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Abstract 
 
A central goal of most any linear algebra course is to ensure that students develop relational 

understanding of concepts, become proficient at various techniques, and develop personal 

and/or informal justifications for relationships between concepts.  This report addresses linear 

algebra students’ personal justifications for relationships through the analysis of videorecorded, 

end of the semester problem solving interviews. In particular, the interview question analyzed in 

this report prompted students to consider, given an invertible matrix A, whether 5 different 

claims are true or false.  These claims are formally part of what many texts refer to as the 

Invertible Matrix Theorem (e.g., Lay, 2003). This report will address student responses by 

highlighting the informal or personal justifications students provided for relating invertibility, 

linear independence, determinant and span in 

! 

R
3 .  Furthermore, we develop an innovative 

method using adjacency matrices to analyze students’ personal understandings of concepts and 

the connections students make between concepts. 

 
Purpose and Background 
 

A central goal of most any Linear Algebra course is to ensure that students develop 

relational understanding of concepts (Skemp, 1987), become proficient at various techniques, 

and develop personal and/or formal justifications for relationships between concepts.  For 

mathematicians, the rich relationships between concepts make linear algebra an especially 

beautiful and elegant discipline. For students, however, these rich relationships often result in 



significant difficulties (Dorier, 2000). Some of these interwoven concepts that students have 

difficulties with, central to any first course in linear algebra, include but are not limited to linear 

independence, determinant, span, and invertibility.  Many of these concepts and their 

relationships are formalized in one of the keystone pieces of theory first introduced in an 

introductory linear algebra course, namely the Invertible Matrix Theorem (e.g., Lay, 2005). This 

report aims to sift out the understandings students have of these concepts and modes in which 

students relate these concepts to justify for themselves the validity of a claim. 

 A secondary goal that arose in the course of this analysis is how to explore the 

connections students make between concepts and their personal understandings of concepts.  

One such tool often used and explored is concept map (Williams, 1998).  Though concept maps 

provide a powerful way to chart the connections that students make, this tool becomes unwieldy 

when a large number of concepts are invoked and connected.  Thus, instead of using conceopt 

maps, we develop an innovative approach using adjacency matrices from graph theory.  The 

methodology we develop resonates with the work of Schvaneveldt (1998), who studied 

understanding of proximity data (Schvaneveldt, 1989), and with the work of Harary, Norman and 

Cartwright (1965), who examined visualization of propositional logic through implication 

digraphs. Adjacency matrices have also been used as a framework to capture the emergence and 

intercoordination between conceptual and procedural knowledge in the ebb and flow of a 4th 

grade classroom conversation (Strom, Kemeny, Lehrer & Forman, 2001).  However, this 

methodology has yet to be used for understanding students’ individual, personal reasoning and 

understandings, particularly at the undergraduate level.   

 
Methods 
 
Data Collection Methodology 



 
Data for this analysis comes from a semester long classroom teaching experiment in a 

linear algebra course at a large southwestern university. As part of this project, nine students 

participated in individual, semi-structured interviews (Bernard, 1988). Each interview was 

approximately 90 minutes long and consisted of several questions.  The data sources for this 

analysis consist of video recordings of the interviews, as well as copies of all written work. 

Additionally, each interview was transcribed completely. The particular question from the 

interview that was analyzed for this report was the following:  

 

 

 

 

 

 

The concepts involved in this question and their relationships had been formally summarized in 

the students’ text as the Invertible Matrix Theorem (Lay, 2003).  Furthermore, all claims are true 

except claim (b). In the interview, students were given part a) first, then part b), etc. This allowed 

us to focus more clearly on students’ understanding of each connection. 

