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 Introduction 

Researchers have provided many examples of what it means to teach mathematics using an 

inquiry approach.  This body of work addresses how student learning can be positively influenced 

when they have opportunities to explain and justify ideas, listen to others’ explanations, ask clarifying 

questions when they do not understand classmates’ ideas, represent their ideas using self-invented 

methods, engage in challenging problem solving activities, and so on (e.g., Ball & Bass, 2003; Cobb, 

Wood, Yackel, 1992; Hiebert et al., 1997; Lampert, 1990; Rasmussen & Marrongelle, 2006; 

Whitenack & Knipping, 2002; Yackel & Cobb, 1997).  Further, these reports often highlight the fact 

that although teachers continue to facilitate discussions, the nature of these discussions is markedly 

different from those that take place in traditional mathematics classrooms.  Teachers in inquiry 

classrooms ask different types of questions and highlight students’ contributions for different 

purposes (Ball, 1993; Ball & Bass, 2003; Yackel & Cobb, 1997).  Additionally, teachers in these 

types of classrooms take great care choosing representations, using students’ ideas as starting points 

for advancing these discussions or capitalizing on ideas that underpin their students’ strategies and 

methods.  Often in these types of classrooms, the teacher must be sensitive to students’ incomplete 

ideas and more informal methods and make decisions about how to use those ideas as the basis for 

exploring more formal ideas or practices that fit with the mathematical practices in the broader 

community (Ball, 1993; Ball & Bass, 2003; Yackel, 2002). 

Yackel (2002) has continued to address the role of explanation and justification in her more 

recent work.  She and her colleagues have provided new insights into how teachers (elementary 
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school teachers and university instructors) support the development of mathematical arguments 

during whole class discussions (e.g., Stephan & Rasmussen , 2002; Whitenack & Knipping, 2002).  

Yackel, for instance, analyzed part of a university differential equations lesson to illustrate how a 

university instructor and his students established the plausibility of arguments about predator-prey 

problems.  She argued that in this university classroom, the instructor focused discussions on 

“developing and supporting arguments for claims that were put forth but not on making claims per se” 

(p. 427).  Once a claim was made, the instructor redirected the conversation so that students could 

explain and justify ideas.  In fact, it was normative for the instructor and students to engage in these 

types of whole class discussions as they established plausible arguments.  The instructor’s role was 

important because he could direct the discussion so that students had opportunities to support claims 

using their understandings of the mathematical ideas at hand.   

In our discussion we, too, address the instructor’s role by highlighting one university course 

instructor’s proactive role in establishing and maintaining normative practices for making 

mathematical arguments.  Here, we make a case for how teachers’ explanations and justifications in 

two different mathematics courses in a K-5 Mathematics Specialist program contributed in part to the 

mathematical arguments that were established during whole class discussions.  To accomplish our 

task, we use examples from one lesson in an Algebra and Functions course and one lesson in a 

Rational Number and Proportional Reasoning course that are core courses in this endorsement 

program.  

Following Yackel (2002), we use Krummheuer’s (1995) ethnography of argumentation as an 

interpretive framework to reconstruct mathematical arguments in these two lessons.  We use examples 

from the algebra lesson to illustrate how the instructor facilitated a discussion in which he coordinated 

two ensuing arguments.  We use examples from the rational number lesson to illustrate how 

Krummheuer’s framework can be used to hypothesize how the instructor could use a substantial 
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argument as a starting point for engaging the teachers in proof making.  By providing these two 

different types of analyses, we illustrate how this interpretive lens might be used to explicate the types 

of possible learning opportunities that occurred as teachers engaged in whole class discussions.  We 

also illustrate the utility of conducting these types of analyses.   

Theoretical Considerations 

 Krummheuer argues that by coordinating constructs associated with argumentation with 

ethnomethodology and interactionism, the researcher can understand the structure of an argument as 

well as how it is constituted and reconstituted by the participants during an ensuing whole class 

discussion.  Argumentation as it unfolds in the classroom then is a social phenomenon; it has all the 

features that are usually ascribed to classroom discussions and other normative practices associated 

with face-to-face interactions.  As Krummheuer (1995) states,  

Because of the emergent nature of social interaction, argumentations are usually accomplished 
by several participants.  Such a case is called a collective argumentation…In addition, the 
development of a (collective) argumentation does not need to proceed in a harmonious way.  
Disputes in parts of an argumentation might arise that could lead to corrections, modifications, 
retractions, and replacements…The result of this process can be reconstructed and is called an 
argument. (p. 232) 

So argumentation can be used as a way to describe ordinary classroom activity (Krummheuer, 1995).  

When part or an entire whole class discussion is reconstructed, in this way, we can develop a scheme 

of sorts that structures key parts of the discussion or argument that unfolded. 

