
Proceedings of the 13th Annual Conference on Research in Undergraduate Mathematics 
Education 
 

The Role of Quantitative and Covariational Reasoning in Developing Precalculus Students’ 
Images of Angle Measure and Central Concepts of Trigonometry 

 
Kevin C. Moore 

Arizona State University 
kevin.c.moore@asu.edu 

 
The paper reports results from an investigation of a precalculus student’s conceptions of angle 
measure, a radius as a unit of measurement, and trigonometric functions. This study consisted of 
a teaching experiment conducted with students from an undergraduate precalculus course. The 
findings reported here focus on one student and reveal the importance of the ideas of angle 
measure and the radian for developing coherent understandings of trigonometric functions. 
Specifically, these ideas provided a foundation for one student developing coherent meanings 
and effectively reasoning about the geometric objects of trigonometry (e.g., right triangles and 
the unit circle) in relation to trigonometric functions. This study also reveals the importance of 
quantitative and covariational reasoning in supporting the student’s constructed understandings. 
 

Introduction 
Research on both students’ and teachers’ understandings of trigonometric functions 

reveals individuals having limited, fragmented, and deep-rooted understandings of trigonometry 
(Brown, 2005; Fi, 2003; Thompson, Carlson, & Silverman, 2007; Weber, 2005). Also, 
Thompson (2008) recently argued for the need to rethink the trigonometry curriculum such that 
coherence is promoted through leveraging common foundations (e.g., angle measure) between 
the various settings of trigonometry (e.g., the unit circle and right triangles). To further 
complicate the matter, research on students learning trigonometry is rather sparse. In an attempt 
to help fill this research gap, I designed a teaching experiment that was informed by research 
findings in trigonometry, curriculum suggestions, and research literature on reasoning I deemed 
critical to constructing trigonometric understandings (e.g., quantitative and covariational 
reasoning). 

The teaching experiment outlined in this paper involved three undergraduate precalculus 
students. In addition to discussing the design of the instructional sequence used in the teaching 
experiment, this paper reports findings from analyzing one student’s actions during the teaching 
experiment. The reported results focus on the student’s actions as he engaged in various tasks 
whose design was informed by the available research literature. Analysis of the student’s actions 
reveals the role of quantitative and covariational reasoning in his construction of flexible and 
coherent understandings of trigonometric functions. Also, the data reveals the foundational role 
of angle measure, and namely the radius as a unit of measurement, in constructing 
understandings of trigonometric functions. 

 
Theoretical Perspective 

Glasersfeld’s radical constructivism (1995) and Piaget’s theory of genetic epistemology 
(Chapman, 1988; Piaget, 2001) informed the design, implementation, and analysis of this study. 
Stemming from these perspectives, a researcher (or teacher) must consider another individual’s 
knowledge as fundamentally unknowable. Knowledge is gained through individual experiences, 
where the experiences are entirely unique to the individual. Also, this knowledge is not of 
anything; there is no one-to-one correspondence between what knowledge is of and the 



knowledge itself. Rather, knowledge is what comes together through the processes of an 
individual altering his or her knowing (mental schema) in response to a cognitive perturbation or 
disequilibrium. 

As defended by Jean Piaget, reflection is a major aspect of learning and possibly the most 
important aspect of building knowledge. Reflection attributes learning to the ability of the mind 
to “stand still” and attempt to make sense of an experience. In addition to the idea of reflection, 
Piaget and Glasersfeld identify the notion of abstraction, which is made possible through the 
comparison, separation, and connection of experiences. Through the mental activities of 
reflection and abstraction, the reorganization and construction of cognitive structures is achieved. 
Again, it is important to emphasize that these processes are completely dependent on the 
individual and are unseen by any other observer. Also, note that an individual’s experiences 
depend on the current model of knowing of the individual. This current model defines the 
experience. 

An implication of considering an individual’s knowledge as fundamentally unknowable 
is that a researcher can only construct tentative models of a subject’s knowledge. Due to the 
autonomy of a subject’s knowledge, a researcher must construct, test, and refine models of a 
subject’s mathematics, where each iteration is intended to result in a more viable model than the 
previous model. This approach to researching student understandings forms a central aspect of a 
teaching experiment. 

 
Background 

The study discussed in this paper builds on a previous investigation into students’ 
conceptions of angle measure (Moore, 2009), where the study discussed here sought to further 
investigate the role of quantitative and covariational reasoning relative to trigonometric 
functions, as well as angle measure. Although the current research literature available in 
trigonometry is sparse, the studies that are available consistently report teachers and students 
having difficulty constructing coherent and flexible understandings of trigonometric functions 
and topics foundational to trigonometry. 

Research commonly reveals both students and teachers having fragmented and under-
developed conceptions of angle measure (Akkoc, 2008; Brown, 2005; Fi, 2003; Moore, 2009). 
These investigations report teachers lacking meaningful understandings of the radian as a unit of 
angle measure and that teachers are much more comfortable with degree measurements. For 
instance, Fi (2003, 2006) observed teachers trivially converting between radian and degree angle 
measures, but these teachers were unable to give a well-defined description of radian measure 
beyond this conversion. Also, multiple studies (Akkoc, 2008; Fi, 2003, 2006; Tall & Vinner, 
1981; Topçu, Kertil, Akkoç, Kamil, & Osman, 2006) report teachers not viewing π as a real 
number when discussed in a trigonometric context. Rather, these teachers were observed 
graphing π radians as equal to 180 (the number, not degrees), where other teachers described π as 
the unit for radian measurements (e.g., a radian is so many multiples of π). 

In response to the limited mathematical understandings often constructed by teachers, 
Thompson, Carlson, and Silverman (2007) focused on engaging teachers in tasks designed to 
necessitate their re-conception of the mathematics they teach. The authors (Thompson, et al., 
2007) argue that the teachers involved in the study held strong commitments to the meanings 
they had attached to their high school curriculum. For instance, the teachers were attached to 
introducing trigonometry using right triangles, rather than angle measurement and the unit circle. 
In this case, the teachers’ previous understandings dominated what the teachers imagined 



themselves teaching even after the authors’ brought to the teachers’ attention the incoherence of 
their meanings. 

