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The purpose of this paper is to explore skepticism in terms of its role in the emergence of the 
practice of proving. In particular, drawing on data from a series of teaching experiments and 
clinical interviews, three distinct paths to the practice of skepticism in mathematics are 
described: (1) cultural, non-experiential; (2) experiential; and (3) quasi-experiential. Analyses 
of students’ responses are used to illustrate how two pathways, the experiential and quasi-
experiential pathway, support the emergence of the practice of proving. 
 
Introduction 
 Looking back at the National Council of Teachers of Mathematics (NCTM, 2000) 
standards for reasoning and proof, one finds the following statements: 
• the habit of asking why is essential for students to develop sound mathematical reasoning; 
• through the classroom environments they create, mathematics teachers should convey the 

importance of knowing the reasons for mathematical patterns and truths; 
• reasoning and proof are not special activities reserved for specials times or special topics in 

the curriculum but should be a natural, ongoing part of classroom discussions, no matter what 
topic is being studied. 

These statements are illustrative of a perspective in which rich mathematical understandings are 
viewed as resulting from student inquiry and justification. While few would argue with the idea 
that such understandings can arise from inquiry and justification – from knowing not only what 
but why – the implications of this perspective for classroom activity are far from clear. For 
instance, in her discussion of the emergence of proof in the classroom, Mariotti (2006) has 
argued, “studies exploring the potential of particular contexts are needed in order to shed light on 
the general characteristics required” (p.192). Similarly, Hoyles, in her discussion of the 
complexities of learning to prove deductively, argues, “We know now even more about potential 
obstacles to ‘learning the mathematical game’; but need more systematic work on progress over 
time” (Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002, pg. 914).ii These comments illustrate 
that there is a need within the research community to understand the milieu within which proof 
emerges and the characteristics of classrooms where ‘learning the mathematical game’ takes the 
form of a genuine mathematical endeavor as opposed to a mathematical farce.iii The purpose of 
this contributed research report is to discuss three pathways to the development of skepticism: 
(1) cultural, non-experiential; (2) experiential; and (3) quasi-experiential. In so doing, I will 
illustrate how two pathways, the experiential and quasi-experiential pathway, support the 
emergence of the practice of proving.  
Background 
 Many have noted that students and teachers experience difficulties with mathematical 
proof (cf. Hoyles, 1997; Moore, 1994; Knuth, 2002; Harel & Sowder, 1998). Among other 
reasons, it can be argued that these difficulties arise from non-negotiated shifts in what 
constitutes a valid solution to a mathematical task. Prior to students’ introduction to proof, 
computed results are often considered sufficient – it is the ends not the means that are valued. 
When asked for a mathematical proof, however, students are often provided with the very 
statement to be proved. Given the end, they are now asked to construct the means. The rules that 
determine what constitute valid means are often implicit and difficult for students to identify. 
Moreover, it can be argued that to adopt the new rules one must engage in a shift in one’s 
epistemological stance towards mathematics.  
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 Brousseau (1997), building on the work of Chevallard, argues that knowledge undergoes 
a didactical transposition. This transposition takes results from scientific activity and translates 
these results into ‘teachable’ knowledge. Each transposition poses the risk of distancing the 
knowledge to be taught from the very situations that supported its manifestation and meaning – 
“(decontextualization) has as a price the loss of meaning and performance at the time of 
teaching” (Brousseau, 1997, p. 262). Given the substantial research indicating students’ 
difficulties with proof (cf. Harel & Sowder, 1998), we must be concerned with:  

• Students’ understandings of the meaning and purpose of the practice of proving that may 
result from the transpositions that have occurred and, therefore, the distance between 
commonly used didactical situations and the situations that fostered the manifestation of 
the practice of proving;  

• Researchers’ understandings of the complexities involved with shifting one’s 
epistemological stance towards mathematics and the potential lack of appropriate 
instructional materials and pedagogical approaches. 