 The model for an argument is comprised of four components:  conclusion, data, warrant, and 

backing.  These components comprise an argumentation, of which the conclusion, data and warrant 

make up the core of the argument (Krummheuer, 1995).  In addition, in some cases, the 

argumentation must be reconstructed if, for instance, the data is invalid or is doubted by one’s 

classmates.  In this case, the participant must provide different data to support her conclusion.  By 

way of contrast, if a classmate agrees with the conclusion but does not directly see the relationship 

between the data and the conclusion, the participant may be asked to provide additional information 
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that warrants and/or provides backing to support her claims.  In the second case, the participant need 

not develop a new conclusion-data pairing, but instead, she is obliged to provide evidence to support 

the conclusion that further clarifies the warrant.  The result of this argumentative process is a 

mathematical argument that is socially constructed by the participants.  As Krummheuer notes, a 

mathematical argument is the result of an argumentation.  At times, an argument is part of a complex 

argumentation.  Arguments can be embedded in other argumentations.  This last point is particularly 

relevant to our discussion.  One of our aims is to understand how the instructor facilitated a discussion 

in which several arguments surface and become part of a complex argument.   

Another feature of Krummheuer’s (1995) and Toulmin’s (1969) theory relates to that of 

distinguishing among different types of arguments.  Typically when one makes a mathematical 

argument, we are inclined to consider whether this argument aligns with the rules of logic that are 

often used to describe the work of mathematicians or those engaging in proof making.  Krummheuer, 

following Toulmin, suggests that one need not characterize (or evaluate) an argument using the rules 

of deduction.  For Krummheuer, an argumentation is socially accomplished as each participant tries to 

adjust his intentions to the contributions made by others.  As a participant explains or justifies his 

ideas, the “meaning of the premise increases or changes” (p. 236).  To distinguish this type of 

argument from the more traditional view of arguments, Toulmin and Krummheuer suggest that 

arguments can be either analytic or substantial.  Analytic arguments are those that are made using the 

rule of deductive reasoning.  Substantial arguments, by way of contrast, are arguments that are not 

held to tautological requirements.  Contributions of this kind would not likely be part of an analytic 

argument, but could lead to a substantive argument.  This said, outlining a substantive argument has 

merit in its own right.  One can reconstruct an argument, and in doing so, develop a better 

understanding of the particular mathematical practices that emerge during whole class discussions 

(Stephan & Rasmussen, 2002).  
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  So how might an interactionist perspective fit within this theory of argumentation?  Here we 

draw on several recent works that have made use of a coordinated framework.  In Yackel’s (2002) 

retrospective analysis across teaching experiments, she draws on Krummheuer’s (1995) work to 

extend normative practices to provide insight into the elementary teacher’s and university instructor’s 

roles in supporting the evolution of mathematical arguments.  With regard to argumentation, we 

specifically focus our analysis around the instructor’s role in facilitating and guiding the discussions 

as teachers explain and justify claims that they make.  Like Yackel (2002), the focus of our discussion 

is around the process by which claims are substantiated rather than the process of developing or 

constituting a viable claim.  Additionally, we draw on Yackel’s ideas about when and for what 

purposes that teacher might contribute to an ensuing argumentation.  In particular, does the instructor 

offer contributions in the form of warrants or backings when the teachers make omissions?  Are there 

other situations in which the instructor might be obliged to make contributions?   

We also draw on the work of Stephan and Rasmussen (2002) to further clarify the extent to 

which these ensuing argumentations become taken as shared.  Stephan and Rasmussen offer two 

conditions that signal whether or not an argument is in fact agreed upon by the participants.  They 

state, 

We contend that mathematical ideas become taken-as-shared when either (1) the backings 
and/or warrants for an argumentation no longer appear in students’ explanations and therefore 
the mathematical idea expressed in the core of the argument stands as self-evident, or (2) any 
of the four parts of an argument (data, warrant, claim, backing) shift position (i.e., function) 
within subsequent arguments and are unchallenged. (p. 462) 

So if the participants, as in our case, teachers and the instructor do not challenge supports for a data-

conclusion pairing, we might infer that they have reached a consensus about the idea under 

consideration.  Additionally, if part of an argument is used for a subsequent argument, we can also 

presume that the participants have established a shared understanding about an idea. 
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 Our hope is that as we conduct these analyses, we contribute to the continuing conversation 

about what might be possible when mathematics instruction aligns with reform efforts in the 

university mathematics classroom.  Additionally, we offer an account of how the instructor might 

facilitate discourse that takes seriously teachers’ important role in making mathematical arguments. 

Methodological Considerations 

Our examples are taken from two different whole class discussions, one in an algebra course 

and one in a rational number and proportional reasoning course.  These two courses are part of a 3-

year graduate degree program designed to prepare teachers to become K-5 Mathematics Specialists.  

The rational number and proportional reasoning course is the third course in the sequence; the algebra 

course is the fifth and final mathematics course in the program.  

