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Introduction 

 

The development of mathematical maturity in undergraduate students includes an important 

transition from the introductory Calculus sequence, which typically serves as the foundation for a 

tertiary-level study of mathematics, to upper-division courses which require the type of advanced 

mathematical thinking described by Tall (1992). Students‟ success in higher-level courses relies 

less on algorithmic applications, rote memorization, and procedural skills than it does on 

applying abstract proof techniques, developing and utilizing logical reasoning and justification 

skills, and cultivating a foundational understanding of the conceptual underpinnings of 

mathematics. In advanced courses there is a notable cognitive shift that must be made by the 

student to a conceptual, and much more abstract, perspective. Indeed, the hope is that one might 

simultaneously develop an up-close viewpoint of the “trees” (i.e., intricacies and subtleties of 

foundational definitions) and a much broader viewpoint of the “forest” (i.e., how the 

foundational definitions support important theorems that collectively comprise the respective 

mathematical branches of analysis, abstract algebra, and so on). Little research has addressed 

which pedagogical strategies might support students in formalizing their intuitive notions of 

mathematics concepts, particularly in the context of advanced calculus. Bezuidenhout (2001) 

notes, “An important challenge to mathematics educators is to create innovative curricula and 

pedagogical approaches that will provide calculus students with the opportunity to…reflect on 

the efficacy and consistency of their mathematical thinking” (p.7). The purpose of this paper is to 

describe how the proofs and refutations method of mathematical discovery espoused by Lakatos 

(1976) can be adapted as a design heuristic that supports certain types of mathematical defining. 

We present two illustrative episodes of student activity from a teaching experiment conducted by 

the first author. 

 

The Method of Proofs and Refutations 

 

In his well-known book, Proofs and Refutations, Lakatos (1976) retrospectively analyzes the 

mathematical activity of famous mathematicians, distinguishing between different methods of 

mathematical discovery. Lakatos describes the process of mathematical discovery as being 

initiated by a primitive conjecture, in which the behavior of a particular mathematical object may 

be characterized. For instance, an introductory calculus student‟s primitive conjecture may be 

that if a function has a local maximum at x=a, then . The validity of the conjecture is 
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measured via a proof, which Lakatos describes as a thought experiment, consisting of a sequence 

of lemmas. Potential counterexamples to the primitive conjecture often emerge, and motivate the 

individual to respond in various ways. Lakatos describes monster-barring as a response wherein 

the individual dismisses a counterexample as illegitimate, arguing that it does not in fact satisfy 

the conditions of the hypothesis. Monster barring typically involves clarifying or refining the 

underlying definitions. For example, if the aforementioned calculus student were asked to 

consider the behavior of the function  on the interval [-1, 1], he may dismiss the 

counterexample, claiming that curves that have sharp corners do not qualify as functions, and 

thus cannot have local maxima. Exception-barring refers to the process of treating 

counterexamples as legitimate exceptions to the conjecture or theorem, but avoiding them by 

reducing the scope of the conjecture or theorem. In the previous example, the exception-barring 

student may alter the primitive conjecture to say that if a differentiable function has a local 

maximum at x=a, then .  

Lakatos (1976) also describes a more mathematically mature method of mathematical 

discovery, known as proofs and refutations, in which the individual responds to counterexamples 

by way of proof-analysis. In proof-analysis, the individual analyzes the proof of the primitive 

conjecture to identify a potentially obscured sub-conjecture for which the counterexample is 

problematic. Proof-analysis may result in an improved conjecture that includes a new proof-

generated concept. In the case of the calculus student, the absolute-value counterexample may 

cause him to recognize that absolute maxima can occur when a function‟s derivative equals zero 

or fails to exist, with the new proof-generated concept being that of a critical point.  

In their 2007 paper, Larsen and Zandieh noted that in an environment “in which students see 

themselves as responsible for the development of the mathematical ideas, [the students‟] 

mathematical activity may be strikingly similar to that of creative mathematicians” (p. 208). 

