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Introduction: Recent curricula emphases, which highlight the importance of thinking, 

communicating and instilling deep understanding in students, have encouraged the emergence 

of problem solving as an important mechanism for enhancing mathematics learning (Muir, 

Beswick & Williamson, 2008). Problem solving “is central to inquiry and application and 

should be interwoven throughout the mathematics curriculum” (National Council of Teachers 

of Mathematics, 2000, p. 256). When given opportunities to grapple with appropriately 

challenging tasks, students engage in problem solving to develop mathematical knowledge. 

The growth of understanding of elementary, secondary and university students has been well 

documented with regard to quadratic functions, taxicab geometry, fractions and combinatorics 

(Borgen & Manu, 2002; Martin, 2008; Pirie & Kieren, 1994; Warner, 2008). Several studies 

have focused on open-ended tasks (Empson, 2003; Speiser, Walter & Maher, 2003; Vega & 

Hicks, 2009).  

However, there remains a need for detailed investigations into university students’ 

growth of understanding of Taylor Series through task-based inquiries in calculus. The 

purpose of this qualitative study is to identify behaviors in which university calculus students 

engage during mathematical problem solving, and how those behaviors relate to growth of 

students’ mathematical understanding. The Pirie-Kieren Model (1994) provides a framework 

for our detailed analysis of how certain problem-solving behaviors contributed to the growth 

of one university student’s mathematical understanding of Taylor Series. Here, we focus on 

the mathematical problem solving activities of a student, Heber, as he worked collaboratively 

with his classmates on a task designed to facilitate the emergence of Taylor Series. 

Theoretical Perspective: Student behaviors identified by Warner (2008) that appear 

to be associated with the growth of mathematical ideas and student understanding include 

building and explaining ideas, offering new ideas, questioning ideas, showing ideas are valid, 

reorganizing ideas, using multiple representations and creating new questions. Working 

together in groups, students have opportunities to build, offer and explain ideas to each other, 

determine which ideas are valid, reorganize ideas, represent understandings, provide 

justifications, and generate generalizations. 

Pirie and Kieren (1994) developed a theoretical model for observing and describing 

processes through which students’ build mathematical understanding. Pirie and Kieren argue 

that building understanding is not a linear process, but is a dynamical movement through eight 

embedded layers of understanding. Although the layers of understanding in the theoretical 

model build outward, growth in understanding occurs as students continue to work within and 

move back and forth through different layers of understanding (Martin, 2008). Here, we focus 

on four layers of understanding through which Heber moved, or traversed, that are evident in 

our data: formalising, observing, structuring and inventising. Students in the formalising layer 

of understanding are able to abstract methods based on previous images and develop formal 

mathematical ideas. In the observing layer, students question how formal statements about a 



 

concept are connected and look for patterns and ways to define their ideas as algorithms or 

theorems. Structuring is when students begin to think about their formal observations as 

theory and start to make logical arguments in the form of proof. The inventising layer occurs 

when a student has gained full understanding of a concept and can pose questions that may 

lead to new concepts (Pirie & Kieren, 1994, p. 171).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 
The Pirie-Kieren model for the growth of mathematical understanding (Pirie & Kieren, 1994, p. 167) 

  

 When students are working in an outer layer in the Pirie-Kieren model, they may be 

confronted with a problem that prompts them to fold back to an inner layer in order to build 

on existing knowledge and then move forward with their mathematical understanding (Borgen 

& Manu, 2002). Folding back “allows for the reconstruction and elaboration of inner level 

understanding to support and lead to new outer level understanding” (Pirie & Kieren, 1994, p. 

172). Ideally, the result of folding back is that if a student’s existing constructs were 

insufficient to solve a problem, then the student is able to extend incomplete understanding by 

developing earlier constructs which may lead to new ideas or concepts (Martin, 2008). 

 Another important element of the Pirie-Kieren model is the notion of  “don’t need” 

boundaries, which occur between three different layers of understanding (the darker rings in 

the model). Beyond these boundaries, a student may work with ideas that are not necessarily  

“tied to previous forms of understanding, but these previous forms are embedded in the new 

level of understanding and readily accessible if needed” (Pirie & Kieren, 1994, p. 173). Here, 

based on analysis of student behaviors, we focus on the boundary between the observing and 

structuring layers of understanding. When students are working in the structuring layer they 

think of their formal observations as theories and do not necessarily need to reference the 

specific images that produced those observations in the inner layers of understanding. 