In another valuable study, Weber identified that students were unable to discuss various 
properties of trigonometric functions or estimate the output values of trigonometric functions for 
various input values. The author argues that a limitation to this group of students was that they 
lacked the ability to construct the geometric objects needed to reason about trigonometric 
functions. For instance, the students could not approximate sin(θ)  for various values of θ. 
Instead, the students often stated that they were not given enough information to accomplish this 
task and that they needed an appropriately labeled triangle. As another example, when students 
were asked why sin(x)  is a function, not one of the students from a lecture-based class was able 
to provide a meaningful answer. This is consistent with research literature that reveals the 
difficulty of students constructing a process conception of function (Harel & Dubinsky, 1992; 
Oehrtman, Carlson, & Thompson, 2008). 

Weber’s study (2005) also discusses the results of an experimental course in 
trigonometry. Weber claims that the improved performance in the experimental course was tied 
to the students’ use of the unit circle. That is, students who showed improved performance often 
revealed reasoning that was context focused, which was enabled by their ability to construct 
these contexts. However, he is quick to note that not all approaches to trigonometry using the 
unit circle will result in improved student understandings. Rather, he stresses the importance of 
students understanding the process of creating the unit circle when constructing understandings 
of trigonometric functions. 

Although the research literature specific to trigonometry is limited, research in related 
areas of mathematics education offer further insights to the critical reasoning abilities necessary 
for constructing understandings of trigonometric functions. As previously mentioned, developing 
a process conception of function has been shown to be a difficult task for students (Harel & 
Dubinsky, 1992; Oehrtman, et al., 2008). Reasoning about a function as a process is critical in 
trigonometry, as the output of the functions cannot be trivially computed by hand. 

Engaging in covariational reasoning has also been shown to be a difficult, but highly 
important way of reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Oehrtman, et al., 2008). 
As trigonometric functions formalize covariational relationships, it is of the upmost importance 
that students develop the ability to reason covariationally in order to reason about the 
relationships referenced by trigonometric functions. Furthermore, if students are expected to 
reason covariationally about the relationships formalized by trigonometric functions, then it is 
inherently necessary that they conceive of the quantities composing these relationships. 

Quantitative reasoning (Smith III & Thompson, 2008) provides a model of the mental 
actions of an individual conceiving of a situation, constructing attributes that admit a 
measurement process composing his or her conceived situation (e.g., quantities), and reasoning 
about relationships between these constructed quantities. The quantitative structures that result 
from these actions can form a foundation upon which a student can reflect and construct 
understandings that an observer would call mathematical. Although critical, this process has been 
shown to be non-trivial and highly complex for students (Moore, Carlson, & Oehrtman, 2009). 

Lastly, Thompson (2008) argues for a rethinking of the trigonometry curriculum in order 
to promote coherence between the various settings of trigonometry. He suggests that this 
coherence can be gained through an appropriate approach to angle measure. In the case that 
students construct meaningful understandings of angle measure and the process of angle 
measurement, students can leverage these understandings to construct flexible and coherent 



understandings of trigonometric functions in the various settings they are introduced (e.g., the 
unit circle and right triangles). This outline by Thompson, in addition to the research findings 
and theories previously discussed, formed a foundation for the study presented in this paper. 

 
Conceptual Analysis of Trigonometry 

I imagine many would argue, and argue legitimately, that current approaches to 
trigonometry are already reliant on angle measure. However, this reliance does not necessarily 
imply that trigonometry is developed on foundations of angle measure, or that angle measure 
itself is fully developed such that it can be leveraged as a foundation to trigonometry. 
Thompson’s (2008) suggestion for leveraging angle measure to create coherence goes beyond 
simply placing a lesson of angle measure previous to trigonometric functions. Rather, the manner 
in which angle measure is developed must be taken as a significant factor in students 
constructing understandings of trigonometric functions. The understandings of angle measure 
students construct must be immediately and developmentally beneficial for learning. As a 
counter-example to this approach to coherence, the current draft of the Common Core State 
Standards Initiative suggests, “limit[ing] angle measures to degrees” in right triangle 
trigonometry contexts (2009, p. 15). In practice this may reduce the cognitive load for students 
when constructing understandings of trigonometric functions in right triangle contexts. However, 
an approach grounded in this suggestion may not offer coherence between unit circle 
trigonometry and right triangle trigonometry, particularly in light of the research findings 
previously presented. 

Conceptual analysis is a learner-centered tool to help achieve this difficult goal of 
coherence (Thompson, 2008). Two interrelated uses of conceptual analysis are 1) describing 
ways of knowing that are immediately and developmentally beneficial for learning and 2) 
analyzing ways of understanding a body of ideas based on describing the coherence between 
their meanings, where coherence refers to both compatibility and support of ideas. These two 
uses of conceptual analysis provide a tool for determining instructional goals and the 
development of curriculum, both of which are elements of the discussed study. 

I now briefly present a system of ideas of angle measure and trigonometric functions in 
order to provide an example of a conceptual analysis of a topic. This conceptual analysis drove 
the design of this study, and namely the design of the instructional and interview tasks. I also 
must acknowledge that much of this conceptual analysis is based on the groundwork laid by 
Thompson (2008) and Thompson, Carlson, and Silverman (2007). I note that a similar 
conceptual analysis is presented in a previous study into student conceptions of angle measure 
(Moore, 2009). This conceptual analysis is rehashed here in order to situate the data analysis 
within the instructional goals driving the teaching experiment. 

A central goal of the study was to support the subjects in constructing an understanding 
of the process, or derivation, of angle measure. This can be accomplished by approaching the 
process of angle measure in terms of measuring the length of an arc subtended by the angle as a 
fraction of the circumference of that circle. So, the degree is a unit of angle measurement that 
refers to an angle subtending 1/360th of any circle’s circumference, and the radian is a unit of 
angle measurement that refers to an angle subtending 1/(2π)th of any circle’s circumference. Both 
units of measurement have a fixed total number of units that rotate through any circle’s 
circumference centered at the vertex, and measuring the openness of an angle involves 
determining the fraction of the total circumference of a circle and how many of the total units 
correspond to this fraction. Thus, if x degrees or r radians are subtended by an angle, both 



measurements correspond to the same fraction or percentage of a circle’s circumference, yielding 

� 

x /360 = r /2π . 
In addition to an arc length’s fraction of a circle’s circumference, an angle measurement 

made in a number of radians describes a multiplicative comparison between a length (e.g., arc 
length) and the length of a radius. Thus, if an angle has a measurement of 2 radians, the length of 
the arc subtended by the angle is twice the length of a corresponding radius. Or if an angle has a 
measurement of π/4 radians, the length of the arc subtended by the angle is π/4ths the length of a 
corresponding radius. Note that the focus here remains on a quantitative relationship between the 
arc length subtended by the angle and a second quantity (in this case the radius), opposed to a 
position or label on the unit circle. 

