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Abstract

As part of work on student understanding of concepts in advanced thermal physics, we explore

student understanding of the mathematics required for productive reasoning about the physics.

By analysis of student use of mathematics in responses to conceptual physics questions about

thermodynamic work, as well as analogous math questions stripped of physical meaning, we find

evidence that students often enter upper-level physics courses lacking the assumed prerequisite

mathematics knowledge and/or the ability to apply it productively in a physics context. These

results suggest advanced students are not incorporating calculus and physics into a coherent

framework. We have extended our work to include assessment of mathematical concepts at the

end of a multivariable calculus course. Results support the findings among physics students that

some observed mathematical difficulties are not just with transfer of math knowledge to physics

contexts, but seem to have origins in the understanding of the math concepts themselves.

Introduction

As researchers trained to investigate the learning and teaching of physics, the authors

found themselves faced with questions about how students think about calculus concepts that

were essential for a functional understanding of the content in an upper-level thermodynamics

course. The answers to the specific questions we were interested in were not available in the

literature of either discipline-based research field, which prompted our writing questions and has

led to our participation in this conference.
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The topic of thermodynamics covers a wide-ranging area that is fundamental in nature,

and is utilized in many branches of physics, engineering and other natural sciences. The

published research at the university level, albeit scarce, clearly indicates that students exhibit

significant difficulties when learning thermal physics topics, including conceptual difficulties

with heat, temperature, the Ideal Gas Law and the First Law of Thermodynamics (Rozier and

Viennot, 1991; Yeo and Zadnik, 2001; Jasiem and Oberem, 2002; Loverude et al., 2002;

Meltzer, 2004; Kautz et al., 2005a; Kautz et al., 2005b).

The First Law of Thermodynamics connects energy transfers—that is, energy entering or

leaving the system of interest—to changes in the internal energy of that system during some

thermodynamic process (e.g., the compression of a gas in a cylinder kept at fixed temperature).

The internal energy of the system is a property of the equilibrium state of that system, i.e., it

depends on quantities such as the temperature, pressure, and volume of the system. Internal

energy, and other quantities with similar features, are known as state functions. The energy

transfer quantities in the First Law, work (mechanically transferred energy) and heat (thermally

transferred energy), on the other hand, are not state functions; they only exist when a system is

undergoing some sort of process. The important point here is that changes in state functions are

independent of the thermodynamic process—one only needs to know the initial and final states

to determine the change in internal energy of the system, for example. In contrast, the amount of

work done on (or by) the system does depend on the process. Previous results regarding student

understanding of the First Law have documented several common conceptual difficulties, such

as indiscriminate application of the concept of a state function to non-state function quantities

such as work and heat (Loverude et al., 2002; Meltzer 2004).
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For several years, members of the Physics Education Research Laboratory at the

University of Maine (UMaine) have been exploring student learning in upper-level thermal

physics courses, primarily taken by physics majors, extending the tools and results of research in

introductory physics to the more specialized upper division. There exists a limited body of

research in this area (Loverude et al., 2002; Meltzer, 2004; Meltzer, 2005b; Thompson et al.,

2006; Cochran and Heron, 2006; Bucy et al., 2007; Mountcastle et al., 2007; Pollock et al., 2007;

Christensen et al., 2009; Loverude 2009; Smith et al., 2009). Meltzer (2004) has suggested that

particular difficulties experienced at the introductory level are also evident at the advanced

undergraduate level. In thermal physics, as with most physics areas, specific mathematical

concepts are required for a complete understanding and appreciation of the physics.

Our main research agenda for the learning and teaching of thermal physics deals with

identifying and addressing student conceptual difficulties with the physics content. A sub-theme

of this research, highlighted here, investigates the extent to which any mathematical conceptual

difficulties may affect students’ understanding of associated physics concepts in

thermodynamics. In this area, as with many physics areas, specific mathematical concepts are

required for a complete understanding and appreciation of the physics. Our research question in

this context is: To what extent do students recognize, and/or understand, the relationship between

the physics concepts and the underlying mathematics?

Mathematics is a vital part of solving many physics problems, often used to condense a

complicated conceptual problem into a relatively simple relationship between variables. Many

convenient representational tools exist in physics (e.g., equations, graphs and diagrams) that

simplify analysis of a complex problem. Appropriate interpretation of these representations
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requires recognition of the connections between the physics and the mathematics built into the

representation and subsequent application of the related mathematical concepts (Redish, 2005).