Course participants entered the program with a range of experiences.  Some had several years 

of teaching experience whereas others had taught fifteen or more years.  About one-third of the 

participants were already serving in some type of leadership role in their school buildings. The 

instructor who led both of these two whole class discussions, Instructor, is a research mathematician 

who has been actively involved in providing professional development opportunities for teachers for 

over 20 years.  The courses were the second and the third courses for which he had served as the 

primary instructor in the mathematics specialist program for the same cohort of teachers.  As such, 

over time, he and the teachers had established a rapport in which they had mutual respect for one 

another.  

Instructor regularly used the teachers’ contributions to facilitate discussions.  He encouraged 

teachers to represent their ideas, even if their ideas were partially complete as they supported claims 

or if they were not certain of the correctness of their answer.  As teachers did so, Instructor, for his 

part, highlighted ideas, asked clarifying questions, and so on.  As a consequence, Instructor and the 

teachers together established that teachers’ ideas were particularly valued.  More generally, using 
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constructs related to argumentation, by engaging in these types of discussions, teachers developed 

arguments as they provided warrants and backings to support the claims that they made.   Instructor, 

for his part, also played an important role in what and how contributions were highlighted or used to 

support the teachers’ claim.  So norms for engaging in argumentation were the result of Instructor’s 

and the teachers’ mutually orienting interactions during discussions (cf. Yackel, 2002). 

The classroom data is taken from classroom data corpus that includes observation notes of the 

lessons, videotape recordings of small group and whole class discussions, digital recordings of 

participant interviews and small group discussions, digital photos of participants’ work during whole 

class discussions and participants’ individual work.  As we observed these and other lessons, we 

noted if we needed to revisit particular lessons during our analysis process. We began our analysis 

process by conducting a preliminary analysis of each lesson.  As we did so we realized that we needed 

to transcribe these two lessons to conduct a more thorough microanalysis of the entire lesson.   

To conduct microanalyses, we first viewed the videotape and the transcription of the small group and 

whole class discussions.  As we watched the videotaped lesson, we identified the mathematical ideas 

that surfaced and clarified each of the participant’s contributions.  We then re-watched the lessons and 

coded the participants’ contributions using argumentation constructs (data, conclusion, warrants and 

backings).  

Using Ethnography of Argumentation to Analyze Whole Class Discussions 

We first use the framework to reconstruct two arguments that emerged in the algebra course 

and how Instructor facilitated claims, warrants and backings that were simultaneously established as 

evidential supports in both arguments.  As we present our analysis from the algebra course, we will 

also highlight when Instructor offered warrants or backings, and for what purposes (cf. Yackel, 2002). 

Secondly, we use the framework use an example from the rational number course to illustrate how the 

instructor might use a substantial argument to as an opportunity to introduce teachers to formal proof 
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making. In particular, we hypothesize how Instructor and the teachers might have developed a more 

general argument for the density property of the rational numbers.   

The Algebra Lesson 

To illustrate how we might use this interpretive lens, we reconstruct part of a whole-class 

discussion as the participants discussed the following task:  Explain what happens to [r + s + (1/s)] 

as s increases from some very small positive number (e.g., 0.001) to some very large positive number 

(e.g., 1,000) (Schifter, et al., 2008).  Previously Instructor and the teachers had made arguments for 

why r/s decreased as s increased as well as why 1/s approached 0 as s increased.  We refer to the 

former as Argument 1 and the latter as Argument 2. 

As the discussion continued participants established yet a third argument, Argument 3. 

Previously, Teacher B and Teacher C provided the conclusion and data pairing for this new argument:  

r + s + 1/s increased because 1/s approached 0.  Neither gave specific examples to support this claim, 

however Teacher C stated that she had developed a table of values that became larger as she 

substituted larger values for s.  After Teacher C gave her explanation, Instructor provided specific 

pieces of data when he asked the whole class what would happen if s changed from 10 to 11 and then 

from 987 to 988.  Teachers explained that the values would increase.  So at this point in the 

discussion, Instructor and the teachers developed the claim and several pieces of data that supported 

the claim for Argument 3.  

Immediately following this interchange, Ms. Satterfield, one of the case study participants, 

made a statement that might be interpreted as a challenge to the conclusion for Argument 3.  She 

stated that she thought that r + s + 1/s actually decreased, that is, for larger values of s, r + s + 1/s 

approached r + s.  We enter the discussion as Ms. Satterfield continued to explain her ideas.  (Note: 

Ms. Satterfield is Ms. S.)  
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Ms. S: Well maybe I’m confused because I looked at it like as s increases, even though 
you are adding more with s you know that 1/s is going to approach 0 so that the 
expression itself is going to approach r + s.  So it’s not going to continue to 
increase; I put it is going to decrease—approach r + s.  You know I guess I was 
thinking about it differently than just the value increases or decreases.  Does 
that make sense? 

