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Abstract: In today’s society, informed citizenship requires at least an informal understanding of 
statistical inference. One strategy to promote such understanding is to develop students’ 
knowledge of sampling distributions through simulation of repeated sampling from a population 
with a known parameter. An implicit premise in such instructional strategies is that students will 
be able to transfer their knowledge of sampling distributions created from a known population to 
“real-world” contexts such as public opinion polls. This preliminary report presents evidence 
suggesting that such transfer is neither immediate nor trivial. We will present case studies of two 
students enrolled in a statistics for teachers course illustrating the ways in which these two 
students, who displayed a robust knowledge of sampling distributions, applied this knowledge to 
polling scenarios. 
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INTRODUCTION 
 

An informal knowledge of statistical inference, including measures of statistical 

confidence and margin of error, is a vital skill for educated adults living in a global data based 

society. Popular media contains published results of opinion polls (often including confidence 

level and margin of error information), medical experiments, and advertising claims, all of which 

require readers to understand statistical arguments in order to participate intelligently in a 

democratic society and make good decisions about issues that effect their lives.  

In the last decade and a half there have been significant increases in enrollments in high 

school AP statistics courses, as well as college level introductory statistics courses (Luzter, Rodi, 

Kirkman, & Maxwell, 2005), and this is likely in response to the need for a more statistically 

literate populace in an increasingly data driven society. Unfortunately much of the research (e.g., 

Bakker, & Gravemeijer, 2004; Garfield, delMas, & Chance, 2007; Heid et al., 2005; Konold, 

1989; Liu, & Thompson, 2005; Watson, J. M. and J. B. Moritz, 2000) shows that students and 
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their teachers struggle to understand introductory statistics topics. In addition, given that most 

introductory statistics courses focus on methods and procedures and do not incorporate examples 

of how statistics are used in the media, Gal (2003) argues that students are not likely to 

experience success in applying these methods and procedures to every day contexts. Thus, 

educational research must address the following questions: (1) what should be the goals of 

introductory statistics courses in order to prepare students to make informed data-based 

decisions, and (2) how can we best prepare teachers of statistics at effectively developing their 

students’ statistical thinking skills? This preliminary research report begins to address these 

important questions through an investigation of pre-service teachers’ statistical content 

knowledge. In particular, this report addresses pre-service high school teachers’ knowledge of 

the conceptual underpinnings of statistical confidence (a key topic of introductory statistics 

courses) when applied to political polling scenarios (a statistical literacy application) via two 

mini-cases studies.  

BACKGROUND 

Statistical inference is a key topic of introductory statistics curricula. Thus, it is extremely 

important that teachers of statistics deeply understand statistical inference and the concepts that 

form the basis for this significant topic if they are to be effective in developing their students’ 

statistical thinking skills. Many researchers (e.g., Chance, delMas, & Garfield, 2004; Garfield & 

Ben-Zvi, 2008; Saldanha & Thompson, 2007) have noted that an understanding of sampling 

distributions forms the basis for a robust informal understanding of statistical inference. These 

statistics educators argue that one method for developing students’ understanding of informal 

statistical inference skills is through the concept of repeated sampling in which comparisons are 

made between samples and sampling distributions. An instructional strategy focused on sampling 
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distributions attends to the underlying conceptual foundations of statistical inference. The 

subsection that follows provides an analysis of two concept definition images (in the manner of 

Tall & Vinner, 1981) underpinning a conceptual understanding of the level of confidence in 

statistics – distribution image and interval image. The final subsection provides background 

information on a common misconception of level of confidence.  

A conceptual analysis of level of confidence in statistics 

Defining the probability of a random event as a long-term relative frequency of 

outcomes, leads to two views for conceptualizing statistical confidence – a distribution image 

and an interval image. The distribution image entails constructing a distribution of sample 

statistics through repeated sampling. Empirical distributions of sample statistics can be 

approximated by a normal distribution and the center of the distribution is a good approximation 

for the population parameter. Figure 1 shows a visual representation of the distribution image. In 

the distribution image, the level of statistical confidence is defined as the percentage of sample 

statistics within a given distance – namely, margin of error – from the population parameter. 

Figure 1. Distribution Image of Confidence. 

