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We present results from interviews that were conducted with university calculus, real analysis, 
and numerical analysis students in an effort to characterize their conceptions of the convergence 
of Taylor series. During a detailed analysis of the interviews, we discovered that several students 
consistently relied on a single metaphor throughout several tasks. We were surprised by the 
students’ commitment to these metaphors (emphasis) and the degree to which they influenced 
student responses (resonance). In this paper we describe some of the metaphors that students 
used and how they appeared to both enable and constrain the students’ reasoning. 

 
Introduction 

Taylor series have been used throughout history by scientists and mathematicians, like 
James Gregory, Isaac Newton, Gottfried Leibniz, Leonard Euler, and Joseph Louis Lagrange, to 
approximate functions using polynomials. In response to Bishop Berkley’s criticisms of 
Newton’s lack of development of a rigorous calculus, Lagrange even attempted, although 
unsuccessfully, to avoid Newton’s use of infinitesimals and make Taylor series the foundational 
building block upon which all of calculus was constructed (Burton, 2007; Grabiner, 1981). 
Today, Taylor series are frequently used in physics and engineering to simplify complicated 
equations and they play a foundational role in the theory of complex analysis. Even so, the topic 
of Taylor series is usually treated in four or fewer sections of a traditional calculus text (e.g., 
Hass, Weir, & Thomas, 2007; Larson, Edwards, & Hostetler, 2005; Stewart, 2008). Because of 
the many applications of Taylor series, students may revisit Taylor series in theoretical or 
applied classes such as differential equations, analysis classes, modern physics or physical 
chemistry, or a various engineering courses. We ask the question, what images guide students’ 
reasoning about the convergence of Taylor series as they establish this initial conceptual 
foundation?  

 
Background 

Portions of this paper are part of an initial study conducted in partial fulfillment for a 
degree of Doctor of Philosophy in Mathematics (Martin, 2009). At that time, a review of the 
literature revealed that very little research had been conducted specific to student understanding 
of the concept of Taylor series. In most cases, any study that addressed convergence of Taylor 
series did so while considering a broader topic, such as limits or function approximation 
techniques. Two articles that address Taylor series in detail are Kidron and Zehavi (2002) and 
Kidron (2004) which both report on a qualitative study that enabled them to describe how 
animations from a CAS were used to enhance student comprehension of approximation 
techniques using Taylor series before the development of the formal theory. These reports 
showed that the CAS not only allowed the students to get a sense of the problem context, but the 
CAS spurred students to ask questions concerning the material and provided a tool for them to 
investigate their questions. Even so, Kidron and Zehavi (2002) reported that the dynamic graphs 
were a “source of trouble” in formulating the formal ε - N definition for limit of sequences (p. 
226), and Kidron (2004) observed that students who had not done the actual analysis work (on 
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paper) struggled with interpreting the graphical images (p. 328).  Even though both articles 
contain examples of different types of student reasoning while engaging in tasks related to 
Taylor series, neither Kidron and Zehavi (2002) nor Kidron (2004) attempted to elaborate on the 
details of the different student conceptions. 

Other works that included references to Taylor series while investigating broader issues 
are Oehrtman (2002, 2009), and Alcock and Simpson (2004, 2005). Utilizing conceptual 
metaphor from interaction theory (Black, 1962, 1977), Oehrtman (2002, 2009) characterized 
“students’ spontaneous language and patterns of reasoning about limits as they emerged in the 
process of learning” (2002, p. 2) in an attempt to “capture global patterns in students’ responses” 
(2002, p. 103). To achieve this goal, Oehrtman observed calculus students engaging in novel 
limit problems, including a Taylor series problem. When encountering this Taylor series 
problem, Oehrtman (2002, 2009) describes several metaphors he observed students using, for 
example, approximation, collapse, and proximity metaphors. Perhaps the most notable metaphor 
applied to Taylor series, is the approximation metaphor which is characterized by structures 
involving “estimates,” “error,” “accuracy,” etc. which involve an unknown actual quantity and a 
known approximation. For each approximation there is an associated error and a bound on the 
error. 

 
error = | actual value – approximation | 

approximation – bound < actual value < approximation + bound 
 

The approximation is viewed as being accurate if the error is small and the accuracy of the 
approximation improves with each successive step. Oehrtman (2002) noted that students using 
this metaphor may describe Taylor polynomials as approximations to a generating function with 
a corresponding remainder that is the difference between the generating function and the 
approximating Taylor polynomials. Since the structure of the approximation metaphor reflects 
the structure of the ε - N definition for series, this metaphor can lend itself to allowing students to 
develop a more formal understanding of the limit concept.  

Alcock and Simpson (2004, 2005) discussed student responses to several questions 
concerning sequences and series, and one of these questions was particular to Taylor series. In 
their exploration of responses of students who tended to produce visual representations verses 
those who tended not to produce visual representations, they found that students with an internal 
sense of authority and those who had an ability to link concepts together were more likely to 
produce correct responses. Of the few cases where Alcock and Simpson specifically referenced 
student responses to the Taylor series task, they mostly did so to give an example of an erroneous 
response.  

Since none of the studies mentioned above specifically attempted to analyze and describe 
conceptualizations of the convergence of Taylor series by identifying and categorizing particular 
reasoning patterns, Martin (2009) sought to achieve this objective while accounting for different 
levels of exposure to series. To address this study goal, data were collected from 131 students in 
undergraduate mathematics classes, 10 graduate students, and 6 faculty from a mid-size four-
year university and from a regional community college. All 131 students completed an in-depth 
questionnaire about their understanding of Taylor series, and eight of these students subsequently 
participated in nor more than two face-to-face, task-based, individual interviews. For a list of 
some of the interview tasks that will be mentioned in this paper, see Table 1.  
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Table 1 
Interview Tasks 
First Ten Interview Tasks for All Participants 

1. What are Taylor series? 
2. Why are Taylor series studied in calculus? 
3. What is meant by the “=” in “ cos x = 1− x2 / 2!+ x4 / 4!− x6 / 6!+ − when x is any real 

number?” 
4. What is meant by the “ ” in, “ 1 / (1− x) = 1+ x + x

2 + x3 +  when x is in the interval 
?” 

