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Abstract 
  
In this paper we propose a paper-and-pencil instrument to measure the mathematical 
sophistication of prospective elementary teachers. We call an individual mathematically 
sophisticated if her mathematical values and ways of knowing are aligned with those of 
the mathematical community based on nine interwoven traits involving patterns, 
structures, conjectures, definitions, examples and models, relationships, arguments, 
language, and notation. In other words, having mathematical sophistication means 
possessing the avenues of knowing of the mathematical community that allow one to 
construct mathematics for oneself. We will describe the development of the Mathematical 
Sophistication Instrument (MSI) and present the results of an initial study of its reliability 
and validity. We hope the MSI provides the mathematics education community a tool for 
measuring an important facet of teacher knowledge, and teacher educators a means for 
assessing pedagogies designed to teach students to think mathematically.   
 

Introduction and Background 

What does it mean to know mathematics? This question stands at the center of 

current battles over mathematics education reform in our schools, the content and design 

of our national tests, and the ways in which we prepare future elementary and middle 

grades teachers. The debate over how to best prepare teachers, once centered on the 

merits of procedural versus conceptual knowledge, has shifted to a more nuanced 

examination of the latter. Recent research points us to focus on specialized content 

knowledge related to teaching within the broad category Shulman (1986) identified as 

pedagogical content knowledge (Ball, Hill & Bass, 2005; Ma, 1999; Ball, 2000; Ball, 

1993). This works suggests that we must improve “…not just what mathematics teachers 
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know, but how they know it and what they are able to mobilize mathematically in the 

course of teaching” (Ball, 2000, p. 243).  

Through study of their own work as elementary teachers, both Ball (1993) and 

Lampert (2000) have rendered detailed accounts of the mathematical work of teaching. 

More recently, Ball and her colleagues (e.g., Ball, Hill & Bass, 2005) have set out to 

identify and measure a mathematical knowledge for teaching based on the mathematical 

work of teaching. They assert that teachers must understand the mathematical definitions, 

representations, examples and notations that are most powerful in supporting children’s 

understanding; they must hear the mathematical thinking of children and guide and 

extend that thinking; they need to recognize the nature of children’s alternate conceptions 

and help them to create counterexamples and arguments. In their study of first and third 

grade classrooms, Ball, Hill & Bass (2005) demonstrated that teachers’ mathematical 

knowledge for teaching positively predicted gains in mathematical achievement of their 

students. 

In a recent paper (Seaman & Szydlik, 2007) we proposed yet another possible 

answer to the question of what it means to know mathematics. We termed the construct 

mathematical sophistication and argued that it is helpful in explaining why some preservice 

teachers fail to learn mathematics. Specifically, we showed that prospective elementary 

teachers in our study could not use a teacher resource to refresh fundamental mathematical 

ideas, and we asserted that this failure was due, in large part, to their lack of mathematical 

sophistication. While this construct is informed by our own work as mathematicians and 

our observations and reading of the work of practicing research mathematicians, it seems 

intimately intertwined with the mathematical work of teachers described by Ma and Ball.  
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While many researchers have measured mathematics attitudes, beliefs, procedural 

skills, or conceptual knowledge, few have sought to quantify mathematical behavior. 

Perhaps the most closely related work was done by Schoenfeld (1992), in which he 

contrasts the differing behavior of college students and mathematics faculty in problem 

solving. He found that students typically, after reading the problem, made a quick decision 

on what approach to take, and stuck with that approach even if it did not lead to a 

successful solution. In contrast, he found that mathematics faculty members spent 

significant time in understanding the problem, analyzing, and exploring. He writes that “for 

the most part, students were unaware of, or failed to use, the executive skills demonstrated 

by the expert” (p. 356). What Schoenfeld called “expert executive skills” is part of what we 

termed “mathematical sophistication,” or the ability to engage in mathematically 

sophisticated behaviors.  

In another relevant study, Hill, Schilling and Ball (2004) wrote and tested a 

multiple choice survey to measure the mathematical pedagogical content knowledge of K-

12 mathematics teachers. But this survey did not look specifically at the mathematical 

behaviors of the teachers; instead it focused, among other things, on teachers’ abilities to 

recognize children’s mistakes and to assess the validity of mathematical procedures. In this 

paper, we describe our work to develop an instrument to measure mathematical behavior.  