 Throughout the course of the interview, students were encouraged to think through their 

reasoning and answer aloud.  Follow-up questions were frequently asked, aimed to unpack 

student’s understandings of each concept individually and how the connections build from these 

understandings.  For example, following claim a), if a student did not readily provide their 

understandings aloud, the interviewer asked the following: 

 

Suppose you have a 3x3 matrix A, and you know that A is invertible.  
Decide if each of the following statements is true or false, and 
explain your answer. 

a) The column vectors of A are linearly independent. 
b) The determinant of A is equal to zero. 
c) The column vectors of A span 

! 

R
3 . 

d) The null space of A contains only the zero vector. 
e) The row-reduced echelon form of A has three pivots. 

 



• What does it mean for a set of vectors to be linearly independent/dependent?   

• Do you have a geometric way of thinking about linear independence/dependence?   

• What does it mean for A to be invertible?   

• How does that relate to what you previously said about linear independence/dependence? 

The analysis reported here addresses the first three claims, a) – c), and the understandings 

each student expressed and the connections each student made regarding invertibility, linear 

independence, determinants, and span of R3.    

 
Analysis Methodology 

Initially we thought of analyzing student understandings of each concept and connections 

between concepts using concept maps (Williams, 1998).  However, as the number of different 

understandings and personal interpretations students expressed for invertibility, linear 

independence, determinants and span increased, concept maps quicky became an unwieldy tool.  

As a result, concept maps were not explicitly used but led to the use of similar tools and ideas in 

graph theory, specifically, the use of adjacency matrices. 

To illustrate how we used adjaceny matrices, consider Figure 1, which represents a 

student’s understanding of the relationships between concepts A – D.  In the course of a 

student’s interview, such a map would represent relating concept A to concept B on two separate 

occasions, using concept B to imply concept C, and connecting concept C to concept A. 

 



 
 

Figure 1. Sample Digraph 
 
Figure 1 is an example of a digraph, which is defined in the following way.  A graph consists of 

a finite set of points called vertices and a finite set of lines connecting these vertices called edges.  

A graph where direction is indicated for every edge is called a directed graph or digraph (Harary 

et al., 1965; Ore, 1990).   Thus, in Figure 1, the vertices of the digraph indicate the concepts and 

the directed edges indicate connections. 

 In pure mathematics, graphs are not always studied through their visual representation; 

instead, mathematicians can study a less visual, more systematic representation of a graph called 

the adjacency matrix.   For a given digraph its adjacency matrix is defined as a square matrix 

with one row and one column for each vertex, where the entry aij=k indicates k edges connect 

vertex vi to vertex vj, and entry aij=0 indicates there exists no edge connecting vertex vi to vertex 

vj (Chartrand & Lesniak, 2005; Harary et al., 1965).  Note that in many contexts, multiple edges 

from vertex vi to vertex vj are prohibited.  Since we made no such restriction, the entries of the 

adjacency matrix can be any nonnegative integer.  Below is the adjacency matrix M for the 

digraph depicted in Figure 1. 

 
 



 
 

 
The entry “2” in row A and column B indicates there are two edges, or connections, 

beginning with concept A going to concept B. Similarly the entry “1” in row B and column A 

denotes one edge beginning with concept B and connecting it to concept A.  Observe that in this 

sample matrix concept A is connected in two different ways to concept B and concept B is 

connected by one edge to concept C.  Furthermore, there is no directed edge beginning with 

concept A leading to concept C.  This is not to say concept A could never be connected to 

concept C; instead, Figure 1 shows the only way to get from A to C is by going through B first.  

This idea is also defined in graph theory.  A walk is a sequence of connected vertices, and the 

length of a walk is the number of edges in that walk.  Adjacency matrices can be uses to clearly 

identify walks of lengths greater than 1 by examining powers of the adjacency matrix.  

If M is the adjacency matrix of a graph with vertices vi and vj, then the number of walks 

of length k is denoted by the entry aij of the matrix Mk  (Chartrant & Lesniak, 2005; Harary et al., 

1965).  To illustrate this statement, consider again Figure 1 and the matrix M2 in Figure 3.  

