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 In this paper, I report on preliminary results from my dissertation study on the role of 

intuition in students’ learning of span and linear independence in an elementary linear algebra 

class. The purpose of my research is to examine the relationship between the quality of students’ 

understanding of span and linear independence with respect to the role of intuition in their 

learning of these concepts. This qualitative study is based on the multiple case study tradition 

and employs the theoretical perspective of social constructivism. Methodological issues of 

importance in this study are how to assess the quality of students’ understanding and how to 

evaluate the role of intuition in that understanding. Findings from this study might inform the 

development of more effective teaching practices for span and linear independence in linear 

algebra courses. 

  

 Sierpinska (2005), in a speech at the12
th

 International Linear Algebra Society 

Conference, reflected upon her extensive research into the teaching and learning of linear 

algebra. In two teaching experiments, she and her colleagues attempted to improve students’ 

understanding of theoretical concepts by having students do computational activities and 

computer labs that provided concrete illustrations of key ideas. A surprising result of these 

experiments was  

the gap between successful and less successful students widened instead of shrinking. 

The former learned a lot more than in the ordinary course and became even more 

enthusiastic about mathematics, and the latter became more confused or, worse, 

developed strong misconceptions while believing that they have finally understood the 

subject. (p. 1) 

To explain these results, Sierpinska conjectured the less successful students understood the 

concrete representations of concepts in a practical rather than theoretical way. To test this 

hypothesis, she and her colleagues created definitions of practical and theoretical thinking. They 
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distinguished between these two modes of thinking using five categories: reasons for thinking, 

objects of thinking, means of thought, main concerns, and products of thinking (Sierpinska, 

2004). Next, they designed instructional practices aimed at improving students’ theoretical mind-

set. They found students’ understanding of theory did improve with these new instructional 

practices, but the distinction between practical and theoretical thinking was an oversimplification 

of the patterns in successful students’ thinking. Successful students were not only theoretical 

thinkers, they had a practical understanding of theory. Sierpinska believes a combination of 

practical and theoretical thinking characterizes the art of doing mathematics. Purely theoretical 

thinkers cannot find smart ways to solve problems and purely practical thinkers cannot develop 

deep conceptual understanding. 

 The research by Sierpinska (2004) and her colleagues demonstrated that while only the 

more successful students consistently engaged in theoretical thinking, all students engaged in 

practical thinking. Taken from another point of view, one could consider theoretical thinking as a 

reflection of formal mathematics and practical thinking as a “natural” way of thinking. Using this 

perspective, some researchers have found a misalignment between mathematical theory and the 

natural way students approach learning mathematics. For instance, Tall (1991), wrote in his 

epilogue of Advanced Mathematical Thinking that many of the book’s contributors believed 

students’ difficulties in learning advanced mathematics could be explained by the difference in 

the logic of formal mathematics, upon which most university instructors base their instruction, 

and the logic of students’ cognition. More recently, in their discussion of advanced mathematical 

thinking, Mamona-Downs and Downs (2002) suggested traditional teaching of mathematics does 

not “connect with the students’ need to develop their own intuitions and ways of thinking” (p. 

170). 
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 Mamona-Downs and Downs’ (2002) observation of the disconnect between traditional 

teaching and students’ way of thinking leads to another view of natural or practical thinking: 

intuitive thinking. Fischbein (1987, 1999), who has contributed significantly to the theoretical 

and research base about the role of intuition in the learning of mathematics, believes 

experimental and descriptive research provides evidence that formal knowledge of a 

mathematical topic is insufficient for people to produce mathematics. That is, knowledge of 

axioms, definitions, theorems, and proofs does not enable someone to solve problems or develop 

proofs; they also need intuition about the concepts (Fischbein, 1987). This suggestion aligns with 

Sierpinksa’s belief that the art of doing mathematics results from a practical understanding of 

theory. 

 A didactical question follows from these observations: How can a mathematics teacher 

draw upon students’ intuitive thinking to help them develop a practical understanding of the 

mathematical theory? Sierpinksa (2004) argues one cannot derive the answer to this question 

entirely from general epistemological theories or from psychological studies of cognition; 

research into specific mathematical content is also needed. Torff and Sternberg (2001), who 

reviewed the literature about the role of intuition in education, suggest teachers would benefit 

from a better understanding of how students’ intuition coincides or conflicts with teaching 

practices, but more research is needed in this area. Taken together, the areas of study suggested 

by Sierpinska, Torff, and Sternberg underlie the purpose of my research. In my research I am 

studying how students’ intuitions influence their learning of two particular mathematical 

concepts: linear independence and span. In order to gain some insight into the interaction of 

students’ intuitions and teaching practices, I conducted the study in one linear algebra class. My 

research question is 
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What is the role of intuition in the development of students’ understanding of span and 

linear independence in the context of the instruction environment of an elementary linear 

algebra class? 

