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Abstract 
 

The purpose of this study is to test three proposed conceptual frameworks of how 
students come to understand informal (dynamic) and formal (static) definitions of limit: one 
based on embodied cognition (Lakoff & Núñez, 2001), one based on APOS theory (Cottrill et 
al., 1996), and one created by the researcher. Predictions are made of how students would 
respond, based on each conceptual framework, to instructional tasks posed in a first-semester 
college calculus discussion section. These predictions are then compared to the responses of 
eight students during a sequence of interviews spanning the course of the semester. The results 
support the conceptual framework proposed by the researcher, with specific responses suggesting 
a further refinement, explaining how students come to bridge dynamic and static conceptions of 
limit. 
 

Background on Limits: Conceptions and Research Trajectory 
 

The mathematical definition of limit has gone through various refinements throughout 
history (Kleiner, 2001), but its current form, for two-dimensional limits, requires the 
coordination of two small intervals. One interval’s radius, signified by the Greek letter delta (

� 

δ), 
surrounds the input or x-value, while the second interval’s radius, represented by the Greek letter 
epsilon (

� 

ε), surrounds the output or the result of the function applied to the x-value. The 
coordination of the two intervals is accomplished through the logical quantification portion of 
the definition: for any epsilon, there exists a delta, such that if the input value is within the delta 
interval, then the output value must be within the epsilon interval. These intervals are symbolized 
through the distance interpretation of the absolute value, while the logical quantification uses 
common logical symbols for “for any,” “there exists,” and the “if …, then …” structure. 

Limits can be mathematically conceptualized in two different ways, regardless of how a 
student could come to understand them: either in a dynamic way or in a static way (Cornu, 
1992). The dynamic conception is a motion-based idea of limit, frequently expressed using the 
word “approaching” (or similar words describing movement), or graphically demonstrated by 
showing a point moving along a graph towards another point. This was also the first way in 
which limits were historically conceived by Newton and Leibniz (Kleiner, 2001). Students 
thinking in terms of a dynamic conception would describe, through words and gestures, a limit as 
a point traveling along a curve. 

The static conception of limit is a function-based idea of limit which coordinates static 
intervals. This conception matches the formal definition devised by Cauchy and Weierstrass 
(Kleiner, 2001), and can also be thought of as a way to precisely describe closeness. Students 
thinking in terms of a static conception would describe, again through words and gestures, limits 
as coordinated intervals. In summary, the dynamic conception emphasizes motion in describing 
limits, while the static conception is devoid of motion and instead emphasizes closeness. 



The initial wave of research involving students’ conceptions of limit focused on 
misconceptions (Bezuidenhout, 2001; Davis & Vinner, 1986; Tall & Vinner, 1981). This work 
has evolved into research, or simply proposals, of how students might build appropriate 
conceptions of limit (Lakoff & Núñez, 2001; Williams, 1991, 2001). However, there has only 
been one study that attempts to link a conceptual framework with classroom instruction tailored 
to that framework (Cottrill et al., 1996), and that study was unable to successfully capture 
evidence of students conceptualizing the formal definition of limit. 
 
Research Questions 

This corpus of research presents a chicken-and-egg type problem. Building a 
representative conceptual framework of limit depends upon witnessing students successfully 
conceptualizing limits. Watching students learn about limits, particularly the formal definition, 
rests upon appropriate instructional strategies and curriculum. But these pedagogical strategies 
rest upon an accurate conceptual framework of limit. Thus, this study investigates three 
interdependent research questions concerning a concept of limit that includes both informal 
(dynamic) and formal (static) components: 

1) What concept(s) of limit do the students in the case study have, and how can this be 
determined through their oral and written communication collected during the course? 

2) What conceptual framework successfully describes how students, in general, 
construct a concept of limit? 

3) What are the characteristics of an instructional sequence that successfully enables 
students to build a concept of limit? 

 
Three Conceptual Frameworks of Limit 

 
This study compared three conceptual frameworks: the one proposed by Lakoff & Núñez 

(2001) based on embodied cognition, the one proposed by Cottrill et al. (1996) based on APOS 
theory, and one created by the researcher. 
 