In order to leverage an image of angle measure as a subtended arc, as well as the radius 
as a unit of measurement, the sine and cosine functions can be introduced within the context of 
circular motion. The cosine and sine functions can be explored as functions that have an input of 
angle measure, in radians, and an output that is a fraction, or percentage (in decimal form), of 
one radius. The output of the cosine function is the abscissa of the terminus of the arc subtended 
by the angle and the output of the sine function is the ordinate of the terminus of the arc 
subtended by the angle, with both measured as a fraction of one radius. This definition, along 
with the ideas presented above, allows the development of the cosine and sine functions 
coherently in each context (Figure 1); the cosine and sine functions have an input of angle 
measure, measured in radians, and output length measured as a fraction of a radius (where the 
hypotenuse of a right triangle forms a radius). The outputs of the cosine and sine functions are 
measurements formed by a multiplicative comparison regardless of the context. Furthermore, if 
the radius (length of the hypotenuse) is held constant and the angle measure varies, then the 
output values of the cosine and sine functions vary accordingly. 

 
Figure 1 

 
This approach additionally enables a student to leverage the radius as a unit of 

measurement relative to a circle of any radius length. By reasoning about a circle’s radius as a 
unit of measurement for both positions and arcs, all circles can be conceived as having a radius 
of one unit and a circumference of 2π units (e.g., the unit circle). 

Overall, this presented system of ideas, in addition to the research findings discussed 
above, formed a foundation for the design and analysis of this study. This study sought to 
determine the understandings constructed by students as they interacted with tasks designed to 
promote these ways of reasoning. 

 
 
 



Methodology 
The purpose of this study was to gain insights to the role of quantitative and covariational 

reasoning in a student’s construction of understandings of trigonometric functions and topics 
foundational to trigonometry. 

Subjects and Setting 
The results presented in this paper focus on one student, Zac. At the time of the study, 

Zac was enrolled in an undergraduate precalculus course at a large public university in the 
southwest United States. The precalculus classroom was part of a design research study where 
the initial classroom intervention was informed by theory on the processes of covariational 
reasoning and select literature about mathematical discourse and problem-solving (Carlson & 
Bloom, 2005; Carlson, et al., 2002; Clark, Moore, & Carlson, 2008). The head of the precalculus 
curriculum design project was the instructor of the course. The subject was chosen on a volunteer 
basis and the subject was monetarily compensated for his time. 

Zac was a full-time student at the time of the study. Zac was a Caucasian male in his 
early-twenties, an ethnomusicologist and audio technology major, and received a “B” as his final 
grade. Additionally, Zac did not plan on taking any math courses beyond his current precalculus 
course. 

Data Collection Methods 
The researcher (myself) withdrew Zac and two other volunteer students from the 

precalculus classroom in order to perform a teaching experiment (Steffe & Thompson, 2000) 
consisting of eight ninety-minute sessions. During the classroom sessions, the researcher acted as 
the subjects’ instructor. Also, the teaching sessions occurred over a four-week period. Each 
teaching session included all three subjects, the researcher, and a fellow colleague as an 
observer. Immediately after each session, the researcher debriefed with the observer to discuss 
various observations during the teaching sessions and possible refinements to make to the future 
teaching sessions and interviews. 

The design of the study also included a 60-minute pre-interview with Zac. The intention 
of this interview was to gain insights to Zac’s understanding of angle measure upon entering the 
study. The pre-interview followed the design of a clinical interview (Clement, 2000) and 
Goldin’s (2000) principles of structured, task-based interviews. 

Exploratory teaching interviews totaling four hours were conducted with Zac throughout 
the study. Specifically, a two-hour interview occurred after the fourth teaching session and a 
second two-hour interview occurred after the final teaching session. The purpose of these 
interviews was to gain additional insights into the developing conceptions of Zac as he 
progressed through the instructional sequence. The interviews followed Goldin’s (2000) 
principles of structured, task-based interviews with one significant addition: the interviews also 
involved instruction and the posing of additional questions based on the actions of the subject. 
This offered the researcher an opportunity to implement tasks “on the fly” as his model of Zac’s 
understandings evolved. This enabled the researcher to gain additional insight to the possible 
limitations in Zac’s current ways of thinking and the necessary reasoning abilities to overcome 
these limitations. 

All interviews and teaching sessions were videotaped and digitized. Upon completion of 
the study, video data was first transcribed and analyzed following an open and axial coding 
approach (Strauss & Corbin, 1998). The researcher analyzed Zac’s behaviors in an attempt to 
discern the mental actions behind his observable behaviors. The researcher then attempted to 



identify patterns or connections between these actions, and the role of quantitative and 
covariational reasoning in the subject’s actions. 

 
Results 

Analysis of the interviews and teaching sessions offered insights to Zac’s constructed 
understandings over the course of the study. In this section, I first describe his conceptions of 
angle measure upon entering the study. I then present data illustrating his constructed 
understandings of angle measure and trigonometric functions as a result of his interactions with 
the instructional and interview tasks. During this discussion, I also identify the role of 
quantitative and covariational reasoning in his constructed understandings. 

Initial Conceptions of Angle Measure 
Upon entering the study, Zac held a self-admitted limited understanding of angle 

measure. Although Zac had completed precalculus in high school and calculus I at a different 
university, he claimed, “I never really thought about [angle measurement].” Also, when 
presented with specific angle measures (e.g., one degree), Zac had difficulty explaining the 
meaning of the measurements. Zac’s explanations ranged from referencing properties of various 
geometric objects to vaguely identifying arcs and areas between two lines. For instance, Zac 
discussed two perpendicular lines having ninety degrees and a straight line as one hundred and 
eighty degrees. Although he alluded to areas and arcs between the two lines, he was unable to 
provide a meaning of angle measure that included a systematic process that the measurement was 
based on. 

In light of Zac’s difficulties, he was given the supplies of a compass, waxed yarn, and a 
ruler and then asked to measure an angle during the pre-interview. Zac immediately responded 
that he could not accomplish the task, further illustrating his lack of a systematic process of 
measuring an angle. During Zac’s engagement with this task, he also referenced the tool of a 
protractor. Zac described, “they have…a [protractor] that’s already designed out, show’s you 
where all the angles are.” An important aspect of this description is Zac’s reference to a 
protractor showing “where the angles are.” Such a statement is consistent with an individual 
focusing on objects and the positions of lines without a systematic coordination of quantities 
(e.g., quantifying an arc length’s fraction of a circle’s circumference). 

