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Abstract 

Although proof comprehension is fundamental in higher-level undergraduate mathematical 

courses, there has been no research on what exactly it means to understand a mathematical proof 

at this level and how such understanding can be assessed. In this paper we address these issues 

by presenting a multi-dimensional model of proof comprehension and illustrating how each of 

these dimensions can be assessed. Building on Yang and Lin’s (2008) model of reading 

comprehension of proofs in school geometry, we contend that in undergraduate mathematics a 

proof is not only understood in terms of the meaning, operational status and logical chaining of 

its statements (as Yang and Lin delineate), but also in terms of its higher-level ideas, the methods 

it employs, or how it relates to specific examples. We illustrate how each of these types of 

understanding can be assessed in the case of a specific proof. 

 

1. Introduction 

In advanced mathematics courses, students spend a substantial amount of time reading proofs. 

Students read proofs from their mathematics textbooks, they read proofs in professors’ lecture 

notes, and they read and listen to the proofs professors present in class. Presumably, one of the 

main goals of reading all these proofs is that students understand them and learn from them. 

Therefore, knowing what it means to comprehend a mathematical proof and being able to assess 
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students’ comprehension of a given proof are important issues in the learning and teaching of 

undergraduate mathematics. 

However, exactly what it means for a proof to be understood, and how we can tell if 

students comprehend a given proof remain open questions in mathematics education. In a 

systematic study of the literature, Mejia-Ramos and Inglis (2009) found that out of a sample of 

131 articles related to the notions of proof and argumentation in mathematics, only three articles 

focused on students’ comprehension of given proofs. This finding is consistent with calls from 

other researchers (e.g. Selden & Selden, 2003; Mamona-Downs & Downs, 2005) who have 

suggested that more research on proof reading is needed. Furthermore, Conradie and Frith 

(2000), Rowland (2001), Schoenfeld (1988), and Weber (submitted) have argued that students’ 

comprehension of a given proof is often measured at a superficial level, by asking them to 

reproduce it, or modify it slightly to prove an analogous theorem. These findings suggest that 

more sophisticated ways of assessing students’ comprehension of a proof are needed. The 

objective of his paper is to present a model of what it means to comprehend a mathematical 

proof at the undergraduate level and to illustrate how this comprehension can be assessed. 

Besides being of theoretical interest, a model of proof comprehension would also be of 

practical significance. On the one hand, mathematics professors could use a model to inform 

their own teaching methods and to create assessments that would more accurately measure 

student understanding. On the other hand, as Conradie and Frith (2000) note, better assessment 

measures could lead students to read and study proofs in more sophisticated ways. A more 

detailed consideration of implications and contributions of this research is presented in the last 

section of the paper. 
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2. Literature Review 

Conradie and Frith (2000) contended that current methods of assessing students’ proof 

comprehension are inadequate and described proof comprehension tests that they have developed 

to address this difficulty. In these tests, students were asked to read a given proof and to answer a 

series of questions related to that proof. However, given that their intention was mainly to 

propose an alternative way of assessing students’ mathematical knowledge , they did not 

elaborate on a theoretical model of proof comprehension, or on the theoretical importance of the 

different types of questions included in their tests. 

In a pioneering article, Yang and Lin (2008) made an important first step toward 

understanding proof comprehension by introducing what they called a model of reading 

comprehension of geometry proof (RCGP). Yang and Lin’s model consists of four levels. At the 

first level, termed surface, students acquire basic knowledge regarding the meaning of statements 

and symbols in the proof. At the second level, which Yang and Lin called recognizing the 

elements, students identify the logical status of the statements that are used either explicitly or 

implicitly in the proof. In other words, in this second stage students identify whether these 

statements are employed in the proof as premises, conclusions, or known properties. At the third 

level, termed chaining the elements, students comprehend the way in which these different 

statements are connected in the proof, by identifying the logical relations between them. Finally, 

at the fourth level, which Yang and Lin referred to as encapsulation, students interiorize the 

proof as a whole by reflecting on its generality and application to other contexts. 