5. What is meant by the word “prove” if you were asked to, “Prove that sine is equal to its 
Taylor series.” 

6. What are the steps in proving that  sin x = x − x3 / 3!+ x5 / 5!− x7 / 7!+ −? 
7. How can we estimate sine by using its Taylor series? 
8. What is meant by the “approximation” symbol in “ = a Taylor 

polynomial for sine when x is near 0?” 
9. What is meant by the “near” in “ = a Taylor polynomial for sine when x 

is near 0?” 
10. How can we get a better approximation for sine than using ? 

 
To account for the effect of the amount of exposure of undergraduate participants with 

Taylor series, undergraduate participants were selected from calculus, real analysis, and 
numerical analysis classes after having prior exposure to Taylor series. Using the construct of 
concept images developed by Tall and Vinner (1981) and adapting questionnaire tasks from 
Williams (1991), Martin (2009) categorized some of the different ways in which experts and 
students conceptualized Taylor series. Some of the concept images utilized by experts and 
students included what Martin (2009) described as pointwise, sequence of partial sums, dynamic 
partial sum, remainder, and termwise (p. 145). Not only did Martin (2009) find that experts 
tended to utilize more conceptual images, but that they were more prone to utilize multiple 
conceptual images in close proximity and they could move between conceptual images more 
efficiently and effectively as needed. In addition, most students in Martin’s study tended to lack 
a well-formed visual image of Taylor series convergence while experts did not. For the student 
who did not lack a well-formed image, he utilized multiple conceptual images throughout the 
interviews in ways similar to that of an expert. Therefore, Martin (2009) suggests that the part of 
the gap between expert and novice understanding of convergence of Taylor series may be 
bridged through pedagogical approaches to Taylor series incorporating more graphical images.  

For the purposes of this paper we focus our attention primarily on undergraduate student 
participants and attempt to identify patterns of metaphorical reasoning employed by individual 
students when addressing Taylor series convergence. 

 
Metaphorical Reasoning 

We analyzed interview data for student reasoning by employing a theoretical perspective 
of conceptual metaphor based on Max Black’s (1962, 1977) interactionist theory and as used by 
Oehrtman (e.g., 2002, 2009). In general, metaphorical reasoning involves conceiving of 

* Tasks appearing in the same row appeared on the same page of the interview handout. 
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unfamiliar aspects of a literal 
domain in terms of similar 
aspects of a more 
immediately understood 
metaphorical domain (Figure 
1). Reciprocally, the selection 
of the metaphorical domain and 
attention to and interpretation 
of its important characteristics is influenced by the existing and emerging conception of the 
literal domain. Metaphorical attribution is achieved through the interaction within the resulting 
dynamic system. This dialectic allows for conceptual innovation that far exceeds what is possible 
by reasoning entirely within either domain. In many cases, metaphorical reasoning can serve to 
reduce the cognitive load entailed when reasoning with and about complicated mathematical 
structures involving the interaction of multiple concepts. Black distinguished emphasis and 
resonance as necessary characteristics of strong metaphors, those that have the potential to be 
ontologically creative for the user. Emphasis is the degree to which the user is committed to 
applying the chosen metaphorical domain and resonance is the degree to which the metaphor can 
support “elaborative implication,” the development of additional inferences not contained within 
the original metaphor. Black (1970) also distinguished metaphorical reasoning using only 
proverbial knowledge and commonplace inferences from reasoning with theoretical models 
requiring systematic complexity and capacity for analogical development. Scientists and 
mathematicians may already possess a well-developed conceptual structure and use rigorous 
criteria for employing a theoretical model to help reason about a new concept. Students’ 
metaphorical reasoning, however, is often highly idiosyncratic and based on the most salient 
images available at a given moment of conceptual development. 

 
Results 

Some of the metaphors that emerged from our analysis of calculus and analysis students 
reasoning about convergence of Taylor series are similar to those previously described by 
Oehrtman (2002, 2009). After a close analysis of individual student interviews, additional 
metaphors based on part / whole relationships and operations preformed on cutable objects 
emerged from the data. We were surprised by the degree to which the individual students using 
each of these metaphors persisted in their usage of the metaphor throughout the interview tasks 
and the number of implications inferred from these metaphors concerning Taylor series. In this 
section we will highlight different aspects of each of these metaphors and the resulting 
implications for student reasoning. 

For each metaphor we will focus on one student’s, Brian for part / whole and Jordan for 
cutable object, usage of the metaphor in response to multiple tasks concerning Taylor series 
convergence. Brian and Jordan were not only different in their metaphorical implementation but 
also in their formal understanding of the literal domain, Taylor series convergence. From an 
epistemological perspective, one might conclude that Brian and Jordan are at different stages of 
understanding of Taylor series convergence. For instance, Brian was consistently imprecise in 
his responses to interview tasks as references particular to the mathematical structure of Taylor 
series were missing in most of his comments. Therefore, Brian should not be viewed as an expert 
reasoning scientifically about Taylor series in some systemized way, but as a novice who was 
still making sense of Taylor series and its corresponding implications. In contrast Jordan was 
more specific in his responses to Taylor series tasks and his responses better reflect the 

Figure 1. Dynamic Interaction Between Domains 

Metaphorical Domain Literal Domain 

Metaphors for 
Convergence 

Taylor Series 
Convergence 
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mathematical structure found in Taylor series. Even so, there are certain entailments of the 
metaphor utilized by Jordan that led him to erroneous conclusions. Thus, to better understand 
Brian’s and Jordan’s reasoning, we will focus on the underlying metaphorical structure and its 
implications, mathematically correct or not, on their emerging understandings of Taylor series 
convergence. 

