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1. Introduction 

 In the last two decades, there has been a tremendous growth in educational 

research on mathematical proof. Researchers have investigated many issues related to 

proof, including the epistemological nature of proof (e.g., Hanna, 1991), the role of proof 

in mathematics classrooms (e.g., Hersh, 1993), students’ conceptions of proof (e.g., Harel 

& Sowder, 1998), students’ difficulties with proof (e.g., Moore, 1994), and the 

construction of proofs (e.g., Weber, 2001; Martin & McCrone, 2003; Weber & Alcock, 

2004). Several researchers have noted that one topic that has received relatively little 

attention is the reading of proof (Selden & Selden, 2003; Hazzan & Zazkis, 2003; 

Mamona-Downs, 2005; Alcock & Weber, 2005).  

 Educational research on the reading of proof has primarily focused on how 

individuals evaluate proofs for correctness. Several studies show that both students and 

teachers have difficulty with this task.  Selden and Selden (2003) and Alcock and Weber 

(2005) found that undergraduate mathematics majors performed at chance level when 

asked to determine if a proof was correct. Martin and Harel (1989) demonstrated that 

many pre-service elementary teachers would accept a geometry proof as valid if it was in 

the standard two-column format and invalid if it was in paragraph form, regardless of its 

mathematical content. Knuth (2002) also found that in-service high school teachers 

would accept flawed arguments as proofs if they were in an appropriate format. In a 
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separate line of research, I examined the ways in which mathematicians determined if an 

argument was a valid proof (Weber, 2008). This study revealed that proof validation was 

not a formal or exclusively deductive activity. Mathematicians sometimes sought to 

bridge a perceived gap in the proof not by constructing a sub-proof, but by an informal 

argument or the inspection of examples. Also, the mathematicians’ conceptual knowledge 

of the domain they were studying influenced how they checked an argument for 

correctness. 

 The lack of research on how students do read mathematical arguments, as well as 

how they should read them, represents an important void. Advanced mathematics courses 

are typically taught in a definition-theorem-proof format (cf., Weber, 2004) in which 

students spend much of their time observing proofs that their professor presents for them 

and reading proofs in their textbooks. This practice is based upon the implicit assumption 

that students can learn mathematics by reading the proofs of others (Selden & Selden, 

1995). Reform-oriented K-12 classrooms place a high value on having students attend to, 

evaluate, and critique the arguments of their teacher and classmates (e.g., NCTM, 2000) 

suggesting that the observation and evaluation of arguments plays an important role here 

too.  

 This paper reports a study in which 28 mathematics majors were observed reading 

and evaluating ten mathematical arguments. I will use this data to address four questions: 

(1) What types of written arguments do mathematics majors find convincing? 

(2) To what extent do mathematics majors have specific skills, as suggested by 

mathematics education researchers, needed to evaluate arguments? 
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(3) What relationship do the students perceive between understanding, conviction, 

and mathematical proofs? 

(4) What do mathematics majors perceive their responsibility to be when they are 

reading a proof? 

2. Related literature 

2. 1. Students’ standards of conviction 

 The way a student evaluates a mathematical argument is necessarily dependent on 

how he or she becomes convinced that a mathematical assertion is true. In an influential 

paper, Harel and Sowder (1998) introduce the notion of proof schemes as the ways in 

which students remove personal doubts about the truth of mathematical statements or 

attempt to convince others that a statement is true. Harel and Sowder (1998, 2007) 

contend that mathematicians have deductive proof schemes—mathematicians become 

convinced and persuade others of the truth of a mathematical assertion by deductive 

reasoning. However, research studies document that students often are convinced by non-

deductive arguments. To Harel and Sowder (2007), a primary goal of mathematics 

instruction is leading students to adopt the same proof schemes as mathematicians. 

 Harel and Sowder argue that many students hold empirical proof schemes, 

meaning that they seek to verify that a general claim about a large number of 

mathematical objects is true by checking that the claim holds true for specific examples. 

Research studies document that students often behave in this way when they are asked to 

prove a general assertion (e.g., Harel & Sowder, 1998; Recio & Godino, 2001). Further, 

many students prefer example-based arguments to deductive arguments, even though 

some believe that deductive arguments would receive more credit from teachers (e.g., 
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Segal, 200; Healy & Hoyles, 2000; Raman, 2002). Many mathematics educators believe 

that empirical proof schemes are deeply held beliefs that are not likely to change by 

direct instruction. Several researchers have designed and tested instruction whose sole 

goal was to lead students to modify or abandon their empirical proof schemes (e.g., 

Harel, 2001; Stylianides & Stylianides, 2008). 

 Harel and Sowder (1998) argue that some students hold perceptual proof 

schemes, and may be convinced that a statement is true by a diagram or graph. However, 

the extent to which this is true for mathematics majors is unclear. In a recent study, Inglis 

and Mejia Ramos (2009a) found that some mathematics majors hold the opposite view—

that pictures can never be convincing and all arguments that rely on a picture are 

inappropriate.  