 

 
 

  A B C D 
A 2 0 2 0 
B 1 2 0 0 
C 0 2 0 0 
D 0 0 0 0 

 
Figure 3. Matrix M2

Figure 2. Adjacency Matrix M 

A B C D

A 0 2 0 0

B 1 0 1 0

C 1 0 0 0

D 0 0 0 0
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Notice that in row A and column C there is an entry “2”, indicating there are two walks of length 

2 through which concept A is connected to concept C. 

 One possible deficiency in using adjacency matrices to depict student reasoning is the 

loss of order of student’s connections between concepts and understandings.  To account for the 

loss of order in which each student made these connections, transcripts were coded following 

each connection described by the student with the letters denoting originating and terminating 

concepts.  An explicit example of this will be given in the context of our results. 

 
Results 

Within the course of the interviews, students expressed a multitude of understandings for 

the concepts involved in the Invertible Matrix Theorem.  Figure 4 contains a list of these 

concepts (coded as items A-I) and the subsequent understandings expressed by the students 

(coded numerically underneath the main concepts). These understandings were those given by 

the students and not a list of concepts generated by the course instructor or interviewer intended 

for the students to discover.   



 

A. A is invertible 
1. Calculator inverse – Can use calculator to produce inverse 
2. Row-reduce to Identity – Augments the matrix with the identity; can row-reduce to find inverse 
3. Formula: Inverse Matrix: no “divide by 0 errors”– Can calculate inverse with a formula, using 

determinant; uses the 2x2 inverse matrix formula 
4. Input-output: “don’t lose information” – Given output, can use inverse matrix to find input 
5. Can reproduce A: “reproduce matrix A” – Misconception, possibly confusing invertibility with 

another activity completed in class 
B. A is noninvertible/singular 

1. Calculator error – Can use calculator to see if there is inverse  
2. Cannot row-reduce to Identity – Augments matrix with identity; cannot row-reduce to find 

inverse 
3. Formula: Inverse Matrix: “divide by 0 errors”  – Cannot calculate inverse with formula using 

determinant; uses the 2x2 inverse matrix formula 
4. Input-output: “lose information”  – Given output, cannot find original input 
5. Cannot reproduce A: “cannot reproduce matrix A” – Based on activity completed in class 

C. Column vectors of A are linearly independent 
1. No free variables – No variable undefined, usually in the correlating system of linear equations 
2. Unique solution to matrix equation/system of linear equation 
3. Geometric – No “Losing a degree of freedom”; magic carpet ride problem 
4. Geometric – Vectors are not collinear or coplanar 
5. Proportional-algebraic – No vector is a scalar multiple of another vector 
6. Linear combination - algebraic – No vector is a linear combination of another vector 

D. Column vectors of A are linearly dependent 
1. Free variables – Some variable undefined, usually in the correlating system of linear equations 
2. No unique solution to matrix equation/system of linear equation 
3. Geometric – “Lose a degree of freedom”; magic carpet ride problem 
4. Geometric – Vectors are collinear/coplanar 
5. Proportional-algebraic – One vector is a scalar multiple to another vector 
6. Proportional-algebraic –One vector is a linear combination of other vectors 

E. det(A) ≠ 0: Determinant of A is nonzero 
1. Procedure used to calculate det(A)≠0: Can use Rule of Sarrus/diagonals or Leibniz/cofactor 

formula to calculate nonzero determinant of A 
2. Geometric – 2-d parallelogram with nonzero volume   
3. Geometric – 3-d parallelpiped with no/zero volume  

F. det(A) = 0: Determinant of A is equal to 0 
1. Procedure used to calculate det(A)=0: Can use Rule of Sarrus/diagonals or Leibniz/cofactor 

formula to calculate determinant of A is zero 
2. Geometric – 2-d parallelogram with no/zero volume   
3. Geometric – 3-d parallelpiped with no/zero volume  