Larsen and Zandieh analyzed students‟ reinvention efforts in an undergraduate abstract algebra 

course, recasting Lakatos‟ descriptions of mathematical discovery as a useful framework for 

making sense of students‟ mathematical activity. In particular, Larsen and Zandieh analyzed the 

focus of their students‟ attention in response to counterexamples, as well as the outcome of the 

students‟ activity. Important distinctions arose. For instance, faced with counterexamples, 

monster-barring students made modifications to the underlying definitions of their conjectures, 

whereas exception-barring students acknowledged the counterexamples as legitimate, and 

subsequently modified their conjectures rather than the underlying definitions. Table 1 

summarizes Larsen and Zandieh‟s findings.  
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Type of Activity Focus of Activity Outcome of Activity 

Monster-Barring Counterexample and  

underlying definitions 

Modification or clarification of an 

underlying definition 

Exception-Barring Counterexample and conjecture Modification of the conjecture 

Proof-Analysis Proof, counterexample,  

and conjecture 

Modification of the conjecture and 

sometimes a new definition for a 

new proof-generated concept 

Table 1 (Larsen & Zandieh, 2007) 

 

The purpose of our work is to build upon the contributions of Larsen and Zandieh (2007), 

and to account for students‟ activity when the definition under consideration is in the foreground 

and rather than underlying some conjecture. In other words, our intent is to consider the case 

where the conjecture involved is a conjectured definition. As a result, we will be exploring in 

detail the monster-barring process and unearthing additional complexity in what is at first glance 

a fairly simple mathematical activity.   

Reinventing Limit 

 

Relatively little is known about how students come to reason coherently about the formal 

definition of limit. While some (e.g., Cottrill et al. (1996)) have provided conjectured models of 

student thinking about limits, there is a dearth of empirically-based research that traces student 

thinking to the point of coherent reasoning about the conventional ε-δ definition. In an effort to 

address this gap in the literature, the first author conducted a task-based Informal Limit 

Reasoning Survey with twelve undergraduate students from a large, urban university in the 

Pacific Northwest region of the United States. Each of the survey participants were students in 

two or more of the courses forming a three-quarter introductory Calculus sequence taught by the 

first author during the 2006-2007 academic year. Four of the twelve students were selected for 

two teaching experiments. Both teaching experiments consisted of ten, 60-100 minute paired 

sessions, and one 30-60 minute individual exit interview. The paired sessions were conducted in 

a classroom, with the pairs of students responding to instructional tasks on the blackboard in the 

front of the room. Only the participating students, researcher, and a research assistant were 

present for each session. Each session was generally separated by a span of 6-10 days, allowing 

time for ongoing analysis between sessions and subsequent construction of appropriate 

instructional activities based on the ongoing analysis. All sessions, including the individual exit 

interviews, were videotaped by a research assistant. These twenty-two videotaped sessions were 

the primary source of data for the study.  

The four students selected for the two teaching experiments were chosen on the basis of 

possessing robust informal understanding of limit, as well as our estimation of their ability to 

work effectively in tandem to reinvent the definition of limit. Evidence of these criteria existed in 

the students‟ responses to the task-based survey, as well as in their written work throughout the 
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three-term introductory Calculus sequence. In addition, students selected to participate in this 

study had demonstrated a greater effort and desire, relative to other students, to consistently 

make sense of their experiential world as it relates to complex mathematical ideas. Working with 

such students made it possible to trace student thinking to the point of coherent reasoning about 

the conventional ε-δ definition of limit.  

Demographic background for the teaching experiment participants is as follows: one female 

and three males, with an age range from 19 to 28 years of age. None of the students had been 

exposed to the formal definition of limit prior to participating in the study. Additional 

background information is provided in Table 2.
1
  

 

Name Academic Major Calc 1 Grade Calc 2 Grade Calc 3 Grade 

Amy Linguistics A A A 

Mike Mathematics A A A 

Chris Computer Science A A- B+ 

Jason Philosophy A A- P 

Table 2 – Background Information of Teaching Experiment Participants 

In both teaching experiments, the central task was for the students to generate a precise 

definition of limit that captured the intended meaning of the conventional ε-δ definition. 