 Research also suggests that students are often not convinced by deductive 

arguments, viewing a correct proof merely as evidence that an assertion is true rather than 

establishing its necessity (e.g., Fischbein, 1982; Chazan, 1993). When students read 

proofs, they often focus on whether the article has the appearance of deductive 

arguments that they have seen in the past, such as the use of a two column format in 

geometry or the appearance of mathematical symbols (e.g., Martin & Harel, 1989), rather 

than whether the content of the argument makes sense.   

 While there have been many studies of students’ proof schemes and conceptions 

of proof, few studies have investigated these issues with upper-level mathematics majors 

in a systematic matter. One question addressed in this paper is the extent to which the 

findings reported in this section hold true for mathematics majors. 

2. 2. Skills in reading mathematical arguments and proofs 
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 Research on how students can or should validate proofs has been limited. Selden 

and Selden (1995) emphasized that students’ ability to discern the logical structure of 

informal mathematical statements is necessary both for constructing and validating 

proofs. These researchers also stressed that when one is reading a proof, one needs to 

determine if a legitimate proof framework (e.g., direct proof, proof by contradiction) is 

being employed (Selden & Selden, 1995, 2003). Weber and Alcock (2005) argued that 

when one considers whether a new assertion in a proof follows legitimately from 

previous statements, one first needs to determine what statements are used to support the 

new assertion and what general mathematical principle, or warrant, specifies how the new 

assertion can be deduced from these statements. In cases where this warrant is not stated, 

it must be inferred by the reader. Judging whether a new assertion follows validly from 

previous ones therefore involves judging whether a possibly inferred warrant is a valid 

mathematical principle that is acceptable to one’s mathematical community. A 

subsequent research study illustrated how most students do not infer and check warrants 

when validating proofs (Alcock & Weber, 2005). The extent to which mathematics 

majors can evaluate proof frameworks and infer warrants will be investigated in this 

study. 

2. 3. Responsibility in proof reading 

 Students enter mathematics classrooms with implicit understandings of what their 

responsibilities are and how they are expected to behave. The way students engage in a 

mathematical task is significantly influenced by these belief systems. For instance, 

Schoenfeld (1985) observes that if students believe their role as problem solvers is to 

quickly implement a procedure that they had just been taught, then they may not generate 
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new representations or use heuristics when solving a problem, even if that problem 

invites them to do so. 

 There has been little research on what students perceive their responsibility to be 

when reading proofs. Herbst and Brach (2006) argue that high school geometry students 

believe their responsibility in writing proof is to illustrate to the teachers the extent that 

they can engage in logical reasoning. As a result, some students reject tasks in which they 

are asked to determine if a statement is true or choose a set of hypotheses that would 

necessitate a desired conclusion. If the teacher wants to measure students’ logical 

abilities, then it is the teacher’s responsibility to provide them with clearly specified 

statements to prove. This paper explores what mathematics majors perceive their 

responsibility to be when reading mathematical arguments. 

3. Methods 

3. 1. Participants 

28 mathematics majors who had recently completed a transition-to-proof course agreed to 

participate in this study. All were mathematics majors in their sophomore or junior year. 

Each student was paid a small fee for his or her participation. 

3. 2. Materials 

Participants were asked to read the ten proofs in the Appendix of this paper. These 

arguments varied along the following dimensions: 

 The mathematical content. Arguments came from elementary algebra (1, 2, and 

10), elementary number theory (3, 5, and 7), and calculus (4, 6, 8, 9). 
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 The format of the argument. The arguments were presented in paragraph form (2, 

4, 5, and 6), using a logical, symbolic format (1, 3, 7, 8, 9, and 10), and in some 

cases, accompanied with a diagram (2, 6). 

 The mode of argumentation. Most arguments used deductive reasoning, but 

argument 5 was empirical and arguments 2 and 6 were perceptual. 

 The validity of the argument. Arguments 1, 3, and 4 were valid proofs. Argument 

5 was invalid because it relied on empirical reasoning. Argument 6 was invalid 

because it relied on perceptual reasoning. Argument 10 contained an algebraic 

error in the third line of the argument. The flaws in arguments 7, 8, and 9 are 

discussed below. Argument 2 relies on perceptual reasoning and is thus arguably 

invalid; however some might consider it a legitimate ―proof without words‖ (e.g., 

Nelsen, 1993). Hence no judgment is made in this paper on its validity. 

Some arguments were based on specific errors suggested by the literature. Argument 7 

was taken from Selden and Selden’s (2003) study on proof validation and assessed 

whether students could recognize if a proof used a valid proof framework (i.e., if it used 

appropriate assumptions and deduced an appropriate conclusion). Argument 8 also used 

an invalid assumption for writing a proof by cases. Argument 9 was similar to the task 

used in Alcock and Weber (2005) to determine if students would check if implications 

within the proof were warranted (i.e., if there was a valid mathematical principle for how 

a new statement could be deduced from previous ones). 

 The goal of this study was to examine the ways mathematics majors read 

arguments, not assess their mathematical content knowledge. As such, several measures 

were taken to minimize the possibility that the participants would have difficulty with an 
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argument because of a lack of background knowledge. The arguments all were related to 

basic concepts from domains that the participants had previously studied. All of the 

arguments were straightforward and none contained subtle tricks. Twenty arguments 

were originally generated for the study. If any of the participants had difficulties with the 

content of the argument during pilot studies, that argument was not used in the study. 