Defining Skepticism  
 Zaslavsky (2005) has argued that uncertainty occurs when a group of learners 
“contemplates over a certain conjecture, without a sense of certitude whether it is valid or not 
and why it is or is not.” Uncertainty then is doubt, without a basis of belief – without that which 
conveys an intuitive acceptance, a feeling ‘it must be so’ (Fischbein, 1982). Skepticism, on the 
other hand occurs when a conjecture is viewed as uncertain or unknown, despite the existence of 
a basis of belief. Skepticism can occur against intuition, that is, against a feeling “that it must be 
so.”  Skepticism can be thought of as a state of being; that is, a collective or individual can, at a 
particular point in time, both obtain evidence for a conjecture and view the conjecture as of 
unknown truth value. Skepticism, however, can also be thought of as a practice --“classroom 
mathematical practices are the taken-as-shared ways of reasoning, arguing, and symbolizing 
established by the classroom community while discussing particular mathematical ideas” (Cobb, 
2000, p. 71). In everyday settings, proof of validity often takes the form of an empirical argument, 
an approximation or a summation of one’s experiences. When proving in mathematics, however, 
the act of suspending judgment against a backdrop of empirical or experiential evidence is the 
taken-as-shared way of reasoning; that is, it is a mathematical practice. It follows that uncertainty 
and skepticism differ in form: both occurring as a state of being but only the latter has the potential 
to evolve into a practice; and, with uncertainty occurring without a basis of belief while skepticism 
occurs against a basis of belief.  
The Study 
 The data discussed in this paper is drawn from a multi-year project focused on students’ 
understandings of mathematical induction. Studies conducted during the project included: 
observations of introduction to proof courses and clinical interviews with the students; teaching 
case studies involving novice proof writers; and a series of five teaching experiments involving 
undergraduate mathematics and science students enrolled in the second semester of a year-long 
calculus course, with no prior exposure to proof at the university level as determined through a 
curricular history questionnaire and assessment. The teaching experiments, which ranged in 
length from 3 to 6 weeks, involved 3 to 8 students depending on the university. Students met 
with the author for a minimum of two 75-minute sessions per week. The courses are best 
described as focused on advanced problem solving and proof, with students engaging in small 
group problem solving and whole class analysis of solutions. The tasks used during the sessions 
were developed primarily by the author, with some begin drawn from the work of Harel and 
Sowder (1998). The tasks represent modifications of tasks commonly used in introduction to 
proof textbooks. Data for the study included videotaped classroom sessions, transcripts of all 
sessions, instructor field notes, and students’ written work.  
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Findings 
 Three pathways to skepticism were identified in data from the clinical interviews and 
classroom teaching experiments: (1) cultural, non-experiential; (2) experiential; and, (3) quasi-
experiential. The cultural, non-experiential pathway is a didactical pathway that arises when an 
authority within the collective dismisses a basis of belief but there is no experiential history that 
the collective has shared. In this case, a normative way of reasoning is established through the 
power of an authority rather than negotiated. The authority’s warrant for introducing the practice 
is that it is a practice of the larger community and, therefore, must be adopted by those who wish 
to legitimately participate within the community.  
 Consider the following example, drawn from the clinical interviews. Evan, an 
introduction to proof course student, was asked to evaluate four proofs of the claim “The sum of 
the angles of a triangle is 180°.” When examining the standard Euclidean proof, which included 
both a written argument and a diagram (see Figure 1), Evan rejected the argument on the grounds 
that it included a “picture.”  
 

 

 

 

 

 

Figure 1. 

SB:  Why does the picture matter? 
Evan: Pictures aren’t proofs. 
SB:  Why aren’t pictures proofs? 
Evan:  (pauses) Dr. Black told us that. 

 

After a brief discussion about the lessoniv during which his professor had made this statement, 
Evan was asked to explain how the diagram or “picture” was used in the proof.  Evan’s response, 
however, provided no indication of his understanding of the role of the diagram, as illustrated in 
the following excerpt:  
 

SB: In this one, do they use some particular part of the diagram? 
Evan: (pauses, looks at the diagram) It doesn’t matter, you’re not  allowed to use 
 pictures. 
 

The root of Evan’s rejection of the argument appears to be his instructor’s comments rather than 
a particular aspect of the diagram or his knowledge of instances for which such diagrams could 
lead to false conclusions. In this case, doubt exists in relation to the validity of a claim and is a 
result of the actions of an authority of the community, who had dismissed the basis of belief, 
rather than a result of a shared experience. 
 The second pathway, the experiential pathway, has three distinct phases. First, the 
collective encounters an unusual or unexpected result. Second, the collective uses the result to 
debase particular forms of reasoning, in terms of their capacity to function as a means for 
verification. Third, the collective renegotiates the status of particular forms of evidence; that is, 
new socio-mathematical norms are established. 
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 Early in the teaching experiments, students were asked to solve a modified version of the 
Towers of Hanoi task (Figure 2). 
 

Towers of Hanoi 
Three pegs are stuck in a board. On one of these pegs is a stack of disks graduated in size, the 
smallest being on top. The object of this puzzle is to transfer the stack to one of the other two 
pegs by moving the disks one at a time from one peg to another in such a way that a disk is never 
placed on top of a smaller disk. How many moves will it take to transfer a stack of 1275 disks to 
another peg? 

Figure 2. Modified Towers of Hanoi Taskv 
 
In each case, that is, in all of the teaching experiments, students developed data tables and 
recognized both a recursive pattern 2k +1 for the relationship between consecutive cases and an 
nth term pattern 2n – 1. Students’ claims of validity related to the latter formula were rooted in 
explanations of the form, “it matches” the data, as illustrated in the following transcript segment. 
 