Instructional activities were primarily focused on discussing limits in a graphical setting, in 

hopes that the absence of analytic expressions might support the enrichment of the visual aspects 

of the students‟ respective concept-images. Tasks included the students generating prototypical 

examples of limit, which subsequently served as sources of motivation for the students as they 

attempted to precisely characterize what it means for a function to have a limit. The majority of 

each teaching experiment, then, comprised a period of iterative refinement for the students; as 

they attempted to characterize limit precisely, the examples and non-examples of limit that they 

encountered created cognitive conflict for them, which they sought to resolve by refining their 

characterization. 

Proofs and Refutations as a Model for Defining 

 

Our retrospective analysis of the data from these teaching experiments reveals that the 

students‟ attempts to mathematize their informal understandings of limit followed closely the 

four stages described by Lakatos (1976), and adapted by Larsen and Zandieh (2007). The 

                                                           
1
 Jason chose to take the third term of Calculus under the pass/no pass grade option because Calculus III was not a 

requirement for his major. His level of demonstrated understanding of the material in the third course was similar to 

that of the first two Calculus courses.  
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students‟ primitive conjecture in this case was that a particular number L is the limit of a function 

if and only if it satisfies their constructed definition. The students‟ proofs were sometimes 

implicit thought experiments, wherein they considered the extent to which their evolving 

definition of limit captured the mathematical behavior found in their self-generated prototypical 

examples of limit. These thought experiments led to the emergence of counterexamples, which 

played a significant role in the evolution of the students‟ definition. 

Lakatos‟ (1976) description of proof-analysis suggests that it is a more sophisticated method 

of mathematical discovery, distinct from that of monster-barring. Larsen and Zandieh (2007) 

suggest, however, that, monster-barring may be fundamentally important in the context of 

defining.  

 

The method of monster-barring by itself could…be used to support students‟ defining 

activity. Here the students‟ attention would be focused on the counterexamples and the 

definition. For example, in their description of students‟ defining of triangle, Zandieh and 

Rasmussen (2007) identify the important role of non-examples of triangles during the 

negotiation of the definition; the students revised their definitions to bar these monsters (p. 

215). 

 

Zaslavsky and Shir (2005) echo these sentiments, reporting that students viewed the 

classification of examples and non-examples of a concept as one of the central purposes of 

mathematical definitions, commenting that “the students pointed to its power in „refuting 

functions‟” (p. 334). In this sense, the students in the study by Zaslavsky and Shir developed 

definitions of analytic concepts via a process of monster-barring.  

Our analysis of the data in the two teaching experiments suggests that monster-barring 

played a significant role in the students‟ reinvention of a definition of limit capturing the 

intended meaning of the conventional ε-δ definition. An important distinction is worth making, 

however. While Larsen and Zandieh describe monster-barring as an activity that is focused on 

the underlying definition and the counterexample, we found that in our situation, the students‟ 

activity involved something akin to the method of proof-analysis. In the case of limit, the 

definition provides a recipe for proving that L is or is not the limit of a function f. We noticed 

that as part of their monster-barring activity, the students appeared to imagine the proving 

process suggested by their definitions and to analyze this process in order to refine these 

definitions. Thus, monster-barring was not a response to counterexamples mutually exclusive 

from that of proof-analysis. On the contrary, the students‟ monster-barring activity appeared to 

involve the method of proof-analysis. Specifically, in an effort to bar problematic 

counterexamples, the students engaged in proof-analysis, which spurred refinements to their 

definition. Their refined definitions were then tested against the prototypical examples of limit 

they had previously generated. The act of testing their refined definitions led to the emergence of 

new counterexamples, which inspired more monster-barring, and yet more proof-analysis. This 
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iterative process ultimately supported the students in their reinvention efforts. We share with the 

reader illustrative examples from the first teaching experiment. 

 

Example 1: A Dampened Sine Wave 

 

In the process of reinventing the definition of limit at a point (i.e., what it means for a 

function f to have a limit L at x=a), the students (Amy and Mike) reached a point of diminishing 

returns due to two central cognitive challenges described in Swinyard and Larsen (submitted). In 

hopes of resolving these challenges in a less cognitively complex context, the first author shifted 

the students‟ focus to defining limit at infinity (i.e., what it means for a function f to have a limit 

L as x∞). At the outset of the seventh session of the teaching experiment, Amy and Mike 

generated prototypical examples of limit at infinity in response to the following prompt.  

