to two central findings: 

1) students are likely to employ an x-first perspective in their initial attempts to define limit and 

to view the utilization of a y-first perspective as counterintuitive; and, 2) students are prone to 

reason initially from a potential infinity perspective during the reinvention process, and may 

experience difficulty in finding a suitable alternative to such a perspective. The first of these 

findings is detailed in an earlier paper (Swinyard, 2008a). The results presented in this discussion 

focus primarily on the second finding. 

 
A Suitable Alternative to a Potential Infinity Perspective 

 
A considerable hindrance to the students’ efforts to reinvent the definition of limit was their 

struggle to find a suitable alternative to the potential infinity perspective they initially utilized 

during the reinvention process. Tirosh (1991) describes potential infinity and actual infinity, in 

relation to the history of mathematical development, as follows – “[T]he two competing ideas of 

infinity were potential infinity in which a mathematical process can be carried out for as long as 

required to approach a desired objective, and actual infinity in which one contemplates the 

totality of infinity, through, for example, conceiving the totality of all natural numbers at one 

time” (p.200). Evidence in both teaching experiments suggests that students are prone to reason 

initially from a potential infinity perspective during the reinvention process, and may experience 

difficulty in finding a suitable alternative to such a perspective. Both pairs of students’ initial 

definitions focused heavily on the act of carrying out an infinite process. Below are two such 

examples from the first teaching experiment. 

Pair #1, Definition #2: If you could zoom forever and always get closer to a and L, then 
you have a limit. (Session 4) 
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Pair #1, Definition #3: A function has a limit L at a when zooming in FOREVER both 
horizontally and vertically yields no gaps that have length > 0 
AND that it looks like it approaches a finite number L. (Session 5) 

 
For the second pair of students, a potential infinity perspective persisted throughout the teaching 

experiment, as is evidenced by their final definition of limit. 

Pair #2, Definition #9:      1) Come up with a guess, L. 
2) Determine a closeness interval L ± z around your guess. 
3) If there exists an x1<a such that L+z>f(x)>L-z is true for all x 

between x1 and a AND an x2>a such that L+z>f(x)>L-z is true 
for all x between x2 and a then shrink your closeness interval and 
try again. If you can’t shrink your interval anymore, then L is 
your limit.  
If not, then L is not your limit. (Session 10) 
 

To be clear, then, both pairs of students appeared to initially follow the same reasoning trajectory 

in regards to issues related to infinity – both pairs began by reasoning from a potential infinity 

perspective, with their focus on describing the incremental completion of the infinite limiting 

process. Both pairs of students subsequently recognized the limitations of such a perspective, 

noting in distinct ways the impossibility of completing an infinite process in a finite amount of 

time. The following excerpt illustrates this realization for one of the students in the first pair. 

Amy4: I don’t know, it seems like we keep dancing around some kind of concept that we 
have to talk about in a series of…analogies or hypothetical situations, you know? 
Like…the hypothetical situation in which you are doing something forever….I 
guess like the first thing that leaps to mind for me is that we’re trying to parse out 
what we mean by, by these impossible processes that we’re describing 
for…whether we have a limit. 

Craig: And you’re saying impossible there why? 
Amy: Because you can’t zoom in forever…[Y]ou can’t do something an infinite number 

of times….[A]ll you can do is find…the level of examination which disproves 
your idea but you can’t ever get to where you can conclusively prove it through 
the methods we’ve been discussing…I have a hard time getting too worked up 
over the language about what it means to zoom and what we’re looking for when 
we zoom when we have lurking in the back this presupposition that whatever that 
means to zoom,…we have to repeat that process an infinite number of times.  

 

                                                 
4 To provide anonymity, all student names presented in this report are pseudonyms. 
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Likewise, the second pair of students expressed dissatisfaction with a potential infinity 

perspective.  

Jason: And what we’re trying to do with all this confusing language is describe in words 
what that function does in the vicinity of a.  

 Chris: As x gets closer to a,…I don’t want to say close, because how close is close? 
Jason: Fantastic point…You could always get closer…[T]here’s an infinite amount of 

closers between close and close enough….I’m raising an objection now to the 
idea of “close enough”. I don’t think  that there is “close enough,” because  of the 
idea that there’s always a closer. So if there’s an infinite number of closers 
between close and close enough, how can close enough even exist? 

 
This dissatisfaction with describing the incremental completion of an infinite process led both 

pairs of students to seek a suitable alternative perspective. At this point, the two pairs diverged in 

their reasoning. During the seventh session, the first pair of students spontaneously employed the 

notion of arbitrary closeness to encapsulate the infinite limiting process, which ultimately led 

them to the following definition. 

