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Abstract: While many instructors may assume that their students have a good conception of 
equality, recent investigations on students’ algebraic reasoning suggest that this may not be the 
case. This report examines the ways undergraduate students interpret expressions involving the 
equals sign and use the equals sign to represent situations involving comparisons. The study 
describes two theoretical perspectives for interpreting the results (mental models and a semiotic 
perspective) and discusses the motivation for making a theoretical shift. 
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Although increased attention has been given to middle-school students’ understanding of 
equality (e.g. Alibali, Knuth, Hattikudur, McNeil & Stephens, 2007), relatively little is known 
about how undergraduate students think about equality and use the equals sign. Many teachers 
(and researchers) at the undergraduate level may assume that their students indeed have a good 
conception of equality. However, recent investigations on students’ solution strategies for 
specific types of algebra word problems suggest that this may not be the case.  

For example, Weinberg (2007) interviewed a student who used the equals sign to represent a 
comparison between two groups. He asked students to write an algebraic expression to represent 
the statement: “There are twelve times as many students as professors at this university.” One of 
the students in the study wrote “12s=p” and said: “I put students to professors, and then I 
originally put dots for a ratio, then I wasn't sure if a ratio would be right, so I put equal—I'm not 
sure if that's the same thing.” Other students in the study used the equals sign in different, 
nonstandard ways. 

The aim of this paper is twofold. First, the paper will report the results of a study that 
investigates students’ conceptions of equality from a cognitive perspective. The analysis of these 
results motivated a shift in theoretical perspective, from focusing on students’ mental models to 
using ideas from semiotics; the second aim of this paper is to describe this theoretical shift and 
re-interpret the results. 

 
Background and Initial Theoretical Perspective 

Equality is a concept that is introduced to students early in their mathematical careers but is 
given little formal instructional attention after elementary school (Alibali et al., 2007). 
Researchers have generally described students’ conceptions of the equals sign as either 
operational or relational (Behr, Erlwanger & Nichols, 1980; Ginsburg, 1982; Kieran, 1981). 
Students with an operational conception view the equals sign as a signal to “do something” (e.g. 
say that the solution to “2+3=__+1” is 6) while a student with a relational conception recognizes 
that the equals sign indicates equivalence. Larson, Zandieh, Rasmussen and Henderson (2009) 
used this perspective to describe the conceptions of students in a linear algebra class. They found 
that the meaning students ascribe to the equals sign is context-dependent–a view that is 
supported by McNeil and Alibali (2005). In addition, McNeil (2007) found that students’ 
conception of equality evolves based on their previous understanding. 
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Equality can be viewed as an important component of the mental models that students 
develop for solving problems. Although there are few descriptions of models that specifically 
describe conceptions of equality, numerous researchers have described the construction of 
problem models in general (e.g. English & Halford, 1995; Hegarty, Mayer & Monk, 1995; 
Nathan, Kintsch & Young, 1992). The study described here used multiplicative comparison 
problems (e.g. the “student-professor” problem described above) as a tool to evoke students’ 
conceptions of equality. Other researchers have described students’ mental models for these 
multiplicative comparisons (e.g. Clement, 1982; Lewis & Mayer, 1987; MacGregor & Stacey, 
1993; Verschaffel, 1994). Although Rosnick and Clement (1980) noted that the equals sign may 
play a significant role in these models, no subsequent research has addressed this perspective. 

 
Research Questions 

Weinberg (2007, 2009) investigated the mental models students’ constructed when solving 
multiplicative comparison word problems. He found that students used multiple solution 
strategies and that these strategies changed when the problem was presented in a new context or 
when students were asked to answer a different question in the same context. The students’ 
strategies indicated that they were using several mental models, three of which had not been 
previously described. Weinberg (2009) noted, “equality and the equals sign play[ed] a different 
role in each of these models” (p. 715) and hypothesized that students’ conceptions of equality 
and the equals sign may play a significant role in students’ mental models. 

The initial study described here set out to address two research questions:  
1. How do students think about equality, as evidenced by their use of the equals sign? 
2. Are students’ conceptions of equality and the equals sign related to either their success on 

algebra word problems or the strategies they use to solve them? 
 