Part / Whole Metaphor. In the part / whole 
metaphor, there is a whole and there is a part and nothing 
else because the difference between the part and whole is 
not emphasized (Figure 2). In the context of determining 
some sought after convergent, the part is viewed as 
insufficient and perhaps potentially misleading, whereas 
the whole is able to orient the user and allow him to 
precisely identify the convergent. We will begin this 
section by looking at the orienting nature that the whole 
had for Brian and then look at the role of the part in relation 
to the whole.  

Consider the following excerpts:  
 
Interview Task 3:  What is meant by the “=” in  

“ cos x = 1− x2 / 2!+ x4 / 4!− x6 / 6!+ − when x is any real number?" 
Brian:  I’m thinking it has something to do with like a Riemann sum.  That’s just 

what comes to mind.  Uh, if I add up, if I were to add up all of these it would 
give me a definite point. 

 
In the above excerpt Brian appeared to cue off of his prior notion of Riemann sums, and 

later when attempting to describe what he meant by his reference to “Riemann sum”, Brian 
added, 

 
I’m thinking that because these are all fractions [pointing to the terms of the 
series] of I guess cosine curve or function, it’s gonna give me one single point.  
Um, kinda of a sum-, it’s gonna, it’s gonna give me a summary more or less is 
what I’m thinking since it’s all these little points adding up to one point.  I’m 
thinking it’s gonna converge into something. 
 
Even though it is unclear what “these” were for Brian (he did not explicitly say that 

“these” were terms of the Taylor series), or what “fractions” were for Brian (he did not state that 
they were coefficients for x or if he had imagined plugging in numbers for x to get “fractions” to 
be added up in the expanded Taylor series), there is a consistent structure in which an “all” yields 
a sought after single resultant through some limiting process. In the first excerpt, the “all” gave a 
“definite point” through an “add up” process. In the second excerpt, the “all” converged into 
“one single point” that was a “summary” of the “all”. Subsequently in the interview, Brian was 
asked what he meant by his reference to “converge into something” found at the end of the 
excerpt, and Brian reiterated that he meant that “it’s going to come to a point” and that this point 
was a specific number. Later in the same interview, when asked, “How would you go about 
estimating ?” Brian’s response included a reference to “all those numbers” that got him 
“one number that we’re looking for” through a “summation” process. 

Figure 2. Part / Whole Metaphor 

“Part” 

“Whole” 
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In Interview Task 4, Brian was asked about the meaning behind the interval of 
convergence  for the geometric series  1 / (1− x) = 1+ x + x

2 + x3 + . Twice Brian 
referred to the infinite amount of numbers in the interval , but his understanding of what 
the Taylor series was doing with any given number from the interval was not transparent. This 
prompted the interviewer to ask Brian to clarify what could be done with the infinite amount of 
numbers that he was referring to in relation to the given Taylor series. Brian responded, 

 
Well, like in number 3, I'm thinking in these infinite amount of numbers you're 
going to find some type of mass.  I mean it's gonna be…  If I were to add up all of 
them, it would somehow equal one finite number [holds both hand up as if 
holding something between] as oppose to all these infinite numbers [moves both 
hands away from each other]. I mean, it's gonna be just around this number 
consist-consistently. 
 
Brian’s use of “mass” appears to illustrate a limiting process in which an infinite amount 

of numbers are “around” some sought after number “consistently.” Given all the numbers, a 
“massing” of numbers does not yield an infinite amount of numbers but instead oriented Brian to 
be able to identify the sought after “one finite number.” Although mathematically imprecise, all 
the previous excerpts point to a metaphorical structure used to reason about Taylor series. The 
whole, whether it was composed of terms of a Riemann sum, fractions of a Taylor series, a 
collection of little points, or numbers, through some limiting process, like an “add up” process or 
“massing”, oriented Brian to be able to precisely identify a sought after single resultant, usually 
in the form of one point or one number (Figure 3). 

 

 Now we will look at the role of the part in relation to whole. In the following excerpts, 
the part is seen as insufficient when compared to the whole and lacks the orienting nature that 
allowed Brian to precisely identify the sought after convergent. As with previous excerpts, in the 
following excerpts Brian avoided particular references to the mathematical structure of Taylor 
series. Instead, Brian seemed to revert back to talking about something that he may have 
believed he had a well developed ability to discuss, convergence on a number line. 

 

Figure 3. Brian's Orienting Nature of the Whole 

“Add up all” 

“Summation  
of all” 

“Massing” 

“Riemann sum” 

“Fractions of a Taylor series” 

“Little points” 

“Numbers” 

Whole 

“one single point” 

a “summary” point 
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Interview Task 7: How can we estimate sine by using its Taylor series? 
Brian: Well, it's called an estimate because it's not exactly that specific number that it's, 

uh, revolving around. It’s just gonna be somewhere in the ball park of that specific 
number. 

 
Following these comments, Brian alluded to plugging in numbers whose numerical 
representation contained several “9’s” following the decimal, and then concluded 
 

If I were to think of a [holds both hands up with palms facing each other], just a 
number line, you know, I'm coming from the left hand side [moves left hand 
inward], I'm coming from the right hand side [moves right hand inward], and this 
is the number it's gonna stop at [moves both hands very close to each other]. It's 
an estimate, it's not exactly reaching it, but it's the best we can do. 
    
In all the previous excerpts, not just the last two, Brian avoided specific details of Taylor 

series and talked about Taylor series using more global terminology. If fact, most of Brian’s 
previous utterances easily translate to convergence on a number line. Furthermore, all of Brian’s 
gestures are consistent with convergence on a number line since his gestures lacked any 
indication of a second dimension. It was as if all the points or numbers on a number line were 
adding up or massing to one single point or number on the number line (Figure 4). In the two 
previous excerpts, estimates played the role of the part and were seen as “not exact” and “not 
reaching” but in the “ball park” of what was sought after. Therefore, like the part, estimates were 
insufficient for precisely identifying a desired resultant but were “the best we [could] do” when 
trying to locate the resultant. 

 
 The aspects of the part / whole metaphor projected onto the Taylor series literal domain 
result in the infinite sum seen as the whole, whereas the part is the finite Taylor polynomial. In 
the next excerpt Brian specifically addressed the role that a Taylor polynomial plays in 
approximating the Taylor series. 