3. 3. Procedure 

 Each participant met individually with the author for a task-based interview. 

Participants were told they would be presented with ten arguments, one at a time, and that 

they would be asked to make three judgments on each argument. First, they were asked to 

rate on a five-point scale the extent to which they felt they understood the argument, 

where a 5 indicated that they understood the argument completely. Second, they were 

asked to rate how convinced they were by the argument using a five-point scale, where a 

5 indicated they were completely convinced. Third, they were asked to decide whether 

the argument was a proof. They were given four choices: (1) The argument was a 

rigorous proof, (2) it was a non-rigorous proof (3) it did not meet the standards of a proof, 

or (4) they were not sure because they did not fully understand the argument. They were 

also permitted to opt for ―other‖ if they did not feel comfortable with these four choices. 

 It was emphasized to the participants that their judgments on the arguments 

should come from what was contained in the argument, and not from their knowledge of 

whether the claim being proven was true or false. Specifically, participants were told that 

even if they knew the claim was true, if they found the argument to be unconvincing, then 

they should rate it as such. Participants were also informed that some of the arguments 
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would be ―good arguments‖ while others would be ―flawed‖. The participants were told 

that they should spend as much time as they liked while reading the arguments. 

 Participants were given each argument individually and asked to ―think aloud‖ as 

they read the argument and made their judgments. If participants claimed they did not 

understand an argument or did not find it fully convincing (i.e., gave a mark less than a 

five for these two judgments), or did not find the argument to be a proof, they were asked 

why they gave it that mark. 

 After reading all ten arguments, participants were asked a series of open-ended 

questions about how they read arguments (e.g., ―What are some of the things that you do 

when you read a mathematical argument?‖) or about their perceptions of mathematical 

arguments (e.g., ―What do you think makes a good mathematical argument?‖). 

 Finally, if the participant had judged argument 8 to be valid, his or her attention 

was directed to the problematic line in the argument, ―Either f(x) ≥ 0 or f(x) < 0‖. (The 

scope of x was the interval [a, b], so it is possible for a function to assume both positive 

and negative numbers on this interval). The participant was asked if he or she saw a 

specific problem with this line of the argument. Similarly, if the participant judged 

argument 9 to be valid, his or her attention was directed to the last two lines in the 

argument, in which the statement ―



f (x) as x‖ was deduced from the fact that 

f(x) was increasing (increasing functions are not necessarily bounded above) and asked if 

they saw a problem with this inference. 

3. 4. Analysis 

 Each participant’s justification for why an argument was not fully convincing or 

not a proof was grouped using the constant-comparative method (Strauss & Corbin, 
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1990). Each justification was given an initial description. Similar justifications were 

grouped together and given preliminary category names and definitions. New episodes 

were placed into existing categories when appropriate, but also used to create new 

categories or modify the names or definitions of existing categories. This process 

continued until a set of categories was formed that were grounded to fit the available 

data. 

4. Results 

 The quantitative results from this study are presented in Table 1. Participants 

collectively and correctly judged arguments 1, 3, and 4 to be valid proofs in 74 of their 79 

judgments
1
, or 95% of the time. They collectively and incorrectly judged arguments 5, 6, 

7, 8, 9, and 10 to be valid proofs in 74 out of 130 instances, or 57% of the time. For 

argument 2, which could arguably be considered a proof without words, 24 of the 28 

participants (86%) of the participants believed the argument was a proof. The findings 

that students can correctly identify valid proofs but have trouble identifying the flaws in 

invalid arguments has also been reported in Knuth’s (2002) study with in-service high 

school teachers. 

Empirical proof schemes. 

The participants in this study did not exhibit empirical proof schemes. 26 of the 

28 participants believed argument 5, which relied on examples, was not a proof. Only one 

participant found the argument to be completely convincing, while 22 participants gave 

the argument a score of 3 or less for being convincing. The average score for 

convincingness was 2.61, easily the lowest of any of the arguments used in the study. 

                                                 
1
 Instances in which participants marked ―not sure‖ were not included in this tally. 
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After reading the arguments, participants were asked to name their favorite two 

arguments and their least favorite argument. None of the 28 participants named argument 

5 as one of their two favorite arguments while 11 named argument 5 as their least favorite 

argument. 

Table 1. Summary of results 

  1 2 3 4 5 6 7 8 9 10 

Understanding 

5  23 26 22 14 25 22 27 22 20 28 

4  2 1 4 13 2 4 1 3 4 0 

3 or less  3 1 2 1 1 2 0 3 4 0 

 

Conviction 

5  22 22 16 16 1 11 14 15 20 12 

4  2 4 5 10 5 7 2 3 4 2 

3 or less  2 2 7 2 22 10 12 9
*
 4 16 

  

Rigorous proof 15 10 17 23 0 3 12 15 11 11 

Non-rigorous 9 14 7 4 2 9 4 2 8 1 

Not a proof 0 4 4 0 26 14 12 9 5 16 

Unsure  4 0 0 1 0 2 0 1 2 0 

Other  0 0 0 0 0 0 0 1 2 0 

*- One student declined to rate argument 8 for conviction 

4.1. Students’ proof schemes 

 The data above is not consistent with research that reveals that younger students 

are convinced by examples and prefer example-based arguments to deductive ones (e.g., 

Healy & Hoyles, 2000; Segal, 2000). One hypothesis is that these participants learned in 

their transition-to-proof course that it was inappropriate to use examples in mathematical 

argumentation, which they may have assimilated as a rule without understanding of the 

limitations of empirical reasoning. However, this does not appear to be the case. When 

asked why the empirical argument was not fully convincing, in 26 cases the participants 

responded by articulating the limitations of empirical reasoning. Two representative 

responses of this are provided below: 

P11: I am not convinced by this argument. The argument is wrong. It’s a terrible 

argument, although it kind of shows a pattern that does make sense, so say I’m partially 
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convinced by the argument. But I would say this is not at all a rigorous proof, or proof at 

all. Does not meet the standards of a proof. 