At this point, Ms. Satterfield provided a different explanation for what happened to the values of r + s 

+ 1/s.  She in fact actually stated a different conclusion-data pairing—as r + s  + 1/s increased it 

approached r + s because 1/s approached 0.  How might Instructor address Ms. Satterfield’s ideas?  

Would he interpret her ideas as a challenge to Argument 3, or as a new argument, and so on?  As the 

discussion continued, notice how he incorporated her ideas into the ensuing argument. 

Instructor:  Why don’t you draw it? 
Ms. S:  I don’t think I can draw it, is the problem. 

Teacher: Sure you can. 
Ms. S:   I don’t know what I would draw. 

Instructor:  Well, how about we let r be 2? 
Ms. S:  Okay. 

Instructor: Why did I say 2?  I just picked a number, that’s all…You can’t draw it if you 
don’t know what the numbers are so let’s let r be some…They said it had to be 
positive, so let it be 2. 

Ms. S: Okay. 

As we see, Instructor asked Ms. Satterfield to make a drawing to support her ideas.  When she stated 

that she was not sure how to make a drawing, Instructor assured her that she could do so and 

suggested how she might begin—by letting r be 2.  His suggestion about fixing r was important; it 

made it possible for Ms. Satterfield to generate supports in this case, a table of values for r + s + 1/s.   

As Instructor asked Ms. Satterfield to provide supports in the form of possible warrants, it is 

not clear at this juncture whether her table of values supported her new claim or the current claim for 

Argument 3.  As we continue with our analysis, it will be important to determine how Instructor 

draws on Ms. Satterfield’s ideas to support either or both claims. 
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We return to the discussion after Ms. Satterfield had derived these two values.  We re-enter the 

discussion as she commented that the values decreased for smaller and smaller positive values of s. 

Ms. S: See I’m saying that once you get to these really large numbers that 1/s isn’t …I 
mean I guess maybe I’m saying it’s increasing but to me, I guess, okay, I see 
what I’m saying.  We are kind of saying the same thing now.  Where I said it 
decreases to approach r +s (covers 1/s with her hand), rather than saying it 
increases… 

Notice that once Ms. Satterfield provided two different values for s, she realized that the table 

of values supported the claim that r + s + 1/s increases for larger and larger values of s.  At the same 

time, she continued to argue that the values could be used to show that r + s + 1/s approached r + s.  

So, in a sense, Ms. Satterfield provided an explanation that might serve as support for Argument 3 and 

her new claim.   

 It remains to be seen if Ms. Satterfield’s new claim, what we will tentatively call, Argument 4,  

will become a mathematical argument for to r + s + 1/s.  To better understand if Argument 4 is 

established as yet another argument for r + s + 1/s, we return to the ensuing discussion.  As the 

discussion proceeded, Ms. Satterfield inserted a few more values and then referred to the table of 

values as she continued to explain her ideas.  We reenter the discussion as she and another teacher, 

Teacher E refer to the table as they restate the claim for Argument 4.  

Ms. S: (Calculates .01 and .001 for s.) So to me, I guess…I guess I didn’t look at it 
like now it’s decreasing and then it’s going to increase (moves her hand over 
the values in the chart).  I looked at it like it’s going to decrease until it gets to 
the point where essentially the answer is going to be r + s (draws a box around 
2 + 1,000 and 1,002 and r + s on the chart paper) and then if you keep going 
the more and more.  Even though it may be increasing, it’s really just 
approaching whatever the value of r plus s is. 

Teacher E: But it doesn’t really get to r + s because of the extra small piece, 1/s. 
Ms. S: Yes. 

Here Ms. Satterfield referred to the table of values to explain how she had thought about r + s + 1/s.  

She not only argued that this expression increased for larger values of s, but also she argued what 

value it approximately increased to, r + s.  The fact that she highlighted this idea when she drew a box 
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around specific values provides further support for this interpretation.  Teacher E also contributed in 

part to this discussion.  So at this juncture, Ms. Satterfield’s table of values also served as data for 

Argument 4.   

As the discussion continued, note how Instructor addressed the teachers’ new ideas. 

Instructor: So the expression does keep increasing right?  As s gets bigger, the whole 
expression, what happens to it? 

Ms. S:   Yeah, well yeah… 
Teacher F: It increases if s is greater than 1. 

Instructor: Yeah, we’re talking about bigger than 1 still, right?  When s is bigger than 1, 
okay as s gets bigger the whole expression keeps getting bigger.  But you are 
saying something about the way it is getting bigger, is changing. 

As the discussion proceeded Instructor continued to refer to the table as providing support for 

Argument 3.  His question, “So the expression does keep increasing, right?” is evidence of this fact.   

After making this statement, he too indicated how the table of values also related to her new claim.  