Meltzer (2002) has shown a link between mathematical acumen and success in an

algebra-based physics course. Only a handful of studies in PER have attempted to investigate

mathematical difficulties with calculus concepts among physics students (Thompson et al., 2006;

Black and Wittmann, 2007; Bucy et al., 2007; Pollock et al., 2007; Rebello et al., 2007.)

In thermodynamics, two- or three-dimensional graphical representations of physical

processes are especially useful in helping to understand these processes. These diagrams can

contain information about the thermodynamic “path” followed in a process, regions of different

phase, and critical behavior. Graphs of pressure versus volume, known as P-V diagrams, are used

extensively as representations of physical processes as well as of the corresponding mathematical

models. Information can quickly and easily be obtained from these representations. For example,

the work done on a system undergoing a thermodynamic process is defined as the integral of

pressure with respect to the volume:

W ≡ ∫ P dV

Thus physicists can quickly determine the work done by a calculation, if the function P(V) is

known for a given process. Qualitative determinations can be made by evaluating the area under

the curve for a particular process.

Due to the physics content areas that we investigate, we have focused on student

understanding of pressure-volume (P-V) diagrams in the context of determining quantities

related to the First Law of Thermodynamics (Pollock et al., 2007), and on student understanding

of relationships between material properties using mixed second-order partial derivatives (Bucy

et al., 2007). We sought to isolate mathematical difficulties that may underlie observed physics
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difficulties by asking physics questions that are completely stripped of their content—we call

these “physicsless physics questions”—and focus on the calculus concepts under investigation

(i.e., integration and partial differentiation). We administered physics questions as well as the

analogous math questions to the students in our thermodynamics course. A comparison of

student responses and reasoning on these paired questions allows us to pinpoint the domain(s) in

which confusion may lie.

Brown et al. (1989) provide a cognitive model in which students frame activities based

on the environment in which they are located. Tuminaro and Redish (2007) have coined the term

epistemic framing to describe students’ expectations in different pedagogical situations. These

expectations are cued by the setting, explicitly and implicitly. Epistemic framing answers the

question “What are we going to do here?” or “What do I need to be successful here?” It may be

that students exhibiting mathematical difficulties were not able to access their ideas about the

mathematical concepts appropriately in a physics classroom. With the long-term goal of

improving student learning through effective curriculum implementation, it is imperative that we

ascertain whether these students possess the requisite calculus knowledge or if they are simply

unable to access and use that information effectively in a physics classroom. To explore this

question of transfer, we developed and administered a series of questions as a brief survey in a

multivariable calculus course (the final prerequisite math course for thermal physics) after all

relevant instruction.

The survey we administered consisted of six primary questions, some with subquestions.

The first three questions were math analogs – the physicsless physics question companions – to

physics questions asked in thermodynamics. The last three covered the more basic concepts of
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derivative, slope, and the product and chain rules of differentiation. In this paper we discuss the

results from the first integral question and those on slope and derivative.

Context for research

The data are collected from two primary sources. The results on the physics questions

come from students in UMaine's upper-level Physical Thermodynamics course, taught in the fall

semester. The course meets for three 50-minute sessions each week, for 14 full weeks. This

course has been taught by the same instructor for more than ten years, using the same textbook

(Carter, 2001) for more than five years. Students turn in homework approximately once every

two weeks and are given two cumulative exams and a comprehensive final exam during the

semester. The class size is small, usually between 8 and 15 students.  We have administered our

questions in 5 semesters of this course, yielding paired data from a total of 35 independent

students.

The majority of the students in thermodynamics are either physics or engineering physics

majors, with an occasional math or earth sciences major and an occasional physics graduate

student. For many students in the class, this is their first exposure to thermal physics in college,

since UMaine’s introductory calculus-based physics sequence does not cover thermal physics.

Introductory chemistry, which typically covers the First Law and related topics, is not mandatory

for some of the students in the course. However, all students in the data set had completed three

semesters of calculus, including multivariable calculus, as well as a course in ordinary

differential equations; some students had taken additional mathematics courses.

We also have data obtained in the last week of instruction in Calculus III, which includes

multivariable differential and integral calculus. Total populations of the course are on the order

of 100-150 students, typically taught in lecture sections of 35-50 students. The course meets in
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four 50-minute lectures each week, and is taught in both the Fall and Spring semesters. Students

in this course are typically majoring in a physical science, engineering, or mathematics. The

responses from calculus surveys are not matched across all questions.

Research perspective

We are primarily interested in analyzing student understanding of the physics content.