G. Column vectors of A span R3 
1. 3 x 3 sized matrix spans R3 – Size of matrix dictates whether matrix spans; n vectors for n 

dimensions 
2. Procedural – RREF of matrix is identity matrix 
3. Geometric– can get to every point in the dimension  
4. Algebraic – Linear combination for all points in R3 

H. Column vectors of A do NOT span R3 
1. Non 3 x 3 sized matrix cannot span R3 – Size of matrix dictates it cannot span; do not have n 

vectors for m dimensions 
2. Procedural – RREF of matrix is not the identity matrix 
3. Geometric – Cannot get to every point in the dimension  
4. Algebraic – No linear combinations for some  points in R3 

I. Other 
 

Figure 4. List of Concepts and Understandings Invoked by Students 
 



 

In the course of addressing each part of the interview question, the students expressed 

their personal understandings of the concepts in question and used these understandings to 

connect the concepts and directly relate one concept to another.  For example, a student might 

explain they see the determinant of a 3 x 3 matrix as the volume of the parallelpiped formed in 

space or linear independence as three vectors that are neither collinear nor coplanar.  The student 

might relate linear independence to a set of three vectors not being collinear or coplanar.  So the 

vectors would form a parallelpiped with nonzero volume and the determinant with these three 

column vectors would be nonzero.  Thus, these understandings became the means by which 

students connected the concepts and justified their true/false answer to the claims in the prompts. 

Josiah 
 

We begin with an excerpt from one student, Josiah, regarding the invertibility of the 3 x 3 

matrix A and the spans of the column vectors of A. As subsequently explained in more detail, 

each connection between concepts is coded according to the lettering and numbering of concepts 

in Figure 4.  

 
If it's [the matrix A is] invertible, those 3 vectors [the column vectors of A] should 

be able to reach any point. AG3  Because you should be able to reach that point 

with a combination of these vectors and scalars. G3G4  Which is exactly what 

you're doing with column space. G4G  And then those combinations should be 

able to create a 3-D object. G4E3  Which is what you're talking about with the 

determinant, E3E it's, in my mind at least, 3 dimensions.  And the column vectors 

being linearly independent is a prerequisite in order to be able to create 3-D 

objects. CE3  So in a way, their linear independence, it's the same thing as they're 

spanning R3. CG  And the fact that they span R3 is what allows the determinant to 

be a nonzero number. GE 



 
In the previous quotation, Josiah relates various understandings of invertibility, linear 

independence, determinant and span, often using personal meanings of each to connect these 

main concepts.  The adjacency matrix M, listing just those concepts addressed by Josiah in this 

excerpt, is shown in Figure 5. In order to make the matrix more easily read, all 0 entries in the 

matrix (or lack of a connection) are omitted, instead denoted by a blank entry.

 
 
 
 

 
A: Matrix A is Invertible 
C: Column vectors of A are linearly 
independent 
E: Det(A)≠0 
E3: Vectors form 3-D parallelpiped with 
nonzero volume 
G: Column vectors of A span R3 
G3: Can get to any point in R3 
G4: Can make a linear combination for any 
point in R3 

 

 
 
 

For each coded connection in the excerpt, there is a number filled into the row 

corresponding to the first concept and in the column corresponding to the second concept within 

the connection.  Though the students frequently did not explicitly state their understandings as 

implications, most responses are generalized as either an implication (as in Josiah’s connection 

CE3) or as one main concept and an understanding of that concept (G4G).   In either instance, an 

entry in the adjacency matrix is intended to chart Josiah’s connection from one concept or 

understanding to another, not necessarily record explicitly stated logical implications in his 

interview.  Within Josiah’s matrix we see examples of meanings and images given to objects, 

denoted by entries within the block diagonal submatrices, and many understandings that cross 

between main concepts, denoted by entries not within the block diagonal submatrices.   