Primitive
Knowing

Image 
Making

Image
Having

Property
Noticing

Formalising

Observing

Structuring

Inventising



 

Generally, after crossing a “don’t need” boundary with respect to a particular concept, 

students may continue to grow in understanding while working in the outer layer without 

folding back to an inner layer, but, as stated earlier, this does not imply that students cannot 

fold back to inner levels of understanding if needed.  

Research Question: How do certain problem solving behaviors contribute to the 

growth of one university student’s mathematical understanding of Taylor Series? 

Method: We provide a qualitative analysis of Heber’s problem solving behaviors with 

respect to relevant layers of the Pirie-Kieren model for understanding. Data were collected 

during the third semester of a teaching experiment in calculus at a large private university. 

Approximately 25 students were enrolled in the class. Students worked together in small 

groups on open-ended mathematics tasks. One of the tasks, The Cars Task, invited students to 

create a polynomial approximation of

! 

p(t) = t +1 near t=0. Classes were videotaped with 

one camera that focused on small group problem solving activities or whole class 

presentations. Research team members verified verbatim transcripts of 97 minutes of one 

group’s work on The Cars Task. Transcripts and video were linked with time codes 

(minutes:seconds). Transcript annotations to clarify student statements and to describe non-

verbal behaviors were bracketed. Student behaviors were identified and coded (Table 1). 

Student behaviors were mapped onto the Pirie-Kieren model to characterize student growth of 

mathematical understanding. 
          

           Table 1 

                                             Codes for identified student behaviors 

Building Ideas (B) 

Explaining Ideas (E) 

Offering Ideas (O) 

Questioning Ideas (Q) 

Validating Ideas (V) 

Reorganizing Ideas (R)12 

Multiple Representations (MR) 

New Concepts (NC) 

 

 

Data and Analysis: Heber’s group determined that they could create an accurate 

approximation for p(t) near t=0 by finding a polynomial, g(x), which had the same slope and 

concavity of p(t). The group began by taking the first five derivatives of p(t) and evaluating 

those derivatives when t=0 (Fig. 1). After determining these constant values, they used anti-

differentiation to produce a polynomial g(x) (Fig. 2) that they believed was a good 

approximation for p(t). In Episode 1, Heber explained (32:00), while talking with his 

classmate, Tyler, that the more derivatives they “matched up” between p(t) and g(x), the more 

accurately g(x) would approximate p(t).  For example, if they “matched up” 25 derivatives 

(meaning the first 25 derivatives of p(t) evaluated at zero equivalent to the first 25 derivatives 

of g(x) evaluated at zero) then g(x) would be more accurate. 

 

 

                                                   Figure 1 
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                                                   Figure 2 

 

Episode 1 

Time Speaker Annotated Transcript Codes 
 

(31:51) 
 

Heber 
 

If we did it [the process of finding the 

derivative of p(t)] to the sixth [sixth 

derivative], it [g(x)] would be even better. If 

we did it to the five hundredth, it [g(x)] 

would be almost identical probably, out to 

like, who knows. Forty, fifty, sixty. 
 

 

(O)- Offering Ideas 

(31:59)  Tyler Thousand 
 

 

(32:00) Heber Yeah. Pretty far probably. And then as it, 

what we want to say is that as n approaches 

infinity, this function [circles his pencil 

around the polynomial approximation on 

his paper] approaches the exact value of the 

thing [p(t)]. 
 

(E)- Explaining Ideas 

(32:13) Michael Right. As we repeat that pattern [of 

equivalent derivatives of p(t) and g(x)] 

infinitely. 
 

 

(32:18) Tyler We haven't proven that yet, but, that would 

be a lot of exhaustive proofing. 
 

 

(32:23) Heber Actually, we could, this is a form of proof. 

It's called inductive proof. 
 

(B)- Building Ideas 

(32:27) Heber When we show case one. We show that 

case one kind of approximates it. And then 

we show that case n is a better 

approximation. Oh no. 
 

(E)- Explaining Ideas 

(32:35) Tyler Than case n minus one. 
 

 

(32:36) Heber We show that n plus one is a better 

approximation than n. Or yeah, like you 

said, n is a better approximation than n 

minus one. 
 

(V)- Validating Ideas 

(33:06) Tyler How many derivatives could we take of 

this? 
 