Yang and Lin (2008) focused predominantly on the first three levels (which seem to be 

crucial in the comprehension of high-school geometry), while leaving the fourth level noticeably 
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unspecified. In particular, Yang and Lin indicated that their instrument for measuring students 

proof comprehension was not aimed at diagnosing if a student had reached this top level (p.71). 

In spite of the apparent importance of proof comprehension, there is no other discussion 

of this subject in the mathematics education literature. Our model builds on Yang and Lin’s 

model by adapting its first three levels to the context of undergraduate mathematics, and by 

expanding it to include other dimensions that are crucial in the comprehension of mathematical 

proofs at the undergraduate level.  

 

3. Development of our model  

To identify the ways in which a proof might be comprehended, we took into account a wide 

variety of sources. First, we considered theoretical articles from the mathematics education 

literature that discuss the nature of proof (e.g., Duval, 2007), the purposes of proof (e.g., Hanna, 

1990; de Villiers, 1990), and different ways of presenting proofs (e.g., Leron, 1983; Rowland, 

2001). From these theoretical discussions, we inferred different aspects of proof that 

mathematics educators regard as crucial in the learning and teaching of proof. Second, we read 

philosophical articles on how proofs are used by the mathematical community (e.g., Rav, 1999; 

Mancosu, 2008; Dawson, 2006). These articles provided us with a few aspects of proof that 

philosophers judge to be central in mathematical practice. Third, we examined the practice of 

mathematicians in three ways. We considered (i) introspective reports of mathematicians about 

their own experience with proof (Thurston, 1994), (ii) empirical studies investigating 

mathematicians’ behaviors when reading proofs (Smith et al, 2009; Weber, 2008), and (iii) 

interviews with nine mathematicians about what they hoped to gain from reading the proofs of 

others and what they hoped their students would gain from the proofs that they presented 
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(Weber, submitted). Finally, we reviewed studies on general reading comprehension (e.g. 

McNamara et al. 1996; Lesley & Caldwell, 2009) looking to determine the different aspects of 

general written text that these models focus on. 

In our investigations, we realized that there is not a single way a proof may be 

understood. For instance, some researchers have argued that proofs are understood in terms of 

the mathematical reasons justifying each assertion in the proof (e.g., Selden & Selden, 2003; 

Weber & Alcock, 2005), while others have said that proofs are understood in terms of their key 

ideas (e.g., Leron, 1985) or the proof method that is deployed (e.g., Rav, 1999). Similarly, some 

mathematicians have claimed to be able to understand a proof in terms of its logical details but 

not its method or key ideas (cf., Alibert & Thomas, 1991), while others have claimed to 

understand the larger idea of a proof while not grasping all of its logical details (e.g., Thurston, 

1994; Rav, 1999). Hence, unlike Yang and Lin (2008), our model does not build on a single 

dimension or hierarchy of understanding, but rather has six different types of understanding that 

we believe are not dependent upon one another.  

In the following section, we present the dimensions of our model. For each dimension, 

we describe the importance of this aspect of proof understanding and how one may design 

questions to assess it. We then illustrate what types of questions might be asked to assess each 

dimension by providing examples of multiple choice questions regarding the specific proof given 

below. We work with multiple choice questions because this type of item lends itself to large-

scale studies on students’ understandings of specific proofs (and proofs presented in specific 

formats), which is a goal of our research program. However, assessment questions need not be 

multiple choice: the type of item employed depends upon the goals of the researcher or teacher.  
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4. Dimensions of model 

4. 1. Meaning of terms and statements 

One of the most fundamental ways of comprehending a text is to understand the meaning of 

individual terms and statements. In the case of proof, this amounts to understanding the meaning 

of statements, symbolic expressions, terms, and definitions. Yang and Lin (2008) feature this 

aspect of proof prominently at their surface level. Research suggests that students often fail to 

understand the meaning of key terms when reading a proof (Conradie & Frith, 2000), which 

hinders their ability to comprehend other aspects of the proof. Furthermore, researchers have 

argued that less successful proof readers do not try to understand the meaning of key terms and 

statements (e.g. Weber, Brophy, & Lin, 2008) . 