 

 
 

The interval image of confidence is the one often shown in introductory statistics texts. 

This image entails: (1) collecting a sample statistic, (2) finding the confidence interval around 
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that sample statistic by adding and subtracting the margin of error from the sample statistic, and 

(3) repeating this process many times. In the interval image, the level of statistical confidence is 

defined as the percentage of intervals that capture the population parameter (see Figure 2).  

   Figure 2. Interval Image of Confidence. 

 

 

The authors of this paper argue that the integration and coordination of both the interval 

image and the distribution image is essential for a coherent understanding of level of confidence. 

Figure 3 shows a representation of the integrated image. The integrated image places the 

unknown population parameter as a fixed, constant value. Through repeated sampling, sample 

statistics begin to clump around the population parameter, and the relationship between the 

percentage of sample statistics within a given distance of the population parameter and the 

percentage of confidence intervals that capture the population parameter is apparent. With this 

imagery, the rare event approach to statistical inference is more transparent. For example, a 

sample statistic not within a predetermined distance of the true mean and the confidence interval 

around that sample statistic does not capture the true mean, for instance, the sixth sample mean 

in Figure 3. Thus, this sample statistic is considered unusual in the sense that it is 

probabilistically less likely. Statistical inference is founded on the idea that obtaining a sample 
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statistic that is unusual is a strong indication that the true population parameter may in fact be 

significantly different than the estimate.   

Figure 3. Integrated Image. 

 

 

The “misconception” image of level of confidence 

Using sampling distributions as a vehicle for constructing an understanding of statistical 

inference is not trivial. Students and high school teachers may experience difficulty: (1) 

reasoning about properties of sampling distributions such as shape and variability; and (2) 

reasoning about a distribution of sample statistics as distinct from a distribution of a single 

sample (Chance, delMas & Garfield, 2004; Heid et al., 2005; Saldanha & Thompson, 2007). 

There appear to be few studies investigating how, if at all, students relate sampling distributions 

to statistical confidence or hypothesis testing. The relatively little research that has been done in 

this area reveals a common misconception whereby the level of confidence is defined by the 

percentage of sample statistics that fall within the confidence interval constructed from the 

statistic computed from the first sample pulled (Cumming, Williams, & Fidler, 2004; Liu & 

Thompson, 2005). A visual representation of this “misconception” image is shown in Figure 4.  

 

 



Proceedings of the 13th Annual Conference on Research in Undergraduate Mathematics Education.  6 

Figure 4. The “misconception”. 
 

 

Despite the inherent difficulties in forming a coherent understanding of the role that 

sampling distributions play in defining statistical confidence, the statistics education community 

advocates that developing students’ knowledge of sampling distributions is a promising 

instructional strategy for assisting the development of informal inference skills. For example, the 

National Council of Teachers of Mathematics (NCTM, 2000) Data Analysis and Probability 

Standards for grades 9-12 recommend that teachers of statistics “use simulations to explore the 

variability of sample statistics from a known population and to construct sampling distributions” 

and “use sampling distributions as the basis for informal inference” (p. 325). The Guidelines for 

Assessment and Instruction in Statistics Education (GAISE, 2007) provide a similar 

recommendation; they argue that students should understand “the concept of a sampling 

distribution and how it applies to making statistical inferences based on samples of data” (p.7).  

An underlying premise throughout much the literature is that if students have the opportunity to 

construct sampling distributions from a known population and focus on the underlying concepts 

and relationships between the properties of sampling distributions and statistical inference, then 

students should be able to transfer this knowledge to other contexts where the population 

parameters are unknown, such as public opinion polls. The recommendations by these 
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organizations and the arguments of statistics educators for a didactic model which uses sampling 

distributions as a basis for supporting students’ development of informal inference skills is 

promising, yet the lack of empirical studies investigating these recommendations needs to be 

addressed. This report provides an initial investigation into the ways in which students apply 

their knowledge of repeated sampling and the construction of sampling distributions to polling 

contexts. In particular, this preliminary report presents two mini-case studies, focusing on the 

thinking of two undergraduate pre-service high school teachers enrolled in a statistics for 

teachers course. 

