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Interviews with 12 prospective elementary and middle school teachers focused on computation, 

problem-posing, visualization for problem-solving, and eliciting from participants explanations 

of the connections among these, particularly explanations that would be accessible to children 

learning about multiplication. We analyze the nature of participants’ conceptions and 

explanations and discuss implications for teacher preparation. 

Background 

In elementary schools, multiplication of two values is taught as a number of equivalent 

groups (multiplier) times the size of each group (multiplicand), with multiplier x multiplicand as 

the default order. (Harel, Behr, Post, & Lesh, 1994). Research with children up through middle 

school age, working with word problems, suggests that their choice-of-operation is strongly 

affected by the nature of the multiplier (Bell, Fischbein, & Taylor, 1984). For example, given 

two word problems with the same context but different number types may result in different 

choices: Suppose peanuts cost $2 per pound. (a) What is the cost for 3 pounds of peanuts? (b) 

What is the cost for ½ pound of peanuts? Students will often identify multiplication as the 

operation to use for (a) and division for use in (b) (Af Ekenstam & Greger, 1983). Fischbein and 

colleagues (1985) proposed an intuitive model to provide a theoretical account for this “non 

conservation of operations” (Greer, 1988): When the constraints of the underlying model are 

incongruent – for the learner – with the numerical data given in the problem, the choice of an 

inopportune arithmetic operation may occur. Though Marshall and colleagues (1989) proposed 



an instructional intervention based on semantic analysis to assist students in learning to match a 

situation to a useful schematic representation, researchers have expressed concern that such 

intervention may foster superficial strategies in solving world problems without helping learners 

to construct conceptual representations situated in the problems (Verschaffel & De Corte, 1993).  

Some studies and teaching experiments have approached the learning of multiplication 

through problem-posing rather than problem-solving tasks (Fischbein et al., 1985; Lowrie, 

2002). This work supposes that a generative connection to the task might support conceptual 

engagement during subsequent problem-solving. However, in some cases children’s performance 

on such tasks improved only when the numbers were whole (not fractions). In other studies, 

researchers have examined how learners connect their solving of word problems to acting on 

manipulatives to solve problems, in terms of units of quantity (Behr et al., 1997). Such studies 

have challenged the dominance in school curriculum of the use of a context-independent 

interpretation of 1-unit (Steffe, 1988). To generate a mental construct, a learner needs to re-

present the concept even in the absence of perceptual input (von Glaserfeld, 1982). Thus, neither 

students’ capability in algorithmic calculation nor their competence in acting on manipulative 

aids cued by problem context reaches the utmost goal of constructing conceptually rich mental 

schema. Several researchers have worked to describe and explain the process of formation of 

mental constructions into object-like cognitive entities, such as encapsulation (Asiala et al., 

1991, after Piaget), reification (Sfard, 1989), and proceptual thinking (Gray & Tall, 1994). In 

each case, the role of making connections among object-like cognitive entities is central. 

Theoretical Perspective and Research Question 

Action-Process-Object-Scheme (APOS) theory (Asiala et al., 1991) describes a 

hierarchical relationship among types of mental structuring (action, process, object-like entity, 



and schema) in which learner awareness, perception of totality, and coordination of aspects of a 

concept (identified by researchers through a genetic decomposition of the concept) are salient 

features. A style of teaching associated with APOS theory aims to assist students to move from 

one level to another and to gradually stabilize a developing mental construct. Reification and 

proceptual theories pay significant attention to the use of symbolic representation. According to 

Sfard (2000), in the process of reification, naming and symbolizing (creating a signifier) is no 

less important than the cognitive entity (signified). Gray and Tall (1994) have asserted that a 

flexible use of mathematical symbolism may compress action/process into object/concept, which 

in turn may liberate more capacity for cognitive activity and advanced mathematical thinking. 

Both perspectives, reification and proceptual thinking, value procedural skills in which 

manipulation on symbolic representations plays a central role in the process of stabilizing a 

mental construct into a conceptually rich understanding.  