 Ways to assess a reader’s comprehension of this aspect might include asking him or her 

to identify the definition of a key term in the proof, or to specify what is meant by some of its 
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statements. For instance, with respect to the proof given above, one could ask the following 

question (correct answers are underlined): 

 

This question could be used to assess the extent to which a reader understands the concept of the 

range of a function or the way in which this term is used in this particular sentence of the proof. 

In general, there are at least three different features within this dimension of proof 

comprehension: 

1. Understanding the meaning of the theorem itself. The proven claim is an important 

statement in any given proof. Assessing the extent to which readers understand the 

meaning of the proven statement may involve asking them to: 

a. State the theorem in a different, but equivalent manner (e.g. “write the theorem in 

your own words”, “write the theorem in terms of [a particular notion]”, “which of 

the following statements are equivalent to the theorem?”)  

b. Identify trivial implications of the theorem (e.g., “which of the following 

statements are true based on the theorem?”, “which of the following are 

consequences of the theorem?”) 

c. Identify examples that illustrate the theorem (e.g., “which of the following cases 

verify the statement for a particular example?”, “which of the following cases 

does the theorem rule out?”) 
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2. Understanding the meaning of individual statements in the proof. This refers to a reader’s 

comprehension of statements in the proof, other than the proven theorem itself. The 

multiple-choice item presented above illustrates one way of assessing this specific feature 

of the given proof. In general, the three types of questions used to assess readers’ 

comprehension of the proven theorem may be employed to assess their comprehension of 

other statements in the proof.  

3. Understanding the meaning of terms in the proof. This third feature refers to a reader’s 

comprehension of specific terms or expressions appearing in the proof. Demonstrating an 

understanding of these terms and expressions may involve being able to: 

a. State the definition of a given term in the proof (e.g., “define [term] in your own 

words”, “which of the following statements defines [term]?”). 

b. Identify examples that illustrate a given term in the proof (e.g., “is [specific 

example] an example of a [term]?”, “which of the following cases exemplifies (or 

does not exemplify) a [term]?”). 

In some respects, this is the most basic dimension of understanding in our model in the sense that 

one could conceivably answer these questions without ever having read the proof itself (although 

reading the proof may certainly help develop understanding of key terms and statements). 

 

4. 2. Justification of claims 

In a proof, new statements are deduced from previous ones by the application of accepted 

mathematical principles (e.g., theorems, logical rules, algebraic manipulations). However, as 

with all scientific texts, a proof would be impossibly long if all of its logical details were 

explicitly stated (see Chi et al, 1994). In many cases, the reader needs to infer what previous 
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statements, and what mathematical principles, are used to deduce a new assertion within a proof 

(Weber & Alcock, 2005), and research has illustrated how undergraduates often fail to do this 

when reading a proof (e.g., Alcock & Weber, 2005; Weber, 2009).  

 One way of comprehending proofs involves grasping how new assertions follow from 

previous ones. This dimension is analogous to Lin and Yang’s (2007) third level of proof 

comprehension (chaining the elements). Assessing this dimension may involve asking a reader to 

make explicit a justification that is implicit in the proof, or to identify the specific statements 

within the proof that provide the basis for a given claim. The following question illustrates this 

type of assessment:  

 

This question could be used to assess whether or not the reader understands the way in which the 

proof establishes the given inequality.  In general, in order to assess the extent to which readers 

comprehend the justification of claims in the proof, one may ask them to: 

1. Make explicit an implicit warrant in the proof. Generally, proofs include expressions of 

the form “Since A, then B”, where the claim B is justified simply by citing statement A. 

In this type of expressions, the general rule according to which statement A is sufficient 

to conclude statement B is left implicit. In some cases (e.g. proofs appearing in 

specialized publications) this may be done under the assumption that this general rule is 
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obvious to the reader, and therefore it would be superfluous to mention it. In other cases 

(e.g. proofs appearing in undergraduate mathematics textbooks) this may be done with 

the expectation that readers work out for themselves what are these general rules. 

Assessing whether or not readers know these implicit, general rules, may involve asking 

the readers to make these rules explicit (e.g. “which one of the following general rules 

justifies [claim of the form ‘Since A, then B’] in the proof?”) 