He did so by explaining to the class that Ms. Satterfield also provided supportive evidence for the 

“way it is getting bigger is changing.”  So at this point in the discussion, Instructor and several 

teachers provided data for Argument 4.  Following this line of analysis, then Teacher E’s early 

comment, “But it doesn’t really get to r + s because of the extra small piece, 1/s.” provided additional 

support for that further clarifies why the function can only approach r + s.  As a consequence we 

interpret her comment to serve as a warrant for this new data-conclusion pairing.  At the same time, 

Instructor and Ms. Satterfield also explained how the table of values supported Argument 3. 

 So what was Instructor’s role during this part of the discussion?  How did he facilitate the 

discussion about both claims?  From above we note that he was able to highlight ideas that might 

serve as data or warrants for both arguments by pointing out how Ms. Satterfield’s ideas were related 

to the different mathematical ideas.  He also supported her as she constructed the table of values.  

First he suggested a way to begin to construct the table of values.  Secondly, as the table of values was 

constructed, he asked specific questions about values in the table that might highlight ideas that could 
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be used to support both claims.  By doing so, he could support Ms. Satterfield’s argument about 

convergence and at the same time continue to facilitate a discussion about Argument 3. 

To summarize briefly what has happened up to this point, we refer you to Figures 1 and 2.  As 

Argument 3 emerged, Ms. Satterfield offered yet a fourth argument.  Instructor’s role during this part 

of the discussion was that of asking teachers to provide examples that further supported the claim 

about what happens to r + s + 1/s as s increases.  As he made suggestions for what value to assign r, 

he helped to launch a discussion in which teachers offered support for Argument 3 as well as 

Argument 4.  So his role was that of making explicit teachers’ ideas so that these ideas might serve as 

evidential support for the claims that they made.  Note in the diagram that we have also inserted 

Argument 2 as data for Argument 3.  Elsewhere we have explained that Argument 3 is a complex 

argument, that is Argument 1 is nested inside of Argument 2 and is data for Argument 3 (Whitenack, 

Ellington & Cavey, 2009). 

As Instructor continued to facilitate this part of the whole class discussion, Teacher E 

constructed a graph that provided additional information to support her and Ms. Satterfield’s ideas for 

both arguments.  By doing so, Teacher E and Instructor provided explanations that might function as 

argumentative supports, in this case warrants and backings, for both Argument 3 and Argument 4.  

Interestingly, as this discussion proceeded, Teacher E’s backings in Argument 3 were augmented to 

that of warrants in Argument 4.  So, her graph of the expression supported Ms. Satterfield’s table of 

values but in different ways in both arguments.  In Figure 1 and Figure 2, we insert these 

contributions as warrants or backings to further build the scheme for both arguments.  Whereas the 

initial claims and data are different, notice that Ms. Satterfield’s and Teacher E’s explanations 

supported both arguments. 
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Figure 1 Schematic Representation for Argument 3

On account of 

Because 

So 
 

Since 

Whether you 
add a large 
value or a small 
value, the 
expression is 
increasing. 

Teacher D’s Warrant 

Conclusion 

As s increases 
starting at one 
whole then the 
value [r + s + 1/s] 
increases but as s 
decreases from 1 
the value goes up, 
also increases.  

 I substituted values for r & s and made a 
table of them. Teacher C’s Data 

Data 

Teachers: The values are going down. 
[Referring to the 1st three rows of Ms. 
Satterfield’s table to the right.] 

 Teachers’ Data 

 

Instructor & Teacher B’s Data 

Instructor: For the part 
where s is bigger than 
1, if s goes from 10 
to 11 what happens 
to r + s + 1/s?  How 
much does it increase 
by? 

Teacher B: 
One? 

 Instructor: 
About 1?  
Why not 
exactly 1? 

Teacher B: Because of the fraction. 

 Instructor: Because you have that 1/10 
thing.  

 Instructor: If s went from 
987 to 988 what would 
happen to the expression?  

 

Teacher B: 
About 1 
again. 

Instructor: Increase about 1 except that 
tiny little part. 

  

Ms. Satterfield’s Warrant 

Instructor: How about we let r be 2? 

 
Now it’s decreasing and then it’s going to 
increase.   
 

[Motioning down the table of values listed above] The same change 
occurs just over a smaller space for s values between 0 and 1 
compared to s values in the larger space between 1 and 1000. 

 
Look at a tenth [points to (0.1, 12.01)] and ten [points to (10, 12.1)].   

Teacher E’s Backings 
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Figure 2. Schematic Representation for Argument 4 

 
It starts getting flatter because it involves 1/s and those values 
start to get really small.  

The curve eventually goes straight or gets close to the line r + s.  
Teacher E’s Warrants 

It doesn’t just increase, it decreases until 
it approaches this [points to 2 + 1000 in 
the table presented above]. 