We view our research data using the idea of specific difficulties (Heron, 2003) with the material

to describe student reasoning. These difficulties can manifest themselves as incorrect or

inappropriate ideas expressed by students, or flawed patterns of reasoning to specific questions.

We start with targeted, context-dependent results and then generalize across contexts and seek

larger patterns of student responses in our data. While we are familiar with more cognitive

models from both physics (e.g., Hammer and Elby 2003) and mathematics (e.g., Schonfeld 1992)

education research traditions, we are not currently considering cognition in our analysis.

Fundamentally, our emphasis is on gathering and interpreting empirical data that can act as a

foundation for future studies on reasoning in advanced physics and curriculum development to

address student specific difficulties.

Student Understanding of the Physics and Mathematics of Thermodynamic Work as
Represented on P-V Diagrams

Background

Meltzer (2004) developed a set of questions probing student understanding of the First

Law and related quantities based on processes shown on a P-V diagram, relating to findings by

Loverude et al. (2002). In answering these questions students are expected to recall that work is

the integral of PdV, and thus the area under the curve is associated with the work done by the

gas. Both Meltzer and Loverude et al. reported on student conceptual difficulties with the physics
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concepts, but we wondered if some of the conceptual difficulties might originate in the confusion

over the mathematics at play. In addition to replicating Meltzer's experiment in our upper-level

thermodynamics course, we designed qualitative questions regarding comparisons and

determinations of the magnitudes and signs of integrals without any physics context that are

analogous to Meltzer’s questions.

We are aware of a limited body of work pertaining to the topic of student understanding

of integral calculus concepts in mathematics education research. Previous findings of which we

are aware indicate that students do not possess the necessary concept image of an integral,

definite or indefinite, to allow them to successfully complete problems involving concepts of

integration, in particular an understanding of the relationship between a definite integral and the

area under the curve, the ability to find areas under the curve when the curve crosses an axis, and

the general relationship between a definite integral and the area under the curve (Orton, 1983;

Vinner, 1989; Thompson, 1994; Bezuidenhout and Olivier, 2000; Rasslan and Tall, 2002;

Grundmeier et al., 2006; Sealey 2006; Thompson and Silverman, 2007). We should point out

that while the term concept image is not used in the physics education research community, we

do similarly describe student ideas about a particular concept.

Comparison of Work and of Integral Magnitudes by Physics Students

We have previously reported on comparisons of student responses and reasoning for one

pair of questions dealing with the physics and mathematics of work in thermodynamic processes

(Pollock et al., 2007). Based on results from Loverude et al. (2002), Meltzer (2004) asked

students to compare energy transfers and changes (work, heat transfer, internal energy changes)

for two ideal gas processes (#1 and #2), shown on a P-V diagram, that have the same beginning

states and the same ending states (A and B, respectively; Fig. 1(a)). For the work question
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students are asked to compare the works done by the gas in the two processes. The correct

response can be obtained by recognizing that the work done by the gas is defined by the integral

of the pressure with respect to the volume, ∫PdV, and that this integral is represented by the area

under the curve for that process.

We paired Meltzer’s work question with an analogous mathematics question (Fig. 1(b)),

designed to elicit any underlying mathematical difficulties in this context. In this “integral

question,” we asked students about the magnitudes of integrals of two functions that have

identical beginning and end points. The two thermodynamic processes are replaced with two

different functions. We explicitly chose to label the starting and end points as “a” and “b” just as

was done for our states on the P-V diagram, even though this is not a typical mathematics

convention. We asked the math question usually in the first week of class, and the physics

question in the second or third week. We also interviewed students to get more information on

our written results.

 

z 

y 

a 
z = f(y) 

z = g(y) 
b 

(b)(a)

Figure 1. Diagrams used on questions about (a) comparing work done by identical systems over
two different thermodynamic processes, from Meltzer (2004); (b) comparing the values of the
integral of the two functions shown over the same interval.

The paired results are shown in Table 1. About half of the students gave correct responses

to both questions. The next most common response pair was that the integrals were different

(correct) but that the works were equal, given by one fifth of all students. All 7 students used an
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area under the curve argument for the integral comparison. The reasoning on the work

comparison question, however, dealt explicitly with physics concepts. Some stated explicitly

(incorrectly) that work is a state function. Some wrote that work was path independent—a

reasonable idea in the context of conservative forces as typically taught in introductory

mechanics; in fact, one student explicitly wrote “assuming conservative force.” Another student

assumed “zero dissipative processes,” which is another reasonable-but-incorrect application of

ideas learned at the introductory level.