Although Zac did not provide an explanation of the process of measuring an angle 
relative to measureable attributes and relationships between these attributes, he was able to solve 
a problem that explicitly identified an arc length. The presented problem prompted Zac to 
determine an unknown angle measurement that corresponded to an individual traveling 32 feet 
around a Ferris wheel with a radius of 51 feet. When solving this problem, Zac explained that 
ninety degrees corresponded to one fourth of the circumference. Zac then computed one fourth 

of the circumference (80.1 feet) and constructed the equation 
90
80.1

=
x
32

, subsequently solving 

for a correct angle measure of 35.95 degrees. 
After the researcher prompted Zac to explain his solution, Zac claimed, “Well it’s just, if 

you’re given three variables and you just need one more…it gives you three of the four you need. 
It’s a very easy equation to find a fourth.” It light of Zac’s actions, it appears that his solution 
method was mostly grounded in the “type” of problem and performing calculations. That is, 
Zac’s constructed equation was a result of encountering a problem in which he was given three 
known values and one unknown value. Although on the surface his equation appears to imply 
some form of proportional reasoning, Zac’s calculational focus implies that the equation was not 



a reflection of quantitative relationships. This was further emphasized when the researcher asked 
Zac to interpret one of the ratios of his constructed equations. In response, Zac immediately 
calculated the ratio and explained that he could multiply by the third given number to obtain the 
answer. As the researcher continued to probe Zac, Zac’s descriptions of the two ratios did not 
include referencing the quantities of the situation. 

In summary, Zac’s actions during the pre-interview revealed an apparent lack of a 
systematic process of angle measurement. Although Zac alluded to various attributes (e.g., arcs 
and areas) and geometric objects (e.g., lines), he did not appear to reason explicitly about 
quantities (e.g., attributes admitting measurement processes) and relationships between 
quantities. Also, when describing a protractor, Zac referenced that the protractor showed “where 
the angles are,” apparently reasoning about positions. Lastly, although Zac obtained a correct 
angle measurement when solving a problem, the reasoning driving his solution did not appear to 
be based on quantitative relationships. Rather, the “type” of problem led to his solution choice, 
and Zac did not explain a quantitative meaning behind his solution process even after the 
researcher specifically focused Zac on explaining the meaning of a ratio he constructed. 

Constructed Conceptions of Angle Measure 
In response to Zac’s suggested use of a protractor and lack of a systematic process of 

angle measurement, the researcher designed and implemented an activity during the first 
classroom session that prompted Zac to construct a protractor. Additionally, the task required the 
construction of a protractor for multiple units of measurement in order to provide Zac the 
opportunity to reflect and identify a common structure of these various units. 

Zac was first asked to construct a (half circle) protractor such that 8 units (named gips) 
rotated through a full circle1. Zac initially claimed dividing “it” in half would result in a 
measurement of two gips. After the researcher asked Zac to explain this division, Zac described, 
“the protractor, I just drew a line down the middle and that gives me two gips.” During this 
interaction, Zac appears to focus on breaking up the object, rather than the perimeter, of the 
protractor into two equal pieces leading him to approximate a vertical line that went down the 
“middle” of the protractor. 

Zac’s focus on the entire object of the protractor presented difficulties when he attempted 
to construct a measurement of one gip. Although Zac identified a goal of creating two equal 
“pieces” of the protractor, he had difficultly accomplishing this goal. As he continued to have 
difficulty creating the protractor, the researcher decided to intervene with a question intended to 
refocus Zac’s actions. Zac had correctly identified the mark for two gips by breaking the object 
of the protractor into two pieces, but his method was based on estimating the “best” line to create 
two equal pieces, or areas. Thus, the researcher asked Zac for a method to determine if the 
original line marking two gips was in the correct location. Zac responded that he could 
“measur[e] out the perimeter,” while subsequently suggesting a calculation to determine the 
number of centimeters of arc length per one unit of angle measurement. As a result of the 
researcher’s questioning, Zac’s actions began to shift to identifying various measurable arc 
lengths and relating these to a number of units of angle measurement. 

Although Zac correctly identified a measurement of arc length that corresponded to a unit 
of angle measurement, another instructional goal was to promote Zac reasoning about an angular 

                                                 
1 The problem statement left the term “circle” undefined in order to promote a discussion that 
distinguished the measurement of the circumference of a circle from the measurement of the area 
of a circle. 



unit of measurement in relation to the entire circumference of a circle. In order to foster this 
reasoning, the researcher posed multiple ratios (e.g., each ratio represented one-fifteenth of a 
circle’s circumference) of arc lengths (measured in centimeters) relative to the corresponding 
circumferences of circles (measured in centimeters), where each arc length corresponded to the 
same unit of angle measurement. The researcher also posed the ratio of 1/15. After Zac 
calculated the numerical value of each ratio, the researcher asked Zac to interpret the results of 
these calculations, with the expectation that Zac would explain a quantitative meaning of the 
ratios. 

Zac then described, “You are taking one-fifteenth of the full circumference, then dividing 
it by the full circumference.” Thus, when interpreting the presented ratios, Zac conceived of each 
expression’s numerator as a measurement of one-fifteenth of the corresponding circumference 
(the denominator). Thus, it appears that Zac conceived of the numerator and denominator of each 
ratio as representing measurements of quantities, while also conceiving of the ratio as a 
multiplicative comparison between these two measurements. After discussing this phenomenon 
relative to an angle measurement of one quip2, the researcher returned Zac to an angle 
measurement of one degree. Zac immediately explained that one degree corresponds to an angle 
subtending “one-three hundred and sixtieth of a circle’s circumference,” adding that this was true 
for any circle centered at the vertex of the angle. 

In summary, Zac’s actions relative to constructing a protractor imply that Zac 
reconstructed of his image of angle measurement, and specifically degree measurement, such 
that angle measures implied a quantitative relationship. Zac reasoned about the process of 
measuring an angle as measuring a subtended arc length as a fraction of a circle’s circumference. 
This understanding required that Zac conceive of an angle subtending an arc length that was 
measureable relative to the circumference of the circle. Through the action of constructing 
protractors in various units, with the researcher prompting Zac to reflect on this process and the 
quantitative meaning of various calculations, Zac began consistently describing angle measure as 
quantifying a fraction, or percentage, of a circle’s circumference cut off by the angle. 