Ms. Satterfield’s Warrant 

 

It [r + s + 1/s] stops getting bigger in a big way.  
Ms. Smith’s Backing 

[Adds the coordinates (0.001, 1002.01) and (1000, 1002.01) 
to the graph above.] 
 
The same change happens this way [motioning up and down 
in the area between x = 0 & x = 1] but it takes larger space 
in this direction to get there [motioning from the point (1, 4) 
to the right along the x-axis]. 
  Teacher E’s Backings 

On account of 

Because 

So 

Since 

 Argument 2 

Data 

It never gets [to the value of r + s] because there is 
always a little extra.  
 

Teacher F’s Data 

 
 
 
 

 
Ms. Satterfield’s Data 

Instructor: How about we let r be 2? 
 

Ms. Satterfield: Because 1/s approaches 0 
 

The expression itself 
[r + s + 1/s] is going 
to decrease to 
approach r + s.  

Conclusion 
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The Rational Number Lesson  

For our second example, we use part of a whole class discussion in which teachers shared their 

methods for finding rational numbers between 1/11 and 1/10.  Here we briefly outline strategies that  

two small groups shared.  (See Whitenack, Cavey, & Ellington (2009) for a full description.) 

Group 1’s method. Previously Teacher G from Group 1 explained that 95/1000 and 99/1000 

(or 0.095 and 0.099) were two rational numbers between 1/11 and 1/10.  She and her group members 

explained that  0.095 (or 19/220) made sense because they had used a similar method (converting the 

fractions decimal form) to show that 21/220 was a rational number between 1/10 and 1/9—one of 

their homework problems.  After Teacher G explained, Instructor made a more general statement 

about their ideas: 

There’s lots of rational numbers between 1/11 and 1/10, and the one you found was 95/1000, 
and I didn’t say whether or not I would care if it was in lowest form, but you felt better about 
making it be that way.  I think [rewriting the fraction as] two-hundredths gives you a little 
more sense of it, yeah? 

As he redescribed their ideas, he also restated a claim that might serve as a claim for this potential 

argument, what we will call Argument 5.   

As the discussion continued, several groups offered explanations that also supported this 

claim.  As they did so, they provided several different sets of warrants for data that supported this 

more general claim—there are an infinite number of rational numbers between 1/11 and 1/10.  In the 

rest of this section, as we briefly outline the ensuing argument, we illustrate how this substantial 

argument for the density property was collectively established.   

After Teacher G explained her group’s ideas, Ms. Sneider, without prompting, stated that she 

could find other decimals (rational numbers) between these two numbers.  As she did so, she too 

provided supports for Argument 5.  We enter the discussion as she explains her ideas:   

Ms. Sneider:  Now I am just looking at the 0 in the 1000th place in .0909?  And now so the 
decimal between is .095 so it went from 0 to 5… You could also just have a 1 
there, or a 2 or 3 or 4. 
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 Group 1: Yes, there are an infinite number! 
Ms. Sneider: …91/1000, 92/1000, 93/1000, 96/1000, 97/1000 

Instructor:  Yes. 
Ms. Sneider: But it also helps me to think of whole numbers.  Say if I’m looking at the 9 and 

the 0 in the 100ths and 1000th s place, I think of 90, and another 90, then 91, 92, 
93… 

Group 1: Yes. 
Ms. Sneider: I think of that just for a split second to get…to solidify my thinking.  

Here Ms. Sneider built on Group 1’s claim by providing further support, in this case in the form of 

warrants, for Argument 5.  It is as if she indicated that not only did their explanation make sense, but 

also she could find other rational numbers that satisfied this claim by simply manipulating the 1000ths 

digit.  In fact, as her comment suggests, she could make a similar argument for finding other three-

digit decimals, in this case .091, .092, .093 and .094, that were between .0909 repeating and 0.10.   

Applying Krummuheur’s (1995) scheme, we can state this new data-conclusion pairing as 

follows:  There are an infinite number of rational numbers between 1/11 and 1/10 because.0909 

repeating < .091 < .095 and .0909 repeating < .092 < .095.  Ms. Sneider’s comments related to the 

fraction equivalents for 3-digit decimals between 1/11 and 1/10 are also data that support the 

conclusion.  In addition, we can place her comment about whole numbers inside the scheme.  Recall 

that she explained how she thought of these decimals in much of the same way that she thought about 

whole numbers.  These comments seem to support why she could find the next larger or smaller 

rational number.  For this reason, her second comment served as a warrant for the data-conclusion 

pairing.     

 We now return to the ensuing discussion as another group, Group 2 explained their method for 

finding numbers between two rational numbers.  As they presented their strategy, they used an open 

numberline to illustrate how they simplified a complex rational number.  Instructor, too, played an 
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important role during this discussion as he highlighted aspects of their thinking by referring to how 

one could use fraction strips to illustrate their strategy.  