Conceptual Framework of Limits Based on Embodied Cognition 

Lakoff and Núñez introduce limits by first discussing one-dimensional limits: infinite 
sequences along a number line that approach a particular number (the limit). To demonstrate the 
process of “approaching” a limit, and how this utilizes the Basic Metaphor of Infinity (BMI), 
they give an example sequence 

� 

xn{ } = n n +1( ). As n increases, the value 

� 

xn  gets closer and 
closer to 1 (Lakoff and Núñez , 2001, p. 187). The authors choose to express this notion of 
“approaching” by utilizing the notation of the formal definition of limits in terms of sequences: 
the sequence 

� 

xn{ } has L as a limit if, for each positive number 

� 

ε, there is a positive integer 

� 

n0  
with the property that 

� 

xn − L < ε  for all 

� 

n ≥ n0 (pp. 189-90). Unfortunately, the formal definition 
cannot use the BMI directly, because there is nothing being iterated. In order to bridge the gap, 
they decide to express “approaching” in terms of nested sets, whose iterative quality can be 
directly used by the BMI: 

� 

0 < r < xn − L , where 

� 

Rn  is the set of all values r bounded between 
zero and 

� 

xn − L . As 

� 

xn − L  gets smaller, the range of values in 

� 

Rn  gets smaller. 
This explanation of how we supposedly understand limits feels like an overly complex 

mathematization of the concept. Why do they do this? Since limits utilize the concept of infinity, 
Lakoff and Núñez are required to use their Basic Metaphor of Infinity to explain the concept of 
limits. Seeing as the standard formal definition of sequences doesn’t use an indefinite iterate 



process, they need to formulate a new definition which does, hence nested sets. Thus nested sets 
can be plugged into the BMI as an indefinite iterative process, which in turn can be used to 
explain our conception of limit, regardless of how complicated or unnatural this conception 
might seem. 

In their attempt to mathematize the concept of “approaching”, they are completely 
ignoring the natural, physical-ness of approaching. What Lakoff and Núñez are trying to do is 
characterize the way in which the distance between you and the limit becomes smaller as you 
approach the limit. However, they use a complicated mathematical concept (nested sets) encoded 
in a complicated mathematical notation (absolute value), when a description of “approaching” as 
simply going towards something would suffice. This notion of “approaching” more closely 
resembles one of the four grounding metaphors (Lakoff & Núñez, 2001), arithmetic as motion 
along a path. Instead, they use the distance interpretation of absolute value as a symbolic bridge 
between limits and the grounding metaphor “arithmetic as motion along a path” for the purposes 
of measuring distances and the linking metaphor “numbers are points on a line”. 

In fact, thinking of “approaching” in this simple, physical way may even help students 
understand one very important piece of the formal limit concept. The same linguistic distinction 
between “jumping” and “swimming” can be made here: “approaching” is an imperfective aspect, 
because it does not inherently mean that you arrive at what you are approaching. This is actually 
helpful because it matches the definition of limit (in that a function may not exist at the limit). 
You may never reach the limit, because it may not exist, even though you are approaching it. 
Reaching a limit is a consequence of the BMI – in order to have a limit, you must “reach” it at 
the infinite step (at least potentially, if not actually). While it may be important sometimes to 
know what happens at the limit (for example, when considering continuity), this is not required 
when finding the limit itself. 

While Lakoff and Núñez overcomplicate matters by using nested sets, they completely 
oversimplify the ways in which limits can be approached. Recall the example sequence 

� 

xn{ } = n n +1( ). Notice that this example is strictly monotonic, in that it creeps up on the limit in 
one direction, always getting closer and closer to 1, never farther away. This matches the 
smooth, motion based “approaching” conception of limit. Taking smaller and smaller steps 
towards a wall would be a physical example of this. 

However, sequences (and functions) can approach limits in far more complicated ways 
than simply monotonically. The authors make an attempt to fix this by introducing sequences 
which converge indirectly but still have a limit. For example, they give a “teaser sequence” 3/6, 
4/6, 5/6, 9/12, 10/12, 11/12, 15/18, 16/18, 17/18, 21/24 … which bobs up and down while 
generally trending towards 1 (Lakoff & Núñez, 2001, pp. 192-3). This improves their coverage 
of possible types of limit convergence, while stretching the metaphorical interpretation of limits 
as “approaching”. This would correspond to a physical example where, for each step taken 
towards a wall, a step a fraction of that size is taken going away from the wall (remembering that 
the steps towards the wall are getting smaller and smaller). 