 

Figure 4. Brian's Part / Whole Metaphor on a Number Line 

“Massing” 

“Whole” ! “Infinite Amount of Numbers” ! “All of them” 

“Part” “Part” 

“Estimates coming  
from the left” 

“Estimates coming  
from the right” 

“Ball park” 

1 -1 
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Interview Task 8:  What is meant by the “approximation” symbol in  

“ = a Taylor polynomial for sine when x is near 0?” 
Brian:  Just because it says approximation and nothing else, I’m, I'm guessing it's 

gonna equal only a portion of what the whole Taylor series would equal.  It's 
not gonna equal the whole answer, it's just gonna get me one little section of it 
[holds up left hand with thumb and index finger extended close together]. 

 
 Here the third degree Taylor polynomial  was viewed as only a “portion” of the 
whole. Again, the lack of the orienting nature of the part was implied since the “portion” only 
gives “one little section” of the whole. It should be noted that there is no indication that Brian’s 
reference to the “little section” and the corresponding gesture was related to some interval upon 
which Brian believed that the Taylor polynomial was an accurate approximation to the 
generating function. Instead, his references to “little sections” and the accompanying gestures 
seem to indicate a purely formulaic conception. That is, Brian appeared to compare and contrast 
a little section of the Taylor series expansion viewed as formula verses the formula for the whole 
Taylor series expansion (Figure 5). Immediately following the previous comments, Brian 
spontaneously proceeded to reason by analogy using Google Maps.  

 

  
It's almost like Google Maps.  I'm gonna show, you know, [holds up left hand 
with thumb and index finger extended close together] this one little section, but if 
I, if I pan out or whatever, gonna show me [circular motion with right hand] 
exactly everything.  I think the Taylor series is like the whole view [holds up both 
hands extended across body with palms facing each other].  And any time I show 
an approximation [pointing to the Taylor polynomial in Interview Task 8], it's just 
gonna give me that [holds up right hand with thumb and index finger extended 
close together] little piece. 
 

 In this analogy he created a correspondence between Google Maps and Taylor series 
where the “little section” of Google Maps was related to Taylor polynomials and the “panned 
out” view of Google Maps was related to the “whole view” of Taylor series. The “panned out” 
view in Google Maps allowed Brian to orient himself to determine the exact location that he was 
looking for, whereas the little section was insufficient. For example, in Figure 6, if one focuses 
only on the “little section,” because of the indication of water on the right, one might be led to 
believe that the “little section” is on the east coast of a continent or at least the east coast of some 
lake. Only after seeing the relationship of the “little section” to the “panned out” view is one no 

Figure 5. Brian's Part / Whole Metaphor Applied to Taylor 
Series 

“Portion” 

Taylor polynomial of first n terms 

“Whole” 

+ Terms after the nth 
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longer mislead and is able to conclude that the “little section” is in San Diego. Thus, determining 
the exact location of that “little section” would be an exercise in futility without the “panned out” 
view. For Brian, this is similar to the relationship between the Taylor polynomial and the “whole 
view” of Taylor series. Therefore, this prominent image available to Brian appears to have 
influenced his understanding of part / whole relationships and subsequently, his ability to 
elaborate on Taylor series convergence. 
 

 In another analogy, Brain likened the convergence of Taylor series to a grading scale 
(Figure 7). Brian claimed that if a student received an ‘F’ on one exam and an ‘A’ on another 
exam, then it would be difficult to tell which grade really represented the student’s overall grade. 
Perhaps the first grade was a “fluke,” and thus, a misleading piece of information. Brian claimed 
that considering more grades gives the teacher the ability to determine what grade the student 
actually should receive. Therefore, a few grades, which constitute a part of all the grades, are 
insufficient to determine the overall grade, but when all grades are taken as a whole, this orients 
the teacher to be able to correctly determine the overall grade.  

It is also worth noting that when he was talking about the “little section” of Google Maps, 
the two grades, or about the “approximation” using Taylor polynomials, he used similar 
minimalist gestures, such as “thumb and index finger extended close together” or “moving both 
hands very close to each other with palms facing each other” as if easily grasping the “little 
section” or “approximation.” In contrast to a small gesture, when “panning out” on Google Maps 
or discussing the whole view of the Taylor series his gestures embodied a larger scale, such as a  

Figure 6. Brian's Google Maps Analogy 

“Panned Out” View 

“Little Section” 



Strong Taylor Series Metaphors - 10 - 

“circular motion with left hand” or “moving both hands away from each other”. These gestures 
taken together with his utterances unify the structure of the part / whole metaphor across 
seemingly very different contexts.  

Immediately following his grading scale analogy Brian continued to apply the part / 
whole metaphor. Brian stated,  
 

I'm thinking if this one little piece of the Taylor series [pointing to ] 
shows, just this one little piece [holds right hand up with thumb and index fingers 
extended close together], it's not going to give as much as opposed to maybe, you 
know, these other numbers are around that but it's going to zero in [points hands 
at each other with palms facing toward body] or home in on [points hands at each 
other with palms facing toward body] something more definite. 
 
These comments further illustrate the insufficiency that Brian placed on the Taylor 

polynomial when compared to the Taylor series. The Taylor polynomial   x − x3 / 3! simply did 
not “give as much” as the Taylor series. Once again, even though Brian began this excerpt by 
talking about Taylor series convergence in reference to the formula, Brian seemingly reverted 
back to talking about convergence as one would talk about convergence on a number line. Here 
the Taylor polynomial   x − x3 / 3!  not giving “much” was compared to all the “other numbers” 
that “zero in” and “home in on” on something “definite.”  Even though Brian made this switch 
from Taylor series formulas to points on a number line, the part / whole structure was still 
present.  