DATA COLLECTION METHODS 

This preliminary report focuses on two students, Kenny and Sara (pseudonyms) enrolled 

in a statistics for teachers course. Kenny and Sara were upper division undergraduate 

mathematics majors who were planning to become high school mathematics teachers. The 

statistics for teachers course is designed to stress important statistical concepts such as sampling 

distributions and their application to ideas of statistical inference. The course focused heavily on 

both physical hands-on simulations and computer simulations for building sampling distributions 

as a basis for informal inference. Thus, the students in this class had substantial classroom 

experiences working with sampling distributions from a known population. This report focuses 

on the ways in which Kenny and Sara coordinated their knowledge of repeated sampling and 

statistical confidence in relation to a polling scenario.  

Data collection methods consisted of pre and post-surveys and pre and post-interviews. 

The surveys contained several polling scenarios where students were asked to provide their 

interpretation of polling results and their interpretations margin of error and statistical confidence 

in the context of the poll. Hour long clinical interviews were conducted in order to follow up on 
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students’ survey responses and provided the researchers with substantial depth into students’ 

thinking. The first two authors independently examined the surveys and constructed a series of 

follow-up questions for the interviews. In addition, time was given for spontaneous follow-up 

questions during the interviews based on the responses of the participant. The interviews were 

videotaped and transcribed. Each author reviewed the transcripts and created summaries and 

visual representations of Kenny and Sara’s thinking. The video was reviewed several times and 

the research team engaged in continued discussion of Kenny and Sara’s thinking until consensus 

was reached. Three of the polling tasks from the post survey and the follow-up interview form 

the basis of the current report (see Figure 5).  

 Figure 5. Sample survey tasks. 

RESULTS 

 Kenny and Sara both reasoned via the “misconception”. That is, they both indicated that 

if the sampling process was repeated, then the level of confidence could be defined as the 

percentage of sample statistics that fall within the confidence interval created from the original 

sample statistic. Despite the fact that Kenny and Sara did not demonstrate a completely coherent 

understanding of statistical confidence, their reasoning was rather sophisticated and they were 

(1) According to the latest New York Times/CBS News poll, Mr. Obama's approval rating is 63 percent. 
The national telephone poll was conducted the week of February 15 with 1,112 adults, and has a margin of 
error of plus or minus 3 percentage points. 
 
Please explain what margin of error means to you in this context.  
 
 
(2) According to a Gallup Poll conducted the same week as the New York Times/CBS poll, President 
Obama's approval rating is 67%. Results are based on telephone interviews with 1,551 national adults, aged 
18 and older. They report 95% confidence that the maximum margin of error is ±3 percentage points. 
 
What do you think the 95% confidence means in this context?  
 

(3) Does it surprise you that the NY Times/CBS poll found a 63% approval rating while the Gallup Poll 
found a 67% approval rating? Explain why or why not.  
 



Proceedings of the 13th Annual Conference on Research in Undergraduate Mathematics Education.  9 

focused on sense making in the polling context. This section of the paper provides a deeper look 

into the “misconception”, and how this view is mathematically reasonable albeit non-normative. 

There are three key points in the discussion of Kenny’s and Sara’s reasoning: (1) both assumed 

the first sample was representative and that the population parameter is never known; (2) both 

showed evidence of thinking from an interval image and a distribution image perspective, but 

neither had completely coordinated the two perspectives; and, (3) they differed in their opinions 

regarding what sample estimates would surprise them. Following the discussion of Kenny’s and 

Sara’s reasoning on these three points is an analysis of their discussion of what result would 

surprise them mediated through the lens of the “misconception” image and compared to a 

completely coherent image.  

The sample will be representative and the population parameter in never known 

Both Kenny and Sara repeatedly assume the first sample is representative and, 

subsequently, that the confidence interval created around the first sample statistic will capture the 

population parameter. This is evidenced in Kenny’s discussion below: 

Kenny: What each poll is reporting is a sample statistic and it’s supposed to 
represent the population parameter…On, on the whole margin of error idea, well 
our sample is a representative sample and we calculate our margin of error around 
this sample statistic that we get. …and we imagine that the population parameter 
is inside that interval 

 
In the following excerpt, Sara further discusses how unlikely it would be for the first sample to 

produce a sample statistic that is not representative.  