But Lakoff and Núñez ignore functions (even ones as simple as 

� 

xn{ } = −1( )n n ) which 
approach a number from both sides, rather than just one side. Remember that the nested sets they 
describe are defined as the sets of the values r can take when 

� 

0 < r < xn − L . But in all the 
examples presented, simply writing 

� 

0 < r < L − xn  would suffice, since all instances of 

� 

xn  are 
less than L. It seems that they use 

� 

0 < r < xn − L  because using the absolute value is necessary in 
the formal definition. If their definition did not cover limits which approach from both sides, 



they would be defining “approaching” in a lopsided way which was fundamentally different 
from the formal definition. 

 

 
 

Figure 1. Linking the informal, motion-based conception of limit with the formal definition 
 
Lakoff and Núñez are in a bit of a jam (Figure 1). They have chosen to pick a middle 

ground of one-dimensional limits, hoping to connect it to both the simplicity of the 
“approaching”, motion-based grounding metaphor, and to the complexity of the formal 
definition. However, their examples are poorly connected to either extreme: a simple, motion-
based conception of limit would not need to be formalized through nested sets, while their 
examples are not complex enough to warrant the use of the absolute value necessary in the 
formal definition. And in all of this, by mixing a motion-based definition with an static-based 
definition, Lakoff and Núñez cloud the real issue: how do people move from the intuitive, 
grounded, dynamic conception of limit to the formal, static definition? It seems as though they 
are implying that the dynamic, informal conception of limit is the same as the static, formal 
definition of limit, since their examples are trying to connect the two. 
 
Conceptual Framework of Limits Based on APOS 

Unlike the embodied cognition approach, whose proponents have thus far glossed over 
the connection between the dynamic and static conceptions, APOS may be able to clarify why 
limits are so conceptually difficult for students. A process view of a limit (“approaching”) has 
been found to precede a static view of a limit (the formal definition) both historically (Grabiner, 
1992a, 1992b) and in research of student understanding. If students move along this trajectory, 
which view is more problematic for students? Some believe that the process view is more natural 
for students to understand and the transition from process to the static view is difficult. Some go 
so far as to suggest that the process view should be avoided as to not lock students into a 
conceptual hurdle that they otherwise would not have to leap (Tall & Vinner, 1981; Williams, 
1991). On the other hand, some say that the process view is not easy for students to understand, 



primarily because of unavoidable misconceptions stages of how limits work (Davis & Vinner, 
1986). Instead of avoiding the process view, students need to engage it and reconcile certain 
epistemological obstacles (Brousseau, 1997; Sierpinska, 1987) before they can move on to the 
formal definition. 

Cottrill et al. (1996) agree with the latter view and argue that the process view is 
challenging for students because of the complexity of the process, which is not simply one 
process, but a coordination of two processes (which makes it a schema). They propose a genetic 
decomposition of how students can first learn the dynamic conception of limit, which then can be 
transformed into a static conception of limit. Students initially evaluate a function at a few 
points, successively closer to limit, to see what the function “approaches”. (In the second pass of 
building the genetic decomposition, a step before this one was added, where students only 
evaluate a function at a single point, close to or perhaps equal to a. Here, the dynamic conception 
of “approaching” is replaced by a static conception of “being in the vicinity of”. Note that this 
does not match the advanced static conception of the formal definition.) Next, students construct 
a schema which interiorizes and coordinates two actions: the action of selecting x coordinates 
closer and closer to a, and the corresponding action of selecting y coordinates closer and closer 
to L. Coordination of these two actions is facilitated by the function of which the student is 
taking the limit. This two-process schema is then encapsulated into an object when students start 
performing actions on the limit concept, such as when rules governing the limits of combinations 
of functions are considered. 