When later asked what the Taylor polynomial approximation gave, Brian elaborated on 
his reference to it not giving “much” found in the previous excerpt. At first he simply restated 
that the Taylor polynomial gave an “approximation.” Then he added that it gives what the Taylor 
series “might be” and “could be” in the form of an “estimate” and a “guess” that is “just one 
piece of the puzzle.” Even though Brian alluded to the Taylor polynomial as being an “estimate” 
and a “guess” there is still an element of insufficiency when compared to the whole Taylor 
series. Therefore, for Brian, the part was one “little piece” that was insufficient and potentially 
misleading when compared to the whole that can “zero in” on something “definite.” 

Clearly, the extent to which Brian understood the role of Taylor polynomials in 
approximating Taylor series appears very minimal as indicated by his continued convention of 
discussing Taylor series convergence like one would discuss convergence on a number line. 
Thus, one could conclude that Brian never indicated a formal understanding of Taylor series 
convergence. Furthermore, one could argue that Brian never indicated a formal graphical 

Figure 7. Brian's Grading Scale Analogy 

Enough to get a “better feel” for grade and  
determine that F was a “fluke”. 

Not enough to determine grade. More grades to consider. 

,   A,   A,   A,   A,   A,   A,   A,   A,   A,   A F,   A 
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understanding of Taylor series convergence. Even when directly presented with graphical tasks, 
he was unable to draw Taylor polynomials based on a given graph of a generating function and 
he was unsuccessful in stating any relationship to Taylor series when given graphs of Taylor 
polynomials. When asked to describe the graphical effect of adding more terms to a Taylor 
polynomial, Brian responded in his typical non-Taylor series specific language. Even so, one 
should not view Brian as having no understanding of Taylor series convergence, but instead, like 
many students encountering Taylor series for the first time, he has an emerging notion of Taylor 
series convergence that has not yet clearly distinguished itself from prior notions of convergence, 
such as convergence on a number line. Leveraging convergence on a number line and metaphor 
to reason about Taylor series convergence may have reduced Brian’s cognitive load as he 
encountered Taylor series. 

Even though Brian’s understanding of Taylor series may be less than desirable, all of 
these excerpts for Brian point to a similar structure used to reason about convergence across 
various contexts. We call this structure the part / whole metaphor. Depending on the context, the 
part may be composed of some points on a number line, the first few terms of a Taylor series, a 
“little section” zoomed in on a map, or a couple of grades. The whole is all the points on the 
number line, all the terms of the Taylor series, a “panned out” view of a map, or all the grades.  
When used to determine a sought after convergent, the “part” is an insufficient and potentially 
misleading portion of the “whole.” Depending on the context, the “part” may be an 
approximation that can give one a “better feel” for the sought after specific convergent but this is 
only an “estimate” and a “guess.” Only the “whole” can orient one to be able to precisely 
identify the sought after convergent. 
 Cutable Object Metaphor. In the cutable object metaphor an operation of “cutting” is 
preformed on one object to produce two new objects each of which can then be operated on by 
being “picked up” and used as needed (Figure 8). We will begin this section by looking at the 
object that will eventually be “cut” and then look at the two objects that are produced from the 
cut. Like the previous section, we will use one student’s responses to illustrate these objects and 
the operations performed on these objects. 

Consider Jordan’s response the very first interview task found on the next page. 
 

Figure 8. Cutable Object Metaphor 

“Pick Up” 

“Cut” 

“Pick Up” 
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Interview Task 1: What are Taylor series?  
Jordan: It's a sum of an infinite [moves right hand left to right touching the table 

three times] like polynomial, like from n equals whatever to infinity [waves 
right hand from left to right], or index, or whatever.  And um, the summation 
is equal to the value of a function [right hand from left to right making 
frequent stops that touch the table]. 

 
Later in the interview, Jordan referred to the Maclaurin series for ex as “just a 

representation of uh, ex as a polynomial.” When responding to a task involving the geometric 
series  1+ x + x2 + x3 + , Jordan failed to take into account the interval of convergence and 
stated that the domain of the series was all real numbers because “the domain of a polynomial is 
all real numbers." Jordan’s persistent relating of Taylor series to infinite polynomials made a 
different points throughout the interview, and the immediacy of Jordan to make this relation 
found in the previous excerpt indicate the high level of influence that this image of Taylor series 
had on Jordan’s reasoning. This image of Taylor series as an infinite polynomial is not new. 
Historical evidence suggests that mathematicians like James Gregory, Isaac Newton, and Brook 
Taylor all viewed Taylor series as infinite polynomials (Grabiner, 1981; Jahnke, 2003). Experts 
today reason using this image but they are also very aware of the image’s potential pitfalls 
(Martin, 2009). Even though this image led Jordan into one of the image’s pitfalls when he 
overlooked the role of the interval of convergence, we will see that it provided Jordan with an 
avenue of reasoning that allowed him to correctly answer several questions concerning Taylor 
series convergence.  

In the first excerpt, Jordan not only indicated that he viewed a Taylor series as an infinite 
polynomial, but that the infinite polynomial was “equal” to the value of the generating function. 
On another occasion, Jordan noted that “for any given x” the Maclaurin series for cosine “would 
equal cos x.” During his response to Interview Task 8, Jordan noted that the Taylor polynomial 

 is not the exact value for sin x but to get the exact value one has to use “every single 
term of the infinite, of the infinite, uh, polynomial.” Not only did Jordan view a Taylor series as 
identical to the generating function formulaically, he viewed them as being identical graphically. 
In Questionnaire Task 5, Jordan was given the graph of sin x from -4π to 4π and asked to graph 
two Taylor polynomials. During the interview, Jordan brought up what the graph of the 
“entirety” of Taylor series would look like compared to just the graphs of the Taylor 
polynomials.  

 
Like the entirety of [Taylor series for sine] [sweeping motion with right hand 
from left to right across paper], the graph of the entirety of it, if that would be, 
okay, so it does equal the same thing, do that [traces over the curve in the air] and 
then do that [traces over an imaginary extension of the curve off of the paper]. I-I, 
or if it was a Taylor approximation where one is linear [hand motion in the air 
above the graph consistent with y = x], and then one is quadratic [hand motion 
consistent with a concave down parabola], one is, you know, cubic. 
 