 

Mathematical Sophistication Framework 

We use mathematical sophistication to describe internalization of the values and 

behaviors of the mathematical community. In other words, a mathematically 

sophisticated individual has taken as her own the values and ways of knowing of that 
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community. The difference between a sophisticated mathematics student and a naive one 

lies in her beliefs about the nature of mathematical behavior, her values concerning what 

it means to know mathematics, her avenues of experiencing mathematical objects, and 

her distinctions about language and notation.  

In Seaman & Szydlik (2007) we proposed the following list of traits that indicate 

mathematical sophistication. We assert that these traits are not disjoint categories, but are 

interrelated and used in concert by mathematicians as they solve problems and create 

mathematics.  

1) Mathematicians seek to understand patterns. “Seeing and revealing hidden 

patterns is what mathematicians do best” (Steen, 1990, p. 1).  

2) Mathematicians make analogies by finding the same essential structure in 

seemingly different mathematical objects. “Mathematics is the art of giving the 

same name to different things” (Poincaré as found in O’Connor & Robertson, 

2003). 

3) Mathematicians make and test conjectures about mathematical objects and 

structures. “When you try to prove a theorem, you don’t just list the hypothesis, 

and then start to reason. What you do is trial and error, experimentation, 

guesswork” (Halmos, 1985, p. 321). 

4) Mathematicians create mental (and physical) models, and examples and non-

examples of mathematical objects. This is the way we come to create and 

understand our definitions, and thus understand our mathematical objects. “A 

good stock of examples, as large as possible, is indispensable for a thorough 
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understanding of any concept, and when I want to learn something new, I make it 

my first job to build one” (Halmos, as found in Gallian, 1998, p. 40). 

5) Mathematicians value and use precise definitions of objects (Tall, 1992). Our 

definitions provide us necessary and sufficient criteria for classifying objects and 

making arguments. “The mathematician is not concerned with the current 

meaning of his technical terms… The mathematical definition creates the 

mathematical meaning” (Polya, 1957, p. 86). 

6) Mathematicians value an understanding of why relationships make sense. 

“Mathematicians do not study object, but relations among objects; they are 

indifferent to the replacement of objects by others as long as relations do not 

change. Matter is not important, only form interests them.” (Poincaré as found in 

Gallian, 1998, p. 115). 

7) Mathematicians value and use logical arguments and counterexamples as our 

sources of conviction (Tall, 1992). These help us to understand relationships 

among mathematical objects and provide us autonomy. “Proof is the idol before 

whom the pure mathematician tortures himself” (Eddington, 1928, p. 337). 

8) Mathematicians value precise language and have fine distinctions about language. 

We need these to communicate assertions and to make and evaluate arguments.  

For example, we carefully distinguish between “and” and “or,”  “there is 

something, such that for all” and “for all, there is something such that,” “at most” 

and “at least,” necessary and sufficient conditions, and converse and 

contrapositive forms, to name just a few. “Ordinary language is totally unsuited 

for expressing what physics really asserts, since the words of everyday life are not 
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sufficiently abstract. Only mathematics and mathematical logic can say as little as 

the physicist means to say” (Russell, 1931, p. 82).  

9) Mathematicians value symbolic representations of, and notation for, objects and 

ideas because these help us to organize our own thinking and to communicate 

meaning to others. “In symbols one observes an advantage in discovery which is 

greatest when they express the exact nature of a thing briefly and, as it were, 

picture it; then indeed the labor of thought is wonderfully diminished” (Gottfried 

Wilhelm Leibniz as found in Simmons, 1992, p.156).  

We stress that having mathematical sophistication does not imply an 

understanding of any specific definition, mathematical object, or procedure. Rather, it 

means possessing the avenues of knowing of the mathematical community that allow one 

to construct mathematics for oneself.  