After Zac constructed an understanding of degree measurement that appeared consistent 
with the instructional goals (e.g., measuring a fraction of a circle’s circumference subtended by 
the angle), Zac engaged in an activity prompting him to i) construct a circle using a piece of 
waxed yarn as the radius of the circle and ii) measure the circumference of the circle in a number 
of yarn lengths. Zac’s engagement in this activity resulted in him conceiving of 2π radius lengths 
rotating through a circle’s circumference. Following this exploration, the researcher asked Zac to 
discuss the validity of the radius as a unit of angle measure. Zac responded, “it simplifies a 
circle…the circumference of a circle is equal to two pi r, where the radius is the unit, not inches, 
or anything like that. So it simplifies it…using it as an actual unit… one radius, and then the 
circumference is six point two eight radius.” Zac’s actions imply that he conceived of the radius 
“as an actual” unit for measuring an arc, which enabled Zac to conceive of 2π radii rotating 
through any circle’s circumference. Additionally, Zac identified a circle as having a radius of 
“one radius.” Thus, Zac’s ability to construct and measure various quantities in a number of radii 
enabled him to conceive of all circles having a radius of “one radius” and a circumference of “six 
point two eight radius” (e.g., the unit circle). 

                                                 
2 A measurement of one quip corresponds to an angle that subtends one-fifteenth of a circle’s 
circumference. 



As Zac continued through the study, he consistently leveraged his ability to construct 
subtended arc lengths that were measurable relative to the circumference and radius of a circle. 
For instance, when presented with a measurement of 2.2 radians, Zac first constructed a diagram 
(Figure 2) and then explained, “it means that the angle length…right here (tracing arc length) is 
equal to two point two radius lengths.” 

 
Figure 2 

 
In this case, Zac’s ability to reason about an arc length as measurable in a number of radius 
lengths enabled him to interpret the given measurement without converting to a number of 
degrees while constructing an angle of the corresponding openness. In a similar manner, Zac 
explained that a measurement of 0.5π radians corresponded to “pi halves radius lengths,” while 
subsequently approximating this as 1.57 radius lengths. 

Zac’s ability to reason about angle measurements reflecting a fraction of a circle’s 
circumference subtended by an angle also enabled him to flexibly convert between units of angle 
measurement. As an example, during the interview conducted after four teaching sessions, Zac 

constructed the equation 
35
360

=
x
2π

 to convert 35 degrees to a number of radians. Recall that 

during the pre-interview, Zac constructed a similar equation (e.g., three known values, one 
unknown value) while providing a procedural explanation. Contrary to his explanation during the 
pre-interview, Zac supported his angle conversion by explaining, “Well what you're doing is just 
technically finding a percentage. Like thirty-five over three sixty is…nine point seven percent of 
the full circumference…so thirty-five of those degrees equals nine point seven percent…so all I 
have to do is multiply nine point seven percent by two pi.” In this case, Zac’s solution appears to 
be driven by his ability to reason about angle measure as conveying the fraction of a circle’s 
circumference subtended by the angle. This enabled Zac to reason that the same percentage of 
360 degrees and 2π radians were subtended by an angle, with his constructed ratios reflecting 
this quantitative relationship. 

Lastly, Zac’s ability to conceive of measuring an arc length as a fraction of the radius 
appears to have entailed reasoning indeterminately about this quantitative relationship. As an 
example, consider Zac’s actions on The Arc Problem, which prompted him to construct an 
algebraic relationship that was not formalized during the classroom sessions. 

The Arc Problem 
Using the following diagram, determine an algebraic relationship between the measurements 
r, 

� 

θ , and s. 
  s 

r 

r 

� 

θ
 



 
After reading the problem statement, Zac claimed that the angle measurement was in 

radians and proceeded to construct an algebraic representation (Excerpt 1). 
Excerpt 1 
1 
2 
3 
4 
5 

Zac: Alright. We'll say theta equals radians (writing θ = rad ), very very 
simple then. r theta is equal to s (writing rθ = s ). 'Cause theta is in 
radians, that means a percentage of the radius. Which would then be 
equal to this length (tracing arc length). So you multiply the percentage 
of the radius by the radius, you'll get the arc length. 

 
During this explanation, Zac appears to leverage his ability to reason indeterminately 

about measuring an arc length as a fraction of the radius. This reasoning resulted in Zac 
constructing an algebraic representation reflecting his constructed quantitative relationship 
corresponding to measurements in radians. Zac offered further insights to this quantitative 
relationship when the researcher asked him to explain the formula θ = s / r . Zac explained, 
“Well this is…a ratio, that’ll give you a percentage of r.” This explanation reveals Zac 
describing a presented formula relative to the quantities of the situation, rather than a procedural 
calculation (e.g., dividing both sides of the previous formula by r). Thus, it appears that his 
ability to reason about measuring an arc length as a fraction of the radius enabled him to 
construct meaningful algebraic representations between indeterminate measurements of these 
quantities. 

In summary, over the course of the study Zac appears to have constructed a very flexible 
understanding of angle measure. Zac’s understandings also appear to have stemmed from him 
conceiving of the process of measuring subtended arc lengths relative to the circumference or 
radius of a circle. This enabled him to construct understandings of various units of measurement 
that were rooted in quantitative relationships based on indeterminate values. As he attempted 
various tasks, Zac was able to leverage these reasoning abilities to reason about various angle 
measurements, convert between various angle measurement units, and construct solutions and 
algebraic relationships rooted in quantitative relationships. 

Constructed Conceptions of Trigonometric Functions 
In order to leverage Zac’s ability to reason about a measurable arc length and the radius 

as a unit of measurement, the researcher designed an exploration of circular motion to promote 
Zac constructing the sine (and cosine) function. The context consisted of a bug traveling counter-
clockwise on the tip of a 3.1-foot fan blade, and was thus named The Fan Problem. Also, the bug 
began from the standard position (e.g., 3 o’clock). 

After the path of the bug was identified as a circle, Zac described that for a specific arc 
measurement in radians, the linear measurement of the arc would increase for an increasing 
radius, but the arc length’s percentage of the radius would remain constant. Thus, relative to the 
context of circular motion, it appears that Zac’s ability to reason about measuring an arc as a 
fraction of the radius promoted him conceiving of measuring the bug’s distance traveled as a 
fraction of the radius of the fan. 

Next, the researcher asked Zac to generate a graph relating the vertical distance of the 
bug above the horizontal diameter (referred to as vertical distance from this point forward, 
unless stated otherwise) with the distance traveled by the bug. Initially, Zac generated a graph 
with the output measured in feet and the input measured in radians. Also, Zac’s graph 
perceptually resembled a graph of the sine function. 