For a prospective teacher, the mathematical knowledge needed to teach is more than the 

knowledge needed to do mathematics (Shulman, 1986; Ball & Bass, 2000). Also important is a 

facility in packing and unpacking object-like understandings in order to supply explanation, and 

make sense of students’ thinking, both in planning for instruction and in-the-moment-of-teaching 

(Hill, Ball, & Schilling, 2008). In particular, we started from the hypothesis that understandings 

of multiplication by prospective K-8 teachers would be foregrounded if they were asked to 

describe a particular kind of connection: that between doing multiplication in response to: (a) a 

symbolic statement (decontextualized) and to (b) a word problem (contextualized).  

The study reported here sought to gain insight into the following questions: (1) What are 

the ways in which prospective grades K-8 teachers may perceive the isomorphic relationship 

between abstract structures (decontextualized mathematics problems) and concrete structures 



(contextualized or story problems) for fractions in simple multiplication? (2) What roles in 

problem-posing and problem-solving might fraction as APOS-object, and fraction multiplication 

as APOS-object (Asiala et al., 1991) play in understanding multiplication? 

Design and Setting 

The 12 women in this study were prospective grades K-8 teachers who had completed the 

first 2 of 3 semesters of teacher-preparatory mathematics at a comprehensive U.S. university. 

According to the instructors and textbook authors (Bennett & Nelson, 2000), the courses aimed 

to teach mathematics with conceptual understanding. One task-based interview with each 

participant (60 to 100 minutes each) formed the primary data for the study. The interview was 

framed in a preparing-for-mathematical-teaching context and was designed to bring to the 

surface participants’ understandings of multiplication. Specifically, each participant worked with 

four numerical prompts,  

 

in interviews that followed five steps: (1) computation, (2) problem-posing, (3) visualization of 

problem-solving, (4) sketch for visualization, and (5) comparison of ideas and material generated 

in Steps 1 and 4. All interviews were audio and video recorded and transcribed. Analysis was 

phenomenological, using constant comparative methods. In recording researcher observations 

about participants’ interactions with tasks and in analyzing their responses we relied on Pirie and 

Kieren’s (1994) method for diagramming a person’s progressions through, and folding back 

among, layers of understanding (e.g., facets of action, process, object, and schema activity). We 

used these Pirie-Kieren models for participants’ problem-posing and associated problem-solving 

interactions so that the dynamic patterns emergent from the interviewees’ efforts could be 

classified into categories based on the nature of object-like entity understandings. 



Results 

During Step 1 of the interview, 8 of the 12 participants made no errors in computing 

numerical prompts. However, 4 of 12 confounded “multiply across” (e.g., a/b x x = a/b x x/1 = 

ax/b), with “cross multiply” (e.g., a/b x x = a/b x x/1 = bx/a, or a/b x x = a/b x x/x = ax/bx). Note 

that at the time of the interviews, all were enrolled in the third semester of their mathematics 

sequence and studying proportions, including “cross multiplying” to find the unknown value x, 

in a proportional equation like a/b = x/d. Though analysis of computational error was not the 

purpose of this study, participants’ procedural skills with decontextualized symbolic prompts in 

Step 1 may have mediated their efforts to identify isomorphisms in Step 5 of the interview. 

Subsequently, in Steps 2 through 5 of the interviews, five categories of object-like entities in 

concept building appeared to be problematic for participants: multiplier-as-operator, fraction-as-

multiplicand, fraction as only a part-whole-relation, fraction-as-multiplier, and fraction multiplier 

acting on a fraction multiplicand. 

Multiplier-as-operator. All 12 participants posed a complete story and described in 

words or using a sketch the process of solving for prompt (a) 4 x 3. However, the nature of their 

understandings varied. In the following excerpt, the interviewer (denoted Int) and Ann (all names 

are pseudonyms) negotiated the personality of multiplier to act on the multiplicand.  