Group 2’s method. Group 2 first explained that they converted 1/11 and 1/10 to the equivalent 

fractions, 10/110 and 11/110.  They then commented that they were not sure how to proceed once 

they had these equivalences.  We rejoin the discussion as Instructor, in response to Group 2’s 

comment, directed a question to the whole class about using fraction strips to represent 10/110 and 

11/110: 

Instructor: (To Group 2) Before you go any further there…(To the whole class) if you 
have one of these fraction strips, how many pieces would fold it up into now? 

Participants: 110. 
Instructor: 110 pieces.  Can you go from actually folding 8 or folding 12, to actually 

thinking in your mind [about making] 110 folds?  I’m not that good.  But I kind 
of think it’s as if I had folded 12 times.  It’s the same idea [here].  So it’s folded 
into 110 little pieces. 

As the discussion continued, Group 2 provided additional information about these equivalences. 

Group 2: 10 ½ /110 was the rational number we found, but this expression does not make 
sense in its current form. 

As the discussion continued, Group 2 then explained how they resolved this issue of working with 

complex rational numbers as they spoke with one of the visiting instructors, Instructor 2: 

Group 2:  Instructor 2 visited our group and discussed this issue with us.  He asked us to 
think about how we could represent 10 ½ /110 if we folded fraction strips. 
(Draws a number line and marked 10/110 and 11/110 on the number line and 
marks off the distance halfway between these two numbers to show where 10½ 
/110 was located on this number line.)  So we folded the paper again and found 
another name for 10 ½ /110—21/220! (Records that they multiplied both 
fractional parts by 2 to derive 21/220.)  

In the above discussion, as Group 2 explained how they found another rational number between 1/11 

and 1/10 using a common denominator strategy, they provided new pieces of data that supported the 

conclusion, 1/11 = 10/110, 1/10 = 11/110, and 10 ½ /110 = 21/220.  To convince the class that 10 ½ 

/110 was between the two given numbers, they used an open number line to draw the interval between 

1/11 and 1/10 and marked the halfway point in this interval where 10 ½ /110 was located.  As they did 
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so, they provided additional information about 10 ½ /110, precisely where it was located between 

these two rational numbers.  For this reason, their drawing served as a warrant because it provided 

information about the position of 10 1/2 /110—it was halfway between the two given numbers.  Their 

explanation for how they derived 21/220, by imagining folding the fraction strip, was also a warrant 

because it further explained why 21/220 (or 10 ½ /110) was halfway between 1/11 and 1/10.  

As the discussion continued, Instructor asked Group 2 to explain their answer, 21/220. 

Instructor:  Wait one second.  You folded it in half… 
Group 2: (Paraphrased.) We have 220 parts instead of 110 parts. 

Instructor:  220 pieces, right?  So you folded it one more time, every one of those 110 
pieces is gonna be in half.  And that would be how many? 

Here as Instructor prompted Group 2 to further explain their strategy, they gave additional 

information about the 220—by repeatedly halving (or making half-folds), they could partition the  

strips into 220 instead of 110 equal parts.  Instructor, too, offered additional information as he 

referred to folding (or imagining folding) the fraction strip.  As he did so, he explained what happened 

when one folded an interval that was already divided into 110 parts.  If each of these pieces were 

folded again, one would partition the unit interval into 220 pieces.  So at this point, he, too, offered 

additional information that supported the warrant that Group 2 had provided.  As such, both Group 2 

and Instructor provided backings for the warrants.   

 In retrospect, we can see how the argumentation established by Group 2 and Instructor 

provides additional data for the claim—there are an infinite number of rational numbers between 1/11 

and 1/10.  In this case, it one repeatedly makes half-folds using a fraction strip, one will find more and 

more numbers between 1/11 and 1/10.  Although neither Instructor nor the teachers explicitly 

indicated such, at this point in the discussion, the teachers along with Instructor have give several 

explanations for finding rational numbers between 1/11 and 1/10.  Put another way, they have 

provided additional data and warrants (Ms. Sneider) that provide support for the general claim.   
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The discussion continued as other groups offered different methods for how they found 

rational numbers between 1/11 and 1/10.  (See Figure 3, on the next page, for a general outline of the 

scheme for this argument.)  Here we have illustrated only the first two groups’ explanations to 

highlight the types of strategies that teachers developed.  At the same time we have provided an 

analysis using constructs associated with argumentation to illustrate how these arguments were 

collectively accomplished.  As we developed the argument, we did not imply that either the 

participants or Instructor intended to develop this more general argument for a specific case of the 

Real Numbers.  Instead, using our interpretive lens, we have illustrated how Instructor and the 

teachers collectively engaged in a discussion that we then recast as an ensuing argument.  As we have 

done so, we have highlighted the important but different roles that Instructor and the participants 

played as they engaged in this argumentation.   
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Figure 3. Schematic Representation for the Rational Number Argument 
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From Substantial to Analytic Arguments 

Although of the teachers’ strategies may not have been explicitly tied to the more general 

claim, it is certainly possible that some of the teachers made these types of connections.  