 

Prompt: Please generate (draw) as many distinct examples of how a function f could have a 

limit of 4 as x∞. In other words, what are the different scenarios in which a 

function could have a limit of 4 as x∞? 

 

In response to the task, Amy and Mike drew the examples shown in Figure 1.  

 

Figure 1 – Examples of Limit at Infinity 

The students were then asked to construct a precise description/definition of what it means for a 

function f to have a limit of 4 as x∞. In considering the examples drawn in Figure 1, Amy and 

Mike provided the following primitive conjectured definition: “On the interval (b, ∞) the 

function needs to approach some finite value L.” Similar to the students in Zaslavsky and Shir‟s 

(2005) study, Amy and Mike subsequently “modified their definition to better reflect the concept 

image they held” (p.328), paying particular attention to describing what it means for a function 

to approach some finite value L. The presence of the prototypical examples on the board 

supported Amy and Mike in utilizing a method resembling proofs and refutations – after each 

modification to their definition they appeared to imagine the proving process suggested by their 

definition in light of the examples on the board. These proofs led to the emergence of 
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counterexamples. For instance, after a modification to their primitive conjecture resulted in the 

refined definition “As x gets larger, the distance |L-y| between L and your corresponding y-values 

continues to decrease,” Amy recognized that the dampened sine wave shown in Figure 1 was 

problematic.  

 

Craig: And you‟re saying that…as x gets larger, they continue to decrease, so the distance 

from your y-values to L gets smaller and smaller? 

Amy: I don‟t know about that…Because I mean, obviously if it‟s going to equal – in this 

situation y is going to equal L quite frequently…when it crosses it, so – so that‟s no 

good…I mean the oscillations are tightening, but that‟s not a good way to describe it. 

 

It is worth noting that in response to the dampened sine wave, Amy appeared to conduct 

something analogous to proof-analysis, in which she “intended to make the proof work rather 

than simply exclude the counterexample from the domain of the conjecture” (Larsen & Zandieh, 

2007, p.208). Specifically, instead of reducing the domain of validity for her definition, Amy 

identified where her process for validating a limit candidate was breaking down so as to 

articulate why the counterexample was problematic. In this sense, Amy‟s attempt to bar the 

dampened sine wave as a counterexample (i.e., make it so that the dampened sine wave was not 

a counterexample) prompted proof-analysis. Amy‟s analysis led to further refinement of their 

definition, which, in turn, led to a different kind of counterexample. 

 

Example 2: Eliminating Extraneous Limit Candidates 

 

In response to the dampened sine wave function, Amy and Mike again refined their 

definition of limit at infinity in an effort to more accurately describe what it means for a function 

f to approach a finite value L. Amy suggested that “there needs to be some interval from a to ∞ 

where the function is continuous and…where the maximum distance between the y-values and L 

show a pattern of decreasing as x increases.” After a moment‟s reflection, during which she 

appeared to check her suggested definition against the dampened sine wave, Amy recognized 

that extraneous y-values close to L would serve as counterexamples to such a definition.  

 

Amy: Is this going to be enough? I mean, because what if, if we leave it at that, then isn‟t 

that true for like, for L…like bigger than or equal to 4? You know? Like doesn‟t that 

make it true for like, every single, 

Mike: Hmm?  Say it again. 

Amy: So, okay, we need some interval from a to ∞ on which f is continuous and the 

maximum distances between y-values and some finite number L show a pattern of 

decreasing as x increases….[W]hat I‟m having trouble with is just, is this [definition] 

specific enough to, like, to L being 4?  I mean, isn‟t this thing that we just said also 

true for 5 and 6 and 9.2, because…on that interval, f is continuous, and the maximum 
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distances between y-values…and 10 are also decreasing…So, I think maybe that‟s not 

quite specific enough...It‟s too broad. 