Ann: [4×3] probably means that I have four pieces of candy and I have three friends. If I 

were to say pretend you had three candies, or three piles of candy with one in each 

pile, so you would have three candies and I want to add four candies to each pile, 

then I would add 1,2,3,4, 1, 2, 3, 4…then I would end up with the same answer [as 

12 candies] and they would represent the same thing both three candies and four 

candies they are. I am representing candies all the way across. But in the problem 



that I gave I said that you have three friends and you are giving them each four 

pieces of candy so the numbers represent different things.  

Int: So in this case, what does the number three represent? 

Ann: kids, friends, people. 

Int: Four is four pieces of candy, and four candies times three people is? 

Ann: Twelve. 

Int: Candy or people? Have you ever thought about it? 

Ann: Yeah, I have never thought of that. Your answer is candy, you end up with 12 pieces 

of candy. I guess your three doesn’t matter like I thought it would. Okay then, the 

three would represent where you are putting them, like how you are separating them 

so how many times you need to use them like when you, often times when you use 

multiplication you would say four candies and I need to give them to three people, it 

is just like adding four three times, in relation to addition. 

Int: Three groups of four? 

Ann: Exactly. So your three is your groups, your four is your number within those groups. 

The participant’s perception of multiplier 3 went from “three friends” to “three candies” and then 

to “three groups” (of four candies). Her struggle in identifying the nature of multiplier concurs 

with Steffe’s (1988) observation about the nature of unit in such contexts. The multiplier 3 is not 

just for 3 one-units as a number of groups, but also for 3 units (groups) of 4 one-units (candies). 

In the interview excerpt, Ann’s understanding of multiplier-as-operator with natural number may 

be seen as moving from shaky process toward object.   

Fraction-as-multiplicand. In working with (b) 4 x 5/6, two of the participants did not 

recall an appropriate property of positive integer as multiplier. Beth’s story for the prompt 4 x 3 



was, “John has grouped four groups of three marbles in each group.” Here, the multiplier 4 

played an explicit role as operator. However, Beth did not conserve the operation (Greer, 1988) 

in going from 4 x 3 to prompt (b) 4 x 5/6. In Step 3, visualizing her problem-solving, for (b), 

Beth changed representations and rewrote the whole number multiplier as a fraction, 4 x 5/6 = 

4/1x5/6 = 20/6 = 3 1/3, and altered its personality as multiplicative operator (see Figure 1). 

 

 

 

 

 

Beth: It helps to think about the four as a fraction, so like four over one. That helps 

because it puts it in, both in the same context.  

Int: So now we have, an integer times a fraction, any idea where to start? 

Beth: Um, well you have four wholes. So I am just going to go ahead and draw them 

here, four wholes. Then we have five [out of six], almost a whole. 

Int: Okay, now I would like you to compare your sketch to its numerical calculation. The 

number one and the number five-sixths, which one is bigger? 

Beth: One. So five-sixths is less than a whole, duh. Let’s try that one again. So this 

[sketch] is not good, we are just going to forget about that.  

Beth: Okay. We still have four wholes, correct? 

The interviewer drew Beth’s attention to her story for 4 x 3 and asked her to pose a story for (b) 

in an analogous way. When the multiplier is a whole number, the multiplication-as-repeated-

addition model can also work for a fractional multiplicand.  

 
Figure 1. Beth’s Step 3, visualizing problem solving of 4 x 5/6. 



Beth: Oh, could you have four groups of five-sixths, does that work? You would have 

four of these, so these are all like five-sixths? 

Int: Does it make more sense? 

Beth: I think so but I don’t know how to explain it… 

Int: I have four groups. What is inside each group? 

Beth: Not even one, a part of one. 

Int: A part of one. How many ones? How many sixths… 

Beth: Hey, that works. 

As proposed by Fischbein et al. (1985), one of the values in 4×5/6 is incongruent to 4×3. In 

terms of unit types, the numerical prompt 4×5/6, thought of as 4(5(1/6(1))), is one more layer 

than 4×3, or 4(3(1)). We suspect Beth may not have chosen a useful arithmetic operation because 

of this incongruence. She may have had, at the time of the interview, a schema of fraction 

multiplication that was repeated action-based, essentially additive, and was the only schema she 

recalled in the moment. 