 

The Intuitive Mind and Education 

 Wilson’s (2002) theory of the “adaptive unconscious” supports the idea that intuition has 

a role in learning. Wilson defines “unconscious” as “mental processes that are inaccessible to 

consciousness but that influence judgments, feelings, or behavior” (p. 23). Wilson uses the 

adjective “adaptive” to indicate that nonconscious thinking is an evolutionary adaptation. The 

adaptive unconscious plays several roles in processing the extraordinary quantity of sensory 

information the brain receives every second. One role is implicit learning, which is learning 

without effort or awareness of what is learned. Such learning usually occurs through pattern 

recognition. The adaptive unconscious is capable of learning complex information, sometimes 

faster and better than the conscious mind. It is also responsible for “gut feelings” by 

communicating its implicit learning via emotions and feelings.  

Another role of the adaptive unconscious is to select and interpret information, in effect 

serving as a gatekeeper to the conscious mind. Survival depends upon organisms accurately 

interpreting their world, therefore the filtering and interpreting mechanisms of the adaptive 

unconscious have evolved to generally provide a functional worldview. However, the adaptive 

unconscious’ goal of maintaining a person’s sense of well-being sometimes conflicts with its 

goal of accurately interpreting the world. Wilson (2002) believes this is “one of the major 

battlegrounds of the self, and how this battle is waged and how it is won are central determinants 

of who we are and how we feel about ourselves” (p. 39). 
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 The adaptive unconscious and the conscious mental systems have different 

characteristics. Wilson (2002) summarizes the nature of these two systems as follows: 

The adaptive unconscious is an older system designed to scan the environment quickly 

and detect patterns, especially ones that might pose a danger to the organism. It learns 

patterns easily but does not unlearn them very well; it is a fairly rigid, inflexible 

inferencemaker. It develops early and continues to guide behavior into adulthood. Rather 

than playing the role of the CEO, the conscious self develops more slowly and never 

catches up in some respects, such as in the area of pattern detection. But it provides a 

check-and-balance to the speed and efficiency of nonconscious learning, allowing people 

to think about and plan more thoughtfully about the future. (p. 66) 

Wilson claims the adaptive unconscious is a significant part of a person’s cognitive and affective 

personality.  

 Torff and Sternberg (2001) suggest intuition plays a role in all learning contexts. They 

define intuitive conceptions as “knowledge or knowledge structures that need not be available to 

conscious reflection but that act to facilitate or constrain task performance” (p. 7). “Intuition,” 

then, is “the process through which intuitive conceptions are acquired and used” (p. 7). Two 

other terms are “primary intuitive conceptions” and “secondary intuitive conceptions.” Primary 

intuitive conceptions are genetically encoded intuitions universal to the human species. These 

intuitions are developmental, not externally acquired. For example, when learning physics, 

students appear to have innate conceptions of force and agency, which are not acquired in 

school. Secondary intuitive conceptions are knowledge resulting from learner-environment 

interaction and so are particular to the sociocultural conditions inherent in the learning 



 6 

environment. A key question for educators is how intuitive conceptions help or hinder the 

learning of students.  

 Torff and Sternberg (2001) review the literature about the constructs of implicit learning 

and tacit knowledge. Implicit learning occurs outside conscious awareness both in terms of the 

process of learning and what has been learned. Empirical studies in a variety of settings have 

confirmed the existence of implicit learning, but there are still many controversies involving the 

conceptualization of this construct and the appropriate research methodologies. Open questions 

include whether implicit learning yields abstract knowledge or situation-specific knowledge and 

the nature of the relationship between implicit and explicit processes of learning. However, 

researchers generally see implicit learning as a positive process that supports learning in the 

classroom. The product of implicit learning is tacit knowledge, which is “procedural knowledge 

that guides behavior but is not readily available for introspection” (p. 10). Studies have shown 

that successful individuals not only have a large body of explicit knowledge, but also have 

extensive implicit knowledge. Sternberg and his colleagues believe tacit knowledge is a positive 

force in education and they recommend the explicit teaching of the valued tacit knowledge in 

each discipline. 