Sara: Cause this is just an estimate. This is just a sample. A poll. A..you know it's 
a sample of the whole. …And you know to just randomly first time get one 
outside (referring to the 5 or 10% outside the confidence interval), that's like y-
you know that's just. It's a little odd. You know you shouldn't get it the first time.  
It should, you know, 70 tries, and oh, my gosh, I got one or something. 
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The assumption that the sample and its corresponding statistic are representative is a 

reasonable assumption. In introductory statistics, students learn that the sample mean is a good 

estimate of the population mean, assuming the sample is representative. In addition, from a 

probabilistic perspective it is likely to get a sample mean that is within two standard errors of the 

population mean.  

Kenny and Sara also recognized that the population parameter is not something that can 

ever be known. The two excerpts below show instances where they discussed how the population 

parameter is an unknown quantity.  

Kenny: And in, this population parameter is not something will ever really know. 
 
Sara: Well that's an estimate. They don't know if that's true or not. They're saying 
that the real one, or you know what we hope is the real one should be you know 
60 to 66. 
 

Kenny’s and Sara’s concept images of level of confidence 

Kenny and Sara both articulated the “misconception” image of the level of confidence at 

the beginning of their interviews, namely as the percentage of sample statistics that fall inside the 

original confidence interval. Regardless of being non-normative, this image indicates that they 

both considered statistical confidence from a repeated sampling perspective. In addition, 

throughout the interview, both Kenny and Sara expressed images of the level of confidence 

focusing on the distribution of sample statistics. For instance, when Kenny initially constructed a 

sampling distribution during the post interview he placed the reported sample statistic in the 

center rather than the fixed unknown population parameter.  

Kenny: …so if you were to repeat this poll several hundred times you’d 
presumably get a number of different results. This number (63% - the reported 
sample statistic) would be, you know, you’d get a new one for each time you did 
the poll and we’re assuming it would be normally distributed. …And the 63 
would be somewhere in the middle here (points to the shade region in Figure 6). 
And we’re using it because this is the one that they did.  
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In this case, we view Kenny’s distribution as theoretical insofar as Kenny describes the 

result in terms of an expected outcome.  

 
   Figure 6. Kenny’s (theoretical) distribution. 

 

Given that Kenny recognized that the population parameter was a value that he would 

never know, the interviewers followed up by asking him how one might test the accuracy of a 

poll. The excerpt below provides evidence that Kenny imagined creating an empirical sampling 

distribution and looking for where the majority of the sample statistics clump together. If many 

of the sample statistics are clumped far away from the original sample statistic then one could 

reasonably assume that the original statistic is not representative.  

Kenny: If you were to repeat the poll then a few times, umm and see where your 
results come out. ...Let’s say umm, someone does a poll and they come up with a 
63% result and then someone else does a series of similar polls. They do them say 
6 times or so and the results are really, they’re like 71, 72, 72, 73, 71, 72% well 
that’s enough of, of a difference where you could say maybe that first poll wasn’t 
accurate for whatever reason.  

 

   Figure 7. Kenny’s (empirical) distribution. 
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Sara similarly discussed the formation of a confidence interval from both theoretical and 

empirical perspective. In the excerpt below, Sara first discusses how a theoretical confidence 

interval can be formed from a formula. The discussion (notably the second italicized sentence) 

also highlights Sara’s “misconception” image of the level of confidence. The last italicized 

sentence in the excerpt indicates the formation of an empirical confidence interval, where she 

actually collects 10 sample statistics and determines the confidence interval by observing where 

the sample statistics are clumped within the empirical distribution (see Figure 8).  

Sara: You can have...you can start with this 67 percent and you can form an 
interval around it using the errors and the formulas…Anyways, you can form 
this ...you know this interval and you would expect if you took, you know, if it's 
90 percent...if you took 10, that you would expect 9 of them to be in here 1 being 
out here floating.  …Or you know you can do 10 and find, you know, plot em and 
you could say oh 9 of them are here. …It's just saying that, you know, in this case 
it would encompass, you know, 90 percent of these means or of the means of all 
the other samples. Put'em together. 