 

The emergence of extraneous y-values as counterexamples was a watershed moment during the 

teaching experiment, for it ultimately led to Amy and Mike employing proof-analysis in a 

manner that resulted in them articulately defining limit at infinity. In response to Amy‟s 

identification of the problematic component of their definition (i.e., it was allowing for 

extraneous y-values within an ε-neighborhood of L to serve as limits), the first author prompted 

Amy and Mike to consider what it would mean for the function f to get close to L, with close 

being defined as within a single unit of L. Amy suggested bounding the function, which in turn 

supported her and Mike in addressing the extraneous y-values. 

 

Amy: Well, I feel like it would be useful to talk about it being, being bounded….[W]hat if 

we were to say that there is some y-value that this function will never exceed, and 

there‟s some y-value that it will never get…smaller than, you know?  

Craig: So if we wanted to…show that this function is within 1 of 4, what would your bounds 

be, then, Amy? 

Amy: Uh, within 1, well, I guess that then it would be between 3 and 5. 

… 

Craig: Okay, if I wanted to be within ½ of 4, then what would my bounds be? Can you draw 

them? 

Mike: Yup. So you‟d have 4 ½ and 3 ½. [drawing the bounds shown in Figure 2]…[W]e 

know the limit isn‟t 5 anymore, because it‟s bounded by 4 ½ and 3 ½. 

 

 

Figure 2 – Dampened Sinusoidal Function with Close = ½  

As the conversation continued, Mike appeared to extrapolate the process of choosing iteratively 

restrictive definitions of close, and recognized that he and Amy had developed a new proof-

generated process for eliminating extraneous limit candidates. 

 

Mike: And we can keep doing that. 

Craig: What do you mean we can keep doing that? 
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Mike: ...We can keep making our bounds closer and closer to 4, and the function will keep 

lying within those new bounds that we make….And so, with these new bounds 

around the limit now, we eliminated all these y-values as being a limit. 

Craig: And you kept which one as your limit, then? 

Mike: We still have 4. 

Craig: But everything else won‟t work anymore? 

Mike: Yeah. So we eliminated limits. 

 

Mike‟s observation was followed by Amy subsequently recognizing that using the notion of 

arbitrary closeness allowed for the encapsulation of the infinite process of excluding extraneous 

y-values infinitely close to, but not equal to, the limit L. The notion of arbitrary closeness, then, 

served as a proof-generated concept for Amy and Mike, and resulted in the following definition: 

“It is possible to make bounds arbitrarily close to 4 and by taking large enough x-values we will 

find an interval (a, ∞) on which f(x) is within those bounds.”  

Our analysis suggests, then, that Amy and Mike‟s reinvention efforts benefitted from 

iterative monster-barring and proof-analysis activity. Specifically, in an effort to bar problematic 

counterexamples, Amy and Mike engaged in proof-analysis, which spurred refinements to their 

definition. Their refined definitions were then tested against the prototypical examples of limit 

on the board. The act of testing their refined definitions led to the emergence of new 

counterexamples, which inspired more monster-barring, and yet more proof-analysis. This cyclic 

process ultimately resulted in a definition of limit at infinity capturing the intended meaning of 

the conventional ε-N definition.  

 

Final Articulation of Limit at Infinity: Lxf
x

)(lim  provided for any arbitrarily small 

positive number λ, by taking sufficiently large values of x, we can find an interval (a, ∞) such 

that for all x in (a, ∞), |L-f(x)| ≤ λ.  

A Heuristic for Supporting Defining 

The nature of the discussions in which the students in the first author‟s study (Swinyard, 

2008) engaged is reminiscent of the mathematical-social interactions characterized initially by 

Lakatos (1976), and more recently illustrated by Larsen and Zandieh (2007) within the context of 

abstract algebra. Although the instructional trajectory in first author‟s study was both heavily 

guided and strongly scaffolded, the students nevertheless were provided a context in which they 

could be mathematically creative. In a manner consistent with the dynamic set forth by Lakatos, 

at various times all four students took on the roles of conjecturer and refuter, seeking to build 

upon their informal understandings of limit by iteratively refining a self-constructed definition of 

the concept. Interestingly, upon reflection, the students acknowledged the uniqueness of this type 

of active role in mathematical learning. One particularly illustrative excerpt from the second 

teaching experiment highlights the potential benefits of engaging students in a learning 
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environment that aims to stimulate authentic mathematizing, and provide them with an 

experience reminiscent of that of mathematicians such as Cauchy and Weierstrass in the 

historical development of analysis. 