 

(33:09) Heber An infinite number. 
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Heber’s behaviors of offering and explaining the pattern of matching “an infinite 

number” (33:09) of derivatives corresponds to the observing layer of understanding in the 

Pirie-Kieren model. Later, Heber built his idea into a theory by explaining (32:27) how to use 

induction to prove g(x) was an accurate approximation of p(t). As Heber built up his 

observations into a theory he folded back to the formalizing layer of understanding to find the 

method of induction he needed to prove his theory was correct. By explaining and validating 

the method of induction, Heber moved to the structuring layer of understanding. By pursuing 

the idea of using induction to justify the method for finding a polynomial approximation that 

“matched” out to infinity, Heber passed through a “don’t need” boundary and into the 

structuring layer of understanding. He did not need to fold back to an inner layer of 

understanding to find another way to develop an accurate approximation of p(t).  

 

Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

By the next time the class met, Heber had expanded g(x) to the tenth degree (Fig. 3). 

Heber’s group decided not to pursue the development of an inductive proof, but instead 

returned to the observing layer of understanding and focused on Heber’s notations and 

representations to find a general expression that would determine the coefficients of g(x) to 

approximate p(t). At first, the students in Heber’s group decided to use a question mark as a 

placeholder for the numerator in the general form for the coefficients of g(x), while they 

determined a notation for the pattern in the denominator, 

! 

2
n
n! (Fig. 4), of the general 

expression. After a few minutes of problem solving, they developed the notation for the 

question mark they had been using as a placeholder (Fig. 5). They generalized the expression 

in Figure 5 so it would be accurate for all n, except when n was zero, and then substituted the 

expression for the question mark into the numerator (Fig.6). Finally, they simplified Figure 6 

to produce their final formula (Fig. 7) to describe any coefficient of the nth degree polynomial 

approximation, g(x). The mapping of Heber’s growth of understanding in Episode 1 is 

provided below. 

 

       Figure 4                    Figure 5                      Figure 6                           Figure 7 
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Later, in Episode 2, while Heber and his group were presenting to the entire class the 

development of their general form for the coefficients (Fig. 7), a comment (39:41) made by 

the professor prompted Heber to justify (40:14) that their notation accurately reflected the 

processes of finding the nth derivative evaluated at zero and then dividing by n!. Heber’s 

justification corresponds to the structuring layer of understanding. Heber’s professor then 

asked him (40:25) to come up with “short cut” notation that would be equivalent to the 

formula in Figure 6.  
 

 

Episode 2 

Time Speaker Annotated Transcript Codes 
 

(39:41) 
 

Prof. 
 

So you're telling me that I could find the 

coefficients of each of the terms in my 

polynomial approximation to the [p(t)] 

function if I simply found the derivative and 

then divided by n factorial? 
 

 

(40:10) Heber Yes. 
 

 

(40:11) Prof. Wait, could we write that out somehow? 
 

 

(40:14) Heber Um, okay. It's kind of written out right here 

[Points to Fig. 7], this is our derivative, this 

is our value evaluated at zero. 
 

(B)- Building Ideas 

(R)-Reorganizing Ideas 

(40:25) Prof. But I'm thinking short cut notation for me, if 

I wanted to go back to my original function, 

I could just find the derivative, the nth 

derivative? 

 
 

 

(40:40) Heber Yeah okay, so we could do it [writes the (MR)- Multiple 

Mapping of Heber’s growth of 

understanding in Episode 1 

Behaviors 

O- Offers 

E- Explains 

B- Builds 

V- Validates 



 

Observing

Structuring

Inventising

Professor asks for
another representation
of the group's formula

B, R

"Short cut
notation"

MR, E, NC

expression in Fig. 8] f of n [the nth 

derivative] evaluated at zero, divided by n 

factorial. 

 

Representations 

(NC)- New Concepts 

(40:56) Prof. And that's equivalent, but those two 

expressions [Fig. 7 & Fig. 8] are equivalent 

for this function? 

 

 

(41:04) Heber Yeah, this and this [Points to Fig. 7 & Fig. 

8] are equivalent, I just multiplied this one 

out [Fig. 7]. 

 

(E)- Explains Ideas 

(41:23) Michael So I guess that [Fig. 8] could be useful, 

because that's well and it's more general. 

 

 

(41:28) Heber Yeah that’s definitely much more general. 