 

Methodology 

We had several criteria in mind when we developed the Mathematical 

Sophistication Instrument (MSI). The first was to require only elementary mathematics 

content knowledge. On the MSI we often define new mathematical objects and provide 

novel definitions and examples of those objects, and we ask students to reason about 

them. That way, students cannot rely upon previously learned mathematics, but must 

demonstrate an ability to learn new mathematics. Second, we intended that all nine 

sophistication traits be reasonably represented on the MSI. Third, in order to ease 

administration and scoring, we decided upon a multiple choice, paper-and pencil test that 

could be completed during the course of a standard class period (45 minutes). Though we 
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developed two parallel forms of the MSI to serve as pre-and post-tests, in this report we 

focus on just one form. We now describe the development process.  

In the summer of 2007, a panel of seven expert learners of mathematics 

(mathematics professors) evaluated an initial version of the instrument and classified 

each item according to sophistication traits and to the level of sophistication required to 

answer each item correctly. Then six elementary education majors (who were also 

mathematics minors) completed the instrument and each participated in an informal 

interview during which the student explained his or her interpretations of the items and 

response options and his or her reasons for selecting answers. We used that data to revise 

some items and replace others. 

In fall (2007) we administered the revised MSI to a large sample of elementary 

education majors in their mathematics content courses. Twelve students, four scoring in 

the bottom quartile, four scoring the middle half, and four scoring in the upper quartile 

participated in semi-structured interviews. Those students solved a subset of the items 

and described their interpretations and thinking about the items and response options. The 

purpose of the interviews was to determine the extent to which sophisticated thinking 

produced correct responses on the MSI and unsophisticated thinking produced incorrect 

responses. Data from the pilot test and interviews was used to change or delete items 

which were problematic or had negative item-test correlations.  

 We administered the resulting version of the MSI to 56 elementary education 

students in their mathematics content courses in the fall of 2008, and we asked the three 

faculty members teaching those courses to rate the mathematical sophistication of each of 

their own student participants on a five-point linear scale. Below we report the results. 
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Results 

 This version of the instrument consists of 25 items. Students earned one point 

per item for the most sophisticated response (according to the mathematician panel) and 

no points for any other option. Thus scores could potentially range from 0 to 25. Students 

were not given any incentives to do their best on the instrument, and so some students 

may not have scored as high as their potential. The distribution of 56 elementary 

education students’ scores from fall 2008 is shown in Table 1. The mean score was 11.7, 

the median was 11, and the standard deviation was 4.65.  
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Table 1. MSI Scores for Fall 2008, N = 56. 

On this instrument each sophistication trait is represented as a primary theme at 

least twice. For example, MSI Sample Item 1 (see Figure 1) was classified by the 

mathematicians to primarily measure distinctions about language, and in particular the 

meaning of “at most.” The item may measure the use of a logical argument as a 

secondary trait. It has an item-test correlation of 0.43 indicating that students who 

selected the most sophisticated answer were also likely to score well on the instrument as 

a whole. The most sophistication response is bolded and the percentage of participants 

who selected each response option appears in parentheses. 
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MSI Sample Item 1: Consider the following statement:  
 

There are at most ten people in the swimming pool. 
 

Assuming the above statement is true, which of the following statements must also be 
true?  

 
a) There are ten people in the swimming pool.   (12.5%) 
b) There is at least one person in the swimming pool.  (21.4%) 
c) Both of the above statements must be true.  (12.5 %) 
d) None of the above statements must be true.  (53.6%) 

 
Figure 1. MSI Sample Item 1. 

 
 

MSI Sample Item 2 (see Figure 2) is designed to measure a student’s ability to 

recognize and continue a pattern. It also measures the ability to make sense of a provided 

definition (of “hexagonal frame number”), notation, and language. The item-test 

correlation for this item is 0.45. On the instrument, it is followed by an item that asks the 

students to find HF101.  