When asked if he would still trace out the curve for the generating function if the x-axis 

was extended to “100π, 1000π, 1000000π?” Jordan reiterated, 
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For the Taylor series sure… Yeah, you can do that [tracing in the air with pen 
over an imaginary extension of the curve off of the paper]. Because uh, if the 
Taylor series [up and down movements from left to right touching table with right 
hand cusped down], if that's what we mean by that, is equal to sine [same left to 
right movement with right hand], then sure [tracing in the air with pen over the 
curve and beyond the paper], sine goes on forever periodically, same-same-same. 
[emphasis in original] 
 
Throughout the interview Jordan persisted in affirming that the entirety of the Taylor 

series was identical to the generating function. Therefore, for Jordan nothing was missing from 
the Taylor series expansion to cause the expansion to be any different from the generating 
function. The Taylor series expansion was as much “there” as the generating function was 
“there” both formulaically and graphically. Hence, for Jordan this image of Taylor series 
expansions as infinite polynomials in their entirety contributed to each expansion’s encapsulation 
as an object. 

One of the artifacts of viewing Taylor series as objects was that Jordan could now 
perform the operations of “cutting off” and “picking up” on the objects. As the next excerpt will 
demonstrate, Jordan referred to Taylor polynomial approximations as what you get when you 
“cut off” the formula of a Taylor series after a particular nth term.  Following the “cut” of the 
formula, the first n terms can be “picked up” to yield an approximation and the remainder is what 
is not “picked up.” The cut off / pick up operations suggest an idea of manipulating that which is 
already there. For example, one cannot “cut off” a series unless terms remain on each side of the 
cut after the operation of cutting has been preformed, nor can one “pick up” something unless it 
is there to be picked up. That is, if all the terms of a Taylor series are already present in their 
entirety in the form of an infinite polynomial, then a Taylor polynomial is what you get by 
cutting the infinite polynomial after a certain degree and picking up only those terms that are 
needed to achieve a desired accuracy. In contrast, if one viewed a Taylor polynomial through 
some add up process, a desired approximation is achieved by adding terms to a dynamically 
created polynomial. In the add up process, individual terms do not exist until prior terms have 
been added. Thus, the operation of “cutting” would not make much sense for someone who held 
this view. 

In Interview Task 6, Jordan was asked to give the steps in proving that sin x equals its 
Maclaurin series. During his initial response, Jordan brought up the role that the remainder plays 
in this proof. This prompted the interviewer to have Jordan “elaborate on the remainder.” Jordan 
replied, 

  
Um. So if you cut it off at this point, uh [marks two vertical lines on the handout 
separating the first four terms of the Taylor series from the rest of the equation], if 
you cut it off and use just the terms available to you, the first four terms, this is a 
number and uh, anything after that [circles the ellipses], which would include plus 
one over uh er, nine, yeah, that's right, [while writing “ ”] nine 
factorial, x to the ninth, uh, over eleven factorial, minus, uh, x to the eleventh, 
these are all trailing terms [circles the terms that he had just written] that also 
have a value if you add them together [holds both hands to the right as if holding 
something between them], and the remainder is what you didn't [waves right hand 
to the right] pick up.   
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Note that in the above excerpt, Jordan “cuts off” the first four terms of the Taylor series 

from the rest of the series.  He indicated his understanding that more terms of the series exist 
following x7 / 7! by relating the ellipses to the terms “after that” which he later exemplified by 
both verbalizing and transcribing the next two terms. In addition, he attributed the remainder, as 
something that one gets when the infinite polynomial is “cut off” where one side of the “cut” 
yields an approximation while the other side yields the remainder which is what is not “picked 
up” because it is not the approximation. Therefore, the cutable object metaphor, illustrated in 
Figure 8, when projected onto the Taylor series literal domain now resembles Figure 9 for 
Jordan.  

This view appears to have led Jordan to an image of remainder, not as a difference, but as 
“trailing terms”. In this task he equated the remainder to the “trailing terms” that start with x9 / 9! 
and continue on with terms of higher degree as additionally indicated by the wave of his right 
hand to his right.  It should be noted that Jordan’s responses to other tasks clearly indicate that he 
additionally conceptualized remainder as a difference graphically (the length of a vertical line 
drawn between the approximating polynomial and the generating function) and algebraically (the 
absolute value of the difference between the approximating polynomial and the generating 
function for given values of x), but when strictly viewed through the lens of the cutable object 
metaphor he depicted the remainder as “trailing terms” of an expanded series. 
 Immediately following Jordan’s comments in the previous excerpt, Jordan spontaneously 
produced a graphical image.  

 
Jordan:  So, say if we have a graph [begins graphing] of this as it goes to infinity 

and you only add up, um [mumbles "y, x, whatever" and produced Figure 
10a]. Um, if you only cut off this amount of term [makes the vertical line in 
Figure 10b] and this goes to infinity [highlights the right portion of the graph 
under the curve in Figure 10c], this has value and this is your remainder 
[writes the “R” found in Figure 10c]. 

I:  Okay. 
Jordan:  So, if the remainder goes to zero, it means that you're [draws first nearly 

straight line directly below curve found in Figure 10d] picking up every single 
value [draws 2nd nearly straight line below curve found in Figure 10d], um, 
and yeah. 

Figure 9. Jordan's Cutable Object Metaphor Applied to Taylor Series 

“Pick Up” 

+      

“Cut” 

Taylor polynomial of first n terms Terms after the nth 

Taylor series = infinite polynomial 

“Pick Up All Values” 

 
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Even though this image constructed in Figure 10 is seemingly unrelated to Taylor series, 
Jordan likened it to Taylor series utilizing the cutable object metaphor and thus demonstrated the 
saliency of this image to the metaphor. In this case, the “cut”, instead of separating an expanded 
Taylor series into two objects, the cut separated the area under a curve into two pieces. He then 
appeared to note that the corresponding x-values on the right of the “cut” went to infinity, but 
regardless they still “have value” as the remainder. Implicit, is that the area to the left of the 
“cut” “has value” and can be “picked up” as the approximation. The implication of the remainder 
“having value” and his ability to “pick up every single value” are indicative of the encapsulation 
of the two pieces resulting from the “cut” as objects. Therefore, these seemingly unrelated 
contexts are unified by the structure of the cutable object metaphor (Figure 11). 