 
  Figure 8. Sara’s empirical distribution. 
 

 
 
 

The interviewer followed-up by asking Sara whether her two ways of forming a 

confidence interval would be the same and she seemed to indicate an expectation that the 

theoretical interval is larger.  

Interviewer: But are these intervals the same?   
 
Sara: Well it depends on what samples you have.  Cause ...this one (points to the 
theoretical) is probably gonna be larger cause it says, you know, it's done with a 
formula.  It says that …I can get 90 percent of the data in here or you know, 90 
percent of the sampling means of a 100 should come here.  This (empirical 
distribution) says well I did...I did a, you know, 100 of them.  Well, you know, I 
got a 100 that are slightly skewed to the right, you know.   
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When asked about why she expects the theoretical one to be larger she says “Cause that takes 

into account all the possibilities”. This is an indication that perhaps Sara views the situation 

probabilistically and sees the confidence interval formed by the formula as accounting for all 

possible sample statistics.  

What constitutes a surprising result?  
 
 Despite the fact that Kenny and Sara both expressed similar ways of thinking about 

statistical confidence, they had different perspectives on what values a new sample statistic could 

take on before it would constitute a surprising result in comparison to the original sample 

statistic. In the third sampling task (Figure 5), Kenny did not find the difference between the two 

approval rating polling results, 63% and 67%, surprising. His response, in the excerpt below, 

indicates that even though the approval rating of 67% does not fall in the confidence interval 

around the 63% (or vice versa), the 67% is not that far away from the interval around the 63% 

approval rating (see Figure 9).  

Kenny: I guess I’d be like amused, but not surprised. …Because its not that far 
outside the range. …You’d expect a few of those points to fall outside of that 
interval. You don’t expect them all to be within that interval. 
 

Figure 9. Is it surprising that the 67% does not fall within the original confidence interval? 
 

 
 

Sara, however, does find the difference between the 63 and 67% approval rating 

surprising for exactly the reason the “misconception” image would suggest. That is, if 95% of 

the sample statistics should fall in the interval around the first sample statistic (63% in this case), 

then only 5% fall outside that interval so the 67% is pretty unusual.  
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Sara: But this 63 is not included in this 95 percent accurate interval.  So it’s the 10 
or 5 percent that’s outside and that just seems a little off.  And then you know, 
this 67.  It’s not included in this other 90…95 percent confident interval.  

 
On the one hand, Sara shows consistency in her image of the percentage of sample 

statistics that should be captured within the original confidence interval and her sense that if only 

5% fall outside that interval then the 67% is in fact a bit surprising. On the other hand, although 

Kenny does not seem to be consistent between his view of statistical confidence and his notion of 

a surprising result, he does appear to have some flexibility in thinking of the original sample 

statistic as an estimate of the population parameter and thus some flexibility with his expectation 

of sample statistics with overlapping confidence intervals.  

An analysis of the thinking of Kenny and Sara via the “misconception” image  

Tables 1 and 2 provide a summary of the possible cases for the original confidence 

interval (OCI) and a new confidence interval (NCI) created during the hypothetical repeated 

sampling process. In Table 1, the sample statistic in the NCI falls within the range of the OCI. 

According to the “misconception” image this new statistic would be one of the 95 and should not 

be considered unusual. Both Kenny and Sara suggested that they would not be surprised by such 

a result, likely because they assume that the population parameter is inside the OCI. However, as 

Table 1 indicates, there are three ways in which such a view is incoherent: (1) the OCI does not 

capture the population parameter, but the NCI does, (2) both the OCI and NCI do not capture the 

population parameter, and (3) the OCI captures the population parameter, but the NCI does not. 