In order to further investigate the quantitative relationships conveyed by the graphs, the 
researcher asked Zac to explain the “shape” of his graph. Also, previous to the Zac’s 
descriptions, the researcher added a graph composed of three linear segments conveying the 
same directional covariation (Figure 3) as his constructed graph. The researcher intended that 
this would promote Zac contrasting his graphical relationship with a linear relationship. Relative 
to the researcher’s constructed graph, Zac responded that a constant rate of change implied that 
for an equal change of total distance traveled, the vertical distance changes by a constant amount. 
He subsequently claimed that the relationship between the vertical distance and distance traveled 
was not linear. 

 
Figure 3 

 
In order to verify his conjectured graph, Zac suggested considering equal changes of 

distance traveled by the bug while comparing the changes in vertical distance. This suggestion 
resulted in the researcher using the diagram of the situation, along with prompting from Zac, to 
identify that the change in vertical distance was decreasing for equal changes of total distance 
over the first quarter of a revolution. 

As the discussion continued, Zac also distinguished between the vertical distance and a 
change of vertical distance, identifying that the vertical distance approached zero while the 
change of vertical distance increased over the second quarter of a revolution. Zac continued his 
description by stating that the vertical distance decreased at a decreasing rate for the third quarter 
of a revolution, while supporting this description by identifying that for equal changes of arc 
length over the third quarter of a revolution, “the change in vertical distance is going to get 
smaller.” 

Zac’s actions imply that he conceived of both the vertical distance and the change in 
vertical distance as two separate, but measureable and related quantities. It also appears that 
Zac’s ability to reason about a traversed arc as a measureable attribute enabled him to imagine an 
object traveling on a circular path while covarying a vertical distance with the total distance 
traveled around this path. This imagery enabled Zac to reason about amounts of change of 
vertical distance and how these amounts of change were changing relative to equal changes of 
arc length. Additionally, as Zac gave these descriptions relative to the situation, the researcher 
verified this covariation on Zac’s constructed graph. 

Next, the researcher chose to pursue the implications of Zac’s chosen measurement units 
relative to the constructed graphical representation. The researcher presented a graph that was 
identical in its perceptual features except that the graph had maximum and minimum output 
values of one and negative one, respectively (e.g., the graph of the sine function). After 
constructing this graph and asking Zac to explain the output units of the graph given that it 
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conveyed the same covariational relationship as the previous graph, Zac immediately suggested 
“the radian” as the output unit. Zac also supported this conjecture by identifying the locations 
where the bug was zero radius lengths and one radius length vertically from the center of the 
circle. 

Subsequently, the researcher asked Zac how the outputs of the two graphs were related. 
Zac immediately explained, “multiply the percentage of the radius by the radius length.” Thus, it 
appears that Zac’s ability to reason about measuring a length relative to the radius enabled him to 
quickly identify the radius length as a possible unit of measurement for various measureable 
attributes of circular motion. In this case, Zac conceived of measuring both a vertical distance 
and a traversed arc length relative to the radius. 

In summary, Zac’s engagement on The Fan Problem revealed that his ability to conceive 
of measuring an arc length in a number of radius lengths formed a foundation for the 
construction of the sine function. To say more, Zac was able to reason about equal changes of arc 
length while comparing the corresponding changes of vertical distance. This promoted the 
construction of a graph that was rooted in a quantitative relationship. Zac also conceived of 
measuring these quantities in multiple units, while his described relationships between these 
units appears to have stemmed from reasoning about a multiplicative comparison between a 
length and the radius. 

Zac’s ability to reason about measuring a length as a fraction of the radius also led to him 
converting to a linear unit of measurement as needed. For instance, after the previous 
interactions, the researcher formalized the graph of the sine function as f (θ) = sin(θ) . Zac then 
suggested that the graph he produced corresponded to the algebraic representation of 
g(θ) = 3.1sin(θ) , explaining that multiplying the output of f by the radius length in feet would 
give an output in feet. Also, Zac was able to give this description without calculating a specific 
value of sin(θ)  and multiplying this value by the radius. Thus, Zac’s constructed quantitative 
relationship may have promoted Zac constructing a process conception of the sine function. As a 
result, Zac was able to reason that the measurement of the output quantity in a linear unit should 
be the same percentage of the radius length measured in that unit. 

As The Fan Problem was conducted in a setting with all three subjects, Zac was prompted 
to engage in a similar task during an interview session. The researcher designed The Ferris 
Wheel Problem such that it would offer additional insights to the mental actions driving Zac’s 
behaviors on The Fan Problem. 

The Ferris Wheel Problem 
Consider a Ferris wheel with a radius of 36 feet that takes 1.2 minutes to complete a full 
counter-clockwise rotation. April boards the Ferris wheel at the bottom and begins a 
continuous ride on the Ferris wheel. Construct a graphical and algebraic relationship that 
relates the total distance traveled by April and her vertical distance from the ground. 
 

After reading the task statement, Zac described, “her vertical distance from the ground,” 
paused, and traced a portion of the circle beginning at April’s starting position. He then 
identified April’s furthest distance from the ground during her ride. These actions by Zac imply 
he was constructing an image of the relationship between the quantities that he was attempting to 
relate. Zac then drew a larger diagram of the Ferris wheel, which he subsequently used to 
describe the covariation relationship between the two quantities (Excerpt 2). 

 



Excerpt 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Zac: Ok. So a really easy way to do this is divide it up into four quadrants 
(divides the circle into four quadrants using a vertical and horizontal 
diameter). 'Cause we’re here (pointing to starting position), for every 
unit the total distance goes (tracing successive equal arc lengths), the 
vertical distance is increasing at an increasing rate (writing i.i.)…Then, 
uh, once she hits thirty-six feet, halfway up, it's still increasing but at a 
decreasing rate (tracing successive equal arc lengths, writing i.d.)…Uh, 
then when she hits the top, at seventy-two, it's decreasing at an 
increasing rate (tracing successive equal arc lengths, writing d.i.)…And 
then when she hits thirty-six feet again it's still decreasing (making one 
long trace along the arc length), but at a decreasing rate (tracing 
successive equal arc lengths, writing d.d.). 

Int: Ok, so in terms of this one, this quadrant (pointing to the bottom right 
quadrant), could show me on there how you know it's increasing at an 
increasing rate? Just show using the diagram... 