Pair #1, Definition #9: Lxf
ax

=
→

)(lim provided that: given any arbitrarily small # λ, we can 

find an (a±θ) such that |L-f(x)| ≤ λ for all x in that interval except 
possibly x=a. (Session 9 – Final Definition) 

 
The decision to operationalize infinite closeness via the notion of arbitrary closeness marked a 

watershed moment in the first pair’s reinvention of the formal definition of limit. In contrast, the 

second pair of students did not utilize the notion of arbitrary closeness and instead swept the 

cognitive issues of a potential infinity perspective “under the rug,” in the sense that they 

superficially resolved the cognitive dilemma of imagining the carrying out of an infinite process 

by simply accepting that the end of the process must somehow mysteriously happen. The reader 

will note that the second pair’s final definition (shown previously) is expressed from a potential 

infinity perspective and does not adequately address how the infinite limiting process might be 

encapsulated. Further, when asked to interpret the first pair’s final definition of limit, the second 

pair of students interpreted the notion of arbitrarily small as representing a single definition of 
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closeness, as opposed to all definitions of closeness. This interpretation ultimately hindered the 

second pair in reinventing a definition of limit which encapsulated the infinite limiting process. 

Operationalizing Infinite Closeness 

 
A related finding bears mentioning. Defining closeness prior to defining infinite closeness 

proved to be a critical moment in both teaching experiments. Albeit under different 

circumstances, both pairs of students defined closeness outside of the context of limit at a point 

and subsequently used that definition to operationalize infinite closeness in the context of limit at 

a point. The first pair of students defined closeness in the context of limit at infinity, while the 

second pair of students defined closeness completely outside of the context of limit5. In both 

cases, defining closeness in an incrementally restrictive fashion (i.e., 10, 2.5, 1.5, .5, etc.) 

appeared to initiate important cognitive shifts for the students. First, the iterative nature of this 

defining process gave the students a way to imagine how one might define closeness at any level 

of desired specificity, thus allowing them to think of infinite closeness as a notion that can be 

characterized in a hypothetical manner (i.e., as closeness at any level of desired specificity). 

While only the first pair of students subsequently encapsulated the limiting process by utilizing 

the notion of arbitrary closeness, operationalizing infinite closeness by first defining closeness 

appeared to support both pairs of students in making significant and profound refinements to 

their respective definitions of limit. 

Contributing to an Epistemological Analysis 

 
To contribute to an epistemological analysis (in the sense of Thompson & Saldanha, 2000) is 

to gain insight into what is entailed in coming to understand a particular mathematical idea in 

                                                 
5 i.e., in response to the prompt, “[F]or every single one of its x-values, how would you write out what it means for 
that function to be close to a pre-determined value L?”  
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relation to engagement in instruction designed to support the development of that understanding. 

The central objective of this study was to develop insight into students’ reasoning in relation to 

their engagement in instruction designed to support their reinventing the formal definition of 

limit. This objective was set against the broader background goal of contributing to an 

epistemological analysis of the concept of limit and its formal definition.  

The genetic decomposition offered by Cottrill et al. (1996) can be thought of as a conjectured 

model of how students may come to formalize their understanding of limit. In this sense, a 

genetic decomposition can be thought of as a contribution to an epistemological analysis. 

Previously, I noted the ways in which the genetic decomposition proposed by Cottrill et al. 

lacked empirical evidence that could inform the latter stages of their model of student reasoning. 

The aim of my research was to help elucidate those latter stages. In Figures 1 and 2, I provide a 

portion6 of my own genetic decomposition, based on data gathered during the two teaching 

experiments which formed this study7. A few details are worth noting. First, unlike the genetic 

decomposition presented by Cottrill et al., the genetic decomposition presented here focuses only 

on the transition from informal to formal reasoning (i.e., stages 5-7 in the genetic decomposition 

offered by Cottrill et al.). Thus, this genetic decomposition is based on the assumption that 

students already have an informal understanding of limit. Specifically, this means that students 

are able to: 

1) Discuss when a limit does exist and why 
2) Discuss when a limit does not exist and why 
3) Determine limits for both finite and infinite situations 
4) Sketch graphs satisfying given conditions related to both finite and infinite limits 

                                                 
6 The complete genetic decomposition I propose also addresses students’ transition from an x-first to a y-first 
perspective. See Swinyard (2008b) for the details of the full genetic decomposition. 
7 It is worth noting that the methodology employed in this study was different than that utilized in the study 
conducted by Cottrill et al. (1996), in that student reasoning about limit in my study was in the context of 
reinvention, as opposed to interpretation, of the formal definition. Hence, the genetic decomposition presented here 
was based on data collected in an experimental setting distinct from that experienced by the students in the Cottrill et 
al. study. 
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5) Provide an informal definition of limit that demonstrates viable conceptual 
understanding 
 

Second, I choose to split the genetic decomposition into two parts. Part 1 characterizes student 

reasoning prior to the instructional intervention of encouraging the students to define closeness. 

Conversely, Part 2 characterizes students’ reasoning subsequent to this instructional intervention. 