2. Identifying the specific data supporting a given claim (or backward justification). It is 

also common for proofs to include expressions of the form “Hence, C”, in which the 

claim C is justified by some unspecified subset of all the previous statements in the proof. 

For instance, the proof presented above includes the expression “Hence

! 

f (x) " 27 for all 

x”, leaving unspecified exactly which statements in the proof allow us to conclude the 

inequality. Oftentimes these claims are justified by statements immediately preceding 

them in the proof, but it is not uncommon to find that these claims are justified by 

statements in different parts of the proof. Assessing the extent to which a reader 

understands how a claim presented in this manner is justified may involve asking him or 

her to identify the specific statements within the proof that provide the basis for the claim 

(e.g. “which of the following statements in the proof allow the conclusion of [claim of the 

form ‘Hence, C’]?”) 

3. Identifying the specific claim that is supported by a given statement (or forward 

justification). Proofs often reach specific results, or state specific assumptions without 

specifying in an explicit manner how these results or assumptions are used in the proof. 

Therefore, another way of assessing this dimension of proof comprehension involves 

asking a reader to identify the exact place in the proof where a given piece of information 
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is employed as justification of new claims (e.g. “which of the following claims in the 

proof logically depend on the assertion that [specific proposition in the proof]?”). 

 

4.3 Logical Structure 

In a study of mathematicians’ validation of proofs, Weber (2008) found that mathematicians 

partitioned proofs, and understood the proof technique being used, by looking at what Selden and 

Selden (1995) referred to as a proof framework. Selden and Selden noted that a proof framework 

consists of the beginning and end of a particular proof (or in the case of a proof component, a 

sub-proof) that allow one to infer the statement being proven and the proof technique (e.g., direct 

proof, proof by cases) being used. For instance, in the proof given above, once it is established 

that its strategy is to analyze two components of the original function, the top-level logical 

structure of the proof could be described in terms of the following framework: 

 

Note that, as specified by Selden and Selden’s (1995) definition, this specific proof framework 

does not address detailed knowledge of the mathematical ideas in the proof (which would be 

needed to come up with the strategy in the first place and to fill in the blank spaces to complete 

the proof), but rather general knowledge about the overarching logical structure of the given 

strategy. 

  As Selden and Selden (2003) subsequently illustrated and Weber (2009) replicated, 

students often do not consider the proof framework of a proof they are reading, leading students 

to be unsure of what is being proven and unable to determine if a proof is correct. 
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  Assessing a reader’s comprehension of this top-level logical structure of a proof may 

involve identifying the role of a sentence or part of the proof framework, or the logical relation 

between two or more of these parts. For instance, in order to assess whether or not a reader of the 

proof given above understands the logical relation between the two main parts of its framework, 

one could ask: 

 

In general, assessing a reader’s comprehension of a proof’s top-level logical structure may 

involve: 

1. Identifying the purpose of a sentence within a proof framework. Certain sentences in 

proofs can be associated with general proof frameworks, or strategies. For instance, when 

reading a proof of a conditional statement that begins by assuming a denial of the 

consequent, one may suspect that the rest of the proof will follow by contraposition or 

contradiction. Or, when reading a proof of an existentially quantified statement that 

begins by defining a non-arbitrary mathematical object, one would expect this object to 

be the candidate that establishes the required existence. Therefore, one way of assessing 

the extent to which a reader comprehends the logical structure of a proof could involve 

asking him or her to identify the role played by this type of statement in the proof 

framework (e.g. “which of the following best describes the way in which [sentence of the 



Modeling the comprehension of proof in undergraduate mathematics 

proof framework] was used in the proof?” “which of the following best explains why the 

author of the proof states [sentence of the proof framework]”?). 

2. Identifying the purpose of a component of a proof framework. Another way of assessing a 

reader’s comprehension of a given proof’s framework may involve asking him or her to 

identify the role of a given part of the proof within its framework. (e.g. “which of the 

following statements best justifies the consideration of [specific case] in the proof?”) 

3. Identifying the logical relation of two components of a proof framework. Finally, like in 

the item given above, one could assess this dimension of proof comprehension by asking 

a reader to identify the logical relation between two or more components of a proof’s 

framework (e.g. “which of the following best describes the logical relation between [two 

or more parts of the proof framework]”? 