This is not where the genetic decomposition ends, however, because thus far a student’s 
conception of limit is grounded in the “approaching” metaphor, and thus needs to be 
reformulated into a “static” form resembling the formal definition. Thus, students must go back 
and reconstruct the interiorization and coordination step in terms of intervals and inequalities. 
After this, they must apply a quantification schema which matches the internal logic of the 
formal definition. Finally, students then apply this new conception to specific instances, either 
limit proofs which require the formal definition or other concepts which need to be built directly 
from the formal definition, which in turn encapsulates the limit concept into a new object. 

To summarize, here is a list of the steps of their genetic decomposition: 
 

1) Students evaluate a function at a single point to find the limit. 
2) Students evaluate a function at several points which are successively closer to a. 
3) Interiorization of two processes (x approaching a and y approaching L) forms a 

coordinated schema. 
4) Schema is encapsulated into an object. 
5) Reconstruction of processes in terms of ranges (inequalities and absolute values). 
6) Application of quantification schema results in formal definition. 
7) Successful usage of formal definition. 

 
This genetic decomposition continues to advance the idea that a dynamic, process-

oriented conception of limit must precede a static, formal conception of limit. Since the primary 
focus of the genetic decomposition proposed by Cottrill and his colleagues is the formation of 
the dynamic conception, many of the classroom activities of their study, based on the genetic 
decomposition, are at the dynamic view level. As a result, much of the evidence from their study 
is also at the dynamic view level. Of course, this means that less emphasis is put in the genetic 
decomposition, and as a result, the classroom activities, on the reconceptualization stage. The 



authors then conclude that students have trouble thinking about the static view, when it is most 
likely their own research priorities and genetic decomposition (which influenced the pedagogy, 
which in turn influenced student thinking) are responsible. 

Let us also think about the trajectory of this genetic decomposition from the students 
point of view. It is no small undertaking for a student to form a limit problem-solving heuristic 
while at the same time abstracting what limits are in general from that heuristic. So when this 
entire conceptual structure is finally formed and is robust enough to solve problems and 
understand what they mean, it should not be surprising that a student may be reluctant to give up 
that schema and reconceptualize it in terms of a new idea, “ranges” instead of “approaching”. 
The schema works, why mess with it? The problem here is that the schema doesn’t actually 
work, but most calculus students are never presented with sufficient evidence in the form of 
counterexamples to show that, under certain circumstances, their definition of limit is not 
sufficient. 

The reconceptualization of the limit concept is necessary under APOS theory (moving 
from a dynamic to a static conception) in order to build more complex mathematical concepts, 
just as it is necessary under embodied cognition and mathematics in general (moving from an 
“intuitive” definition of limit to a formal one). However, I would argue that, to the student, this 
transition would appear to be unwarranted. The epsilon-delta windows activity in the Cottrill 
study, designed to enable students to complete the reconceptualization stage, does not seem up to 
the task of convincing students that there is something wrong with their schema and that it needs 
to undergo an accommodation step in order to explain this new exercise. 
 
A New Conceptual Framework of Limits 

In analyzing both of the preceding conceptual frameworks for limits, a new theory 
emerged of how students should and should not be taught limits, in order to match their expected 
learning trajectory. First, it seems clear that the dynamic conception of limit needs to precede the 
static conception. The dynamic conception is the more natural, grounded conception, and should 
be introduced as such, by using the “approaching” metaphor. Once students are familiar with the 
dynamic conception, they should then be presented the static conception in order to motivate the 
formal definition. This should be accompanied by some sort of motivation to move beyond the 
dynamic conception. This could take the form of a transition from dynamic to static language 
surrounding limit, or complex convergence problems that cannot be solved with the simple 
motion-based “approaching” conception. In any case, a new metaphor underpinning the static 
conception of “closeness” needs to be emphasized, separate from the original “approaching” 
metaphor. The non-intuitive static conception needs to be as strongly supported as the intuitive 
dynamic conception is for students. Ideally, through some way of grounding the static 
conception to experience (and not just syntax), both conceptions would become equally intuitive. 
At this point, students would be ready to bridge the two conceptions to form a robust conception 
of limit that encompasses both the dynamic and static conceptions. 