Student Response Pairs
Physical Thermodynamics

N=35
(Nclass = 5)

I1 > I2  and W1 > W2 18   (51%)

I1 > I2  and W1 = W2 7   (20%)

I1 = I2  and W1 = W2 5   (14%)

other 5   (14%)

Table 1. Results from paired responses to integral comparison question and work comparison
questions.

Another group of students equated the integrals on the math question and equated the

works, indicating conceptual difficulties with the math and possibly, but not necessarily, the

physics.

We have found that students were less likely to provide detailed explanations for their

responses at the upper level than at the lower level. So in addition to the written data, we

conducted individual student interviews to get more information on reasoning used to answer

these questions. Eight students were interviewed on the integral comparison question, five before

any instruction in thermodynamics (e.g., from the sophomore class of physics majors) and three

after all instruction in thermodynamics. The five “pre-thermodynamics” students were also asked
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the work comparison question. In general, the interview results supported the written data:

similar explanations were given with little additional insight into the reasoning, especially with

regard to state function and path independence reasoning for the physics question. However, one

additional line of reasoning came to light in the interviews in both contexts.  Two student

statements are given below:

“I guess that the top is the same. It's the same curve in reverse. So I am going to

go with equal.  ...  symmetry across the line through a-b.”

“they are in fact equal to each other... And while the processes may be different,

uhh, they both reflect about the straight-line going between point a and point b

and therefore they must be symmetric.”

These students relied on the symmetry of the graphs to decide that the integrals/works

were equal. These arguments suggest that students are relying on the length of the path and not

the area under the curve in these cases to determine the integral value. We saw no evidence of

this reasoning on the written responses in physics; however, it may be that this reasoning was

tacit in the cases where no reasoning was given, and may be more prevalent than we thought.

Overall, the results from these questions indicate that some of the difficulties that arise

among physics students when comparing thermodynamic work based on a P-V diagram—e.g.,

treating work as path independent—may be attributed to difficulties with the mathematical

aspect of the diagram, in particular with the correct application of an understanding of integrals

or a misinterpretation of the graphical representation, rather than simply physics conceptual

difficulties (e.g., treating work as a state function).
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Results from Multivariable Calculus

The integral comparison question was asked on the survey in the multivariable calculus

course described above. Just over 60% of students (22/35) in the thermodynamics course

provided correct responses, and just over half (98/183) of the calculus students did so. In both

data sets, around one quarter of students said that the integrals were equal. Endpoint-based

reasoning was similar in both courses. However, in the calculus course, some students gave

written responses that either explicitly or implicitly used symmetry to explain why the integrals

were equal, implying that path length was important, similar to the reasoning from the physics

student interviews described above.

In fact, when presenting the integral comparison question to researchers in undergraduate

mathematics education (at this meeting), some indicated that their initial reaction was to consider

line integrals, since the figure labels the points on the graph (points a and b) rather than on the

axis (ya and yb or y=a and y=b as the endpoints of the integral). While we used this hybrid

representation deliberately—distinguishing this as a physicsless physics question rather than

strictly a mathematics question—the point is well taken. To follow up on this comment, we

intend to vary features of the graph and investigate any differences in responses. We have

already made the graphs asymmetric in order to eliminate the symmetry argument altogether: in

both cases the lower curve is now longer than the upper curve, so that path length reasoning

should yield a different response (i.e., I1 < I2) than area under the curve reasoning. We have not

received sufficient data to make any claims about these modifications as of yet.

As mentioned earlier, the RUME literature contains evidence of student difficulties with

integration, both definite and indefinite. Our questions removed the opportunity for students to

calculate an integral explicitly, which makes comparisons to the RUME results difficult. Our
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sense of the literature is that the concept image of an integral as area under the curve is

problematic in several situations in mathematics; Thompson and Silverman (2007) suggest that

that image may limit the applicability of the conception of integrals in different contexts.