 
MMSI Sample Item 2: The numbers 1, 6 and 12 are called hexagonal frame numbers 
because one dot, six dots, and twelve dots can each be arranged in the shape of a hexagon 
frame as follows: 

 
                                 one dot      six dots                twelve dots 
                                 HF1 = 1              HF2 =  6          HF3 = 12   
 

We say that 1 is the first hexagonal frame number (HF1). The second hexagonal frame 
number (HF2) is 6, and so on. What is the fourth hexagonal frame number (HF4)? 

 
a) HF4 = 18  (58.9%) 
b) HF4 = 19  (12.5%) 
c) HF4 = 24  (26.8%) 
d) None of the above (1.79%) 
 

Figure 2. MSI Sample Item 2. 
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While the majority of items require students to do mathematics, two items ask that 

students express how they likely would respond to a hypothetical situation. Consider, for 

example, MSI Sample Item 3 (see Figure 3) with an item-test correlation of 0.47. This 

item was crafted to test whether students value exploring conjectures and understanding 

why relationships make sense. 

 
MSI Sample Item 3: You are a student learning about using lines to model data and, after 
the lesson, a student raises her hand and makes a guess about how other types of 
functions could be used to model data. Which option best reflects your view? 

 

a) I would probably just want to know whether she was correct or not.   (16.1%) 
b) I would probably want to spend time exploring her guess myself.       (48.2%) 
c) I would probably prefer to focus only on the material that was part  

of the real lesson.       (7.14%) 
d) I would probably want the instructor to figure it out and explain it to me. (28.6%) 

 
Figure 3. MSI Sample Item 3. 

 
 

All 25 items have a positive (typically between 0.30 and 0.50) item-test 

correlation indicating reasonable internal consistency. Furthermore the instrument as a 

whole has a Cronbach alpha of 0.7755 suggesting that it reliably measures a single 

construct. In order to show that this construct is mathematical sophistication, we assessed 

the validity of the instrument in two ways. 

In the development stage, seven mathematicians identified all the sophistication 

traits each item satisfied. Items on which the experts disagreed were discarded or re-

written until consensus was reached. In other words, our panel of experts agreed that all 

the items measured at least one trait of mathematical sophistication.  

In a second test of validity, the three instructors of the students who completed the 

instrument rated each of their students on a five-point linear scale, where a 5 was defined 

to indicate a highly sophisticated elementary education student. Instructors did not rate 
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those students for which they had insufficient evidence to judge mathematical 

sophistication. Forty-three of the 56 students were rated. 

Three students were rated at Level 1 (highly unsophisticated); eleven students 

were rated at Level 2 (fairly unsophisticated); 21 students were rated at Level 3 (neutral 

sophistication); seven were rated at Level 4 (fairly sophisticated) and one student was 

rated at Level 5 (highly sophisticated). Table 2 shows the mean scores on the instrument 

for the students at each level. Students rated by their instructor at Level 2 scored an 

average of 4.4 points higher than those rated at Level 1; students rated at Level 3 scored 

an average of 1.37 points higher than those at Level 2; and students rated at Level 4 

scored an average of 3.76 points higher than those at Level 3. All differences in means 

between levels are significant at the 0.05 level with the exception of the difference 

between the means from Levels 2 and 3. The Level 5 student scored a 15 on the 

instrument.  

 

Student 
Rating by 
instructor

Number in 
Category 

Mean Score 

on the MSI 

1 3 6.33

2 11 10.73

3 21 12.10

4 7 15.86

 

Table 2. Instructor Ratings of Students’ Mathematical Sophistication 
and Mean Score of each Rating Category on the MSI. N = 43. 
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Conclusion 

 The preliminary results suggest that the MSI is a reliable and valid measure of 

the mathematical sophistication of prospective elementary teachers. As such, the 

instrument promises to provide the mathematics education community a tool for 

measuring an important facet of teacher knowledge, and provide teacher educators a 

means for assessing pedagogies designed to teach prospective teachers to think 

mathematically.  

 Future development of the instrument could include validating its use in 

measuring the mathematical sophistication of practicing teachers, as well as mathematics 

students in general, which would allow the instrument to become an assessment tool for 

professional development and college mathematics programs. In the fall of 2009 we 

intend a larger scale assessment of the instrument involving a wider variety of 

mathematics students from several campuses. College mathematics instructors and 

teacher educators who are interested being a part of this planned assessment are 

encouraged to contact the authors for more information. 
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