Methodology 
Students in nine sections of first- and second-semester Calculus classes (n=210) at a 

northeastern comprehensive college completed a written assessment with four word problems 
and ten equality problems. All students were invited to participate in an open-ended interview; 
27 students were randomly selected from the volunteers. In the interviews, the students were 
asked to explain their reasoning on each of the problems; the interviews were videotaped and 
transcribed. 

On the written assessment, students worked with algebraic aspects of four word problems 
that involved multiplicative comparisons (e.g. “four pigs for every three cows”). Students were 
asked to perform one of three tasks: write an equation to represent the statement (e.g. 3p=4c), 
write an equation that allowed them to predict the value of one quantity if they knew the value of 
the other (e.g. p=4/3c), or compute the value of one quantity if they knew the value of the other. 
Students were also presented with ten equations and were asked to decide whether they were 
correct. Notably, four of the equations were “run-on” expressions (e.g. 2+3=5+2=7; 

€ 

g(x) = x 2 = g'(x) = 2x ) and one equated an expression with an integer multiple of itself 
(2x+12=x+6).  
 

Results 
On the written assessments, students routinely misidentified the “run-on” expressions as 

correct, and over a third of students identified as correct the equation in which the quantity on 
one side was a multiple of the quantity on the other side (see Table 1). 
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Expression Percent identifying as correct 

€ 

f (x) = 2x 3 = f '(x) = 6x 2 88% 

€ 

g(x) = x 2 = g'(x) = 2x  83% 

€ 

2 + 3 = 5 + 2 = 7  66% 

€ 

5 × 4 = 20 + 3 = 23 36% 

€ 

2x +12 = 6 + x  37% 
Table 1. Student Responses to Equations 

A student who said that one of the run-on expressions was correct was not more likely to say 
that any of the other four were correct Q(4, n=210)=141.67, p<.05. There was also no association 
between students’ responses on the fifth expression and their answers on the first χ2(1, 
n=210)=3.286, p>.05, second χ2(1, n=210)=1.498, p>.05, third χ2(1, n=210)=.436, p>.05, and 
fourth χ2(1, n=210)=.765, p>.05 run-on expressions. There were no significant relationships 
between getting the equality questions correct and getting any of the word problems correct or 
using particular strategies on the word problems. 

In the interviews, some students who had initially identified the “run-on” expressions as 
incorrect questioned their written response. Conversely, most students who had initially 
identified these expressions as correct changed their answer. For example, Table 2 contains 
excerpts from an interview with a student who demonstrated this varying interpretation of the 
run-on expressions: 
 
Expression Response 

€ 

f (x) = 2x 3 = f '(x) = 6x 2 This is just the derivative. Bring down the three, multiply it by two, 
six, and subtract the power, so it's six x squared.  

€ 

2 + 3 = 5 + 2 = 7  Because two plus three does not equal five plus two, but five plus two 
equals seven.  

Table 2. A student’s responses to run-on equations. 
Other students expressed the idea that the run-on equations could be both true and untrue: 
Student: If you just take it five doesn't equal seven and seven, but if you want to say two 

plus three equals five, plus two equals seven, take that separately, that's true, but I was 
just looking at it as five doesn't equal seven...  

Interviewer: So in some readings it might be true, and in others...  
S: Yeah.  
 
Over a third of students indicated that the expression 

€ 

2x +12 = 6 + x  was correct because 
they were able to find a value of x that made it true (i.e. they could “solve for x”). For example, 
one student responded: “That's just a problem you would solve. It's not really right or wrong, it 
depends what x is.” Others reported that the expression was true because they could transform it 
into a reflexive identity. For example, the student described his solution as follows: 

I guess twelve x plus, or two x plus twelve, set that equal to zero... just get x alone.... I 
guess that's wrong actually, could it be negative, two x plus twelve equals negative 
twelve, divided by two over the x equals negative six... or, no that is right, it's just...times 
two. Just the same amount. If I take the two out, then x plus six equals six plus x. 
 
The language this student used to describe his solutions to several of the word problems 

suggested that he viewed the equals sign as actively equating two quantities. Table 3 shows how 
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this student’s language presents the equals sign as having an operation aspect, much in the same 
way elementary students describe “3+5=8” as “3 and 5 make 8” (Ginsburg, 1982). 
Algebraic Situation Response 
There are twelve times as many students as 
professors. 

I guess I was right the first time... s equals 
twelve p [writes], for three times... three times 
the amount of professors equals to the thirty-six 
students. 