Figure 5. Adjacency Matrix M for Josiah’s Excerpt 

A C E E3 G G3 G4

A 1

C 1 1

E

E3 1

G 1

G3 1

G4 1 1



Furthermore, the latter connections rely mostly on Josiah’s understandings of each main 

concept, for example, determinants as being the volume of the parallelpiped formed by the 

column vectors of A.  These are the entries not in the upper-left corner of the block submatrices.  

These patterns indicate Josiah has not only a firm understanding of how the main concepts relate 

or personal understandings of main concepts like determinants and span, but also can use these 

personal understandings to relate the concepts and provide informal justifications to his claims. 

The sophistication of Josiah’s connections is further understood by looking at the powers 

of the adjacency matrix M.   Figure 6 depicts M3, which can be read to determine the number of 

walks of length 3 between the listed concepts. 

 

 

 
 

A: Matrix A is Invertible 
C: Column vectors of A are linearly 
independent 
E: Det(A)≠0 
E3: Vectors form 3-D parallelpiped with 
nonzero volume 
G: Column vectors of A span R3 
G3: Can get to any point in R3 
G4: Can make a linear combination for any 
point in R3 

 
 

Among the 3 walks of length 3 indicated by M3 is the connection between the 

invertibility of matrix A and the column vectors of A spanning all of R3.   This connection is 

clearly seen in the argument given by Josiah in the first half of the excerpt, but was previously 

lost in adjacency matrix M.  By taking natural number powers of M we can see this more 

sophisticated arguments that connect concepts and concept understandings, as well as predict 

potential connections students could make.  The matrix M3 suggests Josiah can connect concept 

A, the invertibility of matrix A, with understanding E3, that there is a parallelpiped of nonzero 

Figure 6. Matrix M3 for Josiah’s Excerpt 

A C E E3 G G3 G4

A 1 1

C

E

E3

G

G3 1

G4



volume formed by the column vectors of A.  This suggests Josiah can articulate such a 

connection in three steps with the understandings he has already stated, even if he has not 

explicitly done so. 

Similar patterns indicating a sophisticated understanding of concepts and connections 

between these understandings are seen in the adjacency matrix J in Figure 7, which denotes all 

connections made by Josiah in Question 1 claim a) through c) from the interview problem. 

 
 

 
 
 

A A
1

A
2

A
3

A
4

A
5

B B
1

B
2

B
3

B
4

B
5

C C
1

C
2

C
3

C
4

C
5

C
6

D D
1

D
2

D
3

D
4

D
5

D
6

E E
1

E
2

E
3

F F
1

F
2

F
3

G G
1

G
2

G
3

G
4

H H
1

H
2

H
3

H
4

I

A 2 1

A1

A2

A3

A4

A5

B

B1

B2

B3

B4

B5

C 3 1 1

C1

C2

C3

C4 1

C5

C6

D 1 1 1 1 1

D1

D2

D3

D4 1 1

D5 1 1

D6

E 1

E1

E2

E3 1

F 1

F1

F2

F3 1

G 1 1 1

G1

G2

G3 1 1

G4 1 1 1

H 1

H1

H2

H3

H4

I 1

Figure 7. Adjacency Matrix J for Josiah’s Interview  



There are several aspects of Josiah’s adjacency matrix J that indicate a sophisticated 

understanding of concepts and a flexible use of understandings to build connections.  For 

example, the majority of the entries lie off of the block diagonal.  These entries indicate a large 

portion of Josiah’s explanations connected understandings of different concepts, such as a 

geometric view of linear independence (C4) with a geometric interpretation of determinants 

(E3).  Main concepts are frequently related through these personal understandings, as seen in the 

infrequency of entries in the upper –left corner of each block submatrix, entries which often 

indicate either summaries of claims or justification by external authority.  Instead, Josiah only 

made such connections, such at the three in row C and column G, when he had already justified 

such a connection through other understandings (see the previous excerpt).  Lastly, note that all 

the connections made by Josiah lie in the unshaded blocks of the matrix.  Entries within the 

white blocks indicate correct connections or implications within Josiah’s reasoning.   Thus, 

through J we can quickly summarize Josiah’s understanding as accurate, full of sophisticated 

personal understandings of concepts that can be readily used to justifying connections. 