Retrospectively, it seems that it would have been feasible for Instructor to connect teachers’ 

explanations to the more general claim, if that had been his instructional intent.  As a result, we 

wonder, “How might Instructor have used the resulting substantial argumentation to facilitate a 

discussion so that teachers could verify the more general claim?”  In other words, “How might 

Instructor use the substantial argumentation to establish an analytic argument for the general claim?”  

Krummheuer (1995) indicated that a substantial argumentation becomes analytic when “the 

whole information of the conclusion is already included in the backing” (p. 244).  However, he also 

cautioned about using ethnography of argumentation to make comparisons with some analytic ideal. 

This is not what we are attempting to do.  Rather, we are merely observing that the analysis of the 

rational number and probability class discussion has allowed us to see something bigger than what 

happened during the lesson.  As a result, we wonder what Instructor might do if verifying the general 

claim were actually his instructional goal. 

 For example, Instructor might decide to build off of any one of the groups’ explanations (and 

strategies) to develop activities in which teachers explored proof making.  Because of space 

limitations, we will only highlight one hypothetical scenario.  Suppose, for instance, Instructor  posed 

a task using Group 2’s common denominator strategy during a subsequent lesson.  Let’s assume that 

he challenged teachers to use Group 2’s strategy to find other rational numbers between 1/11 and 

1/10.  After they work in small groups to find others, he could reconvene the teachers for a whole 

class discussion so that they could share the different numbers that they had found.  As they did so, he 

could record their ideas in the following table (see Table 1).  
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Table 1. Instructor makes a table of rational numbers that the teachers generated with each half-fold.  

Number of half-folds Easy to identify rational numbers between 

€ 

1
11  and 

€ 

1
10  

1 21/220 
2 41/440, 42/440, 43/440 
3 … 

 

After filling in the table, Instructor might ask participants if they saw a pattern in the table.  

The discussion might proceed as Instructor recorded the pattern in a new table (see Table 2).  

Table 2. Instructor makes a record to count the number of rational numbers between each interval.  
 

Number of half-folds Number of new rational numbers  
1 1 
2 2 
3 4 
4 8 
5 ? 

 

At this point, Instructor and the teachers might discuss how they could continue to insert new 

values into Table 2 indefinitely.  As such, Table 2 could serve as a record of infinitely many rational 

numbers that could be identified between 1/11 and 1/10.  So as they engaged in this type of 

discussion, they would make a proof for the general claim using this specific case.  Moreover, they 

may also have the opportunity to count the number of rational numbers and even make a 

generalization about the number of rational numbers for the nth row of the table.  In Krummheuer’s 

(1995) terms, Table 2 would thus serve as a backing that contained (and supported) warrants and the 

conclusion for Argument 5, that is, it would become analytic. 

Final Comments 

The purpose of our discussion has been to better understand one instructor’s role in supporting 

argumentation in a masters’ course for K-5 mathematics specialists.  As we have done so, we have 

also identified the kind of mathematical ideas and the possible learning opportunities that might have 
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surfaced during each lesson.  As we have illustrated, teachers participated in different but important 

ways as they engaged in these whole class discussions. Instructor was able to support teachers in 

different ways as they explained their ideas.  As he did so, he made it possible for teachers to 

contribute to the discussion when and however they could.  And when teachers offered more 

sophisticated ideas, he was able to capitalize on their contributions so that others might have 

opportunities to understand these ideas.  So Instructor’s role during the discussion was particularly 

important.  

From a methodological standpoint, we have illustrated how one might use ethnography of 

argumentation as an interpretive framework to understand the instructor’s role in supporting 

mathematical arguments in different ways.  In the first example, we used our lens to highlight the 

complex ways in which the instructor might coordinate two (or more) arguments almost seamlessly 

during the discussion.  In our second example, we highlight how substantial arguments might be used 

to provide opportunities for teachers to engage in formal proof making.  As we did so, we illustrated 

the utility of using ethnography of argumentation to help us better understand how participants can 

collectively establish ways to reason mathematically that is couched in their understandings of the 

ideas at hand.  

By carefully examining Instructor’s role, we develop a deeper appreciation for the range of 

decisions that instructors might make to support unfolding mathematical arguments.  Instructor 

listened to and supported the teachers’ ideas.  At the same time he aligned their ideas with those that 

fit with the mathematical practices of the mathematical community at large.  By carefully balancing 

these sometimes competing agendas (Ball, 1993), he and the teachers were able to contribute in part 

to the rich ideas and the possible learning opportunities that may have surfaced during the lesson. 
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