There are three trucks for every five sedans. I set t equal to trucks then s equals to sedans 
Table 3. A student's operational language (emphasis added). 

 
In his solution to one of the word problems, this student explicitly described interchanging the 
equals sign and a symbol for a ratio. In this example, the student had originally written 3t=5s as 
his solution: 

Interviewer: Okay. So then this—was this an equals sign or a ratio sign?  
Student: This should be a ratio [writes colon over the equals sign] - three trucks for every 

five sedans, fifteen trucks for every 25 sedans. 
 

After replacing the equals sign with a ratio, the student went on to describe the way he used this 
equality/ratio relationship to think about the problem. He reported thinking of the two quantities 
as connected and that the appropriate way to interact with the quantities was to perform the same 
action on both of them: 

So you multiply that times five [points to 3t] and that times five [points to 5s] because 
you're doing the same... it's by the same amount you're multiplying this by. 

 
Even though this student used the equals sign to represent something other than true equality, 

he was still able to construct a problem model that enabled him to solve the problem correctly.  
Other students also used multiple conceptions of the equality and the equals sign when 

working on a single problem. However, not all students were able to successfully solve the 
problems. In the following example, a student used proportional reasoning in the same way as 
the previous student to solve the trucks-and-sedans problem: 

Student: Okay. I did a ratio, there are 3 trucks, 5 sedans, and there's a total of 165. So this 
side is my trucks, so 3 trucks, and eventually I want to determine how many trucks 
there are, so, this is sedans, 5 sedans, 165, and then I cross multiplied? Yes, then I 
cross-multiplied, and there are 99 trucks.  

Interviewer: Okay. Are you confident with that answer?  
Student: Yes.  
 
When the interviewer asked the student to create an algebraic representation of the 

situation, she gave the same (in correct) answer as the previous student: 
Interviewer: What if in this one I asked you to do something similar to the cows and pigs 

one? So there I wanted you to write an expression to represent the relationship. So 
here, what if you didn't know there are 165 sedans—what if you just knew there are 3 
trucks for every 5 sedans? Could you write me an equation to represent this 
relationship, maybe using t for number of trucks and s for number of sedans?  

Student: Does it have to be solvable? Can it be more than one variable?  
Interviewer: there's t and there's s.  
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Student: Alright... t times [write 3t] yeah, equals [writes 5s] 5s... because... the number 
of, wait, no, hang on a sec... yeah, no. This is a weak spot in my math education... No, 
I don't know what to do. 

Interviewer: So, you don't - this one [points to 3t=5s] doesn't seem right?  
Student: I'm not confident about it being right. But, it makes sense to me. 
Interviewer: And how did you get the 3t equals 5s?  
Student: Cause the number of trucks times 3 should equal the number of sedans times 5.  
 
However, unlike the previous student, this student was subsequently unable to work 

successfully in the problem situation: 
Interviewer: And would that give you—I assume it would give you the same result as the 

99 here.  
Student: Definitely. I don't know. Yes—no it wouldn't, because... maybe it would... if I 

plugged in 165 sedans, times 5 divided by 3, would that equal 99? No, because it 
didn't work for the cows and pigs...  

Interviewer: This is trucks and sedans, not cows and pigs...  
Student: More fuel-efficient, I don't know... I know it's wrong, I just don't know what to 

do to fix it. 
 
Although this student was unable to construct a general algebraic model for this particular 

problem, she was able to do so for some of the other multiplicative comparison problems. 
 

Discussion 
Students used the equals sign flexibly to represent multiple ideas. In some of the run-on 

equations, they recognized that it indicated equality between multiple expressions, while in 
others they viewed it as indicating a directed relationship between the expressions. In the fifth 
equation, some students took the equals sign to indicate that they should investigate whether two 
algebraic expressions could be equal for specific values of x, or would be equal for all values of 
x, while other students attempted to find a value of x that would make the two expressions equal. 
In addition, the students viewed the equals sign as playing different roles in the different word 
problems. For example, a single student in this study used the equals sign in all of the following 
ways: 