 
Bethany 

 
For contrast, we will now look at Figure 8 for the adjacency matrix B resulting from the 

interview with another student, Bethany. 



 
 
 
Bethany’s adjacency matrix suggests a more superficial understanding of the concepts and 

connections made to concepts in the Invertible Matrix Theorem, in comparison to Josiah.  All but 

two of Bethany’s entries lie within the block diagonal.  These entries suggest that the majority of 

Bethany’s understandings are used only to understand the main concepts of invertibility, linear 

independence, determinant and span.  She does not use these understandings to build connections 

between these concepts, as would be indicated in any entries off the block diagonal.  

 

Figure 8. Adjacency Matrix B for Bethany’s Interview 
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H H
1

H
2

H
3

H
4

I

A 2 2

A1 1

A2

A3

A4

A5

B

B1

B2

B3

B4

B5

C 1

C1 1

C2

C3

C4

C5

C6

D 1

D1 1

D2 1

D3

D4

D5

D6

E

E1

E2

E3

F

F1 1

F2

F3

G 1 1

G1

G2

G3

G4

H

H1

H2

H3

H4

I



  There are four instances in which Bethany connects concepts, the first two of which are 

seen in row A and column C, as Bethany relates invertibility of A to the column vectors of A 

being linearly independent.  In justifying the first of these claims, Bethany states, “I know there 

is the Invertible Matrix Theorem, and I just can't remember whether it talked about independence 

or dependence; but I'm pretty sure it was independent.”  When asked if she can explain this 

connection beyond referencing the Invertible Matrix Theorem, Bethany said no “because I don't 

understand the definitions of linearly dependent and independent enough to really know.”  Thus, 

Bethany’s connections depend not on her personal understandings but on external authority.  

Frequently such justifications were indicated by entries in the upper-let corner of a block 

submatrix without other entries in the block or corresponding row and column.  It is also 

noteworthy that Bethany has two entries in the shaded regions, indicating incorrect connections 

and further evidence that Bethany’s connections are more superficial than those justified through 

understandings of the main concepts. 

 
Conclusions 
 

A major contribution of this work centers on the innovative use of adjacency matrices as 

a systematic methodological tool for detailing students’ understandings and connections. The 

cases of Josiah and Bethany provide concrete examples for the usefulness of this approach to 

compare strengths and weaknesses of the connections between ideas that students do and do not 

make. In comparison to concept maps, the methodological approach that we developed allows 

for a more systematic and nuanced analysis into student understanding. 

As evidenced in the data we presented, students develop a large number of personal 

understandings of concepts central to a first course in linear algebra. In the case of Josiah, the 

methodology of adjacency matrices highlighted the multitudes of understandings he exhibited for 



each concept, and these personal understandings enabled him to create multiple connections 

between concepts and accurately respond to the claims and justify his reasoning.  In the case of 

Bethany, adjacency matrices highlighted the less sophisticated understandings she had for each 

concept.  Furthermore, the lack of density of her matrix and the limited number of entries off of 

the block diagonal indicated the minimal number of connections made between concepts.   

 An issue for further consideration is the extent to which taking higher powers of the 

larger matrices would indicate connections each student has made or could make, using their 

personal understandings of each concept.  In the case of using an excerpt from Josiah’s 

interview, higher powers of the matrices indicated connections between concepts that might 

otherwise be missed.  However, in the case of a larger matrix, in is difficult to know which 

powers should be taken of the adjacency matrix to see this connection and which of these entries 

of the higher powered adjacency matrices indicate connections the student explicitly made versus 

connections the student potential could make.   
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