 

 

 

The sequence of interventions by Heber’s professor helped Heber to produce a new 

expression (Fig. 8) for the generalized formula they had created. During this episode (40:40), 

Heber responded to the instructor’s intervention and developed the notation for a new 

expression equivalent to the general expression they had developed previously (Fig. 7). In 

developing the new expression, Heber reorganized his ideas to generate a new representation 

of the generalized formula that resulted in the discovery of a new concept, the general formula 

for finding coefficients for Taylor Polynomials. By explaining an idea, reorganizing his ideas, 

and creating a new expression, Heber moved from the structuring layer into the inventising 

layer of understanding. By developing the notation for their formula in Figure 7 first, Heber 

was able to explain the new concept and attribute meaning to the new symbolism in Figure 8. 

The mapping of Heber’s growth of understanding in Episode 2 is provided below. 

 

    Figure 8 
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Findings: The problem-solving behaviors Heber demonstrated in each layer of the 

Pirie-Kieren model for the growth of mathematical understanding throughout the Cars Task 

and the frequency of those behaviors are displayed in Table 2. The layers of understanding in 

which Heber demonstrated the largest variety of behaviors were image having, formalizing, 

structuring and inventising. After Heber passed through a “don’t need” boundary (represented 

by the shaded rows in Table 2) he demonstrated the behaviors of multiple representations, 

questioning ideas, reorganizing ideas, and validating ideas. These behaviors do not occur in 

any other layers except for inventising, which is the layer in which students culminate their 

understanding. The most frequent behaviors demonstrated by Heber throughout the task are 

offering, building and explaining ideas. 
                                  

              

            Table 2 

           Observed problem-solving behaviors throughout 97 focus minutes 

 

The problem solving behaviors demonstrated by Heber were central to his growth of 

mathematical understanding and provided evidence of his progression through the levels of 

the Pirie-Kieren Model and the development of his understanding of the Taylor Series. The 

intervention of the professor was enacted in response to and in concert with students’ 

behaviors and was pivotal in helping Heber produce multiple representations of the same 

expression and to transition from the structuring to the inventising layer in the development of 

an abbreviated notation for finding coefficients in Taylor Series polynomial functions.  

 Discussion and Implications: Student problem-solving behaviors, in these episodes, 

were shown to be significant in facilitating the growth of mathematical understanding. When 

given challenging and engaging mathematical tasks, students’ growth of mathematical 

understanding can be traced through analysis of problem-solving behaviors and by mapping 

those evolving behaviors to different layers of understanding as a dynamical process. During 

the growth of mathematical understanding, students build their own notations to attribute 

meaning to the symbolisms that emerge.  

In order for mathematics educators to ascertain how problem-solving behaviors 

facilitate growth of students’ mathematical understanding, students need opportunities to 

collaboratively problem solve and participate in effective mathematical discourse with their 

peers and teachers. The Pirie-Kieren model provides a powerful structure for determining 

Layer (Behavior)Frequency

Image Making (B)30  (E)30  (MR)00  (O)20  (NC)00  (Q)10 

Image Having (B)10  (E)70  (MR)10  (O)30  (NC)00  (Q)40  (R)10  (V)50

Property Noticing (B)20  (E)80  (MR)00  (O)2

Formalizing (B)20  (E)60  (MR)00  (O)50  (NC)00  (Q)10  (R)20  (V)3

Observing (B)00  (E)20  (MR)00  (O)2  (NC)  (Q)  (R)  (V)     

Structuring (B)20  (E)10  (MR)10  (O)00  (NC)00  (Q)00  (R)4    (V)2

Inventising (B)30  (E)30  (MR)00  (O)20  (NC)20  (Q)10  (R)2    (V)2



 

layers in which students work and across which they traverse in the dynamical growth of 

mathematical understanding. When the Pirie-Kieren model is partnered with an analysis of 

student problem-solving behaviors, a useful lens emerges through which teachers might view 

students’ growth of understanding. By analyzing problem-solving behaviors of students’ and 

how those behaviors correspond with different layers of understanding, teachers may more 

effectively evaluate and intervene in students’ mathematical discourse. Finally, it is vital that 

teacher interventions are deeply grounded in students’ mathematical problem-solving 

behaviors to support and facilitate student learning.  

 Future research could include investigations into how other populations, including 

high-school students, build mathematical understanding by mapping learners’ problem-

solving behaviors to the Pirie-Kieren model.  
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