Each theory also had a few suggestions for instruction. APOS suggests using holistic 
spray, foreshadowing upcoming topics, giving proper motivation to ideas, and generally giving 
adequate time for reflective abstraction. Here, this would mean asking difficult questions which 
prompt students to think about each conception of limit. Embodied cognition implies that we 
need to call specific attention to metaphorical mappings when used. Since each conception of 
limit is motivated by a different conceptual metaphor, these metaphorical mappings should be 
made explicit for students though class discussion. 



 
Method 

 
Materials and Setting 

This study was conducted during the 2002 Fall Semester at a large, Midwestern public 
university. An instructional sequence was devised to first introduce students in a discussion 
section (attached to a large lecture) to the informal, dynamic conception of limit. Then necessary 
background concepts pertaining to the formal definition (such as the distance conception of 
absolute value) were introduced, along with a conscious change of language from dynamic 
(words like “approaching”) to static (words like “closeness”). The final activity in the sequence 
was a special problem (the bolt manufacturing problem) designed to introduce the logical 
structure of the formal definition: 

 
Suppose we run a bolt manufacturing company. We have lots and lots of 

contracts, with lots and lots of different companies. As you might expect, 
everybody’s needs are a little different. Bolts that we provide for home 
construction have to be of good quality, whereas bolts that we provide for NASA 
to be used on the space shuttle have to be of exceptional quality. For the sake of 
simplicity, let’s look at only one variable that goes into the quality of our bolts: 
length. Bolts for home construction that are supposed to be, say, four inches long 
can be a little more or a little less than four inches. But bolts for the space shuttle 
that are supposed to be four inches long have to be within a much smaller target 
range in order to be acceptable. The length of the bolt depends directly on how 
much raw material we put into the bolt making machine (assuming that the 
diameter of the bolts for the home and for NASA are the same), according to 
some function.  

How do we create bolts that we know will be of a length that falls within 
our target range? 

 
The answer to this question is that, for any bolt length tolerance (or output range), there is 

a raw materials tolerance (or input range), and if the amount of raw materials we put into the 
machine falls within the raw materials tolerance, then we will get a bolt with a length that falls 
within our bolt length tolerance. This explanation matches the quantification schema of the 
formal definition of limit (Table 1). 

This story problem was meant to be a way to ground, in the sense of embodied 
cognition, the formal definition, before the students were introduced to the actual notation 
of the formal definition. However, this was not supposed to be a grounding metaphor for 
the formal definition (in terms of actual physical things, like factories or bolts), but rather 
was to serve as a linking metaphor to a particular piece of the function concept, 
specifically the input-output relationship of functions. 

 
Participants and Protocol 

Eight students from the discussion section, taught by the researcher, participated in the 
experiment. There were five male students and three female students; one African-American 
female and one Indian male, all others were Caucasian. Seven of the eight were first year 
students, the eighth was a second year student who was required to take college algebra before 



calculus, based on placement test scores. By the end of the fall semester, three students had 
declared their intent to major in an engineering program, two were majoring in the sciences, and 
three were majoring in the arts. Two students received A’s at the end of the semester, one 
received a B, four received BC’s, and one received an F. The average grade of these eight 
students was a BC, which roughly matched the averages of the discussion section as a whole and 
the lecture. 
 

Source Domain 
Bolt Problem 

 Target Domain 
Formal Definition of Limit 

For any bolt length 
tolerance → 

� 

∀ε > 0  

There exists a raw materials 
tolerance → 

� 

∃δ > 0  

Such that → Such that 

If …, then … → … → … 

the amount of raw materials 
put into the machine is 

within the raw materials 
tolerance 

→ 

� 

0 < x − a < δ  

the length of the bolt the 
machine produces will be 

within the bolt length 
tolerance 

→ 

� 

f (x) − L < ε  

 
Table 1. The bolt problem is the formal definition of limit 

 
The experiment consisted of a sequence of interviews throughout the semester (one 

interview before limit instruction, one just after limit instruction, and two more interviews after 
derivative and integral instruction respectively). In these interviews, the students were asked to 
explain their conception of limit, and then asked to explain how the bolt manufacturing problem 
related to the formal definition of limit. These interviews were transcribed and coded for 
instances of dynamic and static language in order to determine the presence and strength of their 
dynamic and static conceptions of limit. Interviews for the same student were examined for 
changes over time in their conceptual structure of limit, paying particular attention to the 
presence of the static conception and its relationship to the dynamic conception. 