 

4. 4. Higher-level ideas 

Another dimension of proof comprehension involves compartmentalizing the proof into modules 

and chaining these modules to produce a proof summary that focuses on the higher-level ideas of 

the proof. This dimension is related to Leron’s (1983) notion of structured proofs, in which the 

ideas of a proof are arranged in levels of autonomous modules, where the top level “gives in very 

general (but precise) terms, the main line of the proof” (p.174). To Leron, identifying the main 

idea of a proof was critical to understanding it. Thurston (1994) emphasized the importance of 

this dimension in his description of proof comprehension as the process of unraveling its key 

ideas from the rigmarole employed to carry them out. The mathematicians interviewed by Weber 

(submitted) also stressed the importance of the big idea of the proof. As an illustration, the proof 

given above could be structured in the following modules: 
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The structure of these modules can be represented by the following diagram: 

 

 

 

                       

 

 

The assessment of a reader’s comprehension of the higher level ideas of a given proof may 

involve identifying summaries and sentences that capture these ideas. For instance, in the context 

of the proof given above, this assessment may include the following type of questions: 

Level 1 

Level 2 

Level 3.1 Level 3.2 

Level 4.1.1 Level 4.1.2 
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In general, assessing a reader’s comprehension of a proof’s higher-level ideas may involve: 

• Identifying a good summary of the proof. In this case, like in the item above, a reader is 

asked to provide or identify a summary of the proof that contains the ideas in the higher 

levels of the structured proof  (e.g. “which of the following is the best summary of the 

proof?”). 

• Identifying a good summary of a key module in the proof. In this type of assessment the 

reader is asked provide or identify a summary of a key module of the proof (e.g. “which 

of the following best summarizes why [significant result within the proof]?”). In terms of 

structured proofs, this could be interpreted as summarizing a given node in a given level. 

For instance, in the proof given above, one could ask a reader to identify a sentence that 

best summarizes the way the proof justifies that 

! 

4x
3
" x

4
# 27  (level 3.1). 
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4. 5. General method 

An important aspect of comprehending a proof involves identifying the procedures used in the 

proof and the ways in which these procedures can be applied (or re-interpreted) to solve other 

proving tasks. Rav (1999) argued that illustrating new methods was a primary reason for why 

mathematicians published proofs and read the proofs of others. Several other philosophers (e.g., 

Dawson, 2006; Avigad, 2006) have made similar claims. For instance, Bressoud (1999) argues 

that “[t]he value of a proof of a challenging conjecture should be judged, not by its cleverness or 

elegance, or even its ‘explanatory power’, but by the extent to which it enlarges our toolbox” (p. 

190). The mathematicians interviewed by Weber (submitted) all claimed that finding new 

techniques was one of the most important reasons for why they read the proofs of their 

colleagues. Hanna and Barbreau (2008) argued that illustrating methods is a very important 

reason for presenting proofs in mathematics classrooms. Weber (submitted) documented how 

illustrating techniques was a common reason that mathematicians presented proofs in their 

lectures. 

 This dimension of proof comprehension involves understanding the general line of attack 

used to prove the theorem (or in sub-proofs within the theorem), knowing when this method is 

applicable, and being able to apply it in other settings. Therefore, one way to assess this type of 

comprehension is to ask the reader to identify the general manner in which this method can be 

applied in other settings. For instance, in order to assess a reader’s comprehension of the general 

method employed in the proof given above, one could ask: 
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In general, there are at least two ways in which this dimension can be assessed: 

1. Transferring the proof method: This involves being able to successfully apply the method 

in the solution of a different argumentative task (e.g. “(Using what you have learned in 

the previous proof) prove that [similar theorem]”) 

2. Reinterpreting the proof method: This involves being able to identify the general manner 

in which the method of the original proof can be applied in a different proving task (e.g. 

Given a theorem T that can be proven using the method displayed in the original proof, 

ask “which of the following general procedures would you follow to prove T?”, or “how 

would you start proving T?”, or “which of the following lines in the proof would you 

have to modify to prove T?”) 