I: Why would you say it’s not a proof? 

P11: Because this only shows that 26, doesn’t show any above that. You can’t just make 

an assumption based on the first 26 numbers. Not even 26 numbers. It’s a pretty small 

sample, since the real number line’s infinitely long. 

 

P2: I understood what they were saying. I'm not convinced since there's a lot more prime 

numbers then the ones that they presented. So it's not really a proof because it's a set that 

goes a lot larger than what they gave. 

 

The data in this study do not address how students came to see the limitations of 

empirical reasoning. However, P27’s responses below are suggestive of how this might 

be learned. 

P27: Are you convinced by this argument? I’m going to go with a 3, because it shows 

only up to 26, and I feel like if you’re going to use specific examples, it doesn’t prove the 

claim is true for every single integer. 

I: So there could be one… 

P27: I mean it’s kind of like an assumption in the proof, so because from 4 to 26 there’s 

at least one set of primes that add up to that even integer… it’s kind of like an assumption 

that yeah, ok, it happened for this case, so it’s going to happen later on, and that might 

not be true by this proof. 

 

In this excerpt, P27 clearly shows an understanding of why argument 5 is not a valid 

proof. However, later in the interview, she reveals that this is the way she would try to 

prove the statement before she took her introduction to proof course. 

P27: I probably, in the beginning, when I was taking [the transition-to-proof course], I 

would have proved it like that, and then my professor probably would have murdered my 

answer. He would have said that my answer only proves from 4 to 26. Technically you 

only prove it from 4 to 26, so I mean I probably would have done that initially, but I 

don’t think it proves it for all. 

 

For this student, simply having the professor repeatedly explain to her why her arguments 

were wrong was sufficient for P27 to abandon her empirical proof scheme. The extent 

that this would work for mathematics majors is an open question, but arguably plausible 



 13 

since nearly all of the 28 participants in this study could articulate the weaknesses of 

empirical reasoning.  

 It is interesting to speculate why the participants in this study rejected empirical 

reasoning when many other studies found that students held empirical proof schemes 

(e.g., Harel & Sowder, 1998; Healy & Hoyles, 2000; Segal, 2000; Recio & Godino, 

2001). The methods used in this study differed from other studies in two ways—the 

population being studied and the way that proof schemes were evaluated. First, this study 

examined mathematics majors in their sophomore or junior years. It is possible that 

mathematics majors are less likely to hold empirical proofs schemes that students who 

study other disciplines or that their experience in their undergraduate mathematics classes 

may have led these mathematics majors to refine their proof schemes. The interview 

excerpts with P27 provide suggestive evidence that the latter possibility may be true. 

 The other way that this study differed from many previous studies is that the latter 

inferred students’ proof schemes from the arguments that students produced (Harel & 

Sowder, 1998; Recio & Godino, 2001) while I inferred students proof schemes from the 

arguments that students evaluated. Vinner (1997) warns that it is often inappropriate to 

infer students’ beliefs from the wrong answers they produce as students might be 

providing these incorrect answers not because they believe they are right, but for other 

reasons, such as obtaining partial credit on a test or pleasing the interviewer. If students 

are asked to prove something and they don’t know how to begin, they might plausibly 

show the claim works for specific examples for these reasons. After all, checking that a 

claim holds in specific cases increases the likelihood that the claim is correct. This does 
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not necessarily imply that students believe that inspecting examples is an appropriate way 

to seek conviction. 

Perceptual proof schemes. 

 Many of the participants in this study did show evidence of holding perceptual 

proof schemes. Argument 2 relied in a critical way on a drawing. Nonetheless, 24 of the 

28 participants judged the argument to be a proof and 10 of these participants believed 

the proof was fully rigorous. For argument 6, 12 of the participants judged the argument 

to be a proof, although only three thought it was fully rigorous. Of the 14 participants 

who believed argument 6 did not meet the standards of proof, nine cited the use of a 

graph as a reason for rejecting the argument. The remaining five cited the fact that only 

part of the graph was shown; as a result, this argument was implicitly relying on 

empirical reasoning. Only four of the nine participants who rejected argument 6 because 

a graph was used cited specific limitations of using a graph to prove. 

 This result also contradicts a result from the literature. Inglis and Meija-Ramos 

(2009a) found that mathematics majors are less convinced by pictures than 

mathematicians because they have been taught the motto that ―pictures do not prove‖. 