Susan: I think it (2n – 1) works. Look, 26 is 64.   
Johan: Minus one is 63. 
Paula: 25 is 32 minus one is 31. 
Johan: 24 is 16.  
Susan: It works … that’s it. 
Johan: We got it. 
Susan: Now we’re done with that one. 
Paula:  All right, next one! Come on! 

 
Subsequent efforts to perturb the students through instructor posed questions were, at best, 
unproductive, as illustrated in the following excerpt: 
 

SB:  … is there a way of verifying that    
 …that would actually be the case? 
Jill:  Mathematically? I mean you could    
 just go through and do it every time. 
… 
Calvin: I don’t understand what … what     
 you really want to know. 
Jill:  She wants us … she wants us to     
 prove it mathematically. 

 
These responses indicate that the questions of validation posed during the lesson were alien 
(Duffin & Simpson, 1993) to the students. Moreover, after identifying the nth term pattern 2n – 1 
and testing this pattern for n = 1 through n = 6, the students’ inquiry completely stopped and they 
used the expression 2n – 1 to compute the total number of moves for 1275 disks. This suggests 
that the students had accepted the validity of the expression 2n – 1. To address the lack of doubt 
for empirically-verified claims, the students were asked to work on the Chords of a Circle task.vi 
 

Question: Suppose you have a circle with n points marked on the circumference. By 
connecting each pair of points with straight-line segments the circle can be partitioned 
into a number of regions. Is there a function for calculating the number of regions? 

Figure 3. Chords of a Circle Task 



Proceedings of the 13th Annual Conference for Research on Undergraduate Mathematics Education 
 

 5 

 
Unlike the Towers of Hanoi task, the nth term pattern, 2n-1, which is quickly recognized by 
students fails to hold for all n ≥ 6. When n = 6 one may obtain either 30 or 31 regions but not the 
anticipated 32 regions. The production of a pattern that fails to match the 6th case surprises the 
student, as seen in the segment below. 

 
Boris:  How many did you get, Jill? 
Jill:  Thirty-one but it has to be wrong     
  … because it has to be even. 
Calvin:  I got thirty-one too … but it’s wrong. 

 
After having discussed the Chords of a Circle task and identifying features of the context which 
lead to multiple solutions for n = 6, students in the teaching experiments were asked to revisit 
their solution to the Towers of Hanoi task. As is illustrated by the segment below, during which 
the students discussed the validity of their solution, the collective experience of encountering an 
unusual or unexpected result supported the collective reconsideration of particular forms of 
evidence (in this case, empirical evidence) in terms of its capacity to function as a means for 
verification. 
 

Calvin:  Our table shows it. 
Jill:   But how do you know at one point it might not … it might not happen? I  
  understand what you’re saying here, if it works for this one it’s going to  
  work for that one but it … what if at one point it doesn’t? Like the circle  
  thing? 

 
Jill’s comments to Calvin prompted the students to reexamine the process by which they had 
generated their data and to generate an argumentvii that contained the key ideas of a proof by 
mathematical induction. 
 
 Calvin:  Suppose it [2n – 1] works for some stack, then we know the next stack 
   takes [writes “(2n – 1) + 1 + (2n – 1) = 2n+1 – 1”] since we know the two  
   k plus one [2k + 1]formula works. So, if it works for five it works for six  
   and we have all of these [reference to data table] so we know it always  
   works. We don’t have to worry about the circles. 
 
The experiential pathway to skepticism is, therefore, distinct from the cultural, non-experiential, 
in that skepticism emerges as a result of the collectives experiences rather than as a result of an 
authority dismissing a basis of belief.   
 The third pathway to skepticism, quasi-experiential, develops when the collective 
acquires knowledge of structural and historical aspects of mathematics as a subject-matter 
domain, which – in the eyes of the collective - function as cultural warrants for the practices of 
the community. This pathway was observed in a teaching experiment, during a series of sessions 
focused on the Convex N-gon task (Figure 4).  
 

Let n be a natural number. Is there a formula for the sum of the 
interior angles of a convex n-gon? 

Figure 4. Convex N-gon Task 
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In response to this task, the cohort of students, Johan, Susan and Paula, constructed the diagram 
shown in Figure 5. 
 
 
 
 
 

 
Figure 5. 

 
Using this diagram, the students argued that every convex n-gon contains n – 2 triangles, 
therefore, the sum of the interior angles is (n – 2)180 degrees.viii The instructor then asked the 
students to justify the claim, “every convex n-gon contains n – 2 triangles.” 
 

SB:  How would someone know the number of triangles? 
Susan: They just do! They have to do it themselves. 
… 
Paula: They just do! 