Third, unlike the genetic decomposition proposed by Cottrill et al., the one presented here is not 

in a strict numeric stage format, but instead is presented in the form of a flow chart. This was 

done to maximize the explanatory power of the cognitive model. In particular, this form allows 

for the complete genetic decomposition (see Swinyard, 2008b) to capture multiple cognitive 

difficulties being experienced by the students simultaneously. A description of each part of the 

genetic decomposition follows. 
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Figure 1 – Genetic Decomposition8 – Part 1 

 
The first part of the genetic decomposition can be summarized as follows: Evidence from this 

study suggests that in response to being charged with the task of defining what it means for a 

function to have a limit L at x=a, students’ initial characterizations are likely to include vague 

descriptions of infinite closeness. The first definition provided by Amy and Mike is one such 

example: f has a limit L at x=a provided as x-values get closer to a, y-values get closer to L. Upon 

recognizing that vague descriptions of infinite closeness mischaracterize particular functions as 

having limits at x-values for which no limit exists (e.g., functions with jump discontinuities), 
                                                 
8 Shaded boxes and arrows denote noteworthy instructional interventions, and thus, are not, strictly speaking, part of 
the genetic decomposition. However, given the dialectic between student reasoning and instruction, it is reasonable, 
given the study’s methodology, to include the initial task which situated student reasoning, and, in Part 2 of the 
genetic decomposition, the instructional intervention which initiated the resolution of students’ cognitive difficulties. 
The un-shaded boxes and arrows in this diagrammatic representation represent the students’ ways of reasoning in 
the context of reinventing the formal definition of limit, and thus, constitute the core of this genetic decomposition. 

Goal:  
Define Limit 

Vague Descriptions of 
Infinite Closeness 

Focus on Process Leads 
to use of Potential 

Infinity Perspective 

Recognition of Limitations 
of Potential Infinity 

Perspective and Desire for 
New Perspective 

Genetic Decomposition – Part 1 
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students attempt to flesh out what they mean by x-values getting closer to a and y-values getting 

closer to L. In their attempts to describe infinite closeness with greater precision, students’ focus 

appears to turn to describing the limiting process. Attempts to summarize the infinite limiting 

process appear to lead students to subsequently utilize a potential infinity perspective. The 

inability to describe the completion of an infinite process in a finite amount of time appears to 

raise students’ awareness of the limitations of a potential infinity perspective, and in turn, 

motivate the students to seek a new perspective. However, despite the motivation to adopt a new 

perspective, all four students in this study had difficulty finding a suitable alternative to the 

potential infinity perspective they initially employed.  

Evidence from the study suggests that in response to the difficulties described in the 

preceding paragraph, students may benefit greatly from being asked to define closeness in a 

concrete and increasingly restrictive manner. Part 2 of the genetic decomposition, shown in 

Figure 2, illustrates the continued evolution of student reasoning about limit in the context of 

reinvention.  
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Figure 2 – Genetic Decomposition – Part 2 

 
Defining closeness appears to initiate a significant cognitive shift in student reasoning. 

Defining closeness in a concrete and increasingly restrictive manner appears to lead students to 

recognize how to operationalize infinite closeness. Whereas prior to the instructional intervention 

students in this study expressed frustration over trying to define infinite closeness, the act of 

defining closeness in a concrete and increasingly restrictive manner appeared to allow them to 

momentarily set aside the challenge of having to actually complete the infinite limiting process. 

Shifting their attention away from the insurmountable task of describing the incremental 

completion of an infinite limiting process appeared to provide the students a suitable mental 

environment for recognizing that they could use the notion of arbitrary closeness to encapsulate 

the infinite limiting process. The adoption of an arbitrary closeness perspective appears to 

Instructional Intervention: 
Define Closeness in a Concrete 
and Increasingly Restrictive 

Manner 

Recognition of how to 
Operationalize Infinite 
Closeness via Closeness 

Arbitrary Closeness 
Perspective 

Genetic Decomposition – Part 2 

Definition Synonymous to 
Conventional ε-δ Definition 
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support students in reinventing, and reasoning coherently about, a definition synonymous to the 

conventional ε-δ definition.  

Pedagogical Implications  
 
The findings presented here inform pedagogy in a couple of important ways. First, evidence 

from both teaching experiments underscores the value of having students define closeness in a 

concrete and increasingly restrictive manner. In their attempts to define limit, the students in this 

study became paralyzed by the prospect of characterizing what it means to be infinitely close. 

However, when they were able to set aside the cognitive dilemma of incrementally completing 

an infinite process, and were asked only to define what it means to be close (in a concrete and 

finite sense) to a particular y-value, L, the students were then able to recognize how they might 

operationalize infinite closeness by use of their definition of closeness. Having students define 

what it means to be close to some pre-determined value L, either in the context of limits at 

infinity or in the context of, say, a step function, may support them in reasoning coherently about 

infinite closeness. Second, evidence from the study suggests that students may not interpret the 

phrase “an arbitrary small number” as representing all small numbers, but rather may view 

“arbitrary” as a referent to a single, fixed small number. Such an interpretation clearly has an 

adverse effect on one’s ability to interpret the conventional formal definition of limit. It appears, 

then, that pedagogical interventions designed to support students in developing coherence with 

the “arbitrary” construct would be constructive. 
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