Yet 24 of the participants in this study thought argument 2 was a proof and 22 found it 

fully convincing. One possible reason for these differing results might be found in 

another study by Inglis and Mejia Ramos (2009b) which revealed that mathematicians 

find diagrammatic arguments more convincing if accompanying text explained the 

arguments. The perceptual arguments in this study had this feature while the one used in 

Inglis and Mejia-Ramos (2009a) did not. 

4. 2. Skills in reading proofs 
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Recognizing valid proof frameworks. 

 Arguments 7 and 8 were designed to see whether the participants would attend to 

whether or not these arguments had a valid structure. In argument 7, the participants were 

shown a purported proof of the statement, ―If n
2
 is divisible by 3, then n is divisible by 

3‖. However this argument began by assuming the conclusion (n is divisible by 3) and 

then deducing the hypothesis (n
2
 is divisible by 3). Similar to the Selden and Selden 

(2003) study in which this argument was used, roughly half the participants (14 of 26) 

judged this to be a valid proof. Four of the fourteen who judged the argument to be a 

proof did recognize that the argument had an invalid proof structure. A representative 

excerpt from one student who judged the argument to be a proof is provided below: 

P28:  So shouldn’t you… I feel like it should start off with, you know, assume 2n  is 

divisible by 3, then relate it to ―n is divisible by 3‖, instead of saying… Like you assume 

what you are trying to prove, but… Wait, if n is divisible by 3, then… Yeah, I agree with 

the claim[…] So, I think the argument is right. I don’t know if the formatting matters. 

Once again I’m kind of biased because of how I was taught. So convincing? I’m going to 

go with a 4 instead of a 5. Only because of particular preference but I don’t think it’s 

wrong. 

 

This result replicates Selden and Selden’s (2003) finding that many students do not check 

to see if arguments employ legitimate proof frameworks. Further, this extends the result 

by showing that even if students notice an unusual proof format is being used, they might 

not think this is important. In the excerpt above, P28 dismisses this concern as 

―formatting‖ which might not matter. 

 Argument 8 also is a purported proof with an invalid structure. The argument is a 

proof by cases. However the cases considered are not exhaustive. The statement, ―either 

f(x)≥0 or f(x)<0‖ is not a valid assumption, since the scope of x in this statement is the 

non-trivial interval [a, b] and f(x) could assume both positive and negative values on this 
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interval. 17 of the 24 participants who made a judgment on this argument accepted it as a 

valid proof. However, when they were asked to focus on the specific invalid statement 

after they had read the arguments, only three of these 17 students could find a problem 

with it. Hence many of the participants may have lacked the content knowledge, but not 

necessarily the skills at reading arguments, to evaluate this argument correctly. 

Inferring warrants. 

 The first seven lines of argument 9 consist of a mostly correct demonstration that 

f(x)=ln x is an increasing function. The eighth line of the proof states, ―Therefore, 



f (x) as x.‖ This is not a valid conclusion because increasing functions do not 

necessarily diverge. 19 of the 24 participants who judged argument 9 believed it was a 

valid proof. After they read all the arguments, these 19 participants’ attention was drawn 

to the last two lines of this proof and they were asked if they thought these lines were 

valid. At this point, 13 of the participants were able to explain why they were not. Two 

representative responses are provided below: 

P4: Oh, I guess it's not true. It could approach uh, that's true. It could just approach an 

asymptote. I didn't, okay, I didn't consider that. 

 

P18: Yeah, because it could just be getting bigger and bigger and bigger, but still 

converging to a specific number. Like if f(a)… if f(b) was 1, f(a) could be 1.5, and then 

your next f(a) could be 1.75 and then it could be 1.8, and then converging to like 2 or 

something. 

 

Hence these participants had the mathematical knowledge to know that increasing 

sequences do not necessarily diverge. However, none of these 13 participants attempted 

to produce a reason for how the last line of the argument followed from previous 

assertions when reading the proof. One participant, P20, offers an explanation for why 

she did not check to be sure the last line of the proof followed from previous assertions. 
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P20, and perhaps other students, had a false sense of confidence because the argument 

until that point had been correct and made sense. 

P20: The therefore. Yeah, like, I was reading all of [the lines of the proof] and I got it. 

But then, like, all of a sudden like this popped up. And I was reading it and like I believe 

like all of it was true and then the therefore popped up. So I believe that it was a part of it 

so then I thought it was true. 

 

The finding that many mathematics majors will fail to recognize that an argument 

implicitly uses invalid mathematical principles but can do so if their attention is 

specifically focused on this aspect of the argument replicates the findings of Alcock and 

Weber (2005). It also challenges Reid and Inglis’ (2005) claim that most students will 

naturally do this when reading mathematical arguments. 

4. 3. Perceived relationship between understanding, conviction, and proof 

 Ideally students would not be sure an argument was a proof if they did not fully 

understand it. Likewise, they would not be sure an argument was a proof if they did not 

find it fully convincing. Further, if a student found a significant flaw in an argument, then 

he or she would recognize the argument as invalid. I found that mathematicians behaved 

in this way in a study in which I observed them evaluating the proofs of others (Weber, 

2008). However the data in this study suggests this is not the case with mathematics 

majors.  