 
The students’ comments illustrate a sense of conviction -- a basis of belief, potentially derived 
from perception. This conviction may have been derived from a specific instance of perception 
(“I can see it works when n = 8”) or from perceiving in the diagram a structure (“I can see how I 
could partition any convex n-gon”).  
 Instructor posed questions, regarding how one would know for certain that every n-gon 
can be partitioned, prompted discussions within the collective regarding what would cause an  
n-gon to fail to partition in this way. 
 

Susan:  Why couldn’t it be? That’s what I don’t understand. 
Paula:  It has to be. 

 
Essentially, the issue the students had arrived at was, “Why, in mathematics, does one rule out 
that which one cannot imagine?” Instructionally, this raised the questions: what is the root of this 
cultural practice; and, what experiences might students need in order to understand this practice? 
Recall that students enrolled in the teaching experiments were recruited from the second 
semester of calculus. Building on the students’ concurrent coursework, the cohort was asked to 
define continuity and then differentiability. After which, the students were asked, “Is it possible 
to have a function which is continuous but nowhere differentiable?” 
 

Johan: It would have to have corners everywhere … like a fractal. 
Susan: That’s scary. 
Paula: That’s … just wrong. 
 

These reactions, which are similar to Poincaré’s, highlight the students’ surprise over the 
existence of such functions -- objects one might fail to imagine, if their existence was determine 
by perception alone. Upon returning to the Convex N-gon task, students’ comments moved away 
from claims of the form “you can just see it” towards attempts to construct a general n-gon. In 
other words, visualization no longer functioned as the primary warrant in the students’ efforts to 
verify their solution to the Convex N-gon task.  
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 Thus, doubt against a basis of belief, in the case of the quasi-experiential pathway, is not 
the result of a collective investigation, as is the case with the experiential pathway, nor is it the 
result of a mandate from an authority, as is the case with the cultural non-experiential pathway, 
but rather develops from the collective acquiring knowledge of structural and historical aspects 
of mathematics as a subject-matter domain, which serve as a warrant for practices within the 
mathematics community.  

Concluding Remarks 
 While much of the research on proof in the classroom has centered on inquiry (Mariotti, 
2006) and the development of a culture of “why” questions (Jahnke, 2005), less has looked into 
the development of doubt and its role in the emergence of the practice of proving. While doubt 
may arise from a sense of uncertainty (Zaslavsky, 2005), it is not always possible to create a 
sense of uncertainty; especially, when a basis of belief develops in conjunction with either 
empirical or perceptual evidence. In such cases, doubt must arise against a basis of belief; that is, 
take the form of skepticism. How might doubt arise against or despite a basis of belief? The data 
presented in this paper, which are derived from a series of teaching experiments and clinical 
interviews, indicate that skepticism has multiple pathways, not all of which are productive; such 
as, the cultural, non-experiential pathway. The data also indicate that in the case of the 
experiential and quasi-experiential pathways, skepticism arises when, in addition to a basis for 
belief, one also possesses grounds for doubt. This conclusion aligns well with the claims of 
philosophers who took a pragmatic as opposed to Cartesian view of doubt; such as, Charles 
Saunders Pierce, who argued that a doubt must have grounds, and Ludwig Wittgenstein who 
claimed that a doubt is always based on sequestered beliefs, for “a doubt that doubted everything 
would not be a doubt.”  
                                                
i This is a brief contributed research report presented at the 13th Annual Conference for Research 
on Undergraduate Mathematics Education, held in Raleigh, North Carolina in 2010. An 
extended discussion of this work is in preparation. For more information please contact the 
author, Stacy Brown, at Stacy_Brown@pitzer.edu. 
ii It is likely that Hoyles is referring to Brousseau’s notion of an obstacle and his metaphor of the 
game. See Brousseau (1997) for more details. 
iii I use the term farce not to ridicule particular approaches or discipline specific instructional 
practices but to honor the multitude of students who have made comments to me of the form, 
“proving is ridiculous, why should I waste my time showing something is true when we already 
know it is true.” 
iv Interview participants often referred back to classroom lessons, in part, because they knew that 
I had attended the classes with them. 
v This is a non-standard version of the task. Typically, the student is asked to determine the 
number of moves for n disks. 
vi This task has been discussed at length by many researchers (see, for example: Mason, 1985; 
Orton & Orton, 1999; Brown, 2003; Harel & Brown 2008; Stylianides & Stylianides, 2009). 
Mason refers to this task as the circle and spots problem. The modification used in the 
experiment removed the task constraint that no three line segments meet at a point. 
vii Due to space limitations a full description of the students rationale for the recursive formula 
2k+1 is not provided.  
viii Certainly, in some classrooms, such an argument would be considered sufficient. Recall, 
however, that the focus of the teaching experiment was the development of mathematical 
induction. 
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