Fischbein (1987) has provided the most comprehensive discussion of the construct of 

intuition in mathematics learning. Whereas Wilson (2002) attributes the existence of the 

“adaptive unconscious” to the brain’s need for a system to filter and process large quantities of 

incoming perceptual information unconsciously, Fischbein provides another perspective on the 

existence of intuition. Conscious cognition is often unable to infer and interpret from the given 

information with certainty, yet humans must have some sort of credible reality in order to act in 

meaningful ways. This creates an underlying need for certitude. Therefore, 
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Intuition summarizes experience, offers a compact, global representation of a group of 

data, helps overcome the insufficiency of information, introduces behaviorally 

meaningful interpretations in a reasoning process, and thus confers on the mental activity, 

the qualities of flexible continuity, of firmness and efficiency which characterize an 

active, adaptive behavior. (p. 12) 

Fischbein defines intuition by describing its key characteristics. The first is that “intuitions refer 

to self-evident statements which exceed observable facts” (p. 14). In other words, intuitions act 

like theories in that they extrapolate beyond the immediate information. Globality is a 

consequence of the self-evident nature of intuitions and describes how intuitions are applied 

generally often without regard to contextual considerations. Intuitions are also coercive; they 

assert themselves in such a way that one does not consider alternative explanations and theories. 

 The literature about the role of intuition in advanced mathematics and in education 

overall provide evidence that students’ intuitions do play a role in their learning. In particular, 

this role can help or hinder learning. Studies support exploring the role of intuition in the 

learning of specific mathematical concepts, and paying particular attention to students’ use and 

development of intuition in relation to the nature of the instruction environment. 

 

Theoretical Perspective and Methodology  

 The emergent perspective (Cobb, 1995; Cobb & Yackel, 1996; Yackel & Cobb, 1996), 

which is a coordination of social and psychological learning theories, provides the foundation of 

my theoretical perspective. The interactionist view of classroom processes (Bauersfeld, 

Krummheuer, & Voigt, 1988) represents the social perspective, while a constructivist view of 

individuals’ (both students and teacher) activity (von Glasersfeld, 1984, 1987) represents the 
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psychological perspective. In the emergent perspective neither the social nor the psychological 

view dominates. Instead, they have a reflexive relationship in which the students and teacher 

influence the development of classroom social norms and, in turn, these social norms influence 

student learning. Intuition theory coordinates well with the emergent perspective and its 

underlying constructivist and social theories. Both perspectives suggest implicit learning is a 

consequence of students’ participation in the learning environment. Students’ implicit learning 

involves finding viable regularities in their experiences, which then stabilize into unconscious 

schemas. The resulting tacit knowledge constitutes essential elements of mathematical 

knowledge, such as when and why to invoke specific problem solving strategies. In addition, this 

tacit knowledge influences future learning.  

 The setting for this research was an elementary linear algebra course at a mid-sized 

public liberal arts university in the western United States. There were 32 students in the class. 

Students’ majors included secondary mathematics teaching, physics, meteorology, and other 

science majors. For most students, this class is their first exposure to elements of advanced 

mathematics, such as proving and learning abstract structures. The class instructor was 

experienced in teaching this course at more than one university. The textbook for the course was 

David C. Lay’s (2003) Linear Algebra and Its Applications. The course content began with 

matrix operations involving linear systems of equations. Subsequent topics included matrix 

invertibility, determinants, vector spaces, and eigenvalues and eigenvectors. The class met 3 days 

a week for 50 minutes. The prerequisite for the course is Calculus II. For most of the students, 

this will probably be their only class in linear algebra. 

 This research is a psychological case study. I selected 7 students from the linear algebra 

class with each individual student comprising a case. The case context is the learning 
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environment of the students, which includes the physical setting, the instructional practices, the 

classroom culture, and the textbook. I selected individual cases to represent a maximum variation 

(Merriam, 1998) in students’ understanding of span and linear independence. To do this, I 

collected data for all students in the class up through the first test and then used this set of data to 

select students. In particular, I chose the cases from the pool of volunteers and from those 

students who consistently attended class and turned in completed work. 

 I collected data related to both the learning context and the individual learners. Data 

related to individuals included written work resulting from homework problems, exams, and 

journals. I also conducted two interviews with each of the seven students. I conducted the first 

interview around the fifth week of the semester and the second interview about two weeks before 

the end of the semester. The interviews were semi-structured (Merriam, 1998) and lasted 

between an hour and an hour and a half. Interview questions included asking students about their 

understanding of the meaning of span and linear independence, their understanding of the formal 

definition of these concepts, and their understanding of procedures that involved these concepts. 

The instruction environment data consisted of classroom videotapes, classroom field 

observations, classroom and student artifacts, and the course textbook. 

 

Preliminary Data Analysis 

 I am currently in the process of data analysis. The guiding principle of the analysis is to 

develop profiles of students’ intuition and understanding and determine the nature of any 

associations that exist between intuition and understanding. My analysis of understanding is 

premised on Harel’s (1997) assertion that the essential indicator of a student’s understanding of a 

concept is when the student has the ability to solve problems related to that concept. This 
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necessitates a descriptive approach to capturing student understanding that includes the 

connections students make between ideas (Zandieh). I ascertain the quality of students’ 

understanding by determining the degree to which the student met the instructor’s expectations 

of understanding. 