Judging an argument that is not fully understood to be a proof 

 12 of the 28 participants judged an argument that they did not fully understand to 

be a proof. There were a total of 21 instances of this. 11 of these instances occurred for 

argument 4, which demonstrated that the equation 4x
3
 – x

4
 = 30 has no solutions because 

the function f(x) = 4x
3
 – x

4
 had a global maximum value of 27. Participants found many 
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aspects of the argument confusing, but nonetheless thought the argument was a proof. 

Two representative excerpts are provided below: 

P7: Because f of x is a polynomial of degree 4 and the coefficient of x to the fourth is 

negative, f of x is continuous and will approach negative infinity as x approaches infinity 

or negative infinity. That whole sentence kind of confused me. But everything else makes 

sense. So, I will give that a four [in terms of understanding]. Um, am I convinced by this 

argument? I give it a five. Is it a proof? Yes. 

 

I: What didn’t you understand about it? 

P16: I forgot what it means to find a global maximum. So I’m not quite sure. But 

everything else looks right. So I also give it a four for being convincing. Do I consider 

the argument to be a proof? Yes. And it’s rigorous. 

 

Judging an argument to be a proof that is not fully convincing 

 21 of the 28 participants judged an argument to be a proof that they did not find 

fully convincing. There were a total of 39 instances of this. In 10 of these instances, the 

participant was not sure about a particular step within the proof. For instance, when 

reading argument 3 in support of the statement, n
3
 – n was divisible by 6, P1 responded: 

P1: Since n cubed minus n is even and divisible by 3, n cubed minus n is divisible by 6. I 

don't remember all of the rules for everything for all of those division things, so that's 

holding me back right now. So I guess I understand the argument for the most part. And I 

guess I can say that I am pretty much convinced […] I forgot what it means, the last part, 

like what numbers are divisible by three, divisible by 6, I forgot those rules. 

 

In some sense, these participants seemed to be saying the argument was a proof 

conditionally, on the assumption that the statements that they were unsure about were 

true and followed validly from the previous assertions. Although such behavior is 

understandable, the mathematicians that I studied reading arguments did not do this. If 

they were unable to validate a single assertion in the proof, they would spend extended 

periods of time trying to justify why the assertion was legitimate. If they were unable to 

do so, they would not make a judgment on that proof. In contrast, the students in this 
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study rarely spent more than two minutes reading an argument. They simply assumed the 

statement would be true. 

 In 13 instances, the participants could not spot anything particularly wrong with 

the proof but could not follow the general logic in the proof. This happened fairly often 

with argument 4 and is illustrated with P19’s response below: 

P19: For convincing, hmm, I’ll give it a 4. Is it a proof? Yes, they’ve shown that 

[referring to 4x
3
 – x

4
] has a maximum of 27 and is decreasing after that so it could never 

be equal to 30. Yes, it’s a rigorous proof. 

I: What didn’t you find convincing about the argument? 

P19: The whole, I didn’t remember how you found global maximums. Each of the steps 

made sense though. I think it’s right, but I’m not sure. 

 

There were 6 instances in which the participants had a general sense that the argument 

was flawed, but could find no specific flaw within it. Consider the excerpt below: 

P9: It's just not right, I think [...]  I couldn't find something wrong here but for some 

reason it doesn't convince me. How about I put as a three? Neutral? 

I: Okay. Even though you can't find anything wrong, you just don't find it convincing? 

P9: I have to think about this one […] I think it is right, this proof. But I don't know. Let 

me just put I consider this argument to be a proof although not fully rigorous.  

 

Judging arguments with significant flaws to be proofs. 

 10 of the 28 participants judged an argument to be a proof after they located a 

significant flaw in the proof. This occurred a total of 16 times. As discussed in section 4. 

2, four of the participants judged argument 7 to be a proof, even though they recognized 

that it had an invalid proof framework. Six of the participants judged empirical or 

perceptual arguments to be proofs, even though they were uncertain whether this type of 

reasoning was legitimate in a proof and they did not find these arguments to be fully 

convincing. Three of the participants who judged argument 9 to be a proof commented 

that the last line of the proof did not follow from the previous inferences in the proof. In 
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general, some participants appeared to believe that if most of the steps in a proof were 

valid, then the proof in its entirety was valid. Likewise, if they could verify that most of 

the steps in a proof were correct, they could act on the assumption that the remaining 

steps that they could not validate were also correct. These participants did not seem 

aware that a single invalid statement could make the entire proof invalid; as such, they 

needed to check every step when reading an argument or proof. 

4. 4. Students’ responsibility when reading proofs 

 When participants were reading an argument, they focused predominantly on the 

local logical details of that argument. Specifically, they sought to determine what logical 

rule was being used to deduce each new assertion within that proof. Rarely did they 

consider the semantic content of the proof by using their own knowledge of the concepts 

in the proof to see if the proof made sense. There were only four instances of the 

participants drawing a diagram or graph. Many of the participants remarked that a graph 

would be useful for interpreting argument 4, yet most did not attempt to draw one. 