Zac: So like, a, she moves that much there (tracing an arc length beginning at 
April’s starting position), that much here (tracing an arc of equal length 
over the last portion of April’s path in that quadrant), uh, the vertical 
distance there changes by that much (tracing vertical segment on the 
vertical diameter), which is really hard to see with this fat marker. And 
then, uh, the vertical distance here changes by that much (tracing 
vertical segment from the starting position of the second arc length), 
which is a much bigger change. 

Int: Ok. 
Zac: And then, you know, you can do the same for all of them. 

 
Similar to Zac’s actions during The Fan Problem, Excerpt 2 reveals him reasoning about 

a traversed arc length while describing variation in the vertical distance of April from the ground. 
Also, although Zac was asked to create a graph, Zac’s descriptions first focused on the context of 
the problem. For instance, in order to support his rate of change description (lines 1-12), Zac 
identified equal changes of arc length on his diagram while comparing corresponding changes of 
vertical distance (lines 17-24). Finally, Zac described that the method he utilized in this first 
quadrant could be used for the other quadrants (line 26), implying he constructed a relationship 
between the quantities such that he was able to anticipate covarying the two quantities over the 
course of a revolution. 

Immediately after these actions, Zac constructed a graphical representation (Figure 4). 
During his construction of the graph, Zac described the directional change and rate of change of 
the vertical distance (from the ground). In light of these actions, it appears that the graph 
constructed by Zac emerged from his quantitative relationships revealed in Excerpt 2. 
Additionally, this approach by Zac may have been promoted by The Fan Problem exploration. 



 
Figure 4 

 
Zac then began constructing the corresponding algebraic representation to his graph. He 

first described, “…the total distance is the input to get the vertical distance,” appearing to 
identify an input quantity and an output quantity. At this time, Zac rotated his diagram of the 
situation counter-clockwise by ninety degrees. As he rotated his diagram, he explained, “’cause 
then I can actually make sine work.” Zac then paused for an extended amount of time, eventually 
stating, “I can still make sine work this way (referring to the initial orientation of the diagram).” 
This was followed by Zac explaining how he could “make sine work” (Excerpt 3). 
Excerpt 3 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
14 
15 
16 
17 
18 

Zac: But I can still technically make it work here just by taking, by making it, 
uh, the starting point (pointing to the bottom of the circle) sixty-nine 
point six, um, feet around the circle. Or one sixty-nine point six feet 
around the circle. Or negative fifty-six point five feet around the circle. 
So it's going backwards (tracing arc clockwise from the standard 
starting position to the bottom of the circle). 

Int: Ok. 
Zac: I can still get the vertical distance that way. Um, so ya (pause). So (long 

pause), that means, since I'm doing that, that means whatever the vert-, 
or total distance is, I have to subtract fifty-six point five from it. 

Int: Ok. 
Zac: So let's see, vertical distance (pause) is equal to f of total distance 

(writing), which is equal to total distance minus fifty-six point five 
(writing), which will get me there (pointing to the bottom of the circle). 
(pause) And how (inaudible), divided by thirty-six feet to get me 
radians. (pause) And then I take the sine of that. So sine, so that will 
give me this one (referring to first constructed graph, task two). 

 
By the completion of Excerpt 3, Zac constructed the algebraic representation of 

vd = f (Td) = sin (Td − 56.5)
36 ft

⎛
⎝⎜

⎞
⎠⎟

. Zac’s initial action of rotating his diagram appears to stem from 

his desire for the starting position of the individual to be at the standard position. However, after 
considering this action, he identified the position of the rider as measureable from the standard 
position along the circumference of the Ferris wheel (lines 1-6). This identified quantity enabled 



Zac to explain that this counter-clockwise measurement would always be 56.5 feet less than the 
individual’s distance traveled. As he continued, Zac converted the total distance to a number of 
radians in order to use this value as an input to the sine function (lines 16-18), an action likely 
stemming from his conception of the sine function taking an input measured in radians. 

At this time in the interview, Zac’s constructed algebraic representation was not 
mathematically consistent with his graph. Although he identified the correct argument for the 
sine function, Zac was yet to explicitly identify the output of the generated expression relative to 
the unit of measurement and the vertical distance being quantified. In order to gain additional 
insights to Zac’s conception of his constructed algebraic expression, the researcher prompted Zac 
to explain his expression an additional time. 

After Zac stated that the output of the sine is “the vertical distance,” Zac explained, 
“[sine] will give me a percentage of the radius length, which I then need to multiply by thirty 
six.” Thus, after the researcher asked Zac to further explain his constructed representation, Zac 
reflected on the output units of the sine function relative to the desired units of measurement, 
while reasoning about the output of the sine function as a fraction of the radius to alter his 

algebraic representation to vd = f (Td) = 36sin (Td − 56.5)
36 ft

⎛
⎝⎜

⎞
⎠⎟

. 

Next the researcher asked Zac to explain the distances related by the two representations. 
Zac claimed the distance traveled and “vertical distance,” and in response the researcher asked, 
“Vertical distance from where?” Consistent with Zac’s algebraic representations, he identified 
the vertical distance from the horizontal diameter of the Ferris wheel. Thus, it appears that Zac’s 
algebraic representation was a mathematically correct reflection of the two quantities he was 
relating at this time in the interview. Although the problem statement prompted him for an output 
measured from the bottom of the Ferris wheel, which he used as the output value of his graphical 
representations, Zac conceived of the vertical distance above the center of the Ferris wheel when 
constructing his algebraic representations. 

After the researcher prompted Zac to identify a “vertical distance” on his diagram, Zac 
claimed, “I was thinking about that actually…you’re gonna have to change the formula.” 
Immediately following this statement Zac altered his algebraic expression to 

vd = f (Td) = 36sin Td − 56.5
36

⎛
⎝⎜

⎞
⎠⎟
+ 36 . He justified this algebraic representation by comparing 

the vertical distance measured by his previous representation to the vertical distance requested in 
the problem statement (e.g., a difference of 36). 

Overall, Zac’s actions on The Ferris Wheel Problem were consistent with his actions on 
The Fan Problem. Throughout his solution process, Zac utilized the context of the situation to 
construct and (indeterminately) relate various quantities. Also, Zac’s ability to reason about a 
varying arc length while coordinating changes in a vertical distance enabled him to construct a 
graphical representation that was a reflection of this quantitative relationship. This reasoning 
further enabled Zac to support rate of change descriptions by focusing on amounts of change 
between two quantities, which has shown to be a difficult line of reasoning (Carlson, et al., 
2002). Finally, although Zac’s initial algebraic representation was inconsistent with his graphical 
representation, he was able to reflect on his image of the situation to continually refine this 
representation. As Zac reflected on his representations relative to the quantities they related and 
their output units, he was observed refining the quantities he was attempting to relate. Zac’s 
ability to reason about the sine function as formalizing an input-output process between two 



quantities also enabled him to alter his algebraic representation based on his constructed 
quantitative relationships. 