Thompson and Silverman advocate for the idea of the accumulation function to connect

integration (and the Fundamental Theorem of Calculus) to rates of change (i.e., the derivative),

and to redirect student thinking back to fundamental ideas of function. In our opinion, the

predominant concept image of integrals in physics is as the area under a curve—even a negative

area. To our knowledge there is no evidence in the PER literature of students failing to recognize

negative area in a physical context. One possibility is that researchers did not know to look for it,

so have not seen it. It may also be that the ubiquity of graphical representations in physics, and

the frequent analysis of integrals of curves with different units and different physics contexts,

somehow affects students to recognize areas “under” functions below the axis as negative

quantities (e.g., moving backwards leads to less displacement, negative acceleration leads to a

less positive velocity, etc.). Note that in thermodynamics, pressure and volume are always

positive (until one deals with cavitation or other advanced fluid dynamics where “negative

pressures” are discussed), so we are not likely to see evidence of area-based difficulties of that

nature in our students. While the area model is predominant, it may be that physicists also use

accumulation in analysis involving integrals, since integrals of the functional form of the

accumulation function described by Thompson and Silverman are prevalent in physics. It is

worthy of an interdisciplinary investigation to explore the concept images of integrals in physics

in general, across physics contexts.

We have a number of additional tasks planned for future study in this area. We aim to

probe student thinking in a similar context of physicsless physics questions about integration that
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do not rely on the pictorial representation of the P-V diagram. Multiple variations (like those

highlighted above) on both our math and physics questions will be explored as well, in some

cases making the questions more like the types of math questions students are used to seeing, and

in some cases more like the physics questions. Furthermore, we have probed student thinking in

a similar thermodynamics context by asking about the change in internal energy, which, unlike

work, does not depend on the process that the goes undergoes, as well as an analogous

mathematics question. We intend to report on those results in a future publication.

Intermediate mathematics students’ responses to questions about slope and derivative

Among the earliest findings in the physics education research literature are those

difficulties reported by Trowbridge and McDermott concerning student understanding of

kinematics (Trowbridge and McDermott, 1980; Trowbridge and McDermott, 1981). A

significant portion of this work was done through the analysis of student ideas about graphical

representations of various kinematic processes and was followed a few years later by the work of

McDermott et al. (1984). Beichner developed a multiple-choice survey to assess student

knowledge of graphical representations in the context of kinematics called the Test of

Understanding Graphs – Kinematics (TUG-K) (1994). Beichner confirmed a number of items

that had been previously reported by McDermott et al., including “slope/height/area confusion”

in the context of kinematics among students in the introductory sequences.

We decided to include physicsless physics questions about concepts of slope and

derivative on our math survey in order to shed additional light on the student thinking regarding

these concepts without the burden of the physics context. As described above, students in

thermal physics were struggling with fundamental ideas of integration; we also have evidence of

student difficulties with partial derivatives in other thermodynamics contexts (Thompson et al.
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2006; Bucy et al. 2007). Given these results, we thought it best not to make any assumptions

about the understanding of our students on slope and (single-variable) derivative without

assessing them. The result was two questions that are very similar to questions from the PER

literature, but stripped of any physics content: the Slope Ranking Task and the Derivative Sign

and Ranking Task.

The Slope Ranking Task (Fig. 2(a)) requires students to order the slope of the drawn

function at four different values of x. The question attempts to dissuade ranking absolute values

and contains a great deal of language explaining what the form of the desired response is. A

correct response on the Slope Ranking Task requires students to associate slope with the

steepness of the curve at the four given points.

(a) (b)
 

x a 

 f(x) 

 g(x) 

O 

 h(x) 

 

x a 

 f(x) 

O b c d 

Figure 2. (a) Slope Ranking Task; (b) Derivative Sign and Ranking Task.

Over three semesters, roughly 15% of students were unable to complete this task

successfully, less than half provided any reasoning for their correct rankings (see Table 2). The

most common incorrect response (accounting for one fifth of incorrect responses) was a ranking

that is consistent with the average slope between points rather than the instantaneous slope at a

point. This type of confusion has been documented in the PER literature in kinematics (Beichner,
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1994; Shaffer and McDermott, 2005): students interchanging average and instantaneous velocity

for objects that are not experiencing constant acceleration.

Correct Responses Fall 2007
(N =70)

Spring 2008
(N = 31)

Fall 2008
(N = 37)

Slope of f(x) @ (a>d>c>b) 79% 90% 89%

Table 2. Correct responses on the Slope Ranking Task for students after all instruction in a
Calculus III course.

A few students (<5%) gave a ranking consistent with the value of the function at each

point rather than the slope at each point. This confusion has been previously reported in the PER

literature by Beichner in the context of graphical interpretation of kinematics (1994). It is unclear

to what extent the errors reported by Beichner may occur due to student confusion with

mathematical understanding rather than the physical context. Additionally, PER has many

examples of students confusing a quantity and its rate of change, whether in a graphical context

or in the context of a physical demonstration, most notably confusion between position and

velocity (Trowbridge and McDermott, 1980) and between velocity and acceleration (Trowbridge

and McDermott, 1981).