Similarly there were only five instances in which participants considered specific 

examples to help make sense of what was being asserted within a proof. In argument 3, n
3
 

– n was factored into (n-1)n(n+1) and from this, it was argued that n
3
 – n must be even, a 

multiple of 3, and hence a multiple of 6. Many participants indicated that they found 

these steps confusing and could not see why they were true. Only a few of them used 

specific examples to see if such assertions might be true. This can be contrasted with 

mathematicians who regularly use examples when reading these types of arguments 

(Weber, 2008). 
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 Some participants indicated that they believed it was the author of a proof’s 

responsibility to explicitly list all of the logical details of a proof. When asked what made 

a good logical argument, 11 participants stated that a logical explanation should 

accompany every step. Consider the two representative excerpts below: 

P9: It's got to be really detailed, I think. You have to tell every detail. Every step, it is 

very clear. And have some kind of like form, ya know. I like doing things step by step. 

Like in a certain way. Very, uh, very formal way, ya know? 

I: So you like having every detailed spelled out as much as possible? 

P9: Yeah, yeah, yeah. 

 

P23: The argument should be clear. You shouldn’t reach a point in the proof where you 

say, ―Whoa! Where did that come from?‖. The argument should tell you where it came 

from. Which theorem you used, or whatever. 

 

This might explain, in part, why participants spent such a short time reading the 

arguments in this study. If they were confused by a particular argument, they considered 

that a fault of the argument, not of their own understanding.  

5. Discussion 

 This paper presents a number of interesting findings about the ways in which 

mathematics majors read and evaluate proofs. First, most of the participants in this study 

did not exhibit an empirical proof scheme. In light of previous research, this is a 

surprising finding that would be useful to replicate. If this finding generalizes to 

mathematics majors at other universities, this has an important consequence for collegiate 

mathematics education research. A significant goal of contemporary mathematics 

education research is to have students be convinced by deductive arguments but not 

empirical ones (e.g., Harel & Sowder, 2007) and several researchers have designed 

interventions to lead students to do exactly that (e.g., Harel, 2002; Stylianides & 

Stylianides, 2008). However, the data suggests that this might not be necessary with 
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mathematics majors. Completing a traditional transition-to-proof course might be 

sufficient to accomplish this. 

 Many of the participants in this study did obtain conviction from perceptual 

reasoning. Perhaps this is not a problem, as some mathematicians and philosophers also 

apparently gain high levels of conviction from graphs and diagrams (e.g., Nelsen, 1993; 

Giaquinto, 2007; Kulpa, 2009). However, students should recognize that perceptual 

arguments are (usually) not accepted as proofs by the mathematical community. For an 

argument to be considered a mathematical proof, it not only has to be convincing, but 

also use deductive reasoning so that the proven statement is deduced logically from 

accepted facts.  

 This study replicates the findings of other studies that illustrate that students lack 

particular proof validation skills (Selden & Selden, 2003; Alcock & Weber, 2005). While 

it is important to teach these skills, it would also be beneficial to explain why these skills 

are necessary to employ. Some participants appeared to believe that what the author 

chose as the assumptions and the conclusion of a proof were a minor detail. Others acted 

as if an isolated error within a long chain of argumentation was not significant. If 

mathematics majors do hold such beliefs, they likely would see no reason to implement 

these skills. 

 In a recent unpublished study in which I interviewed mathematics professors 

about their pedagogical practice, these professors indicated to me that they expected 

students to spend a lengthy time outside of class studying the proofs that were presented 

to them. One professor suggested that his difficult proofs might take students as long as 

two hours to understand. The data from this study suggest that students believe a proof 
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should be transparently obvious. Many indicated that every logical detail should be 

explicitly stated and almost none of the participants spent more than two minutes reading 

an argument, even ones they found confusing and did not fully understand. If participants 

do not believe that there is a lot to be gained from understanding a proof but these gains 

take time to be achieved, it is doubtful they will see the benefits of learning the complex 

processes involved in proof reading and validation. 
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Appendix- Arguments used in this study 

Argument 1: Valid, deductive algebra 

Claim: (a + b)
2
 = a

2
 + 2ab + b

2
 

Argument: 

(a + b)
2
 = (a + b)(a + b) 

(a + b)(a + b) = a(a + b) + b(a + b)     

a(a + b) = a
2
 + ab              

b(a + b) = ba + b
2
 

So (a + b)(a + b) = a
2
 + ab + ba + b

2
 = a

2
 + 2ab + b

2 

Argument 2: Perceptual, algebra 

Claim: (a + b)
2
 = a

2
 + 2ab + b

2
 

Argument: 

Consider the diagram below: 

 

 
 

 

 

 

 

 

 

 

 

 

The length and width of the square are each (a+b), so the area of the diagram is (a+b)(a+b) = (a+b)
2
. 

The area can also be found by adding the areas of the four cells of the square whose areas are a
2
, ab, ab, and 

b
2
, which is a

2
 + 2ab + b

2
. 

So (a+b)
2
 = a

2
 + 2ab + b

2
. 

Argument 3: Valid, deductive number theory 

Claim: For all natural numbers n, n
3
 – n is divisible by 6. 

Argument.  

n
3
 – n = n(n

2
 – 1) = n(n+1)(n-1). 

Either n is even or n+1 is even. 

Since both numbers are factors of n
3
 – n, n

3
 – n is even. 

Because n-1, n, and n+1 are three consecutive numbers, one of them is divisible by 3. 

So n(n+1)(n-1)=n
3
 – n is divisible by 3. 