 My preliminary analysis indicates that students’ understanding of span and linear 

independence is significantly influenced by their understanding of linear combination and 

solution. In turn, students’ understanding of linear combination and solution appears to be 

dependent upon their skill and understanding of working with the multiple roles of variable that 

appear in the definitions and problems involving span and linear independence. Students with 

weak understanding of variable ignored variables in expressions, confused when variables were 

parameters or unknowns, and inappropriately substituted numbers for unknowns. The finding 

that understanding is a result of layers of concepts aligns with Zandieh’s framework of 

understanding in which she asserts that the understanding of concepts, such as derivative, are 

predicated on layers of process-object pairs (Sfard, 1992). The other dimension of her 

understanding framework is multiple representations. Aspects of students’ understanding can 

then be captured by looking at how students know each layer (process-object pair) when working 

with different representations (graphical, verbal, symbolic, etc.). I am in the process of 

determining how well Zandieh’s understanding framework works with my data. 

 My work in creating students’ intuition profiles has expanded to my considering a more 

general construct I am currently calling thinking profiles. These thinking profiles consist of 

indicators of students’ intuitive thinking, problem solving patterns, and language use. Drawing 

from the literature, I developed a set of indicators of students’ intuitive thinking with respect to 

mathematical thinking shown below. 
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1. Indicators that can appear when a student holds incorrect conceptions. 

1.1. The conception makes sense from an “everyday” perspective (Stavy & Tirosh, 2000; 

Vosnaidou, 2008). 

1.2. The conception relates to initial learning experiences (Fischbein, 1987; Wilson, 

2002). 

1.3. The conception persists in the face of opportunities to change these conceptions 

(Fischbein; Vosnaidou; Wilson). 

1.4. The conception builds upon on a prototypical example, rather than definitions 

(Sierpinska, 2000). 

1.5. The conception is an overgeneralization of an example or concept (Ben-Zeev & Star, 

2001; Fischbein). 

1.6. The conception derives from a surface feature of a problem or representation, rather 

than the problem structure (Fischbein; Harel, 1999; Stavy & Tirsoh). 

2. Indicators that can appear when a student holds incorrect or correct conceptions. 

2.1. The quality of students’ written examples. 

2.2. The metaphors and analogies students use to construct their understanding. 

2.3. The relative ease with which students learn different concepts. 

My preliminary analysis does suggest that students with weaker understandings do have more 

indicators of intuition that interfere with understanding, such persistent incorrect conceptions and 

overgeneralization. 

 I developed a rubric for analyzing students’ problem solving thinking. The inspiration for 

this rubric was The National Resource Council’s (NRC) (2001) framework of mathematical 

proficiency, which includes five strands: strategic competence, procedural fluency, conceptual 
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understanding, adaptive reasoning, and productive disposition. The four elements of my problem 

solving rubric are: strategic competence, procedural fluency, work interpretation, and conceptual 

understanding. Strategic competence is an indicator of the appropriateness of a student’s choice 

of strategy or heuristic to solve a problem. Procedural fluency is the student’s skill in executing a 

selected procedure. Work interpretation indicates how well the student interpreted the results of 

any procedural work with respect to the problem context. Conceptual understanding indicates the 

degree of thinking grounded in concepts rather than procedures. I am further deconstructing 

problem solving thinking by analyzing patterns of problem solving that occur for different 

problem types. Problem types vary from being primarily procedural to being significantly 

conceptual. Currently, I do not have any preliminary results for problem solving thinking. 

 Language use may be associated with students’ understanding. Data from a pilot study I 

did suggested this possibility and Sierpinska (2000) found students who engaged in practical 

thinking used symbols and language inaccurately, unclearly, or nonsensically. My current data 

also has indications of this. Below is a sample of the variation of student explanations that often 

occurred in response to a problem. While the three students answered correctly that the statement 

was true, their explanations were very different. 

Problem: True or False – If z is in Span{x,y} then {x,y,z} is a linearly dependent set. 

Student 1: True. x,y would be a linear combination of z. 

Student 2: True. If z is in the span{x,y} then z fits into the span. It is telling us that z can 

be dependent on x,y. 

Student 3: True. Saying that z is in the span{x,y} can be translated to z is a linear 

combination of the vectors x and y. A set is linearly dependent if one vector can be 
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expressed as a linear combination of the other vectors. Therefore, the set {x,y,z} is 

linearly dependent.  

 To date, I have been unable to find in the literature a framework or method for analyzing 

students’ language use that is appropriate for my data and am currently in the process of 

developing an appropriate analysis strategy. I believe one part of this strategy will include 

analyzing students’ use of vocabulary. Another aspect that may be important, but I am having 

difficulty in defining, is the sentence structure in students’ writing. 
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