The Derivative Sign and Ranking Task (Fig. 2(b)) asks students to determine the signs of

and to compare the magnitudes of the derivatives of three different functions of the independent

variable x at the same value of x, based on a set of graphs of the three functions. This question

requires students to make a connection with a derivative and either the slope or the change in the

function, which must then be read off the graph. This task was specifically written to overlay the

assessed concept in the previous question, but also to differentiate between students who could

rank the slopes of a line but might not be able to connect “derivative” with the slope of the line.
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The curves of the three functions were drawn to allow common incorrect reasoning to be more

clearly determinable.We found that more than half of the students were able to state that the

derivatives for all three functions were positive (see Table 3). Due to the potentially misleading

flatness of curve h(x) some students stated the derivative at x = a was zero or not determinable.

A more prominent curve was added in place of h(x) after the first administration which seems to

significantly eliminate this “alternative” correct explanation.

Fall 2007
(N =82)

Spring 2008
(N = 34)

Fall 2009
(N = 39)

Original
Version Modified Version

All Correct Responses 71% 62% 77%

Preferred Correct Response
df/dx, dg/dx, dh/dx are postive 51% 62% 69%

Alternative Correct Response
df/dx, dg/dx positive; dh/dz zero or nei 20% 0% 8%

2nd derivative responses 7% 18% 13%

Table 3. Response rates for Derivative Sign and Ranking Task. Percentages in the All Correct
Responses row are the sum of the Preferred and Alternative Correct Responses; 2nd derivative
responses are those students whose sign choice is consistent with the 2nd derivative, but not
necessarily identified by the student as a 2nd derivative answer.

The most common incorrect response on the original version (7%) was a ranking

consistent with that for the values of the 2nd derivative of these curves. We were concerned that

the question wording may have been unclear. In response, we altered the language to more

clearly indicate we sought the derivative of the functions and gave the expressions for the

derivatives in the response area (e.g., 
  

€ 

df
dx x= a

) for emphasis. However, the Spring 2008 students

gave 2nd derivative responses at a much higher rate (18%) with the modified version, implying
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that the question wording and presentation were not the issue, and that this is still a significant

difficulty for students in Calculus III.

We can cast additional light on the thinking of those students that gave responses

consistent with 2nd derivative reasoning by examining their responses to the Slope Ranking Task.

Nearly all (95%) of these students gave a correct ranking on the slope question. Therefore we

can hypothesize that these students are able to make sense of the slope of a curved surface, but

do not match the idea of derivative with slope of the curve. One possible explanation (among

many) would be that a student might carry two notions of derivative: that of the change of the

function and that of the slope of the function. Students may use one notion or the other as the

student sees fit in a given context, but may, at times, use them simultaneously. Thus, a question

about derivative might cause them to think of the “change in the slope” and give a 2nd derivative

response.

Most students who gave a correct sign for the derivatives in part a) correctly ranked the

values of the derivatives in part b). There were some instances (<5%) of student rankings that

were consistent with a ranking of the areas under the curves of the functions, with at least two

instances of students explicitly justifying their answers as “areas under the curve.” If this

question were given in a kinematics context, researchers would likely identify student confusion

with kinematics; instead, this physicsless physics question points to at least a few students who

use notions about area to answer questions about derivatives.

Conclusions

By analysis of student use of mathematics in solutions to conceptual physics questions

involving integration as well as analogous math questions stripped of physical meaning, we find

evidence that students often enter upper-level physics courses lacking the necessary (and
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assumed) prerequisite mathematics knowledge and/or the ability to apply it productively in a

physical context. Taken as a whole, these results point to difficulties among advanced students in

incorporating calculus and physics into a coherent framework.

Preliminary results from questions about integrals and about slopes and derivatives

administered in a multivariable calculus course suggest that the observed mathematical

difficulties are not just with transfer of math knowledge to physics contexts. Some of these

difficulties seem to have origins in the understanding of the math concepts themselves.

Recent discussions suggest that it may be possible that this confusion may be due in part

to the differences in the canonical representations used in physics and in mathematics. This

aspect of our results will be explored further in future research.

We are continuing to collect and analyze data from written questions and interviews, and

to expand the scope of our investigation to additional populations at the introductory level, both

in physics and in mathematics.
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