 
 

   a. Curve similar to exponential decay 

 

 b. Vertical straight line added 

 

   c. Area under curve highlighted 

 

 d. Area under curve highlighted again 

Figure 10. Reproduction* of the Progression of Jordan's Graph of a Cutable Object 
*All images in this figure are reproduced based on the individual’s finished graph. The order of the steps 
were determined based on the audio and video evidence. 
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In the previous excerpts, Jordan has mainly focused on elaborating on the remainder 
properties of one of the objects that was produced from a “cut” in the context of expanded Taylor 
series. Most implications about the approximation properties from the second object produced 
from the cut were inferred from tacit clues. The next excerpt better confirms these implications 
of the non-reminder object produced from the “cut” as an object that is “picked up” for 
approximation purposes. In this case, Jordan will not specifically utter the words “pick up” but 
will instead use language suggestive of a structural equivalence to the “pick up” operation.  

 
Interview Task 7: How can we estimate sine by using its Taylor series? 
Jordan:  Ah, perfect.  You just, depending on the degree of accuracy you desire, 

you [waves right hand from left to right] take the terms of the Taylor series.  
Um, if you only want it to a certain decimal point, [turns the page back] 
going back to this [points to sine’s Taylor series expansion in Interview Task 
6], uh, we have this Taylor series representation and um if you want it within 
a specific degree of accuracy, you can take [highlights the first two terms in 
sine’s Taylor series expansion in Task 6] the first two terms and that will 
give you some, some estimation, obviously not perfect.   

 
In this excerpt, Jordan “takes” terms from a Taylor series to achieve a desired “degree of 

accuracy.” In context of all the other excerpts, there is no indication to suggest that Jordan was 
currently viewing the Taylor series as anything but an infinite polynomial in its entirety. Later in 
the interview Jordan revealed that he viewed the “degree of accuracy” as a measurement of “how 
close … the approximation is to um, what you’re approximating.” The “taking” of terms 
illustrates the “pick up” operation of the cutable object metaphor in that it entails the same 
implications the “pick up” operation. For example, like with the “pick up” operation, terms 
cannot be “taken” unless they are already present. Furthermore, the “taking” of terms from an 
infinite polynomial in its entirety necessarily entails a separation (i.e. a “cut”) from those terms 
not taken. Jordan concludes by additionally clarifying what he meant by “taking” terms of the 
Taylor series to achieve a desired accuracy by giving an example of where the first two terms of 
the series were “taken” to yield an estimation, albeit a not so “perfect” estimation.  

Moreover, while responding to a questionnaire task, Jordan concluded that the geometric 
series  1+ x + x2 + x3 + 	
   is an approximation to  provided that he can “cut it off [one 

R!

“Picking up every single value” 

“Cut” 

Figure 11. Cutable Object Metaphor Applied to 
Jordan's Graph 
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chopping motion with right hand]” and use a finite number of terms. But when using “infinitely 
[sweeping motion with right hand left to right]” many terms, the geometric series 
 1+ x + x2 + x3 +  is “identical” to the generating function .	
  

All of these excerpts for Jordan point to a similar structure used to reason about Taylor 
series convergence when responding to a range of tasks. We call this structure the cutable object 
metaphor. For Jordan, an image of Taylor series as an entire infinite polynomial appeared to 
contribute to its encapsulation as an object and subsequently, the encapsulation of the two 
objects following the “cut.” The operation of “cutting” was preformed on the infinite polynomial 
object to produce two new objects, an approximation object and a remainder object. Each of 
these could then be “picked up” by Jordan and used as needed when encountering to a variety of 
tasks. 

Discussion and Implications 
The implications of part / whole and the cutable object metaphors elaborated above gave 

Brian and Jordan the facility to make sense of both approximation and proof tasks concerning 
Taylor series convergence across multiple contexts, and thus, demonstrated the high degree of 
resonance for each within the user.  The immediacy with which the metaphors sometimes 
appeared, the respective commitment to these metaphors by Brian and Jordan throughout the 
interview tasks, and their frequent omission of other metaphors indicate the high degree of 
emphasis that they placed on the metaphor that they utilized. Therefore, for Brian and Jordan, the 
part / whole and cutable object metaphors, respectively, were strong metaphors that allowed 
them to creatively reason about Taylor series convergence. 

When the approximation, part / whole, and cutable object metaphors point to the same 
mathematical object, they can appear to be nearly the identical because they all to various 
degrees reflect some of the structure of the mathematical object. These metaphors are not the 
same. For example, consider the remainder in each metaphor. For the part / whole metaphor, 
there is no remainder because there is only the part and the whole and nothing else. In the cutable 
object metaphor, the remainder is viewed as the tail of the series. Although this is the case for 
analytic functions on their respective intervals of convergence, this is not the case for those 
values of x outside the interval of convergence. Plus, the remainder as tail image may lead 
someone to incorrectly conclude that a Taylor series equals its generating function because the 
limit of the tail is zero as the initial degree goes to infinity. Only in the approximation metaphor 
is the remainder correctly viewed as the difference between the given Taylor polynomial and the 
generating function. Even though all metaphors contain an element that is used for 
approximation purposes, the approximation in the approximation metaphor, the part in the part / 
whole metaphor, and the approximation object produced from the cut in the cutable object 
metaphor, the approximation is either achieved through different means or has different 
entailments attached. In the cutable object metaphor, the approximation is achieved through the 
operation of “cutting” an object that is already in existence (the Taylor series viewed as an 
infinite polynomial in its entirety), but this operation is not necessary for the approximation 
metaphor because Taylor polynomials may be dynamically constructed through an add up 
process in which terms do not exist until prior terms have been successively added. The part 
from the part / whole metaphor is always viewed as insufficient and potentially misleading when 
compared to the whole, but this insufficiency and deceptive property is never attached to the 
approximation object in the cutable object metaphor. Equally, the orienting nature of the whole 
from the part / whole metaphor is missing from the approximation metaphor because in the 
approximation metaphor a good approximation can be achieved without knowing the entire 
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Taylor series. The approximation metaphor usually arises in response to an approximation task, 
but the part / whole and cutable object metaphors need not be limited to such tasks. Therefore, 
even though these metaphors can point to the same mathematical structure, their metaphorical 
structures are different. 