Thus, there are times when Kenny and Sara should consider some of the sample statistics 

unusual, but they do not.  
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Table 1. Four possible cases when the new sample statistic falls inside the OCI 

New Sample Statistic Inside Original Confidence Interval  

 
 

Original Confidence Interval (OCI) 
Contains μ 

Original Confidence Interval (OCI) 
Does Not Contain μ 

   

New 
Confidence 
Interval 
(NCI) 

Contains μ 

• Normative (OCI and NCI 
contribute to the level of 
confidence) 

• Non‐normative (OCI does not 
contribute to the level of 
confidence) 

 

   
 

New 
Confidence 
Interval 
(NCI) Does 

Not 
Contain μ 

• Non‐normative (NCI does not 
contribute to the level of 
confidence) 

• Non‐normative (OCI and NCI 
do not contribute to the level 
of confidence) 

 

 Table 2, shows the possible cases when the new sample statistic does not fall within the 

OCI. According to the “misconception” image in each of these cases the new sample statistic 

should be considered unusual because it is not one of the 95 within the OCI. Sara seems to be 

consistent with this image when she discussed results that would surprise her. However, Kenny 

reasoned about surprising results in a slightly different way. He was not surprised as long as the 
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OCI and NCI overlapped. Yet, the only time when this image is coherent is when both the OCI 

and the NCI capture the population parameter.  

Table 2. Seven cases when the new sample statistic falls outside the OCI. 
New Sample Statistic Outside Original Confidence Interval 

    OCI Captures μ  OCI Does Not Capture μ 

   

Two 
CI’s 

Overlap 

• Normative 
• Kenny – NCI contributes 

• Non‐Normative 
• Kenny – NCI contributes 

 

 

NCI 
Captures 

μ 

Two 
CI’s Do 
Not 

Overlap 

• Can not occur  • Non‐normative 
• Kenny – NCI does not 

contribute 

   

Two 
CI’s 

Overlap 

• Non‐normative 
• Kenny – NCI contributes 

• Non‐normative 
• Kenny – NCI contributes 

   

NCI Does 
Not 

Capture 
μ 

Two 
CI’s Do 
Not 

Overlap 

• Non‐normative 
• Kenny – NCI does not 

contribute 

• Non‐normative 
• Kenny – NCI does not 

contribute 
 

Both Kenny and Sara will consider some sample statistics unusual when they shouldn’t 

and others as not surprising when they are in fact unusual. Kenny’s image of surprising is much 

less restrictive than Sara’s. Kenny includes more than the 95 sample statistics that he believes 

should fall within the OCI into his image. In general, the further away the original sample 
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statistic is from the population parameter, the more likely Kenny and Sara are to include unusual 

sample statistics in their image and the less likely they are to include sample statistics that should 

be included. 

Sara and Kenny do appear to have an interval image and a distribution image, but have 

not fully integrated the two pictures. They place the original sample statistic in the center of the 

distribution. If the original statistic is “close” (for example within one standard error) of the 

population parameter then their images are not terribly problematic. Since the distribution 

centered around the original sample statistic captures most of the sample statistics that are within 

2 standard errors of the population parameter. However, the farther the original sample statistic is 

from the population parameter then the more problematic Kenny’s and Sara’s images become 

because the confidence interval around the original sample statistic will capture fewer of the 

sample statistics within 2 standard errors of the true population parameter. Their images seem to 

ignore that the population parameter is a fixed, unknown constant that should be placed at the 

center of their distribution image.  

CONCLUSIONS 

It appears inherently problematic to coordinate the distribution image and the interval 

image, placing the unknown population parameter in the center of the distribution to form a 

coherent conception of confidence interval. In part it seems that the unknown population 

parameter is abstract and elusive and therefore students may find it difficult to think about its 

placement in their image of statistical confidence. It is intellectually an easier task to place the 

first sample statistic in the center of the distribution and to think of it as a good representative of 

the population parameter. This seemingly straightforward and largely reasonable substitution 

makes the coordination of the distribution and interval images inherently difficult.  
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Our results suggest that the ability for students to transfer their knowledge of sampling 

distributions and ideas of informal statistical inference from a known population (e.g., a jar of 

white and black beans) to other contexts, such as public opinion polls, is neither immediate nor 

trivial. This result seems particularly significant in light of the fact that these students had 

substantial mathematics backgrounds. How do we help future teachers see the conceptual 

differences between the misconception view and a completely normative view? Especially when 

the “misconception” view is more natural and makes a whole lot more sense. The need for future 

research investigating didactic methods for supporting students in coordinating ideas of sampling 

distributions to polling contexts is tremendous, especially if statistics educators are to help 

students develop robust ideas of inference in contexts they are likely to come across on a daily 

basis.  
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