 

4. 6. Application to examples 

Comprehending a proof often involves understanding how the proof relates to specific 

examples—that is, being able to follow a sequence of inferences in the proof in terms of a 

specific example. Many of the mathematicians Weber (submitted) interviewed emphasized that 

this was an indispensable tool that they used to gain an understanding of a proof that they were 
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reading. One mathematician in this study said: “Commonly, if I’m really befuddled and if it’s 

appropriate, I will keep a two-column set of notes: one in which I’m trying to understand the 

proof, and the other in which I’m trying to apply that technique to proving a special case of the 

general theorem.” This is also the idea behind the generic proof presentation that Rowland 

(2001) advocates, and the idea of linking formal representations employed in a written proof to a 

reader’s informal understandings of the proof in terms of examples or pictures (Raman, 2003).  

In the context of the proof presented above, one could assess this type of comprehension using 

the following question: 

 

In general, one could assess readers’ understanding of this dimension by asking them to identify 

the way in which a sequence of inferences in the proof applies to a given specific example (e.g. 

“Using the ideas in the proof, which of the following statements best explains why [statement 

about a particular example]”?). 

 

5. Discussion 

5. 1. Limitations of the model 

The model in this paper contains six different dimensions along which one can assess an 
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individual’s understanding of a proof. We do not believe that these dimensions are necessarily 

exhaustive. Indeed, some of the mathematicians interviewed suggested other ways that a proof 

might be understood, such as seeing if the proof could be salvaged if a hypothesis of the theorem 

was removed. We chose the current six dimensions either because they appeared prominently in 

the literature, because they were emphasized by many of the mathematicians interviewed, or 

because they were appropriate for undergraduate mathematics classes. 

 

5. 2. Contributions of this paper 

This paper builds upon the work of Yang and Lin (2008) and Conradie and Frith (2000) in an 

important way. Conradie and Frith (2000) proposed specific questions that they used to assess 

students’ understanding of proof in their own classrooms. However, they did not provide a 

theoretical model that described the purposes of their questions, nor did they provide a method 

for teachers to generate their own questions to different proofs. 

Yang and Lin made an important contribution toward delineating students’ 

comprehension of a proof by proposing a four-level hierarchy of understanding. Their focus was 

on the first three levels, which dealt with the meaning of the statements within a proof and the 

logical structure of the proof that they presented. This is quite appropriate for proofs in a high 

school geometry course, which is the scope that Yang and Lin assigned to their model. However, 

in undergraduate mathematics courses, where the proofs become longer and more nuanced and 

more proof techniques are applied (proof by cases, proof by induction, and indirect proofs are 

common in undergraduate mathematics courses but rare in high school geometry), there are more 

sophisticated ways in which a proof can be understood. We incorporate Yang and Lin’s 

contributions to our model, but elaborate on other aspects of understanding a proof that are only 
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mentioned in passing or ignored by Yang and Lin, including understanding how components of a 

proof relate to one another, understanding the higher level ideas of a proof, being able to apply 

the method of the proof elsewhere, and applying the proof to a specific example.  

 

5. 3. Implications 

In this paper we have presented a multi-dimensional model of proof comprehension at the 

undergraduate level, and have illustrated ways in which each of these dimensions can be 

assessed. Delineating the ways in which proof can be understood has both practical and 

theoretical significance. At a practical level, a professor who can articulate specific learning 

goals when presenting a proof can emphasize its important components, and carefully targeted 

assessments can more accurately measure the extent to which his or her goals were reached. 

Furthermore, as Conradie and Frith (2000) point out, this type of assessment gives students an 

incentive to understand proofs at a deep level and focuses their attention on important aspects of 

the proof.  Also, as Conradie and Frith (2000) note, professors can better assess the quality of 

their lectures if they can understand what aspects of a proof students successfully understood and 

what aspects they did not. 

 For researchers, a means to assess students’ comprehension of proof can be essential for 

evaluating the effectiveness of mathematical instruction. For instance, structured and generic 

proofs are widely claimed to aid in students’ comprehension of proofs (e.g., Leron, 1983; 

Rowland, 2001), but these claims have not been empirically tested. Our model can be used to test 

whether (and in which ways) these types of proofs improve comprehension. 
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