In the first interview, it was expected that many students would only know of limits 
through a dynamic conception. This was coded as “Stage A.” Once students had gone through 
the designed limit curriculum and learned of the static conception, it was expected that they 
would (at least initially) treat the two conceptions separately and would not be able to describe a 
relationship between them. This was labeled “Stage B,” as it represented a more advanced 
overall conception of limit, one that included both the dynamic and static conceptions. It was 
then expected that a few students would exhibit signs of a merged conception of limit. These 



would be labeled as “Stage C” (and this coding would be further refined as a result of the 
interview data, as elaborated below). 
 

Results 
 

During the first interview, students described limits exclusively using dynamic language 
(“approaching”, “gets close to”), if they knew what limits were at all. Jason’s first interview 
(9/5/02) was coded as Stage A, because he only describes the limit using dynamic language: 
 
4. J: A limit is, um, I ‘spose it depends on how you look at it a little bit, but, it’s 

when uhh a number approaches another number, or a umm, uh an equation can 
have a limit as um, um like a series rather… 
 

In Harriet’s first interview (9/6/02), she only mentions limits using dynamic language once: 
 
3. T: Ok, so what’s a limit? 
4. H: I know how to write it. 
5. T: Ok. Why don’t you, here, why don’t you write it, at the bottom of that sheet. 
6. H: It’s like, you do one of these, like limit as x approaches zer…, zero, and the 

there’s like a function. 
 
Notice that while she uses the word “approaches” (line 6), she is really just vocalizing the limit 
symbol. This usage of dynamic language was also coded as Stage A. 

By the second interview, all of the students could, with moderate success, explain the 
formal definition in the context of the bolt problem. Because of this, we can investigate the 
relationship between students’ dynamic and static conceptions. Five students described the bolt 
problem using static language (“is close to”), while acknowledging that the problem had to do 
with limits, which they continued to describe separately using dynamic language. Jason uses 
both dynamic and static language in his second interview (9/16/02). However, his language use 
switches between the two, using only one conception at a time (Stage B). He starts with dynamic 
language to describe limits: 
 
4. J: A limit is, um, the point which a function approaches at a given value… 
 
When asked to provide the formal definition, he can’t remember all the details, but he uses static 
language to describe the logical quantification: 
 
16. J: … it’s when, you have an epsilon, uh, and you can have an equivalent delta, … 
17. T: Ok. 
18. J: … and they’re, and they have um, a relationship between, uh, how close they 

are, like, for every epsilon within a certain range, you get a delta within a certain 
range. 

 
He explains, using static language, how the epsilon determines what the delta will be (“how 
close they are” and “within a certain range,” line 18). He uses a similar explanation, and similar 
static language, for the bolt problem: 



 
26. J: Um, when you set a range for the um, length, you get a range for the material.  
27. T: Ok. 
28. J: And then you’ll know how closely you have to measure. 
 
However, when asked what the bolt problem has to do with limits, he switches back to dynamic 
language: 
 
32. J: Yeah. Um, as you, as the um, hmm, I guess, I don’t know exactly what you 

want, but, as the um, as you get closer and closer to the target material, you get 
closer and closer to the target length. 

 
Here, Jason has switched back to a dynamic conception, because he is no longer discussing a 
range, but rather a “target” (line 32), and he is no longer using static language, but rather 
dynamic language (“closer and closer,” line 32). While this may be laying the groundwork for a 
merged conception in the future, right now his two conceptions are separate, based on his 
language use. 

The other three students in the second interview had already begun connecting their 
dynamic and static conceptions of limit. The most typical example of a student connecting their 
dynamic and static conceptions occurred during Lisa’s third interview (10/29/02). Lisa is still 
having difficulty stating the formal definition of limit. But when asked to try to explain the 
definition, she draws the picture in Figure 2 and says: 

 
30. L: I don’t, not really, ‘cause I can’t really remember. But um, like, so you’re 

like going towards a point on a graph…  
31. T: Mmm-hmm. 
32. L: … like this is [unintelligible]. And then, you have like here, here, so this is 

your um, this is your, uhh, delta, and this is your other delta… 
33. T: Mmm-hmm. 
34. L: … and as you’re like getting closer this way … 
35. T: Ok. 
36. L: … then you’re getting closer that way, I think. 
37. T: Ok. 