Trigonometric Functions and Right Triangles 
 To conclude this results section, I will briefly describe the reasoning abilities exhibited by 
Zac during a right triangle context. During the interview following the first four classroom 
sessions, he was presented with a problem prompting him to identify the height of a building 
given that he was standing 1000 feet from the base of the building and looking at the top of the 
building with a line of site of 56 degrees with respect to the ground. Also, at this time in the 
study, a right triangle had not explicitly been identified during the classroom sessions. 
 After constructing a right triangle to represent the context of the problem, Zac explained, 
“the hypotenuse is the radius,” and constructed a circle with a radius length equal to the 
hypotenuse. As a result of this conception, Zac explained the output values of both the sine and 
cosine functions as representing measurements relative to the hypotenuse (e.g., the trigonometric 
ratios), while explaining that the hypotenuse of the right triangle formed the radius of the circle. 
Thus, Zac’s actions on a problem presenting a right triangle context reveal him leveraging his 
ability to construct a circle using a length (the hypotenuse) as a radius and subsequently reason 
about measuring quantities relative to this length. This also led to Zac reasoning about the 
trigonometric functions as formalizing input-output relationships between various quantities of a 
right triangle context. 
 In addition to Zac correctly solving this problem by leveraging understandings 
constructed during the previous classroom sessions, he verbally expressed an awareness of the 
reasoning driving his actions (Excerpt 4). 
Excerpt 4 
1 
2 
3 
4 
5 
6 

Zac: I always just thought hypotenuse was, you know, just that side of a 
triangle. You know, you could use Pythagorean's Theorem to find out 
what it was very easily. And now that we've figured out, you know, now 
I'm looking at it and seeing it's the radius, it makes a lot more sense to be 
able to find, you know, the horizontal and vertical distance according to 
the radius (waving tip of pen across the radius). 

 
Although his feeling of things making “a lot more sense” could be argued to be a result of 

having multiple experiences with trigonometric functions, Zac’s justification for this feeling was 
very specific. Zac explained that he had not previously considered the hypotenuse to be anything 
other than a side of a triangle (lines 1-2), but now he understands the radius, or hypotenuse, as a 
unit of measurement (lines 4-6). Thus, it appears that an outcome of the instructional sequence 
was Zac finding coherence in reasoning about measuring quantities relative to the radius, or 
hypotenuse. 

 
Discussion and Conclusions 

Over the course of the study, Zac appears to have constructed an understanding of angle 
measure that he was able to leverage when reasoning about trigonometric functions. Zac’s ability 
to reason about the process of angle measure was central to this foundational understanding. 
Although Zac began with a self-admitted lack of understanding of angle measure, as Zac 
engaged in various tasks he conceived of quantities and relationships between quantities that 
enabled him to attach quantitative relationships to various units of angle measurement. These 
relationships between quantities (e.g., an arc length and the circumference or radius of a circle) 



also necessitated the construction of a circle centered at the vertex of the angle. The attachment 
of quantitative relationships to the various units of angle measure offered him much flexibility 
between units of angle measure. This resulted in Zac constructing meaningful angle conversions 
and formulas rooted in quantitative relationships. Moreover, Zac’s understanding of the radius as 
a unit of measurement appears to have resulted in Zac’s ability to spontaneously construct the 
unit circle. To say more, as Zac encountered various situations that included a circle, he 
conceived of measuring quantities relative to the radius, which resulted in him conceiving of any 
circle as a circle of a radius of one unit and a circumference of 2π radii. 

Zac’s ability to reason about a measurable arc length also enabled him to develop images 
of circular motion that included the covariational relationship of two quantities. An implication 
of this reasoning was Zac constructing various mathematical representations that were rooted in 
quantitative relationships. Opposed to simply recalling perceptual shapes from memory to 
construct a graph, Zac engaged in covariational reasoning within the context of the problem in 
such a way that graphs emerged from this reasoning. Zac’s ability to reason about circular 
motion also appears to have resulted in him constructing a process conception of the sine 
function. To say more, Zac often reasoned indeterminately about the relationship between the 
two quantities formalized by the sine function. Rather than having to compute specific values 
and find differences between these values, Zac was able to leverage his image of circular motion 
to engage in covariational reasoning that was not dependent on numerical values. Thus, a 
possible product of approaching the construction of the sine function within circular motion was 
offering Zac a situation in which it was beneficial to construct a process conception of the sine 
function. 

The instructional focus on conceiving of measurement units as quantitative relationships 
also appears to have created a foundation for Zac to construct coherence between right triangle 
contexts and the unit circle. As Zac encountered right triangle contexts, he was observed 
constructing circles using the hypotenuse of the right triangle, while subsequently measuring 
quantities relative to the hypotenuse. This construction process of using the hypotenuse of a right 
triangle as the radius of a circle appears to have enabled Zac to apply trigonometric functions to 
right triangle contexts in ways that were consistent with his use of the functions in circular 
contexts. 

Zac’s understanding of the unit circle and measuring quantities as a fraction of the radius 
also offered him a foundation to reflect upon during his solution processes. Although Zac’s 
initial algebraic representations on The Ferris Wheel Problem would be considered incorrect 
relative to the written problem statement, these representations were consistent with the situation 
he was attempting to model. Then, as the researcher questioned Zac, he reflected on the context 
of the situation and identified various quantities and relationships between these quantities. This 
reflection resulted in him altering his algebraic representation such that it was consistent with the 
written goal of the problem. 

This process of a subject continually refining her or his image of a situation, and the 
possible inconsistencies that naturally arise during this process, have been recently noted as a 
common occurrence in undergraduate students’ problem solving processes (Moore, 2009; 
Moore, et al., 2009). Thus, if contextual situations are to be used as a foundation for 
mathematical reasoning and abstraction, this process of a subject continually modifying their 
image of a situation must be taken into consideration. In order to promote the construction of 
mathematical knowledge through quantitative reasoning, a researcher or teacher must be 



attentive to the contextual situations subjects construct while attempting to promote the 
construction of situations consistent with the instructional goals. 
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