Fraction as exclusively a part-whole-relationship. Most of the participants 

contextualized and visualized a fraction numerical prompt. However, 7 of the 12 participants’ 

understandings of fraction seemed to be confined to the part-whole-relationship personality. 

Kieren (1980) differentiated part-whole-relationship personality from measure personality for the 

rational number x/y. In the former, some whole is split up into y parts and x of these parts are 

taken. The latter sees 1/y as a unit to be used repeatedly to determine an x/y quantity. In the 

following excerpt, Cher’s conception of 5/6 included five out of six pieces but the idea of 5(1/6), 

that is of five units of size one-sixth did not appear to come to mind for her. 

Cher: 5/6… [means] something is divided into six portions, there is five remaining [of 6] 



Int: How about 6/5? 

Cher: 6/5, um there were two something that were divided into six [five] pieces, the 

remainder of what is left is one full one and one of the six [five]… 

An understanding of fractions that is exclusively part-whole could be a challenge for participants 

in tracing the connections between transformation of units in their problem-posing and problem-

solving visualization efforts – these multiplication algorithms are mainly based on measure 

personality. We saw some additional evidence to support this result in Daisy’s interview.  

 

 

 

 

 

Daisy: [For 5/6,] there are six pieces so five of them are colored in because it is five of 

the six pieces and that is where the 5/6 comes in, and then I did four of them for the 

four times the 5/6. So I know the 20 of the 24 pieces, are colored which would equal 

5/6, which doesn't help me out though because I am stuck at – Oh, what if I did four of 

them, one, 5/6 then I am left with 20/6 which could be reduced to 10/3 but then I don't 

know that leads me to so... 

Daisy’s understanding of fraction as part-whole-relation led her to see 4x5/6 as (4x5)/(4x6), or 20 

out of 24, which was inconsistent with her computation of 4x(5/6)=20/6=10/3. Mathematically, 

her computational procedure and sketch matched perfectly. Psychologically, she did not perceive 

the personality of 6 in 5/6 and in 20/6 as one type of measuring unit, 1/6, derived from 

partitioning one into six equal parts, or as units of measure 1/6.  

 
Figure 2. Daisy’s visualizing problem solving of 4 x 5/6. 



Fraction-as-multiplier. Several participants called on the symmetric property (axb=bxa) 

and said prompts (b) and (c) were “exactly the same.” The request to create a story where a 

fraction was a multiplier acting on a whole number, challenged participants’ belief in the 

symmetric property and was, ultimately, not fruitful during interviews. However, prompt (d) 

3/4x2/5 involved only fractions, so fraction-as-multiplier was required in some way. In posing a 

story and/or visualizing problem-solving for (d), 5 of the 12 participants used addition. Elda 

immediately posed a story for the prompt 4x5/6, but had five unsuccessful attempts on 3/4x5/6. 

Elda’s first attempt was: “If Megan was making a pasta dish and it asked for 3/4 cup of milk and 

2/5 cup of salt. How many cups are needed to make the pasta dish?” She immediately realized 

what she posed involved the operation of addition rather than multiplication. She tried again: 

Elda: Megan’s pasta dish called for 3/4 cup of milk but she put in 2/5. How much did she 

forget to put in? 

Int: Did you mean to put 2/5 of the 3/4 cup?  

Elda: Like, she put in 3 tablespoons instead, how much did she put in? 

Later, she contextualized 2/5 as “2/5 cups,” though Elda may have tried to express 2/5 of the 3/4 

cup, in which “3 tablespoons” was about 2/5 of 3/4 cup in her sense. What Elda said might mean 

a mental structure where 2/5 acted on 3/4 to get “3 tablespoons,” or it could be her second 

attempt was another additive one (in this case, subtraction). In drawing the visualization of her 

problem solving, Elda tried three times, but each time her strategy involved addition only and 

Elda seemed to be aware that her attempts did not use multiplication.  

Fraction multiplier acting on a fraction multiplicand. Flora created a story for prompt 

(d) 3/4x2/5 involving the concept of group size and number of groups where 3/4 was group size. 