1.  Describe an equality between two quantities as simultaneously having relational and 
operational characteristics 

2.  Denote a relation between identical objects 
3.  Indicate that one should perform an operation on an algebraic expression 
4.  Indicate the presence of a non-equality relationship or comparison 
5.  Link and compare expressions in run-on equations 
Students’ solution strategies for the word problems suggested that they constructed multiple 

types of mental models, each of which incorporated different conceptions of equality and the 
equals sign. The models they used changed depending on the problem, with some students 
appearing to use multiple models within the same problem. What is striking about these different 
conceptions of equality—and the resulting uses of the equals sign—is that some students were 
able to successfully solve problems even if they did not use the equals sign in a “mathematically 
correct” way. At the same time, other students appeared to construct similar mental models, yet 
they were unable to solve the problems. 
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The two students described above highlight these issues. The first student initially appeared 
to be directly translating the description of the problem into a string of algebraic symbols 
(Hegarty, Mayer & Monk, 1995). However, he was able to use his representation of “equality” as 
a tool to help him work manipulate two quantities (the numbers of trucks and sedans), suggesting 
that he had constructed a model of systematic comparison (Weinberg, 2009). In contrast, the 
second student initially seemed to be using a systematic comparison model in the same situation. 
However, after she attempted to represent her model algebraically, she was unable to use this 
representation to perform computations in a way she found satisfactory. 

From the perspective of mental models, there seem to be few patterns and little consistency 
in the ways students conceived of equality and the equals sign. We may hypothesize that students 
constructed a wide variety of mental models to work with these multiplicative comparison 
problems and that a wide range of problem types, contexts, and tasks may have activated each 
type of model. Equality seems to play a distinct role in each model, although it was not always 
easy—or possible—to determine which conception of equality a student is using based solely on 
their external representations. 

 
An Alternate Perspective 

Although it is possible to describe students’ conceptions of equality using mental models, 
this theoretical perspective made it difficult to create descriptions of students’ thinking that had 
clear relationships to their mathematical activity. In particular, these models did not easily 
describe students’ representational acts, seemed to play a central role in their activity. For 
example, consider the first student’s solution for the trucks-and-sedans problem: he created an 
external representation to use while he solved the problem; even though the equals sign did not 
match his “internal” conception (i.e. a ratio), it still enabled him to work within the problem 
context and produce a solution. 

This suggests that shifting the theoretical focus from students’ internal cognition to their 
representations might yield more satisfying descriptions of their mathematical activity. The 
previous discussion of students’ conceptions of equality was based on a cognitive perspective in 
which internal and external representations are seen as distinct and separate. As an example, 
consider the original research questions: 

1. How do students think about equality, as evidenced by their use of the equals sign? 
2. Are students’ conceptions of equality and the equals sign related to either their success on 

algebra word problems or the strategies they use to solve them? 
The first research question implicitly frames the “use” of the equals sign as an external act 

that is distinct from the internal act of thinking. Similarly, the second research question presents 
a “conception” and “strategy” as something that is “inside” a student’s mind and is distinct from 
the external representations they use when solving the word problems.  

This focus on representation suggests that a semiotic perspective might offer a viable 
theoretical alternative. In short, semiotics is about the creation and interpretation of 
(mathematical) signs. There are many types of semiotic perspectives that are being used in 
mathematics education research (see, e.g., Berger, 2004; Morgan, 2006; Radford, 2000, 2003, 
2009; Sáenz-Ludlow, 2006) and a full presentation of the theory is beyond the scope of this 
paper. However, Rotman (2006) summarizes the main idea:  

Those things which are ‘described’—thoughts, signifieds, notions—and the means by 
which they are described—scribbles—are mutually constitutive: each causes the presence 
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of the other; so that mathematicians at the same time think their scribbles and scribble 
their thoughts. (p. 121-122) 
That is, semiotics focuses on the interaction between thinking and representing. As Radford 

(2000) notes, adopting this perspective entails a “theoretical shift from what signs represent to 
what they enable us to do” (p. 241). The semiotic perspective is in contrast to theoretical foci 
that separate internal and external representations; these foci might view external representations 
as indicators of mental constructs or view internal thinking as a response to external 
representations.  

Since semiotics focuses on mathematical activity and the use of representations, using a 
semiotic perspective entails using specific methods for generating data. For example, it no longer 
makes sense to ask students how they interpret the equals sign in run-on expressions; asking a 
student how they think about a pre-made symbol will not produce results that we can analyze. In 
contrast, we can ask students to solve problems in which they represent mathematical situations 
and then analyze the way their representations shape their activity. 