Since n
3
 – n is even and divisible by 3, n

3
 – n is divisible by 6. 

Argument 4: Valid, deductive calculus 

 Claim. The equation, 4x
3
 – x

4
 = 30, has no real solutions. 

Argument. Consider the function, f(x) = 4x
3
 – x

4
. Because f(x) is a polynomial of degree 4 and the 

coefficient of x
4
 is negative, f(x) is continuous and will approach -∞ as x approaches ∞ or -∞. Hence, f(x) 

must have a global maximum. The global maximum will be a critical point.  f’(x) = 12x
2
 – 4x

3
. If f’(x) = 0, 

then x = 0 or x = 3. f(0) = 0. f(3) = 27. Since f(3) is the greatest y-value of f’s critical points, the global 

maximum of f(x) = 27. Therefore f(x) ≠ 30 for any real number x. 4x
3
 – x

4
 = 30 has no real solutions. 

Argument 5: Invalid, empirical, prose number theory 

Claim. Any even integer greater than two can be written as the sum of two primes. 

Argument. Consider the following table: 
Even  Sum of two primes 

4  2+2 

6  3+3 

8  3+5 

10  3+7,   5+5 

12  5+7 

a
2 

b
2 ab 

ab 

b 

a 

a b 
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14  3+11,  7+7 

16  3+13,  5+11 

18  5+13,  7+11 

20  3+17,  7+13 

22  3+19,  5+17,  11+11 

24         5+19,  7+17,  11+13 

26  3+23,  7+19,  13+13 

 

First, note that each even number between 4 and 26 can be written as the sum of two primes. Second, note 

that the number of pairs of primes that work appears to be increasing. For 4, 6, 8, and 12, there is only one 

prime pair whose sum is that number. For 22, 24, and 26, there are three prime pairs whose sum is that 

number. Every even number greater than 2 will have at least one prime pair whose sum is that number. For 

large even numbers, there will be many prime pairs that satisfy this property. 

Argument 6: Invalid, perceptual calculus 

 Claim. 



1

x
sin xdx

0



  0  

Argument. The graph of 



f (x) 
1

x
sin x  is given below. 



1

x
sin xdx

0



  0  means that 



f (x) 
1

x
sin x  has more area above the x-axis than below it. 

To show this, note that it is clear from the graph that the first positive region—between 0 and π (about 

3.14)—has more area than the first negative region—between π and 2π (between 3.14 and 6.28). The 

second positive region has more area than the second negative region. The third positive region has more 

area than the third negative region. Since each positive region has a greater area than the negative region to 

the right of it, the overall area of 



1

x
sin xdx

0



  will be positive.  

f(x) = sin(x)/x

-0.4

1

0 3.14 6.28 9.42 12.56 15.7 18.84 21.98

f(x)

 
Argument 7: Invalid, deductive number theory (invalid proof structure) 

Claim: If n
2
 is divisible by 3, then n is divisible by 3. 

Argument. 

We need to show that n is divisible by 3. 

If n is divisible by 3, then there exists an integer k such that n = 3k. 

n
2
 = (3k)

2
 = 9k

2
. 

So n
2
 is divisible by 9. 

All numbers divisible by 9 are also divisible by 3. 

So if n
2
 is divisible by 3, then n is divisible by 3. 

Argument 8: Invalid, deductive calculus (invalid assumption, first line) 

 Claim: Let f(x) be a real valued function, a and b be real numbers, and b> a. 



f (x)dx
a

b

  f (x)dx
a

b

    
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Argument. (Proof by cases). 

Either f(x) ≥ 0 or f(x) < 0. 

Case 1: f(x) ≥ 0. 

If f(x) ≥ 0, then |f(x)| = f(x). 

Thus, 



f (x)dx
a

b

  f (x)dx
a

b

 . 

Case 2: f(x) < 0. 

If f(x) < 0, then 



f (x)dx
a

b

  0. 

Since |f(x)| > 0, then 



f (x)dx
a

b

  0. 

So 



f (x)dx
a

b

  0  f (x)dx
a

b

 . 

 

Thus, 



f (x)dx
a

b

  f (x)dx
a

b

 . 

Argument 9: Invalid, deductive algebra (invalid warrant, last line) 

Claim. Let f(x) = ln x. Then 



f (x) as x. 
Argument. 

Let a and b be positive real numbers with a > b. 

Dividing both sides by b gives: 

a/b > 1     (since b is positive). 

ln(a/b) > 0     (since ln x > 0 when x > 1) 

ln(a) – ln(b) > 0     (by the rules of logarithms) 

ln(a) > ln(b) 

Hence, for positive reals a and b, if a > b, then f(a) > f(b). 

Therefore, 



f (x) as x. 

Argument 10: Invalid, deductive algebra (computation error, line 3) 

Claim. For all real numbers x, x
2
 + 12x + 28 > 0. 

Argument: 

x
2
 + 12x + 28 = 

(x
2
 + 12x + 24) + 4 = 

(x + 6)
2
 + 4 

Since (x + 6)
2
 is a perfect square, (x + 6)

2
 ≥ 0 for all real numbers x. 

Hence (x + 6)
2
 + 4 ≥ 4 > 0. 

So x
2
 + 12x + 28 > 0. 

 