 
Here, she is drawing (Figure 2) the two intervals, which she calls “delta” and “your other delta” 
(line 32), one on each axis. While this is part of the formal definition, what she does next is not. 
She adds arrowheads onto the intervals, pointing inward, in order to signify that these intervals 
will be put into motion. She then explains “as you’re like getting closer this way, then you’re 
getting closer that way,” (lines 34 and 36), showing how the motion of the interval along the x-
direction is coupled with motion of the interval along the y-direction.  
 



 
 

Figure 2. Lisa’s Diagram Showing a Stage C Conception of Formal Definition 
 

This suggests a refinement of the original conceptual framework proposed by the 
researcher (Table 2). Instead of simply lumping together the two conceptions, students preferred 
to connect them in one direction by initially embedding the static conception in the dynamic one 
(Stage C). In other words, students’ dominant conception of limit was the dynamic conception, 
as they used the language of motion in order to explain why the static conception made sense. 

The final stage (Stage D, an “expert” stage) reversed this hierarchy, making the static 
conception the dominant limit conception. In Steven’s fourth interview (12/6/02), when asked 
about the bolt problem, his explanation uses solely static language, with the exception of the 
word “approaches” (line 39) when vocalizing the limit symbol: 
 
37. S: To go back to that thing, I mean, what they’re saying is that, um like if epsilon 

is the range, you know, greater than, you know, um, less than or greater than the 
value of y, then you can always find a delta which is always in the range … 

38. T: Mmm-hmm. 
39. S: … um, I don’t know how to really put that in words but, [pause] like you can, 

you can get an accur…, as accurate an answer as you want, because within every 
epsilon you can always find a delta, umm [pause], yeah, so if you wanted, like, 
you know, a certain function approaches, umm, approaches zero, let’s say, and 
um, uh, you had like epsilon like you know, infinitely small, you can always find 
a delta which is still within that range, so then zero and then plus or minus that 
epsilon. 

 
 



 
Overall conceptual structure Student language use 

 

Stage A: dynamic conception only 
Dynamic language only 

 

Stage B: dynamic and static conceptions separate 
Dynamic language dominant, 
separate from static language 

 

Stage C: dynamic encompasses static conception 
Dynamic language dominant but integrated 

with static language 

 

Stage D: static encompasses dynamic conception 
Static language dominant but integrated 

with dynamic language 

 
Table 2. Proposed Conceptual Framework for Limits 

 
While he is still a bit ambiguous about the mapping of epsilon and delta (saying that delta “is 
always in the [epsilon] range,” line 37), the logical quantification is correct. When asked how 
this relates to limits, Steven says: 
 
44. S: Yeah, just using like delta and epsilon … 
45. T: Ok. 
46. S: … you could use that here, because, um [pause], so, ok, um, epsilon would be, 

wait, the amount of material would be like the independent variable and the length 
of the bolt would be the dependent variable. 

47. T: Ok. 
48. S: So, depending on how, on how, like what you want for the length of the bolt, 

uh you, like whatever the, whatever error you could have, whatever you’re, you 
know, your tolerance or whatever the error is possible, you could, uhh, find a 
delta within the range. Suppose epsilon is your, you know, your error … 

49. T: Mmm-hmm. 
50. S: … your margin of error, then you could find a delta within that [pause], 

knowing um, knowing the function, you know, whatever… 
51. T: Ok. 
52. S: … that you have to make the bolts from the material … 
 



Thus, Steven has successfully identified how the static conception can be applied to the bolt 
problem. He identified which value belongs with which range symbol (line 46), and explained 
how the “error” or “tolerance” of each variable relates to the delta and epsilon ranges (line 48). 
All of this is accomplished by strictly adhering to static language, clearly the dominant 
conception of limit for him. 