Conceptual metaphors are not mutually exclusive, and multiple metaphors may be mixed 
by a single individual. A close examination of the transcripts revealed that both Brian and 
Jordan, even though their strong metaphors may be part / whole and cutable object, utilized 
elements of the approximation metaphor to various extents. For example, following the excerpt 
in which Jordan referred to “taking” terms of the Taylor series to obtain an approximation, 
Jordan used an analogy incorporating a computer that went “through a loop function” to estimate 
the value of e using a Taylor polynomial that was “added to” during each iteration of the loop.  
This analogy imposes the approximation metaphor by suggesting that a Taylor polynomial does 
not exist until the previous Taylor polynomial has been created by the computer and that the 
approximation gets successively better with each iteration.  Following these comments, Jordan 
continued using the approximation metaphor in response to Interview Task 8, a task specifically 
asking participants to elaborate on the approximation properties of a given Taylor polynomial. In 
response to this task he mixed the approximation metaphor and with the cutable object metaphor 
when he noted that the “exact value” of the Taylor series, viewed as an “infinite polynomial,” is 
obtained by “adding up” all the terms in the series. In this case, even though he referred to the 
“exact value” of the Taylor series as an “infinite polynomial,” the approximation context of both 
the current and previous tasks appeared to influence his usage of the approximation metaphor. In 
summary, it appears that when Jordan cued off of his image of Taylor series as an infinite 
polynomial he was much more likely to use the cutable object metaphor before the 
approximation metaphor but when he cued off of the approximation properties of Taylor series, 
he may still use the cutable object metaphor but was more likely to use an approximation 
metaphor than when cueing off of Taylor series as an infinite polynomial. Therefore conceptual 
metaphors are not mutually exclusive but complement each other in a dialectic of metaphors for 
Taylor series convergence and their usage depends on various influencing factors idiosyncratic to 
each individual. 

For a calculus student first encountering power series, Taylor series presents a complex 
mathematical structure that brings together many different concepts previously studied in 
calculus. Some of these concepts include the notion of variable, function, limit, sequences, and 
series which all interact together in the concept of Taylor series convergence. Not to mention the 
idea of pointwise and uniform convergence which play crucial roles when tackling questions 
concerning Taylor series convergence but for valid pedagogical reasons are many times in the 
background in a calculus classroom. Because of all these interactions between different concepts, 
a student encountering Taylor series may be overwhelmed by the high cognitive load 
necessitated to reason rigorously within the multiple concepts. Whether the topic be Taylor series 
or something else, conceptual metaphor provides a vehicle to help reduce the high cognitive load 
and make reasoning concerning a complicated topic more manageable. As we have seen in this 
study, students employ conceptual metaphors to reason about unfamiliar mathematical concepts 
spontaneously rather than systematically (Vygotsky, 1987) and thus such reasoning is often 
idiosyncratic, bound to concrete application, and lacks conscious awareness and volitional 
control. Instruction which attempts to develop systematic ways of reasoning about Taylor series 
necessarily interacts with these spontaneous concepts in what Vygotsky referred to as the zone of 
proximal development. It is in this zone where the creative aspect of learning takes place. 
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Both Brian and Jordan demonstrated the spontaneity of their reasoning using part / whole 
and the cutable object metaphors, respectively. Brian unprompted analogies with Google Maps 
and grades were grounded in concrete applications, but he lacked awareness that the part / whole 
metaphor disregarded a remainder element even when faced with approximation tasks. Similarly, 
Jordan had not fully systematized his reasoning concerning Taylor series to account for the 
implications of viewing the remainder as the tail of the series when using the cutable object 
metaphor. 

Additionally, to help reduce the cognitive load encountered by a complex mathematical 
object, students may revert back to talking about that mathematical object in terms of something 
that he or she already knows how to discuss. For Brian, this appeared to be embodied in his 
idiosyncratic reasoning for Taylor series convergence as if it was some type of proverbial 
convergence on a number line (Figure 4). His excerpts suggest that in an attempt to understand 
Taylor series, Brian appears to have assimilated Taylor series into a previous established limit 
scheme, convergence on a number line. The part / whole metaphor may have served Brian well 
for convergence on a number line, and thus, Brian continued to reason about Taylor series using 
this same metaphor. From the data it is unclear if Jordan was specifically producing an image of 
an improper integral found in Figure 10 and Figure 11, but it seems highly likely. One 
possibility seems that the proof of the integral test done in his calculus class may have influenced 
this salient imagery. If Jordan was indeed relating Taylor series convergence to an improper 
integral, then this is another example of how a student may attempt to assimilate Taylor series 
convergence into a previously established limit schema. A study that details previously 
established schemas in which Taylor series are assimilated and the extent to which these schemas 
are accommodated is worthy of further investigation. 

Oehrtman (2008) described design research currently being pursued to develop an entire 
calculus and differential equations sequence using such research insights and pursuing the 
parallel design goals to i) reflect the structure of formal definitions of limits, ii) be based on 
natural language and ideas directly accessible to students, iii) be coherent in its application to all 
concepts defined in terms of limits, iv) have coherent meaning and structure across multiple 
representations, and v) be amenable to instructional techniques based on a constructivist theory 
of abstraction. Therefore, in this work we strive to interact with students’ spontaneous concepts 
and assist them in developing their metaphorical reasoning in more systematic and 
mathematically fruitful ways. The insights gained by understanding the metaphors from this 
study can help instructors recognize students utilizing elements of these metaphors and engage 
them in a productive discourse that develops their scientific reasoning.  
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