A full analysis of students’ semiotic activity would be beyond the scope of this paper. 
However, there are two ideas from semiotics that offer insight into students’ mathematical 
activity: the distinction between icons, indexes, and symbols; and the distinction between 
personal and cultural semiotic systems.  

 
Icons, Indexes, and Symbols 

An icon is a representation that resembles “what it stands for” (e.g. four tally marks are four 
things that may be counted). An index is a representation that “points” directly to what it stands 
for (e.g. four tally marks might represent a collection of four objects other than the tally marks). 
A symbol is a representation that is associated with other representations (e.g. the symbol “4” 
might represent the four tally marks, a collection of properties of the number, etc.).  

For example, a student who wrote 3t might interpret t as an index that points to an imagined 
truck and 3t as an index that points to an imagined collection of three trucks. In contrast, when 
mathematicians write 3t, it is typically interpreted as a symbol that represents all of the possible 
values that result from multiplying 3 by an unknown number of (imagined) trucks. 
 
Personal and Cultural Systems 

Students create personal semiotic systems when they begin to solve problems; these systems 
may not match the cultural systems that mathematicians have agreed upon (Berger, 2004). As 
students work on a mathematical problem, they may use “=” as part of a sign to which they 
ascribe meaning. The meaning that students construct depends on the activity in which the sign is 
used, and—reflexively—the evolving meaning of the sign mediates the way the student engages 
in the mathematical activity. This negotiation of meaning is situated in the context of the activity. 
That is, the way students understand and use the equals sign is shaped by their previous 
understanding and experiences.  

For example, the first student began working on the trucks-and-sedans problem by generating 
a semiotic system in which he used 3t=5s as an initial representation. In his personal system, the 
symbols 5s and 3t seemed to be indexes, pointing to mental or discursive objects. The symbol 
“=” enabled him to compare and manipulate the 3t and 5s according to a specific set of rules.  

When the interviewer later asked the first student to compute the number of sedans when 
there were 15 trucks, the student was able to successfully work within his system; if he had tried 
to use the rules of the cultural semiotic system (i.e. substituting 15 for t and multiplying by 3) he 
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would have had difficulty producing an answer that made sense to him. This is precisely what 
happened with the second student: her personal system—using indexes—was incompatible with 
the cultural system, in which t and s are symbols. Even though she had previously produced a 
different semiotic system that enabled her to compute values for the numbers of trucks and 
sedans, when she tried to represent the algebraic relationship, the clash between the personal and 
cultural semiotic systems left her unable to solve the problem. 
 

Conclusion 
The results described here suggest that students may think about the equals sign in multiple 

ways that depend on the mathematical activity in which they engage. While mathematics 
teachers would like their students to use the equals sign in a prescribed, mathematically correct 
way, students may be able to use the equals sign in other ways yet still work productively on 
mathematical problems.  

From a cognitive perspective, the equals sign can represent a wide variety of ideas depending 
on the student’s mental model and the problem situation. However, this perspective can make it 
difficult to explain all of the ways students think of equality and all of the ways they use the 
equals sign when they solve problems. 

From a semiotic perspective, students create personal semiotic systems to solve mathematical 
problems. They use signs—among them the equals sign—to represent a wide range of ideas; 
these signs both enable the students to engage in mathematical activity and, at the same time, 
shape and constrain the way they engage in the activity. Even though the students’ personal 
semiotic systems may not match the cultural systems of mathematicians, the students may still be 
able to successfully solve problems. However, if students try to operate in multiple semiotic 
systems simultaneously, they may not be able to work productively. 

For mathematics teachers, these results underscore the need to understand the ways students 
symbolize their own mathematical ideas and ascribe meaning to formal mathematical symbols. 
By viewing this symbolization process as a negotiation—between the student, the teacher, formal 
mathematics, and the context in which the activity is situated—teachers can help their students 
use these symbols meaningfully in ways that are compatible with standard, formal mathematical 
notation. 

For mathematics education researchers, these results highlight the importance of 
understanding the ways undergraduate students conceptualize equality and use the equals sign. 
This study shows how a semiotic perspective may be used to make sense of students’ 
mathematical activity. In addition, it shows the potential benefits of adopting new theoretical 
perspectives when old perspectives make it difficult to interpret results. 
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