 
Student Interview 1 Interview 2 Interview 3 Interview 4 

Steven A B D D 

Dave A B C D 

Lisa A B C C 

Jason A C C C 

Erica A C C C 

Harriet A C C C 

Andrew A B C C 

Daniel A B B A 
 

Table 2. Stage coding for each limit interview 
 

All of the students started at Stage A in their first interview. By the end of the interviews, 
all but one student had advanced to at least Stage C, with two students ending up at Stage D. 
Seven out of the eight students moved beyond an extremely limited conception of limit, mostly 
based on the dynamic conception of a boundary, that they had at the beginning of the interview 
process. Six of these students advanced to a conception of limit that incorporated both dynamic 
and static pieces in a way which had not been predicted prior to the study, that of putting into 
motion the ranges used in the formal definition. In this way, these students were able to connect 
the intuitive dynamic conception with the formal definition. Two students went even further, 
indicating through their use of language that they predominantly thought of limits through the 
static conception. 

 
Discussion 

 
Going into the study, it was expected that treating the dynamic and static conception of 

limit synonymously (Lakoff & Núñez, 2001) would be shown to be incorrect. During all but the 
first set of interviews (because students at that point did not have a static conception), students 
treated the two conceptions differently, and spoke of them separately by segregating their 
dynamic and static language. Therefore, as students described limits with two sets of 
terminologies, the dynamic and static conceptions of limit cannot be one and the same. 

The genetic decomposition proposed by Cottrill et al. (1996) predicts that the dynamic 
conception would be frozen into place in order for students to build the static conception from 
the pieces of the dynamic one. However, the exact opposite was witnessed during the interviews: 
students took the static conception and put it into motion (by changing the sizes of the delta and 
epsilon intervals) to connect it to the dynamic conception. 



In addition, Cottrill and his colleagues focused much of the genetic decomposition on the 
dynamic conception and not so much on the static one. They believed that students will have 
more difficulty constructing the initial, dynamic conception of limit and have less difficulty 
reconstructing the static conception of limit from the dynamic one. This difference should also 
be discernable from the interview data collected. If students have difficulty forming the dynamic 
conception of limit, but are then able to more easily transform that conception into a dynamic 
one, they are conceptualizing limit as APOS predicts. Instead, we saw that students more easily 
formed the dynamic conception of limit and had more difficulty understanding the static 
conception (which, coincidentally, is what also happened in the Cottrill study). While students’ 
base, dynamic conceptions were very weak in their first interviews (Stage A), it was clear in later 
interviews that they were more likely to express limits by way of the dynamic conception (with 
the exception of those students who made it to Stage D), using it to help them bridge the gap 
between the dynamic and static conceptions. 

Thus, the proposed model appears to be the best way to explain this data, especially once 
the new refinements (Stages C and D) are added. One might say that, because the curriculum was 
based on this model, it was natural for the data to come out this way. However, if the model had 
been incorrect, and students had thought in terms of the models derived from APOS or embodied 
cognition, students should have done poorly on the interview questions, as the mismatched 
curriculum would have worked against their construction of an overall conception of limit. 

These results suggest a breakthrough for future limit conception research, not the least of 
which is having overcome the chicken-and-egg stalemate of previous research by way of an 
innovative curriculum. The instructional sequence instantiated during the study was successful in 
providing students the necessary framework to build a static conception of limit. In observing 
students as they formed this conception, a common trajectory of how students come to negotiate 
the dynamic and static conceptions of limit into one, overall conception was also observed. 
Future research will need to confirm these results and explore in more detail this trajectory. 
Other problems that need to be addressed include how supporting concepts (such as absolute 
value) enable a conception of limit, whether or not Stage D is truly an expert stage shared by 
mathematicians, how the norms of the constructivist-based discussion section affected the results 
(as opposed to a traditional lecture-based class), and how the formal definition of limit should fit 
into an undergraduate calculus course sequence. Finally, one study (Oehrtman, 2009) has 
suggested how the dynamic conception can be refined into different metaphors, suggesting future 
research using the bolt problem to determine whether particular metaphors are more prevalent 
when linking the dynamic and static conceptions of limit. In Steven’s fourth interview, he not 
only mentions static and dynamic language, but also the notions of “infinitely small” and 
“accuracy”, all of which could be more carefully parsed in order to further refine the base 
metaphors of the dynamic and static conceptions. 
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