 

Craig: What did you guys accomplish in these past ten weeks? 

Jason: …[W]hat did we accomplish? A level of mental gymnastics not encountered in any of 

my studies ever….[C]lass is usually taught in the, “I‟m [the] lecturer, I‟m going to 

tell you, now you learn this. And then recite it back to me later when I ask.” And 

that‟s not what we were doing in these interviews….So I know that the limit is this 

value that the function intends to reach…Now deconstruct that into some 

fundamentals, some elements, and try to describe those elements, and try to put them 

together in a cohesive picture. So take what you know, and then figure out why you 

know that….Yeah, so, first and foremost [it] was getting the opportunity to do those 

mental gymnastics. Start at the real general level – height function intends to reach – 

getting down to the nitty-gritty specifics. And then, okay, the limit is this. And then 

having Craig go, well what if I just do this, and erase one dot that makes a critical 

change to what we now know? Well, now…we‟ve got to get back into the nitty-gritty 

and get even more nitty and grittier. Restate, come back, and look for 

counterexamples….I‟ve never had the experience of feeling like my study was more 

fruitful with others around….I can always get through the material more sensibly and 

more efficiently if it‟s just me dealing with the material. But that‟s probably because 

up until this point I‟ve only ever been trying to understand the broad general level of 

any given subject.  

Jason‟s response underscores the incongruence between his experience as a participant in the 

study and his previous experience with mathematics. All four students commented during the 

teaching experiments that the type of learning with which they were engaged was different than 

anything they had previously experienced in an academic setting. For instance, on more than one 

occasion, Jason commented that he and Chris were acting like “real mathematicians.” We 

believe that a similar approach may pay dividends in developing an advanced calculus 

curriculum that could have a transformative effect on undergraduate mathematics education. We 

agree wholeheartedly with the stance taken by Tall (1992) –“[T]rue progress in making the 

transition to more advanced mathematical thinking can be achieved by helping students reflect 

on their own thinking processes and confront the conflicts that arise in moving to a richer context 

where old implicit beliefs no longer hold” (p.508).  

We suggest that the careful construction of definitions that reflect robust concept images may 

be the type of mathematical activity conducive to students making the transition to more 

advanced mathematical thinking. The purpose of this paper is to illustrate how monster-barring 

(Lakatos, 1976) can be employed as a sophisticated design heuristic that supports certain types of 

mathematical defining. Based on our analysis of the data from the first author‟s research 



Proceedings of the 13
th

 Annual Conference on Research in Undergraduate Mathematics Education 

11 
 

(Swinyard, 2008), we offer the following suggestions to undergraduate mathematics educators 

interested in supporting students‟ defining efforts. First, prior to engaging students in 

mathematical defining, we suggest establishing that the students possess a strong concept image 

of the mathematical object of interest – indeed, without robust concept images, we doubt that 

students‟ construction of rigorous definitions at the advanced calculus level is even possible. 

Second, once a robust concept image has been established, we suggest having the students 

generate as many qualitatively distinct examples and non-examples of the mathematical object as 

possible. Doing so provides the students sources of motivation for iterative refinement of their 

conjectured definitions. Third, as conjectured definitions emerge, engage students in “running” 

the verification process described by their definitions for the previously generated examples and 

non-examples. By analyzing these thought experiments, the students stand to gain insight into 

how to refine their definitions to bar the offending monsters. Thus, monster-barring and the 

powerful method of proof-analysis can unfold in tandem – as students aim to bar problematic 

monsters, their proof-analyses can motivate refinements to their conjectured definitions, which 

they can check against their prototypical examples and non-examples of the object. These checks 

can lead to the emergence of more monsters, which the students can address via more proof 

analysis.  
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