However, instead of 2/5 as two groups of measure one-fifth, of something else (i.e., 2((1/5(1)) 



where the inner 1 represents one whole group of three-fourths), she used “two out of the five” 

groups. In her drawing, she had five groups of 3/4. She circled two of them and added them 

together to get 3/2 and said,  

Flora: So here are my five groups of three-fourth. And –  I want to add these two [groups 

of 3/4] together. So is, that’s the same as three and a half [3/4 x 2/1 =6/4 = 3/2] –  No. 

– Yeah. So that is it. So I need to say two-out-of-the-five somewhere.  

Flora saw that 2/5 was not an operator that acted on three-fourths but also clearly articulated 

understanding of fraction as part-whole: “I need to say two-out-of-the-five somewhere.” 

Gina also used part-whole relationship to assign context to the multiplier 2/5.  

 

 

 

 

 

 

Gina had five candy bars with four pieces in each candy bar and 20 pieces total. Instead of 2/5 

acting on 3/4, she had 2/5 act on 5 and 3/4 act on 4 1-units, i.e., 2/5(5(3/4(4(1)))), to have 6 out 

of 20 pieces as the contextualization for 3/4x2/5.  By doing so, there was no need to 

conceptualize a transformation of units like 1/5 (or 1/4), 1/20, or to form different unit types. 

Conclusion 

One can perform actions on an object, physically or mentally, as in Daisy’s sketch for 

visualizing problem solving of 4x5/6, and adopt symbols to represent it like “4x5/6=20/6=10/3,” 

without bringing to mind some properties in the process. An encapsulation of the incomplete 

 
Figure 3. Gina’s visualizing problem solving of 3/4 x 2/5. 



process into a sort of pseudo object may lead to a “pseudostructural” conception (Sfard, 2000). 

We hypothesize that all of the 12 participants, like Elda, had experienced action of fraction 

multiplication. But they may not have had awareness of all key properties in the process, and 

therefore did not perceive the process as a totality. A pseudostructural object of fraction 

multiplication appeared to be sufficient for many to choose an appropriate operation for solving a 

given word problem. However, the visualization task called for de-encapsulation or unpacking of 

both number and operation, from object back to process and action.  

De Corte’s (1988) empirical study supported the claim of Fischbein et al. (1985) that 

children’s difficulties in solving multiplication word problems may arise when their underlying 

models are incongruent with the numerical data given in the problem. This study suggests that 

for adult prospective teachers, a complex version of incongruity is at work. In unpacking both 

understanding of number and of operations, several sites for incongruity emerge. Cognitively, for 

the same operation (multiplication) the fraction multiplicative structure is not congruent with 

whole number multiplicative structure. Teaching with emphasis either on identifying key 

features from word problems and procedural skills or on concrete experience is, although 

necessary, not sufficient for learners to construct complexly connected cognitive objects that can 

be untangled from multiple potential incongruities. This suggests that a richly connected and 

“unpackable” understanding of multiplication for positive rational numbers may require an 

equally complex constellation of ways to identify and respond to incongruity. That is, we suggest 

that this study offers empirical support for the assertion of many that mathematical discourse 

incorporating procedural skills, problem posing, visualization, and identifying isomorphic 

corresponding relationships can all play valuable roles in arousing learners’ awareness of actions 



and process, in reifying and encapsulating mental constructs into object-like entities, unpacking 

or de-encapsulating the same, and using symbolism flexibly to advance mathematical thinking.  

Finally, our experience in interviews with prompt (c) and its challenge to participants’ 

belief in the symmetric property leads us to the following suggestion for teacher-educators. In 

working with prospective teachers, consider working with the abovementioned constellation of 

activities in the context of multiplication of two fractions (as in prompt (d)) before situations 

with one fraction; and then address a similar constellation of activities in connecting and 

unpacking the ideas of fraction of and out of to move into the context of fraction as multiplier 

acting on whole number multiplicand (e.g., problems like prompt (c)).  
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